aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra')
-rw-r--r--src/share/algebra/browse.daase3506
-rw-r--r--src/share/algebra/category.daase5335
-rw-r--r--src/share/algebra/compress.daase1407
-rw-r--r--src/share/algebra/interp.daase10160
-rw-r--r--src/share/algebra/operation.daase32503
5 files changed, 26526 insertions, 26385 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index e8511cb7..ebaa2c41 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2257516 . 3431009356)
+(2265346 . 3431018168)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4330 . T) (-4329 . T) (-2618 . T))
+((-4338 . T) (-4337 . T) (-2624 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4326 . T) (-4324 . T) (-4323 . T) ((-4331 "*") . T) (-4322 . T) (-4327 . T) (-4321 . T) (-2618 . T))
+((-4334 . T) (-4332 . T) (-4331 . T) ((-4339 "*") . T) (-4330 . T) (-4335 . T) (-4329 . T) (-2624 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,17 +56,17 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|Syntax|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|Syntax|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -1415)
+(-32 R -1422)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))))
+((|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4329)))
+((|HasAttribute| |#1| (QUOTE -4337)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-2618 . T))
+((-2624 . T))
NIL
(-35)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4329 . T) (-4330 . T) (-2618 . T))
+((-4337 . T) (-4338 . T) (-2624 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
-((-4323 . T) (-4324 . T) (-4326 . T))
+((-4331 . T) (-4332 . T) (-4334 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1415 UP UPUP -2580)
+(-40 -1422 UP UPUP -1591)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4322 |has| (-398 |#2|) (-354)) (-4327 |has| (-398 |#2|) (-354)) (-4321 |has| (-398 |#2|) (-354)) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| (-398 |#2|) (QUOTE (-143))) (|HasCategory| (-398 |#2|) (QUOTE (-145))) (|HasCategory| (-398 |#2|) (QUOTE (-340))) (-1530 (|HasCategory| (-398 |#2|) (QUOTE (-354))) (|HasCategory| (-398 |#2|) (QUOTE (-340)))) (|HasCategory| (-398 |#2|) (QUOTE (-354))) (|HasCategory| (-398 |#2|) (QUOTE (-359))) (-1530 (-12 (|HasCategory| (-398 |#2|) (QUOTE (-225))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (|HasCategory| (-398 |#2|) (QUOTE (-340)))) (-1530 (-12 (|HasCategory| (-398 |#2|) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (-12 (|HasCategory| (-398 |#2|) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-398 |#2|) (QUOTE (-340))))) (|HasCategory| (-398 |#2|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| (-398 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-398 |#2|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-359))) (-1530 (|HasCategory| (-398 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (-12 (|HasCategory| (-398 |#2|) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (-12 (|HasCategory| (-398 |#2|) (QUOTE (-225))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))))
-(-41 R -1415)
+((-4330 |has| (-400 |#2|) (-356)) (-4335 |has| (-400 |#2|) (-356)) (-4329 |has| (-400 |#2|) (-356)) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-342))) (-1536 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-1536 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (-1536 (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-400 |#2|) (QUOTE (-342))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1536 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))))
+(-41 R -1422)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -103,34 +103,34 @@ NIL
(-43 R A)
((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-298))))
+((|HasCategory| |#1| (QUOTE (-300))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4326 |has| |#1| (-539)) (-4324 . T) (-4323 . T))
-((|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539))))
+((-4334 |has| |#1| (-541)) (-4332 . T) (-4331 . T))
+((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4329 . T) (-4330 . T))
-((-1530 (-12 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1786) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1786) (|devaluate| |#2|))))))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (-12 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1786) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))))
+((-4337 . T) (-4338 . T))
+((-1536 (-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-823))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1793) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1793) (|devaluate| |#2|))))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-823))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-823))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1793) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-547)))))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-549)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4326 . T))
+((-4334 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -1415)
+(-54 |Base| R -1422)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -154,7 +154,7 @@ NIL
NIL
(-56 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4329 . T) (-4330 . T) (-2618 . T))
+((-4337 . T) (-4338 . T) (-2624 . T))
NIL
(-57 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -162,65 +162,65 @@ NIL
NIL
(-58 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
(-59 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-60 -2473)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-60 -2481)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-61 -2473)
+(-61 -2481)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-62 -2473)
+(-62 -2481)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-63 -2473)
+(-63 -2481)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-64 -2473)
+(-64 -2481)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-65 -2473)
+(-65 -2481)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-66 -2473)
+(-66 -2481)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -2473)
+(-67 -2481)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -2473)
+(-68 -2481)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-69 -2473)
+(-69 -2481)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-70 -2473)
+(-70 -2481)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-71 -2473)
+(-71 -2481)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-72 -2473)
+(-72 -2481)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-73 -2473)
+(-73 -2481)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -232,66 +232,66 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-76 -2473)
+(-76 -2481)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-77 -2473)
+(-77 -2481)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -2473)
+(-78 -2481)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -2473)
+(-79 -2481)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2473)
+(-80 -2481)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2473)
+(-81 -2481)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -2473)
+(-82 -2481)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2473)
+(-83 -2481)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2473)
+(-84 -2481)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2473)
+(-85 -2481)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2473)
+(-86 -2481)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -2473)
+(-87 -2481)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-88 -2473)
+(-88 -2481)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-89 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-354))))
+((|HasCategory| |#1| (QUOTE (-356))))
(-90 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
(-91 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -314,15 +314,15 @@ NIL
NIL
(-96)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4329 . T))
+((-4337 . T))
NIL
(-97)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4329 . T) ((-4331 "*") . T) (-4330 . T) (-4326 . T) (-4324 . T) (-4323 . T) (-4322 . T) (-4327 . T) (-4321 . T) (-4320 . T) (-4319 . T) (-4318 . T) (-4317 . T) (-4325 . T) (-4328 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4316 . T))
+((-4337 . T) ((-4339 "*") . T) (-4338 . T) (-4334 . T) (-4332 . T) (-4331 . T) (-4330 . T) (-4335 . T) (-4329 . T) (-4328 . T) (-4327 . T) (-4326 . T) (-4325 . T) (-4333 . T) (-4336 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4324 . T))
NIL
(-98 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4326 . T))
+((-4334 . T))
NIL
(-99 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -338,15 +338,15 @@ NIL
NIL
(-102 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
(-103 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4331 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4339 "*"))))
(-104)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4329 . T))
+((-4337 . T))
NIL
(-105 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -354,12 +354,12 @@ NIL
NIL
(-106 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4330 . T) (-2618 . T))
+((-4338 . T) (-2624 . T))
NIL
(-107)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| (-547) (QUOTE (-878))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| (-547) (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-145))) (|HasCategory| (-547) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-547) (QUOTE (-991))) (|HasCategory| (-547) (QUOTE (-794))) (-1530 (|HasCategory| (-547) (QUOTE (-794))) (|HasCategory| (-547) (QUOTE (-821)))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-1112))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-547) (QUOTE (-225))) (|HasCategory| (-547) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-547) (LIST (QUOTE -503) (QUOTE (-1136)) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -300) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -277) (QUOTE (-547)) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-298))) (|HasCategory| (-547) (QUOTE (-532))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-547) (LIST (QUOTE -615) (QUOTE (-547)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (|HasCategory| (-547) (QUOTE (-143)))))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| (-549) (QUOTE (-880))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| (-549) (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-549) (QUOTE (-993))) (|HasCategory| (-549) (QUOTE (-796))) (-1536 (|HasCategory| (-549) (QUOTE (-796))) (|HasCategory| (-549) (QUOTE (-823)))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1118))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-227))) (|HasCategory| (-549) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-549) (LIST (QUOTE -505) (QUOTE (-1143)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -302) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -279) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-300))) (|HasCategory| (-549) (QUOTE (-534))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-549) (LIST (QUOTE -617) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (|HasCategory| (-549) (QUOTE (-143)))))
(-108)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -370,11 +370,11 @@ NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4330 . T) (-4329 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -300) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-112) (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -591) (QUOTE (-832)))))
+((-4338 . T) (-4337 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1067))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-112) (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-112) (QUOTE (-1067))) (|HasCategory| (-112) (LIST (QUOTE -593) (QUOTE (-834)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4324 . T) (-4323 . T))
+((-4332 . T) (-4331 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -383,30 +383,30 @@ NIL
(-113 A)
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
NIL
-((|HasCategory| |#1| (QUOTE (-821))))
+((|HasCategory| |#1| (QUOTE (-823))))
(-114)
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-115 -1415 UP)
+(-115 -1422 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-116 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-878))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-116 |#1|) (QUOTE (-991))) (|HasCategory| (-116 |#1|) (QUOTE (-794))) (-1530 (|HasCategory| (-116 |#1|) (QUOTE (-794))) (|HasCategory| (-116 |#1|) (QUOTE (-821)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-116 |#1|) (QUOTE (-1112))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| (-116 |#1|) (QUOTE (-225))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -503) (QUOTE (-1136)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -300) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -277) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-298))) (|HasCategory| (-116 |#1|) (QUOTE (-532))) (|HasCategory| (-116 |#1|) (QUOTE (-821))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-878)))) (|HasCategory| (-116 |#1|) (QUOTE (-143)))))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| (-116 |#1|) (QUOTE (-880))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-116 |#1|) (QUOTE (-993))) (|HasCategory| (-116 |#1|) (QUOTE (-796))) (-1536 (|HasCategory| (-116 |#1|) (QUOTE (-796))) (|HasCategory| (-116 |#1|) (QUOTE (-823)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-116 |#1|) (QUOTE (-1118))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| (-116 |#1|) (QUOTE (-227))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -505) (QUOTE (-1143)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-300))) (|HasCategory| (-116 |#1|) (QUOTE (-534))) (|HasCategory| (-116 |#1|) (QUOTE (-823))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-880)))) (|HasCategory| (-116 |#1|) (QUOTE (-143)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4330)))
+((|HasAttribute| |#1| (QUOTE -4338)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-2618 . T))
+((-2624 . T))
NIL
(-120 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
@@ -414,15 +414,15 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4330 . T) (-4329 . T) (-2618 . T))
+((-4338 . T) (-4337 . T) (-2624 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,20 +430,20 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4329 . T) (-4330 . T) (-2618 . T))
+((-4337 . T) (-4338 . T) (-2624 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
(-128)
((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes.")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| (-129) (QUOTE (-821))) (|HasCategory| (-129) (LIST (QUOTE -300) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1063))) (|HasCategory| (-129) (LIST (QUOTE -300) (QUOTE (-129)))))) (-1530 (-12 (|HasCategory| (-129) (QUOTE (-1063))) (|HasCategory| (-129) (LIST (QUOTE -300) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-129) (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| (-129) (QUOTE (-821))) (|HasCategory| (-129) (QUOTE (-1063)))) (|HasCategory| (-129) (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-129) (QUOTE (-1063))) (-12 (|HasCategory| (-129) (QUOTE (-1063))) (|HasCategory| (-129) (LIST (QUOTE -300) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -591) (QUOTE (-832)))))
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| (-129) (QUOTE (-823))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1067))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129)))))) (-1536 (-12 (|HasCategory| (-129) (QUOTE (-1067))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-129) (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| (-129) (QUOTE (-823))) (|HasCategory| (-129) (QUOTE (-1067)))) (|HasCategory| (-129) (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-129) (QUOTE (-1067))) (-12 (|HasCategory| (-129) (QUOTE (-1067))) (|HasCategory| (-129) (LIST (QUOTE -302) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -593) (QUOTE (-834)))))
(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -462,13 +462,13 @@ NIL
NIL
(-133)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4331 "*") . T))
+(((-4339 "*") . T))
NIL
-(-134 |minix| -2721 S T$)
+(-134 |minix| -2728 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-135 |minix| -2721 R)
+(-135 |minix| -2728 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -486,8 +486,8 @@ NIL
NIL
(-139)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4329 . T) (-4319 . T) (-4330 . T))
-((-1530 (-12 (|HasCategory| (-142) (QUOTE (-359))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-142) (QUOTE (-359))) (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -591) (QUOTE (-832)))))
+((-4337 . T) (-4327 . T) (-4338 . T))
+((-1536 (-12 (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1067))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-834)))))
(-140 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -502,7 +502,7 @@ NIL
NIL
(-143)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4326 . T))
+((-4334 . T))
NIL
(-144 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -510,9 +510,9 @@ NIL
NIL
(-145)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-146 -1415 UP UPUP)
+(-146 -1422 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -523,4402 +523,4430 @@ NIL
(-148 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasAttribute| |#1| (QUOTE -4329)))
+((|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasAttribute| |#1| (QUOTE -4337)))
(-149 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-2618 . T))
+((-2624 . T))
NIL
(-150 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4324 . T) (-4323 . T) (-4326 . T))
+((-4332 . T) (-4331 . T) (-4334 . T))
NIL
(-151)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
NIL
NIL
-(-152 UP |Par|)
+(-152)
+((|constructor| (NIL "This domain represents list comprehension syntax.")) (|body| (((|Syntax|) $) "\\spad{body(e)} return the expression being collected by the list comprehension `e'.")) (|iterators| (((|List| (|Syntax|)) $) "\\spad{iterators(e)} returns the list of the iterators of the list comprehension `e'.")))
+NIL
+NIL
+(-153 UP |Par|)
((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly,{} eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps.")))
NIL
NIL
-(-153)
+(-154)
((|constructor| (NIL "This domain represents type specification \\indented{2}{for an identifier or expression.}")) (|rhs| (((|TypeAst|) $) "\\spad{rhs(e)} returns the right hand side of the colon expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the colon expression `e'.")))
NIL
NIL
-(-154)
+(-155)
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-155 R -1415)
+(-156 R -1422)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
-(-156 I)
+(-157 I)
((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,{}m)} returns the Stirling number of the second kind denoted \\spad{SS[n,{}m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,{}m)} returns the Stirling number of the first kind denoted \\spad{S[n,{}m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,{}r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,{}[m1,{}m2,{}...,{}mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time.")))
NIL
NIL
-(-157)
+(-158)
((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")))
NIL
NIL
-(-158)
+(-159)
((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|Syntax|)) $) "\\spad{body(e)} returns the list of expressions making up `e'.")))
NIL
NIL
-(-159)
+(-160)
((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}")))
NIL
NIL
-(-160)
+(-161)
((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics.")))
NIL
NIL
-(-161 R UP UPUP)
+(-162 R UP UPUP)
((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,{}y))} returns \\spad{p}(\\spad{y},{}\\spad{x}).")))
NIL
NIL
-(-162 S R)
+(-163 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (QUOTE (-532))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1158))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-354))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasAttribute| |#2| (QUOTE -4328)) (|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-821))))
-(-163 R)
+((|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1165))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasAttribute| |#2| (QUOTE -4333)) (|HasAttribute| |#2| (QUOTE -4336)) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-823))))
+(-164 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4322 -1530 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4325 |has| |#1| (-6 -4325)) (-4328 |has| |#1| (-6 -4328)) (-3402 . T) (-2618 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 -1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4333 |has| |#1| (-6 -4333)) (-4336 |has| |#1| (-6 -4336)) (-3410 . T) (-2624 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-164 RR PR)
+(-165 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
NIL
NIL
-(-165 R S)
+(-166 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
NIL
-(-166 R)
+(-167 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4322 -1530 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4325 |has| |#1| (-6 -4325)) (-4328 |has| |#1| (-6 -4328)) (-3402 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-340))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-340)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-359))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1136)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-340)))) (|HasCategory| |#1| (QUOTE (-225))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -277) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-802)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-1158)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-878))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-878))))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-340)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1136)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -277) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-532))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-354)))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-225))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasAttribute| |#1| (QUOTE -4328)) (-12 (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136))))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-340)))))
-(-167 R S CS)
+((-4330 -1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4333 |has| |#1| (-6 -4333)) (-4336 |has| |#1| (-6 -4336)) (-3410 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-342))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1143)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-361)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-804)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-993)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-880))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-880)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-880))))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1165)))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1143)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1165)))) (|HasCategory| |#1| (QUOTE (-534))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-227))) (-12 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasAttribute| |#1| (QUOTE -4333)) (|HasAttribute| |#1| (QUOTE -4336)) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143))))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-342)))))
+(-168 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
NIL
-(-168)
+(-169)
((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")))
NIL
NIL
-(-169)
+(-170)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-170)
+(-171)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
NIL
NIL
-(-171 R)
+(-172 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4331 "*") . T) (-4322 . T) (-4327 . T) (-4321 . T) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") . T) (-4330 . T) (-4335 . T) (-4329 . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-172)
+(-173)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
NIL
NIL
-(-173 R)
+(-174 R)
((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}.")))
NIL
NIL
-(-174 R |PolR| E)
+(-175 R |PolR| E)
((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants")))
NIL
NIL
-(-175 R S CS)
+(-176 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-921 |#2|) (LIST (QUOTE -855) (|devaluate| |#1|))))
-(-176 R)
+((|HasCategory| (-923 |#2|) (LIST (QUOTE -857) (|devaluate| |#1|))))
+(-177 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
NIL
-(-177 R UP)
+(-178)
+((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression being converted.")))
+NIL
+NIL
+(-179 R UP)
((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}.")))
NIL
NIL
-(-178 S ST)
+(-180 S ST)
((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic")))
NIL
NIL
-(-179)
+(-181)
((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor")))
NIL
NIL
-(-180 R -1415)
+(-182 R -1422)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-181 R)
+(-183 R)
((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}")))
NIL
NIL
-(-182)
+(-184)
((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}")))
NIL
NIL
-(-183)
+(-185)
((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}")))
NIL
NIL
-(-184)
+(-186)
((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points.")))
NIL
NIL
-(-185)
+(-187)
((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-186)
+(-188)
((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-187)
+(-189)
((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-188)
+(-190)
((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-189)
+(-191)
((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-190)
+(-192)
((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-191)
+(-193)
((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-192)
+(-194)
((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-193)
+(-195)
((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-194)
+(-196)
((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-195)
+(-197)
NIL
NIL
NIL
-(-196)
+(-198)
((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator.")))
NIL
NIL
-(-197)
+(-199)
((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes")))
NIL
NIL
-(-198)
+(-200)
((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
-(-199)
+(-201)
((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
-(-200)
+(-202)
((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
-(-201)
+(-203)
((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
-(-202)
+(-204)
((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}")))
NIL
NIL
-(-203)
+(-205)
((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF.")))
NIL
NIL
-(-204)
+(-206)
((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF.")))
NIL
NIL
-(-205 N T$)
+(-207 N T$)
((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|setelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "\\spad{setelt(b,{}i,{}x)} sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|elt| ((|#2| $ (|NonNegativeInteger|)) "\\spad{elt(b,{}i)} returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}.")))
NIL
NIL
-(-206 S)
+(-208 S)
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-207 -1415 UP UPUP R)
+(-209 -1422 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-208 -1415 FP)
+(-210 -1422 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
-(-209)
+(-211)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| (-547) (QUOTE (-878))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| (-547) (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-145))) (|HasCategory| (-547) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-547) (QUOTE (-991))) (|HasCategory| (-547) (QUOTE (-794))) (-1530 (|HasCategory| (-547) (QUOTE (-794))) (|HasCategory| (-547) (QUOTE (-821)))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-1112))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-547) (QUOTE (-225))) (|HasCategory| (-547) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-547) (LIST (QUOTE -503) (QUOTE (-1136)) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -300) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -277) (QUOTE (-547)) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-298))) (|HasCategory| (-547) (QUOTE (-532))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-547) (LIST (QUOTE -615) (QUOTE (-547)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (|HasCategory| (-547) (QUOTE (-143)))))
-(-210)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| (-549) (QUOTE (-880))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| (-549) (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-549) (QUOTE (-993))) (|HasCategory| (-549) (QUOTE (-796))) (-1536 (|HasCategory| (-549) (QUOTE (-796))) (|HasCategory| (-549) (QUOTE (-823)))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1118))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-227))) (|HasCategory| (-549) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-549) (LIST (QUOTE -505) (QUOTE (-1143)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -302) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -279) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-300))) (|HasCategory| (-549) (QUOTE (-534))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-549) (LIST (QUOTE -617) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (|HasCategory| (-549) (QUOTE (-143)))))
+(-212)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|Syntax|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|List| (|Identifier|)) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-211 R -1415)
+(-213 R -1422)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
-(-212 R)
+(-214 R)
((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
-(-213 R1 R2)
+(-215 R1 R2)
((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}")))
NIL
NIL
-(-214 S)
+(-216 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-215 |CoefRing| |listIndVar|)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-217 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-216 R -1415)
+(-218 R -1422)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
-(-217)
+(-219)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-2654 . T) (-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-2661 . T) (-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-218)
+(-220)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
NIL
NIL
-(-219 R)
+(-221 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-539))) (|HasAttribute| |#1| (QUOTE (-4331 "*"))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-220 A S)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-541))) (|HasAttribute| |#1| (QUOTE (-4339 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-222 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
-(-221 S)
+(-223 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4330 . T) (-2618 . T))
+((-4338 . T) (-2624 . T))
NIL
-(-222 S R)
+(-224 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-225))))
-(-223 R)
+((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-227))))
+(-225 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-224 S)
+(-226 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
NIL
NIL
-(-225)
+(-227)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-226 A S)
+(-228 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4329)))
-(-227 S)
+((|HasAttribute| |#1| (QUOTE -4337)))
+(-229 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4330 . T) (-2618 . T))
+((-4338 . T) (-2624 . T))
NIL
-(-228)
+(-230)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-229 S -2721 R)
+(-231 S -2728 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819))) (|HasAttribute| |#3| (QUOTE -4326)) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-1063))))
-(-230 -2721 R)
+((|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821))) (|HasAttribute| |#3| (QUOTE -4334)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-1067))))
+(-232 -2728 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4323 |has| |#2| (-1016)) (-4324 |has| |#2| (-1016)) (-4326 |has| |#2| (-6 -4326)) ((-4331 "*") |has| |#2| (-169)) (-4329 . T) (-2618 . T))
+((-4331 |has| |#2| (-1018)) (-4332 |has| |#2| (-1018)) (-4334 |has| |#2| (-6 -4334)) ((-4339 "*") |has| |#2| (-170)) (-4337 . T) (-2624 . T))
NIL
-(-231 -2721 A B)
+(-233 -2728 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-232 -2721 R)
+(-234 -2728 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4323 |has| |#2| (-1016)) (-4324 |has| |#2| (-1016)) (-4326 |has| |#2| (-6 -4326)) ((-4331 "*") |has| |#2| (-169)) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))))) (-1530 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (QUOTE (-354))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-767))) (-1530 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819)))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-169))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-819)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063))))) (-1530 (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| (-547) (QUOTE (-821))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-1530 (|HasCategory| |#2| (QUOTE (-1016))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasAttribute| |#2| (QUOTE -4326)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-233)
+((-4331 |has| |#2| (-1018)) (-4332 |has| |#2| (-1018)) (-4334 |has| |#2| (-6 -4334)) ((-4339 "*") |has| |#2| (-170)) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-769))) (-1536 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1067)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-361)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-703)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1067))))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-1536 (|HasCategory| |#2| (QUOTE (-1018))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1067)))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-235)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
NIL
-(-234 S)
+(-236 S)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
NIL
NIL
-(-235)
+(-237)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4322 . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-236 S)
+(-238 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-237 S)
+(-239 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-238 M)
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-240 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
-(-239 |vl| R)
+(-241 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4331 "*") |has| |#2| (-169)) (-4322 |has| |#2| (-539)) (-4327 |has| |#2| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#2| (QUOTE (-878))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-539)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#2| (QUOTE -4327)) (|HasCategory| |#2| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-240)
+(((-4339 "*") |has| |#2| (-170)) (-4330 |has| |#2| (-541)) (-4335 |has| |#2| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#2| (QUOTE (-880))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-541)))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4335)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(-242)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
-(-241 |n| R M S)
+(-243 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4326 -1530 (-1814 (|has| |#4| (-1016)) (|has| |#4| (-225))) (-1814 (|has| |#4| (-1016)) (|has| |#4| (-869 (-1136)))) (|has| |#4| (-6 -4326)) (-1814 (|has| |#4| (-1016)) (|has| |#4| (-615 (-547))))) (-4323 |has| |#4| (-1016)) (-4324 |has| |#4| (-1016)) ((-4331 "*") |has| |#4| (-169)) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-354))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-701))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-767))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-819))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1136)))))) (|HasCategory| |#4| (QUOTE (-354))) (-1530 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-354))) (|HasCategory| |#4| (QUOTE (-1016)))) (-1530 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-354)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (QUOTE (-767))) (-1530 (|HasCategory| |#4| (QUOTE (-767))) (|HasCategory| |#4| (QUOTE (-819)))) (|HasCategory| |#4| (QUOTE (-819))) (|HasCategory| |#4| (QUOTE (-701))) (|HasCategory| |#4| (QUOTE (-169))) (-1530 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-1016)))) (|HasCategory| |#4| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1136)))) (-1530 (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1016)))) (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-169)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-225)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-354)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-359)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-701)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-767)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-819)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-1016)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-1063))))) (-1530 (-12 (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-354))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-701))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-767))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-819))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| (-547) (QUOTE (-821))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1016)))) (-1530 (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1016)))) (|HasCategory| |#4| (QUOTE (-701))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1136)))))) (-1530 (|HasCategory| |#4| (QUOTE (-1016))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547)))))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-1063)))) (-1530 (|HasAttribute| |#4| (QUOTE -4326)) (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1016)))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1136)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-242 |n| R S)
+((-4334 -1536 (-1821 (|has| |#4| (-1018)) (|has| |#4| (-227))) (-1821 (|has| |#4| (-1018)) (|has| |#4| (-871 (-1143)))) (|has| |#4| (-6 -4334)) (-1821 (|has| |#4| (-1018)) (|has| |#4| (-617 (-549))))) (-4331 |has| |#4| (-1018)) (-4332 |has| |#4| (-1018)) ((-4339 "*") |has| |#4| (-170)) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1143)))))) (|HasCategory| |#4| (QUOTE (-356))) (-1536 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-1018)))) (-1536 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356)))) (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (QUOTE (-769))) (-1536 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (QUOTE (-821)))) (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (QUOTE (-170))) (-1536 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1018)))) (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1143)))) (-1536 (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018)))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-170)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-227)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-356)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-361)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-703)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-769)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-821)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-1018)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-1067))))) (-1536 (-12 (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-703))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-769))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-821))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-823))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018)))) (-1536 (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018)))) (|HasCategory| |#4| (QUOTE (-703))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1143)))))) (-1536 (|HasCategory| |#4| (QUOTE (-1018))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-1067)))) (-1536 (|HasAttribute| |#4| (QUOTE -4334)) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1018)))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-1143)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-244 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4326 -1530 (-1814 (|has| |#3| (-1016)) (|has| |#3| (-225))) (-1814 (|has| |#3| (-1016)) (|has| |#3| (-869 (-1136)))) (|has| |#3| (-6 -4326)) (-1814 (|has| |#3| (-1016)) (|has| |#3| (-615 (-547))))) (-4323 |has| |#3| (-1016)) (-4324 |has| |#3| (-1016)) ((-4331 "*") |has| |#3| (-169)) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))))) (|HasCategory| |#3| (QUOTE (-354))) (-1530 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1530 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-354)))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-767))) (-1530 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819)))) (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-169))) (-1530 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))) (-1530 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-225)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-354)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-359)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-701)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-767)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-819)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1063))))) (-1530 (-12 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| (-547) (QUOTE (-821))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1530 (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-701))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))))) (-1530 (|HasCategory| |#3| (QUOTE (-1016))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547)))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1063)))) (-1530 (|HasAttribute| |#3| (QUOTE -4326)) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-243 A R S V E)
+((-4334 -1536 (-1821 (|has| |#3| (-1018)) (|has| |#3| (-227))) (-1821 (|has| |#3| (-1018)) (|has| |#3| (-871 (-1143)))) (|has| |#3| (-6 -4334)) (-1821 (|has| |#3| (-1018)) (|has| |#3| (-617 (-549))))) (-4331 |has| |#3| (-1018)) (-4332 |has| |#3| (-1018)) ((-4339 "*") |has| |#3| (-170)) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))))) (|HasCategory| |#3| (QUOTE (-356))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-769))) (-1536 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821)))) (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-170))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))) (-1536 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-227)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-356)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-361)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-703)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-769)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-821)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1067))))) (-1536 (-12 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-823))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (-1536 (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-703))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))))) (-1536 (|HasCategory| |#3| (QUOTE (-1018))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1067)))) (-1536 (|HasAttribute| |#3| (QUOTE -4334)) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-245 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
-((|HasCategory| |#2| (QUOTE (-225))))
-(-244 R S V E)
+((|HasCategory| |#2| (QUOTE (-227))))
+(-246 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
NIL
-(-245 S)
+(-247 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4329 . T) (-4330 . T) (-2618 . T))
+((-4337 . T) (-4338 . T) (-2624 . T))
NIL
-(-246)
+(-248)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-247 R |Ex|)
+(-249 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-248)
+(-250)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-249 R)
+(-251 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-250 |Ex|)
+(-252 |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-251)
+(-253)
((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
-(-252)
+(-254)
((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-253 S)
+(-255 S)
((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
-(-254)
+(-256)
((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-255 R S V)
+(-257 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-878))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#3| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#3| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#3| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4327)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-256 A S)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-880))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#3| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#3| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4335)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-258 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-257 S)
+(-259 S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-258)
+(-260)
((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}.")))
NIL
NIL
-(-259)
+(-261)
((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-260)
+(-262)
((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-261)
+(-263)
((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-262)
+(-264)
((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-263)
+(-265)
((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-264)
+(-266)
((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-265)
+(-267)
((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-266)
+(-268)
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-267 R -1415)
+(-269 R -1422)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-268 R -1415)
+(-270 R -1422)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
-(-269 |Coef| UTS ULS)
+(-271 |Coef| UTS ULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-354))))
-(-270 |Coef| ULS UPXS EFULS)
+((|HasCategory| |#1| (QUOTE (-356))))
+(-272 |Coef| ULS UPXS EFULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-354))))
-(-271)
+((|HasCategory| |#1| (QUOTE (-356))))
+(-273)
((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Symbol|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter.")))
NIL
NIL
-(-272 A S)
+(-274 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))))
-(-273 S)
+((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))))
+(-275 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4330 . T) (-2618 . T))
+((-4338 . T) (-2624 . T))
NIL
-(-274 S)
+(-276 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-275)
+(-277)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-276 |Coef| UTS)
+(-278 |Coef| UTS)
((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}")))
NIL
NIL
-(-277 S |Index|)
+(-279 S |Index|)
((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}.")))
NIL
NIL
-(-278 S |Dom| |Im|)
+(-280 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4330)))
-(-279 |Dom| |Im|)
+((|HasAttribute| |#1| (QUOTE -4338)))
+(-281 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-280 S R |Mod| -2378 -2777 |exactQuo|)
+(-282 S R |Mod| -3574 -3890 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-281)
+(-283)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4322 . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-282)
+(-284)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
NIL
NIL
-(-283 R)
+(-285 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-284 S R)
+(-286 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-285 S)
+(-287 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4326 -1530 (|has| |#1| (-1016)) (|has| |#1| (-463))) (-4323 |has| |#1| (-1016)) (-4324 |has| |#1| (-1016)))
-((|HasCategory| |#1| (QUOTE (-354))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1530 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-701)))) (|HasCategory| |#1| (QUOTE (-463))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-1063)))) (-1530 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1075)))) (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1136)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-293))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-463)))) (-1530 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701)))) (-1530 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
-(-286 |Key| |Entry|)
+((-4334 -1536 (|has| |#1| (-1018)) (|has| |#1| (-465))) (-4331 |has| |#1| (-1018)) (-4332 |has| |#1| (-1018)))
+((|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-703)))) (|HasCategory| |#1| (QUOTE (-465))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1067)))) (-1536 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1143)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-295))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465)))) (-1536 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703)))) (-1536 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
+(-288 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1786) (|devaluate| |#2|)))))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-287)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1793) (|devaluate| |#2|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-289)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-288 -1415 S)
+(-290 -1422 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-289 E -1415)
+(-291 E -1422)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
-(-290 A B)
+(-292 A B)
((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
NIL
-(-291)
+(-293)
((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-292 S)
+(-294 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1016))))
-(-293)
+((|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1018))))
+(-295)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-294 R1)
+(-296 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-295 R1 R2)
+(-297 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-296)
+(-298)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
-(-297 S)
+(-299 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
-(-298)
+(-300)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-299 S R)
+(-301 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-300 R)
+(-302 R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-301 -1415)
+(-303 -1422)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
-(-302)
+(-304)
((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
NIL
NIL
-(-303)
+(-305)
((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
-(-304 R FE |var| |cen|)
+(-306 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-878))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-991))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-794))) (-1530 (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-794))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-1112))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-225))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (LIST (QUOTE -503) (QUOTE (-1136)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (LIST (QUOTE -300) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (LIST (QUOTE -277) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-298))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-532))) (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-878))) (|HasCategory| $ (QUOTE (-143)))) (-1530 (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3| |#4|) (QUOTE (-878))) (|HasCategory| $ (QUOTE (-143))))))
-(-305 R S)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-880))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-993))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-796))) (-1536 (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-796))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-823)))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-1118))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-227))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (LIST (QUOTE -505) (QUOTE (-1143)) (LIST (QUOTE -1212) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (LIST (QUOTE -302) (LIST (QUOTE -1212) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (LIST (QUOTE -279) (LIST (QUOTE -1212) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1212) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-300))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-534))) (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-823))) (-12 (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-880))) (|HasCategory| $ (QUOTE (-143)))) (-1536 (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (-12 (|HasCategory| (-1212 |#1| |#2| |#3| |#4|) (QUOTE (-880))) (|HasCategory| $ (QUOTE (-143))))))
+(-307 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-306 R FE)
+(-308 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-307 R)
+(-309 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4326 -1530 (-1814 (|has| |#1| (-1016)) (|has| |#1| (-615 (-547)))) (-12 (|has| |#1| (-539)) (-1530 (-1814 (|has| |#1| (-1016)) (|has| |#1| (-615 (-547)))) (|has| |#1| (-1016)) (|has| |#1| (-463)))) (|has| |#1| (-1016)) (|has| |#1| (-463))) (-4324 |has| |#1| (-169)) (-4323 |has| |#1| (-169)) ((-4331 "*") |has| |#1| (-539)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-539)) (-4321 |has| |#1| (-539)))
-((-1530 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-539))) (-1530 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (-1530 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547))))) (-1530 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-1075)))) (-1530 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))))) (-1530 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-1075)))) (-1530 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))))) (-1530 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-547)))))
-(-308 R -1415)
+((-4334 -1536 (-1821 (|has| |#1| (-1018)) (|has| |#1| (-617 (-549)))) (-12 (|has| |#1| (-541)) (-1536 (-1821 (|has| |#1| (-1018)) (|has| |#1| (-617 (-549)))) (|has| |#1| (-1018)) (|has| |#1| (-465)))) (|has| |#1| (-1018)) (|has| |#1| (-465))) (-4332 |has| |#1| (-170)) (-4331 |has| |#1| (-170)) ((-4339 "*") |has| |#1| (-541)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-541)) (-4329 |has| |#1| (-541)))
+((-1536 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-541))) (-1536 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (-1536 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549))))) (-1536 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1079)))) (-1536 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))))) (-1536 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1079)))) (-1536 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))))) (-1536 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1018)))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-549)))))
+(-310 R -1422)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
-(-309)
+(-311)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}.")))
NIL
NIL
-(-310 FE |var| |cen|)
+(-312 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|)))) (|HasCategory| (-398 (-547)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasSignature| |#1| (LIST (QUOTE -3838) (LIST (|devaluate| |#1|) (QUOTE (-1136)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3694) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1136))))) (|HasSignature| |#1| (LIST (QUOTE -2267) (LIST (LIST (QUOTE -619) (QUOTE (-1136))) (|devaluate| |#1|)))))))
-(-311 M)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-549)) (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -3846) (LIST (|devaluate| |#1|) (QUOTE (-1143)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3893) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1143))))) (|HasSignature| |#1| (LIST (QUOTE -2272) (LIST (LIST (QUOTE -621) (QUOTE (-1143))) (|devaluate| |#1|)))))))
+(-313 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
NIL
-(-312 E OV R P)
+(-314 E OV R P)
((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
NIL
NIL
-(-313 S)
+(-315 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4324 . T) (-4323 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-766))))
-(-314 S E)
+((-4332 . T) (-4331 . T))
+((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-768))))
+(-316 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
NIL
-(-315 S)
+(-317 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-745) (QUOTE (-766))))
-(-316 S R E)
+((|HasCategory| (-747) (QUOTE (-768))))
+(-318 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))))
-(-317 R E)
+((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))))
+(-319 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-318 S)
+(-320 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-319 S -1415)
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-321 S -1422)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
-((|HasCategory| |#2| (QUOTE (-359))))
-(-320 -1415)
+((|HasCategory| |#2| (QUOTE (-361))))
+(-322 -1422)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-321)
+(-323)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm.")))
NIL
NIL
-(-322 E)
+(-324 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
NIL
NIL
-(-323)
+(-325)
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}")))
NIL
NIL
-(-324 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-326 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-325 S -1415 UP UPUP R)
+(-327 S -1422 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-326 -1415 UP UPUP R)
+(-328 -1422 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-327 -1415 UP UPUP R)
+(-329 -1422 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
-(-328 S R)
+(-330 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -503) (QUOTE (-1136)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -277) (|devaluate| |#2|) (|devaluate| |#2|))))
-(-329 R)
+((|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1143)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|))))
+(-331 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
-(-330 |basicSymbols| |subscriptedSymbols| R)
+(-332 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-370)))) (|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-547)))))
-(-331 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-372)))) (|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-549)))))
+(-333 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-332 S -1415 UP UPUP)
+(-334 S -1422 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
-((|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-354))))
-(-333 -1415 UP UPUP)
+((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-356))))
+(-335 -1422 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4322 |has| (-398 |#2|) (-354)) (-4327 |has| (-398 |#2|) (-354)) (-4321 |has| (-398 |#2|) (-354)) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 |has| (-400 |#2|) (-356)) (-4335 |has| (-400 |#2|) (-356)) (-4329 |has| (-400 |#2|) (-356)) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-334 |p| |extdeg|)
+(-336 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (|HasCategory| (-879 |#1|) (QUOTE (-143))) (|HasCategory| (-879 |#1|) (QUOTE (-359)))) (|HasCategory| (-879 |#1|) (QUOTE (-145))) (|HasCategory| (-879 |#1|) (QUOTE (-359))) (|HasCategory| (-879 |#1|) (QUOTE (-143))))
-(-335 GF |defpol|)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (|HasCategory| (-881 |#1|) (QUOTE (-143))) (|HasCategory| (-881 |#1|) (QUOTE (-361)))) (|HasCategory| (-881 |#1|) (QUOTE (-145))) (|HasCategory| (-881 |#1|) (QUOTE (-361))) (|HasCategory| (-881 |#1|) (QUOTE (-143))))
+(-337 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-143))))
-(-336 GF |extdeg|)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
+(-338 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-143))))
-(-337 GF)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
+(-339 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-338 F1 GF F2)
+(-340 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-339 S)
+(-341 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-340)
+(-342)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-341 R UP -1415)
+(-343 R UP -1422)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-342 |p| |extdeg|)
+(-344 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (|HasCategory| (-879 |#1|) (QUOTE (-143))) (|HasCategory| (-879 |#1|) (QUOTE (-359)))) (|HasCategory| (-879 |#1|) (QUOTE (-145))) (|HasCategory| (-879 |#1|) (QUOTE (-359))) (|HasCategory| (-879 |#1|) (QUOTE (-143))))
-(-343 GF |uni|)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (|HasCategory| (-881 |#1|) (QUOTE (-143))) (|HasCategory| (-881 |#1|) (QUOTE (-361)))) (|HasCategory| (-881 |#1|) (QUOTE (-145))) (|HasCategory| (-881 |#1|) (QUOTE (-361))) (|HasCategory| (-881 |#1|) (QUOTE (-143))))
+(-345 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-143))))
-(-344 GF |extdeg|)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
+(-346 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-143))))
-(-345 |p| |n|)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
+(-347 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (|HasCategory| (-879 |#1|) (QUOTE (-143))) (|HasCategory| (-879 |#1|) (QUOTE (-359)))) (|HasCategory| (-879 |#1|) (QUOTE (-145))) (|HasCategory| (-879 |#1|) (QUOTE (-359))) (|HasCategory| (-879 |#1|) (QUOTE (-143))))
-(-346 GF |defpol|)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (|HasCategory| (-881 |#1|) (QUOTE (-143))) (|HasCategory| (-881 |#1|) (QUOTE (-361)))) (|HasCategory| (-881 |#1|) (QUOTE (-145))) (|HasCategory| (-881 |#1|) (QUOTE (-361))) (|HasCategory| (-881 |#1|) (QUOTE (-143))))
+(-348 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-143))))
-(-347 -1415 GF)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
+(-349 -1422 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-348 GF)
+(-350 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-349 -1415 FP FPP)
+(-351 -1422 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-350 GF |n|)
+(-352 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-143))))
-(-351 R |ls|)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143))))
+(-353 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
-(-352 S)
+(-354 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-353 S)
+(-355 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
NIL
NIL
-(-354)
+(-356)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-355 |Name| S)
+(-357 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
-(-356 S)
+(-358 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-357 S R)
+(-359 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-539))))
-(-358 R)
+((|HasCategory| |#2| (QUOTE (-541))))
+(-360 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4326 |has| |#1| (-539)) (-4324 . T) (-4323 . T))
+((-4334 |has| |#1| (-541)) (-4332 . T) (-4331 . T))
NIL
-(-359)
+(-361)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-360 S R UP)
+(-362 S R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
-((|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-354))))
-(-361 R UP)
+((|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-356))))
+(-363 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4323 . T) (-4324 . T) (-4326 . T))
+((-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-362 S A R B)
+(-364 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
NIL
-(-363 A S)
+(-365 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4330)) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))))
-(-364 S)
+((|HasAttribute| |#1| (QUOTE -4338)) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))))
+(-366 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4329 . T) (-2618 . T))
+((-4337 . T) (-2624 . T))
NIL
-(-365 |VarSet| R)
+(-367 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4324 . T) (-4323 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4332 . T) (-4331 . T))
NIL
-(-366 S V)
+(-368 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
NIL
NIL
-(-367 S R)
+(-369 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))))
-(-368 R)
+((|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))))
+(-370 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-369 |Par|)
+(-371 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
-(-370)
+(-372)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4312 . T) (-4320 . T) (-2654 . T) (-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4320 . T) (-4328 . T) (-2661 . T) (-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-371 |Par|)
+(-373 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
-(-372 R S)
+(-374 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4324 . T) (-4323 . T))
-((|HasCategory| |#1| (QUOTE (-169))))
-(-373 R |Basis|)
+((-4332 . T) (-4331 . T))
+((|HasCategory| |#1| (QUOTE (-170))))
+(-375 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4324 . T) (-4323 . T))
+((-4332 . T) (-4331 . T))
NIL
-(-374)
+(-376)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-375)
+(-377)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-376 R S)
+(-378 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4324 . T) (-4323 . T))
-((|HasCategory| |#1| (QUOTE (-169))))
-(-377 S)
+((-4332 . T) (-4331 . T))
+((|HasCategory| |#1| (QUOTE (-170))))
+(-379 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
-((|HasCategory| |#1| (QUOTE (-821))))
-(-378)
+((|HasCategory| |#1| (QUOTE (-823))))
+(-380)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-379)
+(-381)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-380)
+(-382)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions.")))
NIL
NIL
-(-381 |n| |class| R)
+(-383 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4324 . T) (-4323 . T))
+((-4332 . T) (-4331 . T))
NIL
-(-382)
+(-384)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-383 -1415 UP UPUP R)
+(-385 -1422 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-384 S)
+(-386 S)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
-(-385)
+(-387)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format.")))
NIL
NIL
-(-386)
+(-388)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-387)
+(-389)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-388)
+(-390)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-389 -2473 |returnType| -2865 |symbols|)
+(-391 -2481 |returnType| -2872 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-390 -1415 UP)
+(-392 -1422 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-391 R)
+(-393 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-392 S)
+(-394 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-393)
+(-395)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-394 S)
+(-396 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4312)) (|HasAttribute| |#1| (QUOTE -4320)))
-(-395)
+((|HasAttribute| |#1| (QUOTE -4320)) (|HasAttribute| |#1| (QUOTE -4328)))
+(-397)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-2654 . T) (-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-2661 . T) (-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-396 R S)
+(-398 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-397 A B)
+(-399 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-398 S)
+(-400 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4316 -12 (|has| |#1| (-6 -4327)) (|has| |#1| (-442)) (|has| |#1| (-6 -4316))) (-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-794))) (-1530 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-821)))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-1112))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-802))))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-802))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1136)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -277) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-532))) (-12 (|HasAttribute| |#1| (QUOTE -4327)) (|HasAttribute| |#1| (QUOTE -4316)) (|HasCategory| |#1| (QUOTE (-442)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-399 S R UP)
+((-4324 -12 (|has| |#1| (-6 -4335)) (|has| |#1| (-444)) (|has| |#1| (-6 -4324))) (-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-804)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-796))) (-1536 (|HasCategory| |#1| (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-823)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-804)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1118))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-804)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-804))))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-804))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1143)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-804)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-534))) (-12 (|HasAttribute| |#1| (QUOTE -4335)) (|HasAttribute| |#1| (QUOTE -4324)) (|HasCategory| |#1| (QUOTE (-444)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-401 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-400 R UP)
+(-402 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4323 . T) (-4324 . T) (-4326 . T))
+((-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-401 A S)
+(-403 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))
-(-402 S)
+((|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))
+(-404 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-403 R1 F1 U1 A1 R2 F2 U2 A2)
+(-405 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-404 R -1415 UP A)
+(-406 R -1422 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-405 R -1415 UP A |ibasis|)
+(-407 R -1422 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -1007) (|devaluate| |#2|))))
-(-406 AR R AS S)
+((|HasCategory| |#4| (LIST (QUOTE -1009) (|devaluate| |#2|))))
+(-408 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-407 S R)
+(-409 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-354))))
-(-408 R)
+((|HasCategory| |#2| (QUOTE (-356))))
+(-410 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4326 |has| |#1| (-539)) (-4324 . T) (-4323 . T))
+((-4334 |has| |#1| (-541)) (-4332 . T) (-4331 . T))
NIL
-(-409 R)
+(-411 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1136)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -300) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -277) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-1177))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1136)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -277) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-442))))
-(-410 R)
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1143)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -302) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -279) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-1184))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-1184)))) (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1143)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-444))))
+(-412 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
NIL
-(-411 R FE |x| |cen|)
+(-413 R FE |x| |cen|)
((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-412 R A S B)
+(-414 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-413 R FE |Expon| UPS TRAN |x|)
+(-415 R FE |Expon| UPS TRAN |x|)
((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'")))
NIL
NIL
-(-414 S A R B)
+(-416 S A R B)
((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-415 A S)
+(-417 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-359))))
-(-416 S)
+((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-361))))
+(-418 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4329 . T) (-4319 . T) (-4330 . T) (-2618 . T))
+((-4337 . T) (-4327 . T) (-4338 . T) (-2624 . T))
NIL
-(-417 R -1415)
+(-419 R -1422)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-418 R E)
+(-420 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4316 -12 (|has| |#1| (-6 -4316)) (|has| |#2| (-6 -4316))) (-4323 . T) (-4324 . T) (-4326 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4316)) (|HasAttribute| |#2| (QUOTE -4316))))
-(-419 R -1415)
+((-4324 -12 (|has| |#1| (-6 -4324)) (|has| |#2| (-6 -4324))) (-4331 . T) (-4332 . T) (-4334 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4324)) (|HasAttribute| |#2| (QUOTE -4324))))
+(-421 R -1422)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-420 S R)
+(-422 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))))
-(-421 R)
+((|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))))
+(-423 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4326 -1530 (|has| |#1| (-1016)) (|has| |#1| (-463))) (-4324 |has| |#1| (-169)) (-4323 |has| |#1| (-169)) ((-4331 "*") |has| |#1| (-539)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-539)) (-4321 |has| |#1| (-539)) (-2618 . T))
+((-4334 -1536 (|has| |#1| (-1018)) (|has| |#1| (-465))) (-4332 |has| |#1| (-170)) (-4331 |has| |#1| (-170)) ((-4339 "*") |has| |#1| (-541)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-541)) (-4329 |has| |#1| (-541)) (-2624 . T))
NIL
-(-422 R -1415)
+(-424 R -1422)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-423 R -1415)
+(-425 R -1422)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-424 R -1415)
+(-426 R -1422)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-425)
+(-427)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-426 R -1415 UP)
+(-428 R -1422 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-48)))))
-(-427)
+((|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-48)))))
+(-429)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
-(-428)
+(-430)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}")))
NIL
NIL
-(-429 |f|)
+(-431 |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-430)
+(-432)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-431)
+(-433)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-432 UP)
+(-434 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-433 R UP -1415)
+(-435 R UP -1422)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-434 R UP)
+(-436 R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-435 R)
+(-437 R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-395))))
-(-436)
+((|HasCategory| |#1| (QUOTE (-397))))
+(-438)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-437 |Dom| |Expon| |VarSet| |Dpol|)
+(-439 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-438 |Dom| |Expon| |VarSet| |Dpol|)
+(-440 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-439 |Dom| |Expon| |VarSet| |Dpol|)
+(-441 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-440 |Dom| |Expon| |VarSet| |Dpol|)
+(-442 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-354))))
-(-441 S)
+((|HasCategory| |#1| (QUOTE (-356))))
+(-443 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-442)
+(-444)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-443 R |n| |ls| |gamma|)
+(-445 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4326 |has| (-398 (-921 |#1|)) (-539)) (-4324 . T) (-4323 . T))
-((|HasCategory| (-398 (-921 |#1|)) (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| (-398 (-921 |#1|)) (QUOTE (-539))))
-(-444 |vl| R E)
+((-4334 |has| (-400 (-923 |#1|)) (-541)) (-4332 . T) (-4331 . T))
+((|HasCategory| (-400 (-923 |#1|)) (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| (-400 (-923 |#1|)) (QUOTE (-541))))
+(-446 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4331 "*") |has| |#2| (-169)) (-4322 |has| |#2| (-539)) (-4327 |has| |#2| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#2| (QUOTE (-878))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-539)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#2| (QUOTE -4327)) (|HasCategory| |#2| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-445 R BP)
+(((-4339 "*") |has| |#2| (-170)) (-4330 |has| |#2| (-541)) (-4335 |has| |#2| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#2| (QUOTE (-880))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-541)))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4335)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(-447 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
NIL
-(-446 OV E S R P)
+(-448 OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-447 E OV R P)
+(-449 E OV R P)
((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-448 R)
+(-450 R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-449 R FE)
+(-451 R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")))
NIL
NIL
-(-450 RP TP)
+(-452 RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-451 |vl| R IS E |ff| P)
+(-453 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4324 . T) (-4323 . T))
+((-4332 . T) (-4331 . T))
NIL
-(-452 E V R P Q)
+(-454 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-453 R E |VarSet| P)
+(-455 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4330 . T) (-4329 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-454 S R E)
+((-4338 . T) (-4337 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-456 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-455 R E)
+(-457 R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-456)
+(-458)
((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-457)
+(-459)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-458)
+(-460)
((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-459 S R E)
+(-461 S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-460 R E)
+(-462 R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-461 |lv| -1415 R)
+(-463 |lv| -1422 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-462 S)
+(-464 S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-463)
+(-465)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-464 |Coef| |var| |cen|)
+(-466 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|)))) (|HasCategory| (-398 (-547)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasSignature| |#1| (LIST (QUOTE -3838) (LIST (|devaluate| |#1|) (QUOTE (-1136)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3694) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1136))))) (|HasSignature| |#1| (LIST (QUOTE -2267) (LIST (LIST (QUOTE -619) (QUOTE (-1136))) (|devaluate| |#1|)))))))
-(-465 |Key| |Entry| |Tbl| |dent|)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-549)) (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -3846) (LIST (|devaluate| |#1|) (QUOTE (-1143)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3893) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1143))))) (|HasSignature| |#1| (LIST (QUOTE -2272) (LIST (LIST (QUOTE -621) (QUOTE (-1143))) (|devaluate| |#1|)))))))
+(-467 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4330 . T))
-((-12 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1786) (|devaluate| |#2|)))))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-821))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-466 R E V P)
+((-4338 . T))
+((-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1793) (|devaluate| |#2|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-823))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-468 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4330 . T) (-4329 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-467)
+((-4338 . T) (-4337 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-469)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-468)
+(-470)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|Syntax|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
NIL
NIL
-(-469 |Key| |Entry| |hashfn|)
+(-471 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1786) (|devaluate| |#2|)))))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-470)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1793) (|devaluate| |#2|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-472)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-471 |vl| R)
+(-473 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4331 "*") |has| |#2| (-169)) (-4322 |has| |#2| (-539)) (-4327 |has| |#2| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#2| (QUOTE (-878))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-539)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#2| (QUOTE -4327)) (|HasCategory| |#2| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-472 -2721 S)
+(((-4339 "*") |has| |#2| (-170)) (-4330 |has| |#2| (-541)) (-4335 |has| |#2| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#2| (QUOTE (-880))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-541)))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4335)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(-474 -2728 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4323 |has| |#2| (-1016)) (-4324 |has| |#2| (-1016)) (-4326 |has| |#2| (-6 -4326)) ((-4331 "*") |has| |#2| (-169)) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))))) (-1530 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (QUOTE (-354))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-767))) (-1530 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819)))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-169))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-819)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063))))) (-1530 (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| (-547) (QUOTE (-821))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-1530 (|HasCategory| |#2| (QUOTE (-1016))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasAttribute| |#2| (QUOTE -4326)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-473)
+((-4331 |has| |#2| (-1018)) (-4332 |has| |#2| (-1018)) (-4334 |has| |#2| (-6 -4334)) ((-4339 "*") |has| |#2| (-170)) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-769))) (-1536 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1067)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-361)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-703)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1067))))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-1536 (|HasCategory| |#2| (QUOTE (-1018))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1067)))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-475)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header.")))
NIL
NIL
-(-474 S)
+(-476 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-475 -1415 UP UPUP R)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-477 -1422 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-476 BP)
+(-478 BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}.")))
NIL
NIL
-(-477)
+(-479)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| (-547) (QUOTE (-878))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| (-547) (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-145))) (|HasCategory| (-547) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-547) (QUOTE (-991))) (|HasCategory| (-547) (QUOTE (-794))) (-1530 (|HasCategory| (-547) (QUOTE (-794))) (|HasCategory| (-547) (QUOTE (-821)))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-1112))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-547) (QUOTE (-225))) (|HasCategory| (-547) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-547) (LIST (QUOTE -503) (QUOTE (-1136)) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -300) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -277) (QUOTE (-547)) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-298))) (|HasCategory| (-547) (QUOTE (-532))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-547) (LIST (QUOTE -615) (QUOTE (-547)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (|HasCategory| (-547) (QUOTE (-143)))))
-(-478 A S)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| (-549) (QUOTE (-880))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| (-549) (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-549) (QUOTE (-993))) (|HasCategory| (-549) (QUOTE (-796))) (-1536 (|HasCategory| (-549) (QUOTE (-796))) (|HasCategory| (-549) (QUOTE (-823)))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1118))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-227))) (|HasCategory| (-549) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-549) (LIST (QUOTE -505) (QUOTE (-1143)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -302) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -279) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-300))) (|HasCategory| (-549) (QUOTE (-534))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-549) (LIST (QUOTE -617) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (|HasCategory| (-549) (QUOTE (-143)))))
+(-480 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4329)) (|HasAttribute| |#1| (QUOTE -4330)) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-479 S)
+((|HasAttribute| |#1| (QUOTE -4337)) (|HasAttribute| |#1| (QUOTE -4338)) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-481 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-480)
+(-482)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
NIL
NIL
-(-481 S)
+(-483 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-482)
+(-484)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-483 -1415 UP |AlExt| |AlPol|)
+(-485 -1422 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-484)
+(-486)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-547)))))
-(-485 S |mn|)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| $ (QUOTE (-1018))) (|HasCategory| $ (LIST (QUOTE -1009) (QUOTE (-549)))))
+(-487 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-486 R |mnRow| |mnCol|)
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-488 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-487 K R UP)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-489 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-488 R UP -1415)
+(-490 R UP -1422)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-489 |mn|)
+(-491 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4330 . T) (-4329 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -300) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-112) (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-490 K R UP L)
+((-4338 . T) (-4337 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1067))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-112) (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-112) (QUOTE (-1067))) (|HasCategory| (-112) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-492 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-491)
+(-493)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-492 R Q A B)
+(-494 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-493 -1415 |Expon| |VarSet| |DPoly|)
+(-495 -1422 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-1136)))))
-(-494 |vl| |nv|)
+((|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-1143)))))
+(-496 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-495)
+(-497)
((|constructor| (NIL "This domain represents identifer AST.")))
NIL
NIL
-(-496 A S)
+(-498 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-497 A S)
+(-499 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
NIL
-(-498 A S)
+(-500 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-499 A S)
+(-501 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-500 A S)
+(-502 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-501 A S)
+(-503 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
-(-502 S A B)
+(-504 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-503 A B)
+(-505 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-504 S E |un|)
+(-506 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-766))))
-(-505 S |mn|)
+((|HasCategory| |#2| (QUOTE (-768))))
+(-507 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-506)
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-508)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|Syntax|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|Syntax|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|Syntax|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
-(-507 |p| |n|)
+(-509 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (|HasCategory| (-561 |#1|) (QUOTE (-143))) (|HasCategory| (-561 |#1|) (QUOTE (-359)))) (|HasCategory| (-561 |#1|) (QUOTE (-145))) (|HasCategory| (-561 |#1|) (QUOTE (-359))) (|HasCategory| (-561 |#1|) (QUOTE (-143))))
-(-508 R |mnRow| |mnCol| |Row| |Col|)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (|HasCategory| (-563 |#1|) (QUOTE (-143))) (|HasCategory| (-563 |#1|) (QUOTE (-361)))) (|HasCategory| (-563 |#1|) (QUOTE (-145))) (|HasCategory| (-563 |#1|) (QUOTE (-361))) (|HasCategory| (-563 |#1|) (QUOTE (-143))))
+(-510 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-509 S |mn|)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-511 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-510 R |Row| |Col| M)
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-512 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4330)))
-(-511 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -4338)))
+(-513 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4330)))
-(-512 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -4338)))
+(-514 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-539))) (|HasAttribute| |#1| (QUOTE (-4331 "*"))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-513)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-541))) (|HasAttribute| |#1| (QUOTE (-4339 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-515)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
NIL
-(-514)
+(-516)
((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|Syntax|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Symbol|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'")))
NIL
NIL
-(-515 S)
+(-517 S)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}")))
NIL
NIL
-(-516)
+(-518)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}")))
NIL
NIL
-(-517 GF)
+(-519 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
NIL
-(-518 R)
+(-520 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-519 |Varset|)
+(-521 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-520 K -1415 |Par|)
+(-522 K -1422 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-521)
+(-523)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-522 R)
+(-524 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-523)
+(-525)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-524 |Coef| UTS)
+(-526 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-525 K -1415 |Par|)
+(-527 K -1422 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-526 R BP |pMod| |nextMod|)
+(-528 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-527 OV E R P)
+(-529 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-528 K UP |Coef| UTS)
+(-530 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-529 |Coef| UTS)
+(-531 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-530 R UP)
+(-532 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
NIL
NIL
-(-531 S)
+(-533 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-532)
+(-534)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4327 . T) (-4328 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4335 . T) (-4336 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-533 |Key| |Entry| |addDom|)
+(-535 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1786) (|devaluate| |#2|)))))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-534 R -1415)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1793) (|devaluate| |#2|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-536 R -1422)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-535 R0 -1415 UP UPUP R)
+(-537 R0 -1422 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-536)
+(-538)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-537 R)
+(-539 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-2654 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-2661 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-538 S)
+(-540 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-539)
+(-541)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-540 R -1415)
+(-542 R -1422)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-541 I)
+(-543 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-542)
+(-544)
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-543 R -1415 L)
+(-545 R -1422 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -630) (|devaluate| |#2|))))
-(-544)
+((|HasCategory| |#3| (LIST (QUOTE -632) (|devaluate| |#2|))))
+(-546)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-545 -1415 UP UPUP R)
+(-547 -1422 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-546 -1415 UP)
+(-548 -1422 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-547)
+(-549)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4311 . T) (-4317 . T) (-4321 . T) (-4316 . T) (-4327 . T) (-4328 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4319 . T) (-4325 . T) (-4329 . T) (-4324 . T) (-4335 . T) (-4336 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-548)
+(-550)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-549 R -1415 L)
+(-551 R -1422 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -630) (|devaluate| |#2|))))
-(-550 R -1415)
+((|HasCategory| |#3| (LIST (QUOTE -632) (|devaluate| |#2|))))
+(-552 R -1422)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1100)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-605)))))
-(-551 -1415 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-607)))))
+(-553 -1422 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-552 S)
+(-554 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-553 -1415)
+(-555 -1422)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-554 R)
+(-556 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-2654 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-2661 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-555)
+(-557)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-556 R -1415)
+(-558 R -1422)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-275))) (|HasCategory| |#2| (QUOTE (-605))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1136))))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-275)))) (|HasCategory| |#1| (QUOTE (-539))))
-(-557 -1415 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-277))) (|HasCategory| |#2| (QUOTE (-607))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1143))))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-277)))) (|HasCategory| |#1| (QUOTE (-541))))
+(-559 -1422 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-558 R -1415)
+(-560 R -1422)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-559)
+(-561)
((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations.")))
NIL
NIL
-(-560 |p| |unBalanced?|)
+(-562 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-561 |p|)
+(-563 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-359))))
-(-562)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-361))))
+(-564)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-563 R -1415)
+(-565 R -1422)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-564 E -1415)
+(-566 E -1422)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-565 -1415)
+(-567 -1422)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4324 . T) (-4323 . T))
-((|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-1136)))))
-(-566 I)
+((-4332 . T) (-4331 . T))
+((|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-1143)))))
+(-568 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-567 GF)
+(-569 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-568 R)
+(-570 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-145))))
-(-569)
+(-571)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-570 R E V P TS)
+(-572 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-571)
+(-573)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|Syntax|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'.")))
NIL
NIL
-(-572 |mn|)
+(-574 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142)))))) (-1530 (|HasCategory| (-142) (LIST (QUOTE -591) (QUOTE (-832)))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063)))) (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-573 E V R P)
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (-1536 (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-834)))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1067)))) (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1067))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-575 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-574 |Coef|)
+(-576 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|)))) (|HasCategory| (-547) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3838) (LIST (|devaluate| |#1|) (QUOTE (-1136)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))))
-(-575 |Coef|)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))) (|HasCategory| (-549) (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3846) (LIST (|devaluate| |#1|) (QUOTE (-1143)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))))
+(-577 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4324 |has| |#1| (-539)) (-4323 |has| |#1| (-539)) ((-4331 "*") |has| |#1| (-539)) (-4322 |has| |#1| (-539)) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-539))))
-(-576 A B)
+((-4332 |has| |#1| (-541)) (-4331 |has| |#1| (-541)) ((-4339 "*") |has| |#1| (-541)) (-4330 |has| |#1| (-541)) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-541))))
+(-578 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-577 A B C)
+(-579 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-578 R -1415 FG)
+(-580 R -1422 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-579 S)
+(-581 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-580 R |mn|)
+(-582 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-581 S |Index| |Entry|)
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-583 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4330)) (|HasCategory| |#2| (QUOTE (-821))) (|HasAttribute| |#1| (QUOTE -4329)) (|HasCategory| |#3| (QUOTE (-1063))))
-(-582 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -4338)) (|HasCategory| |#2| (QUOTE (-823))) (|HasAttribute| |#1| (QUOTE -4337)) (|HasCategory| |#3| (QUOTE (-1067))))
+(-584 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-583)
+(-585)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode.")))
NIL
NIL
-(-584)
+(-586)
((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
-(-585 R A)
+(-587 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4326 -1530 (-1814 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))) (-4324 . T) (-4323 . T))
-((-1530 (|HasCategory| |#2| (LIST (QUOTE -358) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|)))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#2| (LIST (QUOTE -358) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -358) (|devaluate| |#1|))))
-(-586 |Entry|)
+((-4334 -1536 (-1821 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))) (-4332 . T) (-4331 . T))
+((-1536 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))))
+(-588 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (QUOTE (-1119))) (LIST (QUOTE |:|) (QUOTE -1786) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| (-1119) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-587 S |Key| |Entry|)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (QUOTE (-1125))) (LIST (QUOTE |:|) (QUOTE -1793) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| (-1125) (QUOTE (-823))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-589 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-588 |Key| |Entry|)
+(-590 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4330 . T) (-2618 . T))
+((-4338 . T) (-2624 . T))
NIL
-(-589 R S)
+(-591 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-590 S)
+(-592 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))))
-(-591 S)
+((|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))))
+(-593 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-592 S)
+(-594 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-593 -1415 UP)
+(-595 -1422 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-594)
+(-596)
((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value")))
NIL
NIL
-(-595 S R)
+(-597 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-596 R)
+(-598 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-597 A R S)
+(-599 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-819))))
-(-598 R -1415)
+((-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-821))))
+(-600 R -1422)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
-(-599 R UP)
+(-601 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4324 . T) (-4323 . T) ((-4331 "*") . T) (-4322 . T) (-4326 . T))
-((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))))
-(-600 R E V P TS ST)
+((-4332 . T) (-4331 . T) ((-4339 "*") . T) (-4330 . T) (-4334 . T))
+((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))))
+(-602 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-601 OV E Z P)
+(-603 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-602)
+(-604)
((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|Syntax|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'.")))
NIL
NIL
-(-603 |VarSet| R |Order|)
+(-605 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-604 R |ls|)
+(-606 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-605)
+(-607)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-606 R -1415)
+(-608 R -1422)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-607 |lv| -1415)
+(-609 |lv| -1422)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-608)
+(-610)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4330 . T))
-((-12 (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (QUOTE (-1119))) (LIST (QUOTE |:|) (QUOTE -1786) (QUOTE (-52))))))) (-1530 (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (QUOTE (-1063))) (|HasCategory| (-52) (QUOTE (-1063)))) (-1530 (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -300) (QUOTE (-52))))) (|HasCategory| (-1119) (QUOTE (-821))) (-1530 (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-609 S R)
+((-4338 . T))
+((-12 (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (QUOTE (-1125))) (LIST (QUOTE |:|) (QUOTE -1793) (QUOTE (-52))))))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (QUOTE (-1067))) (|HasCategory| (-52) (QUOTE (-1067)))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (QUOTE (-1067))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| (-52) (QUOTE (-1067))) (|HasCategory| (-52) (LIST (QUOTE -302) (QUOTE (-52))))) (|HasCategory| (-1125) (QUOTE (-823))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-611 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-354))))
-(-610 R)
+((|HasCategory| |#2| (QUOTE (-356))))
+(-612 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4324 . T) (-4323 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4332 . T) (-4331 . T))
NIL
-(-611 R A)
+(-613 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4326 -1530 (-1814 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))) (-4324 . T) (-4323 . T))
-((-1530 (|HasCategory| |#2| (LIST (QUOTE -358) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|)))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#2| (LIST (QUOTE -358) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -358) (|devaluate| |#1|))))
-(-612 R FE)
+((-4334 -1536 (-1821 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))) (-4332 . T) (-4331 . T))
+((-1536 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#2| (LIST (QUOTE -410) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))))
+(-614 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
NIL
-(-613 R)
+(-615 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-614 S R)
+(-616 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-4000 (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-354))))
-(-615 R)
+((-4008 (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-356))))
+(-617 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-616 A B)
+(-618 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-617 A B)
+(-619 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-618 A B C)
+(-620 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-619 S)
+(-621 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-620 T$)
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-622 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-621 S)
+(-623 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-622 R)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-624 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-623 S E |un|)
+(-625 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-624 A S)
+(-626 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4330)))
-(-625 S)
+((|HasAttribute| |#1| (QUOTE -4338)))
+(-627 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-626 R -1415 L)
+(-628 R -1422 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-627 A)
+(-629 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-354))))
-(-628 A M)
+((-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356))))
+(-630 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-354))))
-(-629 S A)
+((-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356))))
+(-631 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-354))))
-(-630 A)
+((|HasCategory| |#2| (QUOTE (-356))))
+(-632 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4323 . T) (-4324 . T) (-4326 . T))
+((-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-631 -1415 UP)
+(-633 -1422 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-632 A -4256)
+(-634 A -1875)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-354))))
-(-633 A L)
+((-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356))))
+(-635 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-634 S)
+(-636 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-635)
+(-637)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-636 M R S)
+(-638 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4324 . T) (-4323 . T))
-((|HasCategory| |#1| (QUOTE (-765))))
-(-637 R)
+((-4332 . T) (-4331 . T))
+((|HasCategory| |#1| (QUOTE (-767))))
+(-639 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-638 |VarSet| R)
+(-640 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4324 . T) (-4323 . T))
-((|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-169))))
-(-639 A S)
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4332 . T) (-4331 . T))
+((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-170))))
+(-641 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-640 S)
+(-642 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4330 . T) (-4329 . T) (-2618 . T))
+((-4338 . T) (-4337 . T) (-2624 . T))
NIL
-(-641 -1415)
+(-643 -1422)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-642 -1415 |Row| |Col| M)
+(-644 -1422 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-643 R E OV P)
+(-645 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-644 |n| R)
+(-646 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4326 . T) (-4329 . T) (-4323 . T) (-4324 . T))
-((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasAttribute| |#2| (QUOTE (-4331 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (-1530 (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))))) (|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-539))) (-1530 (|HasAttribute| |#2| (QUOTE (-4331 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-169))))
-(-645)
+((-4334 . T) (-4337 . T) (-4331 . T) (-4332 . T))
+((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4339 "*"))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (-1536 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-541))) (-1536 (|HasAttribute| |#2| (QUOTE (-4339 "*"))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-170))))
+(-647)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|Syntax|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-646 |VarSet|)
+(-648 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-647 A S)
+(-649 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-648 S)
+(-650 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-649 R)
+(-651 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-650)
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-652)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|Syntax|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|List| (|Identifier|)) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-651 |VarSet|)
+(-653 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-652 A)
+(-654 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-653 A C)
+(-655 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument.")))
NIL
NIL
-(-654 A B C)
+(-656 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-655)
+(-657)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-656 A)
+(-658 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-657 A C)
+(-659 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-658 A B C)
+(-660 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-659 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-661 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-660 S R |Row| |Col|)
+(-662 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4331 "*"))) (|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-539))))
-(-661 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4339 "*"))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-541))))
+(-663 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4329 . T) (-4330 . T) (-2618 . T))
+((-4337 . T) (-4338 . T) (-2624 . T))
NIL
-(-662 R |Row| |Col| M)
+(-664 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-539))))
-(-663 R)
+((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-541))))
+(-665 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4329 . T) (-4330 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-539))) (|HasAttribute| |#1| (QUOTE (-4331 "*"))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-664 R)
+((-4337 . T) (-4338 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-541))) (|HasAttribute| |#1| (QUOTE (-4339 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-666 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-665 T$)
+(-667 T$)
((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")))
NIL
NIL
-(-666 S -1415 FLAF FLAS)
+(-668 S -1422 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-667 R Q)
+(-669 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-668)
+(-670)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4322 . T) (-4327 |has| (-673) (-354)) (-4321 |has| (-673) (-354)) (-3402 . T) (-4328 |has| (-673) (-6 -4328)) (-4325 |has| (-673) (-6 -4325)) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| (-673) (QUOTE (-145))) (|HasCategory| (-673) (QUOTE (-143))) (|HasCategory| (-673) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-673) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| (-673) (QUOTE (-359))) (|HasCategory| (-673) (QUOTE (-354))) (|HasCategory| (-673) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-673) (QUOTE (-225))) (-1530 (|HasCategory| (-673) (QUOTE (-354))) (|HasCategory| (-673) (QUOTE (-340)))) (|HasCategory| (-673) (QUOTE (-340))) (|HasCategory| (-673) (LIST (QUOTE -277) (QUOTE (-673)) (QUOTE (-673)))) (|HasCategory| (-673) (LIST (QUOTE -300) (QUOTE (-673)))) (|HasCategory| (-673) (LIST (QUOTE -503) (QUOTE (-1136)) (QUOTE (-673)))) (|HasCategory| (-673) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-673) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-673) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-673) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (-1530 (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-354))) (|HasCategory| (-673) (QUOTE (-340)))) (|HasCategory| (-673) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-673) (QUOTE (-991))) (|HasCategory| (-673) (QUOTE (-1158))) (-12 (|HasCategory| (-673) (QUOTE (-971))) (|HasCategory| (-673) (QUOTE (-1158)))) (-1530 (-12 (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-354))) (-12 (|HasCategory| (-673) (QUOTE (-340))) (|HasCategory| (-673) (QUOTE (-878))))) (-1530 (-12 (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (-12 (|HasCategory| (-673) (QUOTE (-354))) (|HasCategory| (-673) (QUOTE (-878)))) (-12 (|HasCategory| (-673) (QUOTE (-340))) (|HasCategory| (-673) (QUOTE (-878))))) (|HasCategory| (-673) (QUOTE (-532))) (-12 (|HasCategory| (-673) (QUOTE (-1025))) (|HasCategory| (-673) (QUOTE (-1158)))) (|HasCategory| (-673) (QUOTE (-1025))) (-1530 (|HasCategory| (-673) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-673) (QUOTE (-354)))) (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878))) (-1530 (-12 (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-354)))) (-1530 (-12 (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-539)))) (-12 (|HasCategory| (-673) (QUOTE (-225))) (|HasCategory| (-673) (QUOTE (-354)))) (-12 (|HasCategory| (-673) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-673) (QUOTE (-354)))) (|HasCategory| (-673) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-673) (QUOTE (-821))) (|HasCategory| (-673) (QUOTE (-539))) (|HasAttribute| (-673) (QUOTE -4328)) (|HasAttribute| (-673) (QUOTE -4325)) (-12 (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-143)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-340)))))
-(-669 S)
+((-4330 . T) (-4335 |has| (-675) (-356)) (-4329 |has| (-675) (-356)) (-3410 . T) (-4336 |has| (-675) (-6 -4336)) (-4333 |has| (-675) (-6 -4333)) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| (-675) (QUOTE (-145))) (|HasCategory| (-675) (QUOTE (-143))) (|HasCategory| (-675) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-675) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| (-675) (QUOTE (-361))) (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-675) (QUOTE (-227))) (-1536 (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (QUOTE (-342)))) (|HasCategory| (-675) (QUOTE (-342))) (|HasCategory| (-675) (LIST (QUOTE -279) (QUOTE (-675)) (QUOTE (-675)))) (|HasCategory| (-675) (LIST (QUOTE -302) (QUOTE (-675)))) (|HasCategory| (-675) (LIST (QUOTE -505) (QUOTE (-1143)) (QUOTE (-675)))) (|HasCategory| (-675) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-675) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-675) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-675) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (-1536 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (QUOTE (-342)))) (|HasCategory| (-675) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-675) (QUOTE (-993))) (|HasCategory| (-675) (QUOTE (-1165))) (-12 (|HasCategory| (-675) (QUOTE (-973))) (|HasCategory| (-675) (QUOTE (-1165)))) (-1536 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (|HasCategory| (-675) (QUOTE (-356))) (-12 (|HasCategory| (-675) (QUOTE (-342))) (|HasCategory| (-675) (QUOTE (-880))))) (-1536 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (-12 (|HasCategory| (-675) (QUOTE (-356))) (|HasCategory| (-675) (QUOTE (-880)))) (-12 (|HasCategory| (-675) (QUOTE (-342))) (|HasCategory| (-675) (QUOTE (-880))))) (|HasCategory| (-675) (QUOTE (-534))) (-12 (|HasCategory| (-675) (QUOTE (-1027))) (|HasCategory| (-675) (QUOTE (-1165)))) (|HasCategory| (-675) (QUOTE (-1027))) (-1536 (|HasCategory| (-675) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-675) (QUOTE (-356)))) (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880))) (-1536 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (|HasCategory| (-675) (QUOTE (-356)))) (-1536 (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (|HasCategory| (-675) (QUOTE (-541)))) (-12 (|HasCategory| (-675) (QUOTE (-227))) (|HasCategory| (-675) (QUOTE (-356)))) (-12 (|HasCategory| (-675) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-675) (QUOTE (-356)))) (|HasCategory| (-675) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-675) (QUOTE (-823))) (|HasCategory| (-675) (QUOTE (-541))) (|HasAttribute| (-675) (QUOTE -4336)) (|HasAttribute| (-675) (QUOTE -4333)) (-12 (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (|HasCategory| (-675) (QUOTE (-143)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-675) (QUOTE (-300))) (|HasCategory| (-675) (QUOTE (-880)))) (|HasCategory| (-675) (QUOTE (-342)))))
+(-671 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4330 . T) (-2618 . T))
+((-4338 . T) (-2624 . T))
NIL
-(-670 U)
+(-672 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-671)
+(-673)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-672 OV E -1415 PG)
+(-674 OV E -1422 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-673)
+(-675)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-2654 . T) (-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-2661 . T) (-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-674 R)
+(-676 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-675)
+(-677)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4328 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4336 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-676 S D1 D2 I)
+(-678 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-677 S)
+(-679 S)
((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%.")))
NIL
NIL
-(-678 S)
+(-680 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-679 S)
+(-681 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-680 S T$)
+(-682 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-681 S -1695 I)
+(-683 S -1702 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-682 E OV R P)
+(-684 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented")))
NIL
NIL
-(-683 R)
+(-685 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4323 . T) (-4324 . T) (-4326 . T))
+((-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-684 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-686 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-685)
+(-687)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-686 R |Mod| -2378 -2777 |exactQuo|)
+(-688 R |Mod| -3574 -3890 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-687 R |Rep|)
+(-689 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4325 |has| |#1| (-354)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-340))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasAttribute| |#1| (QUOTE -4327)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-688 IS E |ff|)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4333 |has| |#1| (-356)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-342))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4335)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-690 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-689 R M)
+(-691 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4324 |has| |#1| (-169)) (-4323 |has| |#1| (-169)) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))))
-(-690 R |Mod| -2378 -2777 |exactQuo|)
+((-4332 |has| |#1| (-170)) (-4331 |has| |#1| (-170)) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))))
+(-692 R |Mod| -3574 -3890 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-691 S R)
+(-693 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-692 R)
+(-694 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4324 . T) (-4323 . T))
+((-4332 . T) (-4331 . T))
NIL
-(-693 -1415)
+(-695 -1422)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-694 S)
+(-696 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-695)
+(-697)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-696 S)
+(-698 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-697)
+(-699)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-698 S R UP)
+(-700 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-359))))
-(-699 R UP)
+((|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))))
+(-701 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4322 |has| |#1| (-354)) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 |has| |#1| (-356)) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-700 S)
+(-702 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-701)
+(-703)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-702 -1415 UP)
+(-704 -1422 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-703 |VarSet| E1 E2 R S PR PS)
+(-705 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-704 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-706 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-705 E OV R PPR)
+(-707 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-706 |vl| R)
+(-708 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4331 "*") |has| |#2| (-169)) (-4322 |has| |#2| (-539)) (-4327 |has| |#2| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#2| (QUOTE (-878))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-539)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#2| (QUOTE -4327)) (|HasCategory| |#2| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-707 E OV R PRF)
+(((-4339 "*") |has| |#2| (-170)) (-4330 |has| |#2| (-541)) (-4335 |has| |#2| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#2| (QUOTE (-880))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-541)))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-836 |#1|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4335)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(-709 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-708 E OV R P)
+(-710 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-709 R S M)
+(-711 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-710 R M)
+(-712 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4324 |has| |#1| (-169)) (-4323 |has| |#1| (-169)) (-4326 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-821))))
-(-711 S)
+((-4332 |has| |#1| (-170)) (-4331 |has| |#1| (-170)) (-4334 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-823))))
+(-713 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4319 . T) (-4330 . T) (-2618 . T))
+((-4327 . T) (-4338 . T) (-2624 . T))
NIL
-(-712 S)
+(-714 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4329 . T) (-4319 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-713)
+((-4337 . T) (-4327 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-715)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-714 S)
+(-716 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-715 |Coef| |Var|)
+(-717 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4324 . T) (-4323 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4332 . T) (-4331 . T) (-4334 . T))
NIL
-(-716 OV E R P)
+(-718 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-717 E OV R P)
+(-719 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-718 S R)
+(-720 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-719 R)
+(-721 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4324 . T) (-4323 . T))
+((-4332 . T) (-4331 . T))
NIL
-(-720)
+(-722)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-721)
+(-723)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-722)
+(-724)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-723)
+(-725)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-724)
+(-726)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-725)
+(-727)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-726)
+(-728)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-727)
+(-729)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-728)
+(-730)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-729)
+(-731)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-730)
+(-732)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-731)
+(-733)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-732)
+(-734)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-733)
+(-735)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-734)
+(-736)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-735 S)
+(-737 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-736)
+(-738)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-737 S)
+(-739 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-738)
+(-740)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-739 |Par|)
+(-741 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-740 -1415)
+(-742 -1422)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-741 P -1415)
+(-743 P -1422)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-742 UP -1415)
+(-744 UP -1422)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-743)
+(-745)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-744 R)
+(-746 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-745)
+(-747)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4331 "*") . T))
+(((-4339 "*") . T))
NIL
-(-746 R -1415)
+(-748 R -1422)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-747 S)
+(-749 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-748)
+(-750)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-749 R |PolR| E |PolE|)
+(-751 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-750 R E V P TS)
+(-752 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-751 -1415 |ExtF| |SUEx| |ExtP| |n|)
+(-753 -1422 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-752 BP E OV R P)
+(-754 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-753 |Par|)
+(-755 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-754 R |VarSet|)
+(-756 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-878))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1136))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1136))))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1136)))) (-4000 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1136)))))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1136)))) (-4000 (|HasCategory| |#1| (QUOTE (-532)))) (-4000 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1136)))) (-4000 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-547))))) (-4000 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1136)))) (-4000 (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-547))))))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4327)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-755 R S)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-880))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1143))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1143))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1143)))) (-4008 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1143)))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1143)))) (-4008 (|HasCategory| |#1| (QUOTE (-534)))) (-4008 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1143)))) (-4008 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-549))))) (-4008 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-1143)))) (-4008 (|HasCategory| |#1| (LIST (QUOTE -963) (QUOTE (-549))))))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4335)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-757 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-756 R)
+(-758 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4325 |has| |#1| (-354)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasAttribute| |#1| (QUOTE -4327)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-757 R)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4333 |has| |#1| (-356)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4335)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-759 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))))
-(-758 R E V P)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))
+(-760 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4330 . T) (-4329 . T) (-2618 . T))
+((-4338 . T) (-4337 . T) (-2624 . T))
NIL
-(-759 S)
+(-761 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-169))))
-(-760)
+((-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-170))))
+(-762)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-761)
+(-763)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-762)
+(-764)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-763)
+(-765)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-764 |Curve|)
+(-766 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-765)
+(-767)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-766)
+(-768)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-767)
+(-769)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-768)
+(-770)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-769)
+(-771)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-770 S R)
+(-772 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-532))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-359))))
-(-771 R)
+((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-361))))
+(-773 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4323 . T) (-4324 . T) (-4326 . T))
+((-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-772 -1530 R OS S)
+(-774 -1536 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-773 R)
+(-775 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1136)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -277) (|devaluate| |#1|) (|devaluate| |#1|))) (-1530 (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1530 (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))))
-(-774)
+((-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1143)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-1536 (|HasCategory| (-970 |#1|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (|HasCategory| (-970 |#1|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-970 |#1|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-970 |#1|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))))
+(-776)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-775 R -1415 L)
+(-777 R -1422 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-776 R -1415)
+(-778 R -1422)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-777)
+(-779)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-778 R -1415)
+(-780 R -1422)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-779)
+(-781)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-780 -1415 UP UPUP R)
+(-782 -1422 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-781 -1415 UP L LQ)
+(-783 -1422 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-782)
+(-784)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-783 -1415 UP L LQ)
+(-785 -1422 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-784 -1415 UP)
+(-786 -1422 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-785 -1415 L UP A LO)
+(-787 -1422 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-786 -1415 UP)
+(-788 -1422 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-787 -1415 LO)
+(-789 -1422 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-788 -1415 LODO)
+(-790 -1422 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-789 -2721 S |f|)
+(-791 -2728 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4323 |has| |#2| (-1016)) (-4324 |has| |#2| (-1016)) (-4326 |has| |#2| (-6 -4326)) ((-4331 "*") |has| |#2| (-169)) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))))) (-1530 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (QUOTE (-354))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-767))) (-1530 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819)))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-169))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-819)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063))))) (-1530 (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| (-547) (QUOTE (-821))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-1530 (|HasCategory| |#2| (QUOTE (-1016))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasAttribute| |#2| (QUOTE -4326)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-790 R)
+((-4331 |has| |#2| (-1018)) (-4332 |has| |#2| (-1018)) (-4334 |has| |#2| (-6 -4334)) ((-4339 "*") |has| |#2| (-170)) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-769))) (-1536 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1067)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1018)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-361)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-703)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1067))))) (-1536 (-12 (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-769))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-823))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-1536 (|HasCategory| |#2| (QUOTE (-1018))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1067)))) (|HasAttribute| |#2| (QUOTE -4334)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-792 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-878))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-792 (-1136)) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-792 (-1136)) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-792 (-1136)) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-792 (-1136)) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-792 (-1136)) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4327)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-791 |Kernels| R |var|)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-880))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-794 (-1143)) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-794 (-1143)) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-794 (-1143)) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-794 (-1143)) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-794 (-1143)) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4335)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-793 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
-(((-4331 "*") |has| |#2| (-354)) (-4322 |has| |#2| (-354)) (-4327 |has| |#2| (-354)) (-4321 |has| |#2| (-354)) (-4326 . T) (-4324 . T) (-4323 . T))
-((|HasCategory| |#2| (QUOTE (-354))))
-(-792 S)
+(((-4339 "*") |has| |#2| (-356)) (-4330 |has| |#2| (-356)) (-4335 |has| |#2| (-356)) (-4329 |has| |#2| (-356)) (-4334 . T) (-4332 . T) (-4331 . T))
+((|HasCategory| |#2| (QUOTE (-356))))
+(-794 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-793 S)
+(-795 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-794)
+(-796)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-795)
+(-797)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-796)
+(-798)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-797)
+(-799)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-798)
+(-800)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-799)
+(-801)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-800 R)
+(-802 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-801 P R)
+(-803 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-225))))
-(-802)
+((-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-227))))
+(-804)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
-(-803)
+(-805)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-804 S)
+(-806 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4329 . T) (-4319 . T) (-4330 . T) (-2618 . T))
+((-4337 . T) (-4327 . T) (-4338 . T) (-2624 . T))
NIL
-(-805)
+(-807)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-806 R S)
+(-808 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-807 R)
+(-809 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4326 |has| |#1| (-819)))
-((|HasCategory| |#1| (QUOTE (-819))) (-1530 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-532))) (-1530 (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-21))))
-(-808 R)
+((-4334 |has| |#1| (-821)))
+((|HasCategory| |#1| (QUOTE (-821))) (-1536 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-534))) (-1536 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-21))))
+(-810 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4324 |has| |#1| (-169)) (-4323 |has| |#1| (-169)) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))))
-(-809)
+((-4332 |has| |#1| (-170)) (-4331 |has| |#1| (-170)) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))))
+(-811)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-810)
+(-812)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-811)
+(-813)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-812)
+(-814)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-813 R S)
+(-815 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-814 R)
+(-816 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4326 |has| |#1| (-819)))
-((|HasCategory| |#1| (QUOTE (-819))) (-1530 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-532))) (-1530 (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-21))))
-(-815)
+((-4334 |has| |#1| (-821)))
+((|HasCategory| |#1| (QUOTE (-821))) (-1536 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-534))) (-1536 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-21))))
+(-817)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-816 -2721 S)
+(-818 -2728 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-817)
+(-819)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-818 S)
+(-820 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-819)
+(-821)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-820 S)
+(-822 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-821)
+(-823)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-822 S R)
+(-824 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))))
-(-823 R)
+((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))))
+(-825 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4323 . T) (-4324 . T) (-4326 . T))
+((-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-824 R C)
+(-826 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539))))
-(-825 R |sigma| -2655)
+((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541))))
+(-827 R |sigma| -2662)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-354))))
-(-826 |x| R |sigma| -2655)
+((-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356))))
+(-828 |x| R |sigma| -2662)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
-((-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-354))))
-(-827 R)
+((-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-356))))
+(-829 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))))
-(-828)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))
+(-830)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-829)
+(-831)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-830 S)
+(-832 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}")))
NIL
NIL
-(-831)
+(-833)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}")))
NIL
NIL
-(-832)
+(-834)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-833)
+(-835)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-834 |VariableList|)
+(-836 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-835 R |vl| |wl| |wtlevel|)
+(-837 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights")))
-((-4324 |has| |#1| (-169)) (-4323 |has| |#1| (-169)) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))))
-(-836 R PS UP)
+((-4332 |has| |#1| (-170)) (-4331 |has| |#1| (-170)) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))))
+(-838 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-837 R |x| |pt|)
+(-839 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-838 |p|)
+(-840 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-839 |p|)
+(-841 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-840 |p|)
+(-842 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| (-839 |#1|) (QUOTE (-878))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| (-839 |#1|) (QUOTE (-143))) (|HasCategory| (-839 |#1|) (QUOTE (-145))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-839 |#1|) (QUOTE (-991))) (|HasCategory| (-839 |#1|) (QUOTE (-794))) (-1530 (|HasCategory| (-839 |#1|) (QUOTE (-794))) (|HasCategory| (-839 |#1|) (QUOTE (-821)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-839 |#1|) (QUOTE (-1112))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| (-839 |#1|) (QUOTE (-225))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -503) (QUOTE (-1136)) (LIST (QUOTE -839) (|devaluate| |#1|)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -300) (LIST (QUOTE -839) (|devaluate| |#1|)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -277) (LIST (QUOTE -839) (|devaluate| |#1|)) (LIST (QUOTE -839) (|devaluate| |#1|)))) (|HasCategory| (-839 |#1|) (QUOTE (-298))) (|HasCategory| (-839 |#1|) (QUOTE (-532))) (|HasCategory| (-839 |#1|) (QUOTE (-821))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-839 |#1|) (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-839 |#1|) (QUOTE (-878)))) (|HasCategory| (-839 |#1|) (QUOTE (-143)))))
-(-841 |p| PADIC)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| (-841 |#1|) (QUOTE (-880))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| (-841 |#1|) (QUOTE (-143))) (|HasCategory| (-841 |#1|) (QUOTE (-145))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-841 |#1|) (QUOTE (-993))) (|HasCategory| (-841 |#1|) (QUOTE (-796))) (-1536 (|HasCategory| (-841 |#1|) (QUOTE (-796))) (|HasCategory| (-841 |#1|) (QUOTE (-823)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-841 |#1|) (QUOTE (-1118))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| (-841 |#1|) (QUOTE (-227))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -505) (QUOTE (-1143)) (LIST (QUOTE -841) (|devaluate| |#1|)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -841) (|devaluate| |#1|)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -841) (|devaluate| |#1|)) (LIST (QUOTE -841) (|devaluate| |#1|)))) (|HasCategory| (-841 |#1|) (QUOTE (-300))) (|HasCategory| (-841 |#1|) (QUOTE (-534))) (|HasCategory| (-841 |#1|) (QUOTE (-823))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-841 |#1|) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-841 |#1|) (QUOTE (-880)))) (|HasCategory| (-841 |#1|) (QUOTE (-143)))))
+(-843 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-794))) (-1530 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (LIST (QUOTE -503) (QUOTE (-1136)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -277) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-532))) (|HasCategory| |#2| (QUOTE (-821))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-842 S T$)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-796))) (-1536 (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1143)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-823))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(-844 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))))
-(-843)
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))))
+(-845)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-844)
+(-846)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-845 CF1 CF2)
+(-847 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-846 |ComponentFunction|)
+(-848 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-847 CF1 CF2)
+(-849 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-848 |ComponentFunction|)
+(-850 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-849)
+(-851)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-850 CF1 CF2)
+(-852 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-851 |ComponentFunction|)
+(-853 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-852)
+(-854)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-853 R)
+(-855 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-854 R S L)
+(-856 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-855 S)
+(-857 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-856 |Base| |Subject| |Pat|)
+(-858 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-4000 (|HasCategory| |#2| (QUOTE (-1016)))) (-4000 (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1136)))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (-4000 (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1136)))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1136)))))
-(-857 R A B)
+((-12 (-4008 (|HasCategory| |#2| (QUOTE (-1018)))) (-4008 (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1143)))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (-4008 (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1143)))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1143)))))
+(-859 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-858 R S)
+(-860 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-859 R -1695)
+(-861 R -1702)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-860 R S)
+(-862 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-861 R)
+(-863 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-862 |VarSet|)
+(-864 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-863 UP R)
+(-865 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented")))
NIL
NIL
-(-864)
+(-866)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-865 UP -1415)
+(-867 UP -1422)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-866)
+(-868)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-867)
+(-869)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-868 A S)
+(-870 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-869 S)
+(-871 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-870 S)
+(-872 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-871 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-873 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-872 S)
+(-874 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-873 S)
+(-875 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-874 S)
+(-876 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4326 . T))
-((-1530 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-821))))
-(-875 R E |VarSet| S)
+((-4334 . T))
+((-1536 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-823))))
+(-877 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-876 R S)
+(-878 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-877 S)
+(-879 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-143))))
-(-878)
+(-880)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-879 |p|)
+(-881 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-359))))
-(-880 R0 -1415 UP UPUP R)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-361))))
+(-882 R0 -1422 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-881 UP UPUP R)
+(-883 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-882 UP UPUP)
+(-884 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-883 R)
+(-885 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-884 R)
+(-886 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-885 E OV R P)
+(-887 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-886)
+(-888)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-887 -1415)
+(-889 -1422)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-888 R)
+(-890 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-889)
+(-891)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-890)
+(-892)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4331 "*") . T))
+(((-4339 "*") . T))
NIL
-(-891 -1415 P)
+(-893 -1422 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-892 |xx| -1415)
+(-894 |xx| -1422)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-893 R |Var| |Expon| GR)
+(-895 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-894 S)
+(-896 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-895)
+(-897)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-896)
+(-898)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-897)
+(-899)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-898 R -1415)
+(-900 R -1422)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-899)
+(-901)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-900 S A B)
+(-902 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-901 S R -1415)
+(-903 S R -1422)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-902 I)
+(-904 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-903 S E)
+(-905 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-904 S R L)
+(-906 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-905 S E V R P)
+(-907 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -855) (|devaluate| |#1|))))
-(-906 R -1415 -1695)
+((|HasCategory| |#3| (LIST (QUOTE -857) (|devaluate| |#1|))))
+(-908 R -1422 -1702)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-907 -1695)
+(-909 -1702)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-908 S R Q)
+(-910 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-909 S)
+(-911 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-910 S R P)
+(-912 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-911)
+(-913)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
NIL
NIL
-(-912 R)
+(-914 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-913 |lv| R)
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-915 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-914 |TheField| |ThePols|)
+(-916 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-819))))
-(-915 R S)
+((|HasCategory| |#1| (QUOTE (-821))))
+(-917 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-916 |x| R)
+(-918 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-917 S R E |VarSet|)
+(-919 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-878))) (|HasAttribute| |#2| (QUOTE -4327)) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#4| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#4| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#4| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-821))))
-(-918 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-880))) (|HasAttribute| |#2| (QUOTE -4335)) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#4| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#4| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-823))))
+(-920 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
NIL
-(-919 E V R P -1415)
+(-921 E V R P -1422)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-920 E |Vars| R P S)
+(-922 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-921 R)
+(-923 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-878))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1136) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-1136) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-1136) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-1136) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-1136) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4327)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-922 E V R P -1415)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-880))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1143) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-1143) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-1143) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-1143) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-1143) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4335)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-924 E V R P -1422)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-442))))
-(-923)
+((|HasCategory| |#3| (QUOTE (-444))))
+(-925)
((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
NIL
NIL
-(-924)
+(-926)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-925 R L)
+(-927 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-926 A B)
+(-928 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-927 S)
+(-929 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-928)
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-930)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-929 -1415)
+(-931 -1422)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-930 I)
+(-932 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-931)
+(-933)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-932 R E)
+(-934 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-6 -4327)) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-130)))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4327)))
-(-933 A B)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-6 -4335)) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-130)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4335)))
+(-935 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4326 -12 (|has| |#2| (-463)) (|has| |#1| (-463))))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-821))))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767)))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-463)))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-463)))) (-12 (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-701))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-359)))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-463)))) (-12 (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-821)))))
-(-934)
+((-4334 -12 (|has| |#2| (-465)) (|has| |#1| (-465))))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-703))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-703)))) (-12 (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#2| (QUOTE (-769))))) (-12 (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-703)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-823)))))
+(-936)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-935 T$)
+(-937 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula")))
NIL
NIL
-(-936)
+(-938)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")))
NIL
NIL
-(-937 S)
+(-939 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4329 . T) (-4330 . T) (-2618 . T))
+((-4337 . T) (-4338 . T) (-2624 . T))
NIL
-(-938 R |polR|)
+(-940 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-442))))
-(-939)
+((|HasCategory| |#1| (QUOTE (-444))))
+(-941)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-940)
+(-942)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-941 S |Coef| |Expon| |Var|)
+(-943 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-942 |Coef| |Expon| |Var|)
+(-944 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-943)
+(-945)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-944 S R E |VarSet| P)
+(-946 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-539))))
-(-945 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-541))))
+(-947 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4329 . T) (-2618 . T))
+((-4337 . T) (-2624 . T))
NIL
-(-946 R E V P)
+(-948 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-442))))
-(-947 K)
+((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-300)))) (|HasCategory| |#1| (QUOTE (-444))))
+(-949 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-948 |VarSet| E RC P)
+(-950 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-949 R)
+(-951 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4330 . T) (-4329 . T) (-2618 . T))
+((-4338 . T) (-4337 . T) (-2624 . T))
NIL
-(-950 R1 R2)
+(-952 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-951 R)
+(-953 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-952 K)
+(-954 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-953 R E OV PPR)
+(-955 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-954 K R UP -1415)
+(-956 K R UP -1422)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-955 |vl| |nv|)
+(-957 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-956 R |Var| |Expon| |Dpoly|)
+(-958 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-298)))))
-(-957 R E V P TS)
+((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-300)))))
+(-959 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-958)
+(-960)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-959 A B R S)
+(-961 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-960 A S)
+(-962 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (QUOTE (-532))) (|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1112))))
-(-961 S)
+((|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-796))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1118))))
+(-963 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-2618 . T) (-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-2624 . T) (-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-962 |n| K)
+(-964 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-963)
+(-965)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-964 S)
+(-966 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4329 . T) (-4330 . T) (-2618 . T))
+((-4337 . T) (-4338 . T) (-2624 . T))
NIL
-(-965 S R)
+(-967 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-532))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-281))))
-(-966 R)
+((|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-283))))
+(-968 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4322 |has| |#1| (-281)) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 |has| |#1| (-283)) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-967 QR R QS S)
+(-969 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-968 R)
+(-970 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4322 |has| |#1| (-281)) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1136)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -277) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-532))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))))
-(-969 S)
+((-4330 |has| |#1| (-283)) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1143)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-534))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))))
+(-971 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-970 S)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-972 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-971)
+(-973)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-972 -1415 UP UPUP |radicnd| |n|)
+(-974 -1422 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4322 |has| (-398 |#2|) (-354)) (-4327 |has| (-398 |#2|) (-354)) (-4321 |has| (-398 |#2|) (-354)) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| (-398 |#2|) (QUOTE (-143))) (|HasCategory| (-398 |#2|) (QUOTE (-145))) (|HasCategory| (-398 |#2|) (QUOTE (-340))) (-1530 (|HasCategory| (-398 |#2|) (QUOTE (-354))) (|HasCategory| (-398 |#2|) (QUOTE (-340)))) (|HasCategory| (-398 |#2|) (QUOTE (-354))) (|HasCategory| (-398 |#2|) (QUOTE (-359))) (-1530 (-12 (|HasCategory| (-398 |#2|) (QUOTE (-225))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (|HasCategory| (-398 |#2|) (QUOTE (-340)))) (-1530 (-12 (|HasCategory| (-398 |#2|) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (-12 (|HasCategory| (-398 |#2|) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-398 |#2|) (QUOTE (-340))))) (|HasCategory| (-398 |#2|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| (-398 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-398 |#2|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-359))) (-1530 (|HasCategory| (-398 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (-12 (|HasCategory| (-398 |#2|) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (-12 (|HasCategory| (-398 |#2|) (QUOTE (-225))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))))
-(-973 |bb|)
+((-4330 |has| (-400 |#2|) (-356)) (-4335 |has| (-400 |#2|) (-356)) (-4329 |has| (-400 |#2|) (-356)) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-342))) (-1536 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-1536 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-342)))) (-1536 (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-400 |#2|) (QUOTE (-342))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1536 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))))
+(-975 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| (-547) (QUOTE (-878))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| (-547) (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-145))) (|HasCategory| (-547) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-547) (QUOTE (-991))) (|HasCategory| (-547) (QUOTE (-794))) (-1530 (|HasCategory| (-547) (QUOTE (-794))) (|HasCategory| (-547) (QUOTE (-821)))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-1112))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-547) (QUOTE (-225))) (|HasCategory| (-547) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| (-547) (LIST (QUOTE -503) (QUOTE (-1136)) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -300) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -277) (QUOTE (-547)) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-298))) (|HasCategory| (-547) (QUOTE (-532))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-547) (LIST (QUOTE -615) (QUOTE (-547)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (|HasCategory| (-547) (QUOTE (-143)))))
-(-974)
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| (-549) (QUOTE (-880))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| (-549) (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-549) (QUOTE (-993))) (|HasCategory| (-549) (QUOTE (-796))) (-1536 (|HasCategory| (-549) (QUOTE (-796))) (|HasCategory| (-549) (QUOTE (-823)))) (|HasCategory| (-549) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1118))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| (-549) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-227))) (|HasCategory| (-549) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| (-549) (LIST (QUOTE -505) (QUOTE (-1143)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -302) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -279) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-300))) (|HasCategory| (-549) (QUOTE (-534))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-549) (LIST (QUOTE -617) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-549) (QUOTE (-880)))) (|HasCategory| (-549) (QUOTE (-143)))))
+(-976)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-975)
+(-977)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-976 RP)
+(-978 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-977 S)
+(-979 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-978 A S)
+(-980 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4330)) (|HasCategory| |#2| (QUOTE (-1063))))
-(-979 S)
+((|HasAttribute| |#1| (QUOTE -4338)) (|HasCategory| |#2| (QUOTE (-1067))))
+(-981 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-980 S)
+(-982 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-981)
+(-983)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4322 . T) (-4327 . T) (-4321 . T) (-4324 . T) (-4323 . T) ((-4331 "*") . T) (-4326 . T))
+((-4330 . T) (-4335 . T) (-4329 . T) (-4332 . T) (-4331 . T) ((-4339 "*") . T) (-4334 . T))
NIL
-(-982 R -1415)
+(-984 R -1422)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-983 R -1415)
+(-985 R -1422)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-984 -1415 UP)
+(-986 -1422 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-985 -1415 UP)
+(-987 -1422 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-986 S)
+(-988 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-987 F1 UP UPUP R F2)
+(-989 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented")))
NIL
NIL
-(-988)
+(-990)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|Syntax|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|Syntax|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-989 |Pol|)
+(-991 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-990 |Pol|)
+(-992 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-991)
+(-993)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-992)
+(-994)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-993 |TheField|)
+(-995 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4322 . T) (-4327 . T) (-4321 . T) (-4324 . T) (-4323 . T) ((-4331 "*") . T) (-4326 . T))
-((-1530 (|HasCategory| (-398 (-547)) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-398 (-547)) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-398 (-547)) (LIST (QUOTE -1007) (QUOTE (-547)))))
-(-994 -1415 L)
+((-4330 . T) (-4335 . T) (-4329 . T) (-4332 . T) (-4331 . T) ((-4339 "*") . T) (-4334 . T))
+((-1536 (|HasCategory| (-400 (-549)) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-400 (-549)) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-400 (-549)) (LIST (QUOTE -1009) (QUOTE (-549)))))
+(-996 -1422 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-995 S)
+(-997 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1063))))
-(-996 R E V P)
+((|HasCategory| |#1| (QUOTE (-1067))))
+(-998 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4330 . T) (-4329 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-997 R)
+((-4338 . T) (-4337 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-999 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4331 "*"))))
-(-998 R)
+((|HasAttribute| |#1| (QUOTE (-4339 "*"))))
+(-1000 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-298))))
-(-999 S)
+((-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-300))))
+(-1001 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1000)
+(-1002)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-1001 S)
+(-1003 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1002 S)
+(-1004 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1003 -1415 |Expon| |VarSet| |FPol| |LFPol|)
+(-1005 -1422 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1004)
+(-1006)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (QUOTE (-1136))) (LIST (QUOTE |:|) (QUOTE -1786) (QUOTE (-52))))))) (-1530 (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (QUOTE (-1063))) (|HasCategory| (-52) (QUOTE (-1063)))) (-1530 (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -300) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (QUOTE (-1063))) (|HasCategory| (-1136) (QUOTE (-821))) (|HasCategory| (-52) (QUOTE (-1063))) (-1530 (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1005)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (QUOTE (-1143))) (LIST (QUOTE |:|) (QUOTE -1793) (QUOTE (-52))))))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (QUOTE (-1067))) (|HasCategory| (-52) (QUOTE (-1067)))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (QUOTE (-1067))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| (-52) (QUOTE (-1067))) (|HasCategory| (-52) (LIST (QUOTE -302) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (QUOTE (-1067))) (|HasCategory| (-1143) (QUOTE (-823))) (|HasCategory| (-52) (QUOTE (-1067))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1007)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-1006 A S)
+(-1008 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-1007 S)
+(-1009 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-1008 Q R)
+(-1010 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1009)
+(-1011)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1010 UP)
+(-1012 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1011 R)
+(-1013 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-1012 R)
+(-1014 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1013 R |ls|)
+(-1015 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4330 . T) (-4329 . T))
-((-12 (|HasCategory| (-754 |#1| (-834 |#2|)) (QUOTE (-1063))) (|HasCategory| (-754 |#1| (-834 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -754) (|devaluate| |#1|) (LIST (QUOTE -834) (|devaluate| |#2|)))))) (|HasCategory| (-754 |#1| (-834 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-754 |#1| (-834 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| (-834 |#2|) (QUOTE (-359))) (|HasCategory| (-754 |#1| (-834 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1014)
+((-4338 . T) (-4337 . T))
+((-12 (|HasCategory| (-756 |#1| (-836 |#2|)) (QUOTE (-1067))) (|HasCategory| (-756 |#1| (-836 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -756) (|devaluate| |#1|) (LIST (QUOTE -836) (|devaluate| |#2|)))))) (|HasCategory| (-756 |#1| (-836 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-756 |#1| (-836 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| (-836 |#2|) (QUOTE (-361))) (|HasCategory| (-756 |#1| (-836 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1016)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1015 S)
+(-1017 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-1016)
+(-1018)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4326 . T))
+((-4334 . T))
NIL
-(-1017 |xx| -1415)
+(-1019 |xx| -1422)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-1018 S |m| |n| R |Row| |Col|)
+(-1020 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-298))) (|HasCategory| |#4| (QUOTE (-354))) (|HasCategory| |#4| (QUOTE (-539))) (|HasCategory| |#4| (QUOTE (-169))))
-(-1019 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-300))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-541))) (|HasCategory| |#4| (QUOTE (-170))))
+(-1021 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4329 . T) (-2618 . T) (-4324 . T) (-4323 . T))
+((-4337 . T) (-2624 . T) (-4332 . T) (-4331 . T))
NIL
-(-1020 |m| |n| R)
+(-1022 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4329 . T) (-4324 . T) (-4323 . T))
-((-1530 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-354)))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (QUOTE (-298))) (|HasCategory| |#3| (QUOTE (-539))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-832)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))))
-(-1021 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4337 . T) (-4332 . T) (-4331 . T))
+((-1536 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (QUOTE (-300))) (|HasCategory| |#3| (QUOTE (-541))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-834)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))))
+(-1023 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-1022 R)
+(-1024 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-1023)
+(-1025)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-1024 S)
+(-1026 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-1025)
+(-1027)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1026 |TheField| |ThePolDom|)
+(-1028 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-1027)
+(-1029)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4317 . T) (-4321 . T) (-4316 . T) (-4327 . T) (-4328 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4325 . T) (-4329 . T) (-4324 . T) (-4335 . T) (-4336 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1028)
+(-1030)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (QUOTE (-1136))) (LIST (QUOTE |:|) (QUOTE -1786) (QUOTE (-52))))))) (-1530 (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (QUOTE (-1063))) (|HasCategory| (-52) (QUOTE (-1063)))) (-1530 (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -300) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (QUOTE (-1063))) (|HasCategory| (-1136) (QUOTE (-821))) (|HasCategory| (-52) (QUOTE (-1063))) (-1530 (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1029 S R E V)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (QUOTE (-1143))) (LIST (QUOTE |:|) (QUOTE -1793) (QUOTE (-52))))))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (QUOTE (-1067))) (|HasCategory| (-52) (QUOTE (-1067)))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (QUOTE (-1067))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| (-52) (QUOTE (-1067))) (|HasCategory| (-52) (LIST (QUOTE -302) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (QUOTE (-1067))) (|HasCategory| (-1143) (QUOTE (-823))) (|HasCategory| (-52) (QUOTE (-1067))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-52) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1031 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-532))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-1136)))))
-(-1030 R E V)
+((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-534))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -963) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-1143)))))
+(-1032 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
NIL
-(-1031)
+(-1033)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|Syntax|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|Syntax|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-1032 S |TheField| |ThePols|)
+(-1034 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1033 |TheField| |ThePols|)
+(-1035 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1034 R E V P TS)
+(-1036 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1035 S R E V P)
+(-1037 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1036 R E V P)
+(-1038 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4330 . T) (-4329 . T) (-2618 . T))
+((-4338 . T) (-4337 . T) (-2624 . T))
NIL
-(-1037 R E V P TS)
+(-1039 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1038 |f|)
+(-1040)
+((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression being converted.")))
+NIL
+NIL
+(-1041 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1039 |Base| R -1415)
+(-1042 |Base| R -1422)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1040 |Base| R -1415)
+(-1043 |Base| R -1422)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
-(-1041 R |ls|)
+(-1044 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1042 UP SAE UPA)
+(-1045 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1043 R UP M)
+(-1046 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4322 |has| |#1| (-354)) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-340))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-340)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-359))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-340)))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136))))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-354)))))
-(-1044 UP SAE UPA)
+((-4330 |has| |#1| (-356)) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-342))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-342)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143))))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))))
+(-1047 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1045)
+(-1048)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1046 S)
+(-1049 S)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1047)
+(-1050)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1048 S)
+(-1051 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1049)
+(-1052)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1050 R)
+(-1053 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1051 R)
+(-1054 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-878))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1052 (-1136)) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-1052 (-1136)) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-1052 (-1136)) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-1052 (-1136)) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-1052 (-1136)) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4327)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1052 S)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-880))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1055 (-1143)) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-1055 (-1143)) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-1055 (-1143)) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-1055 (-1143)) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-1055 (-1143)) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4335)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-1055 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1053 R S)
+(-1056 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-819))))
-(-1054)
+((|HasCategory| |#1| (QUOTE (-821))))
+(-1057)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|Syntax|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1055 R S)
+(-1058 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1056 S)
+(-1059 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1063))))
-(-1057 S)
+((|HasCategory| |#1| (QUOTE (-1067))))
+(-1060 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-1058 S)
+(-1061 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (QUOTE (-1063))))
-(-1059 S L)
+((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1067))))
+(-1062 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-2618 . T))
+((-2624 . T))
+NIL
+(-1063)
+((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|Syntax|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|Syntax|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
+NIL
NIL
-(-1060 A S)
+(-1064 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1061 S)
+(-1065 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4319 . T) (-2618 . T))
+((-4327 . T) (-2624 . T))
NIL
-(-1062 S)
+(-1066 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1063)
+(-1067)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1064 |m| |n|)
+(-1068 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1065 S)
+(-1069 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4329 . T) (-4319 . T) (-4330 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1066 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4337 . T) (-4327 . T) (-4338 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1070 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1067)
+(-1071)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1068 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1072 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1069 R FS)
+(-1073 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1070 R E V P TS)
+(-1074 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1071 R E V P TS)
+(-1075 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1072 R E V P)
+(-1076 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4330 . T) (-4329 . T) (-2618 . T))
+((-4338 . T) (-4337 . T) (-2624 . T))
NIL
-(-1073)
+(-1077)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1074 S)
+(-1078 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1075)
+(-1079)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1076 |dimtot| |dim1| S)
+(-1080 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4323 |has| |#3| (-1016)) (-4324 |has| |#3| (-1016)) (-4326 |has| |#3| (-6 -4326)) ((-4331 "*") |has| |#3| (-169)) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))))) (-1530 (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1063)))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#3| (QUOTE (-354))) (-1530 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1530 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-354)))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-767))) (-1530 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819)))) (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-169))) (-1530 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))) (-1530 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-1063)))) (-1530 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1530 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1530 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1530 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-225)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-354)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-359)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-701)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-767)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-819)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1063))))) (-1530 (-12 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| (-547) (QUOTE (-821))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1136))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-1530 (|HasCategory| |#3| (QUOTE (-1016))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1063)))) (|HasAttribute| |#3| (QUOTE -4326)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1077 R |x|)
+((-4331 |has| |#3| (-1018)) (-4332 |has| |#3| (-1018)) (-4334 |has| |#3| (-6 -4334)) ((-4339 "*") |has| |#3| (-170)) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))))) (-1536 (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#3| (QUOTE (-356))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-769))) (-1536 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821)))) (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-170))) (-1536 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))) (-1536 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-1067)))) (-1536 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-1536 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-1536 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1018)))) (-1536 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-227)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-356)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-361)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-703)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-769)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-821)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1067))))) (-1536 (-12 (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-703))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-769))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-821))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-823))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-1143))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549))))) (-1536 (|HasCategory| |#3| (QUOTE (-1018))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1009) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1067)))) (|HasAttribute| |#3| (QUOTE -4334)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1081 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-442))))
-(-1078 R -1415)
+((|HasCategory| |#1| (QUOTE (-444))))
+(-1082)
+((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
+NIL
+NIL
+(-1083 R -1422)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1079 R)
+(-1084 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1080)
+(-1085)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1081)
+(-1086)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1082)
+(-1087)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4317 . T) (-4321 . T) (-4316 . T) (-4327 . T) (-4328 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4325 . T) (-4329 . T) (-4324 . T) (-4335 . T) (-4336 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1083 S)
+(-1088 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4329 . T) (-4330 . T) (-2618 . T))
+((-4337 . T) (-4338 . T) (-2624 . T))
NIL
-(-1084 S |ndim| R |Row| |Col|)
+(-1089 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-354))) (|HasAttribute| |#3| (QUOTE (-4331 "*"))) (|HasCategory| |#3| (QUOTE (-169))))
-(-1085 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-356))) (|HasAttribute| |#3| (QUOTE (-4339 "*"))) (|HasCategory| |#3| (QUOTE (-170))))
+(-1090 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-2618 . T) (-4329 . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-2624 . T) (-4337 . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1086 R |Row| |Col| M)
+(-1091 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1087 R |VarSet|)
+(-1092 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-878))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4327)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1088 |Coef| |Var| SMP)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-880))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4335)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-1093 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-354))))
-(-1089 R E V P)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-356))))
+(-1094 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4330 . T) (-4329 . T) (-2618 . T))
+((-4338 . T) (-4337 . T) (-2624 . T))
NIL
-(-1090 UP -1415)
+(-1095 UP -1422)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1091 R)
+(-1096 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1092 R)
+(-1097 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1093 R)
+(-1098 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1094 S A)
+(-1099 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-821))))
-(-1095 R)
+((|HasCategory| |#1| (QUOTE (-823))))
+(-1100 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1096 R)
+(-1101 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1097)
+(-1102)
+NIL
+NIL
+NIL
+(-1103)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1098)
-((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|case| (((|Boolean| (SEQ (|Mapping| (|Boolean|) $ (|DefinitionAst|)) (|Mapping| (|Boolean|) $ (|MacroAst|)) (|Mapping| (|Boolean|) $ (|WhereAst|)) (|Mapping| (|Boolean|) $ (|CategoryAst|)) (|Mapping| (|Boolean|) $ (|CapsuleAst|)) (|Mapping| (|Boolean|) $ (|SignatureAst|)) (|Mapping| (|Boolean|) $ (|AttributeAst|)) (|Mapping| (|Boolean|) $ (|MappingAst|)) (|Mapping| (|Boolean|) $ (|IfAst|)) (|Mapping| (|Boolean|) $ (|RepeatAst|)) (|Mapping| (|Boolean|) $ (|WhileAst|)) (|Mapping| (|Boolean|) $ (|InAst|)) (|Mapping| (|Boolean|) $ (|CollectAst|)) (|Mapping| (|Boolean|) $ (|ConstructAst|)) (|Mapping| (|Boolean|) $ (|ExitAst|)) (|Mapping| (|Boolean|) $ (|ReturnAst|)) (|Mapping| (|Boolean|) $ (|CoerceAst|)) (|Mapping| (|Boolean|) $ (|PretendAst|)) (|Mapping| (|Boolean|) $ (|RestrictAst|)) (|Mapping| (|Boolean|) $ (|SegmentAst|)) (|Mapping| (|Boolean|) $ (|SequenceAst|)) (|Mapping| (|Boolean|) $ (|LetAst|)) (|Mapping| (|Boolean|) $ (|SuchThatAst|)) (|Mapping| (|Boolean|) $ (|ColonAst|)) (|Mapping| (|Boolean|) $ (|CaseAst|)) (|Mapping| (|Boolean|) $ (|HasAst|)) (|Mapping| (|Boolean|) $ (|IsAst|)) (|exit| (|Mapping| (|IsAst|) $)))) $ (|ImportAst|)) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
-((-2618 . T))
+(-1104)
+((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
+((-2624 . T))
NIL
-(-1099)
+(-1105)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1100)
+(-1106)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1101 V C)
+(-1107 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1102 V C)
+(-1108 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| (-1101 |#1| |#2|) (LIST (QUOTE -300) (LIST (QUOTE -1101) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1101 |#1| |#2|) (QUOTE (-1063)))) (|HasCategory| (-1101 |#1| |#2|) (QUOTE (-1063))) (-1530 (|HasCategory| (-1101 |#1| |#2|) (LIST (QUOTE -591) (QUOTE (-832)))) (-12 (|HasCategory| (-1101 |#1| |#2|) (LIST (QUOTE -300) (LIST (QUOTE -1101) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1101 |#1| |#2|) (QUOTE (-1063))))) (|HasCategory| (-1101 |#1| |#2|) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1103 |ndim| R)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| (-1107 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1107) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1107 |#1| |#2|) (QUOTE (-1067)))) (|HasCategory| (-1107 |#1| |#2|) (QUOTE (-1067))) (-1536 (|HasCategory| (-1107 |#1| |#2|) (LIST (QUOTE -593) (QUOTE (-834)))) (-12 (|HasCategory| (-1107 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1107) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1107 |#1| |#2|) (QUOTE (-1067))))) (|HasCategory| (-1107 |#1| |#2|) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1109 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
-((-4326 . T) (-4318 |has| |#2| (-6 (-4331 "*"))) (-4329 . T) (-4323 . T) (-4324 . T))
-((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasAttribute| |#2| (QUOTE (-4331 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (-1530 (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-354))) (-1530 (|HasAttribute| |#2| (QUOTE (-4331 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-169))))
-(-1104 S)
+((-4334 . T) (-4326 |has| |#2| (-6 (-4339 "*"))) (-4337 . T) (-4331 . T) (-4332 . T))
+((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4339 "*"))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (-1536 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-356))) (-1536 (|HasAttribute| |#2| (QUOTE (-4339 "*"))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#2| (QUOTE (-227)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-170))))
+(-1110 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1105)
+(-1111)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4330 . T) (-4329 . T) (-2618 . T))
+((-4338 . T) (-4337 . T) (-2624 . T))
NIL
-(-1106 R E V P TS)
+(-1112 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1107 R E V P)
+(-1113 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4330 . T) (-4329 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1108 S)
+((-4338 . T) (-4337 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1114 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1109 A S)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1115 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1110 S)
+(-1116 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-1111 |Key| |Ent| |dent|)
+(-1117 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4330 . T))
-((-12 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1786) (|devaluate| |#2|)))))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-821))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1112)
+((-4338 . T))
+((-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1793) (|devaluate| |#2|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-823))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1118)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1113 |Coef|)
+(-1119 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1114 S)
+(-1120 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1115 A B)
+(-1121 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1116 A B C)
+(-1122 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1117 S)
+(-1123 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4330 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1118)
+((-4338 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1124)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4330 . T) (-4329 . T) (-2618 . T))
+((-4338 . T) (-4337 . T) (-2624 . T))
NIL
-(-1119)
+(-1125)
NIL
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1120 |Entry|)
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| (-142) (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| (-142) (QUOTE (-1067))) (-12 (|HasCategory| (-142) (QUOTE (-1067))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1126 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (QUOTE (-1119))) (LIST (QUOTE |:|) (QUOTE -1786) (|devaluate| |#1|)))))) (-1530 (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-1063)))) (-1530 (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (QUOTE (-1063))) (|HasCategory| (-1119) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1121 A)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (QUOTE (-1125))) (LIST (QUOTE |:|) (QUOTE -1793) (|devaluate| |#1|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-1067)))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (QUOTE (-1067))) (|HasCategory| (-1125) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1127 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))))
-(-1122 |Coef|)
+((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))
+(-1128 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1123 |Coef|)
+(-1129 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1124 R UP)
+(-1130 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-298))))
-(-1125 |n| R)
+((|HasCategory| |#1| (QUOTE (-300))))
+(-1131 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1126 S1 S2)
+(-1132 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1127 |Coef| |var| |cen|)
+(-1133)
+((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|Syntax|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
+NIL
+NIL
+(-1134 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4331 "*") -1530 (-1814 (|has| |#1| (-354)) (|has| (-1134 |#1| |#2| |#3|) (-794))) (|has| |#1| (-169)) (-1814 (|has| |#1| (-354)) (|has| (-1134 |#1| |#2| |#3|) (-878)))) (-4322 -1530 (-1814 (|has| |#1| (-354)) (|has| (-1134 |#1| |#2| |#3|) (-794))) (|has| |#1| (-539)) (-1814 (|has| |#1| (-354)) (|has| (-1134 |#1| |#2| |#3|) (-878)))) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -277) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -300) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -503) (QUOTE (-1136)) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1530 (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1530 (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|)))))) (-1530 (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|))))) (|HasCategory| (-547) (QUOTE (-1075))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-354)))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-1530 (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-354))))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -277) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -300) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -503) (QUOTE (-1136)) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3838) (LIST (|devaluate| |#1|) (QUOTE (-1136)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3694) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1136))))) (|HasSignature| |#1| (LIST (QUOTE -2267) (LIST (LIST (QUOTE -619) (QUOTE (-1136))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1530 (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1530 (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1134 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1128 R -1415)
+(((-4339 "*") -1536 (-1821 (|has| |#1| (-356)) (|has| (-1141 |#1| |#2| |#3|) (-796))) (|has| |#1| (-170)) (-1821 (|has| |#1| (-356)) (|has| (-1141 |#1| |#2| |#3|) (-880)))) (-4330 -1536 (-1821 (|has| |#1| (-356)) (|has| (-1141 |#1| |#2| |#3|) (-796))) (|has| |#1| (-541)) (-1821 (|has| |#1| (-356)) (|has| (-1141 |#1| |#2| |#3|) (-880)))) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1143)) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1536 (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1536 (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))))) (-1536 (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasCategory| (-549) (QUOTE (-1079))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-356))))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1143)) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3846) (LIST (|devaluate| |#1|) (QUOTE (-1143)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3893) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1143))))) (|HasSignature| |#1| (LIST (QUOTE -2272) (LIST (LIST (QUOTE -621) (QUOTE (-1143))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1536 (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-1135 R -1422)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1129 R)
+(-1136 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1130 R S)
+(-1137 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1131 E OV R P)
+(-1138 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1132 R)
+(-1139 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4325 |has| |#1| (-354)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasAttribute| |#1| (QUOTE -4327)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1133 |Coef| |var| |cen|)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4333 |has| |#1| (-356)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4335)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-1140 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|)))) (|HasCategory| (-398 (-547)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasSignature| |#1| (LIST (QUOTE -3838) (LIST (|devaluate| |#1|) (QUOTE (-1136)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3694) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1136))))) (|HasSignature| |#1| (LIST (QUOTE -2267) (LIST (LIST (QUOTE -619) (QUOTE (-1136))) (|devaluate| |#1|)))))))
-(-1134 |Coef| |var| |cen|)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-549)) (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -3846) (LIST (|devaluate| |#1|) (QUOTE (-1143)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3893) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1143))))) (|HasSignature| |#1| (LIST (QUOTE -2272) (LIST (LIST (QUOTE -621) (QUOTE (-1143))) (|devaluate| |#1|)))))))
+(-1141 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|)))) (|HasCategory| (-745) (QUOTE (-1075))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasSignature| |#1| (LIST (QUOTE -3838) (LIST (|devaluate| |#1|) (QUOTE (-1136)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3694) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1136))))) (|HasSignature| |#1| (LIST (QUOTE -2267) (LIST (LIST (QUOTE -619) (QUOTE (-1136))) (|devaluate| |#1|)))))))
-(-1135)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|)))) (|HasCategory| (-747) (QUOTE (-1079))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasSignature| |#1| (LIST (QUOTE -3846) (LIST (|devaluate| |#1|) (QUOTE (-1143)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3893) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1143))))) (|HasSignature| |#1| (LIST (QUOTE -2272) (LIST (LIST (QUOTE -621) (QUOTE (-1143))) (|devaluate| |#1|)))))))
+(-1142)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1136)
+(-1143)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1137 R)
+(-1144 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1138 R)
+(-1145 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-6 -4327)) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| (-940) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4327)))
-(-1139)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-6 -4335)) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| (-942) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasAttribute| |#1| (QUOTE -4335)))
+(-1146)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1140)
+(-1147)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1141)
+(-1148)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} building complete representation of Spad programs as objects of a term algebra built from ground terms of type integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity in a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} Symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1142 R)
+(-1149 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1143)
+(-1150)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1144 S)
+(-1151 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1145 S)
+(-1152 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1146 |Key| |Entry|)
+(-1153 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4329 . T) (-4330 . T))
-((-12 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3331) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1786) (|devaluate| |#2|)))))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1530 (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1147 R)
+((-4337 . T) (-4338 . T))
+((-12 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3337) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1793) (|devaluate| |#2|)))))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1067)))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -594) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1067))) (-1536 (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-834)))) (|HasCategory| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1154 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1148 S |Key| |Entry|)
+(-1155 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1149 |Key| |Entry|)
+(-1156 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4330 . T) (-2618 . T))
+((-4338 . T) (-2624 . T))
NIL
-(-1150 |Key| |Entry|)
+(-1157 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1151)
+(-1158)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1152 S)
+(-1159 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1153)
+(-1160)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
NIL
NIL
-(-1154)
+(-1161)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1155 R)
+(-1162 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1156)
+(-1163)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1157 S)
+(-1164 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1158)
+(-1165)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1159 S)
+(-1166 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4330 . T) (-4329 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1160 S)
+((-4338 . T) (-4337 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1067))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1167 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1161)
+(-1168)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1162 R -1415)
+(-1169 R -1422)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1163 R |Row| |Col| M)
+(-1170 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1164 R -1415)
+(-1171 R -1422)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -855) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -855) (|devaluate| |#1|)))))
-(-1165 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -594) (LIST (QUOTE -863) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -857) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -857) (|devaluate| |#1|)))))
+(-1172 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
-((|HasCategory| |#4| (QUOTE (-359))))
-(-1166 R E V P)
+((|HasCategory| |#4| (QUOTE (-361))))
+(-1173 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4330 . T) (-4329 . T) (-2618 . T))
+((-4338 . T) (-4337 . T) (-2624 . T))
NIL
-(-1167 |Coef|)
+(-1174 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-354))))
-(-1168 |Curve|)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-356))))
+(-1175 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1169)
+(-1176)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1170 S)
+(-1177 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
-((|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1171 -1415)
+((|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1178 -1422)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1172)
+(-1179)
((|constructor| (NIL "This domain represents a type AST.")) (|coerce| (($ (|Syntax|)) "s::TypeAst injects \\spad{`s'} into the TypeAst domain.")))
NIL
NIL
-(-1173)
+(-1180)
((|constructor| (NIL "The fundamental Type.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-1174 S)
+(-1181 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-821))))
-(-1175)
+((|HasCategory| |#1| (QUOTE (-823))))
+(-1182)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1176 S)
+(-1183 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1177)
+(-1184)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1178 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1185 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1179 |Coef|)
+(-1186 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1180 S |Coef| UTS)
+(-1187 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-354))))
-(-1181 |Coef| UTS)
+((|HasCategory| |#2| (QUOTE (-356))))
+(-1188 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-2618 |has| |#1| (-354)) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-2624 |has| |#1| (-356)) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1182 |Coef| UTS)
+(-1189 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -277) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -503) (QUOTE (-1136)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1136)))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-143))))) (-1530 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-145))))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-225)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|))))) (|HasCategory| (-547) (QUOTE (-1075))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1136))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-991)))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-794)))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-821))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -277) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -503) (QUOTE (-1136)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3838) (LIST (|devaluate| |#1|) (QUOTE (-1136)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3694) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1136))))) (|HasSignature| |#1| (LIST (QUOTE -2267) (LIST (LIST (QUOTE -619) (QUOTE (-1136))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-878))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-532)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-143))))))
-(-1183 |Coef| |var| |cen|)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1143)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-880)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-993)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1118)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1143)))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143))))) (-1536 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-145))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-227)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasCategory| (-549) (QUOTE (-1079))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-880)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-1143))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-993)))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-796)))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-796)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1118)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1143)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3846) (LIST (|devaluate| |#1|) (QUOTE (-1143)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3893) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1143))))) (|HasSignature| |#1| (LIST (QUOTE -2272) (LIST (LIST (QUOTE -621) (QUOTE (-1143))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-880))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-300)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143))))))
+(-1190 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4331 "*") -1530 (-1814 (|has| |#1| (-354)) (|has| (-1211 |#1| |#2| |#3|) (-794))) (|has| |#1| (-169)) (-1814 (|has| |#1| (-354)) (|has| (-1211 |#1| |#2| |#3|) (-878)))) (-4322 -1530 (-1814 (|has| |#1| (-354)) (|has| (-1211 |#1| |#2| |#3|) (-794))) (|has| |#1| (-539)) (-1814 (|has| |#1| (-354)) (|has| (-1211 |#1| |#2| |#3|) (-878)))) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4323 . T) (-4324 . T) (-4326 . T))
-((-1530 (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -277) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -300) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -503) (QUOTE (-1136)) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1530 (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1530 (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|)))))) (-1530 (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|))))) (|HasCategory| (-547) (QUOTE (-1075))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1136)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-354)))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-1530 (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-354))))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -277) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -300) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -503) (QUOTE (-1136)) (LIST (QUOTE -1211) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3838) (LIST (|devaluate| |#1|) (QUOTE (-1136)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3694) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1136))))) (|HasSignature| |#1| (LIST (QUOTE -2267) (LIST (LIST (QUOTE -619) (QUOTE (-1136))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1530 (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1530 (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1211 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-143)))))
-(-1184 ZP)
+(((-4339 "*") -1536 (-1821 (|has| |#1| (-356)) (|has| (-1218 |#1| |#2| |#3|) (-796))) (|has| |#1| (-170)) (-1821 (|has| |#1| (-356)) (|has| (-1218 |#1| |#2| |#3|) (-880)))) (-4330 -1536 (-1821 (|has| |#1| (-356)) (|has| (-1218 |#1| |#2| |#3|) (-796))) (|has| |#1| (-541)) (-1821 (|has| |#1| (-356)) (|has| (-1218 |#1| |#2| |#3|) (-880)))) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4331 . T) (-4332 . T) (-4334 . T))
+((-1536 (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1143)) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1536 (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1536 (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))))) (-1536 (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasCategory| (-549) (QUOTE (-1079))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-356))))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1143)) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3846) (LIST (|devaluate| |#1|) (QUOTE (-1143)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3893) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1143))))) (|HasSignature| |#1| (LIST (QUOTE -2272) (LIST (LIST (QUOTE -621) (QUOTE (-1143))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-534))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1536 (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-796))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-143)))))
+(-1191 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1185 R S)
+(-1192 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-819))))
-(-1186 S)
+((|HasCategory| |#1| (QUOTE (-821))))
+(-1193 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (QUOTE (-1063))))
-(-1187 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1067))))
+(-1194 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1188 R Q UP)
+(-1195 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1189 R UP)
+(-1196 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1190 R UP)
+(-1197 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1191 R U)
+(-1198 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1192 |x| R)
+(-1199 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4331 "*") |has| |#2| (-169)) (-4322 |has| |#2| (-539)) (-4325 |has| |#2| (-354)) (-4327 |has| |#2| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-539)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (-1530 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (-1530 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| |#2| (QUOTE (-225))) (|HasAttribute| |#2| (QUOTE -4327)) (|HasCategory| |#2| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1530 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143)))))
-(-1193 R PR S PS)
+(((-4339 "*") |has| |#2| (-170)) (-4330 |has| |#2| (-541)) (-4333 |has| |#2| (-356)) (-4335 |has| |#2| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-541)))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-372)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-372))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -857) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -857) (QUOTE (-549))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-372)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -594) (LIST (QUOTE -863) (QUOTE (-549)))))) (-12 (|HasCategory| (-1048) (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -617) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (-1536 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (-1536 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE -4335)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (-1536 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-143)))))
+(-1200 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1194 S R)
+(-1201 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1112))))
-(-1195 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-541))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1118))))
+(-1202 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4325 |has| |#1| (-354)) (-4327 |has| |#1| (-6 -4327)) (-4324 . T) (-4323 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4333 |has| |#1| (-356)) (-4335 |has| |#1| (-6 -4335)) (-4332 . T) (-4331 . T) (-4334 . T))
NIL
-(-1196 S |Coef| |Expon|)
+(-1203 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1075))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3838) (LIST (|devaluate| |#2|) (QUOTE (-1136))))))
-(-1197 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3846) (LIST (|devaluate| |#2|) (QUOTE (-1143))))))
+(-1204 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1198 RC P)
+(-1205 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1199 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1206 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1200 |Coef|)
+(-1207 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1201 S |Coef| ULS)
+(-1208 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1202 |Coef| ULS)
+(-1209 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1203 |Coef| ULS)
+(-1210 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|)))) (|HasCategory| (-398 (-547)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasSignature| |#1| (LIST (QUOTE -3838) (LIST (|devaluate| |#1|) (QUOTE (-1136)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3694) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1136))))) (|HasSignature| |#1| (LIST (QUOTE -2267) (LIST (LIST (QUOTE -619) (QUOTE (-1136))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))))
-(-1204 |Coef| |var| |cen|)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-549)) (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -3846) (LIST (|devaluate| |#1|) (QUOTE (-1143)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3893) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1143))))) (|HasSignature| |#1| (LIST (QUOTE -2272) (LIST (LIST (QUOTE -621) (QUOTE (-1143))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))))
+(-1211 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4327 |has| |#1| (-354)) (-4321 |has| |#1| (-354)) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|)))) (|HasCategory| (-398 (-547)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-1530 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasSignature| |#1| (LIST (QUOTE -3838) (LIST (|devaluate| |#1|) (QUOTE (-1136)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3694) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1136))))) (|HasSignature| |#1| (LIST (QUOTE -2267) (LIST (LIST (QUOTE -619) (QUOTE (-1136))) (|devaluate| |#1|)))))))
-(-1205 R FE |var| |cen|)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4335 |has| |#1| (-356)) (-4329 |has| |#1| (-356)) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#1| (QUOTE (-170))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-549)) (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-1536 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-541)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -3846) (LIST (|devaluate| |#1|) (QUOTE (-1143)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-549)))))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3893) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1143))))) (|HasSignature| |#1| (LIST (QUOTE -2272) (LIST (LIST (QUOTE -621) (QUOTE (-1143))) (|devaluate| |#1|)))))))
+(-1212 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4331 "*") |has| (-1204 |#2| |#3| |#4|) (-169)) (-4322 |has| (-1204 |#2| |#3| |#4|) (-539)) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| (-1204 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-1204 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1204 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1204 |#2| |#3| |#4|) (QUOTE (-169))) (|HasCategory| (-1204 |#2| |#3| |#4|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-1204 |#2| |#3| |#4|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-1204 |#2| |#3| |#4|) (QUOTE (-354))) (|HasCategory| (-1204 |#2| |#3| |#4|) (QUOTE (-442))) (-1530 (|HasCategory| (-1204 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-1204 |#2| |#3| |#4|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| (-1204 |#2| |#3| |#4|) (QUOTE (-539))))
-(-1206 A S)
+(((-4339 "*") |has| (-1211 |#2| |#3| |#4|) (-170)) (-4330 |has| (-1211 |#2| |#3| |#4|) (-541)) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| (-1211 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-1211 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1211 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1211 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1211 |#2| |#3| |#4|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-1211 |#2| |#3| |#4|) (LIST (QUOTE -1009) (QUOTE (-549)))) (|HasCategory| (-1211 |#2| |#3| |#4|) (QUOTE (-356))) (|HasCategory| (-1211 |#2| |#3| |#4|) (QUOTE (-444))) (-1536 (|HasCategory| (-1211 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| (-1211 |#2| |#3| |#4|) (LIST (QUOTE -1009) (LIST (QUOTE -400) (QUOTE (-549)))))) (|HasCategory| (-1211 |#2| |#3| |#4|) (QUOTE (-541))))
+(-1213 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4330)))
-(-1207 S)
+((|HasAttribute| |#1| (QUOTE -4338)))
+(-1214 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-1208 |Coef1| |Coef2| UTS1 UTS2)
+(-1215 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1209 S |Coef|)
+(-1216 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-1158))) (|HasSignature| |#2| (LIST (QUOTE -2267) (LIST (LIST (QUOTE -619) (QUOTE (-1136))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3694) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1136))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354))))
-(-1210 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-930))) (|HasCategory| |#2| (QUOTE (-1165))) (|HasSignature| |#2| (LIST (QUOTE -2272) (LIST (LIST (QUOTE -621) (QUOTE (-1143))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3893) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1143))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-356))))
+(-1217 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1211 |Coef| |var| |cen|)
+(-1218 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4331 "*") |has| |#1| (-169)) (-4322 |has| |#1| (-539)) (-4323 . T) (-4324 . T) (-4326 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (-1530 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1136)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|)))) (|HasCategory| (-745) (QUOTE (-1075))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasSignature| |#1| (LIST (QUOTE -3838) (LIST (|devaluate| |#1|) (QUOTE (-1136)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasCategory| |#1| (QUOTE (-354))) (-1530 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3694) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1136))))) (|HasSignature| |#1| (LIST (QUOTE -2267) (LIST (LIST (QUOTE -619) (QUOTE (-1136))) (|devaluate| |#1|)))))))
-(-1212 |Coef| UTS)
+(((-4339 "*") |has| |#1| (-170)) (-4330 |has| |#1| (-541)) (-4331 . T) (-4332 . T) (-4334 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-541))) (-1536 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-1143)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-747)) (|devaluate| |#1|)))) (|HasCategory| (-747) (QUOTE (-1079))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasSignature| |#1| (LIST (QUOTE -3846) (LIST (|devaluate| |#1|) (QUOTE (-1143)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-747))))) (|HasCategory| |#1| (QUOTE (-356))) (-1536 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-930))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -3893) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1143))))) (|HasSignature| |#1| (LIST (QUOTE -2272) (LIST (LIST (QUOTE -621) (QUOTE (-1143))) (|devaluate| |#1|)))))))
+(-1219 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1213 -1415 UP L UTS)
+(-1220 -1422 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-539))))
-(-1214)
+((|HasCategory| |#1| (QUOTE (-541))))
+(-1221)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
-((-2618 . T))
+((-2624 . T))
NIL
-(-1215 |sym|)
+(-1222 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1216 S R)
+(-1223 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1217 R)
+((|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-703))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1224 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4330 . T) (-4329 . T) (-2618 . T))
+((-4338 . T) (-4337 . T) (-2624 . T))
NIL
-(-1218 A B)
+(-1225 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1219 R)
+(-1226 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4330 . T) (-4329 . T))
-((-1530 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1530 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1530 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1220)
+((-4338 . T) (-4337 . T))
+((-1536 (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-1536 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-525)))) (-1536 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-703))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1227)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1221)
+(-1228)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1222)
+(-1229)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1223)
+(-1230)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1224)
+(-1231)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1225 A S)
+(-1232 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1226 S)
+(-1233 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4324 . T) (-4323 . T))
+((-4332 . T) (-4331 . T))
NIL
-(-1227 R)
+(-1234 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1228 K R UP -1415)
+(-1235 K R UP -1422)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1229)
+(-1236)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|Syntax|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|Syntax|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1230)
+(-1237)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|Syntax|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1231 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1238 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights")))
-((-4324 |has| |#1| (-169)) (-4323 |has| |#1| (-169)) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))))
-(-1232 R E V P)
+((-4332 |has| |#1| (-170)) (-4331 |has| |#1| (-170)) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))))
+(-1239 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4330 . T) (-4329 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-832)))))
-(-1233 R)
+((-4338 . T) (-4337 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-541))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-834)))))
+(-1240 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
-((-4323 . T) (-4324 . T) (-4326 . T))
+((-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1234 |vl| R)
+(-1241 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4326 . T) (-4322 |has| |#2| (-6 -4322)) (-4324 . T) (-4323 . T))
-((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4322)))
-(-1235 R |VarSet| XPOLY)
+((-4334 . T) (-4330 |has| |#2| (-6 -4330)) (-4332 . T) (-4331 . T))
+((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4330)))
+(-1242 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1236 |vl| R)
+(-1243 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4322 |has| |#2| (-6 -4322)) (-4324 . T) (-4323 . T) (-4326 . T))
+((-4330 |has| |#2| (-6 -4330)) (-4332 . T) (-4331 . T) (-4334 . T))
NIL
-(-1237 S -1415)
+(-1244 S -1422)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))))
-(-1238 -1415)
+((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))))
+(-1245 -1422)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4321 . T) (-4327 . T) (-4322 . T) ((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+((-4329 . T) (-4335 . T) (-4330 . T) ((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
-(-1239 |VarSet| R)
+(-1246 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4322 |has| |#2| (-6 -4322)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -692) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasAttribute| |#2| (QUOTE -4322)))
-(-1240 |vl| R)
+((-4330 |has| |#2| (-6 -4330)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -694) (LIST (QUOTE -400) (QUOTE (-549))))) (|HasAttribute| |#2| (QUOTE -4330)))
+(-1247 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4322 |has| |#2| (-6 -4322)) (-4324 . T) (-4323 . T) (-4326 . T))
+((-4330 |has| |#2| (-6 -4330)) (-4332 . T) (-4331 . T) (-4334 . T))
NIL
-(-1241 R)
+(-1248 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4322 |has| |#1| (-6 -4322)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#1| (QUOTE (-169))) (|HasAttribute| |#1| (QUOTE -4322)))
-(-1242 R E)
+((-4330 |has| |#1| (-6 -4330)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4330)))
+(-1249 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4326 . T) (-4327 |has| |#1| (-6 -4327)) (-4322 |has| |#1| (-6 -4322)) (-4324 . T) (-4323 . T))
-((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasAttribute| |#1| (QUOTE -4326)) (|HasAttribute| |#1| (QUOTE -4327)) (|HasAttribute| |#1| (QUOTE -4322)))
-(-1243 |VarSet| R)
+((-4334 . T) (-4335 |has| |#1| (-6 -4335)) (-4330 |has| |#1| (-6 -4330)) (-4332 . T) (-4331 . T))
+((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasAttribute| |#1| (QUOTE -4334)) (|HasAttribute| |#1| (QUOTE -4335)) (|HasAttribute| |#1| (QUOTE -4330)))
+(-1250 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4322 |has| |#2| (-6 -4322)) (-4324 . T) (-4323 . T) (-4326 . T))
-((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4322)))
-(-1244 A)
+((-4330 |has| |#2| (-6 -4330)) (-4332 . T) (-4331 . T) (-4334 . T))
+((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4330)))
+(-1251 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1245 R |ls| |ls2|)
+(-1252 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1246 R)
+(-1253 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1247 |p|)
+(-1254 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4331 "*") . T) (-4323 . T) (-4324 . T) (-4326 . T))
+(((-4339 "*") . T) (-4331 . T) (-4332 . T) (-4334 . T))
NIL
NIL
NIL
@@ -4936,4 +4964,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2257496 2257501 2257506 2257511) (-2 NIL 2257476 2257481 2257486 2257491) (-1 NIL 2257456 2257461 2257466 2257471) (0 NIL 2257436 2257441 2257446 2257451) (-1247 "ZMOD.spad" 2257245 2257258 2257374 2257431) (-1246 "ZLINDEP.spad" 2256289 2256300 2257235 2257240) (-1245 "ZDSOLVE.spad" 2246138 2246160 2256279 2256284) (-1244 "YSTREAM.spad" 2245631 2245642 2246128 2246133) (-1243 "XRPOLY.spad" 2244851 2244871 2245487 2245556) (-1242 "XPR.spad" 2242580 2242593 2244569 2244668) (-1241 "XPOLY.spad" 2242135 2242146 2242436 2242505) (-1240 "XPOLYC.spad" 2241452 2241468 2242061 2242130) (-1239 "XPBWPOLY.spad" 2239889 2239909 2241232 2241301) (-1238 "XF.spad" 2238350 2238365 2239791 2239884) (-1237 "XF.spad" 2236791 2236808 2238234 2238239) (-1236 "XFALG.spad" 2233815 2233831 2236717 2236786) (-1235 "XEXPPKG.spad" 2233066 2233092 2233805 2233810) (-1234 "XDPOLY.spad" 2232680 2232696 2232922 2232991) (-1233 "XALG.spad" 2232278 2232289 2232636 2232675) (-1232 "WUTSET.spad" 2228117 2228134 2231924 2231951) (-1231 "WP.spad" 2227131 2227175 2227975 2228042) (-1230 "WHILEAST.spad" 2226930 2226939 2227121 2227126) (-1229 "WHEREAST.spad" 2226603 2226612 2226920 2226925) (-1228 "WFFINTBS.spad" 2224166 2224188 2226593 2226598) (-1227 "WEIER.spad" 2222380 2222391 2224156 2224161) (-1226 "VSPACE.spad" 2222053 2222064 2222348 2222375) (-1225 "VSPACE.spad" 2221746 2221759 2222043 2222048) (-1224 "VOID.spad" 2221336 2221345 2221736 2221741) (-1223 "VIEW.spad" 2218958 2218967 2221326 2221331) (-1222 "VIEWDEF.spad" 2214155 2214164 2218948 2218953) (-1221 "VIEW3D.spad" 2197990 2197999 2214145 2214150) (-1220 "VIEW2D.spad" 2185727 2185736 2197980 2197985) (-1219 "VECTOR.spad" 2184402 2184413 2184653 2184680) (-1218 "VECTOR2.spad" 2183029 2183042 2184392 2184397) (-1217 "VECTCAT.spad" 2180917 2180928 2182985 2183024) (-1216 "VECTCAT.spad" 2178625 2178638 2180695 2180700) (-1215 "VARIABLE.spad" 2178405 2178420 2178615 2178620) (-1214 "UTYPE.spad" 2178039 2178048 2178385 2178400) (-1213 "UTSODETL.spad" 2177332 2177356 2177995 2178000) (-1212 "UTSODE.spad" 2175520 2175540 2177322 2177327) (-1211 "UTS.spad" 2170309 2170337 2173987 2174084) (-1210 "UTSCAT.spad" 2167760 2167776 2170207 2170304) (-1209 "UTSCAT.spad" 2164855 2164873 2167304 2167309) (-1208 "UTS2.spad" 2164448 2164483 2164845 2164850) (-1207 "URAGG.spad" 2159070 2159081 2164428 2164443) (-1206 "URAGG.spad" 2153666 2153679 2159026 2159031) (-1205 "UPXSSING.spad" 2151309 2151335 2152747 2152880) (-1204 "UPXS.spad" 2148336 2148364 2149441 2149590) (-1203 "UPXSCONS.spad" 2146093 2146113 2146468 2146617) (-1202 "UPXSCCA.spad" 2144551 2144571 2145939 2146088) (-1201 "UPXSCCA.spad" 2143151 2143173 2144541 2144546) (-1200 "UPXSCAT.spad" 2141732 2141748 2142997 2143146) (-1199 "UPXS2.spad" 2141273 2141326 2141722 2141727) (-1198 "UPSQFREE.spad" 2139685 2139699 2141263 2141268) (-1197 "UPSCAT.spad" 2137278 2137302 2139583 2139680) (-1196 "UPSCAT.spad" 2134577 2134603 2136884 2136889) (-1195 "UPOLYC.spad" 2129555 2129566 2134419 2134572) (-1194 "UPOLYC.spad" 2124425 2124438 2129291 2129296) (-1193 "UPOLYC2.spad" 2123894 2123913 2124415 2124420) (-1192 "UP.spad" 2120936 2120951 2121444 2121597) (-1191 "UPMP.spad" 2119826 2119839 2120926 2120931) (-1190 "UPDIVP.spad" 2119389 2119403 2119816 2119821) (-1189 "UPDECOMP.spad" 2117626 2117640 2119379 2119384) (-1188 "UPCDEN.spad" 2116833 2116849 2117616 2117621) (-1187 "UP2.spad" 2116195 2116216 2116823 2116828) (-1186 "UNISEG.spad" 2115548 2115559 2116114 2116119) (-1185 "UNISEG2.spad" 2115041 2115054 2115504 2115509) (-1184 "UNIFACT.spad" 2114142 2114154 2115031 2115036) (-1183 "ULS.spad" 2104696 2104724 2105789 2106218) (-1182 "ULSCONS.spad" 2098735 2098755 2099107 2099256) (-1181 "ULSCCAT.spad" 2096332 2096352 2098555 2098730) (-1180 "ULSCCAT.spad" 2094063 2094085 2096288 2096293) (-1179 "ULSCAT.spad" 2092279 2092295 2093909 2094058) (-1178 "ULS2.spad" 2091791 2091844 2092269 2092274) (-1177 "UFD.spad" 2090856 2090865 2091717 2091786) (-1176 "UFD.spad" 2089983 2089994 2090846 2090851) (-1175 "UDVO.spad" 2088830 2088839 2089973 2089978) (-1174 "UDPO.spad" 2086257 2086268 2088786 2088791) (-1173 "TYPE.spad" 2086179 2086188 2086237 2086252) (-1172 "TYPEAST.spad" 2086012 2086021 2086169 2086174) (-1171 "TWOFACT.spad" 2084662 2084677 2086002 2086007) (-1170 "TUPLE.spad" 2084048 2084059 2084561 2084566) (-1169 "TUBETOOL.spad" 2080885 2080894 2084038 2084043) (-1168 "TUBE.spad" 2079526 2079543 2080875 2080880) (-1167 "TS.spad" 2078115 2078131 2079091 2079188) (-1166 "TSETCAT.spad" 2065230 2065247 2078071 2078110) (-1165 "TSETCAT.spad" 2052343 2052362 2065186 2065191) (-1164 "TRMANIP.spad" 2046709 2046726 2052049 2052054) (-1163 "TRIMAT.spad" 2045668 2045693 2046699 2046704) (-1162 "TRIGMNIP.spad" 2044185 2044202 2045658 2045663) (-1161 "TRIGCAT.spad" 2043697 2043706 2044175 2044180) (-1160 "TRIGCAT.spad" 2043207 2043218 2043687 2043692) (-1159 "TREE.spad" 2041778 2041789 2042814 2042841) (-1158 "TRANFUN.spad" 2041609 2041618 2041768 2041773) (-1157 "TRANFUN.spad" 2041438 2041449 2041599 2041604) (-1156 "TOPSP.spad" 2041112 2041121 2041428 2041433) (-1155 "TOOLSIGN.spad" 2040775 2040786 2041102 2041107) (-1154 "TEXTFILE.spad" 2039332 2039341 2040765 2040770) (-1153 "TEX.spad" 2036349 2036358 2039322 2039327) (-1152 "TEX1.spad" 2035905 2035916 2036339 2036344) (-1151 "TEMUTL.spad" 2035460 2035469 2035895 2035900) (-1150 "TBCMPPK.spad" 2033553 2033576 2035450 2035455) (-1149 "TBAGG.spad" 2032577 2032600 2033521 2033548) (-1148 "TBAGG.spad" 2031621 2031646 2032567 2032572) (-1147 "TANEXP.spad" 2030997 2031008 2031611 2031616) (-1146 "TABLE.spad" 2029408 2029431 2029678 2029705) (-1145 "TABLEAU.spad" 2028889 2028900 2029398 2029403) (-1144 "TABLBUMP.spad" 2025672 2025683 2028879 2028884) (-1143 "SYSTEM.spad" 2024946 2024955 2025662 2025667) (-1142 "SYSSOLP.spad" 2022419 2022430 2024936 2024941) (-1141 "SYNTAX.spad" 2018611 2018620 2022409 2022414) (-1140 "SYMTAB.spad" 2016667 2016676 2018601 2018606) (-1139 "SYMS.spad" 2012652 2012661 2016657 2016662) (-1138 "SYMPOLY.spad" 2011659 2011670 2011741 2011868) (-1137 "SYMFUNC.spad" 2011134 2011145 2011649 2011654) (-1136 "SYMBOL.spad" 2008470 2008479 2011124 2011129) (-1135 "SWITCH.spad" 2005227 2005236 2008460 2008465) (-1134 "SUTS.spad" 2002126 2002154 2003694 2003791) (-1133 "SUPXS.spad" 1999140 1999168 2000258 2000407) (-1132 "SUP.spad" 1995909 1995920 1996690 1996843) (-1131 "SUPFRACF.spad" 1995014 1995032 1995899 1995904) (-1130 "SUP2.spad" 1994404 1994417 1995004 1995009) (-1129 "SUMRF.spad" 1993370 1993381 1994394 1994399) (-1128 "SUMFS.spad" 1993003 1993020 1993360 1993365) (-1127 "SULS.spad" 1983544 1983572 1984650 1985079) (-1126 "SUCH.spad" 1983224 1983239 1983534 1983539) (-1125 "SUBSPACE.spad" 1975231 1975246 1983214 1983219) (-1124 "SUBRESP.spad" 1974391 1974405 1975187 1975192) (-1123 "STTF.spad" 1970490 1970506 1974381 1974386) (-1122 "STTFNC.spad" 1966958 1966974 1970480 1970485) (-1121 "STTAYLOR.spad" 1959356 1959367 1966839 1966844) (-1120 "STRTBL.spad" 1957861 1957878 1958010 1958037) (-1119 "STRING.spad" 1957270 1957279 1957284 1957311) (-1118 "STRICAT.spad" 1957046 1957055 1957226 1957265) (-1117 "STREAM.spad" 1953814 1953825 1956571 1956586) (-1116 "STREAM3.spad" 1953359 1953374 1953804 1953809) (-1115 "STREAM2.spad" 1952427 1952440 1953349 1953354) (-1114 "STREAM1.spad" 1952131 1952142 1952417 1952422) (-1113 "STINPROD.spad" 1951037 1951053 1952121 1952126) (-1112 "STEP.spad" 1950238 1950247 1951027 1951032) (-1111 "STBL.spad" 1948764 1948792 1948931 1948946) (-1110 "STAGG.spad" 1947829 1947840 1948744 1948759) (-1109 "STAGG.spad" 1946902 1946915 1947819 1947824) (-1108 "STACK.spad" 1946253 1946264 1946509 1946536) (-1107 "SREGSET.spad" 1943957 1943974 1945899 1945926) (-1106 "SRDCMPK.spad" 1942502 1942522 1943947 1943952) (-1105 "SRAGG.spad" 1937587 1937596 1942458 1942497) (-1104 "SRAGG.spad" 1932704 1932715 1937577 1937582) (-1103 "SQMATRIX.spad" 1930328 1930346 1931236 1931323) (-1102 "SPLTREE.spad" 1924880 1924893 1929764 1929791) (-1101 "SPLNODE.spad" 1921468 1921481 1924870 1924875) (-1100 "SPFCAT.spad" 1920245 1920254 1921458 1921463) (-1099 "SPECOUT.spad" 1918795 1918804 1920235 1920240) (-1098 "SPADXPT.spad" 1917411 1917420 1918775 1918790) (-1097 "spad-parser.spad" 1916876 1916885 1917401 1917406) (-1096 "SPACEC.spad" 1900889 1900900 1916866 1916871) (-1095 "SPACE3.spad" 1900665 1900676 1900879 1900884) (-1094 "SORTPAK.spad" 1900210 1900223 1900621 1900626) (-1093 "SOLVETRA.spad" 1897967 1897978 1900200 1900205) (-1092 "SOLVESER.spad" 1896487 1896498 1897957 1897962) (-1091 "SOLVERAD.spad" 1892497 1892508 1896477 1896482) (-1090 "SOLVEFOR.spad" 1890917 1890935 1892487 1892492) (-1089 "SNTSCAT.spad" 1890505 1890522 1890873 1890912) (-1088 "SMTS.spad" 1888765 1888791 1890070 1890167) (-1087 "SMP.spad" 1886204 1886224 1886594 1886721) (-1086 "SMITH.spad" 1885047 1885072 1886194 1886199) (-1085 "SMATCAT.spad" 1883145 1883175 1884979 1885042) (-1084 "SMATCAT.spad" 1881187 1881219 1883023 1883028) (-1083 "SKAGG.spad" 1880136 1880147 1881143 1881182) (-1082 "SINT.spad" 1878444 1878453 1880002 1880131) (-1081 "SIMPAN.spad" 1878172 1878181 1878434 1878439) (-1080 "SIG.spad" 1877500 1877509 1878162 1878167) (-1079 "SIGNRF.spad" 1876608 1876619 1877490 1877495) (-1078 "SIGNEF.spad" 1875877 1875894 1876598 1876603) (-1077 "SHP.spad" 1873795 1873810 1875833 1875838) (-1076 "SHDP.spad" 1864780 1864807 1865289 1865420) (-1075 "SGROUP.spad" 1864388 1864397 1864770 1864775) (-1074 "SGROUP.spad" 1863994 1864005 1864378 1864383) (-1073 "SGCF.spad" 1856875 1856884 1863984 1863989) (-1072 "SFRTCAT.spad" 1855791 1855808 1856831 1856870) (-1071 "SFRGCD.spad" 1854854 1854874 1855781 1855786) (-1070 "SFQCMPK.spad" 1849491 1849511 1854844 1854849) (-1069 "SFORT.spad" 1848926 1848940 1849481 1849486) (-1068 "SEXOF.spad" 1848769 1848809 1848916 1848921) (-1067 "SEX.spad" 1848661 1848670 1848759 1848764) (-1066 "SEXCAT.spad" 1845765 1845805 1848651 1848656) (-1065 "SET.spad" 1844065 1844076 1845186 1845225) (-1064 "SETMN.spad" 1842499 1842516 1844055 1844060) (-1063 "SETCAT.spad" 1841984 1841993 1842489 1842494) (-1062 "SETCAT.spad" 1841467 1841478 1841974 1841979) (-1061 "SETAGG.spad" 1837976 1837987 1841435 1841462) (-1060 "SETAGG.spad" 1834505 1834518 1837966 1837971) (-1059 "SEGXCAT.spad" 1833617 1833630 1834485 1834500) (-1058 "SEG.spad" 1833430 1833441 1833536 1833541) (-1057 "SEGCAT.spad" 1832249 1832260 1833410 1833425) (-1056 "SEGBIND.spad" 1831321 1831332 1832204 1832209) (-1055 "SEGBIND2.spad" 1831017 1831030 1831311 1831316) (-1054 "SEGAST.spad" 1830732 1830741 1831007 1831012) (-1053 "SEG2.spad" 1830157 1830170 1830688 1830693) (-1052 "SDVAR.spad" 1829433 1829444 1830147 1830152) (-1051 "SDPOL.spad" 1826823 1826834 1827114 1827241) (-1050 "SCPKG.spad" 1824902 1824913 1826813 1826818) (-1049 "SCOPE.spad" 1824047 1824056 1824892 1824897) (-1048 "SCACHE.spad" 1822729 1822740 1824037 1824042) (-1047 "SASTCAT.spad" 1822638 1822647 1822719 1822724) (-1046 "SASTCAT.spad" 1822545 1822556 1822628 1822633) (-1045 "SAOS.spad" 1822417 1822426 1822535 1822540) (-1044 "SAERFFC.spad" 1822130 1822150 1822407 1822412) (-1043 "SAE.spad" 1820305 1820321 1820916 1821051) (-1042 "SAEFACT.spad" 1820006 1820026 1820295 1820300) (-1041 "RURPK.spad" 1817647 1817663 1819996 1820001) (-1040 "RULESET.spad" 1817088 1817112 1817637 1817642) (-1039 "RULE.spad" 1815292 1815316 1817078 1817083) (-1038 "RULECOLD.spad" 1815144 1815157 1815282 1815287) (-1037 "RSETGCD.spad" 1811522 1811542 1815134 1815139) (-1036 "RSETCAT.spad" 1801294 1801311 1811478 1811517) (-1035 "RSETCAT.spad" 1791098 1791117 1801284 1801289) (-1034 "RSDCMPK.spad" 1789550 1789570 1791088 1791093) (-1033 "RRCC.spad" 1787934 1787964 1789540 1789545) (-1032 "RRCC.spad" 1786316 1786348 1787924 1787929) (-1031 "RPTAST.spad" 1786020 1786029 1786306 1786311) (-1030 "RPOLCAT.spad" 1765380 1765395 1785888 1786015) (-1029 "RPOLCAT.spad" 1744454 1744471 1764964 1764969) (-1028 "ROUTINE.spad" 1740317 1740326 1743101 1743128) (-1027 "ROMAN.spad" 1739549 1739558 1740183 1740312) (-1026 "ROIRC.spad" 1738629 1738661 1739539 1739544) (-1025 "RNS.spad" 1737532 1737541 1738531 1738624) (-1024 "RNS.spad" 1736521 1736532 1737522 1737527) (-1023 "RNG.spad" 1736256 1736265 1736511 1736516) (-1022 "RMODULE.spad" 1735894 1735905 1736246 1736251) (-1021 "RMCAT2.spad" 1735302 1735359 1735884 1735889) (-1020 "RMATRIX.spad" 1733981 1734000 1734469 1734508) (-1019 "RMATCAT.spad" 1729502 1729533 1733925 1733976) (-1018 "RMATCAT.spad" 1724925 1724958 1729350 1729355) (-1017 "RINTERP.spad" 1724813 1724833 1724915 1724920) (-1016 "RING.spad" 1724170 1724179 1724793 1724808) (-1015 "RING.spad" 1723535 1723546 1724160 1724165) (-1014 "RIDIST.spad" 1722919 1722928 1723525 1723530) (-1013 "RGCHAIN.spad" 1721498 1721514 1722404 1722431) (-1012 "RF.spad" 1719112 1719123 1721488 1721493) (-1011 "RFFACTOR.spad" 1718574 1718585 1719102 1719107) (-1010 "RFFACT.spad" 1718309 1718321 1718564 1718569) (-1009 "RFDIST.spad" 1717297 1717306 1718299 1718304) (-1008 "RETSOL.spad" 1716714 1716727 1717287 1717292) (-1007 "RETRACT.spad" 1716063 1716074 1716704 1716709) (-1006 "RETRACT.spad" 1715410 1715423 1716053 1716058) (-1005 "RETAST.spad" 1715223 1715232 1715400 1715405) (-1004 "RESULT.spad" 1713283 1713292 1713870 1713897) (-1003 "RESRING.spad" 1712630 1712677 1713221 1713278) (-1002 "RESLATC.spad" 1711954 1711965 1712620 1712625) (-1001 "REPSQ.spad" 1711683 1711694 1711944 1711949) (-1000 "REP.spad" 1709235 1709244 1711673 1711678) (-999 "REPDB.spad" 1708941 1708951 1709225 1709230) (-998 "REP2.spad" 1698514 1698524 1708783 1708788) (-997 "REP1.spad" 1692505 1692515 1698464 1698469) (-996 "REGSET.spad" 1690303 1690319 1692151 1692178) (-995 "REF.spad" 1689633 1689643 1690258 1690263) (-994 "REDORDER.spad" 1688810 1688826 1689623 1689628) (-993 "RECLOS.spad" 1687594 1687613 1688297 1688390) (-992 "REALSOLV.spad" 1686727 1686735 1687584 1687589) (-991 "REAL.spad" 1686600 1686608 1686717 1686722) (-990 "REAL0Q.spad" 1683883 1683897 1686590 1686595) (-989 "REAL0.spad" 1680712 1680726 1683873 1683878) (-988 "RDUCEAST.spad" 1680436 1680444 1680702 1680707) (-987 "RDIV.spad" 1680088 1680112 1680426 1680431) (-986 "RDIST.spad" 1679652 1679662 1680078 1680083) (-985 "RDETRS.spad" 1678449 1678466 1679642 1679647) (-984 "RDETR.spad" 1676557 1676574 1678439 1678444) (-983 "RDEEFS.spad" 1675631 1675647 1676547 1676552) (-982 "RDEEF.spad" 1674628 1674644 1675621 1675626) (-981 "RCFIELD.spad" 1671815 1671823 1674530 1674623) (-980 "RCFIELD.spad" 1669088 1669098 1671805 1671810) (-979 "RCAGG.spad" 1666991 1667001 1669068 1669083) (-978 "RCAGG.spad" 1664831 1664843 1666910 1666915) (-977 "RATRET.spad" 1664192 1664202 1664821 1664826) (-976 "RATFACT.spad" 1663885 1663896 1664182 1664187) (-975 "RANDSRC.spad" 1663205 1663213 1663875 1663880) (-974 "RADUTIL.spad" 1662960 1662968 1663195 1663200) (-973 "RADIX.spad" 1659751 1659764 1661428 1661521) (-972 "RADFF.spad" 1658165 1658201 1658283 1658439) (-971 "RADCAT.spad" 1657759 1657767 1658155 1658160) (-970 "RADCAT.spad" 1657351 1657361 1657749 1657754) (-969 "QUEUE.spad" 1656694 1656704 1656958 1656985) (-968 "QUAT.spad" 1655276 1655286 1655618 1655683) (-967 "QUATCT2.spad" 1654895 1654913 1655266 1655271) (-966 "QUATCAT.spad" 1653060 1653070 1654825 1654890) (-965 "QUATCAT.spad" 1650976 1650988 1652743 1652748) (-964 "QUAGG.spad" 1649790 1649800 1650932 1650971) (-963 "QQUTAST.spad" 1649560 1649568 1649780 1649785) (-962 "QFORM.spad" 1649023 1649037 1649550 1649555) (-961 "QFCAT.spad" 1647714 1647724 1648913 1649018) (-960 "QFCAT.spad" 1646009 1646021 1647210 1647215) (-959 "QFCAT2.spad" 1645700 1645716 1645999 1646004) (-958 "QEQUAT.spad" 1645257 1645265 1645690 1645695) (-957 "QCMPACK.spad" 1640004 1640023 1645247 1645252) (-956 "QALGSET.spad" 1636079 1636111 1639918 1639923) (-955 "QALGSET2.spad" 1634075 1634093 1636069 1636074) (-954 "PWFFINTB.spad" 1631385 1631406 1634065 1634070) (-953 "PUSHVAR.spad" 1630714 1630733 1631375 1631380) (-952 "PTRANFN.spad" 1626840 1626850 1630704 1630709) (-951 "PTPACK.spad" 1623928 1623938 1626830 1626835) (-950 "PTFUNC2.spad" 1623749 1623763 1623918 1623923) (-949 "PTCAT.spad" 1622831 1622841 1623705 1623744) (-948 "PSQFR.spad" 1622138 1622162 1622821 1622826) (-947 "PSEUDLIN.spad" 1620996 1621006 1622128 1622133) (-946 "PSETPK.spad" 1606429 1606445 1620874 1620879) (-945 "PSETCAT.spad" 1600337 1600360 1606397 1606424) (-944 "PSETCAT.spad" 1594231 1594256 1600293 1600298) (-943 "PSCURVE.spad" 1593214 1593222 1594221 1594226) (-942 "PSCAT.spad" 1591981 1592010 1593112 1593209) (-941 "PSCAT.spad" 1590838 1590869 1591971 1591976) (-940 "PRTITION.spad" 1589681 1589689 1590828 1590833) (-939 "PRTDAST.spad" 1589401 1589409 1589671 1589676) (-938 "PRS.spad" 1578963 1578980 1589357 1589362) (-937 "PRQAGG.spad" 1578382 1578392 1578919 1578958) (-936 "PROPLOG.spad" 1577785 1577793 1578372 1578377) (-935 "PROPFRML.spad" 1575703 1575714 1577775 1577780) (-934 "PROPERTY.spad" 1575197 1575205 1575693 1575698) (-933 "PRODUCT.spad" 1572877 1572889 1573163 1573218) (-932 "PR.spad" 1571263 1571275 1571968 1572095) (-931 "PRINT.spad" 1571015 1571023 1571253 1571258) (-930 "PRIMES.spad" 1569266 1569276 1571005 1571010) (-929 "PRIMELT.spad" 1567247 1567261 1569256 1569261) (-928 "PRIMCAT.spad" 1566870 1566878 1567237 1567242) (-927 "PRIMARR.spad" 1565875 1565885 1566053 1566080) (-926 "PRIMARR2.spad" 1564598 1564610 1565865 1565870) (-925 "PREASSOC.spad" 1563970 1563982 1564588 1564593) (-924 "PPCURVE.spad" 1563107 1563115 1563960 1563965) (-923 "PORTNUM.spad" 1562882 1562890 1563097 1563102) (-922 "POLYROOT.spad" 1561654 1561676 1562838 1562843) (-921 "POLY.spad" 1558951 1558961 1559468 1559595) (-920 "POLYLIFT.spad" 1558212 1558235 1558941 1558946) (-919 "POLYCATQ.spad" 1556314 1556336 1558202 1558207) (-918 "POLYCAT.spad" 1549720 1549741 1556182 1556309) (-917 "POLYCAT.spad" 1542428 1542451 1548892 1548897) (-916 "POLY2UP.spad" 1541876 1541890 1542418 1542423) (-915 "POLY2.spad" 1541471 1541483 1541866 1541871) (-914 "POLUTIL.spad" 1540412 1540441 1541427 1541432) (-913 "POLTOPOL.spad" 1539160 1539175 1540402 1540407) (-912 "POINT.spad" 1537999 1538009 1538086 1538113) (-911 "PNTHEORY.spad" 1534665 1534673 1537989 1537994) (-910 "PMTOOLS.spad" 1533422 1533436 1534655 1534660) (-909 "PMSYM.spad" 1532967 1532977 1533412 1533417) (-908 "PMQFCAT.spad" 1532554 1532568 1532957 1532962) (-907 "PMPRED.spad" 1532023 1532037 1532544 1532549) (-906 "PMPREDFS.spad" 1531467 1531489 1532013 1532018) (-905 "PMPLCAT.spad" 1530537 1530555 1531399 1531404) (-904 "PMLSAGG.spad" 1530118 1530132 1530527 1530532) (-903 "PMKERNEL.spad" 1529685 1529697 1530108 1530113) (-902 "PMINS.spad" 1529261 1529271 1529675 1529680) (-901 "PMFS.spad" 1528834 1528852 1529251 1529256) (-900 "PMDOWN.spad" 1528120 1528134 1528824 1528829) (-899 "PMASS.spad" 1527132 1527140 1528110 1528115) (-898 "PMASSFS.spad" 1526101 1526117 1527122 1527127) (-897 "PLOTTOOL.spad" 1525881 1525889 1526091 1526096) (-896 "PLOT.spad" 1520712 1520720 1525871 1525876) (-895 "PLOT3D.spad" 1517132 1517140 1520702 1520707) (-894 "PLOT1.spad" 1516273 1516283 1517122 1517127) (-893 "PLEQN.spad" 1503489 1503516 1516263 1516268) (-892 "PINTERP.spad" 1503105 1503124 1503479 1503484) (-891 "PINTERPA.spad" 1502887 1502903 1503095 1503100) (-890 "PI.spad" 1502494 1502502 1502861 1502882) (-889 "PID.spad" 1501450 1501458 1502420 1502489) (-888 "PICOERCE.spad" 1501107 1501117 1501440 1501445) (-887 "PGROEB.spad" 1499704 1499718 1501097 1501102) (-886 "PGE.spad" 1490957 1490965 1499694 1499699) (-885 "PGCD.spad" 1489839 1489856 1490947 1490952) (-884 "PFRPAC.spad" 1488982 1488992 1489829 1489834) (-883 "PFR.spad" 1485639 1485649 1488884 1488977) (-882 "PFOTOOLS.spad" 1484897 1484913 1485629 1485634) (-881 "PFOQ.spad" 1484267 1484285 1484887 1484892) (-880 "PFO.spad" 1483686 1483713 1484257 1484262) (-879 "PF.spad" 1483260 1483272 1483491 1483584) (-878 "PFECAT.spad" 1480926 1480934 1483186 1483255) (-877 "PFECAT.spad" 1478620 1478630 1480882 1480887) (-876 "PFBRU.spad" 1476490 1476502 1478610 1478615) (-875 "PFBR.spad" 1474028 1474051 1476480 1476485) (-874 "PERM.spad" 1469709 1469719 1473858 1473873) (-873 "PERMGRP.spad" 1464445 1464455 1469699 1469704) (-872 "PERMCAT.spad" 1462997 1463007 1464425 1464440) (-871 "PERMAN.spad" 1461529 1461543 1462987 1462992) (-870 "PENDTREE.spad" 1460802 1460812 1461158 1461163) (-869 "PDRING.spad" 1459293 1459303 1460782 1460797) (-868 "PDRING.spad" 1457792 1457804 1459283 1459288) (-867 "PDEPROB.spad" 1456749 1456757 1457782 1457787) (-866 "PDEPACK.spad" 1450751 1450759 1456739 1456744) (-865 "PDECOMP.spad" 1450213 1450230 1450741 1450746) (-864 "PDECAT.spad" 1448567 1448575 1450203 1450208) (-863 "PCOMP.spad" 1448418 1448431 1448557 1448562) (-862 "PBWLB.spad" 1447000 1447017 1448408 1448413) (-861 "PATTERN.spad" 1441431 1441441 1446990 1446995) (-860 "PATTERN2.spad" 1441167 1441179 1441421 1441426) (-859 "PATTERN1.spad" 1439469 1439485 1441157 1441162) (-858 "PATRES.spad" 1437016 1437028 1439459 1439464) (-857 "PATRES2.spad" 1436678 1436692 1437006 1437011) (-856 "PATMATCH.spad" 1434835 1434866 1436386 1436391) (-855 "PATMAB.spad" 1434260 1434270 1434825 1434830) (-854 "PATLRES.spad" 1433344 1433358 1434250 1434255) (-853 "PATAB.spad" 1433108 1433118 1433334 1433339) (-852 "PARTPERM.spad" 1430470 1430478 1433098 1433103) (-851 "PARSURF.spad" 1429898 1429926 1430460 1430465) (-850 "PARSU2.spad" 1429693 1429709 1429888 1429893) (-849 "script-parser.spad" 1429213 1429221 1429683 1429688) (-848 "PARSCURV.spad" 1428641 1428669 1429203 1429208) (-847 "PARSC2.spad" 1428430 1428446 1428631 1428636) (-846 "PARPCURV.spad" 1427888 1427916 1428420 1428425) (-845 "PARPC2.spad" 1427677 1427693 1427878 1427883) (-844 "PAN2EXPR.spad" 1427089 1427097 1427667 1427672) (-843 "PALETTE.spad" 1426059 1426067 1427079 1427084) (-842 "PAIR.spad" 1425042 1425055 1425647 1425652) (-841 "PADICRC.spad" 1422373 1422391 1423548 1423641) (-840 "PADICRAT.spad" 1420389 1420401 1420610 1420703) (-839 "PADIC.spad" 1420084 1420096 1420315 1420384) (-838 "PADICCT.spad" 1418625 1418637 1420010 1420079) (-837 "PADEPAC.spad" 1417304 1417323 1418615 1418620) (-836 "PADE.spad" 1416044 1416060 1417294 1417299) (-835 "OWP.spad" 1415028 1415058 1415902 1415969) (-834 "OVAR.spad" 1414809 1414832 1415018 1415023) (-833 "OUT.spad" 1413893 1413901 1414799 1414804) (-832 "OUTFORM.spad" 1403307 1403315 1413883 1413888) (-831 "OUTBCON.spad" 1402586 1402594 1403297 1403302) (-830 "OUTBCON.spad" 1401863 1401873 1402576 1402581) (-829 "OSI.spad" 1401338 1401346 1401853 1401858) (-828 "OSGROUP.spad" 1401256 1401264 1401328 1401333) (-827 "ORTHPOL.spad" 1399717 1399727 1401173 1401178) (-826 "OREUP.spad" 1399075 1399103 1399397 1399436) (-825 "ORESUP.spad" 1398374 1398398 1398755 1398794) (-824 "OREPCTO.spad" 1396193 1396205 1398294 1398299) (-823 "OREPCAT.spad" 1390250 1390260 1396149 1396188) (-822 "OREPCAT.spad" 1384197 1384209 1390098 1390103) (-821 "ORDSET.spad" 1383363 1383371 1384187 1384192) (-820 "ORDSET.spad" 1382527 1382537 1383353 1383358) (-819 "ORDRING.spad" 1381917 1381925 1382507 1382522) (-818 "ORDRING.spad" 1381315 1381325 1381907 1381912) (-817 "ORDMON.spad" 1381170 1381178 1381305 1381310) (-816 "ORDFUNS.spad" 1380296 1380312 1381160 1381165) (-815 "ORDFIN.spad" 1380230 1380238 1380286 1380291) (-814 "ORDCOMP.spad" 1378695 1378705 1379777 1379806) (-813 "ORDCOMP2.spad" 1377980 1377992 1378685 1378690) (-812 "OPTPROB.spad" 1376560 1376568 1377970 1377975) (-811 "OPTPACK.spad" 1368945 1368953 1376550 1376555) (-810 "OPTCAT.spad" 1366620 1366628 1368935 1368940) (-809 "OPQUERY.spad" 1366169 1366177 1366610 1366615) (-808 "OP.spad" 1365911 1365921 1365991 1366058) (-807 "ONECOMP.spad" 1364656 1364666 1365458 1365487) (-806 "ONECOMP2.spad" 1364074 1364086 1364646 1364651) (-805 "OMSERVER.spad" 1363076 1363084 1364064 1364069) (-804 "OMSAGG.spad" 1362852 1362862 1363020 1363071) (-803 "OMPKG.spad" 1361464 1361472 1362842 1362847) (-802 "OM.spad" 1360429 1360437 1361454 1361459) (-801 "OMLO.spad" 1359854 1359866 1360315 1360354) (-800 "OMEXPR.spad" 1359688 1359698 1359844 1359849) (-799 "OMERR.spad" 1359231 1359239 1359678 1359683) (-798 "OMERRK.spad" 1358265 1358273 1359221 1359226) (-797 "OMENC.spad" 1357609 1357617 1358255 1358260) (-796 "OMDEV.spad" 1351898 1351906 1357599 1357604) (-795 "OMCONN.spad" 1351307 1351315 1351888 1351893) (-794 "OINTDOM.spad" 1351070 1351078 1351233 1351302) (-793 "OFMONOID.spad" 1347257 1347267 1351060 1351065) (-792 "ODVAR.spad" 1346518 1346528 1347247 1347252) (-791 "ODR.spad" 1345966 1345992 1346330 1346479) (-790 "ODPOL.spad" 1343312 1343322 1343652 1343779) (-789 "ODP.spad" 1334433 1334453 1334806 1334937) (-788 "ODETOOLS.spad" 1333016 1333035 1334423 1334428) (-787 "ODESYS.spad" 1330666 1330683 1333006 1333011) (-786 "ODERTRIC.spad" 1326607 1326624 1330623 1330628) (-785 "ODERED.spad" 1325994 1326018 1326597 1326602) (-784 "ODERAT.spad" 1323545 1323562 1325984 1325989) (-783 "ODEPRRIC.spad" 1320436 1320458 1323535 1323540) (-782 "ODEPROB.spad" 1319635 1319643 1320426 1320431) (-781 "ODEPRIM.spad" 1316909 1316931 1319625 1319630) (-780 "ODEPAL.spad" 1316285 1316309 1316899 1316904) (-779 "ODEPACK.spad" 1302887 1302895 1316275 1316280) (-778 "ODEINT.spad" 1302318 1302334 1302877 1302882) (-777 "ODEIFTBL.spad" 1299713 1299721 1302308 1302313) (-776 "ODEEF.spad" 1295080 1295096 1299703 1299708) (-775 "ODECONST.spad" 1294599 1294617 1295070 1295075) (-774 "ODECAT.spad" 1293195 1293203 1294589 1294594) (-773 "OCT.spad" 1291333 1291343 1292049 1292088) (-772 "OCTCT2.spad" 1290977 1290998 1291323 1291328) (-771 "OC.spad" 1288751 1288761 1290933 1290972) (-770 "OC.spad" 1286250 1286262 1288434 1288439) (-769 "OCAMON.spad" 1286098 1286106 1286240 1286245) (-768 "OASGP.spad" 1285913 1285921 1286088 1286093) (-767 "OAMONS.spad" 1285433 1285441 1285903 1285908) (-766 "OAMON.spad" 1285294 1285302 1285423 1285428) (-765 "OAGROUP.spad" 1285156 1285164 1285284 1285289) (-764 "NUMTUBE.spad" 1284743 1284759 1285146 1285151) (-763 "NUMQUAD.spad" 1272605 1272613 1284733 1284738) (-762 "NUMODE.spad" 1263741 1263749 1272595 1272600) (-761 "NUMINT.spad" 1261299 1261307 1263731 1263736) (-760 "NUMFMT.spad" 1260139 1260147 1261289 1261294) (-759 "NUMERIC.spad" 1252211 1252221 1259944 1259949) (-758 "NTSCAT.spad" 1250701 1250717 1252167 1252206) (-757 "NTPOLFN.spad" 1250246 1250256 1250618 1250623) (-756 "NSUP.spad" 1243256 1243266 1247796 1247949) (-755 "NSUP2.spad" 1242648 1242660 1243246 1243251) (-754 "NSMP.spad" 1238843 1238862 1239151 1239278) (-753 "NREP.spad" 1237215 1237229 1238833 1238838) (-752 "NPCOEF.spad" 1236461 1236481 1237205 1237210) (-751 "NORMRETR.spad" 1236059 1236098 1236451 1236456) (-750 "NORMPK.spad" 1233961 1233980 1236049 1236054) (-749 "NORMMA.spad" 1233649 1233675 1233951 1233956) (-748 "NONE.spad" 1233390 1233398 1233639 1233644) (-747 "NONE1.spad" 1233066 1233076 1233380 1233385) (-746 "NODE1.spad" 1232535 1232551 1233056 1233061) (-745 "NNI.spad" 1231422 1231430 1232509 1232530) (-744 "NLINSOL.spad" 1230044 1230054 1231412 1231417) (-743 "NIPROB.spad" 1228527 1228535 1230034 1230039) (-742 "NFINTBAS.spad" 1225987 1226004 1228517 1228522) (-741 "NCODIV.spad" 1224185 1224201 1225977 1225982) (-740 "NCNTFRAC.spad" 1223827 1223841 1224175 1224180) (-739 "NCEP.spad" 1221987 1222001 1223817 1223822) (-738 "NASRING.spad" 1221583 1221591 1221977 1221982) (-737 "NASRING.spad" 1221177 1221187 1221573 1221578) (-736 "NARNG.spad" 1220521 1220529 1221167 1221172) (-735 "NARNG.spad" 1219863 1219873 1220511 1220516) (-734 "NAGSP.spad" 1218936 1218944 1219853 1219858) (-733 "NAGS.spad" 1208461 1208469 1218926 1218931) (-732 "NAGF07.spad" 1206854 1206862 1208451 1208456) (-731 "NAGF04.spad" 1201086 1201094 1206844 1206849) (-730 "NAGF02.spad" 1194895 1194903 1201076 1201081) (-729 "NAGF01.spad" 1190498 1190506 1194885 1194890) (-728 "NAGE04.spad" 1183958 1183966 1190488 1190493) (-727 "NAGE02.spad" 1174300 1174308 1183948 1183953) (-726 "NAGE01.spad" 1170184 1170192 1174290 1174295) (-725 "NAGD03.spad" 1168104 1168112 1170174 1170179) (-724 "NAGD02.spad" 1160635 1160643 1168094 1168099) (-723 "NAGD01.spad" 1154748 1154756 1160625 1160630) (-722 "NAGC06.spad" 1150535 1150543 1154738 1154743) (-721 "NAGC05.spad" 1149004 1149012 1150525 1150530) (-720 "NAGC02.spad" 1148259 1148267 1148994 1148999) (-719 "NAALG.spad" 1147794 1147804 1148227 1148254) (-718 "NAALG.spad" 1147349 1147361 1147784 1147789) (-717 "MULTSQFR.spad" 1144307 1144324 1147339 1147344) (-716 "MULTFACT.spad" 1143690 1143707 1144297 1144302) (-715 "MTSCAT.spad" 1141724 1141745 1143588 1143685) (-714 "MTHING.spad" 1141381 1141391 1141714 1141719) (-713 "MSYSCMD.spad" 1140815 1140823 1141371 1141376) (-712 "MSET.spad" 1138757 1138767 1140521 1140560) (-711 "MSETAGG.spad" 1138590 1138600 1138713 1138752) (-710 "MRING.spad" 1135561 1135573 1138298 1138365) (-709 "MRF2.spad" 1135129 1135143 1135551 1135556) (-708 "MRATFAC.spad" 1134675 1134692 1135119 1135124) (-707 "MPRFF.spad" 1132705 1132724 1134665 1134670) (-706 "MPOLY.spad" 1130140 1130155 1130499 1130626) (-705 "MPCPF.spad" 1129404 1129423 1130130 1130135) (-704 "MPC3.spad" 1129219 1129259 1129394 1129399) (-703 "MPC2.spad" 1128861 1128894 1129209 1129214) (-702 "MONOTOOL.spad" 1127196 1127213 1128851 1128856) (-701 "MONOID.spad" 1126515 1126523 1127186 1127191) (-700 "MONOID.spad" 1125832 1125842 1126505 1126510) (-699 "MONOGEN.spad" 1124578 1124591 1125692 1125827) (-698 "MONOGEN.spad" 1123346 1123361 1124462 1124467) (-697 "MONADWU.spad" 1121360 1121368 1123336 1123341) (-696 "MONADWU.spad" 1119372 1119382 1121350 1121355) (-695 "MONAD.spad" 1118516 1118524 1119362 1119367) (-694 "MONAD.spad" 1117658 1117668 1118506 1118511) (-693 "MOEBIUS.spad" 1116344 1116358 1117638 1117653) (-692 "MODULE.spad" 1116214 1116224 1116312 1116339) (-691 "MODULE.spad" 1116104 1116116 1116204 1116209) (-690 "MODRING.spad" 1115435 1115474 1116084 1116099) (-689 "MODOP.spad" 1114094 1114106 1115257 1115324) (-688 "MODMONOM.spad" 1113626 1113644 1114084 1114089) (-687 "MODMON.spad" 1110328 1110344 1111104 1111257) (-686 "MODFIELD.spad" 1109686 1109725 1110230 1110323) (-685 "MMLFORM.spad" 1108546 1108554 1109676 1109681) (-684 "MMAP.spad" 1108286 1108320 1108536 1108541) (-683 "MLO.spad" 1106713 1106723 1108242 1108281) (-682 "MLIFT.spad" 1105285 1105302 1106703 1106708) (-681 "MKUCFUNC.spad" 1104818 1104836 1105275 1105280) (-680 "MKRECORD.spad" 1104420 1104433 1104808 1104813) (-679 "MKFUNC.spad" 1103801 1103811 1104410 1104415) (-678 "MKFLCFN.spad" 1102757 1102767 1103791 1103796) (-677 "MKCHSET.spad" 1102533 1102543 1102747 1102752) (-676 "MKBCFUNC.spad" 1102018 1102036 1102523 1102528) (-675 "MINT.spad" 1101457 1101465 1101920 1102013) (-674 "MHROWRED.spad" 1099958 1099968 1101447 1101452) (-673 "MFLOAT.spad" 1098403 1098411 1099848 1099953) (-672 "MFINFACT.spad" 1097803 1097825 1098393 1098398) (-671 "MESH.spad" 1095535 1095543 1097793 1097798) (-670 "MDDFACT.spad" 1093728 1093738 1095525 1095530) (-669 "MDAGG.spad" 1093003 1093013 1093696 1093723) (-668 "MCMPLX.spad" 1088978 1088986 1089592 1089793) (-667 "MCDEN.spad" 1088186 1088198 1088968 1088973) (-666 "MCALCFN.spad" 1085288 1085314 1088176 1088181) (-665 "MAYBE.spad" 1084537 1084548 1085278 1085283) (-664 "MATSTOR.spad" 1081813 1081823 1084527 1084532) (-663 "MATRIX.spad" 1080517 1080527 1081001 1081028) (-662 "MATLIN.spad" 1077843 1077867 1080401 1080406) (-661 "MATCAT.spad" 1069416 1069438 1077799 1077838) (-660 "MATCAT.spad" 1060873 1060897 1069258 1069263) (-659 "MATCAT2.spad" 1060141 1060189 1060863 1060868) (-658 "MAPPKG3.spad" 1059040 1059054 1060131 1060136) (-657 "MAPPKG2.spad" 1058374 1058386 1059030 1059035) (-656 "MAPPKG1.spad" 1057192 1057202 1058364 1058369) (-655 "MAPPAST.spad" 1056505 1056513 1057182 1057187) (-654 "MAPHACK3.spad" 1056313 1056327 1056495 1056500) (-653 "MAPHACK2.spad" 1056078 1056090 1056303 1056308) (-652 "MAPHACK1.spad" 1055708 1055718 1056068 1056073) (-651 "MAGMA.spad" 1053498 1053515 1055698 1055703) (-650 "MACROAST.spad" 1053066 1053074 1053488 1053493) (-649 "M3D.spad" 1050762 1050772 1052444 1052449) (-648 "LZSTAGG.spad" 1047980 1047990 1050742 1050757) (-647 "LZSTAGG.spad" 1045206 1045218 1047970 1047975) (-646 "LWORD.spad" 1041911 1041928 1045196 1045201) (-645 "LSTAST.spad" 1041696 1041704 1041901 1041906) (-644 "LSQM.spad" 1039922 1039936 1040320 1040371) (-643 "LSPP.spad" 1039455 1039472 1039912 1039917) (-642 "LSMP.spad" 1038295 1038323 1039445 1039450) (-641 "LSMP1.spad" 1036099 1036113 1038285 1038290) (-640 "LSAGG.spad" 1035756 1035766 1036055 1036094) (-639 "LSAGG.spad" 1035445 1035457 1035746 1035751) (-638 "LPOLY.spad" 1034399 1034418 1035301 1035370) (-637 "LPEFRAC.spad" 1033656 1033666 1034389 1034394) (-636 "LO.spad" 1033057 1033071 1033590 1033617) (-635 "LOGIC.spad" 1032659 1032667 1033047 1033052) (-634 "LOGIC.spad" 1032259 1032269 1032649 1032654) (-633 "LODOOPS.spad" 1031177 1031189 1032249 1032254) (-632 "LODO.spad" 1030561 1030577 1030857 1030896) (-631 "LODOF.spad" 1029605 1029622 1030518 1030523) (-630 "LODOCAT.spad" 1028263 1028273 1029561 1029600) (-629 "LODOCAT.spad" 1026919 1026931 1028219 1028224) (-628 "LODO2.spad" 1026192 1026204 1026599 1026638) (-627 "LODO1.spad" 1025592 1025602 1025872 1025911) (-626 "LODEEF.spad" 1024364 1024382 1025582 1025587) (-625 "LNAGG.spad" 1020156 1020166 1024344 1024359) (-624 "LNAGG.spad" 1015922 1015934 1020112 1020117) (-623 "LMOPS.spad" 1012658 1012675 1015912 1015917) (-622 "LMODULE.spad" 1012300 1012310 1012648 1012653) (-621 "LMDICT.spad" 1011583 1011593 1011851 1011878) (-620 "LITERAL.spad" 1011489 1011500 1011573 1011578) (-619 "LIST.spad" 1009207 1009217 1010636 1010663) (-618 "LIST3.spad" 1008498 1008512 1009197 1009202) (-617 "LIST2.spad" 1007138 1007150 1008488 1008493) (-616 "LIST2MAP.spad" 1004015 1004027 1007128 1007133) (-615 "LINEXP.spad" 1003447 1003457 1003995 1004010) (-614 "LINDEP.spad" 1002224 1002236 1003359 1003364) (-613 "LIMITRF.spad" 1000138 1000148 1002214 1002219) (-612 "LIMITPS.spad" 999021 999034 1000128 1000133) (-611 "LIE.spad" 997035 997047 998311 998456) (-610 "LIECAT.spad" 996511 996521 996961 997030) (-609 "LIECAT.spad" 996015 996027 996467 996472) (-608 "LIB.spad" 994063 994071 994674 994689) (-607 "LGROBP.spad" 991416 991435 994053 994058) (-606 "LF.spad" 990335 990351 991406 991411) (-605 "LFCAT.spad" 989354 989362 990325 990330) (-604 "LEXTRIPK.spad" 984857 984872 989344 989349) (-603 "LEXP.spad" 982860 982887 984837 984852) (-602 "LETAST.spad" 982561 982569 982850 982855) (-601 "LEADCDET.spad" 980945 980962 982551 982556) (-600 "LAZM3PK.spad" 979649 979671 980935 980940) (-599 "LAUPOL.spad" 978338 978351 979242 979311) (-598 "LAPLACE.spad" 977911 977927 978328 978333) (-597 "LA.spad" 977351 977365 977833 977872) (-596 "LALG.spad" 977127 977137 977331 977346) (-595 "LALG.spad" 976911 976923 977117 977122) (-594 "KTVLOGIC.spad" 976334 976342 976901 976906) (-593 "KOVACIC.spad" 975047 975064 976324 976329) (-592 "KONVERT.spad" 974769 974779 975037 975042) (-591 "KOERCE.spad" 974506 974516 974759 974764) (-590 "KERNEL.spad" 973041 973051 974290 974295) (-589 "KERNEL2.spad" 972744 972756 973031 973036) (-588 "KDAGG.spad" 971835 971857 972712 972739) (-587 "KDAGG.spad" 970946 970970 971825 971830) (-586 "KAFILE.spad" 969909 969925 970144 970171) (-585 "JORDAN.spad" 967736 967748 969199 969344) (-584 "JOINAST.spad" 967430 967438 967726 967731) (-583 "JAVACODE.spad" 967196 967204 967420 967425) (-582 "IXAGG.spad" 965309 965333 967176 967191) (-581 "IXAGG.spad" 963287 963313 965156 965161) (-580 "IVECTOR.spad" 962058 962073 962213 962240) (-579 "ITUPLE.spad" 961203 961213 962048 962053) (-578 "ITRIGMNP.spad" 960014 960033 961193 961198) (-577 "ITFUN3.spad" 959508 959522 960004 960009) (-576 "ITFUN2.spad" 959238 959250 959498 959503) (-575 "ITAYLOR.spad" 957030 957045 959074 959199) (-574 "ISUPS.spad" 949441 949456 956004 956101) (-573 "ISUMP.spad" 948938 948954 949431 949436) (-572 "ISTRING.spad" 947941 947954 948107 948134) (-571 "ISAST.spad" 947662 947670 947931 947936) (-570 "IRURPK.spad" 946375 946394 947652 947657) (-569 "IRSN.spad" 944335 944343 946365 946370) (-568 "IRRF2F.spad" 942810 942820 944291 944296) (-567 "IRREDFFX.spad" 942411 942422 942800 942805) (-566 "IROOT.spad" 940742 940752 942401 942406) (-565 "IR.spad" 938531 938545 940597 940624) (-564 "IR2.spad" 937551 937567 938521 938526) (-563 "IR2F.spad" 936751 936767 937541 937546) (-562 "IPRNTPK.spad" 936511 936519 936741 936746) (-561 "IPF.spad" 936076 936088 936316 936409) (-560 "IPADIC.spad" 935837 935863 936002 936071) (-559 "IOBCON.spad" 935702 935710 935827 935832) (-558 "INVLAPLA.spad" 935347 935363 935692 935697) (-557 "INTTR.spad" 928593 928610 935337 935342) (-556 "INTTOOLS.spad" 926304 926320 928167 928172) (-555 "INTSLPE.spad" 925610 925618 926294 926299) (-554 "INTRVL.spad" 925176 925186 925524 925605) (-553 "INTRF.spad" 923540 923554 925166 925171) (-552 "INTRET.spad" 922972 922982 923530 923535) (-551 "INTRAT.spad" 921647 921664 922962 922967) (-550 "INTPM.spad" 920010 920026 921290 921295) (-549 "INTPAF.spad" 917778 917796 919942 919947) (-548 "INTPACK.spad" 908088 908096 917768 917773) (-547 "INT.spad" 907449 907457 907942 908083) (-546 "INTHERTR.spad" 906715 906732 907439 907444) (-545 "INTHERAL.spad" 906381 906405 906705 906710) (-544 "INTHEORY.spad" 902794 902802 906371 906376) (-543 "INTG0.spad" 896257 896275 902726 902731) (-542 "INTFTBL.spad" 890286 890294 896247 896252) (-541 "INTFACT.spad" 889345 889355 890276 890281) (-540 "INTEF.spad" 887660 887676 889335 889340) (-539 "INTDOM.spad" 886275 886283 887586 887655) (-538 "INTDOM.spad" 884952 884962 886265 886270) (-537 "INTCAT.spad" 883205 883215 884866 884947) (-536 "INTBIT.spad" 882708 882716 883195 883200) (-535 "INTALG.spad" 881890 881917 882698 882703) (-534 "INTAF.spad" 881382 881398 881880 881885) (-533 "INTABL.spad" 879900 879931 880063 880090) (-532 "INS.spad" 877367 877375 879802 879895) (-531 "INS.spad" 874920 874930 877357 877362) (-530 "INPSIGN.spad" 874354 874367 874910 874915) (-529 "INPRODPF.spad" 873420 873439 874344 874349) (-528 "INPRODFF.spad" 872478 872502 873410 873415) (-527 "INNMFACT.spad" 871449 871466 872468 872473) (-526 "INMODGCD.spad" 870933 870963 871439 871444) (-525 "INFSP.spad" 869218 869240 870923 870928) (-524 "INFPROD0.spad" 868268 868287 869208 869213) (-523 "INFORM.spad" 865429 865437 868258 868263) (-522 "INFORM1.spad" 865054 865064 865419 865424) (-521 "INFINITY.spad" 864606 864614 865044 865049) (-520 "INEP.spad" 863138 863160 864596 864601) (-519 "INDE.spad" 862867 862884 863128 863133) (-518 "INCRMAPS.spad" 862288 862298 862857 862862) (-517 "INBFF.spad" 858058 858069 862278 862283) (-516 "INBCON.spad" 857358 857366 858048 858053) (-515 "INBCON.spad" 856656 856666 857348 857353) (-514 "INAST.spad" 856322 856330 856646 856651) (-513 "IMPTAST.spad" 856030 856038 856312 856317) (-512 "IMATRIX.spad" 854975 855001 855487 855514) (-511 "IMATQF.spad" 854069 854113 854931 854936) (-510 "IMATLIN.spad" 852674 852698 854025 854030) (-509 "ILIST.spad" 851330 851345 851857 851884) (-508 "IIARRAY2.spad" 850718 850756 850937 850964) (-507 "IFF.spad" 850128 850144 850399 850492) (-506 "IFAST.spad" 849745 849753 850118 850123) (-505 "IFARRAY.spad" 847232 847247 848928 848955) (-504 "IFAMON.spad" 847094 847111 847188 847193) (-503 "IEVALAB.spad" 846483 846495 847084 847089) (-502 "IEVALAB.spad" 845870 845884 846473 846478) (-501 "IDPO.spad" 845668 845680 845860 845865) (-500 "IDPOAMS.spad" 845424 845436 845658 845663) (-499 "IDPOAM.spad" 845144 845156 845414 845419) (-498 "IDPC.spad" 844078 844090 845134 845139) (-497 "IDPAM.spad" 843823 843835 844068 844073) (-496 "IDPAG.spad" 843570 843582 843813 843818) (-495 "IDENT.spad" 843487 843495 843560 843565) (-494 "IDECOMP.spad" 840724 840742 843477 843482) (-493 "IDEAL.spad" 835647 835686 840659 840664) (-492 "ICDEN.spad" 834798 834814 835637 835642) (-491 "ICARD.spad" 833987 833995 834788 834793) (-490 "IBPTOOLS.spad" 832580 832597 833977 833982) (-489 "IBITS.spad" 831779 831792 832216 832243) (-488 "IBATOOL.spad" 828654 828673 831769 831774) (-487 "IBACHIN.spad" 827141 827156 828644 828649) (-486 "IARRAY2.spad" 826129 826155 826748 826775) (-485 "IARRAY1.spad" 825174 825189 825312 825339) (-484 "IAN.spad" 823387 823395 824990 825083) (-483 "IALGFACT.spad" 822988 823021 823377 823382) (-482 "HYPCAT.spad" 822412 822420 822978 822983) (-481 "HYPCAT.spad" 821834 821844 822402 822407) (-480 "HOSTNAME.spad" 821642 821650 821824 821829) (-479 "HOAGG.spad" 818900 818910 821622 821637) (-478 "HOAGG.spad" 815943 815955 818667 818672) (-477 "HEXADEC.spad" 813813 813821 814411 814504) (-476 "HEUGCD.spad" 812828 812839 813803 813808) (-475 "HELLFDIV.spad" 812418 812442 812818 812823) (-474 "HEAP.spad" 811810 811820 812025 812052) (-473 "HEADAST.spad" 811341 811349 811800 811805) (-472 "HDP.spad" 802458 802474 802835 802966) (-471 "HDMP.spad" 799634 799649 800252 800379) (-470 "HB.spad" 797871 797879 799624 799629) (-469 "HASHTBL.spad" 796341 796372 796552 796579) (-468 "HASAST.spad" 796059 796067 796331 796336) (-467 "HACKPI.spad" 795542 795550 795961 796054) (-466 "GTSET.spad" 794481 794497 795188 795215) (-465 "GSTBL.spad" 793000 793035 793174 793189) (-464 "GSERIES.spad" 790167 790194 791132 791281) (-463 "GROUP.spad" 789436 789444 790147 790162) (-462 "GROUP.spad" 788713 788723 789426 789431) (-461 "GROEBSOL.spad" 787201 787222 788703 788708) (-460 "GRMOD.spad" 785772 785784 787191 787196) (-459 "GRMOD.spad" 784341 784355 785762 785767) (-458 "GRIMAGE.spad" 776946 776954 784331 784336) (-457 "GRDEF.spad" 775325 775333 776936 776941) (-456 "GRAY.spad" 773784 773792 775315 775320) (-455 "GRALG.spad" 772831 772843 773774 773779) (-454 "GRALG.spad" 771876 771890 772821 772826) (-453 "GPOLSET.spad" 771330 771353 771558 771585) (-452 "GOSPER.spad" 770595 770613 771320 771325) (-451 "GMODPOL.spad" 769733 769760 770563 770590) (-450 "GHENSEL.spad" 768802 768816 769723 769728) (-449 "GENUPS.spad" 764903 764916 768792 768797) (-448 "GENUFACT.spad" 764480 764490 764893 764898) (-447 "GENPGCD.spad" 764064 764081 764470 764475) (-446 "GENMFACT.spad" 763516 763535 764054 764059) (-445 "GENEEZ.spad" 761455 761468 763506 763511) (-444 "GDMP.spad" 758473 758490 759249 759376) (-443 "GCNAALG.spad" 752368 752395 758267 758334) (-442 "GCDDOM.spad" 751540 751548 752294 752363) (-441 "GCDDOM.spad" 750774 750784 751530 751535) (-440 "GB.spad" 748292 748330 750730 750735) (-439 "GBINTERN.spad" 744312 744350 748282 748287) (-438 "GBF.spad" 740069 740107 744302 744307) (-437 "GBEUCLID.spad" 737943 737981 740059 740064) (-436 "GAUSSFAC.spad" 737240 737248 737933 737938) (-435 "GALUTIL.spad" 735562 735572 737196 737201) (-434 "GALPOLYU.spad" 734008 734021 735552 735557) (-433 "GALFACTU.spad" 732173 732192 733998 734003) (-432 "GALFACT.spad" 722306 722317 732163 732168) (-431 "FVFUN.spad" 719319 719327 722286 722301) (-430 "FVC.spad" 718361 718369 719299 719314) (-429 "FUNCTION.spad" 718210 718222 718351 718356) (-428 "FT.spad" 716422 716430 718200 718205) (-427 "FTEM.spad" 715585 715593 716412 716417) (-426 "FSUPFACT.spad" 714485 714504 715521 715526) (-425 "FST.spad" 712571 712579 714475 714480) (-424 "FSRED.spad" 712049 712065 712561 712566) (-423 "FSPRMELT.spad" 710873 710889 712006 712011) (-422 "FSPECF.spad" 708950 708966 710863 710868) (-421 "FS.spad" 703000 703010 708713 708945) (-420 "FS.spad" 696840 696852 702555 702560) (-419 "FSINT.spad" 696498 696514 696830 696835) (-418 "FSERIES.spad" 695685 695697 696318 696417) (-417 "FSCINT.spad" 694998 695014 695675 695680) (-416 "FSAGG.spad" 694103 694113 694942 694993) (-415 "FSAGG.spad" 693182 693194 694023 694028) (-414 "FSAGG2.spad" 691881 691897 693172 693177) (-413 "FS2UPS.spad" 686270 686304 691871 691876) (-412 "FS2.spad" 685915 685931 686260 686265) (-411 "FS2EXPXP.spad" 685038 685061 685905 685910) (-410 "FRUTIL.spad" 683980 683990 685028 685033) (-409 "FR.spad" 677675 677685 683005 683074) (-408 "FRNAALG.spad" 672762 672772 677617 677670) (-407 "FRNAALG.spad" 667861 667873 672718 672723) (-406 "FRNAAF2.spad" 667315 667333 667851 667856) (-405 "FRMOD.spad" 666709 666739 667246 667251) (-404 "FRIDEAL.spad" 665904 665925 666689 666704) (-403 "FRIDEAL2.spad" 665506 665538 665894 665899) (-402 "FRETRCT.spad" 665017 665027 665496 665501) (-401 "FRETRCT.spad" 664394 664406 664875 664880) (-400 "FRAMALG.spad" 662722 662735 664350 664389) (-399 "FRAMALG.spad" 661082 661097 662712 662717) (-398 "FRAC.spad" 658182 658192 658585 658758) (-397 "FRAC2.spad" 657785 657797 658172 658177) (-396 "FR2.spad" 657119 657131 657775 657780) (-395 "FPS.spad" 653928 653936 657009 657114) (-394 "FPS.spad" 650765 650775 653848 653853) (-393 "FPC.spad" 649807 649815 650667 650760) (-392 "FPC.spad" 648935 648945 649797 649802) (-391 "FPATMAB.spad" 648687 648697 648915 648930) (-390 "FPARFRAC.spad" 647160 647177 648677 648682) (-389 "FORTRAN.spad" 645666 645709 647150 647155) (-388 "FORT.spad" 644595 644603 645656 645661) (-387 "FORTFN.spad" 641755 641763 644575 644590) (-386 "FORTCAT.spad" 641429 641437 641735 641750) (-385 "FORMULA.spad" 638767 638775 641419 641424) (-384 "FORMULA1.spad" 638246 638256 638757 638762) (-383 "FORDER.spad" 637937 637961 638236 638241) (-382 "FOP.spad" 637138 637146 637927 637932) (-381 "FNLA.spad" 636562 636584 637106 637133) (-380 "FNCAT.spad" 634890 634898 636552 636557) (-379 "FNAME.spad" 634782 634790 634880 634885) (-378 "FMTC.spad" 634580 634588 634708 634777) (-377 "FMONOID.spad" 631635 631645 634536 634541) (-376 "FM.spad" 631330 631342 631569 631596) (-375 "FMFUN.spad" 628350 628358 631310 631325) (-374 "FMC.spad" 627392 627400 628330 628345) (-373 "FMCAT.spad" 625046 625064 627360 627387) (-372 "FM1.spad" 624403 624415 624980 625007) (-371 "FLOATRP.spad" 622124 622138 624393 624398) (-370 "FLOAT.spad" 615288 615296 621990 622119) (-369 "FLOATCP.spad" 612705 612719 615278 615283) (-368 "FLINEXP.spad" 612417 612427 612685 612700) (-367 "FLINEXP.spad" 612083 612095 612353 612358) (-366 "FLASORT.spad" 611403 611415 612073 612078) (-365 "FLALG.spad" 609049 609068 611329 611398) (-364 "FLAGG.spad" 606055 606065 609017 609044) (-363 "FLAGG.spad" 602974 602986 605938 605943) (-362 "FLAGG2.spad" 601655 601671 602964 602969) (-361 "FINRALG.spad" 599684 599697 601611 601650) (-360 "FINRALG.spad" 597639 597654 599568 599573) (-359 "FINITE.spad" 596791 596799 597629 597634) (-358 "FINAALG.spad" 585772 585782 596733 596786) (-357 "FINAALG.spad" 574765 574777 585728 585733) (-356 "FILE.spad" 574348 574358 574755 574760) (-355 "FILECAT.spad" 572866 572883 574338 574343) (-354 "FIELD.spad" 572272 572280 572768 572861) (-353 "FIELD.spad" 571764 571774 572262 572267) (-352 "FGROUP.spad" 570373 570383 571744 571759) (-351 "FGLMICPK.spad" 569160 569175 570363 570368) (-350 "FFX.spad" 568535 568550 568876 568969) (-349 "FFSLPE.spad" 568024 568045 568525 568530) (-348 "FFPOLY.spad" 559276 559287 568014 568019) (-347 "FFPOLY2.spad" 558336 558353 559266 559271) (-346 "FFP.spad" 557733 557753 558052 558145) (-345 "FF.spad" 557181 557197 557414 557507) (-344 "FFNBX.spad" 555693 555713 556897 556990) (-343 "FFNBP.spad" 554206 554223 555409 555502) (-342 "FFNB.spad" 552671 552692 553887 553980) (-341 "FFINTBAS.spad" 550085 550104 552661 552666) (-340 "FFIELDC.spad" 547660 547668 549987 550080) (-339 "FFIELDC.spad" 545321 545331 547650 547655) (-338 "FFHOM.spad" 544069 544086 545311 545316) (-337 "FFF.spad" 541504 541515 544059 544064) (-336 "FFCGX.spad" 540351 540371 541220 541313) (-335 "FFCGP.spad" 539240 539260 540067 540160) (-334 "FFCG.spad" 538032 538053 538921 539014) (-333 "FFCAT.spad" 531059 531081 537871 538027) (-332 "FFCAT.spad" 524165 524189 530979 530984) (-331 "FFCAT2.spad" 523910 523950 524155 524160) (-330 "FEXPR.spad" 515619 515665 523666 523705) (-329 "FEVALAB.spad" 515325 515335 515609 515614) (-328 "FEVALAB.spad" 514816 514828 515102 515107) (-327 "FDIV.spad" 514258 514282 514806 514811) (-326 "FDIVCAT.spad" 512300 512324 514248 514253) (-325 "FDIVCAT.spad" 510340 510366 512290 512295) (-324 "FDIV2.spad" 509994 510034 510330 510335) (-323 "FCPAK1.spad" 508547 508555 509984 509989) (-322 "FCOMP.spad" 507926 507936 508537 508542) (-321 "FC.spad" 497751 497759 507916 507921) (-320 "FAXF.spad" 490686 490700 497653 497746) (-319 "FAXF.spad" 483673 483689 490642 490647) (-318 "FARRAY.spad" 481819 481829 482856 482883) (-317 "FAMR.spad" 479939 479951 481717 481814) (-316 "FAMR.spad" 478043 478057 479823 479828) (-315 "FAMONOID.spad" 477693 477703 477997 478002) (-314 "FAMONC.spad" 475915 475927 477683 477688) (-313 "FAGROUP.spad" 475521 475531 475811 475838) (-312 "FACUTIL.spad" 473717 473734 475511 475516) (-311 "FACTFUNC.spad" 472893 472903 473707 473712) (-310 "EXPUPXS.spad" 469726 469749 471025 471174) (-309 "EXPRTUBE.spad" 466954 466962 469716 469721) (-308 "EXPRODE.spad" 463826 463842 466944 466949) (-307 "EXPR.spad" 459101 459111 459815 460222) (-306 "EXPR2UPS.spad" 455193 455206 459091 459096) (-305 "EXPR2.spad" 454896 454908 455183 455188) (-304 "EXPEXPAN.spad" 451835 451860 452469 452562) (-303 "EXIT.spad" 451506 451514 451825 451830) (-302 "EXITAST.spad" 451243 451251 451496 451501) (-301 "EVALCYC.spad" 450701 450715 451233 451238) (-300 "EVALAB.spad" 450265 450275 450691 450696) (-299 "EVALAB.spad" 449827 449839 450255 450260) (-298 "EUCDOM.spad" 447369 447377 449753 449822) (-297 "EUCDOM.spad" 444973 444983 447359 447364) (-296 "ESTOOLS.spad" 436813 436821 444963 444968) (-295 "ESTOOLS2.spad" 436414 436428 436803 436808) (-294 "ESTOOLS1.spad" 436099 436110 436404 436409) (-293 "ES.spad" 428646 428654 436089 436094) (-292 "ES.spad" 421099 421109 428544 428549) (-291 "ESCONT.spad" 417872 417880 421089 421094) (-290 "ESCONT1.spad" 417621 417633 417862 417867) (-289 "ES2.spad" 417116 417132 417611 417616) (-288 "ES1.spad" 416682 416698 417106 417111) (-287 "ERROR.spad" 414003 414011 416672 416677) (-286 "EQTBL.spad" 412475 412497 412684 412711) (-285 "EQ.spad" 407349 407359 410148 410260) (-284 "EQ2.spad" 407065 407077 407339 407344) (-283 "EP.spad" 403379 403389 407055 407060) (-282 "ENV.spad" 402081 402089 403369 403374) (-281 "ENTIRER.spad" 401749 401757 402025 402076) (-280 "EMR.spad" 400950 400991 401675 401744) (-279 "ELTAGG.spad" 399190 399209 400940 400945) (-278 "ELTAGG.spad" 397394 397415 399146 399151) (-277 "ELTAB.spad" 396841 396859 397384 397389) (-276 "ELFUTS.spad" 396220 396239 396831 396836) (-275 "ELEMFUN.spad" 395909 395917 396210 396215) (-274 "ELEMFUN.spad" 395596 395606 395899 395904) (-273 "ELAGG.spad" 393527 393537 395564 395591) (-272 "ELAGG.spad" 391407 391419 393446 393451) (-271 "ELABEXPR.spad" 390338 390346 391397 391402) (-270 "EFUPXS.spad" 387114 387144 390294 390299) (-269 "EFULS.spad" 383950 383973 387070 387075) (-268 "EFSTRUC.spad" 381905 381921 383940 383945) (-267 "EF.spad" 376671 376687 381895 381900) (-266 "EAB.spad" 374947 374955 376661 376666) (-265 "E04UCFA.spad" 374483 374491 374937 374942) (-264 "E04NAFA.spad" 374060 374068 374473 374478) (-263 "E04MBFA.spad" 373640 373648 374050 374055) (-262 "E04JAFA.spad" 373176 373184 373630 373635) (-261 "E04GCFA.spad" 372712 372720 373166 373171) (-260 "E04FDFA.spad" 372248 372256 372702 372707) (-259 "E04DGFA.spad" 371784 371792 372238 372243) (-258 "E04AGNT.spad" 367626 367634 371774 371779) (-257 "DVARCAT.spad" 364311 364321 367616 367621) (-256 "DVARCAT.spad" 360994 361006 364301 364306) (-255 "DSMP.spad" 358425 358439 358730 358857) (-254 "DROPT.spad" 352370 352378 358415 358420) (-253 "DROPT1.spad" 352033 352043 352360 352365) (-252 "DROPT0.spad" 346860 346868 352023 352028) (-251 "DRAWPT.spad" 345015 345023 346850 346855) (-250 "DRAW.spad" 337615 337628 345005 345010) (-249 "DRAWHACK.spad" 336923 336933 337605 337610) (-248 "DRAWCX.spad" 334365 334373 336913 336918) (-247 "DRAWCURV.spad" 333902 333917 334355 334360) (-246 "DRAWCFUN.spad" 323074 323082 333892 333897) (-245 "DQAGG.spad" 321230 321240 323030 323069) (-244 "DPOLCAT.spad" 316571 316587 321098 321225) (-243 "DPOLCAT.spad" 311998 312016 316527 316532) (-242 "DPMO.spad" 305301 305317 305439 305740) (-241 "DPMM.spad" 298617 298635 298742 299043) (-240 "DOMAIN.spad" 297888 297896 298607 298612) (-239 "DMP.spad" 295110 295125 295682 295809) (-238 "DLP.spad" 294458 294468 295100 295105) (-237 "DLIST.spad" 292870 292880 293641 293668) (-236 "DLAGG.spad" 291271 291281 292850 292865) (-235 "DIVRING.spad" 290813 290821 291215 291266) (-234 "DIVRING.spad" 290399 290409 290803 290808) (-233 "DISPLAY.spad" 288579 288587 290389 290394) (-232 "DIRPROD.spad" 279433 279449 280073 280204) (-231 "DIRPROD2.spad" 278241 278259 279423 279428) (-230 "DIRPCAT.spad" 277171 277187 278093 278236) (-229 "DIRPCAT.spad" 275842 275860 276766 276771) (-228 "DIOSP.spad" 274667 274675 275832 275837) (-227 "DIOPS.spad" 273639 273649 274635 274662) (-226 "DIOPS.spad" 272597 272609 273595 273600) (-225 "DIFRING.spad" 271889 271897 272577 272592) (-224 "DIFRING.spad" 271189 271199 271879 271884) (-223 "DIFEXT.spad" 270348 270358 271169 271184) (-222 "DIFEXT.spad" 269424 269436 270247 270252) (-221 "DIAGG.spad" 269042 269052 269392 269419) (-220 "DIAGG.spad" 268680 268692 269032 269037) (-219 "DHMATRIX.spad" 266984 266994 268137 268164) (-218 "DFSFUN.spad" 260392 260400 266974 266979) (-217 "DFLOAT.spad" 256995 257003 260282 260387) (-216 "DFINTTLS.spad" 255204 255220 256985 256990) (-215 "DERHAM.spad" 253114 253146 255184 255199) (-214 "DEQUEUE.spad" 252432 252442 252721 252748) (-213 "DEGRED.spad" 252047 252061 252422 252427) (-212 "DEFINTRF.spad" 249572 249582 252037 252042) (-211 "DEFINTEF.spad" 248068 248084 249562 249567) (-210 "DEFAST.spad" 247425 247433 248058 248063) (-209 "DECIMAL.spad" 245307 245315 245893 245986) (-208 "DDFACT.spad" 243106 243123 245297 245302) (-207 "DBLRESP.spad" 242704 242728 243096 243101) (-206 "DBASE.spad" 241276 241286 242694 242699) (-205 "DATABUF.spad" 240764 240777 241266 241271) (-204 "D03FAFA.spad" 240592 240600 240754 240759) (-203 "D03EEFA.spad" 240412 240420 240582 240587) (-202 "D03AGNT.spad" 239492 239500 240402 240407) (-201 "D02EJFA.spad" 238954 238962 239482 239487) (-200 "D02CJFA.spad" 238432 238440 238944 238949) (-199 "D02BHFA.spad" 237922 237930 238422 238427) (-198 "D02BBFA.spad" 237412 237420 237912 237917) (-197 "D02AGNT.spad" 232216 232224 237402 237407) (-196 "D01WGTS.spad" 230535 230543 232206 232211) (-195 "D01TRNS.spad" 230512 230520 230525 230530) (-194 "D01GBFA.spad" 230034 230042 230502 230507) (-193 "D01FCFA.spad" 229556 229564 230024 230029) (-192 "D01ASFA.spad" 229024 229032 229546 229551) (-191 "D01AQFA.spad" 228470 228478 229014 229019) (-190 "D01APFA.spad" 227894 227902 228460 228465) (-189 "D01ANFA.spad" 227388 227396 227884 227889) (-188 "D01AMFA.spad" 226898 226906 227378 227383) (-187 "D01ALFA.spad" 226438 226446 226888 226893) (-186 "D01AKFA.spad" 225964 225972 226428 226433) (-185 "D01AJFA.spad" 225487 225495 225954 225959) (-184 "D01AGNT.spad" 221546 221554 225477 225482) (-183 "CYCLOTOM.spad" 221052 221060 221536 221541) (-182 "CYCLES.spad" 217884 217892 221042 221047) (-181 "CVMP.spad" 217301 217311 217874 217879) (-180 "CTRIGMNP.spad" 215791 215807 217291 217296) (-179 "CTORCALL.spad" 215379 215387 215781 215786) (-178 "CSTTOOLS.spad" 214622 214635 215369 215374) (-177 "CRFP.spad" 208326 208339 214612 214617) (-176 "CRAPACK.spad" 207369 207379 208316 208321) (-175 "CPMATCH.spad" 206869 206884 207294 207299) (-174 "CPIMA.spad" 206574 206593 206859 206864) (-173 "COORDSYS.spad" 201467 201477 206564 206569) (-172 "CONTOUR.spad" 200869 200877 201457 201462) (-171 "CONTFRAC.spad" 196481 196491 200771 200864) (-170 "CONDUIT.spad" 196239 196247 196471 196476) (-169 "COMRING.spad" 195913 195921 196177 196234) (-168 "COMPPROP.spad" 195427 195435 195903 195908) (-167 "COMPLPAT.spad" 195194 195209 195417 195422) (-166 "COMPLEX.spad" 189220 189230 189464 189725) (-165 "COMPLEX2.spad" 188933 188945 189210 189215) (-164 "COMPFACT.spad" 188535 188549 188923 188928) (-163 "COMPCAT.spad" 186591 186601 188257 188530) (-162 "COMPCAT.spad" 184353 184365 186021 186026) (-161 "COMMUPC.spad" 184099 184117 184343 184348) (-160 "COMMONOP.spad" 183632 183640 184089 184094) (-159 "COMM.spad" 183441 183449 183622 183627) (-158 "COMMAAST.spad" 183205 183213 183431 183436) (-157 "COMBOPC.spad" 182110 182118 183195 183200) (-156 "COMBINAT.spad" 180855 180865 182100 182105) (-155 "COMBF.spad" 178223 178239 180845 180850) (-154 "COLOR.spad" 177060 177068 178213 178218) (-153 "COLONAST.spad" 176727 176735 177050 177055) (-152 "CMPLXRT.spad" 176436 176453 176717 176722) (-151 "CLIP.spad" 172528 172536 176426 176431) (-150 "CLIF.spad" 171167 171183 172484 172523) (-149 "CLAGG.spad" 167642 167652 171147 171162) (-148 "CLAGG.spad" 163998 164010 167505 167510) (-147 "CINTSLPE.spad" 163323 163336 163988 163993) (-146 "CHVAR.spad" 161401 161423 163313 163318) (-145 "CHARZ.spad" 161316 161324 161381 161396) (-144 "CHARPOL.spad" 160824 160834 161306 161311) (-143 "CHARNZ.spad" 160577 160585 160804 160819) (-142 "CHAR.spad" 158445 158453 160567 160572) (-141 "CFCAT.spad" 157761 157769 158435 158440) (-140 "CDEN.spad" 156919 156933 157751 157756) (-139 "CCLASS.spad" 155068 155076 156330 156369) (-138 "CATEGORY.spad" 154847 154855 155058 155063) (-137 "CATAST.spad" 154475 154483 154837 154842) (-136 "CASEAST.spad" 154191 154199 154465 154470) (-135 "CARTEN.spad" 149294 149318 154181 154186) (-134 "CARTEN2.spad" 148680 148707 149284 149289) (-133 "CARD.spad" 145969 145977 148654 148675) (-132 "CAPSLAST.spad" 145744 145752 145959 145964) (-131 "CACHSET.spad" 145366 145374 145734 145739) (-130 "CABMON.spad" 144919 144927 145356 145361) (-129 "BYTE.spad" 144313 144321 144909 144914) (-128 "BYTEARY.spad" 143388 143396 143482 143509) (-127 "BTREE.spad" 142457 142467 142995 143022) (-126 "BTOURN.spad" 141460 141470 142064 142091) (-125 "BTCAT.spad" 140836 140846 141416 141455) (-124 "BTCAT.spad" 140244 140256 140826 140831) (-123 "BTAGG.spad" 139354 139362 140200 140239) (-122 "BTAGG.spad" 138496 138506 139344 139349) (-121 "BSTREE.spad" 137231 137241 138103 138130) (-120 "BRILL.spad" 135426 135437 137221 137226) (-119 "BRAGG.spad" 134340 134350 135406 135421) (-118 "BRAGG.spad" 133228 133240 134296 134301) (-117 "BPADICRT.spad" 131210 131222 131465 131558) (-116 "BPADIC.spad" 130874 130886 131136 131205) (-115 "BOUNDZRO.spad" 130530 130547 130864 130869) (-114 "BOP.spad" 125994 126002 130520 130525) (-113 "BOP1.spad" 123380 123390 125950 125955) (-112 "BOOLEAN.spad" 122704 122712 123370 123375) (-111 "BMODULE.spad" 122416 122428 122672 122699) (-110 "BITS.spad" 121835 121843 122052 122079) (-109 "BINFILE.spad" 121178 121186 121825 121830) (-108 "BINDING.spad" 120597 120605 121168 121173) (-107 "BINARY.spad" 118488 118496 119065 119158) (-106 "BGAGG.spad" 117673 117683 118456 118483) (-105 "BGAGG.spad" 116878 116890 117663 117668) (-104 "BFUNCT.spad" 116442 116450 116858 116873) (-103 "BEZOUT.spad" 115576 115603 116392 116397) (-102 "BBTREE.spad" 112395 112405 115183 115210) (-101 "BASTYPE.spad" 112067 112075 112385 112390) (-100 "BASTYPE.spad" 111737 111747 112057 112062) (-99 "BALFACT.spad" 111177 111189 111727 111732) (-98 "AUTOMOR.spad" 110624 110633 111157 111172) (-97 "ATTREG.spad" 107343 107350 110376 110619) (-96 "ATTRBUT.spad" 103366 103373 107323 107338) (-95 "ATTRAST.spad" 103084 103091 103356 103361) (-94 "ATRIG.spad" 102554 102561 103074 103079) (-93 "ATRIG.spad" 102022 102031 102544 102549) (-92 "ASTCAT.spad" 101926 101933 102012 102017) (-91 "ASTCAT.spad" 101828 101837 101916 101921) (-90 "ASTACK.spad" 101161 101170 101435 101462) (-89 "ASSOCEQ.spad" 99961 99972 101117 101122) (-88 "ASP9.spad" 99042 99055 99951 99956) (-87 "ASP8.spad" 98085 98098 99032 99037) (-86 "ASP80.spad" 97407 97420 98075 98080) (-85 "ASP7.spad" 96567 96580 97397 97402) (-84 "ASP78.spad" 96018 96031 96557 96562) (-83 "ASP77.spad" 95387 95400 96008 96013) (-82 "ASP74.spad" 94479 94492 95377 95382) (-81 "ASP73.spad" 93750 93763 94469 94474) (-80 "ASP6.spad" 92382 92395 93740 93745) (-79 "ASP55.spad" 90891 90904 92372 92377) (-78 "ASP50.spad" 88708 88721 90881 90886) (-77 "ASP4.spad" 88003 88016 88698 88703) (-76 "ASP49.spad" 87002 87015 87993 87998) (-75 "ASP42.spad" 85409 85448 86992 86997) (-74 "ASP41.spad" 83988 84027 85399 85404) (-73 "ASP35.spad" 82976 82989 83978 83983) (-72 "ASP34.spad" 82277 82290 82966 82971) (-71 "ASP33.spad" 81837 81850 82267 82272) (-70 "ASP31.spad" 80977 80990 81827 81832) (-69 "ASP30.spad" 79869 79882 80967 80972) (-68 "ASP29.spad" 79335 79348 79859 79864) (-67 "ASP28.spad" 70608 70621 79325 79330) (-66 "ASP27.spad" 69505 69518 70598 70603) (-65 "ASP24.spad" 68592 68605 69495 69500) (-64 "ASP20.spad" 67808 67821 68582 68587) (-63 "ASP1.spad" 67189 67202 67798 67803) (-62 "ASP19.spad" 61875 61888 67179 67184) (-61 "ASP12.spad" 61289 61302 61865 61870) (-60 "ASP10.spad" 60560 60573 61279 61284) (-59 "ARRAY2.spad" 59920 59929 60167 60194) (-58 "ARRAY1.spad" 58755 58764 59103 59130) (-57 "ARRAY12.spad" 57424 57435 58745 58750) (-56 "ARR2CAT.spad" 53074 53095 57380 57419) (-55 "ARR2CAT.spad" 48756 48779 53064 53069) (-54 "APPRULE.spad" 48000 48022 48746 48751) (-53 "APPLYORE.spad" 47615 47628 47990 47995) (-52 "ANY.spad" 45957 45964 47605 47610) (-51 "ANY1.spad" 45028 45037 45947 45952) (-50 "ANTISYM.spad" 43467 43483 45008 45023) (-49 "ANON.spad" 43164 43171 43457 43462) (-48 "AN.spad" 41465 41472 42980 43073) (-47 "AMR.spad" 39644 39655 41363 41460) (-46 "AMR.spad" 37660 37673 39381 39386) (-45 "ALIST.spad" 35072 35093 35422 35449) (-44 "ALGSC.spad" 34195 34221 34944 34997) (-43 "ALGPKG.spad" 29904 29915 34151 34156) (-42 "ALGMFACT.spad" 29093 29107 29894 29899) (-41 "ALGMANIP.spad" 26513 26528 28890 28895) (-40 "ALGFF.spad" 24828 24855 25045 25201) (-39 "ALGFACT.spad" 23949 23959 24818 24823) (-38 "ALGEBRA.spad" 23680 23689 23905 23944) (-37 "ALGEBRA.spad" 23443 23454 23670 23675) (-36 "ALAGG.spad" 22941 22962 23399 23438) (-35 "AHYP.spad" 22322 22329 22931 22936) (-34 "AGG.spad" 20621 20628 22302 22317) (-33 "AGG.spad" 18894 18903 20577 20582) (-32 "AF.spad" 17319 17334 18829 18834) (-31 "ADDAST.spad" 16999 17006 17309 17314) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2265326 2265331 2265336 2265341) (-2 NIL 2265306 2265311 2265316 2265321) (-1 NIL 2265286 2265291 2265296 2265301) (0 NIL 2265266 2265271 2265276 2265281) (-1254 "ZMOD.spad" 2265075 2265088 2265204 2265261) (-1253 "ZLINDEP.spad" 2264119 2264130 2265065 2265070) (-1252 "ZDSOLVE.spad" 2253968 2253990 2264109 2264114) (-1251 "YSTREAM.spad" 2253461 2253472 2253958 2253963) (-1250 "XRPOLY.spad" 2252681 2252701 2253317 2253386) (-1249 "XPR.spad" 2250410 2250423 2252399 2252498) (-1248 "XPOLY.spad" 2249965 2249976 2250266 2250335) (-1247 "XPOLYC.spad" 2249282 2249298 2249891 2249960) (-1246 "XPBWPOLY.spad" 2247719 2247739 2249062 2249131) (-1245 "XF.spad" 2246180 2246195 2247621 2247714) (-1244 "XF.spad" 2244621 2244638 2246064 2246069) (-1243 "XFALG.spad" 2241645 2241661 2244547 2244616) (-1242 "XEXPPKG.spad" 2240896 2240922 2241635 2241640) (-1241 "XDPOLY.spad" 2240510 2240526 2240752 2240821) (-1240 "XALG.spad" 2240108 2240119 2240466 2240505) (-1239 "WUTSET.spad" 2235947 2235964 2239754 2239781) (-1238 "WP.spad" 2234961 2235005 2235805 2235872) (-1237 "WHILEAST.spad" 2234760 2234769 2234951 2234956) (-1236 "WHEREAST.spad" 2234433 2234442 2234750 2234755) (-1235 "WFFINTBS.spad" 2231996 2232018 2234423 2234428) (-1234 "WEIER.spad" 2230210 2230221 2231986 2231991) (-1233 "VSPACE.spad" 2229883 2229894 2230178 2230205) (-1232 "VSPACE.spad" 2229576 2229589 2229873 2229878) (-1231 "VOID.spad" 2229166 2229175 2229566 2229571) (-1230 "VIEW.spad" 2226788 2226797 2229156 2229161) (-1229 "VIEWDEF.spad" 2221985 2221994 2226778 2226783) (-1228 "VIEW3D.spad" 2205820 2205829 2221975 2221980) (-1227 "VIEW2D.spad" 2193557 2193566 2205810 2205815) (-1226 "VECTOR.spad" 2192232 2192243 2192483 2192510) (-1225 "VECTOR2.spad" 2190859 2190872 2192222 2192227) (-1224 "VECTCAT.spad" 2188747 2188758 2190815 2190854) (-1223 "VECTCAT.spad" 2186455 2186468 2188525 2188530) (-1222 "VARIABLE.spad" 2186235 2186250 2186445 2186450) (-1221 "UTYPE.spad" 2185869 2185878 2186215 2186230) (-1220 "UTSODETL.spad" 2185162 2185186 2185825 2185830) (-1219 "UTSODE.spad" 2183350 2183370 2185152 2185157) (-1218 "UTS.spad" 2178139 2178167 2181817 2181914) (-1217 "UTSCAT.spad" 2175590 2175606 2178037 2178134) (-1216 "UTSCAT.spad" 2172685 2172703 2175134 2175139) (-1215 "UTS2.spad" 2172278 2172313 2172675 2172680) (-1214 "URAGG.spad" 2166900 2166911 2172258 2172273) (-1213 "URAGG.spad" 2161496 2161509 2166856 2166861) (-1212 "UPXSSING.spad" 2159139 2159165 2160577 2160710) (-1211 "UPXS.spad" 2156166 2156194 2157271 2157420) (-1210 "UPXSCONS.spad" 2153923 2153943 2154298 2154447) (-1209 "UPXSCCA.spad" 2152381 2152401 2153769 2153918) (-1208 "UPXSCCA.spad" 2150981 2151003 2152371 2152376) (-1207 "UPXSCAT.spad" 2149562 2149578 2150827 2150976) (-1206 "UPXS2.spad" 2149103 2149156 2149552 2149557) (-1205 "UPSQFREE.spad" 2147515 2147529 2149093 2149098) (-1204 "UPSCAT.spad" 2145108 2145132 2147413 2147510) (-1203 "UPSCAT.spad" 2142407 2142433 2144714 2144719) (-1202 "UPOLYC.spad" 2137385 2137396 2142249 2142402) (-1201 "UPOLYC.spad" 2132255 2132268 2137121 2137126) (-1200 "UPOLYC2.spad" 2131724 2131743 2132245 2132250) (-1199 "UP.spad" 2128766 2128781 2129274 2129427) (-1198 "UPMP.spad" 2127656 2127669 2128756 2128761) (-1197 "UPDIVP.spad" 2127219 2127233 2127646 2127651) (-1196 "UPDECOMP.spad" 2125456 2125470 2127209 2127214) (-1195 "UPCDEN.spad" 2124663 2124679 2125446 2125451) (-1194 "UP2.spad" 2124025 2124046 2124653 2124658) (-1193 "UNISEG.spad" 2123378 2123389 2123944 2123949) (-1192 "UNISEG2.spad" 2122871 2122884 2123334 2123339) (-1191 "UNIFACT.spad" 2121972 2121984 2122861 2122866) (-1190 "ULS.spad" 2112526 2112554 2113619 2114048) (-1189 "ULSCONS.spad" 2106565 2106585 2106937 2107086) (-1188 "ULSCCAT.spad" 2104162 2104182 2106385 2106560) (-1187 "ULSCCAT.spad" 2101893 2101915 2104118 2104123) (-1186 "ULSCAT.spad" 2100109 2100125 2101739 2101888) (-1185 "ULS2.spad" 2099621 2099674 2100099 2100104) (-1184 "UFD.spad" 2098686 2098695 2099547 2099616) (-1183 "UFD.spad" 2097813 2097824 2098676 2098681) (-1182 "UDVO.spad" 2096660 2096669 2097803 2097808) (-1181 "UDPO.spad" 2094087 2094098 2096616 2096621) (-1180 "TYPE.spad" 2094009 2094018 2094067 2094082) (-1179 "TYPEAST.spad" 2093842 2093851 2093999 2094004) (-1178 "TWOFACT.spad" 2092492 2092507 2093832 2093837) (-1177 "TUPLE.spad" 2091878 2091889 2092391 2092396) (-1176 "TUBETOOL.spad" 2088715 2088724 2091868 2091873) (-1175 "TUBE.spad" 2087356 2087373 2088705 2088710) (-1174 "TS.spad" 2085945 2085961 2086921 2087018) (-1173 "TSETCAT.spad" 2073060 2073077 2085901 2085940) (-1172 "TSETCAT.spad" 2060173 2060192 2073016 2073021) (-1171 "TRMANIP.spad" 2054539 2054556 2059879 2059884) (-1170 "TRIMAT.spad" 2053498 2053523 2054529 2054534) (-1169 "TRIGMNIP.spad" 2052015 2052032 2053488 2053493) (-1168 "TRIGCAT.spad" 2051527 2051536 2052005 2052010) (-1167 "TRIGCAT.spad" 2051037 2051048 2051517 2051522) (-1166 "TREE.spad" 2049608 2049619 2050644 2050671) (-1165 "TRANFUN.spad" 2049439 2049448 2049598 2049603) (-1164 "TRANFUN.spad" 2049268 2049279 2049429 2049434) (-1163 "TOPSP.spad" 2048942 2048951 2049258 2049263) (-1162 "TOOLSIGN.spad" 2048605 2048616 2048932 2048937) (-1161 "TEXTFILE.spad" 2047162 2047171 2048595 2048600) (-1160 "TEX.spad" 2044179 2044188 2047152 2047157) (-1159 "TEX1.spad" 2043735 2043746 2044169 2044174) (-1158 "TEMUTL.spad" 2043290 2043299 2043725 2043730) (-1157 "TBCMPPK.spad" 2041383 2041406 2043280 2043285) (-1156 "TBAGG.spad" 2040407 2040430 2041351 2041378) (-1155 "TBAGG.spad" 2039451 2039476 2040397 2040402) (-1154 "TANEXP.spad" 2038827 2038838 2039441 2039446) (-1153 "TABLE.spad" 2037238 2037261 2037508 2037535) (-1152 "TABLEAU.spad" 2036719 2036730 2037228 2037233) (-1151 "TABLBUMP.spad" 2033502 2033513 2036709 2036714) (-1150 "SYSTEM.spad" 2032776 2032785 2033492 2033497) (-1149 "SYSSOLP.spad" 2030249 2030260 2032766 2032771) (-1148 "SYNTAX.spad" 2026441 2026450 2030239 2030244) (-1147 "SYMTAB.spad" 2024497 2024506 2026431 2026436) (-1146 "SYMS.spad" 2020482 2020491 2024487 2024492) (-1145 "SYMPOLY.spad" 2019489 2019500 2019571 2019698) (-1144 "SYMFUNC.spad" 2018964 2018975 2019479 2019484) (-1143 "SYMBOL.spad" 2016300 2016309 2018954 2018959) (-1142 "SWITCH.spad" 2013057 2013066 2016290 2016295) (-1141 "SUTS.spad" 2009956 2009984 2011524 2011621) (-1140 "SUPXS.spad" 2006970 2006998 2008088 2008237) (-1139 "SUP.spad" 2003739 2003750 2004520 2004673) (-1138 "SUPFRACF.spad" 2002844 2002862 2003729 2003734) (-1137 "SUP2.spad" 2002234 2002247 2002834 2002839) (-1136 "SUMRF.spad" 2001200 2001211 2002224 2002229) (-1135 "SUMFS.spad" 2000833 2000850 2001190 2001195) (-1134 "SULS.spad" 1991374 1991402 1992480 1992909) (-1133 "SUCHTAST.spad" 1991144 1991153 1991364 1991369) (-1132 "SUCH.spad" 1990824 1990839 1991134 1991139) (-1131 "SUBSPACE.spad" 1982831 1982846 1990814 1990819) (-1130 "SUBRESP.spad" 1981991 1982005 1982787 1982792) (-1129 "STTF.spad" 1978090 1978106 1981981 1981986) (-1128 "STTFNC.spad" 1974558 1974574 1978080 1978085) (-1127 "STTAYLOR.spad" 1966956 1966967 1974439 1974444) (-1126 "STRTBL.spad" 1965461 1965478 1965610 1965637) (-1125 "STRING.spad" 1964870 1964879 1964884 1964911) (-1124 "STRICAT.spad" 1964646 1964655 1964826 1964865) (-1123 "STREAM.spad" 1961414 1961425 1964171 1964186) (-1122 "STREAM3.spad" 1960959 1960974 1961404 1961409) (-1121 "STREAM2.spad" 1960027 1960040 1960949 1960954) (-1120 "STREAM1.spad" 1959731 1959742 1960017 1960022) (-1119 "STINPROD.spad" 1958637 1958653 1959721 1959726) (-1118 "STEP.spad" 1957838 1957847 1958627 1958632) (-1117 "STBL.spad" 1956364 1956392 1956531 1956546) (-1116 "STAGG.spad" 1955429 1955440 1956344 1956359) (-1115 "STAGG.spad" 1954502 1954515 1955419 1955424) (-1114 "STACK.spad" 1953853 1953864 1954109 1954136) (-1113 "SREGSET.spad" 1951557 1951574 1953499 1953526) (-1112 "SRDCMPK.spad" 1950102 1950122 1951547 1951552) (-1111 "SRAGG.spad" 1945187 1945196 1950058 1950097) (-1110 "SRAGG.spad" 1940304 1940315 1945177 1945182) (-1109 "SQMATRIX.spad" 1937928 1937946 1938836 1938923) (-1108 "SPLTREE.spad" 1932480 1932493 1937364 1937391) (-1107 "SPLNODE.spad" 1929068 1929081 1932470 1932475) (-1106 "SPFCAT.spad" 1927845 1927854 1929058 1929063) (-1105 "SPECOUT.spad" 1926395 1926404 1927835 1927840) (-1104 "SPADXPT.spad" 1919248 1919257 1926375 1926390) (-1103 "spad-parser.spad" 1918713 1918722 1919238 1919243) (-1102 "SPADAST.spad" 1918689 1918698 1918703 1918708) (-1101 "SPACEC.spad" 1902702 1902713 1918679 1918684) (-1100 "SPACE3.spad" 1902478 1902489 1902692 1902697) (-1099 "SORTPAK.spad" 1902023 1902036 1902434 1902439) (-1098 "SOLVETRA.spad" 1899780 1899791 1902013 1902018) (-1097 "SOLVESER.spad" 1898300 1898311 1899770 1899775) (-1096 "SOLVERAD.spad" 1894310 1894321 1898290 1898295) (-1095 "SOLVEFOR.spad" 1892730 1892748 1894300 1894305) (-1094 "SNTSCAT.spad" 1892318 1892335 1892686 1892725) (-1093 "SMTS.spad" 1890578 1890604 1891883 1891980) (-1092 "SMP.spad" 1888017 1888037 1888407 1888534) (-1091 "SMITH.spad" 1886860 1886885 1888007 1888012) (-1090 "SMATCAT.spad" 1884958 1884988 1886792 1886855) (-1089 "SMATCAT.spad" 1883000 1883032 1884836 1884841) (-1088 "SKAGG.spad" 1881949 1881960 1882956 1882995) (-1087 "SINT.spad" 1880257 1880266 1881815 1881944) (-1086 "SIMPAN.spad" 1879985 1879994 1880247 1880252) (-1085 "SIG.spad" 1879313 1879322 1879975 1879980) (-1084 "SIGNRF.spad" 1878421 1878432 1879303 1879308) (-1083 "SIGNEF.spad" 1877690 1877707 1878411 1878416) (-1082 "SIGAST.spad" 1877071 1877080 1877680 1877685) (-1081 "SHP.spad" 1874989 1875004 1877027 1877032) (-1080 "SHDP.spad" 1865974 1866001 1866483 1866614) (-1079 "SGROUP.spad" 1865582 1865591 1865964 1865969) (-1078 "SGROUP.spad" 1865188 1865199 1865572 1865577) (-1077 "SGCF.spad" 1858069 1858078 1865178 1865183) (-1076 "SFRTCAT.spad" 1856985 1857002 1858025 1858064) (-1075 "SFRGCD.spad" 1856048 1856068 1856975 1856980) (-1074 "SFQCMPK.spad" 1850685 1850705 1856038 1856043) (-1073 "SFORT.spad" 1850120 1850134 1850675 1850680) (-1072 "SEXOF.spad" 1849963 1850003 1850110 1850115) (-1071 "SEX.spad" 1849855 1849864 1849953 1849958) (-1070 "SEXCAT.spad" 1846959 1846999 1849845 1849850) (-1069 "SET.spad" 1845259 1845270 1846380 1846419) (-1068 "SETMN.spad" 1843693 1843710 1845249 1845254) (-1067 "SETCAT.spad" 1843178 1843187 1843683 1843688) (-1066 "SETCAT.spad" 1842661 1842672 1843168 1843173) (-1065 "SETAGG.spad" 1839170 1839181 1842629 1842656) (-1064 "SETAGG.spad" 1835699 1835712 1839160 1839165) (-1063 "SEQAST.spad" 1835404 1835413 1835689 1835694) (-1062 "SEGXCAT.spad" 1834516 1834529 1835384 1835399) (-1061 "SEG.spad" 1834329 1834340 1834435 1834440) (-1060 "SEGCAT.spad" 1833148 1833159 1834309 1834324) (-1059 "SEGBIND.spad" 1832220 1832231 1833103 1833108) (-1058 "SEGBIND2.spad" 1831916 1831929 1832210 1832215) (-1057 "SEGAST.spad" 1831631 1831640 1831906 1831911) (-1056 "SEG2.spad" 1831056 1831069 1831587 1831592) (-1055 "SDVAR.spad" 1830332 1830343 1831046 1831051) (-1054 "SDPOL.spad" 1827722 1827733 1828013 1828140) (-1053 "SCPKG.spad" 1825801 1825812 1827712 1827717) (-1052 "SCOPE.spad" 1824946 1824955 1825791 1825796) (-1051 "SCACHE.spad" 1823628 1823639 1824936 1824941) (-1050 "SASTCAT.spad" 1823537 1823546 1823618 1823623) (-1049 "SASTCAT.spad" 1823444 1823455 1823527 1823532) (-1048 "SAOS.spad" 1823316 1823325 1823434 1823439) (-1047 "SAERFFC.spad" 1823029 1823049 1823306 1823311) (-1046 "SAE.spad" 1821204 1821220 1821815 1821950) (-1045 "SAEFACT.spad" 1820905 1820925 1821194 1821199) (-1044 "RURPK.spad" 1818546 1818562 1820895 1820900) (-1043 "RULESET.spad" 1817987 1818011 1818536 1818541) (-1042 "RULE.spad" 1816191 1816215 1817977 1817982) (-1041 "RULECOLD.spad" 1816043 1816056 1816181 1816186) (-1040 "RSTRCAST.spad" 1815761 1815770 1816033 1816038) (-1039 "RSETGCD.spad" 1812139 1812159 1815751 1815756) (-1038 "RSETCAT.spad" 1801911 1801928 1812095 1812134) (-1037 "RSETCAT.spad" 1791715 1791734 1801901 1801906) (-1036 "RSDCMPK.spad" 1790167 1790187 1791705 1791710) (-1035 "RRCC.spad" 1788551 1788581 1790157 1790162) (-1034 "RRCC.spad" 1786933 1786965 1788541 1788546) (-1033 "RPTAST.spad" 1786637 1786646 1786923 1786928) (-1032 "RPOLCAT.spad" 1765997 1766012 1786505 1786632) (-1031 "RPOLCAT.spad" 1745071 1745088 1765581 1765586) (-1030 "ROUTINE.spad" 1740934 1740943 1743718 1743745) (-1029 "ROMAN.spad" 1740166 1740175 1740800 1740929) (-1028 "ROIRC.spad" 1739246 1739278 1740156 1740161) (-1027 "RNS.spad" 1738149 1738158 1739148 1739241) (-1026 "RNS.spad" 1737138 1737149 1738139 1738144) (-1025 "RNG.spad" 1736873 1736882 1737128 1737133) (-1024 "RMODULE.spad" 1736511 1736522 1736863 1736868) (-1023 "RMCAT2.spad" 1735919 1735976 1736501 1736506) (-1022 "RMATRIX.spad" 1734598 1734617 1735086 1735125) (-1021 "RMATCAT.spad" 1730119 1730150 1734542 1734593) (-1020 "RMATCAT.spad" 1725542 1725575 1729967 1729972) (-1019 "RINTERP.spad" 1725430 1725450 1725532 1725537) (-1018 "RING.spad" 1724787 1724796 1725410 1725425) (-1017 "RING.spad" 1724152 1724163 1724777 1724782) (-1016 "RIDIST.spad" 1723536 1723545 1724142 1724147) (-1015 "RGCHAIN.spad" 1722115 1722131 1723021 1723048) (-1014 "RF.spad" 1719729 1719740 1722105 1722110) (-1013 "RFFACTOR.spad" 1719191 1719202 1719719 1719724) (-1012 "RFFACT.spad" 1718926 1718938 1719181 1719186) (-1011 "RFDIST.spad" 1717914 1717923 1718916 1718921) (-1010 "RETSOL.spad" 1717331 1717344 1717904 1717909) (-1009 "RETRACT.spad" 1716680 1716691 1717321 1717326) (-1008 "RETRACT.spad" 1716027 1716040 1716670 1716675) (-1007 "RETAST.spad" 1715840 1715849 1716017 1716022) (-1006 "RESULT.spad" 1713900 1713909 1714487 1714514) (-1005 "RESRING.spad" 1713247 1713294 1713838 1713895) (-1004 "RESLATC.spad" 1712571 1712582 1713237 1713242) (-1003 "REPSQ.spad" 1712300 1712311 1712561 1712566) (-1002 "REP.spad" 1709852 1709861 1712290 1712295) (-1001 "REPDB.spad" 1709557 1709568 1709842 1709847) (-1000 "REP2.spad" 1699129 1699140 1709399 1709404) (-999 "REP1.spad" 1693120 1693130 1699079 1699084) (-998 "REGSET.spad" 1690918 1690934 1692766 1692793) (-997 "REF.spad" 1690248 1690258 1690873 1690878) (-996 "REDORDER.spad" 1689425 1689441 1690238 1690243) (-995 "RECLOS.spad" 1688209 1688228 1688912 1689005) (-994 "REALSOLV.spad" 1687342 1687350 1688199 1688204) (-993 "REAL.spad" 1687215 1687223 1687332 1687337) (-992 "REAL0Q.spad" 1684498 1684512 1687205 1687210) (-991 "REAL0.spad" 1681327 1681341 1684488 1684493) (-990 "RDUCEAST.spad" 1681051 1681059 1681317 1681322) (-989 "RDIV.spad" 1680703 1680727 1681041 1681046) (-988 "RDIST.spad" 1680267 1680277 1680693 1680698) (-987 "RDETRS.spad" 1679064 1679081 1680257 1680262) (-986 "RDETR.spad" 1677172 1677189 1679054 1679059) (-985 "RDEEFS.spad" 1676246 1676262 1677162 1677167) (-984 "RDEEF.spad" 1675243 1675259 1676236 1676241) (-983 "RCFIELD.spad" 1672430 1672438 1675145 1675238) (-982 "RCFIELD.spad" 1669703 1669713 1672420 1672425) (-981 "RCAGG.spad" 1667606 1667616 1669683 1669698) (-980 "RCAGG.spad" 1665446 1665458 1667525 1667530) (-979 "RATRET.spad" 1664807 1664817 1665436 1665441) (-978 "RATFACT.spad" 1664500 1664511 1664797 1664802) (-977 "RANDSRC.spad" 1663820 1663828 1664490 1664495) (-976 "RADUTIL.spad" 1663575 1663583 1663810 1663815) (-975 "RADIX.spad" 1660366 1660379 1662043 1662136) (-974 "RADFF.spad" 1658780 1658816 1658898 1659054) (-973 "RADCAT.spad" 1658374 1658382 1658770 1658775) (-972 "RADCAT.spad" 1657966 1657976 1658364 1658369) (-971 "QUEUE.spad" 1657309 1657319 1657573 1657600) (-970 "QUAT.spad" 1655891 1655901 1656233 1656298) (-969 "QUATCT2.spad" 1655510 1655528 1655881 1655886) (-968 "QUATCAT.spad" 1653675 1653685 1655440 1655505) (-967 "QUATCAT.spad" 1651591 1651603 1653358 1653363) (-966 "QUAGG.spad" 1650405 1650415 1651547 1651586) (-965 "QQUTAST.spad" 1650175 1650183 1650395 1650400) (-964 "QFORM.spad" 1649638 1649652 1650165 1650170) (-963 "QFCAT.spad" 1648329 1648339 1649528 1649633) (-962 "QFCAT.spad" 1646624 1646636 1647825 1647830) (-961 "QFCAT2.spad" 1646315 1646331 1646614 1646619) (-960 "QEQUAT.spad" 1645872 1645880 1646305 1646310) (-959 "QCMPACK.spad" 1640619 1640638 1645862 1645867) (-958 "QALGSET.spad" 1636694 1636726 1640533 1640538) (-957 "QALGSET2.spad" 1634690 1634708 1636684 1636689) (-956 "PWFFINTB.spad" 1632000 1632021 1634680 1634685) (-955 "PUSHVAR.spad" 1631329 1631348 1631990 1631995) (-954 "PTRANFN.spad" 1627455 1627465 1631319 1631324) (-953 "PTPACK.spad" 1624543 1624553 1627445 1627450) (-952 "PTFUNC2.spad" 1624364 1624378 1624533 1624538) (-951 "PTCAT.spad" 1623446 1623456 1624320 1624359) (-950 "PSQFR.spad" 1622753 1622777 1623436 1623441) (-949 "PSEUDLIN.spad" 1621611 1621621 1622743 1622748) (-948 "PSETPK.spad" 1607044 1607060 1621489 1621494) (-947 "PSETCAT.spad" 1600952 1600975 1607012 1607039) (-946 "PSETCAT.spad" 1594846 1594871 1600908 1600913) (-945 "PSCURVE.spad" 1593829 1593837 1594836 1594841) (-944 "PSCAT.spad" 1592596 1592625 1593727 1593824) (-943 "PSCAT.spad" 1591453 1591484 1592586 1592591) (-942 "PRTITION.spad" 1590296 1590304 1591443 1591448) (-941 "PRTDAST.spad" 1590016 1590024 1590286 1590291) (-940 "PRS.spad" 1579578 1579595 1589972 1589977) (-939 "PRQAGG.spad" 1578997 1579007 1579534 1579573) (-938 "PROPLOG.spad" 1578400 1578408 1578987 1578992) (-937 "PROPFRML.spad" 1576318 1576329 1578390 1578395) (-936 "PROPERTY.spad" 1575812 1575820 1576308 1576313) (-935 "PRODUCT.spad" 1573492 1573504 1573778 1573833) (-934 "PR.spad" 1571878 1571890 1572583 1572710) (-933 "PRINT.spad" 1571630 1571638 1571868 1571873) (-932 "PRIMES.spad" 1569881 1569891 1571620 1571625) (-931 "PRIMELT.spad" 1567862 1567876 1569871 1569876) (-930 "PRIMCAT.spad" 1567485 1567493 1567852 1567857) (-929 "PRIMARR.spad" 1566490 1566500 1566668 1566695) (-928 "PRIMARR2.spad" 1565213 1565225 1566480 1566485) (-927 "PREASSOC.spad" 1564585 1564597 1565203 1565208) (-926 "PPCURVE.spad" 1563722 1563730 1564575 1564580) (-925 "PORTNUM.spad" 1563497 1563505 1563712 1563717) (-924 "POLYROOT.spad" 1562269 1562291 1563453 1563458) (-923 "POLY.spad" 1559566 1559576 1560083 1560210) (-922 "POLYLIFT.spad" 1558827 1558850 1559556 1559561) (-921 "POLYCATQ.spad" 1556929 1556951 1558817 1558822) (-920 "POLYCAT.spad" 1550335 1550356 1556797 1556924) (-919 "POLYCAT.spad" 1543043 1543066 1549507 1549512) (-918 "POLY2UP.spad" 1542491 1542505 1543033 1543038) (-917 "POLY2.spad" 1542086 1542098 1542481 1542486) (-916 "POLUTIL.spad" 1541027 1541056 1542042 1542047) (-915 "POLTOPOL.spad" 1539775 1539790 1541017 1541022) (-914 "POINT.spad" 1538614 1538624 1538701 1538728) (-913 "PNTHEORY.spad" 1535280 1535288 1538604 1538609) (-912 "PMTOOLS.spad" 1534037 1534051 1535270 1535275) (-911 "PMSYM.spad" 1533582 1533592 1534027 1534032) (-910 "PMQFCAT.spad" 1533169 1533183 1533572 1533577) (-909 "PMPRED.spad" 1532638 1532652 1533159 1533164) (-908 "PMPREDFS.spad" 1532082 1532104 1532628 1532633) (-907 "PMPLCAT.spad" 1531152 1531170 1532014 1532019) (-906 "PMLSAGG.spad" 1530733 1530747 1531142 1531147) (-905 "PMKERNEL.spad" 1530300 1530312 1530723 1530728) (-904 "PMINS.spad" 1529876 1529886 1530290 1530295) (-903 "PMFS.spad" 1529449 1529467 1529866 1529871) (-902 "PMDOWN.spad" 1528735 1528749 1529439 1529444) (-901 "PMASS.spad" 1527747 1527755 1528725 1528730) (-900 "PMASSFS.spad" 1526716 1526732 1527737 1527742) (-899 "PLOTTOOL.spad" 1526496 1526504 1526706 1526711) (-898 "PLOT.spad" 1521327 1521335 1526486 1526491) (-897 "PLOT3D.spad" 1517747 1517755 1521317 1521322) (-896 "PLOT1.spad" 1516888 1516898 1517737 1517742) (-895 "PLEQN.spad" 1504104 1504131 1516878 1516883) (-894 "PINTERP.spad" 1503720 1503739 1504094 1504099) (-893 "PINTERPA.spad" 1503502 1503518 1503710 1503715) (-892 "PI.spad" 1503109 1503117 1503476 1503497) (-891 "PID.spad" 1502065 1502073 1503035 1503104) (-890 "PICOERCE.spad" 1501722 1501732 1502055 1502060) (-889 "PGROEB.spad" 1500319 1500333 1501712 1501717) (-888 "PGE.spad" 1491572 1491580 1500309 1500314) (-887 "PGCD.spad" 1490454 1490471 1491562 1491567) (-886 "PFRPAC.spad" 1489597 1489607 1490444 1490449) (-885 "PFR.spad" 1486254 1486264 1489499 1489592) (-884 "PFOTOOLS.spad" 1485512 1485528 1486244 1486249) (-883 "PFOQ.spad" 1484882 1484900 1485502 1485507) (-882 "PFO.spad" 1484301 1484328 1484872 1484877) (-881 "PF.spad" 1483875 1483887 1484106 1484199) (-880 "PFECAT.spad" 1481541 1481549 1483801 1483870) (-879 "PFECAT.spad" 1479235 1479245 1481497 1481502) (-878 "PFBRU.spad" 1477105 1477117 1479225 1479230) (-877 "PFBR.spad" 1474643 1474666 1477095 1477100) (-876 "PERM.spad" 1470324 1470334 1474473 1474488) (-875 "PERMGRP.spad" 1465060 1465070 1470314 1470319) (-874 "PERMCAT.spad" 1463612 1463622 1465040 1465055) (-873 "PERMAN.spad" 1462144 1462158 1463602 1463607) (-872 "PENDTREE.spad" 1461417 1461427 1461773 1461778) (-871 "PDRING.spad" 1459908 1459918 1461397 1461412) (-870 "PDRING.spad" 1458407 1458419 1459898 1459903) (-869 "PDEPROB.spad" 1457364 1457372 1458397 1458402) (-868 "PDEPACK.spad" 1451366 1451374 1457354 1457359) (-867 "PDECOMP.spad" 1450828 1450845 1451356 1451361) (-866 "PDECAT.spad" 1449182 1449190 1450818 1450823) (-865 "PCOMP.spad" 1449033 1449046 1449172 1449177) (-864 "PBWLB.spad" 1447615 1447632 1449023 1449028) (-863 "PATTERN.spad" 1442046 1442056 1447605 1447610) (-862 "PATTERN2.spad" 1441782 1441794 1442036 1442041) (-861 "PATTERN1.spad" 1440084 1440100 1441772 1441777) (-860 "PATRES.spad" 1437631 1437643 1440074 1440079) (-859 "PATRES2.spad" 1437293 1437307 1437621 1437626) (-858 "PATMATCH.spad" 1435450 1435481 1437001 1437006) (-857 "PATMAB.spad" 1434875 1434885 1435440 1435445) (-856 "PATLRES.spad" 1433959 1433973 1434865 1434870) (-855 "PATAB.spad" 1433723 1433733 1433949 1433954) (-854 "PARTPERM.spad" 1431085 1431093 1433713 1433718) (-853 "PARSURF.spad" 1430513 1430541 1431075 1431080) (-852 "PARSU2.spad" 1430308 1430324 1430503 1430508) (-851 "script-parser.spad" 1429828 1429836 1430298 1430303) (-850 "PARSCURV.spad" 1429256 1429284 1429818 1429823) (-849 "PARSC2.spad" 1429045 1429061 1429246 1429251) (-848 "PARPCURV.spad" 1428503 1428531 1429035 1429040) (-847 "PARPC2.spad" 1428292 1428308 1428493 1428498) (-846 "PAN2EXPR.spad" 1427704 1427712 1428282 1428287) (-845 "PALETTE.spad" 1426674 1426682 1427694 1427699) (-844 "PAIR.spad" 1425657 1425670 1426262 1426267) (-843 "PADICRC.spad" 1422988 1423006 1424163 1424256) (-842 "PADICRAT.spad" 1421004 1421016 1421225 1421318) (-841 "PADIC.spad" 1420699 1420711 1420930 1420999) (-840 "PADICCT.spad" 1419240 1419252 1420625 1420694) (-839 "PADEPAC.spad" 1417919 1417938 1419230 1419235) (-838 "PADE.spad" 1416659 1416675 1417909 1417914) (-837 "OWP.spad" 1415643 1415673 1416517 1416584) (-836 "OVAR.spad" 1415424 1415447 1415633 1415638) (-835 "OUT.spad" 1414508 1414516 1415414 1415419) (-834 "OUTFORM.spad" 1403922 1403930 1414498 1414503) (-833 "OUTBCON.spad" 1403201 1403209 1403912 1403917) (-832 "OUTBCON.spad" 1402478 1402488 1403191 1403196) (-831 "OSI.spad" 1401953 1401961 1402468 1402473) (-830 "OSGROUP.spad" 1401871 1401879 1401943 1401948) (-829 "ORTHPOL.spad" 1400332 1400342 1401788 1401793) (-828 "OREUP.spad" 1399690 1399718 1400012 1400051) (-827 "ORESUP.spad" 1398989 1399013 1399370 1399409) (-826 "OREPCTO.spad" 1396808 1396820 1398909 1398914) (-825 "OREPCAT.spad" 1390865 1390875 1396764 1396803) (-824 "OREPCAT.spad" 1384812 1384824 1390713 1390718) (-823 "ORDSET.spad" 1383978 1383986 1384802 1384807) (-822 "ORDSET.spad" 1383142 1383152 1383968 1383973) (-821 "ORDRING.spad" 1382532 1382540 1383122 1383137) (-820 "ORDRING.spad" 1381930 1381940 1382522 1382527) (-819 "ORDMON.spad" 1381785 1381793 1381920 1381925) (-818 "ORDFUNS.spad" 1380911 1380927 1381775 1381780) (-817 "ORDFIN.spad" 1380845 1380853 1380901 1380906) (-816 "ORDCOMP.spad" 1379310 1379320 1380392 1380421) (-815 "ORDCOMP2.spad" 1378595 1378607 1379300 1379305) (-814 "OPTPROB.spad" 1377175 1377183 1378585 1378590) (-813 "OPTPACK.spad" 1369560 1369568 1377165 1377170) (-812 "OPTCAT.spad" 1367235 1367243 1369550 1369555) (-811 "OPQUERY.spad" 1366784 1366792 1367225 1367230) (-810 "OP.spad" 1366526 1366536 1366606 1366673) (-809 "ONECOMP.spad" 1365271 1365281 1366073 1366102) (-808 "ONECOMP2.spad" 1364689 1364701 1365261 1365266) (-807 "OMSERVER.spad" 1363691 1363699 1364679 1364684) (-806 "OMSAGG.spad" 1363467 1363477 1363635 1363686) (-805 "OMPKG.spad" 1362079 1362087 1363457 1363462) (-804 "OM.spad" 1361044 1361052 1362069 1362074) (-803 "OMLO.spad" 1360469 1360481 1360930 1360969) (-802 "OMEXPR.spad" 1360303 1360313 1360459 1360464) (-801 "OMERR.spad" 1359846 1359854 1360293 1360298) (-800 "OMERRK.spad" 1358880 1358888 1359836 1359841) (-799 "OMENC.spad" 1358224 1358232 1358870 1358875) (-798 "OMDEV.spad" 1352513 1352521 1358214 1358219) (-797 "OMCONN.spad" 1351922 1351930 1352503 1352508) (-796 "OINTDOM.spad" 1351685 1351693 1351848 1351917) (-795 "OFMONOID.spad" 1347872 1347882 1351675 1351680) (-794 "ODVAR.spad" 1347133 1347143 1347862 1347867) (-793 "ODR.spad" 1346581 1346607 1346945 1347094) (-792 "ODPOL.spad" 1343927 1343937 1344267 1344394) (-791 "ODP.spad" 1335048 1335068 1335421 1335552) (-790 "ODETOOLS.spad" 1333631 1333650 1335038 1335043) (-789 "ODESYS.spad" 1331281 1331298 1333621 1333626) (-788 "ODERTRIC.spad" 1327222 1327239 1331238 1331243) (-787 "ODERED.spad" 1326609 1326633 1327212 1327217) (-786 "ODERAT.spad" 1324160 1324177 1326599 1326604) (-785 "ODEPRRIC.spad" 1321051 1321073 1324150 1324155) (-784 "ODEPROB.spad" 1320250 1320258 1321041 1321046) (-783 "ODEPRIM.spad" 1317524 1317546 1320240 1320245) (-782 "ODEPAL.spad" 1316900 1316924 1317514 1317519) (-781 "ODEPACK.spad" 1303502 1303510 1316890 1316895) (-780 "ODEINT.spad" 1302933 1302949 1303492 1303497) (-779 "ODEIFTBL.spad" 1300328 1300336 1302923 1302928) (-778 "ODEEF.spad" 1295695 1295711 1300318 1300323) (-777 "ODECONST.spad" 1295214 1295232 1295685 1295690) (-776 "ODECAT.spad" 1293810 1293818 1295204 1295209) (-775 "OCT.spad" 1291948 1291958 1292664 1292703) (-774 "OCTCT2.spad" 1291592 1291613 1291938 1291943) (-773 "OC.spad" 1289366 1289376 1291548 1291587) (-772 "OC.spad" 1286865 1286877 1289049 1289054) (-771 "OCAMON.spad" 1286713 1286721 1286855 1286860) (-770 "OASGP.spad" 1286528 1286536 1286703 1286708) (-769 "OAMONS.spad" 1286048 1286056 1286518 1286523) (-768 "OAMON.spad" 1285909 1285917 1286038 1286043) (-767 "OAGROUP.spad" 1285771 1285779 1285899 1285904) (-766 "NUMTUBE.spad" 1285358 1285374 1285761 1285766) (-765 "NUMQUAD.spad" 1273220 1273228 1285348 1285353) (-764 "NUMODE.spad" 1264356 1264364 1273210 1273215) (-763 "NUMINT.spad" 1261914 1261922 1264346 1264351) (-762 "NUMFMT.spad" 1260754 1260762 1261904 1261909) (-761 "NUMERIC.spad" 1252826 1252836 1260559 1260564) (-760 "NTSCAT.spad" 1251316 1251332 1252782 1252821) (-759 "NTPOLFN.spad" 1250861 1250871 1251233 1251238) (-758 "NSUP.spad" 1243871 1243881 1248411 1248564) (-757 "NSUP2.spad" 1243263 1243275 1243861 1243866) (-756 "NSMP.spad" 1239458 1239477 1239766 1239893) (-755 "NREP.spad" 1237830 1237844 1239448 1239453) (-754 "NPCOEF.spad" 1237076 1237096 1237820 1237825) (-753 "NORMRETR.spad" 1236674 1236713 1237066 1237071) (-752 "NORMPK.spad" 1234576 1234595 1236664 1236669) (-751 "NORMMA.spad" 1234264 1234290 1234566 1234571) (-750 "NONE.spad" 1234005 1234013 1234254 1234259) (-749 "NONE1.spad" 1233681 1233691 1233995 1234000) (-748 "NODE1.spad" 1233150 1233166 1233671 1233676) (-747 "NNI.spad" 1232037 1232045 1233124 1233145) (-746 "NLINSOL.spad" 1230659 1230669 1232027 1232032) (-745 "NIPROB.spad" 1229142 1229150 1230649 1230654) (-744 "NFINTBAS.spad" 1226602 1226619 1229132 1229137) (-743 "NCODIV.spad" 1224800 1224816 1226592 1226597) (-742 "NCNTFRAC.spad" 1224442 1224456 1224790 1224795) (-741 "NCEP.spad" 1222602 1222616 1224432 1224437) (-740 "NASRING.spad" 1222198 1222206 1222592 1222597) (-739 "NASRING.spad" 1221792 1221802 1222188 1222193) (-738 "NARNG.spad" 1221136 1221144 1221782 1221787) (-737 "NARNG.spad" 1220478 1220488 1221126 1221131) (-736 "NAGSP.spad" 1219551 1219559 1220468 1220473) (-735 "NAGS.spad" 1209076 1209084 1219541 1219546) (-734 "NAGF07.spad" 1207469 1207477 1209066 1209071) (-733 "NAGF04.spad" 1201701 1201709 1207459 1207464) (-732 "NAGF02.spad" 1195510 1195518 1201691 1201696) (-731 "NAGF01.spad" 1191113 1191121 1195500 1195505) (-730 "NAGE04.spad" 1184573 1184581 1191103 1191108) (-729 "NAGE02.spad" 1174915 1174923 1184563 1184568) (-728 "NAGE01.spad" 1170799 1170807 1174905 1174910) (-727 "NAGD03.spad" 1168719 1168727 1170789 1170794) (-726 "NAGD02.spad" 1161250 1161258 1168709 1168714) (-725 "NAGD01.spad" 1155363 1155371 1161240 1161245) (-724 "NAGC06.spad" 1151150 1151158 1155353 1155358) (-723 "NAGC05.spad" 1149619 1149627 1151140 1151145) (-722 "NAGC02.spad" 1148874 1148882 1149609 1149614) (-721 "NAALG.spad" 1148409 1148419 1148842 1148869) (-720 "NAALG.spad" 1147964 1147976 1148399 1148404) (-719 "MULTSQFR.spad" 1144922 1144939 1147954 1147959) (-718 "MULTFACT.spad" 1144305 1144322 1144912 1144917) (-717 "MTSCAT.spad" 1142339 1142360 1144203 1144300) (-716 "MTHING.spad" 1141996 1142006 1142329 1142334) (-715 "MSYSCMD.spad" 1141430 1141438 1141986 1141991) (-714 "MSET.spad" 1139372 1139382 1141136 1141175) (-713 "MSETAGG.spad" 1139205 1139215 1139328 1139367) (-712 "MRING.spad" 1136176 1136188 1138913 1138980) (-711 "MRF2.spad" 1135744 1135758 1136166 1136171) (-710 "MRATFAC.spad" 1135290 1135307 1135734 1135739) (-709 "MPRFF.spad" 1133320 1133339 1135280 1135285) (-708 "MPOLY.spad" 1130755 1130770 1131114 1131241) (-707 "MPCPF.spad" 1130019 1130038 1130745 1130750) (-706 "MPC3.spad" 1129834 1129874 1130009 1130014) (-705 "MPC2.spad" 1129476 1129509 1129824 1129829) (-704 "MONOTOOL.spad" 1127811 1127828 1129466 1129471) (-703 "MONOID.spad" 1127130 1127138 1127801 1127806) (-702 "MONOID.spad" 1126447 1126457 1127120 1127125) (-701 "MONOGEN.spad" 1125193 1125206 1126307 1126442) (-700 "MONOGEN.spad" 1123961 1123976 1125077 1125082) (-699 "MONADWU.spad" 1121975 1121983 1123951 1123956) (-698 "MONADWU.spad" 1119987 1119997 1121965 1121970) (-697 "MONAD.spad" 1119131 1119139 1119977 1119982) (-696 "MONAD.spad" 1118273 1118283 1119121 1119126) (-695 "MOEBIUS.spad" 1116959 1116973 1118253 1118268) (-694 "MODULE.spad" 1116829 1116839 1116927 1116954) (-693 "MODULE.spad" 1116719 1116731 1116819 1116824) (-692 "MODRING.spad" 1116050 1116089 1116699 1116714) (-691 "MODOP.spad" 1114709 1114721 1115872 1115939) (-690 "MODMONOM.spad" 1114241 1114259 1114699 1114704) (-689 "MODMON.spad" 1110943 1110959 1111719 1111872) (-688 "MODFIELD.spad" 1110301 1110340 1110845 1110938) (-687 "MMLFORM.spad" 1109161 1109169 1110291 1110296) (-686 "MMAP.spad" 1108901 1108935 1109151 1109156) (-685 "MLO.spad" 1107328 1107338 1108857 1108896) (-684 "MLIFT.spad" 1105900 1105917 1107318 1107323) (-683 "MKUCFUNC.spad" 1105433 1105451 1105890 1105895) (-682 "MKRECORD.spad" 1105035 1105048 1105423 1105428) (-681 "MKFUNC.spad" 1104416 1104426 1105025 1105030) (-680 "MKFLCFN.spad" 1103372 1103382 1104406 1104411) (-679 "MKCHSET.spad" 1103148 1103158 1103362 1103367) (-678 "MKBCFUNC.spad" 1102633 1102651 1103138 1103143) (-677 "MINT.spad" 1102072 1102080 1102535 1102628) (-676 "MHROWRED.spad" 1100573 1100583 1102062 1102067) (-675 "MFLOAT.spad" 1099018 1099026 1100463 1100568) (-674 "MFINFACT.spad" 1098418 1098440 1099008 1099013) (-673 "MESH.spad" 1096150 1096158 1098408 1098413) (-672 "MDDFACT.spad" 1094343 1094353 1096140 1096145) (-671 "MDAGG.spad" 1093618 1093628 1094311 1094338) (-670 "MCMPLX.spad" 1089593 1089601 1090207 1090408) (-669 "MCDEN.spad" 1088801 1088813 1089583 1089588) (-668 "MCALCFN.spad" 1085903 1085929 1088791 1088796) (-667 "MAYBE.spad" 1085152 1085163 1085893 1085898) (-666 "MATSTOR.spad" 1082428 1082438 1085142 1085147) (-665 "MATRIX.spad" 1081132 1081142 1081616 1081643) (-664 "MATLIN.spad" 1078458 1078482 1081016 1081021) (-663 "MATCAT.spad" 1070031 1070053 1078414 1078453) (-662 "MATCAT.spad" 1061488 1061512 1069873 1069878) (-661 "MATCAT2.spad" 1060756 1060804 1061478 1061483) (-660 "MAPPKG3.spad" 1059655 1059669 1060746 1060751) (-659 "MAPPKG2.spad" 1058989 1059001 1059645 1059650) (-658 "MAPPKG1.spad" 1057807 1057817 1058979 1058984) (-657 "MAPPAST.spad" 1057120 1057128 1057797 1057802) (-656 "MAPHACK3.spad" 1056928 1056942 1057110 1057115) (-655 "MAPHACK2.spad" 1056693 1056705 1056918 1056923) (-654 "MAPHACK1.spad" 1056323 1056333 1056683 1056688) (-653 "MAGMA.spad" 1054113 1054130 1056313 1056318) (-652 "MACROAST.spad" 1053681 1053689 1054103 1054108) (-651 "M3D.spad" 1051377 1051387 1053059 1053064) (-650 "LZSTAGG.spad" 1048595 1048605 1051357 1051372) (-649 "LZSTAGG.spad" 1045821 1045833 1048585 1048590) (-648 "LWORD.spad" 1042526 1042543 1045811 1045816) (-647 "LSTAST.spad" 1042311 1042319 1042516 1042521) (-646 "LSQM.spad" 1040537 1040551 1040935 1040986) (-645 "LSPP.spad" 1040070 1040087 1040527 1040532) (-644 "LSMP.spad" 1038910 1038938 1040060 1040065) (-643 "LSMP1.spad" 1036714 1036728 1038900 1038905) (-642 "LSAGG.spad" 1036371 1036381 1036670 1036709) (-641 "LSAGG.spad" 1036060 1036072 1036361 1036366) (-640 "LPOLY.spad" 1035014 1035033 1035916 1035985) (-639 "LPEFRAC.spad" 1034271 1034281 1035004 1035009) (-638 "LO.spad" 1033672 1033686 1034205 1034232) (-637 "LOGIC.spad" 1033274 1033282 1033662 1033667) (-636 "LOGIC.spad" 1032874 1032884 1033264 1033269) (-635 "LODOOPS.spad" 1031792 1031804 1032864 1032869) (-634 "LODO.spad" 1031176 1031192 1031472 1031511) (-633 "LODOF.spad" 1030220 1030237 1031133 1031138) (-632 "LODOCAT.spad" 1028878 1028888 1030176 1030215) (-631 "LODOCAT.spad" 1027534 1027546 1028834 1028839) (-630 "LODO2.spad" 1026807 1026819 1027214 1027253) (-629 "LODO1.spad" 1026207 1026217 1026487 1026526) (-628 "LODEEF.spad" 1024979 1024997 1026197 1026202) (-627 "LNAGG.spad" 1020771 1020781 1024959 1024974) (-626 "LNAGG.spad" 1016537 1016549 1020727 1020732) (-625 "LMOPS.spad" 1013273 1013290 1016527 1016532) (-624 "LMODULE.spad" 1012915 1012925 1013263 1013268) (-623 "LMDICT.spad" 1012198 1012208 1012466 1012493) (-622 "LITERAL.spad" 1012104 1012115 1012188 1012193) (-621 "LIST.spad" 1009822 1009832 1011251 1011278) (-620 "LIST3.spad" 1009113 1009127 1009812 1009817) (-619 "LIST2.spad" 1007753 1007765 1009103 1009108) (-618 "LIST2MAP.spad" 1004630 1004642 1007743 1007748) (-617 "LINEXP.spad" 1004062 1004072 1004610 1004625) (-616 "LINDEP.spad" 1002839 1002851 1003974 1003979) (-615 "LIMITRF.spad" 1000753 1000763 1002829 1002834) (-614 "LIMITPS.spad" 999636 999649 1000743 1000748) (-613 "LIE.spad" 997650 997662 998926 999071) (-612 "LIECAT.spad" 997126 997136 997576 997645) (-611 "LIECAT.spad" 996630 996642 997082 997087) (-610 "LIB.spad" 994678 994686 995289 995304) (-609 "LGROBP.spad" 992031 992050 994668 994673) (-608 "LF.spad" 990950 990966 992021 992026) (-607 "LFCAT.spad" 989969 989977 990940 990945) (-606 "LEXTRIPK.spad" 985472 985487 989959 989964) (-605 "LEXP.spad" 983475 983502 985452 985467) (-604 "LETAST.spad" 983176 983184 983465 983470) (-603 "LEADCDET.spad" 981560 981577 983166 983171) (-602 "LAZM3PK.spad" 980264 980286 981550 981555) (-601 "LAUPOL.spad" 978953 978966 979857 979926) (-600 "LAPLACE.spad" 978526 978542 978943 978948) (-599 "LA.spad" 977966 977980 978448 978487) (-598 "LALG.spad" 977742 977752 977946 977961) (-597 "LALG.spad" 977526 977538 977732 977737) (-596 "KTVLOGIC.spad" 976949 976957 977516 977521) (-595 "KOVACIC.spad" 975662 975679 976939 976944) (-594 "KONVERT.spad" 975384 975394 975652 975657) (-593 "KOERCE.spad" 975121 975131 975374 975379) (-592 "KERNEL.spad" 973656 973666 974905 974910) (-591 "KERNEL2.spad" 973359 973371 973646 973651) (-590 "KDAGG.spad" 972450 972472 973327 973354) (-589 "KDAGG.spad" 971561 971585 972440 972445) (-588 "KAFILE.spad" 970524 970540 970759 970786) (-587 "JORDAN.spad" 968351 968363 969814 969959) (-586 "JOINAST.spad" 968045 968053 968341 968346) (-585 "JAVACODE.spad" 967811 967819 968035 968040) (-584 "IXAGG.spad" 965924 965948 967791 967806) (-583 "IXAGG.spad" 963902 963928 965771 965776) (-582 "IVECTOR.spad" 962673 962688 962828 962855) (-581 "ITUPLE.spad" 961818 961828 962663 962668) (-580 "ITRIGMNP.spad" 960629 960648 961808 961813) (-579 "ITFUN3.spad" 960123 960137 960619 960624) (-578 "ITFUN2.spad" 959853 959865 960113 960118) (-577 "ITAYLOR.spad" 957645 957660 959689 959814) (-576 "ISUPS.spad" 950056 950071 956619 956716) (-575 "ISUMP.spad" 949553 949569 950046 950051) (-574 "ISTRING.spad" 948556 948569 948722 948749) (-573 "ISAST.spad" 948277 948285 948546 948551) (-572 "IRURPK.spad" 946990 947009 948267 948272) (-571 "IRSN.spad" 944950 944958 946980 946985) (-570 "IRRF2F.spad" 943425 943435 944906 944911) (-569 "IRREDFFX.spad" 943026 943037 943415 943420) (-568 "IROOT.spad" 941357 941367 943016 943021) (-567 "IR.spad" 939146 939160 941212 941239) (-566 "IR2.spad" 938166 938182 939136 939141) (-565 "IR2F.spad" 937366 937382 938156 938161) (-564 "IPRNTPK.spad" 937126 937134 937356 937361) (-563 "IPF.spad" 936691 936703 936931 937024) (-562 "IPADIC.spad" 936452 936478 936617 936686) (-561 "IOBCON.spad" 936317 936325 936442 936447) (-560 "INVLAPLA.spad" 935962 935978 936307 936312) (-559 "INTTR.spad" 929208 929225 935952 935957) (-558 "INTTOOLS.spad" 926919 926935 928782 928787) (-557 "INTSLPE.spad" 926225 926233 926909 926914) (-556 "INTRVL.spad" 925791 925801 926139 926220) (-555 "INTRF.spad" 924155 924169 925781 925786) (-554 "INTRET.spad" 923587 923597 924145 924150) (-553 "INTRAT.spad" 922262 922279 923577 923582) (-552 "INTPM.spad" 920625 920641 921905 921910) (-551 "INTPAF.spad" 918393 918411 920557 920562) (-550 "INTPACK.spad" 908703 908711 918383 918388) (-549 "INT.spad" 908064 908072 908557 908698) (-548 "INTHERTR.spad" 907330 907347 908054 908059) (-547 "INTHERAL.spad" 906996 907020 907320 907325) (-546 "INTHEORY.spad" 903409 903417 906986 906991) (-545 "INTG0.spad" 896872 896890 903341 903346) (-544 "INTFTBL.spad" 890901 890909 896862 896867) (-543 "INTFACT.spad" 889960 889970 890891 890896) (-542 "INTEF.spad" 888275 888291 889950 889955) (-541 "INTDOM.spad" 886890 886898 888201 888270) (-540 "INTDOM.spad" 885567 885577 886880 886885) (-539 "INTCAT.spad" 883820 883830 885481 885562) (-538 "INTBIT.spad" 883323 883331 883810 883815) (-537 "INTALG.spad" 882505 882532 883313 883318) (-536 "INTAF.spad" 881997 882013 882495 882500) (-535 "INTABL.spad" 880515 880546 880678 880705) (-534 "INS.spad" 877982 877990 880417 880510) (-533 "INS.spad" 875535 875545 877972 877977) (-532 "INPSIGN.spad" 874969 874982 875525 875530) (-531 "INPRODPF.spad" 874035 874054 874959 874964) (-530 "INPRODFF.spad" 873093 873117 874025 874030) (-529 "INNMFACT.spad" 872064 872081 873083 873088) (-528 "INMODGCD.spad" 871548 871578 872054 872059) (-527 "INFSP.spad" 869833 869855 871538 871543) (-526 "INFPROD0.spad" 868883 868902 869823 869828) (-525 "INFORM.spad" 866044 866052 868873 868878) (-524 "INFORM1.spad" 865669 865679 866034 866039) (-523 "INFINITY.spad" 865221 865229 865659 865664) (-522 "INEP.spad" 863753 863775 865211 865216) (-521 "INDE.spad" 863482 863499 863743 863748) (-520 "INCRMAPS.spad" 862903 862913 863472 863477) (-519 "INBFF.spad" 858673 858684 862893 862898) (-518 "INBCON.spad" 857973 857981 858663 858668) (-517 "INBCON.spad" 857271 857281 857963 857968) (-516 "INAST.spad" 856937 856945 857261 857266) (-515 "IMPTAST.spad" 856645 856653 856927 856932) (-514 "IMATRIX.spad" 855590 855616 856102 856129) (-513 "IMATQF.spad" 854684 854728 855546 855551) (-512 "IMATLIN.spad" 853289 853313 854640 854645) (-511 "ILIST.spad" 851945 851960 852472 852499) (-510 "IIARRAY2.spad" 851333 851371 851552 851579) (-509 "IFF.spad" 850743 850759 851014 851107) (-508 "IFAST.spad" 850360 850368 850733 850738) (-507 "IFARRAY.spad" 847847 847862 849543 849570) (-506 "IFAMON.spad" 847709 847726 847803 847808) (-505 "IEVALAB.spad" 847098 847110 847699 847704) (-504 "IEVALAB.spad" 846485 846499 847088 847093) (-503 "IDPO.spad" 846283 846295 846475 846480) (-502 "IDPOAMS.spad" 846039 846051 846273 846278) (-501 "IDPOAM.spad" 845759 845771 846029 846034) (-500 "IDPC.spad" 844693 844705 845749 845754) (-499 "IDPAM.spad" 844438 844450 844683 844688) (-498 "IDPAG.spad" 844185 844197 844428 844433) (-497 "IDENT.spad" 844102 844110 844175 844180) (-496 "IDECOMP.spad" 841339 841357 844092 844097) (-495 "IDEAL.spad" 836262 836301 841274 841279) (-494 "ICDEN.spad" 835413 835429 836252 836257) (-493 "ICARD.spad" 834602 834610 835403 835408) (-492 "IBPTOOLS.spad" 833195 833212 834592 834597) (-491 "IBITS.spad" 832394 832407 832831 832858) (-490 "IBATOOL.spad" 829269 829288 832384 832389) (-489 "IBACHIN.spad" 827756 827771 829259 829264) (-488 "IARRAY2.spad" 826744 826770 827363 827390) (-487 "IARRAY1.spad" 825789 825804 825927 825954) (-486 "IAN.spad" 824002 824010 825605 825698) (-485 "IALGFACT.spad" 823603 823636 823992 823997) (-484 "HYPCAT.spad" 823027 823035 823593 823598) (-483 "HYPCAT.spad" 822449 822459 823017 823022) (-482 "HOSTNAME.spad" 822257 822265 822439 822444) (-481 "HOAGG.spad" 819515 819525 822237 822252) (-480 "HOAGG.spad" 816558 816570 819282 819287) (-479 "HEXADEC.spad" 814428 814436 815026 815119) (-478 "HEUGCD.spad" 813443 813454 814418 814423) (-477 "HELLFDIV.spad" 813033 813057 813433 813438) (-476 "HEAP.spad" 812425 812435 812640 812667) (-475 "HEADAST.spad" 811956 811964 812415 812420) (-474 "HDP.spad" 803073 803089 803450 803581) (-473 "HDMP.spad" 800249 800264 800867 800994) (-472 "HB.spad" 798486 798494 800239 800244) (-471 "HASHTBL.spad" 796956 796987 797167 797194) (-470 "HASAST.spad" 796674 796682 796946 796951) (-469 "HACKPI.spad" 796157 796165 796576 796669) (-468 "GTSET.spad" 795096 795112 795803 795830) (-467 "GSTBL.spad" 793615 793650 793789 793804) (-466 "GSERIES.spad" 790782 790809 791747 791896) (-465 "GROUP.spad" 790051 790059 790762 790777) (-464 "GROUP.spad" 789328 789338 790041 790046) (-463 "GROEBSOL.spad" 787816 787837 789318 789323) (-462 "GRMOD.spad" 786387 786399 787806 787811) (-461 "GRMOD.spad" 784956 784970 786377 786382) (-460 "GRIMAGE.spad" 777561 777569 784946 784951) (-459 "GRDEF.spad" 775940 775948 777551 777556) (-458 "GRAY.spad" 774399 774407 775930 775935) (-457 "GRALG.spad" 773446 773458 774389 774394) (-456 "GRALG.spad" 772491 772505 773436 773441) (-455 "GPOLSET.spad" 771945 771968 772173 772200) (-454 "GOSPER.spad" 771210 771228 771935 771940) (-453 "GMODPOL.spad" 770348 770375 771178 771205) (-452 "GHENSEL.spad" 769417 769431 770338 770343) (-451 "GENUPS.spad" 765518 765531 769407 769412) (-450 "GENUFACT.spad" 765095 765105 765508 765513) (-449 "GENPGCD.spad" 764679 764696 765085 765090) (-448 "GENMFACT.spad" 764131 764150 764669 764674) (-447 "GENEEZ.spad" 762070 762083 764121 764126) (-446 "GDMP.spad" 759088 759105 759864 759991) (-445 "GCNAALG.spad" 752983 753010 758882 758949) (-444 "GCDDOM.spad" 752155 752163 752909 752978) (-443 "GCDDOM.spad" 751389 751399 752145 752150) (-442 "GB.spad" 748907 748945 751345 751350) (-441 "GBINTERN.spad" 744927 744965 748897 748902) (-440 "GBF.spad" 740684 740722 744917 744922) (-439 "GBEUCLID.spad" 738558 738596 740674 740679) (-438 "GAUSSFAC.spad" 737855 737863 738548 738553) (-437 "GALUTIL.spad" 736177 736187 737811 737816) (-436 "GALPOLYU.spad" 734623 734636 736167 736172) (-435 "GALFACTU.spad" 732788 732807 734613 734618) (-434 "GALFACT.spad" 722921 722932 732778 732783) (-433 "FVFUN.spad" 719934 719942 722901 722916) (-432 "FVC.spad" 718976 718984 719914 719929) (-431 "FUNCTION.spad" 718825 718837 718966 718971) (-430 "FT.spad" 717037 717045 718815 718820) (-429 "FTEM.spad" 716200 716208 717027 717032) (-428 "FSUPFACT.spad" 715100 715119 716136 716141) (-427 "FST.spad" 713186 713194 715090 715095) (-426 "FSRED.spad" 712664 712680 713176 713181) (-425 "FSPRMELT.spad" 711488 711504 712621 712626) (-424 "FSPECF.spad" 709565 709581 711478 711483) (-423 "FS.spad" 703615 703625 709328 709560) (-422 "FS.spad" 697455 697467 703170 703175) (-421 "FSINT.spad" 697113 697129 697445 697450) (-420 "FSERIES.spad" 696300 696312 696933 697032) (-419 "FSCINT.spad" 695613 695629 696290 696295) (-418 "FSAGG.spad" 694718 694728 695557 695608) (-417 "FSAGG.spad" 693797 693809 694638 694643) (-416 "FSAGG2.spad" 692496 692512 693787 693792) (-415 "FS2UPS.spad" 686885 686919 692486 692491) (-414 "FS2.spad" 686530 686546 686875 686880) (-413 "FS2EXPXP.spad" 685653 685676 686520 686525) (-412 "FRUTIL.spad" 684595 684605 685643 685648) (-411 "FR.spad" 678290 678300 683620 683689) (-410 "FRNAALG.spad" 673377 673387 678232 678285) (-409 "FRNAALG.spad" 668476 668488 673333 673338) (-408 "FRNAAF2.spad" 667930 667948 668466 668471) (-407 "FRMOD.spad" 667324 667354 667861 667866) (-406 "FRIDEAL.spad" 666519 666540 667304 667319) (-405 "FRIDEAL2.spad" 666121 666153 666509 666514) (-404 "FRETRCT.spad" 665632 665642 666111 666116) (-403 "FRETRCT.spad" 665009 665021 665490 665495) (-402 "FRAMALG.spad" 663337 663350 664965 665004) (-401 "FRAMALG.spad" 661697 661712 663327 663332) (-400 "FRAC.spad" 658797 658807 659200 659373) (-399 "FRAC2.spad" 658400 658412 658787 658792) (-398 "FR2.spad" 657734 657746 658390 658395) (-397 "FPS.spad" 654543 654551 657624 657729) (-396 "FPS.spad" 651380 651390 654463 654468) (-395 "FPC.spad" 650422 650430 651282 651375) (-394 "FPC.spad" 649550 649560 650412 650417) (-393 "FPATMAB.spad" 649302 649312 649530 649545) (-392 "FPARFRAC.spad" 647775 647792 649292 649297) (-391 "FORTRAN.spad" 646281 646324 647765 647770) (-390 "FORT.spad" 645210 645218 646271 646276) (-389 "FORTFN.spad" 642370 642378 645190 645205) (-388 "FORTCAT.spad" 642044 642052 642350 642365) (-387 "FORMULA.spad" 639382 639390 642034 642039) (-386 "FORMULA1.spad" 638861 638871 639372 639377) (-385 "FORDER.spad" 638552 638576 638851 638856) (-384 "FOP.spad" 637753 637761 638542 638547) (-383 "FNLA.spad" 637177 637199 637721 637748) (-382 "FNCAT.spad" 635505 635513 637167 637172) (-381 "FNAME.spad" 635397 635405 635495 635500) (-380 "FMTC.spad" 635195 635203 635323 635392) (-379 "FMONOID.spad" 632250 632260 635151 635156) (-378 "FM.spad" 631945 631957 632184 632211) (-377 "FMFUN.spad" 628965 628973 631925 631940) (-376 "FMC.spad" 628007 628015 628945 628960) (-375 "FMCAT.spad" 625661 625679 627975 628002) (-374 "FM1.spad" 625018 625030 625595 625622) (-373 "FLOATRP.spad" 622739 622753 625008 625013) (-372 "FLOAT.spad" 615903 615911 622605 622734) (-371 "FLOATCP.spad" 613320 613334 615893 615898) (-370 "FLINEXP.spad" 613032 613042 613300 613315) (-369 "FLINEXP.spad" 612698 612710 612968 612973) (-368 "FLASORT.spad" 612018 612030 612688 612693) (-367 "FLALG.spad" 609664 609683 611944 612013) (-366 "FLAGG.spad" 606670 606680 609632 609659) (-365 "FLAGG.spad" 603589 603601 606553 606558) (-364 "FLAGG2.spad" 602270 602286 603579 603584) (-363 "FINRALG.spad" 600299 600312 602226 602265) (-362 "FINRALG.spad" 598254 598269 600183 600188) (-361 "FINITE.spad" 597406 597414 598244 598249) (-360 "FINAALG.spad" 586387 586397 597348 597401) (-359 "FINAALG.spad" 575380 575392 586343 586348) (-358 "FILE.spad" 574963 574973 575370 575375) (-357 "FILECAT.spad" 573481 573498 574953 574958) (-356 "FIELD.spad" 572887 572895 573383 573476) (-355 "FIELD.spad" 572379 572389 572877 572882) (-354 "FGROUP.spad" 570988 570998 572359 572374) (-353 "FGLMICPK.spad" 569775 569790 570978 570983) (-352 "FFX.spad" 569150 569165 569491 569584) (-351 "FFSLPE.spad" 568639 568660 569140 569145) (-350 "FFPOLY.spad" 559891 559902 568629 568634) (-349 "FFPOLY2.spad" 558951 558968 559881 559886) (-348 "FFP.spad" 558348 558368 558667 558760) (-347 "FF.spad" 557796 557812 558029 558122) (-346 "FFNBX.spad" 556308 556328 557512 557605) (-345 "FFNBP.spad" 554821 554838 556024 556117) (-344 "FFNB.spad" 553286 553307 554502 554595) (-343 "FFINTBAS.spad" 550700 550719 553276 553281) (-342 "FFIELDC.spad" 548275 548283 550602 550695) (-341 "FFIELDC.spad" 545936 545946 548265 548270) (-340 "FFHOM.spad" 544684 544701 545926 545931) (-339 "FFF.spad" 542119 542130 544674 544679) (-338 "FFCGX.spad" 540966 540986 541835 541928) (-337 "FFCGP.spad" 539855 539875 540682 540775) (-336 "FFCG.spad" 538647 538668 539536 539629) (-335 "FFCAT.spad" 531674 531696 538486 538642) (-334 "FFCAT.spad" 524780 524804 531594 531599) (-333 "FFCAT2.spad" 524525 524565 524770 524775) (-332 "FEXPR.spad" 516234 516280 524281 524320) (-331 "FEVALAB.spad" 515940 515950 516224 516229) (-330 "FEVALAB.spad" 515431 515443 515717 515722) (-329 "FDIV.spad" 514873 514897 515421 515426) (-328 "FDIVCAT.spad" 512915 512939 514863 514868) (-327 "FDIVCAT.spad" 510955 510981 512905 512910) (-326 "FDIV2.spad" 510609 510649 510945 510950) (-325 "FCPAK1.spad" 509162 509170 510599 510604) (-324 "FCOMP.spad" 508541 508551 509152 509157) (-323 "FC.spad" 498366 498374 508531 508536) (-322 "FAXF.spad" 491301 491315 498268 498361) (-321 "FAXF.spad" 484288 484304 491257 491262) (-320 "FARRAY.spad" 482434 482444 483471 483498) (-319 "FAMR.spad" 480554 480566 482332 482429) (-318 "FAMR.spad" 478658 478672 480438 480443) (-317 "FAMONOID.spad" 478308 478318 478612 478617) (-316 "FAMONC.spad" 476530 476542 478298 478303) (-315 "FAGROUP.spad" 476136 476146 476426 476453) (-314 "FACUTIL.spad" 474332 474349 476126 476131) (-313 "FACTFUNC.spad" 473508 473518 474322 474327) (-312 "EXPUPXS.spad" 470341 470364 471640 471789) (-311 "EXPRTUBE.spad" 467569 467577 470331 470336) (-310 "EXPRODE.spad" 464441 464457 467559 467564) (-309 "EXPR.spad" 459716 459726 460430 460837) (-308 "EXPR2UPS.spad" 455808 455821 459706 459711) (-307 "EXPR2.spad" 455511 455523 455798 455803) (-306 "EXPEXPAN.spad" 452450 452475 453084 453177) (-305 "EXIT.spad" 452121 452129 452440 452445) (-304 "EXITAST.spad" 451858 451866 452111 452116) (-303 "EVALCYC.spad" 451316 451330 451848 451853) (-302 "EVALAB.spad" 450880 450890 451306 451311) (-301 "EVALAB.spad" 450442 450454 450870 450875) (-300 "EUCDOM.spad" 447984 447992 450368 450437) (-299 "EUCDOM.spad" 445588 445598 447974 447979) (-298 "ESTOOLS.spad" 437428 437436 445578 445583) (-297 "ESTOOLS2.spad" 437029 437043 437418 437423) (-296 "ESTOOLS1.spad" 436714 436725 437019 437024) (-295 "ES.spad" 429261 429269 436704 436709) (-294 "ES.spad" 421714 421724 429159 429164) (-293 "ESCONT.spad" 418487 418495 421704 421709) (-292 "ESCONT1.spad" 418236 418248 418477 418482) (-291 "ES2.spad" 417731 417747 418226 418231) (-290 "ES1.spad" 417297 417313 417721 417726) (-289 "ERROR.spad" 414618 414626 417287 417292) (-288 "EQTBL.spad" 413090 413112 413299 413326) (-287 "EQ.spad" 407964 407974 410763 410875) (-286 "EQ2.spad" 407680 407692 407954 407959) (-285 "EP.spad" 403994 404004 407670 407675) (-284 "ENV.spad" 402696 402704 403984 403989) (-283 "ENTIRER.spad" 402364 402372 402640 402691) (-282 "EMR.spad" 401565 401606 402290 402359) (-281 "ELTAGG.spad" 399805 399824 401555 401560) (-280 "ELTAGG.spad" 398009 398030 399761 399766) (-279 "ELTAB.spad" 397456 397474 397999 398004) (-278 "ELFUTS.spad" 396835 396854 397446 397451) (-277 "ELEMFUN.spad" 396524 396532 396825 396830) (-276 "ELEMFUN.spad" 396211 396221 396514 396519) (-275 "ELAGG.spad" 394142 394152 396179 396206) (-274 "ELAGG.spad" 392022 392034 394061 394066) (-273 "ELABEXPR.spad" 390953 390961 392012 392017) (-272 "EFUPXS.spad" 387729 387759 390909 390914) (-271 "EFULS.spad" 384565 384588 387685 387690) (-270 "EFSTRUC.spad" 382520 382536 384555 384560) (-269 "EF.spad" 377286 377302 382510 382515) (-268 "EAB.spad" 375562 375570 377276 377281) (-267 "E04UCFA.spad" 375098 375106 375552 375557) (-266 "E04NAFA.spad" 374675 374683 375088 375093) (-265 "E04MBFA.spad" 374255 374263 374665 374670) (-264 "E04JAFA.spad" 373791 373799 374245 374250) (-263 "E04GCFA.spad" 373327 373335 373781 373786) (-262 "E04FDFA.spad" 372863 372871 373317 373322) (-261 "E04DGFA.spad" 372399 372407 372853 372858) (-260 "E04AGNT.spad" 368241 368249 372389 372394) (-259 "DVARCAT.spad" 364926 364936 368231 368236) (-258 "DVARCAT.spad" 361609 361621 364916 364921) (-257 "DSMP.spad" 359040 359054 359345 359472) (-256 "DROPT.spad" 352985 352993 359030 359035) (-255 "DROPT1.spad" 352648 352658 352975 352980) (-254 "DROPT0.spad" 347475 347483 352638 352643) (-253 "DRAWPT.spad" 345630 345638 347465 347470) (-252 "DRAW.spad" 338230 338243 345620 345625) (-251 "DRAWHACK.spad" 337538 337548 338220 338225) (-250 "DRAWCX.spad" 334980 334988 337528 337533) (-249 "DRAWCURV.spad" 334517 334532 334970 334975) (-248 "DRAWCFUN.spad" 323689 323697 334507 334512) (-247 "DQAGG.spad" 321845 321855 323645 323684) (-246 "DPOLCAT.spad" 317186 317202 321713 321840) (-245 "DPOLCAT.spad" 312613 312631 317142 317147) (-244 "DPMO.spad" 305916 305932 306054 306355) (-243 "DPMM.spad" 299232 299250 299357 299658) (-242 "DOMAIN.spad" 298503 298511 299222 299227) (-241 "DMP.spad" 295725 295740 296297 296424) (-240 "DLP.spad" 295073 295083 295715 295720) (-239 "DLIST.spad" 293485 293495 294256 294283) (-238 "DLAGG.spad" 291886 291896 293465 293480) (-237 "DIVRING.spad" 291428 291436 291830 291881) (-236 "DIVRING.spad" 291014 291024 291418 291423) (-235 "DISPLAY.spad" 289194 289202 291004 291009) (-234 "DIRPROD.spad" 280048 280064 280688 280819) (-233 "DIRPROD2.spad" 278856 278874 280038 280043) (-232 "DIRPCAT.spad" 277786 277802 278708 278851) (-231 "DIRPCAT.spad" 276457 276475 277381 277386) (-230 "DIOSP.spad" 275282 275290 276447 276452) (-229 "DIOPS.spad" 274254 274264 275250 275277) (-228 "DIOPS.spad" 273212 273224 274210 274215) (-227 "DIFRING.spad" 272504 272512 273192 273207) (-226 "DIFRING.spad" 271804 271814 272494 272499) (-225 "DIFEXT.spad" 270963 270973 271784 271799) (-224 "DIFEXT.spad" 270039 270051 270862 270867) (-223 "DIAGG.spad" 269657 269667 270007 270034) (-222 "DIAGG.spad" 269295 269307 269647 269652) (-221 "DHMATRIX.spad" 267599 267609 268752 268779) (-220 "DFSFUN.spad" 261007 261015 267589 267594) (-219 "DFLOAT.spad" 257610 257618 260897 261002) (-218 "DFINTTLS.spad" 255819 255835 257600 257605) (-217 "DERHAM.spad" 253729 253761 255799 255814) (-216 "DEQUEUE.spad" 253047 253057 253336 253363) (-215 "DEGRED.spad" 252662 252676 253037 253042) (-214 "DEFINTRF.spad" 250187 250197 252652 252657) (-213 "DEFINTEF.spad" 248683 248699 250177 250182) (-212 "DEFAST.spad" 248040 248048 248673 248678) (-211 "DECIMAL.spad" 245922 245930 246508 246601) (-210 "DDFACT.spad" 243721 243738 245912 245917) (-209 "DBLRESP.spad" 243319 243343 243711 243716) (-208 "DBASE.spad" 241891 241901 243309 243314) (-207 "DATABUF.spad" 241379 241392 241881 241886) (-206 "D03FAFA.spad" 241207 241215 241369 241374) (-205 "D03EEFA.spad" 241027 241035 241197 241202) (-204 "D03AGNT.spad" 240107 240115 241017 241022) (-203 "D02EJFA.spad" 239569 239577 240097 240102) (-202 "D02CJFA.spad" 239047 239055 239559 239564) (-201 "D02BHFA.spad" 238537 238545 239037 239042) (-200 "D02BBFA.spad" 238027 238035 238527 238532) (-199 "D02AGNT.spad" 232831 232839 238017 238022) (-198 "D01WGTS.spad" 231150 231158 232821 232826) (-197 "D01TRNS.spad" 231127 231135 231140 231145) (-196 "D01GBFA.spad" 230649 230657 231117 231122) (-195 "D01FCFA.spad" 230171 230179 230639 230644) (-194 "D01ASFA.spad" 229639 229647 230161 230166) (-193 "D01AQFA.spad" 229085 229093 229629 229634) (-192 "D01APFA.spad" 228509 228517 229075 229080) (-191 "D01ANFA.spad" 228003 228011 228499 228504) (-190 "D01AMFA.spad" 227513 227521 227993 227998) (-189 "D01ALFA.spad" 227053 227061 227503 227508) (-188 "D01AKFA.spad" 226579 226587 227043 227048) (-187 "D01AJFA.spad" 226102 226110 226569 226574) (-186 "D01AGNT.spad" 222161 222169 226092 226097) (-185 "CYCLOTOM.spad" 221667 221675 222151 222156) (-184 "CYCLES.spad" 218499 218507 221657 221662) (-183 "CVMP.spad" 217916 217926 218489 218494) (-182 "CTRIGMNP.spad" 216406 216422 217906 217911) (-181 "CTORCALL.spad" 215994 216002 216396 216401) (-180 "CSTTOOLS.spad" 215237 215250 215984 215989) (-179 "CRFP.spad" 208941 208954 215227 215232) (-178 "CRCEAST.spad" 208662 208670 208931 208936) (-177 "CRAPACK.spad" 207705 207715 208652 208657) (-176 "CPMATCH.spad" 207205 207220 207630 207635) (-175 "CPIMA.spad" 206910 206929 207195 207200) (-174 "COORDSYS.spad" 201803 201813 206900 206905) (-173 "CONTOUR.spad" 201205 201213 201793 201798) (-172 "CONTFRAC.spad" 196817 196827 201107 201200) (-171 "CONDUIT.spad" 196575 196583 196807 196812) (-170 "COMRING.spad" 196249 196257 196513 196570) (-169 "COMPPROP.spad" 195763 195771 196239 196244) (-168 "COMPLPAT.spad" 195530 195545 195753 195758) (-167 "COMPLEX.spad" 189556 189566 189800 190061) (-166 "COMPLEX2.spad" 189269 189281 189546 189551) (-165 "COMPFACT.spad" 188871 188885 189259 189264) (-164 "COMPCAT.spad" 186927 186937 188593 188866) (-163 "COMPCAT.spad" 184689 184701 186357 186362) (-162 "COMMUPC.spad" 184435 184453 184679 184684) (-161 "COMMONOP.spad" 183968 183976 184425 184430) (-160 "COMM.spad" 183777 183785 183958 183963) (-159 "COMMAAST.spad" 183541 183549 183767 183772) (-158 "COMBOPC.spad" 182446 182454 183531 183536) (-157 "COMBINAT.spad" 181191 181201 182436 182441) (-156 "COMBF.spad" 178559 178575 181181 181186) (-155 "COLOR.spad" 177396 177404 178549 178554) (-154 "COLONAST.spad" 177063 177071 177386 177391) (-153 "CMPLXRT.spad" 176772 176789 177053 177058) (-152 "CLLCTAST.spad" 176436 176444 176762 176767) (-151 "CLIP.spad" 172528 172536 176426 176431) (-150 "CLIF.spad" 171167 171183 172484 172523) (-149 "CLAGG.spad" 167642 167652 171147 171162) (-148 "CLAGG.spad" 163998 164010 167505 167510) (-147 "CINTSLPE.spad" 163323 163336 163988 163993) (-146 "CHVAR.spad" 161401 161423 163313 163318) (-145 "CHARZ.spad" 161316 161324 161381 161396) (-144 "CHARPOL.spad" 160824 160834 161306 161311) (-143 "CHARNZ.spad" 160577 160585 160804 160819) (-142 "CHAR.spad" 158445 158453 160567 160572) (-141 "CFCAT.spad" 157761 157769 158435 158440) (-140 "CDEN.spad" 156919 156933 157751 157756) (-139 "CCLASS.spad" 155068 155076 156330 156369) (-138 "CATEGORY.spad" 154847 154855 155058 155063) (-137 "CATAST.spad" 154475 154483 154837 154842) (-136 "CASEAST.spad" 154191 154199 154465 154470) (-135 "CARTEN.spad" 149294 149318 154181 154186) (-134 "CARTEN2.spad" 148680 148707 149284 149289) (-133 "CARD.spad" 145969 145977 148654 148675) (-132 "CAPSLAST.spad" 145744 145752 145959 145964) (-131 "CACHSET.spad" 145366 145374 145734 145739) (-130 "CABMON.spad" 144919 144927 145356 145361) (-129 "BYTE.spad" 144313 144321 144909 144914) (-128 "BYTEARY.spad" 143388 143396 143482 143509) (-127 "BTREE.spad" 142457 142467 142995 143022) (-126 "BTOURN.spad" 141460 141470 142064 142091) (-125 "BTCAT.spad" 140836 140846 141416 141455) (-124 "BTCAT.spad" 140244 140256 140826 140831) (-123 "BTAGG.spad" 139354 139362 140200 140239) (-122 "BTAGG.spad" 138496 138506 139344 139349) (-121 "BSTREE.spad" 137231 137241 138103 138130) (-120 "BRILL.spad" 135426 135437 137221 137226) (-119 "BRAGG.spad" 134340 134350 135406 135421) (-118 "BRAGG.spad" 133228 133240 134296 134301) (-117 "BPADICRT.spad" 131210 131222 131465 131558) (-116 "BPADIC.spad" 130874 130886 131136 131205) (-115 "BOUNDZRO.spad" 130530 130547 130864 130869) (-114 "BOP.spad" 125994 126002 130520 130525) (-113 "BOP1.spad" 123380 123390 125950 125955) (-112 "BOOLEAN.spad" 122704 122712 123370 123375) (-111 "BMODULE.spad" 122416 122428 122672 122699) (-110 "BITS.spad" 121835 121843 122052 122079) (-109 "BINFILE.spad" 121178 121186 121825 121830) (-108 "BINDING.spad" 120597 120605 121168 121173) (-107 "BINARY.spad" 118488 118496 119065 119158) (-106 "BGAGG.spad" 117673 117683 118456 118483) (-105 "BGAGG.spad" 116878 116890 117663 117668) (-104 "BFUNCT.spad" 116442 116450 116858 116873) (-103 "BEZOUT.spad" 115576 115603 116392 116397) (-102 "BBTREE.spad" 112395 112405 115183 115210) (-101 "BASTYPE.spad" 112067 112075 112385 112390) (-100 "BASTYPE.spad" 111737 111747 112057 112062) (-99 "BALFACT.spad" 111177 111189 111727 111732) (-98 "AUTOMOR.spad" 110624 110633 111157 111172) (-97 "ATTREG.spad" 107343 107350 110376 110619) (-96 "ATTRBUT.spad" 103366 103373 107323 107338) (-95 "ATTRAST.spad" 103084 103091 103356 103361) (-94 "ATRIG.spad" 102554 102561 103074 103079) (-93 "ATRIG.spad" 102022 102031 102544 102549) (-92 "ASTCAT.spad" 101926 101933 102012 102017) (-91 "ASTCAT.spad" 101828 101837 101916 101921) (-90 "ASTACK.spad" 101161 101170 101435 101462) (-89 "ASSOCEQ.spad" 99961 99972 101117 101122) (-88 "ASP9.spad" 99042 99055 99951 99956) (-87 "ASP8.spad" 98085 98098 99032 99037) (-86 "ASP80.spad" 97407 97420 98075 98080) (-85 "ASP7.spad" 96567 96580 97397 97402) (-84 "ASP78.spad" 96018 96031 96557 96562) (-83 "ASP77.spad" 95387 95400 96008 96013) (-82 "ASP74.spad" 94479 94492 95377 95382) (-81 "ASP73.spad" 93750 93763 94469 94474) (-80 "ASP6.spad" 92382 92395 93740 93745) (-79 "ASP55.spad" 90891 90904 92372 92377) (-78 "ASP50.spad" 88708 88721 90881 90886) (-77 "ASP4.spad" 88003 88016 88698 88703) (-76 "ASP49.spad" 87002 87015 87993 87998) (-75 "ASP42.spad" 85409 85448 86992 86997) (-74 "ASP41.spad" 83988 84027 85399 85404) (-73 "ASP35.spad" 82976 82989 83978 83983) (-72 "ASP34.spad" 82277 82290 82966 82971) (-71 "ASP33.spad" 81837 81850 82267 82272) (-70 "ASP31.spad" 80977 80990 81827 81832) (-69 "ASP30.spad" 79869 79882 80967 80972) (-68 "ASP29.spad" 79335 79348 79859 79864) (-67 "ASP28.spad" 70608 70621 79325 79330) (-66 "ASP27.spad" 69505 69518 70598 70603) (-65 "ASP24.spad" 68592 68605 69495 69500) (-64 "ASP20.spad" 67808 67821 68582 68587) (-63 "ASP1.spad" 67189 67202 67798 67803) (-62 "ASP19.spad" 61875 61888 67179 67184) (-61 "ASP12.spad" 61289 61302 61865 61870) (-60 "ASP10.spad" 60560 60573 61279 61284) (-59 "ARRAY2.spad" 59920 59929 60167 60194) (-58 "ARRAY1.spad" 58755 58764 59103 59130) (-57 "ARRAY12.spad" 57424 57435 58745 58750) (-56 "ARR2CAT.spad" 53074 53095 57380 57419) (-55 "ARR2CAT.spad" 48756 48779 53064 53069) (-54 "APPRULE.spad" 48000 48022 48746 48751) (-53 "APPLYORE.spad" 47615 47628 47990 47995) (-52 "ANY.spad" 45957 45964 47605 47610) (-51 "ANY1.spad" 45028 45037 45947 45952) (-50 "ANTISYM.spad" 43467 43483 45008 45023) (-49 "ANON.spad" 43164 43171 43457 43462) (-48 "AN.spad" 41465 41472 42980 43073) (-47 "AMR.spad" 39644 39655 41363 41460) (-46 "AMR.spad" 37660 37673 39381 39386) (-45 "ALIST.spad" 35072 35093 35422 35449) (-44 "ALGSC.spad" 34195 34221 34944 34997) (-43 "ALGPKG.spad" 29904 29915 34151 34156) (-42 "ALGMFACT.spad" 29093 29107 29894 29899) (-41 "ALGMANIP.spad" 26513 26528 28890 28895) (-40 "ALGFF.spad" 24828 24855 25045 25201) (-39 "ALGFACT.spad" 23949 23959 24818 24823) (-38 "ALGEBRA.spad" 23680 23689 23905 23944) (-37 "ALGEBRA.spad" 23443 23454 23670 23675) (-36 "ALAGG.spad" 22941 22962 23399 23438) (-35 "AHYP.spad" 22322 22329 22931 22936) (-34 "AGG.spad" 20621 20628 22302 22317) (-33 "AGG.spad" 18894 18903 20577 20582) (-32 "AF.spad" 17319 17334 18829 18834) (-31 "ADDAST.spad" 16999 17006 17309 17314) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index d22229fa..77c42a11 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,1398 +1,1403 @@
-(144748 . 3431009361)
-(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) #0#) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))))
+(144986 . 3431018173)
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#0=(-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))))
(((|#2| |#2|) . T))
-((((-547)) . T))
-((($ $) -1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) ((|#2| |#2|) . T) ((#0=(-398 (-547)) #0#) |has| |#2| (-38 (-398 (-547)))))
+((((-549)) . T))
+((($ $) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))) ((|#2| |#2|) . T) ((#0=(-400 (-549)) #0#) |has| |#2| (-38 (-400 (-549)))))
((($) . T))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
+((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
(((|#2|) . T))
-((($) -1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) ((|#2|) . T) (((-398 (-547))) |has| |#2| (-38 (-398 (-547)))))
-(|has| |#1| (-878))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((($) . T) (((-398 (-547))) . T))
+((($) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))) ((|#2|) . T) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))))
+(|has| |#1| (-880))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((($) . T) (((-400 (-549))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-142)) . T))
-((((-523)) . T) (((-1119)) . T) (((-217)) . T) (((-370)) . T) (((-861 (-370))) . T))
-(((|#1|) . T))
-((((-217)) . T) (((-832)) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1|) . T))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-819)))
-((($ $) . T) ((#0=(-398 (-547)) #0#) -1530 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1| |#1|) . T))
-(-1530 (|has| |#1| (-794)) (|has| |#1| (-821)))
-((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T))
-((((-832)) . T))
-((((-832)) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-(|has| |#1| (-819))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+((((-525)) . T) (((-1125)) . T) (((-219)) . T) (((-372)) . T) (((-863 (-372))) . T))
+(((|#1|) . T))
+((((-219)) . T) (((-834)) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) . T))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
+((($ $) . T) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1| |#1|) . T))
+(-1536 (|has| |#1| (-796)) (|has| |#1| (-823)))
+((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
+((((-834)) . T))
+((((-834)) . T))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+(|has| |#1| (-821))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(((|#1| |#2| |#3|) . T))
(((|#4|) . T))
-((($) . T) (((-398 (-547))) -1530 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T))
-((((-832)) . T))
-((((-832)) |has| |#1| (-1063)))
-((((-832)) . T) (((-1141)) . T))
+((($) . T) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
+((((-834)) . T))
+((((-834)) |has| |#1| (-1067)))
+((((-834)) . T) (((-1148)) . T))
(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(((|#2| (-472 (-3767 |#1|) (-745))) . T))
-(((|#1| (-519 (-1136))) . T))
-(((#0=(-839 |#1|) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(|has| |#4| (-359))
-(|has| |#3| (-359))
-(((|#1|) . T))
-((((-839 |#1|)) . T) (((-398 (-547))) . T) (($) . T))
+(((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(((|#2| (-474 (-3775 |#1|) (-747))) . T))
+(((|#1| (-521 (-1143))) . T))
+(((#0=(-841 |#1|) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(|has| |#4| (-361))
+(|has| |#3| (-361))
+(((|#1|) . T))
+((((-841 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-143))
(|has| |#1| (-145))
-(|has| |#1| (-539))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-((($) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063))))
-((((-523)) |has| |#1| (-592 (-523))))
-((($) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-832)) . T))
-((((-832)) . T))
-((((-398 (-547))) . T) (($) . T))
-((((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (((-1211 |#1| |#2| |#3|)) |has| |#1| (-354)) (($) . T) ((|#1|) . T))
-((((-832)) . T))
-(((|#1|) . T))
-((((-832)) . T))
-((((-832)) . T))
-(((|#1|) . T) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) . T))
+(|has| |#1| (-541))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+((($) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+((((-525)) |has| |#1| (-594 (-525))))
+((($) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T))
+((($) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-834)) . T))
+((((-834)) . T))
+((((-400 (-549))) . T) (($) . T))
+((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (((-1218 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T))
+((((-834)) . T))
+(((|#1|) . T))
+((((-834)) . T))
+((((-834)) . T))
+(((|#1|) . T) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) . T))
(((|#1| |#2|) . T))
-((((-832)) . T))
-(((|#1|) . T))
-(((#0=(-398 (-547)) #0#) |has| |#2| (-38 (-398 (-547)))) ((|#2| |#2|) . T) (($ $) -1530 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
-(((|#1|) . T))
-(((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) (($) . T))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
-((($) -1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-(((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))) ((|#1| |#1|) . T) (($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))))
+((((-834)) . T))
+(((|#1|) . T))
+(((#0=(-400 (-549)) #0#) |has| |#2| (-38 (-400 (-549)))) ((|#2| |#2|) . T) (($ $) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
+(((|#1|) . T))
+(((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) (($) . T))
+((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
+((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+(((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))) ((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
((($ $) . T))
(((|#2|) . T))
-((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T) (($) -1530 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T) (($) -1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))))
+((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T) (($) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
((($) . T))
-(|has| |#1| (-359))
+(|has| |#1| (-361))
(((|#1|) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-832)) . T))
-((((-832)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-834)) . T))
+((((-834)) . T))
(((|#1| |#2|) . T))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-869 (-1136))) (|has| |#1| (-1016)))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-869 (-1136))) (|has| |#1| (-1016)))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1143))) (|has| |#1| (-1018)))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1143))) (|has| |#1| (-1018)))
(((|#1| |#1|) . T))
-(|has| |#1| (-539))
-(((|#2| |#2|) -12 (|has| |#1| (-354)) (|has| |#2| (-300 |#2|))) (((-1136) |#2|) -12 (|has| |#1| (-354)) (|has| |#2| (-503 (-1136) |#2|))))
-((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-819)))
-((($ $) . T) ((#0=(-398 (-547)) #0#) . T))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539)))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(|has| |#1| (-1063))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(|has| |#1| (-1063))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(|has| |#1| (-819))
-((($) . T) (((-398 (-547))) . T))
-(((|#1|) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-340)))
-(-1530 (|has| |#4| (-767)) (|has| |#4| (-819)))
-(-1530 (|has| |#4| (-767)) (|has| |#4| (-819)))
-(-1530 (|has| |#3| (-767)) (|has| |#3| (-819)))
-(-1530 (|has| |#3| (-767)) (|has| |#3| (-819)))
+(|has| |#1| (-541))
+(((|#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) (((-1143) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1143) |#2|))))
+((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
+((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(|has| |#1| (-1067))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(|has| |#1| (-1067))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(|has| |#1| (-821))
+((($) . T) (((-400 (-549))) . T))
+(((|#1|) . T))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
+(-1536 (|has| |#4| (-769)) (|has| |#4| (-821)))
+(-1536 (|has| |#4| (-769)) (|has| |#4| (-821)))
+(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1063))
-(|has| |#1| (-1063))
-(((|#1| (-1136) (-1052 (-1136)) (-519 (-1052 (-1136)))) . T))
-((((-547) |#1|) . T))
-((((-547)) . T))
-((((-547)) . T))
-((((-879 |#1|)) . T))
-(((|#1| (-519 |#2|)) . T))
-((((-547)) . T))
-((((-547)) . T))
-(((|#1|) . T))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(((|#1| (-745)) . T))
-(|has| |#2| (-767))
-(-1530 (|has| |#2| (-767)) (|has| |#2| (-819)))
-(|has| |#2| (-819))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(((|#1| (-1143) (-1055 (-1143)) (-521 (-1055 (-1143)))) . T))
+((((-549) |#1|) . T))
+((((-549)) . T))
+((((-549)) . T))
+((((-881 |#1|)) . T))
+(((|#1| (-521 |#2|)) . T))
+((((-549)) . T))
+((((-549)) . T))
+(((|#1|) . T))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(((|#1| (-747)) . T))
+(|has| |#2| (-769))
+(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(|has| |#2| (-821))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1119) |#1|) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
+((((-1125) |#1|) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
(((|#1|) . T))
-(((|#3| (-745)) . T))
+(((|#3| (-747)) . T))
(|has| |#1| (-145))
(|has| |#1| (-143))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539)))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539)))
-(|has| |#1| (-1063))
-((((-398 (-547))) . T) (((-547)) . T))
-((((-1136) |#2|) |has| |#2| (-503 (-1136) |#2|)) ((|#2| |#2|) |has| |#2| (-300 |#2|)))
-((((-398 (-547))) . T) (((-547)) . T))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
+(|has| |#1| (-1067))
+((((-400 (-549))) . T) (((-549)) . T))
+((((-1143) |#2|) |has| |#2| (-505 (-1143) |#2|)) ((|#2| |#2|) |has| |#2| (-302 |#2|)))
+((((-400 (-549))) . T) (((-549)) . T))
(((|#1|) . T) (($) . T))
-((((-547)) . T))
-((((-547)) . T))
-((($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#1|) |has| |#1| (-169)))
-((((-547)) . T))
-((((-547)) . T))
-(((#0=(-673) (-1132 #0#)) . T))
-((((-398 (-547))) . T) (($) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-((((-547) |#1|) . T))
-((($) . T) (((-547)) . T) (((-398 (-547))) . T))
-(((|#1|) . T))
-(|has| |#2| (-354))
+((((-549)) . T))
+((((-549)) . T))
+((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170)))
+((((-549)) . T))
+((((-549)) . T))
+(((#0=(-675) (-1139 #0#)) . T))
+((((-400 (-549))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+((((-549) |#1|) . T))
+((($) . T) (((-549)) . T) (((-400 (-549))) . T))
+(((|#1|) . T))
+(|has| |#2| (-356))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-832)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-1119) |#1|) . T))
+((((-834)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-1125) |#1|) . T))
(((|#3| |#3|) . T))
-((((-832)) . T))
-((((-832)) . T))
+((((-834)) . T))
+((((-834)) . T))
(((|#1| |#1|) . T))
-(((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))) ((|#1| |#1|) . T) (($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))))
-(((|#1|) . T))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T) (($) -1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((($) -1530 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((|#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-547) |#1|) . T))
-((((-832)) . T))
-((((-166 (-217))) |has| |#1| (-991)) (((-166 (-370))) |has| |#1| (-991)) (((-523)) |has| |#1| (-592 (-523))) (((-1132 |#1|)) . T) (((-861 (-547))) |has| |#1| (-592 (-861 (-547)))) (((-861 (-370))) |has| |#1| (-592 (-861 (-370)))))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1|) . T))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-819)))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-819)))
-((((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))) ((|#2|) |has| |#1| (-354)) ((|#1|) |has| |#1| (-169)))
-(((|#1|) |has| |#1| (-169)) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))))
-(|has| |#1| (-354))
-(-12 (|has| |#4| (-225)) (|has| |#4| (-1016)))
-(-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))
-(-1530 (|has| |#4| (-169)) (|has| |#4| (-819)) (|has| |#4| (-1016)))
-(-1530 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016)))
-((((-832)) . T) (((-1141)) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-832)) . T))
-(((|#1|) . T))
-((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T))
-(((|#1|) . T) (((-547)) |has| |#1| (-615 (-547))))
-(((|#2|) . T) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) . T))
-(|has| |#1| (-539))
-(|has| |#1| (-539))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(((|#1|) . T))
-(|has| |#1| (-539))
-(|has| |#1| (-539))
-(|has| |#1| (-539))
-((((-673)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-971)) (|has| |#1| (-1158)))
-(((|#2|) . T) (($) . T) (((-398 (-547))) . T))
-(-12 (|has| |#1| (-1063)) (|has| |#2| (-1063)))
-((($) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T))
-((((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (((-1134 |#1| |#2| |#3|)) |has| |#1| (-354)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) . T))
-(((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) (($) . T))
-(((|#4| |#4|) -1530 (|has| |#4| (-169)) (|has| |#4| (-354)) (|has| |#4| (-1016))) (($ $) |has| |#4| (-169)))
-(((|#3| |#3|) -1530 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-1016))) (($ $) |has| |#3| (-169)))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-523)) |has| |#2| (-592 (-523))) (((-861 (-370))) |has| |#2| (-592 (-861 (-370)))) (((-861 (-547))) |has| |#2| (-592 (-861 (-547)))))
-((((-832)) . T))
+(((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))) ((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
+(((|#1|) . T))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((($) -1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) ((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-549) |#1|) . T))
+((((-834)) . T))
+((((-167 (-219))) |has| |#1| (-993)) (((-167 (-372))) |has| |#1| (-993)) (((-525)) |has| |#1| (-594 (-525))) (((-1139 |#1|)) . T) (((-863 (-549))) |has| |#1| (-594 (-863 (-549)))) (((-863 (-372))) |has| |#1| (-594 (-863 (-372)))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) . T))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
+((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))))
+(|has| |#1| (-356))
+(-12 (|has| |#4| (-227)) (|has| |#4| (-1018)))
+(-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))
+(-1536 (|has| |#4| (-170)) (|has| |#4| (-821)) (|has| |#4| (-1018)))
+(-1536 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T))
+(((|#1|) . T))
+((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
+(((|#1|) . T) (((-549)) |has| |#1| (-617 (-549))))
+(((|#2|) . T) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) . T))
+(|has| |#1| (-541))
+(|has| |#1| (-541))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(((|#1|) . T))
+(|has| |#1| (-541))
+(|has| |#1| (-541))
+(|has| |#1| (-541))
+((((-675)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-973)) (|has| |#1| (-1165)))
+(((|#2|) . T) (($) . T) (((-400 (-549))) . T))
+(-12 (|has| |#1| (-1067)) (|has| |#2| (-1067)))
+((($) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T))
+((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (((-1141 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) . T))
+(((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) (($) . T))
+(((|#4| |#4|) -1536 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1018))) (($ $) |has| |#4| (-170)))
+(((|#3| |#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($ $) |has| |#3| (-170)))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-525)) |has| |#2| (-594 (-525))) (((-863 (-372))) |has| |#2| (-594 (-863 (-372)))) (((-863 (-549))) |has| |#2| (-594 (-863 (-549)))))
+((((-834)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-832)) . T))
-((((-523)) |has| |#1| (-592 (-523))) (((-861 (-370))) |has| |#1| (-592 (-861 (-370)))) (((-861 (-547))) |has| |#1| (-592 (-861 (-547)))))
-(((|#4|) -1530 (|has| |#4| (-169)) (|has| |#4| (-354)) (|has| |#4| (-1016))) (($) |has| |#4| (-169)))
-(((|#3|) -1530 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-1016))) (($) |has| |#3| (-169)))
-((((-832)) . T))
-((((-832)) . T))
-((((-523)) . T) (((-547)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T))
-(((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))))
-((($) . T) (((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T))
-((((-398 $) (-398 $)) |has| |#2| (-539)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-878))
-((((-1119) (-52)) . T))
-((((-547)) |has| #0=(-398 |#2|) (-615 (-547))) ((#0#) . T))
-((((-523)) . T) (((-217)) . T) (((-370)) . T) (((-861 (-370))) . T))
-((((-832)) . T))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-869 (-1136))) (|has| |#1| (-1016)))
-(((|#1|) |has| |#1| (-169)))
-(((|#1| $) |has| |#1| (-277 |#1| |#1|)))
-((((-832)) . T))
-((((-832)) . T))
-((((-398 (-547))) . T) (($) . T))
-((((-398 (-547))) . T) (($) . T))
-((((-832)) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-1063))
-(((|#1|) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063))))
-((((-523)) |has| |#1| (-592 (-523))))
+((((-834)) . T))
+((((-525)) |has| |#1| (-594 (-525))) (((-863 (-372))) |has| |#1| (-594 (-863 (-372)))) (((-863 (-549))) |has| |#1| (-594 (-863 (-549)))))
+(((|#4|) -1536 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1018))) (($) |has| |#4| (-170)))
+(((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($) |has| |#3| (-170)))
+((((-834)) . T))
+((((-834)) . T))
+((((-525)) . T) (((-549)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
+(((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
+((($) . T) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T))
+((((-400 $) (-400 $)) |has| |#2| (-541)) (($ $) . T) ((|#2| |#2|) . T))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-880))
+((((-1125) (-52)) . T))
+((((-549)) |has| #0=(-400 |#2|) (-617 (-549))) ((#0#) . T))
+((((-525)) . T) (((-219)) . T) (((-372)) . T) (((-863 (-372))) . T))
+((((-834)) . T))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1143))) (|has| |#1| (-1018)))
+(((|#1|) |has| |#1| (-170)))
+(((|#1| $) |has| |#1| (-279 |#1| |#1|)))
+((((-834)) . T))
+((((-834)) . T))
+((((-400 (-549))) . T) (($) . T))
+((((-400 (-549))) . T) (($) . T))
+((((-834)) . T))
+(|has| |#1| (-823))
+(|has| |#1| (-1067))
+(((|#1|) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-834)) . T) (((-1148)) . T))
((((-129)) . T))
-((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
+((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
((((-129)) . T))
-((($) -1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((($) -1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(|has| |#1| (-225))
-((($) -1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(((|#1| (-519 (-792 (-1136)))) . T))
-(((|#1| (-940)) . T))
-(((#0=(-839 |#1|) $) |has| #0# (-277 #0# #0#)))
-((((-547) |#4|) . T))
-((((-547) |#3|) . T))
+((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(|has| |#1| (-227))
+((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(((|#1| (-521 (-794 (-1143)))) . T))
+(((|#1| (-942)) . T))
+(((#0=(-841 |#1|) $) |has| #0# (-279 #0# #0#)))
+((((-549) |#4|) . T))
+((((-549) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1112))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) . T))
-(|has| (-1205 |#1| |#2| |#3| |#4|) (-143))
-(|has| (-1205 |#1| |#2| |#3| |#4|) (-145))
+(|has| |#1| (-1118))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) . T))
+(|has| (-1212 |#1| |#2| |#3| |#4|) (-143))
+(|has| (-1212 |#1| |#2| |#3| |#4|) (-145))
(|has| |#1| (-143))
(|has| |#1| (-145))
-(((|#1|) |has| |#1| (-169)))
-((((-1136)) -12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016))))
+(((|#1|) |has| |#1| (-170)))
+((((-1143)) -12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018))))
(((|#2|) . T))
-(|has| |#1| (-1063))
-((((-1119) |#1|) . T))
+(|has| |#1| (-1067))
+((((-1125) |#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547))))
-(|has| |#2| (-359))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
+(|has| |#2| (-361))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1016)))
-((((-832)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) #0#) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))))
+(((|#2|) |has| |#2| (-1018)))
+((((-834)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#0=(-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((#0=(-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) #0#) |has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))))
-((((-547) |#1|) . T))
-((((-832)) . T))
-((((-523)) -12 (|has| |#1| (-592 (-523))) (|has| |#2| (-592 (-523)))) (((-861 (-370))) -12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370))))) (((-861 (-547))) -12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547))))))
-((((-832)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((#0=(-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) #0#) |has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))))
+((((-549) |#1|) . T))
+((((-834)) . T))
+((((-525)) -12 (|has| |#1| (-594 (-525))) (|has| |#2| (-594 (-525)))) (((-863 (-372))) -12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372))))) (((-863 (-549))) -12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549))))))
+((((-834)) . T))
((($) . T))
-((((-832)) . T))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))))
+((((-834)) . T))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
((($) . T))
((($) . T))
((($) . T))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((((-832)) . T))
-((((-832)) . T))
-(|has| (-1204 |#2| |#3| |#4|) (-145))
-(|has| (-1204 |#2| |#3| |#4|) (-143))
-(((|#2|) |has| |#2| (-1063)) (((-547)) -12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (((-398 (-547))) -12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063))))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-834)) . T))
+((((-834)) . T))
+(|has| (-1211 |#2| |#3| |#4|) (-145))
+(|has| (-1211 |#2| |#3| |#4|) (-143))
+(((|#2|) |has| |#2| (-1067)) (((-549)) -12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067))) (((-400 (-549))) -12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067))))
(((|#1|) . T))
-(|has| |#1| (-1063))
-((((-832)) . T))
+(|has| |#1| (-1067))
+((((-834)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-869 (-1136))) (|has| |#1| (-1016)))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-871 (-1143))) (|has| |#1| (-1018)))
(((|#1|) . T))
-((((-547) |#1|) . T))
-(((|#2|) |has| |#2| (-169)))
-(((|#1|) |has| |#1| (-169)))
+((((-549) |#1|) . T))
+(((|#2|) |has| |#2| (-170)))
+(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-819)))
-((((-832)) |has| |#1| (-1063)))
-(-1530 (|has| |#1| (-463)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1136))) (|has| |#1| (-1016)) (|has| |#1| (-1075)))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-340)))
-((((-879 |#1|)) . T))
-((((-398 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-547) |#1|)))
-((((-398 (-547))) . T) (($) . T))
-(|has| |#1| (-821))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
+((((-834)) |has| |#1| (-1067)))
+(-1536 (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1143))) (|has| |#1| (-1018)) (|has| |#1| (-1079)))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
+((((-881 |#1|)) . T))
+((((-400 |#2|) |#3|) . T))
+(|has| |#1| (-15 * (|#1| (-549) |#1|)))
+((((-400 (-549))) . T) (($) . T))
+(|has| |#1| (-823))
(((|#1|) . T) (($) . T))
-((((-398 (-547))) . T) (($) . T))
-((((-832)) . T))
-(((|#1|) . T))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539)))
-(|has| |#1| (-354))
-(-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))
-(|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))
-(|has| |#1| (-354))
-((((-547)) . T))
-(|has| |#1| (-15 * (|#1| (-745) |#1|)))
-((((-1103 |#2| (-398 (-921 |#1|)))) . T) (((-398 (-921 |#1|))) . T))
-((($) . T))
-(((|#1|) |has| |#1| (-169)) (($) . T))
-(((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) (($) . T))
-(((|#1|) . T))
-((((-547) |#1|) . T))
-(((|#2|) . T))
-(-1530 (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-(-1530 (|has| |#2| (-767)) (|has| |#2| (-819)))
-(-1530 (|has| |#2| (-767)) (|has| |#2| (-819)))
-(((|#1|) . T))
-((((-1136)) -12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016))))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(-12 (|has| |#1| (-354)) (|has| |#2| (-794)))
-(-1530 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340)) (|has| |#1| (-539)))
-(((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))) ((|#1| |#1|) . T) (($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))))
-((($ $) |has| |#1| (-539)))
-(((#0=(-673) (-1132 #0#)) . T))
-((((-832)) . T))
-((((-832)) . T) (((-1219 |#4|)) . T))
-((((-832)) . T) (((-1219 |#3|)) . T))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T) (($) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))))
-((($) |has| |#1| (-539)))
-((((-832)) . T))
-((($) . T))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((#0=(-398 (-547)) #0#) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((#1=(-1211 |#1| |#2| |#3|) #1#) |has| |#1| (-354)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((#0=(-398 (-547)) #0#) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (((-1211 |#1| |#2| |#3|)) |has| |#1| (-354)) ((|#1|) . T))
-(((|#1|) . T) (($) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))))
-(((|#3|) |has| |#3| (-1016)))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(|has| |#1| (-1063))
-(((|#2| (-793 |#1|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-354))
-((((-398 $) (-398 $)) |has| |#1| (-539)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-1045) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-879 |#1|)) . T))
+((((-400 (-549))) . T) (($) . T))
+((((-834)) . T))
+(((|#1|) . T))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)))
+(|has| |#1| (-356))
+(-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))
+(|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))
+(|has| |#1| (-356))
+((((-549)) . T))
+(|has| |#1| (-15 * (|#1| (-747) |#1|)))
+((((-1109 |#2| (-400 (-923 |#1|)))) . T) (((-400 (-923 |#1|))) . T))
+((($) . T))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+(((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) (($) . T))
+(((|#1|) . T))
+((((-549) |#1|) . T))
+(((|#2|) . T))
+(-1536 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(((|#1|) . T))
+((((-1143)) -12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
+(-1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-541)))
+(((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))) ((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))))
+((($ $) |has| |#1| (-541)))
+(((#0=(-675) (-1139 #0#)) . T))
+((((-834)) . T))
+((((-834)) . T) (((-1226 |#4|)) . T))
+((((-834)) . T) (((-1226 |#3|)) . T))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))))
+((($) |has| |#1| (-541)))
+((((-834)) . T))
+((($) . T))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((#1=(-1218 |#1| |#2| |#3|) #1#) |has| |#1| (-356)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (((-1218 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T))
+(((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))))
+(((|#3|) |has| |#3| (-1018)))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(|has| |#1| (-1067))
+(((|#2| (-795 |#1|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-356))
+((((-400 $) (-400 $)) |has| |#1| (-541)) (($ $) . T) ((|#1| |#1|) . T))
+(((#0=(-1048) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-881 |#1|)) . T))
((((-142)) . T))
((((-142)) . T))
-(((|#3|) |has| |#3| (-1063)) (((-547)) -12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063))) (((-398 (-547))) -12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063))))
-((((-832)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(((|#1|) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063))))
-((((-523)) |has| |#1| (-592 (-523))))
-((((-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) . T))
-(|has| |#1| (-354))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-819)))
-((((-1136) |#1|) |has| |#1| (-503 (-1136) |#1|)) ((|#1| |#1|) |has| |#1| (-300 |#1|)))
-(|has| |#2| (-794))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-819))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-((((-832)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-523)) |has| |#1| (-592 (-523))))
+(((|#3|) |has| |#3| (-1067)) (((-549)) -12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1067))) (((-400 (-549))) -12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1067))))
+((((-834)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(((|#1|) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) . T))
+(|has| |#1| (-356))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
+((((-1143) |#1|) |has| |#1| (-505 (-1143) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|)))
+(|has| |#2| (-796))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-821))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+((((-834)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-525)) |has| |#1| (-594 (-525))))
(((|#1| |#2|) . T))
-((((-1136)) -12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1136)))))
-((((-1119) |#1|) . T))
-(((|#1| |#2| |#3| (-519 |#3|)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-((((-832)) . T))
-(((|#1|) . T))
-(-1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-(|has| |#1| (-359))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-((((-547)) . T))
-((((-547)) . T))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-((((-832)) . T))
-((((-832)) . T))
-(-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))
-((((-1136) #0=(-839 |#1|)) |has| #0# (-503 (-1136) #0#)) ((#0# #0#) |has| #0# (-300 #0#)))
-(((|#1|) . T))
-((((-547) |#4|) . T))
-((((-547) |#3|) . T))
-(((|#1|) . T) (((-547)) |has| |#1| (-615 (-547))))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-((((-1205 |#1| |#2| |#3| |#4|)) . T))
-((((-398 (-547))) . T) (((-547)) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
+((((-1143)) -12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1143)))))
+((((-1125) |#1|) . T))
+(((|#1| |#2| |#3| (-521 |#3|)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+((((-834)) . T))
+(((|#1|) . T))
+(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+(|has| |#1| (-361))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+((((-549)) . T))
+((((-549)) . T))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+((((-834)) . T))
+((((-834)) . T))
+(-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))
+((((-1143) #0=(-841 |#1|)) |has| #0# (-505 (-1143) #0#)) ((#0# #0#) |has| #0# (-302 #0#)))
+(((|#1|) . T))
+((((-549) |#4|) . T))
+((((-549) |#3|) . T))
+(((|#1|) . T) (((-549)) |has| |#1| (-617 (-549))))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+((((-1212 |#1| |#2| |#3| |#4|)) . T))
+((((-400 (-549))) . T) (((-549)) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-547)) . T) (((-398 (-547))) . T))
-((((-547)) . T))
-((((-547)) . T))
-((($) . T) (((-547)) . T) (((-398 (-547))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T))
+((($) . T) (((-549)) . T) (((-400 (-549))) . T))
+((((-549)) . T))
+((((-549)) . T))
+((($) . T) (((-549)) . T) (((-400 (-549))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((#0=(-547) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))))
-(((|#1|) . T) (($) . T) (((-398 (-547))) . T))
-(((|#1|) |has| |#1| (-539)))
-((((-547) |#4|) . T))
-((((-547) |#3|) . T))
-((((-832)) . T))
-((((-547)) . T) (((-398 (-547))) . T) (($) . T))
-((((-832)) . T))
-((((-547) |#1|) . T))
+(((#0=(-549) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
+(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
+(((|#1|) |has| |#1| (-541)))
+((((-549) |#4|) . T))
+((((-549) |#3|) . T))
+((((-834)) . T))
+((((-549)) . T) (((-400 (-549))) . T) (($) . T))
+((((-834)) . T))
+((((-549) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-834 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-836 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1136) $) . T) ((#0# |#1|) . T))
-(((|#2|) |has| |#2| (-169)))
-((($) -1530 (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) ((|#2|) |has| |#2| (-169)) (((-398 (-547))) |has| |#2| (-38 (-398 (-547)))))
-(((|#2| |#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))) (($ $) |has| |#2| (-169)))
+((($ $) . T) ((#0=(-1143) $) . T) ((#0# |#1|) . T))
+(((|#2|) |has| |#2| (-170)))
+((($) -1536 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))) ((|#2|) |has| |#2| (-170)) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))))
+(((|#2| |#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($ $) |has| |#2| (-170)))
((((-142)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-359)) (|has| |#2| (-359)))
-((((-832)) . T))
-(((|#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))) (($) |has| |#2| (-169)))
+(-12 (|has| |#1| (-361)) (|has| |#2| (-361)))
+((((-834)) . T))
+(((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($) |has| |#2| (-170)))
(((|#1|) . T))
-((((-832)) . T))
-(|has| |#1| (-1063))
+((((-834)) . T))
+(|has| |#1| (-1067))
(|has| $ (-145))
-((((-547) |#1|) . T))
-((($) -1530 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340)) (|has| |#1| (-539))) (((-398 (-547))) -1530 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T))
-((((-1136)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136)))))
-(|has| |#1| (-354))
-(-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))
-(|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))
-(|has| |#1| (-354))
-(|has| |#1| (-15 * (|#1| (-745) |#1|)))
-(((|#1|) . T))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-((((-832)) . T))
-((((-547) (-129)) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-(((|#2| (-519 (-834 |#1|))) . T))
-((((-832)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1|) . T))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-((((-561 |#1|)) . T))
+((((-549) |#1|) . T))
+((($) -1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
+((((-1143)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143)))))
+(|has| |#1| (-356))
+(-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))
+(|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))
+(|has| |#1| (-356))
+(|has| |#1| (-15 * (|#1| (-747) |#1|)))
+(((|#1|) . T))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+((((-834)) . T))
+((((-549) (-129)) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+(((|#2| (-521 (-836 |#1|))) . T))
+((((-834)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) . T))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+((((-563 |#1|)) . T))
((($) . T))
(((|#1|) . T) (($) . T))
-((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T))
+((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
(((|#4|) . T))
(((|#3|) . T))
-((((-839 |#1|)) . T) (($) . T) (((-398 (-547))) . T))
-((((-1136)) -12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016))))
-(((|#1|) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-547) |#2|) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
+((((-841 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
+((((-1143)) -12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018))))
+(((|#1|) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-549) |#2|) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))) ((|#1| |#1|) . T) (($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((#0=(-398 (-547)) #0#) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((#1=(-1134 |#1| |#2| |#3|) #1#) |has| |#1| (-354)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((#0=(-398 (-547)) #0#) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))))
-(((|#2|) |has| |#2| (-1016)))
-(|has| |#1| (-1063))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T) (($) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (((-1134 |#1| |#2| |#3|)) |has| |#1| (-354)) ((|#1|) . T))
-(((|#1|) . T) (($) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(((|#1|) |has| |#1| (-169)) (($) . T))
-(((|#1|) . T))
-(((#0=(-398 (-547)) #0#) |has| |#2| (-38 (-398 (-547)))) ((|#2| |#2|) . T) (($ $) -1530 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
-((((-832)) . T))
-((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
+(((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))) ((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((#1=(-1141 |#1| |#2| |#3|) #1#) |has| |#1| (-356)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
+(((|#2|) |has| |#2| (-1018)))
+(|has| |#1| (-1067))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (((-1141 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T))
+(((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+(((|#1|) . T))
+(((#0=(-400 (-549)) #0#) |has| |#2| (-38 (-400 (-549)))) ((|#2| |#2|) . T) (($ $) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
+((((-834)) . T))
+((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) -1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))))
-(((#0=(-1045) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T) (($) -1530 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
-((($) . T))
-(((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) (($) . T))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-354)))
-(((|#2|) |has| |#2| (-1063)) (((-547)) -12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (((-398 (-547))) -12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063))))
-((((-547) |#1|) . T))
-((((-832)) . T))
-((((-398 |#2|) |#3|) . T))
-(((|#1| (-398 (-547))) . T))
-((((-398 (-547))) . T) (($) . T))
-((((-398 (-547))) . T) (($) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-((((-832)) . T) (((-1141)) . T))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
+(((#0=(-1048) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T) (($) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
+((($) . T))
+(((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) (($) . T))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(((|#1|) . T))
+(((|#2|) |has| |#1| (-356)))
+(((|#2|) |has| |#2| (-1067)) (((-549)) -12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067))) (((-400 (-549))) -12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067))))
+((((-549) |#1|) . T))
+((((-834)) . T))
+((((-400 |#2|) |#3|) . T))
+(((|#1| (-400 (-549))) . T))
+((((-400 (-549))) . T) (($) . T))
+((((-400 (-549))) . T) (($) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+((((-834)) . T) (((-1148)) . T))
(|has| |#1| (-143))
(|has| |#1| (-145))
-((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
-((($) -1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((((-398 (-547))) . T) (($) . T))
-((((-398 (-547))) . T) (($) . T))
-((((-398 (-547))) . T) (($) . T))
-(((|#2| |#3| (-834 |#1|)) . T))
-((((-1136)) |has| |#2| (-869 (-1136))))
-(((|#1|) . T))
-(((|#1| (-519 |#2|) |#2|) . T))
-(((|#1| (-745) (-1045)) . T))
-((((-398 (-547))) |has| |#2| (-354)) (($) . T))
-(((|#1| (-519 (-1052 (-1136))) (-1052 (-1136))) . T))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(((|#1|) . T))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(|has| |#2| (-767))
-(-1530 (|has| |#2| (-767)) (|has| |#2| (-819)))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-(|has| |#2| (-819))
-((((-862 |#1|)) . T) (((-793 |#1|)) . T))
-((((-793 (-1136))) . T))
-(((|#1|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-619 (-547))) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-523)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T))
-(|has| |#1| (-225))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
+((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-400 (-549))) . T) (($) . T))
+((((-400 (-549))) . T) (($) . T))
+((((-400 (-549))) . T) (($) . T))
+(((|#2| |#3| (-836 |#1|)) . T))
+((((-1143)) |has| |#2| (-871 (-1143))))
+(((|#1|) . T))
+(((|#1| (-521 |#2|) |#2|) . T))
+(((|#1| (-747) (-1048)) . T))
+((((-400 (-549))) |has| |#2| (-356)) (($) . T))
+(((|#1| (-521 (-1055 (-1143))) (-1055 (-1143))) . T))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(((|#1|) . T))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(|has| |#2| (-769))
+(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#2| (-821))
+((((-864 |#1|)) . T) (((-795 |#1|)) . T))
+((((-795 (-1143))) . T))
+(((|#1|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-621 (-549))) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-525)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
+(|has| |#1| (-227))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-1211 |#1| |#2| |#3|) $) -12 (|has| (-1211 |#1| |#2| |#3|) (-277 (-1211 |#1| |#2| |#3|) (-1211 |#1| |#2| |#3|))) (|has| |#1| (-354))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-1218 |#1| |#2| |#3|) $) -12 (|has| (-1218 |#1| |#2| |#3|) (-279 (-1218 |#1| |#2| |#3|) (-1218 |#1| |#2| |#3|))) (|has| |#1| (-356))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1101 |#1| |#2|)) |has| (-1101 |#1| |#2|) (-300 (-1101 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))
-(((|#2|) . T) (((-547)) |has| |#2| (-1007 (-547))) (((-398 (-547))) |has| |#2| (-1007 (-398 (-547)))))
-(((|#3| |#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))
-(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))))
+((((-1107 |#1| |#2|)) |has| (-1107 |#1| |#2|) (-302 (-1107 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#2|) . T) (((-549)) |has| |#2| (-1009 (-549))) (((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))))
+(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))))
-(((|#2|) . T))
-((((-832)) -1530 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-591 (-832))) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((-1219 |#2|)) . T))
-(((|#1|) |has| |#1| (-169)))
-((((-547)) . T))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) -1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))))
-((($) -1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((((-547) (-142)) . T))
-((($) -1530 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((|#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016)))
-(((|#1|) . T))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016)))
-(((|#2|) |has| |#1| (-354)))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))))
+(((|#2|) . T))
+((((-834)) -1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-593 (-834))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) (((-1226 |#2|)) . T))
+(((|#1|) |has| |#1| (-170)))
+((((-549)) . T))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
+((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-549) (-142)) . T))
+((($) -1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) ((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018)))
+(((|#1|) . T))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018)))
+(((|#2|) |has| |#1| (-356)))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#1|) |has| |#1| (-169)))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1| (-519 #0=(-1136)) #0#) . T))
+((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170)))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| (-521 #0=(-1143)) #0#) . T))
(((|#1|) . T) (($) . T))
-(|has| |#4| (-169))
-(|has| |#3| (-169))
-(((#0=(-398 (-921 |#1|)) #0#) . T))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(|has| |#1| (-1063))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(|has| |#1| (-1063))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063))))
-((((-523)) |has| |#1| (-592 (-523))))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-((((-832)) . T) (((-1141)) . T))
-(((|#1| |#1|) |has| |#1| (-169)))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1|) . T))
-((((-398 (-921 |#1|))) . T))
-((((-547) (-129)) . T))
-(((|#1|) |has| |#1| (-169)))
+(|has| |#4| (-170))
+(|has| |#3| (-170))
+(((#0=(-400 (-923 |#1|)) #0#) . T))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(|has| |#1| (-1067))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(|has| |#1| (-1067))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+((((-525)) |has| |#1| (-594 (-525))))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+((((-834)) . T) (((-1148)) . T))
+(((|#1| |#1|) |has| |#1| (-170)))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) . T))
+((((-400 (-923 |#1|))) . T))
+((((-549) (-129)) . T))
+(((|#1|) |has| |#1| (-170)))
((((-129)) . T))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-((((-832)) . T))
-((((-1205 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1016)) (((-547)) -12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+((((-834)) . T))
+((((-1212 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1018)) (((-549)) -12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))))
(((|#1| |#2|) . T))
-(-1530 (|has| |#3| (-169)) (|has| |#3| (-701)) (|has| |#3| (-819)) (|has| |#3| (-1016)))
-(|has| |#3| (-767))
-(-1530 (|has| |#3| (-767)) (|has| |#3| (-819)))
-(|has| |#3| (-819))
-((((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))) ((|#2|) |has| |#1| (-354)) ((|#1|) |has| |#1| (-169)))
-(((|#1|) |has| |#1| (-169)) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))))
-(((|#2|) . T))
-((((-547) (-129)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-547) |#2|) . T))
-(((|#1| (-1117 |#1|)) |has| |#1| (-819)))
-(|has| |#1| (-1063))
-(((|#1|) . T))
-(-12 (|has| |#1| (-354)) (|has| |#2| (-1112)))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(|has| |#1| (-1063))
-(((|#2|) . T))
-((((-523)) |has| |#2| (-592 (-523))) (((-861 (-370))) |has| |#2| (-592 (-861 (-370)))) (((-861 (-547))) |has| |#2| (-592 (-861 (-547)))))
-(((|#4|) -1530 (|has| |#4| (-169)) (|has| |#4| (-354))))
-(((|#3|) -1530 (|has| |#3| (-169)) (|has| |#3| (-354))))
-((((-832)) . T))
-(((|#1|) . T))
-(-1530 (|has| |#2| (-442)) (|has| |#2| (-878)))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-878)))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-878)))
-((($ $) . T) ((#0=(-1136) $) |has| |#1| (-225)) ((#0# |#1|) |has| |#1| (-225)) ((#1=(-792 (-1136)) |#1|) . T) ((#1# $) . T))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-878)))
-((((-547) |#2|) . T))
-((((-832)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((($) -1530 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((|#3|) -1530 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-1016))))
-((((-547) |#1|) . T))
-(|has| (-398 |#2|) (-145))
-(|has| (-398 |#2|) (-143))
-(((|#2|) -12 (|has| |#1| (-354)) (|has| |#2| (-300 |#2|))))
-(|has| |#1| (-38 (-398 (-547))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-398 (-547))) . T))
-((((-832)) . T))
-(|has| |#1| (-539))
-(|has| |#1| (-539))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-832)) . T))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) . T))
-(|has| |#1| (-38 (-398 (-547))))
-((((-379) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#2| (-1112))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-((((-832)) . T) (((-1141)) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-1172)) . T) (((-832)) . T) (((-1141)) . T))
-(((|#1|) . T))
-((((-379) (-1119)) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-(|has| |#1| (-539))
+(-1536 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(|has| |#3| (-769))
+(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(|has| |#3| (-821))
+((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))))
+(((|#2|) . T))
+((((-549) (-129)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-549) |#2|) . T))
+(((|#1| (-1123 |#1|)) |has| |#1| (-821)))
+(|has| |#1| (-1067))
+(((|#1|) . T))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-1118)))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-1067))
+(((|#2|) . T))
+((((-525)) |has| |#2| (-594 (-525))) (((-863 (-372))) |has| |#2| (-594 (-863 (-372)))) (((-863 (-549))) |has| |#2| (-594 (-863 (-549)))))
+(((|#4|) -1536 (|has| |#4| (-170)) (|has| |#4| (-356))))
+(((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356))))
+((((-834)) . T))
+(((|#1|) . T))
+(-1536 (|has| |#2| (-444)) (|has| |#2| (-880)))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-880)))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-880)))
+((($ $) . T) ((#0=(-1143) $) |has| |#1| (-227)) ((#0# |#1|) |has| |#1| (-227)) ((#1=(-794 (-1143)) |#1|) . T) ((#1# $) . T))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-880)))
+((((-549) |#2|) . T))
+((((-834)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((($) -1536 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018))) ((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))))
+((((-549) |#1|) . T))
+(|has| (-400 |#2|) (-145))
+(|has| (-400 |#2|) (-143))
+(((|#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))))
+(|has| |#1| (-38 (-400 (-549))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-400 (-549))) . T))
+((((-834)) . T))
+(|has| |#1| (-541))
+(|has| |#1| (-541))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-834)) . T))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) . T))
+(|has| |#1| (-38 (-400 (-549))))
+((((-381) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#2| (-1118))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-1179)) . T) (((-834)) . T) (((-1148)) . T))
+((((-834)) . T) (((-1148)) . T))
+(((|#1|) . T))
+((((-381) (-1125)) . T))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
((((-116 |#1|)) . T))
+(|has| |#1| (-541))
((((-129)) . T))
-((((-547) |#1|) . T))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(((|#2|) . T))
-((((-832)) . T))
-((((-793 |#1|)) . T))
-(((|#2|) |has| |#2| (-169)))
-((((-1136) (-52)) . T))
-(((|#1|) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-539))
-(((|#1|) |has| |#1| (-169)))
-((((-832)) . T))
-((((-523)) |has| |#1| (-592 (-523))))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(((|#2|) |has| |#2| (-300 |#2|)))
-(((#0=(-547) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T))
-(((|#1|) . T))
-(((|#1| (-1132 |#1|)) . T))
+((((-549) |#1|) . T))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(((|#2|) . T))
+((((-834)) . T))
+((((-795 |#1|)) . T))
+(((|#2|) |has| |#2| (-170)))
+((((-1143) (-52)) . T))
+(((|#1|) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-541))
+(((|#1|) |has| |#1| (-170)))
+((((-834)) . T))
+((((-525)) |has| |#1| (-594 (-525))))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(((|#2|) |has| |#2| (-302 |#2|)))
+(((#0=(-549) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
+(((|#1|) . T))
+(((|#1| (-1139 |#1|)) . T))
(|has| $ (-145))
(((|#2|) . T))
-(((#0=(-547) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T))
-((($) . T) (((-547)) . T) (((-398 (-547))) . T))
-(|has| |#2| (-359))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-((((-547)) . T) (((-398 (-547))) . T) (($) . T))
+(((#0=(-549) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
+((($) . T) (((-549)) . T) (((-400 (-549))) . T))
+(|has| |#2| (-361))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+((((-549)) . T) (((-400 (-549))) . T) (($) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-547)) . T) (((-398 (-547))) . T) (($) . T))
-((((-1134 |#1| |#2| |#3|) $) -12 (|has| (-1134 |#1| |#2| |#3|) (-277 (-1134 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3|))) (|has| |#1| (-354))) (($ $) . T))
-((((-832)) . T))
-((((-832)) . T))
-((($) . T) (((-398 (-547))) -1530 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T))
-((((-523)) |has| |#1| (-592 (-523))))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
+((((-549)) . T) (((-400 (-549))) . T) (($) . T))
+((((-1141 |#1| |#2| |#3|) $) -12 (|has| (-1141 |#1| |#2| |#3|) (-279 (-1141 |#1| |#2| |#3|) (-1141 |#1| |#2| |#3|))) (|has| |#1| (-356))) (($ $) . T))
+((((-834)) . T))
+((((-834)) . T))
+((($) . T) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
((($ $) . T))
((($ $) . T))
-((((-832)) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((#0=(-1211 |#1| |#2| |#3|) #0#) -12 (|has| (-1211 |#1| |#2| |#3|) (-300 (-1211 |#1| |#2| |#3|))) (|has| |#1| (-354))) (((-1136) #0#) -12 (|has| (-1211 |#1| |#2| |#3|) (-503 (-1136) (-1211 |#1| |#2| |#3|))) (|has| |#1| (-354))))
-(-12 (|has| |#1| (-1063)) (|has| |#2| (-1063)))
+((((-834)) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((#0=(-1218 |#1| |#2| |#3|) #0#) -12 (|has| (-1218 |#1| |#2| |#3|) (-302 (-1218 |#1| |#2| |#3|))) (|has| |#1| (-356))) (((-1143) #0#) -12 (|has| (-1218 |#1| |#2| |#3|) (-505 (-1143) (-1218 |#1| |#2| |#3|))) (|has| |#1| (-356))))
+(-12 (|has| |#1| (-1067)) (|has| |#2| (-1067)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((((-398 (-547))) . T) (((-547)) . T))
-((((-547) (-142)) . T))
+((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-400 (-549))) . T) (((-549)) . T))
+((((-549) (-142)) . T))
((((-142)) . T))
(((|#1|) . T))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016)))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018)))
((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
((((-112)) . T))
(((|#1|) . T))
-((((-523)) |has| |#1| (-592 (-523))) (((-217)) . #0=(|has| |#1| (-991))) (((-370)) . #0#))
-((((-832)) . T))
-(|has| |#1| (-794))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(|has| |#1| (-821))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-539)))
-(|has| |#1| (-539))
-(|has| |#1| (-878))
-(((|#1|) . T))
-(|has| |#1| (-1063))
-((((-832)) . T))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539)))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539)))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-539)))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-(((|#1| (-1219 |#1|) (-1219 |#1|)) . T))
-((((-547) (-142)) . T))
-((($) . T))
-(-1530 (|has| |#4| (-169)) (|has| |#4| (-819)) (|has| |#4| (-1016)))
-(-1530 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016)))
-((((-832)) . T))
-(|has| |#1| (-1063))
-(((|#1| (-940)) . T))
+((((-525)) |has| |#1| (-594 (-525))) (((-219)) . #0=(|has| |#1| (-993))) (((-372)) . #0#))
+((((-834)) . T))
+(|has| |#1| (-796))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(|has| |#1| (-823))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
+(|has| |#1| (-541))
+(|has| |#1| (-880))
+(((|#1|) . T))
+(|has| |#1| (-1067))
+((((-834)) . T))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+(((|#1| (-1226 |#1|) (-1226 |#1|)) . T))
+((((-549) (-142)) . T))
+((($) . T))
+(-1536 (|has| |#4| (-170)) (|has| |#4| (-821)) (|has| |#4| (-1018)))
+(-1536 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+((((-1148)) . T) (((-834)) . T))
+((((-834)) . T))
+(|has| |#1| (-1067))
+(((|#1| (-942)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-1530 (|has| |#2| (-767)) (|has| |#2| (-819)))
-(-1530 (|has| |#2| (-767)) (|has| |#2| (-819)))
-(-12 (|has| |#1| (-463)) (|has| |#2| (-463)))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(-1530 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))))
+(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-12 (|has| |#1| (-465)) (|has| |#2| (-465)))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))))
(((|#1|) . T))
-(|has| |#2| (-767))
-(-1530 (|has| |#2| (-767)) (|has| |#2| (-819)))
+(|has| |#2| (-769))
+(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(|has| |#2| (-819))
-(-12 (|has| |#1| (-767)) (|has| |#2| (-767)))
-(-12 (|has| |#1| (-767)) (|has| |#2| (-767)))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#2| (-821))
+(-12 (|has| |#1| (-769)) (|has| |#2| (-769)))
+(-12 (|has| |#1| (-769)) (|has| |#2| (-769)))
(((|#1| |#2|) . T))
-(((|#2|) |has| |#2| (-169)))
-(((|#1|) |has| |#1| (-169)))
-((((-832)) . T))
-(|has| |#1| (-340))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-398 (-547))) . T) (($) . T))
-((($) . T) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#1|) . T))
-(|has| |#1| (-802))
-((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T))
-(|has| |#1| (-1063))
-(((|#1| $) |has| |#1| (-277 |#1| |#1|)))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539)))
-((($) |has| |#1| (-539)))
-(((|#4|) |has| |#4| (-1063)))
-(((|#3|) |has| |#3| (-1063)))
-(|has| |#3| (-359))
-(((|#1|) . T) (((-832)) . T))
-((((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-1211 |#1| |#2| |#3|)) |has| |#1| (-354)) ((|#1|) |has| |#1| (-169)))
-((((-832)) . T))
-(((|#2|) . T))
-(((|#1|) |has| |#1| (-169)) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))))
-((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(((|#1| |#1|) |has| |#1| (-169)))
+(((|#2|) |has| |#2| (-170)))
+(((|#1|) |has| |#1| (-170)))
+((((-834)) . T))
+(|has| |#1| (-342))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-400 (-549))) . T) (($) . T))
+((($) . T) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#1|) . T))
+(|has| |#1| (-804))
+((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
+(|has| |#1| (-1067))
+(((|#1| $) |has| |#1| (-279 |#1| |#1|)))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)))
+((($) |has| |#1| (-541)))
+(((|#4|) |has| |#4| (-1067)))
+(((|#3|) |has| |#3| (-1067)))
+(|has| |#3| (-361))
+(((|#1|) . T) (((-834)) . T))
+((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-1218 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
+((((-834)) . T))
+(((|#2|) . T))
+(((|#1|) |has| |#1| (-170)) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))))
(((|#1| |#2|) . T))
-(|has| |#2| (-354))
-(((|#1|) . T))
-(((|#1|) |has| |#1| (-169)))
-((((-398 (-547))) . T) (((-547)) . T))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))
+((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(((|#1| |#1|) |has| |#1| (-170)))
+(|has| |#2| (-356))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-170)))
+((((-400 (-549))) . T) (((-549)) . T))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
((((-142)) . T))
(((|#1|) . T))
+((($) -1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018))) ((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))))
((((-142)) . T))
-((($) -1530 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((|#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))))
((((-142)) . T))
(((|#1| |#2| |#3|) . T))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016)))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018)))
(|has| $ (-145))
(|has| $ (-145))
-(|has| |#1| (-1063))
-((((-832)) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-463)) (|has| |#1| (-539)) (|has| |#1| (-1016)) (|has| |#1| (-1075)))
-((($ $) |has| |#1| (-277 $ $)) ((|#1| $) |has| |#1| (-277 |#1| |#1|)))
-(((|#1| (-398 (-547))) . T))
-(((|#1|) . T))
-((((-1136)) . T))
-(|has| |#1| (-539))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-(|has| |#1| (-539))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-((((-832)) . T))
+(|has| |#1| (-1067))
+((((-834)) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-541)) (|has| |#1| (-1018)) (|has| |#1| (-1079)))
+((($ $) |has| |#1| (-279 $ $)) ((|#1| $) |has| |#1| (-279 |#1| |#1|)))
+(((|#1| (-400 (-549))) . T))
+(((|#1|) . T))
+((((-1143)) . T))
+(|has| |#1| (-541))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+(|has| |#1| (-541))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+((((-834)) . T))
(|has| |#2| (-143))
(|has| |#2| (-145))
(((|#2|) . T) (($) . T))
(|has| |#1| (-145))
(|has| |#1| (-143))
-(|has| |#4| (-819))
-(((|#2| (-232 (-3767 |#1|) (-745)) (-834 |#1|)) . T))
-(|has| |#3| (-819))
-(((|#1| (-519 |#3|) |#3|) . T))
+(|has| |#4| (-821))
+(((|#2| (-234 (-3775 |#1|) (-747)) (-836 |#1|)) . T))
+(|has| |#3| (-821))
+(((|#1| (-521 |#3|) |#3|) . T))
(|has| |#1| (-145))
(|has| |#1| (-143))
-(((#0=(-398 (-547)) #0#) |has| |#2| (-354)) (($ $) . T))
-((((-839 |#1|)) . T))
+(((#0=(-400 (-549)) #0#) |has| |#2| (-356)) (($ $) . T))
+((((-841 |#1|)) . T))
(|has| |#1| (-145))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
(|has| |#1| (-143))
-((((-398 (-547))) |has| |#2| (-354)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(-1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-(-1530 (|has| |#1| (-340)) (|has| |#1| (-359)))
-((((-1103 |#2| |#1|)) . T) ((|#1|) . T))
-(|has| |#2| (-169))
+((((-400 (-549))) |has| |#2| (-356)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+(-1536 (|has| |#1| (-342)) (|has| |#1| (-361)))
+((((-1109 |#2| |#1|)) . T) ((|#1|) . T))
+(|has| |#2| (-170))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))
-(((|#2|) . T) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(-1530 (|has| |#3| (-767)) (|has| |#3| (-819)))
-(-1530 (|has| |#3| (-767)) (|has| |#3| (-819)))
-((((-832)) . T))
+(-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))
+(((|#2|) . T) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
+((((-834)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-673)) . T))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(|has| |#1| (-539))
+((((-675)) . T))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(|has| |#1| (-541))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1136) (-52)) . T))
-((((-832)) . T))
-((((-523)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T))
+((((-1143) (-52)) . T))
+((((-834)) . T))
+((((-525)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
(((|#1|) . T))
-((((-832)) . T))
-((((-523)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T))
-(((|#1| (-547)) . T))
-((((-832)) . T))
-((((-832)) . T))
+((((-834)) . T))
+((((-525)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
+(((|#1| (-549)) . T))
+((((-834)) . T))
+((((-834)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-398 (-547))) . T))
-(((|#3|) . T) (((-590 $)) . T))
+(((|#1| (-400 (-549))) . T))
+(((|#3|) . T) (((-592 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
((($ $) . T) ((|#2| $) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-(((#0=(-1134 |#1| |#2| |#3|) #0#) -12 (|has| (-1134 |#1| |#2| |#3|) (-300 (-1134 |#1| |#2| |#3|))) (|has| |#1| (-354))) (((-1136) #0#) -12 (|has| (-1134 |#1| |#2| |#3|) (-503 (-1136) (-1134 |#1| |#2| |#3|))) (|has| |#1| (-354))))
-((((-547)) . T) (($) . T) (((-398 (-547))) . T))
-((((-832)) . T))
-((((-832)) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+(((#0=(-1141 |#1| |#2| |#3|) #0#) -12 (|has| (-1141 |#1| |#2| |#3|) (-302 (-1141 |#1| |#2| |#3|))) (|has| |#1| (-356))) (((-1143) #0#) -12 (|has| (-1141 |#1| |#2| |#3|) (-505 (-1143) (-1141 |#1| |#2| |#3|))) (|has| |#1| (-356))))
+((((-549)) . T) (($) . T) (((-400 (-549))) . T))
+((((-834)) . T))
+((((-834)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) |has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))))
-((((-832)) . T))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) |has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))))
+((((-834)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1136) (-52)) . T))
+((((-1143) (-52)) . T))
(((|#3|) . T))
-((($ $) . T) ((#0=(-834 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-802))
-(|has| |#1| (-1063))
-(((|#2| |#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))) (($ $) |has| |#2| (-169)))
-(((|#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-354))))
-((((-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))) (($) |has| |#2| (-169)))
-((((-745)) . T))
-((((-547)) . T))
-(|has| |#1| (-539))
-((((-832)) . T))
-(((|#1| (-398 (-547)) (-1045)) . T))
+((($ $) . T) ((#0=(-836 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-804))
+(|has| |#1| (-1067))
+(((|#2| |#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($ $) |has| |#2| (-170)))
+(((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356))))
+((((-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($) |has| |#2| (-170)))
+((((-747)) . T))
+((((-549)) . T))
+(|has| |#1| (-541))
+((((-834)) . T))
+(((|#1| (-400 (-549)) (-1048)) . T))
(|has| |#1| (-143))
(((|#1|) . T))
-(|has| |#1| (-539))
-((((-547)) . T))
+(|has| |#1| (-541))
+((((-549)) . T))
((((-116 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-145))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-539)))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539)))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539)))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-539)))
-((((-861 (-547))) . T) (((-861 (-370))) . T) (((-523)) . T) (((-1136)) . T))
-((((-832)) . T))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-((((-832)) . T) (((-1141)) . T))
-((($) . T))
-((((-832)) . T))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-(((|#2|) |has| |#2| (-169)))
-((($) -1530 (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) ((|#2|) |has| |#2| (-169)) (((-398 (-547))) |has| |#2| (-38 (-398 (-547)))))
-((((-839 |#1|)) . T))
-(-1530 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063)))
-(-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))
-(|has| |#2| (-1112))
-(((#0=(-52)) . T) (((-2 (|:| -3331 (-1136)) (|:| -1786 #0#))) . T))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
+((((-863 (-549))) . T) (((-863 (-372))) . T) (((-525)) . T) (((-1143)) . T))
+((((-834)) . T))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+((((-834)) . T) (((-1148)) . T))
+((($) . T))
+((((-834)) . T))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+(((|#2|) |has| |#2| (-170)))
+((($) -1536 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))) ((|#2|) |has| |#2| (-170)) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))))
+((((-841 |#1|)) . T))
+(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067)))
+(-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))
+(|has| |#2| (-1118))
+(((#0=(-52)) . T) (((-2 (|:| -3337 (-1143)) (|:| -1793 #0#))) . T))
(((|#1| |#2|) . T))
-(-1530 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016)))
-(((|#1| (-547) (-1045)) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1| (-398 (-547)) (-1045)) . T))
-((($) -1530 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340)) (|has| |#1| (-539))) (((-398 (-547))) -1530 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T))
-((((-547) |#2|) . T))
+(-1536 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(((|#1| (-549) (-1048)) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| (-400 (-549)) (-1048)) . T))
+((($) -1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
+((((-549) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#2| (-359))
-(-12 (|has| |#1| (-359)) (|has| |#2| (-359)))
-((((-832)) . T))
-((((-1136) |#1|) |has| |#1| (-503 (-1136) |#1|)) ((|#1| |#1|) |has| |#1| (-300 |#1|)))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))
-(((|#1|) . T))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539)))
-((((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-1134 |#1| |#2| |#3|)) |has| |#1| (-354)) ((|#1|) |has| |#1| (-169)))
-(((|#1|) |has| |#1| (-169)) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))))
-((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((((-832)) . T))
-(|has| |#1| (-340))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) #0#) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))))
-(|has| |#1| (-539))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-832)) . T))
+(|has| |#2| (-361))
+(-12 (|has| |#1| (-361)) (|has| |#2| (-361)))
+((((-834)) . T))
+((((-1143) |#1|) |has| |#1| (-505 (-1143) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|)))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(((|#1|) . T))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)))
+((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-1141 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))))
+((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-834)) . T))
+(|has| |#1| (-342))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#0=(-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))))
+(|has| |#1| (-541))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-834)) . T))
(((|#1| |#2|) . T))
-(-1530 (|has| |#2| (-442)) (|has| |#2| (-878)))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-878)))
-((((-398 (-547))) . T) (((-547)) . T))
-((((-547)) . T))
-((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
-((($) . T))
-((((-832)) . T))
-(((|#1|) . T))
-((((-839 |#1|)) . T) (($) . T) (((-398 (-547))) . T))
-((((-832)) . T))
-(((|#3| |#3|) -1530 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-1016))) (($ $) |has| |#3| (-169)))
-(|has| |#1| (-991))
-((((-832)) . T))
-(((|#3|) -1530 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-1016))) (($) |has| |#3| (-169)))
-((((-547) (-112)) . T))
-(((|#1|) |has| |#1| (-300 |#1|)))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-((((-1136) $) |has| |#1| (-503 (-1136) $)) (($ $) |has| |#1| (-300 $)) ((|#1| |#1|) |has| |#1| (-300 |#1|)) (((-1136) |#1|) |has| |#1| (-503 (-1136) |#1|)))
-((((-1136)) |has| |#1| (-869 (-1136))))
-(-1530 (-12 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))
-((((-379) (-1082)) . T))
+(-1536 (|has| |#2| (-444)) (|has| |#2| (-880)))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-880)))
+((((-400 (-549))) . T) (((-549)) . T))
+((((-549)) . T))
+((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
+((($) . T))
+((((-834)) . T))
+(((|#1|) . T))
+((((-841 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
+((((-834)) . T))
+(((|#3| |#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($ $) |has| |#3| (-170)))
+(|has| |#1| (-993))
+((((-834)) . T))
+(((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))) (($) |has| |#3| (-170)))
+((((-549) (-112)) . T))
+(((|#1|) |has| |#1| (-302 |#1|)))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+((((-1143) $) |has| |#1| (-505 (-1143) $)) (($ $) |has| |#1| (-302 $)) ((|#1| |#1|) |has| |#1| (-302 |#1|)) (((-1143) |#1|) |has| |#1| (-505 (-1143) |#1|)))
+((((-1143)) |has| |#1| (-871 (-1143))))
+(-1536 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))
+((((-381) (-1087)) . T))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
-((((-379) |#1|) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-340)))
-(|has| |#1| (-1063))
-((((-832)) . T))
-((((-832)) . T))
-((((-879 |#1|)) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) -1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))))
+((((-381) |#1|) . T))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
+(|has| |#1| (-1067))
+((((-834)) . T))
+((((-834)) . T))
+((((-881 |#1|)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
(((|#1| |#2|) . T))
((($) . T))
(((|#1| |#1|) . T))
-(((#0=(-839 |#1|)) |has| #0# (-300 #0#)))
+(((#0=(-841 |#1|)) |has| #0# (-302 #0#)))
(((|#1| |#2|) . T))
-(-1530 (|has| |#2| (-767)) (|has| |#2| (-819)))
-(-1530 (|has| |#2| (-767)) (|has| |#2| (-819)))
-(-12 (|has| |#1| (-767)) (|has| |#2| (-767)))
+(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-12 (|has| |#1| (-769)) (|has| |#2| (-769)))
(((|#1|) . T))
-(-12 (|has| |#1| (-767)) (|has| |#2| (-767)))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
+(-12 (|has| |#1| (-769)) (|has| |#2| (-769)))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(|has| |#1| (-1158))
-(((#0=(-547) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T))
-((((-398 (-547))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1016)))
-(((|#3|) |has| |#3| (-1016)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T))
-(|has| |#1| (-354))
-((((-547)) . T) (((-398 (-547))) . T) (($) . T))
-((($ $) . T) ((#0=(-398 (-547)) #0#) -1530 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1| |#1|) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-(((|#1|) . T) (($) . T) (((-398 (-547))) . T))
-((((-832)) . T))
-((((-832)) . T))
-(((|#1|) . T) (($) . T) (((-398 (-547))) . T))
-(((|#1|) . T) (($) . T) (((-398 (-547))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-547) |#3|) . T))
-((((-832)) . T))
-((((-523)) |has| |#3| (-592 (-523))))
-((((-663 |#3|)) . T) (((-832)) . T))
+(((|#2|) . T) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(|has| |#1| (-1165))
+(((#0=(-549) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
+((((-400 (-549))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1018)))
+(((|#3|) |has| |#3| (-1018)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+(|has| |#1| (-356))
+((((-549)) . T) (((-400 (-549))) . T) (($) . T))
+((($ $) . T) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1| |#1|) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
+((((-834)) . T))
+((((-834)) . T))
+(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
+(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-549) |#3|) . T))
+((((-834)) . T))
+((((-525)) |has| |#3| (-594 (-525))))
+((((-665 |#3|)) . T) (((-834)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-819))
-(|has| |#1| (-819))
-((($) . T) (((-398 (-547))) -1530 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-539)))
-(((#0=(-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) #0#) |has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))))
-((($) . T))
-(|has| |#2| (-821))
-((($) . T))
-(((|#2|) |has| |#2| (-1063)))
-((((-832)) -1530 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-591 (-832))) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((-1219 |#2|)) . T))
(|has| |#1| (-821))
(|has| |#1| (-821))
-((((-1119) (-52)) . T))
+((($) . T) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
+((($) . T))
+(((#0=(-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) #0#) |has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))))
+(|has| |#2| (-823))
+((($) . T))
+(((|#2|) |has| |#2| (-1067)))
+((((-834)) -1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-593 (-834))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) (((-1226 |#2|)) . T))
+(|has| |#1| (-823))
+(|has| |#1| (-823))
+((((-1125) (-52)) . T))
+(|has| |#1| (-823))
+((((-834)) . T))
+((((-549)) |has| #0=(-400 |#2|) (-617 (-549))) ((#0#) . T))
+((((-549) (-142)) . T))
+((((-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T) ((|#1| |#2|) . T))
+((((-400 (-549))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-834)) . T))
+((((-881 |#1|)) . T))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))
+(|has| |#1| (-821))
+(|has| |#1| (-356))
(|has| |#1| (-821))
-((((-832)) . T))
-((((-547)) |has| #0=(-398 |#2|) (-615 (-547))) ((#0#) . T))
-((((-547) (-142)) . T))
-((((-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T) ((|#1| |#2|) . T))
-((((-398 (-547))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-832)) . T))
-((((-879 |#1|)) . T))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-(|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))
-(|has| |#1| (-819))
-(|has| |#1| (-354))
-(|has| |#1| (-819))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-819))
-((((-1136)) |has| |#1| (-869 (-1136))))
-(((|#1| (-1136)) . T))
-(((|#1| (-1219 |#1|) (-1219 |#1|)) . T))
-((((-832)) . T) (((-1141)) . T))
+(|has| |#1| (-821))
+((((-1143)) |has| |#1| (-871 (-1143))))
+(((|#1| (-1143)) . T))
+(((|#1| (-1226 |#1|) (-1226 |#1|)) . T))
+((((-834)) . T) (((-1148)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-(|has| |#1| (-1063))
-(((|#1| (-1136) (-792 (-1136)) (-519 (-792 (-1136)))) . T))
-((((-398 (-921 |#1|))) . T))
-((((-523)) . T))
-((((-832)) . T))
+(|has| |#1| (-1067))
+(((|#1| (-1143) (-794 (-1143)) (-521 (-794 (-1143)))) . T))
+((((-400 (-923 |#1|))) . T))
+((((-525)) . T))
+((((-834)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
-((((-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T) ((|#1| |#2|) . T))
+((((-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-169)))
-((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+(((|#1|) |has| |#1| (-170)))
+((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(((|#3|) . T))
-(((|#1|) |has| |#1| (-169)))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) -1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))))
-((($) -1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-523)) |has| |#1| (-592 (-523))) (((-861 (-370))) |has| |#1| (-592 (-861 (-370)))) (((-861 (-547))) |has| |#1| (-592 (-861 (-547)))))
-((((-832)) . T))
-(((|#2|) . T) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(|has| |#2| (-819))
-(-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))
-(|has| |#1| (-539))
-(|has| |#1| (-1112))
-((((-1119) |#1|) . T))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(((#0=(-398 (-547)) #0#) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((|#1| |#1|) . T))
-((((-398 (-547))) |has| |#1| (-1007 (-547))) (((-547)) |has| |#1| (-1007 (-547))) (((-1136)) |has| |#1| (-1007 (-1136))) ((|#1|) . T))
-((((-547) |#2|) . T))
-((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T))
-((((-547)) |has| |#1| (-855 (-547))) (((-370)) |has| |#1| (-855 (-370))))
-((((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((|#1|) . T))
-(((|#1|) . T))
-((((-619 |#4|)) . T) (((-832)) . T))
-((((-523)) |has| |#4| (-592 (-523))))
-((((-523)) |has| |#4| (-592 (-523))))
-((((-832)) . T) (((-619 |#4|)) . T))
-((($) |has| |#1| (-819)))
-(((|#1|) . T))
-((((-619 |#4|)) . T) (((-832)) . T))
-((((-523)) |has| |#4| (-592 (-523))))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-1136)) |has| (-398 |#2|) (-869 (-1136))))
-(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) #0#) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-832)) -1530 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-591 (-832))) (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-359)) (|has| |#3| (-701)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)) (|has| |#3| (-1063))) (((-1219 |#3|)) . T))
-((((-547) |#2|) . T))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(((|#2| |#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))) (($ $) |has| |#2| (-169)))
-((((-832)) . T))
-((((-832)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T) ((|#2|) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-1119) (-1136) (-547) (-217) (-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-((((-832)) . T))
-((((-547) (-112)) . T))
-(((|#1|) . T))
-((((-832)) . T))
+(((|#1|) |has| |#1| (-170)))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))))
+((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-525)) |has| |#1| (-594 (-525))) (((-863 (-372))) |has| |#1| (-594 (-863 (-372)))) (((-863 (-549))) |has| |#1| (-594 (-863 (-549)))))
+((((-834)) . T))
+(((|#2|) . T) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(|has| |#2| (-821))
+(-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))
+(|has| |#1| (-541))
+(|has| |#1| (-1118))
+((((-1125) |#1|) . T))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((|#1| |#1|) . T))
+((((-400 (-549))) |has| |#1| (-1009 (-549))) (((-549)) |has| |#1| (-1009 (-549))) (((-1143)) |has| |#1| (-1009 (-1143))) ((|#1|) . T))
+((((-549) |#2|) . T))
+((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
+((((-549)) |has| |#1| (-857 (-549))) (((-372)) |has| |#1| (-857 (-372))))
+((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((|#1|) . T))
+(((|#1|) . T))
+((((-621 |#4|)) . T) (((-834)) . T))
+((((-525)) |has| |#4| (-594 (-525))))
+((((-525)) |has| |#4| (-594 (-525))))
+((((-834)) . T) (((-621 |#4|)) . T))
+((($) |has| |#1| (-821)))
+(((|#1|) . T))
+((((-621 |#4|)) . T) (((-834)) . T))
+((((-525)) |has| |#4| (-594 (-525))))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-1143)) |has| (-400 |#2|) (-871 (-1143))))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#0=(-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+((((-834)) -1536 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-593 (-834))) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-703)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)) (|has| |#3| (-1067))) (((-1226 |#3|)) . T))
+((((-549) |#2|) . T))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(((|#2| |#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($ $) |has| |#2| (-170)))
+((((-834)) . T))
+((((-834)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T) ((|#2|) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-1125) (-1143) (-549) (-219) (-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+((((-834)) . T))
+((((-549) (-112)) . T))
+(((|#1|) . T))
+((((-834)) . T))
((((-112)) . T))
((((-112)) . T))
-((((-832)) . T))
-((((-832)) . T))
+((((-834)) . T))
+((((-834)) . T))
((((-112)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-((((-832)) . T))
-((((-523)) |has| |#1| (-592 (-523))))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-(((|#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))) (($) |has| |#2| (-169)))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+((((-834)) . T))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+(((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1018))) (($) |has| |#2| (-170)))
(|has| $ (-145))
-((((-398 |#2|)) . T))
-((((-398 (-547))) |has| #0=(-398 |#2|) (-1007 (-398 (-547)))) (((-547)) |has| #0# (-1007 (-547))) ((#0#) . T))
+((((-400 |#2|)) . T))
+((((-400 (-549))) |has| #0=(-400 |#2|) (-1009 (-400 (-549)))) (((-549)) |has| #0# (-1009 (-549))) ((#0#) . T))
(((|#2| |#2|) . T))
-(((|#4|) |has| |#4| (-169)))
+(((|#4|) |has| |#4| (-170)))
(|has| |#2| (-143))
(|has| |#2| (-145))
-(((|#3|) |has| |#3| (-169)))
+(((|#3|) |has| |#3| (-170)))
(|has| |#1| (-145))
(|has| |#1| (-143))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
(|has| |#1| (-145))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
(|has| |#1| (-145))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
(|has| |#1| (-145))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-225))
-((((-832)) . T) (((-1141)) . T))
-((((-1136) (-52)) . T))
-((((-832)) . T))
+(|has| |#2| (-227))
+((((-834)) . T) (((-1148)) . T))
+((((-1143) (-52)) . T))
+((((-834)) . T))
+((((-834)) . T) (((-1148)) . T))
(((|#1| |#1|) . T))
-((((-1136)) |has| |#2| (-869 (-1136))))
-((((-547) (-112)) . T))
-(|has| |#1| (-539))
+((((-1143)) |has| |#2| (-871 (-1143))))
+((((-549) (-112)) . T))
+(|has| |#1| (-541))
(((|#2|) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
(((|#3|) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(((|#1|) . T))
-((((-832)) . T))
-((((-523)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-968 |#1|)) . T) ((|#1|) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-398 (-547))) . T) (((-398 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1132 |#1|)) . T))
-((((-547)) . T) (($) . T) (((-398 (-547))) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(((|#1|) . T))
+((((-834)) . T))
+((((-525)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-970 |#1|)) . T) ((|#1|) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-400 (-549))) . T) (((-400 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1139 |#1|)) . T))
+((((-549)) . T) (($) . T) (((-400 (-549))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-821))
+(|has| |#1| (-823))
(((|#2|) . T))
-((((-547)) . T) (($) . T) (((-398 (-547))) . T))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) . T))
-((((-547) |#2|) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
+((((-549)) . T) (($) . T) (((-400 (-549))) . T))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) . T))
+((((-549) |#2|) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
(((|#2|) . T))
-((((-547) |#3|) . T))
+((((-549) |#3|) . T))
(((|#2|) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-((((-1211 |#1| |#2| |#3|)) |has| |#1| (-354)))
-(|has| |#1| (-38 (-398 (-547))))
-((((-832)) . T))
-(|has| |#1| (-1063))
-(((|#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))
-(((|#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))
-(|has| |#1| (-38 (-398 (-547))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+((((-1218 |#1| |#2| |#3|)) |has| |#1| (-356)))
+(|has| |#1| (-38 (-400 (-549))))
+((((-834)) . T))
+(|has| |#1| (-1067))
+(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))
+(|has| |#1| (-38 (-400 (-549))))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) #0#) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#0=(-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))))
(((|#2| |#2|) . T))
-(|has| |#2| (-354))
-(((|#2|) . T) (((-547)) |has| |#2| (-1007 (-547))) (((-398 (-547))) |has| |#2| (-1007 (-398 (-547)))))
+(|has| |#2| (-356))
+(((|#2|) . T) (((-549)) |has| |#2| (-1009 (-549))) (((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))))
(((|#2|) . T))
-((((-1119) (-52)) . T))
-(((|#2|) |has| |#2| (-169)))
-((((-547) |#3|) . T))
-((((-547) (-142)) . T))
+((((-1125) (-52)) . T))
+(((|#2|) |has| |#2| (-170)))
+((((-549) |#3|) . T))
+((((-549) (-142)) . T))
((((-142)) . T))
-((((-832)) . T))
+((((-834)) . T))
((((-112)) . T))
(|has| |#1| (-145))
(((|#1|) . T))
(|has| |#1| (-143))
((($) . T))
-(|has| |#1| (-539))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+(|has| |#1| (-541))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
((($) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547))))
-((((-832)) . T))
-((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T))
-((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T))
-((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T))
-((((-1119) (-52)) . T))
+(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
+((((-834)) . T))
+((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
+((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
+((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
+((((-1125) (-52)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(((|#1| |#2|) . T))
-((((-547) (-142)) . T))
-(((#0=(-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) #0#) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))
-((($) -1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(|has| |#1| (-821))
-(((|#2| (-745) (-1045)) . T))
+((((-549) (-142)) . T))
+(((#0=(-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(|has| |#1| (-823))
+(((|#2| (-747) (-1048)) . T))
(((|#1| |#2|) . T))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-539)))
-(|has| |#1| (-765))
-(((|#1|) |has| |#1| (-169)))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
+(|has| |#1| (-767))
+(((|#1|) |has| |#1| (-170)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-1530 (|has| |#1| (-145)) (-12 (|has| |#1| (-354)) (|has| |#2| (-145))))
-(-1530 (|has| |#1| (-143)) (-12 (|has| |#1| (-354)) (|has| |#2| (-143))))
+(-1536 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| |#2| (-145))))
+(-1536 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| |#2| (-143))))
(((|#4|) . T))
(|has| |#1| (-143))
-((((-1119) |#1|) . T))
+((((-1125) |#1|) . T))
(|has| |#1| (-145))
(((|#1|) . T))
-((((-547)) . T))
-((((-832)) . T))
+((((-549)) . T))
+((((-834)) . T))
(((|#1| |#2|) . T))
-((((-832)) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+((((-834)) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(((|#3|) . T))
-((((-1211 |#1| |#2| |#3|)) |has| |#1| (-354)))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(((|#1|) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))) (((-927 |#1|)) . T))
-(|has| |#1| (-819))
-(|has| |#1| (-819))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(|has| |#2| (-354))
-(((|#1|) |has| |#1| (-169)))
-(((|#2|) |has| |#2| (-1016)))
-((((-1119) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))
-(((|#2| (-862 |#1|)) . T))
-((($) . T))
-((((-379) (-1119)) . T))
-((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((((-832)) -1530 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-591 (-832))) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((-1219 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -3331 (-1119)) (|:| -1786 #0#))) . T))
-(((|#1|) . T))
-((((-832)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))
+((((-1218 |#1| |#2| |#3|)) |has| |#1| (-356)))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(((|#1|) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))) (((-929 |#1|)) . T))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#2| (-356))
+(((|#1|) |has| |#1| (-170)))
+(((|#2|) |has| |#2| (-1018)))
+((((-1125) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))
+(((|#2| (-864 |#1|)) . T))
+((($) . T))
+((((-381) (-1125)) . T))
+((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-834)) -1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-593 (-834))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067))) (((-1226 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -3337 (-1125)) (|:| -1793 #0#))) . T))
+(((|#1|) . T))
+((((-834)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
((((-142)) . T))
(|has| |#2| (-143))
(|has| |#2| (-145))
-(|has| |#1| (-463))
-(-1530 (|has| |#1| (-463)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1136))) (|has| |#1| (-1016)))
-(|has| |#1| (-354))
-((((-832)) . T))
-(|has| |#1| (-38 (-398 (-547))))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539)))
-((($) |has| |#1| (-539)))
-(|has| |#1| (-819))
-(|has| |#1| (-819))
-((((-832)) . T))
-((((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-1211 |#1| |#2| |#3|)) |has| |#1| (-354)) ((|#1|) |has| |#1| (-169)))
-(((|#1|) |has| |#1| (-169)) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))))
-((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
+(|has| |#1| (-465))
+(-1536 (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1143))) (|has| |#1| (-1018)))
+(|has| |#1| (-356))
+((((-834)) . T))
+(|has| |#1| (-38 (-400 (-549))))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)))
+((($) |has| |#1| (-541)))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+((((-834)) . T))
+((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-1218 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))))
+((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
(((|#1| |#2|) . T))
-((((-1136)) |has| |#1| (-869 (-1136))))
-((((-879 |#1|)) . T) (((-398 (-547))) . T) (($) . T))
-((((-832)) . T))
-((((-832)) . T))
-(|has| |#1| (-1063))
-(((|#2| (-472 (-3767 |#1|) (-745)) (-834 |#1|)) . T))
-((((-398 (-547))) . #0=(|has| |#2| (-354))) (($) . #0#))
-(((|#1| (-519 (-1136)) (-1136)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-832)) . T))
-((((-832)) . T))
+((((-1143)) |has| |#1| (-871 (-1143))))
+((((-881 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
+((((-834)) . T))
+((((-834)) . T))
+(|has| |#1| (-1067))
+(((|#2| (-474 (-3775 |#1|) (-747)) (-836 |#1|)) . T))
+((((-400 (-549))) . #0=(|has| |#2| (-356))) (($) . #0#))
+(((|#1| (-521 (-1143)) (-1143)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-834)) . T))
+((((-834)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#2| (-169))
+(|has| |#2| (-170))
(((|#2| |#2|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
@@ -1400,334 +1405,334 @@
(|has| |#1| (-145))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) . T))
-((((-1134 |#1| |#2| |#3|)) |has| |#1| (-354)))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-1136) (-52)) . T))
+(((|#1|) . T) (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) . T))
+((((-1141 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-1143) (-52)) . T))
((($ $) . T))
-(((|#1| (-547)) . T))
-((((-879 |#1|)) . T))
-(((|#1|) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-1016))) (($) -1530 (|has| |#1| (-869 (-1136))) (|has| |#1| (-1016))))
-(((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))))
+(((|#1| (-549)) . T))
+((((-881 |#1|)) . T))
+(((|#1|) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1018))) (($) -1536 (|has| |#1| (-871 (-1143))) (|has| |#1| (-1018))))
+(((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
+(|has| |#1| (-823))
+(|has| |#1| (-823))
+((((-549) |#2|) . T))
+((((-549)) . T))
+((((-1218 |#1| |#2| |#3|)) -12 (|has| (-1218 |#1| |#2| |#3|) (-302 (-1218 |#1| |#2| |#3|))) (|has| |#1| (-356))))
+(|has| |#1| (-823))
+((((-665 |#2|)) . T) (((-834)) . T))
+(((|#1| |#2|) . T))
+((((-400 (-923 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#1|) |has| |#1| (-170)))
+(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356))))
+(|has| |#2| (-823))
+(|has| |#1| (-823))
+(-1536 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-880)))
+((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+((((-549) |#2|) . T))
+(((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356))))
+(|has| |#1| (-342))
+(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))
+((($) . T) (((-400 (-549))) . T))
+((((-549) (-112)) . T))
+(|has| |#1| (-796))
+(|has| |#1| (-796))
+(((|#1|) . T))
+(-1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)))
(|has| |#1| (-821))
(|has| |#1| (-821))
-((((-547) |#2|) . T))
-((((-547)) . T))
-((((-1211 |#1| |#2| |#3|)) -12 (|has| (-1211 |#1| |#2| |#3|) (-300 (-1211 |#1| |#2| |#3|))) (|has| |#1| (-354))))
(|has| |#1| (-821))
-((((-663 |#2|)) . T) (((-832)) . T))
-(((|#1| |#2|) . T))
-((((-398 (-921 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))
-(((|#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))
-(((|#1|) |has| |#1| (-169)))
-(((|#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))
-(((|#3|) -1530 (|has| |#3| (-169)) (|has| |#3| (-354))))
-(|has| |#2| (-821))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+(|has| |#1| (-38 (-400 (-549))))
+((((-549)) . T) (($) . T) (((-400 (-549))) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
+(|has| |#1| (-38 (-400 (-549))))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-1143)) |has| |#1| (-871 (-1143))) (((-1048)) . T))
+(((|#1|) . T))
(|has| |#1| (-821))
-(-1530 (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-878)))
-((($ $) . T) ((#0=(-398 (-547)) #0#) . T))
-((((-547) |#2|) . T))
-(((|#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-354))))
-(|has| |#1| (-340))
-(((|#3| |#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))
-((($) . T) (((-398 (-547))) . T))
-((((-547) (-112)) . T))
-(|has| |#1| (-794))
-(|has| |#1| (-794))
-(((|#1|) . T))
-(-1530 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340)))
-(|has| |#1| (-819))
-(|has| |#1| (-819))
-(|has| |#1| (-819))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-(|has| |#1| (-38 (-398 (-547))))
-((((-547)) . T) (($) . T) (((-398 (-547))) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-340)))
-(|has| |#1| (-38 (-398 (-547))))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-1136)) |has| |#1| (-869 (-1136))) (((-1045)) . T))
-(((|#1|) . T))
-(|has| |#1| (-819))
-(((#0=(-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) #0#) |has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(|has| |#1| (-1063))
-((((-832)) . T) (((-1141)) . T))
+(((#0=(-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) #0#) |has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-1067))
+((((-834)) . T) (((-1148)) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
-(((|#1| |#2| |#3| (-232 |#2| |#3|) (-232 |#1| |#3|)) . T))
+(((|#1| |#2| |#3| (-234 |#2| |#3|) (-234 |#1| |#3|)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#1| (-519 |#2|) |#2|) . T))
-((((-832)) . T))
-((((-745)) . T) (((-832)) . T))
-(((|#1| (-745) (-1045)) . T))
+(((|#1| (-521 |#2|) |#2|) . T))
+((((-834)) . T))
+((((-747)) . T) (((-834)) . T))
+(((|#1| (-747) (-1048)) . T))
(((|#3|) . T))
(((|#1|) . T))
((((-142)) . T))
-(((|#2|) |has| |#2| (-169)))
-(-1530 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063)))
+(((|#2|) |has| |#2| (-170)))
+(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067)))
(((|#1|) . T))
(|has| |#1| (-143))
(|has| |#1| (-145))
-(|has| |#3| (-169))
-(((|#4|) |has| |#4| (-354)))
-(((|#3|) |has| |#3| (-354)))
+(|has| |#3| (-170))
+(((|#4|) |has| |#4| (-356)))
+(((|#3|) |has| |#3| (-356)))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-354)))
-((((-832)) . T))
+(((|#2|) |has| |#1| (-356)))
+((((-834)) . T))
(((|#2|) . T))
-(((|#1| (-1132 |#1|)) . T))
-((((-1045)) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))))
-((($) . T) ((|#1|) . T) (((-398 (-547))) . T))
+(((|#1| (-1139 |#1|)) . T))
+((((-1048)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
+((($) . T) ((|#1|) . T) (((-400 (-549))) . T))
(((|#2|) . T))
-((((-1134 |#1| |#2| |#3|)) |has| |#1| (-354)))
-((($) |has| |#1| (-819)))
-(|has| |#1| (-878))
-((((-832)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+((((-1141 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((($) |has| |#1| (-821)))
+(|has| |#1| (-880))
+((((-834)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((#0=(-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) #0#) |has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))))
-(-1530 (|has| |#2| (-442)) (|has| |#2| (-878)))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-878)))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((#0=(-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) #0#) |has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))))
+(-1536 (|has| |#2| (-444)) (|has| |#2| (-880)))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-880)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -1530 (|has| |#3| (-169)) (|has| |#3| (-354))))
-(|has| |#1| (-821))
-(|has| |#1| (-539))
-((((-561 |#1|)) . T))
+(((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356))))
+(|has| |#1| (-823))
+(|has| |#1| (-541))
+((((-563 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-1530 (-12 (|has| |#1| (-354)) (|has| |#2| (-794))) (-12 (|has| |#1| (-354)) (|has| |#2| (-821))))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-((((-879 |#1|)) . T))
-(((|#1| (-485 |#1| |#3|) (-485 |#1| |#2|)) . T))
+(-1536 (-12 (|has| |#1| (-356)) (|has| |#2| (-796))) (-12 (|has| |#1| (-356)) (|has| |#2| (-823))))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+((((-881 |#1|)) . T))
+(((|#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-745)) . T))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539)))
-((((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-1134 |#1| |#2| |#3|)) |has| |#1| (-354)) ((|#1|) |has| |#1| (-169)))
-(((|#1|) |has| |#1| (-169)) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))))
-((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((((-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) . T))
-((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T))
-((((-646 |#1|)) . T))
+(((|#1| (-747)) . T))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)))
+((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-1141 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))))
+((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) . T))
+((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
+((((-648 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-523)) . T))
-((((-832)) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-832)) . T))
-((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-(((|#2|) . T))
-(-1530 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-359)) (|has| |#3| (-701)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)) (|has| |#3| (-1063)))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T))
-(|has| |#1| (-1158))
-(|has| |#1| (-1158))
-(-1530 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063)))
-(|has| |#1| (-1158))
-(|has| |#1| (-1158))
+((((-834)) . T) (((-1148)) . T))
+((((-525)) . T))
+((((-834)) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-834)) . T))
+((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+(((|#2|) . T))
+(-1536 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-703)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)) (|has| |#3| (-1067)))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
+(|has| |#1| (-1165))
+(|has| |#1| (-1165))
+(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067)))
+(|has| |#1| (-1165))
+(|has| |#1| (-1165))
(((|#3| |#3|) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-((((-547)) . T) (($) . T) (((-398 (-547))) . T))
-((($) . T) (((-398 (-547))) . T) (((-398 |#1|)) . T) ((|#1|) . T))
+((((-549)) . T) (($) . T) (((-400 (-549))) . T))
+((($) . T) (((-400 (-549))) . T) (((-400 |#1|)) . T) ((|#1|) . T))
+((($ $) . T) ((#0=(-400 (-549)) #0#) . T) ((#1=(-400 |#1|) #1#) . T) ((|#1| |#1|) . T))
(((|#3|) . T))
-((($ $) . T) ((#0=(-398 (-547)) #0#) . T) ((#1=(-398 |#1|) #1#) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-((((-1119) (-52)) . T))
-(|has| |#1| (-1063))
-(-1530 (|has| |#2| (-794)) (|has| |#2| (-821)))
-(((|#1|) . T))
-(((|#1|) |has| |#1| (-169)) (($) . T))
-((($) -1530 (|has| |#1| (-354)) (|has| |#1| (-340))) (((-398 (-547))) -1530 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T))
-((($) . T))
-((((-1134 |#1| |#2| |#3|)) -12 (|has| (-1134 |#1| |#2| |#3|) (-300 (-1134 |#1| |#2| |#3|))) (|has| |#1| (-354))))
-((((-832)) . T))
-(-1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-((($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-((((-832)) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(|has| |#2| (-878))
-(|has| |#1| (-354))
-(((|#2|) |has| |#2| (-1063)))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-878)))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+((((-1125) (-52)) . T))
+(|has| |#1| (-1067))
+(-1536 (|has| |#2| (-796)) (|has| |#2| (-823)))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
+((($) . T))
+((((-1141 |#1| |#2| |#3|)) -12 (|has| (-1141 |#1| |#2| |#3|) (-302 (-1141 |#1| |#2| |#3|))) (|has| |#1| (-356))))
+((((-834)) . T))
+(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+((($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+((((-834)) . T))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(|has| |#2| (-880))
+(|has| |#1| (-356))
+(((|#2|) |has| |#2| (-1067)))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-880)))
((($) . T) ((|#2|) . T))
-((((-523)) . T) (((-398 (-1132 (-547)))) . T) (((-217)) . T) (((-370)) . T))
-((((-370)) . T) (((-217)) . T) (((-832)) . T))
-(|has| |#1| (-878))
-(|has| |#1| (-878))
-(|has| |#1| (-878))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-878)))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))
+((((-525)) . T) (((-400 (-1139 (-549)))) . T) (((-219)) . T) (((-372)) . T))
+((((-372)) . T) (((-219)) . T) (((-834)) . T))
+(|has| |#1| (-880))
+(|has| |#1| (-880))
+(|has| |#1| (-880))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-880)))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
((($ $) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
((($ $) . T))
-((((-547) (-112)) . T))
+((((-549) (-112)) . T))
((($) . T))
(((|#1|) . T))
-((((-547)) . T))
+((((-549)) . T))
((((-112)) . T))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539)))
-(|has| |#1| (-38 (-398 (-547))))
-(((|#1| (-547)) . T))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541)))
+(|has| |#1| (-38 (-400 (-549))))
+(((|#1| (-549)) . T))
((($) . T))
-(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547))))
-((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T))
+(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
+((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
(((|#1|) . T))
-((((-547)) . T))
+((((-549)) . T))
(((|#1| |#2|) . T))
-((((-1136)) |has| |#1| (-1016)))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
+((((-1143)) |has| |#1| (-1018)))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
(((|#1|) . T))
-((((-832)) . T))
-(((|#1| (-547)) . T))
-(((|#1| (-1211 |#1| |#2| |#3|)) . T))
+((((-834)) . T))
+(((|#1| (-549)) . T))
+(((|#1| (-1218 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-398 (-547))) . T))
-(((|#1| (-1183 |#1| |#2| |#3|)) . T))
-(((|#1| (-745)) . T))
+(((|#1| (-400 (-549))) . T))
+(((|#1| (-1190 |#1| |#2| |#3|)) . T))
+(((|#1| (-747)) . T))
(((|#1|) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-832)) . T))
-(|has| |#1| (-1063))
-((((-1119) |#1|) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-834)) . T))
+(|has| |#1| (-1067))
+((((-1125) |#1|) . T))
((($) . T))
(|has| |#2| (-145))
(|has| |#2| (-143))
-(((|#1| (-519 (-792 (-1136))) (-792 (-1136))) . T))
-((((-832)) . T))
-((((-1205 |#1| |#2| |#3| |#4|)) . T))
-((((-1205 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1016)))
-((((-547) (-112)) . T))
-((((-832)) |has| |#1| (-1063)))
-(|has| |#2| (-169))
-((((-547)) . T))
-(|has| |#2| (-819))
-(((|#1|) . T))
-((((-547)) . T))
-((((-832)) . T))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-340)))
+(((|#1| (-521 (-794 (-1143))) (-794 (-1143))) . T))
+((((-834)) . T))
+((((-1212 |#1| |#2| |#3| |#4|)) . T))
+((((-1212 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1018)))
+((((-549) (-112)) . T))
+((((-834)) |has| |#1| (-1067)))
+(|has| |#2| (-170))
+((((-549)) . T))
+(|has| |#2| (-821))
+(((|#1|) . T))
+((((-549)) . T))
+((((-834)) . T))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-342)))
(|has| |#1| (-145))
-((((-832)) . T))
+((((-834)) . T))
(((|#3|) . T))
-(-1530 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016)))
-((((-832)) . T))
-((((-1204 |#2| |#3| |#4|)) . T) (((-1205 |#1| |#2| |#3| |#4|)) . T))
-((((-832)) . T))
-((((-48)) -12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547)))) (((-590 $)) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) -1530 (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547)))) (|has| |#1| (-1007 (-398 (-547))))) (((-398 (-921 |#1|))) |has| |#1| (-539)) (((-921 |#1|)) |has| |#1| (-1016)) (((-1136)) . T))
+(-1536 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+((((-834)) . T))
+((((-1211 |#2| |#3| |#4|)) . T) (((-1212 |#1| |#2| |#3| |#4|)) . T))
+((((-834)) . T))
+((((-48)) -12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549)))) (((-592 $)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) -1536 (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549)))) (|has| |#1| (-1009 (-400 (-549))))) (((-400 (-923 |#1|))) |has| |#1| (-541)) (((-923 |#1|)) |has| |#1| (-1018)) (((-1143)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-745)) . T))
-((($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#1|) |has| |#1| (-169)))
-(((|#1|) |has| |#1| (-300 |#1|)))
-((((-1205 |#1| |#2| |#3| |#4|)) . T))
-((((-547)) |has| |#1| (-855 (-547))) (((-370)) |has| |#1| (-855 (-370))))
-(((|#1|) . T))
-(|has| |#1| (-539))
-(((|#1|) . T))
-((((-832)) . T))
-(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))))
-(((|#1|) |has| |#1| (-169)))
-((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))
-(((|#1|) . T))
-(((|#3|) |has| |#3| (-1063)))
-(((|#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-354))))
-((((-1204 |#2| |#3| |#4|)) . T))
+(((|#1| (-747)) . T))
+((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-302 |#1|)))
+((((-1212 |#1| |#2| |#3| |#4|)) . T))
+((((-549)) |has| |#1| (-857 (-549))) (((-372)) |has| |#1| (-857 (-372))))
+(((|#1|) . T))
+(|has| |#1| (-541))
+(((|#1|) . T))
+((((-834)) . T))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))))
+(((|#1|) |has| |#1| (-170)))
+((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((|#1|) . T))
+(((|#3|) |has| |#3| (-1067)))
+(((|#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-356))))
+((((-1211 |#2| |#3| |#4|)) . T))
((((-112)) . T))
-(|has| |#1| (-794))
-(|has| |#1| (-794))
-(((|#1| (-547) (-1045)) . T))
-((($) |has| |#1| (-300 $)) ((|#1|) |has| |#1| (-300 |#1|)))
-(|has| |#1| (-819))
-(|has| |#1| (-819))
-(((|#1| (-547) (-1045)) . T))
-(-1530 (|has| |#1| (-869 (-1136))) (|has| |#1| (-1016)))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(((|#1| (-398 (-547)) (-1045)) . T))
-(((|#1| (-745) (-1045)) . T))
+(|has| |#1| (-796))
+(|has| |#1| (-796))
+(((|#1| (-549) (-1048)) . T))
+((($) |has| |#1| (-302 $)) ((|#1|) |has| |#1| (-302 |#1|)))
(|has| |#1| (-821))
-(((#0=(-879 |#1|) #0#) . T) (($ $) . T) ((#1=(-398 (-547)) #1#) . T))
+(|has| |#1| (-821))
+(((|#1| (-549) (-1048)) . T))
+(-1536 (|has| |#1| (-871 (-1143))) (|has| |#1| (-1018)))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(((|#1| (-400 (-549)) (-1048)) . T))
+(((|#1| (-747) (-1048)) . T))
+(|has| |#1| (-823))
+(((#0=(-881 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-549)) #1#) . T))
(|has| |#2| (-143))
(|has| |#2| (-145))
(((|#2|) . T))
(|has| |#1| (-143))
(|has| |#1| (-145))
-(|has| |#1| (-1063))
-((((-879 |#1|)) . T) (($) . T) (((-398 (-547))) . T))
-(|has| |#1| (-1063))
-(((|#1|) . T))
-(|has| |#1| (-1063))
-((((-547)) -12 (|has| |#1| (-354)) (|has| |#2| (-615 (-547)))) ((|#2|) |has| |#1| (-354)))
-(-1530 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063)))
-(((|#2|) |has| |#2| (-169)))
-(((|#1|) |has| |#1| (-169)))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) . T))
-((((-832)) . T))
-(|has| |#3| (-819))
-((((-832)) . T))
-((((-1204 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|)) . T))
-((((-832)) . T))
-(((|#1| |#1|) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-1016))))
-(((|#1|) . T))
-((((-547)) . T))
-((((-547)) . T))
-(((|#1|) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-1016))))
-(((|#2|) |has| |#2| (-354)))
-((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-354)))
+(|has| |#1| (-1067))
+((((-881 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
+(|has| |#1| (-1067))
+(((|#1|) . T))
+(|has| |#1| (-1067))
+((((-549)) -12 (|has| |#1| (-356)) (|has| |#2| (-617 (-549)))) ((|#2|) |has| |#1| (-356)))
+(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067)))
+(((|#2|) |has| |#2| (-170)))
+(((|#1|) |has| |#1| (-170)))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) . T))
+((((-834)) . T))
+(|has| |#3| (-821))
+((((-834)) . T))
+((((-1211 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T))
+((((-834)) . T))
+(((|#1| |#1|) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1018))))
+(((|#1|) . T))
+((((-549)) . T))
+((((-549)) . T))
+(((|#1|) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1018))))
+(((|#2|) |has| |#2| (-356)))
+((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-356)))
+(|has| |#1| (-823))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(((|#2|) . T))
+((((-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) |has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-880)))
+(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-525)) . T) (((-549)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
+((((-834)) . T))
+(|has| |#1| (-38 (-400 (-549))))
+((((-549)) . T) (($) . T) (((-400 (-549))) . T))
+((((-549)) . T) (($) . T) (((-400 (-549))) . T))
+(|has| |#1| (-227))
+(((|#1|) . T))
+(((|#1| (-549)) . T))
(|has| |#1| (-821))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) |has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-878)))
-(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547))))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-523)) . T) (((-547)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T))
-((((-832)) . T))
-(|has| |#1| (-38 (-398 (-547))))
-((((-547)) . T) (($) . T) (((-398 (-547))) . T))
-((((-547)) . T) (($) . T) (((-398 (-547))) . T))
-(|has| |#1| (-225))
-(((|#1|) . T))
-(((|#1| (-547)) . T))
-(|has| |#1| (-819))
-(((|#1| (-1134 |#1| |#2| |#3|)) . T))
+(((|#1| (-1141 |#1| |#2| |#3|)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-398 (-547))) . T))
-(((|#1| (-1127 |#1| |#2| |#3|)) . T))
-(((|#1| (-745)) . T))
+(((|#1| (-400 (-549))) . T))
+(((|#1| (-1134 |#1| |#2| |#3|)) . T))
+(((|#1| (-747)) . T))
(((|#1|) . T))
-(((|#1| |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) . T))
+(((|#1| |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-143))
@@ -1737,1523 +1742,1525 @@
(((|#1| |#2|) . T))
((((-129)) . T))
((((-142)) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(((|#1|) . T))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) . T) (($ $) . T))
-((((-832)) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-(|has| (-398 |#2|) (-225))
-(|has| |#1| (-878))
-(((|#2|) |has| |#2| (-1016)))
-(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))))
-(|has| |#1| (-354))
-(((|#1|) |has| |#1| (-169)))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(((|#1|) . T))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) . T) (($ $) . T))
+((((-834)) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| (-400 |#2|) (-227))
+(|has| |#1| (-880))
+(((|#2|) |has| |#2| (-1018)))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))))
+(|has| |#1| (-356))
+(((|#1|) |has| |#1| (-170)))
(((|#1| |#1|) . T))
-((((-839 |#1|)) . T))
-((((-832)) . T))
+((((-841 |#1|)) . T))
+((((-834)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1063)))
-(|has| |#2| (-821))
+(((|#2|) |has| |#2| (-1067)))
+(|has| |#2| (-823))
(((|#1|) . T))
-((((-398 (-547))) . T) (((-547)) . T) (((-590 $)) . T))
+((((-400 (-549))) . T) (((-549)) . T) (((-592 $)) . T))
(((|#1|) . T))
-((((-832)) . T))
+((((-834)) . T))
((($) . T))
-(|has| |#1| (-821))
-((((-832)) . T))
-(((|#1| (-519 |#2|) |#2|) . T))
-(((|#1| (-547) (-1045)) . T))
-((((-879 |#1|)) . T))
-((((-832)) . T))
+(|has| |#1| (-823))
+((((-834)) . T))
+(((|#1| (-521 |#2|) |#2|) . T))
+(((|#1| (-549) (-1048)) . T))
+((((-881 |#1|)) . T))
+((((-834)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-398 (-547)) (-1045)) . T))
-(((|#1| (-745) (-1045)) . T))
-(((#0=(-398 |#2|) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-547)) -1530 (|has| (-398 (-547)) (-1007 (-547))) (|has| |#1| (-1007 (-547)))) (((-398 (-547))) . T))
-(((|#1| (-580 |#1| |#3|) (-580 |#1| |#2|)) . T))
-(((|#1|) |has| |#1| (-169)))
+(((|#1| (-400 (-549)) (-1048)) . T))
+(((|#1| (-747) (-1048)) . T))
+(((#0=(-400 |#2|) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-549)) -1536 (|has| (-400 (-549)) (-1009 (-549))) (|has| |#1| (-1009 (-549)))) (((-400 (-549))) . T))
+(((|#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) . T))
+(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T))
-(|has| |#2| (-225))
-(((|#2| (-519 (-834 |#1|)) (-834 |#1|)) . T))
-((((-832)) . T))
-((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((((-832)) . T))
+((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
+(|has| |#2| (-227))
+(((|#2| (-521 (-836 |#1|)) (-836 |#1|)) . T))
+((((-834)) . T))
+((($) |has| |#1| (-541)) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-834)) . T))
(((|#1| |#3|) . T))
-((((-832)) . T))
-(((|#1|) |has| |#1| (-169)))
-((((-673)) . T))
-((((-673)) . T))
-(((|#2|) |has| |#2| (-169)))
-(|has| |#2| (-819))
-((((-112)) |has| |#1| (-1063)) (((-832)) -1530 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-463)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1136))) (|has| |#1| (-1016)) (|has| |#1| (-1075)) (|has| |#1| (-1063))))
+((((-834)) . T))
+(((|#1|) |has| |#1| (-170)))
+((((-675)) . T))
+((((-675)) . T))
+(((|#2|) |has| |#2| (-170)))
+(|has| |#2| (-821))
+((((-112)) |has| |#1| (-1067)) (((-834)) -1536 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1143))) (|has| |#1| (-1018)) (|has| |#1| (-1079)) (|has| |#1| (-1067))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) . T))
-((((-832)) . T))
-((((-547) |#1|) . T))
-((((-673)) . T) (((-398 (-547))) . T) (((-547)) . T))
-(((|#1| |#1|) |has| |#1| (-169)))
-(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))))
-((((-370)) . T))
-((((-673)) . T))
-((((-398 (-547))) . #0=(|has| |#2| (-354))) (($) . #0#))
-(((|#1|) |has| |#1| (-169)))
-((((-398 (-921 |#1|))) . T))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) . T))
+((((-834)) . T))
+((((-549) |#1|) . T))
+((((-675)) . T) (((-400 (-549))) . T) (((-549)) . T))
+(((|#1| |#1|) |has| |#1| (-170)))
+(((|#2|) . T))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))))
+((((-372)) . T))
+((((-675)) . T))
+((((-400 (-549))) . #0=(|has| |#2| (-356))) (($) . #0#))
+(((|#1|) |has| |#1| (-170)))
+((((-400 (-923 |#1|))) . T))
(((|#2| |#2|) . T))
-(-1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(((|#2|) . T))
-(|has| |#2| (-821))
-(((|#3|) |has| |#3| (-1016)))
-(|has| |#2| (-878))
-(|has| |#1| (-878))
-(|has| |#1| (-354))
-(|has| |#1| (-821))
-((((-1136)) |has| |#2| (-869 (-1136))))
-((((-832)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-398 (-547))) . T) (($) . T))
-(|has| |#1| (-463))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-(|has| |#1| (-354))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-463)) (|has| |#1| (-539)) (|has| |#1| (-1016)) (|has| |#1| (-1075)))
-(|has| |#1| (-38 (-398 (-547))))
+(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(((|#2|) . T))
+(|has| |#2| (-823))
+(((|#3|) |has| |#3| (-1018)))
+(|has| |#2| (-880))
+(|has| |#1| (-880))
+(|has| |#1| (-356))
+(|has| |#1| (-823))
+((((-1143)) |has| |#2| (-871 (-1143))))
+((((-834)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-400 (-549))) . T) (($) . T))
+(|has| |#1| (-465))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-356))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-541)) (|has| |#1| (-1018)) (|has| |#1| (-1079)))
+(|has| |#1| (-38 (-400 (-549))))
((((-116 |#1|)) . T))
((((-116 |#1|)) . T))
-(|has| |#1| (-340))
+(|has| |#1| (-342))
((((-142)) . T))
-(|has| |#1| (-38 (-398 (-547))))
-((($) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(((|#2|) . T) (((-832)) . T))
-(((|#2|) . T) (((-832)) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-821))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) . T))
+(|has| |#1| (-38 (-400 (-549))))
+((($) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(((|#2|) . T) (((-834)) . T))
+(((|#2|) . T) (((-834)) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-823))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-145))
(|has| |#1| (-143))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) ((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) ((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
(((|#2|) . T))
(((|#3|) . T))
((((-116 |#1|)) . T))
-(|has| |#1| (-359))
-(|has| |#1| (-821))
-(((|#2|) . T) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T))
+(|has| |#1| (-361))
+(|has| |#1| (-823))
+(((|#2|) . T) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
((((-116 |#1|)) . T))
-(((|#2|) |has| |#2| (-169)))
-(((|#1|) . T))
-((((-547)) . T))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-((((-832)) . T))
-((((-832)) . T))
-((((-523)) |has| |#1| (-592 (-523))) (((-861 (-547))) |has| |#1| (-592 (-861 (-547)))) (((-861 (-370))) |has| |#1| (-592 (-861 (-370)))) (((-370)) . #0=(|has| |#1| (-991))) (((-217)) . #0#))
-(((|#1|) |has| |#1| (-354)))
-((((-832)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((($ $) . T) (((-590 $) $) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-((($) . T) (((-1205 |#1| |#2| |#3| |#4|)) . T) (((-398 (-547))) . T))
-((($) -1530 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-539)))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-((((-370)) . T) (((-547)) . T) (((-398 (-547))) . T))
-((((-619 (-754 |#1| (-834 |#2|)))) . T) (((-832)) . T))
-((((-523)) |has| (-754 |#1| (-834 |#2|)) (-592 (-523))))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-370)) . T))
-(((|#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))
-((((-832)) . T))
-(-1530 (|has| |#2| (-442)) (|has| |#2| (-878)))
-(((|#1|) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-((((-523)) |has| |#1| (-592 (-523))))
-(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))
-(|has| |#1| (-1063))
-((((-832)) . T))
-((((-1136)) . T) (((-832)) . T) (((-1141)) . T))
-((((-398 (-547))) . T) (((-547)) . T) (((-590 $)) . T))
+(((|#2|) |has| |#2| (-170)))
+(((|#1|) . T))
+((((-549)) . T))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+((((-834)) . T))
+((((-834)) . T))
+((((-525)) |has| |#1| (-594 (-525))) (((-863 (-549))) |has| |#1| (-594 (-863 (-549)))) (((-863 (-372))) |has| |#1| (-594 (-863 (-372)))) (((-372)) . #0=(|has| |#1| (-993))) (((-219)) . #0#))
+(((|#1|) |has| |#1| (-356)))
+((((-834)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((($ $) . T) (((-592 $) $) . T))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+((($) . T) (((-1212 |#1| |#2| |#3| |#4|)) . T) (((-400 (-549))) . T))
+((($) -1536 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-541)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+((((-372)) . T) (((-549)) . T) (((-400 (-549))) . T))
+((((-621 (-756 |#1| (-836 |#2|)))) . T) (((-834)) . T))
+((((-525)) |has| (-756 |#1| (-836 |#2|)) (-594 (-525))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-372)) . T))
+(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))
+((((-834)) . T))
+(-1536 (|has| |#2| (-444)) (|has| |#2| (-880)))
+(((|#1|) . T))
+(|has| |#1| (-823))
+(|has| |#1| (-823))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+((((-525)) |has| |#1| (-594 (-525))))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(|has| |#1| (-1067))
+((((-834)) . T))
+((((-1143)) . T) (((-834)) . T) (((-1148)) . T))
+((((-400 (-549))) . T) (((-549)) . T) (((-592 $)) . T))
(|has| |#1| (-143))
(|has| |#1| (-145))
-((((-547)) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-(((#0=(-1204 |#2| |#3| |#4|)) . T) (((-398 (-547))) |has| #0# (-38 (-398 (-547)))) (($) . T))
-((((-547)) . T))
-(|has| |#1| (-354))
-(-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-145)) (|has| |#1| (-354))) (|has| |#1| (-145)))
-(-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-143)) (|has| |#1| (-354))) (|has| |#1| (-143)))
-(|has| |#1| (-354))
+((((-549)) . T))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+(((#0=(-1211 |#2| |#3| |#4|)) . T) (((-400 (-549))) |has| #0# (-38 (-400 (-549)))) (($) . T))
+((((-549)) . T))
+(|has| |#1| (-356))
+(-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-145)) (|has| |#1| (-356))) (|has| |#1| (-145)))
+(-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143)))
+(|has| |#1| (-356))
(|has| |#1| (-143))
(|has| |#1| (-145))
(|has| |#1| (-145))
(|has| |#1| (-143))
-(|has| |#1| (-225))
-(|has| |#1| (-354))
+(|has| |#1| (-227))
+(|has| |#1| (-356))
(((|#3|) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-547)) |has| |#2| (-615 (-547))) ((|#2|) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-549)) |has| |#2| (-617 (-549))) ((|#2|) . T))
(((|#2|) . T))
-(|has| |#1| (-1063))
+(|has| |#1| (-1067))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-547)) |has| |#1| (-615 (-547))))
-(((|#3|) |has| |#3| (-169)))
-(-1530 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063)))
-((((-832)) . T))
-((((-547)) . T))
-(((|#1| $) |has| |#1| (-277 |#1| |#1|)))
-((((-398 (-547))) . T) (($) . T) (((-398 |#1|)) . T) ((|#1|) . T))
-((((-832)) . T))
+(((|#1|) . T) (((-549)) |has| |#1| (-617 (-549))))
+(((|#3|) |has| |#3| (-170)))
+(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067)))
+((((-834)) . T))
+((((-549)) . T))
+(((|#1| $) |has| |#1| (-279 |#1| |#1|)))
+((((-400 (-549))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T))
+((((-834)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -1530 (|has| |#1| (-281)) (|has| |#1| (-354))) ((#0=(-398 (-547)) #0#) |has| |#1| (-354)))
-((((-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) . T))
-((($) . T))
-((((-547) |#1|) . T))
-((((-1136)) |has| (-398 |#2|) (-869 (-1136))))
-(((|#1|) . T) (($) -1530 (|has| |#1| (-281)) (|has| |#1| (-354))) (((-398 (-547))) |has| |#1| (-354)))
-((((-523)) |has| |#2| (-592 (-523))))
-((((-663 |#2|)) . T) (((-832)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))
-(((|#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))
-((((-839 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(-1530 (|has| |#4| (-767)) (|has| |#4| (-819)))
-(-1530 (|has| |#3| (-767)) (|has| |#3| (-819)))
-((((-832)) . T))
-((((-832)) . T))
-(((|#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))
-(((|#2|) |has| |#2| (-1016)))
-(((|#1|) . T))
-((((-398 |#2|)) . T))
-(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))
-((((-547) |#1|) . T))
-(((|#1|) . T))
-((($) . T))
-((((-547)) . T) (($) . T) (((-398 (-547))) . T))
-((((-398 (-547))) . T) (($) . T))
-((((-398 (-547))) . T) (($) . T))
-((((-398 (-547))) . T) (($) . T))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-1177)))
-((($) . T))
-((((-398 (-547))) |has| #0=(-398 |#2|) (-1007 (-398 (-547)))) (((-547)) |has| #0# (-1007 (-547))) ((#0#) . T))
-(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547))))
-(((|#1| (-745)) . T))
+(((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-283)) (|has| |#1| (-356))) ((#0=(-400 (-549)) #0#) |has| |#1| (-356)))
+((((-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) . T))
+((($) . T))
+((((-549) |#1|) . T))
+((((-1143)) |has| (-400 |#2|) (-871 (-1143))))
+(((|#1|) . T) (($) -1536 (|has| |#1| (-283)) (|has| |#1| (-356))) (((-400 (-549))) |has| |#1| (-356)))
+((((-525)) |has| |#2| (-594 (-525))))
+((((-665 |#2|)) . T) (((-834)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+((((-841 |#1|)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-1536 (|has| |#4| (-769)) (|has| |#4| (-821)))
+(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
+((((-834)) . T))
+((((-834)) . T))
+(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#2|) |has| |#2| (-1018)))
+(((|#1|) . T))
+((((-400 |#2|)) . T))
+(((|#1|) . T))
+(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))
+((((-549) |#1|) . T))
+(((|#1|) . T))
+((($) . T))
+((((-549)) . T) (($) . T) (((-400 (-549))) . T))
+((((-400 (-549))) . T) (($) . T))
+((((-400 (-549))) . T) (($) . T))
+((((-400 (-549))) . T) (($) . T))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-1184)))
+((($) . T))
+((((-400 (-549))) |has| #0=(-400 |#2|) (-1009 (-400 (-549)))) (((-549)) |has| #0# (-1009 (-549))) ((#0#) . T))
+(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
+(((|#1| (-747)) . T))
+(|has| |#1| (-823))
+(((|#1|) . T) (((-549)) |has| |#1| (-617 (-549))))
+((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
+((((-549)) . T))
+(|has| |#1| (-38 (-400 (-549))))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) |has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(|has| |#1| (-821))
-(((|#1|) . T) (((-547)) |has| |#1| (-615 (-547))))
-((($) -1530 (|has| |#1| (-354)) (|has| |#1| (-340))) (((-398 (-547))) -1530 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T))
-((((-547)) . T))
-(|has| |#1| (-38 (-398 (-547))))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) |has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))))))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(|has| |#1| (-819))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-340))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-342))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
(((|#1| |#2|) . T))
((((-142)) . T))
-((((-754 |#1| (-834 |#2|))) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-(|has| |#1| (-1158))
-(((|#1|) . T))
-(-1530 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-359)) (|has| |#3| (-701)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)) (|has| |#3| (-1063)))
-((((-1136) |#1|) |has| |#1| (-503 (-1136) |#1|)))
-(((|#2|) . T))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((((-879 |#1|)) . T))
-((($) . T))
-((((-398 (-921 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-523)) |has| |#4| (-592 (-523))))
-((((-832)) . T) (((-619 |#4|)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(((|#1|) . T))
-(|has| |#1| (-819))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) |has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))))
-(|has| |#1| (-1063))
-(|has| |#1| (-354))
+((((-756 |#1| (-836 |#2|))) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+(|has| |#1| (-1165))
+(((|#1|) . T))
+(-1536 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-703)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)) (|has| |#3| (-1067)))
+((((-1143) |#1|) |has| |#1| (-505 (-1143) |#1|)))
+(((|#2|) . T))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-881 |#1|)) . T))
+((($) . T))
+((((-400 (-923 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-525)) |has| |#4| (-594 (-525))))
+((((-834)) . T) (((-621 |#4|)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(((|#1|) . T))
(|has| |#1| (-821))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) |has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))))
+(|has| |#1| (-1067))
+(|has| |#1| (-356))
+(|has| |#1| (-823))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-398 (-547))) . T))
-((($) -1530 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#1|) |has| |#1| (-169)))
+((($) . T) (((-400 (-549))) . T))
+((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170)))
(|has| |#1| (-143))
(|has| |#1| (-145))
-(-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-145)) (|has| |#1| (-354))) (|has| |#1| (-145)))
-(-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-143)) (|has| |#1| (-354))) (|has| |#1| (-143)))
+(-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-145)) (|has| |#1| (-356))) (|has| |#1| (-145)))
+(-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143)))
(|has| |#1| (-143))
(|has| |#1| (-145))
(|has| |#1| (-145))
(|has| |#1| (-143))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-((((-1211 |#1| |#2| |#3|)) |has| |#1| (-354)))
-(|has| |#1| (-819))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+((((-1218 |#1| |#2| |#3|)) |has| |#1| (-356)))
+(|has| |#1| (-821))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-547)) |has| |#1| (-615 (-547))))
-((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T))
-((((-879 |#1|)) . T) (((-398 (-547))) . T) (($) . T))
-(|has| |#1| (-1063))
-(((|#1|) . T) (($) . T) (((-398 (-547))) . T) (((-547)) . T))
+(((|#1|) . T) (((-549)) |has| |#1| (-617 (-549))))
+((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
+((((-881 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
+(|has| |#1| (-1067))
+(((|#1|) . T) (($) . T) (((-400 (-549))) . T) (((-549)) . T))
(|has| |#2| (-143))
(|has| |#2| (-145))
-((((-879 |#1|)) . T) (((-398 (-547))) . T) (($) . T))
-(|has| |#1| (-1063))
-(((|#2|) |has| |#2| (-169)))
+((((-881 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
+(|has| |#1| (-1067))
+(((|#2|) |has| |#2| (-170)))
(((|#2|) . T))
(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-354)))
-((((-398 |#2|)) . T))
-((((-832)) . T))
-(((|#1|) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-523)) |has| |#1| (-592 (-523))))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-1136) |#1|) |has| |#1| (-503 (-1136) |#1|)) ((|#1| |#1|) |has| |#1| (-300 |#1|)))
-(((|#1|) -1530 (|has| |#1| (-169)) (|has| |#1| (-354))))
-((((-307 |#1|)) . T))
-(((|#2|) |has| |#2| (-354)))
-(((|#2|) . T))
-((((-398 (-547))) . T) (((-673)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((#0=(-754 |#1| (-834 |#2|)) #0#) |has| (-754 |#1| (-834 |#2|)) (-300 (-754 |#1| (-834 |#2|)))))
-((((-834 |#1|)) . T))
-(((|#2|) |has| |#2| (-169)))
-(((|#1|) |has| |#1| (-169)))
-(((|#2|) . T))
-((((-1136)) |has| |#1| (-869 (-1136))) (((-1045)) . T))
-((((-1136)) |has| |#1| (-869 (-1136))) (((-1052 (-1136))) . T))
-(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(|has| |#1| (-38 (-398 (-547))))
-(((|#4|) |has| |#4| (-1016)) (((-547)) -12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))))
-(((|#3|) |has| |#3| (-1016)) (((-547)) -12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))))
+(((|#3|) |has| |#3| (-356)))
+((((-400 |#2|)) . T))
+((((-834)) . T))
+(((|#1|) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-1143) |#1|) |has| |#1| (-505 (-1143) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|)))
+(((|#1|) -1536 (|has| |#1| (-170)) (|has| |#1| (-356))))
+((((-309 |#1|)) . T))
+(((|#2|) |has| |#2| (-356)))
+(((|#2|) . T))
+((((-400 (-549))) . T) (((-675)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((#0=(-756 |#1| (-836 |#2|)) #0#) |has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))))
+((((-836 |#1|)) . T))
+(((|#2|) |has| |#2| (-170)))
+(((|#1|) |has| |#1| (-170)))
+(((|#2|) . T))
+((((-1143)) |has| |#1| (-871 (-1143))) (((-1048)) . T))
+((((-1143)) |has| |#1| (-871 (-1143))) (((-1055 (-1143))) . T))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(|has| |#1| (-38 (-400 (-549))))
+(((|#4|) |has| |#4| (-1018)) (((-549)) -12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))))
+(((|#3|) |has| |#3| (-1018)) (((-549)) -12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))))
(|has| |#1| (-143))
(|has| |#1| (-145))
((($ $) . T))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-463)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1136))) (|has| |#1| (-1016)) (|has| |#1| (-1075)) (|has| |#1| (-1063)))
-(|has| |#1| (-539))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1143))) (|has| |#1| (-1018)) (|has| |#1| (-1079)) (|has| |#1| (-1067)))
+(|has| |#1| (-541))
(((|#2|) . T))
-((((-547)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
+((((-549)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
(((|#1|) . T))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016)))
-((((-561 |#1|)) . T))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018)))
+((((-563 |#1|)) . T))
((($) . T))
(((|#1| (-58 |#1|) (-58 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-832)) . T))
-(((|#2|) |has| |#2| (-6 (-4331 "*"))))
+((((-834)) . T))
+(((|#2|) |has| |#2| (-6 (-4339 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-398 (-547))) |has| |#2| (-1007 (-398 (-547)))) (((-547)) |has| |#2| (-1007 (-547))) ((|#2|) . T) (((-834 |#1|)) . T))
-((($) . T) (((-116 |#1|)) . T) (((-398 (-547))) . T))
-((((-1087 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))))
-((((-1132 |#1|)) . T) (((-1045)) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))))
-((((-1087 |#1| (-1136))) . T) (((-1052 (-1136))) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-1136)) . T))
-(|has| |#1| (-1063))
+((((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))) (((-549)) |has| |#2| (-1009 (-549))) ((|#2|) . T) (((-836 |#1|)) . T))
+((($) . T) (((-116 |#1|)) . T) (((-400 (-549))) . T))
+((((-1092 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
+((((-1139 |#1|)) . T) (((-1048)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
+((((-1092 |#1| (-1143))) . T) (((-1055 (-1143))) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-1143)) . T))
+(|has| |#1| (-1067))
((($) . T))
-(|has| |#1| (-1063))
-((((-547)) -12 (|has| |#1| (-855 (-547))) (|has| |#2| (-855 (-547)))) (((-370)) -12 (|has| |#1| (-855 (-370))) (|has| |#2| (-855 (-370)))))
+(|has| |#1| (-1067))
+((((-549)) -12 (|has| |#1| (-857 (-549))) (|has| |#2| (-857 (-549)))) (((-372)) -12 (|has| |#1| (-857 (-372))) (|has| |#2| (-857 (-372)))))
(((|#1| |#2|) . T))
-((((-1136) |#1|) . T))
+((((-1143) |#1|) . T))
(((|#4|) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-340)))
-((((-1136) (-52)) . T))
-((((-1204 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|)) . T))
-((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T))
-((((-832)) . T))
-(-1530 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063)))
-(((#0=(-1205 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-169)) ((#0=(-398 (-547)) #0#) |has| |#1| (-539)) (($ $) |has| |#1| (-539)))
-(((|#1|) . T) (($) . T) (((-398 (-547))) . T))
-(((|#1| $) |has| |#1| (-277 |#1| |#1|)))
-((((-1205 |#1| |#2| |#3| |#4|)) . T) (((-398 (-547))) . T) (($) . T))
-(((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-539)) (($) |has| |#1| (-539)))
-(|has| |#1| (-354))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
+((((-1143) (-52)) . T))
+((((-1211 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T))
+((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T))
+((((-834)) . T))
+(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-703)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)) (|has| |#2| (-1067)))
+(((#0=(-1212 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-170)) ((#0=(-400 (-549)) #0#) |has| |#1| (-541)) (($ $) |has| |#1| (-541)))
+(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
+(((|#1| $) |has| |#1| (-279 |#1| |#1|)))
+((((-1212 |#1| |#2| |#3| |#4|)) . T) (((-400 (-549))) . T) (($) . T))
+(((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-541)) (($) |has| |#1| (-541)))
+(|has| |#1| (-356))
(|has| |#1| (-143))
(|has| |#1| (-145))
(|has| |#1| (-145))
(|has| |#1| (-143))
-((((-398 (-547))) . T) (($) . T))
-(((|#3|) |has| |#3| (-354)))
-(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))
-((((-1136)) . T))
+((((-400 (-549))) . T) (($) . T))
+(((|#3|) |has| |#3| (-356)))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+((((-1143)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
(((|#2| |#3|) . T))
-(-1530 (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-(((|#1| (-519 |#2|)) . T))
-(((|#1| (-745)) . T))
-(((|#1| (-519 (-1052 (-1136)))) . T))
-(((|#1|) |has| |#1| (-169)))
-(((|#1|) . T))
-(|has| |#2| (-878))
-(-1530 (|has| |#2| (-767)) (|has| |#2| (-819)))
-((((-832)) . T))
-((($ $) . T) ((#0=(-1204 |#2| |#3| |#4|) #0#) . T) ((#1=(-398 (-547)) #1#) |has| #0# (-38 (-398 (-547)))))
-((((-879 |#1|)) . T))
-(-12 (|has| |#1| (-354)) (|has| |#2| (-794)))
-((($) . T) (((-398 (-547))) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-354))
-(-1530 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340)) (|has| |#1| (-539)))
-(|has| |#1| (-354))
-((($) . T) ((#0=(-1204 |#2| |#3| |#4|)) . T) (((-398 (-547))) |has| #0# (-38 (-398 (-547)))))
+(-1536 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+(((|#1| (-521 |#2|)) . T))
+(((|#1| (-747)) . T))
+(((|#1| (-521 (-1055 (-1143)))) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) . T))
+(|has| |#2| (-880))
+(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
+((((-834)) . T))
+((($ $) . T) ((#0=(-1211 |#2| |#3| |#4|) #0#) . T) ((#1=(-400 (-549)) #1#) |has| #0# (-38 (-400 (-549)))))
+((((-881 |#1|)) . T))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
+((($) . T) (((-400 (-549))) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-356))
+(-1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)) (|has| |#1| (-541)))
+(|has| |#1| (-356))
+((($) . T) ((#0=(-1211 |#2| |#3| |#4|)) . T) (((-400 (-549))) |has| #0# (-38 (-400 (-549)))))
(((|#1| |#2|) . T))
-((((-1134 |#1| |#2| |#3|)) |has| |#1| (-354)))
-(-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354)) (|has| |#1| (-340)))
-(-1530 (|has| |#1| (-869 (-1136))) (|has| |#1| (-1016)))
-((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T))
+((((-1141 |#1| |#2| |#3|)) |has| |#1| (-356)))
+(-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356)) (|has| |#1| (-342)))
+(-1536 (|has| |#1| (-871 (-1143))) (|has| |#1| (-1018)))
+((((-549)) |has| |#1| (-617 (-549))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-832)) . T))
-((((-832)) . T))
+((((-834)) . T))
+((((-834)) . T))
((((-112)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T))
+((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) . T))
-(|has| |#2| (-354))
-(|has| |#1| (-821))
+(((|#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) . T))
+(|has| |#2| (-356))
+(|has| |#1| (-823))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-832)) . T))
-(|has| |#1| (-1063))
+((((-834)) . T))
+(|has| |#1| (-1067))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-398 $) (-398 $)) |has| |#1| (-539)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-794))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-400 $) (-400 $)) |has| |#1| (-541)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-796))
(((|#4|) . T))
((($) . T))
((($ $) . T))
((($) . T))
-((((-832)) . T))
-(((|#1| (-519 (-1136))) . T))
-(((|#1|) |has| |#1| (-169)))
-((((-832)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))
-(((|#2|) -1530 (|has| |#2| (-6 (-4331 "*"))) (|has| |#2| (-169))))
-(-1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(|has| |#2| (-821))
-(|has| |#2| (-878))
-(|has| |#1| (-878))
-(((|#2|) |has| |#2| (-169)))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-1211 |#1| |#2| |#3|)) |has| |#1| (-354)))
-((((-832)) . T))
-((((-832)) . T))
-((((-523)) . T) (((-547)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T))
+((((-834)) . T))
+(((|#1| (-521 (-1143))) . T))
+(((|#1|) |has| |#1| (-170)))
+((((-834)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(((|#2|) -1536 (|has| |#2| (-6 (-4339 "*"))) (|has| |#2| (-170))))
+(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(|has| |#2| (-823))
+(|has| |#2| (-880))
+(|has| |#1| (-880))
+(((|#2|) |has| |#2| (-170)))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-1218 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((((-834)) . T))
+((((-834)) . T))
+((((-525)) . T) (((-549)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) . T))
(((|#1|) . T))
-((((-832)) . T))
+((((-834)) . T))
(((|#1| |#2|) . T))
-(((|#1| (-398 (-547))) . T))
+(((|#1| (-400 (-549))) . T))
(((|#1|) . T))
-(-1530 (|has| |#1| (-281)) (|has| |#1| (-354)))
+(-1536 (|has| |#1| (-283)) (|has| |#1| (-356)))
((((-142)) . T))
-((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T))
-(|has| |#1| (-819))
-((((-832)) . T))
-((((-832)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1| |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) . T))
+((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
+(|has| |#1| (-821))
+((((-834)) . T))
+((((-834)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-398 (-547))) . T) (($) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
+((((-400 (-549))) . T) (($) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-523)) |has| |#1| (-592 (-523))) (((-861 (-547))) |has| |#1| (-592 (-861 (-547)))) (((-861 (-370))) |has| |#1| (-592 (-861 (-370)))))
-((((-1136) (-52)) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-832)) . T))
-((((-619 (-142))) . T) (((-1119)) . T))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) . T))
-((((-1136) |#1|) |has| |#1| (-503 (-1136) |#1|)) ((|#1| |#1|) |has| |#1| (-300 |#1|)))
+((((-834)) . T))
+((((-834)) . T))
+((((-525)) |has| |#1| (-594 (-525))) (((-863 (-549))) |has| |#1| (-594 (-863 (-549)))) (((-863 (-372))) |has| |#1| (-594 (-863 (-372)))))
+((((-1143) (-52)) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-834)) . T))
+((((-621 (-142))) . T) (((-1125)) . T))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) . T))
+((((-1143) |#1|) |has| |#1| (-505 (-1143) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|)))
+(|has| |#1| (-823))
+((((-834)) . T))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-834)) . T))
+(((|#2|) |has| |#2| (-356)))
+((((-834)) . T))
+((((-525)) |has| |#4| (-594 (-525))))
+((((-834)) . T) (((-621 |#4|)) . T))
+(((|#2|) . T))
+((((-881 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
+(-1536 (|has| |#4| (-170)) (|has| |#4| (-703)) (|has| |#4| (-821)) (|has| |#4| (-1018)))
+(-1536 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+((((-1143) (-52)) . T))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(|has| |#1| (-880))
+(|has| |#1| (-880))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-834)) . T))
+((((-549)) . T))
+(((#0=(-400 (-549)) #0#) . T) (($ $) . T))
+((((-400 (-549))) . T) (($) . T))
+(((|#1| (-400 (-549)) (-1048)) . T))
+(|has| |#1| (-1067))
+(|has| |#1| (-541))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(|has| |#1| (-796))
+(((#0=(-881 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-549)) #1#) . T))
+((((-400 |#2|)) . T))
(|has| |#1| (-821))
-((((-832)) . T))
-((((-523)) |has| |#1| (-592 (-523))))
-((((-832)) . T))
-(((|#2|) |has| |#2| (-354)))
-((((-832)) . T))
-((((-523)) |has| |#4| (-592 (-523))))
-((((-832)) . T) (((-619 |#4|)) . T))
-(((|#2|) . T))
-((((-879 |#1|)) . T) (((-398 (-547))) . T) (($) . T))
-(-1530 (|has| |#4| (-169)) (|has| |#4| (-701)) (|has| |#4| (-819)) (|has| |#4| (-1016)))
-(-1530 (|has| |#3| (-169)) (|has| |#3| (-701)) (|has| |#3| (-819)) (|has| |#3| (-1016)))
-((((-1136) (-52)) . T))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-1530 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(|has| |#1| (-878))
-(|has| |#1| (-878))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-832)) . T))
-((((-547)) . T))
-(((#0=(-398 (-547)) #0#) . T) (($ $) . T))
-((((-398 (-547))) . T) (($) . T))
-(((|#1| (-398 (-547)) (-1045)) . T))
-(|has| |#1| (-1063))
-(|has| |#1| (-539))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(|has| |#1| (-794))
-(((#0=(-879 |#1|) #0#) . T) (($ $) . T) ((#1=(-398 (-547)) #1#) . T))
-((((-398 |#2|)) . T))
-(|has| |#1| (-819))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-(((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) . T) ((#1=(-547) #1#) . T) (($ $) . T))
-((((-879 |#1|)) . T) (($) . T) (((-398 (-547))) . T))
-(((|#2|) |has| |#2| (-1016)) (((-547)) -12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016))))
-(((|#1|) . T) (((-398 (-547))) . T) (((-547)) . T) (($) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+(((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) . T) ((#1=(-549) #1#) . T) (($ $) . T))
+((((-881 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
+(((|#2|) |has| |#2| (-1018)) (((-549)) -12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018))))
+(((|#1|) . T) (((-400 (-549))) . T) (((-549)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-145))
(|has| |#1| (-143))
(((|#2|) . T))
-((((-832)) . T))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))
-((((-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) . T))
-(((#0=(-52)) . T) (((-2 (|:| -3331 (-1136)) (|:| -1786 #0#))) . T))
-(|has| |#1| (-340))
-((((-547)) . T))
-((((-832)) . T))
-(((#0=(-1205 |#1| |#2| |#3| |#4|) $) |has| #0# (-277 #0# #0#)))
-(|has| |#1| (-354))
-(((#0=(-1045) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-340)))
-(((#0=(-398 (-547)) #0#) . T) ((#1=(-673) #1#) . T) (($ $) . T))
-((((-307 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-398 (-547))) |has| |#1| (-354)))
-(|has| |#1| (-1063))
-(((|#1|) . T))
-(((|#1|) -1530 (|has| |#2| (-358 |#1|)) (|has| |#2| (-408 |#1|))))
-(((|#1|) -1530 (|has| |#2| (-358 |#1|)) (|has| |#2| (-408 |#1|))))
-(((|#2|) . T))
-((((-398 (-547))) . T) (((-673)) . T) (($) . T))
+((((-834)) . T))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
+((((-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) . T))
+(((#0=(-52)) . T) (((-2 (|:| -3337 (-1143)) (|:| -1793 #0#))) . T))
+(|has| |#1| (-342))
+((((-549)) . T))
+((((-834)) . T))
+(((#0=(-1212 |#1| |#2| |#3| |#4|) $) |has| #0# (-279 #0# #0#)))
+(|has| |#1| (-356))
+(((#0=(-1048) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
+(((#0=(-400 (-549)) #0#) . T) ((#1=(-675) #1#) . T) (($ $) . T))
+((((-309 |#1|)) . T) (($) . T))
+(((|#1|) . T) (((-400 (-549))) |has| |#1| (-356)))
+(|has| |#1| (-1067))
+(((|#1|) . T))
+(((|#1|) -1536 (|has| |#2| (-360 |#1|)) (|has| |#2| (-410 |#1|))))
+(((|#1|) -1536 (|has| |#2| (-360 |#1|)) (|has| |#2| (-410 |#1|))))
+(((|#2|) . T))
+((((-400 (-549))) . T) (((-675)) . T) (($) . T))
(((|#3| |#3|) . T))
-(|has| |#2| (-225))
-((((-834 |#1|)) . T))
-((((-1136)) |has| |#1| (-869 (-1136))) ((|#3|) . T))
-(-12 (|has| |#1| (-354)) (|has| |#2| (-991)))
-((((-1134 |#1| |#2| |#3|)) |has| |#1| (-354)))
-((((-832)) . T))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-((((-398 (-547))) . T) (($) . T) (((-398 |#1|)) . T) ((|#1|) . T))
-((((-547)) . T))
-(|has| |#1| (-1063))
+(|has| |#2| (-227))
+((((-836 |#1|)) . T))
+((((-1143)) |has| |#1| (-871 (-1143))) ((|#3|) . T))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-993)))
+((((-1141 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((((-834)) . T))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+((((-400 (-549))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T))
+((((-549)) . T))
+(|has| |#1| (-1067))
(((|#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
-((((-547)) . T))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547))))
+((((-549)) . T))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
(((|#1| |#2|) . T))
((($) . T))
-((((-561 |#1|)) . T) (((-398 (-547))) . T) (($) . T))
-((($) . T) (((-398 (-547))) . T))
+((((-563 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
+((($) . T) (((-400 (-549))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-1219 |#1|) (-1219 |#1|)) . T))
+(((|#1| (-1226 |#1|) (-1226 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-832)) . T))
-((((-832)) . T))
-(((#0=(-116 |#1|) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T))
-((((-398 (-547))) |has| |#2| (-1007 (-398 (-547)))) (((-547)) |has| |#2| (-1007 (-547))) ((|#2|) . T) (((-834 |#1|)) . T))
-((((-1087 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((|#2|) . T))
+((((-834)) . T))
+((((-834)) . T))
+(((#0=(-116 |#1|) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
+((((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))) (((-549)) |has| |#2| (-1009 (-549))) ((|#2|) . T) (((-836 |#1|)) . T))
+((((-1092 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($ $) . T))
-((((-646 |#1|)) . T))
-((($) . T) (((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T))
-((((-116 |#1|)) . T) (((-398 (-547))) . T) (($) . T))
-((((-547)) -12 (|has| |#1| (-855 (-547))) (|has| |#3| (-855 (-547)))) (((-370)) -12 (|has| |#1| (-855 (-370))) (|has| |#3| (-855 (-370)))))
+((((-648 |#1|)) . T))
+((($) . T) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T))
+((((-116 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
+((((-549)) -12 (|has| |#1| (-857 (-549))) (|has| |#3| (-857 (-549)))) (((-372)) -12 (|has| |#1| (-857 (-372))) (|has| |#3| (-857 (-372)))))
(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) (($) . T))
+(((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) (($) . T))
((((-142)) . T))
((($) . T))
-((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
+((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
(((|#1|) . T))
-(|has| |#2| (-878))
-(|has| |#1| (-878))
-(|has| |#1| (-878))
+(|has| |#2| (-880))
+(|has| |#1| (-880))
+(|has| |#1| (-880))
(((|#4|) . T))
-(|has| |#2| (-991))
+(|has| |#2| (-993))
((($) . T))
-(|has| |#1| (-878))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
+(|has| |#1| (-880))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
-(|has| |#1| (-354))
-((((-879 |#1|)) . T))
-((($) -1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((($ $) . T) ((#0=(-398 (-547)) #0#) . T))
-(-1530 (|has| |#1| (-359)) (|has| |#1| (-821)))
-(((|#1|) . T))
-((((-832)) . T))
-((((-1136)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136)))))
-((((-398 |#2|) |#3|) . T))
-((($) . T) (((-398 (-547))) . T))
-((((-745) |#1|) . T))
-(((|#2| (-232 (-3767 |#1|) (-745))) . T))
-(((|#1| (-519 |#3|)) . T))
-((((-398 (-547))) . T))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-((((-832)) . T))
-(((#0=(-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) #0#) |has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))))
-(|has| |#1| (-878))
-(|has| |#2| (-354))
-(-1530 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-((((-166 (-370))) . T) (((-217)) . T) (((-370)) . T))
-((((-832)) . T))
-(((|#1|) . T))
-((((-370)) . T) (((-547)) . T))
-(((#0=(-398 (-547)) #0#) . T) (($ $) . T))
+(|has| |#1| (-356))
+((((-881 |#1|)) . T))
+((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+(-1536 (|has| |#1| (-361)) (|has| |#1| (-823)))
+(((|#1|) . T))
+((((-834)) . T))
+((((-1143)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143)))))
+((((-400 |#2|) |#3|) . T))
+((($) . T) (((-400 (-549))) . T))
+((((-747) |#1|) . T))
+(((|#2| (-234 (-3775 |#1|) (-747))) . T))
+(((|#1| (-521 |#3|)) . T))
+((((-400 (-549))) . T))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+((((-834)) . T))
+(((#0=(-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) #0#) |has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))))
+(|has| |#1| (-880))
+(|has| |#2| (-356))
+(-1536 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+((((-167 (-372))) . T) (((-219)) . T) (((-372)) . T))
+((((-834)) . T))
+(((|#1|) . T))
+((((-372)) . T) (((-549)) . T))
+(((#0=(-400 (-549)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-832)) . T))
-(|has| |#1| (-539))
-((((-398 (-547))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(-1530 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340)))
-(|has| |#1| (-38 (-398 (-547))))
-(-12 (|has| |#1| (-532)) (|has| |#1| (-802)))
-((((-832)) . T))
-((((-1136)) -1530 (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))) (-12 (|has| |#1| (-354)) (|has| |#2| (-869 (-1136))))))
-(|has| |#1| (-354))
-((((-1136)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136)))))
-(|has| |#1| (-354))
-((((-398 (-547))) . T) (($) . T))
-((($) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T))
-((((-547) |#1|) . T))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-354)))
-(((|#2|) |has| |#1| (-354)))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(((|#1|) . T))
-(((|#1|) |has| |#1| (-169)))
-(((|#1|) . T))
-(((|#2|) . T) (((-1136)) -12 (|has| |#1| (-354)) (|has| |#2| (-1007 (-1136)))) (((-547)) -12 (|has| |#1| (-354)) (|has| |#2| (-1007 (-547)))) (((-398 (-547))) -12 (|has| |#1| (-354)) (|has| |#2| (-1007 (-547)))))
-(((|#2|) . T))
-((((-1136) #0=(-1205 |#1| |#2| |#3| |#4|)) |has| #0# (-503 (-1136) #0#)) ((#0# #0#) |has| #0# (-300 #0#)))
-((((-590 $) $) . T) (($ $) . T))
-((((-166 (-217))) . T) (((-166 (-370))) . T) (((-1132 (-673))) . T) (((-861 (-370))) . T))
-((((-832)) . T))
-(|has| |#1| (-539))
-(|has| |#1| (-539))
-(|has| (-398 |#2|) (-225))
-(((|#1| (-398 (-547))) . T))
+((((-834)) . T))
+(|has| |#1| (-541))
+((((-400 (-549))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(-1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)))
+(|has| |#1| (-38 (-400 (-549))))
+(-12 (|has| |#1| (-534)) (|has| |#1| (-804)))
+((((-834)) . T))
+((((-1143)) -1536 (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1143))))))
+(|has| |#1| (-356))
+((((-1143)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143)))))
+(|has| |#1| (-356))
+((((-400 (-549))) . T) (($) . T))
+((($) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T))
+((((-549) |#1|) . T))
+(((|#1|) . T))
+(((|#2|) |has| |#1| (-356)))
+(((|#2|) |has| |#1| (-356)))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(((|#1|) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) . T))
+(((|#2|) . T) (((-1143)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1143)))) (((-549)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-549)))) (((-400 (-549))) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-549)))))
+(((|#2|) . T))
+((((-1143) #0=(-1212 |#1| |#2| |#3| |#4|)) |has| #0# (-505 (-1143) #0#)) ((#0# #0#) |has| #0# (-302 #0#)))
+((((-592 $) $) . T) (($ $) . T))
+((((-167 (-219))) . T) (((-167 (-372))) . T) (((-1139 (-675))) . T) (((-863 (-372))) . T))
+((((-834)) . T))
+(|has| |#1| (-541))
+(|has| |#1| (-541))
+(|has| (-400 |#2|) (-227))
+(((|#1| (-400 (-549))) . T))
((($ $) . T))
-((((-1136)) |has| |#2| (-869 (-1136))))
-((($) . T))
-((((-832)) . T))
-((((-398 (-547))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-832)) . T))
-(((|#2|) |has| |#1| (-354)))
-((((-370)) -12 (|has| |#1| (-354)) (|has| |#2| (-855 (-370)))) (((-547)) -12 (|has| |#1| (-354)) (|has| |#2| (-855 (-547)))))
-(|has| |#1| (-354))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-(|has| |#1| (-354))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-(|has| |#1| (-354))
-(|has| |#1| (-539))
-(((|#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))
+((((-1143)) |has| |#2| (-871 (-1143))))
+((($) . T))
+((((-834)) . T))
+((((-400 (-549))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-834)) . T))
+(((|#2|) |has| |#1| (-356)))
+((((-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-372)))) (((-549)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-549)))))
+(|has| |#1| (-356))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+(|has| |#1| (-356))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+(|has| |#1| (-356))
+(|has| |#1| (-541))
+(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
(((|#3|) . T))
(((|#1|) . T))
-(-1530 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
+(-1536 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
(((|#2|) . T))
(((|#2|) . T))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(|has| |#1| (-38 (-398 (-547))))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(|has| |#1| (-38 (-400 (-549))))
(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))
+(|has| |#1| (-38 (-400 (-549))))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
(|has| |#1| (-145))
-((((-1119) |#1|) . T))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))
+((((-1125) |#1|) . T))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
(|has| |#1| (-145))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))
(|has| |#1| (-145))
-((((-561 |#1|)) . T))
+((((-563 |#1|)) . T))
((($) . T))
-((((-398 |#2|)) . T))
-(|has| |#1| (-539))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-340)))
+((((-400 |#2|)) . T))
+(|has| |#1| (-541))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-342)))
(|has| |#1| (-145))
-((((-832)) . T))
+((((-834)) . T))
((($) . T))
-((((-398 (-547))) |has| |#2| (-1007 (-547))) (((-547)) |has| |#2| (-1007 (-547))) (((-1136)) |has| |#2| (-1007 (-1136))) ((|#2|) . T))
-(((#0=(-398 |#2|) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T))
-((((-1101 |#1| |#2|)) . T))
-(((|#1| (-547)) . T))
-(((|#1| (-398 (-547))) . T))
-((((-547)) |has| |#2| (-855 (-547))) (((-370)) |has| |#2| (-855 (-370))))
+((((-400 (-549))) |has| |#2| (-1009 (-549))) (((-549)) |has| |#2| (-1009 (-549))) (((-1143)) |has| |#2| (-1009 (-1143))) ((|#2|) . T))
+(((#0=(-400 |#2|) #0#) . T) ((#1=(-400 (-549)) #1#) . T) (($ $) . T))
+((((-1107 |#1| |#2|)) . T))
+(((|#1| (-549)) . T))
+(((|#1| (-400 (-549))) . T))
+((((-549)) |has| |#2| (-857 (-549))) (((-372)) |has| |#2| (-857 (-372))))
(((|#2|) . T))
-((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T))
+((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
((((-112)) . T))
-(((|#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) . T))
-(((|#2|) . T))
-((((-832)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-1136) (-52)) . T))
-((((-398 |#2|)) . T))
-((((-832)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1063))
-(|has| |#1| (-765))
-(|has| |#1| (-765))
-((((-523)) |has| |#1| (-592 (-523))))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063))))
+(((|#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T))
+(((|#2|) . T))
+((((-834)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-1143) (-52)) . T))
+((((-400 |#2|)) . T))
+((((-834)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1067))
+(|has| |#1| (-767))
+(|has| |#1| (-767))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
((((-114)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-217)) . T) (((-370)) . T) (((-861 (-370))) . T))
-((((-832)) . T))
-((((-1205 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-398 (-547))) . T))
-(((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539)) (((-398 (-547))) |has| |#1| (-539)))
-((((-832)) . T))
-((((-832)) . T))
+((((-219)) . T) (((-372)) . T) (((-863 (-372))) . T))
+((((-834)) . T))
+((((-1212 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-549))) . T))
+(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)) (((-400 (-549))) |has| |#1| (-541)))
+((((-834)) . T))
+((((-834)) . T))
(((|#2|) . T))
-((((-832)) . T))
-(((#0=(-879 |#1|) #0#) . T) (($ $) . T) ((#1=(-398 (-547)) #1#) . T))
+((((-834)) . T))
+(((#0=(-881 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-549)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-879 |#1|)) . T) (($) . T) (((-398 (-547))) . T))
-(|has| |#1| (-354))
+((((-881 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
+(|has| |#1| (-356))
(((|#2|) . T))
-((((-547)) . T))
-((((-832)) . T))
-((((-547)) . T))
-(-1530 (|has| |#2| (-767)) (|has| |#2| (-819)))
-((((-166 (-370))) . T) (((-217)) . T) (((-370)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-1119)) . T) (((-523)) . T) (((-547)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T))
-((((-832)) . T))
+((((-549)) . T))
+((((-834)) . T))
+((((-549)) . T))
+(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
+((((-167 (-372))) . T) (((-219)) . T) (((-372)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-1125)) . T) (((-525)) . T) (((-549)) . T) (((-863 (-549))) . T) (((-372)) . T) (((-219)) . T))
+((((-834)) . T))
(|has| |#1| (-145))
(|has| |#1| (-143))
-((($) . T) ((#0=(-1204 |#2| |#3| |#4|)) |has| #0# (-169)) (((-398 (-547))) |has| #0# (-38 (-398 (-547)))))
-(((|#1|) . T) (($) . T) (((-398 (-547))) . T))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-463)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1136))) (|has| |#1| (-1016)) (|has| |#1| (-1075)) (|has| |#1| (-1063)))
-(|has| |#1| (-1112))
-((((-547) |#1|) . T))
-(((|#1|) . T))
-(((#0=(-116 |#1|) $) |has| #0# (-277 #0# #0#)))
-(((|#1|) |has| |#1| (-169)))
+((($) . T) ((#0=(-1211 |#2| |#3| |#4|)) |has| #0# (-170)) (((-400 (-549))) |has| #0# (-38 (-400 (-549)))))
+(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-703)) (|has| |#1| (-871 (-1143))) (|has| |#1| (-1018)) (|has| |#1| (-1079)) (|has| |#1| (-1067)))
+(|has| |#1| (-1118))
+((((-549) |#1|) . T))
+(((|#1|) . T))
+(((#0=(-116 |#1|) $) |has| #0# (-279 #0# #0#)))
+(((|#1|) |has| |#1| (-170)))
(((|#1|) . T))
((((-114)) . T) ((|#1|) . T))
-((((-832)) . T))
+((((-834)) . T))
(((|#1| |#2|) . T))
-((((-1136) |#1|) . T))
-(((|#1|) |has| |#1| (-300 |#1|)))
-((((-547) |#1|) . T))
+((((-1143) |#1|) . T))
+(((|#1|) |has| |#1| (-302 |#1|)))
+((((-549) |#1|) . T))
(((|#1|) . T))
-((((-547)) . T) (((-398 (-547))) . T))
+((((-549)) . T) (((-400 (-549))) . T))
(((|#1|) . T))
-(|has| |#1| (-539))
-((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-((((-370)) . T))
+(|has| |#1| (-541))
+((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+((((-372)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-(|has| |#1| (-539))
-(|has| |#1| (-1063))
-((((-754 |#1| (-834 |#2|))) |has| (-754 |#1| (-834 |#2|)) (-300 (-754 |#1| (-834 |#2|)))))
-(-1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-541))
+(|has| |#1| (-1067))
+((((-756 |#1| (-836 |#2|))) |has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))))
+(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#2| (-878))
-(((|#1| (-519 |#2|)) . T))
-(((|#1| (-745)) . T))
-(|has| |#1| (-225))
-(((|#1| (-519 (-1052 (-1136)))) . T))
-(|has| |#2| (-354))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) . T))
-(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-832)) . T))
-((((-832)) . T))
-(-1530 (|has| |#3| (-767)) (|has| |#3| (-819)))
-((((-832)) . T))
-((((-1082)) . T) (((-832)) . T))
-((((-832)) . T))
-(((|#1|) . T))
-((($ $) . T) (((-590 $) $) . T))
-(((|#1|) . T))
-((((-547)) . T))
+(|has| |#2| (-880))
+(((|#1| (-521 |#2|)) . T))
+(((|#1| (-747)) . T))
+(|has| |#1| (-227))
+(((|#1| (-521 (-1055 (-1143)))) . T))
+(|has| |#2| (-356))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) . T))
+(((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-834)) . T))
+((((-834)) . T))
+(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
+((((-834)) . T))
+((((-1087)) . T) (((-834)) . T))
+((((-834)) . T))
+(((|#1|) . T))
+((($ $) . T) (((-592 $) $) . T))
+(((|#1|) . T))
+((((-549)) . T))
(((|#3|) . T))
-((((-832)) . T))
-(-1530 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340)))
-(-1530 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016)))
-(((#0=(-561 |#1|) #0#) . T) (($ $) . T) ((#1=(-398 (-547)) #1#) . T))
-((($ $) . T) ((#0=(-398 (-547)) #0#) . T))
-(((|#1|) |has| |#1| (-169)))
-(((|#1| (-1219 |#1|) (-1219 |#1|)) . T))
-((((-561 |#1|)) . T) (($) . T) (((-398 (-547))) . T))
-((($) . T) (((-398 (-547))) . T))
-((($) . T) (((-398 (-547))) . T))
-(((|#2|) |has| |#2| (-6 (-4331 "*"))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-832)) . T))
-((((-285 |#3|)) . T))
-(((#0=(-398 (-547)) #0#) |has| |#2| (-38 (-398 (-547)))) ((|#2| |#2|) . T) (($ $) -1530 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
+((((-834)) . T))
+(-1536 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-342)))
+(-1536 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-541)) (|has| |#1| (-1018)))
+(((#0=(-563 |#1|) #0#) . T) (($ $) . T) ((#1=(-400 (-549)) #1#) . T))
+((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+(((|#1|) |has| |#1| (-170)))
+(((|#1| (-1226 |#1|) (-1226 |#1|)) . T))
+((((-563 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
+((($) . T) (((-400 (-549))) . T))
+((($) . T) (((-400 (-549))) . T))
+(((|#2|) |has| |#2| (-6 (-4339 "*"))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-834)) . T))
+((((-287 |#3|)) . T))
+(((#0=(-400 (-549)) #0#) |has| |#2| (-38 (-400 (-549)))) ((|#2| |#2|) . T) (($ $) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((($) . T) (((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (($) . T))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))))
+((($) . T) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T))
+((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (($) . T))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
(((|#2|) . T))
-((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T) (($) -1530 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
+((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T) (($) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))))
-((((-832)) . T))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(|has| |#2| (-878))
-(|has| |#1| (-878))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
+((((-834)) . T))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(|has| |#2| (-880))
+(|has| |#1| (-880))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
(((|#1|) . T))
-((((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) . T))
+((((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1063))
-(((|#1|) . T))
-((((-1136)) . T) ((|#1|) . T))
-((((-832)) . T))
-((((-832)) . T))
-(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))
-(((#0=(-398 (-547)) #0#) . T))
-((((-398 (-547))) . T))
-(-1530 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-((((-523)) . T))
-((((-832)) . T))
-((((-1136)) |has| |#2| (-869 (-1136))) (((-1045)) . T))
-((((-1204 |#2| |#3| |#4|)) . T))
-((((-879 |#1|)) . T))
-((($) . T) (((-398 (-547))) . T))
-(-12 (|has| |#1| (-354)) (|has| |#2| (-794)))
-(-12 (|has| |#1| (-354)) (|has| |#2| (-794)))
-((((-832)) . T))
-(|has| |#1| (-1177))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-398 (-547)) #0#) . T))
-((((-1136)) |has| |#1| (-869 (-1136))))
-((((-879 |#1|)) . T) (((-398 (-547))) . T) (($) . T))
-((($) . T) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#1|) . T))
-(((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))) ((|#1| |#1|) . T) (($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))))
-((($) . T) (((-398 (-547))) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (((-547)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1016)) (((-547)) -12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016))))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T) (($) -1530 (|has| |#1| (-169)) (|has| |#1| (-539))))
-(|has| |#1| (-539))
-(((|#1|) |has| |#1| (-354)))
-((((-547)) . T))
-(|has| |#1| (-765))
-(|has| |#1| (-765))
-((((-1136) #0=(-116 |#1|)) |has| #0# (-503 (-1136) #0#)) ((#0# #0#) |has| #0# (-300 #0#)))
-(((|#2|) . T) (((-547)) |has| |#2| (-1007 (-547))) (((-398 (-547))) |has| |#2| (-1007 (-398 (-547)))))
-((((-1045)) . T) ((|#2|) . T) (((-547)) |has| |#2| (-1007 (-547))) (((-398 (-547))) |has| |#2| (-1007 (-398 (-547)))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-547) (-745)) . T) ((|#3| (-745)) . T))
+(|has| |#1| (-1067))
+(((|#1|) . T))
+((((-1143)) . T) ((|#1|) . T))
+((((-834)) . T))
+((((-834)) . T))
+(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))
+(((#0=(-400 (-549)) #0#) . T))
+((((-400 (-549))) . T))
+(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(((|#1|) . T))
+(((|#1|) . T))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+((((-525)) . T))
+((((-834)) . T))
+((((-1143)) |has| |#2| (-871 (-1143))) (((-1048)) . T))
+((((-1211 |#2| |#3| |#4|)) . T))
+((((-881 |#1|)) . T))
+((($) . T) (((-400 (-549))) . T))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
+((((-834)) . T))
+(|has| |#1| (-1184))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+((((-1143)) |has| |#1| (-871 (-1143))))
+((((-881 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
+((($) . T) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#1|) . T))
+(((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))) ((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))))
+((($) . T) (((-400 (-549))) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (((-549)) . T) (($) . T))
+(((|#2|) |has| |#2| (-1018)) (((-549)) -12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018))))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-541))))
+(|has| |#1| (-541))
+(((|#1|) |has| |#1| (-356)))
+((((-549)) . T))
+(|has| |#1| (-767))
+(|has| |#1| (-767))
+((((-1143) #0=(-116 |#1|)) |has| #0# (-505 (-1143) #0#)) ((#0# #0#) |has| #0# (-302 #0#)))
+(((|#2|) . T) (((-549)) |has| |#2| (-1009 (-549))) (((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))))
+((((-1048)) . T) ((|#2|) . T) (((-549)) |has| |#2| (-1009 (-549))) (((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-549) (-747)) . T) ((|#3| (-747)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-832)) . T))
-(|has| |#2| (-794))
-(|has| |#2| (-794))
-((((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#2|) |has| |#1| (-354)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))))
-((((-547)) |has| |#1| (-855 (-547))) (((-370)) |has| |#1| (-855 (-370))))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-834)) . T))
+(|has| |#2| (-796))
+(|has| |#2| (-796))
+((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
+((((-549)) |has| |#1| (-857 (-549))) (((-372)) |has| |#1| (-857 (-372))))
(((|#1|) . T))
-((((-839 |#1|)) . T))
-((((-839 |#1|)) . T))
-(-12 (|has| |#1| (-354)) (|has| |#2| (-878)))
-((((-398 (-547))) . T) (((-673)) . T) (($) . T))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
+((((-841 |#1|)) . T))
+((((-841 |#1|)) . T))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-880)))
+((((-400 (-549))) . T) (((-675)) . T) (($) . T))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
(((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))
-(|has| |#1| (-354))
+(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+(|has| |#1| (-356))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-834 |#1|)) . T))
+((((-836 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-745)) . T))
-((((-1136)) . T))
-((((-839 |#1|)) . T))
-(-1530 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)))
-(-1530 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-819)) (|has| |#3| (-1016)))
-((((-832)) . T))
+(((|#2| (-747)) . T))
+((((-1143)) . T))
+((((-841 |#1|)) . T))
+(-1536 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(-1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+((((-834)) . T))
(((|#1|) . T))
-(-1530 (|has| |#2| (-767)) (|has| |#2| (-819)))
-(-1530 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821))))
-((((-839 |#1|)) . T))
+(-1536 (|has| |#2| (-769)) (|has| |#2| (-821)))
+(-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823))))
+((((-841 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
-((($ $) . T) (((-590 $) $) . T))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
+((($ $) . T) (((-592 $) $) . T))
((($) . T))
-((((-832)) . T))
-((((-547)) . T))
+((((-834)) . T))
+((((-549)) . T))
(((|#2|) . T))
-((((-832)) . T))
-(((|#1|) . T) (((-398 (-547))) |has| |#1| (-354)))
-((((-832)) . T))
+((((-834)) . T))
+(((|#1|) . T) (((-400 (-549))) |has| |#1| (-356)))
+((((-834)) . T))
(((|#1|) . T))
-((((-832)) . T))
-((($) . T) ((|#2|) . T) (((-398 (-547))) . T))
-(|has| |#1| (-1063))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+((((-834)) . T))
+((($) . T) ((|#2|) . T) (((-400 (-549))) . T))
+(|has| |#1| (-1067))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-832)) . T))
-(|has| |#2| (-878))
-((((-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) . T))
-((((-523)) |has| |#2| (-592 (-523))) (((-861 (-370))) |has| |#2| (-592 (-861 (-370)))) (((-861 (-547))) |has| |#2| (-592 (-861 (-547)))))
-((((-832)) . T))
-((((-832)) . T))
-(((|#3|) |has| |#3| (-1016)) (((-547)) -12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))))
-((((-1087 |#1| |#2|)) . T) (((-921 |#1|)) |has| |#2| (-592 (-1136))) (((-832)) . T))
-((((-921 |#1|)) |has| |#2| (-592 (-1136))) (((-1119)) -12 (|has| |#1| (-1007 (-547))) (|has| |#2| (-592 (-1136)))) (((-861 (-547))) -12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547))))) (((-861 (-370))) -12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370))))) (((-523)) -12 (|has| |#1| (-592 (-523))) (|has| |#2| (-592 (-523)))))
-((((-1132 |#1|)) . T) (((-832)) . T))
-((((-832)) . T))
-((((-398 (-547))) |has| |#2| (-1007 (-398 (-547)))) (((-547)) |has| |#2| (-1007 (-547))) ((|#2|) . T) (((-834 |#1|)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-398 (-547))) . T))
-((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T) (((-1136)) . T))
-((((-832)) . T))
-((((-547)) . T))
+((((-834)) . T))
+(|has| |#2| (-880))
+((((-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) . T))
+((((-525)) |has| |#2| (-594 (-525))) (((-863 (-372))) |has| |#2| (-594 (-863 (-372)))) (((-863 (-549))) |has| |#2| (-594 (-863 (-549)))))
+((((-834)) . T))
+((((-834)) . T))
+(((|#3|) |has| |#3| (-1018)) (((-549)) -12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))))
+((((-1092 |#1| |#2|)) . T) (((-923 |#1|)) |has| |#2| (-594 (-1143))) (((-834)) . T))
+((((-923 |#1|)) |has| |#2| (-594 (-1143))) (((-1125)) -12 (|has| |#1| (-1009 (-549))) (|has| |#2| (-594 (-1143)))) (((-863 (-549))) -12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549))))) (((-863 (-372))) -12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372))))) (((-525)) -12 (|has| |#1| (-594 (-525))) (|has| |#2| (-594 (-525)))))
+((((-1139 |#1|)) . T) (((-834)) . T))
+((((-834)) . T))
+((((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))) (((-549)) |has| |#2| (-1009 (-549))) ((|#2|) . T) (((-836 |#1|)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
+((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T) (((-1143)) . T))
+((((-834)) . T))
+((((-549)) . T))
((($) . T))
-((((-370)) |has| |#1| (-855 (-370))) (((-547)) |has| |#1| (-855 (-547))))
-((((-547)) . T))
+((((-372)) |has| |#1| (-857 (-372))) (((-549)) |has| |#1| (-857 (-549))))
+((((-549)) . T))
(((|#1|) . T))
-((((-832)) . T))
+((((-834)) . T))
(((|#1|) . T))
-((((-832)) . T))
-(((|#1|) |has| |#1| (-169)) (($) . T))
-((((-547)) . T) (((-398 (-547))) . T))
-(((|#1|) |has| |#1| (-300 |#1|)))
-((((-832)) . T))
-((((-370)) . T))
+((((-834)) . T))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+((((-549)) . T) (((-400 (-549))) . T))
+(((|#1|) |has| |#1| (-302 |#1|)))
+((((-834)) . T))
+((((-372)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-832)) . T))
-((((-398 (-547))) . T) (($) . T))
-((((-398 |#2|) |#3|) . T))
+((((-834)) . T))
+((((-400 (-549))) . T) (($) . T))
+((((-400 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1063))
-(((|#2| (-472 (-3767 |#1|) (-745))) . T))
-((((-547) |#1|) . T))
-((((-1119)) . T) (((-832)) . T))
+(|has| |#1| (-1067))
+(((|#2| (-474 (-3775 |#1|) (-747))) . T))
+((((-549) |#1|) . T))
+((((-1125)) . T) (((-834)) . T))
(((|#2| |#2|) . T))
-(((|#1| (-519 (-1136))) . T))
-(-1530 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-((((-547)) . T))
+(((|#1| (-521 (-1143))) . T))
+(-1536 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+((((-549)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1136)) |has| |#1| (-869 (-1136))) (((-1045)) . T))
-(((|#1|) . T) (((-547)) |has| |#1| (-615 (-547))))
-(|has| |#1| (-539))
-((($) . T) (((-398 (-547))) . T))
+((((-1143)) |has| |#1| (-871 (-1143))) (((-1048)) . T))
+(((|#1|) . T) (((-549)) |has| |#1| (-617 (-549))))
+(|has| |#1| (-541))
+((($) . T) (((-400 (-549))) . T))
((($) . T))
((($) . T))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
(((|#1|) . T))
-((($) -1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((((-832)) . T))
+((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-834)) . T))
((((-142)) . T))
-(((|#1|) . T) (((-398 (-547))) . T))
+(((|#1|) . T) (((-400 (-549))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-832)) . T))
+((((-834)) . T))
(((|#1|) . T))
-(|has| |#1| (-1112))
-(((|#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) . T))
+(|has| |#1| (-1118))
+(((|#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) . T))
(((|#1|) . T))
-((((-398 $) (-398 $)) |has| |#1| (-539)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))))
-((((-832)) . T))
-((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T) ((|#2|) . T))
-((((-1045)) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))))
-((((-370)) -12 (|has| |#1| (-855 (-370))) (|has| |#2| (-855 (-370)))) (((-547)) -12 (|has| |#1| (-855 (-547))) (|has| |#2| (-855 (-547)))))
-((((-1205 |#1| |#2| |#3| |#4|)) . T))
-((((-547) |#1|) . T))
+((((-400 $) (-400 $)) |has| |#1| (-541)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
+((((-834)) . T))
+((((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-549)) |has| |#1| (-1009 (-549))) ((|#1|) . T) ((|#2|) . T))
+((((-1048)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))))
+((((-372)) -12 (|has| |#1| (-857 (-372))) (|has| |#2| (-857 (-372)))) (((-549)) -12 (|has| |#1| (-857 (-549))) (|has| |#2| (-857 (-549)))))
+((((-1212 |#1| |#2| |#3| |#4|)) . T))
+((((-549) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
-(((|#1|) |has| |#1| (-169)) (($) . T))
-((($) . T))
-((((-673)) . T))
-((((-754 |#1| (-834 |#2|))) . T))
-((($) . T))
-((((-398 (-547))) . T) (($) . T))
-(|has| |#1| (-1063))
-(|has| |#1| (-1063))
-(|has| |#2| (-354))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-(|has| |#1| (-38 (-398 (-547))))
-((((-547)) . T))
-((((-1136)) -12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016))))
-((((-1136)) -12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016))))
-(((|#1|) . T))
-(|has| |#1| (-225))
-(((|#1| (-519 |#3|)) . T))
-(|has| |#1| (-359))
-(((|#2| (-232 (-3767 |#1|) (-745))) . T))
-(|has| |#1| (-359))
-(|has| |#1| (-359))
+(((|#1|) |has| |#1| (-170)) (($) . T))
+((($) . T))
+((((-675)) . T))
+((((-756 |#1| (-836 |#2|))) . T))
+((($) . T))
+((((-400 (-549))) . T) (($) . T))
+(|has| |#1| (-1067))
+(|has| |#1| (-1067))
+(|has| |#2| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-38 (-400 (-549))))
+((((-549)) . T))
+((((-1143)) -12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018))))
+((((-1143)) -12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018))))
+(((|#1|) . T))
+(|has| |#1| (-227))
+(((|#1| (-521 |#3|)) . T))
+(|has| |#1| (-361))
+(((|#2| (-234 (-3775 |#1|) (-747))) . T))
+(|has| |#1| (-361))
+(|has| |#1| (-361))
(((|#1|) . T) (($) . T))
-(((|#1| (-519 |#2|)) . T))
-(-1530 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(((|#1| (-745)) . T))
-(|has| |#1| (-539))
-(-1530 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
+(((|#1| (-521 |#2|)) . T))
+(-1536 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(((|#1| (-747)) . T))
+(|has| |#1| (-541))
+(-1536 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-832)) . T))
-(-1530 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))
-(-1530 (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(((|#1|) |has| |#1| (-169)))
-(((|#4|) |has| |#4| (-1016)))
-(((|#3|) |has| |#3| (-1016)))
-(-12 (|has| |#1| (-354)) (|has| |#2| (-794)))
-(-12 (|has| |#1| (-354)) (|has| |#2| (-794)))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063))))
-((((-523)) |has| |#1| (-592 (-523))))
-((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T))
-((($ $) . T) ((#0=(-398 (-547)) #0#) . T))
-((((-832)) . T))
-((($) . T) (((-398 (-547))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1063)) (((-547)) -12 (|has| |#4| (-1007 (-547))) (|has| |#4| (-1063))) (((-398 (-547))) -12 (|has| |#4| (-1007 (-398 (-547)))) (|has| |#4| (-1063))))
-(((|#3|) |has| |#3| (-1063)) (((-547)) -12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063))) (((-398 (-547))) -12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063))))
-(|has| |#2| (-354))
-(((|#2|) |has| |#2| (-1016)) (((-547)) -12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016))))
-(((|#1|) . T))
-(|has| |#2| (-354))
-(((#0=(-398 (-547)) #0#) |has| |#2| (-38 (-398 (-547)))) ((|#2| |#2|) . T) (($ $) -1530 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T))
+((((-834)) . T))
+(-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))
+(-1536 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(((|#1|) |has| |#1| (-170)))
+(((|#4|) |has| |#4| (-1018)))
+(((|#3|) |has| |#3| (-1018)))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
+(-12 (|has| |#1| (-356)) (|has| |#2| (-796)))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-400 |#2|)) . T) (((-400 (-549))) . T) (($) . T))
+((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+((((-834)) . T))
+((($) . T) (((-400 (-549))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1067)) (((-549)) -12 (|has| |#4| (-1009 (-549))) (|has| |#4| (-1067))) (((-400 (-549))) -12 (|has| |#4| (-1009 (-400 (-549)))) (|has| |#4| (-1067))))
+(((|#3|) |has| |#3| (-1067)) (((-549)) -12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1067))) (((-400 (-549))) -12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1067))))
+(|has| |#2| (-356))
+(((|#2|) |has| |#2| (-1018)) (((-549)) -12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018))))
+(((|#1|) . T))
+(|has| |#2| (-356))
+(((#0=(-400 (-549)) #0#) |has| |#2| (-38 (-400 (-549)))) ((|#2| |#2|) . T) (($ $) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1| |#1|) . T) ((#0=(-400 (-549)) #0#) |has| |#1| (-38 (-400 (-549)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-400 (-549)) #0#) . T))
(((|#2| |#2|) . T))
-((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T) (($) -1530 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(((|#1|) . T) (($) . T) (((-398 (-547))) . T))
-(((|#1|) . T) (($) . T) (((-398 (-547))) . T))
-(((|#1|) . T) (($) . T) (((-398 (-547))) . T))
-(((|#2|) . T))
-((((-832)) |has| |#1| (-1063)))
-((($) . T))
-((((-1205 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-794))
-(|has| |#2| (-794))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-(|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))
-(|has| |#1| (-354))
-(((|#1|) |has| |#2| (-408 |#1|)))
-(((|#1|) |has| |#2| (-408 |#1|)))
-((((-879 |#1|)) . T) (((-398 (-547))) . T) (($) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063))))
-((((-523)) |has| |#1| (-592 (-523))))
-((((-832)) . T) (((-1141)) . T))
-((((-832)) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-1172)) . T) (((-832)) . T) (((-1141)) . T))
-((((-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) |has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))))
-(-1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-((((-547) |#1|) . T))
-((((-547) |#1|) . T))
-((((-547) |#1|) . T))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-((((-547) |#1|) . T))
-(((|#1|) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-((((-1136)) |has| |#1| (-869 (-1136))) (((-792 (-1136))) . T))
-(-1530 (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)))
-((((-793 |#1|)) . T))
+((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T) (($) -1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
+(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
+(((|#1|) . T) (($) . T) (((-400 (-549))) . T))
+(((|#2|) . T))
+((((-834)) |has| |#1| (-1067)))
+((($) . T))
+((((-1212 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#2| (-796))
+(|has| |#2| (-796))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))
+(|has| |#1| (-356))
+(((|#1|) |has| |#2| (-410 |#1|)))
+(((|#1|) |has| |#2| (-410 |#1|)))
+((((-881 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-1179)) . T) (((-834)) . T) (((-1148)) . T))
+((((-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) |has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))))
+(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+((((-549) |#1|) . T))
+((((-549) |#1|) . T))
+((((-549) |#1|) . T))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+((((-549) |#1|) . T))
+(((|#1|) . T))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+((((-1143)) |has| |#1| (-871 (-1143))) (((-794 (-1143))) . T))
+(-1536 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-769)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+((((-795 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-832)) . T))
-(-1530 (|has| |#3| (-169)) (|has| |#3| (-701)) (|has| |#3| (-819)) (|has| |#3| (-1016)))
+((((-834)) . T))
+(-1536 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-398 (-547))))
-((((-832)) . T))
-((((-1205 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-398 (-547))) . T))
-(((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539)) (((-398 (-547))) |has| |#1| (-539)))
-(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547))))
-(|has| |#1| (-354))
-(-1530 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (-12 (|has| |#1| (-354)) (|has| |#2| (-225))))
-(|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))
-(|has| |#1| (-354))
-(((|#1|) . T))
-(((#0=(-398 (-547)) #0#) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((|#1| |#1|) . T))
-((((-547) |#1|) . T))
-((((-307 |#1|)) . T))
-(((#0=(-673) (-1132 #0#)) . T))
-((((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((|#1|) . T))
+(|has| |#1| (-38 (-400 (-549))))
+((((-834)) . T))
+((((-1212 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-549))) . T))
+(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)) (((-400 (-549))) |has| |#1| (-541)))
+(((|#2|) . T) (((-549)) |has| |#2| (-617 (-549))))
+(|has| |#1| (-356))
+(-1536 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (-12 (|has| |#1| (-356)) (|has| |#2| (-227))))
+(|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))
+(|has| |#1| (-356))
+(((|#1|) . T))
+(((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((|#1| |#1|) . T))
+((((-549) |#1|) . T))
+((((-309 |#1|)) . T))
+(((#0=(-675) (-1139 #0#)) . T))
+((((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-819))
-((($ $) . T) ((#0=(-834 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1087 |#1| (-1136))) . T) (((-792 (-1136))) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-1136)) . T))
+(|has| |#1| (-821))
+((($ $) . T) ((#0=(-836 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1092 |#1| (-1143))) . T) (((-794 (-1143))) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1009 (-549))) (((-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) (((-1143)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1045) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1136) $) |has| |#1| (-225)) ((#0# |#1|) |has| |#1| (-225)) ((#1=(-1052 (-1136)) |#1|) . T) ((#1# $) . T))
+(((#0=(-1048) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1143) $) |has| |#1| (-227)) ((#0# |#1|) |has| |#1| (-227)) ((#1=(-1055 (-1143)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-398 (-547))) |has| |#2| (-38 (-398 (-547)))))
-(|has| |#2| (-878))
-((($) . T) ((#0=(-1204 |#2| |#3| |#4|)) |has| #0# (-169)) (((-398 (-547))) |has| #0# (-38 (-398 (-547)))))
-((((-547) |#1|) . T))
-(((#0=(-1205 |#1| |#2| |#3| |#4|)) |has| #0# (-300 #0#)))
+((($) . T) ((|#2|) . T) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))))
+(|has| |#2| (-880))
+((($) . T) ((#0=(-1211 |#2| |#3| |#4|)) |has| #0# (-170)) (((-400 (-549))) |has| #0# (-38 (-400 (-549)))))
+((((-549) |#1|) . T))
+(((#0=(-1212 |#1| |#2| |#3| |#4|)) |has| #0# (-302 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((#0=(-398 (-547)) #0#) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#2| |#2|) |has| |#1| (-354)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((#0=(-398 (-547)) #0#) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))))
-(|has| |#2| (-225))
+((($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#2| |#2|) |has| |#1| (-356)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) ((#0=(-400 (-549)) #0#) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))))
+(|has| |#2| (-227))
(|has| $ (-145))
-((((-832)) . T))
-((($) . T) (((-398 (-547))) -1530 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T))
-((((-832)) . T))
-(|has| |#1| (-819))
-((((-1136)) -12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))
-((((-398 |#2|) |#3|) . T))
-(((|#1|) . T))
-((((-832)) . T))
-(((|#2| (-646 |#1|)) . T))
-(-12 (|has| |#1| (-298)) (|has| |#1| (-878)))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+((((-834)) . T))
+((($) . T) (((-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-342))) ((|#1|) . T))
+((((-834)) . T))
+(|has| |#1| (-821))
+((((-1143)) -12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))
+((((-400 |#2|) |#3|) . T))
+(((|#1|) . T))
+((((-834)) . T))
+(((|#2| (-648 |#1|)) . T))
+(-12 (|has| |#1| (-300)) (|has| |#1| (-880)))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(((|#4|) . T))
-(|has| |#1| (-539))
-((($) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#2|) |has| |#1| (-354)) ((|#1|) . T))
-((((-1136)) -1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))))
-(((|#1|) . T) (($) -1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))))
-((((-1136)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136)))))
-((((-1136)) -12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136)))))
-(((|#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))
-((((-547) |#1|) . T))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-(((|#1|) . T))
-(((|#1| (-519 (-792 (-1136)))) . T))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(((|#1|) . T))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-(((|#1|) . T))
-(-1530 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(-1530 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))
-((((-1211 |#1| |#2| |#3|)) |has| |#1| (-354)))
-((($) . T) (((-839 |#1|)) . T) (((-398 (-547))) . T))
-((((-1211 |#1| |#2| |#3|)) |has| |#1| (-354)))
-(|has| |#1| (-539))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-398 |#2|)) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-340)))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063))))
-((((-523)) |has| |#1| (-592 (-523))))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063))))
-((((-523)) |has| |#1| (-592 (-523))))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063))))
-((((-523)) |has| |#1| (-592 (-523))))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-398 (-547)) #0#) . T) (($ $) . T))
-((((-547)) . T))
-((((-832)) . T))
-(((|#2|) . T) (((-398 (-547))) . T) (($) . T))
-((((-561 |#1|)) . T) (((-398 (-547))) . T) (($) . T))
-((((-832)) . T))
-((((-398 (-547))) . T) (($) . T))
-((((-547) |#1|) . T))
-((((-832)) . T))
-((($ $) . T) (((-1136) $) . T))
-((((-1211 |#1| |#2| |#3|)) . T))
-((((-523)) |has| |#2| (-592 (-523))) (((-861 (-370))) |has| |#2| (-592 (-861 (-370)))) (((-861 (-547))) |has| |#2| (-592 (-861 (-547)))))
-((((-832)) . T))
-((((-832)) . T))
-((((-861 (-547))) -12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#3| (-592 (-861 (-547))))) (((-861 (-370))) -12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#3| (-592 (-861 (-370))))) (((-523)) -12 (|has| |#1| (-592 (-523))) (|has| |#3| (-592 (-523)))))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-(((|#1|) . T) (((-832)) . T) (((-1141)) . T))
-((((-832)) . T))
-(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) . T))
-(((|#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) . T))
-((((-832)) . T))
-((((-1211 |#1| |#2| |#3|)) |has| |#1| (-354)))
-(|has| |#1| (-354))
-((((-1211 |#1| |#2| |#3|)) . T) (((-1183 |#1| |#2| |#3|)) . T))
-((((-1136)) . T) (((-832)) . T))
-((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))))
+(|has| |#1| (-541))
+((($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) ((|#1|) . T))
+((((-1143)) -1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))))
+(((|#1|) . T) (($) -1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-541))) (((-400 (-549))) -1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-356))))
+((((-1143)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143)))))
+((((-1143)) -12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143)))))
+(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))
+((((-549) |#1|) . T))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+(((|#1|) . T))
+(((|#1| (-521 (-794 (-1143)))) . T))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(((|#1|) . T))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+(((|#1|) . T))
+(-1536 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))
+((((-1218 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((($) . T) (((-841 |#1|)) . T) (((-400 (-549))) . T))
+((((-1218 |#1| |#2| |#3|)) |has| |#1| (-356)))
+(|has| |#1| (-541))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-400 |#2|)) . T))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-400 (-549)) #0#) . T) (($ $) . T))
+((((-549)) . T))
+((((-834)) . T))
+(((|#2|) . T) (((-400 (-549))) . T) (($) . T))
+((((-563 |#1|)) . T) (((-400 (-549))) . T) (($) . T))
+((((-834)) . T))
+((((-400 (-549))) . T) (($) . T))
+((((-549) |#1|) . T))
+((((-834)) . T))
+((($ $) . T) (((-1143) $) . T))
+((((-1218 |#1| |#2| |#3|)) . T))
+((((-525)) |has| |#2| (-594 (-525))) (((-863 (-372))) |has| |#2| (-594 (-863 (-372)))) (((-863 (-549))) |has| |#2| (-594 (-863 (-549)))))
+((((-834)) . T))
+((((-834)) . T))
+((((-863 (-549))) -12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#3| (-594 (-863 (-549))))) (((-863 (-372))) -12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#3| (-594 (-863 (-372))))) (((-525)) -12 (|has| |#1| (-594 (-525))) (|has| |#3| (-594 (-525)))))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+(((|#1|) . T) (((-834)) . T) (((-1148)) . T))
+((((-834)) . T))
+(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) . T))
+(((|#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) . T))
+((((-834)) . T))
+((((-1218 |#1| |#2| |#3|)) |has| |#1| (-356)))
+(|has| |#1| (-356))
+((((-1218 |#1| |#2| |#3|)) . T) (((-1190 |#1| |#2| |#3|)) . T))
+((((-1143)) . T) (((-834)) . T))
+((((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) |has| |#2| (-170)) (($) -1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880))))
(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T))
-((($) -1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((((-1067)) . T))
-((((-832)) . T))
-((($) -1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-((($) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T))
-((($) . T))
-((($) -1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(|has| |#2| (-878))
-(|has| |#1| (-878))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1| |#1|) |has| |#1| (-169)))
-((((-673)) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-(((|#1|) |has| |#1| (-169)))
-(((|#1|) |has| |#1| (-169)))
-((((-398 (-547))) . T) (($) . T))
-(((|#1| (-547)) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-340)))
-(|has| |#1| (-354))
-(|has| |#1| (-354))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-340)))
-(-1530 (|has| |#1| (-169)) (|has| |#1| (-539)))
-(((|#1| (-547)) . T))
-(((|#1| (-398 (-547))) . T))
-(((|#1| (-745)) . T))
-((((-398 (-547))) . T))
-(((|#1| (-519 |#2|) |#2|) . T))
-((((-547) |#1|) . T))
-((((-547) |#1|) . T))
-(|has| |#1| (-1063))
-((((-547) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-861 (-370))) . T) (((-861 (-547))) . T) (((-1136)) . T) (((-523)) . T))
-(((|#1|) . T))
-((((-832)) . T))
-(-1530 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-(-1530 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))
-((((-547)) . T))
-((((-547)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
+((($) . T) (((-400 (-549))) |has| |#2| (-38 (-400 (-549)))) ((|#2|) . T))
+((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((((-1071)) . T))
+((((-834)) . T))
+((($) -1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+((($) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T))
+((($) . T))
+((($) -1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880))) ((|#1|) |has| |#1| (-170)) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(|has| |#2| (-880))
+(|has| |#1| (-880))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| |#1|) |has| |#1| (-170)))
+((((-675)) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) |has| |#1| (-170)))
+((((-400 (-549))) . T) (($) . T))
+(((|#1| (-549)) . T))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
+(|has| |#1| (-356))
+(|has| |#1| (-356))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
+(-1536 (|has| |#1| (-170)) (|has| |#1| (-541)))
+(((|#1| (-549)) . T))
+(((|#1| (-400 (-549))) . T))
+(((|#1| (-747)) . T))
+((((-400 (-549))) . T))
+(((|#1| (-521 |#2|) |#2|) . T))
+((((-549) |#1|) . T))
+((((-549) |#1|) . T))
+(|has| |#1| (-1067))
+((((-549) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-863 (-372))) . T) (((-863 (-549))) . T) (((-1143)) . T) (((-525)) . T))
+(((|#1|) . T))
+((((-834)) . T))
+(-1536 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-769)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+(-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))
+((((-549)) . T))
+((((-549)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-1530 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016)))
-((((-1136)) -12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016))))
-(-1530 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))))
+(-1536 (|has| |#2| (-170)) (|has| |#2| (-703)) (|has| |#2| (-821)) (|has| |#2| (-1018)))
+((((-1143)) -12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018))))
+(-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))))
(|has| |#1| (-143))
(|has| |#1| (-145))
-(|has| |#1| (-354))
+(|has| |#1| (-356))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-225))
-((((-832)) . T))
-(((|#1| (-745) (-1045)) . T))
-((((-547) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-547) |#1|) . T))
-((((-547) |#1|) . T))
+(|has| |#1| (-227))
+((((-834)) . T))
+(((|#1| (-747) (-1048)) . T))
+((((-549) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-549) |#1|) . T))
+((((-549) |#1|) . T))
((((-116 |#1|)) . T))
-((((-398 (-547))) . T) (((-547)) . T))
-(((|#2|) |has| |#2| (-1016)))
-((((-398 (-547))) . T) (($) . T))
-(((|#2|) . T))
-((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539)))
-((((-547)) . T))
-((((-547)) . T))
-((((-1119) (-1136) (-547) (-217) (-832)) . T))
+((((-400 (-549))) . T) (((-549)) . T))
+(((|#2|) |has| |#2| (-1018)))
+((((-400 (-549))) . T) (($) . T))
+(((|#2|) . T))
+((((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-541)))
+((((-549)) . T))
+((((-549)) . T))
+((((-1125) (-1143) (-549) (-219) (-834)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-1530 (|has| |#1| (-340)) (|has| |#1| (-359)))
+(-1536 (|has| |#1| (-342)) (|has| |#1| (-361)))
(((|#1| |#2|) . T))
((($) . T) ((|#1|) . T))
-((((-832)) . T))
-((($) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))))
-(((|#2|) |has| |#2| (-1063)) (((-547)) -12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (((-398 (-547))) -12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063))))
-((((-523)) |has| |#1| (-592 (-523))))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063))))
-((($) . T) (((-398 (-547))) . T))
-(|has| |#1| (-878))
-(|has| |#1| (-878))
-((((-217)) -12 (|has| |#1| (-354)) (|has| |#2| (-991))) (((-370)) -12 (|has| |#1| (-354)) (|has| |#2| (-991))) (((-861 (-370))) -12 (|has| |#1| (-354)) (|has| |#2| (-592 (-861 (-370))))) (((-861 (-547))) -12 (|has| |#1| (-354)) (|has| |#2| (-592 (-861 (-547))))) (((-523)) -12 (|has| |#1| (-354)) (|has| |#2| (-592 (-523)))))
-((((-832)) . T))
-((((-832)) . T))
+((((-834)) . T))
+((($) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-400 (-549))) |has| |#1| (-38 (-400 (-549)))))
+(((|#2|) |has| |#2| (-1067)) (((-549)) -12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067))) (((-400 (-549))) -12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067))))
+((((-525)) |has| |#1| (-594 (-525))))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-823)) (|has| |#1| (-1067))))
+((($) . T) (((-400 (-549))) . T))
+(|has| |#1| (-880))
+(|has| |#1| (-880))
+((((-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-993))) (((-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-993))) (((-863 (-372))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-863 (-372))))) (((-863 (-549))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-863 (-549))))) (((-525)) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-525)))))
+((((-834)) . T))
+((((-834)) . T))
(((|#2| |#2|) . T))
-(((|#1| |#1|) |has| |#1| (-169)))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-539)))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-819)))
-(((|#2|) . T))
-(-1530 (|has| |#1| (-21)) (|has| |#1| (-819)))
-(((|#1|) |has| |#1| (-169)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-832)) -1530 (-12 (|has| |#1| (-591 (-832))) (|has| |#2| (-591 (-832)))) (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063)))))
-((((-398 |#2|) |#3|) . T))
-((((-398 (-547))) . T) (($) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-354))
-((($ $) . T) ((#0=(-398 (-547)) #0#) . T))
-(|has| (-398 |#2|) (-145))
-(|has| (-398 |#2|) (-143))
-((((-673)) . T))
-(((|#1|) . T) (((-398 (-547))) . T) (((-547)) . T) (($) . T))
-(((#0=(-547) #0#) . T))
-((($) . T) (((-398 (-547))) . T))
-(-1530 (|has| |#4| (-169)) (|has| |#4| (-701)) (|has| |#4| (-819)) (|has| |#4| (-1016)))
-(-1530 (|has| |#3| (-169)) (|has| |#3| (-701)) (|has| |#3| (-819)) (|has| |#3| (-1016)))
-((((-832)) . T) (((-1141)) . T))
-(|has| |#4| (-767))
-(-1530 (|has| |#4| (-767)) (|has| |#4| (-819)))
-(|has| |#4| (-819))
-(|has| |#3| (-767))
-(-1530 (|has| |#3| (-767)) (|has| |#3| (-819)))
-(|has| |#3| (-819))
-((((-547)) . T))
-(((|#2|) . T))
-((((-1136)) -1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))))
-((((-1136)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136)))))
-((((-1136)) -12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136)))))
+(((|#1| |#1|) |has| |#1| (-170)))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-541)))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
+(((|#2|) . T))
+(-1536 (|has| |#1| (-21)) (|has| |#1| (-821)))
+(((|#1|) |has| |#1| (-170)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-834)) -1536 (-12 (|has| |#1| (-593 (-834))) (|has| |#2| (-593 (-834)))) (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067)))))
+((((-400 |#2|) |#3|) . T))
+((((-400 (-549))) . T) (($) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-356))
+((($ $) . T) ((#0=(-400 (-549)) #0#) . T))
+(|has| (-400 |#2|) (-145))
+(|has| (-400 |#2|) (-143))
+((((-675)) . T))
+(((|#1|) . T) (((-400 (-549))) . T) (((-549)) . T) (($) . T))
+(((#0=(-549) #0#) . T))
+((($) . T) (((-400 (-549))) . T))
+(-1536 (|has| |#4| (-170)) (|has| |#4| (-703)) (|has| |#4| (-821)) (|has| |#4| (-1018)))
+(-1536 (|has| |#3| (-170)) (|has| |#3| (-703)) (|has| |#3| (-821)) (|has| |#3| (-1018)))
+((((-834)) . T) (((-1148)) . T))
+(|has| |#4| (-769))
+(-1536 (|has| |#4| (-769)) (|has| |#4| (-821)))
+(|has| |#4| (-821))
+(|has| |#3| (-769))
+(-1536 (|has| |#3| (-769)) (|has| |#3| (-821)))
+(|has| |#3| (-821))
+((((-549)) . T))
+(((|#2|) . T))
+((((-1143)) -1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))))
+((((-1143)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143)))))
+((((-1143)) -12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-834 |#1|)) . T))
-((((-1134 |#1| |#2| |#3|)) |has| |#1| (-354)))
-((((-1101 |#1| |#2|)) . T))
-((((-1134 |#1| |#2| |#3|)) |has| |#1| (-354)))
-(((|#2|) . T) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) . T))
-((($) . T))
-(|has| |#1| (-991))
-(((|#2|) . T) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-((((-832)) . T))
-((((-523)) |has| |#2| (-592 (-523))) (((-861 (-547))) |has| |#2| (-592 (-861 (-547)))) (((-861 (-370))) |has| |#2| (-592 (-861 (-370)))) (((-370)) . #0=(|has| |#2| (-991))) (((-217)) . #0#))
-((((-1136) (-52)) . T))
-(|has| |#1| (-38 (-398 (-547))))
-(|has| |#1| (-38 (-398 (-547))))
+((((-836 |#1|)) . T))
+((((-1141 |#1| |#2| |#3|)) |has| |#1| (-356)))
+((((-1107 |#1| |#2|)) . T))
+((((-1141 |#1| |#2| |#3|)) |has| |#1| (-356)))
+(((|#2|) . T) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) . T))
+((($) . T))
+(|has| |#1| (-993))
+(((|#2|) . T) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+((((-834)) . T))
+((((-525)) |has| |#2| (-594 (-525))) (((-863 (-549))) |has| |#2| (-594 (-863 (-549)))) (((-863 (-372))) |has| |#2| (-594 (-863 (-372)))) (((-372)) . #0=(|has| |#2| (-993))) (((-219)) . #0#))
+((((-1143) (-52)) . T))
+(|has| |#1| (-38 (-400 (-549))))
+(|has| |#1| (-38 (-400 (-549))))
(((|#2|) . T))
((($ $) . T))
-((((-398 (-547))) . T) (((-673)) . T) (($) . T))
-((((-1134 |#1| |#2| |#3|)) . T))
-((((-1134 |#1| |#2| |#3|)) . T) (((-1127 |#1| |#2| |#3|)) . T))
-((((-832)) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-((((-547) |#1|) . T))
-((((-1134 |#1| |#2| |#3|)) |has| |#1| (-354)))
+((((-400 (-549))) . T) (((-675)) . T) (($) . T))
+((((-1141 |#1| |#2| |#3|)) . T))
+((((-1141 |#1| |#2| |#3|)) . T) (((-1134 |#1| |#2| |#3|)) . T))
+((((-834)) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+((((-549) |#1|) . T))
+((((-1141 |#1| |#2| |#3|)) |has| |#1| (-356)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-354))
-(((|#3|) . T) ((|#2|) . T) (($) -1530 (|has| |#4| (-169)) (|has| |#4| (-819)) (|has| |#4| (-1016))) ((|#4|) -1530 (|has| |#4| (-169)) (|has| |#4| (-354)) (|has| |#4| (-1016))))
-(((|#2|) . T) (($) -1530 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((|#3|) -1530 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-1016))))
+(|has| |#2| (-356))
+(((|#3|) . T) ((|#2|) . T) (($) -1536 (|has| |#4| (-170)) (|has| |#4| (-821)) (|has| |#4| (-1018))) ((|#4|) -1536 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1018))))
+(((|#2|) . T) (($) -1536 (|has| |#3| (-170)) (|has| |#3| (-821)) (|has| |#3| (-1018))) ((|#3|) -1536 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1018))))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-354))
+(|has| |#1| (-356))
((((-116 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-398 (-547))) |has| |#2| (-1007 (-398 (-547)))) (((-547)) |has| |#2| (-1007 (-547))) ((|#2|) . T) (((-834 |#1|)) . T))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
+((((-400 (-549))) |has| |#2| (-1009 (-400 (-549)))) (((-549)) |has| |#2| (-1009 (-549))) ((|#2|) . T) (((-836 |#1|)) . T))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
(((|#1|) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
-((((-129)) . T) (((-832)) . T))
-((((-547) |#1|) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
+((((-129)) . T) (((-834)) . T))
+((((-549) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-354)) (|has| |#2| (-277 |#2| |#2|))) (($ $) . T))
+(((|#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-878)))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-((((-832)) . T))
-((((-832)) . T))
-((((-832)) . T))
-(((|#1| (-519 |#2|)) . T))
-((((-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) . T))
-(((|#1| (-547)) . T))
-(((|#1| (-398 (-547))) . T))
-(((|#1| (-745)) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-398 (-547))) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-832)) . T) (((-1141)) . T))
-(-1530 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))
-(-1530 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))
-((($) . T))
-(((|#2| (-519 (-834 |#1|))) . T))
-((((-832)) . T) (((-1141)) . T))
-((((-547) |#1|) . T))
-(((|#2|) . T))
-(((|#2| (-745)) . T))
-((((-832)) -1530 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-880)))
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+((((-834)) . T))
+((((-834)) . T))
+((((-834)) . T))
+(((|#1| (-521 |#2|)) . T))
+((((-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) . T))
+(((|#1| (-549)) . T))
+(((|#1| (-400 (-549))) . T))
+(((|#1| (-747)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-400 (-549))) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T) (((-1148)) . T))
+(-1536 (|has| |#2| (-444)) (|has| |#2| (-541)) (|has| |#2| (-880)))
+(-1536 (|has| |#1| (-444)) (|has| |#1| (-541)) (|has| |#1| (-880)))
+((($) . T))
+(((|#2| (-521 (-836 |#1|))) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-834)) . T) (((-1148)) . T))
+((((-549) |#1|) . T))
+((((-834)) . T) (((-1148)) . T))
+(((|#2|) . T))
+(((|#2| (-747)) . T))
+((((-834)) -1536 (|has| |#1| (-593 (-834))) (|has| |#1| (-1067))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-1119) |#1|) . T))
-((((-398 |#2|)) . T))
-((((-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T))
-(|has| |#1| (-539))
-(|has| |#1| (-539))
+((((-1125) |#1|) . T))
+((((-400 |#2|)) . T))
+((((-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T))
+(|has| |#1| (-541))
+(|has| |#1| (-541))
((($) . T) ((|#2|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#2| $) |has| |#2| (-277 |#2| |#2|)))
-(((|#1| (-619 |#1|)) |has| |#1| (-819)))
-(-1530 (|has| |#1| (-225)) (|has| |#1| (-340)))
-(-1530 (|has| |#1| (-354)) (|has| |#1| (-340)))
-(|has| |#1| (-1063))
-(((|#1|) . T))
-((((-398 (-547))) . T) (($) . T))
-((((-968 |#1|)) . T) ((|#1|) . T) (((-547)) -1530 (|has| (-968 |#1|) (-1007 (-547))) (|has| |#1| (-1007 (-547)))) (((-398 (-547))) -1530 (|has| (-968 |#1|) (-1007 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-((((-1136)) |has| |#1| (-869 (-1136))))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))
-(((|#1| (-580 |#1| |#3|) (-580 |#1| |#2|)) . T))
+(((|#2| $) |has| |#2| (-279 |#2| |#2|)))
+(((|#1| (-621 |#1|)) |has| |#1| (-821)))
+(-1536 (|has| |#1| (-227)) (|has| |#1| (-342)))
+(-1536 (|has| |#1| (-356)) (|has| |#1| (-342)))
+(|has| |#1| (-1067))
+(((|#1|) . T))
+((((-400 (-549))) . T) (($) . T))
+((((-970 |#1|)) . T) ((|#1|) . T) (((-549)) -1536 (|has| (-970 |#1|) (-1009 (-549))) (|has| |#1| (-1009 (-549)))) (((-400 (-549))) -1536 (|has| (-970 |#1|) (-1009 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+((((-1143)) |has| |#1| (-871 (-1143))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))
+(((|#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1101 |#1| |#2|) #0#) |has| (-1101 |#1| |#2|) (-300 (-1101 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) #0#) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))))
-(((#0=(-116 |#1|)) |has| #0# (-300 #0#)))
+(((#0=(-1107 |#1| |#2|) #0#) |has| (-1107 |#1| |#2|) (-302 (-1107 |#1| |#2|))))
+(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((#0=(-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) #0#) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))))
+(((#0=(-116 |#1|)) |has| #0# (-302 #0#)))
((($ $) . T))
-(-1530 (|has| |#1| (-821)) (|has| |#1| (-1063)))
-((($ $) . T) ((#0=(-834 |#1|) $) . T) ((#0# |#2|) . T))
-((($ $) . T) ((|#2| $) |has| |#1| (-225)) ((|#2| |#1|) |has| |#1| (-225)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-468 . -1063) T) ((-255 . -503) 144639) ((-239 . -503) 144582) ((-237 . -1063) 144532) ((-554 . -111) 144517) ((-519 . -23) T) ((-137 . -1063) T) ((-136 . -1063) T) ((-117 . -300) 144474) ((-132 . -1063) T) ((-469 . -503) 144266) ((-668 . -101) T) ((-1102 . -503) 144185) ((-381 . -130) T) ((-1232 . -945) 144154) ((-31 . -92) T) ((-580 . -479) 144138) ((-597 . -130) T) ((-793 . -817) T) ((-512 . -56) 144088) ((-58 . -503) 144021) ((-508 . -503) 143954) ((-409 . -869) 143913) ((-166 . -1016) T) ((-505 . -503) 143846) ((-486 . -503) 143779) ((-485 . -503) 143712) ((-773 . -1007) 143495) ((-673 . -38) 143460) ((-334 . -340) T) ((-1058 . -1057) 143444) ((-1058 . -1063) 143422) ((-166 . -235) 143373) ((-166 . -225) 143324) ((-1058 . -1059) 143282) ((-841 . -277) 143240) ((-217 . -769) T) ((-217 . -766) T) ((-668 . -275) NIL) ((-1111 . -1149) 143219) ((-398 . -961) 143203) ((-675 . -21) T) ((-675 . -25) T) ((-1234 . -622) 143177) ((-307 . -157) 143156) ((-307 . -141) 143135) ((-1111 . -106) 143085) ((-133 . -25) T) ((-40 . -223) 143062) ((-116 . -21) T) ((-116 . -25) T) ((-586 . -279) 143038) ((-465 . -279) 143017) ((-1192 . -1016) T) ((-826 . -1016) T) ((-773 . -329) 143001) ((-117 . -1112) NIL) ((-90 . -591) 142933) ((-467 . -130) T) ((-572 . -1173) T) ((-1192 . -317) 142910) ((-554 . -1016) T) ((-1192 . -225) T) ((-636 . -692) 142894) ((-927 . -279) 142871) ((-59 . -34) T) ((-1054 . -591) 142837) ((-1027 . -769) T) ((-1027 . -766) T) ((-790 . -701) T) ((-706 . -47) 142802) ((-599 . -38) 142789) ((-346 . -281) T) ((-343 . -281) T) ((-335 . -281) T) ((-255 . -281) 142720) ((-239 . -281) 142651) ((-1031 . -591) 142617) ((-1005 . -591) 142583) ((-993 . -101) T) ((-988 . -591) 142549) ((-404 . -701) T) ((-117 . -38) 142494) ((-602 . -591) 142460) ((-404 . -463) T) ((-473 . -591) 142426) ((-345 . -101) T) ((-210 . -591) 142392) ((-1167 . -1023) T) ((-686 . -1023) T) ((-1134 . -47) 142369) ((-1133 . -47) 142339) ((-1127 . -47) 142316) ((-1004 . -149) 142262) ((-879 . -281) T) ((-1088 . -47) 142234) ((-668 . -300) NIL) ((-504 . -591) 142216) ((-499 . -591) 142198) ((-497 . -591) 142180) ((-318 . -1063) 142130) ((-687 . -442) 142061) ((-48 . -101) T) ((-1203 . -277) 142046) ((-1182 . -277) 141966) ((-619 . -640) 141950) ((-619 . -625) 141934) ((-330 . -21) T) ((-330 . -25) T) ((-40 . -340) NIL) ((-171 . -21) T) ((-171 . -25) T) ((-619 . -364) 141918) ((-580 . -277) 141895) ((-583 . -591) 141862) ((-379 . -101) T) ((-1082 . -141) T) ((-126 . -591) 141794) ((-843 . -1063) T) ((-632 . -402) 141778) ((-689 . -591) 141760) ((-159 . -591) 141742) ((-154 . -591) 141724) ((-1234 . -701) T) ((-1065 . -34) T) ((-840 . -769) NIL) ((-840 . -766) NIL) ((-829 . -821) T) ((-706 . -855) NIL) ((-1243 . -130) T) ((-372 . -130) T) ((-873 . -101) T) ((-706 . -1007) 141600) ((-519 . -130) T) ((-1051 . -402) 141584) ((-969 . -479) 141568) ((-117 . -391) 141545) ((-1127 . -1173) 141524) ((-756 . -402) 141508) ((-754 . -402) 141492) ((-912 . -34) T) ((-668 . -1112) NIL) ((-242 . -622) 141327) ((-241 . -622) 141149) ((-791 . -889) 141128) ((-444 . -402) 141112) ((-580 . -19) 141096) ((-1107 . -1166) 141065) ((-1127 . -855) NIL) ((-1127 . -853) 141017) ((-580 . -582) 140994) ((-1159 . -591) 140926) ((-1135 . -591) 140908) ((-61 . -386) T) ((-1133 . -1007) 140843) ((-1127 . -1007) 140809) ((-668 . -38) 140759) ((-464 . -277) 140744) ((-706 . -368) 140728) ((-632 . -1023) T) ((-1203 . -971) 140694) ((-1182 . -971) 140660) ((-1028 . -1149) 140635) ((-841 . -592) 140443) ((-841 . -591) 140425) ((-1146 . -479) 140362) ((-409 . -991) 140341) ((-48 . -300) 140328) ((-1028 . -106) 140274) ((-469 . -479) 140211) ((-509 . -1173) T) ((-1127 . -329) 140163) ((-1102 . -479) 140134) ((-1127 . -368) 140086) ((-1051 . -1023) T) ((-428 . -101) T) ((-179 . -1063) T) ((-242 . -34) T) ((-241 . -34) T) ((-756 . -1023) T) ((-754 . -1023) T) ((-706 . -869) 140063) ((-444 . -1023) T) ((-58 . -479) 140047) ((-1003 . -1022) 140021) ((-508 . -479) 140005) ((-505 . -479) 139989) ((-486 . -479) 139973) ((-485 . -479) 139957) ((-237 . -503) 139890) ((-1003 . -111) 139857) ((-1134 . -869) 139770) ((-1133 . -869) 139676) ((-1127 . -869) 139509) ((-644 . -1075) T) ((-1088 . -869) 139493) ((-620 . -92) T) ((-345 . -1112) T) ((-313 . -1022) 139475) ((-242 . -765) 139454) ((-242 . -768) 139405) ((-242 . -767) 139384) ((-241 . -765) 139363) ((-241 . -768) 139314) ((-241 . -767) 139293) ((-31 . -591) 139259) ((-50 . -1023) T) ((-242 . -701) 139169) ((-241 . -701) 139079) ((-1167 . -1063) T) ((-644 . -23) T) ((-561 . -1023) T) ((-507 . -1023) T) ((-370 . -1022) 139044) ((-313 . -111) 139019) ((-72 . -374) T) ((-72 . -386) T) ((-993 . -38) 138956) ((-668 . -391) 138938) ((-98 . -101) T) ((-686 . -1063) T) ((-972 . -143) 138910) ((-972 . -145) 138882) ((-370 . -111) 138838) ((-310 . -1177) 138817) ((-464 . -971) 138783) ((-345 . -38) 138748) ((-40 . -361) 138720) ((-842 . -591) 138592) ((-127 . -125) 138576) ((-121 . -125) 138560) ((-808 . -1022) 138530) ((-807 . -21) 138482) ((-801 . -1022) 138466) ((-807 . -25) 138418) ((-310 . -539) 138369) ((-547 . -802) T) ((-232 . -1173) T) ((-808 . -111) 138334) ((-801 . -111) 138313) ((-1203 . -591) 138295) ((-1182 . -591) 138277) ((-1182 . -592) 137950) ((-1132 . -878) 137929) ((-1087 . -878) 137908) ((-48 . -38) 137873) ((-1241 . -1075) T) ((-580 . -591) 137785) ((-580 . -592) 137746) ((-1239 . -1075) T) ((-232 . -1007) 137573) ((-1132 . -622) 137498) ((-1087 . -622) 137423) ((-693 . -591) 137405) ((-825 . -622) 137379) ((-480 . -1063) T) ((-1241 . -23) T) ((-1239 . -23) T) ((-1003 . -1016) T) ((-1146 . -277) 137358) ((-166 . -359) 137309) ((-973 . -1173) T) ((-44 . -23) T) ((-469 . -277) 137288) ((-565 . -1063) T) ((-1107 . -1072) 137257) ((-1067 . -1066) 137209) ((-128 . -1173) T) ((-381 . -21) T) ((-381 . -25) T) ((-150 . -1075) T) ((-1247 . -101) T) ((-973 . -853) 137191) ((-973 . -855) 137173) ((-1167 . -692) 137070) ((-599 . -223) 137054) ((-597 . -21) T) ((-280 . -539) T) ((-597 . -25) T) ((-1153 . -1063) T) ((-686 . -692) 137019) ((-232 . -368) 136988) ((-973 . -1007) 136948) ((-370 . -1016) T) ((-215 . -1023) T) ((-117 . -223) 136925) ((-58 . -277) 136902) ((-150 . -23) T) ((-505 . -277) 136879) ((-318 . -503) 136812) ((-485 . -277) 136789) ((-370 . -235) T) ((-370 . -225) T) ((-808 . -1016) T) ((-801 . -1016) T) ((-687 . -918) 136758) ((-675 . -821) T) ((-464 . -591) 136740) ((-801 . -225) 136719) ((-133 . -821) T) ((-632 . -1063) T) ((-1146 . -582) 136698) ((-533 . -1149) 136677) ((-327 . -1063) T) ((-310 . -354) 136656) ((-398 . -145) 136635) ((-398 . -143) 136614) ((-933 . -1075) 136513) ((-232 . -869) 136445) ((-789 . -1075) 136355) ((-628 . -823) 136339) ((-469 . -582) 136318) ((-533 . -106) 136268) ((-973 . -368) 136250) ((-973 . -329) 136232) ((-96 . -1063) T) ((-933 . -23) 136043) ((-467 . -21) T) ((-467 . -25) T) ((-789 . -23) 135913) ((-1136 . -591) 135895) ((-58 . -19) 135879) ((-1136 . -592) 135801) ((-1132 . -701) T) ((-1087 . -701) T) ((-505 . -19) 135785) ((-485 . -19) 135769) ((-58 . -582) 135746) ((-1051 . -1063) T) ((-870 . -101) 135724) ((-825 . -701) T) ((-756 . -1063) T) ((-505 . -582) 135701) ((-485 . -582) 135678) ((-754 . -1063) T) ((-754 . -1030) 135645) ((-451 . -1063) T) ((-444 . -1063) T) ((-565 . -692) 135620) ((-623 . -1063) T) ((-973 . -869) NIL) ((-1211 . -47) 135597) ((-603 . -1075) T) ((-644 . -130) T) ((-1205 . -101) T) ((-1204 . -47) 135567) ((-1183 . -47) 135544) ((-1167 . -169) 135495) ((-1043 . -1177) 135446) ((-266 . -1063) T) ((-84 . -431) T) ((-84 . -386) T) ((-1133 . -298) 135425) ((-1127 . -298) 135404) ((-50 . -1063) T) ((-1043 . -539) 135355) ((-686 . -169) T) ((-574 . -47) 135332) ((-217 . -622) 135297) ((-561 . -1063) T) ((-507 . -1063) T) ((-350 . -1177) T) ((-344 . -1177) T) ((-336 . -1177) T) ((-477 . -794) T) ((-477 . -889) T) ((-310 . -1075) T) ((-107 . -1177) T) ((-330 . -821) T) ((-209 . -889) T) ((-209 . -794) T) ((-689 . -1022) 135267) ((-350 . -539) T) ((-344 . -539) T) ((-336 . -539) T) ((-107 . -539) T) ((-632 . -692) 135237) ((-1127 . -991) NIL) ((-310 . -23) T) ((-66 . -1173) T) ((-969 . -591) 135169) ((-668 . -223) 135151) ((-689 . -111) 135116) ((-619 . -34) T) ((-237 . -479) 135100) ((-1065 . -1061) 135084) ((-168 . -1063) T) ((-921 . -878) 135063) ((-471 . -878) 135042) ((-1247 . -1112) T) ((-1243 . -21) T) ((-1243 . -25) T) ((-1241 . -130) T) ((-1239 . -130) T) ((-1051 . -692) 134891) ((-1027 . -622) 134878) ((-921 . -622) 134803) ((-756 . -692) 134632) ((-523 . -591) 134614) ((-523 . -592) 134595) ((-754 . -692) 134444) ((-1232 . -101) T) ((-1040 . -101) T) ((-372 . -25) T) ((-372 . -21) T) ((-471 . -622) 134369) ((-451 . -692) 134340) ((-444 . -692) 134189) ((-956 . -101) T) ((-1215 . -591) 134155) ((-1204 . -1007) 134090) ((-1183 . -1173) 134069) ((-712 . -101) T) ((-1183 . -855) NIL) ((-1183 . -853) 134021) ((-1146 . -592) NIL) ((-1146 . -591) 134003) ((-519 . -25) T) ((-1103 . -1085) 133948) ((-1013 . -1166) 133877) ((-870 . -300) 133815) ((-334 . -1023) T) ((-139 . -101) T) ((-44 . -130) T) ((-280 . -1075) T) ((-655 . -92) T) ((-650 . -92) T) ((-638 . -591) 133797) ((-620 . -591) 133750) ((-468 . -92) T) ((-346 . -591) 133732) ((-343 . -591) 133714) ((-335 . -591) 133696) ((-255 . -592) 133444) ((-255 . -591) 133426) ((-239 . -591) 133408) ((-239 . -592) 133269) ((-137 . -92) T) ((-136 . -92) T) ((-132 . -92) T) ((-1183 . -1007) 133235) ((-1167 . -503) 133202) ((-1102 . -591) 133184) ((-793 . -828) T) ((-793 . -701) T) ((-580 . -279) 133161) ((-561 . -692) 133126) ((-469 . -592) NIL) ((-469 . -591) 133108) ((-507 . -692) 133053) ((-307 . -101) T) ((-304 . -101) T) ((-280 . -23) T) ((-150 . -130) T) ((-377 . -701) T) ((-841 . -1022) 133005) ((-879 . -591) 132987) ((-879 . -592) 132969) ((-841 . -111) 132907) ((-135 . -101) T) ((-114 . -101) T) ((-687 . -1195) 132891) ((-689 . -1016) T) ((-668 . -340) NIL) ((-508 . -591) 132823) ((-370 . -769) T) ((-215 . -1063) T) ((-370 . -766) T) ((-217 . -768) T) ((-217 . -765) T) ((-58 . -592) 132784) ((-58 . -591) 132696) ((-217 . -701) T) ((-505 . -592) 132657) ((-505 . -591) 132569) ((-486 . -591) 132501) ((-485 . -592) 132462) ((-485 . -591) 132374) ((-1043 . -354) 132325) ((-40 . -402) 132302) ((-76 . -1173) T) ((-840 . -878) NIL) ((-350 . -320) 132286) ((-350 . -354) T) ((-344 . -320) 132270) ((-344 . -354) T) ((-336 . -320) 132254) ((-336 . -354) T) ((-307 . -275) 132233) ((-107 . -354) T) ((-69 . -1173) T) ((-1183 . -329) 132185) ((-840 . -622) 132130) ((-1183 . -368) 132082) ((-933 . -130) 131937) ((-789 . -130) 131807) ((-927 . -625) 131791) ((-1051 . -169) 131702) ((-927 . -364) 131686) ((-1027 . -768) T) ((-1027 . -765) T) ((-756 . -169) 131577) ((-754 . -169) 131488) ((-790 . -47) 131450) ((-1027 . -701) T) ((-318 . -479) 131434) ((-921 . -701) T) ((-444 . -169) 131345) ((-237 . -277) 131322) ((-471 . -701) T) ((-1232 . -300) 131260) ((-1211 . -869) 131173) ((-1204 . -869) 131079) ((-1203 . -1022) 130914) ((-1183 . -869) 130747) ((-1182 . -1022) 130555) ((-1167 . -281) 130534) ((-1107 . -149) 130518) ((-1082 . -101) T) ((-1038 . -101) T) ((-896 . -924) T) ((-712 . -300) 130456) ((-74 . -1173) T) ((-30 . -924) T) ((-166 . -878) 130409) ((-638 . -373) 130381) ((-112 . -815) T) ((-1 . -591) 130363) ((-1080 . -1063) T) ((-1043 . -23) T) ((-50 . -596) 130347) ((-1043 . -1075) T) ((-972 . -400) 130319) ((-574 . -869) 130232) ((-429 . -101) T) ((-139 . -300) NIL) ((-841 . -1016) T) ((-807 . -821) 130211) ((-80 . -1173) T) ((-686 . -281) T) ((-40 . -1023) T) ((-561 . -169) T) ((-507 . -169) T) ((-500 . -591) 130193) ((-166 . -622) 130103) ((-496 . -591) 130085) ((-342 . -145) 130067) ((-342 . -143) T) ((-350 . -1075) T) ((-344 . -1075) T) ((-336 . -1075) T) ((-973 . -298) T) ((-883 . -298) T) ((-841 . -235) T) ((-107 . -1075) T) ((-841 . -225) 130046) ((-1203 . -111) 129867) ((-1182 . -111) 129656) ((-237 . -1207) 129640) ((-547 . -819) T) ((-350 . -23) T) ((-345 . -340) T) ((-307 . -300) 129627) ((-304 . -300) 129568) ((-344 . -23) T) ((-310 . -130) T) ((-336 . -23) T) ((-973 . -991) T) ((-107 . -23) T) ((-237 . -582) 129545) ((-1205 . -38) 129437) ((-1192 . -878) 129416) ((-112 . -1063) T) ((-1004 . -101) T) ((-1192 . -622) 129341) ((-840 . -768) NIL) ((-826 . -622) 129315) ((-840 . -765) NIL) ((-790 . -855) NIL) ((-840 . -701) T) ((-1051 . -503) 129188) ((-756 . -503) 129135) ((-754 . -503) 129087) ((-554 . -622) 129074) ((-790 . -1007) 128902) ((-444 . -503) 128845) ((-379 . -380) T) ((-59 . -1173) T) ((-597 . -821) 128824) ((-489 . -635) T) ((-1107 . -945) 128793) ((-972 . -442) T) ((-673 . -819) T) ((-499 . -766) T) ((-464 . -1022) 128628) ((-334 . -1063) T) ((-304 . -1112) NIL) ((-280 . -130) T) ((-385 . -1063) T) ((-668 . -361) 128595) ((-839 . -1023) T) ((-215 . -596) 128572) ((-318 . -277) 128549) ((-464 . -111) 128370) ((-1203 . -1016) T) ((-1182 . -1016) T) ((-790 . -368) 128354) ((-166 . -701) T) ((-628 . -101) T) ((-1203 . -235) 128333) ((-1203 . -225) 128285) ((-1182 . -225) 128190) ((-1182 . -235) 128169) ((-972 . -393) NIL) ((-644 . -615) 128117) ((-307 . -38) 128027) ((-304 . -38) 127956) ((-68 . -591) 127938) ((-310 . -482) 127904) ((-1146 . -279) 127883) ((-1076 . -1075) 127793) ((-82 . -1173) T) ((-60 . -591) 127775) ((-469 . -279) 127754) ((-1234 . -1007) 127731) ((-1125 . -1063) T) ((-1076 . -23) 127601) ((-790 . -869) 127537) ((-1192 . -701) T) ((-1065 . -1173) T) ((-1051 . -281) 127468) ((-935 . -1063) T) ((-862 . -101) T) ((-756 . -281) 127379) ((-318 . -19) 127363) ((-58 . -279) 127340) ((-754 . -281) 127271) ((-826 . -701) T) ((-117 . -819) NIL) ((-505 . -279) 127248) ((-318 . -582) 127225) ((-485 . -279) 127202) ((-444 . -281) 127133) ((-1004 . -300) 126984) ((-554 . -701) T) ((-655 . -591) 126934) ((-650 . -591) 126900) ((-636 . -591) 126882) ((-468 . -591) 126848) ((-237 . -592) 126809) ((-237 . -591) 126721) ((-137 . -591) 126687) ((-136 . -591) 126653) ((-132 . -591) 126619) ((-1108 . -34) T) ((-912 . -1173) T) ((-334 . -692) 126564) ((-644 . -25) T) ((-644 . -21) T) ((-464 . -1016) T) ((-611 . -408) 126529) ((-585 . -408) 126494) ((-1082 . -1112) T) ((-561 . -281) T) ((-507 . -281) T) ((-1204 . -298) 126473) ((-464 . -225) 126425) ((-464 . -235) 126404) ((-1183 . -298) 126383) ((-1183 . -991) NIL) ((-1043 . -130) T) ((-841 . -769) 126362) ((-142 . -101) T) ((-40 . -1063) T) ((-841 . -766) 126341) ((-619 . -979) 126325) ((-560 . -1023) T) ((-547 . -1023) T) ((-484 . -1023) T) ((-398 . -442) T) ((-350 . -130) T) ((-307 . -391) 126309) ((-304 . -391) 126270) ((-344 . -130) T) ((-336 . -130) T) ((-1141 . -1063) T) ((-1082 . -38) 126257) ((-1058 . -591) 126224) ((-107 . -130) T) ((-923 . -1063) T) ((-890 . -1063) T) ((-745 . -1063) T) ((-646 . -1063) T) ((-495 . -1047) T) ((-675 . -145) T) ((-116 . -145) T) ((-1241 . -21) T) ((-1241 . -25) T) ((-1239 . -21) T) ((-1239 . -25) T) ((-638 . -1022) 126208) ((-519 . -821) T) ((-489 . -821) T) ((-346 . -1022) 126160) ((-343 . -1022) 126112) ((-335 . -1022) 126064) ((-242 . -1173) T) ((-241 . -1173) T) ((-255 . -1022) 125907) ((-239 . -1022) 125750) ((-638 . -111) 125729) ((-346 . -111) 125667) ((-343 . -111) 125605) ((-335 . -111) 125543) ((-255 . -111) 125372) ((-239 . -111) 125201) ((-791 . -1177) 125180) ((-599 . -402) 125164) ((-44 . -21) T) ((-44 . -25) T) ((-789 . -615) 125070) ((-791 . -539) 125049) ((-242 . -1007) 124876) ((-241 . -1007) 124703) ((-126 . -119) 124687) ((-879 . -1022) 124652) ((-673 . -1023) T) ((-687 . -101) T) ((-334 . -169) T) ((-150 . -21) T) ((-150 . -25) T) ((-87 . -591) 124634) ((-879 . -111) 124590) ((-40 . -692) 124535) ((-839 . -1063) T) ((-318 . -592) 124496) ((-318 . -591) 124408) ((-1182 . -766) 124361) ((-1182 . -769) 124314) ((-242 . -368) 124283) ((-241 . -368) 124252) ((-628 . -38) 124222) ((-586 . -34) T) ((-472 . -1075) 124132) ((-465 . -34) T) ((-1076 . -130) 124002) ((-933 . -25) 123813) ((-843 . -591) 123795) ((-933 . -21) 123750) ((-789 . -21) 123660) ((-789 . -25) 123511) ((-599 . -1023) T) ((-1138 . -539) 123490) ((-1132 . -47) 123467) ((-346 . -1016) T) ((-343 . -1016) T) ((-472 . -23) 123337) ((-335 . -1016) T) ((-255 . -1016) T) ((-239 . -1016) T) ((-1087 . -47) 123309) ((-117 . -1023) T) ((-1003 . -622) 123283) ((-927 . -34) T) ((-346 . -225) 123262) ((-346 . -235) T) ((-343 . -225) 123241) ((-343 . -235) T) ((-239 . -317) 123198) ((-335 . -225) 123177) ((-335 . -235) T) ((-255 . -317) 123149) ((-255 . -225) 123128) ((-1117 . -149) 123112) ((-242 . -869) 123044) ((-241 . -869) 122976) ((-1045 . -821) T) ((-1186 . -1173) T) ((-405 . -1075) T) ((-1020 . -23) T) ((-879 . -1016) T) ((-313 . -622) 122958) ((-993 . -819) T) ((-1167 . -971) 122924) ((-1133 . -889) 122903) ((-1127 . -889) 122882) ((-879 . -235) T) ((-791 . -354) 122861) ((-376 . -23) T) ((-127 . -1063) 122839) ((-121 . -1063) 122817) ((-879 . -225) T) ((-1127 . -794) NIL) ((-370 . -622) 122782) ((-839 . -692) 122769) ((-1013 . -149) 122734) ((-40 . -169) T) ((-668 . -402) 122716) ((-687 . -300) 122703) ((-808 . -622) 122663) ((-801 . -622) 122637) ((-310 . -25) T) ((-310 . -21) T) ((-632 . -277) 122616) ((-560 . -1063) T) ((-547 . -1063) T) ((-484 . -1063) T) ((-237 . -279) 122593) ((-304 . -223) 122554) ((-1132 . -855) NIL) ((-1087 . -855) 122413) ((-129 . -821) T) ((-1132 . -1007) 122293) ((-1087 . -1007) 122176) ((-179 . -591) 122158) ((-825 . -1007) 122054) ((-756 . -277) 121981) ((-791 . -1075) T) ((-1003 . -701) T) ((-580 . -625) 121965) ((-1013 . -945) 121894) ((-968 . -101) T) ((-791 . -23) T) ((-687 . -1112) 121872) ((-668 . -1023) T) ((-580 . -364) 121856) ((-342 . -442) T) ((-334 . -281) T) ((-1220 . -1063) T) ((-240 . -1063) T) ((-390 . -101) T) ((-280 . -21) T) ((-280 . -25) T) ((-352 . -701) T) ((-685 . -1063) T) ((-673 . -1063) T) ((-352 . -463) T) ((-1167 . -591) 121838) ((-1132 . -368) 121822) ((-1087 . -368) 121806) ((-993 . -402) 121768) ((-139 . -221) 121750) ((-370 . -768) T) ((-370 . -765) T) ((-839 . -169) T) ((-370 . -701) T) ((-686 . -591) 121732) ((-687 . -38) 121561) ((-1219 . -1217) 121545) ((-342 . -393) T) ((-1219 . -1063) 121495) ((-560 . -692) 121482) ((-547 . -692) 121469) ((-484 . -692) 121434) ((-307 . -605) 121413) ((-808 . -701) T) ((-801 . -701) T) ((-619 . -1173) T) ((-1043 . -615) 121361) ((-1132 . -869) 121304) ((-1087 . -869) 121288) ((-636 . -1022) 121272) ((-107 . -615) 121254) ((-472 . -130) 121124) ((-1138 . -1075) T) ((-921 . -47) 121093) ((-599 . -1063) T) ((-636 . -111) 121072) ((-480 . -591) 121038) ((-318 . -279) 121015) ((-471 . -47) 120972) ((-1138 . -23) T) ((-117 . -1063) T) ((-102 . -101) 120950) ((-1231 . -1075) T) ((-1020 . -130) T) ((-993 . -1023) T) ((-793 . -1007) 120934) ((-972 . -699) 120906) ((-1231 . -23) T) ((-673 . -692) 120871) ((-565 . -591) 120853) ((-377 . -1007) 120837) ((-345 . -1023) T) ((-376 . -130) T) ((-315 . -1007) 120821) ((-217 . -855) 120803) ((-973 . -889) T) ((-90 . -34) T) ((-973 . -794) T) ((-883 . -889) T) ((-477 . -1177) T) ((-1153 . -591) 120785) ((-1068 . -1063) T) ((-209 . -1177) T) ((-968 . -300) 120750) ((-217 . -1007) 120710) ((-40 . -281) T) ((-1043 . -21) T) ((-1043 . -25) T) ((-1082 . -802) T) ((-477 . -539) T) ((-350 . -25) T) ((-209 . -539) T) ((-350 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-689 . -622) 120670) ((-336 . -25) T) ((-336 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1023) T) ((-560 . -169) T) ((-547 . -169) T) ((-484 . -169) T) ((-632 . -591) 120652) ((-712 . -711) 120636) ((-327 . -591) 120618) ((-67 . -374) T) ((-67 . -386) T) ((-1065 . -106) 120602) ((-1027 . -855) 120584) ((-921 . -855) 120509) ((-627 . -1075) T) ((-599 . -692) 120496) ((-471 . -855) NIL) ((-1107 . -101) T) ((-1027 . -1007) 120478) ((-96 . -591) 120460) ((-467 . -145) T) ((-921 . -1007) 120340) ((-117 . -692) 120285) ((-627 . -23) T) ((-471 . -1007) 120161) ((-1051 . -592) NIL) ((-1051 . -591) 120143) ((-756 . -592) NIL) ((-756 . -591) 120104) ((-754 . -592) 119738) ((-754 . -591) 119652) ((-1076 . -615) 119558) ((-451 . -591) 119540) ((-444 . -591) 119522) ((-444 . -592) 119383) ((-1004 . -221) 119329) ((-126 . -34) T) ((-791 . -130) T) ((-841 . -878) 119308) ((-623 . -591) 119290) ((-346 . -1238) 119274) ((-343 . -1238) 119258) ((-335 . -1238) 119242) ((-127 . -503) 119175) ((-121 . -503) 119108) ((-500 . -766) T) ((-500 . -769) T) ((-499 . -768) T) ((-102 . -300) 119046) ((-214 . -101) 119024) ((-668 . -1063) T) ((-673 . -169) T) ((-841 . -622) 118976) ((-64 . -375) T) ((-266 . -591) 118958) ((-64 . -386) T) ((-921 . -368) 118942) ((-839 . -281) T) ((-50 . -591) 118924) ((-968 . -38) 118872) ((-561 . -591) 118854) ((-471 . -368) 118838) ((-561 . -592) 118820) ((-507 . -591) 118802) ((-879 . -1238) 118789) ((-840 . -1173) T) ((-675 . -442) T) ((-484 . -503) 118755) ((-477 . -354) T) ((-346 . -359) 118734) ((-343 . -359) 118713) ((-335 . -359) 118692) ((-209 . -354) T) ((-689 . -701) T) ((-116 . -442) T) ((-1242 . -1233) 118676) ((-840 . -853) 118653) ((-840 . -855) NIL) ((-933 . -821) 118552) ((-789 . -821) 118503) ((-628 . -630) 118487) ((-1159 . -34) T) ((-168 . -591) 118469) ((-1076 . -21) 118379) ((-1076 . -25) 118230) ((-840 . -1007) 118207) ((-921 . -869) 118188) ((-1192 . -47) 118165) ((-879 . -359) T) ((-58 . -625) 118149) ((-505 . -625) 118133) ((-471 . -869) 118110) ((-70 . -431) T) ((-70 . -386) T) ((-485 . -625) 118094) ((-58 . -364) 118078) ((-599 . -169) T) ((-505 . -364) 118062) ((-485 . -364) 118046) ((-801 . -683) 118030) ((-1132 . -298) 118009) ((-1138 . -130) T) ((-117 . -169) T) ((-1107 . -300) 117947) ((-166 . -1173) T) ((-611 . -719) 117931) ((-585 . -719) 117915) ((-1231 . -130) T) ((-1204 . -889) 117894) ((-1183 . -889) 117873) ((-1183 . -794) NIL) ((-668 . -692) 117823) ((-1182 . -878) 117776) ((-993 . -1063) T) ((-840 . -368) 117753) ((-840 . -329) 117730) ((-874 . -1075) T) ((-166 . -853) 117714) ((-166 . -855) 117639) ((-477 . -1075) T) ((-345 . -1063) T) ((-209 . -1075) T) ((-75 . -431) T) ((-75 . -386) T) ((-166 . -1007) 117535) ((-310 . -821) T) ((-1219 . -503) 117468) ((-1203 . -622) 117365) ((-1182 . -622) 117235) ((-841 . -768) 117214) ((-841 . -765) 117193) ((-841 . -701) T) ((-477 . -23) T) ((-215 . -591) 117175) ((-171 . -442) T) ((-214 . -300) 117113) ((-85 . -431) T) ((-85 . -386) T) ((-209 . -23) T) ((-1243 . -1236) 117092) ((-560 . -281) T) ((-547 . -281) T) ((-651 . -1007) 117076) ((-484 . -281) T) ((-135 . -460) 117031) ((-48 . -1063) T) ((-687 . -223) 117015) ((-840 . -869) NIL) ((-1192 . -855) NIL) ((-858 . -101) T) ((-854 . -101) T) ((-379 . -1063) T) ((-166 . -368) 116999) ((-166 . -329) 116983) ((-1192 . -1007) 116863) ((-826 . -1007) 116759) ((-1103 . -101) T) ((-627 . -130) T) ((-117 . -503) 116667) ((-636 . -766) 116646) ((-636 . -769) 116625) ((-554 . -1007) 116607) ((-285 . -1226) 116577) ((-835 . -101) T) ((-932 . -539) 116556) ((-1167 . -1022) 116439) ((-472 . -615) 116345) ((-873 . -1063) T) ((-993 . -692) 116282) ((-686 . -1022) 116247) ((-594 . -101) T) ((-580 . -34) T) ((-1108 . -1173) T) ((-1167 . -111) 116116) ((-464 . -622) 116013) ((-345 . -692) 115958) ((-166 . -869) 115917) ((-673 . -281) T) ((-668 . -169) T) ((-686 . -111) 115873) ((-1247 . -1023) T) ((-1192 . -368) 115857) ((-409 . -1177) 115835) ((-1080 . -591) 115817) ((-304 . -819) NIL) ((-409 . -539) T) ((-217 . -298) T) ((-1182 . -765) 115770) ((-1182 . -768) 115723) ((-1203 . -701) T) ((-1182 . -701) T) ((-48 . -692) 115688) ((-217 . -991) T) ((-342 . -1226) 115665) ((-1205 . -402) 115631) ((-693 . -701) T) ((-1192 . -869) 115574) ((-112 . -591) 115556) ((-112 . -592) 115538) ((-693 . -463) T) ((-472 . -21) 115448) ((-127 . -479) 115432) ((-121 . -479) 115416) ((-472 . -25) 115267) ((-599 . -281) T) ((-565 . -1022) 115242) ((-428 . -1063) T) ((-1027 . -298) T) ((-117 . -281) T) ((-1067 . -101) T) ((-972 . -101) T) ((-565 . -111) 115210) ((-1103 . -300) 115148) ((-1167 . -1016) T) ((-1027 . -991) T) ((-65 . -1173) T) ((-1020 . -25) T) ((-1020 . -21) T) ((-686 . -1016) T) ((-376 . -21) T) ((-376 . -25) T) ((-668 . -503) NIL) ((-993 . -169) T) ((-686 . -235) T) ((-1027 . -532) T) ((-495 . -101) T) ((-491 . -101) T) ((-345 . -169) T) ((-334 . -591) 115130) ((-385 . -591) 115112) ((-464 . -701) T) ((-1082 . -819) T) ((-861 . -1007) 115080) ((-107 . -821) T) ((-632 . -1022) 115064) ((-477 . -130) T) ((-1205 . -1023) T) ((-209 . -130) T) ((-1117 . -101) 115042) ((-98 . -1063) T) ((-237 . -640) 115026) ((-237 . -625) 115010) ((-632 . -111) 114989) ((-307 . -402) 114973) ((-237 . -364) 114957) ((-1120 . -227) 114904) ((-968 . -223) 114888) ((-73 . -1173) T) ((-48 . -169) T) ((-675 . -378) T) ((-675 . -141) T) ((-1242 . -101) T) ((-1051 . -1022) 114731) ((-255 . -878) 114710) ((-239 . -878) 114689) ((-756 . -1022) 114512) ((-754 . -1022) 114355) ((-586 . -1173) T) ((-1125 . -591) 114337) ((-1051 . -111) 114166) ((-1013 . -101) T) ((-465 . -1173) T) ((-451 . -1022) 114137) ((-444 . -1022) 113980) ((-638 . -622) 113964) ((-840 . -298) T) ((-756 . -111) 113773) ((-754 . -111) 113602) ((-346 . -622) 113554) ((-343 . -622) 113506) ((-335 . -622) 113458) ((-255 . -622) 113383) ((-239 . -622) 113308) ((-1119 . -821) T) ((-1052 . -1007) 113292) ((-451 . -111) 113253) ((-444 . -111) 113082) ((-1039 . -1007) 113059) ((-969 . -34) T) ((-935 . -591) 113041) ((-927 . -1173) T) ((-126 . -979) 113025) ((-932 . -1075) T) ((-840 . -991) NIL) ((-710 . -1075) T) ((-690 . -1075) T) ((-1219 . -479) 113009) ((-1103 . -38) 112969) ((-932 . -23) T) ((-814 . -101) T) ((-791 . -21) T) ((-791 . -25) T) ((-710 . -23) T) ((-690 . -23) T) ((-110 . -635) T) ((-879 . -622) 112934) ((-561 . -1022) 112899) ((-507 . -1022) 112844) ((-219 . -56) 112802) ((-443 . -23) T) ((-398 . -101) T) ((-254 . -101) T) ((-668 . -281) T) ((-835 . -38) 112772) ((-561 . -111) 112728) ((-507 . -111) 112657) ((-409 . -1075) T) ((-307 . -1023) 112547) ((-304 . -1023) T) ((-632 . -1016) T) ((-1247 . -1063) T) ((-166 . -298) 112478) ((-409 . -23) T) ((-40 . -591) 112460) ((-40 . -592) 112444) ((-107 . -961) 112426) ((-116 . -838) 112410) ((-48 . -503) 112376) ((-1159 . -979) 112360) ((-1141 . -591) 112342) ((-1146 . -34) T) ((-923 . -591) 112308) ((-890 . -591) 112290) ((-1076 . -821) 112241) ((-745 . -591) 112223) ((-646 . -591) 112205) ((-1117 . -300) 112143) ((-469 . -34) T) ((-1056 . -1173) T) ((-467 . -442) T) ((-1051 . -1016) T) ((-1102 . -34) T) ((-756 . -1016) T) ((-754 . -1016) T) ((-621 . -227) 112127) ((-608 . -227) 112073) ((-1192 . -298) 112052) ((-1051 . -317) 112013) ((-444 . -1016) T) ((-1138 . -21) T) ((-1051 . -225) 111992) ((-756 . -317) 111969) ((-756 . -225) T) ((-754 . -317) 111941) ((-706 . -1177) 111920) ((-318 . -625) 111904) ((-1138 . -25) T) ((-58 . -34) T) ((-508 . -34) T) ((-505 . -34) T) ((-444 . -317) 111883) ((-318 . -364) 111867) ((-486 . -34) T) ((-485 . -34) T) ((-972 . -1112) NIL) ((-611 . -101) T) ((-585 . -101) T) ((-706 . -539) 111798) ((-346 . -701) T) ((-343 . -701) T) ((-335 . -701) T) ((-255 . -701) T) ((-239 . -701) T) ((-1013 . -300) 111706) ((-870 . -1063) 111684) ((-50 . -1016) T) ((-1231 . -21) T) ((-1231 . -25) T) ((-1134 . -539) 111663) ((-1133 . -1177) 111642) ((-561 . -1016) T) ((-507 . -1016) T) ((-1127 . -1177) 111621) ((-352 . -1007) 111605) ((-313 . -1007) 111589) ((-993 . -281) T) ((-370 . -855) 111571) ((-1133 . -539) 111522) ((-1127 . -539) 111473) ((-972 . -38) 111418) ((-773 . -1075) T) ((-879 . -701) T) ((-561 . -235) T) ((-561 . -225) T) ((-507 . -225) T) ((-507 . -235) T) ((-1088 . -539) 111397) ((-345 . -281) T) ((-621 . -669) 111381) ((-370 . -1007) 111341) ((-1082 . -1023) T) ((-102 . -125) 111325) ((-773 . -23) T) ((-1219 . -277) 111302) ((-398 . -300) 111267) ((-1241 . -1236) 111243) ((-1239 . -1236) 111222) ((-1205 . -1063) T) ((-839 . -591) 111204) ((-808 . -1007) 111173) ((-195 . -761) T) ((-194 . -761) T) ((-193 . -761) T) ((-192 . -761) T) ((-191 . -761) T) ((-190 . -761) T) ((-189 . -761) T) ((-188 . -761) T) ((-187 . -761) T) ((-186 . -761) T) ((-484 . -971) T) ((-265 . -810) T) ((-264 . -810) T) ((-263 . -810) T) ((-262 . -810) T) ((-48 . -281) T) ((-261 . -810) T) ((-260 . -810) T) ((-259 . -810) T) ((-185 . -761) T) ((-590 . -821) T) ((-628 . -402) 111157) ((-110 . -821) T) ((-627 . -21) T) ((-627 . -25) T) ((-1242 . -38) 111127) ((-117 . -277) 111078) ((-1219 . -19) 111062) ((-1219 . -582) 111039) ((-1232 . -1063) T) ((-1040 . -1063) T) ((-956 . -1063) T) ((-932 . -130) T) ((-712 . -1063) T) ((-710 . -130) T) ((-690 . -130) T) ((-500 . -767) T) ((-398 . -1112) 111017) ((-443 . -130) T) ((-500 . -768) T) ((-215 . -1016) T) ((-285 . -101) 110799) ((-139 . -1063) T) ((-673 . -971) T) ((-90 . -1173) T) ((-127 . -591) 110731) ((-121 . -591) 110663) ((-1247 . -169) T) ((-1133 . -354) 110642) ((-1127 . -354) 110621) ((-307 . -1063) T) ((-409 . -130) T) ((-304 . -1063) T) ((-398 . -38) 110573) ((-1095 . -101) T) ((-1205 . -692) 110465) ((-628 . -1023) T) ((-310 . -143) 110444) ((-310 . -145) 110423) ((-135 . -1063) T) ((-114 . -1063) T) ((-829 . -101) T) ((-560 . -591) 110405) ((-547 . -592) 110304) ((-547 . -591) 110286) ((-484 . -591) 110268) ((-484 . -592) 110213) ((-475 . -23) T) ((-472 . -821) 110164) ((-477 . -615) 110146) ((-934 . -591) 110128) ((-209 . -615) 110110) ((-217 . -395) T) ((-636 . -622) 110094) ((-1132 . -889) 110073) ((-706 . -1075) T) ((-342 . -101) T) ((-1172 . -1047) T) ((-792 . -821) T) ((-706 . -23) T) ((-334 . -1022) 110018) ((-1119 . -1118) T) ((-1108 . -106) 110002) ((-1134 . -1075) T) ((-1133 . -1075) T) ((-504 . -1007) 109986) ((-1127 . -1075) T) ((-1088 . -1075) T) ((-334 . -111) 109915) ((-973 . -1177) T) ((-126 . -1173) T) ((-883 . -1177) T) ((-668 . -277) NIL) ((-1220 . -591) 109897) ((-1134 . -23) T) ((-1133 . -23) T) ((-1127 . -23) T) ((-973 . -539) T) ((-1103 . -223) 109881) ((-883 . -539) T) ((-1088 . -23) T) ((-240 . -591) 109863) ((-1038 . -1063) T) ((-773 . -130) T) ((-685 . -591) 109845) ((-307 . -692) 109755) ((-304 . -692) 109684) ((-673 . -591) 109666) ((-673 . -592) 109611) ((-398 . -391) 109595) ((-429 . -1063) T) ((-477 . -25) T) ((-477 . -21) T) ((-1082 . -1063) T) ((-209 . -25) T) ((-209 . -21) T) ((-687 . -402) 109579) ((-689 . -1007) 109548) ((-1219 . -591) 109460) ((-1219 . -592) 109421) ((-1205 . -169) T) ((-237 . -34) T) ((-895 . -943) T) ((-1159 . -1173) T) ((-636 . -765) 109400) ((-636 . -768) 109379) ((-389 . -386) T) ((-512 . -101) 109357) ((-1004 . -1063) T) ((-214 . -964) 109341) ((-493 . -101) T) ((-599 . -591) 109323) ((-45 . -821) NIL) ((-599 . -592) 109300) ((-1004 . -588) 109275) ((-870 . -503) 109208) ((-334 . -1016) T) ((-117 . -592) NIL) ((-117 . -591) 109190) ((-841 . -1173) T) ((-644 . -408) 109174) ((-644 . -1085) 109119) ((-489 . -149) 109101) ((-334 . -225) T) ((-334 . -235) T) ((-40 . -1022) 109046) ((-841 . -853) 109030) ((-841 . -855) 108955) ((-687 . -1023) T) ((-668 . -971) NIL) ((-3 . |UnionCategory|) T) ((-1203 . -47) 108925) ((-1182 . -47) 108902) ((-1102 . -979) 108873) ((-217 . -889) T) ((-40 . -111) 108802) ((-841 . -1007) 108666) ((-1082 . -692) 108653) ((-1068 . -591) 108635) ((-1043 . -145) 108614) ((-1043 . -143) 108565) ((-973 . -354) T) ((-310 . -1161) 108531) ((-370 . -298) T) ((-310 . -1158) 108497) ((-307 . -169) 108476) ((-304 . -169) T) ((-972 . -223) 108453) ((-883 . -354) T) ((-561 . -1238) 108440) ((-507 . -1238) 108417) ((-350 . -145) 108396) ((-350 . -143) 108347) ((-344 . -145) 108326) ((-344 . -143) 108277) ((-586 . -1149) 108253) ((-336 . -145) 108232) ((-336 . -143) 108183) ((-310 . -35) 108149) ((-465 . -1149) 108128) ((0 . |EnumerationCategory|) T) ((-310 . -94) 108094) ((-370 . -991) T) ((-107 . -145) T) ((-107 . -143) NIL) ((-45 . -227) 108044) ((-628 . -1063) T) ((-586 . -106) 107991) ((-475 . -130) T) ((-465 . -106) 107941) ((-232 . -1075) 107851) ((-841 . -368) 107835) ((-841 . -329) 107819) ((-232 . -23) 107689) ((-1027 . -889) T) ((-1027 . -794) T) ((-561 . -359) T) ((-507 . -359) T) ((-342 . -1112) T) ((-318 . -34) T) ((-44 . -408) 107673) ((-842 . -1173) T) ((-381 . -719) 107657) ((-1232 . -503) 107590) ((-706 . -130) T) ((-1211 . -539) 107569) ((-1204 . -1177) 107548) ((-1204 . -539) 107499) ((-1183 . -1177) 107478) ((-302 . -1047) T) ((-1183 . -539) 107429) ((-712 . -503) 107362) ((-1182 . -1173) 107341) ((-1182 . -855) 107214) ((-862 . -1063) T) ((-142 . -815) T) ((-1182 . -853) 107184) ((-665 . -591) 107166) ((-1134 . -130) T) ((-512 . -300) 107104) ((-1133 . -130) T) ((-139 . -503) NIL) ((-1127 . -130) T) ((-1088 . -130) T) ((-993 . -971) T) ((-973 . -23) T) ((-342 . -38) 107069) ((-973 . -1075) T) ((-883 . -1075) T) ((-81 . -591) 107051) ((-40 . -1016) T) ((-839 . -1022) 107038) ((-972 . -340) NIL) ((-841 . -869) 106997) ((-675 . -101) T) ((-940 . -23) T) ((-580 . -1173) T) ((-883 . -23) T) ((-839 . -111) 106982) ((-418 . -1075) T) ((-464 . -47) 106952) ((-205 . -101) T) ((-133 . -101) T) ((-40 . -225) 106924) ((-40 . -235) T) ((-116 . -101) T) ((-575 . -539) 106903) ((-574 . -539) 106882) ((-668 . -591) 106864) ((-668 . -592) 106772) ((-307 . -503) 106738) ((-304 . -503) 106630) ((-1203 . -1007) 106614) ((-1182 . -1007) 106400) ((-968 . -402) 106384) ((-418 . -23) T) ((-1082 . -169) T) ((-1205 . -281) T) ((-628 . -692) 106354) ((-142 . -1063) T) ((-48 . -971) T) ((-398 . -223) 106338) ((-286 . -227) 106288) ((-840 . -889) T) ((-840 . -794) NIL) ((-834 . -821) T) ((-1182 . -329) 106258) ((-1182 . -368) 106228) ((-214 . -1083) 106212) ((-1219 . -279) 106189) ((-1167 . -622) 106114) ((-932 . -21) T) ((-932 . -25) T) ((-710 . -21) T) ((-710 . -25) T) ((-690 . -21) T) ((-690 . -25) T) ((-686 . -622) 106079) ((-443 . -21) T) ((-443 . -25) T) ((-330 . -101) T) ((-171 . -101) T) ((-968 . -1023) T) ((-839 . -1016) T) ((-748 . -101) T) ((-1204 . -354) 106058) ((-1203 . -869) 105964) ((-1183 . -354) 105943) ((-1182 . -869) 105794) ((-993 . -591) 105776) ((-398 . -802) 105729) ((-1134 . -482) 105695) ((-166 . -889) 105626) ((-1133 . -482) 105592) ((-1127 . -482) 105558) ((-687 . -1063) T) ((-1088 . -482) 105524) ((-560 . -1022) 105511) ((-547 . -1022) 105498) ((-484 . -1022) 105463) ((-307 . -281) 105442) ((-304 . -281) T) ((-345 . -591) 105424) ((-409 . -25) T) ((-409 . -21) T) ((-98 . -277) 105403) ((-560 . -111) 105388) ((-547 . -111) 105373) ((-484 . -111) 105329) ((-1136 . -855) 105296) ((-870 . -479) 105280) ((-48 . -591) 105262) ((-48 . -592) 105207) ((-232 . -130) 105077) ((-1192 . -889) 105056) ((-790 . -1177) 105035) ((-1004 . -503) 104879) ((-379 . -591) 104861) ((-790 . -539) 104792) ((-565 . -622) 104767) ((-255 . -47) 104739) ((-239 . -47) 104696) ((-519 . -498) 104673) ((-969 . -1173) T) ((-673 . -1022) 104638) ((-1211 . -1075) T) ((-1204 . -1075) T) ((-1183 . -1075) T) ((-972 . -361) 104610) ((-112 . -359) T) ((-464 . -869) 104516) ((-1211 . -23) T) ((-1204 . -23) T) ((-873 . -591) 104498) ((-90 . -106) 104482) ((-1167 . -701) T) ((-874 . -821) 104433) ((-675 . -1112) T) ((-673 . -111) 104389) ((-1183 . -23) T) ((-575 . -1075) T) ((-574 . -1075) T) ((-687 . -692) 104218) ((-686 . -701) T) ((-1082 . -281) T) ((-973 . -130) T) ((-477 . -821) T) ((-940 . -130) T) ((-883 . -130) T) ((-773 . -25) T) ((-209 . -821) T) ((-773 . -21) T) ((-560 . -1016) T) ((-547 . -1016) T) ((-484 . -1016) T) ((-575 . -23) T) ((-334 . -1238) 104195) ((-310 . -442) 104174) ((-330 . -300) 104161) ((-574 . -23) T) ((-418 . -130) T) ((-632 . -622) 104135) ((-237 . -979) 104119) ((-841 . -298) T) ((-1243 . -1233) 104103) ((-745 . -766) T) ((-745 . -769) T) ((-675 . -38) 104090) ((-547 . -225) T) ((-484 . -235) T) ((-484 . -225) T) ((-1111 . -227) 104040) ((-1051 . -878) 104019) ((-116 . -38) 104006) ((-201 . -774) T) ((-200 . -774) T) ((-199 . -774) T) ((-198 . -774) T) ((-841 . -991) 103985) ((-1232 . -479) 103969) ((-756 . -878) 103948) ((-754 . -878) 103927) ((-1146 . -1173) T) ((-444 . -878) 103906) ((-712 . -479) 103890) ((-1051 . -622) 103815) ((-756 . -622) 103740) ((-599 . -1022) 103727) ((-469 . -1173) T) ((-334 . -359) T) ((-139 . -479) 103709) ((-754 . -622) 103634) ((-1102 . -1173) T) ((-451 . -622) 103605) ((-255 . -855) 103464) ((-239 . -855) NIL) ((-117 . -1022) 103409) ((-444 . -622) 103334) ((-638 . -1007) 103311) ((-599 . -111) 103296) ((-346 . -1007) 103280) ((-343 . -1007) 103264) ((-335 . -1007) 103248) ((-255 . -1007) 103092) ((-239 . -1007) 102968) ((-117 . -111) 102897) ((-58 . -1173) T) ((-508 . -1173) T) ((-505 . -1173) T) ((-486 . -1173) T) ((-485 . -1173) T) ((-428 . -591) 102879) ((-425 . -591) 102861) ((-3 . -101) T) ((-996 . -1166) 102830) ((-807 . -101) T) ((-663 . -56) 102788) ((-673 . -1016) T) ((-50 . -622) 102762) ((-280 . -442) T) ((-466 . -1166) 102731) ((0 . -101) T) ((-561 . -622) 102696) ((-507 . -622) 102641) ((-49 . -101) T) ((-879 . -1007) 102628) ((-673 . -235) T) ((-1043 . -400) 102607) ((-706 . -615) 102555) ((-968 . -1063) T) ((-687 . -169) 102446) ((-477 . -961) 102428) ((-255 . -368) 102412) ((-239 . -368) 102396) ((-390 . -1063) T) ((-330 . -38) 102380) ((-995 . -101) 102358) ((-209 . -961) 102340) ((-171 . -38) 102272) ((-1203 . -298) 102251) ((-1182 . -298) 102230) ((-632 . -701) T) ((-98 . -591) 102212) ((-1127 . -615) 102164) ((-475 . -25) T) ((-475 . -21) T) ((-1182 . -991) 102117) ((-599 . -1016) T) ((-370 . -395) T) ((-381 . -101) T) ((-255 . -869) 102063) ((-239 . -869) 102040) ((-117 . -1016) T) ((-790 . -1075) T) ((-1051 . -701) T) ((-599 . -225) 102019) ((-597 . -101) T) ((-756 . -701) T) ((-754 . -701) T) ((-404 . -1075) T) ((-117 . -235) T) ((-40 . -359) NIL) ((-117 . -225) NIL) ((-444 . -701) T) ((-790 . -23) T) ((-706 . -25) T) ((-706 . -21) T) ((-677 . -821) T) ((-1040 . -277) 101998) ((-77 . -387) T) ((-77 . -386) T) ((-668 . -1022) 101948) ((-1211 . -130) T) ((-1204 . -130) T) ((-1183 . -130) T) ((-1103 . -402) 101932) ((-611 . -358) 101864) ((-585 . -358) 101796) ((-1117 . -1110) 101780) ((-102 . -1063) 101758) ((-1134 . -25) T) ((-1134 . -21) T) ((-1133 . -21) T) ((-968 . -692) 101706) ((-215 . -622) 101673) ((-668 . -111) 101607) ((-50 . -701) T) ((-1133 . -25) T) ((-342 . -340) T) ((-1127 . -21) T) ((-1043 . -442) 101558) ((-1127 . -25) T) ((-687 . -503) 101505) ((-561 . -701) T) ((-507 . -701) T) ((-1088 . -21) T) ((-1088 . -25) T) ((-575 . -130) T) ((-574 . -130) T) ((-350 . -442) T) ((-344 . -442) T) ((-336 . -442) T) ((-464 . -298) 101484) ((-304 . -277) 101419) ((-107 . -442) T) ((-78 . -431) T) ((-78 . -386) T) ((-467 . -101) T) ((-1247 . -591) 101401) ((-1247 . -592) 101383) ((-1043 . -393) 101362) ((-1004 . -479) 101293) ((-547 . -769) T) ((-547 . -766) T) ((-1028 . -227) 101239) ((-350 . -393) 101190) ((-344 . -393) 101141) ((-336 . -393) 101092) ((-1234 . -1075) T) ((-1234 . -23) T) ((-1221 . -101) T) ((-172 . -591) 101074) ((-1103 . -1023) T) ((-644 . -719) 101058) ((-1138 . -143) 101037) ((-1138 . -145) 101016) ((-1107 . -1063) T) ((-1107 . -1036) 100985) ((-68 . -1173) T) ((-993 . -1022) 100922) ((-835 . -1023) T) ((-232 . -615) 100828) ((-668 . -1016) T) ((-345 . -1022) 100773) ((-60 . -1173) T) ((-993 . -111) 100689) ((-870 . -591) 100621) ((-668 . -235) T) ((-668 . -225) NIL) ((-814 . -819) 100600) ((-673 . -769) T) ((-673 . -766) T) ((-972 . -402) 100577) ((-345 . -111) 100506) ((-370 . -889) T) ((-398 . -819) 100485) ((-687 . -281) 100396) ((-215 . -701) T) ((-1211 . -482) 100362) ((-1204 . -482) 100328) ((-1183 . -482) 100294) ((-307 . -971) 100273) ((-214 . -1063) 100251) ((-310 . -942) 100213) ((-104 . -101) T) ((-48 . -1022) 100178) ((-1243 . -101) T) ((-372 . -101) T) ((-48 . -111) 100134) ((-973 . -615) 100116) ((-1205 . -591) 100098) ((-519 . -101) T) ((-489 . -101) T) ((-1095 . -1096) 100082) ((-150 . -1226) 100066) ((-237 . -1173) T) ((-1172 . -101) T) ((-1132 . -1177) 100045) ((-1087 . -1177) 100024) ((-232 . -21) 99934) ((-232 . -25) 99785) ((-127 . -119) 99769) ((-121 . -119) 99753) ((-44 . -719) 99737) ((-1132 . -539) 99648) ((-1087 . -539) 99579) ((-1004 . -277) 99554) ((-963 . -1047) T) ((-790 . -130) T) ((-117 . -769) NIL) ((-117 . -766) NIL) ((-346 . -298) T) ((-343 . -298) T) ((-335 . -298) T) ((-1058 . -1173) T) ((-242 . -1075) 99464) ((-241 . -1075) 99374) ((-993 . -1016) T) ((-972 . -1023) T) ((-334 . -622) 99319) ((-597 . -38) 99303) ((-1232 . -591) 99265) ((-1232 . -592) 99226) ((-1040 . -591) 99208) ((-993 . -235) T) ((-345 . -1016) T) ((-789 . -1226) 99178) ((-242 . -23) T) ((-241 . -23) T) ((-956 . -591) 99160) ((-712 . -592) 99121) ((-712 . -591) 99103) ((-773 . -821) 99082) ((-968 . -503) 98994) ((-345 . -225) T) ((-345 . -235) T) ((-1120 . -149) 98941) ((-973 . -25) T) ((-139 . -592) 98900) ((-139 . -591) 98882) ((-879 . -298) T) ((-973 . -21) T) ((-940 . -25) T) ((-883 . -21) T) ((-883 . -25) T) ((-418 . -21) T) ((-418 . -25) T) ((-814 . -402) 98866) ((-48 . -1016) T) ((-1241 . -1233) 98850) ((-1239 . -1233) 98834) ((-1004 . -582) 98809) ((-307 . -592) 98670) ((-307 . -591) 98652) ((-304 . -592) NIL) ((-304 . -591) 98634) ((-48 . -235) T) ((-48 . -225) T) ((-628 . -277) 98595) ((-533 . -227) 98545) ((-135 . -591) 98527) ((-114 . -591) 98509) ((-467 . -38) 98474) ((-1243 . -1240) 98453) ((-1234 . -130) T) ((-1242 . -1023) T) ((-1045 . -101) T) ((-87 . -1173) T) ((-489 . -300) NIL) ((-969 . -106) 98437) ((-858 . -1063) T) ((-854 . -1063) T) ((-1219 . -625) 98421) ((-1219 . -364) 98405) ((-318 . -1173) T) ((-572 . -821) T) ((-1103 . -1063) T) ((-1103 . -1019) 98345) ((-102 . -503) 98278) ((-896 . -591) 98260) ((-334 . -701) T) ((-30 . -591) 98242) ((-835 . -1063) T) ((-814 . -1023) 98221) ((-40 . -622) 98166) ((-217 . -1177) T) ((-398 . -1023) T) ((-1119 . -149) 98148) ((-968 . -281) 98099) ((-594 . -1063) T) ((-217 . -539) T) ((-310 . -1200) 98083) ((-310 . -1197) 98053) ((-1146 . -1149) 98032) ((-1038 . -591) 98014) ((-621 . -149) 97998) ((-608 . -149) 97944) ((-1146 . -106) 97894) ((-469 . -1149) 97873) ((-477 . -145) T) ((-477 . -143) NIL) ((-1082 . -592) 97788) ((-429 . -591) 97770) ((-209 . -145) T) ((-209 . -143) NIL) ((-1082 . -591) 97752) ((-129 . -101) T) ((-52 . -101) T) ((-1183 . -615) 97704) ((-469 . -106) 97654) ((-962 . -23) T) ((-1243 . -38) 97624) ((-1132 . -1075) T) ((-1087 . -1075) T) ((-1027 . -1177) T) ((-302 . -101) T) ((-825 . -1075) T) ((-921 . -1177) 97603) ((-471 . -1177) 97582) ((-706 . -821) 97561) ((-1027 . -539) T) ((-921 . -539) 97492) ((-1132 . -23) T) ((-1087 . -23) T) ((-825 . -23) T) ((-471 . -539) 97423) ((-1103 . -692) 97355) ((-1107 . -503) 97288) ((-1004 . -592) NIL) ((-1004 . -591) 97270) ((-95 . -1047) T) ((-835 . -692) 97240) ((-1167 . -47) 97209) ((-242 . -130) T) ((-241 . -130) T) ((-1067 . -1063) T) ((-972 . -1063) T) ((-61 . -591) 97191) ((-1127 . -821) NIL) ((-993 . -766) T) ((-993 . -769) T) ((-1247 . -1022) 97178) ((-1247 . -111) 97163) ((-839 . -622) 97150) ((-1211 . -25) T) ((-1211 . -21) T) ((-1204 . -21) T) ((-1204 . -25) T) ((-1183 . -21) T) ((-1183 . -25) T) ((-996 . -149) 97134) ((-841 . -794) 97113) ((-841 . -889) T) ((-687 . -277) 97040) ((-575 . -21) T) ((-575 . -25) T) ((-574 . -21) T) ((-40 . -701) T) ((-214 . -503) 96973) ((-574 . -25) T) ((-466 . -149) 96957) ((-453 . -149) 96941) ((-890 . -768) T) ((-890 . -701) T) ((-745 . -767) T) ((-745 . -768) T) ((-495 . -1063) T) ((-491 . -1063) T) ((-745 . -701) T) ((-217 . -354) T) ((-1117 . -1063) 96919) ((-840 . -1177) T) ((-628 . -591) 96901) ((-840 . -539) T) ((-668 . -359) NIL) ((-350 . -1226) 96885) ((-644 . -101) T) ((-344 . -1226) 96869) ((-336 . -1226) 96853) ((-1242 . -1063) T) ((-509 . -821) 96832) ((-791 . -442) 96811) ((-1013 . -1063) T) ((-1013 . -1036) 96740) ((-996 . -945) 96709) ((-793 . -1075) T) ((-972 . -692) 96654) ((-377 . -1075) T) ((-466 . -945) 96623) ((-453 . -945) 96592) ((-110 . -149) 96574) ((-72 . -591) 96556) ((-862 . -591) 96538) ((-1043 . -699) 96517) ((-1247 . -1016) T) ((-790 . -615) 96465) ((-285 . -1023) 96407) ((-166 . -1177) 96312) ((-217 . -1075) T) ((-315 . -23) T) ((-1127 . -961) 96264) ((-814 . -1063) T) ((-1088 . -715) 96243) ((-1205 . -1022) 96148) ((-1203 . -889) 96127) ((-839 . -701) T) ((-166 . -539) 96038) ((-1182 . -889) 96017) ((-560 . -622) 96004) ((-398 . -1063) T) ((-547 . -622) 95991) ((-254 . -1063) T) ((-484 . -622) 95956) ((-217 . -23) T) ((-1182 . -794) 95909) ((-1241 . -101) T) ((-345 . -1238) 95886) ((-1239 . -101) T) ((-1205 . -111) 95778) ((-142 . -591) 95760) ((-962 . -130) T) ((-44 . -101) T) ((-232 . -821) 95711) ((-1192 . -1177) 95690) ((-102 . -479) 95674) ((-1242 . -692) 95644) ((-1051 . -47) 95605) ((-1027 . -1075) T) ((-921 . -1075) T) ((-127 . -34) T) ((-121 . -34) T) ((-756 . -47) 95582) ((-754 . -47) 95554) ((-1192 . -539) 95465) ((-345 . -359) T) ((-471 . -1075) T) ((-1132 . -130) T) ((-1087 . -130) T) ((-444 . -47) 95444) ((-840 . -354) T) ((-825 . -130) T) ((-150 . -101) T) ((-1027 . -23) T) ((-921 . -23) T) ((-554 . -539) T) ((-790 . -25) T) ((-790 . -21) T) ((-1103 . -503) 95377) ((-571 . -1047) T) ((-565 . -1007) 95361) ((-471 . -23) T) ((-342 . -1023) T) ((-1167 . -869) 95342) ((-644 . -300) 95280) ((-1076 . -1226) 95250) ((-673 . -622) 95215) ((-972 . -169) T) ((-932 . -143) 95194) ((-611 . -1063) T) ((-585 . -1063) T) ((-932 . -145) 95173) ((-973 . -821) T) ((-710 . -145) 95152) ((-710 . -143) 95131) ((-940 . -821) T) ((-464 . -889) 95110) ((-307 . -1022) 95020) ((-304 . -1022) 94949) ((-968 . -277) 94907) ((-398 . -692) 94859) ((-128 . -821) T) ((-675 . -819) T) ((-1205 . -1016) T) ((-307 . -111) 94755) ((-304 . -111) 94668) ((-933 . -101) T) ((-789 . -101) 94458) ((-687 . -592) NIL) ((-687 . -591) 94440) ((-632 . -1007) 94336) ((-1205 . -317) 94280) ((-1004 . -279) 94255) ((-560 . -701) T) ((-547 . -768) T) ((-166 . -354) 94206) ((-547 . -765) T) ((-547 . -701) T) ((-484 . -701) T) ((-1107 . -479) 94190) ((-1051 . -855) NIL) ((-840 . -1075) T) ((-117 . -878) NIL) ((-1241 . -1240) 94166) ((-1239 . -1240) 94145) ((-756 . -855) NIL) ((-754 . -855) 94004) ((-1234 . -25) T) ((-1234 . -21) T) ((-1170 . -101) 93982) ((-1069 . -386) T) ((-599 . -622) 93969) ((-444 . -855) NIL) ((-649 . -101) 93947) ((-1051 . -1007) 93774) ((-840 . -23) T) ((-756 . -1007) 93633) ((-754 . -1007) 93490) ((-117 . -622) 93435) ((-444 . -1007) 93311) ((-623 . -1007) 93295) ((-603 . -101) T) ((-214 . -479) 93279) ((-1219 . -34) T) ((-611 . -692) 93263) ((-585 . -692) 93247) ((-644 . -38) 93207) ((-310 . -101) T) ((-84 . -591) 93189) ((-50 . -1007) 93173) ((-1082 . -1022) 93160) ((-1051 . -368) 93144) ((-756 . -368) 93128) ((-59 . -56) 93090) ((-673 . -768) T) ((-673 . -765) T) ((-561 . -1007) 93077) ((-507 . -1007) 93054) ((-673 . -701) T) ((-315 . -130) T) ((-307 . -1016) 92944) ((-304 . -1016) T) ((-166 . -1075) T) ((-754 . -368) 92928) ((-45 . -149) 92878) ((-973 . -961) 92860) ((-444 . -368) 92844) ((-398 . -169) T) ((-307 . -235) 92823) ((-304 . -235) T) ((-304 . -225) NIL) ((-285 . -1063) 92605) ((-217 . -130) T) ((-1082 . -111) 92590) ((-166 . -23) T) ((-773 . -145) 92569) ((-773 . -143) 92548) ((-242 . -615) 92454) ((-241 . -615) 92360) ((-310 . -275) 92326) ((-1117 . -503) 92259) ((-1095 . -1063) T) ((-217 . -1025) T) ((-789 . -300) 92197) ((-1051 . -869) 92132) ((-756 . -869) 92075) ((-754 . -869) 92059) ((-1241 . -38) 92029) ((-1239 . -38) 91999) ((-1192 . -1075) T) ((-826 . -1075) T) ((-444 . -869) 91976) ((-829 . -1063) T) ((-1192 . -23) T) ((-554 . -1075) T) ((-826 . -23) T) ((-599 . -701) T) ((-346 . -889) T) ((-343 . -889) T) ((-280 . -101) T) ((-335 . -889) T) ((-1027 . -130) T) ((-939 . -1047) T) ((-921 . -130) T) ((-117 . -768) NIL) ((-117 . -765) NIL) ((-117 . -701) T) ((-668 . -878) NIL) ((-1013 . -503) 91877) ((-471 . -130) T) ((-554 . -23) T) ((-649 . -300) 91815) ((-611 . -736) T) ((-585 . -736) T) ((-1183 . -821) NIL) ((-972 . -281) T) ((-242 . -21) T) ((-668 . -622) 91765) ((-342 . -1063) T) ((-242 . -25) T) ((-241 . -21) T) ((-241 . -25) T) ((-150 . -38) 91749) ((-2 . -101) T) ((-879 . -889) T) ((-472 . -1226) 91719) ((-215 . -1007) 91696) ((-1082 . -1016) T) ((-686 . -298) T) ((-285 . -692) 91638) ((-675 . -1023) T) ((-477 . -442) T) ((-398 . -503) 91550) ((-209 . -442) T) ((-1082 . -225) T) ((-286 . -149) 91500) ((-968 . -592) 91461) ((-968 . -591) 91443) ((-958 . -591) 91425) ((-116 . -1023) T) ((-628 . -1022) 91409) ((-217 . -482) T) ((-390 . -591) 91391) ((-390 . -592) 91368) ((-1020 . -1226) 91338) ((-628 . -111) 91317) ((-1103 . -479) 91301) ((-789 . -38) 91271) ((-62 . -431) T) ((-62 . -386) T) ((-1120 . -101) T) ((-840 . -130) T) ((-474 . -101) 91249) ((-1247 . -359) T) ((-1043 . -101) T) ((-1026 . -101) T) ((-342 . -692) 91194) ((-706 . -145) 91173) ((-706 . -143) 91152) ((-993 . -622) 91089) ((-512 . -1063) 91067) ((-350 . -101) T) ((-344 . -101) T) ((-336 . -101) T) ((-107 . -101) T) ((-493 . -1063) T) ((-345 . -622) 91012) ((-1132 . -615) 90960) ((-1087 . -615) 90908) ((-376 . -498) 90887) ((-807 . -819) 90866) ((-370 . -1177) T) ((-668 . -701) T) ((-330 . -1023) T) ((-1183 . -961) 90818) ((-171 . -1023) T) ((-102 . -591) 90750) ((-1134 . -143) 90729) ((-1134 . -145) 90708) ((-370 . -539) T) ((-1133 . -145) 90687) ((-1133 . -143) 90666) ((-1127 . -143) 90573) ((-398 . -281) T) ((-1127 . -145) 90480) ((-1088 . -145) 90459) ((-1088 . -143) 90438) ((-310 . -38) 90279) ((-166 . -130) T) ((-304 . -769) NIL) ((-304 . -766) NIL) ((-628 . -1016) T) ((-48 . -622) 90244) ((-963 . -101) T) ((-962 . -21) T) ((-127 . -979) 90228) ((-121 . -979) 90212) ((-962 . -25) T) ((-870 . -119) 90196) ((-1119 . -101) T) ((-790 . -821) 90175) ((-1192 . -130) T) ((-1132 . -25) T) ((-1132 . -21) T) ((-826 . -130) T) ((-1087 . -25) T) ((-1087 . -21) T) ((-825 . -25) T) ((-825 . -21) T) ((-756 . -298) 90154) ((-621 . -101) 90132) ((-608 . -101) T) ((-1120 . -300) 89927) ((-554 . -130) T) ((-597 . -819) 89906) ((-1117 . -479) 89890) ((-1111 . -149) 89840) ((-1107 . -591) 89802) ((-1107 . -592) 89763) ((-993 . -765) T) ((-993 . -768) T) ((-993 . -701) T) ((-474 . -300) 89701) ((-443 . -408) 89671) ((-342 . -169) T) ((-280 . -38) 89658) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-262 . -101) T) ((-261 . -101) T) ((-260 . -101) T) ((-259 . -101) T) ((-334 . -1007) 89635) ((-204 . -101) T) ((-203 . -101) T) ((-201 . -101) T) ((-200 . -101) T) ((-199 . -101) T) ((-198 . -101) T) ((-195 . -101) T) ((-194 . -101) T) ((-687 . -1022) 89458) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-188 . -101) T) ((-187 . -101) T) ((-186 . -101) T) ((-185 . -101) T) ((-345 . -701) T) ((-687 . -111) 89267) ((-644 . -223) 89251) ((-561 . -298) T) ((-507 . -298) T) ((-285 . -503) 89200) ((-107 . -300) NIL) ((-71 . -386) T) ((-1076 . -101) 88990) ((-807 . -402) 88974) ((-1082 . -769) T) ((-1082 . -766) T) ((-675 . -1063) T) ((-370 . -354) T) ((-166 . -482) 88952) ((-205 . -1063) T) ((-214 . -591) 88884) ((-133 . -1063) T) ((-116 . -1063) T) ((-48 . -701) T) ((-1013 . -479) 88849) ((-495 . -92) T) ((-139 . -416) 88831) ((-139 . -359) T) ((-996 . -101) T) ((-501 . -498) 88810) ((-466 . -101) T) ((-453 . -101) T) ((-1003 . -1075) T) ((-1134 . -35) 88776) ((-1134 . -94) 88742) ((-1134 . -1161) 88708) ((-1134 . -1158) 88674) ((-1119 . -300) NIL) ((-88 . -387) T) ((-88 . -386) T) ((-1043 . -1112) 88653) ((-1133 . -1158) 88619) ((-1133 . -1161) 88585) ((-1003 . -23) T) ((-1133 . -94) 88551) ((-554 . -482) T) ((-1133 . -35) 88517) ((-1127 . -1158) 88483) ((-1127 . -1161) 88449) ((-1127 . -94) 88415) ((-352 . -1075) T) ((-350 . -1112) 88394) ((-344 . -1112) 88373) ((-336 . -1112) 88352) ((-1127 . -35) 88318) ((-1088 . -35) 88284) ((-1088 . -94) 88250) ((-107 . -1112) T) ((-1088 . -1161) 88216) ((-807 . -1023) 88195) ((-621 . -300) 88133) ((-608 . -300) 87984) ((-1088 . -1158) 87950) ((-687 . -1016) T) ((-1027 . -615) 87932) ((-1043 . -38) 87800) ((-921 . -615) 87748) ((-973 . -145) T) ((-973 . -143) NIL) ((-370 . -1075) T) ((-315 . -25) T) ((-313 . -23) T) ((-912 . -821) 87727) ((-687 . -317) 87704) ((-471 . -615) 87652) ((-40 . -1007) 87540) ((-675 . -692) 87527) ((-687 . -225) T) ((-330 . -1063) T) ((-171 . -1063) T) ((-322 . -821) T) ((-409 . -442) 87477) ((-370 . -23) T) ((-350 . -38) 87442) ((-344 . -38) 87407) ((-336 . -38) 87372) ((-79 . -431) T) ((-79 . -386) T) ((-217 . -25) T) ((-217 . -21) T) ((-808 . -1075) T) ((-107 . -38) 87322) ((-801 . -1075) T) ((-748 . -1063) T) ((-116 . -692) 87309) ((-646 . -1007) 87293) ((-590 . -101) T) ((-808 . -23) T) ((-801 . -23) T) ((-1117 . -277) 87270) ((-1076 . -300) 87208) ((-1065 . -227) 87192) ((-63 . -387) T) ((-63 . -386) T) ((-110 . -101) T) ((-40 . -368) 87169) ((-95 . -101) T) ((-627 . -823) 87153) ((-1027 . -21) T) ((-1027 . -25) T) ((-789 . -223) 87122) ((-921 . -25) T) ((-921 . -21) T) ((-597 . -1023) T) ((-471 . -25) T) ((-471 . -21) T) ((-996 . -300) 87060) ((-858 . -591) 87042) ((-854 . -591) 87024) ((-242 . -821) 86975) ((-241 . -821) 86926) ((-512 . -503) 86859) ((-840 . -615) 86836) ((-466 . -300) 86774) ((-453 . -300) 86712) ((-342 . -281) T) ((-1117 . -1207) 86696) ((-1103 . -591) 86658) ((-1103 . -592) 86619) ((-1101 . -101) T) ((-968 . -1022) 86515) ((-40 . -869) 86467) ((-1117 . -582) 86444) ((-1247 . -622) 86431) ((-1028 . -149) 86377) ((-841 . -1177) T) ((-968 . -111) 86259) ((-330 . -692) 86243) ((-835 . -591) 86225) ((-171 . -692) 86157) ((-398 . -277) 86115) ((-841 . -539) T) ((-107 . -391) 86097) ((-83 . -375) T) ((-83 . -386) T) ((-675 . -169) T) ((-594 . -591) 86079) ((-98 . -701) T) ((-472 . -101) 85869) ((-98 . -463) T) ((-116 . -169) T) ((-1076 . -38) 85839) ((-166 . -615) 85787) ((-1020 . -101) T) ((-840 . -25) T) ((-789 . -230) 85766) ((-840 . -21) T) ((-792 . -101) T) ((-405 . -101) T) ((-376 . -101) T) ((-110 . -300) NIL) ((-219 . -101) 85744) ((-127 . -1173) T) ((-121 . -1173) T) ((-1003 . -130) T) ((-644 . -358) 85728) ((-968 . -1016) T) ((-1192 . -615) 85676) ((-1067 . -591) 85658) ((-972 . -591) 85640) ((-504 . -23) T) ((-499 . -23) T) ((-334 . -298) T) ((-497 . -23) T) ((-313 . -130) T) ((-3 . -1063) T) ((-972 . -592) 85624) ((-968 . -235) 85603) ((-968 . -225) 85582) ((-1247 . -701) T) ((-1211 . -143) 85561) ((-807 . -1063) T) ((-1211 . -145) 85540) ((-1204 . -145) 85519) ((-1204 . -143) 85498) ((-1203 . -1177) 85477) ((-1183 . -143) 85384) ((-1183 . -145) 85291) ((-1182 . -1177) 85270) ((-370 . -130) T) ((-547 . -855) 85252) ((0 . -1063) T) ((-171 . -169) T) ((-166 . -21) T) ((-166 . -25) T) ((-49 . -1063) T) ((-1205 . -622) 85157) ((-1203 . -539) 85108) ((-689 . -1075) T) ((-1182 . -539) 85059) ((-547 . -1007) 85041) ((-574 . -145) 85020) ((-574 . -143) 84999) ((-484 . -1007) 84942) ((-86 . -375) T) ((-86 . -386) T) ((-841 . -354) T) ((-808 . -130) T) ((-801 . -130) T) ((-689 . -23) T) ((-495 . -591) 84892) ((-491 . -591) 84874) ((-1243 . -1023) T) ((-370 . -1025) T) ((-995 . -1063) 84852) ((-870 . -34) T) ((-472 . -300) 84790) ((-571 . -101) T) ((-1117 . -592) 84751) ((-1117 . -591) 84683) ((-1132 . -821) 84662) ((-45 . -101) T) ((-1087 . -821) 84641) ((-791 . -101) T) ((-1192 . -25) T) ((-1192 . -21) T) ((-826 . -25) T) ((-44 . -358) 84625) ((-826 . -21) T) ((-706 . -442) 84576) ((-1242 . -591) 84558) ((-584 . -1047) T) ((-1020 . -300) 84496) ((-554 . -25) T) ((-554 . -21) T) ((-381 . -1063) T) ((-645 . -1047) T) ((-158 . -1047) T) ((-153 . -1047) T) ((-597 . -1063) T) ((-673 . -855) 84478) ((-1219 . -1173) T) ((-219 . -300) 84416) ((-142 . -359) T) ((-1013 . -592) 84358) ((-1013 . -591) 84301) ((-304 . -878) NIL) ((-673 . -1007) 84246) ((-686 . -889) T) ((-464 . -1177) 84225) ((-1133 . -442) 84204) ((-1127 . -442) 84183) ((-321 . -101) T) ((-841 . -1075) T) ((-307 . -622) 84004) ((-304 . -622) 83933) ((-464 . -539) 83884) ((-330 . -503) 83850) ((-533 . -149) 83800) ((-40 . -298) T) ((-814 . -591) 83782) ((-675 . -281) T) ((-841 . -23) T) ((-370 . -482) T) ((-1043 . -223) 83752) ((-501 . -101) T) ((-398 . -592) 83560) ((-398 . -591) 83542) ((-254 . -591) 83524) ((-116 . -281) T) ((-1205 . -701) T) ((-1203 . -354) 83503) ((-1182 . -354) 83482) ((-1232 . -34) T) ((-117 . -1173) T) ((-107 . -223) 83464) ((-1138 . -101) T) ((-467 . -1063) T) ((-512 . -479) 83448) ((-712 . -34) T) ((-472 . -38) 83418) ((-139 . -34) T) ((-117 . -853) 83395) ((-117 . -855) NIL) ((-599 . -1007) 83278) ((-619 . -821) 83257) ((-1231 . -101) T) ((-286 . -101) T) ((-687 . -359) 83236) ((-117 . -1007) 83213) ((-381 . -692) 83197) ((-597 . -692) 83181) ((-45 . -300) 82985) ((-790 . -143) 82964) ((-790 . -145) 82943) ((-1242 . -373) 82922) ((-793 . -821) T) ((-1221 . -1063) T) ((-1120 . -221) 82869) ((-377 . -821) 82848) ((-1211 . -1161) 82814) ((-1211 . -1158) 82780) ((-1204 . -1158) 82746) ((-504 . -130) T) ((-1204 . -1161) 82712) ((-1183 . -1158) 82678) ((-1183 . -1161) 82644) ((-1211 . -35) 82610) ((-1211 . -94) 82576) ((-611 . -591) 82545) ((-585 . -591) 82514) ((-217 . -821) T) ((-1204 . -94) 82480) ((-1204 . -35) 82446) ((-1203 . -1075) T) ((-1082 . -622) 82433) ((-1183 . -94) 82399) ((-1182 . -1075) T) ((-572 . -149) 82381) ((-1043 . -340) 82360) ((-171 . -281) T) ((-117 . -368) 82337) ((-117 . -329) 82314) ((-1183 . -35) 82280) ((-839 . -298) T) ((-304 . -768) NIL) ((-304 . -765) NIL) ((-307 . -701) 82129) ((-304 . -701) T) ((-464 . -354) 82108) ((-350 . -340) 82087) ((-344 . -340) 82066) ((-336 . -340) 82045) ((-307 . -463) 82024) ((-1203 . -23) T) ((-1182 . -23) T) ((-693 . -1075) T) ((-689 . -130) T) ((-627 . -101) T) ((-467 . -692) 81989) ((-45 . -273) 81939) ((-104 . -1063) T) ((-67 . -591) 81921) ((-939 . -101) T) ((-834 . -101) T) ((-599 . -869) 81880) ((-1243 . -1063) T) ((-372 . -1063) T) ((-1172 . -1063) T) ((-81 . -1173) T) ((-1027 . -821) T) ((-921 . -821) 81859) ((-117 . -869) NIL) ((-756 . -889) 81838) ((-688 . -821) T) ((-519 . -1063) T) ((-489 . -1063) T) ((-346 . -1177) T) ((-343 . -1177) T) ((-335 . -1177) T) ((-255 . -1177) 81817) ((-239 . -1177) 81796) ((-1076 . -223) 81765) ((-471 . -821) 81744) ((-1103 . -1022) 81728) ((-381 . -736) T) ((-1119 . -802) T) ((-668 . -1173) T) ((-346 . -539) T) ((-343 . -539) T) ((-335 . -539) T) ((-255 . -539) 81659) ((-239 . -539) 81590) ((-514 . -1047) T) ((-1103 . -111) 81569) ((-443 . -719) 81539) ((-835 . -1022) 81509) ((-791 . -38) 81451) ((-668 . -853) 81433) ((-668 . -855) 81415) ((-286 . -300) 81219) ((-879 . -1177) T) ((-644 . -402) 81203) ((-835 . -111) 81168) ((-668 . -1007) 81113) ((-973 . -442) T) ((-879 . -539) T) ((-561 . -889) T) ((-464 . -1075) T) ((-507 . -889) T) ((-1117 . -279) 81090) ((-883 . -442) T) ((-64 . -591) 81072) ((-608 . -221) 81018) ((-464 . -23) T) ((-1082 . -768) T) ((-841 . -130) T) ((-1082 . -765) T) ((-1234 . -1236) 80997) ((-1082 . -701) T) ((-628 . -622) 80971) ((-285 . -591) 80712) ((-1004 . -34) T) ((-789 . -819) 80691) ((-560 . -298) T) ((-547 . -298) T) ((-484 . -298) T) ((-1243 . -692) 80661) ((-668 . -368) 80643) ((-668 . -329) 80625) ((-467 . -169) T) ((-372 . -692) 80595) ((-840 . -821) NIL) ((-547 . -991) T) ((-484 . -991) T) ((-1095 . -591) 80577) ((-1076 . -230) 80556) ((-206 . -101) T) ((-1111 . -101) T) ((-70 . -591) 80538) ((-1103 . -1016) T) ((-1138 . -38) 80435) ((-829 . -591) 80417) ((-547 . -532) T) ((-644 . -1023) T) ((-706 . -918) 80370) ((-1103 . -225) 80349) ((-1045 . -1063) T) ((-1003 . -25) T) ((-1003 . -21) T) ((-972 . -1022) 80294) ((-874 . -101) T) ((-835 . -1016) T) ((-668 . -869) NIL) ((-346 . -320) 80278) ((-346 . -354) T) ((-343 . -320) 80262) ((-343 . -354) T) ((-335 . -320) 80246) ((-335 . -354) T) ((-477 . -101) T) ((-1231 . -38) 80216) ((-512 . -661) 80166) ((-209 . -101) T) ((-993 . -1007) 80046) ((-972 . -111) 79975) ((-1134 . -942) 79944) ((-1133 . -942) 79906) ((-509 . -149) 79890) ((-1043 . -361) 79869) ((-342 . -591) 79851) ((-313 . -21) T) ((-345 . -1007) 79828) ((-313 . -25) T) ((-1127 . -942) 79797) ((-1088 . -942) 79764) ((-75 . -591) 79746) ((-673 . -298) T) ((-166 . -821) 79725) ((-879 . -354) T) ((-370 . -25) T) ((-370 . -21) T) ((-879 . -320) 79712) ((-85 . -591) 79694) ((-673 . -991) T) ((-651 . -821) T) ((-1203 . -130) T) ((-1182 . -130) T) ((-870 . -979) 79678) ((-808 . -21) T) ((-48 . -1007) 79621) ((-808 . -25) T) ((-801 . -25) T) ((-801 . -21) T) ((-1241 . -1023) T) ((-1239 . -1023) T) ((-628 . -701) T) ((-1242 . -1022) 79605) ((-1192 . -821) 79584) ((-789 . -402) 79553) ((-102 . -119) 79537) ((-129 . -1063) T) ((-52 . -1063) T) ((-895 . -591) 79519) ((-840 . -961) 79496) ((-797 . -101) T) ((-1242 . -111) 79475) ((-627 . -38) 79445) ((-554 . -821) T) ((-346 . -1075) T) ((-343 . -1075) T) ((-335 . -1075) T) ((-255 . -1075) T) ((-239 . -1075) T) ((-599 . -298) 79424) ((-1111 . -300) 79228) ((-513 . -1047) T) ((-302 . -1063) T) ((-638 . -23) T) ((-472 . -223) 79197) ((-150 . -1023) T) ((-346 . -23) T) ((-343 . -23) T) ((-335 . -23) T) ((-117 . -298) T) ((-255 . -23) T) ((-239 . -23) T) ((-972 . -1016) T) ((-687 . -878) 79176) ((-972 . -225) 79148) ((-972 . -235) T) ((-117 . -991) NIL) ((-879 . -1075) T) ((-1204 . -442) 79127) ((-1183 . -442) 79106) ((-512 . -591) 79038) ((-687 . -622) 78963) ((-398 . -1022) 78915) ((-493 . -591) 78897) ((-879 . -23) T) ((-477 . -300) NIL) ((-464 . -130) T) ((-209 . -300) NIL) ((-398 . -111) 78835) ((-789 . -1023) 78765) ((-712 . -1061) 78749) ((-1203 . -482) 78715) ((-1182 . -482) 78681) ((-467 . -281) T) ((-139 . -1061) 78663) ((-128 . -149) 78645) ((-1242 . -1016) T) ((-1028 . -101) T) ((-489 . -503) NIL) ((-677 . -101) T) ((-472 . -230) 78624) ((-1132 . -143) 78603) ((-1132 . -145) 78582) ((-1087 . -145) 78561) ((-1087 . -143) 78540) ((-611 . -1022) 78524) ((-585 . -1022) 78508) ((-644 . -1063) T) ((-644 . -1019) 78448) ((-1134 . -1210) 78432) ((-1134 . -1197) 78409) ((-477 . -1112) T) ((-1133 . -1202) 78370) ((-1133 . -1197) 78340) ((-1133 . -1200) 78324) ((-209 . -1112) T) ((-334 . -889) T) ((-792 . -257) 78308) ((-611 . -111) 78287) ((-585 . -111) 78266) ((-1127 . -1181) 78227) ((-814 . -1016) 78206) ((-1127 . -1197) 78183) ((-504 . -25) T) ((-484 . -293) T) ((-500 . -23) T) ((-499 . -25) T) ((-497 . -25) T) ((-496 . -23) T) ((-1127 . -1179) 78167) ((-398 . -1016) T) ((-310 . -1023) T) ((-668 . -298) T) ((-107 . -819) T) ((-398 . -235) T) ((-398 . -225) 78146) ((-687 . -701) T) ((-477 . -38) 78096) ((-209 . -38) 78046) ((-464 . -482) 78012) ((-1119 . -1105) T) ((-1064 . -101) T) ((-675 . -591) 77994) ((-675 . -592) 77909) ((-689 . -21) T) ((-689 . -25) T) ((-205 . -591) 77891) ((-133 . -591) 77873) ((-116 . -591) 77855) ((-154 . -25) T) ((-1241 . -1063) T) ((-841 . -615) 77803) ((-1239 . -1063) T) ((-932 . -101) T) ((-710 . -101) T) ((-690 . -101) T) ((-443 . -101) T) ((-790 . -442) 77754) ((-44 . -1063) T) ((-1052 . -821) T) ((-638 . -130) T) ((-1028 . -300) 77605) ((-644 . -692) 77589) ((-280 . -1023) T) ((-346 . -130) T) ((-343 . -130) T) ((-335 . -130) T) ((-255 . -130) T) ((-239 . -130) T) ((-409 . -101) T) ((-150 . -1063) T) ((-45 . -221) 77539) ((-927 . -821) 77518) ((-968 . -622) 77456) ((-232 . -1226) 77426) ((-993 . -298) T) ((-285 . -1022) 77347) ((-879 . -130) T) ((-40 . -889) T) ((-477 . -391) 77329) ((-345 . -298) T) ((-209 . -391) 77311) ((-1043 . -402) 77295) ((-285 . -111) 77211) ((-841 . -25) T) ((-841 . -21) T) ((-330 . -591) 77193) ((-1205 . -47) 77137) ((-217 . -145) T) ((-171 . -591) 77119) ((-1076 . -819) 77098) ((-748 . -591) 77080) ((-586 . -227) 77027) ((-465 . -227) 76977) ((-1241 . -692) 76947) ((-48 . -298) T) ((-1239 . -692) 76917) ((-933 . -1063) T) ((-789 . -1063) 76707) ((-303 . -101) T) ((-870 . -1173) T) ((-48 . -991) T) ((-1182 . -615) 76615) ((-663 . -101) 76593) ((-44 . -692) 76577) ((-533 . -101) T) ((-66 . -374) T) ((-66 . -386) T) ((-636 . -23) T) ((-644 . -736) T) ((-1170 . -1063) 76555) ((-342 . -1022) 76500) ((-649 . -1063) 76478) ((-1027 . -145) T) ((-921 . -145) 76457) ((-921 . -143) 76436) ((-773 . -101) T) ((-150 . -692) 76420) ((-471 . -145) 76399) ((-471 . -143) 76378) ((-342 . -111) 76307) ((-1043 . -1023) T) ((-313 . -821) 76286) ((-1211 . -942) 76255) ((-603 . -1063) T) ((-1204 . -942) 76217) ((-500 . -130) T) ((-496 . -130) T) ((-286 . -221) 76167) ((-350 . -1023) T) ((-344 . -1023) T) ((-336 . -1023) T) ((-285 . -1016) 76109) ((-1183 . -942) 76078) ((-370 . -821) T) ((-107 . -1023) T) ((-968 . -701) T) ((-839 . -889) T) ((-814 . -769) 76057) ((-814 . -766) 76036) ((-409 . -300) 75975) ((-458 . -101) T) ((-574 . -942) 75944) ((-310 . -1063) T) ((-398 . -769) 75923) ((-398 . -766) 75902) ((-489 . -479) 75884) ((-1205 . -1007) 75850) ((-1203 . -21) T) ((-1203 . -25) T) ((-1182 . -21) T) ((-1182 . -25) T) ((-789 . -692) 75792) ((-673 . -395) T) ((-584 . -101) T) ((-1232 . -1173) T) ((-1076 . -402) 75761) ((-972 . -359) NIL) ((-645 . -101) T) ((-158 . -101) T) ((-153 . -101) T) ((-102 . -34) T) ((-712 . -1173) T) ((-44 . -736) T) ((-572 . -101) T) ((-76 . -387) T) ((-76 . -386) T) ((-627 . -630) 75745) ((-139 . -1173) T) ((-840 . -145) T) ((-840 . -143) NIL) ((-1172 . -92) T) ((-342 . -1016) T) ((-69 . -374) T) ((-69 . -386) T) ((-1126 . -101) T) ((-644 . -503) 75678) ((-663 . -300) 75616) ((-932 . -38) 75513) ((-710 . -38) 75483) ((-533 . -300) 75287) ((-307 . -1173) T) ((-342 . -225) T) ((-342 . -235) T) ((-304 . -1173) T) ((-280 . -1063) T) ((-1140 . -591) 75269) ((-686 . -1177) T) ((-1117 . -625) 75253) ((-1167 . -539) 75232) ((-686 . -539) T) ((-307 . -853) 75216) ((-307 . -855) 75141) ((-304 . -853) 75102) ((-304 . -855) NIL) ((-773 . -300) 75067) ((-310 . -692) 74908) ((-315 . -314) 74885) ((-475 . -101) T) ((-464 . -25) T) ((-464 . -21) T) ((-409 . -38) 74859) ((-307 . -1007) 74522) ((-217 . -1158) T) ((-217 . -1161) T) ((-3 . -591) 74504) ((-304 . -1007) 74434) ((-2 . -1063) T) ((-2 . |RecordCategory|) T) ((-807 . -591) 74416) ((-1076 . -1023) 74346) ((-560 . -889) T) ((-547 . -794) T) ((-547 . -889) T) ((-484 . -889) T) ((-135 . -1007) 74330) ((-217 . -94) T) ((-74 . -431) T) ((-74 . -386) T) ((0 . -591) 74312) ((-166 . -145) 74291) ((-166 . -143) 74242) ((-217 . -35) T) ((-49 . -591) 74224) ((-467 . -1023) T) ((-477 . -223) 74206) ((-474 . -937) 74190) ((-472 . -819) 74169) ((-209 . -223) 74151) ((-80 . -431) T) ((-80 . -386) T) ((-1107 . -34) T) ((-789 . -169) 74130) ((-706 . -101) T) ((-995 . -591) 74097) ((-489 . -277) 74072) ((-307 . -368) 74041) ((-304 . -368) 74002) ((-304 . -329) 73963) ((-1049 . -591) 73945) ((-790 . -918) 73892) ((-636 . -130) T) ((-1192 . -143) 73871) ((-1192 . -145) 73850) ((-1134 . -101) T) ((-1133 . -101) T) ((-1127 . -101) T) ((-1120 . -1063) T) ((-1088 . -101) T) ((-214 . -34) T) ((-280 . -692) 73837) ((-1120 . -588) 73813) ((-572 . -300) NIL) ((-474 . -1063) 73791) ((-381 . -591) 73773) ((-499 . -821) T) ((-1111 . -221) 73723) ((-1211 . -1210) 73707) ((-1211 . -1197) 73684) ((-1204 . -1202) 73645) ((-1204 . -1197) 73615) ((-1204 . -1200) 73599) ((-1183 . -1181) 73560) ((-1183 . -1197) 73537) ((-597 . -591) 73519) ((-1183 . -1179) 73503) ((-673 . -889) T) ((-1134 . -275) 73469) ((-1133 . -275) 73435) ((-1127 . -275) 73401) ((-1043 . -1063) T) ((-1026 . -1063) T) ((-48 . -293) T) ((-307 . -869) 73367) ((-304 . -869) NIL) ((-1026 . -1033) 73346) ((-1082 . -855) 73328) ((-773 . -38) 73312) ((-255 . -615) 73260) ((-239 . -615) 73208) ((-675 . -1022) 73195) ((-574 . -1197) 73172) ((-1088 . -275) 73138) ((-310 . -169) 73069) ((-350 . -1063) T) ((-344 . -1063) T) ((-336 . -1063) T) ((-489 . -19) 73051) ((-1082 . -1007) 73033) ((-1065 . -149) 73017) ((-107 . -1063) T) ((-116 . -1022) 73004) ((-686 . -354) T) ((-489 . -582) 72979) ((-675 . -111) 72964) ((-427 . -101) T) ((-45 . -1110) 72914) ((-116 . -111) 72899) ((-611 . -695) T) ((-585 . -695) T) ((-789 . -503) 72832) ((-1004 . -1173) T) ((-912 . -149) 72816) ((-514 . -101) T) ((-509 . -101) 72766) ((-1132 . -442) 72697) ((-1051 . -1177) 72676) ((-756 . -1177) 72655) ((-754 . -1177) 72634) ((-61 . -1173) T) ((-467 . -591) 72586) ((-467 . -592) 72508) ((-1119 . -1063) T) ((-1103 . -622) 72482) ((-1087 . -442) 72433) ((-1051 . -539) 72364) ((-472 . -402) 72333) ((-599 . -889) 72312) ((-444 . -1177) 72291) ((-963 . -1063) T) ((-756 . -539) 72202) ((-389 . -591) 72184) ((-754 . -539) 72115) ((-649 . -503) 72048) ((-706 . -300) 72035) ((-638 . -25) T) ((-638 . -21) T) ((-444 . -539) 71966) ((-117 . -889) T) ((-117 . -794) NIL) ((-346 . -25) T) ((-346 . -21) T) ((-343 . -25) T) ((-343 . -21) T) ((-335 . -25) T) ((-335 . -21) T) ((-255 . -25) T) ((-255 . -21) T) ((-82 . -375) T) ((-82 . -386) T) ((-239 . -25) T) ((-239 . -21) T) ((-1221 . -591) 71948) ((-1167 . -1075) T) ((-1167 . -23) T) ((-1127 . -300) 71833) ((-1088 . -300) 71820) ((-1043 . -692) 71688) ((-835 . -622) 71648) ((-912 . -949) 71632) ((-879 . -21) T) ((-280 . -169) T) ((-879 . -25) T) ((-302 . -92) T) ((-841 . -821) 71583) ((-686 . -1075) T) ((-686 . -23) T) ((-621 . -1063) 71561) ((-608 . -588) 71536) ((-608 . -1063) T) ((-561 . -1177) T) ((-507 . -1177) T) ((-561 . -539) T) ((-507 . -539) T) ((-350 . -692) 71488) ((-344 . -692) 71440) ((-171 . -111) 71351) ((-330 . -1022) 71335) ((-171 . -1022) 71267) ((-107 . -692) 71217) ((-336 . -692) 71169) ((-330 . -111) 71148) ((-265 . -1063) T) ((-264 . -1063) T) ((-263 . -1063) T) ((-262 . -1063) T) ((-675 . -1016) T) ((-261 . -1063) T) ((-260 . -1063) T) ((-259 . -1063) T) ((-204 . -1063) T) ((-203 . -1063) T) ((-201 . -1063) T) ((-166 . -1161) 71126) ((-166 . -1158) 71104) ((-200 . -1063) T) ((-199 . -1063) T) ((-116 . -1016) T) ((-198 . -1063) T) ((-195 . -1063) T) ((-675 . -225) T) ((-194 . -1063) T) ((-193 . -1063) T) ((-192 . -1063) T) ((-191 . -1063) T) ((-190 . -1063) T) ((-189 . -1063) T) ((-188 . -1063) T) ((-187 . -1063) T) ((-186 . -1063) T) ((-185 . -1063) T) ((-232 . -101) 70894) ((-166 . -35) 70872) ((-166 . -94) 70850) ((-628 . -1007) 70746) ((-472 . -1023) 70676) ((-1076 . -1063) 70466) ((-1103 . -34) T) ((-644 . -479) 70450) ((-72 . -1173) T) ((-104 . -591) 70432) ((-1243 . -591) 70414) ((-372 . -591) 70396) ((-554 . -1161) T) ((-554 . -1158) T) ((-706 . -38) 70245) ((-519 . -591) 70227) ((-509 . -300) 70165) ((-489 . -591) 70147) ((-489 . -592) 70129) ((-1172 . -591) 70095) ((-1127 . -1112) NIL) ((-996 . -1036) 70064) ((-996 . -1063) T) ((-973 . -101) T) ((-940 . -101) T) ((-883 . -101) T) ((-862 . -1007) 70041) ((-1103 . -701) T) ((-972 . -622) 69986) ((-466 . -1063) T) ((-453 . -1063) T) ((-565 . -23) T) ((-554 . -35) T) ((-554 . -94) T) ((-418 . -101) T) ((-1028 . -221) 69932) ((-128 . -101) T) ((-1134 . -38) 69829) ((-835 . -701) T) ((-668 . -889) T) ((-500 . -25) T) ((-496 . -21) T) ((-496 . -25) T) ((-1133 . -38) 69670) ((-330 . -1016) T) ((-1127 . -38) 69466) ((-1043 . -169) T) ((-171 . -1016) T) ((-1088 . -38) 69363) ((-687 . -47) 69340) ((-350 . -169) T) ((-344 . -169) T) ((-508 . -56) 69314) ((-486 . -56) 69264) ((-342 . -1238) 69241) ((-217 . -442) T) ((-310 . -281) 69192) ((-336 . -169) T) ((-171 . -235) T) ((-1182 . -821) 69091) ((-107 . -169) T) ((-841 . -961) 69075) ((-632 . -1075) T) ((-561 . -354) T) ((-561 . -320) 69062) ((-507 . -320) 69039) ((-507 . -354) T) ((-307 . -298) 69018) ((-304 . -298) T) ((-580 . -821) 68997) ((-1076 . -692) 68939) ((-509 . -273) 68923) ((-632 . -23) T) ((-409 . -223) 68907) ((-304 . -991) NIL) ((-327 . -23) T) ((-102 . -979) 68891) ((-45 . -36) 68870) ((-590 . -1063) T) ((-342 . -359) T) ((-513 . -101) T) ((-484 . -27) T) ((-232 . -300) 68808) ((-1051 . -1075) T) ((-1242 . -622) 68782) ((-756 . -1075) T) ((-754 . -1075) T) ((-444 . -1075) T) ((-1027 . -442) T) ((-921 . -442) 68733) ((-110 . -1063) T) ((-1051 . -23) T) ((-791 . -1023) T) ((-756 . -23) T) ((-754 . -23) T) ((-471 . -442) 68684) ((-1120 . -503) 68467) ((-372 . -373) 68446) ((-1138 . -402) 68430) ((-451 . -23) T) ((-444 . -23) T) ((-95 . -1063) T) ((-474 . -503) 68363) ((-280 . -281) T) ((-1045 . -591) 68345) ((-398 . -878) 68324) ((-50 . -1075) T) ((-993 . -889) T) ((-972 . -701) T) ((-687 . -855) NIL) ((-561 . -1075) T) ((-507 . -1075) T) ((-814 . -622) 68297) ((-1167 . -130) T) ((-1127 . -391) 68249) ((-973 . -300) NIL) ((-789 . -479) 68233) ((-345 . -889) T) ((-1117 . -34) T) ((-398 . -622) 68185) ((-50 . -23) T) ((-686 . -130) T) ((-687 . -1007) 68065) ((-561 . -23) T) ((-107 . -503) NIL) ((-507 . -23) T) ((-166 . -400) 68036) ((-128 . -300) NIL) ((-1101 . -1063) T) ((-1234 . -1233) 68020) ((-675 . -769) T) ((-675 . -766) T) ((-1082 . -298) T) ((-370 . -145) T) ((-271 . -591) 68002) ((-1182 . -961) 67972) ((-48 . -889) T) ((-649 . -479) 67956) ((-242 . -1226) 67926) ((-241 . -1226) 67896) ((-1136 . -821) T) ((-1076 . -169) 67875) ((-1082 . -991) T) ((-1013 . -34) T) ((-808 . -145) 67854) ((-808 . -143) 67833) ((-712 . -106) 67817) ((-590 . -131) T) ((-472 . -1063) 67607) ((-1138 . -1023) T) ((-840 . -442) T) ((-84 . -1173) T) ((-232 . -38) 67577) ((-139 . -106) 67559) ((-687 . -368) 67543) ((-1082 . -532) T) ((-381 . -1022) 67527) ((-1242 . -701) T) ((-1132 . -918) 67496) ((-129 . -591) 67463) ((-52 . -591) 67445) ((-1087 . -918) 67412) ((-627 . -402) 67396) ((-1231 . -1023) T) ((-597 . -1022) 67380) ((-636 . -25) T) ((-636 . -21) T) ((-1119 . -503) NIL) ((-1211 . -101) T) ((-1204 . -101) T) ((-381 . -111) 67359) ((-214 . -245) 67343) ((-1183 . -101) T) ((-1020 . -1063) T) ((-973 . -1112) T) ((-1020 . -1019) 67283) ((-792 . -1063) T) ((-334 . -1177) T) ((-611 . -622) 67267) ((-597 . -111) 67246) ((-585 . -622) 67230) ((-575 . -101) T) ((-565 . -130) T) ((-574 . -101) T) ((-405 . -1063) T) ((-376 . -1063) T) ((-302 . -591) 67196) ((-219 . -1063) 67174) ((-621 . -503) 67107) ((-608 . -503) 66951) ((-807 . -1016) 66930) ((-619 . -149) 66914) ((-334 . -539) T) ((-687 . -869) 66857) ((-533 . -221) 66807) ((-1211 . -275) 66773) ((-1043 . -281) 66724) ((-477 . -819) T) ((-215 . -1075) T) ((-1204 . -275) 66690) ((-1183 . -275) 66656) ((-973 . -38) 66606) ((-209 . -819) T) ((-1167 . -482) 66572) ((-883 . -38) 66524) ((-814 . -768) 66503) ((-814 . -765) 66482) ((-814 . -701) 66461) ((-350 . -281) T) ((-344 . -281) T) ((-336 . -281) T) ((-166 . -442) 66392) ((-418 . -38) 66376) ((-107 . -281) T) ((-215 . -23) T) ((-398 . -768) 66355) ((-398 . -765) 66334) ((-398 . -701) T) ((-489 . -279) 66309) ((-467 . -1022) 66274) ((-632 . -130) T) ((-1076 . -503) 66207) ((-327 . -130) T) ((-166 . -393) 66186) ((-472 . -692) 66128) ((-789 . -277) 66105) ((-467 . -111) 66061) ((-627 . -1023) T) ((-1192 . -442) 65992) ((-1230 . -1047) T) ((-1229 . -1047) T) ((-1051 . -130) T) ((-255 . -821) 65971) ((-239 . -821) 65950) ((-756 . -130) T) ((-754 . -130) T) ((-554 . -442) T) ((-1020 . -692) 65892) ((-597 . -1016) T) ((-996 . -503) 65825) ((-571 . -1063) T) ((-451 . -130) T) ((-444 . -130) T) ((-45 . -1063) T) ((-376 . -692) 65795) ((-791 . -1063) T) ((-466 . -503) 65728) ((-453 . -503) 65661) ((-443 . -358) 65631) ((-45 . -588) 65610) ((-307 . -293) T) ((-644 . -591) 65572) ((-58 . -821) 65551) ((-1183 . -300) 65436) ((-973 . -391) 65418) ((-789 . -582) 65395) ((-505 . -821) 65374) ((-485 . -821) 65353) ((-40 . -1177) T) ((-968 . -1007) 65249) ((-50 . -130) T) ((-561 . -130) T) ((-507 . -130) T) ((-285 . -622) 65109) ((-334 . -320) 65086) ((-334 . -354) T) ((-313 . -314) 65063) ((-310 . -277) 65048) ((-40 . -539) T) ((-370 . -1158) T) ((-370 . -1161) T) ((-1004 . -1149) 65023) ((-1146 . -227) 64973) ((-1127 . -223) 64925) ((-321 . -1063) T) ((-370 . -94) T) ((-370 . -35) T) ((-1004 . -106) 64871) ((-467 . -1016) T) ((-469 . -227) 64821) ((-1120 . -479) 64755) ((-1243 . -1022) 64739) ((-372 . -1022) 64723) ((-467 . -235) T) ((-790 . -101) T) ((-689 . -145) 64702) ((-689 . -143) 64681) ((-474 . -479) 64665) ((-475 . -326) 64634) ((-1243 . -111) 64613) ((-501 . -1063) T) ((-472 . -169) 64592) ((-968 . -368) 64576) ((-404 . -101) T) ((-372 . -111) 64555) ((-968 . -329) 64539) ((-270 . -952) 64523) ((-269 . -952) 64507) ((-1241 . -591) 64489) ((-1239 . -591) 64471) ((-110 . -503) NIL) ((-1132 . -1195) 64455) ((-825 . -823) 64439) ((-1138 . -1063) T) ((-102 . -1173) T) ((-921 . -918) 64400) ((-791 . -692) 64342) ((-1183 . -1112) NIL) ((-471 . -918) 64287) ((-1027 . -141) T) ((-59 . -101) 64265) ((-44 . -591) 64247) ((-77 . -591) 64229) ((-342 . -622) 64174) ((-1231 . -1063) T) ((-500 . -821) T) ((-334 . -1075) T) ((-286 . -1063) T) ((-968 . -869) 64133) ((-286 . -588) 64112) ((-1211 . -38) 64009) ((-1204 . -38) 63850) ((-477 . -1023) T) ((-1183 . -38) 63646) ((-209 . -1023) T) ((-334 . -23) T) ((-150 . -591) 63628) ((-807 . -769) 63607) ((-807 . -766) 63586) ((-575 . -38) 63559) ((-574 . -38) 63456) ((-839 . -539) T) ((-215 . -130) T) ((-310 . -971) 63422) ((-78 . -591) 63404) ((-687 . -298) 63383) ((-285 . -701) 63285) ((-798 . -101) T) ((-834 . -815) T) ((-285 . -463) 63264) ((-1234 . -101) T) ((-40 . -354) T) ((-841 . -145) 63243) ((-841 . -143) 63222) ((-1119 . -479) 63204) ((-1243 . -1016) T) ((-472 . -503) 63137) ((-1107 . -1173) T) ((-933 . -591) 63119) ((-621 . -479) 63103) ((-608 . -479) 63034) ((-789 . -591) 62765) ((-48 . -27) T) ((-1138 . -692) 62662) ((-627 . -1063) T) ((-427 . -355) 62636) ((-1065 . -101) T) ((-790 . -300) 62623) ((-939 . -1063) T) ((-834 . -1063) T) ((-1239 . -373) 62595) ((-1020 . -503) 62528) ((-1120 . -277) 62504) ((-232 . -223) 62473) ((-1231 . -692) 62443) ((-963 . -92) T) ((-791 . -169) 62422) ((-219 . -503) 62355) ((-597 . -769) 62334) ((-597 . -766) 62313) ((-1170 . -591) 62225) ((-214 . -1173) T) ((-649 . -591) 62157) ((-1117 . -979) 62141) ((-342 . -701) T) ((-912 . -101) 62091) ((-1183 . -391) 62043) ((-1076 . -479) 62027) ((-59 . -300) 61965) ((-322 . -101) T) ((-1167 . -21) T) ((-1167 . -25) T) ((-40 . -1075) T) ((-686 . -21) T) ((-603 . -591) 61947) ((-504 . -314) 61926) ((-686 . -25) T) ((-107 . -277) NIL) ((-890 . -1075) T) ((-40 . -23) T) ((-745 . -1075) T) ((-547 . -1177) T) ((-484 . -1177) T) ((-310 . -591) 61908) ((-973 . -223) 61890) ((-166 . -163) 61874) ((-560 . -539) T) ((-547 . -539) T) ((-484 . -539) T) ((-745 . -23) T) ((-1203 . -145) 61853) ((-1120 . -582) 61829) ((-1203 . -143) 61808) ((-996 . -479) 61792) ((-1182 . -143) 61717) ((-1182 . -145) 61642) ((-1234 . -1240) 61621) ((-466 . -479) 61605) ((-453 . -479) 61589) ((-512 . -34) T) ((-627 . -692) 61559) ((-112 . -936) T) ((-636 . -821) 61538) ((-1138 . -169) 61489) ((-356 . -101) T) ((-232 . -230) 61468) ((-242 . -101) T) ((-241 . -101) T) ((-1192 . -918) 61437) ((-109 . -101) T) ((-237 . -821) 61416) ((-790 . -38) 61265) ((-45 . -503) 61057) ((-1119 . -277) 61032) ((-206 . -1063) T) ((-1111 . -1063) T) ((-1111 . -588) 61011) ((-565 . -25) T) ((-565 . -21) T) ((-1065 . -300) 60949) ((-932 . -402) 60933) ((-673 . -1177) T) ((-608 . -277) 60908) ((-1051 . -615) 60856) ((-756 . -615) 60804) ((-754 . -615) 60752) ((-334 . -130) T) ((-280 . -591) 60734) ((-673 . -539) T) ((-874 . -1063) T) ((-839 . -1075) T) ((-444 . -615) 60682) ((-874 . -872) 60666) ((-370 . -442) T) ((-477 . -1063) T) ((-675 . -622) 60653) ((-912 . -300) 60591) ((-209 . -1063) T) ((-307 . -889) 60570) ((-304 . -889) T) ((-304 . -794) NIL) ((-381 . -695) T) ((-839 . -23) T) ((-116 . -622) 60557) ((-464 . -143) 60536) ((-409 . -402) 60520) ((-464 . -145) 60499) ((-110 . -479) 60481) ((-2 . -591) 60463) ((-1119 . -19) 60445) ((-1119 . -582) 60420) ((-632 . -21) T) ((-632 . -25) T) ((-572 . -1105) T) ((-1076 . -277) 60397) ((-327 . -25) T) ((-327 . -21) T) ((-484 . -354) T) ((-1234 . -38) 60367) ((-1103 . -1173) T) ((-608 . -582) 60342) ((-1051 . -25) T) ((-1051 . -21) T) ((-519 . -766) T) ((-519 . -769) T) ((-117 . -1177) T) ((-932 . -1023) T) ((-599 . -539) T) ((-756 . -25) T) ((-756 . -21) T) ((-754 . -21) T) ((-754 . -25) T) ((-710 . -1023) T) ((-690 . -1023) T) ((-644 . -1022) 60326) ((-506 . -1047) T) ((-451 . -25) T) ((-117 . -539) T) ((-451 . -21) T) ((-444 . -25) T) ((-444 . -21) T) ((-1103 . -1007) 60222) ((-791 . -281) 60201) ((-797 . -1063) T) ((-935 . -936) T) ((-644 . -111) 60180) ((-286 . -503) 59972) ((-1241 . -1022) 59956) ((-1239 . -1022) 59940) ((-1203 . -1158) 59906) ((-242 . -300) 59844) ((-241 . -300) 59782) ((-1186 . -101) 59760) ((-1120 . -592) NIL) ((-1120 . -591) 59742) ((-1203 . -1161) 59708) ((-1183 . -223) 59660) ((-1182 . -1158) 59626) ((-95 . -92) T) ((-1182 . -1161) 59592) ((-1103 . -368) 59576) ((-1082 . -794) T) ((-1082 . -889) T) ((-1076 . -582) 59553) ((-1043 . -592) 59537) ((-474 . -591) 59469) ((-789 . -279) 59446) ((-586 . -149) 59393) ((-409 . -1023) T) ((-477 . -692) 59343) ((-472 . -479) 59327) ((-318 . -821) 59306) ((-330 . -622) 59280) ((-50 . -21) T) ((-50 . -25) T) ((-209 . -692) 59230) ((-166 . -699) 59201) ((-171 . -622) 59133) ((-561 . -21) T) ((-561 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-465 . -149) 59083) ((-1043 . -591) 59065) ((-1026 . -591) 59047) ((-962 . -101) T) ((-832 . -101) T) ((-773 . -402) 59011) ((-40 . -130) T) ((-673 . -354) T) ((-204 . -864) T) ((-675 . -768) T) ((-675 . -765) T) ((-560 . -1075) T) ((-547 . -1075) T) ((-484 . -1075) T) ((-675 . -701) T) ((-350 . -591) 58993) ((-344 . -591) 58975) ((-336 . -591) 58957) ((-65 . -387) T) ((-65 . -386) T) ((-107 . -592) 58887) ((-107 . -591) 58869) ((-203 . -864) T) ((-927 . -149) 58853) ((-1203 . -94) 58819) ((-745 . -130) T) ((-133 . -701) T) ((-116 . -701) T) ((-1203 . -35) 58785) ((-1020 . -479) 58769) ((-560 . -23) T) ((-547 . -23) T) ((-484 . -23) T) ((-1182 . -94) 58735) ((-1182 . -35) 58701) ((-1132 . -101) T) ((-1087 . -101) T) ((-825 . -101) T) ((-219 . -479) 58685) ((-1241 . -111) 58664) ((-1239 . -111) 58643) ((-44 . -1022) 58627) ((-1192 . -1195) 58611) ((-826 . -823) 58595) ((-1138 . -281) 58574) ((-110 . -277) 58549) ((-1103 . -869) 58508) ((-44 . -111) 58487) ((-1141 . -1214) T) ((-644 . -1016) T) ((-1119 . -592) NIL) ((-1119 . -591) 58469) ((-1028 . -588) 58444) ((-1028 . -1063) T) ((-963 . -591) 58410) ((-73 . -431) T) ((-73 . -386) T) ((-644 . -225) 58389) ((-150 . -1022) 58373) ((-554 . -537) 58357) ((-346 . -145) 58336) ((-346 . -143) 58287) ((-343 . -145) 58266) ((-677 . -1063) T) ((-343 . -143) 58217) ((-335 . -145) 58196) ((-335 . -143) 58147) ((-255 . -143) 58126) ((-255 . -145) 58105) ((-242 . -38) 58075) ((-239 . -145) 58054) ((-117 . -354) T) ((-239 . -143) 58033) ((-241 . -38) 58003) ((-150 . -111) 57982) ((-972 . -1007) 57870) ((-1127 . -819) NIL) ((-668 . -1177) T) ((-773 . -1023) T) ((-673 . -1075) T) ((-1241 . -1016) T) ((-1239 . -1016) T) ((-1117 . -1173) T) ((-972 . -368) 57847) ((-879 . -143) T) ((-879 . -145) 57829) ((-839 . -130) T) ((-789 . -1022) 57726) ((-668 . -539) T) ((-673 . -23) T) ((-621 . -591) 57658) ((-621 . -592) 57619) ((-608 . -592) NIL) ((-608 . -591) 57601) ((-477 . -169) T) ((-215 . -21) T) ((-209 . -169) T) ((-215 . -25) T) ((-464 . -1161) 57567) ((-464 . -1158) 57533) ((-265 . -591) 57515) ((-264 . -591) 57497) ((-263 . -591) 57479) ((-262 . -591) 57461) ((-261 . -591) 57443) ((-489 . -625) 57425) ((-260 . -591) 57407) ((-330 . -701) T) ((-259 . -591) 57389) ((-110 . -19) 57371) ((-171 . -701) T) ((-489 . -364) 57353) ((-204 . -591) 57335) ((-509 . -1110) 57319) ((-489 . -123) T) ((-110 . -582) 57294) ((-203 . -591) 57276) ((-464 . -35) 57242) ((-464 . -94) 57208) ((-201 . -591) 57190) ((-200 . -591) 57172) ((-199 . -591) 57154) ((-198 . -591) 57136) ((-195 . -591) 57118) ((-194 . -591) 57100) ((-193 . -591) 57082) ((-192 . -591) 57064) ((-191 . -591) 57046) ((-190 . -591) 57028) ((-189 . -591) 57010) ((-523 . -1066) 56962) ((-188 . -591) 56944) ((-187 . -591) 56926) ((-45 . -479) 56863) ((-186 . -591) 56845) ((-185 . -591) 56827) ((-789 . -111) 56717) ((-619 . -101) 56667) ((-472 . -277) 56644) ((-1076 . -591) 56375) ((-1064 . -1063) T) ((-1013 . -1173) T) ((-599 . -1075) T) ((-1242 . -1007) 56359) ((-1132 . -300) 56346) ((-1087 . -300) 56333) ((-1054 . -1047) T) ((-1031 . -1047) T) ((-1005 . -1047) T) ((-988 . -1047) T) ((-117 . -1075) T) ((-793 . -101) T) ((-602 . -1047) T) ((-599 . -23) T) ((-1111 . -503) 56125) ((-473 . -1047) T) ((-972 . -869) 56077) ((-377 . -101) T) ((-315 . -101) T) ((-210 . -1047) T) ((-932 . -1063) T) ((-150 . -1016) T) ((-117 . -23) T) ((-706 . -402) 56061) ((-710 . -1063) T) ((-690 . -1063) T) ((-677 . -131) T) ((-443 . -1063) T) ((-398 . -1173) T) ((-307 . -421) 56045) ((-571 . -92) T) ((-996 . -592) 56006) ((-993 . -1177) T) ((-217 . -101) T) ((-996 . -591) 55968) ((-790 . -223) 55952) ((-993 . -539) T) ((-807 . -622) 55925) ((-345 . -1177) T) ((-466 . -591) 55887) ((-466 . -592) 55848) ((-453 . -592) 55809) ((-453 . -591) 55771) ((-398 . -853) 55755) ((-310 . -1022) 55590) ((-398 . -855) 55515) ((-814 . -1007) 55411) ((-477 . -503) NIL) ((-472 . -582) 55388) ((-345 . -539) T) ((-209 . -503) NIL) ((-841 . -442) T) ((-409 . -1063) T) ((-398 . -1007) 55252) ((-310 . -111) 55073) ((-668 . -354) T) ((-217 . -275) T) ((-48 . -1177) T) ((-789 . -1016) 55003) ((-560 . -130) T) ((-547 . -130) T) ((-484 . -130) T) ((-48 . -539) T) ((-1120 . -279) 54979) ((-1132 . -1112) 54957) ((-307 . -27) 54936) ((-1027 . -101) T) ((-789 . -225) 54888) ((-232 . -819) 54867) ((-921 . -101) T) ((-688 . -101) T) ((-286 . -479) 54804) ((-471 . -101) T) ((-706 . -1023) T) ((-590 . -591) 54786) ((-590 . -592) 54647) ((-398 . -368) 54631) ((-398 . -329) 54615) ((-1132 . -38) 54444) ((-1087 . -38) 54293) ((-825 . -38) 54263) ((-381 . -622) 54247) ((-619 . -300) 54185) ((-932 . -692) 54082) ((-710 . -692) 54052) ((-214 . -106) 54036) ((-45 . -277) 53961) ((-597 . -622) 53935) ((-303 . -1063) T) ((-280 . -1022) 53922) ((-110 . -591) 53904) ((-110 . -592) 53886) ((-443 . -692) 53856) ((-790 . -244) 53795) ((-663 . -1063) 53773) ((-533 . -1063) T) ((-1134 . -1023) T) ((-1133 . -1023) T) ((-1127 . -1023) T) ((-280 . -111) 53758) ((-1088 . -1023) T) ((-533 . -588) 53737) ((-95 . -591) 53703) ((-973 . -819) T) ((-219 . -661) 53661) ((-668 . -1075) T) ((-1167 . -715) 53637) ((-310 . -1016) T) ((-334 . -25) T) ((-334 . -21) T) ((-398 . -869) 53596) ((-67 . -1173) T) ((-807 . -768) 53575) ((-409 . -692) 53549) ((-773 . -1063) T) ((-807 . -765) 53528) ((-673 . -130) T) ((-687 . -889) 53507) ((-668 . -23) T) ((-477 . -281) T) ((-807 . -701) 53486) ((-310 . -225) 53438) ((-310 . -235) 53417) ((-209 . -281) T) ((-993 . -354) T) ((-1203 . -442) 53396) ((-1182 . -442) 53375) ((-345 . -320) 53352) ((-345 . -354) T) ((-1101 . -591) 53334) ((-45 . -1207) 53284) ((-840 . -101) T) ((-619 . -273) 53268) ((-673 . -1025) T) ((-1230 . -101) T) ((-467 . -622) 53233) ((-458 . -1063) T) ((-45 . -582) 53158) ((-1229 . -101) T) ((-1119 . -279) 53133) ((-40 . -615) 53072) ((-48 . -354) T) ((-1069 . -591) 53054) ((-1051 . -821) 53033) ((-608 . -279) 53008) ((-756 . -821) 52987) ((-754 . -821) 52966) ((-472 . -591) 52697) ((-232 . -402) 52666) ((-921 . -300) 52653) ((-444 . -821) 52632) ((-64 . -1173) T) ((-599 . -130) T) ((-471 . -300) 52619) ((-584 . -1063) T) ((-1028 . -503) 52463) ((-117 . -130) T) ((-645 . -1063) T) ((-280 . -1016) T) ((-158 . -1063) T) ((-153 . -1063) T) ((-443 . -736) T) ((-31 . -1047) T) ((-932 . -169) 52414) ((-939 . -92) T) ((-1043 . -1022) 52324) ((-597 . -768) 52303) ((-572 . -1063) T) ((-597 . -765) 52282) ((-597 . -701) T) ((-286 . -277) 52261) ((-285 . -1173) T) ((-1020 . -591) 52223) ((-1020 . -592) 52184) ((-993 . -1075) T) ((-166 . -101) T) ((-266 . -821) T) ((-1126 . -1063) T) ((-792 . -591) 52166) ((-1076 . -279) 52143) ((-1065 . -221) 52127) ((-972 . -298) T) ((-773 . -692) 52111) ((-350 . -1022) 52063) ((-345 . -1075) T) ((-344 . -1022) 52015) ((-405 . -591) 51997) ((-376 . -591) 51979) ((-336 . -1022) 51931) ((-219 . -591) 51863) ((-1043 . -111) 51759) ((-993 . -23) T) ((-107 . -1022) 51709) ((-867 . -101) T) ((-812 . -101) T) ((-782 . -101) T) ((-743 . -101) T) ((-651 . -101) T) ((-464 . -442) 51688) ((-409 . -169) T) ((-350 . -111) 51626) ((-344 . -111) 51564) ((-336 . -111) 51502) ((-242 . -223) 51471) ((-241 . -223) 51440) ((-345 . -23) T) ((-70 . -1173) T) ((-217 . -38) 51405) ((-107 . -111) 51339) ((-40 . -25) T) ((-40 . -21) T) ((-644 . -695) T) ((-166 . -275) 51317) ((-48 . -1075) T) ((-890 . -25) T) ((-745 . -25) T) ((-1111 . -479) 51254) ((-475 . -1063) T) ((-1243 . -622) 51228) ((-1192 . -101) T) ((-826 . -101) T) ((-232 . -1023) 51158) ((-1027 . -1112) T) ((-933 . -766) 51111) ((-372 . -622) 51095) ((-48 . -23) T) ((-933 . -769) 51048) ((-789 . -769) 50999) ((-789 . -766) 50950) ((-286 . -582) 50929) ((-467 . -701) T) ((-554 . -101) T) ((-840 . -300) 50886) ((-627 . -277) 50865) ((-112 . -635) T) ((-75 . -1173) T) ((-1027 . -38) 50852) ((-638 . -365) 50831) ((-921 . -38) 50680) ((-706 . -1063) T) ((-471 . -38) 50529) ((-85 . -1173) T) ((-554 . -275) T) ((-1183 . -819) NIL) ((-571 . -591) 50495) ((-1134 . -1063) T) ((-1133 . -1063) T) ((-1127 . -1063) T) ((-342 . -1007) 50472) ((-1043 . -1016) T) ((-973 . -1023) T) ((-45 . -591) 50454) ((-45 . -592) NIL) ((-883 . -1023) T) ((-791 . -591) 50436) ((-1108 . -101) 50414) ((-1043 . -235) 50365) ((-418 . -1023) T) ((-350 . -1016) T) ((-344 . -1016) T) ((-356 . -355) 50342) ((-336 . -1016) T) ((-242 . -230) 50321) ((-241 . -230) 50300) ((-109 . -355) 50274) ((-1043 . -225) 50199) ((-1088 . -1063) T) ((-285 . -869) 50158) ((-107 . -1016) T) ((-668 . -130) T) ((-409 . -503) 50000) ((-350 . -225) 49979) ((-350 . -235) T) ((-44 . -695) T) ((-344 . -225) 49958) ((-344 . -235) T) ((-336 . -225) 49937) ((-336 . -235) T) ((-166 . -300) 49902) ((-107 . -235) T) ((-107 . -225) T) ((-310 . -766) T) ((-839 . -21) T) ((-839 . -25) T) ((-398 . -298) T) ((-489 . -34) T) ((-110 . -279) 49877) ((-1076 . -1022) 49774) ((-840 . -1112) NIL) ((-321 . -591) 49756) ((-398 . -991) 49735) ((-1076 . -111) 49625) ((-665 . -1214) T) ((-427 . -1063) T) ((-1243 . -701) T) ((-62 . -591) 49607) ((-840 . -38) 49552) ((-512 . -1173) T) ((-580 . -149) 49536) ((-501 . -591) 49518) ((-1192 . -300) 49505) ((-706 . -692) 49354) ((-519 . -767) T) ((-519 . -768) T) ((-547 . -615) 49336) ((-484 . -615) 49296) ((-346 . -442) T) ((-343 . -442) T) ((-335 . -442) T) ((-255 . -442) 49247) ((-514 . -1063) T) ((-509 . -1063) 49197) ((-239 . -442) 49148) ((-1111 . -277) 49127) ((-1138 . -591) 49109) ((-663 . -503) 49042) ((-932 . -281) 49021) ((-533 . -503) 48813) ((-1132 . -223) 48797) ((-166 . -1112) 48776) ((-1231 . -591) 48758) ((-1134 . -692) 48655) ((-1133 . -692) 48496) ((-861 . -101) T) ((-1127 . -692) 48292) ((-1088 . -692) 48189) ((-1117 . -648) 48173) ((-346 . -393) 48124) ((-343 . -393) 48075) ((-335 . -393) 48026) ((-993 . -130) T) ((-773 . -503) 47938) ((-286 . -592) NIL) ((-286 . -591) 47920) ((-879 . -442) T) ((-933 . -359) 47873) ((-789 . -359) 47852) ((-499 . -498) 47831) ((-497 . -498) 47810) ((-477 . -277) NIL) ((-472 . -279) 47787) ((-409 . -281) T) ((-345 . -130) T) ((-209 . -277) NIL) ((-668 . -482) NIL) ((-98 . -1075) T) ((-166 . -38) 47615) ((-1203 . -942) 47577) ((-1108 . -300) 47515) ((-1182 . -942) 47484) ((-879 . -393) T) ((-1076 . -1016) 47414) ((-1205 . -539) T) ((-1111 . -582) 47393) ((-112 . -821) T) ((-1028 . -479) 47324) ((-560 . -21) T) ((-560 . -25) T) ((-547 . -21) T) ((-547 . -25) T) ((-484 . -25) T) ((-484 . -21) T) ((-1192 . -1112) 47302) ((-1076 . -225) 47254) ((-48 . -130) T) ((-1154 . -101) T) ((-232 . -1063) 47044) ((-840 . -391) 47021) ((-1052 . -101) T) ((-1039 . -101) T) ((-586 . -101) T) ((-465 . -101) T) ((-1192 . -38) 46850) ((-826 . -38) 46820) ((-706 . -169) 46731) ((-627 . -591) 46713) ((-620 . -1047) T) ((-554 . -38) 46700) ((-939 . -591) 46666) ((-927 . -101) 46616) ((-834 . -591) 46598) ((-834 . -592) 46520) ((-572 . -503) NIL) ((-1211 . -1023) T) ((-1204 . -1023) T) ((-1183 . -1023) T) ((-575 . -1023) T) ((-574 . -1023) T) ((-1247 . -1075) T) ((-1134 . -169) 46471) ((-1133 . -169) 46402) ((-1127 . -169) 46333) ((-1088 . -169) 46284) ((-973 . -1063) T) ((-940 . -1063) T) ((-883 . -1063) T) ((-1167 . -145) 46263) ((-773 . -771) 46247) ((-673 . -25) T) ((-673 . -21) T) ((-117 . -615) 46224) ((-675 . -855) 46206) ((-418 . -1063) T) ((-307 . -1177) 46185) ((-304 . -1177) T) ((-166 . -391) 46169) ((-1167 . -143) 46148) ((-464 . -942) 46110) ((-128 . -1063) T) ((-71 . -591) 46092) ((-107 . -769) T) ((-107 . -766) T) ((-307 . -539) 46071) ((-675 . -1007) 46053) ((-304 . -539) T) ((-1247 . -23) T) ((-133 . -1007) 46035) ((-472 . -1022) 45932) ((-45 . -279) 45857) ((-232 . -692) 45799) ((-506 . -101) T) ((-472 . -111) 45689) ((-1056 . -101) 45667) ((-1003 . -101) T) ((-619 . -802) 45646) ((-706 . -503) 45589) ((-1020 . -1022) 45573) ((-1028 . -277) 45548) ((-599 . -21) T) ((-599 . -25) T) ((-513 . -1063) T) ((-352 . -101) T) ((-313 . -101) T) ((-644 . -622) 45522) ((-376 . -1022) 45506) ((-1020 . -111) 45485) ((-790 . -402) 45469) ((-117 . -25) T) ((-88 . -591) 45451) ((-117 . -21) T) ((-586 . -300) 45246) ((-465 . -300) 45050) ((-1111 . -592) NIL) ((-376 . -111) 45029) ((-370 . -101) T) ((-206 . -591) 45011) ((-1111 . -591) 44993) ((-973 . -692) 44943) ((-1127 . -503) 44712) ((-883 . -692) 44664) ((-1088 . -503) 44634) ((-342 . -298) T) ((-1146 . -149) 44584) ((-927 . -300) 44522) ((-808 . -101) T) ((-418 . -692) 44506) ((-217 . -802) T) ((-801 . -101) T) ((-799 . -101) T) ((-469 . -149) 44456) ((-1203 . -1202) 44435) ((-1082 . -1177) T) ((-330 . -1007) 44402) ((-1203 . -1197) 44372) ((-1203 . -1200) 44356) ((-1182 . -1181) 44335) ((-79 . -591) 44317) ((-874 . -591) 44299) ((-1182 . -1197) 44276) ((-1082 . -539) T) ((-890 . -821) T) ((-745 . -821) T) ((-477 . -592) 44206) ((-477 . -591) 44188) ((-370 . -275) T) ((-646 . -821) T) ((-1182 . -1179) 44172) ((-1205 . -1075) T) ((-209 . -592) 44102) ((-209 . -591) 44084) ((-1028 . -582) 44059) ((-58 . -149) 44043) ((-505 . -149) 44027) ((-485 . -149) 44011) ((-350 . -1238) 43995) ((-344 . -1238) 43979) ((-336 . -1238) 43963) ((-307 . -354) 43942) ((-304 . -354) T) ((-472 . -1016) 43872) ((-668 . -615) 43854) ((-1241 . -622) 43828) ((-1239 . -622) 43802) ((-1205 . -23) T) ((-663 . -479) 43786) ((-63 . -591) 43768) ((-1076 . -769) 43719) ((-1076 . -766) 43670) ((-533 . -479) 43607) ((-644 . -34) T) ((-472 . -225) 43559) ((-286 . -279) 43538) ((-232 . -169) 43517) ((-790 . -1023) T) ((-44 . -622) 43475) ((-1043 . -359) 43426) ((-706 . -281) 43357) ((-509 . -503) 43290) ((-791 . -1022) 43241) ((-1051 . -143) 43220) ((-350 . -359) 43199) ((-344 . -359) 43178) ((-336 . -359) 43157) ((-1051 . -145) 43136) ((-840 . -223) 43113) ((-791 . -111) 43055) ((-756 . -143) 43034) ((-756 . -145) 43013) ((-255 . -918) 42980) ((-242 . -819) 42959) ((-239 . -918) 42904) ((-241 . -819) 42883) ((-754 . -143) 42862) ((-754 . -145) 42841) ((-150 . -622) 42815) ((-444 . -145) 42794) ((-444 . -143) 42773) ((-644 . -701) T) ((-797 . -591) 42755) ((-1211 . -1063) T) ((-1204 . -1063) T) ((-1183 . -1063) T) ((-1167 . -1161) 42721) ((-1167 . -1158) 42687) ((-1134 . -281) 42666) ((-1133 . -281) 42617) ((-1127 . -281) 42568) ((-1088 . -281) 42547) ((-330 . -869) 42528) ((-973 . -169) T) ((-883 . -169) T) ((-575 . -1063) T) ((-574 . -1063) T) ((-668 . -21) T) ((-668 . -25) T) ((-464 . -1200) 42512) ((-464 . -1197) 42482) ((-409 . -277) 42410) ((-307 . -1075) 42259) ((-304 . -1075) T) ((-1167 . -35) 42225) ((-1167 . -94) 42191) ((-83 . -591) 42173) ((-90 . -101) 42151) ((-1247 . -130) T) ((-561 . -143) T) ((-561 . -145) 42133) ((-507 . -145) 42115) ((-507 . -143) T) ((-307 . -23) 41967) ((-40 . -333) 41941) ((-304 . -23) T) ((-1119 . -625) 41923) ((-789 . -622) 41771) ((-1234 . -1023) T) ((-1119 . -364) 41753) ((-1054 . -101) T) ((-166 . -223) 41737) ((-1031 . -101) T) ((-1005 . -101) T) ((-988 . -101) T) ((-572 . -479) 41719) ((-602 . -101) T) ((-232 . -503) 41652) ((-473 . -101) T) ((-1241 . -701) T) ((-1239 . -701) T) ((-210 . -101) T) ((-1138 . -1022) 41535) ((-1138 . -111) 41404) ((-791 . -1016) T) ((-655 . -1047) T) ((-650 . -1047) T) ((-504 . -101) T) ((-499 . -101) T) ((-48 . -615) 41364) ((-497 . -101) T) ((-468 . -1047) T) ((-1231 . -1022) 41334) ((-137 . -1047) T) ((-136 . -1047) T) ((-132 . -1047) T) ((-1003 . -38) 41318) ((-791 . -225) T) ((-791 . -235) 41297) ((-533 . -277) 41276) ((-1231 . -111) 41241) ((-1211 . -692) 41138) ((-584 . -92) T) ((-1204 . -692) 40979) ((-1192 . -223) 40963) ((-1028 . -592) NIL) ((-1028 . -591) 40945) ((-645 . -92) T) ((-158 . -92) T) ((-153 . -92) T) ((-1183 . -692) 40741) ((-972 . -889) T) ((-677 . -591) 40710) ((-150 . -701) T) ((-1076 . -359) 40689) ((-973 . -503) NIL) ((-242 . -402) 40658) ((-241 . -402) 40627) ((-993 . -25) T) ((-993 . -21) T) ((-575 . -692) 40600) ((-574 . -692) 40497) ((-773 . -277) 40455) ((-126 . -101) 40433) ((-807 . -1007) 40329) ((-166 . -802) 40308) ((-310 . -622) 40205) ((-789 . -34) T) ((-689 . -101) T) ((-1082 . -1075) T) ((-128 . -503) NIL) ((-995 . -1173) T) ((-370 . -38) 40170) ((-345 . -25) T) ((-345 . -21) T) ((-159 . -101) T) ((-154 . -101) T) ((-346 . -1226) 40154) ((-343 . -1226) 40138) ((-335 . -1226) 40122) ((-166 . -340) 40101) ((-547 . -821) T) ((-484 . -821) T) ((-1082 . -23) T) ((-86 . -591) 40083) ((-675 . -298) T) ((-808 . -38) 40053) ((-801 . -38) 40023) ((-1205 . -130) T) ((-1111 . -279) 40002) ((-933 . -767) 39955) ((-933 . -768) 39908) ((-789 . -765) 39887) ((-116 . -298) T) ((-90 . -300) 39825) ((-649 . -34) T) ((-533 . -582) 39804) ((-48 . -25) T) ((-48 . -21) T) ((-789 . -768) 39755) ((-789 . -767) 39734) ((-675 . -991) T) ((-627 . -1022) 39718) ((-933 . -701) 39617) ((-789 . -701) 39527) ((-933 . -463) 39480) ((-472 . -769) 39431) ((-472 . -766) 39382) ((-879 . -1226) 39369) ((-1138 . -1016) T) ((-627 . -111) 39348) ((-1138 . -317) 39325) ((-1159 . -101) 39303) ((-1064 . -591) 39285) ((-675 . -532) T) ((-790 . -1063) T) ((-1231 . -1016) T) ((-404 . -1063) T) ((-242 . -1023) 39215) ((-241 . -1023) 39145) ((-280 . -622) 39132) ((-572 . -277) 39107) ((-663 . -661) 39065) ((-932 . -591) 39047) ((-841 . -101) T) ((-710 . -591) 39029) ((-690 . -591) 39011) ((-1211 . -169) 38962) ((-1204 . -169) 38893) ((-1183 . -169) 38824) ((-673 . -821) T) ((-973 . -281) T) ((-443 . -591) 38806) ((-603 . -701) T) ((-59 . -1063) 38784) ((-237 . -149) 38768) ((-883 . -281) T) ((-993 . -981) T) ((-603 . -463) T) ((-687 . -1177) 38747) ((-575 . -169) 38726) ((-574 . -169) 38677) ((-1219 . -821) 38656) ((-687 . -539) 38567) ((-398 . -889) T) ((-398 . -794) 38546) ((-310 . -768) T) ((-310 . -701) T) ((-409 . -591) 38528) ((-409 . -592) 38436) ((-619 . -1110) 38420) ((-110 . -625) 38402) ((-171 . -298) T) ((-126 . -300) 38340) ((-110 . -364) 38322) ((-389 . -1173) T) ((-307 . -130) 38193) ((-304 . -130) T) ((-68 . -386) T) ((-110 . -123) T) ((-509 . -479) 38177) ((-628 . -1075) T) ((-572 . -19) 38159) ((-60 . -431) T) ((-60 . -386) T) ((-798 . -1063) T) ((-572 . -582) 38134) ((-467 . -1007) 38094) ((-627 . -1016) T) ((-628 . -23) T) ((-1234 . -1063) T) ((-31 . -101) T) ((-790 . -692) 37943) ((-117 . -821) NIL) ((-1132 . -402) 37927) ((-1087 . -402) 37911) ((-825 . -402) 37895) ((-842 . -101) 37846) ((-1203 . -101) T) ((-1183 . -503) 37615) ((-514 . -92) T) ((-1159 . -300) 37553) ((-303 . -591) 37535) ((-1182 . -101) T) ((-1065 . -1063) T) ((-1134 . -277) 37520) ((-1133 . -277) 37505) ((-280 . -701) T) ((-107 . -878) NIL) ((-663 . -591) 37437) ((-663 . -592) 37398) ((-1043 . -622) 37308) ((-579 . -591) 37290) ((-533 . -592) NIL) ((-533 . -591) 37272) ((-1127 . -277) 37120) ((-477 . -1022) 37070) ((-686 . -442) T) ((-500 . -498) 37049) ((-496 . -498) 37028) ((-209 . -1022) 36978) ((-350 . -622) 36930) ((-344 . -622) 36882) ((-217 . -819) T) ((-336 . -622) 36834) ((-580 . -101) 36784) ((-472 . -359) 36763) ((-107 . -622) 36713) ((-477 . -111) 36647) ((-232 . -479) 36631) ((-334 . -145) 36613) ((-334 . -143) T) ((-166 . -361) 36584) ((-912 . -1217) 36568) ((-209 . -111) 36502) ((-841 . -300) 36467) ((-912 . -1063) 36417) ((-773 . -592) 36378) ((-773 . -591) 36360) ((-693 . -101) T) ((-322 . -1063) T) ((-1082 . -130) T) ((-689 . -38) 36330) ((-307 . -482) 36309) ((-489 . -1173) T) ((-1203 . -275) 36275) ((-1182 . -275) 36241) ((-318 . -149) 36225) ((-1028 . -279) 36200) ((-1234 . -692) 36170) ((-1120 . -34) T) ((-1243 . -1007) 36147) ((-458 . -591) 36129) ((-474 . -34) T) ((-372 . -1007) 36113) ((-1132 . -1023) T) ((-1087 . -1023) T) ((-825 . -1023) T) ((-1027 . -819) T) ((-790 . -169) 36024) ((-509 . -277) 36001) ((-128 . -479) 35983) ((-117 . -961) 35960) ((-1211 . -281) 35939) ((-1204 . -281) 35890) ((-1154 . -355) 35864) ((-1052 . -257) 35848) ((-584 . -591) 35798) ((-645 . -591) 35764) ((-464 . -101) T) ((-158 . -591) 35730) ((-356 . -1063) T) ((-242 . -1063) T) ((-241 . -1063) T) ((-153 . -591) 35696) ((-109 . -1063) T) ((-1183 . -281) 35647) ((-841 . -1112) 35625) ((-1134 . -971) 35591) ((-586 . -355) 35531) ((-1133 . -971) 35497) ((-586 . -221) 35444) ((-572 . -591) 35426) ((-572 . -592) NIL) ((-668 . -821) T) ((-465 . -221) 35376) ((-477 . -1016) T) ((-1127 . -971) 35342) ((-87 . -430) T) ((-87 . -386) T) ((-209 . -1016) T) ((-1088 . -971) 35308) ((-1043 . -701) T) ((-687 . -1075) T) ((-575 . -281) 35287) ((-574 . -281) 35266) ((-477 . -235) T) ((-477 . -225) T) ((-209 . -235) T) ((-209 . -225) T) ((-1126 . -591) 35248) ((-841 . -38) 35200) ((-350 . -701) T) ((-344 . -701) T) ((-336 . -701) T) ((-107 . -768) T) ((-107 . -765) T) ((-509 . -1207) 35184) ((-107 . -701) T) ((-687 . -23) T) ((-1247 . -25) T) ((-464 . -275) 35150) ((-1247 . -21) T) ((-1182 . -300) 35089) ((-1136 . -101) T) ((-40 . -143) 35061) ((-40 . -145) 35033) ((-509 . -582) 35010) ((-1076 . -622) 34858) ((-580 . -300) 34796) ((-45 . -625) 34746) ((-45 . -640) 34696) ((-45 . -364) 34646) ((-1119 . -34) T) ((-840 . -819) NIL) ((-628 . -130) T) ((-475 . -591) 34628) ((-232 . -277) 34605) ((-621 . -34) T) ((-608 . -34) T) ((-1051 . -442) 34556) ((-790 . -503) 34430) ((-756 . -442) 34361) ((-754 . -442) 34312) ((-444 . -442) 34263) ((-921 . -402) 34247) ((-706 . -591) 34229) ((-242 . -692) 34171) ((-241 . -692) 34113) ((-706 . -592) 33974) ((-471 . -402) 33958) ((-330 . -293) T) ((-513 . -92) T) ((-342 . -889) T) ((-969 . -101) 33936) ((-993 . -821) T) ((-59 . -503) 33869) ((-1182 . -1112) 33821) ((-973 . -277) NIL) ((-217 . -1023) T) ((-370 . -802) T) ((-1076 . -34) T) ((-1186 . -1057) 33805) ((-561 . -442) T) ((-507 . -442) T) ((-1186 . -1063) 33783) ((-1186 . -1059) 33740) ((-232 . -582) 33717) ((-1134 . -591) 33699) ((-1133 . -591) 33681) ((-1127 . -591) 33663) ((-1127 . -592) NIL) ((-1088 . -591) 33645) ((-128 . -277) 33620) ((-841 . -391) 33604) ((-523 . -101) T) ((-1203 . -38) 33445) ((-1182 . -38) 33259) ((-839 . -145) T) ((-561 . -393) T) ((-48 . -821) T) ((-507 . -393) T) ((-1215 . -101) T) ((-1205 . -21) T) ((-1205 . -25) T) ((-1076 . -765) 33238) ((-1076 . -768) 33189) ((-1076 . -767) 33168) ((-962 . -1063) T) ((-996 . -34) T) ((-832 . -1063) T) ((-1076 . -701) 33078) ((-638 . -101) T) ((-620 . -101) T) ((-533 . -279) 33057) ((-1146 . -101) T) ((-466 . -34) T) ((-453 . -34) T) ((-346 . -101) T) ((-343 . -101) T) ((-335 . -101) T) ((-255 . -101) T) ((-239 . -101) T) ((-467 . -298) T) ((-1027 . -1023) T) ((-921 . -1023) T) ((-307 . -615) 32963) ((-304 . -615) 32924) ((-471 . -1023) T) ((-469 . -101) T) ((-427 . -591) 32906) ((-1132 . -1063) T) ((-1087 . -1063) T) ((-825 . -1063) T) ((-1102 . -101) T) ((-790 . -281) 32837) ((-932 . -1022) 32720) ((-467 . -991) T) ((-128 . -19) 32702) ((-710 . -1022) 32672) ((-128 . -582) 32647) ((-443 . -1022) 32617) ((-1108 . -1083) 32601) ((-1065 . -503) 32534) ((-932 . -111) 32403) ((-879 . -101) T) ((-710 . -111) 32368) ((-514 . -591) 32334) ((-58 . -101) 32284) ((-509 . -592) 32245) ((-509 . -591) 32157) ((-508 . -101) 32135) ((-505 . -101) 32085) ((-486 . -101) 32063) ((-485 . -101) 32013) ((-443 . -111) 31976) ((-242 . -169) 31955) ((-241 . -169) 31934) ((-409 . -1022) 31908) ((-1167 . -942) 31870) ((-968 . -1075) T) ((-912 . -503) 31803) ((-477 . -769) T) ((-464 . -38) 31644) ((-409 . -111) 31611) ((-477 . -766) T) ((-969 . -300) 31549) ((-209 . -769) T) ((-209 . -766) T) ((-968 . -23) T) ((-687 . -130) T) ((-1182 . -391) 31519) ((-307 . -25) 31371) ((-166 . -402) 31355) ((-307 . -21) 31226) ((-304 . -25) T) ((-304 . -21) T) ((-834 . -359) T) ((-110 . -34) T) ((-472 . -622) 31074) ((-840 . -1023) T) ((-572 . -279) 31049) ((-560 . -145) T) ((-547 . -145) T) ((-484 . -145) T) ((-1132 . -692) 30878) ((-1087 . -692) 30727) ((-1082 . -615) 30709) ((-825 . -692) 30679) ((-644 . -1173) T) ((-1 . -101) T) ((-232 . -591) 30410) ((-1192 . -402) 30394) ((-1146 . -300) 30198) ((-932 . -1016) T) ((-710 . -1016) T) ((-690 . -1016) T) ((-619 . -1063) 30148) ((-1020 . -622) 30132) ((-826 . -402) 30116) ((-500 . -101) T) ((-496 . -101) T) ((-239 . -300) 30103) ((-255 . -300) 30090) ((-932 . -317) 30069) ((-376 . -622) 30053) ((-469 . -300) 29857) ((-242 . -503) 29790) ((-644 . -1007) 29686) ((-241 . -503) 29619) ((-1102 . -300) 29545) ((-793 . -1063) T) ((-773 . -1022) 29529) ((-1211 . -277) 29514) ((-1204 . -277) 29499) ((-1183 . -277) 29347) ((-377 . -1063) T) ((-315 . -1063) T) ((-409 . -1016) T) ((-166 . -1023) T) ((-58 . -300) 29285) ((-773 . -111) 29264) ((-574 . -277) 29249) ((-508 . -300) 29187) ((-505 . -300) 29125) ((-486 . -300) 29063) ((-485 . -300) 29001) ((-409 . -225) 28980) ((-472 . -34) T) ((-973 . -592) 28910) ((-217 . -1063) T) ((-973 . -591) 28892) ((-940 . -591) 28874) ((-940 . -592) 28849) ((-883 . -591) 28831) ((-673 . -145) T) ((-675 . -889) T) ((-675 . -794) T) ((-418 . -591) 28813) ((-1082 . -21) T) ((-128 . -592) NIL) ((-128 . -591) 28795) ((-1082 . -25) T) ((-644 . -368) 28779) ((-116 . -889) T) ((-841 . -223) 28763) ((-77 . -1173) T) ((-126 . -125) 28747) ((-1020 . -34) T) ((-1241 . -1007) 28721) ((-1239 . -1007) 28678) ((-1192 . -1023) T) ((-826 . -1023) T) ((-472 . -765) 28657) ((-346 . -1112) 28636) ((-343 . -1112) 28615) ((-335 . -1112) 28594) ((-472 . -768) 28545) ((-472 . -767) 28524) ((-219 . -34) T) ((-472 . -701) 28434) ((-59 . -479) 28418) ((-554 . -1023) T) ((-1132 . -169) 28309) ((-1087 . -169) 28220) ((-1027 . -1063) T) ((-1051 . -918) 28165) ((-921 . -1063) T) ((-791 . -622) 28116) ((-756 . -918) 28085) ((-688 . -1063) T) ((-754 . -918) 28052) ((-505 . -273) 28036) ((-644 . -869) 27995) ((-471 . -1063) T) ((-444 . -918) 27962) ((-78 . -1173) T) ((-346 . -38) 27927) ((-343 . -38) 27892) ((-335 . -38) 27857) ((-255 . -38) 27706) ((-239 . -38) 27555) ((-879 . -1112) T) ((-599 . -145) 27534) ((-599 . -143) 27513) ((-513 . -591) 27479) ((-117 . -145) T) ((-117 . -143) NIL) ((-405 . -701) T) ((-773 . -1016) T) ((-334 . -442) T) ((-1211 . -971) 27445) ((-1204 . -971) 27411) ((-1183 . -971) 27377) ((-879 . -38) 27342) ((-217 . -692) 27307) ((-310 . -47) 27277) ((-40 . -400) 27249) ((-138 . -591) 27231) ((-968 . -130) T) ((-789 . -1173) T) ((-171 . -889) T) ((-334 . -393) T) ((-509 . -279) 27208) ((-789 . -1007) 27035) ((-45 . -34) T) ((-655 . -101) T) ((-650 . -101) T) ((-636 . -101) T) ((-628 . -21) T) ((-628 . -25) T) ((-1182 . -223) 27005) ((-1065 . -479) 26989) ((-468 . -101) T) ((-649 . -1173) T) ((-237 . -101) 26939) ((-137 . -101) T) ((-136 . -101) T) ((-132 . -101) T) ((-840 . -1063) T) ((-1138 . -622) 26864) ((-1027 . -692) 26851) ((-706 . -1022) 26694) ((-1132 . -503) 26641) ((-921 . -692) 26490) ((-1087 . -503) 26442) ((-1230 . -1063) T) ((-1229 . -1063) T) ((-471 . -692) 26291) ((-66 . -591) 26273) ((-706 . -111) 26102) ((-912 . -479) 26086) ((-1231 . -622) 26046) ((-791 . -701) T) ((-1134 . -1022) 25929) ((-1133 . -1022) 25764) ((-1127 . -1022) 25554) ((-1088 . -1022) 25437) ((-972 . -1177) T) ((-1058 . -101) 25415) ((-789 . -368) 25384) ((-972 . -539) T) ((-1134 . -111) 25253) ((-1133 . -111) 25074) ((-1127 . -111) 24843) ((-1088 . -111) 24712) ((-1068 . -1066) 24676) ((-370 . -819) T) ((-1211 . -591) 24658) ((-1204 . -591) 24640) ((-1183 . -591) 24622) ((-1183 . -592) NIL) ((-232 . -279) 24599) ((-40 . -442) T) ((-217 . -169) T) ((-166 . -1063) T) ((-668 . -145) T) ((-668 . -143) NIL) ((-575 . -591) 24581) ((-574 . -591) 24563) ((-867 . -1063) T) ((-812 . -1063) T) ((-782 . -1063) T) ((-743 . -1063) T) ((-632 . -823) 24547) ((-651 . -1063) T) ((-789 . -869) 24479) ((-40 . -393) NIL) ((-1082 . -635) T) ((-840 . -692) 24424) ((-242 . -479) 24408) ((-241 . -479) 24392) ((-687 . -615) 24340) ((-627 . -622) 24314) ((-286 . -34) T) ((-706 . -1016) T) ((-561 . -1226) 24301) ((-507 . -1226) 24278) ((-1192 . -1063) T) ((-1132 . -281) 24189) ((-1087 . -281) 24120) ((-1027 . -169) T) ((-826 . -1063) T) ((-921 . -169) 24031) ((-756 . -1195) 24015) ((-619 . -503) 23948) ((-76 . -591) 23930) ((-706 . -317) 23895) ((-1138 . -701) T) ((-554 . -1063) T) ((-471 . -169) 23806) ((-237 . -300) 23744) ((-128 . -279) 23719) ((-1103 . -1075) T) ((-69 . -591) 23701) ((-1231 . -701) T) ((-1134 . -1016) T) ((-1133 . -1016) T) ((-318 . -101) 23651) ((-1127 . -1016) T) ((-1103 . -23) T) ((-1088 . -1016) T) ((-90 . -1083) 23635) ((-835 . -1075) T) ((-1134 . -225) 23594) ((-1133 . -235) 23573) ((-1133 . -225) 23525) ((-1127 . -225) 23412) ((-1127 . -235) 23391) ((-310 . -869) 23297) ((-835 . -23) T) ((-166 . -692) 23125) ((-398 . -1177) T) ((-1064 . -359) T) ((-993 . -145) T) ((-972 . -354) T) ((-839 . -442) T) ((-912 . -277) 23102) ((-307 . -821) T) ((-304 . -821) NIL) ((-843 . -101) T) ((-687 . -25) T) ((-398 . -539) T) ((-687 . -21) T) ((-345 . -145) 23084) ((-345 . -143) T) ((-1108 . -1063) 23062) ((-443 . -695) T) ((-74 . -591) 23044) ((-114 . -821) T) ((-237 . -273) 23028) ((-232 . -1022) 22925) ((-80 . -591) 22907) ((-710 . -359) 22860) ((-1136 . -802) T) ((-712 . -227) 22844) ((-1120 . -1173) T) ((-139 . -227) 22826) ((-232 . -111) 22716) ((-1192 . -692) 22545) ((-48 . -145) T) ((-840 . -169) T) ((-826 . -692) 22515) ((-474 . -1173) T) ((-921 . -503) 22462) ((-627 . -701) T) ((-554 . -692) 22449) ((-1003 . -1023) T) ((-471 . -503) 22392) ((-912 . -19) 22376) ((-912 . -582) 22353) ((-790 . -592) NIL) ((-790 . -591) 22335) ((-973 . -1022) 22285) ((-404 . -591) 22267) ((-242 . -277) 22244) ((-241 . -277) 22221) ((-477 . -878) NIL) ((-307 . -29) 22191) ((-107 . -1173) T) ((-972 . -1075) T) ((-209 . -878) NIL) ((-883 . -1022) 22143) ((-1043 . -1007) 22039) ((-973 . -111) 21973) ((-712 . -669) 21957) ((-255 . -223) 21941) ((-418 . -1022) 21925) ((-370 . -1023) T) ((-972 . -23) T) ((-883 . -111) 21863) ((-668 . -1161) NIL) ((-477 . -622) 21813) ((-107 . -853) 21795) ((-107 . -855) 21777) ((-668 . -1158) NIL) ((-209 . -622) 21727) ((-350 . -1007) 21711) ((-344 . -1007) 21695) ((-318 . -300) 21633) ((-336 . -1007) 21617) ((-217 . -281) T) ((-418 . -111) 21596) ((-59 . -591) 21528) ((-166 . -169) T) ((-1082 . -821) T) ((-107 . -1007) 21488) ((-861 . -1063) T) ((-808 . -1023) T) ((-801 . -1023) T) ((-668 . -35) NIL) ((-668 . -94) NIL) ((-304 . -961) 21449) ((-179 . -101) T) ((-560 . -442) T) ((-547 . -442) T) ((-484 . -442) T) ((-398 . -354) T) ((-232 . -1016) 21379) ((-1111 . -34) T) ((-467 . -889) T) ((-968 . -615) 21327) ((-242 . -582) 21304) ((-241 . -582) 21281) ((-1043 . -368) 21265) ((-840 . -503) 21173) ((-232 . -225) 21125) ((-1119 . -1173) T) ((-798 . -591) 21107) ((-1242 . -1075) T) ((-1234 . -591) 21089) ((-1192 . -169) 20980) ((-107 . -368) 20962) ((-107 . -329) 20944) ((-1027 . -281) T) ((-921 . -281) 20875) ((-773 . -359) 20854) ((-621 . -1173) T) ((-608 . -1173) T) ((-471 . -281) 20785) ((-554 . -169) T) ((-318 . -273) 20769) ((-1242 . -23) T) ((-1167 . -101) T) ((-1154 . -1063) T) ((-1052 . -1063) T) ((-1039 . -1063) T) ((-82 . -591) 20751) ((-686 . -101) T) ((-346 . -340) 20730) ((-586 . -1063) T) ((-343 . -340) 20709) ((-335 . -340) 20688) ((-465 . -1063) T) ((-1146 . -221) 20638) ((-255 . -244) 20600) ((-1103 . -130) T) ((-586 . -588) 20576) ((-1043 . -869) 20509) ((-973 . -1016) T) ((-883 . -1016) T) ((-465 . -588) 20488) ((-1127 . -766) NIL) ((-1127 . -769) NIL) ((-1065 . -592) 20449) ((-469 . -221) 20399) ((-1065 . -591) 20381) ((-973 . -235) T) ((-973 . -225) T) ((-418 . -1016) T) ((-927 . -1063) 20331) ((-883 . -235) T) ((-835 . -130) T) ((-673 . -442) T) ((-814 . -1075) 20310) ((-107 . -869) NIL) ((-1167 . -275) 20276) ((-841 . -819) 20255) ((-1076 . -1173) T) ((-874 . -701) T) ((-166 . -503) 20167) ((-968 . -25) T) ((-874 . -463) T) ((-398 . -1075) T) ((-477 . -768) T) ((-477 . -765) T) ((-879 . -340) T) ((-477 . -701) T) ((-209 . -768) T) ((-209 . -765) T) ((-968 . -21) T) ((-209 . -701) T) ((-814 . -23) 20119) ((-310 . -298) 20098) ((-1004 . -227) 20044) ((-398 . -23) T) ((-912 . -592) 20005) ((-912 . -591) 19917) ((-619 . -479) 19901) ((-45 . -979) 19851) ((-594 . -936) T) ((-480 . -101) T) ((-322 . -591) 19833) ((-1076 . -1007) 19660) ((-572 . -625) 19642) ((-572 . -364) 19624) ((-334 . -1226) 19601) ((-996 . -1173) T) ((-840 . -281) T) ((-1192 . -503) 19548) ((-466 . -1173) T) ((-453 . -1173) T) ((-565 . -101) T) ((-1132 . -277) 19475) ((-599 . -442) 19454) ((-969 . -964) 19438) ((-1234 . -373) 19410) ((-506 . -1063) T) ((-117 . -442) T) ((-1153 . -101) T) ((-1056 . -1063) 19388) ((-1003 . -1063) T) ((-862 . -821) T) ((-342 . -1177) T) ((-1211 . -1022) 19271) ((-1076 . -368) 19240) ((-1204 . -1022) 19075) ((-1183 . -1022) 18865) ((-1211 . -111) 18734) ((-1204 . -111) 18555) ((-1183 . -111) 18324) ((-1167 . -300) 18311) ((-342 . -539) T) ((-356 . -591) 18293) ((-280 . -298) T) ((-575 . -1022) 18266) ((-574 . -1022) 18149) ((-352 . -1063) T) ((-313 . -1063) T) ((-242 . -591) 18110) ((-241 . -591) 18071) ((-972 . -130) T) ((-109 . -591) 18053) ((-611 . -23) T) ((-668 . -400) 18020) ((-585 . -23) T) ((-632 . -101) T) ((-575 . -111) 17991) ((-574 . -111) 17860) ((-370 . -1063) T) ((-327 . -101) T) ((-166 . -281) 17771) ((-1182 . -819) 17724) ((-689 . -1023) T) ((-1108 . -503) 17657) ((-1076 . -869) 17589) ((-808 . -1063) T) ((-801 . -1063) T) ((-799 . -1063) T) ((-96 . -101) T) ((-142 . -821) T) ((-590 . -853) 17573) ((-110 . -1173) T) ((-1051 . -101) T) ((-1028 . -34) T) ((-756 . -101) T) ((-754 . -101) T) ((-451 . -101) T) ((-444 . -101) T) ((-232 . -769) 17524) ((-232 . -766) 17475) ((-623 . -101) T) ((-1192 . -281) 17386) ((-638 . -610) 17370) ((-619 . -277) 17347) ((-1003 . -692) 17331) ((-554 . -281) T) ((-932 . -622) 17256) ((-1242 . -130) T) ((-710 . -622) 17216) ((-690 . -622) 17203) ((-266 . -101) T) ((-443 . -622) 17133) ((-50 . -101) T) ((-561 . -101) T) ((-507 . -101) T) ((-1211 . -1016) T) ((-1204 . -1016) T) ((-1183 . -1016) T) ((-1211 . -225) 17092) ((-313 . -692) 17074) ((-1204 . -235) 17053) ((-1204 . -225) 17005) ((-1183 . -225) 16892) ((-1183 . -235) 16871) ((-1167 . -38) 16768) ((-973 . -769) T) ((-575 . -1016) T) ((-574 . -1016) T) ((-973 . -766) T) ((-940 . -769) T) ((-940 . -766) T) ((-841 . -1023) T) ((-839 . -838) 16752) ((-108 . -591) 16734) ((-668 . -442) T) ((-370 . -692) 16699) ((-409 . -622) 16673) ((-687 . -821) 16652) ((-686 . -38) 16617) ((-574 . -225) 16576) ((-40 . -699) 16548) ((-342 . -320) 16525) ((-342 . -354) T) ((-1043 . -298) 16476) ((-285 . -1075) 16357) ((-1069 . -1173) T) ((-168 . -101) T) ((-1186 . -591) 16324) ((-814 . -130) 16276) ((-619 . -1207) 16260) ((-808 . -692) 16230) ((-801 . -692) 16200) ((-472 . -1173) T) ((-350 . -298) T) ((-344 . -298) T) ((-336 . -298) T) ((-619 . -582) 16177) ((-398 . -130) T) ((-509 . -640) 16161) ((-107 . -298) T) ((-285 . -23) 16044) ((-509 . -625) 16028) ((-668 . -393) NIL) ((-509 . -364) 16012) ((-282 . -591) 15994) ((-90 . -1063) 15972) ((-107 . -991) T) ((-547 . -141) T) ((-1219 . -149) 15956) ((-472 . -1007) 15783) ((-1205 . -143) 15744) ((-1205 . -145) 15705) ((-1020 . -1173) T) ((-962 . -591) 15687) ((-832 . -591) 15669) ((-790 . -1022) 15512) ((-1054 . -1063) T) ((-1051 . -300) 15499) ((-219 . -1173) T) ((-1031 . -1063) T) ((-1005 . -1063) T) ((-988 . -1063) T) ((-756 . -300) 15486) ((-754 . -300) 15473) ((-1230 . -92) T) ((-790 . -111) 15302) ((-1229 . -92) T) ((-602 . -1063) T) ((-1132 . -592) NIL) ((-1132 . -591) 15284) ((-444 . -300) 15271) ((-473 . -1063) T) ((-1087 . -591) 15253) ((-1087 . -592) 15001) ((-1003 . -169) T) ((-210 . -1063) T) ((-825 . -591) 14983) ((-912 . -279) 14960) ((-586 . -503) 14743) ((-792 . -1007) 14727) ((-465 . -503) 14519) ((-932 . -701) T) ((-710 . -701) T) ((-690 . -701) T) ((-342 . -1075) T) ((-1139 . -591) 14501) ((-215 . -101) T) ((-472 . -368) 14470) ((-504 . -1063) T) ((-499 . -1063) T) ((-497 . -1063) T) ((-773 . -622) 14444) ((-993 . -442) T) ((-927 . -503) 14377) ((-342 . -23) T) ((-611 . -130) T) ((-585 . -130) T) ((-345 . -442) T) ((-232 . -359) 14356) ((-370 . -169) T) ((-1203 . -1023) T) ((-1182 . -1023) T) ((-217 . -971) T) ((-673 . -378) T) ((-409 . -701) T) ((-675 . -1177) T) ((-1103 . -615) 14304) ((-560 . -838) 14288) ((-1120 . -1149) 14264) ((-675 . -539) T) ((-126 . -1063) 14242) ((-1234 . -1022) 14226) ((-689 . -1063) T) ((-472 . -869) 14158) ((-632 . -38) 14128) ((-345 . -393) T) ((-307 . -145) 14107) ((-307 . -143) 14086) ((-116 . -539) T) ((-304 . -145) 14042) ((-304 . -143) 13998) ((-48 . -442) T) ((-159 . -1063) T) ((-154 . -1063) T) ((-1120 . -106) 13945) ((-756 . -1112) 13923) ((-663 . -34) T) ((-1234 . -111) 13902) ((-533 . -34) T) ((-474 . -106) 13886) ((-242 . -279) 13863) ((-241 . -279) 13840) ((-840 . -277) 13791) ((-45 . -1173) T) ((-790 . -1016) T) ((-1138 . -47) 13768) ((-790 . -317) 13730) ((-1051 . -38) 13579) ((-790 . -225) 13558) ((-756 . -38) 13387) ((-754 . -38) 13236) ((-128 . -625) 13218) ((-444 . -38) 13067) ((-128 . -364) 13049) ((-1080 . -101) T) ((-619 . -592) 13010) ((-619 . -591) 12922) ((-561 . -1112) T) ((-507 . -1112) T) ((-1108 . -479) 12906) ((-1159 . -1063) 12884) ((-1103 . -25) T) ((-1103 . -21) T) ((-464 . -1023) T) ((-1183 . -766) NIL) ((-1183 . -769) NIL) ((-968 . -821) 12863) ((-793 . -591) 12845) ((-835 . -21) T) ((-835 . -25) T) ((-773 . -701) T) ((-171 . -1177) T) ((-561 . -38) 12810) ((-507 . -38) 12775) ((-377 . -591) 12757) ((-315 . -591) 12739) ((-166 . -277) 12697) ((-62 . -1173) T) ((-112 . -101) T) ((-841 . -1063) T) ((-171 . -539) T) ((-689 . -692) 12667) ((-285 . -130) 12550) ((-217 . -591) 12532) ((-217 . -592) 12462) ((-972 . -615) 12401) ((-1234 . -1016) T) ((-1082 . -145) T) ((-608 . -1149) 12376) ((-706 . -878) 12355) ((-572 . -34) T) ((-621 . -106) 12339) ((-608 . -106) 12285) ((-1192 . -277) 12212) ((-706 . -622) 12137) ((-286 . -1173) T) ((-1138 . -1007) 12033) ((-1127 . -878) NIL) ((-1027 . -592) 11948) ((-1027 . -591) 11930) ((-921 . -591) 11912) ((-334 . -101) T) ((-242 . -1022) 11809) ((-241 . -1022) 11706) ((-385 . -101) T) ((-31 . -1063) T) ((-921 . -592) 11567) ((-688 . -591) 11549) ((-1232 . -1166) 11518) ((-471 . -591) 11500) ((-471 . -592) 11361) ((-239 . -402) 11345) ((-255 . -402) 11329) ((-242 . -111) 11219) ((-241 . -111) 11109) ((-1134 . -622) 11034) ((-1133 . -622) 10931) ((-1127 . -622) 10783) ((-1088 . -622) 10708) ((-342 . -130) T) ((-81 . -431) T) ((-81 . -386) T) ((-972 . -25) T) ((-972 . -21) T) ((-842 . -1063) 10659) ((-841 . -692) 10611) ((-370 . -281) T) ((-166 . -971) 10563) ((-668 . -378) T) ((-968 . -966) 10547) ((-675 . -1075) T) ((-668 . -163) 10529) ((-1203 . -1063) T) ((-1182 . -1063) T) ((-307 . -1158) 10508) ((-307 . -1161) 10487) ((-1125 . -101) T) ((-307 . -928) 10466) ((-133 . -1075) T) ((-116 . -1075) T) ((-580 . -1217) 10450) ((-675 . -23) T) ((-580 . -1063) 10400) ((-90 . -503) 10333) ((-171 . -354) T) ((-307 . -94) 10312) ((-307 . -35) 10291) ((-586 . -479) 10225) ((-133 . -23) T) ((-116 . -23) T) ((-935 . -101) T) ((-693 . -1063) T) ((-465 . -479) 10162) ((-398 . -615) 10110) ((-627 . -1007) 10006) ((-927 . -479) 9990) ((-346 . -1023) T) ((-343 . -1023) T) ((-335 . -1023) T) ((-255 . -1023) T) ((-239 . -1023) T) ((-840 . -592) NIL) ((-840 . -591) 9972) ((-1242 . -21) T) ((-1230 . -591) 9938) ((-1229 . -591) 9904) ((-554 . -971) T) ((-706 . -701) T) ((-1242 . -25) T) ((-242 . -1016) 9834) ((-241 . -1016) 9764) ((-71 . -1173) T) ((-242 . -225) 9716) ((-241 . -225) 9668) ((-40 . -101) T) ((-879 . -1023) T) ((-1141 . -101) T) ((-1134 . -701) T) ((-1133 . -701) T) ((-1127 . -701) T) ((-1127 . -765) NIL) ((-1127 . -768) NIL) ((-923 . -101) T) ((-890 . -101) T) ((-1088 . -701) T) ((-745 . -101) T) ((-646 . -101) T) ((-464 . -1063) T) ((-330 . -1075) T) ((-171 . -1075) T) ((-310 . -889) 9647) ((-1203 . -692) 9488) ((-841 . -169) T) ((-1182 . -692) 9302) ((-814 . -21) 9254) ((-814 . -25) 9206) ((-237 . -1110) 9190) ((-126 . -503) 9123) ((-398 . -25) T) ((-398 . -21) T) ((-330 . -23) T) ((-166 . -592) 8891) ((-166 . -591) 8873) ((-171 . -23) T) ((-619 . -279) 8850) ((-509 . -34) T) ((-867 . -591) 8832) ((-88 . -1173) T) ((-812 . -591) 8814) ((-782 . -591) 8796) ((-743 . -591) 8778) ((-651 . -591) 8760) ((-232 . -622) 8608) ((-1136 . -1063) T) ((-1132 . -1022) 8431) ((-1111 . -1173) T) ((-1087 . -1022) 8274) ((-825 . -1022) 8258) ((-1132 . -111) 8067) ((-1087 . -111) 7896) ((-825 . -111) 7875) ((-1192 . -592) NIL) ((-1192 . -591) 7857) ((-334 . -1112) T) ((-826 . -591) 7839) ((-1039 . -277) 7818) ((-79 . -1173) T) ((-973 . -878) NIL) ((-586 . -277) 7794) ((-1159 . -503) 7727) ((-477 . -1173) T) ((-554 . -591) 7709) ((-465 . -277) 7688) ((-506 . -92) T) ((-209 . -1173) T) ((-1051 . -223) 7672) ((-280 . -889) T) ((-791 . -298) 7651) ((-839 . -101) T) ((-756 . -223) 7635) ((-973 . -622) 7585) ((-927 . -277) 7562) ((-883 . -622) 7514) ((-611 . -21) T) ((-611 . -25) T) ((-585 . -21) T) ((-334 . -38) 7479) ((-668 . -699) 7446) ((-477 . -853) 7428) ((-477 . -855) 7410) ((-464 . -692) 7251) ((-209 . -853) 7233) ((-63 . -1173) T) ((-209 . -855) 7215) ((-585 . -25) T) ((-418 . -622) 7189) ((-477 . -1007) 7149) ((-841 . -503) 7061) ((-209 . -1007) 7021) ((-232 . -34) T) ((-969 . -1063) 6999) ((-1203 . -169) 6930) ((-1182 . -169) 6861) ((-687 . -143) 6840) ((-687 . -145) 6819) ((-675 . -130) T) ((-135 . -455) 6796) ((-632 . -630) 6780) ((-1108 . -591) 6712) ((-116 . -130) T) ((-467 . -1177) T) ((-586 . -582) 6688) ((-465 . -582) 6667) ((-327 . -326) 6636) ((-523 . -1063) T) ((-467 . -539) T) ((-1132 . -1016) T) ((-1087 . -1016) T) ((-825 . -1016) T) ((-232 . -765) 6615) ((-232 . -768) 6566) ((-232 . -767) 6545) ((-1132 . -317) 6522) ((-232 . -701) 6432) ((-927 . -19) 6416) ((-477 . -368) 6398) ((-477 . -329) 6380) ((-1087 . -317) 6352) ((-345 . -1226) 6329) ((-209 . -368) 6311) ((-209 . -329) 6293) ((-927 . -582) 6270) ((-1132 . -225) T) ((-638 . -1063) T) ((-620 . -1063) T) ((-1215 . -1063) T) ((-1146 . -1063) T) ((-1051 . -244) 6207) ((-346 . -1063) T) ((-343 . -1063) T) ((-335 . -1063) T) ((-255 . -1063) T) ((-239 . -1063) T) ((-83 . -1173) T) ((-127 . -101) 6185) ((-121 . -101) 6163) ((-128 . -34) T) ((-1146 . -588) 6142) ((-469 . -1063) T) ((-1102 . -1063) T) ((-469 . -588) 6121) ((-242 . -769) 6072) ((-242 . -766) 6023) ((-241 . -769) 5974) ((-40 . -1112) NIL) ((-241 . -766) 5925) ((-1043 . -889) 5876) ((-973 . -768) T) ((-973 . -765) T) ((-973 . -701) T) ((-940 . -768) T) ((-883 . -701) T) ((-90 . -479) 5860) ((-477 . -869) NIL) ((-879 . -1063) T) ((-217 . -1022) 5825) ((-841 . -281) T) ((-209 . -869) NIL) ((-807 . -1075) 5804) ((-58 . -1063) 5754) ((-508 . -1063) 5732) ((-505 . -1063) 5682) ((-486 . -1063) 5660) ((-485 . -1063) 5610) ((-560 . -101) T) ((-547 . -101) T) ((-484 . -101) T) ((-464 . -169) 5541) ((-350 . -889) T) ((-344 . -889) T) ((-336 . -889) T) ((-217 . -111) 5497) ((-807 . -23) 5449) ((-418 . -701) T) ((-107 . -889) T) ((-40 . -38) 5394) ((-107 . -794) T) ((-561 . -340) T) ((-507 . -340) T) ((-1182 . -503) 5254) ((-307 . -442) 5233) ((-304 . -442) T) ((-808 . -277) 5212) ((-330 . -130) T) ((-171 . -130) T) ((-285 . -25) 5076) ((-285 . -21) 4959) ((-45 . -1149) 4938) ((-65 . -591) 4920) ((-861 . -591) 4902) ((-580 . -503) 4835) ((-45 . -106) 4785) ((-1065 . -416) 4769) ((-1065 . -359) 4748) ((-1028 . -1173) T) ((-1027 . -1022) 4735) ((-921 . -1022) 4578) ((-471 . -1022) 4421) ((-638 . -692) 4405) ((-1027 . -111) 4390) ((-921 . -111) 4219) ((-467 . -354) T) ((-346 . -692) 4171) ((-343 . -692) 4123) ((-335 . -692) 4075) ((-255 . -692) 3924) ((-239 . -692) 3773) ((-1220 . -101) T) ((-1219 . -101) 3723) ((-1211 . -622) 3648) ((-1183 . -878) NIL) ((-912 . -625) 3632) ((-1054 . -92) T) ((-471 . -111) 3461) ((-1031 . -92) T) ((-1005 . -92) T) ((-912 . -364) 3445) ((-240 . -101) T) ((-988 . -92) T) ((-73 . -591) 3427) ((-932 . -47) 3406) ((-597 . -1075) T) ((-1 . -1063) T) ((-685 . -101) T) ((-673 . -101) T) ((-1204 . -622) 3303) ((-602 . -92) T) ((-1154 . -591) 3285) ((-1052 . -591) 3267) ((-126 . -479) 3251) ((-473 . -92) T) ((-1039 . -591) 3233) ((-381 . -23) T) ((-86 . -1173) T) ((-210 . -92) T) ((-1183 . -622) 3085) ((-879 . -692) 3050) ((-597 . -23) T) ((-586 . -591) 3032) ((-586 . -592) NIL) ((-465 . -592) NIL) ((-465 . -591) 3014) ((-500 . -1063) T) ((-496 . -1063) T) ((-342 . -25) T) ((-342 . -21) T) ((-127 . -300) 2952) ((-121 . -300) 2890) ((-575 . -622) 2877) ((-217 . -1016) T) ((-574 . -622) 2802) ((-370 . -971) T) ((-217 . -235) T) ((-217 . -225) T) ((-927 . -592) 2763) ((-927 . -591) 2675) ((-839 . -38) 2662) ((-1203 . -281) 2613) ((-1182 . -281) 2564) ((-1082 . -442) T) ((-491 . -821) T) ((-307 . -1100) 2543) ((-968 . -145) 2522) ((-968 . -143) 2501) ((-484 . -300) 2488) ((-286 . -1149) 2467) ((-467 . -1075) T) ((-840 . -1022) 2412) ((-599 . -101) T) ((-1159 . -479) 2396) ((-242 . -359) 2375) ((-241 . -359) 2354) ((-286 . -106) 2304) ((-1027 . -1016) T) ((-117 . -101) T) ((-921 . -1016) T) ((-840 . -111) 2233) ((-467 . -23) T) ((-471 . -1016) T) ((-1027 . -225) T) ((-921 . -317) 2202) ((-471 . -317) 2159) ((-346 . -169) T) ((-343 . -169) T) ((-335 . -169) T) ((-255 . -169) 2070) ((-239 . -169) 1981) ((-932 . -1007) 1877) ((-710 . -1007) 1848) ((-506 . -591) 1814) ((-1068 . -101) T) ((-1056 . -591) 1781) ((-1003 . -591) 1763) ((-1211 . -701) T) ((-1204 . -701) T) ((-1183 . -765) NIL) ((-166 . -1022) 1673) ((-1183 . -768) NIL) ((-879 . -169) T) ((-1183 . -701) T) ((-1232 . -149) 1657) ((-972 . -333) 1631) ((-969 . -503) 1564) ((-814 . -821) 1543) ((-547 . -1112) T) ((-464 . -281) 1494) ((-575 . -701) T) ((-352 . -591) 1476) ((-313 . -591) 1458) ((-409 . -1007) 1354) ((-574 . -701) T) ((-398 . -821) 1305) ((-166 . -111) 1201) ((-807 . -130) 1153) ((-712 . -149) 1137) ((-1219 . -300) 1075) ((-477 . -298) T) ((-370 . -591) 1042) ((-509 . -979) 1026) ((-370 . -592) 940) ((-209 . -298) T) ((-139 . -149) 922) ((-689 . -277) 901) ((-477 . -991) T) ((-560 . -38) 888) ((-547 . -38) 875) ((-484 . -38) 840) ((-209 . -991) T) ((-840 . -1016) T) ((-808 . -591) 822) ((-801 . -591) 804) ((-799 . -591) 786) ((-790 . -878) 765) ((-1243 . -1075) T) ((-1192 . -1022) 588) ((-826 . -1022) 572) ((-840 . -235) T) ((-840 . -225) NIL) ((-663 . -1173) T) ((-1243 . -23) T) ((-790 . -622) 497) ((-533 . -1173) T) ((-409 . -329) 481) ((-554 . -1022) 468) ((-1192 . -111) 277) ((-675 . -615) 259) ((-826 . -111) 238) ((-372 . -23) T) ((-1146 . -503) 30) ((-636 . -1063) T) ((-655 . -1063) T) ((-650 . -1063) T)) \ No newline at end of file
+(-1536 (|has| |#1| (-823)) (|has| |#1| (-1067)))
+((($ $) . T) ((#0=(-836 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((|#2| $) |has| |#1| (-227)) ((|#2| |#1|) |has| |#1| (-227)) ((|#3| |#1|) . T) ((|#3| $) . T))
+(((-470 . -1067) T) ((-257 . -505) 144877) ((-241 . -505) 144820) ((-239 . -1067) 144770) ((-556 . -111) 144755) ((-521 . -23) T) ((-137 . -1067) T) ((-136 . -1067) T) ((-117 . -302) 144712) ((-132 . -1067) T) ((-471 . -505) 144504) ((-670 . -101) T) ((-1108 . -505) 144423) ((-383 . -130) T) ((-1239 . -947) 144392) ((-31 . -92) T) ((-582 . -481) 144376) ((-599 . -130) T) ((-795 . -819) T) ((-514 . -56) 144326) ((-58 . -505) 144259) ((-510 . -505) 144192) ((-411 . -871) 144151) ((-167 . -1018) T) ((-507 . -505) 144084) ((-488 . -505) 144017) ((-487 . -505) 143950) ((-775 . -1009) 143733) ((-675 . -38) 143698) ((-336 . -342) T) ((-1061 . -1060) 143682) ((-1061 . -1067) 143660) ((-167 . -237) 143611) ((-167 . -227) 143562) ((-1061 . -1062) 143520) ((-843 . -279) 143478) ((-219 . -771) T) ((-219 . -768) T) ((-670 . -277) NIL) ((-1117 . -1156) 143457) ((-400 . -963) 143441) ((-677 . -21) T) ((-677 . -25) T) ((-1241 . -624) 143415) ((-309 . -158) 143394) ((-309 . -141) 143373) ((-1117 . -106) 143323) ((-133 . -25) T) ((-40 . -225) 143300) ((-116 . -21) T) ((-116 . -25) T) ((-588 . -281) 143276) ((-467 . -281) 143255) ((-1199 . -1018) T) ((-828 . -1018) T) ((-775 . -331) 143239) ((-117 . -1118) NIL) ((-90 . -593) 143171) ((-469 . -130) T) ((-574 . -1180) T) ((-1199 . -319) 143148) ((-556 . -1018) T) ((-1199 . -227) T) ((-638 . -694) 143132) ((-1063 . -593) 143098) ((-929 . -281) 143075) ((-59 . -34) T) ((-1057 . -593) 143041) ((-1040 . -593) 143007) ((-1029 . -771) T) ((-1029 . -768) T) ((-792 . -703) T) ((-708 . -47) 142972) ((-601 . -38) 142959) ((-348 . -283) T) ((-345 . -283) T) ((-337 . -283) T) ((-257 . -283) 142890) ((-241 . -283) 142821) ((-1033 . -593) 142787) ((-1007 . -593) 142753) ((-995 . -101) T) ((-990 . -593) 142719) ((-406 . -703) T) ((-117 . -38) 142664) ((-604 . -593) 142630) ((-406 . -465) T) ((-475 . -593) 142596) ((-347 . -101) T) ((-212 . -593) 142562) ((-1174 . -1025) T) ((-688 . -1025) T) ((-1141 . -47) 142539) ((-1140 . -47) 142509) ((-1134 . -47) 142486) ((-1006 . -149) 142432) ((-881 . -283) T) ((-1093 . -47) 142404) ((-670 . -302) NIL) ((-506 . -593) 142386) ((-501 . -593) 142368) ((-499 . -593) 142350) ((-320 . -1067) 142300) ((-689 . -444) 142231) ((-48 . -101) T) ((-1210 . -279) 142216) ((-1189 . -279) 142136) ((-621 . -642) 142120) ((-621 . -627) 142104) ((-332 . -21) T) ((-332 . -25) T) ((-40 . -342) NIL) ((-172 . -21) T) ((-172 . -25) T) ((-621 . -366) 142088) ((-582 . -279) 142065) ((-585 . -593) 142032) ((-381 . -101) T) ((-1087 . -141) T) ((-126 . -593) 141964) ((-845 . -1067) T) ((-634 . -404) 141948) ((-691 . -593) 141930) ((-160 . -593) 141912) ((-155 . -593) 141894) ((-1241 . -703) T) ((-1069 . -34) T) ((-842 . -771) NIL) ((-842 . -768) NIL) ((-831 . -823) T) ((-708 . -857) NIL) ((-1250 . -130) T) ((-374 . -130) T) ((-875 . -101) T) ((-708 . -1009) 141770) ((-521 . -130) T) ((-1054 . -404) 141754) ((-971 . -481) 141738) ((-117 . -393) 141715) ((-1134 . -1180) 141694) ((-758 . -404) 141678) ((-756 . -404) 141662) ((-914 . -34) T) ((-670 . -1118) NIL) ((-244 . -624) 141497) ((-243 . -624) 141319) ((-793 . -891) 141298) ((-446 . -404) 141282) ((-582 . -19) 141266) ((-1113 . -1173) 141235) ((-1134 . -857) NIL) ((-1134 . -855) 141187) ((-582 . -584) 141164) ((-1166 . -593) 141096) ((-1142 . -593) 141078) ((-61 . -388) T) ((-1140 . -1009) 141013) ((-1134 . -1009) 140979) ((-670 . -38) 140929) ((-466 . -279) 140914) ((-708 . -370) 140898) ((-634 . -1025) T) ((-1210 . -973) 140864) ((-1189 . -973) 140830) ((-1030 . -1156) 140805) ((-843 . -594) 140613) ((-843 . -593) 140595) ((-1153 . -481) 140532) ((-411 . -993) 140511) ((-48 . -302) 140498) ((-1030 . -106) 140444) ((-471 . -481) 140381) ((-511 . -1180) T) ((-1134 . -331) 140333) ((-1108 . -481) 140304) ((-1134 . -370) 140256) ((-1054 . -1025) T) ((-430 . -101) T) ((-181 . -1067) T) ((-244 . -34) T) ((-243 . -34) T) ((-758 . -1025) T) ((-756 . -1025) T) ((-708 . -871) 140233) ((-446 . -1025) T) ((-58 . -481) 140217) ((-1005 . -1024) 140191) ((-510 . -481) 140175) ((-507 . -481) 140159) ((-488 . -481) 140143) ((-487 . -481) 140127) ((-239 . -505) 140060) ((-1005 . -111) 140027) ((-1141 . -871) 139940) ((-1140 . -871) 139846) ((-1134 . -871) 139679) ((-646 . -1079) T) ((-1093 . -871) 139663) ((-622 . -92) T) ((-347 . -1118) T) ((-315 . -1024) 139645) ((-244 . -767) 139624) ((-244 . -770) 139575) ((-244 . -769) 139554) ((-243 . -767) 139533) ((-243 . -770) 139484) ((-243 . -769) 139463) ((-31 . -593) 139429) ((-50 . -1025) T) ((-244 . -703) 139339) ((-243 . -703) 139249) ((-1174 . -1067) T) ((-646 . -23) T) ((-563 . -1025) T) ((-509 . -1025) T) ((-372 . -1024) 139214) ((-315 . -111) 139189) ((-72 . -376) T) ((-72 . -388) T) ((-995 . -38) 139126) ((-670 . -393) 139108) ((-98 . -101) T) ((-688 . -1067) T) ((-974 . -143) 139080) ((-974 . -145) 139052) ((-372 . -111) 139008) ((-312 . -1184) 138987) ((-466 . -973) 138953) ((-347 . -38) 138918) ((-40 . -363) 138890) ((-844 . -593) 138762) ((-127 . -125) 138746) ((-121 . -125) 138730) ((-810 . -1024) 138700) ((-809 . -21) 138652) ((-803 . -1024) 138636) ((-809 . -25) 138588) ((-312 . -541) 138539) ((-549 . -804) T) ((-234 . -1180) T) ((-810 . -111) 138504) ((-803 . -111) 138483) ((-1210 . -593) 138465) ((-1189 . -593) 138447) ((-1189 . -594) 138120) ((-1139 . -880) 138099) ((-1092 . -880) 138078) ((-48 . -38) 138043) ((-1248 . -1079) T) ((-582 . -593) 137955) ((-582 . -594) 137916) ((-1246 . -1079) T) ((-234 . -1009) 137743) ((-1139 . -624) 137668) ((-1092 . -624) 137593) ((-695 . -593) 137575) ((-827 . -624) 137549) ((-482 . -1067) T) ((-1248 . -23) T) ((-1246 . -23) T) ((-1005 . -1018) T) ((-1153 . -279) 137528) ((-167 . -361) 137479) ((-975 . -1180) T) ((-44 . -23) T) ((-471 . -279) 137458) ((-567 . -1067) T) ((-1113 . -1076) 137427) ((-1071 . -1070) 137379) ((-128 . -1180) T) ((-383 . -21) T) ((-383 . -25) T) ((-150 . -1079) T) ((-1254 . -101) T) ((-975 . -855) 137361) ((-975 . -857) 137343) ((-1174 . -694) 137240) ((-601 . -225) 137224) ((-599 . -21) T) ((-282 . -541) T) ((-599 . -25) T) ((-1160 . -1067) T) ((-688 . -694) 137189) ((-234 . -370) 137158) ((-975 . -1009) 137118) ((-372 . -1018) T) ((-217 . -1025) T) ((-117 . -225) 137095) ((-58 . -279) 137072) ((-150 . -23) T) ((-507 . -279) 137049) ((-320 . -505) 136982) ((-487 . -279) 136959) ((-372 . -237) T) ((-372 . -227) T) ((-810 . -1018) T) ((-803 . -1018) T) ((-689 . -920) 136928) ((-677 . -823) T) ((-466 . -593) 136910) ((-803 . -227) 136889) ((-133 . -823) T) ((-634 . -1067) T) ((-1153 . -584) 136868) ((-535 . -1156) 136847) ((-329 . -1067) T) ((-312 . -356) 136826) ((-400 . -145) 136805) ((-400 . -143) 136784) ((-935 . -1079) 136683) ((-234 . -871) 136615) ((-791 . -1079) 136525) ((-630 . -825) 136509) ((-471 . -584) 136488) ((-535 . -106) 136438) ((-975 . -370) 136420) ((-975 . -331) 136402) ((-96 . -1067) T) ((-935 . -23) 136213) ((-469 . -21) T) ((-469 . -25) T) ((-791 . -23) 136083) ((-1143 . -593) 136065) ((-58 . -19) 136049) ((-1143 . -594) 135971) ((-1139 . -703) T) ((-1092 . -703) T) ((-507 . -19) 135955) ((-487 . -19) 135939) ((-58 . -584) 135916) ((-1054 . -1067) T) ((-872 . -101) 135894) ((-827 . -703) T) ((-758 . -1067) T) ((-507 . -584) 135871) ((-487 . -584) 135848) ((-756 . -1067) T) ((-756 . -1032) 135815) ((-453 . -1067) T) ((-446 . -1067) T) ((-567 . -694) 135790) ((-625 . -1067) T) ((-975 . -871) NIL) ((-1218 . -47) 135767) ((-605 . -1079) T) ((-646 . -130) T) ((-1212 . -101) T) ((-1211 . -47) 135737) ((-1190 . -47) 135714) ((-1174 . -170) 135665) ((-1046 . -1184) 135616) ((-268 . -1067) T) ((-84 . -433) T) ((-84 . -388) T) ((-1140 . -300) 135595) ((-1134 . -300) 135574) ((-50 . -1067) T) ((-1046 . -541) 135525) ((-688 . -170) T) ((-576 . -47) 135502) ((-219 . -624) 135467) ((-563 . -1067) T) ((-509 . -1067) T) ((-352 . -1184) T) ((-346 . -1184) T) ((-338 . -1184) T) ((-479 . -796) T) ((-479 . -891) T) ((-312 . -1079) T) ((-107 . -1184) T) ((-332 . -823) T) ((-211 . -891) T) ((-211 . -796) T) ((-691 . -1024) 135437) ((-352 . -541) T) ((-346 . -541) T) ((-338 . -541) T) ((-107 . -541) T) ((-634 . -694) 135407) ((-1134 . -993) NIL) ((-312 . -23) T) ((-66 . -1180) T) ((-971 . -593) 135339) ((-670 . -225) 135321) ((-691 . -111) 135286) ((-621 . -34) T) ((-239 . -481) 135270) ((-1069 . -1065) 135254) ((-169 . -1067) T) ((-923 . -880) 135233) ((-473 . -880) 135212) ((-1254 . -1118) T) ((-1250 . -21) T) ((-1250 . -25) T) ((-1248 . -130) T) ((-1246 . -130) T) ((-1054 . -694) 135061) ((-1029 . -624) 135048) ((-923 . -624) 134973) ((-758 . -694) 134802) ((-525 . -593) 134784) ((-525 . -594) 134765) ((-756 . -694) 134614) ((-1239 . -101) T) ((-1043 . -101) T) ((-374 . -25) T) ((-374 . -21) T) ((-473 . -624) 134539) ((-453 . -694) 134510) ((-446 . -694) 134359) ((-958 . -101) T) ((-1222 . -593) 134325) ((-1211 . -1009) 134260) ((-1190 . -1180) 134239) ((-714 . -101) T) ((-1190 . -857) NIL) ((-1190 . -855) 134191) ((-1153 . -594) NIL) ((-1153 . -593) 134173) ((-521 . -25) T) ((-1109 . -1090) 134118) ((-1015 . -1173) 134047) ((-872 . -302) 133985) ((-336 . -1025) T) ((-139 . -101) T) ((-44 . -130) T) ((-282 . -1079) T) ((-657 . -92) T) ((-652 . -92) T) ((-640 . -593) 133967) ((-622 . -593) 133920) ((-470 . -92) T) ((-348 . -593) 133902) ((-345 . -593) 133884) ((-337 . -593) 133866) ((-257 . -594) 133614) ((-257 . -593) 133596) ((-241 . -593) 133578) ((-241 . -594) 133439) ((-137 . -92) T) ((-136 . -92) T) ((-132 . -92) T) ((-1190 . -1009) 133405) ((-1174 . -505) 133372) ((-1108 . -593) 133354) ((-795 . -830) T) ((-795 . -703) T) ((-582 . -281) 133331) ((-563 . -694) 133296) ((-471 . -594) NIL) ((-471 . -593) 133278) ((-509 . -694) 133223) ((-309 . -101) T) ((-306 . -101) T) ((-282 . -23) T) ((-150 . -130) T) ((-379 . -703) T) ((-843 . -1024) 133175) ((-881 . -593) 133157) ((-881 . -594) 133139) ((-843 . -111) 133077) ((-135 . -101) T) ((-114 . -101) T) ((-689 . -1202) 133061) ((-691 . -1018) T) ((-670 . -342) NIL) ((-510 . -593) 132993) ((-372 . -771) T) ((-217 . -1067) T) ((-372 . -768) T) ((-219 . -770) T) ((-219 . -767) T) ((-58 . -594) 132954) ((-58 . -593) 132866) ((-219 . -703) T) ((-507 . -594) 132827) ((-507 . -593) 132739) ((-488 . -593) 132671) ((-487 . -594) 132632) ((-487 . -593) 132544) ((-1046 . -356) 132495) ((-40 . -404) 132472) ((-76 . -1180) T) ((-842 . -880) NIL) ((-352 . -322) 132456) ((-352 . -356) T) ((-346 . -322) 132440) ((-346 . -356) T) ((-338 . -322) 132424) ((-338 . -356) T) ((-309 . -277) 132403) ((-107 . -356) T) ((-69 . -1180) T) ((-1190 . -331) 132355) ((-842 . -624) 132300) ((-1190 . -370) 132252) ((-935 . -130) 132107) ((-791 . -130) 131977) ((-929 . -627) 131961) ((-1054 . -170) 131872) ((-929 . -366) 131856) ((-1029 . -770) T) ((-1029 . -767) T) ((-758 . -170) 131747) ((-756 . -170) 131658) ((-792 . -47) 131620) ((-1029 . -703) T) ((-320 . -481) 131604) ((-923 . -703) T) ((-446 . -170) 131515) ((-239 . -279) 131492) ((-473 . -703) T) ((-1239 . -302) 131430) ((-1218 . -871) 131343) ((-1211 . -871) 131249) ((-1210 . -1024) 131084) ((-1190 . -871) 130917) ((-1189 . -1024) 130725) ((-1174 . -283) 130704) ((-1113 . -149) 130688) ((-1087 . -101) T) ((-1041 . -101) T) ((-898 . -926) T) ((-714 . -302) 130626) ((-74 . -1180) T) ((-30 . -926) T) ((-167 . -880) 130579) ((-640 . -375) 130551) ((-112 . -817) T) ((-1 . -593) 130533) ((-1085 . -1067) T) ((-1046 . -23) T) ((-50 . -598) 130517) ((-1046 . -1079) T) ((-974 . -402) 130489) ((-576 . -871) 130402) ((-431 . -101) T) ((-139 . -302) NIL) ((-843 . -1018) T) ((-809 . -823) 130381) ((-80 . -1180) T) ((-688 . -283) T) ((-40 . -1025) T) ((-563 . -170) T) ((-509 . -170) T) ((-502 . -593) 130363) ((-167 . -624) 130273) ((-498 . -593) 130255) ((-344 . -145) 130237) ((-344 . -143) T) ((-352 . -1079) T) ((-346 . -1079) T) ((-338 . -1079) T) ((-975 . -300) T) ((-885 . -300) T) ((-843 . -237) T) ((-107 . -1079) T) ((-843 . -227) 130216) ((-1210 . -111) 130037) ((-1189 . -111) 129826) ((-239 . -1214) 129810) ((-549 . -821) T) ((-352 . -23) T) ((-347 . -342) T) ((-309 . -302) 129797) ((-306 . -302) 129738) ((-346 . -23) T) ((-312 . -130) T) ((-338 . -23) T) ((-975 . -993) T) ((-107 . -23) T) ((-239 . -584) 129715) ((-1212 . -38) 129607) ((-1199 . -880) 129586) ((-112 . -1067) T) ((-1006 . -101) T) ((-1199 . -624) 129511) ((-842 . -770) NIL) ((-828 . -624) 129485) ((-842 . -767) NIL) ((-792 . -857) NIL) ((-842 . -703) T) ((-1054 . -505) 129358) ((-758 . -505) 129305) ((-756 . -505) 129257) ((-556 . -624) 129244) ((-792 . -1009) 129072) ((-446 . -505) 129015) ((-381 . -382) T) ((-59 . -1180) T) ((-599 . -823) 128994) ((-491 . -637) T) ((-1113 . -947) 128963) ((-974 . -444) T) ((-675 . -821) T) ((-501 . -768) T) ((-466 . -1024) 128798) ((-336 . -1067) T) ((-306 . -1118) NIL) ((-282 . -130) T) ((-387 . -1067) T) ((-670 . -363) 128765) ((-841 . -1025) T) ((-217 . -598) 128742) ((-320 . -279) 128719) ((-466 . -111) 128540) ((-1210 . -1018) T) ((-1189 . -1018) T) ((-792 . -370) 128524) ((-167 . -703) T) ((-630 . -101) T) ((-1210 . -237) 128503) ((-1210 . -227) 128455) ((-1189 . -227) 128360) ((-1189 . -237) 128339) ((-974 . -395) NIL) ((-646 . -617) 128287) ((-309 . -38) 128197) ((-306 . -38) 128126) ((-68 . -593) 128108) ((-312 . -484) 128074) ((-1153 . -281) 128053) ((-1080 . -1079) 127963) ((-82 . -1180) T) ((-60 . -593) 127945) ((-471 . -281) 127924) ((-1241 . -1009) 127901) ((-1131 . -1067) T) ((-1080 . -23) 127771) ((-792 . -871) 127707) ((-1199 . -703) T) ((-1069 . -1180) T) ((-1054 . -283) 127638) ((-937 . -1067) T) ((-864 . -101) T) ((-758 . -283) 127549) ((-320 . -19) 127533) ((-58 . -281) 127510) ((-756 . -283) 127441) ((-828 . -703) T) ((-117 . -821) NIL) ((-507 . -281) 127418) ((-320 . -584) 127395) ((-487 . -281) 127372) ((-446 . -283) 127303) ((-1006 . -302) 127154) ((-556 . -703) T) ((-657 . -593) 127104) ((-652 . -593) 127070) ((-638 . -593) 127052) ((-470 . -593) 127018) ((-239 . -594) 126979) ((-239 . -593) 126891) ((-137 . -593) 126857) ((-136 . -593) 126823) ((-132 . -593) 126789) ((-1114 . -34) T) ((-914 . -1180) T) ((-336 . -694) 126734) ((-646 . -25) T) ((-646 . -21) T) ((-466 . -1018) T) ((-613 . -410) 126699) ((-587 . -410) 126664) ((-1087 . -1118) T) ((-563 . -283) T) ((-509 . -283) T) ((-1211 . -300) 126643) ((-466 . -227) 126595) ((-466 . -237) 126574) ((-1190 . -300) 126553) ((-1190 . -993) NIL) ((-1046 . -130) T) ((-843 . -771) 126532) ((-142 . -101) T) ((-40 . -1067) T) ((-843 . -768) 126511) ((-621 . -981) 126495) ((-562 . -1025) T) ((-549 . -1025) T) ((-486 . -1025) T) ((-400 . -444) T) ((-352 . -130) T) ((-309 . -393) 126479) ((-306 . -393) 126440) ((-346 . -130) T) ((-338 . -130) T) ((-1148 . -1067) T) ((-1087 . -38) 126427) ((-1061 . -593) 126394) ((-107 . -130) T) ((-925 . -1067) T) ((-892 . -1067) T) ((-747 . -1067) T) ((-648 . -1067) T) ((-497 . -1050) T) ((-677 . -145) T) ((-116 . -145) T) ((-1248 . -21) T) ((-1248 . -25) T) ((-1246 . -21) T) ((-1246 . -25) T) ((-640 . -1024) 126378) ((-521 . -823) T) ((-491 . -823) T) ((-348 . -1024) 126330) ((-345 . -1024) 126282) ((-337 . -1024) 126234) ((-244 . -1180) T) ((-243 . -1180) T) ((-257 . -1024) 126077) ((-241 . -1024) 125920) ((-640 . -111) 125899) ((-348 . -111) 125837) ((-345 . -111) 125775) ((-337 . -111) 125713) ((-257 . -111) 125542) ((-241 . -111) 125371) ((-793 . -1184) 125350) ((-601 . -404) 125334) ((-44 . -21) T) ((-44 . -25) T) ((-791 . -617) 125240) ((-793 . -541) 125219) ((-244 . -1009) 125046) ((-243 . -1009) 124873) ((-126 . -119) 124857) ((-881 . -1024) 124822) ((-675 . -1025) T) ((-689 . -101) T) ((-336 . -170) T) ((-150 . -21) T) ((-150 . -25) T) ((-87 . -593) 124804) ((-881 . -111) 124760) ((-40 . -694) 124705) ((-841 . -1067) T) ((-320 . -594) 124666) ((-320 . -593) 124578) ((-1189 . -768) 124531) ((-1189 . -771) 124484) ((-244 . -370) 124453) ((-243 . -370) 124422) ((-630 . -38) 124392) ((-588 . -34) T) ((-474 . -1079) 124302) ((-467 . -34) T) ((-1080 . -130) 124172) ((-935 . -25) 123983) ((-845 . -593) 123965) ((-935 . -21) 123920) ((-791 . -21) 123830) ((-791 . -25) 123681) ((-601 . -1025) T) ((-1145 . -541) 123660) ((-1139 . -47) 123637) ((-348 . -1018) T) ((-345 . -1018) T) ((-474 . -23) 123507) ((-337 . -1018) T) ((-257 . -1018) T) ((-241 . -1018) T) ((-1092 . -47) 123479) ((-117 . -1025) T) ((-1005 . -624) 123453) ((-929 . -34) T) ((-348 . -227) 123432) ((-348 . -237) T) ((-345 . -227) 123411) ((-345 . -237) T) ((-241 . -319) 123368) ((-337 . -227) 123347) ((-337 . -237) T) ((-257 . -319) 123319) ((-257 . -227) 123298) ((-1123 . -149) 123282) ((-244 . -871) 123214) ((-243 . -871) 123146) ((-1048 . -823) T) ((-1193 . -1180) T) ((-407 . -1079) T) ((-1022 . -23) T) ((-881 . -1018) T) ((-315 . -624) 123128) ((-995 . -821) T) ((-1174 . -973) 123094) ((-1140 . -891) 123073) ((-1134 . -891) 123052) ((-881 . -237) T) ((-793 . -356) 123031) ((-378 . -23) T) ((-127 . -1067) 123009) ((-121 . -1067) 122987) ((-881 . -227) T) ((-1134 . -796) NIL) ((-372 . -624) 122952) ((-841 . -694) 122939) ((-1015 . -149) 122904) ((-40 . -170) T) ((-670 . -404) 122886) ((-689 . -302) 122873) ((-810 . -624) 122833) ((-803 . -624) 122807) ((-312 . -25) T) ((-312 . -21) T) ((-634 . -279) 122786) ((-562 . -1067) T) ((-549 . -1067) T) ((-486 . -1067) T) ((-239 . -281) 122763) ((-306 . -225) 122724) ((-1139 . -857) NIL) ((-1092 . -857) 122583) ((-129 . -823) T) ((-1139 . -1009) 122463) ((-1092 . -1009) 122346) ((-181 . -593) 122328) ((-827 . -1009) 122224) ((-758 . -279) 122151) ((-793 . -1079) T) ((-1005 . -703) T) ((-582 . -627) 122135) ((-1015 . -947) 122064) ((-970 . -101) T) ((-793 . -23) T) ((-689 . -1118) 122042) ((-670 . -1025) T) ((-582 . -366) 122026) ((-344 . -444) T) ((-336 . -283) T) ((-1227 . -1067) T) ((-242 . -1067) T) ((-392 . -101) T) ((-282 . -21) T) ((-282 . -25) T) ((-354 . -703) T) ((-687 . -1067) T) ((-675 . -1067) T) ((-354 . -465) T) ((-1174 . -593) 122008) ((-1139 . -370) 121992) ((-1092 . -370) 121976) ((-995 . -404) 121938) ((-139 . -223) 121920) ((-372 . -770) T) ((-372 . -767) T) ((-841 . -170) T) ((-372 . -703) T) ((-688 . -593) 121902) ((-689 . -38) 121731) ((-1226 . -1224) 121715) ((-344 . -395) T) ((-1226 . -1067) 121665) ((-562 . -694) 121652) ((-549 . -694) 121639) ((-486 . -694) 121604) ((-309 . -607) 121583) ((-810 . -703) T) ((-803 . -703) T) ((-621 . -1180) T) ((-1046 . -617) 121531) ((-1139 . -871) 121474) ((-1092 . -871) 121458) ((-638 . -1024) 121442) ((-107 . -617) 121424) ((-474 . -130) 121294) ((-1145 . -1079) T) ((-923 . -47) 121263) ((-601 . -1067) T) ((-638 . -111) 121242) ((-482 . -593) 121208) ((-320 . -281) 121185) ((-473 . -47) 121142) ((-1145 . -23) T) ((-117 . -1067) T) ((-102 . -101) 121120) ((-1238 . -1079) T) ((-1022 . -130) T) ((-995 . -1025) T) ((-795 . -1009) 121104) ((-974 . -701) 121076) ((-1238 . -23) T) ((-675 . -694) 121041) ((-567 . -593) 121023) ((-379 . -1009) 121007) ((-347 . -1025) T) ((-378 . -130) T) ((-317 . -1009) 120991) ((-219 . -857) 120973) ((-975 . -891) T) ((-90 . -34) T) ((-975 . -796) T) ((-885 . -891) T) ((-479 . -1184) T) ((-1160 . -593) 120955) ((-1072 . -1067) T) ((-211 . -1184) T) ((-970 . -302) 120920) ((-219 . -1009) 120880) ((-40 . -283) T) ((-1046 . -21) T) ((-1046 . -25) T) ((-1087 . -804) T) ((-479 . -541) T) ((-352 . -25) T) ((-211 . -541) T) ((-352 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-691 . -624) 120840) ((-338 . -25) T) ((-338 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1025) T) ((-562 . -170) T) ((-549 . -170) T) ((-486 . -170) T) ((-634 . -593) 120822) ((-714 . -713) 120806) ((-329 . -593) 120788) ((-67 . -376) T) ((-67 . -388) T) ((-1069 . -106) 120772) ((-1029 . -857) 120754) ((-923 . -857) 120679) ((-629 . -1079) T) ((-601 . -694) 120666) ((-473 . -857) NIL) ((-1113 . -101) T) ((-1029 . -1009) 120648) ((-96 . -593) 120630) ((-469 . -145) T) ((-923 . -1009) 120510) ((-117 . -694) 120455) ((-629 . -23) T) ((-473 . -1009) 120331) ((-1054 . -594) NIL) ((-1054 . -593) 120313) ((-758 . -594) NIL) ((-758 . -593) 120274) ((-756 . -594) 119908) ((-756 . -593) 119822) ((-1080 . -617) 119728) ((-453 . -593) 119710) ((-446 . -593) 119692) ((-446 . -594) 119553) ((-1006 . -223) 119499) ((-126 . -34) T) ((-793 . -130) T) ((-843 . -880) 119478) ((-625 . -593) 119460) ((-348 . -1245) 119444) ((-345 . -1245) 119428) ((-337 . -1245) 119412) ((-127 . -505) 119345) ((-121 . -505) 119278) ((-502 . -768) T) ((-502 . -771) T) ((-501 . -770) T) ((-102 . -302) 119216) ((-216 . -101) 119194) ((-670 . -1067) T) ((-675 . -170) T) ((-843 . -624) 119146) ((-64 . -377) T) ((-268 . -593) 119128) ((-64 . -388) T) ((-923 . -370) 119112) ((-841 . -283) T) ((-50 . -593) 119094) ((-970 . -38) 119042) ((-563 . -593) 119024) ((-473 . -370) 119008) ((-563 . -594) 118990) ((-509 . -593) 118972) ((-881 . -1245) 118959) ((-842 . -1180) T) ((-677 . -444) T) ((-486 . -505) 118925) ((-479 . -356) T) ((-348 . -361) 118904) ((-345 . -361) 118883) ((-337 . -361) 118862) ((-211 . -356) T) ((-691 . -703) T) ((-116 . -444) T) ((-1249 . -1240) 118846) ((-842 . -855) 118823) ((-842 . -857) NIL) ((-935 . -823) 118722) ((-791 . -823) 118673) ((-630 . -632) 118657) ((-1166 . -34) T) ((-169 . -593) 118639) ((-1080 . -21) 118549) ((-1080 . -25) 118400) ((-842 . -1009) 118377) ((-923 . -871) 118358) ((-1199 . -47) 118335) ((-881 . -361) T) ((-58 . -627) 118319) ((-507 . -627) 118303) ((-473 . -871) 118280) ((-70 . -433) T) ((-70 . -388) T) ((-487 . -627) 118264) ((-58 . -366) 118248) ((-601 . -170) T) ((-507 . -366) 118232) ((-487 . -366) 118216) ((-803 . -685) 118200) ((-1139 . -300) 118179) ((-1145 . -130) T) ((-117 . -170) T) ((-1113 . -302) 118117) ((-167 . -1180) T) ((-613 . -721) 118101) ((-587 . -721) 118085) ((-1238 . -130) T) ((-1211 . -891) 118064) ((-1190 . -891) 118043) ((-1190 . -796) NIL) ((-670 . -694) 117993) ((-1189 . -880) 117946) ((-995 . -1067) T) ((-842 . -370) 117923) ((-842 . -331) 117900) ((-876 . -1079) T) ((-167 . -855) 117884) ((-167 . -857) 117809) ((-479 . -1079) T) ((-347 . -1067) T) ((-211 . -1079) T) ((-75 . -433) T) ((-75 . -388) T) ((-167 . -1009) 117705) ((-312 . -823) T) ((-1226 . -505) 117638) ((-1210 . -624) 117535) ((-1189 . -624) 117405) ((-843 . -770) 117384) ((-843 . -767) 117363) ((-843 . -703) T) ((-479 . -23) T) ((-217 . -593) 117345) ((-172 . -444) T) ((-216 . -302) 117283) ((-85 . -433) T) ((-85 . -388) T) ((-211 . -23) T) ((-1250 . -1243) 117262) ((-562 . -283) T) ((-549 . -283) T) ((-653 . -1009) 117246) ((-486 . -283) T) ((-135 . -462) 117201) ((-48 . -1067) T) ((-689 . -225) 117185) ((-842 . -871) NIL) ((-1199 . -857) NIL) ((-860 . -101) T) ((-856 . -101) T) ((-381 . -1067) T) ((-167 . -370) 117169) ((-167 . -331) 117153) ((-1199 . -1009) 117033) ((-828 . -1009) 116929) ((-1109 . -101) T) ((-629 . -130) T) ((-117 . -505) 116837) ((-638 . -768) 116816) ((-638 . -771) 116795) ((-556 . -1009) 116777) ((-287 . -1233) 116747) ((-837 . -101) T) ((-934 . -541) 116726) ((-1174 . -1024) 116609) ((-474 . -617) 116515) ((-875 . -1067) T) ((-995 . -694) 116452) ((-688 . -1024) 116417) ((-596 . -101) T) ((-582 . -34) T) ((-1114 . -1180) T) ((-1174 . -111) 116286) ((-466 . -624) 116183) ((-347 . -694) 116128) ((-167 . -871) 116087) ((-675 . -283) T) ((-670 . -170) T) ((-688 . -111) 116043) ((-1254 . -1025) T) ((-1199 . -370) 116027) ((-411 . -1184) 116005) ((-1085 . -593) 115987) ((-306 . -821) NIL) ((-411 . -541) T) ((-219 . -300) T) ((-1189 . -767) 115940) ((-1189 . -770) 115893) ((-1210 . -703) T) ((-1189 . -703) T) ((-48 . -694) 115858) ((-219 . -993) T) ((-344 . -1233) 115835) ((-1212 . -404) 115801) ((-695 . -703) T) ((-1199 . -871) 115744) ((-112 . -593) 115726) ((-112 . -594) 115708) ((-695 . -465) T) ((-474 . -21) 115618) ((-127 . -481) 115602) ((-121 . -481) 115586) ((-474 . -25) 115437) ((-601 . -283) T) ((-567 . -1024) 115412) ((-430 . -1067) T) ((-1029 . -300) T) ((-117 . -283) T) ((-1071 . -101) T) ((-974 . -101) T) ((-567 . -111) 115380) ((-1109 . -302) 115318) ((-1174 . -1018) T) ((-1029 . -993) T) ((-65 . -1180) T) ((-1022 . -25) T) ((-1022 . -21) T) ((-688 . -1018) T) ((-378 . -21) T) ((-378 . -25) T) ((-670 . -505) NIL) ((-995 . -170) T) ((-688 . -237) T) ((-1029 . -534) T) ((-497 . -101) T) ((-493 . -101) T) ((-347 . -170) T) ((-336 . -593) 115300) ((-387 . -593) 115282) ((-466 . -703) T) ((-1087 . -821) T) ((-863 . -1009) 115250) ((-107 . -823) T) ((-634 . -1024) 115234) ((-479 . -130) T) ((-1212 . -1025) T) ((-211 . -130) T) ((-1123 . -101) 115212) ((-98 . -1067) T) ((-239 . -642) 115196) ((-239 . -627) 115180) ((-634 . -111) 115159) ((-309 . -404) 115143) ((-239 . -366) 115127) ((-1126 . -229) 115074) ((-970 . -225) 115058) ((-73 . -1180) T) ((-48 . -170) T) ((-677 . -380) T) ((-677 . -141) T) ((-1249 . -101) T) ((-1054 . -1024) 114901) ((-257 . -880) 114880) ((-241 . -880) 114859) ((-758 . -1024) 114682) ((-756 . -1024) 114525) ((-588 . -1180) T) ((-1131 . -593) 114507) ((-1054 . -111) 114336) ((-1015 . -101) T) ((-467 . -1180) T) ((-453 . -1024) 114307) ((-446 . -1024) 114150) ((-640 . -624) 114134) ((-842 . -300) T) ((-758 . -111) 113943) ((-756 . -111) 113772) ((-348 . -624) 113724) ((-345 . -624) 113676) ((-337 . -624) 113628) ((-257 . -624) 113553) ((-241 . -624) 113478) ((-1125 . -823) T) ((-1055 . -1009) 113462) ((-453 . -111) 113423) ((-446 . -111) 113252) ((-1042 . -1009) 113229) ((-971 . -34) T) ((-937 . -593) 113211) ((-929 . -1180) T) ((-126 . -981) 113195) ((-934 . -1079) T) ((-842 . -993) NIL) ((-712 . -1079) T) ((-692 . -1079) T) ((-1226 . -481) 113179) ((-1109 . -38) 113139) ((-934 . -23) T) ((-816 . -101) T) ((-793 . -21) T) ((-793 . -25) T) ((-712 . -23) T) ((-692 . -23) T) ((-110 . -637) T) ((-881 . -624) 113104) ((-563 . -1024) 113069) ((-509 . -1024) 113014) ((-221 . -56) 112972) ((-445 . -23) T) ((-400 . -101) T) ((-256 . -101) T) ((-670 . -283) T) ((-837 . -38) 112942) ((-563 . -111) 112898) ((-509 . -111) 112827) ((-411 . -1079) T) ((-309 . -1025) 112717) ((-306 . -1025) T) ((-634 . -1018) T) ((-1254 . -1067) T) ((-167 . -300) 112648) ((-411 . -23) T) ((-40 . -593) 112630) ((-40 . -594) 112614) ((-107 . -963) 112596) ((-116 . -840) 112580) ((-48 . -505) 112546) ((-1166 . -981) 112530) ((-1148 . -593) 112512) ((-1153 . -34) T) ((-925 . -593) 112478) ((-892 . -593) 112460) ((-1080 . -823) 112411) ((-747 . -593) 112393) ((-648 . -593) 112375) ((-1123 . -302) 112313) ((-471 . -34) T) ((-1059 . -1180) T) ((-469 . -444) T) ((-1054 . -1018) T) ((-1108 . -34) T) ((-758 . -1018) T) ((-756 . -1018) T) ((-623 . -229) 112297) ((-610 . -229) 112243) ((-1199 . -300) 112222) ((-1054 . -319) 112183) ((-446 . -1018) T) ((-1145 . -21) T) ((-1054 . -227) 112162) ((-758 . -319) 112139) ((-758 . -227) T) ((-756 . -319) 112111) ((-708 . -1184) 112090) ((-320 . -627) 112074) ((-1145 . -25) T) ((-58 . -34) T) ((-510 . -34) T) ((-507 . -34) T) ((-446 . -319) 112053) ((-320 . -366) 112037) ((-488 . -34) T) ((-487 . -34) T) ((-974 . -1118) NIL) ((-613 . -101) T) ((-587 . -101) T) ((-708 . -541) 111968) ((-348 . -703) T) ((-345 . -703) T) ((-337 . -703) T) ((-257 . -703) T) ((-241 . -703) T) ((-1015 . -302) 111876) ((-872 . -1067) 111854) ((-50 . -1018) T) ((-1238 . -21) T) ((-1238 . -25) T) ((-1141 . -541) 111833) ((-1140 . -1184) 111812) ((-563 . -1018) T) ((-509 . -1018) T) ((-1134 . -1184) 111791) ((-354 . -1009) 111775) ((-315 . -1009) 111759) ((-995 . -283) T) ((-372 . -857) 111741) ((-1140 . -541) 111692) ((-1134 . -541) 111643) ((-974 . -38) 111588) ((-775 . -1079) T) ((-881 . -703) T) ((-563 . -237) T) ((-563 . -227) T) ((-509 . -227) T) ((-509 . -237) T) ((-1093 . -541) 111567) ((-347 . -283) T) ((-623 . -671) 111551) ((-372 . -1009) 111511) ((-1087 . -1025) T) ((-102 . -125) 111495) ((-775 . -23) T) ((-1226 . -279) 111472) ((-400 . -302) 111437) ((-1248 . -1243) 111413) ((-1246 . -1243) 111392) ((-1212 . -1067) T) ((-841 . -593) 111374) ((-810 . -1009) 111343) ((-197 . -763) T) ((-196 . -763) T) ((-195 . -763) T) ((-194 . -763) T) ((-193 . -763) T) ((-192 . -763) T) ((-191 . -763) T) ((-190 . -763) T) ((-189 . -763) T) ((-188 . -763) T) ((-486 . -973) T) ((-267 . -812) T) ((-266 . -812) T) ((-265 . -812) T) ((-264 . -812) T) ((-48 . -283) T) ((-263 . -812) T) ((-262 . -812) T) ((-261 . -812) T) ((-187 . -763) T) ((-592 . -823) T) ((-630 . -404) 111327) ((-110 . -823) T) ((-629 . -21) T) ((-629 . -25) T) ((-1249 . -38) 111297) ((-117 . -279) 111248) ((-1226 . -19) 111232) ((-1226 . -584) 111209) ((-1239 . -1067) T) ((-1043 . -1067) T) ((-958 . -1067) T) ((-934 . -130) T) ((-714 . -1067) T) ((-712 . -130) T) ((-692 . -130) T) ((-502 . -769) T) ((-400 . -1118) 111187) ((-445 . -130) T) ((-502 . -770) T) ((-217 . -1018) T) ((-287 . -101) 110969) ((-139 . -1067) T) ((-675 . -973) T) ((-90 . -1180) T) ((-127 . -593) 110901) ((-121 . -593) 110833) ((-1254 . -170) T) ((-1140 . -356) 110812) ((-1134 . -356) 110791) ((-309 . -1067) T) ((-411 . -130) T) ((-306 . -1067) T) ((-400 . -38) 110743) ((-1100 . -101) T) ((-1212 . -694) 110635) ((-630 . -1025) T) ((-1102 . -1221) T) ((-312 . -143) 110614) ((-312 . -145) 110593) ((-135 . -1067) T) ((-114 . -1067) T) ((-831 . -101) T) ((-562 . -593) 110575) ((-549 . -594) 110474) ((-549 . -593) 110456) ((-486 . -593) 110438) ((-486 . -594) 110383) ((-477 . -23) T) ((-474 . -823) 110334) ((-479 . -617) 110316) ((-936 . -593) 110298) ((-211 . -617) 110280) ((-219 . -397) T) ((-638 . -624) 110264) ((-1139 . -891) 110243) ((-708 . -1079) T) ((-344 . -101) T) ((-1179 . -1050) T) ((-794 . -823) T) ((-708 . -23) T) ((-336 . -1024) 110188) ((-1125 . -1124) T) ((-1114 . -106) 110172) ((-1141 . -1079) T) ((-1140 . -1079) T) ((-506 . -1009) 110156) ((-1134 . -1079) T) ((-1093 . -1079) T) ((-336 . -111) 110085) ((-975 . -1184) T) ((-126 . -1180) T) ((-885 . -1184) T) ((-670 . -279) NIL) ((-1227 . -593) 110067) ((-1141 . -23) T) ((-1140 . -23) T) ((-1134 . -23) T) ((-975 . -541) T) ((-1109 . -225) 110051) ((-885 . -541) T) ((-1093 . -23) T) ((-242 . -593) 110033) ((-1041 . -1067) T) ((-775 . -130) T) ((-687 . -593) 110015) ((-309 . -694) 109925) ((-306 . -694) 109854) ((-675 . -593) 109836) ((-675 . -594) 109781) ((-400 . -393) 109765) ((-431 . -1067) T) ((-479 . -25) T) ((-479 . -21) T) ((-1087 . -1067) T) ((-211 . -25) T) ((-211 . -21) T) ((-689 . -404) 109749) ((-691 . -1009) 109718) ((-1226 . -593) 109630) ((-1226 . -594) 109591) ((-1212 . -170) T) ((-239 . -34) T) ((-897 . -945) T) ((-1166 . -1180) T) ((-638 . -767) 109570) ((-638 . -770) 109549) ((-391 . -388) T) ((-514 . -101) 109527) ((-1006 . -1067) T) ((-216 . -966) 109511) ((-495 . -101) T) ((-601 . -593) 109493) ((-45 . -823) NIL) ((-601 . -594) 109470) ((-1006 . -590) 109445) ((-872 . -505) 109378) ((-336 . -1018) T) ((-117 . -594) NIL) ((-117 . -593) 109360) ((-843 . -1180) T) ((-646 . -410) 109344) ((-646 . -1090) 109289) ((-491 . -149) 109271) ((-336 . -227) T) ((-336 . -237) T) ((-40 . -1024) 109216) ((-843 . -855) 109200) ((-843 . -857) 109125) ((-689 . -1025) T) ((-670 . -973) NIL) ((-3 . |UnionCategory|) T) ((-1210 . -47) 109095) ((-1189 . -47) 109072) ((-1108 . -981) 109043) ((-219 . -891) T) ((-40 . -111) 108972) ((-843 . -1009) 108836) ((-1087 . -694) 108823) ((-1072 . -593) 108805) ((-1046 . -145) 108784) ((-1046 . -143) 108735) ((-975 . -356) T) ((-312 . -1168) 108701) ((-372 . -300) T) ((-312 . -1165) 108667) ((-309 . -170) 108646) ((-306 . -170) T) ((-974 . -225) 108623) ((-885 . -356) T) ((-563 . -1245) 108610) ((-509 . -1245) 108587) ((-352 . -145) 108566) ((-352 . -143) 108517) ((-346 . -145) 108496) ((-346 . -143) 108447) ((-588 . -1156) 108423) ((-338 . -145) 108402) ((-338 . -143) 108353) ((-312 . -35) 108319) ((-467 . -1156) 108298) ((0 . |EnumerationCategory|) T) ((-312 . -94) 108264) ((-372 . -993) T) ((-107 . -145) T) ((-107 . -143) NIL) ((-45 . -229) 108214) ((-630 . -1067) T) ((-588 . -106) 108161) ((-477 . -130) T) ((-467 . -106) 108111) ((-234 . -1079) 108021) ((-843 . -370) 108005) ((-843 . -331) 107989) ((-234 . -23) 107859) ((-1029 . -891) T) ((-1029 . -796) T) ((-563 . -361) T) ((-509 . -361) T) ((-344 . -1118) T) ((-320 . -34) T) ((-44 . -410) 107843) ((-844 . -1180) T) ((-383 . -721) 107827) ((-1239 . -505) 107760) ((-708 . -130) T) ((-1218 . -541) 107739) ((-1211 . -1184) 107718) ((-1211 . -541) 107669) ((-1190 . -1184) 107648) ((-304 . -1050) T) ((-1190 . -541) 107599) ((-714 . -505) 107532) ((-1189 . -1180) 107511) ((-1189 . -857) 107384) ((-864 . -1067) T) ((-142 . -817) T) ((-1189 . -855) 107354) ((-667 . -593) 107336) ((-1141 . -130) T) ((-514 . -302) 107274) ((-1140 . -130) T) ((-139 . -505) NIL) ((-1134 . -130) T) ((-1093 . -130) T) ((-995 . -973) T) ((-975 . -23) T) ((-344 . -38) 107239) ((-975 . -1079) T) ((-885 . -1079) T) ((-81 . -593) 107221) ((-40 . -1018) T) ((-841 . -1024) 107208) ((-974 . -342) NIL) ((-843 . -871) 107167) ((-677 . -101) T) ((-942 . -23) T) ((-582 . -1180) T) ((-885 . -23) T) ((-841 . -111) 107152) ((-420 . -1079) T) ((-466 . -47) 107122) ((-207 . -101) T) ((-133 . -101) T) ((-40 . -227) 107094) ((-40 . -237) T) ((-116 . -101) T) ((-577 . -541) 107073) ((-576 . -541) 107052) ((-670 . -593) 107034) ((-670 . -594) 106942) ((-309 . -505) 106908) ((-306 . -505) 106800) ((-1210 . -1009) 106784) ((-1189 . -1009) 106570) ((-970 . -404) 106554) ((-420 . -23) T) ((-1087 . -170) T) ((-1212 . -283) T) ((-630 . -694) 106524) ((-142 . -1067) T) ((-48 . -973) T) ((-400 . -225) 106508) ((-288 . -229) 106458) ((-842 . -891) T) ((-842 . -796) NIL) ((-836 . -823) T) ((-1189 . -331) 106428) ((-1189 . -370) 106398) ((-216 . -1088) 106382) ((-1226 . -281) 106359) ((-1174 . -624) 106284) ((-934 . -21) T) ((-934 . -25) T) ((-712 . -21) T) ((-712 . -25) T) ((-692 . -21) T) ((-692 . -25) T) ((-688 . -624) 106249) ((-445 . -21) T) ((-445 . -25) T) ((-332 . -101) T) ((-172 . -101) T) ((-970 . -1025) T) ((-841 . -1018) T) ((-750 . -101) T) ((-1211 . -356) 106228) ((-1210 . -871) 106134) ((-1190 . -356) 106113) ((-1189 . -871) 105964) ((-995 . -593) 105946) ((-400 . -804) 105899) ((-1141 . -484) 105865) ((-167 . -891) 105796) ((-1140 . -484) 105762) ((-1134 . -484) 105728) ((-689 . -1067) T) ((-1093 . -484) 105694) ((-562 . -1024) 105681) ((-549 . -1024) 105668) ((-486 . -1024) 105633) ((-309 . -283) 105612) ((-306 . -283) T) ((-347 . -593) 105594) ((-411 . -25) T) ((-411 . -21) T) ((-98 . -279) 105573) ((-562 . -111) 105558) ((-549 . -111) 105543) ((-486 . -111) 105499) ((-1143 . -857) 105466) ((-872 . -481) 105450) ((-48 . -593) 105432) ((-48 . -594) 105377) ((-234 . -130) 105247) ((-1199 . -891) 105226) ((-792 . -1184) 105205) ((-1006 . -505) 105049) ((-381 . -593) 105031) ((-792 . -541) 104962) ((-567 . -624) 104937) ((-257 . -47) 104909) ((-241 . -47) 104866) ((-521 . -500) 104843) ((-971 . -1180) T) ((-675 . -1024) 104808) ((-1218 . -1079) T) ((-1211 . -1079) T) ((-1190 . -1079) T) ((-974 . -363) 104780) ((-112 . -361) T) ((-466 . -871) 104686) ((-1218 . -23) T) ((-1211 . -23) T) ((-875 . -593) 104668) ((-90 . -106) 104652) ((-1174 . -703) T) ((-876 . -823) 104603) ((-677 . -1118) T) ((-675 . -111) 104559) ((-1190 . -23) T) ((-577 . -1079) T) ((-576 . -1079) T) ((-689 . -694) 104388) ((-688 . -703) T) ((-1087 . -283) T) ((-975 . -130) T) ((-479 . -823) T) ((-942 . -130) T) ((-885 . -130) T) ((-775 . -25) T) ((-211 . -823) T) ((-775 . -21) T) ((-562 . -1018) T) ((-549 . -1018) T) ((-486 . -1018) T) ((-577 . -23) T) ((-336 . -1245) 104365) ((-312 . -444) 104344) ((-332 . -302) 104331) ((-576 . -23) T) ((-420 . -130) T) ((-634 . -624) 104305) ((-239 . -981) 104289) ((-843 . -300) T) ((-1250 . -1240) 104273) ((-747 . -768) T) ((-747 . -771) T) ((-677 . -38) 104260) ((-549 . -227) T) ((-486 . -237) T) ((-486 . -227) T) ((-1117 . -229) 104210) ((-1054 . -880) 104189) ((-116 . -38) 104176) ((-203 . -776) T) ((-202 . -776) T) ((-201 . -776) T) ((-200 . -776) T) ((-843 . -993) 104155) ((-1239 . -481) 104139) ((-758 . -880) 104118) ((-756 . -880) 104097) ((-1153 . -1180) T) ((-446 . -880) 104076) ((-714 . -481) 104060) ((-1054 . -624) 103985) ((-758 . -624) 103910) ((-601 . -1024) 103897) ((-471 . -1180) T) ((-336 . -361) T) ((-139 . -481) 103879) ((-756 . -624) 103804) ((-1108 . -1180) T) ((-453 . -624) 103775) ((-257 . -857) 103634) ((-241 . -857) NIL) ((-117 . -1024) 103579) ((-446 . -624) 103504) ((-640 . -1009) 103481) ((-601 . -111) 103466) ((-348 . -1009) 103450) ((-345 . -1009) 103434) ((-337 . -1009) 103418) ((-257 . -1009) 103262) ((-241 . -1009) 103138) ((-117 . -111) 103067) ((-58 . -1180) T) ((-510 . -1180) T) ((-507 . -1180) T) ((-488 . -1180) T) ((-487 . -1180) T) ((-430 . -593) 103049) ((-427 . -593) 103031) ((-3 . -101) T) ((-998 . -1173) 103000) ((-809 . -101) T) ((-665 . -56) 102958) ((-675 . -1018) T) ((-50 . -624) 102932) ((-282 . -444) T) ((-468 . -1173) 102901) ((0 . -101) T) ((-563 . -624) 102866) ((-509 . -624) 102811) ((-49 . -101) T) ((-881 . -1009) 102798) ((-675 . -237) T) ((-1046 . -402) 102777) ((-708 . -617) 102725) ((-970 . -1067) T) ((-689 . -170) 102616) ((-479 . -963) 102598) ((-257 . -370) 102582) ((-241 . -370) 102566) ((-392 . -1067) T) ((-332 . -38) 102550) ((-997 . -101) 102528) ((-211 . -963) 102510) ((-172 . -38) 102442) ((-1210 . -300) 102421) ((-1189 . -300) 102400) ((-634 . -703) T) ((-98 . -593) 102382) ((-1134 . -617) 102334) ((-477 . -25) T) ((-477 . -21) T) ((-1189 . -993) 102287) ((-601 . -1018) T) ((-372 . -397) T) ((-383 . -101) T) ((-257 . -871) 102233) ((-241 . -871) 102210) ((-117 . -1018) T) ((-792 . -1079) T) ((-1054 . -703) T) ((-601 . -227) 102189) ((-599 . -101) T) ((-758 . -703) T) ((-756 . -703) T) ((-406 . -1079) T) ((-117 . -237) T) ((-40 . -361) NIL) ((-117 . -227) NIL) ((-446 . -703) T) ((-792 . -23) T) ((-708 . -25) T) ((-708 . -21) T) ((-679 . -823) T) ((-1043 . -279) 102168) ((-77 . -389) T) ((-77 . -388) T) ((-670 . -1024) 102118) ((-1218 . -130) T) ((-1211 . -130) T) ((-1190 . -130) T) ((-1109 . -404) 102102) ((-613 . -360) 102034) ((-587 . -360) 101966) ((-1123 . -1116) 101950) ((-102 . -1067) 101928) ((-1141 . -25) T) ((-1141 . -21) T) ((-1140 . -21) T) ((-970 . -694) 101876) ((-217 . -624) 101843) ((-670 . -111) 101777) ((-50 . -703) T) ((-1140 . -25) T) ((-344 . -342) T) ((-1134 . -21) T) ((-1046 . -444) 101728) ((-1134 . -25) T) ((-689 . -505) 101675) ((-563 . -703) T) ((-509 . -703) T) ((-1093 . -21) T) ((-1093 . -25) T) ((-577 . -130) T) ((-576 . -130) T) ((-352 . -444) T) ((-346 . -444) T) ((-338 . -444) T) ((-466 . -300) 101654) ((-306 . -279) 101589) ((-107 . -444) T) ((-78 . -433) T) ((-78 . -388) T) ((-469 . -101) T) ((-1254 . -593) 101571) ((-1254 . -594) 101553) ((-1046 . -395) 101532) ((-1006 . -481) 101463) ((-549 . -771) T) ((-549 . -768) T) ((-1030 . -229) 101409) ((-352 . -395) 101360) ((-346 . -395) 101311) ((-338 . -395) 101262) ((-1241 . -1079) T) ((-1241 . -23) T) ((-1228 . -101) T) ((-173 . -593) 101244) ((-1109 . -1025) T) ((-646 . -721) 101228) ((-1145 . -143) 101207) ((-1145 . -145) 101186) ((-1113 . -1067) T) ((-1113 . -1038) 101155) ((-68 . -1180) T) ((-995 . -1024) 101092) ((-837 . -1025) T) ((-234 . -617) 100998) ((-670 . -1018) T) ((-347 . -1024) 100943) ((-60 . -1180) T) ((-995 . -111) 100859) ((-872 . -593) 100791) ((-670 . -237) T) ((-670 . -227) NIL) ((-816 . -821) 100770) ((-675 . -771) T) ((-675 . -768) T) ((-974 . -404) 100747) ((-347 . -111) 100676) ((-372 . -891) T) ((-400 . -821) 100655) ((-689 . -283) 100566) ((-217 . -703) T) ((-1218 . -484) 100532) ((-1211 . -484) 100498) ((-1190 . -484) 100464) ((-309 . -973) 100443) ((-216 . -1067) 100421) ((-312 . -944) 100383) ((-104 . -101) T) ((-48 . -1024) 100348) ((-1250 . -101) T) ((-374 . -101) T) ((-48 . -111) 100304) ((-975 . -617) 100286) ((-1212 . -593) 100268) ((-521 . -101) T) ((-491 . -101) T) ((-1100 . -1101) 100252) ((-150 . -1233) 100236) ((-239 . -1180) T) ((-1179 . -101) T) ((-1139 . -1184) 100215) ((-1092 . -1184) 100194) ((-234 . -21) 100104) ((-234 . -25) 99955) ((-127 . -119) 99939) ((-121 . -119) 99923) ((-44 . -721) 99907) ((-1139 . -541) 99818) ((-1092 . -541) 99749) ((-1006 . -279) 99724) ((-1133 . -1050) T) ((-965 . -1050) T) ((-792 . -130) T) ((-117 . -771) NIL) ((-117 . -768) NIL) ((-348 . -300) T) ((-345 . -300) T) ((-337 . -300) T) ((-1061 . -1180) T) ((-244 . -1079) 99634) ((-243 . -1079) 99544) ((-995 . -1018) T) ((-974 . -1025) T) ((-336 . -624) 99489) ((-599 . -38) 99473) ((-1239 . -593) 99435) ((-1239 . -594) 99396) ((-1043 . -593) 99378) ((-995 . -237) T) ((-347 . -1018) T) ((-791 . -1233) 99348) ((-244 . -23) T) ((-243 . -23) T) ((-958 . -593) 99330) ((-714 . -594) 99291) ((-714 . -593) 99273) ((-775 . -823) 99252) ((-970 . -505) 99164) ((-347 . -227) T) ((-347 . -237) T) ((-1126 . -149) 99111) ((-975 . -25) T) ((-139 . -594) 99070) ((-139 . -593) 99052) ((-881 . -300) T) ((-975 . -21) T) ((-942 . -25) T) ((-885 . -21) T) ((-885 . -25) T) ((-420 . -21) T) ((-420 . -25) T) ((-816 . -404) 99036) ((-48 . -1018) T) ((-1248 . -1240) 99020) ((-1246 . -1240) 99004) ((-1006 . -584) 98979) ((-309 . -594) 98840) ((-309 . -593) 98822) ((-306 . -594) NIL) ((-306 . -593) 98804) ((-48 . -237) T) ((-48 . -227) T) ((-630 . -279) 98765) ((-535 . -229) 98715) ((-135 . -593) 98697) ((-114 . -593) 98679) ((-469 . -38) 98644) ((-1250 . -1247) 98623) ((-1241 . -130) T) ((-1249 . -1025) T) ((-1048 . -101) T) ((-87 . -1180) T) ((-491 . -302) NIL) ((-971 . -106) 98607) ((-860 . -1067) T) ((-856 . -1067) T) ((-1226 . -627) 98591) ((-1226 . -366) 98575) ((-320 . -1180) T) ((-574 . -823) T) ((-1109 . -1067) T) ((-1109 . -1021) 98515) ((-102 . -505) 98448) ((-898 . -593) 98430) ((-336 . -703) T) ((-30 . -593) 98412) ((-837 . -1067) T) ((-816 . -1025) 98391) ((-40 . -624) 98336) ((-219 . -1184) T) ((-400 . -1025) T) ((-1125 . -149) 98318) ((-970 . -283) 98269) ((-596 . -1067) T) ((-219 . -541) T) ((-312 . -1207) 98253) ((-312 . -1204) 98223) ((-1153 . -1156) 98202) ((-1041 . -593) 98184) ((-623 . -149) 98168) ((-610 . -149) 98114) ((-1153 . -106) 98064) ((-471 . -1156) 98043) ((-479 . -145) T) ((-479 . -143) NIL) ((-1087 . -594) 97958) ((-431 . -593) 97940) ((-211 . -145) T) ((-211 . -143) NIL) ((-1087 . -593) 97922) ((-129 . -101) T) ((-52 . -101) T) ((-1190 . -617) 97874) ((-471 . -106) 97824) ((-964 . -23) T) ((-1250 . -38) 97794) ((-1139 . -1079) T) ((-1092 . -1079) T) ((-1029 . -1184) T) ((-304 . -101) T) ((-827 . -1079) T) ((-923 . -1184) 97773) ((-473 . -1184) 97752) ((-708 . -823) 97731) ((-1029 . -541) T) ((-923 . -541) 97662) ((-1139 . -23) T) ((-1092 . -23) T) ((-827 . -23) T) ((-473 . -541) 97593) ((-1109 . -694) 97525) ((-1113 . -505) 97458) ((-1006 . -594) NIL) ((-1006 . -593) 97440) ((-95 . -1050) T) ((-837 . -694) 97410) ((-1174 . -47) 97379) ((-244 . -130) T) ((-243 . -130) T) ((-1071 . -1067) T) ((-974 . -1067) T) ((-61 . -593) 97361) ((-1134 . -823) NIL) ((-995 . -768) T) ((-995 . -771) T) ((-1254 . -1024) 97348) ((-1254 . -111) 97333) ((-841 . -624) 97320) ((-1218 . -25) T) ((-1218 . -21) T) ((-1211 . -21) T) ((-1211 . -25) T) ((-1190 . -21) T) ((-1190 . -25) T) ((-998 . -149) 97304) ((-843 . -796) 97283) ((-843 . -891) T) ((-689 . -279) 97210) ((-577 . -21) T) ((-577 . -25) T) ((-576 . -21) T) ((-40 . -703) T) ((-216 . -505) 97143) ((-576 . -25) T) ((-468 . -149) 97127) ((-455 . -149) 97111) ((-892 . -770) T) ((-892 . -703) T) ((-747 . -769) T) ((-747 . -770) T) ((-497 . -1067) T) ((-493 . -1067) T) ((-747 . -703) T) ((-219 . -356) T) ((-1123 . -1067) 97089) ((-842 . -1184) T) ((-630 . -593) 97071) ((-842 . -541) T) ((-670 . -361) NIL) ((-352 . -1233) 97055) ((-646 . -101) T) ((-346 . -1233) 97039) ((-338 . -1233) 97023) ((-1249 . -1067) T) ((-511 . -823) 97002) ((-793 . -444) 96981) ((-1015 . -1067) T) ((-1015 . -1038) 96910) ((-998 . -947) 96879) ((-795 . -1079) T) ((-974 . -694) 96824) ((-379 . -1079) T) ((-468 . -947) 96793) ((-455 . -947) 96762) ((-110 . -149) 96744) ((-72 . -593) 96726) ((-864 . -593) 96708) ((-1046 . -701) 96687) ((-1254 . -1018) T) ((-792 . -617) 96635) ((-287 . -1025) 96577) ((-167 . -1184) 96482) ((-219 . -1079) T) ((-317 . -23) T) ((-1134 . -963) 96434) ((-816 . -1067) T) ((-1093 . -717) 96413) ((-1212 . -1024) 96318) ((-1210 . -891) 96297) ((-841 . -703) T) ((-167 . -541) 96208) ((-1189 . -891) 96187) ((-562 . -624) 96174) ((-400 . -1067) T) ((-549 . -624) 96161) ((-256 . -1067) T) ((-486 . -624) 96126) ((-219 . -23) T) ((-1189 . -796) 96079) ((-1248 . -101) T) ((-347 . -1245) 96056) ((-1246 . -101) T) ((-1212 . -111) 95948) ((-142 . -593) 95930) ((-964 . -130) T) ((-44 . -101) T) ((-234 . -823) 95881) ((-1199 . -1184) 95860) ((-102 . -481) 95844) ((-1249 . -694) 95814) ((-1054 . -47) 95775) ((-1029 . -1079) T) ((-923 . -1079) T) ((-127 . -34) T) ((-121 . -34) T) ((-758 . -47) 95752) ((-756 . -47) 95724) ((-1199 . -541) 95635) ((-347 . -361) T) ((-473 . -1079) T) ((-1139 . -130) T) ((-1092 . -130) T) ((-446 . -47) 95614) ((-842 . -356) T) ((-827 . -130) T) ((-150 . -101) T) ((-1029 . -23) T) ((-923 . -23) T) ((-556 . -541) T) ((-792 . -25) T) ((-792 . -21) T) ((-1109 . -505) 95547) ((-573 . -1050) T) ((-567 . -1009) 95531) ((-473 . -23) T) ((-344 . -1025) T) ((-1174 . -871) 95512) ((-646 . -302) 95450) ((-1080 . -1233) 95420) ((-675 . -624) 95385) ((-974 . -170) T) ((-934 . -143) 95364) ((-613 . -1067) T) ((-587 . -1067) T) ((-934 . -145) 95343) ((-975 . -823) T) ((-712 . -145) 95322) ((-712 . -143) 95301) ((-942 . -823) T) ((-466 . -891) 95280) ((-309 . -1024) 95190) ((-306 . -1024) 95119) ((-970 . -279) 95077) ((-400 . -694) 95029) ((-128 . -823) T) ((-677 . -821) T) ((-1212 . -1018) T) ((-309 . -111) 94925) ((-306 . -111) 94838) ((-935 . -101) T) ((-791 . -101) 94628) ((-689 . -594) NIL) ((-689 . -593) 94610) ((-634 . -1009) 94506) ((-1212 . -319) 94450) ((-1006 . -281) 94425) ((-562 . -703) T) ((-549 . -770) T) ((-167 . -356) 94376) ((-549 . -767) T) ((-549 . -703) T) ((-486 . -703) T) ((-1113 . -481) 94360) ((-1054 . -857) NIL) ((-842 . -1079) T) ((-117 . -880) NIL) ((-1248 . -1247) 94336) ((-1246 . -1247) 94315) ((-758 . -857) NIL) ((-756 . -857) 94174) ((-1241 . -25) T) ((-1241 . -21) T) ((-1177 . -101) 94152) ((-1073 . -388) T) ((-601 . -624) 94139) ((-446 . -857) NIL) ((-651 . -101) 94117) ((-1054 . -1009) 93944) ((-842 . -23) T) ((-758 . -1009) 93803) ((-756 . -1009) 93660) ((-117 . -624) 93605) ((-446 . -1009) 93481) ((-625 . -1009) 93465) ((-605 . -101) T) ((-216 . -481) 93449) ((-1226 . -34) T) ((-613 . -694) 93433) ((-587 . -694) 93417) ((-646 . -38) 93377) ((-312 . -101) T) ((-84 . -593) 93359) ((-50 . -1009) 93343) ((-1087 . -1024) 93330) ((-1054 . -370) 93314) ((-758 . -370) 93298) ((-59 . -56) 93260) ((-675 . -770) T) ((-675 . -767) T) ((-563 . -1009) 93247) ((-509 . -1009) 93224) ((-675 . -703) T) ((-317 . -130) T) ((-309 . -1018) 93114) ((-306 . -1018) T) ((-167 . -1079) T) ((-756 . -370) 93098) ((-45 . -149) 93048) ((-975 . -963) 93030) ((-446 . -370) 93014) ((-400 . -170) T) ((-309 . -237) 92993) ((-306 . -237) T) ((-306 . -227) NIL) ((-287 . -1067) 92775) ((-219 . -130) T) ((-1087 . -111) 92760) ((-167 . -23) T) ((-775 . -145) 92739) ((-775 . -143) 92718) ((-244 . -617) 92624) ((-243 . -617) 92530) ((-312 . -277) 92496) ((-1123 . -505) 92429) ((-1100 . -1067) T) ((-219 . -1027) T) ((-791 . -302) 92367) ((-1054 . -871) 92302) ((-758 . -871) 92245) ((-756 . -871) 92229) ((-1248 . -38) 92199) ((-1246 . -38) 92169) ((-1199 . -1079) T) ((-828 . -1079) T) ((-446 . -871) 92146) ((-831 . -1067) T) ((-1199 . -23) T) ((-556 . -1079) T) ((-828 . -23) T) ((-601 . -703) T) ((-348 . -891) T) ((-345 . -891) T) ((-282 . -101) T) ((-337 . -891) T) ((-1029 . -130) T) ((-941 . -1050) T) ((-923 . -130) T) ((-117 . -770) NIL) ((-117 . -767) NIL) ((-117 . -703) T) ((-670 . -880) NIL) ((-1015 . -505) 92047) ((-473 . -130) T) ((-556 . -23) T) ((-651 . -302) 91985) ((-613 . -738) T) ((-587 . -738) T) ((-1190 . -823) NIL) ((-974 . -283) T) ((-244 . -21) T) ((-670 . -624) 91935) ((-344 . -1067) T) ((-244 . -25) T) ((-243 . -21) T) ((-243 . -25) T) ((-150 . -38) 91919) ((-2 . -101) T) ((-881 . -891) T) ((-474 . -1233) 91889) ((-217 . -1009) 91866) ((-1087 . -1018) T) ((-688 . -300) T) ((-287 . -694) 91808) ((-677 . -1025) T) ((-479 . -444) T) ((-400 . -505) 91720) ((-211 . -444) T) ((-1087 . -227) T) ((-288 . -149) 91670) ((-970 . -594) 91631) ((-970 . -593) 91613) ((-960 . -593) 91595) ((-116 . -1025) T) ((-630 . -1024) 91579) ((-219 . -484) T) ((-392 . -593) 91561) ((-392 . -594) 91538) ((-1022 . -1233) 91508) ((-630 . -111) 91487) ((-1109 . -481) 91471) ((-791 . -38) 91441) ((-62 . -433) T) ((-62 . -388) T) ((-1126 . -101) T) ((-842 . -130) T) ((-476 . -101) 91419) ((-1254 . -361) T) ((-1046 . -101) T) ((-1028 . -101) T) ((-344 . -694) 91364) ((-708 . -145) 91343) ((-708 . -143) 91322) ((-995 . -624) 91259) ((-514 . -1067) 91237) ((-352 . -101) T) ((-346 . -101) T) ((-338 . -101) T) ((-107 . -101) T) ((-495 . -1067) T) ((-347 . -624) 91182) ((-1139 . -617) 91130) ((-1092 . -617) 91078) ((-378 . -500) 91057) ((-809 . -821) 91036) ((-372 . -1184) T) ((-670 . -703) T) ((-332 . -1025) T) ((-1190 . -963) 90988) ((-172 . -1025) T) ((-102 . -593) 90920) ((-1141 . -143) 90899) ((-1141 . -145) 90878) ((-372 . -541) T) ((-1140 . -145) 90857) ((-1140 . -143) 90836) ((-1134 . -143) 90743) ((-400 . -283) T) ((-1134 . -145) 90650) ((-1093 . -145) 90629) ((-1093 . -143) 90608) ((-312 . -38) 90449) ((-167 . -130) T) ((-306 . -771) NIL) ((-306 . -768) NIL) ((-630 . -1018) T) ((-48 . -624) 90414) ((-1133 . -101) T) ((-965 . -101) T) ((-964 . -21) T) ((-127 . -981) 90398) ((-121 . -981) 90382) ((-964 . -25) T) ((-872 . -119) 90366) ((-1125 . -101) T) ((-792 . -823) 90345) ((-1199 . -130) T) ((-1139 . -25) T) ((-1139 . -21) T) ((-828 . -130) T) ((-1092 . -25) T) ((-1092 . -21) T) ((-827 . -25) T) ((-827 . -21) T) ((-758 . -300) 90324) ((-623 . -101) 90302) ((-610 . -101) T) ((-1126 . -302) 90097) ((-556 . -130) T) ((-599 . -821) 90076) ((-1123 . -481) 90060) ((-1117 . -149) 90010) ((-1113 . -593) 89972) ((-1113 . -594) 89933) ((-995 . -767) T) ((-995 . -770) T) ((-995 . -703) T) ((-476 . -302) 89871) ((-445 . -410) 89841) ((-344 . -170) T) ((-282 . -38) 89828) ((-267 . -101) T) ((-266 . -101) T) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-262 . -101) T) ((-261 . -101) T) ((-336 . -1009) 89805) ((-206 . -101) T) ((-205 . -101) T) ((-203 . -101) T) ((-202 . -101) T) ((-201 . -101) T) ((-200 . -101) T) ((-197 . -101) T) ((-196 . -101) T) ((-689 . -1024) 89628) ((-195 . -101) T) ((-194 . -101) T) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-188 . -101) T) ((-187 . -101) T) ((-347 . -703) T) ((-689 . -111) 89437) ((-646 . -225) 89421) ((-563 . -300) T) ((-509 . -300) T) ((-287 . -505) 89370) ((-107 . -302) NIL) ((-71 . -388) T) ((-1080 . -101) 89160) ((-809 . -404) 89144) ((-1087 . -771) T) ((-1087 . -768) T) ((-677 . -1067) T) ((-372 . -356) T) ((-167 . -484) 89122) ((-207 . -1067) T) ((-216 . -593) 89054) ((-133 . -1067) T) ((-116 . -1067) T) ((-48 . -703) T) ((-1015 . -481) 89019) ((-497 . -92) T) ((-139 . -418) 89001) ((-139 . -361) T) ((-998 . -101) T) ((-503 . -500) 88980) ((-468 . -101) T) ((-455 . -101) T) ((-1005 . -1079) T) ((-1141 . -35) 88946) ((-1141 . -94) 88912) ((-1141 . -1168) 88878) ((-1141 . -1165) 88844) ((-1125 . -302) NIL) ((-88 . -389) T) ((-88 . -388) T) ((-1046 . -1118) 88823) ((-1140 . -1165) 88789) ((-1140 . -1168) 88755) ((-1005 . -23) T) ((-1140 . -94) 88721) ((-556 . -484) T) ((-1140 . -35) 88687) ((-1134 . -1165) 88653) ((-1134 . -1168) 88619) ((-1134 . -94) 88585) ((-354 . -1079) T) ((-352 . -1118) 88564) ((-346 . -1118) 88543) ((-338 . -1118) 88522) ((-1134 . -35) 88488) ((-1093 . -35) 88454) ((-1093 . -94) 88420) ((-107 . -1118) T) ((-1093 . -1168) 88386) ((-809 . -1025) 88365) ((-623 . -302) 88303) ((-610 . -302) 88154) ((-1093 . -1165) 88120) ((-689 . -1018) T) ((-1029 . -617) 88102) ((-1046 . -38) 87970) ((-923 . -617) 87918) ((-975 . -145) T) ((-975 . -143) NIL) ((-372 . -1079) T) ((-317 . -25) T) ((-315 . -23) T) ((-914 . -823) 87897) ((-689 . -319) 87874) ((-473 . -617) 87822) ((-40 . -1009) 87710) ((-677 . -694) 87697) ((-689 . -227) T) ((-332 . -1067) T) ((-172 . -1067) T) ((-324 . -823) T) ((-411 . -444) 87647) ((-372 . -23) T) ((-352 . -38) 87612) ((-346 . -38) 87577) ((-338 . -38) 87542) ((-79 . -433) T) ((-79 . -388) T) ((-219 . -25) T) ((-219 . -21) T) ((-810 . -1079) T) ((-107 . -38) 87492) ((-803 . -1079) T) ((-750 . -1067) T) ((-116 . -694) 87479) ((-648 . -1009) 87463) ((-592 . -101) T) ((-810 . -23) T) ((-803 . -23) T) ((-1123 . -279) 87440) ((-1080 . -302) 87378) ((-1069 . -229) 87362) ((-63 . -389) T) ((-63 . -388) T) ((-110 . -101) T) ((-40 . -370) 87339) ((-95 . -101) T) ((-629 . -825) 87323) ((-1102 . -1050) T) ((-1029 . -21) T) ((-1029 . -25) T) ((-791 . -225) 87292) ((-923 . -25) T) ((-923 . -21) T) ((-599 . -1025) T) ((-473 . -25) T) ((-473 . -21) T) ((-998 . -302) 87230) ((-860 . -593) 87212) ((-856 . -593) 87194) ((-244 . -823) 87145) ((-243 . -823) 87096) ((-514 . -505) 87029) ((-842 . -617) 87006) ((-468 . -302) 86944) ((-455 . -302) 86882) ((-344 . -283) T) ((-1123 . -1214) 86866) ((-1109 . -593) 86828) ((-1109 . -594) 86789) ((-1107 . -101) T) ((-970 . -1024) 86685) ((-40 . -871) 86637) ((-1123 . -584) 86614) ((-1254 . -624) 86601) ((-1030 . -149) 86547) ((-843 . -1184) T) ((-970 . -111) 86429) ((-332 . -694) 86413) ((-837 . -593) 86395) ((-172 . -694) 86327) ((-400 . -279) 86285) ((-843 . -541) T) ((-107 . -393) 86267) ((-83 . -377) T) ((-83 . -388) T) ((-677 . -170) T) ((-596 . -593) 86249) ((-98 . -703) T) ((-474 . -101) 86039) ((-98 . -465) T) ((-116 . -170) T) ((-1080 . -38) 86009) ((-167 . -617) 85957) ((-1022 . -101) T) ((-842 . -25) T) ((-791 . -232) 85936) ((-842 . -21) T) ((-794 . -101) T) ((-407 . -101) T) ((-378 . -101) T) ((-110 . -302) NIL) ((-221 . -101) 85914) ((-127 . -1180) T) ((-121 . -1180) T) ((-1005 . -130) T) ((-646 . -360) 85898) ((-970 . -1018) T) ((-1199 . -617) 85846) ((-1071 . -593) 85828) ((-974 . -593) 85810) ((-506 . -23) T) ((-501 . -23) T) ((-336 . -300) T) ((-499 . -23) T) ((-315 . -130) T) ((-3 . -1067) T) ((-974 . -594) 85794) ((-970 . -237) 85773) ((-970 . -227) 85752) ((-1254 . -703) T) ((-1218 . -143) 85731) ((-809 . -1067) T) ((-1218 . -145) 85710) ((-1211 . -145) 85689) ((-1211 . -143) 85668) ((-1210 . -1184) 85647) ((-1190 . -143) 85554) ((-1190 . -145) 85461) ((-1189 . -1184) 85440) ((-372 . -130) T) ((-549 . -857) 85422) ((0 . -1067) T) ((-172 . -170) T) ((-167 . -21) T) ((-167 . -25) T) ((-49 . -1067) T) ((-1212 . -624) 85327) ((-1210 . -541) 85278) ((-691 . -1079) T) ((-1189 . -541) 85229) ((-549 . -1009) 85211) ((-576 . -145) 85190) ((-576 . -143) 85169) ((-486 . -1009) 85112) ((-1102 . -1104) T) ((-86 . -377) T) ((-86 . -388) T) ((-843 . -356) T) ((-810 . -130) T) ((-803 . -130) T) ((-691 . -23) T) ((-497 . -593) 85062) ((-493 . -593) 85044) ((-1250 . -1025) T) ((-372 . -1027) T) ((-997 . -1067) 85022) ((-872 . -34) T) ((-474 . -302) 84960) ((-573 . -101) T) ((-1123 . -594) 84921) ((-1123 . -593) 84853) ((-1139 . -823) 84832) ((-45 . -101) T) ((-1092 . -823) 84811) ((-793 . -101) T) ((-1199 . -25) T) ((-1199 . -21) T) ((-828 . -25) T) ((-44 . -360) 84795) ((-828 . -21) T) ((-708 . -444) 84746) ((-1249 . -593) 84728) ((-1022 . -302) 84666) ((-647 . -1050) T) ((-586 . -1050) T) ((-383 . -1067) T) ((-556 . -25) T) ((-556 . -21) T) ((-178 . -1050) T) ((-159 . -1050) T) ((-154 . -1050) T) ((-152 . -1050) T) ((-599 . -1067) T) ((-675 . -857) 84648) ((-1226 . -1180) T) ((-221 . -302) 84586) ((-142 . -361) T) ((-1015 . -594) 84528) ((-1015 . -593) 84471) ((-306 . -880) NIL) ((-675 . -1009) 84416) ((-688 . -891) T) ((-466 . -1184) 84395) ((-1140 . -444) 84374) ((-1134 . -444) 84353) ((-323 . -101) T) ((-843 . -1079) T) ((-309 . -624) 84174) ((-306 . -624) 84103) ((-466 . -541) 84054) ((-332 . -505) 84020) ((-535 . -149) 83970) ((-40 . -300) T) ((-816 . -593) 83952) ((-677 . -283) T) ((-843 . -23) T) ((-372 . -484) T) ((-1046 . -225) 83922) ((-503 . -101) T) ((-400 . -594) 83730) ((-400 . -593) 83712) ((-256 . -593) 83694) ((-116 . -283) T) ((-1212 . -703) T) ((-1210 . -356) 83673) ((-1189 . -356) 83652) ((-1239 . -34) T) ((-117 . -1180) T) ((-107 . -225) 83634) ((-1145 . -101) T) ((-469 . -1067) T) ((-514 . -481) 83618) ((-714 . -34) T) ((-474 . -38) 83588) ((-139 . -34) T) ((-117 . -855) 83565) ((-117 . -857) NIL) ((-601 . -1009) 83448) ((-621 . -823) 83427) ((-1238 . -101) T) ((-288 . -101) T) ((-689 . -361) 83406) ((-117 . -1009) 83383) ((-383 . -694) 83367) ((-599 . -694) 83351) ((-45 . -302) 83155) ((-792 . -143) 83134) ((-792 . -145) 83113) ((-1249 . -375) 83092) ((-795 . -823) T) ((-1228 . -1067) T) ((-1126 . -223) 83039) ((-379 . -823) 83018) ((-1218 . -1168) 82984) ((-1218 . -1165) 82950) ((-1211 . -1165) 82916) ((-506 . -130) T) ((-1211 . -1168) 82882) ((-1190 . -1165) 82848) ((-1190 . -1168) 82814) ((-1218 . -35) 82780) ((-1218 . -94) 82746) ((-613 . -593) 82715) ((-587 . -593) 82684) ((-219 . -823) T) ((-1211 . -94) 82650) ((-1211 . -35) 82616) ((-1210 . -1079) T) ((-1087 . -624) 82603) ((-1190 . -94) 82569) ((-1189 . -1079) T) ((-574 . -149) 82551) ((-1046 . -342) 82530) ((-172 . -283) T) ((-117 . -370) 82507) ((-117 . -331) 82484) ((-1190 . -35) 82450) ((-841 . -300) T) ((-306 . -770) NIL) ((-306 . -767) NIL) ((-309 . -703) 82299) ((-306 . -703) T) ((-466 . -356) 82278) ((-352 . -342) 82257) ((-346 . -342) 82236) ((-338 . -342) 82215) ((-309 . -465) 82194) ((-1210 . -23) T) ((-1189 . -23) T) ((-695 . -1079) T) ((-691 . -130) T) ((-629 . -101) T) ((-469 . -694) 82159) ((-45 . -275) 82109) ((-104 . -1067) T) ((-67 . -593) 82091) ((-941 . -101) T) ((-836 . -101) T) ((-601 . -871) 82050) ((-1250 . -1067) T) ((-374 . -1067) T) ((-1179 . -1067) T) ((-81 . -1180) T) ((-1029 . -823) T) ((-923 . -823) 82029) ((-117 . -871) NIL) ((-758 . -891) 82008) ((-690 . -823) T) ((-521 . -1067) T) ((-491 . -1067) T) ((-348 . -1184) T) ((-345 . -1184) T) ((-337 . -1184) T) ((-257 . -1184) 81987) ((-241 . -1184) 81966) ((-1080 . -225) 81935) ((-473 . -823) 81914) ((-1109 . -1024) 81898) ((-383 . -738) T) ((-1125 . -804) T) ((-670 . -1180) T) ((-348 . -541) T) ((-345 . -541) T) ((-337 . -541) T) ((-257 . -541) 81829) ((-241 . -541) 81760) ((-516 . -1050) T) ((-1109 . -111) 81739) ((-445 . -721) 81709) ((-837 . -1024) 81679) ((-793 . -38) 81621) ((-670 . -855) 81603) ((-670 . -857) 81585) ((-288 . -302) 81389) ((-881 . -1184) T) ((-646 . -404) 81373) ((-837 . -111) 81338) ((-670 . -1009) 81283) ((-975 . -444) T) ((-881 . -541) T) ((-563 . -891) T) ((-466 . -1079) T) ((-509 . -891) T) ((-1123 . -281) 81260) ((-885 . -444) T) ((-64 . -593) 81242) ((-610 . -223) 81188) ((-466 . -23) T) ((-1087 . -770) T) ((-843 . -130) T) ((-1087 . -767) T) ((-1241 . -1243) 81167) ((-1087 . -703) T) ((-630 . -624) 81141) ((-287 . -593) 80882) ((-1006 . -34) T) ((-791 . -821) 80861) ((-562 . -300) T) ((-549 . -300) T) ((-486 . -300) T) ((-1250 . -694) 80831) ((-670 . -370) 80813) ((-670 . -331) 80795) ((-469 . -170) T) ((-374 . -694) 80765) ((-842 . -823) NIL) ((-549 . -993) T) ((-486 . -993) T) ((-1100 . -593) 80747) ((-1080 . -232) 80726) ((-208 . -101) T) ((-1117 . -101) T) ((-70 . -593) 80708) ((-1109 . -1018) T) ((-1145 . -38) 80605) ((-831 . -593) 80587) ((-549 . -534) T) ((-646 . -1025) T) ((-708 . -920) 80540) ((-1109 . -227) 80519) ((-1048 . -1067) T) ((-1005 . -25) T) ((-1005 . -21) T) ((-974 . -1024) 80464) ((-876 . -101) T) ((-837 . -1018) T) ((-670 . -871) NIL) ((-348 . -322) 80448) ((-348 . -356) T) ((-345 . -322) 80432) ((-345 . -356) T) ((-337 . -322) 80416) ((-337 . -356) T) ((-479 . -101) T) ((-1238 . -38) 80386) ((-514 . -663) 80336) ((-211 . -101) T) ((-995 . -1009) 80216) ((-974 . -111) 80145) ((-1141 . -944) 80114) ((-1140 . -944) 80076) ((-511 . -149) 80060) ((-1046 . -363) 80039) ((-344 . -593) 80021) ((-315 . -21) T) ((-347 . -1009) 79998) ((-315 . -25) T) ((-1134 . -944) 79967) ((-1093 . -944) 79934) ((-75 . -593) 79916) ((-675 . -300) T) ((-167 . -823) 79895) ((-881 . -356) T) ((-372 . -25) T) ((-372 . -21) T) ((-881 . -322) 79882) ((-85 . -593) 79864) ((-675 . -993) T) ((-653 . -823) T) ((-1210 . -130) T) ((-1189 . -130) T) ((-872 . -981) 79848) ((-810 . -21) T) ((-48 . -1009) 79791) ((-810 . -25) T) ((-803 . -25) T) ((-803 . -21) T) ((-1248 . -1025) T) ((-1246 . -1025) T) ((-630 . -703) T) ((-1249 . -1024) 79775) ((-1199 . -823) 79754) ((-791 . -404) 79723) ((-102 . -119) 79707) ((-129 . -1067) T) ((-52 . -1067) T) ((-897 . -593) 79689) ((-842 . -963) 79666) ((-799 . -101) T) ((-1249 . -111) 79645) ((-629 . -38) 79615) ((-556 . -823) T) ((-348 . -1079) T) ((-345 . -1079) T) ((-337 . -1079) T) ((-257 . -1079) T) ((-241 . -1079) T) ((-601 . -300) 79594) ((-1117 . -302) 79398) ((-515 . -1050) T) ((-304 . -1067) T) ((-640 . -23) T) ((-474 . -225) 79367) ((-150 . -1025) T) ((-348 . -23) T) ((-345 . -23) T) ((-337 . -23) T) ((-117 . -300) T) ((-257 . -23) T) ((-241 . -23) T) ((-974 . -1018) T) ((-689 . -880) 79346) ((-974 . -227) 79318) ((-974 . -237) T) ((-117 . -993) NIL) ((-881 . -1079) T) ((-1211 . -444) 79297) ((-1190 . -444) 79276) ((-514 . -593) 79208) ((-689 . -624) 79133) ((-400 . -1024) 79085) ((-495 . -593) 79067) ((-881 . -23) T) ((-479 . -302) NIL) ((-466 . -130) T) ((-211 . -302) NIL) ((-400 . -111) 79005) ((-791 . -1025) 78935) ((-714 . -1065) 78919) ((-1210 . -484) 78885) ((-1189 . -484) 78851) ((-469 . -283) T) ((-139 . -1065) 78833) ((-128 . -149) 78815) ((-1249 . -1018) T) ((-1030 . -101) T) ((-491 . -505) NIL) ((-679 . -101) T) ((-474 . -232) 78794) ((-1139 . -143) 78773) ((-1139 . -145) 78752) ((-1092 . -145) 78731) ((-1092 . -143) 78710) ((-613 . -1024) 78694) ((-587 . -1024) 78678) ((-646 . -1067) T) ((-646 . -1021) 78618) ((-1141 . -1217) 78602) ((-1141 . -1204) 78579) ((-479 . -1118) T) ((-1140 . -1209) 78540) ((-1140 . -1204) 78510) ((-1140 . -1207) 78494) ((-211 . -1118) T) ((-336 . -891) T) ((-794 . -259) 78478) ((-613 . -111) 78457) ((-587 . -111) 78436) ((-1134 . -1188) 78397) ((-816 . -1018) 78376) ((-1134 . -1204) 78353) ((-506 . -25) T) ((-486 . -295) T) ((-502 . -23) T) ((-501 . -25) T) ((-499 . -25) T) ((-498 . -23) T) ((-1134 . -1186) 78337) ((-400 . -1018) T) ((-312 . -1025) T) ((-670 . -300) T) ((-107 . -821) T) ((-400 . -237) T) ((-400 . -227) 78316) ((-689 . -703) T) ((-479 . -38) 78266) ((-211 . -38) 78216) ((-466 . -484) 78182) ((-1125 . -1111) T) ((-1068 . -101) T) ((-677 . -593) 78164) ((-677 . -594) 78079) ((-691 . -21) T) ((-691 . -25) T) ((-1102 . -101) T) ((-207 . -593) 78061) ((-133 . -593) 78043) ((-116 . -593) 78025) ((-155 . -25) T) ((-1248 . -1067) T) ((-843 . -617) 77973) ((-1246 . -1067) T) ((-934 . -101) T) ((-712 . -101) T) ((-692 . -101) T) ((-445 . -101) T) ((-792 . -444) 77924) ((-44 . -1067) T) ((-1055 . -823) T) ((-640 . -130) T) ((-1030 . -302) 77775) ((-646 . -694) 77759) ((-282 . -1025) T) ((-348 . -130) T) ((-345 . -130) T) ((-337 . -130) T) ((-257 . -130) T) ((-241 . -130) T) ((-411 . -101) T) ((-150 . -1067) T) ((-45 . -223) 77709) ((-929 . -823) 77688) ((-970 . -624) 77626) ((-234 . -1233) 77596) ((-995 . -300) T) ((-287 . -1024) 77517) ((-881 . -130) T) ((-40 . -891) T) ((-479 . -393) 77499) ((-347 . -300) T) ((-211 . -393) 77481) ((-1046 . -404) 77465) ((-287 . -111) 77381) ((-843 . -25) T) ((-843 . -21) T) ((-332 . -593) 77363) ((-1212 . -47) 77307) ((-219 . -145) T) ((-172 . -593) 77289) ((-1080 . -821) 77268) ((-750 . -593) 77250) ((-588 . -229) 77197) ((-467 . -229) 77147) ((-1248 . -694) 77117) ((-48 . -300) T) ((-1246 . -694) 77087) ((-935 . -1067) T) ((-791 . -1067) 76877) ((-305 . -101) T) ((-872 . -1180) T) ((-48 . -993) T) ((-1189 . -617) 76785) ((-665 . -101) 76763) ((-44 . -694) 76747) ((-535 . -101) T) ((-66 . -376) T) ((-66 . -388) T) ((-638 . -23) T) ((-646 . -738) T) ((-1177 . -1067) 76725) ((-344 . -1024) 76670) ((-651 . -1067) 76648) ((-1029 . -145) T) ((-923 . -145) 76627) ((-923 . -143) 76606) ((-775 . -101) T) ((-150 . -694) 76590) ((-473 . -145) 76569) ((-473 . -143) 76548) ((-344 . -111) 76477) ((-1046 . -1025) T) ((-315 . -823) 76456) ((-1218 . -944) 76425) ((-605 . -1067) T) ((-1211 . -944) 76387) ((-502 . -130) T) ((-498 . -130) T) ((-288 . -223) 76337) ((-352 . -1025) T) ((-346 . -1025) T) ((-338 . -1025) T) ((-287 . -1018) 76279) ((-1190 . -944) 76248) ((-372 . -823) T) ((-107 . -1025) T) ((-970 . -703) T) ((-841 . -891) T) ((-816 . -771) 76227) ((-816 . -768) 76206) ((-411 . -302) 76145) ((-460 . -101) T) ((-576 . -944) 76114) ((-312 . -1067) T) ((-400 . -771) 76093) ((-400 . -768) 76072) ((-491 . -481) 76054) ((-1212 . -1009) 76020) ((-1210 . -21) T) ((-1210 . -25) T) ((-1189 . -21) T) ((-1189 . -25) T) ((-791 . -694) 75962) ((-675 . -397) T) ((-1239 . -1180) T) ((-586 . -101) T) ((-1080 . -404) 75931) ((-974 . -361) NIL) ((-647 . -101) T) ((-178 . -101) T) ((-159 . -101) T) ((-154 . -101) T) ((-152 . -101) T) ((-102 . -34) T) ((-714 . -1180) T) ((-44 . -738) T) ((-574 . -101) T) ((-76 . -389) T) ((-76 . -388) T) ((-629 . -632) 75915) ((-139 . -1180) T) ((-842 . -145) T) ((-842 . -143) NIL) ((-1179 . -92) T) ((-344 . -1018) T) ((-69 . -376) T) ((-69 . -388) T) ((-1132 . -101) T) ((-646 . -505) 75848) ((-665 . -302) 75786) ((-934 . -38) 75683) ((-712 . -38) 75653) ((-535 . -302) 75457) ((-309 . -1180) T) ((-344 . -227) T) ((-344 . -237) T) ((-306 . -1180) T) ((-282 . -1067) T) ((-1147 . -593) 75439) ((-688 . -1184) T) ((-1123 . -627) 75423) ((-1174 . -541) 75402) ((-688 . -541) T) ((-309 . -855) 75386) ((-309 . -857) 75311) ((-306 . -855) 75272) ((-306 . -857) NIL) ((-775 . -302) 75237) ((-312 . -694) 75078) ((-317 . -316) 75055) ((-477 . -101) T) ((-466 . -25) T) ((-466 . -21) T) ((-411 . -38) 75029) ((-309 . -1009) 74692) ((-219 . -1165) T) ((-219 . -1168) T) ((-3 . -593) 74674) ((-306 . -1009) 74604) ((-2 . -1067) T) ((-2 . |RecordCategory|) T) ((-809 . -593) 74586) ((-1080 . -1025) 74516) ((-562 . -891) T) ((-549 . -796) T) ((-549 . -891) T) ((-486 . -891) T) ((-135 . -1009) 74500) ((-219 . -94) T) ((-74 . -433) T) ((-74 . -388) T) ((0 . -593) 74482) ((-167 . -145) 74461) ((-167 . -143) 74412) ((-219 . -35) T) ((-49 . -593) 74394) ((-469 . -1025) T) ((-479 . -225) 74376) ((-476 . -939) 74360) ((-474 . -821) 74339) ((-211 . -225) 74321) ((-80 . -433) T) ((-80 . -388) T) ((-1113 . -34) T) ((-791 . -170) 74300) ((-708 . -101) T) ((-997 . -593) 74267) ((-491 . -279) 74242) ((-309 . -370) 74211) ((-306 . -370) 74172) ((-306 . -331) 74133) ((-1052 . -593) 74115) ((-792 . -920) 74062) ((-638 . -130) T) ((-1199 . -143) 74041) ((-1199 . -145) 74020) ((-1141 . -101) T) ((-1140 . -101) T) ((-1134 . -101) T) ((-1126 . -1067) T) ((-1093 . -101) T) ((-216 . -34) T) ((-282 . -694) 74007) ((-1126 . -590) 73983) ((-574 . -302) NIL) ((-476 . -1067) 73961) ((-383 . -593) 73943) ((-501 . -823) T) ((-1117 . -223) 73893) ((-1218 . -1217) 73877) ((-1218 . -1204) 73854) ((-1211 . -1209) 73815) ((-1211 . -1204) 73785) ((-1211 . -1207) 73769) ((-1190 . -1188) 73730) ((-1190 . -1204) 73707) ((-599 . -593) 73689) ((-1190 . -1186) 73673) ((-675 . -891) T) ((-1141 . -277) 73639) ((-1140 . -277) 73605) ((-1134 . -277) 73571) ((-1046 . -1067) T) ((-1028 . -1067) T) ((-48 . -295) T) ((-309 . -871) 73537) ((-306 . -871) NIL) ((-1028 . -1035) 73516) ((-1087 . -857) 73498) ((-775 . -38) 73482) ((-257 . -617) 73430) ((-241 . -617) 73378) ((-677 . -1024) 73365) ((-576 . -1204) 73342) ((-1093 . -277) 73308) ((-312 . -170) 73239) ((-352 . -1067) T) ((-346 . -1067) T) ((-338 . -1067) T) ((-491 . -19) 73221) ((-1087 . -1009) 73203) ((-1069 . -149) 73187) ((-107 . -1067) T) ((-116 . -1024) 73174) ((-688 . -356) T) ((-491 . -584) 73149) ((-677 . -111) 73134) ((-429 . -101) T) ((-45 . -1116) 73084) ((-116 . -111) 73069) ((-613 . -697) T) ((-587 . -697) T) ((-791 . -505) 73002) ((-1006 . -1180) T) ((-914 . -149) 72986) ((-516 . -101) T) ((-511 . -101) 72936) ((-1139 . -444) 72867) ((-1133 . -1067) T) ((-1054 . -1184) 72846) ((-758 . -1184) 72825) ((-756 . -1184) 72804) ((-61 . -1180) T) ((-469 . -593) 72756) ((-469 . -594) 72678) ((-1125 . -1067) T) ((-1109 . -624) 72652) ((-1092 . -444) 72603) ((-1054 . -541) 72534) ((-474 . -404) 72503) ((-601 . -891) 72482) ((-446 . -1184) 72461) ((-965 . -1067) T) ((-758 . -541) 72372) ((-391 . -593) 72354) ((-756 . -541) 72285) ((-651 . -505) 72218) ((-708 . -302) 72205) ((-640 . -25) T) ((-640 . -21) T) ((-446 . -541) 72136) ((-117 . -891) T) ((-117 . -796) NIL) ((-348 . -25) T) ((-348 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-337 . -25) T) ((-337 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-82 . -377) T) ((-82 . -388) T) ((-241 . -25) T) ((-241 . -21) T) ((-1228 . -593) 72118) ((-1174 . -1079) T) ((-1174 . -23) T) ((-1134 . -302) 72003) ((-1093 . -302) 71990) ((-1046 . -694) 71858) ((-837 . -624) 71818) ((-914 . -951) 71802) ((-881 . -21) T) ((-282 . -170) T) ((-881 . -25) T) ((-304 . -92) T) ((-843 . -823) 71753) ((-688 . -1079) T) ((-688 . -23) T) ((-623 . -1067) 71731) ((-610 . -590) 71706) ((-610 . -1067) T) ((-563 . -1184) T) ((-509 . -1184) T) ((-563 . -541) T) ((-509 . -541) T) ((-352 . -694) 71658) ((-346 . -694) 71610) ((-338 . -694) 71562) ((-332 . -1024) 71546) ((-172 . -111) 71457) ((-172 . -1024) 71389) ((-107 . -694) 71339) ((-332 . -111) 71318) ((-267 . -1067) T) ((-266 . -1067) T) ((-265 . -1067) T) ((-264 . -1067) T) ((-677 . -1018) T) ((-263 . -1067) T) ((-262 . -1067) T) ((-261 . -1067) T) ((-206 . -1067) T) ((-205 . -1067) T) ((-203 . -1067) T) ((-167 . -1168) 71296) ((-167 . -1165) 71274) ((-202 . -1067) T) ((-201 . -1067) T) ((-116 . -1018) T) ((-200 . -1067) T) ((-197 . -1067) T) ((-677 . -227) T) ((-196 . -1067) T) ((-195 . -1067) T) ((-194 . -1067) T) ((-193 . -1067) T) ((-192 . -1067) T) ((-191 . -1067) T) ((-190 . -1067) T) ((-189 . -1067) T) ((-188 . -1067) T) ((-187 . -1067) T) ((-234 . -101) 71064) ((-167 . -35) 71042) ((-167 . -94) 71020) ((-630 . -1009) 70916) ((-474 . -1025) 70846) ((-1080 . -1067) 70636) ((-1109 . -34) T) ((-646 . -481) 70620) ((-72 . -1180) T) ((-104 . -593) 70602) ((-1250 . -593) 70584) ((-374 . -593) 70566) ((-708 . -38) 70415) ((-556 . -1168) T) ((-556 . -1165) T) ((-521 . -593) 70397) ((-511 . -302) 70335) ((-491 . -593) 70317) ((-491 . -594) 70299) ((-1179 . -593) 70265) ((-1134 . -1118) NIL) ((-998 . -1038) 70234) ((-998 . -1067) T) ((-975 . -101) T) ((-942 . -101) T) ((-885 . -101) T) ((-864 . -1009) 70211) ((-1109 . -703) T) ((-974 . -624) 70156) ((-468 . -1067) T) ((-455 . -1067) T) ((-567 . -23) T) ((-556 . -35) T) ((-556 . -94) T) ((-420 . -101) T) ((-1030 . -223) 70102) ((-128 . -101) T) ((-1141 . -38) 69999) ((-837 . -703) T) ((-670 . -891) T) ((-502 . -25) T) ((-498 . -21) T) ((-498 . -25) T) ((-1140 . -38) 69840) ((-332 . -1018) T) ((-1134 . -38) 69636) ((-1046 . -170) T) ((-172 . -1018) T) ((-1093 . -38) 69533) ((-689 . -47) 69510) ((-352 . -170) T) ((-346 . -170) T) ((-510 . -56) 69484) ((-488 . -56) 69434) ((-344 . -1245) 69411) ((-219 . -444) T) ((-312 . -283) 69362) ((-338 . -170) T) ((-172 . -237) T) ((-1189 . -823) 69261) ((-107 . -170) T) ((-843 . -963) 69245) ((-634 . -1079) T) ((-563 . -356) T) ((-563 . -322) 69232) ((-509 . -322) 69209) ((-509 . -356) T) ((-309 . -300) 69188) ((-306 . -300) T) ((-582 . -823) 69167) ((-1080 . -694) 69109) ((-511 . -275) 69093) ((-634 . -23) T) ((-411 . -225) 69077) ((-306 . -993) NIL) ((-329 . -23) T) ((-102 . -981) 69061) ((-45 . -36) 69040) ((-592 . -1067) T) ((-344 . -361) T) ((-515 . -101) T) ((-486 . -27) T) ((-234 . -302) 68978) ((-1054 . -1079) T) ((-1249 . -624) 68952) ((-758 . -1079) T) ((-756 . -1079) T) ((-446 . -1079) T) ((-1029 . -444) T) ((-923 . -444) 68903) ((-1082 . -1050) T) ((-110 . -1067) T) ((-1054 . -23) T) ((-793 . -1025) T) ((-758 . -23) T) ((-756 . -23) T) ((-473 . -444) 68854) ((-1126 . -505) 68637) ((-374 . -375) 68616) ((-1145 . -404) 68600) ((-453 . -23) T) ((-446 . -23) T) ((-95 . -1067) T) ((-476 . -505) 68533) ((-282 . -283) T) ((-1048 . -593) 68515) ((-400 . -880) 68494) ((-50 . -1079) T) ((-995 . -891) T) ((-974 . -703) T) ((-689 . -857) NIL) ((-563 . -1079) T) ((-509 . -1079) T) ((-816 . -624) 68467) ((-1174 . -130) T) ((-1134 . -393) 68419) ((-975 . -302) NIL) ((-791 . -481) 68403) ((-347 . -891) T) ((-1123 . -34) T) ((-400 . -624) 68355) ((-50 . -23) T) ((-688 . -130) T) ((-689 . -1009) 68235) ((-563 . -23) T) ((-107 . -505) NIL) ((-509 . -23) T) ((-167 . -402) 68206) ((-128 . -302) NIL) ((-1107 . -1067) T) ((-1241 . -1240) 68190) ((-677 . -771) T) ((-677 . -768) T) ((-1087 . -300) T) ((-372 . -145) T) ((-273 . -593) 68172) ((-1189 . -963) 68142) ((-48 . -891) T) ((-651 . -481) 68126) ((-244 . -1233) 68096) ((-243 . -1233) 68066) ((-1143 . -823) T) ((-1080 . -170) 68045) ((-1087 . -993) T) ((-1015 . -34) T) ((-810 . -145) 68024) ((-810 . -143) 68003) ((-714 . -106) 67987) ((-592 . -131) T) ((-474 . -1067) 67777) ((-1145 . -1025) T) ((-842 . -444) T) ((-84 . -1180) T) ((-234 . -38) 67747) ((-139 . -106) 67729) ((-689 . -370) 67713) ((-1087 . -534) T) ((-383 . -1024) 67697) ((-1249 . -703) T) ((-1139 . -920) 67666) ((-129 . -593) 67633) ((-52 . -593) 67615) ((-1092 . -920) 67582) ((-629 . -404) 67566) ((-1238 . -1025) T) ((-599 . -1024) 67550) ((-638 . -25) T) ((-638 . -21) T) ((-1125 . -505) NIL) ((-1218 . -101) T) ((-1211 . -101) T) ((-383 . -111) 67529) ((-216 . -247) 67513) ((-1190 . -101) T) ((-1022 . -1067) T) ((-975 . -1118) T) ((-1022 . -1021) 67453) ((-794 . -1067) T) ((-336 . -1184) T) ((-613 . -624) 67437) ((-599 . -111) 67416) ((-587 . -624) 67400) ((-577 . -101) T) ((-567 . -130) T) ((-576 . -101) T) ((-407 . -1067) T) ((-378 . -1067) T) ((-304 . -593) 67366) ((-221 . -1067) 67344) ((-623 . -505) 67277) ((-610 . -505) 67121) ((-809 . -1018) 67100) ((-621 . -149) 67084) ((-336 . -541) T) ((-689 . -871) 67027) ((-535 . -223) 66977) ((-1218 . -277) 66943) ((-1046 . -283) 66894) ((-479 . -821) T) ((-217 . -1079) T) ((-1211 . -277) 66860) ((-1190 . -277) 66826) ((-975 . -38) 66776) ((-211 . -821) T) ((-1174 . -484) 66742) ((-885 . -38) 66694) ((-816 . -770) 66673) ((-816 . -767) 66652) ((-816 . -703) 66631) ((-352 . -283) T) ((-346 . -283) T) ((-338 . -283) T) ((-167 . -444) 66562) ((-420 . -38) 66546) ((-107 . -283) T) ((-217 . -23) T) ((-400 . -770) 66525) ((-400 . -767) 66504) ((-400 . -703) T) ((-491 . -281) 66479) ((-469 . -1024) 66444) ((-634 . -130) T) ((-1080 . -505) 66377) ((-329 . -130) T) ((-167 . -395) 66356) ((-474 . -694) 66298) ((-791 . -279) 66275) ((-469 . -111) 66231) ((-629 . -1025) T) ((-1199 . -444) 66162) ((-1237 . -1050) T) ((-1236 . -1050) T) ((-1054 . -130) T) ((-257 . -823) 66141) ((-241 . -823) 66120) ((-758 . -130) T) ((-756 . -130) T) ((-556 . -444) T) ((-1022 . -694) 66062) ((-599 . -1018) T) ((-998 . -505) 65995) ((-573 . -1067) T) ((-453 . -130) T) ((-446 . -130) T) ((-45 . -1067) T) ((-378 . -694) 65965) ((-793 . -1067) T) ((-468 . -505) 65898) ((-455 . -505) 65831) ((-445 . -360) 65801) ((-45 . -590) 65780) ((-309 . -295) T) ((-646 . -593) 65742) ((-58 . -823) 65721) ((-1190 . -302) 65606) ((-975 . -393) 65588) ((-791 . -584) 65565) ((-507 . -823) 65544) ((-487 . -823) 65523) ((-40 . -1184) T) ((-970 . -1009) 65419) ((-50 . -130) T) ((-563 . -130) T) ((-509 . -130) T) ((-287 . -624) 65279) ((-336 . -322) 65256) ((-336 . -356) T) ((-315 . -316) 65233) ((-312 . -279) 65218) ((-40 . -541) T) ((-372 . -1165) T) ((-372 . -1168) T) ((-1006 . -1156) 65193) ((-1153 . -229) 65143) ((-1134 . -225) 65095) ((-323 . -1067) T) ((-372 . -94) T) ((-372 . -35) T) ((-1006 . -106) 65041) ((-469 . -1018) T) ((-471 . -229) 64991) ((-1126 . -481) 64925) ((-1250 . -1024) 64909) ((-374 . -1024) 64893) ((-469 . -237) T) ((-792 . -101) T) ((-691 . -145) 64872) ((-691 . -143) 64851) ((-476 . -481) 64835) ((-477 . -328) 64804) ((-1250 . -111) 64783) ((-503 . -1067) T) ((-474 . -170) 64762) ((-970 . -370) 64746) ((-406 . -101) T) ((-374 . -111) 64725) ((-970 . -331) 64709) ((-272 . -954) 64693) ((-271 . -954) 64677) ((-1248 . -593) 64659) ((-1246 . -593) 64641) ((-110 . -505) NIL) ((-1139 . -1202) 64625) ((-827 . -825) 64609) ((-1145 . -1067) T) ((-102 . -1180) T) ((-923 . -920) 64570) ((-793 . -694) 64512) ((-1190 . -1118) NIL) ((-473 . -920) 64457) ((-1029 . -141) T) ((-59 . -101) 64435) ((-44 . -593) 64417) ((-77 . -593) 64399) ((-344 . -624) 64344) ((-1238 . -1067) T) ((-502 . -823) T) ((-336 . -1079) T) ((-288 . -1067) T) ((-970 . -871) 64303) ((-288 . -590) 64282) ((-1218 . -38) 64179) ((-1211 . -38) 64020) ((-479 . -1025) T) ((-1190 . -38) 63816) ((-211 . -1025) T) ((-336 . -23) T) ((-150 . -593) 63798) ((-809 . -771) 63777) ((-809 . -768) 63756) ((-577 . -38) 63729) ((-576 . -38) 63626) ((-841 . -541) T) ((-217 . -130) T) ((-312 . -973) 63592) ((-78 . -593) 63574) ((-689 . -300) 63553) ((-287 . -703) 63455) ((-800 . -101) T) ((-836 . -817) T) ((-287 . -465) 63434) ((-1241 . -101) T) ((-40 . -356) T) ((-843 . -145) 63413) ((-843 . -143) 63392) ((-1125 . -481) 63374) ((-1250 . -1018) T) ((-474 . -505) 63307) ((-1113 . -1180) T) ((-935 . -593) 63289) ((-623 . -481) 63273) ((-610 . -481) 63204) ((-791 . -593) 62935) ((-48 . -27) T) ((-1145 . -694) 62832) ((-629 . -1067) T) ((-429 . -357) 62806) ((-1069 . -101) T) ((-792 . -302) 62793) ((-941 . -1067) T) ((-836 . -1067) T) ((-1246 . -375) 62765) ((-1022 . -505) 62698) ((-1126 . -279) 62674) ((-234 . -225) 62643) ((-1238 . -694) 62613) ((-1133 . -92) T) ((-965 . -92) T) ((-793 . -170) 62592) ((-221 . -505) 62525) ((-599 . -771) 62504) ((-599 . -768) 62483) ((-1177 . -593) 62395) ((-216 . -1180) T) ((-651 . -593) 62327) ((-1123 . -981) 62311) ((-344 . -703) T) ((-914 . -101) 62261) ((-1190 . -393) 62213) ((-1080 . -481) 62197) ((-59 . -302) 62135) ((-324 . -101) T) ((-1174 . -21) T) ((-1174 . -25) T) ((-40 . -1079) T) ((-688 . -21) T) ((-605 . -593) 62117) ((-506 . -316) 62096) ((-688 . -25) T) ((-107 . -279) NIL) ((-892 . -1079) T) ((-40 . -23) T) ((-747 . -1079) T) ((-549 . -1184) T) ((-486 . -1184) T) ((-312 . -593) 62078) ((-975 . -225) 62060) ((-167 . -164) 62044) ((-562 . -541) T) ((-549 . -541) T) ((-486 . -541) T) ((-747 . -23) T) ((-1210 . -145) 62023) ((-1126 . -584) 61999) ((-1210 . -143) 61978) ((-998 . -481) 61962) ((-1189 . -143) 61887) ((-1189 . -145) 61812) ((-1241 . -1247) 61791) ((-468 . -481) 61775) ((-455 . -481) 61759) ((-514 . -34) T) ((-629 . -694) 61729) ((-112 . -938) T) ((-638 . -823) 61708) ((-1145 . -170) 61659) ((-358 . -101) T) ((-234 . -232) 61638) ((-244 . -101) T) ((-243 . -101) T) ((-1199 . -920) 61607) ((-109 . -101) T) ((-239 . -823) 61586) ((-792 . -38) 61435) ((-45 . -505) 61227) ((-1125 . -279) 61202) ((-208 . -1067) T) ((-1117 . -1067) T) ((-1117 . -590) 61181) ((-567 . -25) T) ((-567 . -21) T) ((-1069 . -302) 61119) ((-934 . -404) 61103) ((-675 . -1184) T) ((-610 . -279) 61078) ((-1054 . -617) 61026) ((-758 . -617) 60974) ((-756 . -617) 60922) ((-336 . -130) T) ((-282 . -593) 60904) ((-675 . -541) T) ((-876 . -1067) T) ((-841 . -1079) T) ((-446 . -617) 60852) ((-876 . -874) 60836) ((-372 . -444) T) ((-479 . -1067) T) ((-677 . -624) 60823) ((-914 . -302) 60761) ((-211 . -1067) T) ((-309 . -891) 60740) ((-306 . -891) T) ((-306 . -796) NIL) ((-383 . -697) T) ((-841 . -23) T) ((-116 . -624) 60727) ((-466 . -143) 60706) ((-411 . -404) 60690) ((-466 . -145) 60669) ((-110 . -481) 60651) ((-2 . -593) 60633) ((-1125 . -19) 60615) ((-1125 . -584) 60590) ((-634 . -21) T) ((-634 . -25) T) ((-574 . -1111) T) ((-1080 . -279) 60567) ((-329 . -25) T) ((-329 . -21) T) ((-486 . -356) T) ((-1241 . -38) 60537) ((-1109 . -1180) T) ((-610 . -584) 60512) ((-1054 . -25) T) ((-1054 . -21) T) ((-521 . -768) T) ((-521 . -771) T) ((-117 . -1184) T) ((-934 . -1025) T) ((-601 . -541) T) ((-758 . -25) T) ((-758 . -21) T) ((-756 . -21) T) ((-756 . -25) T) ((-712 . -1025) T) ((-692 . -1025) T) ((-646 . -1024) 60496) ((-508 . -1050) T) ((-453 . -25) T) ((-117 . -541) T) ((-453 . -21) T) ((-446 . -25) T) ((-446 . -21) T) ((-1109 . -1009) 60392) ((-793 . -283) 60371) ((-799 . -1067) T) ((-937 . -938) T) ((-646 . -111) 60350) ((-288 . -505) 60142) ((-1248 . -1024) 60126) ((-1246 . -1024) 60110) ((-1210 . -1165) 60076) ((-244 . -302) 60014) ((-243 . -302) 59952) ((-1193 . -101) 59930) ((-1126 . -594) NIL) ((-1126 . -593) 59912) ((-1210 . -1168) 59878) ((-1190 . -225) 59830) ((-1189 . -1165) 59796) ((-95 . -92) T) ((-1189 . -1168) 59762) ((-1109 . -370) 59746) ((-1087 . -796) T) ((-1087 . -891) T) ((-1080 . -584) 59723) ((-1046 . -594) 59707) ((-476 . -593) 59639) ((-791 . -281) 59616) ((-588 . -149) 59563) ((-411 . -1025) T) ((-479 . -694) 59513) ((-474 . -481) 59497) ((-320 . -823) 59476) ((-332 . -624) 59450) ((-50 . -21) T) ((-50 . -25) T) ((-211 . -694) 59400) ((-167 . -701) 59371) ((-172 . -624) 59303) ((-563 . -21) T) ((-563 . -25) T) ((-509 . -25) T) ((-509 . -21) T) ((-467 . -149) 59253) ((-1046 . -593) 59235) ((-1028 . -593) 59217) ((-964 . -101) T) ((-834 . -101) T) ((-775 . -404) 59181) ((-40 . -130) T) ((-675 . -356) T) ((-206 . -866) T) ((-677 . -770) T) ((-677 . -767) T) ((-562 . -1079) T) ((-549 . -1079) T) ((-486 . -1079) T) ((-677 . -703) T) ((-352 . -593) 59163) ((-346 . -593) 59145) ((-338 . -593) 59127) ((-65 . -389) T) ((-65 . -388) T) ((-107 . -594) 59057) ((-107 . -593) 59039) ((-205 . -866) T) ((-929 . -149) 59023) ((-1210 . -94) 58989) ((-747 . -130) T) ((-133 . -703) T) ((-116 . -703) T) ((-1210 . -35) 58955) ((-1022 . -481) 58939) ((-562 . -23) T) ((-549 . -23) T) ((-486 . -23) T) ((-1189 . -94) 58905) ((-1189 . -35) 58871) ((-1139 . -101) T) ((-1092 . -101) T) ((-827 . -101) T) ((-221 . -481) 58855) ((-1248 . -111) 58834) ((-1246 . -111) 58813) ((-44 . -1024) 58797) ((-1199 . -1202) 58781) ((-828 . -825) 58765) ((-1145 . -283) 58744) ((-110 . -279) 58719) ((-1109 . -871) 58678) ((-44 . -111) 58657) ((-1148 . -1221) T) ((-1133 . -593) 58623) ((-646 . -1018) T) ((-1125 . -594) NIL) ((-1125 . -593) 58605) ((-1030 . -590) 58580) ((-1030 . -1067) T) ((-965 . -593) 58546) ((-73 . -433) T) ((-73 . -388) T) ((-646 . -227) 58525) ((-150 . -1024) 58509) ((-556 . -539) 58493) ((-348 . -145) 58472) ((-348 . -143) 58423) ((-345 . -145) 58402) ((-679 . -1067) T) ((-345 . -143) 58353) ((-337 . -145) 58332) ((-337 . -143) 58283) ((-257 . -143) 58262) ((-257 . -145) 58241) ((-244 . -38) 58211) ((-241 . -145) 58190) ((-117 . -356) T) ((-241 . -143) 58169) ((-243 . -38) 58139) ((-150 . -111) 58118) ((-974 . -1009) 58006) ((-1134 . -821) NIL) ((-670 . -1184) T) ((-775 . -1025) T) ((-675 . -1079) T) ((-1248 . -1018) T) ((-1246 . -1018) T) ((-1123 . -1180) T) ((-974 . -370) 57983) ((-881 . -143) T) ((-881 . -145) 57965) ((-841 . -130) T) ((-791 . -1024) 57862) ((-670 . -541) T) ((-675 . -23) T) ((-623 . -593) 57794) ((-623 . -594) 57755) ((-610 . -594) NIL) ((-610 . -593) 57737) ((-479 . -170) T) ((-217 . -21) T) ((-211 . -170) T) ((-217 . -25) T) ((-466 . -1168) 57703) ((-466 . -1165) 57669) ((-267 . -593) 57651) ((-266 . -593) 57633) ((-265 . -593) 57615) ((-264 . -593) 57597) ((-263 . -593) 57579) ((-491 . -627) 57561) ((-262 . -593) 57543) ((-332 . -703) T) ((-261 . -593) 57525) ((-110 . -19) 57507) ((-172 . -703) T) ((-491 . -366) 57489) ((-206 . -593) 57471) ((-511 . -1116) 57455) ((-491 . -123) T) ((-110 . -584) 57430) ((-205 . -593) 57412) ((-466 . -35) 57378) ((-466 . -94) 57344) ((-203 . -593) 57326) ((-202 . -593) 57308) ((-201 . -593) 57290) ((-200 . -593) 57272) ((-197 . -593) 57254) ((-196 . -593) 57236) ((-195 . -593) 57218) ((-194 . -593) 57200) ((-193 . -593) 57182) ((-192 . -593) 57164) ((-191 . -593) 57146) ((-525 . -1070) 57098) ((-190 . -593) 57080) ((-189 . -593) 57062) ((-45 . -481) 56999) ((-188 . -593) 56981) ((-187 . -593) 56963) ((-1082 . -101) T) ((-791 . -111) 56853) ((-621 . -101) 56803) ((-474 . -279) 56780) ((-1080 . -593) 56511) ((-1068 . -1067) T) ((-1015 . -1180) T) ((-1249 . -1009) 56495) ((-601 . -1079) T) ((-1139 . -302) 56482) ((-1102 . -1067) T) ((-1092 . -302) 56469) ((-1063 . -1050) T) ((-1057 . -1050) T) ((-1040 . -1050) T) ((-1033 . -1050) T) ((-1007 . -1050) T) ((-990 . -1050) T) ((-117 . -1079) T) ((-795 . -101) T) ((-604 . -1050) T) ((-601 . -23) T) ((-1117 . -505) 56261) ((-475 . -1050) T) ((-974 . -871) 56213) ((-379 . -101) T) ((-317 . -101) T) ((-212 . -1050) T) ((-934 . -1067) T) ((-150 . -1018) T) ((-117 . -23) T) ((-708 . -404) 56197) ((-712 . -1067) T) ((-692 . -1067) T) ((-679 . -131) T) ((-445 . -1067) T) ((-400 . -1180) T) ((-309 . -423) 56181) ((-573 . -92) T) ((-998 . -594) 56142) ((-995 . -1184) T) ((-219 . -101) T) ((-998 . -593) 56104) ((-792 . -225) 56088) ((-995 . -541) T) ((-809 . -624) 56061) ((-347 . -1184) T) ((-468 . -593) 56023) ((-468 . -594) 55984) ((-455 . -594) 55945) ((-455 . -593) 55907) ((-400 . -855) 55891) ((-312 . -1024) 55726) ((-400 . -857) 55651) ((-816 . -1009) 55547) ((-479 . -505) NIL) ((-474 . -584) 55524) ((-347 . -541) T) ((-211 . -505) NIL) ((-843 . -444) T) ((-411 . -1067) T) ((-400 . -1009) 55388) ((-312 . -111) 55209) ((-670 . -356) T) ((-219 . -277) T) ((-48 . -1184) T) ((-791 . -1018) 55139) ((-562 . -130) T) ((-549 . -130) T) ((-486 . -130) T) ((-48 . -541) T) ((-1126 . -281) 55115) ((-1139 . -1118) 55093) ((-309 . -27) 55072) ((-1029 . -101) T) ((-791 . -227) 55024) ((-234 . -821) 55003) ((-923 . -101) T) ((-690 . -101) T) ((-288 . -481) 54940) ((-473 . -101) T) ((-708 . -1025) T) ((-592 . -593) 54922) ((-592 . -594) 54783) ((-400 . -370) 54767) ((-400 . -331) 54751) ((-1139 . -38) 54580) ((-1092 . -38) 54429) ((-827 . -38) 54399) ((-383 . -624) 54383) ((-621 . -302) 54321) ((-934 . -694) 54218) ((-712 . -694) 54188) ((-216 . -106) 54172) ((-45 . -279) 54097) ((-599 . -624) 54071) ((-305 . -1067) T) ((-282 . -1024) 54058) ((-110 . -593) 54040) ((-110 . -594) 54022) ((-445 . -694) 53992) ((-792 . -246) 53931) ((-665 . -1067) 53909) ((-535 . -1067) T) ((-1141 . -1025) T) ((-1140 . -1025) T) ((-1134 . -1025) T) ((-282 . -111) 53894) ((-1093 . -1025) T) ((-535 . -590) 53873) ((-95 . -593) 53839) ((-975 . -821) T) ((-221 . -663) 53797) ((-670 . -1079) T) ((-1174 . -717) 53773) ((-312 . -1018) T) ((-336 . -25) T) ((-336 . -21) T) ((-400 . -871) 53732) ((-67 . -1180) T) ((-809 . -770) 53711) ((-411 . -694) 53685) ((-775 . -1067) T) ((-809 . -767) 53664) ((-675 . -130) T) ((-689 . -891) 53643) ((-670 . -23) T) ((-479 . -283) T) ((-809 . -703) 53622) ((-312 . -227) 53574) ((-312 . -237) 53553) ((-211 . -283) T) ((-995 . -356) T) ((-1210 . -444) 53532) ((-1189 . -444) 53511) ((-347 . -322) 53488) ((-347 . -356) T) ((-1107 . -593) 53470) ((-45 . -1214) 53420) ((-842 . -101) T) ((-621 . -275) 53404) ((-675 . -1027) T) ((-1237 . -101) T) ((-469 . -624) 53369) ((-460 . -1067) T) ((-45 . -584) 53294) ((-1236 . -101) T) ((-1125 . -281) 53269) ((-40 . -617) 53208) ((-48 . -356) T) ((-1073 . -593) 53190) ((-1054 . -823) 53169) ((-610 . -281) 53144) ((-758 . -823) 53123) ((-756 . -823) 53102) ((-474 . -593) 52833) ((-234 . -404) 52802) ((-923 . -302) 52789) ((-446 . -823) 52768) ((-64 . -1180) T) ((-1030 . -505) 52612) ((-601 . -130) T) ((-473 . -302) 52599) ((-586 . -1067) T) ((-117 . -130) T) ((-647 . -1067) T) ((-282 . -1018) T) ((-178 . -1067) T) ((-159 . -1067) T) ((-154 . -1067) T) ((-152 . -1067) T) ((-445 . -738) T) ((-31 . -1050) T) ((-934 . -170) 52550) ((-941 . -92) T) ((-1046 . -1024) 52460) ((-599 . -770) 52439) ((-574 . -1067) T) ((-599 . -767) 52418) ((-599 . -703) T) ((-288 . -279) 52397) ((-287 . -1180) T) ((-1022 . -593) 52359) ((-1022 . -594) 52320) ((-995 . -1079) T) ((-167 . -101) T) ((-268 . -823) T) ((-1132 . -1067) T) ((-794 . -593) 52302) ((-1080 . -281) 52279) ((-1069 . -223) 52263) ((-974 . -300) T) ((-775 . -694) 52247) ((-352 . -1024) 52199) ((-347 . -1079) T) ((-346 . -1024) 52151) ((-407 . -593) 52133) ((-378 . -593) 52115) ((-338 . -1024) 52067) ((-221 . -593) 51999) ((-1046 . -111) 51895) ((-995 . -23) T) ((-107 . -1024) 51845) ((-869 . -101) T) ((-814 . -101) T) ((-784 . -101) T) ((-745 . -101) T) ((-653 . -101) T) ((-466 . -444) 51824) ((-411 . -170) T) ((-352 . -111) 51762) ((-346 . -111) 51700) ((-338 . -111) 51638) ((-244 . -225) 51607) ((-243 . -225) 51576) ((-347 . -23) T) ((-70 . -1180) T) ((-219 . -38) 51541) ((-107 . -111) 51475) ((-40 . -25) T) ((-40 . -21) T) ((-646 . -697) T) ((-167 . -277) 51453) ((-48 . -1079) T) ((-892 . -25) T) ((-747 . -25) T) ((-1117 . -481) 51390) ((-477 . -1067) T) ((-1250 . -624) 51364) ((-1199 . -101) T) ((-828 . -101) T) ((-234 . -1025) 51294) ((-1029 . -1118) T) ((-935 . -768) 51247) ((-374 . -624) 51231) ((-48 . -23) T) ((-935 . -771) 51184) ((-791 . -771) 51135) ((-791 . -768) 51086) ((-288 . -584) 51065) ((-469 . -703) T) ((-556 . -101) T) ((-842 . -302) 51022) ((-629 . -279) 51001) ((-112 . -637) T) ((-75 . -1180) T) ((-1029 . -38) 50988) ((-640 . -367) 50967) ((-923 . -38) 50816) ((-708 . -1067) T) ((-473 . -38) 50665) ((-85 . -1180) T) ((-556 . -277) T) ((-1190 . -821) NIL) ((-573 . -593) 50631) ((-1141 . -1067) T) ((-1140 . -1067) T) ((-1134 . -1067) T) ((-344 . -1009) 50608) ((-1046 . -1018) T) ((-975 . -1025) T) ((-45 . -593) 50590) ((-45 . -594) NIL) ((-885 . -1025) T) ((-793 . -593) 50572) ((-1114 . -101) 50550) ((-1046 . -237) 50501) ((-420 . -1025) T) ((-352 . -1018) T) ((-346 . -1018) T) ((-358 . -357) 50478) ((-338 . -1018) T) ((-244 . -232) 50457) ((-243 . -232) 50436) ((-109 . -357) 50410) ((-1046 . -227) 50335) ((-1093 . -1067) T) ((-287 . -871) 50294) ((-107 . -1018) T) ((-670 . -130) T) ((-411 . -505) 50136) ((-352 . -227) 50115) ((-352 . -237) T) ((-44 . -697) T) ((-346 . -227) 50094) ((-346 . -237) T) ((-338 . -227) 50073) ((-338 . -237) T) ((-167 . -302) 50038) ((-107 . -237) T) ((-107 . -227) T) ((-312 . -768) T) ((-841 . -21) T) ((-841 . -25) T) ((-400 . -300) T) ((-491 . -34) T) ((-110 . -281) 50013) ((-1080 . -1024) 49910) ((-842 . -1118) NIL) ((-323 . -593) 49892) ((-400 . -993) 49871) ((-1080 . -111) 49761) ((-667 . -1221) T) ((-429 . -1067) T) ((-1250 . -703) T) ((-62 . -593) 49743) ((-842 . -38) 49688) ((-514 . -1180) T) ((-582 . -149) 49672) ((-503 . -593) 49654) ((-1199 . -302) 49641) ((-708 . -694) 49490) ((-521 . -769) T) ((-521 . -770) T) ((-549 . -617) 49472) ((-486 . -617) 49432) ((-348 . -444) T) ((-345 . -444) T) ((-337 . -444) T) ((-257 . -444) 49383) ((-516 . -1067) T) ((-511 . -1067) 49333) ((-241 . -444) 49284) ((-1117 . -279) 49263) ((-1145 . -593) 49245) ((-665 . -505) 49178) ((-934 . -283) 49157) ((-535 . -505) 48949) ((-1139 . -225) 48933) ((-167 . -1118) 48912) ((-1238 . -593) 48894) ((-1141 . -694) 48791) ((-1140 . -694) 48632) ((-863 . -101) T) ((-1134 . -694) 48428) ((-1093 . -694) 48325) ((-1123 . -650) 48309) ((-348 . -395) 48260) ((-345 . -395) 48211) ((-337 . -395) 48162) ((-995 . -130) T) ((-775 . -505) 48074) ((-288 . -594) NIL) ((-288 . -593) 48056) ((-881 . -444) T) ((-935 . -361) 48009) ((-791 . -361) 47988) ((-501 . -500) 47967) ((-499 . -500) 47946) ((-479 . -279) NIL) ((-474 . -281) 47923) ((-411 . -283) T) ((-347 . -130) T) ((-211 . -279) NIL) ((-670 . -484) NIL) ((-98 . -1079) T) ((-167 . -38) 47751) ((-1210 . -944) 47713) ((-1114 . -302) 47651) ((-1189 . -944) 47620) ((-881 . -395) T) ((-1080 . -1018) 47550) ((-1212 . -541) T) ((-1117 . -584) 47529) ((-112 . -823) T) ((-1030 . -481) 47460) ((-562 . -21) T) ((-562 . -25) T) ((-549 . -21) T) ((-549 . -25) T) ((-486 . -25) T) ((-486 . -21) T) ((-1199 . -1118) 47438) ((-1080 . -227) 47390) ((-48 . -130) T) ((-1161 . -101) T) ((-234 . -1067) 47180) ((-842 . -393) 47157) ((-1055 . -101) T) ((-1042 . -101) T) ((-588 . -101) T) ((-467 . -101) T) ((-1199 . -38) 46986) ((-828 . -38) 46956) ((-708 . -170) 46867) ((-629 . -593) 46849) ((-622 . -1050) T) ((-556 . -38) 46836) ((-941 . -593) 46802) ((-929 . -101) 46752) ((-836 . -593) 46734) ((-836 . -594) 46656) ((-574 . -505) NIL) ((-1218 . -1025) T) ((-1211 . -1025) T) ((-1190 . -1025) T) ((-577 . -1025) T) ((-576 . -1025) T) ((-1254 . -1079) T) ((-1141 . -170) 46607) ((-1140 . -170) 46538) ((-1134 . -170) 46469) ((-1093 . -170) 46420) ((-975 . -1067) T) ((-942 . -1067) T) ((-885 . -1067) T) ((-1174 . -145) 46399) ((-775 . -773) 46383) ((-675 . -25) T) ((-675 . -21) T) ((-117 . -617) 46360) ((-677 . -857) 46342) ((-420 . -1067) T) ((-309 . -1184) 46321) ((-306 . -1184) T) ((-167 . -393) 46305) ((-1174 . -143) 46284) ((-466 . -944) 46246) ((-128 . -1067) T) ((-71 . -593) 46228) ((-107 . -771) T) ((-107 . -768) T) ((-309 . -541) 46207) ((-677 . -1009) 46189) ((-306 . -541) T) ((-1254 . -23) T) ((-133 . -1009) 46171) ((-474 . -1024) 46068) ((-45 . -281) 45993) ((-234 . -694) 45935) ((-508 . -101) T) ((-474 . -111) 45825) ((-1059 . -101) 45803) ((-1005 . -101) T) ((-621 . -804) 45782) ((-708 . -505) 45725) ((-1022 . -1024) 45709) ((-1102 . -92) T) ((-1030 . -279) 45684) ((-601 . -21) T) ((-601 . -25) T) ((-515 . -1067) T) ((-354 . -101) T) ((-315 . -101) T) ((-646 . -624) 45658) ((-378 . -1024) 45642) ((-1022 . -111) 45621) ((-792 . -404) 45605) ((-117 . -25) T) ((-88 . -593) 45587) ((-117 . -21) T) ((-588 . -302) 45382) ((-467 . -302) 45186) ((-1117 . -594) NIL) ((-378 . -111) 45165) ((-372 . -101) T) ((-208 . -593) 45147) ((-1117 . -593) 45129) ((-975 . -694) 45079) ((-1134 . -505) 44848) ((-885 . -694) 44800) ((-1093 . -505) 44770) ((-344 . -300) T) ((-1153 . -149) 44720) ((-929 . -302) 44658) ((-810 . -101) T) ((-420 . -694) 44642) ((-219 . -804) T) ((-803 . -101) T) ((-801 . -101) T) ((-471 . -149) 44592) ((-1210 . -1209) 44571) ((-1087 . -1184) T) ((-332 . -1009) 44538) ((-1210 . -1204) 44508) ((-1210 . -1207) 44492) ((-1189 . -1188) 44471) ((-79 . -593) 44453) ((-876 . -593) 44435) ((-1189 . -1204) 44412) ((-1087 . -541) T) ((-892 . -823) T) ((-747 . -823) T) ((-479 . -594) 44342) ((-479 . -593) 44324) ((-372 . -277) T) ((-648 . -823) T) ((-1189 . -1186) 44308) ((-1212 . -1079) T) ((-211 . -594) 44238) ((-211 . -593) 44220) ((-1030 . -584) 44195) ((-58 . -149) 44179) ((-507 . -149) 44163) ((-487 . -149) 44147) ((-352 . -1245) 44131) ((-346 . -1245) 44115) ((-338 . -1245) 44099) ((-309 . -356) 44078) ((-306 . -356) T) ((-474 . -1018) 44008) ((-670 . -617) 43990) ((-1248 . -624) 43964) ((-1246 . -624) 43938) ((-1212 . -23) T) ((-665 . -481) 43922) ((-63 . -593) 43904) ((-1080 . -771) 43855) ((-1080 . -768) 43806) ((-535 . -481) 43743) ((-646 . -34) T) ((-474 . -227) 43695) ((-288 . -281) 43674) ((-234 . -170) 43653) ((-792 . -1025) T) ((-44 . -624) 43611) ((-1046 . -361) 43562) ((-708 . -283) 43493) ((-511 . -505) 43426) ((-793 . -1024) 43377) ((-1054 . -143) 43356) ((-352 . -361) 43335) ((-346 . -361) 43314) ((-338 . -361) 43293) ((-1054 . -145) 43272) ((-842 . -225) 43249) ((-793 . -111) 43191) ((-758 . -143) 43170) ((-758 . -145) 43149) ((-257 . -920) 43116) ((-244 . -821) 43095) ((-241 . -920) 43040) ((-243 . -821) 43019) ((-756 . -143) 42998) ((-756 . -145) 42977) ((-150 . -624) 42951) ((-446 . -145) 42930) ((-446 . -143) 42909) ((-646 . -703) T) ((-799 . -593) 42891) ((-1218 . -1067) T) ((-1211 . -1067) T) ((-1190 . -1067) T) ((-1174 . -1168) 42857) ((-1174 . -1165) 42823) ((-1141 . -283) 42802) ((-1140 . -283) 42753) ((-1134 . -283) 42704) ((-1093 . -283) 42683) ((-332 . -871) 42664) ((-975 . -170) T) ((-885 . -170) T) ((-577 . -1067) T) ((-576 . -1067) T) ((-670 . -21) T) ((-670 . -25) T) ((-466 . -1207) 42648) ((-466 . -1204) 42618) ((-411 . -279) 42546) ((-309 . -1079) 42395) ((-306 . -1079) T) ((-1174 . -35) 42361) ((-1174 . -94) 42327) ((-83 . -593) 42309) ((-90 . -101) 42287) ((-1254 . -130) T) ((-563 . -143) T) ((-563 . -145) 42269) ((-509 . -145) 42251) ((-509 . -143) T) ((-309 . -23) 42103) ((-40 . -335) 42077) ((-306 . -23) T) ((-1125 . -627) 42059) ((-1241 . -1025) T) ((-1125 . -366) 42041) ((-791 . -624) 41889) ((-1063 . -101) T) ((-1057 . -101) T) ((-1040 . -101) T) ((-167 . -225) 41873) ((-1033 . -101) T) ((-1007 . -101) T) ((-990 . -101) T) ((-574 . -481) 41855) ((-604 . -101) T) ((-234 . -505) 41788) ((-475 . -101) T) ((-1248 . -703) T) ((-1246 . -703) T) ((-212 . -101) T) ((-1145 . -1024) 41671) ((-1145 . -111) 41540) ((-793 . -1018) T) ((-657 . -1050) T) ((-652 . -1050) T) ((-506 . -101) T) ((-501 . -101) T) ((-48 . -617) 41500) ((-499 . -101) T) ((-470 . -1050) T) ((-1238 . -1024) 41470) ((-137 . -1050) T) ((-136 . -1050) T) ((-132 . -1050) T) ((-1005 . -38) 41454) ((-793 . -227) T) ((-793 . -237) 41433) ((-1238 . -111) 41398) ((-1218 . -694) 41295) ((-535 . -279) 41274) ((-1211 . -694) 41115) ((-1199 . -225) 41099) ((-586 . -92) T) ((-1030 . -594) NIL) ((-1030 . -593) 41081) ((-647 . -92) T) ((-178 . -92) T) ((-159 . -92) T) ((-154 . -92) T) ((-152 . -92) T) ((-1190 . -694) 40877) ((-974 . -891) T) ((-679 . -593) 40846) ((-150 . -703) T) ((-1080 . -361) 40825) ((-975 . -505) NIL) ((-244 . -404) 40794) ((-243 . -404) 40763) ((-995 . -25) T) ((-995 . -21) T) ((-577 . -694) 40736) ((-576 . -694) 40633) ((-775 . -279) 40591) ((-126 . -101) 40569) ((-809 . -1009) 40465) ((-167 . -804) 40444) ((-312 . -624) 40341) ((-791 . -34) T) ((-691 . -101) T) ((-1087 . -1079) T) ((-128 . -505) NIL) ((-997 . -1180) T) ((-372 . -38) 40306) ((-347 . -25) T) ((-347 . -21) T) ((-160 . -101) T) ((-155 . -101) T) ((-348 . -1233) 40290) ((-345 . -1233) 40274) ((-337 . -1233) 40258) ((-167 . -342) 40237) ((-549 . -823) T) ((-486 . -823) T) ((-1087 . -23) T) ((-86 . -593) 40219) ((-677 . -300) T) ((-810 . -38) 40189) ((-803 . -38) 40159) ((-1212 . -130) T) ((-1117 . -281) 40138) ((-935 . -769) 40091) ((-935 . -770) 40044) ((-791 . -767) 40023) ((-116 . -300) T) ((-90 . -302) 39961) ((-651 . -34) T) ((-535 . -584) 39940) ((-48 . -25) T) ((-48 . -21) T) ((-791 . -770) 39891) ((-791 . -769) 39870) ((-677 . -993) T) ((-629 . -1024) 39854) ((-935 . -703) 39753) ((-791 . -703) 39663) ((-935 . -465) 39616) ((-474 . -771) 39567) ((-474 . -768) 39518) ((-881 . -1233) 39505) ((-1145 . -1018) T) ((-629 . -111) 39484) ((-1145 . -319) 39461) ((-1166 . -101) 39439) ((-1068 . -593) 39421) ((-677 . -534) T) ((-792 . -1067) T) ((-1238 . -1018) T) ((-406 . -1067) T) ((-1102 . -593) 39387) ((-244 . -1025) 39317) ((-243 . -1025) 39247) ((-282 . -624) 39234) ((-574 . -279) 39209) ((-665 . -663) 39167) ((-934 . -593) 39149) ((-843 . -101) T) ((-712 . -593) 39131) ((-692 . -593) 39113) ((-1218 . -170) 39064) ((-1211 . -170) 38995) ((-1190 . -170) 38926) ((-675 . -823) T) ((-975 . -283) T) ((-445 . -593) 38908) ((-605 . -703) T) ((-59 . -1067) 38886) ((-239 . -149) 38870) ((-885 . -283) T) ((-995 . -983) T) ((-605 . -465) T) ((-689 . -1184) 38849) ((-577 . -170) 38828) ((-576 . -170) 38779) ((-1226 . -823) 38758) ((-689 . -541) 38669) ((-400 . -891) T) ((-400 . -796) 38648) ((-312 . -770) T) ((-312 . -703) T) ((-411 . -593) 38630) ((-411 . -594) 38538) ((-621 . -1116) 38522) ((-110 . -627) 38504) ((-172 . -300) T) ((-126 . -302) 38442) ((-110 . -366) 38424) ((-391 . -1180) T) ((-309 . -130) 38295) ((-306 . -130) T) ((-68 . -388) T) ((-110 . -123) T) ((-511 . -481) 38279) ((-630 . -1079) T) ((-574 . -19) 38261) ((-60 . -433) T) ((-60 . -388) T) ((-800 . -1067) T) ((-574 . -584) 38236) ((-469 . -1009) 38196) ((-629 . -1018) T) ((-630 . -23) T) ((-1241 . -1067) T) ((-31 . -101) T) ((-792 . -694) 38045) ((-117 . -823) NIL) ((-1139 . -404) 38029) ((-1092 . -404) 38013) ((-827 . -404) 37997) ((-844 . -101) 37948) ((-1210 . -101) T) ((-1190 . -505) 37717) ((-516 . -92) T) ((-1166 . -302) 37655) ((-305 . -593) 37637) ((-1189 . -101) T) ((-1069 . -1067) T) ((-1141 . -279) 37622) ((-1140 . -279) 37607) ((-282 . -703) T) ((-107 . -880) NIL) ((-665 . -593) 37539) ((-665 . -594) 37500) ((-1046 . -624) 37410) ((-581 . -593) 37392) ((-535 . -594) NIL) ((-535 . -593) 37374) ((-1134 . -279) 37222) ((-479 . -1024) 37172) ((-688 . -444) T) ((-502 . -500) 37151) ((-498 . -500) 37130) ((-211 . -1024) 37080) ((-352 . -624) 37032) ((-346 . -624) 36984) ((-219 . -821) T) ((-338 . -624) 36936) ((-582 . -101) 36886) ((-474 . -361) 36865) ((-107 . -624) 36815) ((-479 . -111) 36749) ((-234 . -481) 36733) ((-336 . -145) 36715) ((-336 . -143) T) ((-167 . -363) 36686) ((-914 . -1224) 36670) ((-211 . -111) 36604) ((-843 . -302) 36569) ((-914 . -1067) 36519) ((-775 . -594) 36480) ((-775 . -593) 36462) ((-695 . -101) T) ((-324 . -1067) T) ((-1087 . -130) T) ((-691 . -38) 36432) ((-309 . -484) 36411) ((-491 . -1180) T) ((-1210 . -277) 36377) ((-1189 . -277) 36343) ((-320 . -149) 36327) ((-1030 . -281) 36302) ((-1241 . -694) 36272) ((-1126 . -34) T) ((-1250 . -1009) 36249) ((-460 . -593) 36231) ((-476 . -34) T) ((-374 . -1009) 36215) ((-1139 . -1025) T) ((-1092 . -1025) T) ((-827 . -1025) T) ((-1029 . -821) T) ((-792 . -170) 36126) ((-511 . -279) 36103) ((-128 . -481) 36085) ((-1218 . -283) 36064) ((-117 . -963) 36041) ((-1211 . -283) 35992) ((-1161 . -357) 35966) ((-1055 . -259) 35950) ((-647 . -593) 35916) ((-586 . -593) 35866) ((-466 . -101) T) ((-178 . -593) 35832) ((-159 . -593) 35798) ((-154 . -593) 35764) ((-358 . -1067) T) ((-244 . -1067) T) ((-243 . -1067) T) ((-152 . -593) 35730) ((-109 . -1067) T) ((-1190 . -283) 35681) ((-843 . -1118) 35659) ((-1141 . -973) 35625) ((-588 . -357) 35565) ((-1140 . -973) 35531) ((-588 . -223) 35478) ((-574 . -593) 35460) ((-574 . -594) NIL) ((-670 . -823) T) ((-467 . -223) 35410) ((-479 . -1018) T) ((-1134 . -973) 35376) ((-87 . -432) T) ((-87 . -388) T) ((-211 . -1018) T) ((-1093 . -973) 35342) ((-1046 . -703) T) ((-689 . -1079) T) ((-577 . -283) 35321) ((-576 . -283) 35300) ((-479 . -237) T) ((-479 . -227) T) ((-211 . -237) T) ((-211 . -227) T) ((-1132 . -593) 35282) ((-843 . -38) 35234) ((-352 . -703) T) ((-346 . -703) T) ((-338 . -703) T) ((-107 . -770) T) ((-107 . -767) T) ((-511 . -1214) 35218) ((-107 . -703) T) ((-689 . -23) T) ((-1254 . -25) T) ((-466 . -277) 35184) ((-1254 . -21) T) ((-1189 . -302) 35123) ((-1143 . -101) T) ((-40 . -143) 35095) ((-40 . -145) 35067) ((-511 . -584) 35044) ((-1080 . -624) 34892) ((-582 . -302) 34830) ((-45 . -627) 34780) ((-45 . -642) 34730) ((-45 . -366) 34680) ((-1125 . -34) T) ((-842 . -821) NIL) ((-630 . -130) T) ((-477 . -593) 34662) ((-234 . -279) 34639) ((-623 . -34) T) ((-610 . -34) T) ((-1054 . -444) 34590) ((-792 . -505) 34464) ((-758 . -444) 34395) ((-756 . -444) 34346) ((-446 . -444) 34297) ((-923 . -404) 34281) ((-708 . -593) 34263) ((-244 . -694) 34205) ((-243 . -694) 34147) ((-708 . -594) 34008) ((-473 . -404) 33992) ((-332 . -295) T) ((-515 . -92) T) ((-344 . -891) T) ((-971 . -101) 33970) ((-995 . -823) T) ((-59 . -505) 33903) ((-1189 . -1118) 33855) ((-975 . -279) NIL) ((-219 . -1025) T) ((-372 . -804) T) ((-1080 . -34) T) ((-1193 . -1060) 33839) ((-563 . -444) T) ((-509 . -444) T) ((-1193 . -1067) 33817) ((-1193 . -1062) 33774) ((-234 . -584) 33751) ((-1141 . -593) 33733) ((-1140 . -593) 33715) ((-1134 . -593) 33697) ((-1134 . -594) NIL) ((-1093 . -593) 33679) ((-128 . -279) 33654) ((-843 . -393) 33638) ((-525 . -101) T) ((-1210 . -38) 33479) ((-1189 . -38) 33293) ((-841 . -145) T) ((-563 . -395) T) ((-48 . -823) T) ((-509 . -395) T) ((-1222 . -101) T) ((-1212 . -21) T) ((-1212 . -25) T) ((-1080 . -767) 33272) ((-1080 . -770) 33223) ((-1080 . -769) 33202) ((-964 . -1067) T) ((-998 . -34) T) ((-834 . -1067) T) ((-1080 . -703) 33112) ((-640 . -101) T) ((-622 . -101) T) ((-535 . -281) 33091) ((-1153 . -101) T) ((-468 . -34) T) ((-455 . -34) T) ((-348 . -101) T) ((-345 . -101) T) ((-337 . -101) T) ((-257 . -101) T) ((-241 . -101) T) ((-469 . -300) T) ((-1029 . -1025) T) ((-923 . -1025) T) ((-309 . -617) 32997) ((-306 . -617) 32958) ((-473 . -1025) T) ((-471 . -101) T) ((-429 . -593) 32940) ((-1139 . -1067) T) ((-1092 . -1067) T) ((-827 . -1067) T) ((-1108 . -101) T) ((-792 . -283) 32871) ((-934 . -1024) 32754) ((-469 . -993) T) ((-128 . -19) 32736) ((-712 . -1024) 32706) ((-128 . -584) 32681) ((-445 . -1024) 32651) ((-1114 . -1088) 32635) ((-1069 . -505) 32568) ((-934 . -111) 32437) ((-881 . -101) T) ((-712 . -111) 32402) ((-516 . -593) 32368) ((-58 . -101) 32318) ((-511 . -594) 32279) ((-511 . -593) 32191) ((-510 . -101) 32169) ((-507 . -101) 32119) ((-488 . -101) 32097) ((-487 . -101) 32047) ((-445 . -111) 32010) ((-244 . -170) 31989) ((-243 . -170) 31968) ((-411 . -1024) 31942) ((-1174 . -944) 31904) ((-970 . -1079) T) ((-914 . -505) 31837) ((-479 . -771) T) ((-466 . -38) 31678) ((-411 . -111) 31645) ((-479 . -768) T) ((-971 . -302) 31583) ((-211 . -771) T) ((-211 . -768) T) ((-970 . -23) T) ((-689 . -130) T) ((-1189 . -393) 31553) ((-309 . -25) 31405) ((-167 . -404) 31389) ((-309 . -21) 31260) ((-306 . -25) T) ((-306 . -21) T) ((-836 . -361) T) ((-110 . -34) T) ((-474 . -624) 31108) ((-842 . -1025) T) ((-574 . -281) 31083) ((-562 . -145) T) ((-549 . -145) T) ((-486 . -145) T) ((-1139 . -694) 30912) ((-1092 . -694) 30761) ((-1087 . -617) 30743) ((-827 . -694) 30713) ((-646 . -1180) T) ((-1 . -101) T) ((-234 . -593) 30444) ((-1082 . -1067) T) ((-1199 . -404) 30428) ((-1153 . -302) 30232) ((-934 . -1018) T) ((-712 . -1018) T) ((-692 . -1018) T) ((-621 . -1067) 30182) ((-1022 . -624) 30166) ((-828 . -404) 30150) ((-502 . -101) T) ((-498 . -101) T) ((-241 . -302) 30137) ((-257 . -302) 30124) ((-934 . -319) 30103) ((-378 . -624) 30087) ((-471 . -302) 29891) ((-244 . -505) 29824) ((-646 . -1009) 29720) ((-243 . -505) 29653) ((-1108 . -302) 29579) ((-795 . -1067) T) ((-775 . -1024) 29563) ((-1218 . -279) 29548) ((-1211 . -279) 29533) ((-1190 . -279) 29381) ((-379 . -1067) T) ((-317 . -1067) T) ((-411 . -1018) T) ((-167 . -1025) T) ((-58 . -302) 29319) ((-775 . -111) 29298) ((-576 . -279) 29283) ((-510 . -302) 29221) ((-507 . -302) 29159) ((-488 . -302) 29097) ((-487 . -302) 29035) ((-411 . -227) 29014) ((-474 . -34) T) ((-975 . -594) 28944) ((-219 . -1067) T) ((-975 . -593) 28926) ((-942 . -593) 28908) ((-942 . -594) 28883) ((-885 . -593) 28865) ((-675 . -145) T) ((-677 . -891) T) ((-677 . -796) T) ((-420 . -593) 28847) ((-1087 . -21) T) ((-128 . -594) NIL) ((-128 . -593) 28829) ((-1087 . -25) T) ((-646 . -370) 28813) ((-116 . -891) T) ((-843 . -225) 28797) ((-77 . -1180) T) ((-126 . -125) 28781) ((-1022 . -34) T) ((-1248 . -1009) 28755) ((-1246 . -1009) 28712) ((-1199 . -1025) T) ((-828 . -1025) T) ((-474 . -767) 28691) ((-348 . -1118) 28670) ((-345 . -1118) 28649) ((-337 . -1118) 28628) ((-474 . -770) 28579) ((-474 . -769) 28558) ((-221 . -34) T) ((-474 . -703) 28468) ((-59 . -481) 28452) ((-556 . -1025) T) ((-1139 . -170) 28343) ((-1092 . -170) 28254) ((-1029 . -1067) T) ((-1054 . -920) 28199) ((-923 . -1067) T) ((-793 . -624) 28150) ((-758 . -920) 28119) ((-690 . -1067) T) ((-756 . -920) 28086) ((-507 . -275) 28070) ((-646 . -871) 28029) ((-473 . -1067) T) ((-446 . -920) 27996) ((-78 . -1180) T) ((-348 . -38) 27961) ((-345 . -38) 27926) ((-337 . -38) 27891) ((-257 . -38) 27740) ((-241 . -38) 27589) ((-881 . -1118) T) ((-601 . -145) 27568) ((-601 . -143) 27547) ((-515 . -593) 27513) ((-117 . -145) T) ((-117 . -143) NIL) ((-407 . -703) T) ((-775 . -1018) T) ((-336 . -444) T) ((-1218 . -973) 27479) ((-1211 . -973) 27445) ((-1190 . -973) 27411) ((-881 . -38) 27376) ((-219 . -694) 27341) ((-312 . -47) 27311) ((-40 . -402) 27283) ((-138 . -593) 27265) ((-970 . -130) T) ((-791 . -1180) T) ((-172 . -891) T) ((-336 . -395) T) ((-511 . -281) 27242) ((-791 . -1009) 27069) ((-45 . -34) T) ((-657 . -101) T) ((-652 . -101) T) ((-638 . -101) T) ((-630 . -21) T) ((-630 . -25) T) ((-1189 . -225) 27039) ((-1069 . -481) 27023) ((-470 . -101) T) ((-651 . -1180) T) ((-239 . -101) 26973) ((-137 . -101) T) ((-136 . -101) T) ((-132 . -101) T) ((-842 . -1067) T) ((-1145 . -624) 26898) ((-1029 . -694) 26885) ((-708 . -1024) 26728) ((-1139 . -505) 26675) ((-923 . -694) 26524) ((-1092 . -505) 26476) ((-1237 . -1067) T) ((-1236 . -1067) T) ((-473 . -694) 26325) ((-66 . -593) 26307) ((-708 . -111) 26136) ((-914 . -481) 26120) ((-1238 . -624) 26080) ((-793 . -703) T) ((-1141 . -1024) 25963) ((-1140 . -1024) 25798) ((-1134 . -1024) 25588) ((-1093 . -1024) 25471) ((-974 . -1184) T) ((-1061 . -101) 25449) ((-791 . -370) 25418) ((-974 . -541) T) ((-1141 . -111) 25287) ((-1140 . -111) 25108) ((-1134 . -111) 24877) ((-1093 . -111) 24746) ((-1072 . -1070) 24710) ((-372 . -821) T) ((-1218 . -593) 24692) ((-1211 . -593) 24674) ((-1190 . -593) 24656) ((-1190 . -594) NIL) ((-234 . -281) 24633) ((-40 . -444) T) ((-219 . -170) T) ((-167 . -1067) T) ((-670 . -145) T) ((-670 . -143) NIL) ((-577 . -593) 24615) ((-576 . -593) 24597) ((-869 . -1067) T) ((-814 . -1067) T) ((-784 . -1067) T) ((-745 . -1067) T) ((-634 . -825) 24581) ((-653 . -1067) T) ((-791 . -871) 24513) ((-40 . -395) NIL) ((-1087 . -637) T) ((-842 . -694) 24458) ((-244 . -481) 24442) ((-243 . -481) 24426) ((-689 . -617) 24374) ((-629 . -624) 24348) ((-288 . -34) T) ((-708 . -1018) T) ((-563 . -1233) 24335) ((-509 . -1233) 24312) ((-1199 . -1067) T) ((-1139 . -283) 24223) ((-1092 . -283) 24154) ((-1029 . -170) T) ((-828 . -1067) T) ((-923 . -170) 24065) ((-758 . -1202) 24049) ((-621 . -505) 23982) ((-76 . -593) 23964) ((-708 . -319) 23929) ((-1145 . -703) T) ((-556 . -1067) T) ((-473 . -170) 23840) ((-239 . -302) 23778) ((-128 . -281) 23753) ((-1109 . -1079) T) ((-69 . -593) 23735) ((-1238 . -703) T) ((-1141 . -1018) T) ((-1140 . -1018) T) ((-320 . -101) 23685) ((-1134 . -1018) T) ((-1109 . -23) T) ((-1093 . -1018) T) ((-90 . -1088) 23669) ((-837 . -1079) T) ((-1141 . -227) 23628) ((-1140 . -237) 23607) ((-1140 . -227) 23559) ((-1134 . -227) 23446) ((-1134 . -237) 23425) ((-312 . -871) 23331) ((-837 . -23) T) ((-167 . -694) 23159) ((-400 . -1184) T) ((-1068 . -361) T) ((-995 . -145) T) ((-974 . -356) T) ((-841 . -444) T) ((-914 . -279) 23136) ((-309 . -823) T) ((-306 . -823) NIL) ((-845 . -101) T) ((-689 . -25) T) ((-400 . -541) T) ((-689 . -21) T) ((-347 . -145) 23118) ((-347 . -143) T) ((-1114 . -1067) 23096) ((-445 . -697) T) ((-74 . -593) 23078) ((-114 . -823) T) ((-239 . -275) 23062) ((-234 . -1024) 22959) ((-80 . -593) 22941) ((-712 . -361) 22894) ((-1143 . -804) T) ((-714 . -229) 22878) ((-1126 . -1180) T) ((-139 . -229) 22860) ((-234 . -111) 22750) ((-1199 . -694) 22579) ((-48 . -145) T) ((-842 . -170) T) ((-828 . -694) 22549) ((-476 . -1180) T) ((-923 . -505) 22496) ((-629 . -703) T) ((-556 . -694) 22483) ((-1005 . -1025) T) ((-473 . -505) 22426) ((-914 . -19) 22410) ((-914 . -584) 22387) ((-792 . -594) NIL) ((-792 . -593) 22369) ((-975 . -1024) 22319) ((-406 . -593) 22301) ((-244 . -279) 22278) ((-243 . -279) 22255) ((-479 . -880) NIL) ((-309 . -29) 22225) ((-107 . -1180) T) ((-974 . -1079) T) ((-211 . -880) NIL) ((-885 . -1024) 22177) ((-1046 . -1009) 22073) ((-975 . -111) 22007) ((-714 . -671) 21991) ((-257 . -225) 21975) ((-420 . -1024) 21959) ((-372 . -1025) T) ((-974 . -23) T) ((-885 . -111) 21897) ((-670 . -1168) NIL) ((-479 . -624) 21847) ((-107 . -855) 21829) ((-107 . -857) 21811) ((-670 . -1165) NIL) ((-211 . -624) 21761) ((-352 . -1009) 21745) ((-346 . -1009) 21729) ((-320 . -302) 21667) ((-338 . -1009) 21651) ((-219 . -283) T) ((-420 . -111) 21630) ((-59 . -593) 21562) ((-167 . -170) T) ((-1087 . -823) T) ((-107 . -1009) 21522) ((-863 . -1067) T) ((-810 . -1025) T) ((-803 . -1025) T) ((-670 . -35) NIL) ((-670 . -94) NIL) ((-306 . -963) 21483) ((-181 . -101) T) ((-562 . -444) T) ((-549 . -444) T) ((-486 . -444) T) ((-400 . -356) T) ((-234 . -1018) 21413) ((-1117 . -34) T) ((-469 . -891) T) ((-970 . -617) 21361) ((-244 . -584) 21338) ((-243 . -584) 21315) ((-1046 . -370) 21299) ((-842 . -505) 21207) ((-234 . -227) 21159) ((-1125 . -1180) T) ((-800 . -593) 21141) ((-1249 . -1079) T) ((-1241 . -593) 21123) ((-1199 . -170) 21014) ((-107 . -370) 20996) ((-107 . -331) 20978) ((-1029 . -283) T) ((-923 . -283) 20909) ((-775 . -361) 20888) ((-623 . -1180) T) ((-610 . -1180) T) ((-473 . -283) 20819) ((-556 . -170) T) ((-320 . -275) 20803) ((-1249 . -23) T) ((-1174 . -101) T) ((-1161 . -1067) T) ((-1055 . -1067) T) ((-1042 . -1067) T) ((-82 . -593) 20785) ((-688 . -101) T) ((-348 . -342) 20764) ((-588 . -1067) T) ((-345 . -342) 20743) ((-337 . -342) 20722) ((-467 . -1067) T) ((-1153 . -223) 20672) ((-257 . -246) 20634) ((-1109 . -130) T) ((-588 . -590) 20610) ((-1046 . -871) 20543) ((-975 . -1018) T) ((-885 . -1018) T) ((-467 . -590) 20522) ((-1134 . -768) NIL) ((-1134 . -771) NIL) ((-1069 . -594) 20483) ((-471 . -223) 20433) ((-1069 . -593) 20415) ((-975 . -237) T) ((-975 . -227) T) ((-420 . -1018) T) ((-929 . -1067) 20365) ((-885 . -237) T) ((-837 . -130) T) ((-675 . -444) T) ((-816 . -1079) 20344) ((-107 . -871) NIL) ((-1174 . -277) 20310) ((-843 . -821) 20289) ((-1080 . -1180) T) ((-876 . -703) T) ((-167 . -505) 20201) ((-970 . -25) T) ((-876 . -465) T) ((-400 . -1079) T) ((-479 . -770) T) ((-479 . -767) T) ((-881 . -342) T) ((-479 . -703) T) ((-211 . -770) T) ((-211 . -767) T) ((-970 . -21) T) ((-211 . -703) T) ((-816 . -23) 20153) ((-312 . -300) 20132) ((-1006 . -229) 20078) ((-400 . -23) T) ((-914 . -594) 20039) ((-914 . -593) 19951) ((-621 . -481) 19935) ((-45 . -981) 19885) ((-596 . -938) T) ((-482 . -101) T) ((-324 . -593) 19867) ((-1080 . -1009) 19694) ((-574 . -627) 19676) ((-574 . -366) 19658) ((-336 . -1233) 19635) ((-998 . -1180) T) ((-842 . -283) T) ((-1199 . -505) 19582) ((-468 . -1180) T) ((-455 . -1180) T) ((-567 . -101) T) ((-1139 . -279) 19509) ((-601 . -444) 19488) ((-971 . -966) 19472) ((-1241 . -375) 19444) ((-508 . -1067) T) ((-117 . -444) T) ((-1160 . -101) T) ((-1059 . -1067) 19422) ((-1005 . -1067) T) ((-1082 . -92) T) ((-864 . -823) T) ((-344 . -1184) T) ((-1218 . -1024) 19305) ((-1080 . -370) 19274) ((-1211 . -1024) 19109) ((-1190 . -1024) 18899) ((-1218 . -111) 18768) ((-1211 . -111) 18589) ((-1190 . -111) 18358) ((-1174 . -302) 18345) ((-344 . -541) T) ((-358 . -593) 18327) ((-282 . -300) T) ((-577 . -1024) 18300) ((-576 . -1024) 18183) ((-354 . -1067) T) ((-315 . -1067) T) ((-244 . -593) 18144) ((-243 . -593) 18105) ((-974 . -130) T) ((-109 . -593) 18087) ((-613 . -23) T) ((-670 . -402) 18054) ((-587 . -23) T) ((-634 . -101) T) ((-577 . -111) 18025) ((-576 . -111) 17894) ((-372 . -1067) T) ((-329 . -101) T) ((-167 . -283) 17805) ((-1189 . -821) 17758) ((-691 . -1025) T) ((-1114 . -505) 17691) ((-1080 . -871) 17623) ((-810 . -1067) T) ((-803 . -1067) T) ((-801 . -1067) T) ((-96 . -101) T) ((-142 . -823) T) ((-592 . -855) 17607) ((-110 . -1180) T) ((-1054 . -101) T) ((-1030 . -34) T) ((-758 . -101) T) ((-756 . -101) T) ((-453 . -101) T) ((-446 . -101) T) ((-234 . -771) 17558) ((-234 . -768) 17509) ((-625 . -101) T) ((-1199 . -283) 17420) ((-640 . -612) 17404) ((-621 . -279) 17381) ((-1005 . -694) 17365) ((-556 . -283) T) ((-934 . -624) 17290) ((-1249 . -130) T) ((-712 . -624) 17250) ((-692 . -624) 17237) ((-268 . -101) T) ((-445 . -624) 17167) ((-50 . -101) T) ((-563 . -101) T) ((-509 . -101) T) ((-1218 . -1018) T) ((-1211 . -1018) T) ((-1190 . -1018) T) ((-1218 . -227) 17126) ((-315 . -694) 17108) ((-1211 . -237) 17087) ((-1211 . -227) 17039) ((-1190 . -227) 16926) ((-1190 . -237) 16905) ((-1174 . -38) 16802) ((-975 . -771) T) ((-577 . -1018) T) ((-576 . -1018) T) ((-975 . -768) T) ((-942 . -771) T) ((-942 . -768) T) ((-843 . -1025) T) ((-841 . -840) 16786) ((-108 . -593) 16768) ((-670 . -444) T) ((-372 . -694) 16733) ((-411 . -624) 16707) ((-689 . -823) 16686) ((-688 . -38) 16651) ((-576 . -227) 16610) ((-40 . -701) 16582) ((-344 . -322) 16559) ((-344 . -356) T) ((-1046 . -300) 16510) ((-287 . -1079) 16391) ((-1073 . -1180) T) ((-169 . -101) T) ((-1193 . -593) 16358) ((-816 . -130) 16310) ((-621 . -1214) 16294) ((-810 . -694) 16264) ((-803 . -694) 16234) ((-474 . -1180) T) ((-352 . -300) T) ((-346 . -300) T) ((-338 . -300) T) ((-621 . -584) 16211) ((-400 . -130) T) ((-511 . -642) 16195) ((-107 . -300) T) ((-287 . -23) 16078) ((-511 . -627) 16062) ((-670 . -395) NIL) ((-511 . -366) 16046) ((-284 . -593) 16028) ((-90 . -1067) 16006) ((-107 . -993) T) ((-549 . -141) T) ((-1226 . -149) 15990) ((-474 . -1009) 15817) ((-1212 . -143) 15778) ((-1212 . -145) 15739) ((-1022 . -1180) T) ((-964 . -593) 15721) ((-834 . -593) 15703) ((-792 . -1024) 15546) ((-1063 . -1067) T) ((-1057 . -1067) T) ((-1054 . -302) 15533) ((-1040 . -1067) T) ((-221 . -1180) T) ((-1033 . -1067) T) ((-1007 . -1067) T) ((-990 . -1067) T) ((-758 . -302) 15520) ((-756 . -302) 15507) ((-1237 . -92) T) ((-792 . -111) 15336) ((-1236 . -92) T) ((-604 . -1067) T) ((-1139 . -594) NIL) ((-1139 . -593) 15318) ((-446 . -302) 15305) ((-475 . -1067) T) ((-1092 . -593) 15287) ((-1092 . -594) 15035) ((-1005 . -170) T) ((-212 . -1067) T) ((-827 . -593) 15017) ((-914 . -281) 14994) ((-588 . -505) 14777) ((-794 . -1009) 14761) ((-467 . -505) 14553) ((-934 . -703) T) ((-712 . -703) T) ((-692 . -703) T) ((-344 . -1079) T) ((-1146 . -593) 14535) ((-217 . -101) T) ((-474 . -370) 14504) ((-506 . -1067) T) ((-501 . -1067) T) ((-499 . -1067) T) ((-775 . -624) 14478) ((-995 . -444) T) ((-929 . -505) 14411) ((-344 . -23) T) ((-613 . -130) T) ((-587 . -130) T) ((-347 . -444) T) ((-234 . -361) 14390) ((-372 . -170) T) ((-1210 . -1025) T) ((-1189 . -1025) T) ((-219 . -973) T) ((-675 . -380) T) ((-411 . -703) T) ((-677 . -1184) T) ((-1109 . -617) 14338) ((-562 . -840) 14322) ((-1126 . -1156) 14298) ((-677 . -541) T) ((-126 . -1067) 14276) ((-1241 . -1024) 14260) ((-691 . -1067) T) ((-474 . -871) 14192) ((-634 . -38) 14162) ((-347 . -395) T) ((-309 . -145) 14141) ((-309 . -143) 14120) ((-116 . -541) T) ((-306 . -145) 14076) ((-306 . -143) 14032) ((-48 . -444) T) ((-160 . -1067) T) ((-155 . -1067) T) ((-1126 . -106) 13979) ((-758 . -1118) 13957) ((-665 . -34) T) ((-1241 . -111) 13936) ((-535 . -34) T) ((-476 . -106) 13920) ((-244 . -281) 13897) ((-243 . -281) 13874) ((-842 . -279) 13825) ((-45 . -1180) T) ((-792 . -1018) T) ((-1145 . -47) 13802) ((-792 . -319) 13764) ((-1054 . -38) 13613) ((-792 . -227) 13592) ((-758 . -38) 13421) ((-756 . -38) 13270) ((-128 . -627) 13252) ((-446 . -38) 13101) ((-128 . -366) 13083) ((-1082 . -593) 13049) ((-1085 . -101) T) ((-621 . -594) 13010) ((-621 . -593) 12922) ((-563 . -1118) T) ((-509 . -1118) T) ((-1114 . -481) 12906) ((-1166 . -1067) 12884) ((-1109 . -25) T) ((-1109 . -21) T) ((-466 . -1025) T) ((-1190 . -768) NIL) ((-1190 . -771) NIL) ((-970 . -823) 12863) ((-795 . -593) 12845) ((-837 . -21) T) ((-837 . -25) T) ((-775 . -703) T) ((-172 . -1184) T) ((-563 . -38) 12810) ((-509 . -38) 12775) ((-379 . -593) 12757) ((-317 . -593) 12739) ((-167 . -279) 12697) ((-62 . -1180) T) ((-112 . -101) T) ((-843 . -1067) T) ((-172 . -541) T) ((-691 . -694) 12667) ((-287 . -130) 12550) ((-219 . -593) 12532) ((-219 . -594) 12462) ((-974 . -617) 12401) ((-1241 . -1018) T) ((-1087 . -145) T) ((-610 . -1156) 12376) ((-708 . -880) 12355) ((-574 . -34) T) ((-623 . -106) 12339) ((-610 . -106) 12285) ((-1199 . -279) 12212) ((-708 . -624) 12137) ((-288 . -1180) T) ((-1145 . -1009) 12033) ((-1134 . -880) NIL) ((-1029 . -594) 11948) ((-1029 . -593) 11930) ((-923 . -593) 11912) ((-336 . -101) T) ((-244 . -1024) 11809) ((-243 . -1024) 11706) ((-387 . -101) T) ((-31 . -1067) T) ((-923 . -594) 11567) ((-690 . -593) 11549) ((-1239 . -1173) 11518) ((-473 . -593) 11500) ((-473 . -594) 11361) ((-241 . -404) 11345) ((-257 . -404) 11329) ((-244 . -111) 11219) ((-243 . -111) 11109) ((-1141 . -624) 11034) ((-1140 . -624) 10931) ((-1134 . -624) 10783) ((-1093 . -624) 10708) ((-344 . -130) T) ((-81 . -433) T) ((-81 . -388) T) ((-974 . -25) T) ((-974 . -21) T) ((-844 . -1067) 10659) ((-843 . -694) 10611) ((-372 . -283) T) ((-167 . -973) 10563) ((-670 . -380) T) ((-970 . -968) 10547) ((-677 . -1079) T) ((-670 . -164) 10529) ((-1210 . -1067) T) ((-1189 . -1067) T) ((-309 . -1165) 10508) ((-309 . -1168) 10487) ((-1131 . -101) T) ((-309 . -930) 10466) ((-133 . -1079) T) ((-116 . -1079) T) ((-582 . -1224) 10450) ((-677 . -23) T) ((-582 . -1067) 10400) ((-90 . -505) 10333) ((-172 . -356) T) ((-309 . -94) 10312) ((-309 . -35) 10291) ((-588 . -481) 10225) ((-133 . -23) T) ((-116 . -23) T) ((-937 . -101) T) ((-695 . -1067) T) ((-467 . -481) 10162) ((-400 . -617) 10110) ((-629 . -1009) 10006) ((-929 . -481) 9990) ((-348 . -1025) T) ((-345 . -1025) T) ((-337 . -1025) T) ((-257 . -1025) T) ((-241 . -1025) T) ((-842 . -594) NIL) ((-842 . -593) 9972) ((-1249 . -21) T) ((-1237 . -593) 9938) ((-1236 . -593) 9904) ((-556 . -973) T) ((-708 . -703) T) ((-1249 . -25) T) ((-244 . -1018) 9834) ((-243 . -1018) 9764) ((-71 . -1180) T) ((-244 . -227) 9716) ((-243 . -227) 9668) ((-40 . -101) T) ((-881 . -1025) T) ((-1148 . -101) T) ((-1141 . -703) T) ((-1140 . -703) T) ((-1134 . -703) T) ((-1134 . -767) NIL) ((-1134 . -770) NIL) ((-925 . -101) T) ((-892 . -101) T) ((-1093 . -703) T) ((-747 . -101) T) ((-648 . -101) T) ((-466 . -1067) T) ((-332 . -1079) T) ((-172 . -1079) T) ((-312 . -891) 9647) ((-1210 . -694) 9488) ((-843 . -170) T) ((-1189 . -694) 9302) ((-816 . -21) 9254) ((-816 . -25) 9206) ((-239 . -1116) 9190) ((-126 . -505) 9123) ((-400 . -25) T) ((-400 . -21) T) ((-332 . -23) T) ((-167 . -594) 8891) ((-167 . -593) 8873) ((-172 . -23) T) ((-621 . -281) 8850) ((-511 . -34) T) ((-869 . -593) 8832) ((-88 . -1180) T) ((-814 . -593) 8814) ((-784 . -593) 8796) ((-745 . -593) 8778) ((-653 . -593) 8760) ((-234 . -624) 8608) ((-1143 . -1067) T) ((-1139 . -1024) 8431) ((-1117 . -1180) T) ((-1092 . -1024) 8274) ((-827 . -1024) 8258) ((-1139 . -111) 8067) ((-1092 . -111) 7896) ((-827 . -111) 7875) ((-1199 . -594) NIL) ((-1199 . -593) 7857) ((-336 . -1118) T) ((-828 . -593) 7839) ((-1042 . -279) 7818) ((-79 . -1180) T) ((-975 . -880) NIL) ((-588 . -279) 7794) ((-1166 . -505) 7727) ((-479 . -1180) T) ((-556 . -593) 7709) ((-467 . -279) 7688) ((-508 . -92) T) ((-211 . -1180) T) ((-1054 . -225) 7672) ((-282 . -891) T) ((-793 . -300) 7651) ((-841 . -101) T) ((-758 . -225) 7635) ((-975 . -624) 7585) ((-929 . -279) 7562) ((-885 . -624) 7514) ((-613 . -21) T) ((-613 . -25) T) ((-587 . -21) T) ((-336 . -38) 7479) ((-670 . -701) 7446) ((-479 . -855) 7428) ((-479 . -857) 7410) ((-466 . -694) 7251) ((-211 . -855) 7233) ((-63 . -1180) T) ((-211 . -857) 7215) ((-587 . -25) T) ((-420 . -624) 7189) ((-479 . -1009) 7149) ((-843 . -505) 7061) ((-211 . -1009) 7021) ((-234 . -34) T) ((-971 . -1067) 6999) ((-1210 . -170) 6930) ((-1189 . -170) 6861) ((-689 . -143) 6840) ((-689 . -145) 6819) ((-677 . -130) T) ((-135 . -457) 6796) ((-634 . -632) 6780) ((-1114 . -593) 6712) ((-116 . -130) T) ((-469 . -1184) T) ((-588 . -584) 6688) ((-467 . -584) 6667) ((-329 . -328) 6636) ((-525 . -1067) T) ((-469 . -541) T) ((-1139 . -1018) T) ((-1092 . -1018) T) ((-827 . -1018) T) ((-234 . -767) 6615) ((-234 . -770) 6566) ((-234 . -769) 6545) ((-1139 . -319) 6522) ((-234 . -703) 6432) ((-929 . -19) 6416) ((-479 . -370) 6398) ((-479 . -331) 6380) ((-1092 . -319) 6352) ((-347 . -1233) 6329) ((-211 . -370) 6311) ((-211 . -331) 6293) ((-929 . -584) 6270) ((-1139 . -227) T) ((-640 . -1067) T) ((-622 . -1067) T) ((-1222 . -1067) T) ((-1153 . -1067) T) ((-1054 . -246) 6207) ((-348 . -1067) T) ((-345 . -1067) T) ((-337 . -1067) T) ((-257 . -1067) T) ((-241 . -1067) T) ((-83 . -1180) T) ((-127 . -101) 6185) ((-121 . -101) 6163) ((-128 . -34) T) ((-1153 . -590) 6142) ((-471 . -1067) T) ((-1108 . -1067) T) ((-471 . -590) 6121) ((-244 . -771) 6072) ((-244 . -768) 6023) ((-243 . -771) 5974) ((-40 . -1118) NIL) ((-243 . -768) 5925) ((-1046 . -891) 5876) ((-975 . -770) T) ((-975 . -767) T) ((-975 . -703) T) ((-942 . -770) T) ((-885 . -703) T) ((-90 . -481) 5860) ((-479 . -871) NIL) ((-881 . -1067) T) ((-219 . -1024) 5825) ((-843 . -283) T) ((-211 . -871) NIL) ((-809 . -1079) 5804) ((-58 . -1067) 5754) ((-510 . -1067) 5732) ((-507 . -1067) 5682) ((-488 . -1067) 5660) ((-487 . -1067) 5610) ((-562 . -101) T) ((-549 . -101) T) ((-486 . -101) T) ((-466 . -170) 5541) ((-352 . -891) T) ((-346 . -891) T) ((-338 . -891) T) ((-219 . -111) 5497) ((-809 . -23) 5449) ((-420 . -703) T) ((-107 . -891) T) ((-40 . -38) 5394) ((-107 . -796) T) ((-563 . -342) T) ((-509 . -342) T) ((-1189 . -505) 5254) ((-309 . -444) 5233) ((-306 . -444) T) ((-810 . -279) 5212) ((-332 . -130) T) ((-172 . -130) T) ((-287 . -25) 5076) ((-287 . -21) 4959) ((-45 . -1156) 4938) ((-65 . -593) 4920) ((-863 . -593) 4902) ((-582 . -505) 4835) ((-45 . -106) 4785) ((-1069 . -418) 4769) ((-1069 . -361) 4748) ((-1030 . -1180) T) ((-1029 . -1024) 4735) ((-923 . -1024) 4578) ((-1227 . -101) T) ((-1226 . -101) 4528) ((-473 . -1024) 4371) ((-640 . -694) 4355) ((-1029 . -111) 4340) ((-923 . -111) 4169) ((-469 . -356) T) ((-348 . -694) 4121) ((-345 . -694) 4073) ((-337 . -694) 4025) ((-257 . -694) 3874) ((-241 . -694) 3723) ((-1218 . -624) 3648) ((-1190 . -880) NIL) ((-1063 . -92) T) ((-1057 . -92) T) ((-914 . -627) 3632) ((-1040 . -92) T) ((-473 . -111) 3461) ((-1033 . -92) T) ((-1007 . -92) T) ((-914 . -366) 3445) ((-242 . -101) T) ((-990 . -92) T) ((-73 . -593) 3427) ((-934 . -47) 3406) ((-599 . -1079) T) ((-1 . -1067) T) ((-687 . -101) T) ((-675 . -101) T) ((-1211 . -624) 3303) ((-604 . -92) T) ((-1161 . -593) 3285) ((-1055 . -593) 3267) ((-126 . -481) 3251) ((-475 . -92) T) ((-1042 . -593) 3233) ((-383 . -23) T) ((-86 . -1180) T) ((-212 . -92) T) ((-1190 . -624) 3085) ((-881 . -694) 3050) ((-599 . -23) T) ((-588 . -593) 3032) ((-588 . -594) NIL) ((-467 . -594) NIL) ((-467 . -593) 3014) ((-502 . -1067) T) ((-498 . -1067) T) ((-344 . -25) T) ((-344 . -21) T) ((-127 . -302) 2952) ((-121 . -302) 2890) ((-577 . -624) 2877) ((-219 . -1018) T) ((-576 . -624) 2802) ((-372 . -973) T) ((-219 . -237) T) ((-219 . -227) T) ((-929 . -594) 2763) ((-929 . -593) 2675) ((-841 . -38) 2662) ((-1210 . -283) 2613) ((-1189 . -283) 2564) ((-1087 . -444) T) ((-493 . -823) T) ((-309 . -1106) 2543) ((-970 . -145) 2522) ((-970 . -143) 2501) ((-486 . -302) 2488) ((-288 . -1156) 2467) ((-469 . -1079) T) ((-842 . -1024) 2412) ((-601 . -101) T) ((-1166 . -481) 2396) ((-244 . -361) 2375) ((-243 . -361) 2354) ((-288 . -106) 2304) ((-1029 . -1018) T) ((-117 . -101) T) ((-923 . -1018) T) ((-842 . -111) 2233) ((-469 . -23) T) ((-473 . -1018) T) ((-1029 . -227) T) ((-923 . -319) 2202) ((-473 . -319) 2159) ((-348 . -170) T) ((-345 . -170) T) ((-337 . -170) T) ((-257 . -170) 2070) ((-241 . -170) 1981) ((-934 . -1009) 1877) ((-712 . -1009) 1848) ((-508 . -593) 1814) ((-1072 . -101) T) ((-1059 . -593) 1781) ((-1005 . -593) 1763) ((-1218 . -703) T) ((-1211 . -703) T) ((-1190 . -767) NIL) ((-167 . -1024) 1673) ((-1190 . -770) NIL) ((-881 . -170) T) ((-1190 . -703) T) ((-1239 . -149) 1657) ((-974 . -335) 1631) ((-971 . -505) 1564) ((-816 . -823) 1543) ((-549 . -1118) T) ((-466 . -283) 1494) ((-577 . -703) T) ((-354 . -593) 1476) ((-315 . -593) 1458) ((-411 . -1009) 1354) ((-576 . -703) T) ((-400 . -823) 1305) ((-167 . -111) 1201) ((-809 . -130) 1153) ((-714 . -149) 1137) ((-1226 . -302) 1075) ((-479 . -300) T) ((-372 . -593) 1042) ((-511 . -981) 1026) ((-372 . -594) 940) ((-211 . -300) T) ((-139 . -149) 922) ((-691 . -279) 901) ((-479 . -993) T) ((-562 . -38) 888) ((-549 . -38) 875) ((-486 . -38) 840) ((-211 . -993) T) ((-842 . -1018) T) ((-810 . -593) 822) ((-803 . -593) 804) ((-801 . -593) 786) ((-792 . -880) 765) ((-1250 . -1079) T) ((-1199 . -1024) 588) ((-828 . -1024) 572) ((-842 . -237) T) ((-842 . -227) NIL) ((-665 . -1180) T) ((-1250 . -23) T) ((-792 . -624) 497) ((-535 . -1180) T) ((-411 . -331) 481) ((-556 . -1024) 468) ((-1199 . -111) 277) ((-677 . -617) 259) ((-828 . -111) 238) ((-374 . -23) T) ((-1153 . -505) 30) ((-638 . -1067) T) ((-657 . -1067) T) ((-652 . -1067) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 372be482..e2cc998a 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3431009354)
-(4332 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3431018166)
+(4340 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -41,26 +41,27 @@
|CharacteristicPolynomialPackage| |CharacteristicZero|
|ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation|
|Collection&| |Collection| |CliffordAlgebra|
- |TwoDimensionalPlotClipping| |ComplexRootPackage| |ColonAst| |Color|
- |CombinatorialFunction| |IntegerCombinatoricFunctions|
- |CombinatorialOpsCategory| |CommaAst| |Commutator| |CommonOperators|
- |CommuteUnivariatePolynomialCategory| |ComplexCategory&|
- |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex|
- |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing|
- |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems|
+ |TwoDimensionalPlotClipping| |CollectAst| |ComplexRootPackage|
+ |ColonAst| |Color| |CombinatorialFunction|
+ |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |CommaAst|
+ |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory|
+ |ComplexCategory&| |ComplexCategory| |ComplexFactorization|
+ |ComplexFunctions2| |Complex| |ComplexPattern|
+ |SubSpaceComponentProperty| |CommutativeRing| |Conduit|
+ |ContinuedFraction| |Contour| |CoordinateSystems|
|CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch|
- |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools|
- |ConstructorCall| |ComplexTrigonometricManipulations|
- |CoerceVectorMatrixPackage| |CycleIndicators|
- |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType|
- |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType|
- |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType|
- |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage|
- |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType|
- |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType|
- |DataBuffer| |Database| |DoubleResultantPackage|
- |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst|
- |ElementaryFunctionDefiniteIntegration|
+ |CRApackage| |CoerceAst| |ComplexRootFindingPackage|
+ |CyclicStreamTools| |ConstructorCall|
+ |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage|
+ |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage|
+ |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType|
+ |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType|
+ |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType|
+ |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType|
+ |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage|
+ |d03eefAnnaType| |d03fafAnnaType| |DataBuffer| |Database|
+ |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion|
+ |DefinitionAst| |ElementaryFunctionDefiniteIntegration|
|RationalFunctionDefiniteIntegration| |DegreeReductionPackage|
|Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat|
|DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&|
@@ -382,22 +383,22 @@
|RepeatAst| |RealRootCharacterizationCategory&|
|RealRootCharacterizationCategory| |RegularSetDecompositionPackage|
|RegularTriangularSetCategory&| |RegularTriangularSetCategory|
- |RegularTriangularSetGcdPackage| |RuleCalled| |RewriteRule| |Ruleset|
- |RationalUnivariateRepresentationPackage|
+ |RegularTriangularSetGcdPackage| |RestrictAst| |RuleCalled|
+ |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage|
|SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension|
|SAERationalFunctionAlgFactor| |SingletonAsOrderedSet|
|SpadSyntaxCategory&| |SpadSyntaxCategory| |SortedCache| |Scope|
|StructuralConstantsPackage| |SequentialDifferentialPolynomial|
|SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst|
|SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory|
- |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate|
- |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set|
- |SExpressionCategory| |SExpression| |SExpressionOf|
+ |Segment| |SegmentExpansionCategory| |SequenceAst| |SetAggregate&|
+ |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN|
+ |Set| |SExpressionCategory| |SExpression| |SExpressionOf|
|SimpleFortranProgram| |SquareFreeQuasiComponentPackage|
|SquareFreeRegularTriangularSetGcdPackage|
|SquareFreeRegularTriangularSetCategory|
|SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup|
- |SplitHomogeneousDirectProduct| |SturmHabichtPackage|
+ |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |SignatureAst|
|ElementaryFunctionSign| |RationalFunctionSign| |Signature|
|SimplifyAlgebraicNumberConvertPackage| |SingleInteger|
|StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory|
@@ -406,35 +407,35 @@
|SquareFreeNormalizedTriangularSetCategory|
|PolynomialSolveByFormulas| |RadicalSolvePackage|
|TransSolvePackageService| |TransSolvePackage| |SortPackage|
- |ThreeSpace| |ThreeSpaceCategory| |SpadParser| |SpadAstExports|
- |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode|
- |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate|
- |SquareFreeRegularSetDecompositionPackage|
+ |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser|
+ |SpadAstExports| |SpecialOutputPackage| |SpecialFunctionCategory|
+ |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&|
+ |StringAggregate| |SquareFreeRegularSetDecompositionPackage|
|SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&|
|StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct|
|StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream|
|StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations|
|StreamTranscendentalFunctionsNonCommutative|
|StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace|
- |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum|
- |RationalFunctionSum| |SparseUnivariatePolynomialFunctions2|
- |SupFractionFactorizer| |SparseUnivariatePolynomial|
- |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries|
- |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial|
- |TheSymbolTable| |SymbolTable| |Syntax| |SystemSolvePackage| |System|
- |TableauxBumpers| |Tableau| |Table| |TangentExpansions|
- |TableAggregate&| |TableAggregate| |TabulatedComputationPackage|
- |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign|
- |TopLevelThreeSpace| |TranscendentalFunctionCategory&|
- |TranscendentalFunctionCategory| |Tree|
- |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory|
- |TrigonometricManipulations| |TriangularMatrixOperations|
- |TranscendentalManipulations| |TriangularSetCategory&|
- |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools|
- |Tuple| |TwoFactorize| |TypeAst| |Type| |UserDefinedPartialOrdering|
- |UserDefinedVariableOrdering| |UniqueFactorizationDomain&|
- |UniqueFactorizationDomain| |UnivariateLaurentSeriesFunctions2|
- |UnivariateLaurentSeriesCategory|
+ |SuchThat| |SuchThatAst| |SparseUnivariateLaurentSeries|
+ |FunctionSpaceSum| |RationalFunctionSum|
+ |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer|
+ |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries|
+ |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions|
+ |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax|
+ |SystemSolvePackage| |System| |TableauxBumpers| |Tableau| |Table|
+ |TangentExpansions| |TableAggregate&| |TableAggregate|
+ |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1|
+ |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace|
+ |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory|
+ |Tree| |TrigonometricFunctionCategory&|
+ |TrigonometricFunctionCategory| |TrigonometricManipulations|
+ |TriangularMatrixOperations| |TranscendentalManipulations|
+ |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries|
+ |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |TypeAst| |Type|
+ |UserDefinedPartialOrdering| |UserDefinedVariableOrdering|
+ |UniqueFactorizationDomain&| |UniqueFactorizationDomain|
+ |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory|
|UnivariateLaurentSeriesConstructorCategory&|
|UnivariateLaurentSeriesConstructorCategory|
|UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries|
@@ -468,656 +469,656 @@
|XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |rightRegularRepresentation| |bit?| |chvar| |comment|
- |makeUnit| |safeCeiling| |lo| |sinh2csch| |revert| |newLine| |f02awf|
- |obj| |Ci| |minset| |s15aef| |bivariatePolynomials|
- |balancedBinaryTree| |setLegalFortranSourceExtensions| |minPol| |incr|
- |bfEntry| |extendedint| |graphStates| |cache| |floor| |coefficients|
- |sub| |initializeGroupForWordProblem| |nextIrreduciblePoly| |hi|
- |prefixRagits| |augment| |f02agf| |sturmSequence| |e02baf|
- |divisorCascade| |nextNormalPrimitivePoly| |rdregime| |inGroundField?|
- |lazyPremWithDefault| |addmod| |port| |multiEuclideanTree| |column|
- |plenaryPower| |UP2ifCan| |constantRight| |determinant| |char|
- |chainSubResultants| |tanintegrate| |shift| |physicalLength|
- |primPartElseUnitCanonical| |s18adf| |specialTrigs| |normInvertible?|
- |changeNameToObjf| |f02akf| |inverseIntegralMatrix| |restorePrecision|
- |fortran| |depth| |genericRightTraceForm| |characteristicPolynomial|
- |retractable?| |primintfldpoly| |equivOperands|
- |zeroSetSplitIntoTriangularSystems| |integralCoordinates| |integral?|
- |critMonD1| |cAcos| |f02xef| |sqfree| |exQuo| |euler| |froot|
- |toseSquareFreePart| |seriesToOutputForm| |e01bhf| ~ |sdf2lst|
- |cosSinInfo| |tail| |preprocess| |dioSolve| |stoseInvertibleSetsqfreg|
- |unravel| |B1solve| |someBasis| |univariateSolve| |ef2edf| |cyclic|
- |changeThreshhold| |comparison| |float| |c06frf| |lyndon?|
- |startTableInvSet!| |open| |mapCoef| |monicDivide| |xn| |ksec|
- |addMatchRestricted| |cyclicSubmodule| |nthExponent| |OMputString|
- |subset?| |extendIfCan| |zeroDimPrimary?|
- |semiDegreeSubResultantEuclidean| |critT| |commutativeEquality|
- |getlo| |power| |f01bsf| |setRow!| |rootNormalize| |setPoly| |axes|
- |createPrimitiveNormalPoly| |graphImage| |isPower| |reflect|
- |rowEchelonLocal| |binomThmExpt| |integralBasis| |setFieldInfo|
- |unparse| |expextendedint| |c06ekf| |linear| |numer|
- |selectPDERoutines| |f01qdf| |sPol| |sin?| |colorFunction| |saturate|
- |parseString| |mindegTerm| |f07aef| |denom| |divideExponents|
- |axesColorDefault| |conjugates| |irreducible?| |OMgetEndError|
- |d01gaf| |multiple?| |rootBound| |generate| |sinhcosh| |polynomial|
- |operators| |makeYoungTableau| |generic| |hdmpToDmp| |contains?|
- |s19acf| |OMgetAttr| F |maxIndex| |scripted?| |getOperator| |pi|
- |xCoord| |child?| |discreteLog| |incrementBy| |makeSeries| |erf| |An|
- |conditionP| |internalAugment| |nsqfree| |dimensionsOf| |infinity|
- |selectNonFiniteRoutines| |quasiRegular?| |toseInvertibleSet| |union|
- |sequence| |linearDependence| |myDegree| |script|
- |transcendenceDegree| |adaptive?| |expand| |mainDefiningPolynomial|
- |polar| |identitySquareMatrix| |monicLeftDivide| |subscript|
- |mapBivariate| |upperCase!| |userOrdered?| |patternVariable|
- |transcendent?| |filterWhile| |mantissa| |exprToGenUPS| |status|
- |csch2sinh| |infRittWu?| |linear?| |separate| |mapDown!| |iisqrt2|
- |dilog| |setsubMatrix!| |root| |latex| |filterUntil| |iitanh| |kernel|
- |shufflein| |squareTop| |splitSquarefree| |commutator| |trivialIdeal?|
- |trapezoidal| |screenResolution| |quadratic| |tex| |sin| |options|
- |orbits| |select| |draw| |cyclotomic| |antisymmetric?| |level|
- |getGraph| |critM| |leaf?| |whileLoop| |e01bgf| |result| |cos|
- |viewThetaDefault| |maximumExponent| |resultant| |atrapezoidal|
- |makeSketch| |zero?| |pdf2ef| |eulerE| |createLowComplexityTable|
- |zag| |wholeRagits| |tan| |zeroSquareMatrix|
- |selectOptimizationRoutines| |tubePlot| |rename| |const| |optimize|
- |OMmakeConn| |remove!| NOT |fintegrate| |chebyshevU| |string|
- |epilogue| |cot| |nullary?| |numberOfVariables| |dom| |vconcat|
- |integralMatrixAtInfinity| |OMputSymbol| |leftDivide| |partition|
- |increase| |euclideanNormalForm| OR |rootOf| |sec| |fprindINFO|
- |s20acf| |makeObject| |clipPointsDefault| |getZechTable| |resetNew|
- |shallowExpand| |startTableGcd!| |generalizedInverse| |d02raf| AND
- |f02axf| |csc| |ratPoly| |sizeLess?| |showRegion| |leftUnit|
- |hitherPlane| |primeFrobenius| |algint| |red| |modularGcd| |typeList|
- |uniform01| |asin| |makeRecord| |setEmpty!|
- |inverseIntegralMatrixAtInfinity| |ffactor| |repSq| |coef|
- |doubleRank| |OMbindTCP| |reopen!| |bandedJacobian| |imagK| |acos|
- |summation| |genericLeftDiscriminant| |setMaxPoints|
- |generateIrredPoly| |lowerCase!| |prinb| |s17acf| |packageCall|
- |startStats!| |atan| |listOfLists| |lSpaceBasis| |fortranLiteral|
- |separateDegrees| |clip| |virtualDegree| |elseBranch| |setStatus|
- |partialFraction| |title| |bipolarCylindrical| |outputForm|
- |drawToScale| |acot| |assign| |rootDirectory| |binding| |musserTrials|
- |every?| |maxColIndex| |linearAssociatedLog| |corrPoly|
- |resetAttributeButtons| |iterationVar| |qualifier| |OMgetEndBVar|
- |asec| |nthFactor| |hasTopPredicate?| |cRationalPower| |numeric|
- |purelyTranscendental?| |SturmHabichtCoefficients| |rightLcm| |cCos|
- |makeprod| |simpleBounds?| |invmod| |mulmod| |equiv?| |acsc| |finite?|
- |logIfCan| |e| |makeGraphImage| |radical| |e04naf| |stoseInvertible?|
- |resultantReduit| |bat1| |intPatternMatch| |mainVariable| |sinh|
- |readLineIfCan!| |palgLODE0| |e02def| |internal?| |squareMatrix|
- |var1StepsDefault| |elRow2!| |numFunEvals3D| |reducedQPowers| |float?|
- |monicModulo| |cosh| |dequeue| |asecIfCan| |leadingIndex|
- |radicalOfLeftTraceForm| |cAsin| |dmpToHdmp| |roughUnitIdeal?| |swap!|
- |tree| |OMputAttr| * |tanh| |addPoint2| |ddFact| |rarrow|
- |finiteBound| |printStatement| |taylorQuoByVar| |noLinearFactor?|
- |insertionSort!| |pushucoef| |failed?| |is?| |coth|
- |algebraicCoefficients?| |viewDeltaYDefault| |s14aaf| |infinite?|
- |wordsForStrongGenerators| |iExquo| |lazyEvaluate|
- |uncouplingMatrices| FG2F |sech| |endSubProgram| |critpOrder|
- |LagrangeInterpolation| F2FG |debug| |palgRDE0| |normalizedAssociate|
- |transform| |dimensions| |setnext!| |imagj| |csch| |putGraph| |f2st|
- |Frobenius| |reducedSystem| D |coerceListOfPairs| |polyred|
- |firstUncouplingMatrix| |intensity| |numberOfPrimitivePoly|
- |rightFactorIfCan| |coerceL| |asinh| |discriminantEuclidean| |Gamma|
- |reindex| |li| |close!| |mindeg| |bombieriNorm| |deepestTail|
- |repeatUntilLoop| |pole?| |acosh| |scale| |prolateSpheroidal|
- |lastSubResultant| |resultantReduitEuclidean| |octon| |expt|
- |groebSolve| |bandedHessian| |generalizedEigenvector| |enqueue!|
- |numberOfCycles| |atanh| |rst| |fortranCompilerName| |bits| |f02fjf|
- |RittWuCompare| |matrixConcat3D| |hue| |elliptic| |groebnerFactorize|
- |mightHaveRoots| |radicalSolve| |acoth| |OMgetAtp|
- |incrementKthElement| |printCode| |pop!| |palgRDE| |unknown|
- |generalPosition| |currentCategoryFrame| |iiacosh| |nullary|
- |cycleLength| |plus!| |asech| |numberOfFractionalTerms| |curve?|
- |quadratic?| |complex?| |string?| |alternatingGroup| |viewport2D|
- |monomial?| |mappingAst| |rightRemainder| |gbasis| |cCot|
- |fullDisplay| |ignore?| |OMlistSymbols| |deref| |atom?|
- |compactFraction| |headRemainder| |multiple| |headReduce| |aromberg|
- |viewWriteDefault| |head| |OMgetType| |LazardQuotient2| |critMTonD1|
- |normalized?| |applyQuote| |enterInCache| |exptMod| |subHeight|
- |outputAsTex| |resize| |entry| |sqfrFactor| |leftOne| |asinhIfCan|
- |lieAdmissible?| |prime?| |complexNumericIfCan| |overlap| |pushup|
- |linearPart| |d01ajf| |constantToUnaryFunction| |true| |print|
- |lazyPseudoDivide| |mathieu24| |qelt| |idealSimplify| |hermite|
- |leftQuotient| |e02daf| |fractRadix| |zeroDim?| |queue| |wreath|
- |infieldint| |addPointLast| |trunc| |and| |monicRightFactorIfCan|
- |ricDsolve| |lastSubResultantEuclidean| |sylvesterSequence| |ruleset|
- |internalLastSubResultant| |symbol?| |elliptic?| |host| |tableau|
- |xRange| |zCoord| |repeating?| |setelt!| |rotatex| |changeBase|
- |d01aqf| |difference| |setTopPredicate| |evaluate| |bivariate?|
- |yRange| |purelyAlgebraic?| |cross| |hasPredicate?| |roughBase?|
- |cot2tan| |objects| |triangular?| UTS2UP |yellow| |qfactor|
- |makeFloatFunction| |infLex?| |zRange| |cyclic?| SEGMENT |stirling2|
- |scopes| |suchThat| |stoseSquareFreePart| |base| |factorSquareFree|
- |viewDeltaXDefault| |map!| |negative?| |legendre| |tanhIfCan|
- |idealiser| |cAcosh| |curry| |realElementary| |mainCharacterization|
- |power!| |SturmHabichtMultiple| |innerint| |redPol| |qsetelt!| |mdeg|
- |setprevious!| |cosIfCan| |lazyPquo| |mat| |digamma|
- |coercePreimagesImages| |child| |prefix| |definingPolynomial|
- |listConjugateBases| |explicitlyFinite?| |goodPoint| |iprint|
- |fractionFreeGauss!| |sinhIfCan| |flexible?| |laguerre| |readBytes!|
- |dec| |s18dcf| |viewpoint| |Lazard| |cothIfCan| |ParCondList|
- |iflist2Result| |fortranCharacter| |rewriteIdealWithHeadRemainder|
- |shade| |frobenius| |e02gaf| |moduloP| |dmpToP| |c06fuf| |square?|
- |reseed| |iisec| |pr2dmp| |newSubProgram| |pointColorDefault|
- |bezoutDiscriminant| |subMatrix| |cSech| LODO2FUN |basis|
- |quasiAlgebraicSet| |components| |condition| |wholeRadix| |smith|
- |degreePartition| |laplacian| |ran| |separateFactors| |acsch|
- |directSum| |internalSubQuasiComponent?| |permutationRepresentation|
- |equality| |perfectSqrt| |symmetricRemainder| |hdmpToP|
- |sturmVariationsOf| |rightDiscriminant| |rationalPower| |number?|
- |zeroVector| |mainSquareFreePart| |signAround| |OMgetEndAtp|
- |messagePrint| |primlimintfrac| |concat| |meshPar2Var| |setErrorBound|
- |sample| |top!| |compound?| |inRadical?| |cardinality| |bsolve|
- |quadraticNorm| |swapRows!| |getOperands| |modTree| |hconcat| |iiperm|
- |removeCosSq| |coordinate| |primes| |roman| |leftMinimalPolynomial|
- |stiffnessAndStabilityOfODEIF| |OMputEndObject| |integers|
- |leadingSupport| |e04jaf| |createNormalPoly| |double?| |prinshINFO|
- |previous| |tower| |startTable!| |internalZeroSetSplit|
- |totalGroebner| |sylvesterMatrix| |iicos| |limitedint|
- |mergeDifference| |d02ejf| |s18acf| |inv| |OMputAtp| |setvalue!|
- |genericPosition| |airyAi| |mapUnivariateIfCan| |symmetricPower|
- |property| |c05pbf| |s17akf| |c02agf| |quotedOperators| |ground?|
- |showTheFTable| |quartic| |mapmult| |buildSyntax| |viewSizeDefault|
- |UnVectorise| |block| |alternative?| |cycleTail| |alphabetic| |csubst|
- |problemPoints| |ground| |fixedPoint| |int| |headReduced?| |expint|
- |sortConstraints| |nonQsign| |cycleEntry| |biRank| |index?|
- |leadingMonomial| |leftExtendedGcd| |irreducibleFactors| |acoshIfCan|
- |functionIsOscillatory| |s18aef| |randomR| |makeVariable| |write!|
- |symmetricGroup| |units| |exponentialOrder| |antiCommutator| |exquo|
- |repeating| |OMputVariable| |polyRDE| |quoted?| |leadingCoefficient|
- |complexNumeric| |cscIfCan| |decomposeFunc| |safeFloor| |leadingIdeal|
- |cAsech| |sizePascalTriangle| |createThreeSpace| |squareFreePrim|
- |d03faf| |div| |primitiveMonomials| |nodeOf?| |nlde| |eq?| |weighted|
- |mapMatrixIfCan| |normalize| |extract!| |contract| |getConstant|
- |andOperands| |primeFactor| |quo| |legendreP| |reductum|
- |setRealSteps| |kernels| |OMreadStr| |bumptab| |monomRDEsys| |output|
- |returns| |OMgetEndObject| |atoms| |factorials| |df2fi| |entry?|
- |mainForm| |polarCoordinates| |univariate| |iroot| |leftTrace|
- |stronglyReduce| |factorSquareFreeByRecursion| |lazyIntegrate|
- |formula| |compile| |stoseInternalLastSubResultant| |cos2sec|
- |polCase| |rem| |swap| |complexLimit| |wholePart| |target| |bindings|
- |qinterval| |code| |simplifyLog| |nthr| |palgextint0| |e02aef|
- |stFuncN| |mainMonomial| |solveLinearlyOverQ| |escape| |rightNorm|
- |isOp| |semiSubResultantGcdEuclidean2| |getCurve| |eigenMatrix|
- |outputGeneral| |OMUnknownCD?| |sumSquares| |gcdcofactprim|
- |genericLeftTrace| |factor| BY |parabolicCylindrical|
- |isAbsolutelyIrreducible?| |headAst| |aLinear| |indices| |f01maf|
- |divisor| |getMultiplicationMatrix| |s18def| |rischDE| |sqrt|
- |zeroSetSplit| |ldf2lst| |numberOfNormalPoly| |mkAnswer| |member?|
- |halfExtendedSubResultantGcd1| UP2UTS |nrows| |insertTop!|
- |leastAffineMultiple| |cCoth| |real| |variationOfParameters| |plot|
- |measure2Result| |setClosed| |exprex| |prepareDecompose| |pdct|
- |setPrologue!| |ncols| |integerBound| |OMcloseConn| |setPosition|
- |showArrayValues| |fglmIfCan| |imag| |skewSFunction| |sparsityIF|
- |eigenvectors| |lfextlimint| |delete| |shiftRight| |supersub|
- |directProduct| |splitNodeOf!| |schema| |split!| |iiGamma| |unmakeSUP|
- |curveColorPalette| |rightUnit| |singularitiesOf| |testDim| |diagonal|
- |reduced?| |debug3D| |regime| |mesh| |computeCycleEntry| |psolve|
- |binarySearchTree| |removeRedundantFactorsInPols| |impliesOperands|
- |radicalEigenvalues| |lhs| |firstNumer| |rk4f|
- |shanksDiscLogAlgorithm| |setProperties!| |f02adf| |bounds| |destruct|
- |addMatch| |createZechTable| |factorOfDegree| |pade| |leftMult| |rhs|
- |lfinfieldint| |subResultantGcdEuclidean| |createMultiplicationMatrix|
- |permanent| |symFunc| |getOrder| |terms| |branchPoint?| |d01bbf|
- |algebraicSort| |hasHi| |coefChoose| |routines| |f01mcf|
- |removeRoughlyRedundantFactorsInPols| |unexpand| |curveColor| |s17ajf|
- |denominators| |orthonormalBasis| |rowEchLocal| |d02bhf| |s01eaf|
- |charthRoot| |radicalSimplify| |tracePowMod| |normDeriv2| |iisin|
- |fillPascalTriangle| |toroidal| |pleskenSplit| |realRoots| |compdegd|
- |surface| |symbolTableOf| |node| |coord| |separant| |quotient|
- |expintegrate| |invertible?| |monomial| |commaSeparate| |morphism|
- |doubleFloatFormat| |distribute| |createPrimitivePoly|
- |relationsIdeal| |empty| |rightGcd| |setelt| |complexZeros| |getCode|
- |initial| |normalizeIfCan| |LiePoly| |pToDmp| |multivariate| |abs|
- |iiatan| |leftScalarTimes!| |e04gcf| |lazyPseudoQuotient|
- |setAdaptive| |one?| |closed?| |cup| |f01brf| |selectAndPolynomials|
- |elements| |variables| |currentScope| |numberOfOperations|
- |noncommutativeJordanAlgebra?| |orOperands| |setrest!| |OMwrite|
- |copy| |airyBi| |selectfirst| |squareFreePolynomial| |diagonalProduct|
- |s14abf| |OMputApp| |basisOfRightAnnihilator| |localAbs| |complement|
- |members| |traverse| |quadraticForm| |substring?| |ParCond|
- |extractBottom!| |listBranches| |doubleComplex?| |hclf| |log10|
- |fortranDouble| |complexIntegrate| |cCosh| |wordInGenerators| |s21bbf|
- |exactQuotient| |bag| |bottom!| |doubleResultant| |leastMonomial|
- |se2rfi| |match?| |bitand| |highCommonTerms| |totolex| |f04faf|
- |nthRootIfCan| |imagi| |top| |suffix?| |deriv| |autoCoerce|
- |interReduce| |leftCharacteristicPolynomial| |parametersOf| |c06gqf|
- |f02bbf| |bitior| |continue| |cAcot| |OMencodingSGML| |OMputFloat|
- |OMgetFloat| |f01rcf| |numberOfComposites| |doublyTransitive?| |row|
- |minimumExponent| |factorFraction| |lfintegrate| |taylor| |width|
- |zeroOf| |extendedResultant| |cycles| |makeop| |over| |prefix?|
- |coth2trigh| |laurent| |clearTheSymbolTable| |mainValue| |normal01|
- |nextsubResultant2| |divideIfCan| |functionIsContinuousAtEndPoints|
- |lintgcd| |deepExpand| |quatern| |primlimitedint| |trigs2explogs|
- |lexTriangular| |puiseux| |cyclicEqual?| |characteristicSet|
- |wrregime| |roughEqualIdeals?| |df2mf| |cycleRagits| |prevPrime|
- |OMconnOutDevice| |region| |optpair| |qroot| |f2df| |dequeue!|
- |linearPolynomials| |points| |exteriorDifferential|
- |toseLastSubResultant| |GospersMethod| |writeLine!| |iisinh| |bumprow|
- |reduction| |BasicMethod| |e02adf| = |upDateBranches| |rur| |equation|
- |position!| |addiag| |edf2fi| |s17def| |OMsetEncoding|
- |semiResultantEuclideannaif| |untab| |content| |thetaCoord|
- |lowerCase?| |nextNormalPoly| |stirling1| |direction| |safetyMargin|
- |removeRedundantFactors| |notelem| |wordInStrongGenerators| |lookup|
- |viewZoomDefault| |leftLcm| < |outputArgs| |mapSolve| |optional|
- |socf2socdf| |inverseLaplace| |df2ef| |ode2| |iiabs| |infix?| |say|
- |shrinkable| |increment| > |evenInfiniteProduct| |numerators|
- |OMreadFile| |completeEval| |reverseLex| |representationType|
- |OMputEndAttr| |mask| |reduceLODE| |minPoly| |gcdPolynomial| <=
- |selectSumOfSquaresRoutines| |anfactor| |ODESolve| |minIndex|
- |implies| |sorted?| |pile| |removeConstantTerm| |denomRicDE| |nthCoef|
- >= |reduceByQuasiMonic| |setOrder| |wronskianMatrix| |removeSinSq|
- |solveid| |pol| |adaptive3D?| |stopMusserTrials| |coefficient|
- |reduceBasisAtInfinity| |rationalApproximation| |rational|
- |evaluateInverse| |factorByRecursion| |xor| |removeSinhSq|
- |reducedContinuedFraction| |interpolate| |normalElement|
- |rewriteSetByReducingWithParticularGenerators| |factorial|
- |constantIfCan| |d02cjf| |totalfract| |sincos| |rotate| |match|
- |factorAndSplit| |powerAssociative?| |euclideanSize| |e01bff| |name|
- |zoom| |redPo| |cTanh| |OMUnknownSymbol?| |setCondition!| + |e02ddf|
- |factorset| |setLabelValue| |palgextint| |randomLC| |d02gaf|
- |mainPrimitivePart| |body| |ord| |genus| |stopTableInvSet!| |reset|
- |getExplanations| - |schwerpunkt| |OMread| |dark| |d02bbf| |initials|
- |leftUnits| |sign| |setColumn!| |exprToUPS| |shiftRoots|
- |primaryDecomp| |isTimes| / |frst| |nextPrime| |constructorName|
- |ratpart| |createNormalPrimitivePoly| |expressIdealMember|
- |OMgetEndAttr| |children| |monomialIntegrate| |duplicates?| |satisfy?|
- |write| |listexp| |mapdiv| |inverseColeman| |pseudoQuotient|
- |LyndonWordsList| |compiledFunction| |redmat| |measure|
- |stoseInvertible?sqfreg| |cartesian| |sn| |save| |po| |ideal| |f04mbf|
- |factors| |bubbleSort!| |clearFortranOutputStack| |eulerPhi| GF2FG
- |presub| |lift| |invmultisect| |rightExtendedGcd| |getMatch|
- |eyeDistance| |rewriteIdealWithQuasiMonicGenerators| |imagJ|
- |imaginary| |binaryFunction| |rightMult| |setOfMinN| |c06gcf| |reduce|
- |collectQuasiMonic| |node?| |squareFreePart| |intChoose| |refine|
- |symmetricSquare| |singleFactorBound| |besselY| |ScanRoman|
- |aQuadratic| |s19aaf| |rationalPoints| |outputSpacing| |iFTable|
- |numericalOptimization| |validExponential| |read!| |showTheIFTable|
- |f04adf| |changeWeightLevel| |polyRicDE| |leftRegularRepresentation|
- |positiveSolve| |predicates| |supRittWu?| |isobaric?| |factor1|
- |modulus| |polygon?| |constant| |plotPolar| |removeZero| |s17dlf|
- |insertMatch| |hcrf| |extractPoint| |moebiusMu| |OMputEndBVar|
- |center| |relativeApprox| |algebraic?| |opeval| |generalLambert|
- |multMonom| |symmetric?| |cAcsc| |OMopenString| |permutationGroup|
- |weight| |linears| |e01sbf| |uniform| |palgint0| |insert|
- |whatInfinity| |internalSubPolSet?| |csc2sin| |s17agf|
- |unrankImproperPartitions1| |solve1| |d01fcf| |represents|
- |graphCurves| |modularFactor| |charpol| |nil| |sech2cosh|
- |perfectNthPower?| |OMputInteger| |identification| |movedPoints|
- |totalDegree| |t| |clearCache| |fortranReal|
- |genericRightMinimalPolynomial| |paraboloidal| |normFactors|
- |PDESolve| |cycleSplit!| |removeSuperfluousQuasiComponents| |imagE|
- |cTan| |autoReduced?| |edf2efi| |s17ahf| |tRange| |acothIfCan|
- |solveRetract| |defineProperty| |errorInfo| |eq| |rename!|
- |viewDefaults| |probablyZeroDim?| |rowEchelon| |delete!|
- |integralDerivationMatrix| |HermiteIntegrate| |retract| |OMputEndBind|
- |approximate| |delta| Y |insert!| |iter| |f01qef|
- |integralLastSubResultant| |hexDigit?| |closedCurve| |e04dgf| |inR?|
- |iicot| |recolor| |closeComponent| |homogeneous?| |normalDeriv|
- |subscriptedVariables| |iiacoth| |basicSet| |constantCoefficientRicDE|
- |close| |yCoordinates| |calcRanges| |low| |groebnerIdeal| |eval|
- |swapColumns!| |prindINFO| |s20adf| |rightQuotient| |prinpolINFO|
- |cfirst| |relerror| |integerIfCan| |getProperty| |OMputEndAtp|
- |removeRedundantFactorsInContents| |baseRDEsys| |display| |any?|
- |listOfMonoms| |e02bef| |genericRightNorm| |digits| |htrigs|
- |dictionary| |findCycle| |kind| |rightRecip| |partitions| |makeCrit|
- |heap| |maxdeg| |retractIfCan| |removeZeroes| |argumentList!|
- |resetVariableOrder| |graeffe| |exp| |c06fqf| |op|
- |monicCompleteDecompose| |cyclotomicFactorization| |principal?|
- |lambda| |stiffnessAndStabilityFactor| |graphs| |dim| |meatAxe|
- |particularSolution| |extractClosed| |expenseOfEvaluation|
- |scaleRoots| |dihedral| |lazyVariations|
- |generalizedContinuumHypothesisAssumed| |shuffle| |OMreceive|
- |upperCase?| |s13acf| |input| |oddInfiniteProduct| |characteristic|
- |tan2cot| |decreasePrecision| |nextSubsetGray| |showSummary|
- |critBonD| |f02aaf| |e01saf| |semiResultantReduitEuclidean|
- |complexSolve| |library| |gcdprim| |twoFactor| |linearlyDependent?|
- |ratDsolve| |cylindrical| |univcase| |f04asf| |deleteProperty!|
- |horizConcat| |invertibleSet| |showAttributes| |polygamma|
- |jordanAdmissible?| |indiceSubResultantEuclidean|
- |generalizedEigenvectors| |possiblyNewVariety?| |more?| |derivative|
- |coleman| |properties| |computeInt| |times!| |monic?| |countable?|
- |ptree| |subResultantChain| |decompose| |vedf2vef| |leftGcd|
- |translate| |merge| |systemSizeIF| |exprToXXP| |invertIfCan|
- |associator| |set| |s17aff| |lp| |e01daf|
- |degreeSubResultantEuclidean| |iiacsc| |leastPower| |infiniteProduct|
- |map| |point| |setleft!| |bezoutResultant| |sup| |leadingBasisTerm|
- |f04axf| |tableForDiscreteLogarithm| |decimal| |Is| |rightZero|
- |OMencodingXML| |delay| |torsion?| |complete| |move| |imagI|
- |karatsubaOnce| |radicalEigenvectors| |sort!| |subCase?|
- |useSingleFactorBound?| |acosIfCan| |cExp| |sum| |coHeight| |scan|
- |predicate| |update| |series| |oneDimensionalArray| |diagonals|
- |maxrank| |second| |cap| |harmonic| |allRootsOf| |att2Result|
- |viewWriteAvailable| |iicoth| |linearAssociatedExp| |prime| |third|
- |cCsc| |factorSquareFreePolynomial| |leftRemainder| |karatsubaDivide|
- |qqq| |convert| |createLowComplexityNormalBasis| |simplifyPower|
- |part?| |solveLinearPolynomialEquationByFractions| |prologue|
- |dmp2rfi| |recur| |middle| |oblateSpheroidal| |solveLinear|
- |characteristicSerie| |getIdentifier| |putColorInfo| |gcdcofact|
- |interpret| |internalIntegrate| |symmetricTensors| |min| |distance|
- |constantKernel| |term?| |ellipticCylindrical|
- |branchPointAtInfinity?| |goodnessOfFit| |overbar| |null?| |arguments|
- |Hausdorff| |invertibleElseSplit?| |hasoln| |pushNewContour| |reify|
- |newReduc| |univariatePolynomialsGcds| |hypergeometric0F1| |rombergo|
- |lllip| |position| |rightTraceMatrix| |show| |ReduceOrder| |compose|
- |magnitude| |genericLeftTraceForm| |showAll?| |empty?| |rootPower|
- |logical?| |absolutelyIrreducible?| |triangSolve|
- |ScanFloatIgnoreSpacesIfCan| |acotIfCan| |cyclicGroup| |maxPoints|
- |getStream| |gradient| |rCoord| |void| |parameters|
- |basisOfLeftNucloid| |trace| |fortranCarriageReturn| |sechIfCan|
- |iiacsch| |element?| |solveInField| |torsionIfCan| |atanIfCan|
- |SFunction| |basisOfCentroid| |cyclicCopy|
- |tryFunctionalDecomposition?| |numFunEvals| |d01alf| |limit|
- |trapezoidalo| |pdf2df| |remainder| |antisymmetricTensors|
- |removeRoughlyRedundantFactorsInPol| |setref| |create| |numberOfHues|
- |tanIfCan| |realZeros| |differentialVariables| |pointData| |solid|
- |f04qaf| |combineFeatureCompatibility| |optional?| |tanh2trigh|
- |iiacos| |iidprod| |functionIsFracPolynomial?| |f01rdf| |odd?|
- |expPot| |eigenvector| |s21bcf| |beauzamyBound| |internalIntegrate0|
- |genericRightDiscriminant| |root?| |writable?| |rroot| |rotatez|
- |maxPoints3D| |resultantnaif| |OMputObject| |parabolic| |flagFactor|
- |quasiComponent| |numberOfComputedEntries| |expandPower|
- |factorsOfCyclicGroupSize| |iidsum| |iisqrt3| |rotatey|
- |stosePrepareSubResAlgo| |create3Space| |categoryFrame| |mirror|
- |bfKeys| |possiblyInfinite?| |showAllElements| |rk4qc| |c02aff|
- |e01sef| |removeDuplicates!| |hermiteH| |expr| |powerSum|
- |leftTraceMatrix| |dihedralGroup| |kovacic| |getGoodPrime|
- |inconsistent?| |fixPredicate| |LowTriBddDenomInv| |drawComplex|
- |optAttributes| |recoverAfterFail| |parts| |pastel|
- |symmetricDifference| |pointSizeDefault| |palgLODE| |entries|
- |gramschmidt| |minimize| |c06ebf| |printingInfo?| |s19adf| |rk4|
- |generalizedContinuumHypothesisAssumed?| |denominator|
- |halfExtendedResultant2| |splitConstant| |fortranLinkerArgs|
- |palginfieldint| |topPredicate| |BumInSepFFE| |fortranComplex|
- |leadingCoefficientRicDE| |variable| |tensorProduct| |multiset|
- |collectUnder| |subst| |e02dcf| |outputMeasure| |hMonic| |ramified?|
- |dAndcExp| |loadNativeModule| |iterators| |hostPlatform| |makeResult|
- |univariate?| |integralAtInfinity?| |Vectorise|
- |countRealRootsMultiple| |expintfldpoly| |nextPartition| |mainKernel|
- |forLoop| |copy!| |argument| |nextPrimitiveNormalPoly| |c06gbf|
- |algintegrate| |s18aff| |nextPrimitivePoly| |alphanumeric|
- |flexibleArray| |error| |bezoutMatrix| |expenseOfEvaluationIF| |pow|
- |next| |makeViewport3D| |rightOne| |plusInfinity| |curryRight|
- |reverse!| |adjoint| |assert| |raisePolynomial| |lifting1|
- |unitNormal| |e02dff| |minusInfinity| |listYoungTableaus|
- |OMencodingBinary| |init| |reorder| |rightExactQuotient| |reverse|
- |gcdPrimitive| |janko2| |removeSquaresIfCan| |clipBoolean|
- |returnTypeOf| |enterPointData| |powers| |initiallyReduce|
- |setProperty!| |copies| |nextSublist| |ipow| |aCubic|
- |setVariableOrder| |partialQuotients| |tanh2coth| |datalist|
- |seriesSolve| |splitDenominator| |drawStyle| |primitive?| |vectorise|
- |sh| |parametric?| |quasiRegular| |basisOfCommutingElements| |lepol|
- |rquo| |makeSin| |palglimint0| |simplify| |changeMeasure| |laurentRep|
- |permutation| |matrixDimensions| |lowerCase| |sumOfDivisors|
- |minimumDegree| |exp1| |e01baf| |fixedPointExquo| |tanQ| |type|
- |derivationCoordinates| |tanNa| |OMputEndApp| |check| |badNum|
- |accuracyIF| |colorDef| |basisOfRightNucloid| |pmComplexintegrate|
- |resultantEuclidean| |inHallBasis?| |initiallyReduced?| |setFormula!|
- |rootSplit| |limitedIntegrate| |rank| |complexRoots| |updatF|
- |compBound| |maxRowIndex| |clearTheFTable| |OMencodingUnknown|
- |segment| |iitan| |positiveRemainder| |point?| |credPol| |belong?|
- |cubic| |pmintegrate| |elRow1!| |integralRepresents| |primextendedint|
- |universe| |setImagSteps| |youngGroup| |setleaves!| |build|
- |component| |changeVar| |rectangularMatrix| |firstSubsetGray| |f02wef|
- |complexExpand| |merge!| |shallowCopy| |definingInequation| |bitCoef|
- |cAsec| |lastSubResultantElseSplit| |pushuconst| |rubiksGroup|
- |OMgetString| |dfRange| |cAcsch| |romberg| |color|
- |subQuasiComponent?| |c06gsf| |norm| |simpson| |linearDependenceOverZ|
- |reducedForm| |nextsousResultant2| |ramifiedAtInfinity?| |cons|
- |getButtonValue| |linearAssociatedOrder| |divergence| |lazyPrem|
- |bernoulli| |var2StepsDefault| |pascalTriangle| |OMgetSymbol|
- |baseRDE| |lists| |tanSum| |setButtonValue| |imagk| |ref| |tan2trig|
- |identity| |leftFactor| |rangePascalTriangle| |sort|
- |indicialEquations| |stopTable!| |halfExtendedResultant1|
- |cyclePartition| |numericalIntegration| |groebner| |cyclicParents|
- |mainMonomials| |e01sff| |degreeSubResultant| |nil?| |slex|
- |rational?| |unvectorise| |setlast!| |multiplyCoefficients| |e02akf|
- |nodes| |balancedFactorisation| |d03edf| |bernoulliB|
- |standardBasisOfCyclicSubmodule| |numberOfIrreduciblePoly|
- |numberOfComponents| |pomopo!| |showFortranOutputStack|
- |padicallyExpand| |localIntegralBasis| |karatsuba| |source|
- |loopPoints| |noKaratsuba| |nativeModuleExtension|
- |selectOrPolynomials| |coordinates| |imports| |Ei| |OMsupportsSymbol?|
- |halfExtendedSubResultantGcd2| |changeName| |c05nbf| |checkForZero|
- |precision| |f02abf| |closedCurve?| |extractProperty| |random|
- |bitTruth| |lifting| |localUnquote| |iteratedInitials| |insertRoot!|
- |mr| |selectPolynomials| |blue| |monomRDE| |prod| |Beta| |algDsolve|
- |padecf| |elementary| |totalDifferential| |physicalLength!| |null|
- |extendedSubResultantGcd| |e04fdf| |interpretString| |rootPoly|
- |palgintegrate| |innerSolve| |selectFiniteRoutines| |s17dgf| |case|
- |acscIfCan| |evenlambert| |quickSort| |associatedEquations|
- |var1Steps| |arrayStack| |symbolTable| |iiatanh| |bright| |external?|
- |Zero| |parent| |antiCommutative?| |besselJ| |setValue!|
- |commutative?| |order| |binaryTree| |subNode?| |normalizeAtInfinity|
- |semiDiscriminantEuclidean| |badValues| |One| |e02ahf|
- |setScreenResolution| |alternating| |unitNormalize| |subResultantGcd|
- |pushFortranOutputStack| |s21baf| |partialNumerators| |f01qcf|
- |showTypeInOutput| |setClipValue| |alphanumeric?| |character?|
- |generalSqFr| |diag| |varList| |popFortranOutputStack| |squareFree|
- |irreducibleRepresentation| |s17adf| |df2st| |singular?|
- |partialDenominators| |exprHasAlgebraicWeight| |mathieu11|
- |stoseLastSubResultant| |supDimElseRittWu?| |outputAsFortran|
- |chiSquare| |outputAsScript| |explimitedint| |pack!| |printStats!|
- |pseudoRemainder| |nullity| |clipSurface| |Nul| |getPickedPoints|
- |useSingleFactorBound| |categories| |exponent| |prepareSubResAlgo|
- |UpTriBddDenomInv| |basisOfRightNucleus| |toScale| |extensionDegree|
- |bumptab1| |push!| |sncndn| |key| |curve| |mathieu12| |elt|
- |setProperties| |ode1| |qPot| |mvar| |contractSolve| |mapUp!|
- |trace2PowMod| |makeViewport2D| |palgint| |palglimint| |zeroMatrix|
- |iibinom| |spherical| |filename| |polygon| |primitivePart|
- |viewport3D| |perspective| |orbit| |f07adf| |readIfCan!| GE
- |sumOfSquares| |zerosOf| |fibonacci| |explicitlyEmpty?|
- |nonSingularModel| |not?| |unary?| |outlineRender| |domainOf|
- |logpart| GT |any| |operation| |showIntensityFunctions| |OMconnectTCP|
- |semiLastSubResultantEuclidean| |singRicDE| |list?| |parse|
- |numberOfMonomials| |gethi| |twist| |f07fdf| LE |extractIndex|
- |knownInfBasis| |selectIntegrationRoutines| |basisOfNucleus| |iiexp|
- |OMgetBind| |rightPower| |space| |perfectSquare?| LT |tubeRadius|
- |label| |outputList| |getSyntaxFormsFromFile| |fixedDivisor|
- |setAttributeButtonStep| |withPredicates| |log2| |extractIfCan|
- |getMultiplicationTable| |traceMatrix| |complex|
- |stoseIntegralLastSubResultant| |conjugate| |seed| |fortranInteger|
- |e02bcf| |makeMulti| |bipolar| |eisensteinIrreducible?| |sinIfCan|
- |realSolve| |createIrreduciblePoly| |viewPosDefault| |f02aff|
- |OMserve| |meshFun2Var| |iCompose| |radPoly| |pureLex| |digit?|
- |green| |FormatRoman| |showTheRoutinesTable| |linGenPos|
- |solveLinearPolynomialEquationByRecursion| |rightDivide|
- |SturmHabicht| |realEigenvalues| |subNodeOf?| |linkToFortran| |plus|
- |e02ajf| |oddintegers| |getVariableOrder| |front| |vector|
- |asechIfCan| |cycleElt| |normalDenom| |keys| |graphState|
- |symbolIfCan| |gderiv| |pseudoDivide| |OMsupportsCD?| |clearTable!|
- |differentiate| |lexico| |radix| |singularAtInfinity?| |pushdown|
- |has?| |rationalPoint?| |var2Steps| |leadingTerm| |currentEnv|
- |printTypes| |powmod| |setright!| |collectUpper| |lazyResidueClass|
- |algebraicVariables| |semiIndiceSubResultantEuclidean|
- |purelyAlgebraicLeadingMonomial?| |nary?| |finiteBasis| |solve|
- |drawComplexVectorField| |increasePrecision| |tanAn| |ocf2ocdf|
- |OMputBVar| |infinityNorm| |times| |integralMatrix| |nextItem| |dn|
- |trailingCoefficient| |iicsch|
- |removeRoughlyRedundantFactorsInContents| |search| |edf2ef|
- |writeBytes!| |readable?| |omError| |index| |overset?| |setchildren!|
- |d01anf| |pointColor| |lfunc| |iicosh| |rootRadius| |useNagFunctions|
- |brillhartTrials| |cschIfCan| |meshPar1Var| |minrank| |setMinPoints3D|
- |pointPlot| |intermediateResultsIF| |option| |intcompBasis| |call|
- |d01apf| |idealiserMatrix| |OMopenFile| |randnum| |maxint|
- |reciprocalPolynomial| |linearlyDependentOverZ?| |mapGen| |e04ycf|
- |simpsono| |or?| |list| |monom| |conjug| |pair| |patternMatch|
- |leviCivitaSymbol| |numberOfFactors| |controlPanel| |btwFact| |super|
- |primitiveElement| |car| |normalForm| |primitivePart!|
- |clipParametric| |createNormalElement| |rischNormalize|
- |nthFractionalTerm| |declare| |s17aef| |semiResultantEuclidean2| |cdr|
- |returnType!| |removeSuperfluousCases| |oddlambert| |listLoops|
- |rightCharacteristicPolynomial| |heapSort| |laguerreL| |arg1|
- |convergents| |common| |atanhIfCan| |setDifference| |removeCoshSq|
- |constantOperator| |normalise| |checkPrecision| |aQuartic| |trueEqual|
- |distFact| |cot2trig| |arg2| |function| |multiEuclidean|
- |mergeFactors| |jacobi| |setIntersection| |regularRepresentation|
- |irreducibleFactor| |max| |denomLODE| |leftRankPolynomial| |binary|
- |unitCanonical| |setUnion| |lazyIrreducibleFactors| |overlabel|
- |makingStats?| |critB| |associates?| |lllp| |backOldPos| |rightTrim|
- |isList| |inverse| |leaves| |conditions| |rootKerSimp|
- |fortranDoubleComplex| |apply| |blankSeparate| |iiacot| |paren|
- |genericLeftNorm| |associative?| |f02bjf| |intersect| |leftTrim|
- |and?| |exprHasLogarithmicWeights| |commonDenominator|
- |LazardQuotient| |setTex!| |groebner?| |nthExpon| |nilFactor|
- |chineseRemainder| |rootSimp| |push| |c06ecf| |size| |phiCoord|
- |KrullNumber| |besselI| |minRowIndex| |univariatePolynomials|
- |taylorRep| |getRef| |extendedIntegrate| |continuedFraction|
- |startPolynomial| |collect| |structuralConstants|
- |sumOfKthPowerDivisors| |infix| |OMReadError?| |log| |iiasinh|
- |doubleDisc| |monomialIntPoly| |minColIndex| |rules| |trim|
- |crushedSet| |fill!| |ridHack1| |numberOfImproperPartitions|
- |basisOfLeftNucleus| |euclideanGroebner| |strongGenerators| |first|
- |inrootof| |quote| |basisOfCenter| |rk4a| |shellSort| |s14baf|
- |extension| |d01asf| |ScanArabic| |pattern| |rest| |find| |makeFR|
- |rightTrace| |iilog| |explogs2trigs| |rowEch| |rule| |substitute|
- |binomial| |round| |exactQuotient!| |lieAlgebra?| |rightScalarTimes!|
- |isPlus| |e04ucf| |elColumn2!| |drawCurves| |factorGroebnerBasis|
- |removeDuplicates| |lowerPolynomial| |bracket| |limitPlus|
- |subtractIfCan| |scalarTypeOf| |lflimitedint| |deleteRoutine!|
- |basisOfLeftAnnihilator| |padicFraction| |aspFilename| |multisect|
- |vark| |d02kef| |fractionPart| |llprop| |cSin|
- |rightMinimalPolynomial| |appendPoint| |vertConcat| |/\\| |lcm|
- |message| |diagonal?| |newTypeLists| |viewPhiDefault| |integrate|
- RF2UTS |processTemplate| |f02ajf| |usingTable?| |largest| |\\/|
- |powern| |c06fpf| |subPolSet?| |OMputEndError| |degree|
- |primextintfrac| |id| |extend| |lambert| |append| |pushdterm| |OMsend|
- |unrankImproperPartitions0| |light| |getMeasure| |constantLeft|
- |quasiMonic?| |extractSplittingLeaf| |gcd| |ceiling| |ListOfTerms|
- |exponential| |minus!| |initTable!| |f04maf| |table| |slash|
- |setEpilogue!| |false| |mathieu23| |matrixGcd| |cLog|
- |computeCycleLength| |jacobian| |new| |completeSmith| |abelianGroup|
- |pair?| |readByteIfCan!| |lyndonIfCan| |infieldIntegrate|
- |boundOfCauchy| |leftRank| |factorList| |mpsode| |innerSolve1|
- |getDatabase| |countRealRoots| |presuper| |getBadValues| |f01ref|
- |createGenericMatrix| |constDsolve| |printInfo| |test| |fortranTypeOf|
- |arity| |mainVariable?| |minPoints| |indiceSubResultant| |zero|
- |distdfact| |showClipRegion| |comp| |sequences| |algebraicDecompose|
- |#| |constantOpIfCan| |asinIfCan| |mainCoefficients| |approximants|
- |complexForm| |inc| |OMclose| |stopTableGcd!| |cAtanh| |dflist|
- |associatorDependence| |lineColorDefault| |submod| |And| |Lazard2|
- |minGbasis| |setStatus!| |rightRank| |minimalPolynomial|
- |integralBasisAtInfinity| |pointLists| |s17dcf|
- |semiSubResultantGcdEuclidean1| |Or| |OMgetObject| |droot| |concat!|
- |jordanAlgebra?| |mkPrim| |byte| |zeroDimPrime?|
- |nextLatticePermutation| |f04mcf| |Not| |d01gbf| |remove| |stack|
- |rewriteSetWithReduction| |less?| |cyclicEntries| |s13aaf|
- |numericIfCan| |variable?| |cAsinh| |monicRightDivide| |nthFlag|
- |fortranLiteralLine| |subresultantSequence| |module| |algebraicOf|
- |iomode| |back| |last| |modifyPointData| |unitsColorDefault|
- |createPrimitiveElement| |generalInfiniteProduct| |unit| ~=
- |acschIfCan| |explicitEntries?| |assoc| |left| |fTable|
- |resultantEuclideannaif| |quotientByP| |lazyPseudoRemainder|
- |totalLex| |minordet| |ode| |coerce| |weights| |right| |normal?|
- |divisors| |monicDecomposeIfCan| |mkIntegral| |central?| |construct|
- |curryLeft| |iifact| |bitLength| |connect| |leftPower|
- |multiplyExponents| |extendedEuclidean| |clearTheIFTable| |recip|
- |LyndonWordsList1| |setPredicates| |hasSolution?| |showTheSymbolTable|
- |lagrange| |nullSpace| |radicalRoots| |readLine!| |e02bdf|
- |fractRagits| |ravel| |exists?| |weakBiRank| |nthRoot|
- |moreAlgebraic?| |indicialEquationAtInfinity| |generalTwoFactor|
- |reshape| |even?| |polynomialZeros| |addBadValue|
- |basisOfMiddleNucleus| |cycle| ** |addPoint| |testModulus|
- |leadingExponent| |freeOf?| |iiasin| |e02bbf| |primintegrate|
- |deepCopy| |multinomial| |elem?| |transpose| |ScanFloatIgnoreSpaces|
- |jacobiIdentity?| |scalarMatrix| |cCsch| |stFunc2| |iipow| |lex|
- |open?| |size?| EQ |f02aef| |fmecg| |laplace| |simplifyExp|
- |lazyGintegrate| |conditionsForIdempotents| |clikeUniv|
- |triangularSystems| |groebgen| |symmetricProduct| |realEigenvectors|
- |leftAlternative?| |externalList| |genericLeftMinimalPolynomial|
- |unit?| |radicalEigenvector| |stFunc1| |OMunhandledSymbol|
- |triangulate| |poisson| |OMgetError| |OMlistCDs| |modifyPoint|
- |permutations| |tubeRadiusDefault| |thenBranch| |tubePointsDefault|
- |cyclotomicDecomposition| |in?| |bat| |truncate| |extractTop!|
- |flatten| |setMinPoints| |rotate!| |symbol| |f04atf| |matrix| |kmax|
- |perfectNthRoot| |duplicates| |subSet| |trigs| |outputFixed|
- |rightFactorCandidate| |RemainderList| |expression| |argumentListOf|
- |isExpt| |callForm?| |hessian| |rootsOf| |charClass| |tubePoints|
- |factorsOfDegree| |expandLog| |integer| |useEisensteinCriterion?|
- |OMgetEndBind| |normalizedDivide| |firstDenom| |HenselLift|
- |OMgetInteger| |univariatePolynomial| |fracPart| |unaryFunction|
- |fixedPoints| |zeroDimensional?| |coerceImages| |dimension| |Aleph|
- |rdHack1| |insertBottom!| |lexGroebner| |cSinh| |isQuotient|
- |signature| |errorKind| |hash| |updateStatus!| |complexElementary|
- |lquo| |localReal?| |lazy?| |approxSqrt| |chiSquare1| |argscript|
- |mesh?| |cn| |makeCos| |reducedDiscriminant| |count| |hspace| |d02gbf|
- |maxrow| |clearDenominator| |nor| |fi2df| |decrease| |not|
- |systemCommand| |rischDEsys| |tValues| |secIfCan| |leftNorm|
- |generators| |cotIfCan| |cPower| |bivariateSLPEBR| |alphabetic?|
- |pointColorPalette| |checkRur| |sin2csc| |f04jgf| |tab| |geometric|
- |rewriteIdealWithRemainder| |subspace| |stoseInvertible?reg| |double|
- |complexEigenvalues| |mapExpon| |FormatArabic|
- |useEisensteinCriterion| |sec2cos| |cAtan| |computePowers| |vspace|
- |height| |divide| |computeBasis| |normal| |stoseInvertibleSet|
- |OMgetApp| |subresultantVector| |rightRankPolynomial| |lyndon|
- |expandTrigProducts| |listRepresentation| |expIfCan| |tab1|
- |outerProduct| |lighting| |leader| |mix| |OMParseError?|
- |rationalFunction| |conical| |f04arf| |coshIfCan| |iiasec|
- |hyperelliptic| |linearMatrix| |npcoef| |brillhartIrreducible?|
- |discriminant| |logGamma| |setAdaptive3D| |hexDigit| |writeByteIfCan!|
- |squareFreeFactors| |leftDiscriminant| |directory| |coth2tanh|
- |associatedSystem| |binaryTournament| |sizeMultiplication|
- |unprotectedRemoveRedundantFactors| |f07fef| |figureUnits|
- |factorPolynomial| |integer?| |key?| |coerceP| |postfix| |cosh2sech|
- |henselFact| |splitLinear| |ratDenom| |product| |pToHdmp| |leftRecip|
- |LyndonCoordinates| |c06eaf| |midpoint| |setfirst!| |ldf2vmf|
- |nothing| |fullPartialFraction| |identityMatrix| |lprop| |declare!|
- |subResultantsChain| |innerEigenvectors| |makeSUP| |iisech|
- |monomials| |setMaxPoints3D| |term| |mainContent| |cond|
- |roughBasicSet| |chebyshevT| |patternMatchTimes|
- |stoseInvertibleSetreg| |rightUnits| |approxNthRoot|
- |certainlySubVariety?| |primPartElseUnitCanonical!|
- |internalInfRittWu?| |clipWithRanges| |brace| |midpoints|
- |getProperties| |LiePolyIfCan| |equiv| |dot| |replace| |nextColeman|
- |solid?| |s17dhf| |OMgetBVar| |diagonalMatrix| |factorSFBRlcUnit|
- |implies?| |updatD| |OMgetVariable| |sayLength| |box|
- |rightAlternative?| |yCoord| |rootProduct| |OMgetEndApp|
- |PollardSmallFactor| |LyndonBasis| |polyPart| |createRandomElement|
- |mainVariables| |solveLinearPolynomialEquation| |selectsecond| |stop|
- |besselK| |failed| |mathieu22| |c05adf| |e02zaf| |semicolonSeparate|
- |contours| |exponential1| |antiAssociative?| |stronglyReduced?|
- |kroneckerDelta| |value| |companionBlocks| |choosemon|
- |screenResolution3D| |ranges| |definingEquations| |varselect|
- |outputFloating| |genericRightTrace| |makeTerm| |internalDecompose|
- |ptFunc| |areEquivalent?| |mkcomm| |sts2stst| |mainExpression|
- |s19abf| |numerator| |leftZero| |printHeader| |moebius| |asimpson|
- |e02agf| |weierstrass| |anticoord| |s15adf| |notOperand|
- |completeEchelonBasis| |completeHermite| |mapExponents|
- |tryFunctionalDecomposition| |divideIfCan!| |operator|
- |complexEigenvectors| |subTriSet?| |composite|
- |transcendentalDecompose| |medialSet| |numberOfDivisors| |consnewpol|
- |selectMultiDimensionalRoutines| |split| |quasiMonicPolynomials|
- |edf2df| |completeHensel| |minPoints3D| |or| |adaptive|
- |showScalarValues| |length| |principalIdeal| |makeEq| |laurentIfCan|
- |scanOneDimSubspaces| |cSec| |quoByVar| |leftFactorIfCan| |e01bef|
- |replaceKthElement| |s13adf| |scripts| |nand| |lfextendedint|
- |enumerate| |exponents| |iiasech| |OMputError|
- |squareFreeLexTriangular| |isMult| |pquo| |objectOf| |taylorIfCan|
- |rootOfIrreduciblePoly| |algSplitSimple| |d03eef| |eigenvalues|
- |dominantTerm| |roughSubIdeal?| |removeIrreducibleRedundantFactors|
- |range| |typeLists| |high| |diophantineSystem| |numberOfChildren|
- |superscript| |generator| |complexNormalize| |s21bdf| |redpps| |iicsc|
- |currentSubProgram| |crest| |tablePow| |real?| |OMconnInDevice|
- |branchIfCan| |indicialEquation| |generic?|
- |createMultiplicationTable| |endOfFile?| |superHeight|
- |modularGcdPrimitive| |d01akf| |diff| |OMputBind|
- |stripCommentsAndBlanks| |setScreenResolution3D| |toseInvertible?|
- |setProperty| |SturmHabichtSequence| |findBinding| |resetBadValues|
- |rationalIfCan| |inspect| |tube| |topFortranOutputStack|
- |semiResultantEuclidean1| |positive?| |mapUnivariate| |printInfo!|
- |inf| |fortranLogical| |dimensionOfIrreducibleRepresentation|
- |option?| |integral| |birth| |shiftLeft| |e04mbf| |constant?|
- |copyInto!| |interval| |deepestInitial| |select!| |applyRules|
- |selectODEIVPRoutines| |Si| |unitVector| |rspace| |rangeIsFinite|
- |hex| |digit| |composites| |nonLinearPart| |linSolve| |style| |prem|
- |cAcoth| |d01amf| |leftExactQuotient| |coerceS| |moduleSum|
- |exprHasWeightCosWXorSinWX| |bringDown| |upperCase| |goto|
- |complementaryBasis| |neglist| |nil| |infinite| |arbitraryExponent|
- |approximate| |complex| |shallowMutable| |canonical| |noetherian|
- |central| |partiallyOrderedSet| |arbitraryPrecision|
- |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
- |additiveValuation| |unitsKnown| |canonicalUnitNormal|
- |multiplicativeValuation| |finiteAggregate| |shallowlyMutable|
- |commutative|) \ No newline at end of file
+ |Record| |Union| |listLoops| |graphStates| |zeroSquareMatrix|
+ |colorFunction| |tanhIfCan| |comment| |e01sff| |rename| |lo|
+ |printCode| |singleFactorBound| |obj| |permutation|
+ |numberOfPrimitivePoly| |airyBi| |OMread| |balancedBinaryTree| |incr|
+ |totalGroebner| |aLinear| |singularAtInfinity?| |rk4a| |c06ecf|
+ |eisensteinIrreducible?| |anticoord| |cache| |primitivePart|
+ |makingStats?| |univcase| |orbit| |hi| |unrankImproperPartitions1|
+ |GospersMethod| |findBinding| |redmat| |imports| |lfintegrate|
+ |schema| |limit| |complexRoots| |largest| |monicDecomposeIfCan|
+ |identityMatrix| |nthFactor| |merge!| |bfKeys| |alphabetic?|
+ |OMcloseConn| |char| |clearDenominator| |principalIdeal| |shift|
+ |morphism| |topPredicate| |removeIrreducibleRedundantFactors|
+ |hyperelliptic| |s17aff| |unravel| |modTree| |computeCycleEntry|
+ |OMputEndAttr| |fortran| |depth| |normalize| |nullity| |badValues|
+ |nsqfree| |indicialEquationAtInfinity| |aspFilename| |shallowExpand|
+ |zerosOf| |minrank| |OMputEndAtp| |firstDenom| |setMaxPoints|
+ |difference| |headReduced?| |relativeApprox| |physicalLength!|
+ |OMencodingBinary| |dmpToHdmp| ~ |compose| |lineColorDefault| |tail|
+ |hasHi| |composites| |subCase?| |localAbs|
+ |solveLinearPolynomialEquation| |ran| |pop!| |dmp2rfi| |s19acf|
+ |resultant| |selectOptimizationRoutines| |float| |lex| |rightOne|
+ |separate| |open| |shellSort| |pushdown| |numberOfVariables|
+ |tubeRadiusDefault| |cCoth| |mapmult| |s15aef| |idealiser|
+ |rightAlternative?| |rangePascalTriangle| |besselY| |writeLine!|
+ |range| |bitTruth| |exponential| |lagrange| |selectfirst| |critB|
+ |leftMinimalPolynomial| |eigenMatrix| |s18dcf| |prefixRagits|
+ |removeSuperfluousQuasiComponents| |pointData| |viewport3D| |dark|
+ |f02aaf| |revert| |singular?| |showClipRegion| |clipParametric|
+ |measure| |linear| |log2| |numer| |yellow| |nor| |updatF| |OMreceive|
+ |resultantEuclideannaif| |fortranCompilerName| |argumentListOf|
+ |phiCoord| |denom| |symbol?| |dimensions| |trapezoidalo|
+ |specialTrigs| |makeEq| |front| |back| |Hausdorff| |generate|
+ |shallowCopy| |polynomial| |f02bbf| |factorByRecursion| |complement|
+ |startTableGcd!| |cycleRagits| |prime?| |pointColorDefault| F
+ |thenBranch| |listRepresentation| |pi| |mainExpression| |iiacsch|
+ |infinityNorm| |imaginary| |erf| |psolve| |reduceLODE|
+ |roughUnitIdeal?| |incrementBy| |gramschmidt| |localReal?|
+ |generateIrredPoly| |infinity| |quasiComponent| |quasiRegular|
+ |safetyMargin| |union| |fibonacci| |extendedSubResultantGcd| |trim|
+ |setMinPoints3D| |script| |henselFact| |expand| |coefChoose|
+ |showFortranOutputStack| |OMgetAttr| |copy!| |meshPar2Var|
+ |useSingleFactorBound?| |safeFloor| |reorder| |B1solve|
+ |rootDirectory| |filterWhile| |mantissa| |e02ahf| |atrapezoidal|
+ |status| |buildSyntax| |factor1| |LiePolyIfCan| |partialDenominators|
+ |dilog| |open?| |curryRight| |selectsecond| |sequences| |filterUntil|
+ |mapDown!| |kernel| |recur| |minus!| |nullSpace|
+ |factorSquareFreeByRecursion| |drawCurves| |pleskenSplit| |cAcosh|
+ |yCoord| |tex| |sin| |options| |calcRanges| |select| |draw|
+ |viewpoint| |imagE| |variationOfParameters| |level|
+ |cyclotomicFactorization| |interval| |stiffnessAndStabilityOfODEIF|
+ |associates?| |result| |outputGeneral| |cos| |bits| |isExpt|
+ |stoseInvertible?sqfreg| |setnext!| |subResultantChain| |cup| |less?|
+ |binomThmExpt| |d02bbf| |indicialEquations| |tan| |prevPrime|
+ |invertibleElseSplit?| |cAcot| |KrullNumber| |optimize| |augment|
+ |integralMatrix| |mainVariable| |newLine| |compBound| |e01saf| NOT
+ |string| |cot| |bezoutDiscriminant| |asechIfCan| |dom|
+ |definingInequation| |elliptic?| |extractIfCan| |OMlistSymbols|
+ |contractSolve| |swap!| OR |laurentIfCan| |quotientByP| |sec|
+ |splitLinear| |binaryFunction| |makeObject| |typeLists|
+ |createNormalElement| |numberOfComputedEntries| |graphImage|
+ |element?| |binarySearchTree| |minPoly| AND |explicitlyEmpty?| |csc|
+ |minimize| |crushedSet| |lowerCase!| |expIfCan| |removeSinhSq| |lazy?|
+ |removeRedundantFactors| |binding| |generalizedInverse| |members|
+ |normInvertible?| |asin| |leadingIdeal| |makeRecord|
+ |basisOfCommutingElements| |setScreenResolution| |maxIndex| |coef|
+ |setErrorBound| |argument| |rootProduct| |e04fdf|
+ |complexNumericIfCan| |acos| |exprHasAlgebraicWeight| |low| |routines|
+ |cTan| |s19abf| |factorGroebnerBasis| |equiv| |size?| |reverse!|
+ |pointPlot| |atan| |realRoots| |algebraicDecompose| |makeSketch|
+ |modulus| |middle| |viewSizeDefault| |multisect| |lazyIntegrate|
+ |title| |f02awf| |acosIfCan| |rightExactQuotient| |acot| |cycleElt|
+ |callForm?| |f02agf| |tubePointsDefault| |initTable!| |algebraic?|
+ |principal?| |deepestInitial| |curry| |d02kef| |besselK| |asec|
+ |integralBasis| |f02fjf| |hasoln| |cartesian| |nonLinearPart|
+ |numeric| |getMultiplicationTable| |radicalRoots| |mapUp!|
+ |cyclicEntries| |iisqrt2| |subMatrix| |lllp| |OMputEndObject| |acsc|
+ |OMconnOutDevice| |generalLambert| |e| |radical| |Lazard| |imagj|
+ |padicallyExpand| |notelem| |readLineIfCan!| |weight| |initials|
+ |lazyPseudoRemainder| |sinh| |ratDenom| |fill!| |besselI|
+ |OMencodingSGML| |plot| |minPol| |f01brf| |vertConcat|
+ |scanOneDimSubspaces| |OMUnknownCD?| |cosh| |rightMult| |c06ebf|
+ |bitCoef| |decompose| |tab1| |approxSqrt| |deref| |OMputAttr| |tree|
+ |maxRowIndex| * |stopTable!| |tanh| |modularGcdPrimitive| |cAsech|
+ |high| |expandPower| |axes| |solveInField| |isPower|
+ |nonSingularModel| |cExp| |semiResultantReduitEuclidean| |coth|
+ |constantOpIfCan| |musserTrials| |prinb| |host| |scripted?| |nextItem|
+ |sample| |intermediateResultsIF| |d02raf| |sech| |traverse|
+ |groebnerIdeal| |compdegd| |alternating| |debug|
+ |reducedContinuedFraction| |UnVectorise| |lowerPolynomial|
+ |nextPrimitiveNormalPoly| |changeNameToObjf|
+ |removeRedundantFactorsInPols| |OMgetEndApp| |csch| |normalDenom|
+ |mathieu11| |f01mcf| D |rischNormalize| |f04maf| |polygon?| |dot|
+ |overlap| |interpretString| |adjoint| |asinh| |hessian|
+ |RittWuCompare| |oblateSpheroidal| |li| |lepol| |autoReduced?|
+ |select!| |stoseInternalLastSubResultant| |setFieldInfo| |f02aef|
+ |gcdPolynomial| |acosh| |pushNewContour| |region|
+ |cyclotomicDecomposition| |numerator| |putGraph|
+ |stiffnessAndStabilityFactor| |palgLODE0| |realElementary|
+ |gcdPrimitive| |integers| |atanh| |cSech| |printingInfo?| |cothIfCan|
+ |ef2edf| |traceMatrix| |trace2PowMod| |s13aaf| |style| |leftUnits|
+ |linears| |mathieu22| |acoth| |ridHack1| |product| |sn| |vedf2vef|
+ |unknown| |OMputFloat| |bfEntry| |selectAndPolynomials|
+ |sizePascalTriangle| |backOldPos| |setsubMatrix!| |diagonal?| |asech|
+ |const| |setOfMinN| |minRowIndex| |factorsOfCyclicGroupSize| |zero?|
+ |reflect| |torsionIfCan| |clearTheFTable| |sumSquares| |addPoint2|
+ |swapColumns!| |d01akf| |cAsec| |measure2Result| |lighting|
+ |chiSquare1| |atom?| |unary?| |cSec| |halfExtendedResultant1|
+ |multiple| |every?| |asinIfCan| |diophantineSystem| |getOperator|
+ |localIntegralBasis| |top!| |dn| |rootPoly| |complexSolve|
+ |applyQuote| |quadraticForm| |matrixConcat3D| |surface| |entry|
+ |unitNormalize| |block| |readLine!| |bracket| |wordInStrongGenerators|
+ |f02axf| |raisePolynomial| |totalLex| |optpair|
+ |stoseLastSubResultant| |edf2efi| |true| |print|
+ |removeRoughlyRedundantFactorsInPols| |sturmSequence| |qelt| |c06gbf|
+ |plotPolar| |impliesOperands| |PollardSmallFactor| |intcompBasis|
+ |rootsOf| |graphState| |applyRules| |in?| |slash| |tableau| |and|
+ |nextColeman| |leadingSupport| |coHeight| |pushup| |ruleset| |reify|
+ |s19adf| |f2st| |solveLinear| |nthFractionalTerm| |xRange| |e02def|
+ |cos2sec| |fmecg| |unparse| |c05adf| |pToHdmp| LODO2FUN |ParCondList|
+ |OMgetFloat| |interpolate| |yRange| |numericIfCan| |elements| |Ci|
+ |mainCharacterization| |c06gcf| |selectSumOfSquaresRoutines| |objects|
+ |createThreeSpace| |leftZero| |po| SEGMENT
+ |stoseIntegralLastSubResultant| |zRange| |graphs| |makeViewport2D|
+ |prindINFO| |e01sbf| |isList| |f02akf| |suchThat| |base|
+ |numberOfImproperPartitions| |iidsum| |univariatePolynomials| |map!|
+ |rquo| |e01bhf| |atanIfCan| |sign| |janko2| |newTypeLists| |diff|
+ |mainCoefficients| |cyclic| |lastSubResultantElseSplit| |qsetelt!|
+ |mix| |lookup| |argscript| |OMencodingUnknown| |ddFact| |root| |hue|
+ |maxColIndex| |prefix| |numberOfChildren| |pdf2ef| |xCoord|
+ |trailingCoefficient| |compound?| |gcdcofactprim| |ParCond|
+ |symbolIfCan| |supDimElseRittWu?| |alternative?|
+ |selectNonFiniteRoutines| |dec| |e02baf| |rowEchelonLocal|
+ |removeZero| |denomLODE| |cyclePartition| |outlineRender| |qroot|
+ |symbolTableOf| |solid?| |subResultantGcd| |s17ahf| |setClosed|
+ |splitNodeOf!| |limitPlus| |mainPrimitivePart| |gcdprim|
+ |expextendedint| |charClass| |leftRecip| |differentialVariables|
+ |unexpand| |setEpilogue!| |karatsuba| |algintegrate|
+ |selectODEIVPRoutines| |quasiMonicPolynomials| |condition| |e04jaf|
+ |minordet| |newReduc| |rk4| |e02bdf| |Frobenius| |acsch| |palgint|
+ |polCase| |testDim| |linearPart| |minset| |basisOfLeftNucleus|
+ |approximants| |commutative?| |f01rcf| |leftGcd| |variable?|
+ |internal?| |rootOf| |inverseIntegralMatrix| |basis| |uniform|
+ |squareFreePrim| |concat| |OMbindTCP| |makeSin| |conjugate| |meatAxe|
+ |currentScope| |ScanFloatIgnoreSpaces| |anfactor| |viewPhiDefault|
+ |s20adf| |collectQuasiMonic| |symFunc| |iisqrt3| |zCoord| |SFunction|
+ |rootNormalize| |prod| |elliptic| |OMputBind| |triangulate| |sdf2lst|
+ |normalElement| |OMParseError?| |bivariateSLPEBR| |mesh?| |complete|
+ |float?| |oddInfiniteProduct| |previous| |tower| |f2df|
+ |linearAssociatedLog| |qqq| |reducedQPowers| |s17aef| |child?|
+ |inRadical?| |c06frf| |numerators| |stoseSquareFreePart| |inv|
+ |leftLcm| |coord| |gderiv| |iprint| |property| |printHeader|
+ |cycleTail| |OMmakeConn| |subtractIfCan| |iicsch| |ord| |ground?|
+ |removeRoughlyRedundantFactorsInContents| |outputAsTex|
+ |generalizedContinuumHypothesisAssumed?| |chiSquare| |nthExpon|
+ |OMputApp| |s17dlf| |viewZoomDefault| |rootRadius|
+ |leftRankPolynomial| |nextPrimitivePoly| |ground| |tubePoints|
+ |LyndonCoordinates| |vconcat| |mapdiv| |makeTerm| |nthRootIfCan|
+ |readIfCan!| |Si| |s17dhf| |edf2df| |OMgetBVar| |leadingMonomial|
+ |determinant| |lifting| |d03faf| |univariatePolynomialsGcds|
+ |algSplitSimple| |rroot| |controlPanel| |units| |inHallBasis?|
+ |tValues| |s18aff| |squareMatrix| |complexLimit| |exquo|
+ |leadingCoefficient| |transcendent?| |complexNumeric|
+ |euclideanGroebner| |rightQuotient| |changeVar| |sinhcosh|
+ |splitDenominator| |escape| |removeRoughlyRedundantFactorsInPol|
+ |swap| |numberOfOperations| |jacobiIdentity?| |div| |monicRightDivide|
+ |primitiveMonomials| |iicot| |reopen!| |c05pbf| |d03edf| |fprindINFO|
+ |purelyAlgebraic?| |palglimint| |cAsinh| |quo| |imagk| |extractClosed|
+ |reductum| |kernels| |constDsolve| |fortranReal| |getOrder| |output|
+ |leaf?| |zeroDimPrimary?| |basisOfCentroid| |particularSolution|
+ |f01ref| |diagonal| |characteristic| |monicModulo| |univariate|
+ |closeComponent| |edf2ef| |formula| |order| |getMeasure| |member?|
+ |makeCos| |symmetric?| |compile| |setPoly| |rem| |Beta|
+ |virtualDegree| |generalInfiniteProduct| |expt| |target| |derivative|
+ |createLowComplexityNormalBasis| |code| |critpOrder| |llprop| |move|
+ |useNagFunctions| |outputArgs| |character?| |trigs2explogs| |iiatan|
+ |poisson| |perfectSquare?| |recip| |cAcoth| |viewport2D|
+ |alphanumeric| |genus| |s01eaf| |resize| |factor| |SturmHabicht| BY
+ |sncndn| |fractionFreeGauss!| |btwFact| |imagi| |integralAtInfinity?|
+ |remove!| |LyndonBasis| |factorSquareFree| |consnewpol|
+ |diagonalMatrix| |sqrt| |unprotectedRemoveRedundantFactors| |rotatez|
+ |nilFactor| |getStream| |monicRightFactorIfCan| |untab| |secIfCan|
+ |nrows| |expenseOfEvaluation| |binary| |real| |OMreadFile|
+ |LowTriBddDenomInv| |colorDef| |approxNthRoot| |inverseColeman|
+ |stoseInvertibleSet| |coefficient| |lexGroebner| |setref| |ncols|
+ |homogeneous?| |completeHensel| |nthFlag| |lifting1| |imag| |dmpToP|
+ |operators| |df2fi| |d03eef| |zeroVector| |internalDecompose| |delete|
+ |cross| |directProduct| |initiallyReduced?| |dequeue|
+ |chainSubResultants| |recolor| |antiCommutator| |mkPrim|
+ |rectangularMatrix| |s17akf| |drawStyle| |cAcsc| |polyRicDE| |s20acf|
+ |rightNorm| |writeBytes!| |createPrimitiveNormalPoly|
+ |createGenericMatrix| |whileLoop| |genericRightMinimalPolynomial|
+ |bandedJacobian| |cSin| |lhs| |exactQuotient!| |maxdeg| |exprToGenUPS|
+ |imagI| |elseBranch| |mapSolve| |destruct| |fortranTypeOf|
+ |binaryTree| |checkForZero| |constantLeft| |bernoulliB| |rhs|
+ |integral| |monomial?| |algDsolve| |unit| |flexibleArray| |groebSolve|
+ |charthRoot| |tubeRadius| |terms| |makeGraphImage|
+ |halfExtendedSubResultantGcd1| |d01amf| |content| |reduced?|
+ |factorSFBRlcUnit| |ref| |lexTriangular| |generalSqFr| |eigenvectors|
+ |simplifyPower| |LyndonWordsList1| |LagrangeInterpolation|
+ |leftScalarTimes!| |solve| |scalarMatrix| |iiperm| |tan2cot|
+ |drawComplex| |realEigenvalues| |Vectorise| |OMgetError| |coleman|
+ |deriv| |curve| |fintegrate| |basisOfRightNucloid| UTS2UP
+ |brillhartTrials| |setFormula!| |node| |fortranLiteralLine| |f07fef|
+ |monomial| |eigenvalues| |leftNorm| |cSinh| |ricDsolve| |OMgetApp|
+ |cotIfCan| |certainlySubVariety?| |setelt| |initial| |distFact|
+ |sqfrFactor| |unitCanonical| |scaleRoots| |c06fuf| |multivariate|
+ |selectMultiDimensionalRoutines| |reduceBasisAtInfinity|
+ |chineseRemainder| |entry?| |maxPoints3D| |cot2tan| |gradient|
+ |create| |completeEval| |viewDeltaXDefault| |variables| |asecIfCan|
+ |setStatus| |repeating| |byte| |super| |sinhIfCan| |makeYoungTableau|
+ |mainSquareFreePart| |copy| |hasPredicate?| |stopTableInvSet!|
+ |socf2socdf| |polyPart| |arity| |diag| |primitive?|
+ |rightMinimalPolynomial| |pseudoQuotient| |lieAlgebra?| |c02agf|
+ |substring?| |removeZeroes| |clipPointsDefault| |readable?|
+ |unitNormal| |normalDeriv| |radicalSimplify| |paraboloidal| |log10|
+ |firstSubsetGray| |leftRegularRepresentation| |ptFunc| |mappingAst|
+ |OMopenString| |bezoutMatrix| |minPoints3D| |optAttributes|
+ |tanintegrate| |bandedHessian| |match?| |bitand|
+ |drawComplexVectorField| |e01bgf| |quasiMonic?| |top| |imagK|
+ |suffix?| |birth| |autoCoerce| |leftExactQuotient| |cCsch|
+ |decreasePrecision| |implies?| |figureUnits| |subNodeOf?| |bitior|
+ |continue| |branchPoint?| F2FG |e04naf|
+ |standardBasisOfCyclicSubmodule| |thetaCoord| |chebyshevU| |taylor|
+ |padecf| |csch2sinh| |removeCosSq| |square?| |cyclicEqual?| |width|
+ |lfextlimint| |e04gcf| |subNode?| |getSyntaxFormsFromFile| UP2UTS
+ |primPartElseUnitCanonical!| |prefix?| |dihedral| |debug3D| |laurent|
+ |isOp| |OMputVariable| |OMReadError?| |computeInt| |OMlistCDs|
+ |f02abf| |interReduce| |mathieu12| |countRealRootsMultiple|
+ |subscriptedVariables| |karatsubaOnce| |subresultantSequence|
+ |tan2trig| |puiseux| |rightExtendedGcd| |numberOfHues| |part?|
+ |setPredicates| |resultantnaif| |errorKind| |mainForm| |negative?|
+ |leadingIndex| |acschIfCan| |partialFraction| |mainVariable?|
+ |rootSimp| |zeroDimPrime?| |lastSubResultantEuclidean|
+ |subresultantVector| |rCoord| |generators| |tracePowMod| |leftOne|
+ |lazyIrreducibleFactors| |inverseLaplace| = |generalizedEigenvector|
+ |equation| |flexible?| |rationalApproximation| |generic| |signAround|
+ |argumentList!| |roughBase?| |getExplanations| |physicalLength|
+ |omError| |linkToFortran| |squareFree| |appendPoint| |LyndonWordsList|
+ |primitiveElement| |quotedOperators| |rightScalarTimes!|
+ |rightRemainder| |rootSplit| |expenseOfEvaluationIF| |reverseLex| <
+ |factorPolynomial| |characteristicSet| |optional| |lowerCase?|
+ |f02wef| |normFactors| |areEquivalent?| |infix?| |positiveSolve| |say|
+ |updatD| |adaptive| > |cschIfCan| |key?| |recoverAfterFail|
+ |increasePrecision| |dominantTerm| |extractSplittingLeaf| |vectorise|
+ |mask| |shiftLeft| |elementary| |makeUnit| |e02dff| <= |reseed|
+ |symmetricDifference| |summation| |implies|
+ |leftCharacteristicPolynomial| |viewThetaDefault| |expintfldpoly|
+ |stoseInvertible?| |getZechTable| >= |coordinate|
+ |createRandomElement| |iiasinh| |polyRDE| |normalizeAtInfinity|
+ |insertTop!| |palgRDE0| |setProperties| |internalInfRittWu?| |regime|
+ |identity| |module| |iiacoth| |getMatch| |d01bbf| |xor|
+ |numberOfIrreduciblePoly| |fixedDivisor| |polarCoordinates|
+ |lazyPseudoQuotient| |bipolarCylindrical|
+ |setLegalFortranSourceExtensions| |radicalEigenvectors|
+ |lazyVariations| |infRittWu?| |minPoints| |match| |basisOfLeftNucloid|
+ |solveLinearPolynomialEquationByFractions| |rightRankPolynomial|
+ |hasSolution?| |nextLatticePermutation| |name|
+ |radicalOfLeftTraceForm| |nextSubsetGray| |stFunc2|
+ |irreducibleRepresentation| + |e02ajf| |f07adf| |times!| |modifyPoint|
+ |OMputObject| |body| |updateStatus!| |resetVariableOrder| |pow|
+ |normDeriv2| |legendre| |reset| |semiSubResultantGcdEuclidean2| -
+ |s14abf| |enqueue!| |push| |hdmpToDmp| |sylvesterSequence| |gbasis|
+ |OMgetEndAtp| |schwerpunkt| |qfactor| |explicitEntries?| |pastel|
+ |OMgetVariable| / |wrregime| |rischDEsys| |constructorName| |laguerre|
+ |showTheFTable| |normalForm| |nextNormalPoly| |predicates| |coerceP|
+ |representationType| |overlabel| |write| |safeCeiling| |triangular?|
+ |integer?| |antisymmetricTensors| |compiledFunction| |PDESolve|
+ |rational| |isPlus| |tanAn| |iisec| |save| |trueEqual|
+ |limitedIntegrate| |primes| |asinhIfCan| |pointSizeDefault|
+ |bivariate?| |clipWithRanges| |complexExpand| |mkcomm| |ceiling|
+ |e04mbf| |lift| |showScalarValues|
+ |generalizedContinuumHypothesisAssumed| |meshPar1Var| |quoted?|
+ |doubleDisc| |setAttributeButtonStep| |roughSubIdeal?| |sh| |reduce|
+ |resultantReduit| |nextPartition| |totalDifferential| |mainVariables|
+ |algebraicOf| |indiceSubResultant| |eyeDistance|
+ |genericLeftDiscriminant| |parabolic| |nextIrreduciblePoly| |iroot|
+ |setAdaptive| |resetNew| |cAsin| |listYoungTableaus| |outputForm|
+ |basicSet| |semiDiscriminantEuclidean| |leastAffineMultiple|
+ |normalizedAssociate| |graeffe| |ode1| |mesh|
+ |basisOfRightAnnihilator| |primPartElseUnitCanonical| |iisin|
+ |numberOfCycles| |moduleSum| |maximumExponent| |algebraicSort|
+ |parametersOf| |constant| |fortranCarriageReturn| |f04mcf|
+ |sumOfSquares| |critBonD| |s17adf| |roughEqualIdeals?| |nullary?|
+ |center| |permutations| |lyndon| |monic?| |cCot| |complexElementary|
+ |sayLength| |linear?| |pr2dmp| |oddintegers| |prologue| |contains?|
+ |numberOfComponents| |stirling1| |messagePrint| |palgLODE|
+ |leftFactor| |makeViewport3D| |monomialIntPoly| |insert| |epilogue|
+ |readBytes!| |quartic| |showTheSymbolTable| |ocf2ocdf| |e04ucf|
+ |multMonom| |nil| |roman| |getCurve| |postfix|
+ |rewriteIdealWithQuasiMonicGenerators| |closedCurve?|
+ |evaluateInverse| |ListOfTerms| |t| |clearCache| |mainKernel|
+ |supRittWu?| |drawToScale| |fTable| |sinh2csch| |cscIfCan|
+ |extendIfCan| |OMgetEndAttr| |internalLastSubResultant| |cycleSplit!|
+ |midpoints| |constant?| |iomode| |lieAdmissible?| |distdfact| |df2st|
+ |and?| |transform| |eq| |primitivePart!| |leftTrace| |bat1|
+ |fillPascalTriangle| |s18adf| |constantCoefficientRicDE| |retract|
+ |shuffle| |approximate| |delta| Y |universe| |iter| |c06gqf|
+ |parametric?| |qPot| |c06fqf| |rst| |null?| |squareFreeLexTriangular|
+ |withPredicates| |sts2stst| |one?| |d01gbf| |var2StepsDefault| |df2mf|
+ |RemainderList| |external?| |close| |countable?| |flagFactor|
+ |fullDisplay| |sechIfCan| |eval| |outputFixed| |newSubProgram|
+ |getVariableOrder| |setEmpty!| |pomopo!| |expandTrigProducts|
+ |OMputBVar| |lquo| |subset?| |entries| |imagJ| |leftMult| |display|
+ |primlimintfrac| |direction| |goodnessOfFit| |minColIndex| |cosh2sech|
+ |genericLeftMinimalPolynomial| |doubleResultant| |zeroDim?| |kind|
+ |isobaric?| |getProperties| |critMTonD1| |assign| |decomposeFunc|
+ |retractIfCan| |prime| |useEisensteinCriterion| |wronskianMatrix|
+ |forLoop| |exp| |elColumn2!| |op| |setchildren!| |toroidal|
+ |yCoordinates| |lambda| |s21bcf| |child| |dim| |or?| |copyInto!|
+ |stronglyReduce| |ode2| |exprHasLogarithmicWeights| |ranges|
+ |conjugates| |intPatternMatch| |rewriteSetWithReduction|
+ |multiEuclideanTree| |leftExtendedGcd| |zoom| |input| |children|
+ |OMputAtp| |aCubic| |mvar| |monicCompleteDecompose| |showSummary|
+ |multiEuclidean| |pascalTriangle| |divideIfCan!| |insert!|
+ |setImagSteps| |library| |jordanAdmissible?| |sech2cosh| |ignore?|
+ |closed?| |indicialEquation| |packageCall| |fixedPointExquo| |isMult|
+ |orbits| |extend| |showAttributes| |linearDependenceOverZ| |powerSum|
+ |acoshIfCan| |inverseIntegralMatrixAtInfinity| |beauzamyBound|
+ |rischDE| |plus!| |positive?| |properties| |subscript|
+ |bezoutResultant| |iCompose| |lfinfieldint| |ptree|
+ |wordsForStrongGenerators| |setlast!| |makeprod| |rur| |translate|
+ |palgextint0| |mainValue| |addPoint| |set| |parent|
+ |selectIntegrationRoutines| |lp| |connect| |complexZeros|
+ |outputMeasure| |overbar| |repeatUntilLoop| |writeByteIfCan!| |map|
+ |point| |unit?| |cAcos| |leastMonomial| |term| |UpTriBddDenomInv|
+ |rightFactorCandidate| |tanQ| |commutativeEquality| |cCsc| |queue|
+ |sec2cos| |absolutelyIrreducible?| |OMreadStr| |normalized?| |redPo|
+ |irreducibleFactors| |definingPolynomial| |irreducible?| |conjug|
+ |pointLists| |zeroDimensional?| |iiabs| |sum| |f01qef| |normalise|
+ |predicate| |update| |series| |monomialIntegrate| |perfectNthPower?|
+ |removeSinSq| |second| |symmetricRemainder| |htrigs| |d01anf|
+ |operator| |mpsode| |commonDenominator| |definingEquations|
+ |setvalue!| |third| |rightTrace| |numberOfFractionalTerms|
+ |reducedForm| |functionIsOscillatory| |startStats!| |convert|
+ |youngGroup| |setVariableOrder| |lambert| |position!|
+ |numericalOptimization| |column| |radPoly| |testModulus| |pquo|
+ |basisOfNucleus| |cyclotomic| |mapUnivariate| |collectUpper|
+ |mapBivariate| |interpret| |sup| |normal01| |min| |antiCommutative?|
+ |iExquo| |zeroSetSplit| |simpleBounds?| |hMonic| |generic?|
+ |leftTraceMatrix| |pole?| |arguments| |fractionPart| |ffactor|
+ |internalIntegrate0| |multiplyCoefficients| |basisOfRightNucleus|
+ |mainContent| |e02aef| |cTanh| |squareFreeFactors| |prem| |position|
+ |leftPower| |subResultantGcdEuclidean| |show| |OMUnknownSymbol?|
+ |se2rfi| |getCode| |bumptab| |OMgetSymbol| |innerSolve1| |aQuartic|
+ |exprHasWeightCosWXorSinWX| |sub| |cAtan|
+ |indiceSubResultantEuclidean| |dictionary| |coerceImages| |upperCase?|
+ |derivationCoordinates| |integralLastSubResultant| |void| |parameters|
+ |factorSquareFreePolynomial| |trace| |partialQuotients|
+ |OMgetEndError| |s17dcf| |triangSolve| |enterInCache|
+ |complexEigenvectors| |listOfLists| |radicalEigenvector| |wreath|
+ |genericPosition| |hdmpToP| |curve?| |pointColor| |leftDiscriminant|
+ |s18aef| |listConjugateBases| |solveid| |pushdterm| |iilog|
+ |lazyResidueClass| |shrinkable| |leadingBasisTerm| |pureLex|
+ |duplicates?| |OMputInteger| |patternMatch| |validExponential|
+ |addiag| |createMultiplicationTable| |leadingExponent|
+ |nextsubResultant2| |LazardQuotient| |iiexp| |varselect| |ramified?|
+ |printInfo!| |plenaryPower| |dihedralGroup| |scale| |upperCase|
+ |objectOf| |lazyEvaluate| |f02xef| |invmod| |roughBasicSet|
+ |nextsousResultant2| |rewriteIdealWithHeadRemainder| |subTriSet?|
+ |integralMatrixAtInfinity| |setleaves!| |generalizedEigenvectors|
+ |highCommonTerms| |toScale| |monomRDEsys| |baseRDE| |hexDigit?|
+ |tanNa| |createMultiplicationMatrix| |ldf2lst| |signatureAst|
+ |normalizeIfCan| |semiSubResultantGcdEuclidean1| |upperCase!|
+ |getDatabase| |randomR| |repSq| |genericRightDiscriminant|
+ |antisymmetric?| |ScanFloatIgnoreSpacesIfCan| |findCycle| |expr|
+ |stFuncN| |freeOf?| |getlo| |besselJ| |computePowers| |e02akf|
+ |quadratic?| |dimension| |modifyPointData| |lSpaceBasis| |f04axf|
+ |parts| |leftRemainder| |d01gaf| |multiplyExponents| |edf2fi|
+ |sturmVariationsOf| |lfunc| |green| |prolateSpheroidal|
+ |initializeGroupForWordProblem| |leviCivitaSymbol| |airyAi| |read!|
+ |algebraicVariables| |exptMod| |lintgcd| |kovacic| |stFunc1|
+ |infieldint| |identification| |dAndcExp| |explogs2trigs| |variable|
+ |increment| |showTheRoutinesTable| |divideIfCan| |subst|
+ |explicitlyFinite?| |outputFloating| |OMsend| |inf| |chebyshevT|
+ |loadNativeModule| |iterators| |UP2ifCan| |OMputEndApp| |coth2tanh|
+ |satisfy?| |uncouplingMatrices| |pol| |returns| |mulmod|
+ |ramifiedAtInfinity?| |shade| |composite| |setTex!| |totolex|
+ |tanh2coth| |LiePoly| |rightRecip| |endOfFile?| |makeVariable|
+ |countRealRoots| |error| |next| |build| |OMgetObject| |OMgetBind|
+ |sqfree| |plusInfinity| |extensionDegree| |s13acf| |iiasin|
+ |closedCurve| |assert| |Aleph| |taylorIfCan| |vspace| |getGraph|
+ |complex?| |minusInfinity| |init| |userOrdered?|
+ |tableForDiscreteLogarithm| |power| |reverse| |doubleRank|
+ |numberOfNormalPoly| |root?| |s17def| |acotIfCan| |mainMonomial|
+ |fortranLiteral| |lastSubResultant| |permanent| |multiple?| |nodes|
+ |rightDiscriminant| |semiIndiceSubResultantEuclidean| |tanSum|
+ |associatedSystem| |deepExpand| |datalist| |setValue!|
+ |extendedEuclidean| |mapUnivariateIfCan| |rowEch| |patternMatchTimes|
+ |unitsColorDefault| |functionIsContinuousAtEndPoints| |linGenPos|
+ |OMunhandledSymbol| |movedPoints| |possiblyNewVariety?|
+ |showTheIFTable| |hostPlatform| |setButtonValue| |FormatRoman| |check|
+ |karatsubaDivide| |seriesSolve| |unrankImproperPartitions0|
+ |fortranLogical| |OMgetEndObject| |getButtonValue| |getGoodPrime|
+ |transcendentalDecompose| |droot| |goodPoint| FG2F |addPointLast|
+ |type| |equiv?| |subHeight| |write!| |frobenius| |groebner?|
+ |numberOfFactors| |rightPower| |partitions| |pToDmp| |iicosh|
+ |decimal| |e04dgf| |rank| |f04faf| |listexp| |factorset| |adaptive3D?|
+ |string?| |bumptab1| |segment| |evenInfiniteProduct| |e02bbf|
+ |presuper| |rootOfIrreduciblePoly| |writable?| |diagonalProduct|
+ |genericRightTrace| |semiDegreeSubResultantEuclidean| |OMsetEncoding|
+ |cyclicGroup| |constantRight| |separateDegrees|
+ |resultantReduitEuclidean| |decrease| |goto| |component| |exQuo|
+ |divide| |rdHack1| |purelyAlgebraicLeadingMonomial?| |superHeight|
+ |binaryTournament| |solveLinearPolynomialEquationByRecursion|
+ |shiftRight| |balancedFactorisation| |rootBound| |OMputSymbol|
+ |makeResult| |rationalPower| |patternVariable| |inconsistent?|
+ |quatern| |localUnquote| |tanIfCan| |primeFrobenius| |critM|
+ |symmetricPower| |f04adf| |stoseInvertibleSetreg|
+ |createPrimitiveElement| |e02gaf| |badNum| |cons| |split!| |f02adf|
+ |mkAnswer| |light| |atoms| |binomial| |solveLinearlyOverQ|
+ |getBadValues| |medialSet| |lists| |evenlambert| |clearTheIFTable|
+ |totalDegree| |makeCrit| |dimensionOfIrreducibleRepresentation| |inR?|
+ |symmetricGroup| |harmonic| |space| |sort| |more?| |finite?| |concat!|
+ |romberg| |clip| |octon| |triangularSystems| |stopMusserTrials|
+ |endSubProgram| |nary?| |push!| |currentSubProgram| |alphanumeric?|
+ |primlimitedint| |setprevious!| |computeBasis| |trunc|
+ |alternatingGroup| |abs| |tubePlot| |transcendenceDegree| |d02bhf|
+ |rightDivide| |frst| |insertBottom!| |rightUnits| |kmax|
+ |bivariatePolynomials| |accuracyIF| |sizeMultiplication| |source|
+ |paren| |iidprod| |reciprocalPolynomial| |maxPoints|
+ |semiResultantEuclideannaif| |distance| |squareFreePolynomial|
+ |numberOfDivisors| |fixPredicate| |lfextendedint| |removeConstantTerm|
+ |precision| |pushucoef| |supersub| |random| |number?| |univariate?|
+ |aromberg| |perspective| |exponentialOrder| |mr| |moduloP| |cCosh|
+ |cubic| |idealSimplify| |extractProperty| |factorials| |round|
+ |pdf2df| |iiGamma| GF2FG |null| |quickSort| |primintfldpoly| |list?|
+ |jordanAlgebra?| |changeWeightLevel| |fi2df| |iteratedInitials| |case|
+ |monicDivide| |rightCharacteristicPolynomial| |abelianGroup| |algint|
+ |rewriteIdealWithRemainder| |initiallyReduce| |option?| |symbolTable|
+ |heap| |bright| |primintegrate| |Zero| |structuralConstants| |sincos|
+ |viewDefaults| |bounds| |saturate| |stronglyReduced?| |finiteBasis|
+ |logIfCan| |vark| |Is| |One| |color| |zeroOf| |matrixDimensions|
+ |groebgen| |sylvesterMatrix| |commutator| |pushFortranOutputStack|
+ |setLabelValue| |crest| |opeval| |s15adf| |rightFactorIfCan|
+ |popFortranOutputStack| |solve1| |allRootsOf| |indices| |varList|
+ |resetBadValues| |lprop| |makeFloatFunction| |adaptive?| |setPosition|
+ |sinIfCan| |cosIfCan| |hasTopPredicate?| |degreeSubResultant| |powern|
+ |BumInSepFFE| |outputAsFortran| |mergeFactors| |linearAssociatedOrder|
+ |linearMatrix| |Ei| |mkIntegral| |genericLeftNorm|
+ |functionIsFracPolynomial?| |permutationGroup| |extract!|
+ |doubleFloatFormat| |critT| |categories| |wholePart| |e01daf|
+ |possiblyInfinite?| |submod| |coerceS| |nextPrime| |f04asf| |failed?|
+ |key| |clipSurface| |complementaryBasis| |perfectNthRoot| |elt|
+ |dimensionsOf| |generalTwoFactor| |hconcat| |pmintegrate|
+ |kroneckerDelta| |numberOfMonomials| |HenselLift|
+ |removeRedundantFactorsInContents| |leftDivide| |constantKernel|
+ |probablyZeroDim?| |toseSquareFreePart| |setProperty!| |enumerate|
+ |filename| |wordInGenerators| |palgRDE| |magnitude| |insertRoot!|
+ |viewWriteDefault| |expint| |setTopPredicate| GE |associatedEquations|
+ |has?| |hermite| |subspace| |separateFactors| |not?| |unmakeSUP|
+ |tablePow| |heapSort| |pair?| GT |any| |red| |iisinh| |operation|
+ |parseString| |denomRicDE| |s14baf| |parse| |rightZero|
+ |sumOfKthPowerDivisors| |coerceL| |rotate| LE |addMatch| |iicos|
+ |linearlyDependentOverZ?| |fortranComplex| |ScanRoman| |deepCopy|
+ |presub| |extendedResultant| |notOperand| LT |att2Result| |c06fpf|
+ |outputList| |label| |equivOperands| |subResultantsChain|
+ |rationalIfCan| |jacobi| |xn| |lowerCase| |realSolve| |complex|
+ |symmetricProduct| |deleteProperty!| |d01fcf| |contract|
+ |cRationalPower| |infLex?| |subQuasiComponent?| |divisorCascade|
+ |npcoef| |lazyPquo| |is?| |trivialIdeal?| |Nul| |Lazard2| |palgextint|
+ |bindings| |OMsupportsSymbol?| |showAllElements| |digit?|
+ |associative?| |gethi| |f01maf| |distribute| |baseRDEsys| |neglist|
+ |mainDefiningPolynomial| |sortConstraints| |showArrayValues|
+ |genericLeftTraceForm| |ratpart| |plus| |s21bbf| |nil?| |f01bsf|
+ |vector| |multinomial| |readByteIfCan!| |divergence| |keys| |even?|
+ |central?| |exponents| |generalPosition| |f01rdf| |OMgetInteger|
+ |differentiate| |partition| |duplicates| |degreeSubResultantEuclidean|
+ |rowEchelon| |copies| |elRow1!| |currentEnv| |stoseInvertible?reg|
+ |rationalPoint?| |cyclicSubmodule| |curveColorPalette| |term?|
+ |seriesToOutputForm| |discriminantEuclidean| |var1Steps| |nthCoef|
+ |mindegTerm| |extension| |bumprow| |selectPolynomials| |head|
+ |factorAndSplit| |createIrreduciblePoly| |modularGcd| |limitedint|
+ |mapGen| |times| |innerEigenvectors| |directSum| |OMencodingXML|
+ |infix| |laguerreL| |cycles| |search| |createZechTable| |represents|
+ |index| |leftQuotient| |leadingCoefficientRicDE| |aQuadratic|
+ |cyclic?| |invmultisect| |brillhartIrreducible?| |sumOfDivisors|
+ |realEigenvectors| |companionBlocks| |subPolSet?| |inspect|
+ |getConstant| |regularRepresentation| |lazyPremWithDefault| |rk4qc|
+ |completeEchelonBasis| |option| |call| |viewWriteAvailable| |twist|
+ |zeroSetSplitIntoTriangularSystems| |minGbasis|
+ |purelyTranscendental?| |randomLC| |c06gsf| |iiacsc| |nonQsign| |mat|
+ |createPrimitivePoly| |trapezoidal| |algebraicCoefficients?| |list|
+ |monom| |any?| |pair| |increase| |real?| |delete!| |fglmIfCan|
+ |divisor| |createNormalPrimitivePoly| |exactQuotient| |car| |setRow!|
+ |getPickedPoints| |blue| |polar| |lyndonIfCan|
+ |halfExtendedSubResultantGcd2| |declare| |f02bjf| |complexEigenvalues|
+ |cdr| |slex| |currentCategoryFrame| |showAll?| |rightUnit| |qinterval|
+ |polynomialZeros| |Gamma| |arg1| |iiasech| |common| |setDifference|
+ |curryLeft| |odd?| |var2Steps| |univariatePolynomial| |elem?|
+ |checkPrecision| |lazyPrem| |nextNormalPrimitivePoly| |makeop| |arg2|
+ |function| |integralRepresents| |setIntersection| |horizConcat|
+ |f07aef| |nthExponent| |reduction| |max| |delay| |ellipticCylindrical|
+ |close!| |viewPosDefault| |arrayStack| |integralCoordinates|
+ |setUnion| |mergeDifference| |d01asf| |tensorProduct| |stirling2|
+ |convergents| |subSet| |c02aff| |rightTrim| |leaves| |conditions|
+ |e02daf| |typeList| |OMputEndError| |apply|
+ |internalSubQuasiComponent?| |makeSUP| |irreducibleFactor| |OMgetType|
+ |powerAssociative?| |discriminant| |leftTrim| |factorOfDegree|
+ |e04ycf| |graphCurves| |s19aaf| |andOperands| |d02gaf| |addmod|
+ |minimumDegree| |cycleEntry| |iicoth| |size| |reduceByQuasiMonic|
+ |viewDeltaYDefault| |listOfMonoms| |tube| |pmComplexintegrate|
+ |OMconnInDevice| |integralDerivationMatrix| |completeHermite|
+ |leftAlternative?| |bag| |choosemon| |SturmHabichtCoefficients|
+ |setStatus!| |split| |skewSFunction| |norm| |infieldIntegrate| |log|
+ |iiacosh| |digamma| |f07fdf| |nextSublist| |useSingleFactorBound|
+ |rules| |singularitiesOf| |identitySquareMatrix| |reindex|
+ |changeName| |iifact| |expressIdealMember| |expPot| |first|
+ |leadingTerm| |relationsIdeal| |euclideanNormalForm| |bernoulli|
+ |leastPower| |f02aff| |mapExpon| |screenResolution| |intersect|
+ |pattern| |rest| |fracPart| |BasicMethod| |monomRDE| |simplifyLog|
+ |rule| |over| |addBadValue| |getMultiplicationMatrix|
+ |primextendedint| |substitute| |divideExponents| |iisech| |empty?|
+ |torsion?| |branchPointAtInfinity?| |logGamma| |mindeg| |remainder|
+ |removeDuplicates| |OMputError| |d02ejf| |rational?| |multiset|
+ |permutationRepresentation| |transpose| |OMputString| |euclideanSize|
+ |e01sef| |evaluate| |iiatanh| |modularFactor| |invertibleSet|
+ |rationalPoints| |primeFactor| |scopes| |biRank| |trigs| |/\\|
+ |atanhIfCan| |lcm| |ipow| |uniform01| |message| |degree| |rightRank|
+ |ScanArabic| |resultantEuclidean| |mapExponents| |LazardQuotient2|
+ |HermiteIntegrate| |\\/| |pade| |integral?| |s14aaf|
+ |topFortranOutputStack| |e02bef| |df2ef| |id| |exp1| |boundOfCauchy|
+ |append| |linearAssociatedExp| |bottom!| |fractRadix| |nullary|
+ |rightLcm| |overset?| |basisOfMiddleNucleus| |OMserve| |gcd|
+ |externalList| |simpsono| |extractIndex| |exponent| |e02adf| |table|
+ |port| |sparsityIF| |coth2trigh| |false| |coercePreimagesImages|
+ |eigenvector| |setOrder| |printTypes| |empty| |new| |simpson|
+ |removeDuplicates!| |c05nbf| |FormatArabic| |screenResolution3D|
+ |rootPower| |monomials| |branchIfCan| |setAdaptive3D|
+ |infiniteProduct| |quoByVar| |bitLength| |axesColorDefault|
+ |unaryFunction| |collectUnder| |bombieriNorm| |nthr| |index?|
+ |printInfo| |ratPoly| |test| |equality| |s18acf| |quadratic|
+ |legendreP| |zero| |leftRank| |monicLeftDivide| |lyndon?| |e01bff|
+ |comp| |#| |palgintegrate| |charpol| |s18def| |find|
+ |genericRightNorm| |inc| |OMputEndBind| |removeCoshSq|
+ |radicalEigenvalues| |outputSpacing| |primextintfrac| |unvectorise|
+ |minimalPolynomial| |And| |bat| |tryFunctionalDecomposition| |s17acf|
+ |e02ddf| |laplace| |knownInfBasis| |polygamma|
+ |semiResultantEuclidean1| |cycleLength| |Or| |characteristicSerie|
+ |meshFun2Var| |e01baf| |cot2trig| |scan| |critMonD1| |powmod|
+ |infinite?| |cCos| |Not| |iflist2Result| |setleft!| |remove| |stack|
+ |clearTheSymbolTable| |setColumn!| |rightGcd| |upDateBranches| |ideal|
+ |hexDigit| |cycle| |iitan| |domainOf| |d01apf| |e02dcf|
+ |prepareSubResAlgo| |pushuconst| |hermiteH| |deepestTail| |last|
+ |power!| |solid| |e02zaf| |logical?| ~= |setMaxPoints3D| |taylorRep|
+ |assoc| |left| |constantOperator| |factorList|
+ |rightRegularRepresentation| |rarrow| |removeSquaresIfCan|
+ |setRealSteps| |fixedPoints| |coerce| |startTableInvSet!| |right|
+ |inverse| |extractBottom!| |latex| |integralBasisAtInfinity|
+ |perfectSqrt| |construct| |superscript| |eulerE| |mathieu23|
+ |leftFactorIfCan| |pointColorPalette| |genericLeftTrace| |makeFR|
+ |digits| |quasiRegular?| |exprex| |tRange| |sizeLess?| |c06ekf|
+ |numericalIntegration| |setright!| |iFTable| |curveColor| |rotatey|
+ |loopPoints| |ravel| |innerSolve| |createNormalPoly| |twoFactor|
+ |s21baf| |reducedSystem| |fractRagits| |reshape| |firstNumer|
+ |palgint0| |ode| |quasiAlgebraicSet| |complexForm| ** |getIdentifier|
+ |seed| |merge| |oneDimensionalArray| |clipBoolean| |integrate|
+ |rdregime| |node?| |truncate| |palglimint0| |numberOfComposites|
+ |simplifyExp| |finiteBound| |d01ajf| |groebnerFactorize|
+ |stripCommentsAndBlanks| |mapCoef| |repeating?| |rationalFunction|
+ |rootKerSimp| EQ |idealiserMatrix| |logpart| |corrPoly| |dequeue!|
+ |fortranCharacter| |discreteLog| |semiResultantEuclidean2|
+ |cardinality| |SturmHabichtMultiple| |checkRur| |ODESolve| |separant|
+ |pseudoDivide| |getRef| |alphabetic|
+ |rewriteSetByReducingWithParticularGenerators| |scalarTypeOf|
+ |exprToUPS| |restorePrecision| |listBranches| |c06eaf|
+ |outputAsScript| |f04mbf| |matrixGcd| |moebius| |insertMatch| |bit?|
+ |f04qaf| |semicolonSeparate| |hypergeometric0F1| |denominator|
+ |createLowComplexityTable| |flatten| |rubiksGroup| |acothIfCan|
+ |symbol| |someBasis| |matrix| |positiveRemainder| |ksec|
+ |selectPDERoutines| |factorsOfDegree| |nodeOf?| |doublyTransitive?|
+ |complexNormalize| |prepareDecompose| |expression| |unitVector|
+ |e01bef| |parabolicCylindrical| |double?| |prinpolINFO|
+ |strongGenerators| |coerceListOfPairs| |toseInvertibleSet|
+ |noKaratsuba| |integer| |var1StepsDefault| |floor| |iitanh|
+ |whatInfinity| |OMclose| |components| |partialNumerators|
+ |systemSizeIF| |fortranInteger| |noncommutativeJordanAlgebra?|
+ |showRegion| |weights| RF2UTS |squareFreePart| |inGroundField?|
+ |conical| |s17ajf| |exists?| |isQuotient| |zeroMatrix| |signature|
+ |printStatement| |rk4f| |groebner| |hash| |setScreenResolution3D|
+ |mightHaveRoots| |extractTop!| |setelt!| |stosePrepareSubResAlgo|
+ |reducedDiscriminant| |resetAttributeButtons| |doubleComplex?|
+ |selectFiniteRoutines| |count| |linearlyDependent?| |cn|
+ |OMsupportsCD?| |putColorInfo| |factorial| |makeSeries| |cyclicCopy|
+ |not| |systemCommand| |lazyGintegrate| |constantToUnaryFunction|
+ |euler| |quotient| |linearPolynomials| |extendedIntegrate| |csubst|
+ |returnType!| |bsolve| |diagonals| |genericRightTraceForm|
+ |showIntensityFunctions| |explimitedint| |changeThreshhold| |factors|
+ |cLog| |asimpson| |lflimitedint| |double| |chvar|
+ |combineFeatureCompatibility| |minIndex| |halfExtendedResultant2|
+ |rombergo| |setCondition!| |s21bdf| |height| |solveRetract| |simplify|
+ |hcrf| |innerint| |normal| |OMopenFile| |sin2csc| |midpoint|
+ |expandLog| |bringDown| |e02bcf| |OMgetString| |zag| |outerProduct|
+ |rspace| |leader| |fortranDoubleComplex| |f01qdf| |cosSinInfo|
+ |wholeRadix| |nlde| |sequence| |pdct| |row| |univariateSolve|
+ |shiftRoots| |processTemplate| |contours| |inrootof| |stopTableGcd!|
+ |denominators| |polyred| |nativeModuleExtension| |elRow2!| |directory|
+ |replaceKthElement| |prinshINFO| |returnTypeOf| |intChoose| |cfirst|
+ |f01qcf| |weakBiRank| |f04arf| |iibinom| |point?| |addMatchRestricted|
+ |internalSubPolSet?| |comparison| |toseInvertible?| |gcdcofact|
+ |exprToXXP| |create3Space| |orOperands| |shanksDiscLogAlgorithm|
+ |normal?| |taylorQuoByVar| |iterationVar| |radicalSolve| |nothing|
+ |setMinPoints| |rotatex| |An| |tryFunctionalDecomposition?| |declare!|
+ |leftUnit| |f04jgf| |shufflein| |expintegrate| |clearTable!|
+ |compactFraction| |computeCycleLength| |constantIfCan| |cond| |hspace|
+ |conditionsForIdempotents| |froot| |isAbsolutelyIrreducible?| |pack!|
+ |points| |continuedFraction| |problemPoints| |removeSuperfluousCases|
+ |quadraticNorm| |brace| |s17dgf| |hclf| |cyclicParents|
+ |useEisensteinCriterion?| |splitConstant| |replace| |bubbleSort!|
+ |e02agf| |defineProperty| |deleteRoutine!| |maxrank| |ratDsolve|
+ |OMconnectTCP| |lllip| |setfirst!| |dfRange| |box|
+ |firstUncouplingMatrix| |changeMeasure| |extractPoint| |coefficients|
+ |sorted?| |optional?| |eq?| |quote| |redpps| |makeMulti| |wholeRagits|
+ |rangeIsFinite| |stop| |failed| |redPol| |sPol|
+ |characteristicPolynomial| |relerror| |smith| |linearDependence|
+ |minimumExponent| |selectOrPolynomials| |numFunEvals3D| |value|
+ |primaryDecomp| |lazyPseudoDivide| |startTable!| |cAtanh| |refine|
+ |showTypeInOutput| |categoryFrame| |setPrologue!| |spherical|
+ |blankSeparate| |f02ajf| |randnum| |setProperty| |OMgetAtp|
+ |internalIntegrate| |invertIfCan| |coshIfCan| |setrest!| |credPol|
+ |preprocess| |csc2sin| |exteriorDifferential| |invertible?|
+ |orthonormalBasis| |conditionP| |nthRoot| |d02gbf| |s13adf|
+ |noLinearFactor?| |exponential1| |lexico| |qualifier| |rotate!|
+ |dioSolve| |fixedPoint| |numFunEvals| |setProperties!| |fortranDouble|
+ |enterPointData| |ldf2vmf| |printStats!| |headRemainder| |jacobian|
+ |d02cjf| |swapRows!| |or| |cylindrical| |hitherPlane| |length|
+ |semiLastSubResultantEuclidean| |rightTraceMatrix| |fortranLinkerArgs|
+ |startPolynomial| |errorInfo| |changeBase| |basisOfLeftAnnihilator|
+ |squareTop| |acscIfCan| |scripts| |tab| |OMgetEndBind| |weighted|
+ |clearFortranOutputStack| |extendedint| |oddlambert| |moebiusMu| |cap|
+ |headAst| |tanh2trigh| |dflist| |degreePartition| |iicsc| |laurentRep|
+ |intensity| |hex| |clikeUniv| |sin?| |mainMonomials| |basisOfCenter|
+ |integerIfCan| |cAcsch| |bipolar| |weierstrass| |OMwrite| |divisors|
+ |mdeg| |generator| |internalZeroSetSplit| |symmetricSquare|
+ |incrementKthElement| |myDegree| |integerBound| |factorFraction|
+ |polygon| |iiacot| |antiAssociative?| |s17agf| |radix|
+ |SturmHabichtSequence| |setClipValue| |iiasec| |coordinates| |cPower|
+ |d01alf| |isTimes| |maxint| |usingTable?| |OMgetEndBVar|
+ |toseLastSubResultant| |rowEchLocal| |associator| |mirror| |realZeros|
+ |maxrow| |nand| |iiacos| |mathieu24| |fullPartialFraction|
+ |commaSeparate| |f04atf| |moreAlgebraic?| |internalAugment|
+ |getOperands| |belong?| |pile| |insertionSort!| |palginfieldint|
+ |pseudoRemainder| |symmetricTensors| |totalfract| |int| |OMputEndBVar|
+ |complexIntegrate| |powers| |mapMatrixIfCan| |normalizedDivide|
+ |headReduce| |d01aqf| |rename!| |padicFraction| |iipow| |singRicDE|
+ |retractable?| |getProperty| |ReduceOrder| |eulerPhi|
+ |stoseInvertibleSetsqfreg| |completeSmith| |digit| |sort!| |linSolve|
+ |splitSquarefree| |geometric| |associatorDependence| |laplacian|
+ |collect| |nil| |infinite| |arbitraryExponent| |approximate| |complex|
+ |shallowMutable| |canonical| |noetherian| |central|
+ |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
+ |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
+ |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation|
+ |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index de4a7525..f35d2f1f 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5128 +1,5156 @@
-(3162937 . 3431009382)
-((-2436 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-2809 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-2247 ((|#2| $ (-547) |#2|) NIL) ((|#2| $ (-1186 (-547)) |#2|) 34)) (-3044 (($ $) 59)) (-2552 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2876 (((-547) (-1 (-112) |#2|) $) 22) (((-547) |#2| $) NIL) (((-547) |#2| $ (-547)) 73)) (-2982 (((-619 |#2|) $) 13)) (-2777 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-1859 (($ (-1 |#2| |#2|) $) 29)) (-2790 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2606 (($ |#2| $ (-547)) NIL) (($ $ $ (-547)) 50)) (-3650 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-1598 (((-112) (-1 (-112) |#2|) $) 21)) (-3334 ((|#2| $ (-547) |#2|) NIL) ((|#2| $ (-547)) NIL) (($ $ (-1186 (-547))) 49)) (-2159 (($ $ (-547)) 56) (($ $ (-1186 (-547))) 55)) (-3992 (((-745) (-1 (-112) |#2|) $) 26) (((-745) |#2| $) NIL)) (-4282 (($ $ $ (-547)) 52)) (-2274 (($ $) 51)) (-3846 (($ (-619 |#2|)) 53)) (-1945 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-619 $)) 62)) (-3838 (((-832) $) 69)) (-2693 (((-112) (-1 (-112) |#2|) $) 20)) (-2381 (((-112) $ $) 72)) (-2405 (((-112) $ $) 75)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -2381 ((-112) |#1| |#1|)) (-15 -3838 ((-832) |#1|)) (-15 -2405 ((-112) |#1| |#1|)) (-15 -2809 (|#1| |#1|)) (-15 -2809 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -4282 (|#1| |#1| |#1| (-547))) (-15 -2436 ((-112) |#1|)) (-15 -2777 (|#1| |#1| |#1|)) (-15 -2876 ((-547) |#2| |#1| (-547))) (-15 -2876 ((-547) |#2| |#1|)) (-15 -2876 ((-547) (-1 (-112) |#2|) |#1|)) (-15 -2436 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2777 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2247 (|#2| |#1| (-1186 (-547)) |#2|)) (-15 -2606 (|#1| |#1| |#1| (-547))) (-15 -2606 (|#1| |#2| |#1| (-547))) (-15 -2159 (|#1| |#1| (-1186 (-547)))) (-15 -2159 (|#1| |#1| (-547))) (-15 -3334 (|#1| |#1| (-1186 (-547)))) (-15 -2790 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1945 (|#1| (-619 |#1|))) (-15 -1945 (|#1| |#1| |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -1945 (|#1| |#1| |#2|)) (-15 -3846 (|#1| (-619 |#2|))) (-15 -3650 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3334 (|#2| |#1| (-547))) (-15 -3334 (|#2| |#1| (-547) |#2|)) (-15 -2247 (|#2| |#1| (-547) |#2|)) (-15 -3992 ((-745) |#2| |#1|)) (-15 -2982 ((-619 |#2|) |#1|)) (-15 -3992 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -1598 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2693 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1859 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2274 (|#1| |#1|))) (-19 |#2|) (-1173)) (T -18))
+(3172667 . 3431018188)
+((-4142 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-4311 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-2254 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-1193 (-549)) |#2|) 34)) (-1585 (($ $) 59)) (-2557 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2883 (((-549) (-1 (-112) |#2|) $) 22) (((-549) |#2| $) NIL) (((-549) |#2| $ (-549)) 73)) (-2989 (((-621 |#2|) $) 13)) (-3890 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-1868 (($ (-1 |#2| |#2|) $) 29)) (-2797 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2616 (($ |#2| $ (-549)) NIL) (($ $ $ (-549)) 50)) (-3779 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-1780 (((-112) (-1 (-112) |#2|) $) 21)) (-3341 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) NIL) (($ $ (-1193 (-549))) 49)) (-2167 (($ $ (-549)) 56) (($ $ (-1193 (-549))) 55)) (-4000 (((-747) (-1 (-112) |#2|) $) 26) (((-747) |#2| $) NIL)) (-2730 (($ $ $ (-549)) 52)) (-2281 (($ $) 51)) (-3854 (($ (-621 |#2|)) 53)) (-1952 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-621 $)) 62)) (-3846 (((-834) $) 69)) (-3527 (((-112) (-1 (-112) |#2|) $) 20)) (-2389 (((-112) $ $) 72)) (-2412 (((-112) $ $) 75)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -2389 ((-112) |#1| |#1|)) (-15 -3846 ((-834) |#1|)) (-15 -2412 ((-112) |#1| |#1|)) (-15 -4311 (|#1| |#1|)) (-15 -4311 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -2730 (|#1| |#1| |#1| (-549))) (-15 -4142 ((-112) |#1|)) (-15 -3890 (|#1| |#1| |#1|)) (-15 -2883 ((-549) |#2| |#1| (-549))) (-15 -2883 ((-549) |#2| |#1|)) (-15 -2883 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -4142 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3890 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2254 (|#2| |#1| (-1193 (-549)) |#2|)) (-15 -2616 (|#1| |#1| |#1| (-549))) (-15 -2616 (|#1| |#2| |#1| (-549))) (-15 -2167 (|#1| |#1| (-1193 (-549)))) (-15 -2167 (|#1| |#1| (-549))) (-15 -3341 (|#1| |#1| (-1193 (-549)))) (-15 -2797 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1952 (|#1| (-621 |#1|))) (-15 -1952 (|#1| |#1| |#1|)) (-15 -1952 (|#1| |#2| |#1|)) (-15 -1952 (|#1| |#1| |#2|)) (-15 -3854 (|#1| (-621 |#2|))) (-15 -3779 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3341 (|#2| |#1| (-549))) (-15 -3341 (|#2| |#1| (-549) |#2|)) (-15 -2254 (|#2| |#1| (-549) |#2|)) (-15 -4000 ((-747) |#2| |#1|)) (-15 -2989 ((-621 |#2|) |#1|)) (-15 -4000 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -1780 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3527 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2281 (|#1| |#1|))) (-19 |#2|) (-1180)) (T -18))
NIL
-(-10 -8 (-15 -2381 ((-112) |#1| |#1|)) (-15 -3838 ((-832) |#1|)) (-15 -2405 ((-112) |#1| |#1|)) (-15 -2809 (|#1| |#1|)) (-15 -2809 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -4282 (|#1| |#1| |#1| (-547))) (-15 -2436 ((-112) |#1|)) (-15 -2777 (|#1| |#1| |#1|)) (-15 -2876 ((-547) |#2| |#1| (-547))) (-15 -2876 ((-547) |#2| |#1|)) (-15 -2876 ((-547) (-1 (-112) |#2|) |#1|)) (-15 -2436 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2777 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2247 (|#2| |#1| (-1186 (-547)) |#2|)) (-15 -2606 (|#1| |#1| |#1| (-547))) (-15 -2606 (|#1| |#2| |#1| (-547))) (-15 -2159 (|#1| |#1| (-1186 (-547)))) (-15 -2159 (|#1| |#1| (-547))) (-15 -3334 (|#1| |#1| (-1186 (-547)))) (-15 -2790 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1945 (|#1| (-619 |#1|))) (-15 -1945 (|#1| |#1| |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -1945 (|#1| |#1| |#2|)) (-15 -3846 (|#1| (-619 |#2|))) (-15 -3650 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3334 (|#2| |#1| (-547))) (-15 -3334 (|#2| |#1| (-547) |#2|)) (-15 -2247 (|#2| |#1| (-547) |#2|)) (-15 -3992 ((-745) |#2| |#1|)) (-15 -2982 ((-619 |#2|) |#1|)) (-15 -3992 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -1598 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2693 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1859 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2274 (|#1| |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-1652 (((-1224) $ (-547) (-547)) 40 (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2809 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4330))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4330))))) (-3185 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-3899 (((-112) $ (-745)) 8)) (-2247 ((|#1| $ (-547) |#1|) 52 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) 58 (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-3044 (($ $) 90 (|has| $ (-6 -4330)))) (-3057 (($ $) 100)) (-3668 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) 53 (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) 51)) (-2876 (((-547) (-1 (-112) |#1|) $) 97) (((-547) |#1| $) 96 (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) 95 (|has| |#1| (-1063)))) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-3735 (($ (-745) |#1|) 69)) (-2763 (((-112) $ (-745)) 9)) (-2434 (((-547) $) 43 (|has| (-547) (-821)))) (-2856 (($ $ $) 87 (|has| |#1| (-821)))) (-2777 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 44 (|has| (-547) (-821)))) (-3567 (($ $ $) 86 (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-2606 (($ |#1| $ (-547)) 60) (($ $ $ (-547)) 59)) (-2121 (((-619 (-547)) $) 46)) (-2018 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3638 ((|#1| $) 42 (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3632 (($ $ |#1|) 41 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) 48)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ (-547) |#1|) 50) ((|#1| $ (-547)) 49) (($ $ (-1186 (-547))) 63)) (-2159 (($ $ (-547)) 62) (($ $ (-1186 (-547))) 61)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-4282 (($ $ $ (-547)) 91 (|has| $ (-6 -4330)))) (-2274 (($ $) 13)) (-2838 (((-523) $) 79 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 70)) (-1945 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2430 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 82 (|has| |#1| (-821)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-19 |#1|) (-138) (-1173)) (T -19))
+(-10 -8 (-15 -2389 ((-112) |#1| |#1|)) (-15 -3846 ((-834) |#1|)) (-15 -2412 ((-112) |#1| |#1|)) (-15 -4311 (|#1| |#1|)) (-15 -4311 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -2730 (|#1| |#1| |#1| (-549))) (-15 -4142 ((-112) |#1|)) (-15 -3890 (|#1| |#1| |#1|)) (-15 -2883 ((-549) |#2| |#1| (-549))) (-15 -2883 ((-549) |#2| |#1|)) (-15 -2883 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -4142 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3890 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2254 (|#2| |#1| (-1193 (-549)) |#2|)) (-15 -2616 (|#1| |#1| |#1| (-549))) (-15 -2616 (|#1| |#2| |#1| (-549))) (-15 -2167 (|#1| |#1| (-1193 (-549)))) (-15 -2167 (|#1| |#1| (-549))) (-15 -3341 (|#1| |#1| (-1193 (-549)))) (-15 -2797 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1952 (|#1| (-621 |#1|))) (-15 -1952 (|#1| |#1| |#1|)) (-15 -1952 (|#1| |#2| |#1|)) (-15 -1952 (|#1| |#1| |#2|)) (-15 -3854 (|#1| (-621 |#2|))) (-15 -3779 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3341 (|#2| |#1| (-549))) (-15 -3341 (|#2| |#1| (-549) |#2|)) (-15 -2254 (|#2| |#1| (-549) |#2|)) (-15 -4000 ((-747) |#2| |#1|)) (-15 -2989 ((-621 |#2|) |#1|)) (-15 -4000 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -1780 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3527 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2281 (|#1| |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1535 (((-1231) $ (-549) (-549)) 40 (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-4311 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4338))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4338))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1584 (((-112) $ (-747)) 8)) (-2254 ((|#1| $ (-549) |#1|) 52 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) 58 (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-1585 (($ $) 90 (|has| $ (-6 -4338)))) (-3064 (($ $) 100)) (-3676 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) 51)) (-2883 (((-549) (-1 (-112) |#1|) $) 97) (((-549) |#1| $) 96 (|has| |#1| (-1067))) (((-549) |#1| $ (-549)) 95 (|has| |#1| (-1067)))) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3743 (($ (-747) |#1|) 69)) (-3194 (((-112) $ (-747)) 9)) (-4031 (((-549) $) 43 (|has| (-549) (-823)))) (-2863 (($ $ $) 87 (|has| |#1| (-823)))) (-3890 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 44 (|has| (-549) (-823)))) (-3575 (($ $ $) 86 (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-2616 (($ |#1| $ (-549)) 60) (($ $ $ (-549)) 59)) (-3303 (((-621 (-549)) $) 46)) (-3761 (((-112) (-549) $) 47)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3646 ((|#1| $) 42 (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-1642 (($ $ |#1|) 41 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) 48)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ (-549) |#1|) 50) ((|#1| $ (-549)) 49) (($ $ (-1193 (-549))) 63)) (-2167 (($ $ (-549)) 62) (($ $ (-1193 (-549))) 61)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2730 (($ $ $ (-549)) 91 (|has| $ (-6 -4338)))) (-2281 (($ $) 13)) (-2845 (((-525) $) 79 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 70)) (-1952 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 83 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-2438 (((-112) $ $) 85 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 82 (|has| |#1| (-823)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-19 |#1|) (-138) (-1180)) (T -19))
NIL
-(-13 (-364 |t#1|) (-10 -7 (-6 -4330)))
-(((-34) . T) ((-101) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-364 |#1|) . T) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1173) . T))
-((-3672 (((-3 $ "failed") $ $) 12)) (-2493 (($ $) NIL) (($ $ $) 9)) (* (($ (-890) $) NIL) (($ (-745) $) 16) (($ (-547) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-547) |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 -3672 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-21)) (T -20))
+(-13 (-366 |t#1|) (-10 -7 (-6 -4338)))
+(((-34) . T) ((-101) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1067) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1180) . T))
+((-2001 (((-3 $ "failed") $ $) 12)) (-2500 (($ $) NIL) (($ $ $) 9)) (* (($ (-892) $) NIL) (($ (-747) $) 16) (($ (-549) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-549) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -2001 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-547) |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 -3672 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20)))
+(-10 -8 (-15 * (|#1| (-549) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -2001 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20)))
(((-21) (-138)) (T -21))
-((-2493 (*1 *1 *1) (-4 *1 (-21))) (-2493 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-547)))))
-(-13 (-130) (-10 -8 (-15 -2493 ($ $)) (-15 -2493 ($ $ $)) (-15 * ($ (-547) $))))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-1499 (((-112) $) 10)) (-1948 (($) 15)) (* (($ (-890) $) 14) (($ (-745) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-745) |#1|)) (-15 -1499 ((-112) |#1|)) (-15 -1948 (|#1|)) (-15 * (|#1| (-890) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-745) |#1|)) (-15 -1499 ((-112) |#1|)) (-15 -1948 (|#1|)) (-15 * (|#1| (-890) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-1948 (($) 17 T CONST)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15)))
+((-2500 (*1 *1 *1) (-4 *1 (-21))) (-2500 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-549)))))
+(-13 (-130) (-10 -8 (-15 -2500 ($ $)) (-15 -2500 ($ $ $)) (-15 * ($ (-549) $))))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-1763 (((-112) $) 10)) (-1682 (($) 15)) (* (($ (-892) $) 14) (($ (-747) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-747) |#1|)) (-15 -1763 ((-112) |#1|)) (-15 -1682 (|#1|)) (-15 * (|#1| (-892) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-747) |#1|)) (-15 -1763 ((-112) |#1|)) (-15 -1682 (|#1|)) (-15 * (|#1| (-892) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-1682 (($) 17 T CONST)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15)))
(((-23) (-138)) (T -23))
-((-3269 (*1 *1) (-4 *1 (-23))) (-1948 (*1 *1) (-4 *1 (-23))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-745)))))
-(-13 (-25) (-10 -8 (-15 (-3269) ($) -2582) (-15 -1948 ($) -2582) (-15 -1499 ((-112) $)) (-15 * ($ (-745) $))))
-(((-25) . T) ((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((* (($ (-890) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-890) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-890) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2381 (((-112) $ $) 6)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13)))
+((-3276 (*1 *1) (-4 *1 (-23))) (-1682 (*1 *1) (-4 *1 (-23))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-747)))))
+(-13 (-25) (-10 -8 (-15 (-3276) ($) -2589) (-15 -1682 ($) -2589) (-15 -1763 ((-112) $)) (-15 * ($ (-747) $))))
+(((-25) . T) ((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((* (($ (-892) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-892) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-892) |#1|)))
+((-3834 (((-112) $ $) 7)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2389 (((-112) $ $) 6)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13)))
(((-25) (-138)) (T -25))
-((-2479 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-890)))))
-(-13 (-1063) (-10 -8 (-15 -2479 ($ $ $)) (-15 * ($ (-890) $))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3358 (((-619 $) (-921 $)) 29) (((-619 $) (-1132 $)) 16) (((-619 $) (-1132 $) (-1136)) 20)) (-2336 (($ (-921 $)) 27) (($ (-1132 $)) 11) (($ (-1132 $) (-1136)) 54)) (-3952 (((-619 $) (-921 $)) 30) (((-619 $) (-1132 $)) 18) (((-619 $) (-1132 $) (-1136)) 19)) (-1531 (($ (-921 $)) 28) (($ (-1132 $)) 13) (($ (-1132 $) (-1136)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -3358 ((-619 |#1|) (-1132 |#1|) (-1136))) (-15 -3358 ((-619 |#1|) (-1132 |#1|))) (-15 -3358 ((-619 |#1|) (-921 |#1|))) (-15 -2336 (|#1| (-1132 |#1|) (-1136))) (-15 -2336 (|#1| (-1132 |#1|))) (-15 -2336 (|#1| (-921 |#1|))) (-15 -3952 ((-619 |#1|) (-1132 |#1|) (-1136))) (-15 -3952 ((-619 |#1|) (-1132 |#1|))) (-15 -3952 ((-619 |#1|) (-921 |#1|))) (-15 -1531 (|#1| (-1132 |#1|) (-1136))) (-15 -1531 (|#1| (-1132 |#1|))) (-15 -1531 (|#1| (-921 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -3358 ((-619 |#1|) (-1132 |#1|) (-1136))) (-15 -3358 ((-619 |#1|) (-1132 |#1|))) (-15 -3358 ((-619 |#1|) (-921 |#1|))) (-15 -2336 (|#1| (-1132 |#1|) (-1136))) (-15 -2336 (|#1| (-1132 |#1|))) (-15 -2336 (|#1| (-921 |#1|))) (-15 -3952 ((-619 |#1|) (-1132 |#1|) (-1136))) (-15 -3952 ((-619 |#1|) (-1132 |#1|))) (-15 -3952 ((-619 |#1|) (-921 |#1|))) (-15 -1531 (|#1| (-1132 |#1|) (-1136))) (-15 -1531 (|#1| (-1132 |#1|))) (-15 -1531 (|#1| (-921 |#1|))))
-((-3826 (((-112) $ $) 7)) (-3358 (((-619 $) (-921 $)) 77) (((-619 $) (-1132 $)) 76) (((-619 $) (-1132 $) (-1136)) 75)) (-2336 (($ (-921 $)) 80) (($ (-1132 $)) 79) (($ (-1132 $) (-1136)) 78)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 70)) (-3299 (((-409 $) $) 69)) (-2127 (($ $) 89)) (-1547 (((-112) $ $) 57)) (-1948 (($) 17 T CONST)) (-3952 (((-619 $) (-921 $)) 83) (((-619 $) (-1132 $)) 82) (((-619 $) (-1132 $) (-1136)) 81)) (-1531 (($ (-921 $)) 86) (($ (-1132 $)) 85) (($ (-1132 $) (-1136)) 84)) (-2089 (($ $ $) 53)) (-3855 (((-3 $ "failed") $) 32)) (-2061 (($ $ $) 54)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-1791 (((-112) $) 68)) (-2261 (((-112) $) 30)) (-3869 (($ $ (-547)) 88)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 67)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-2115 (((-409 $) $) 71)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2471 (((-745) $) 56)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ $) 62)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66) (($ $ (-398 (-547))) 87)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64)))
+((-2486 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-892)))))
+(-13 (-1067) (-10 -8 (-15 -2486 ($ $ $)) (-15 * ($ (-892) $))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-1329 (((-621 $) (-923 $)) 29) (((-621 $) (-1139 $)) 16) (((-621 $) (-1139 $) (-1143)) 20)) (-3289 (($ (-923 $)) 27) (($ (-1139 $)) 11) (($ (-1139 $) (-1143)) 54)) (-1815 (((-621 $) (-923 $)) 30) (((-621 $) (-1139 $)) 18) (((-621 $) (-1139 $) (-1143)) 19)) (-1947 (($ (-923 $)) 28) (($ (-1139 $)) 13) (($ (-1139 $) (-1143)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -1329 ((-621 |#1|) (-1139 |#1|) (-1143))) (-15 -1329 ((-621 |#1|) (-1139 |#1|))) (-15 -1329 ((-621 |#1|) (-923 |#1|))) (-15 -3289 (|#1| (-1139 |#1|) (-1143))) (-15 -3289 (|#1| (-1139 |#1|))) (-15 -3289 (|#1| (-923 |#1|))) (-15 -1815 ((-621 |#1|) (-1139 |#1|) (-1143))) (-15 -1815 ((-621 |#1|) (-1139 |#1|))) (-15 -1815 ((-621 |#1|) (-923 |#1|))) (-15 -1947 (|#1| (-1139 |#1|) (-1143))) (-15 -1947 (|#1| (-1139 |#1|))) (-15 -1947 (|#1| (-923 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -1329 ((-621 |#1|) (-1139 |#1|) (-1143))) (-15 -1329 ((-621 |#1|) (-1139 |#1|))) (-15 -1329 ((-621 |#1|) (-923 |#1|))) (-15 -3289 (|#1| (-1139 |#1|) (-1143))) (-15 -3289 (|#1| (-1139 |#1|))) (-15 -3289 (|#1| (-923 |#1|))) (-15 -1815 ((-621 |#1|) (-1139 |#1|) (-1143))) (-15 -1815 ((-621 |#1|) (-1139 |#1|))) (-15 -1815 ((-621 |#1|) (-923 |#1|))) (-15 -1947 (|#1| (-1139 |#1|) (-1143))) (-15 -1947 (|#1| (-1139 |#1|))) (-15 -1947 (|#1| (-923 |#1|))))
+((-3834 (((-112) $ $) 7)) (-1329 (((-621 $) (-923 $)) 77) (((-621 $) (-1139 $)) 76) (((-621 $) (-1139 $) (-1143)) 75)) (-3289 (($ (-923 $)) 80) (($ (-1139 $)) 79) (($ (-1139 $) (-1143)) 78)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 70)) (-2402 (((-411 $) $) 69)) (-2134 (($ $) 89)) (-3866 (((-112) $ $) 57)) (-1682 (($) 17 T CONST)) (-1815 (((-621 $) (-923 $)) 83) (((-621 $) (-1139 $)) 82) (((-621 $) (-1139 $) (-1143)) 81)) (-1947 (($ (-923 $)) 86) (($ (-1139 $)) 85) (($ (-1139 $) (-1143)) 84)) (-2095 (($ $ $) 53)) (-2114 (((-3 $ "failed") $) 32)) (-2067 (($ $ $) 54)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-1420 (((-112) $) 68)) (-2675 (((-112) $) 30)) (-4187 (($ $ (-549)) 88)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 67)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2121 (((-411 $) $) 71)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3684 (((-747) $) 56)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ $) 62)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66) (($ $ (-400 (-549))) 87)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64)))
(((-27) (-138)) (T -27))
-((-1531 (*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) (-1531 (*1 *1 *2) (-12 (-5 *2 (-1132 *1)) (-4 *1 (-27)))) (-1531 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 *1)) (-5 *3 (-1136)) (-4 *1 (-27)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-1132 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1132 *1)) (-5 *4 (-1136)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-2336 (*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) (-2336 (*1 *1 *2) (-12 (-5 *2 (-1132 *1)) (-4 *1 (-27)))) (-2336 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 *1)) (-5 *3 (-1136)) (-4 *1 (-27)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-1132 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-3358 (*1 *2 *3 *4) (-12 (-5 *3 (-1132 *1)) (-5 *4 (-1136)) (-4 *1 (-27)) (-5 *2 (-619 *1)))))
-(-13 (-354) (-971) (-10 -8 (-15 -1531 ($ (-921 $))) (-15 -1531 ($ (-1132 $))) (-15 -1531 ($ (-1132 $) (-1136))) (-15 -3952 ((-619 $) (-921 $))) (-15 -3952 ((-619 $) (-1132 $))) (-15 -3952 ((-619 $) (-1132 $) (-1136))) (-15 -2336 ($ (-921 $))) (-15 -2336 ($ (-1132 $))) (-15 -2336 ($ (-1132 $) (-1136))) (-15 -3358 ((-619 $) (-921 $))) (-15 -3358 ((-619 $) (-1132 $))) (-15 -3358 ((-619 $) (-1132 $) (-1136)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-971) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1177) . T))
-((-3358 (((-619 $) (-921 $)) NIL) (((-619 $) (-1132 $)) NIL) (((-619 $) (-1132 $) (-1136)) 50) (((-619 $) $) 19) (((-619 $) $ (-1136)) 41)) (-2336 (($ (-921 $)) NIL) (($ (-1132 $)) NIL) (($ (-1132 $) (-1136)) 52) (($ $) 17) (($ $ (-1136)) 37)) (-3952 (((-619 $) (-921 $)) NIL) (((-619 $) (-1132 $)) NIL) (((-619 $) (-1132 $) (-1136)) 48) (((-619 $) $) 15) (((-619 $) $ (-1136)) 43)) (-1531 (($ (-921 $)) NIL) (($ (-1132 $)) NIL) (($ (-1132 $) (-1136)) NIL) (($ $) 12) (($ $ (-1136)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -3358 ((-619 |#1|) |#1| (-1136))) (-15 -2336 (|#1| |#1| (-1136))) (-15 -3358 ((-619 |#1|) |#1|)) (-15 -2336 (|#1| |#1|)) (-15 -3952 ((-619 |#1|) |#1| (-1136))) (-15 -1531 (|#1| |#1| (-1136))) (-15 -3952 ((-619 |#1|) |#1|)) (-15 -1531 (|#1| |#1|)) (-15 -3358 ((-619 |#1|) (-1132 |#1|) (-1136))) (-15 -3358 ((-619 |#1|) (-1132 |#1|))) (-15 -3358 ((-619 |#1|) (-921 |#1|))) (-15 -2336 (|#1| (-1132 |#1|) (-1136))) (-15 -2336 (|#1| (-1132 |#1|))) (-15 -2336 (|#1| (-921 |#1|))) (-15 -3952 ((-619 |#1|) (-1132 |#1|) (-1136))) (-15 -3952 ((-619 |#1|) (-1132 |#1|))) (-15 -3952 ((-619 |#1|) (-921 |#1|))) (-15 -1531 (|#1| (-1132 |#1|) (-1136))) (-15 -1531 (|#1| (-1132 |#1|))) (-15 -1531 (|#1| (-921 |#1|)))) (-29 |#2|) (-13 (-821) (-539))) (T -28))
-NIL
-(-10 -8 (-15 -3358 ((-619 |#1|) |#1| (-1136))) (-15 -2336 (|#1| |#1| (-1136))) (-15 -3358 ((-619 |#1|) |#1|)) (-15 -2336 (|#1| |#1|)) (-15 -3952 ((-619 |#1|) |#1| (-1136))) (-15 -1531 (|#1| |#1| (-1136))) (-15 -3952 ((-619 |#1|) |#1|)) (-15 -1531 (|#1| |#1|)) (-15 -3358 ((-619 |#1|) (-1132 |#1|) (-1136))) (-15 -3358 ((-619 |#1|) (-1132 |#1|))) (-15 -3358 ((-619 |#1|) (-921 |#1|))) (-15 -2336 (|#1| (-1132 |#1|) (-1136))) (-15 -2336 (|#1| (-1132 |#1|))) (-15 -2336 (|#1| (-921 |#1|))) (-15 -3952 ((-619 |#1|) (-1132 |#1|) (-1136))) (-15 -3952 ((-619 |#1|) (-1132 |#1|))) (-15 -3952 ((-619 |#1|) (-921 |#1|))) (-15 -1531 (|#1| (-1132 |#1|) (-1136))) (-15 -1531 (|#1| (-1132 |#1|))) (-15 -1531 (|#1| (-921 |#1|))))
-((-3826 (((-112) $ $) 7)) (-3358 (((-619 $) (-921 $)) 77) (((-619 $) (-1132 $)) 76) (((-619 $) (-1132 $) (-1136)) 75) (((-619 $) $) 123) (((-619 $) $ (-1136)) 121)) (-2336 (($ (-921 $)) 80) (($ (-1132 $)) 79) (($ (-1132 $) (-1136)) 78) (($ $) 124) (($ $ (-1136)) 122)) (-1499 (((-112) $) 16)) (-2267 (((-619 (-1136)) $) 198)) (-2078 (((-398 (-1132 $)) $ (-590 $)) 230 (|has| |#1| (-539)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-1974 (((-619 (-590 $)) $) 161)) (-3672 (((-3 $ "failed") $ $) 19)) (-3008 (($ $ (-619 (-590 $)) (-619 $)) 151) (($ $ (-619 (-285 $))) 150) (($ $ (-285 $)) 149)) (-2555 (($ $) 70)) (-3299 (((-409 $) $) 69)) (-2127 (($ $) 89)) (-1547 (((-112) $ $) 57)) (-1948 (($) 17 T CONST)) (-3952 (((-619 $) (-921 $)) 83) (((-619 $) (-1132 $)) 82) (((-619 $) (-1132 $) (-1136)) 81) (((-619 $) $) 127) (((-619 $) $ (-1136)) 125)) (-1531 (($ (-921 $)) 86) (($ (-1132 $)) 85) (($ (-1132 $) (-1136)) 84) (($ $) 128) (($ $ (-1136)) 126)) (-2707 (((-3 (-921 |#1|) "failed") $) 248 (|has| |#1| (-1016))) (((-3 (-398 (-921 |#1|)) "failed") $) 232 (|has| |#1| (-539))) (((-3 |#1| "failed") $) 194) (((-3 (-547) "failed") $) 192 (|has| |#1| (-1007 (-547)))) (((-3 (-1136) "failed") $) 185) (((-3 (-590 $) "failed") $) 136) (((-3 (-398 (-547)) "failed") $) 120 (-1530 (-12 (|has| |#1| (-1007 (-547))) (|has| |#1| (-539))) (|has| |#1| (-1007 (-398 (-547))))))) (-2652 (((-921 |#1|) $) 249 (|has| |#1| (-1016))) (((-398 (-921 |#1|)) $) 233 (|has| |#1| (-539))) ((|#1| $) 195) (((-547) $) 191 (|has| |#1| (-1007 (-547)))) (((-1136) $) 186) (((-590 $) $) 137) (((-398 (-547)) $) 119 (-1530 (-12 (|has| |#1| (-1007 (-547))) (|has| |#1| (-539))) (|has| |#1| (-1007 (-398 (-547))))))) (-2089 (($ $ $) 53)) (-1694 (((-663 |#1|) (-663 $)) 238 (|has| |#1| (-1016))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 237 (|has| |#1| (-1016))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 118 (-1530 (-1814 (|has| |#1| (-1016)) (|has| |#1| (-615 (-547)))) (-1814 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))))) (((-663 (-547)) (-663 $)) 117 (-1530 (-1814 (|has| |#1| (-1016)) (|has| |#1| (-615 (-547)))) (-1814 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))))) (-3855 (((-3 $ "failed") $) 32)) (-2061 (($ $ $) 54)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-1791 (((-112) $) 68)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 190 (|has| |#1| (-855 (-370)))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 189 (|has| |#1| (-855 (-547))))) (-3590 (($ (-619 $)) 155) (($ $) 154)) (-1408 (((-619 (-114)) $) 162)) (-4185 (((-114) (-114)) 163)) (-2261 (((-112) $) 30)) (-2935 (((-112) $) 183 (|has| $ (-1007 (-547))))) (-4170 (($ $) 215 (|has| |#1| (-1016)))) (-1386 (((-1087 |#1| (-590 $)) $) 214 (|has| |#1| (-1016)))) (-3869 (($ $ (-547)) 88)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2428 (((-1132 $) (-590 $)) 180 (|has| $ (-1016)))) (-2856 (($ $ $) 134)) (-3567 (($ $ $) 133)) (-2790 (($ (-1 $ $) (-590 $)) 169)) (-3024 (((-3 (-590 $) "failed") $) 159)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-2065 (((-619 (-590 $)) $) 160)) (-1469 (($ (-114) (-619 $)) 168) (($ (-114) $) 167)) (-2505 (((-3 (-619 $) "failed") $) 209 (|has| |#1| (-1075)))) (-1376 (((-3 (-2 (|:| |val| $) (|:| -3322 (-547))) "failed") $) 218 (|has| |#1| (-1016)))) (-3663 (((-3 (-619 $) "failed") $) 211 (|has| |#1| (-25)))) (-4221 (((-3 (-2 (|:| -1563 (-547)) (|:| |var| (-590 $))) "failed") $) 212 (|has| |#1| (-25)))) (-3949 (((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $ (-1136)) 217 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $ (-114)) 216 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $) 210 (|has| |#1| (-1075)))) (-1667 (((-112) $ (-1136)) 166) (((-112) $ (-114)) 165)) (-1984 (($ $) 67)) (-4029 (((-745) $) 158)) (-3979 (((-1082) $) 10)) (-1996 (((-112) $) 196)) (-2009 ((|#1| $) 197)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-3883 (((-112) $ (-1136)) 171) (((-112) $ $) 170)) (-2115 (((-409 $) $) 71)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-3874 (((-112) $) 182 (|has| $ (-1007 (-547))))) (-2679 (($ $ (-1136) (-745) (-1 $ $)) 222 (|has| |#1| (-1016))) (($ $ (-1136) (-745) (-1 $ (-619 $))) 221 (|has| |#1| (-1016))) (($ $ (-619 (-1136)) (-619 (-745)) (-619 (-1 $ (-619 $)))) 220 (|has| |#1| (-1016))) (($ $ (-619 (-1136)) (-619 (-745)) (-619 (-1 $ $))) 219 (|has| |#1| (-1016))) (($ $ (-619 (-114)) (-619 $) (-1136)) 208 (|has| |#1| (-592 (-523)))) (($ $ (-114) $ (-1136)) 207 (|has| |#1| (-592 (-523)))) (($ $) 206 (|has| |#1| (-592 (-523)))) (($ $ (-619 (-1136))) 205 (|has| |#1| (-592 (-523)))) (($ $ (-1136)) 204 (|has| |#1| (-592 (-523)))) (($ $ (-114) (-1 $ $)) 179) (($ $ (-114) (-1 $ (-619 $))) 178) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 177) (($ $ (-619 (-114)) (-619 (-1 $ $))) 176) (($ $ (-1136) (-1 $ $)) 175) (($ $ (-1136) (-1 $ (-619 $))) 174) (($ $ (-619 (-1136)) (-619 (-1 $ (-619 $)))) 173) (($ $ (-619 (-1136)) (-619 (-1 $ $))) 172) (($ $ (-619 $) (-619 $)) 143) (($ $ $ $) 142) (($ $ (-285 $)) 141) (($ $ (-619 (-285 $))) 140) (($ $ (-619 (-590 $)) (-619 $)) 139) (($ $ (-590 $) $) 138)) (-2471 (((-745) $) 56)) (-3334 (($ (-114) (-619 $)) 148) (($ (-114) $ $ $ $) 147) (($ (-114) $ $ $) 146) (($ (-114) $ $) 145) (($ (-114) $) 144)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55)) (-2242 (($ $ $) 157) (($ $) 156)) (-3448 (($ $ (-1136)) 246 (|has| |#1| (-1016))) (($ $ (-619 (-1136))) 245 (|has| |#1| (-1016))) (($ $ (-1136) (-745)) 244 (|has| |#1| (-1016))) (($ $ (-619 (-1136)) (-619 (-745))) 243 (|has| |#1| (-1016)))) (-2995 (($ $) 225 (|has| |#1| (-539)))) (-1396 (((-1087 |#1| (-590 $)) $) 224 (|has| |#1| (-539)))) (-1882 (($ $) 181 (|has| $ (-1016)))) (-2838 (((-523) $) 252 (|has| |#1| (-592 (-523)))) (($ (-409 $)) 223 (|has| |#1| (-539))) (((-861 (-370)) $) 188 (|has| |#1| (-592 (-861 (-370))))) (((-861 (-547)) $) 187 (|has| |#1| (-592 (-861 (-547)))))) (-3404 (($ $ $) 251 (|has| |#1| (-463)))) (-1473 (($ $ $) 250 (|has| |#1| (-463)))) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63) (($ (-921 |#1|)) 247 (|has| |#1| (-1016))) (($ (-398 (-921 |#1|))) 231 (|has| |#1| (-539))) (($ (-398 (-921 (-398 |#1|)))) 229 (|has| |#1| (-539))) (($ (-921 (-398 |#1|))) 228 (|has| |#1| (-539))) (($ (-398 |#1|)) 227 (|has| |#1| (-539))) (($ (-1087 |#1| (-590 $))) 213 (|has| |#1| (-1016))) (($ |#1|) 193) (($ (-1136)) 184) (($ (-590 $)) 135)) (-2220 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-2736 (((-745)) 28)) (-4129 (($ (-619 $)) 153) (($ $) 152)) (-3128 (((-112) (-114)) 164)) (-3577 (((-112) $ $) 37)) (-1780 (($ (-1136) (-619 $)) 203) (($ (-1136) $ $ $ $) 202) (($ (-1136) $ $ $) 201) (($ (-1136) $ $) 200) (($ (-1136) $) 199)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-1136)) 242 (|has| |#1| (-1016))) (($ $ (-619 (-1136))) 241 (|has| |#1| (-1016))) (($ $ (-1136) (-745)) 240 (|has| |#1| (-1016))) (($ $ (-619 (-1136)) (-619 (-745))) 239 (|has| |#1| (-1016)))) (-2441 (((-112) $ $) 131)) (-2418 (((-112) $ $) 130)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 132)) (-2405 (((-112) $ $) 129)) (-2506 (($ $ $) 62) (($ (-1087 |#1| (-590 $)) (-1087 |#1| (-590 $))) 226 (|has| |#1| (-539)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66) (($ $ (-398 (-547))) 87)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-169))) (($ |#1| $) 234 (|has| |#1| (-169)))))
-(((-29 |#1|) (-138) (-13 (-821) (-539))) (T -29))
-((-1531 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-539))))) (-3952 (*1 *2 *1) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3)))) (-1531 (*1 *1 *1 *2) (-12 (-5 *2 (-1136)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-539))))) (-3952 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-619 *1)) (-4 *1 (-29 *4)))) (-2336 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-539))))) (-3358 (*1 *2 *1) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3)))) (-2336 (*1 *1 *1 *2) (-12 (-5 *2 (-1136)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-539))))) (-3358 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-619 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-421 |t#1|) (-10 -8 (-15 -1531 ($ $)) (-15 -3952 ((-619 $) $)) (-15 -1531 ($ $ (-1136))) (-15 -3952 ((-619 $) $ (-1136))) (-15 -2336 ($ $)) (-15 -3358 ((-619 $) $)) (-15 -2336 ($ $ (-1136))) (-15 -3358 ((-619 $) $ (-1136)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-169)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-592 (-861 (-370))) |has| |#1| (-592 (-861 (-370)))) ((-592 (-861 (-547))) |has| |#1| (-592 (-861 (-547)))) ((-235) . T) ((-281) . T) ((-298) . T) ((-300 $) . T) ((-293) . T) ((-354) . T) ((-368 |#1|) |has| |#1| (-1016)) ((-391 |#1|) . T) ((-402 |#1|) . T) ((-421 |#1|) . T) ((-442) . T) ((-463) |has| |#1| (-463)) ((-503 (-590 $) $) . T) ((-503 $ $) . T) ((-539) . T) ((-622 #0#) . T) ((-622 |#1|) |has| |#1| (-169)) ((-622 $) . T) ((-615 (-547)) -12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) ((-615 |#1|) |has| |#1| (-1016)) ((-692 #0#) . T) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) . T) ((-701) . T) ((-821) . T) ((-869 (-1136)) |has| |#1| (-1016)) ((-855 (-370)) |has| |#1| (-855 (-370))) ((-855 (-547)) |has| |#1| (-855 (-547))) ((-853 |#1|) . T) ((-889) . T) ((-971) . T) ((-1007 (-398 (-547))) -1530 (|has| |#1| (-1007 (-398 (-547)))) (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547))))) ((-1007 (-398 (-921 |#1|))) |has| |#1| (-539)) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 (-590 $)) . T) ((-1007 (-921 |#1|)) |has| |#1| (-1016)) ((-1007 (-1136)) . T) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) |has| |#1| (-169)) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1173) . T) ((-1177) . T))
-((-1836 (((-1058 (-217)) $) NIL)) (-1825 (((-1058 (-217)) $) NIL)) (-2557 (($ $ (-217)) 125)) (-1498 (($ (-921 (-547)) (-1136) (-1136) (-1058 (-398 (-547))) (-1058 (-398 (-547)))) 83)) (-2290 (((-619 (-619 (-912 (-217)))) $) 137)) (-3838 (((-832) $) 149)))
-(((-30) (-13 (-924) (-10 -8 (-15 -1498 ($ (-921 (-547)) (-1136) (-1136) (-1058 (-398 (-547))) (-1058 (-398 (-547))))) (-15 -2557 ($ $ (-217)))))) (T -30))
-((-1498 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-921 (-547))) (-5 *3 (-1136)) (-5 *4 (-1058 (-398 (-547)))) (-5 *1 (-30)))) (-2557 (*1 *1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-30)))))
-(-13 (-924) (-10 -8 (-15 -1498 ($ (-921 (-547)) (-1136) (-1136) (-1058 (-398 (-547))) (-1058 (-398 (-547))))) (-15 -2557 ($ $ (-217)))))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2487 (((-1141) $) 11)) (-1856 (((-1141) $) 9)) (-2381 (((-112) $ $) NIL)))
-(((-31) (-13 (-1047) (-10 -8 (-15 -1856 ((-1141) $)) (-15 -2487 ((-1141) $))))) (T -31))
-((-1856 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31)))))
-(-13 (-1047) (-10 -8 (-15 -1856 ((-1141) $)) (-15 -2487 ((-1141) $))))
-((-1531 ((|#2| (-1132 |#2|) (-1136)) 43)) (-4185 (((-114) (-114)) 56)) (-2428 (((-1132 |#2|) (-590 |#2|)) 133 (|has| |#1| (-1007 (-547))))) (-2079 ((|#2| |#1| (-547)) 122 (|has| |#1| (-1007 (-547))))) (-3639 ((|#2| (-1132 |#2|) |#2|) 30)) (-3793 (((-832) (-619 |#2|)) 85)) (-1882 ((|#2| |#2|) 129 (|has| |#1| (-1007 (-547))))) (-3128 (((-112) (-114)) 18)) (** ((|#2| |#2| (-398 (-547))) 96 (|has| |#1| (-1007 (-547))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -1531 (|#2| (-1132 |#2|) (-1136))) (-15 -4185 ((-114) (-114))) (-15 -3128 ((-112) (-114))) (-15 -3639 (|#2| (-1132 |#2|) |#2|)) (-15 -3793 ((-832) (-619 |#2|))) (IF (|has| |#1| (-1007 (-547))) (PROGN (-15 ** (|#2| |#2| (-398 (-547)))) (-15 -2428 ((-1132 |#2|) (-590 |#2|))) (-15 -1882 (|#2| |#2|)) (-15 -2079 (|#2| |#1| (-547)))) |%noBranch|)) (-13 (-821) (-539)) (-421 |#1|)) (T -32))
-((-2079 (*1 *2 *3 *4) (-12 (-5 *4 (-547)) (-4 *2 (-421 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1007 *4)) (-4 *3 (-13 (-821) (-539))))) (-1882 (*1 *2 *2) (-12 (-4 *3 (-1007 (-547))) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-32 *3 *2)) (-4 *2 (-421 *3)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-590 *5)) (-4 *5 (-421 *4)) (-4 *4 (-1007 (-547))) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-1132 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-398 (-547))) (-4 *4 (-1007 (-547))) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-32 *4 *2)) (-4 *2 (-421 *4)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-619 *5)) (-4 *5 (-421 *4)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-832)) (-5 *1 (-32 *4 *5)))) (-3639 (*1 *2 *3 *2) (-12 (-5 *3 (-1132 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-32 *4 *2)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-421 *4)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-32 *3 *4)) (-4 *4 (-421 *3)))) (-1531 (*1 *2 *3 *4) (-12 (-5 *3 (-1132 *2)) (-5 *4 (-1136)) (-4 *2 (-421 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-821) (-539))))))
-(-10 -7 (-15 -1531 (|#2| (-1132 |#2|) (-1136))) (-15 -4185 ((-114) (-114))) (-15 -3128 ((-112) (-114))) (-15 -3639 (|#2| (-1132 |#2|) |#2|)) (-15 -3793 ((-832) (-619 |#2|))) (IF (|has| |#1| (-1007 (-547))) (PROGN (-15 ** (|#2| |#2| (-398 (-547)))) (-15 -2428 ((-1132 |#2|) (-590 |#2|))) (-15 -1882 (|#2| |#2|)) (-15 -2079 (|#2| |#1| (-547)))) |%noBranch|))
-((-3899 (((-112) $ (-745)) 16)) (-1948 (($) 10)) (-2763 (((-112) $ (-745)) 15)) (-3806 (((-112) $ (-745)) 14)) (-2052 (((-112) $ $) 8)) (-2884 (((-112) $) 13)))
-(((-33 |#1|) (-10 -8 (-15 -1948 (|#1|)) (-15 -3899 ((-112) |#1| (-745))) (-15 -2763 ((-112) |#1| (-745))) (-15 -3806 ((-112) |#1| (-745))) (-15 -2884 ((-112) |#1|)) (-15 -2052 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -1948 (|#1|)) (-15 -3899 ((-112) |#1| (-745))) (-15 -2763 ((-112) |#1| (-745))) (-15 -3806 ((-112) |#1| (-745))) (-15 -2884 ((-112) |#1|)) (-15 -2052 ((-112) |#1| |#1|)))
-((-3899 (((-112) $ (-745)) 8)) (-1948 (($) 7 T CONST)) (-2763 (((-112) $ (-745)) 9)) (-3806 (((-112) $ (-745)) 10)) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-2274 (($ $) 13)) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
+((-1947 (*1 *1 *2) (-12 (-5 *2 (-923 *1)) (-4 *1 (-27)))) (-1947 (*1 *1 *2) (-12 (-5 *2 (-1139 *1)) (-4 *1 (-27)))) (-1947 (*1 *1 *2 *3) (-12 (-5 *2 (-1139 *1)) (-5 *3 (-1143)) (-4 *1 (-27)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-923 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-1139 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1)))) (-1815 (*1 *2 *3 *4) (-12 (-5 *3 (-1139 *1)) (-5 *4 (-1143)) (-4 *1 (-27)) (-5 *2 (-621 *1)))) (-3289 (*1 *1 *2) (-12 (-5 *2 (-923 *1)) (-4 *1 (-27)))) (-3289 (*1 *1 *2) (-12 (-5 *2 (-1139 *1)) (-4 *1 (-27)))) (-3289 (*1 *1 *2 *3) (-12 (-5 *2 (-1139 *1)) (-5 *3 (-1143)) (-4 *1 (-27)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-923 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-1139 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1)))) (-1329 (*1 *2 *3 *4) (-12 (-5 *3 (-1139 *1)) (-5 *4 (-1143)) (-4 *1 (-27)) (-5 *2 (-621 *1)))))
+(-13 (-356) (-973) (-10 -8 (-15 -1947 ($ (-923 $))) (-15 -1947 ($ (-1139 $))) (-15 -1947 ($ (-1139 $) (-1143))) (-15 -1815 ((-621 $) (-923 $))) (-15 -1815 ((-621 $) (-1139 $))) (-15 -1815 ((-621 $) (-1139 $) (-1143))) (-15 -3289 ($ (-923 $))) (-15 -3289 ($ (-1139 $))) (-15 -3289 ($ (-1139 $) (-1143))) (-15 -1329 ((-621 $) (-923 $))) (-15 -1329 ((-621 $) (-1139 $))) (-15 -1329 ((-621 $) (-1139 $) (-1143)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-973) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1184) . T))
+((-1329 (((-621 $) (-923 $)) NIL) (((-621 $) (-1139 $)) NIL) (((-621 $) (-1139 $) (-1143)) 50) (((-621 $) $) 19) (((-621 $) $ (-1143)) 41)) (-3289 (($ (-923 $)) NIL) (($ (-1139 $)) NIL) (($ (-1139 $) (-1143)) 52) (($ $) 17) (($ $ (-1143)) 37)) (-1815 (((-621 $) (-923 $)) NIL) (((-621 $) (-1139 $)) NIL) (((-621 $) (-1139 $) (-1143)) 48) (((-621 $) $) 15) (((-621 $) $ (-1143)) 43)) (-1947 (($ (-923 $)) NIL) (($ (-1139 $)) NIL) (($ (-1139 $) (-1143)) NIL) (($ $) 12) (($ $ (-1143)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -1329 ((-621 |#1|) |#1| (-1143))) (-15 -3289 (|#1| |#1| (-1143))) (-15 -1329 ((-621 |#1|) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -1815 ((-621 |#1|) |#1| (-1143))) (-15 -1947 (|#1| |#1| (-1143))) (-15 -1815 ((-621 |#1|) |#1|)) (-15 -1947 (|#1| |#1|)) (-15 -1329 ((-621 |#1|) (-1139 |#1|) (-1143))) (-15 -1329 ((-621 |#1|) (-1139 |#1|))) (-15 -1329 ((-621 |#1|) (-923 |#1|))) (-15 -3289 (|#1| (-1139 |#1|) (-1143))) (-15 -3289 (|#1| (-1139 |#1|))) (-15 -3289 (|#1| (-923 |#1|))) (-15 -1815 ((-621 |#1|) (-1139 |#1|) (-1143))) (-15 -1815 ((-621 |#1|) (-1139 |#1|))) (-15 -1815 ((-621 |#1|) (-923 |#1|))) (-15 -1947 (|#1| (-1139 |#1|) (-1143))) (-15 -1947 (|#1| (-1139 |#1|))) (-15 -1947 (|#1| (-923 |#1|)))) (-29 |#2|) (-13 (-823) (-541))) (T -28))
+NIL
+(-10 -8 (-15 -1329 ((-621 |#1|) |#1| (-1143))) (-15 -3289 (|#1| |#1| (-1143))) (-15 -1329 ((-621 |#1|) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -1815 ((-621 |#1|) |#1| (-1143))) (-15 -1947 (|#1| |#1| (-1143))) (-15 -1815 ((-621 |#1|) |#1|)) (-15 -1947 (|#1| |#1|)) (-15 -1329 ((-621 |#1|) (-1139 |#1|) (-1143))) (-15 -1329 ((-621 |#1|) (-1139 |#1|))) (-15 -1329 ((-621 |#1|) (-923 |#1|))) (-15 -3289 (|#1| (-1139 |#1|) (-1143))) (-15 -3289 (|#1| (-1139 |#1|))) (-15 -3289 (|#1| (-923 |#1|))) (-15 -1815 ((-621 |#1|) (-1139 |#1|) (-1143))) (-15 -1815 ((-621 |#1|) (-1139 |#1|))) (-15 -1815 ((-621 |#1|) (-923 |#1|))) (-15 -1947 (|#1| (-1139 |#1|) (-1143))) (-15 -1947 (|#1| (-1139 |#1|))) (-15 -1947 (|#1| (-923 |#1|))))
+((-3834 (((-112) $ $) 7)) (-1329 (((-621 $) (-923 $)) 77) (((-621 $) (-1139 $)) 76) (((-621 $) (-1139 $) (-1143)) 75) (((-621 $) $) 123) (((-621 $) $ (-1143)) 121)) (-3289 (($ (-923 $)) 80) (($ (-1139 $)) 79) (($ (-1139 $) (-1143)) 78) (($ $) 124) (($ $ (-1143)) 122)) (-1763 (((-112) $) 16)) (-2272 (((-621 (-1143)) $) 198)) (-2084 (((-400 (-1139 $)) $ (-592 $)) 230 (|has| |#1| (-541)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-1981 (((-621 (-592 $)) $) 161)) (-2001 (((-3 $ "failed") $ $) 19)) (-3015 (($ $ (-621 (-592 $)) (-621 $)) 151) (($ $ (-621 (-287 $))) 150) (($ $ (-287 $)) 149)) (-3979 (($ $) 70)) (-2402 (((-411 $) $) 69)) (-2134 (($ $) 89)) (-3866 (((-112) $ $) 57)) (-1682 (($) 17 T CONST)) (-1815 (((-621 $) (-923 $)) 83) (((-621 $) (-1139 $)) 82) (((-621 $) (-1139 $) (-1143)) 81) (((-621 $) $) 127) (((-621 $) $ (-1143)) 125)) (-1947 (($ (-923 $)) 86) (($ (-1139 $)) 85) (($ (-1139 $) (-1143)) 84) (($ $) 128) (($ $ (-1143)) 126)) (-2714 (((-3 (-923 |#1|) "failed") $) 248 (|has| |#1| (-1018))) (((-3 (-400 (-923 |#1|)) "failed") $) 232 (|has| |#1| (-541))) (((-3 |#1| "failed") $) 194) (((-3 (-549) "failed") $) 192 (|has| |#1| (-1009 (-549)))) (((-3 (-1143) "failed") $) 185) (((-3 (-592 $) "failed") $) 136) (((-3 (-400 (-549)) "failed") $) 120 (-1536 (-12 (|has| |#1| (-1009 (-549))) (|has| |#1| (-541))) (|has| |#1| (-1009 (-400 (-549))))))) (-2659 (((-923 |#1|) $) 249 (|has| |#1| (-1018))) (((-400 (-923 |#1|)) $) 233 (|has| |#1| (-541))) ((|#1| $) 195) (((-549) $) 191 (|has| |#1| (-1009 (-549)))) (((-1143) $) 186) (((-592 $) $) 137) (((-400 (-549)) $) 119 (-1536 (-12 (|has| |#1| (-1009 (-549))) (|has| |#1| (-541))) (|has| |#1| (-1009 (-400 (-549))))))) (-2095 (($ $ $) 53)) (-3879 (((-665 |#1|) (-665 $)) 238 (|has| |#1| (-1018))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 237 (|has| |#1| (-1018))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 118 (-1536 (-1821 (|has| |#1| (-1018)) (|has| |#1| (-617 (-549)))) (-1821 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))))) (((-665 (-549)) (-665 $)) 117 (-1536 (-1821 (|has| |#1| (-1018)) (|has| |#1| (-617 (-549)))) (-1821 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))))) (-2114 (((-3 $ "failed") $) 32)) (-2067 (($ $ $) 54)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-1420 (((-112) $) 68)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 190 (|has| |#1| (-857 (-372)))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 189 (|has| |#1| (-857 (-549))))) (-3225 (($ (-621 $)) 155) (($ $) 154)) (-2162 (((-621 (-114)) $) 162)) (-2834 (((-114) (-114)) 163)) (-2675 (((-112) $) 30)) (-3559 (((-112) $) 183 (|has| $ (-1009 (-549))))) (-1726 (($ $) 215 (|has| |#1| (-1018)))) (-1394 (((-1092 |#1| (-592 $)) $) 214 (|has| |#1| (-1018)))) (-4187 (($ $ (-549)) 88)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-1549 (((-1139 $) (-592 $)) 180 (|has| $ (-1018)))) (-2863 (($ $ $) 134)) (-3575 (($ $ $) 133)) (-2797 (($ (-1 $ $) (-592 $)) 169)) (-2634 (((-3 (-592 $) "failed") $) 159)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-2071 (((-621 (-592 $)) $) 160)) (-1476 (($ (-114) (-621 $)) 168) (($ (-114) $) 167)) (-4266 (((-3 (-621 $) "failed") $) 209 (|has| |#1| (-1079)))) (-1671 (((-3 (-2 (|:| |val| $) (|:| -3731 (-549))) "failed") $) 218 (|has| |#1| (-1018)))) (-2533 (((-3 (-621 $) "failed") $) 211 (|has| |#1| (-25)))) (-2761 (((-3 (-2 (|:| -1570 (-549)) (|:| |var| (-592 $))) "failed") $) 212 (|has| |#1| (-25)))) (-1503 (((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $ (-1143)) 217 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $ (-114)) 216 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $) 210 (|has| |#1| (-1079)))) (-3421 (((-112) $ (-1143)) 166) (((-112) $ (-114)) 165)) (-1992 (($ $) 67)) (-4036 (((-747) $) 158)) (-3990 (((-1087) $) 10)) (-2004 (((-112) $) 196)) (-2016 ((|#1| $) 197)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2979 (((-112) $ (-1143)) 171) (((-112) $ $) 170)) (-2121 (((-411 $) $) 71)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3450 (((-112) $) 182 (|has| $ (-1009 (-549))))) (-2686 (($ $ (-1143) (-747) (-1 $ $)) 222 (|has| |#1| (-1018))) (($ $ (-1143) (-747) (-1 $ (-621 $))) 221 (|has| |#1| (-1018))) (($ $ (-621 (-1143)) (-621 (-747)) (-621 (-1 $ (-621 $)))) 220 (|has| |#1| (-1018))) (($ $ (-621 (-1143)) (-621 (-747)) (-621 (-1 $ $))) 219 (|has| |#1| (-1018))) (($ $ (-621 (-114)) (-621 $) (-1143)) 208 (|has| |#1| (-594 (-525)))) (($ $ (-114) $ (-1143)) 207 (|has| |#1| (-594 (-525)))) (($ $) 206 (|has| |#1| (-594 (-525)))) (($ $ (-621 (-1143))) 205 (|has| |#1| (-594 (-525)))) (($ $ (-1143)) 204 (|has| |#1| (-594 (-525)))) (($ $ (-114) (-1 $ $)) 179) (($ $ (-114) (-1 $ (-621 $))) 178) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) 177) (($ $ (-621 (-114)) (-621 (-1 $ $))) 176) (($ $ (-1143) (-1 $ $)) 175) (($ $ (-1143) (-1 $ (-621 $))) 174) (($ $ (-621 (-1143)) (-621 (-1 $ (-621 $)))) 173) (($ $ (-621 (-1143)) (-621 (-1 $ $))) 172) (($ $ (-621 $) (-621 $)) 143) (($ $ $ $) 142) (($ $ (-287 $)) 141) (($ $ (-621 (-287 $))) 140) (($ $ (-621 (-592 $)) (-621 $)) 139) (($ $ (-592 $) $) 138)) (-3684 (((-747) $) 56)) (-3341 (($ (-114) (-621 $)) 148) (($ (-114) $ $ $ $) 147) (($ (-114) $ $ $) 146) (($ (-114) $ $) 145) (($ (-114) $) 144)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55)) (-3433 (($ $ $) 157) (($ $) 156)) (-3456 (($ $ (-1143)) 246 (|has| |#1| (-1018))) (($ $ (-621 (-1143))) 245 (|has| |#1| (-1018))) (($ $ (-1143) (-747)) 244 (|has| |#1| (-1018))) (($ $ (-621 (-1143)) (-621 (-747))) 243 (|has| |#1| (-1018)))) (-3939 (($ $) 225 (|has| |#1| (-541)))) (-1403 (((-1092 |#1| (-592 $)) $) 224 (|has| |#1| (-541)))) (-2815 (($ $) 181 (|has| $ (-1018)))) (-2845 (((-525) $) 252 (|has| |#1| (-594 (-525)))) (($ (-411 $)) 223 (|has| |#1| (-541))) (((-863 (-372)) $) 188 (|has| |#1| (-594 (-863 (-372))))) (((-863 (-549)) $) 187 (|has| |#1| (-594 (-863 (-549)))))) (-1955 (($ $ $) 251 (|has| |#1| (-465)))) (-3293 (($ $ $) 250 (|has| |#1| (-465)))) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63) (($ (-923 |#1|)) 247 (|has| |#1| (-1018))) (($ (-400 (-923 |#1|))) 231 (|has| |#1| (-541))) (($ (-400 (-923 (-400 |#1|)))) 229 (|has| |#1| (-541))) (($ (-923 (-400 |#1|))) 228 (|has| |#1| (-541))) (($ (-400 |#1|)) 227 (|has| |#1| (-541))) (($ (-1092 |#1| (-592 $))) 213 (|has| |#1| (-1018))) (($ |#1|) 193) (($ (-1143)) 184) (($ (-592 $)) 135)) (-2210 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-2082 (((-747)) 28)) (-4137 (($ (-621 $)) 153) (($ $) 152)) (-4285 (((-112) (-114)) 164)) (-1498 (((-112) $ $) 37)) (-1789 (($ (-1143) (-621 $)) 203) (($ (-1143) $ $ $ $) 202) (($ (-1143) $ $ $) 201) (($ (-1143) $ $) 200) (($ (-1143) $) 199)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-1143)) 242 (|has| |#1| (-1018))) (($ $ (-621 (-1143))) 241 (|has| |#1| (-1018))) (($ $ (-1143) (-747)) 240 (|has| |#1| (-1018))) (($ $ (-621 (-1143)) (-621 (-747))) 239 (|has| |#1| (-1018)))) (-2448 (((-112) $ $) 131)) (-2425 (((-112) $ $) 130)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 132)) (-2412 (((-112) $ $) 129)) (-2513 (($ $ $) 62) (($ (-1092 |#1| (-592 $)) (-1092 |#1| (-592 $))) 226 (|has| |#1| (-541)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66) (($ $ (-400 (-549))) 87)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-170))) (($ |#1| $) 234 (|has| |#1| (-170)))))
+(((-29 |#1|) (-138) (-13 (-823) (-541))) (T -29))
+((-1947 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-541))))) (-1815 (*1 *2 *1) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *2 (-621 *1)) (-4 *1 (-29 *3)))) (-1947 (*1 *1 *1 *2) (-12 (-5 *2 (-1143)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-541))))) (-1815 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-621 *1)) (-4 *1 (-29 *4)))) (-3289 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-541))))) (-1329 (*1 *2 *1) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *2 (-621 *1)) (-4 *1 (-29 *3)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1143)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-541))))) (-1329 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-621 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-423 |t#1|) (-10 -8 (-15 -1947 ($ $)) (-15 -1815 ((-621 $) $)) (-15 -1947 ($ $ (-1143))) (-15 -1815 ((-621 $) $ (-1143))) (-15 -3289 ($ $)) (-15 -1329 ((-621 $) $)) (-15 -3289 ($ $ (-1143))) (-15 -1329 ((-621 $) $ (-1143)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-594 (-863 (-372))) |has| |#1| (-594 (-863 (-372)))) ((-594 (-863 (-549))) |has| |#1| (-594 (-863 (-549)))) ((-237) . T) ((-283) . T) ((-300) . T) ((-302 $) . T) ((-295) . T) ((-356) . T) ((-370 |#1|) |has| |#1| (-1018)) ((-393 |#1|) . T) ((-404 |#1|) . T) ((-423 |#1|) . T) ((-444) . T) ((-465) |has| |#1| (-465)) ((-505 (-592 $) $) . T) ((-505 $ $) . T) ((-541) . T) ((-624 #0#) . T) ((-624 |#1|) |has| |#1| (-170)) ((-624 $) . T) ((-617 (-549)) -12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) ((-617 |#1|) |has| |#1| (-1018)) ((-694 #0#) . T) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) . T) ((-703) . T) ((-823) . T) ((-871 (-1143)) |has| |#1| (-1018)) ((-857 (-372)) |has| |#1| (-857 (-372))) ((-857 (-549)) |has| |#1| (-857 (-549))) ((-855 |#1|) . T) ((-891) . T) ((-973) . T) ((-1009 (-400 (-549))) -1536 (|has| |#1| (-1009 (-400 (-549)))) (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549))))) ((-1009 (-400 (-923 |#1|))) |has| |#1| (-541)) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 (-592 $)) . T) ((-1009 (-923 |#1|)) |has| |#1| (-1018)) ((-1009 (-1143)) . T) ((-1009 |#1|) . T) ((-1024 #0#) . T) ((-1024 |#1|) |has| |#1| (-170)) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1180) . T) ((-1184) . T))
+((-1843 (((-1061 (-219)) $) NIL)) (-1832 (((-1061 (-219)) $) NIL)) (-4166 (($ $ (-219)) 125)) (-1590 (($ (-923 (-549)) (-1143) (-1143) (-1061 (-400 (-549))) (-1061 (-400 (-549)))) 83)) (-3928 (((-621 (-621 (-914 (-219)))) $) 137)) (-3846 (((-834) $) 149)))
+(((-30) (-13 (-926) (-10 -8 (-15 -1590 ($ (-923 (-549)) (-1143) (-1143) (-1061 (-400 (-549))) (-1061 (-400 (-549))))) (-15 -4166 ($ $ (-219)))))) (T -30))
+((-1590 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-923 (-549))) (-5 *3 (-1143)) (-5 *4 (-1061 (-400 (-549)))) (-5 *1 (-30)))) (-4166 (*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30)))))
+(-13 (-926) (-10 -8 (-15 -1590 ($ (-923 (-549)) (-1143) (-1143) (-1061 (-400 (-549))) (-1061 (-400 (-549))))) (-15 -4166 ($ $ (-219)))))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2492 (((-1148) $) 11)) (-1864 (((-1148) $) 9)) (-2389 (((-112) $ $) NIL)))
+(((-31) (-13 (-1050) (-10 -8 (-15 -1864 ((-1148) $)) (-15 -2492 ((-1148) $))))) (T -31))
+((-1864 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-31)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-31)))))
+(-13 (-1050) (-10 -8 (-15 -1864 ((-1148) $)) (-15 -2492 ((-1148) $))))
+((-1947 ((|#2| (-1139 |#2|) (-1143)) 43)) (-2834 (((-114) (-114)) 56)) (-1549 (((-1139 |#2|) (-592 |#2|)) 133 (|has| |#1| (-1009 (-549))))) (-2568 ((|#2| |#1| (-549)) 122 (|has| |#1| (-1009 (-549))))) (-4065 ((|#2| (-1139 |#2|) |#2|) 30)) (-3106 (((-834) (-621 |#2|)) 85)) (-2815 ((|#2| |#2|) 129 (|has| |#1| (-1009 (-549))))) (-4285 (((-112) (-114)) 18)) (** ((|#2| |#2| (-400 (-549))) 96 (|has| |#1| (-1009 (-549))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -1947 (|#2| (-1139 |#2|) (-1143))) (-15 -2834 ((-114) (-114))) (-15 -4285 ((-112) (-114))) (-15 -4065 (|#2| (-1139 |#2|) |#2|)) (-15 -3106 ((-834) (-621 |#2|))) (IF (|has| |#1| (-1009 (-549))) (PROGN (-15 ** (|#2| |#2| (-400 (-549)))) (-15 -1549 ((-1139 |#2|) (-592 |#2|))) (-15 -2815 (|#2| |#2|)) (-15 -2568 (|#2| |#1| (-549)))) |%noBranch|)) (-13 (-823) (-541)) (-423 |#1|)) (T -32))
+((-2568 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-4 *2 (-423 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1009 *4)) (-4 *3 (-13 (-823) (-541))))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-1009 (-549))) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-32 *3 *2)) (-4 *2 (-423 *3)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-423 *4)) (-4 *4 (-1009 (-549))) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-1139 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-549))) (-4 *4 (-1009 (-549))) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-32 *4 *2)) (-4 *2 (-423 *4)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-423 *4)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-834)) (-5 *1 (-32 *4 *5)))) (-4065 (*1 *2 *3 *2) (-12 (-5 *3 (-1139 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-32 *4 *2)))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-423 *4)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-32 *3 *4)) (-4 *4 (-423 *3)))) (-1947 (*1 *2 *3 *4) (-12 (-5 *3 (-1139 *2)) (-5 *4 (-1143)) (-4 *2 (-423 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-823) (-541))))))
+(-10 -7 (-15 -1947 (|#2| (-1139 |#2|) (-1143))) (-15 -2834 ((-114) (-114))) (-15 -4285 ((-112) (-114))) (-15 -4065 (|#2| (-1139 |#2|) |#2|)) (-15 -3106 ((-834) (-621 |#2|))) (IF (|has| |#1| (-1009 (-549))) (PROGN (-15 ** (|#2| |#2| (-400 (-549)))) (-15 -1549 ((-1139 |#2|) (-592 |#2|))) (-15 -2815 (|#2| |#2|)) (-15 -2568 (|#2| |#1| (-549)))) |%noBranch|))
+((-1584 (((-112) $ (-747)) 16)) (-1682 (($) 10)) (-3194 (((-112) $ (-747)) 15)) (-1508 (((-112) $ (-747)) 14)) (-4144 (((-112) $ $) 8)) (-3670 (((-112) $) 13)))
+(((-33 |#1|) (-10 -8 (-15 -1682 (|#1|)) (-15 -1584 ((-112) |#1| (-747))) (-15 -3194 ((-112) |#1| (-747))) (-15 -1508 ((-112) |#1| (-747))) (-15 -3670 ((-112) |#1|)) (-15 -4144 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -1682 (|#1|)) (-15 -1584 ((-112) |#1| (-747))) (-15 -3194 ((-112) |#1| (-747))) (-15 -1508 ((-112) |#1| (-747))) (-15 -3670 ((-112) |#1|)) (-15 -4144 ((-112) |#1| |#1|)))
+((-1584 (((-112) $ (-747)) 8)) (-1682 (($) 7 T CONST)) (-3194 (((-112) $ (-747)) 9)) (-1508 (((-112) $ (-747)) 10)) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-2281 (($ $) 13)) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
(((-34) (-138)) (T -34))
-((-2052 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2274 (*1 *1 *1) (-4 *1 (-34))) (-2245 (*1 *1) (-4 *1 (-34))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3806 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) (-2763 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) (-3899 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) (-1948 (*1 *1) (-4 *1 (-34))) (-3767 (*1 *2 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-34)) (-5 *2 (-745)))))
-(-13 (-1173) (-10 -8 (-15 -2052 ((-112) $ $)) (-15 -2274 ($ $)) (-15 -2245 ($)) (-15 -2884 ((-112) $)) (-15 -3806 ((-112) $ (-745))) (-15 -2763 ((-112) $ (-745))) (-15 -3899 ((-112) $ (-745))) (-15 -1948 ($) -2582) (IF (|has| $ (-6 -4329)) (-15 -3767 ((-745) $)) |%noBranch|)))
-(((-1173) . T))
-((-1726 (($ $) 11)) (-1703 (($ $) 10)) (-1751 (($ $) 9)) (-1927 (($ $) 8)) (-1738 (($ $) 7)) (-1714 (($ $) 6)))
+((-4144 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2281 (*1 *1 *1) (-4 *1 (-34))) (-3742 (*1 *1) (-4 *1 (-34))) (-3670 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1508 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) (-3194 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) (-1584 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))) (-1682 (*1 *1) (-4 *1 (-34))) (-3775 (*1 *2 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-34)) (-5 *2 (-747)))))
+(-13 (-1180) (-10 -8 (-15 -4144 ((-112) $ $)) (-15 -2281 ($ $)) (-15 -3742 ($)) (-15 -3670 ((-112) $)) (-15 -1508 ((-112) $ (-747))) (-15 -3194 ((-112) $ (-747))) (-15 -1584 ((-112) $ (-747))) (-15 -1682 ($) -2589) (IF (|has| $ (-6 -4337)) (-15 -3775 ((-747) $)) |%noBranch|)))
+(((-1180) . T))
+((-1733 (($ $) 11)) (-1710 (($ $) 10)) (-1758 (($ $) 9)) (-1934 (($ $) 8)) (-1745 (($ $) 7)) (-1722 (($ $) 6)))
(((-35) (-138)) (T -35))
-((-1726 (*1 *1 *1) (-4 *1 (-35))) (-1703 (*1 *1 *1) (-4 *1 (-35))) (-1751 (*1 *1 *1) (-4 *1 (-35))) (-1927 (*1 *1 *1) (-4 *1 (-35))) (-1738 (*1 *1 *1) (-4 *1 (-35))) (-1714 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -1714 ($ $)) (-15 -1738 ($ $)) (-15 -1927 ($ $)) (-15 -1751 ($ $)) (-15 -1703 ($ $)) (-15 -1726 ($ $))))
-((-3826 (((-112) $ $) 19 (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-4153 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 125)) (-2832 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 148)) (-1336 (($ $) 146)) (-3726 (($) 72) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 71)) (-1652 (((-1224) $ |#1| |#1|) 99 (|has| $ (-6 -4330))) (((-1224) $ (-547) (-547)) 178 (|has| $ (-6 -4330)))) (-2165 (($ $ (-547)) 159 (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-2809 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 200 (|has| $ (-6 -4330))) (($ $) 199 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)) (|has| $ (-6 -4330))))) (-3185 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-3899 (((-112) $ (-745)) 8)) (-1986 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 134 (|has| $ (-6 -4330)))) (-2272 (($ $ $) 155 (|has| $ (-6 -4330)))) (-3200 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 157 (|has| $ (-6 -4330)))) (-4086 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 153 (|has| $ (-6 -4330)))) (-2247 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 189 (|has| $ (-6 -4330))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-1186 (-547)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 160 (|has| $ (-6 -4330))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ "last" (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 158 (|has| $ (-6 -4330))) (($ $ "rest" $) 156 (|has| $ (-6 -4330))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ "first" (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 154 (|has| $ (-6 -4330))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ "value" (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 133 (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) 132 (|has| $ (-6 -4330)))) (-4285 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 45 (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 216)) (-1482 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 55 (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 175 (|has| $ (-6 -4329)))) (-2823 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 147)) (-3482 (((-3 |#2| "failed") |#1| $) 61)) (-1948 (($) 7 T CONST)) (-3044 (($ $) 201 (|has| $ (-6 -4330)))) (-3057 (($ $) 211)) (-3649 (($ $ (-745)) 142) (($ $) 140)) (-2968 (($ $) 214 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-3668 (($ $) 58 (-1530 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329))) (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))))) (-1513 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 47 (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 46 (|has| $ (-6 -4329))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 220) (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 215 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-3803 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 54 (|has| $ (-6 -4329))) (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 174 (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 56 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 53 (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 52 (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 176 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 173 (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 172 (|has| $ (-6 -4329)))) (-1872 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4330))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 190 (|has| $ (-6 -4330)))) (-1802 ((|#2| $ |#1|) 88) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547)) 188)) (-2963 (((-112) $) 192)) (-2876 (((-547) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 208) (((-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 207 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))) (((-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547)) 206 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-2982 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 30 (|has| $ (-6 -4329))) (((-619 |#2|) $) 79 (|has| $ (-6 -4329))) (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 114 (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) 123)) (-2554 (((-112) $ $) 131 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-3735 (($ (-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 169)) (-2763 (((-112) $ (-745)) 9)) (-2434 ((|#1| $) 96 (|has| |#1| (-821))) (((-547) $) 180 (|has| (-547) (-821)))) (-2856 (($ $ $) 198 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-3145 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-2777 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-2284 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 29 (|has| $ (-6 -4329))) (((-619 |#2|) $) 80 (|has| $ (-6 -4329))) (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 115 (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4329)))) (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329))))) (-1416 ((|#1| $) 95 (|has| |#1| (-821))) (((-547) $) 181 (|has| (-547) (-821)))) (-3567 (($ $ $) 197 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 34 (|has| $ (-6 -4330))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4330))) (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 110 (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 109)) (-3517 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 225)) (-3806 (((-112) $ (-745)) 10)) (-3583 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 128)) (-1489 (((-112) $) 124)) (-1466 (((-1119) $) 22 (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-3820 (($ $ (-745)) 145) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 143)) (-3441 (((-619 |#1|) $) 63)) (-4073 (((-112) |#1| $) 64)) (-4266 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 39)) (-2657 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 40) (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547)) 219) (($ $ $ (-547)) 218)) (-2606 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547)) 162) (($ $ $ (-547)) 161)) (-2121 (((-619 |#1|) $) 93) (((-619 (-547)) $) 183)) (-2018 (((-112) |#1| $) 92) (((-112) (-547) $) 184)) (-3979 (((-1082) $) 21 (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-3638 ((|#2| $) 97 (|has| |#1| (-821))) (($ $ (-745)) 139) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 137)) (-3650 (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 51) (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 171)) (-3632 (($ $ |#2|) 98 (|has| $ (-6 -4330))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 179 (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 41)) (-1884 (((-112) $) 191)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 32 (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 112 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))))) 26 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 25 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 24 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 23 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 86 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) 84 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) 83 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 121 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 120 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 119 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))))) 118 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063)))) (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 182 (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-2987 (((-619 |#2|) $) 91) (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 185)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 187) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547)) 186) (($ $ (-1186 (-547))) 165) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ "first") 138) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ "value") 126)) (-2857 (((-547) $ $) 129)) (-2699 (($) 49) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 48)) (-2649 (($ $ (-547)) 222) (($ $ (-1186 (-547))) 221)) (-2159 (($ $ (-547)) 164) (($ $ (-1186 (-547))) 163)) (-1850 (((-112) $) 127)) (-2005 (($ $) 151)) (-2632 (($ $) 152 (|has| $ (-6 -4330)))) (-1749 (((-745) $) 150)) (-2016 (($ $) 149)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 31 (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (((-745) |#2| $) 81 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4329)))) (((-745) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (((-745) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 113 (|has| $ (-6 -4329)))) (-4282 (($ $ $ (-547)) 202 (|has| $ (-6 -4330)))) (-2274 (($ $) 13)) (-2838 (((-523) $) 59 (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523)))))) (-3846 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 50) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 170)) (-3794 (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 224) (($ $ $) 223)) (-1945 (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 168) (($ (-619 $)) 167) (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 136) (($ $ $) 135)) (-3838 (((-832) $) 18 (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832)))))) (-2514 (((-619 $) $) 122)) (-1421 (((-112) $ $) 130 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-2300 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 42)) (-3829 (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") |#1| $) 108)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 33 (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 111 (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) 195 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-2418 (((-112) $ $) 194 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-2381 (((-112) $ $) 20 (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-2430 (((-112) $ $) 196 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-2405 (((-112) $ $) 193 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-36 |#1| |#2|) (-138) (-1063) (-1063)) (T -36))
-((-3829 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-2 (|:| -3331 *3) (|:| -1786 *4))))))
-(-13 (-1149 |t#1| |t#2|) (-640 (-2 (|:| -3331 |t#1|) (|:| -1786 |t#2|))) (-10 -8 (-15 -3829 ((-3 (-2 (|:| -3331 |t#1|) (|:| -1786 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-106 #0=(-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T) ((-101) -1530 (|has| |#2| (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821))) ((-591 (-832)) -1530 (|has| |#2| (-1063)) (|has| |#2| (-591 (-832))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832)))) ((-149 #1=(-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T) ((-592 (-523)) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))) ((-221 #0#) . T) ((-227 #0#) . T) ((-277 #2=(-547) #1#) . T) ((-277 |#1| |#2|) . T) ((-279 #2# #1#) . T) ((-279 |#1| |#2|) . T) ((-300 #1#) -12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))) ((-300 |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-273 #1#) . T) ((-364 #1#) . T) ((-479 #1#) . T) ((-479 |#2|) . T) ((-582 #2# #1#) . T) ((-582 |#1| |#2|) . T) ((-503 #1# #1#) -12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))) ((-503 |#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-588 |#1| |#2|) . T) ((-625 #1#) . T) ((-640 #1#) . T) ((-821) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)) ((-979 #1#) . T) ((-1063) -1530 (|has| |#2| (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821))) ((-1110 #1#) . T) ((-1149 |#1| |#2|) . T) ((-1173) . T) ((-1207 #1#) . T))
-((-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -3838 (|#1| |#2|)) (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|))) (-38 |#2|) (-169)) (T -37))
-NIL
-(-10 -8 (-15 -3838 (|#1| |#2|)) (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-38 |#1|) (-138) (-169)) (T -38))
-((-3838 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169)))))
-(-13 (-1016) (-692 |t#1|) (-10 -8 (-15 -3838 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-4194 (((-409 |#1|) |#1|) 41)) (-2115 (((-409 |#1|) |#1|) 30) (((-409 |#1|) |#1| (-619 (-48))) 33)) (-2329 (((-112) |#1|) 56)))
-(((-39 |#1|) (-10 -7 (-15 -2115 ((-409 |#1|) |#1| (-619 (-48)))) (-15 -2115 ((-409 |#1|) |#1|)) (-15 -4194 ((-409 |#1|) |#1|)) (-15 -2329 ((-112) |#1|))) (-1195 (-48))) (T -39))
-((-2329 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1195 (-48))))) (-4194 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1195 (-48))))) (-2115 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1195 (-48))))) (-2115 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1195 (-48))))))
-(-10 -7 (-15 -2115 ((-409 |#1|) |#1| (-619 (-48)))) (-15 -2115 ((-409 |#1|) |#1|)) (-15 -4194 ((-409 |#1|) |#1|)) (-15 -2329 ((-112) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2675 (((-2 (|:| |num| (-1219 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| (-398 |#2|) (-354)))) (-3571 (($ $) NIL (|has| (-398 |#2|) (-354)))) (-3915 (((-112) $) NIL (|has| (-398 |#2|) (-354)))) (-3401 (((-663 (-398 |#2|)) (-1219 $)) NIL) (((-663 (-398 |#2|))) NIL)) (-2899 (((-398 |#2|) $) NIL)) (-2797 (((-1146 (-890) (-745)) (-547)) NIL (|has| (-398 |#2|) (-340)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL (|has| (-398 |#2|) (-354)))) (-3299 (((-409 $) $) NIL (|has| (-398 |#2|) (-354)))) (-1547 (((-112) $ $) NIL (|has| (-398 |#2|) (-354)))) (-3608 (((-745)) NIL (|has| (-398 |#2|) (-359)))) (-3451 (((-112)) NIL)) (-3303 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (|has| (-398 |#2|) (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-398 |#2|) (-1007 (-398 (-547))))) (((-3 (-398 |#2|) "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| (-398 |#2|) (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| (-398 |#2|) (-1007 (-398 (-547))))) (((-398 |#2|) $) NIL)) (-2614 (($ (-1219 (-398 |#2|)) (-1219 $)) NIL) (($ (-1219 (-398 |#2|))) 57) (($ (-1219 |#2|) |#2|) 125)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-398 |#2|) (-340)))) (-2089 (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-3565 (((-663 (-398 |#2|)) $ (-1219 $)) NIL) (((-663 (-398 |#2|)) $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| (-398 |#2|) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| (-398 |#2|) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-398 |#2|))) (|:| |vec| (-1219 (-398 |#2|)))) (-663 $) (-1219 $)) NIL) (((-663 (-398 |#2|)) (-663 $)) NIL)) (-2451 (((-1219 $) (-1219 $)) NIL)) (-2552 (($ |#3|) NIL) (((-3 $ "failed") (-398 |#3|)) NIL (|has| (-398 |#2|) (-354)))) (-3855 (((-3 $ "failed") $) NIL)) (-2564 (((-619 (-619 |#1|))) NIL (|has| |#1| (-359)))) (-3454 (((-112) |#1| |#1|) NIL)) (-3116 (((-890)) NIL)) (-3232 (($) NIL (|has| (-398 |#2|) (-359)))) (-3165 (((-112)) NIL)) (-3012 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2061 (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| (-398 |#2|) (-354)))) (-3350 (($ $) NIL)) (-3527 (($) NIL (|has| (-398 |#2|) (-340)))) (-3078 (((-112) $) NIL (|has| (-398 |#2|) (-340)))) (-1551 (($ $ (-745)) NIL (|has| (-398 |#2|) (-340))) (($ $) NIL (|has| (-398 |#2|) (-340)))) (-1791 (((-112) $) NIL (|has| (-398 |#2|) (-354)))) (-3275 (((-890) $) NIL (|has| (-398 |#2|) (-340))) (((-807 (-890)) $) NIL (|has| (-398 |#2|) (-340)))) (-2261 (((-112) $) NIL)) (-3209 (((-745)) NIL)) (-3278 (((-1219 $) (-1219 $)) 102)) (-3160 (((-398 |#2|) $) NIL)) (-3361 (((-619 (-921 |#1|)) (-1136)) NIL (|has| |#1| (-354)))) (-3477 (((-3 $ "failed") $) NIL (|has| (-398 |#2|) (-340)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-398 |#2|) (-354)))) (-3786 ((|#3| $) NIL (|has| (-398 |#2|) (-354)))) (-2402 (((-890) $) NIL (|has| (-398 |#2|) (-359)))) (-2540 ((|#3| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| (-398 |#2|) (-354))) (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-1466 (((-1119) $) NIL)) (-3382 (((-1224) (-745)) 79)) (-1560 (((-663 (-398 |#2|))) 51)) (-1311 (((-663 (-398 |#2|))) 44)) (-1984 (($ $) NIL (|has| (-398 |#2|) (-354)))) (-3132 (($ (-1219 |#2|) |#2|) 126)) (-1524 (((-663 (-398 |#2|))) 45)) (-3476 (((-663 (-398 |#2|))) 43)) (-2650 (((-2 (|:| |num| (-663 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1321 (((-2 (|:| |num| (-1219 |#2|)) (|:| |den| |#2|)) $) 64)) (-3787 (((-1219 $)) 42)) (-1380 (((-1219 $)) 41)) (-3019 (((-112) $) NIL)) (-1322 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3054 (($) NIL (|has| (-398 |#2|) (-340)) CONST)) (-3487 (($ (-890)) NIL (|has| (-398 |#2|) (-359)))) (-4052 (((-3 |#2| "failed")) NIL)) (-3979 (((-1082) $) NIL)) (-2489 (((-745)) NIL)) (-4238 (($) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| (-398 |#2|) (-354)))) (-3719 (($ (-619 $)) NIL (|has| (-398 |#2|) (-354))) (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL (|has| (-398 |#2|) (-340)))) (-2115 (((-409 $) $) NIL (|has| (-398 |#2|) (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-398 |#2|) (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| (-398 |#2|) (-354)))) (-2032 (((-3 $ "failed") $ $) NIL (|has| (-398 |#2|) (-354)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-398 |#2|) (-354)))) (-2471 (((-745) $) NIL (|has| (-398 |#2|) (-354)))) (-3334 ((|#1| $ |#1| |#1|) NIL)) (-1734 (((-3 |#2| "failed")) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| (-398 |#2|) (-354)))) (-4056 (((-398 |#2|) (-1219 $)) NIL) (((-398 |#2|)) 39)) (-1422 (((-745) $) NIL (|has| (-398 |#2|) (-340))) (((-3 (-745) "failed") $ $) NIL (|has| (-398 |#2|) (-340)))) (-3448 (($ $ (-1 (-398 |#2|) (-398 |#2|)) (-745)) NIL (|has| (-398 |#2|) (-354))) (($ $ (-1 (-398 |#2|) (-398 |#2|))) NIL (|has| (-398 |#2|) (-354))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-745)) NIL (-1530 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340)))) (($ $) NIL (-1530 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340))))) (-3101 (((-663 (-398 |#2|)) (-1219 $) (-1 (-398 |#2|) (-398 |#2|))) NIL (|has| (-398 |#2|) (-354)))) (-1882 ((|#3|) 50)) (-3823 (($) NIL (|has| (-398 |#2|) (-340)))) (-3220 (((-1219 (-398 |#2|)) $ (-1219 $)) NIL) (((-663 (-398 |#2|)) (-1219 $) (-1219 $)) NIL) (((-1219 (-398 |#2|)) $) 58) (((-663 (-398 |#2|)) (-1219 $)) 103)) (-2838 (((-1219 (-398 |#2|)) $) NIL) (($ (-1219 (-398 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| (-398 |#2|) (-340)))) (-4308 (((-1219 $) (-1219 $)) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 |#2|)) NIL) (($ (-398 (-547))) NIL (-1530 (|has| (-398 |#2|) (-1007 (-398 (-547)))) (|has| (-398 |#2|) (-354)))) (($ $) NIL (|has| (-398 |#2|) (-354)))) (-2220 (($ $) NIL (|has| (-398 |#2|) (-340))) (((-3 $ "failed") $) NIL (|has| (-398 |#2|) (-143)))) (-1316 ((|#3| $) NIL)) (-2736 (((-745)) NIL)) (-2861 (((-112)) 37)) (-2204 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-1917 (((-1219 $)) 93)) (-3577 (((-112) $ $) NIL (|has| (-398 |#2|) (-354)))) (-4226 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2887 (((-112)) NIL)) (-3269 (($) 16 T CONST)) (-3281 (($) 26 T CONST)) (-1695 (($ $ (-1 (-398 |#2|) (-398 |#2|)) (-745)) NIL (|has| (-398 |#2|) (-354))) (($ $ (-1 (-398 |#2|) (-398 |#2|))) NIL (|has| (-398 |#2|) (-354))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-745)) NIL (-1530 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340)))) (($ $) NIL (-1530 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340))))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| (-398 |#2|) (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 |#2|)) NIL) (($ (-398 |#2|) $) NIL) (($ (-398 (-547)) $) NIL (|has| (-398 |#2|) (-354))) (($ $ (-398 (-547))) NIL (|has| (-398 |#2|) (-354)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-333 |#1| |#2| |#3|) (-10 -7 (-15 -3382 ((-1224) (-745))))) (-354) (-1195 |#1|) (-1195 (-398 |#2|)) |#3|) (T -40))
-((-3382 (*1 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-354)) (-4 *5 (-1195 *4)) (-5 *2 (-1224)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1195 (-398 *5))) (-14 *7 *6))))
-(-13 (-333 |#1| |#2| |#3|) (-10 -7 (-15 -3382 ((-1224) (-745)))))
-((-3114 ((|#2| |#2|) 48)) (-3605 ((|#2| |#2|) 120 (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-442)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-547)))))) (-4132 ((|#2| |#2|) 87 (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-442)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-547)))))) (-2885 ((|#2| |#2|) 88 (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-442)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-547)))))) (-3585 ((|#2| (-114) |#2| (-745)) 116 (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-442)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-547)))))) (-1546 (((-1132 |#2|) |#2|) 45)) (-4079 ((|#2| |#2| (-619 (-590 |#2|))) 18) ((|#2| |#2| (-619 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -3114 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4079 (|#2| |#2| |#2|)) (-15 -4079 (|#2| |#2| (-619 |#2|))) (-15 -4079 (|#2| |#2| (-619 (-590 |#2|)))) (-15 -1546 ((-1132 |#2|) |#2|)) (IF (|has| |#1| (-821)) (IF (|has| |#1| (-442)) (IF (|has| |#1| (-1007 (-547))) (IF (|has| |#2| (-421 |#1|)) (PROGN (-15 -2885 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -3605 (|#2| |#2|)) (-15 -3585 (|#2| (-114) |#2| (-745)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-539) (-13 (-354) (-293) (-10 -8 (-15 -1386 ((-1087 |#1| (-590 $)) $)) (-15 -1396 ((-1087 |#1| (-590 $)) $)) (-15 -3838 ($ (-1087 |#1| (-590 $))))))) (T -41))
-((-3585 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-745)) (-4 *5 (-442)) (-4 *5 (-821)) (-4 *5 (-1007 (-547))) (-4 *5 (-539)) (-5 *1 (-41 *5 *2)) (-4 *2 (-421 *5)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1386 ((-1087 *5 (-590 $)) $)) (-15 -1396 ((-1087 *5 (-590 $)) $)) (-15 -3838 ($ (-1087 *5 (-590 $))))))))) (-3605 (*1 *2 *2) (-12 (-4 *3 (-442)) (-4 *3 (-821)) (-4 *3 (-1007 (-547))) (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1386 ((-1087 *3 (-590 $)) $)) (-15 -1396 ((-1087 *3 (-590 $)) $)) (-15 -3838 ($ (-1087 *3 (-590 $))))))))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-442)) (-4 *3 (-821)) (-4 *3 (-1007 (-547))) (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1386 ((-1087 *3 (-590 $)) $)) (-15 -1396 ((-1087 *3 (-590 $)) $)) (-15 -3838 ($ (-1087 *3 (-590 $))))))))) (-2885 (*1 *2 *2) (-12 (-4 *3 (-442)) (-4 *3 (-821)) (-4 *3 (-1007 (-547))) (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1386 ((-1087 *3 (-590 $)) $)) (-15 -1396 ((-1087 *3 (-590 $)) $)) (-15 -3838 ($ (-1087 *3 (-590 $))))))))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-1132 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-354) (-293) (-10 -8 (-15 -1386 ((-1087 *4 (-590 $)) $)) (-15 -1396 ((-1087 *4 (-590 $)) $)) (-15 -3838 ($ (-1087 *4 (-590 $))))))))) (-4079 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-590 *2))) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1386 ((-1087 *4 (-590 $)) $)) (-15 -1396 ((-1087 *4 (-590 $)) $)) (-15 -3838 ($ (-1087 *4 (-590 $))))))) (-4 *4 (-539)) (-5 *1 (-41 *4 *2)))) (-4079 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1386 ((-1087 *4 (-590 $)) $)) (-15 -1396 ((-1087 *4 (-590 $)) $)) (-15 -3838 ($ (-1087 *4 (-590 $))))))) (-4 *4 (-539)) (-5 *1 (-41 *4 *2)))) (-4079 (*1 *2 *2 *2) (-12 (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1386 ((-1087 *3 (-590 $)) $)) (-15 -1396 ((-1087 *3 (-590 $)) $)) (-15 -3838 ($ (-1087 *3 (-590 $))))))))) (-4079 (*1 *2 *2) (-12 (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1386 ((-1087 *3 (-590 $)) $)) (-15 -1396 ((-1087 *3 (-590 $)) $)) (-15 -3838 ($ (-1087 *3 (-590 $))))))))) (-3114 (*1 *2 *2) (-12 (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1386 ((-1087 *3 (-590 $)) $)) (-15 -1396 ((-1087 *3 (-590 $)) $)) (-15 -3838 ($ (-1087 *3 (-590 $))))))))))
-(-10 -7 (-15 -3114 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4079 (|#2| |#2| |#2|)) (-15 -4079 (|#2| |#2| (-619 |#2|))) (-15 -4079 (|#2| |#2| (-619 (-590 |#2|)))) (-15 -1546 ((-1132 |#2|) |#2|)) (IF (|has| |#1| (-821)) (IF (|has| |#1| (-442)) (IF (|has| |#1| (-1007 (-547))) (IF (|has| |#2| (-421 |#1|)) (PROGN (-15 -2885 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -3605 (|#2| |#2|)) (-15 -3585 (|#2| (-114) |#2| (-745)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2115 (((-409 (-1132 |#3|)) (-1132 |#3|) (-619 (-48))) 23) (((-409 |#3|) |#3| (-619 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2115 ((-409 |#3|) |#3| (-619 (-48)))) (-15 -2115 ((-409 (-1132 |#3|)) (-1132 |#3|) (-619 (-48))))) (-821) (-767) (-918 (-48) |#2| |#1|)) (T -42))
-((-2115 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *7 (-918 (-48) *6 *5)) (-5 *2 (-409 (-1132 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1132 *7)))) (-2115 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767)) (-5 *2 (-409 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-918 (-48) *6 *5)))))
-(-10 -7 (-15 -2115 ((-409 |#3|) |#3| (-619 (-48)))) (-15 -2115 ((-409 (-1132 |#3|)) (-1132 |#3|) (-619 (-48)))))
-((-3868 (((-745) |#2|) 65)) (-3785 (((-745) |#2|) 68)) (-1648 (((-619 |#2|)) 33)) (-3743 (((-745) |#2|) 67)) (-1564 (((-745) |#2|) 64)) (-2017 (((-745) |#2|) 66)) (-3108 (((-619 (-663 |#1|))) 60)) (-3325 (((-619 |#2|)) 55)) (-2281 (((-619 |#2|) |#2|) 43)) (-3384 (((-619 |#2|)) 57)) (-3877 (((-619 |#2|)) 56)) (-2898 (((-619 (-663 |#1|))) 48)) (-3635 (((-619 |#2|)) 54)) (-3676 (((-619 |#2|) |#2|) 42)) (-3083 (((-619 |#2|)) 50)) (-2908 (((-619 (-663 |#1|))) 61)) (-3641 (((-619 |#2|)) 59)) (-1917 (((-1219 |#2|) (-1219 |#2|)) 84 (|has| |#1| (-298)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -3743 ((-745) |#2|)) (-15 -3785 ((-745) |#2|)) (-15 -1564 ((-745) |#2|)) (-15 -3868 ((-745) |#2|)) (-15 -2017 ((-745) |#2|)) (-15 -3083 ((-619 |#2|))) (-15 -3676 ((-619 |#2|) |#2|)) (-15 -2281 ((-619 |#2|) |#2|)) (-15 -3635 ((-619 |#2|))) (-15 -3325 ((-619 |#2|))) (-15 -3877 ((-619 |#2|))) (-15 -3384 ((-619 |#2|))) (-15 -3641 ((-619 |#2|))) (-15 -2898 ((-619 (-663 |#1|)))) (-15 -3108 ((-619 (-663 |#1|)))) (-15 -2908 ((-619 (-663 |#1|)))) (-15 -1648 ((-619 |#2|))) (IF (|has| |#1| (-298)) (-15 -1917 ((-1219 |#2|) (-1219 |#2|))) |%noBranch|)) (-539) (-408 |#1|)) (T -43))
-((-1917 (*1 *2 *2) (-12 (-5 *2 (-1219 *4)) (-4 *4 (-408 *3)) (-4 *3 (-298)) (-4 *3 (-539)) (-5 *1 (-43 *3 *4)))) (-1648 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-2908 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-3108 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-2898 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-3641 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-3384 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-3877 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-3325 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-3635 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-2281 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))) (-3676 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))) (-3083 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-2017 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))) (-3868 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))) (-1564 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))) (-3785 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))))
-(-10 -7 (-15 -3743 ((-745) |#2|)) (-15 -3785 ((-745) |#2|)) (-15 -1564 ((-745) |#2|)) (-15 -3868 ((-745) |#2|)) (-15 -2017 ((-745) |#2|)) (-15 -3083 ((-619 |#2|))) (-15 -3676 ((-619 |#2|) |#2|)) (-15 -2281 ((-619 |#2|) |#2|)) (-15 -3635 ((-619 |#2|))) (-15 -3325 ((-619 |#2|))) (-15 -3877 ((-619 |#2|))) (-15 -3384 ((-619 |#2|))) (-15 -3641 ((-619 |#2|))) (-15 -2898 ((-619 (-663 |#1|)))) (-15 -3108 ((-619 (-663 |#1|)))) (-15 -2908 ((-619 (-663 |#1|)))) (-15 -1648 ((-619 |#2|))) (IF (|has| |#1| (-298)) (-15 -1917 ((-1219 |#2|) (-1219 |#2|))) |%noBranch|))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3825 (((-3 $ "failed")) NIL (|has| |#1| (-539)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-3620 (((-1219 (-663 |#1|)) (-1219 $)) NIL) (((-1219 (-663 |#1|))) 24)) (-1342 (((-1219 $)) 51)) (-1948 (($) NIL T CONST)) (-4106 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) NIL (|has| |#1| (-539)))) (-2169 (((-3 $ "failed")) NIL (|has| |#1| (-539)))) (-2877 (((-663 |#1|) (-1219 $)) NIL) (((-663 |#1|)) NIL)) (-3652 ((|#1| $) NIL)) (-1252 (((-663 |#1|) $ (-1219 $)) NIL) (((-663 |#1|) $) NIL)) (-2702 (((-3 $ "failed") $) NIL (|has| |#1| (-539)))) (-4036 (((-1132 (-921 |#1|))) NIL (|has| |#1| (-354)))) (-3387 (($ $ (-890)) NIL)) (-2105 ((|#1| $) NIL)) (-3685 (((-1132 |#1|) $) NIL (|has| |#1| (-539)))) (-1936 ((|#1| (-1219 $)) NIL) ((|#1|) NIL)) (-3543 (((-1132 |#1|) $) NIL)) (-4130 (((-112)) 87)) (-2614 (($ (-1219 |#1|) (-1219 $)) NIL) (($ (-1219 |#1|)) NIL)) (-3855 (((-3 $ "failed") $) 14 (|has| |#1| (-539)))) (-3116 (((-890)) 52)) (-2470 (((-112)) NIL)) (-1296 (($ $ (-890)) NIL)) (-2270 (((-112)) NIL)) (-3661 (((-112)) NIL)) (-1790 (((-112)) 89)) (-2499 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) NIL (|has| |#1| (-539)))) (-1549 (((-3 $ "failed")) NIL (|has| |#1| (-539)))) (-2972 (((-663 |#1|) (-1219 $)) NIL) (((-663 |#1|)) NIL)) (-2080 ((|#1| $) NIL)) (-2574 (((-663 |#1|) $ (-1219 $)) NIL) (((-663 |#1|) $) NIL)) (-4082 (((-3 $ "failed") $) NIL (|has| |#1| (-539)))) (-3569 (((-1132 (-921 |#1|))) NIL (|has| |#1| (-354)))) (-3851 (($ $ (-890)) NIL)) (-4005 ((|#1| $) NIL)) (-1964 (((-1132 |#1|) $) NIL (|has| |#1| (-539)))) (-4062 ((|#1| (-1219 $)) NIL) ((|#1|) NIL)) (-2317 (((-1132 |#1|) $) NIL)) (-3912 (((-112)) 86)) (-1466 (((-1119) $) NIL)) (-3795 (((-112)) 93)) (-2759 (((-112)) 92)) (-3892 (((-112)) 94)) (-3979 (((-1082) $) NIL)) (-1889 (((-112)) 88)) (-3334 ((|#1| $ (-547)) 54)) (-3220 (((-1219 |#1|) $ (-1219 $)) 48) (((-663 |#1|) (-1219 $) (-1219 $)) NIL) (((-1219 |#1|) $) 28) (((-663 |#1|) (-1219 $)) NIL)) (-2838 (((-1219 |#1|) $) NIL) (($ (-1219 |#1|)) NIL)) (-3906 (((-619 (-921 |#1|)) (-1219 $)) NIL) (((-619 (-921 |#1|))) NIL)) (-1473 (($ $ $) NIL)) (-3274 (((-112)) 84)) (-3838 (((-832) $) 69) (($ (-1219 |#1|)) 22)) (-1917 (((-1219 $)) 45)) (-3778 (((-619 (-1219 |#1|))) NIL (|has| |#1| (-539)))) (-2781 (($ $ $ $) NIL)) (-3592 (((-112)) 82)) (-3587 (($ (-663 |#1|) $) 18)) (-2031 (($ $ $) NIL)) (-3271 (((-112)) 85)) (-4150 (((-112)) 83)) (-2004 (((-112)) 81)) (-3269 (($) NIL T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1103 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-408 |#1|) (-622 (-1103 |#2| |#1|)) (-10 -8 (-15 -3838 ($ (-1219 |#1|))))) (-354) (-890) (-619 (-1136)) (-1219 (-663 |#1|))) (T -44))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-354)) (-14 *6 (-1219 (-663 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))))))
-(-13 (-408 |#1|) (-622 (-1103 |#2| |#1|)) (-10 -8 (-15 -3838 ($ (-1219 |#1|)))))
-((-3826 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4153 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2832 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-1336 (($ $) NIL)) (-3726 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-1652 (((-1224) $ |#1| |#1|) NIL (|has| $ (-6 -4330))) (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2165 (($ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-2809 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4330))) (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821))))) (-3185 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-3899 (((-112) $ (-745)) NIL)) (-1986 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4330)))) (-2272 (($ $ $) 27 (|has| $ (-6 -4330)))) (-3200 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4330)))) (-4086 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 29 (|has| $ (-6 -4330)))) (-2247 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4330))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-1186 (-547)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4330))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ "last" (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4330))) (($ $ "rest" $) NIL (|has| $ (-6 -4330))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ "first" (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4330))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ "value" (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) NIL (|has| $ (-6 -4330)))) (-4285 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL)) (-1482 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2823 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-3482 (((-3 |#2| "failed") |#1| $) 37)) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-3649 (($ $ (-745)) NIL) (($ $) 24)) (-2968 (($ $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-1513 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL) (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-3803 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4330))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4330)))) (-1802 ((|#2| $ |#1|) NIL) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547)) NIL)) (-2963 (((-112) $) NIL)) (-2876 (((-547) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL) (((-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))) (((-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547)) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-2982 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 18 (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329))) (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 18 (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) NIL)) (-2554 (((-112) $ $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-3735 (($ (-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 ((|#1| $) NIL (|has| |#1| (-821))) (((-547) $) 32 (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-3145 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-2777 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-2284 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329))) (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063)))) (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-1416 ((|#1| $) NIL (|has| |#1| (-821))) (((-547) $) 34 (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4330))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4330))) (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL)) (-3517 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-3583 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL)) (-1489 (((-112) $) NIL)) (-1466 (((-1119) $) 42 (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3820 (($ $ (-745)) NIL) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-3441 (((-619 |#1|) $) 20)) (-4073 (((-112) |#1| $) NIL)) (-4266 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2657 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL) (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2606 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2121 (((-619 |#1|) $) NIL) (((-619 (-547)) $) NIL)) (-2018 (((-112) |#1| $) NIL) (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3638 ((|#2| $) NIL (|has| |#1| (-821))) (($ $ (-745)) NIL) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 23)) (-3650 (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL) (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL)) (-3632 (($ $ |#2|) NIL (|has| $ (-6 -4330))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-1884 (((-112) $) NIL)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063)))) (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-2987 (((-619 |#2|) $) NIL) (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 17)) (-2884 (((-112) $) 16)) (-2245 (($) 13)) (-3334 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ (-547)) NIL) (($ $ (-1186 (-547))) NIL) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ "first") NIL) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $ "value") NIL)) (-2857 (((-547) $ $) NIL)) (-2699 (($) 12) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-2649 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-2159 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-1850 (((-112) $) NIL)) (-2005 (($ $) NIL)) (-2632 (($ $) NIL (|has| $ (-6 -4330)))) (-1749 (((-745) $) NIL)) (-2016 (($ $) NIL)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-745) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3794 (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL) (($ $ $) NIL)) (-1945 (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL) (($ (-619 $)) NIL) (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 25) (($ $ $) NIL)) (-3838 (((-832) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2514 (((-619 $) $) NIL)) (-1421 (((-112) $ $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-2300 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3829 (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") |#1| $) 44)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-2418 (((-112) $ $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-2381 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-2430 (((-112) $ $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-2405 (((-112) $ $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-821)))) (-3767 (((-745) $) 22 (|has| $ (-6 -4329)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1063) (-1063)) (T -45))
+((-1733 (*1 *1 *1) (-4 *1 (-35))) (-1710 (*1 *1 *1) (-4 *1 (-35))) (-1758 (*1 *1 *1) (-4 *1 (-35))) (-1934 (*1 *1 *1) (-4 *1 (-35))) (-1745 (*1 *1 *1) (-4 *1 (-35))) (-1722 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -1722 ($ $)) (-15 -1745 ($ $)) (-15 -1934 ($ $)) (-15 -1758 ($ $)) (-15 -1710 ($ $)) (-15 -1733 ($ $))))
+((-3834 (((-112) $ $) 19 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-4161 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 125)) (-2839 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 148)) (-1343 (($ $) 146)) (-3733 (($) 72) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 71)) (-1535 (((-1231) $ |#1| |#1|) 99 (|has| $ (-6 -4338))) (((-1231) $ (-549) (-549)) 178 (|has| $ (-6 -4338)))) (-3174 (($ $ (-549)) 159 (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-4311 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 200 (|has| $ (-6 -4338))) (($ $) 199 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)) (|has| $ (-6 -4338))))) (-3193 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-1584 (((-112) $ (-747)) 8)) (-2838 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 134 (|has| $ (-6 -4338)))) (-4179 (($ $ $) 155 (|has| $ (-6 -4338)))) (-2780 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 157 (|has| $ (-6 -4338)))) (-4135 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 153 (|has| $ (-6 -4338)))) (-2254 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 189 (|has| $ (-6 -4338))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-1193 (-549)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 160 (|has| $ (-6 -4338))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ "last" (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 158 (|has| $ (-6 -4338))) (($ $ "rest" $) 156 (|has| $ (-6 -4338))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ "first" (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 154 (|has| $ (-6 -4338))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ "value" (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 133 (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) 132 (|has| $ (-6 -4338)))) (-1717 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 45 (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 216)) (-1489 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 55 (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 175 (|has| $ (-6 -4337)))) (-2830 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 147)) (-3490 (((-3 |#2| "failed") |#1| $) 61)) (-1682 (($) 7 T CONST)) (-1585 (($ $) 201 (|has| $ (-6 -4338)))) (-3064 (($ $) 211)) (-3657 (($ $ (-747)) 142) (($ $) 140)) (-3745 (($ $) 214 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-3676 (($ $) 58 (-1536 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337))) (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))))) (-2129 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 47 (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 46 (|has| $ (-6 -4337))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 220) (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 215 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 54 (|has| $ (-6 -4337))) (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 174 (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 56 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 53 (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 52 (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 176 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 173 (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 172 (|has| $ (-6 -4337)))) (-1879 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4338))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 190 (|has| $ (-6 -4338)))) (-1809 ((|#2| $ |#1|) 88) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549)) 188)) (-3331 (((-112) $) 192)) (-2883 (((-549) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 208) (((-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 207 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))) (((-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549)) 206 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-2989 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 30 (|has| $ (-6 -4337))) (((-621 |#2|) $) 79 (|has| $ (-6 -4337))) (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 114 (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) 123)) (-3895 (((-112) $ $) 131 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-3743 (($ (-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 169)) (-3194 (((-112) $ (-747)) 9)) (-4031 ((|#1| $) 96 (|has| |#1| (-823))) (((-549) $) 180 (|has| (-549) (-823)))) (-2863 (($ $ $) 198 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-1303 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-3890 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-1562 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 29 (|has| $ (-6 -4337))) (((-621 |#2|) $) 80 (|has| $ (-6 -4337))) (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 115 (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4337)))) (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337))))) (-1569 ((|#1| $) 95 (|has| |#1| (-823))) (((-549) $) 181 (|has| (-549) (-823)))) (-3575 (($ $ $) 197 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 34 (|has| $ (-6 -4338))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4338))) (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 110 (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 109)) (-3525 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 225)) (-1508 (((-112) $ (-747)) 10)) (-3591 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 128)) (-2076 (((-112) $) 124)) (-3851 (((-1125) $) 22 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-3829 (($ $ (-747)) 145) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 143)) (-3449 (((-621 |#1|) $) 63)) (-2427 (((-112) |#1| $) 64)) (-3504 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 39)) (-2751 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 40) (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549)) 219) (($ $ $ (-549)) 218)) (-2616 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549)) 162) (($ $ $ (-549)) 161)) (-3303 (((-621 |#1|) $) 93) (((-621 (-549)) $) 183)) (-3761 (((-112) |#1| $) 92) (((-112) (-549) $) 184)) (-3990 (((-1087) $) 21 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-3646 ((|#2| $) 97 (|has| |#1| (-823))) (($ $ (-747)) 139) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 137)) (-3779 (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 51) (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 171)) (-1642 (($ $ |#2|) 98 (|has| $ (-6 -4338))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 179 (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 41)) (-3016 (((-112) $) 191)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 32 (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 112 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))))) 26 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 25 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 24 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 23 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 (-287 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 121 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 120 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 119 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))))) 118 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067)))) (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 182 (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-2696 (((-621 |#2|) $) 91) (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 185)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 187) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549)) 186) (($ $ (-1193 (-549))) 165) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ "first") 138) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ "value") 126)) (-3230 (((-549) $ $) 129)) (-2898 (($) 49) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 48)) (-3531 (($ $ (-549)) 222) (($ $ (-1193 (-549))) 221)) (-2167 (($ $ (-549)) 164) (($ $ (-1193 (-549))) 163)) (-3497 (((-112) $) 127)) (-1999 (($ $) 151)) (-2643 (($ $) 152 (|has| $ (-6 -4338)))) (-3798 (((-747) $) 150)) (-3612 (($ $) 149)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 31 (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (((-747) |#2| $) 81 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4337)))) (((-747) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 113 (|has| $ (-6 -4337)))) (-2730 (($ $ $ (-549)) 202 (|has| $ (-6 -4338)))) (-2281 (($ $) 13)) (-2845 (((-525) $) 59 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525)))))) (-3854 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 50) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 170)) (-3196 (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 224) (($ $ $) 223)) (-1952 (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 168) (($ (-621 $)) 167) (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 136) (($ $ $) 135)) (-3846 (((-834) $) 18 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834)))))) (-2742 (((-621 $) $) 122)) (-1987 (((-112) $ $) 130 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-3624 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 42)) (-3837 (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") |#1| $) 108)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 33 (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 111 (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) 195 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-2425 (((-112) $ $) 194 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-2389 (((-112) $ $) 20 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-2438 (((-112) $ $) 196 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-2412 (((-112) $ $) 193 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-36 |#1| |#2|) (-138) (-1067) (-1067)) (T -36))
+((-3837 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-2 (|:| -3337 *3) (|:| -1793 *4))))))
+(-13 (-1156 |t#1| |t#2|) (-642 (-2 (|:| -3337 |t#1|) (|:| -1793 |t#2|))) (-10 -8 (-15 -3837 ((-3 (-2 (|:| -3337 |t#1|) (|:| -1793 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-106 #0=(-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T) ((-101) -1536 (|has| |#2| (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823))) ((-593 (-834)) -1536 (|has| |#2| (-1067)) (|has| |#2| (-593 (-834))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834)))) ((-149 #1=(-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T) ((-594 (-525)) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))) ((-223 #0#) . T) ((-229 #0#) . T) ((-279 #2=(-549) #1#) . T) ((-279 |#1| |#2|) . T) ((-281 #2# #1#) . T) ((-281 |#1| |#2|) . T) ((-302 #1#) -12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-275 #1#) . T) ((-366 #1#) . T) ((-481 #1#) . T) ((-481 |#2|) . T) ((-584 #2# #1#) . T) ((-584 |#1| |#2|) . T) ((-505 #1# #1#) -12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-590 |#1| |#2|) . T) ((-627 #1#) . T) ((-642 #1#) . T) ((-823) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)) ((-981 #1#) . T) ((-1067) -1536 (|has| |#2| (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823))) ((-1116 #1#) . T) ((-1156 |#1| |#2|) . T) ((-1180) . T) ((-1214 #1#) . T))
+((-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -3846 (|#1| |#2|)) (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|))) (-38 |#2|) (-170)) (T -37))
+NIL
+(-10 -8 (-15 -3846 (|#1| |#2|)) (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-38 |#1|) (-138) (-170)) (T -38))
+((-3846 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170)))))
+(-13 (-1018) (-694 |t#1|) (-10 -8 (-15 -3846 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3628 (((-411 |#1|) |#1|) 41)) (-2121 (((-411 |#1|) |#1|) 30) (((-411 |#1|) |#1| (-621 (-48))) 33)) (-3952 (((-112) |#1|) 56)))
+(((-39 |#1|) (-10 -7 (-15 -2121 ((-411 |#1|) |#1| (-621 (-48)))) (-15 -2121 ((-411 |#1|) |#1|)) (-15 -3628 ((-411 |#1|) |#1|)) (-15 -3952 ((-112) |#1|))) (-1202 (-48))) (T -39))
+((-3952 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1202 (-48))))) (-3628 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1202 (-48))))) (-2121 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1202 (-48))))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-48))) (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1202 (-48))))))
+(-10 -7 (-15 -2121 ((-411 |#1|) |#1| (-621 (-48)))) (-15 -2121 ((-411 |#1|) |#1|)) (-15 -3628 ((-411 |#1|) |#1|)) (-15 -3952 ((-112) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2724 (((-2 (|:| |num| (-1226 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-2258 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2799 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-1738 (((-665 (-400 |#2|)) (-1226 $)) NIL) (((-665 (-400 |#2|))) NIL)) (-2906 (((-400 |#2|) $) NIL)) (-3062 (((-1153 (-892) (-747)) (-549)) NIL (|has| (-400 |#2|) (-342)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2402 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3866 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3614 (((-747)) NIL (|has| (-400 |#2|) (-361)))) (-1279 (((-112)) NIL)) (-1388 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (|has| (-400 |#2|) (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-400 |#2|) (-1009 (-400 (-549))))) (((-3 (-400 |#2|) "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| (-400 |#2|) (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| (-400 |#2|) (-1009 (-400 (-549))))) (((-400 |#2|) $) NIL)) (-3492 (($ (-1226 (-400 |#2|)) (-1226 $)) NIL) (($ (-1226 (-400 |#2|))) 57) (($ (-1226 |#2|) |#2|) 125)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-342)))) (-2095 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3506 (((-665 (-400 |#2|)) $ (-1226 $)) NIL) (((-665 (-400 |#2|)) $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| (-400 |#2|) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| (-400 |#2|) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-400 |#2|))) (|:| |vec| (-1226 (-400 |#2|)))) (-665 $) (-1226 $)) NIL) (((-665 (-400 |#2|)) (-665 $)) NIL)) (-2263 (((-1226 $) (-1226 $)) NIL)) (-2557 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-2114 (((-3 $ "failed") $) NIL)) (-3690 (((-621 (-621 |#1|))) NIL (|has| |#1| (-361)))) (-3465 (((-112) |#1| |#1|) NIL)) (-3123 (((-892)) NIL)) (-3239 (($) NIL (|has| (-400 |#2|) (-361)))) (-3031 (((-112)) NIL)) (-2941 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2067 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| (-400 |#2|) (-356)))) (-1285 (($ $) NIL)) (-2405 (($) NIL (|has| (-400 |#2|) (-342)))) (-2288 (((-112) $) NIL (|has| (-400 |#2|) (-342)))) (-3165 (($ $ (-747)) NIL (|has| (-400 |#2|) (-342))) (($ $) NIL (|has| (-400 |#2|) (-342)))) (-1420 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-2088 (((-892) $) NIL (|has| (-400 |#2|) (-342))) (((-809 (-892)) $) NIL (|has| (-400 |#2|) (-342)))) (-2675 (((-112) $) NIL)) (-2609 (((-747)) NIL)) (-2453 (((-1226 $) (-1226 $)) 102)) (-3630 (((-400 |#2|) $) NIL)) (-1672 (((-621 (-923 |#1|)) (-1143)) NIL (|has| |#1| (-356)))) (-1681 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-342)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3788 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-1881 (((-892) $) NIL (|has| (-400 |#2|) (-361)))) (-2548 ((|#3| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3851 (((-1125) $) NIL)) (-3795 (((-1231) (-747)) 79)) (-2768 (((-665 (-400 |#2|))) 51)) (-1948 (((-665 (-400 |#2|))) 44)) (-1992 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3569 (($ (-1226 |#2|) |#2|) 126)) (-2955 (((-665 (-400 |#2|))) 45)) (-1519 (((-665 (-400 |#2|))) 43)) (-3621 (((-2 (|:| |num| (-665 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-3581 (((-2 (|:| |num| (-1226 |#2|)) (|:| |den| |#2|)) $) 64)) (-3852 (((-1226 $)) 42)) (-1613 (((-1226 $)) 41)) (-2128 (((-112) $) NIL)) (-3710 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3060 (($) NIL (|has| (-400 |#2|) (-342)) CONST)) (-3493 (($ (-892)) NIL (|has| (-400 |#2|) (-361)))) (-1314 (((-3 |#2| "failed")) NIL)) (-3990 (((-1087) $) NIL)) (-2118 (((-747)) NIL)) (-4248 (($) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| (-400 |#2|) (-356)))) (-3727 (($ (-621 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL (|has| (-400 |#2|) (-342)))) (-2121 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-2042 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3684 (((-747) $) NIL (|has| (-400 |#2|) (-356)))) (-3341 ((|#1| $ |#1| |#1|) NIL)) (-1969 (((-3 |#2| "failed")) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3602 (((-400 |#2|) (-1226 $)) NIL) (((-400 |#2|)) 39)) (-3914 (((-747) $) NIL (|has| (-400 |#2|) (-342))) (((-3 (-747) "failed") $ $) NIL (|has| (-400 |#2|) (-342)))) (-3456 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-747)) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2901 (((-665 (-400 |#2|)) (-1226 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-2815 ((|#3|) 50)) (-3170 (($) NIL (|has| (-400 |#2|) (-342)))) (-4263 (((-1226 (-400 |#2|)) $ (-1226 $)) NIL) (((-665 (-400 |#2|)) (-1226 $) (-1226 $)) NIL) (((-1226 (-400 |#2|)) $) 58) (((-665 (-400 |#2|)) (-1226 $)) 103)) (-2845 (((-1226 (-400 |#2|)) $) NIL) (($ (-1226 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| (-400 |#2|) (-342)))) (-3339 (((-1226 $) (-1226 $)) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-549))) NIL (-1536 (|has| (-400 |#2|) (-1009 (-400 (-549)))) (|has| (-400 |#2|) (-356)))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2210 (($ $) NIL (|has| (-400 |#2|) (-342))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-4154 ((|#3| $) NIL)) (-2082 (((-747)) NIL)) (-3672 (((-112)) 37)) (-2330 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-1949 (((-1226 $)) 93)) (-1498 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-2033 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2810 (((-112)) NIL)) (-3276 (($) 16 T CONST)) (-3287 (($) 26 T CONST)) (-1702 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-747)) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-549)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-549))) NIL (|has| (-400 |#2|) (-356)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -3795 ((-1231) (-747))))) (-356) (-1202 |#1|) (-1202 (-400 |#2|)) |#3|) (T -40))
+((-3795 (*1 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-4 *5 (-1202 *4)) (-5 *2 (-1231)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1202 (-400 *5))) (-14 *7 *6))))
+(-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -3795 ((-1231) (-747)))))
+((-2409 ((|#2| |#2|) 48)) (-2379 ((|#2| |#2|) 120 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-549)))))) (-1573 ((|#2| |#2|) 87 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-549)))))) (-3749 ((|#2| |#2|) 88 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-549)))))) (-3907 ((|#2| (-114) |#2| (-747)) 116 (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-823)) (|has| |#1| (-1009 (-549)))))) (-3763 (((-1139 |#2|) |#2|) 45)) (-1641 ((|#2| |#2| (-621 (-592 |#2|))) 18) ((|#2| |#2| (-621 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -2409 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -1641 (|#2| |#2| |#2|)) (-15 -1641 (|#2| |#2| (-621 |#2|))) (-15 -1641 (|#2| |#2| (-621 (-592 |#2|)))) (-15 -3763 ((-1139 |#2|) |#2|)) (IF (|has| |#1| (-823)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1009 (-549))) (IF (|has| |#2| (-423 |#1|)) (PROGN (-15 -3749 (|#2| |#2|)) (-15 -1573 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -3907 (|#2| (-114) |#2| (-747)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-541) (-13 (-356) (-295) (-10 -8 (-15 -1394 ((-1092 |#1| (-592 $)) $)) (-15 -1403 ((-1092 |#1| (-592 $)) $)) (-15 -3846 ($ (-1092 |#1| (-592 $))))))) (T -41))
+((-3907 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-747)) (-4 *5 (-444)) (-4 *5 (-823)) (-4 *5 (-1009 (-549))) (-4 *5 (-541)) (-5 *1 (-41 *5 *2)) (-4 *2 (-423 *5)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1394 ((-1092 *5 (-592 $)) $)) (-15 -1403 ((-1092 *5 (-592 $)) $)) (-15 -3846 ($ (-1092 *5 (-592 $))))))))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-549))) (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1394 ((-1092 *3 (-592 $)) $)) (-15 -1403 ((-1092 *3 (-592 $)) $)) (-15 -3846 ($ (-1092 *3 (-592 $))))))))) (-1573 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-549))) (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1394 ((-1092 *3 (-592 $)) $)) (-15 -1403 ((-1092 *3 (-592 $)) $)) (-15 -3846 ($ (-1092 *3 (-592 $))))))))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-549))) (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1394 ((-1092 *3 (-592 $)) $)) (-15 -1403 ((-1092 *3 (-592 $)) $)) (-15 -3846 ($ (-1092 *3 (-592 $))))))))) (-3763 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-1139 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-356) (-295) (-10 -8 (-15 -1394 ((-1092 *4 (-592 $)) $)) (-15 -1403 ((-1092 *4 (-592 $)) $)) (-15 -3846 ($ (-1092 *4 (-592 $))))))))) (-1641 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-592 *2))) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1394 ((-1092 *4 (-592 $)) $)) (-15 -1403 ((-1092 *4 (-592 $)) $)) (-15 -3846 ($ (-1092 *4 (-592 $))))))) (-4 *4 (-541)) (-5 *1 (-41 *4 *2)))) (-1641 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1394 ((-1092 *4 (-592 $)) $)) (-15 -1403 ((-1092 *4 (-592 $)) $)) (-15 -3846 ($ (-1092 *4 (-592 $))))))) (-4 *4 (-541)) (-5 *1 (-41 *4 *2)))) (-1641 (*1 *2 *2 *2) (-12 (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1394 ((-1092 *3 (-592 $)) $)) (-15 -1403 ((-1092 *3 (-592 $)) $)) (-15 -3846 ($ (-1092 *3 (-592 $))))))))) (-1641 (*1 *2 *2) (-12 (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1394 ((-1092 *3 (-592 $)) $)) (-15 -1403 ((-1092 *3 (-592 $)) $)) (-15 -3846 ($ (-1092 *3 (-592 $))))))))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-295) (-10 -8 (-15 -1394 ((-1092 *3 (-592 $)) $)) (-15 -1403 ((-1092 *3 (-592 $)) $)) (-15 -3846 ($ (-1092 *3 (-592 $))))))))))
+(-10 -7 (-15 -2409 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -1641 (|#2| |#2| |#2|)) (-15 -1641 (|#2| |#2| (-621 |#2|))) (-15 -1641 (|#2| |#2| (-621 (-592 |#2|)))) (-15 -3763 ((-1139 |#2|) |#2|)) (IF (|has| |#1| (-823)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1009 (-549))) (IF (|has| |#2| (-423 |#1|)) (PROGN (-15 -3749 (|#2| |#2|)) (-15 -1573 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -3907 (|#2| (-114) |#2| (-747)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2121 (((-411 (-1139 |#3|)) (-1139 |#3|) (-621 (-48))) 23) (((-411 |#3|) |#3| (-621 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2121 ((-411 |#3|) |#3| (-621 (-48)))) (-15 -2121 ((-411 (-1139 |#3|)) (-1139 |#3|) (-621 (-48))))) (-823) (-769) (-920 (-48) |#2| |#1|)) (T -42))
+((-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-48))) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *7 (-920 (-48) *6 *5)) (-5 *2 (-411 (-1139 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1139 *7)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-48))) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *2 (-411 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-920 (-48) *6 *5)))))
+(-10 -7 (-15 -2121 ((-411 |#3|) |#3| (-621 (-48)))) (-15 -2121 ((-411 (-1139 |#3|)) (-1139 |#3|) (-621 (-48)))))
+((-4078 (((-747) |#2|) 65)) (-3702 (((-747) |#2|) 68)) (-2482 (((-621 |#2|)) 33)) (-3770 (((-747) |#2|) 67)) (-3065 (((-747) |#2|) 64)) (-3693 (((-747) |#2|) 66)) (-2239 (((-621 (-665 |#1|))) 60)) (-2877 (((-621 |#2|)) 55)) (-2581 (((-621 |#2|) |#2|) 43)) (-2855 (((-621 |#2|)) 57)) (-3725 (((-621 |#2|)) 56)) (-2476 (((-621 (-665 |#1|))) 48)) (-1940 (((-621 |#2|)) 54)) (-4217 (((-621 |#2|) |#2|) 42)) (-1567 (((-621 |#2|)) 50)) (-2078 (((-621 (-665 |#1|))) 61)) (-4240 (((-621 |#2|)) 59)) (-1949 (((-1226 |#2|) (-1226 |#2|)) 84 (|has| |#1| (-300)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -3770 ((-747) |#2|)) (-15 -3702 ((-747) |#2|)) (-15 -3065 ((-747) |#2|)) (-15 -4078 ((-747) |#2|)) (-15 -3693 ((-747) |#2|)) (-15 -1567 ((-621 |#2|))) (-15 -4217 ((-621 |#2|) |#2|)) (-15 -2581 ((-621 |#2|) |#2|)) (-15 -1940 ((-621 |#2|))) (-15 -2877 ((-621 |#2|))) (-15 -3725 ((-621 |#2|))) (-15 -2855 ((-621 |#2|))) (-15 -4240 ((-621 |#2|))) (-15 -2476 ((-621 (-665 |#1|)))) (-15 -2239 ((-621 (-665 |#1|)))) (-15 -2078 ((-621 (-665 |#1|)))) (-15 -2482 ((-621 |#2|))) (IF (|has| |#1| (-300)) (-15 -1949 ((-1226 |#2|) (-1226 |#2|))) |%noBranch|)) (-541) (-410 |#1|)) (T -43))
+((-1949 (*1 *2 *2) (-12 (-5 *2 (-1226 *4)) (-4 *4 (-410 *3)) (-4 *3 (-300)) (-4 *3 (-541)) (-5 *1 (-43 *3 *4)))) (-2482 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2078 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 (-665 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2239 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 (-665 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2476 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 (-665 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-4240 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2855 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-3725 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2877 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-1940 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-2581 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-4217 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-1567 (*1 *2) (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-410 *3)))) (-3693 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-4078 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-3065 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-3702 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))) (-3770 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3)) (-4 *3 (-410 *4)))))
+(-10 -7 (-15 -3770 ((-747) |#2|)) (-15 -3702 ((-747) |#2|)) (-15 -3065 ((-747) |#2|)) (-15 -4078 ((-747) |#2|)) (-15 -3693 ((-747) |#2|)) (-15 -1567 ((-621 |#2|))) (-15 -4217 ((-621 |#2|) |#2|)) (-15 -2581 ((-621 |#2|) |#2|)) (-15 -1940 ((-621 |#2|))) (-15 -2877 ((-621 |#2|))) (-15 -3725 ((-621 |#2|))) (-15 -2855 ((-621 |#2|))) (-15 -4240 ((-621 |#2|))) (-15 -2476 ((-621 (-665 |#1|)))) (-15 -2239 ((-621 (-665 |#1|)))) (-15 -2078 ((-621 (-665 |#1|)))) (-15 -2482 ((-621 |#2|))) (IF (|has| |#1| (-300)) (-15 -1949 ((-1226 |#2|) (-1226 |#2|))) |%noBranch|))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2207 (((-3 $ "failed")) NIL (|has| |#1| (-541)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3277 (((-1226 (-665 |#1|)) (-1226 $)) NIL) (((-1226 (-665 |#1|))) 24)) (-3945 (((-1226 $)) 51)) (-1682 (($) NIL T CONST)) (-3219 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) NIL (|has| |#1| (-541)))) (-3550 (((-3 $ "failed")) NIL (|has| |#1| (-541)))) (-4212 (((-665 |#1|) (-1226 $)) NIL) (((-665 |#1|)) NIL)) (-2840 ((|#1| $) NIL)) (-3841 (((-665 |#1|) $ (-1226 $)) NIL) (((-665 |#1|) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-541)))) (-2478 (((-1139 (-923 |#1|))) NIL (|has| |#1| (-356)))) (-3117 (($ $ (-892)) NIL)) (-2182 ((|#1| $) NIL)) (-2289 (((-1139 |#1|) $) NIL (|has| |#1| (-541)))) (-3076 ((|#1| (-1226 $)) NIL) ((|#1|) NIL)) (-3266 (((-1139 |#1|) $) NIL)) (-1368 (((-112)) 87)) (-3492 (($ (-1226 |#1|) (-1226 $)) NIL) (($ (-1226 |#1|)) NIL)) (-2114 (((-3 $ "failed") $) 14 (|has| |#1| (-541)))) (-3123 (((-892)) 52)) (-3601 (((-112)) NIL)) (-2943 (($ $ (-892)) NIL)) (-3975 (((-112)) NIL)) (-2291 (((-112)) NIL)) (-2647 (((-112)) 89)) (-1742 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) NIL (|has| |#1| (-541)))) (-4101 (((-3 $ "failed")) NIL (|has| |#1| (-541)))) (-2870 (((-665 |#1|) (-1226 $)) NIL) (((-665 |#1|)) NIL)) (-2654 ((|#1| $) NIL)) (-2303 (((-665 |#1|) $ (-1226 $)) NIL) (((-665 |#1|) $) NIL)) (-1919 (((-3 $ "failed") $) NIL (|has| |#1| (-541)))) (-2014 (((-1139 (-923 |#1|))) NIL (|has| |#1| (-356)))) (-2884 (($ $ (-892)) NIL)) (-2248 ((|#1| $) NIL)) (-1378 (((-1139 |#1|) $) NIL (|has| |#1| (-541)))) (-2920 ((|#1| (-1226 $)) NIL) ((|#1|) NIL)) (-2443 (((-1139 |#1|) $) NIL)) (-3623 (((-112)) 86)) (-3851 (((-1125) $) NIL)) (-3260 (((-112)) 93)) (-2754 (((-112)) 92)) (-2055 (((-112)) 94)) (-3990 (((-1087) $) NIL)) (-2392 (((-112)) 88)) (-3341 ((|#1| $ (-549)) 54)) (-4263 (((-1226 |#1|) $ (-1226 $)) 48) (((-665 |#1|) (-1226 $) (-1226 $)) NIL) (((-1226 |#1|) $) 28) (((-665 |#1|) (-1226 $)) NIL)) (-2845 (((-1226 |#1|) $) NIL) (($ (-1226 |#1|)) NIL)) (-4111 (((-621 (-923 |#1|)) (-1226 $)) NIL) (((-621 (-923 |#1|))) NIL)) (-3293 (($ $ $) NIL)) (-1942 (((-112)) 84)) (-3846 (((-834) $) 69) (($ (-1226 |#1|)) 22)) (-1949 (((-1226 $)) 45)) (-4315 (((-621 (-1226 |#1|))) NIL (|has| |#1| (-541)))) (-4272 (($ $ $ $) NIL)) (-3430 (((-112)) 82)) (-3596 (($ (-665 |#1|) $) 18)) (-2174 (($ $ $) NIL)) (-2864 (((-112)) 85)) (-4257 (((-112)) 83)) (-1898 (((-112)) 81)) (-3276 (($) NIL T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1109 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-410 |#1|) (-624 (-1109 |#2| |#1|)) (-10 -8 (-15 -3846 ($ (-1226 |#1|))))) (-356) (-892) (-621 (-1143)) (-1226 (-665 |#1|))) (T -44))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-356)) (-14 *6 (-1226 (-665 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))))))
+(-13 (-410 |#1|) (-624 (-1109 |#2| |#1|)) (-10 -8 (-15 -3846 ($ (-1226 |#1|)))))
+((-3834 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-4161 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-2839 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-1343 (($ $) NIL)) (-3733 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-1535 (((-1231) $ |#1| |#1|) NIL (|has| $ (-6 -4338))) (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-3174 (($ $ (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-4311 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4338))) (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823))))) (-3193 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-1584 (((-112) $ (-747)) NIL)) (-2838 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4338)))) (-4179 (($ $ $) 27 (|has| $ (-6 -4338)))) (-2780 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4338)))) (-4135 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 29 (|has| $ (-6 -4338)))) (-2254 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4338))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-1193 (-549)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4338))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ "last" (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4338))) (($ $ "rest" $) NIL (|has| $ (-6 -4338))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ "first" (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4338))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ "value" (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) NIL (|has| $ (-6 -4338)))) (-1717 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL)) (-1489 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2830 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-3490 (((-3 |#2| "failed") |#1| $) 37)) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3657 (($ $ (-747)) NIL) (($ $) 24)) (-3745 (($ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-2129 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL) (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4338))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4338)))) (-1809 ((|#2| $ |#1|) NIL) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549)) NIL)) (-3331 (((-112) $) NIL)) (-2883 (((-549) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL) (((-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))) (((-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549)) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-2989 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 18 (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337))) (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 18 (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) NIL)) (-3895 (((-112) $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-3743 (($ (-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 ((|#1| $) NIL (|has| |#1| (-823))) (((-549) $) 32 (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-1303 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-3890 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-1562 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337))) (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067)))) (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-1569 ((|#1| $) NIL (|has| |#1| (-823))) (((-549) $) 34 (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4338))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4338))) (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL)) (-3525 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3591 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL)) (-2076 (((-112) $) NIL)) (-3851 (((-1125) $) 42 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3829 (($ $ (-747)) NIL) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-3449 (((-621 |#1|) $) 20)) (-2427 (((-112) |#1| $) NIL)) (-3504 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-2751 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL) (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2616 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3303 (((-621 |#1|) $) NIL) (((-621 (-549)) $) NIL)) (-3761 (((-112) |#1| $) NIL) (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3646 ((|#2| $) NIL (|has| |#1| (-823))) (($ $ (-747)) NIL) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 23)) (-3779 (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL) (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL)) (-1642 (($ $ |#2|) NIL (|has| $ (-6 -4338))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-3016 (((-112) $) NIL)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067)))) (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-2696 (((-621 |#2|) $) NIL) (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 17)) (-3670 (((-112) $) 16)) (-3742 (($) 13)) (-3341 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ (-549)) NIL) (($ $ (-1193 (-549))) NIL) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ "first") NIL) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $ "value") NIL)) (-3230 (((-549) $ $) NIL)) (-2898 (($) 12) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3531 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-2167 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-3497 (((-112) $) NIL)) (-1999 (($ $) NIL)) (-2643 (($ $) NIL (|has| $ (-6 -4338)))) (-3798 (((-747) $) NIL)) (-3612 (($ $) NIL)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3196 (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL) (($ $ $) NIL)) (-1952 (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL) (($ (-621 $)) NIL) (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 25) (($ $ $) NIL)) (-3846 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-2742 (((-621 $) $) NIL)) (-1987 (((-112) $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-3624 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3837 (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") |#1| $) 44)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-2425 (((-112) $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-2389 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-2438 (((-112) $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-2412 (((-112) $ $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-823)))) (-3775 (((-747) $) 22 (|has| $ (-6 -4337)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1067) (-1067)) (T -45))
NIL
(-36 |#1| |#2|)
-((-1759 (((-112) $) 12)) (-2790 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-398 (-547)) $) 25) (($ $ (-398 (-547))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -1759 ((-112) |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-47 |#2| |#3|) (-1016) (-766)) (T -46))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -1759 ((-112) |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3571 (($ $) 50 (|has| |#1| (-539)))) (-3915 (((-112) $) 52 (|has| |#1| (-539)))) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-2063 (($ $) 58)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1759 (((-112) $) 60)) (-2238 (($ |#1| |#2|) 59)) (-2790 (($ (-1 |#1| |#1|) $) 61)) (-2019 (($ $) 63)) (-2037 ((|#1| $) 64)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2032 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-3705 ((|#2| $) 62)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539))) (($ |#1|) 45 (|has| |#1| (-169)))) (-2450 ((|#1| $ |#2|) 57)) (-2220 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 51 (|has| |#1| (-539)))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#1|) 56 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547)))))))
-(((-47 |#1| |#2|) (-138) (-1016) (-766)) (T -47))
-((-2037 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2019 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-112)))) (-2238 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-2063 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-2450 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2506 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *2 (-354)))))
-(-13 (-1016) (-111 |t#1| |t#1|) (-10 -8 (-15 -2037 (|t#1| $)) (-15 -2019 ($ $)) (-15 -3705 (|t#2| $)) (-15 -2790 ($ (-1 |t#1| |t#1|) $)) (-15 -1759 ((-112) $)) (-15 -2238 ($ |t#1| |t#2|)) (-15 -2063 ($ $)) (-15 -2450 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-354)) (-15 -2506 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-6 (-169)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-539)) (-6 (-539)) |%noBranch|) (IF (|has| |t#1| (-38 (-398 (-547)))) (-6 (-38 (-398 (-547)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-281) |has| |#1| (-539)) ((-539) |has| |#1| (-539)) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-3358 (((-619 $) (-1132 $) (-1136)) NIL) (((-619 $) (-1132 $)) NIL) (((-619 $) (-921 $)) NIL)) (-2336 (($ (-1132 $) (-1136)) NIL) (($ (-1132 $)) NIL) (($ (-921 $)) NIL)) (-1499 (((-112) $) 11)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1974 (((-619 (-590 $)) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3008 (($ $ (-285 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-2127 (($ $) NIL)) (-1547 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-3952 (((-619 $) (-1132 $) (-1136)) NIL) (((-619 $) (-1132 $)) NIL) (((-619 $) (-921 $)) NIL)) (-1531 (($ (-1132 $) (-1136)) NIL) (($ (-1132 $)) NIL) (($ (-921 $)) NIL)) (-2707 (((-3 (-590 $) "failed") $) NIL) (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL)) (-2652 (((-590 $) $) NIL) (((-547) $) NIL) (((-398 (-547)) $) NIL)) (-2089 (($ $ $) NIL)) (-1694 (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL) (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -1877 (-663 (-398 (-547)))) (|:| |vec| (-1219 (-398 (-547))))) (-663 $) (-1219 $)) NIL) (((-663 (-398 (-547))) (-663 $)) NIL)) (-2552 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-3590 (($ $) NIL) (($ (-619 $)) NIL)) (-1408 (((-619 (-114)) $) NIL)) (-4185 (((-114) (-114)) NIL)) (-2261 (((-112) $) 14)) (-2935 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-1386 (((-1087 (-547) (-590 $)) $) NIL)) (-3869 (($ $ (-547)) NIL)) (-3160 (((-1132 $) (-1132 $) (-590 $)) NIL) (((-1132 $) (-1132 $) (-619 (-590 $))) NIL) (($ $ (-590 $)) NIL) (($ $ (-619 (-590 $))) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2428 (((-1132 $) (-590 $)) NIL (|has| $ (-1016)))) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2790 (($ (-1 $ $) (-590 $)) NIL)) (-3024 (((-3 (-590 $) "failed") $) NIL)) (-3689 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-2065 (((-619 (-590 $)) $) NIL)) (-1469 (($ (-114) $) NIL) (($ (-114) (-619 $)) NIL)) (-1667 (((-112) $ (-114)) NIL) (((-112) $ (-1136)) NIL)) (-1984 (($ $) NIL)) (-4029 (((-745) $) NIL)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ (-619 $)) NIL) (($ $ $) NIL)) (-3883 (((-112) $ $) NIL) (((-112) $ (-1136)) NIL)) (-2115 (((-409 $) $) NIL)) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3874 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-2679 (($ $ (-590 $) $) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1136)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1136)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1136) (-1 $ (-619 $))) NIL) (($ $ (-1136) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2471 (((-745) $) NIL)) (-3334 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-2242 (($ $) NIL) (($ $ $) NIL)) (-3448 (($ $ (-745)) NIL) (($ $) NIL)) (-1396 (((-1087 (-547) (-590 $)) $) NIL)) (-1882 (($ $) NIL (|has| $ (-1016)))) (-2838 (((-370) $) NIL) (((-217) $) NIL) (((-166 (-370)) $) NIL)) (-3838 (((-832) $) NIL) (($ (-590 $)) NIL) (($ (-398 (-547))) NIL) (($ $) NIL) (($ (-547)) NIL) (($ (-1087 (-547) (-590 $))) NIL)) (-2736 (((-745)) NIL)) (-4129 (($ $) NIL) (($ (-619 $)) NIL)) (-3128 (((-112) (-114)) NIL)) (-3577 (((-112) $ $) NIL)) (-3269 (($) 7 T CONST)) (-3281 (($) 12 T CONST)) (-1695 (($ $ (-745)) NIL) (($ $) NIL)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 16)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL)) (-2493 (($ $ $) 15) (($ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-398 (-547))) NIL) (($ $ (-547)) NIL) (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL) (($ $ $) NIL) (($ (-547) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL)))
-(((-48) (-13 (-293) (-27) (-1007 (-547)) (-1007 (-398 (-547))) (-615 (-547)) (-991) (-615 (-398 (-547))) (-145) (-592 (-166 (-370))) (-225) (-10 -8 (-15 -3838 ($ (-1087 (-547) (-590 $)))) (-15 -1386 ((-1087 (-547) (-590 $)) $)) (-15 -1396 ((-1087 (-547) (-590 $)) $)) (-15 -2552 ($ $)) (-15 -3160 ((-1132 $) (-1132 $) (-590 $))) (-15 -3160 ((-1132 $) (-1132 $) (-619 (-590 $)))) (-15 -3160 ($ $ (-590 $))) (-15 -3160 ($ $ (-619 (-590 $))))))) (T -48))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1087 (-547) (-590 (-48)))) (-5 *1 (-48)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-48)))) (-5 *1 (-48)))) (-1396 (*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-48)))) (-5 *1 (-48)))) (-2552 (*1 *1 *1) (-5 *1 (-48))) (-3160 (*1 *2 *2 *3) (-12 (-5 *2 (-1132 (-48))) (-5 *3 (-590 (-48))) (-5 *1 (-48)))) (-3160 (*1 *2 *2 *3) (-12 (-5 *2 (-1132 (-48))) (-5 *3 (-619 (-590 (-48)))) (-5 *1 (-48)))) (-3160 (*1 *1 *1 *2) (-12 (-5 *2 (-590 (-48))) (-5 *1 (-48)))) (-3160 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-590 (-48)))) (-5 *1 (-48)))))
-(-13 (-293) (-27) (-1007 (-547)) (-1007 (-398 (-547))) (-615 (-547)) (-991) (-615 (-398 (-547))) (-145) (-592 (-166 (-370))) (-225) (-10 -8 (-15 -3838 ($ (-1087 (-547) (-590 $)))) (-15 -1386 ((-1087 (-547) (-590 $)) $)) (-15 -1396 ((-1087 (-547) (-590 $)) $)) (-15 -2552 ($ $)) (-15 -3160 ((-1132 $) (-1132 $) (-590 $))) (-15 -3160 ((-1132 $) (-1132 $) (-619 (-590 $)))) (-15 -3160 ($ $ (-590 $))) (-15 -3160 ($ $ (-619 (-590 $))))))
-((-3826 (((-112) $ $) NIL)) (-2897 (((-619 (-1136)) $) 17)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 7)) (-2487 (((-1141) $) 18)) (-2381 (((-112) $ $) NIL)))
-(((-49) (-13 (-1063) (-10 -8 (-15 -2897 ((-619 (-1136)) $)) (-15 -2487 ((-1141) $))))) (T -49))
-((-2897 (*1 *2 *1) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-49)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-49)))))
-(-13 (-1063) (-10 -8 (-15 -2897 ((-619 (-1136)) $)) (-15 -2487 ((-1141) $))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 61)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-1317 (((-112) $) 20)) (-2707 (((-3 |#1| "failed") $) 23)) (-2652 ((|#1| $) 24)) (-2063 (($ $) 28)) (-3855 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-2037 ((|#1| $) 21)) (-2795 (($ $) 50)) (-1466 (((-1119) $) NIL)) (-2668 (((-112) $) 30)) (-3979 (((-1082) $) NIL)) (-4238 (($ (-745)) 48)) (-2712 (($ (-619 (-547))) 49)) (-3705 (((-745) $) 31)) (-3838 (((-832) $) 64) (($ (-547)) 45) (($ |#1|) 43)) (-2450 ((|#1| $ $) 19)) (-2736 (((-745)) 47)) (-3269 (($) 32 T CONST)) (-3281 (($) 14 T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 40)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-50 |#1| |#2|) (-13 (-596 |#1|) (-1007 |#1|) (-10 -8 (-15 -2037 (|#1| $)) (-15 -2795 ($ $)) (-15 -2063 ($ $)) (-15 -2450 (|#1| $ $)) (-15 -4238 ($ (-745))) (-15 -2712 ($ (-619 (-547)))) (-15 -2668 ((-112) $)) (-15 -1317 ((-112) $)) (-15 -3705 ((-745) $)) (-15 -2790 ($ (-1 |#1| |#1|) $)))) (-1016) (-619 (-1136))) (T -50))
-((-2037 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1136))))) (-2795 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1136))))) (-2063 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1136))))) (-2450 (*1 *2 *1 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1136))))) (-4238 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1136))))) (-2712 (*1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1136))))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1136))))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1136))))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1136))))) (-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-50 *3 *4)) (-14 *4 (-619 (-1136))))))
-(-13 (-596 |#1|) (-1007 |#1|) (-10 -8 (-15 -2037 (|#1| $)) (-15 -2795 ($ $)) (-15 -2063 ($ $)) (-15 -2450 (|#1| $ $)) (-15 -4238 ($ (-745))) (-15 -2712 ($ (-619 (-547)))) (-15 -2668 ((-112) $)) (-15 -1317 ((-112) $)) (-15 -3705 ((-745) $)) (-15 -2790 ($ (-1 |#1| |#1|) $))))
-((-1317 (((-112) (-52)) 13)) (-2707 (((-3 |#1| "failed") (-52)) 21)) (-2652 ((|#1| (-52)) 22)) (-3838 (((-52) |#1|) 18)))
-(((-51 |#1|) (-10 -7 (-15 -3838 ((-52) |#1|)) (-15 -2707 ((-3 |#1| "failed") (-52))) (-15 -1317 ((-112) (-52))) (-15 -2652 (|#1| (-52)))) (-1173)) (T -51))
-((-2652 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1173)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1173)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1173)))) (-3838 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1173)))))
-(-10 -7 (-15 -3838 ((-52) |#1|)) (-15 -2707 ((-3 |#1| "failed") (-52))) (-15 -1317 ((-112) (-52))) (-15 -2652 (|#1| (-52))))
-((-3826 (((-112) $ $) NIL)) (-3291 (((-1119) (-112)) 25)) (-4223 (((-832) $) 24)) (-1263 (((-748) $) 12)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3365 (((-832) $) 16)) (-1522 (((-1067) $) 14)) (-3838 (((-832) $) 32)) (-3368 (($ (-1067) (-748)) 33)) (-2381 (((-112) $ $) 18)))
-(((-52) (-13 (-1063) (-10 -8 (-15 -3368 ($ (-1067) (-748))) (-15 -3365 ((-832) $)) (-15 -4223 ((-832) $)) (-15 -1522 ((-1067) $)) (-15 -1263 ((-748) $)) (-15 -3291 ((-1119) (-112)))))) (T -52))
-((-3368 (*1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-748)) (-5 *1 (-52)))) (-3365 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-52)))) (-1263 (*1 *2 *1) (-12 (-5 *2 (-748)) (-5 *1 (-52)))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1119)) (-5 *1 (-52)))))
-(-13 (-1063) (-10 -8 (-15 -3368 ($ (-1067) (-748))) (-15 -3365 ((-832) $)) (-15 -4223 ((-832) $)) (-15 -1522 ((-1067) $)) (-15 -1263 ((-748) $)) (-15 -3291 ((-1119) (-112)))))
-((-3587 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3587 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1016) (-622 |#1|) (-823 |#1|)) (T -53))
-((-3587 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-622 *5)) (-4 *5 (-1016)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-823 *5)))))
-(-10 -7 (-15 -3587 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-3235 ((|#3| |#3| (-619 (-1136))) 35)) (-4286 ((|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3| (-890)) 22) ((|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3|) 20)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4286 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3|)) (-15 -4286 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3| (-890))) (-15 -3235 (|#3| |#3| (-619 (-1136))))) (-1063) (-13 (-1016) (-855 |#1|) (-821) (-592 (-861 |#1|))) (-13 (-421 |#2|) (-855 |#1|) (-592 (-861 |#1|)))) (T -54))
-((-3235 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-1136))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))))) (-4286 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-619 (-1039 *5 *6 *2))) (-5 *4 (-890)) (-4 *5 (-1063)) (-4 *6 (-13 (-1016) (-855 *5) (-821) (-592 (-861 *5)))) (-4 *2 (-13 (-421 *6) (-855 *5) (-592 (-861 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4286 (*1 *2 *3 *2) (-12 (-5 *3 (-619 (-1039 *4 *5 *2))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -4286 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3|)) (-15 -4286 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3| (-890))) (-15 -3235 (|#3| |#3| (-619 (-1136)))))
-((-3899 (((-112) $ (-745)) 23)) (-1370 (($ $ (-547) |#3|) 46)) (-2501 (($ $ (-547) |#4|) 50)) (-2330 ((|#3| $ (-547)) 59)) (-2982 (((-619 |#2|) $) 30)) (-2763 (((-112) $ (-745)) 25)) (-2132 (((-112) |#2| $) 54)) (-1859 (($ (-1 |#2| |#2|) $) 37)) (-2790 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-3806 (((-112) $ (-745)) 24)) (-3632 (($ $ |#2|) 34)) (-1598 (((-112) (-1 (-112) |#2|) $) 19)) (-3334 ((|#2| $ (-547) (-547)) NIL) ((|#2| $ (-547) (-547) |#2|) 27)) (-3992 (((-745) (-1 (-112) |#2|) $) 28) (((-745) |#2| $) 56)) (-2274 (($ $) 33)) (-1295 ((|#4| $ (-547)) 62)) (-3838 (((-832) $) 68)) (-2693 (((-112) (-1 (-112) |#2|) $) 18)) (-2381 (((-112) $ $) 53)) (-3767 (((-745) $) 26)))
-(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3838 ((-832) |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2790 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1859 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2501 (|#1| |#1| (-547) |#4|)) (-15 -1370 (|#1| |#1| (-547) |#3|)) (-15 -2982 ((-619 |#2|) |#1|)) (-15 -1295 (|#4| |#1| (-547))) (-15 -2330 (|#3| |#1| (-547))) (-15 -3334 (|#2| |#1| (-547) (-547) |#2|)) (-15 -3334 (|#2| |#1| (-547) (-547))) (-15 -3632 (|#1| |#1| |#2|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -2132 ((-112) |#2| |#1|)) (-15 -3992 ((-745) |#2| |#1|)) (-15 -3992 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -1598 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2693 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3767 ((-745) |#1|)) (-15 -3899 ((-112) |#1| (-745))) (-15 -2763 ((-112) |#1| (-745))) (-15 -3806 ((-112) |#1| (-745))) (-15 -2274 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1173) (-364 |#2|) (-364 |#2|)) (T -55))
-NIL
-(-10 -8 (-15 -3838 ((-832) |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2790 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1859 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2501 (|#1| |#1| (-547) |#4|)) (-15 -1370 (|#1| |#1| (-547) |#3|)) (-15 -2982 ((-619 |#2|) |#1|)) (-15 -1295 (|#4| |#1| (-547))) (-15 -2330 (|#3| |#1| (-547))) (-15 -3334 (|#2| |#1| (-547) (-547) |#2|)) (-15 -3334 (|#2| |#1| (-547) (-547))) (-15 -3632 (|#1| |#1| |#2|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -2132 ((-112) |#2| |#1|)) (-15 -3992 ((-745) |#2| |#1|)) (-15 -3992 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -1598 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2693 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3767 ((-745) |#1|)) (-15 -3899 ((-112) |#1| (-745))) (-15 -2763 ((-112) |#1| (-745))) (-15 -3806 ((-112) |#1| (-745))) (-15 -2274 (|#1| |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) 8)) (-2247 ((|#1| $ (-547) (-547) |#1|) 44)) (-1370 (($ $ (-547) |#2|) 42)) (-2501 (($ $ (-547) |#3|) 41)) (-1948 (($) 7 T CONST)) (-2330 ((|#2| $ (-547)) 46)) (-1872 ((|#1| $ (-547) (-547) |#1|) 43)) (-1802 ((|#1| $ (-547) (-547)) 48)) (-2982 (((-619 |#1|) $) 30)) (-2135 (((-745) $) 51)) (-3735 (($ (-745) (-745) |#1|) 57)) (-2148 (((-745) $) 50)) (-2763 (((-112) $ (-745)) 9)) (-3612 (((-547) $) 55)) (-3628 (((-547) $) 53)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3120 (((-547) $) 54)) (-1599 (((-547) $) 52)) (-1859 (($ (-1 |#1| |#1|) $) 34)) (-2790 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3632 (($ $ |#1|) 56)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ (-547) (-547)) 49) ((|#1| $ (-547) (-547) |#1|) 47)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-1295 ((|#3| $ (-547)) 45)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-56 |#1| |#2| |#3|) (-138) (-1173) (-364 |t#1|) (-364 |t#1|)) (T -56))
-((-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-3735 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-745)) (-4 *3 (-1173)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-3632 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1173)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-547)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-547)))) (-3628 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-547)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-547)))) (-2135 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-745)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-745)))) (-3334 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-1173)))) (-1802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-1173)))) (-3334 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1173)) (-4 *4 (-364 *2)) (-4 *5 (-364 *2)))) (-2330 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1173)) (-4 *5 (-364 *4)) (-4 *2 (-364 *4)))) (-1295 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1173)) (-4 *5 (-364 *4)) (-4 *2 (-364 *4)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-619 *3)))) (-2247 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1173)) (-4 *4 (-364 *2)) (-4 *5 (-364 *2)))) (-1872 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1173)) (-4 *4 (-364 *2)) (-4 *5 (-364 *2)))) (-1370 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-547)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1173)) (-4 *3 (-364 *4)) (-4 *5 (-364 *4)))) (-2501 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-547)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1173)) (-4 *5 (-364 *4)) (-4 *3 (-364 *4)))) (-1859 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2790 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2790 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))))
-(-13 (-479 |t#1|) (-10 -8 (-6 -4330) (-6 -4329) (-15 -3735 ($ (-745) (-745) |t#1|)) (-15 -3632 ($ $ |t#1|)) (-15 -3612 ((-547) $)) (-15 -3120 ((-547) $)) (-15 -3628 ((-547) $)) (-15 -1599 ((-547) $)) (-15 -2135 ((-745) $)) (-15 -2148 ((-745) $)) (-15 -3334 (|t#1| $ (-547) (-547))) (-15 -1802 (|t#1| $ (-547) (-547))) (-15 -3334 (|t#1| $ (-547) (-547) |t#1|)) (-15 -2330 (|t#2| $ (-547))) (-15 -1295 (|t#3| $ (-547))) (-15 -2982 ((-619 |t#1|) $)) (-15 -2247 (|t#1| $ (-547) (-547) |t#1|)) (-15 -1872 (|t#1| $ (-547) (-547) |t#1|)) (-15 -1370 ($ $ (-547) |t#2|)) (-15 -2501 ($ $ (-547) |t#3|)) (-15 -2790 ($ (-1 |t#1| |t#1|) $)) (-15 -1859 ($ (-1 |t#1| |t#1|) $)) (-15 -2790 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2790 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-2816 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2552 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-2790 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13)))
-(((-57 |#1| |#2|) (-10 -7 (-15 -2816 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2552 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2790 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1173) (-1173)) (T -57))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2552 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1173)) (-4 *2 (-1173)) (-5 *1 (-57 *5 *2)))) (-2816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1173)) (-4 *5 (-1173)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))))
-(-10 -7 (-15 -2816 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2552 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2790 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2809 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4330))) (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| |#1| (-821))))) (-3185 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#1| $ (-547) |#1|) 11 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) NIL (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3803 (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) NIL)) (-2876 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2820 (($ (-619 |#1|)) 13) (($ (-745) |#1|) 14)) (-3735 (($ (-745) |#1|) 9)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-2777 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-2606 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3638 ((|#1| $) NIL (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3632 (($ $ |#1|) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) 7)) (-3334 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-2159 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) NIL)) (-1945 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2820 ($ (-619 |#1|))) (-15 -2820 ($ (-745) |#1|)))) (-1173)) (T -58))
-((-2820 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-58 *3)))) (-2820 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-58 *3)) (-4 *3 (-1173)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -2820 ($ (-619 |#1|))) (-15 -2820 ($ (-745) |#1|))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#1| $ (-547) (-547) |#1|) NIL)) (-1370 (($ $ (-547) (-58 |#1|)) NIL)) (-2501 (($ $ (-547) (-58 |#1|)) NIL)) (-1948 (($) NIL T CONST)) (-2330 (((-58 |#1|) $ (-547)) NIL)) (-1872 ((|#1| $ (-547) (-547) |#1|) NIL)) (-1802 ((|#1| $ (-547) (-547)) NIL)) (-2982 (((-619 |#1|) $) NIL)) (-2135 (((-745) $) NIL)) (-3735 (($ (-745) (-745) |#1|) NIL)) (-2148 (((-745) $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-3612 (((-547) $) NIL)) (-3628 (((-547) $) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3120 (((-547) $) NIL)) (-1599 (((-547) $) NIL)) (-1859 (($ (-1 |#1| |#1|) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3632 (($ $ |#1|) NIL)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ (-547) (-547)) NIL) ((|#1| $ (-547) (-547) |#1|) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-1295 (((-58 |#1|) $ (-547)) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4330))) (-1173)) (T -59))
-NIL
-(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4330)))
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 74) (((-3 $ "failed") (-1219 (-307 (-547)))) 63) (((-3 $ "failed") (-1219 (-921 (-370)))) 94) (((-3 $ "failed") (-1219 (-921 (-547)))) 84) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 52) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 39)) (-2652 (($ (-1219 (-307 (-370)))) 70) (($ (-1219 (-307 (-547)))) 59) (($ (-1219 (-921 (-370)))) 90) (($ (-1219 (-921 (-547)))) 80) (($ (-1219 (-398 (-921 (-370))))) 48) (($ (-1219 (-398 (-921 (-547))))) 32)) (-3309 (((-1224) $) 120)) (-3838 (((-832) $) 113) (($ (-619 (-321))) 103) (($ (-321)) 97) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 101) (($ (-1219 (-330 (-3846 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3846) (-673)))) 31)))
-(((-60 |#1|) (-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3846) (-673))))))) (-1136)) (T -60))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-330 (-3846 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3846) (-673)))) (-5 *1 (-60 *3)) (-14 *3 (-1136)))))
-(-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3846) (-673)))))))
-((-3309 (((-1224) $) 53) (((-1224)) 54)) (-3838 (((-832) $) 50)))
-(((-61 |#1|) (-13 (-386) (-10 -7 (-15 -3309 ((-1224))))) (-1136)) (T -61))
-((-3309 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-61 *3)) (-14 *3 (-1136)))))
-(-13 (-386) (-10 -7 (-15 -3309 ((-1224)))))
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 144) (((-3 $ "failed") (-1219 (-307 (-547)))) 134) (((-3 $ "failed") (-1219 (-921 (-370)))) 164) (((-3 $ "failed") (-1219 (-921 (-547)))) 154) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 123) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 111)) (-2652 (($ (-1219 (-307 (-370)))) 140) (($ (-1219 (-307 (-547)))) 130) (($ (-1219 (-921 (-370)))) 160) (($ (-1219 (-921 (-547)))) 150) (($ (-1219 (-398 (-921 (-370))))) 119) (($ (-1219 (-398 (-921 (-547))))) 104)) (-3309 (((-1224) $) 97)) (-3838 (((-832) $) 91) (($ (-619 (-321))) 29) (($ (-321)) 34) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 32) (($ (-1219 (-330 (-3846) (-3846 (QUOTE XC)) (-673)))) 89)))
-(((-62 |#1|) (-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846) (-3846 (QUOTE XC)) (-673))))))) (-1136)) (T -62))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-330 (-3846) (-3846 (QUOTE XC)) (-673)))) (-5 *1 (-62 *3)) (-14 *3 (-1136)))))
-(-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846) (-3846 (QUOTE XC)) (-673)))))))
-((-2707 (((-3 $ "failed") (-307 (-370))) 41) (((-3 $ "failed") (-307 (-547))) 46) (((-3 $ "failed") (-921 (-370))) 50) (((-3 $ "failed") (-921 (-547))) 54) (((-3 $ "failed") (-398 (-921 (-370)))) 36) (((-3 $ "failed") (-398 (-921 (-547)))) 29)) (-2652 (($ (-307 (-370))) 39) (($ (-307 (-547))) 44) (($ (-921 (-370))) 48) (($ (-921 (-547))) 52) (($ (-398 (-921 (-370)))) 34) (($ (-398 (-921 (-547)))) 26)) (-3309 (((-1224) $) 76)) (-3838 (((-832) $) 69) (($ (-619 (-321))) 61) (($ (-321)) 66) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 64) (($ (-330 (-3846 (QUOTE X)) (-3846) (-673))) 25)))
-(((-63 |#1|) (-13 (-387) (-10 -8 (-15 -3838 ($ (-330 (-3846 (QUOTE X)) (-3846) (-673)))))) (-1136)) (T -63))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-330 (-3846 (QUOTE X)) (-3846) (-673))) (-5 *1 (-63 *3)) (-14 *3 (-1136)))))
-(-13 (-387) (-10 -8 (-15 -3838 ($ (-330 (-3846 (QUOTE X)) (-3846) (-673))))))
-((-2707 (((-3 $ "failed") (-663 (-307 (-370)))) 109) (((-3 $ "failed") (-663 (-307 (-547)))) 97) (((-3 $ "failed") (-663 (-921 (-370)))) 131) (((-3 $ "failed") (-663 (-921 (-547)))) 120) (((-3 $ "failed") (-663 (-398 (-921 (-370))))) 85) (((-3 $ "failed") (-663 (-398 (-921 (-547))))) 71)) (-2652 (($ (-663 (-307 (-370)))) 105) (($ (-663 (-307 (-547)))) 93) (($ (-663 (-921 (-370)))) 127) (($ (-663 (-921 (-547)))) 116) (($ (-663 (-398 (-921 (-370))))) 81) (($ (-663 (-398 (-921 (-547))))) 64)) (-3309 (((-1224) $) 139)) (-3838 (((-832) $) 133) (($ (-619 (-321))) 28) (($ (-321)) 33) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 31) (($ (-663 (-330 (-3846) (-3846 (QUOTE X) (QUOTE HESS)) (-673)))) 54)))
-(((-64 |#1|) (-13 (-375) (-10 -8 (-15 -3838 ($ (-663 (-330 (-3846) (-3846 (QUOTE X) (QUOTE HESS)) (-673))))))) (-1136)) (T -64))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-663 (-330 (-3846) (-3846 (QUOTE X) (QUOTE HESS)) (-673)))) (-5 *1 (-64 *3)) (-14 *3 (-1136)))))
-(-13 (-375) (-10 -8 (-15 -3838 ($ (-663 (-330 (-3846) (-3846 (QUOTE X) (QUOTE HESS)) (-673)))))))
-((-2707 (((-3 $ "failed") (-307 (-370))) 59) (((-3 $ "failed") (-307 (-547))) 64) (((-3 $ "failed") (-921 (-370))) 68) (((-3 $ "failed") (-921 (-547))) 72) (((-3 $ "failed") (-398 (-921 (-370)))) 54) (((-3 $ "failed") (-398 (-921 (-547)))) 47)) (-2652 (($ (-307 (-370))) 57) (($ (-307 (-547))) 62) (($ (-921 (-370))) 66) (($ (-921 (-547))) 70) (($ (-398 (-921 (-370)))) 52) (($ (-398 (-921 (-547)))) 44)) (-3309 (((-1224) $) 81)) (-3838 (((-832) $) 75) (($ (-619 (-321))) 28) (($ (-321)) 33) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 31) (($ (-330 (-3846) (-3846 (QUOTE XC)) (-673))) 39)))
-(((-65 |#1|) (-13 (-387) (-10 -8 (-15 -3838 ($ (-330 (-3846) (-3846 (QUOTE XC)) (-673)))))) (-1136)) (T -65))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-330 (-3846) (-3846 (QUOTE XC)) (-673))) (-5 *1 (-65 *3)) (-14 *3 (-1136)))))
-(-13 (-387) (-10 -8 (-15 -3838 ($ (-330 (-3846) (-3846 (QUOTE XC)) (-673))))))
-((-3309 (((-1224) $) 63)) (-3838 (((-832) $) 57) (($ (-663 (-673))) 49) (($ (-619 (-321))) 48) (($ (-321)) 55) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 53)))
-(((-66 |#1|) (-374) (-1136)) (T -66))
-NIL
-(-374)
-((-3309 (((-1224) $) 64)) (-3838 (((-832) $) 58) (($ (-663 (-673))) 50) (($ (-619 (-321))) 49) (($ (-321)) 52) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 55)))
-(((-67 |#1|) (-374) (-1136)) (T -67))
-NIL
-(-374)
-((-3309 (((-1224) $) NIL) (((-1224)) 32)) (-3838 (((-832) $) NIL)))
-(((-68 |#1|) (-13 (-386) (-10 -7 (-15 -3309 ((-1224))))) (-1136)) (T -68))
-((-3309 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-68 *3)) (-14 *3 (-1136)))))
-(-13 (-386) (-10 -7 (-15 -3309 ((-1224)))))
-((-3309 (((-1224) $) 73)) (-3838 (((-832) $) 67) (($ (-663 (-673))) 59) (($ (-619 (-321))) 61) (($ (-321)) 64) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 58)))
-(((-69 |#1|) (-374) (-1136)) (T -69))
-NIL
-(-374)
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 103) (((-3 $ "failed") (-1219 (-307 (-547)))) 92) (((-3 $ "failed") (-1219 (-921 (-370)))) 123) (((-3 $ "failed") (-1219 (-921 (-547)))) 113) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 81) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 68)) (-2652 (($ (-1219 (-307 (-370)))) 99) (($ (-1219 (-307 (-547)))) 88) (($ (-1219 (-921 (-370)))) 119) (($ (-1219 (-921 (-547)))) 109) (($ (-1219 (-398 (-921 (-370))))) 77) (($ (-1219 (-398 (-921 (-547))))) 61)) (-3309 (((-1224) $) 136)) (-3838 (((-832) $) 130) (($ (-619 (-321))) 125) (($ (-321)) 128) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 53) (($ (-1219 (-330 (-3846 (QUOTE X)) (-3846 (QUOTE -2656)) (-673)))) 54)))
-(((-70 |#1|) (-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE X)) (-3846 (QUOTE -2656)) (-673))))))) (-1136)) (T -70))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-330 (-3846 (QUOTE X)) (-3846 (QUOTE -2656)) (-673)))) (-5 *1 (-70 *3)) (-14 *3 (-1136)))))
-(-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE X)) (-3846 (QUOTE -2656)) (-673)))))))
-((-3309 (((-1224) $) 32) (((-1224)) 31)) (-3838 (((-832) $) 35)))
-(((-71 |#1|) (-13 (-386) (-10 -7 (-15 -3309 ((-1224))))) (-1136)) (T -71))
-((-3309 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-71 *3)) (-14 *3 (-1136)))))
-(-13 (-386) (-10 -7 (-15 -3309 ((-1224)))))
-((-3309 (((-1224) $) 63)) (-3838 (((-832) $) 57) (($ (-663 (-673))) 49) (($ (-619 (-321))) 51) (($ (-321)) 54) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 48)))
-(((-72 |#1|) (-374) (-1136)) (T -72))
-NIL
-(-374)
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 125) (((-3 $ "failed") (-1219 (-307 (-547)))) 115) (((-3 $ "failed") (-1219 (-921 (-370)))) 145) (((-3 $ "failed") (-1219 (-921 (-547)))) 135) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 105) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 93)) (-2652 (($ (-1219 (-307 (-370)))) 121) (($ (-1219 (-307 (-547)))) 111) (($ (-1219 (-921 (-370)))) 141) (($ (-1219 (-921 (-547)))) 131) (($ (-1219 (-398 (-921 (-370))))) 101) (($ (-1219 (-398 (-921 (-547))))) 86)) (-3309 (((-1224) $) 78)) (-3838 (((-832) $) 27) (($ (-619 (-321))) 68) (($ (-321)) 64) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 71) (($ (-1219 (-330 (-3846) (-3846 (QUOTE X)) (-673)))) 65)))
-(((-73 |#1|) (-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846) (-3846 (QUOTE X)) (-673))))))) (-1136)) (T -73))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-330 (-3846) (-3846 (QUOTE X)) (-673)))) (-5 *1 (-73 *3)) (-14 *3 (-1136)))))
-(-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846) (-3846 (QUOTE X)) (-673)))))))
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 130) (((-3 $ "failed") (-1219 (-307 (-547)))) 119) (((-3 $ "failed") (-1219 (-921 (-370)))) 150) (((-3 $ "failed") (-1219 (-921 (-547)))) 140) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 108) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 95)) (-2652 (($ (-1219 (-307 (-370)))) 126) (($ (-1219 (-307 (-547)))) 115) (($ (-1219 (-921 (-370)))) 146) (($ (-1219 (-921 (-547)))) 136) (($ (-1219 (-398 (-921 (-370))))) 104) (($ (-1219 (-398 (-921 (-547))))) 88)) (-3309 (((-1224) $) 79)) (-3838 (((-832) $) 71) (($ (-619 (-321))) NIL) (($ (-321)) NIL) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) NIL) (($ (-1219 (-330 (-3846 (QUOTE X) (QUOTE EPS)) (-3846 (QUOTE -2656)) (-673)))) 66)))
-(((-74 |#1| |#2| |#3|) (-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE X) (QUOTE EPS)) (-3846 (QUOTE -2656)) (-673))))))) (-1136) (-1136) (-1136)) (T -74))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-330 (-3846 (QUOTE X) (QUOTE EPS)) (-3846 (QUOTE -2656)) (-673)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1136)) (-14 *4 (-1136)) (-14 *5 (-1136)))))
-(-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE X) (QUOTE EPS)) (-3846 (QUOTE -2656)) (-673)))))))
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 134) (((-3 $ "failed") (-1219 (-307 (-547)))) 123) (((-3 $ "failed") (-1219 (-921 (-370)))) 154) (((-3 $ "failed") (-1219 (-921 (-547)))) 144) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 112) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 99)) (-2652 (($ (-1219 (-307 (-370)))) 130) (($ (-1219 (-307 (-547)))) 119) (($ (-1219 (-921 (-370)))) 150) (($ (-1219 (-921 (-547)))) 140) (($ (-1219 (-398 (-921 (-370))))) 108) (($ (-1219 (-398 (-921 (-547))))) 92)) (-3309 (((-1224) $) 83)) (-3838 (((-832) $) 75) (($ (-619 (-321))) NIL) (($ (-321)) NIL) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) NIL) (($ (-1219 (-330 (-3846 (QUOTE EPS)) (-3846 (QUOTE YA) (QUOTE YB)) (-673)))) 70)))
-(((-75 |#1| |#2| |#3|) (-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE EPS)) (-3846 (QUOTE YA) (QUOTE YB)) (-673))))))) (-1136) (-1136) (-1136)) (T -75))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-330 (-3846 (QUOTE EPS)) (-3846 (QUOTE YA) (QUOTE YB)) (-673)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1136)) (-14 *4 (-1136)) (-14 *5 (-1136)))))
-(-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE EPS)) (-3846 (QUOTE YA) (QUOTE YB)) (-673)))))))
-((-2707 (((-3 $ "failed") (-307 (-370))) 82) (((-3 $ "failed") (-307 (-547))) 87) (((-3 $ "failed") (-921 (-370))) 91) (((-3 $ "failed") (-921 (-547))) 95) (((-3 $ "failed") (-398 (-921 (-370)))) 77) (((-3 $ "failed") (-398 (-921 (-547)))) 70)) (-2652 (($ (-307 (-370))) 80) (($ (-307 (-547))) 85) (($ (-921 (-370))) 89) (($ (-921 (-547))) 93) (($ (-398 (-921 (-370)))) 75) (($ (-398 (-921 (-547)))) 67)) (-3309 (((-1224) $) 62)) (-3838 (((-832) $) 50) (($ (-619 (-321))) 46) (($ (-321)) 56) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 54) (($ (-330 (-3846) (-3846 (QUOTE X)) (-673))) 47)))
-(((-76 |#1|) (-13 (-387) (-10 -8 (-15 -3838 ($ (-330 (-3846) (-3846 (QUOTE X)) (-673)))))) (-1136)) (T -76))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-330 (-3846) (-3846 (QUOTE X)) (-673))) (-5 *1 (-76 *3)) (-14 *3 (-1136)))))
-(-13 (-387) (-10 -8 (-15 -3838 ($ (-330 (-3846) (-3846 (QUOTE X)) (-673))))))
-((-2707 (((-3 $ "failed") (-307 (-370))) 46) (((-3 $ "failed") (-307 (-547))) 51) (((-3 $ "failed") (-921 (-370))) 55) (((-3 $ "failed") (-921 (-547))) 59) (((-3 $ "failed") (-398 (-921 (-370)))) 41) (((-3 $ "failed") (-398 (-921 (-547)))) 34)) (-2652 (($ (-307 (-370))) 44) (($ (-307 (-547))) 49) (($ (-921 (-370))) 53) (($ (-921 (-547))) 57) (($ (-398 (-921 (-370)))) 39) (($ (-398 (-921 (-547)))) 31)) (-3309 (((-1224) $) 80)) (-3838 (((-832) $) 74) (($ (-619 (-321))) 66) (($ (-321)) 71) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 69) (($ (-330 (-3846) (-3846 (QUOTE X)) (-673))) 30)))
-(((-77 |#1|) (-13 (-387) (-10 -8 (-15 -3838 ($ (-330 (-3846) (-3846 (QUOTE X)) (-673)))))) (-1136)) (T -77))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-330 (-3846) (-3846 (QUOTE X)) (-673))) (-5 *1 (-77 *3)) (-14 *3 (-1136)))))
-(-13 (-387) (-10 -8 (-15 -3838 ($ (-330 (-3846) (-3846 (QUOTE X)) (-673))))))
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 89) (((-3 $ "failed") (-1219 (-307 (-547)))) 78) (((-3 $ "failed") (-1219 (-921 (-370)))) 109) (((-3 $ "failed") (-1219 (-921 (-547)))) 99) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 67) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 54)) (-2652 (($ (-1219 (-307 (-370)))) 85) (($ (-1219 (-307 (-547)))) 74) (($ (-1219 (-921 (-370)))) 105) (($ (-1219 (-921 (-547)))) 95) (($ (-1219 (-398 (-921 (-370))))) 63) (($ (-1219 (-398 (-921 (-547))))) 47)) (-3309 (((-1224) $) 125)) (-3838 (((-832) $) 119) (($ (-619 (-321))) 112) (($ (-321)) 37) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 115) (($ (-1219 (-330 (-3846) (-3846 (QUOTE XC)) (-673)))) 38)))
-(((-78 |#1|) (-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846) (-3846 (QUOTE XC)) (-673))))))) (-1136)) (T -78))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-330 (-3846) (-3846 (QUOTE XC)) (-673)))) (-5 *1 (-78 *3)) (-14 *3 (-1136)))))
-(-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846) (-3846 (QUOTE XC)) (-673)))))))
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 142) (((-3 $ "failed") (-1219 (-307 (-547)))) 132) (((-3 $ "failed") (-1219 (-921 (-370)))) 162) (((-3 $ "failed") (-1219 (-921 (-547)))) 152) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 122) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 110)) (-2652 (($ (-1219 (-307 (-370)))) 138) (($ (-1219 (-307 (-547)))) 128) (($ (-1219 (-921 (-370)))) 158) (($ (-1219 (-921 (-547)))) 148) (($ (-1219 (-398 (-921 (-370))))) 118) (($ (-1219 (-398 (-921 (-547))))) 103)) (-3309 (((-1224) $) 96)) (-3838 (((-832) $) 90) (($ (-619 (-321))) 81) (($ (-321)) 88) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 86) (($ (-1219 (-330 (-3846) (-3846 (QUOTE X)) (-673)))) 82)))
-(((-79 |#1|) (-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846) (-3846 (QUOTE X)) (-673))))))) (-1136)) (T -79))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-330 (-3846) (-3846 (QUOTE X)) (-673)))) (-5 *1 (-79 *3)) (-14 *3 (-1136)))))
-(-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846) (-3846 (QUOTE X)) (-673)))))))
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 78) (((-3 $ "failed") (-1219 (-307 (-547)))) 67) (((-3 $ "failed") (-1219 (-921 (-370)))) 98) (((-3 $ "failed") (-1219 (-921 (-547)))) 88) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 56) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 43)) (-2652 (($ (-1219 (-307 (-370)))) 74) (($ (-1219 (-307 (-547)))) 63) (($ (-1219 (-921 (-370)))) 94) (($ (-1219 (-921 (-547)))) 84) (($ (-1219 (-398 (-921 (-370))))) 52) (($ (-1219 (-398 (-921 (-547))))) 36)) (-3309 (((-1224) $) 124)) (-3838 (((-832) $) 118) (($ (-619 (-321))) 109) (($ (-321)) 115) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 113) (($ (-1219 (-330 (-3846) (-3846 (QUOTE X)) (-673)))) 35)))
-(((-80 |#1|) (-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846) (-3846 (QUOTE X)) (-673))))))) (-1136)) (T -80))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-330 (-3846) (-3846 (QUOTE X)) (-673)))) (-5 *1 (-80 *3)) (-14 *3 (-1136)))))
-(-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846) (-3846 (QUOTE X)) (-673)))))))
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 95) (((-3 $ "failed") (-1219 (-307 (-547)))) 84) (((-3 $ "failed") (-1219 (-921 (-370)))) 115) (((-3 $ "failed") (-1219 (-921 (-547)))) 105) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 73) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 60)) (-2652 (($ (-1219 (-307 (-370)))) 91) (($ (-1219 (-307 (-547)))) 80) (($ (-1219 (-921 (-370)))) 111) (($ (-1219 (-921 (-547)))) 101) (($ (-1219 (-398 (-921 (-370))))) 69) (($ (-1219 (-398 (-921 (-547))))) 53)) (-3309 (((-1224) $) 45)) (-3838 (((-832) $) 39) (($ (-619 (-321))) 29) (($ (-321)) 32) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 35) (($ (-1219 (-330 (-3846 (QUOTE X) (QUOTE -2656)) (-3846) (-673)))) 30)))
-(((-81 |#1|) (-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE X) (QUOTE -2656)) (-3846) (-673))))))) (-1136)) (T -81))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-330 (-3846 (QUOTE X) (QUOTE -2656)) (-3846) (-673)))) (-5 *1 (-81 *3)) (-14 *3 (-1136)))))
-(-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE X) (QUOTE -2656)) (-3846) (-673)))))))
-((-2707 (((-3 $ "failed") (-663 (-307 (-370)))) 115) (((-3 $ "failed") (-663 (-307 (-547)))) 104) (((-3 $ "failed") (-663 (-921 (-370)))) 137) (((-3 $ "failed") (-663 (-921 (-547)))) 126) (((-3 $ "failed") (-663 (-398 (-921 (-370))))) 93) (((-3 $ "failed") (-663 (-398 (-921 (-547))))) 80)) (-2652 (($ (-663 (-307 (-370)))) 111) (($ (-663 (-307 (-547)))) 100) (($ (-663 (-921 (-370)))) 133) (($ (-663 (-921 (-547)))) 122) (($ (-663 (-398 (-921 (-370))))) 89) (($ (-663 (-398 (-921 (-547))))) 73)) (-3309 (((-1224) $) 63)) (-3838 (((-832) $) 50) (($ (-619 (-321))) 57) (($ (-321)) 46) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 55) (($ (-663 (-330 (-3846 (QUOTE X) (QUOTE -2656)) (-3846) (-673)))) 47)))
-(((-82 |#1|) (-13 (-375) (-10 -8 (-15 -3838 ($ (-663 (-330 (-3846 (QUOTE X) (QUOTE -2656)) (-3846) (-673))))))) (-1136)) (T -82))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-663 (-330 (-3846 (QUOTE X) (QUOTE -2656)) (-3846) (-673)))) (-5 *1 (-82 *3)) (-14 *3 (-1136)))))
-(-13 (-375) (-10 -8 (-15 -3838 ($ (-663 (-330 (-3846 (QUOTE X) (QUOTE -2656)) (-3846) (-673)))))))
-((-2707 (((-3 $ "failed") (-663 (-307 (-370)))) 112) (((-3 $ "failed") (-663 (-307 (-547)))) 100) (((-3 $ "failed") (-663 (-921 (-370)))) 134) (((-3 $ "failed") (-663 (-921 (-547)))) 123) (((-3 $ "failed") (-663 (-398 (-921 (-370))))) 88) (((-3 $ "failed") (-663 (-398 (-921 (-547))))) 74)) (-2652 (($ (-663 (-307 (-370)))) 108) (($ (-663 (-307 (-547)))) 96) (($ (-663 (-921 (-370)))) 130) (($ (-663 (-921 (-547)))) 119) (($ (-663 (-398 (-921 (-370))))) 84) (($ (-663 (-398 (-921 (-547))))) 67)) (-3309 (((-1224) $) 59)) (-3838 (((-832) $) 53) (($ (-619 (-321))) 47) (($ (-321)) 50) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 44) (($ (-663 (-330 (-3846 (QUOTE X)) (-3846) (-673)))) 45)))
-(((-83 |#1|) (-13 (-375) (-10 -8 (-15 -3838 ($ (-663 (-330 (-3846 (QUOTE X)) (-3846) (-673))))))) (-1136)) (T -83))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-663 (-330 (-3846 (QUOTE X)) (-3846) (-673)))) (-5 *1 (-83 *3)) (-14 *3 (-1136)))))
-(-13 (-375) (-10 -8 (-15 -3838 ($ (-663 (-330 (-3846 (QUOTE X)) (-3846) (-673)))))))
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 104) (((-3 $ "failed") (-1219 (-307 (-547)))) 93) (((-3 $ "failed") (-1219 (-921 (-370)))) 124) (((-3 $ "failed") (-1219 (-921 (-547)))) 114) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 82) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 69)) (-2652 (($ (-1219 (-307 (-370)))) 100) (($ (-1219 (-307 (-547)))) 89) (($ (-1219 (-921 (-370)))) 120) (($ (-1219 (-921 (-547)))) 110) (($ (-1219 (-398 (-921 (-370))))) 78) (($ (-1219 (-398 (-921 (-547))))) 62)) (-3309 (((-1224) $) 46)) (-3838 (((-832) $) 40) (($ (-619 (-321))) 49) (($ (-321)) 36) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 52) (($ (-1219 (-330 (-3846 (QUOTE X)) (-3846) (-673)))) 37)))
-(((-84 |#1|) (-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE X)) (-3846) (-673))))))) (-1136)) (T -84))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-330 (-3846 (QUOTE X)) (-3846) (-673)))) (-5 *1 (-84 *3)) (-14 *3 (-1136)))))
-(-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE X)) (-3846) (-673)))))))
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 79) (((-3 $ "failed") (-1219 (-307 (-547)))) 68) (((-3 $ "failed") (-1219 (-921 (-370)))) 99) (((-3 $ "failed") (-1219 (-921 (-547)))) 89) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 57) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 44)) (-2652 (($ (-1219 (-307 (-370)))) 75) (($ (-1219 (-307 (-547)))) 64) (($ (-1219 (-921 (-370)))) 95) (($ (-1219 (-921 (-547)))) 85) (($ (-1219 (-398 (-921 (-370))))) 53) (($ (-1219 (-398 (-921 (-547))))) 37)) (-3309 (((-1224) $) 125)) (-3838 (((-832) $) 119) (($ (-619 (-321))) 110) (($ (-321)) 116) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 114) (($ (-1219 (-330 (-3846 (QUOTE X)) (-3846 (QUOTE -2656)) (-673)))) 36)))
-(((-85 |#1|) (-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE X)) (-3846 (QUOTE -2656)) (-673))))))) (-1136)) (T -85))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-330 (-3846 (QUOTE X)) (-3846 (QUOTE -2656)) (-673)))) (-5 *1 (-85 *3)) (-14 *3 (-1136)))))
-(-13 (-431) (-10 -8 (-15 -3838 ($ (-1219 (-330 (-3846 (QUOTE X)) (-3846 (QUOTE -2656)) (-673)))))))
-((-2707 (((-3 $ "failed") (-663 (-307 (-370)))) 113) (((-3 $ "failed") (-663 (-307 (-547)))) 101) (((-3 $ "failed") (-663 (-921 (-370)))) 135) (((-3 $ "failed") (-663 (-921 (-547)))) 124) (((-3 $ "failed") (-663 (-398 (-921 (-370))))) 89) (((-3 $ "failed") (-663 (-398 (-921 (-547))))) 75)) (-2652 (($ (-663 (-307 (-370)))) 109) (($ (-663 (-307 (-547)))) 97) (($ (-663 (-921 (-370)))) 131) (($ (-663 (-921 (-547)))) 120) (($ (-663 (-398 (-921 (-370))))) 85) (($ (-663 (-398 (-921 (-547))))) 68)) (-3309 (((-1224) $) 59)) (-3838 (((-832) $) 53) (($ (-619 (-321))) 43) (($ (-321)) 50) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 48) (($ (-663 (-330 (-3846 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3846) (-673)))) 44)))
-(((-86 |#1|) (-13 (-375) (-10 -8 (-15 -3838 ($ (-663 (-330 (-3846 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3846) (-673))))))) (-1136)) (T -86))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-663 (-330 (-3846 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3846) (-673)))) (-5 *1 (-86 *3)) (-14 *3 (-1136)))))
-(-13 (-375) (-10 -8 (-15 -3838 ($ (-663 (-330 (-3846 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3846) (-673)))))))
-((-3309 (((-1224) $) 44)) (-3838 (((-832) $) 38) (($ (-1219 (-673))) 92) (($ (-619 (-321))) 30) (($ (-321)) 35) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 33)))
-(((-87 |#1|) (-430) (-1136)) (T -87))
-NIL
-(-430)
-((-2707 (((-3 $ "failed") (-307 (-370))) 47) (((-3 $ "failed") (-307 (-547))) 52) (((-3 $ "failed") (-921 (-370))) 56) (((-3 $ "failed") (-921 (-547))) 60) (((-3 $ "failed") (-398 (-921 (-370)))) 42) (((-3 $ "failed") (-398 (-921 (-547)))) 35)) (-2652 (($ (-307 (-370))) 45) (($ (-307 (-547))) 50) (($ (-921 (-370))) 54) (($ (-921 (-547))) 58) (($ (-398 (-921 (-370)))) 40) (($ (-398 (-921 (-547)))) 32)) (-3309 (((-1224) $) 90)) (-3838 (((-832) $) 84) (($ (-619 (-321))) 78) (($ (-321)) 81) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 76) (($ (-330 (-3846 (QUOTE X)) (-3846 (QUOTE -2656)) (-673))) 31)))
-(((-88 |#1|) (-13 (-387) (-10 -8 (-15 -3838 ($ (-330 (-3846 (QUOTE X)) (-3846 (QUOTE -2656)) (-673)))))) (-1136)) (T -88))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-330 (-3846 (QUOTE X)) (-3846 (QUOTE -2656)) (-673))) (-5 *1 (-88 *3)) (-14 *3 (-1136)))))
-(-13 (-387) (-10 -8 (-15 -3838 ($ (-330 (-3846 (QUOTE X)) (-3846 (QUOTE -2656)) (-673))))))
-((-1676 (((-1219 (-663 |#1|)) (-663 |#1|)) 54)) (-4065 (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 (-619 (-890))))) |#2| (-890)) 44)) (-3262 (((-2 (|:| |minor| (-619 (-890))) (|:| -2644 |#2|) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 |#2|))) |#2| (-890)) 65 (|has| |#1| (-354)))))
-(((-89 |#1| |#2|) (-10 -7 (-15 -4065 ((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 (-619 (-890))))) |#2| (-890))) (-15 -1676 ((-1219 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-354)) (-15 -3262 ((-2 (|:| |minor| (-619 (-890))) (|:| -2644 |#2|) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 |#2|))) |#2| (-890))) |%noBranch|)) (-539) (-630 |#1|)) (T -89))
-((-3262 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *5 (-539)) (-5 *2 (-2 (|:| |minor| (-619 (-890))) (|:| -2644 *3) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5)))) (-1676 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-1219 (-663 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-663 *4)) (-4 *5 (-630 *4)))) (-4065 (*1 *2 *3 *4) (-12 (-4 *5 (-539)) (-5 *2 (-2 (|:| -1877 (-663 *5)) (|:| |vec| (-1219 (-619 (-890)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5)))))
-(-10 -7 (-15 -4065 ((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 (-619 (-890))))) |#2| (-890))) (-15 -1676 ((-1219 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-354)) (-15 -3262 ((-2 (|:| |minor| (-619 (-890))) (|:| -2644 |#2|) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 |#2|))) |#2| (-890))) |%noBranch|))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2312 ((|#1| $) 35)) (-3899 (((-112) $ (-745)) NIL)) (-1948 (($) NIL T CONST)) (-3329 ((|#1| |#1| $) 30)) (-1742 ((|#1| $) 28)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-4266 ((|#1| $) NIL)) (-2657 (($ |#1| $) 31)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2056 ((|#1| $) 29)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 16)) (-2245 (($) 39)) (-1314 (((-745) $) 26)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) 15)) (-3838 (((-832) $) 25 (|has| |#1| (-591 (-832))))) (-2300 (($ (-619 |#1|)) NIL)) (-3264 (($ (-619 |#1|)) 37)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 13 (|has| |#1| (-1063)))) (-3767 (((-745) $) 10 (|has| $ (-6 -4329)))))
-(((-90 |#1|) (-13 (-1083 |#1|) (-10 -8 (-15 -3264 ($ (-619 |#1|))))) (-1063)) (T -90))
-((-3264 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-90 *3)))))
-(-13 (-1083 |#1|) (-10 -8 (-15 -3264 ($ (-619 |#1|)))))
-((-3838 (((-832) $) 12) (((-1141) $) 8)))
-(((-91 |#1|) (-10 -8 (-15 -3838 ((-1141) |#1|)) (-15 -3838 ((-832) |#1|))) (-92)) (T -91))
-NIL
-(-10 -8 (-15 -3838 ((-1141) |#1|)) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (((-1141) $) 14)) (-2381 (((-112) $ $) 6)))
+((-2205 (((-112) $) 12)) (-2797 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-400 (-549)) $) 25) (($ $ (-400 (-549))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -2205 ((-112) |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|))) (-47 |#2| |#3|) (-1018) (-768)) (T -46))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -2205 ((-112) |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2258 (($ $) 50 (|has| |#1| (-541)))) (-2799 (((-112) $) 52 (|has| |#1| (-541)))) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2070 (($ $) 58)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-2205 (((-112) $) 60)) (-2246 (($ |#1| |#2|) 59)) (-2797 (($ (-1 |#1| |#1|) $) 61)) (-2028 (($ $) 63)) (-2043 ((|#1| $) 64)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2042 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-3701 ((|#2| $) 62)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541))) (($ |#1|) 45 (|has| |#1| (-170)))) (-2152 ((|#1| $ |#2|) 57)) (-2210 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 51 (|has| |#1| (-541)))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+(((-47 |#1| |#2|) (-138) (-1018) (-768)) (T -47))
+((-2043 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-2028 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-112)))) (-2246 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-2152 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-2513 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-356)))))
+(-13 (-1018) (-111 |t#1| |t#1|) (-10 -8 (-15 -2043 (|t#1| $)) (-15 -2028 ($ $)) (-15 -3701 (|t#2| $)) (-15 -2797 ($ (-1 |t#1| |t#1|) $)) (-15 -2205 ((-112) $)) (-15 -2246 ($ |t#1| |t#2|)) (-15 -2070 ($ $)) (-15 -2152 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-356)) (-15 -2513 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-541)) (-6 (-541)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-549)))) (-6 (-38 (-400 (-549)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-283) |has| |#1| (-541)) ((-541) |has| |#1| (-541)) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1329 (((-621 $) (-1139 $) (-1143)) NIL) (((-621 $) (-1139 $)) NIL) (((-621 $) (-923 $)) NIL)) (-3289 (($ (-1139 $) (-1143)) NIL) (($ (-1139 $)) NIL) (($ (-923 $)) NIL)) (-1763 (((-112) $) 11)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-1981 (((-621 (-592 $)) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3015 (($ $ (-287 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-2134 (($ $) NIL)) (-3866 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-1815 (((-621 $) (-1139 $) (-1143)) NIL) (((-621 $) (-1139 $)) NIL) (((-621 $) (-923 $)) NIL)) (-1947 (($ (-1139 $) (-1143)) NIL) (($ (-1139 $)) NIL) (($ (-923 $)) NIL)) (-2714 (((-3 (-592 $) "failed") $) NIL) (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL)) (-2659 (((-592 $) $) NIL) (((-549) $) NIL) (((-400 (-549)) $) NIL)) (-2095 (($ $ $) NIL)) (-3879 (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL) (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -3521 (-665 (-400 (-549)))) (|:| |vec| (-1226 (-400 (-549))))) (-665 $) (-1226 $)) NIL) (((-665 (-400 (-549))) (-665 $)) NIL)) (-2557 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-3225 (($ $) NIL) (($ (-621 $)) NIL)) (-2162 (((-621 (-114)) $) NIL)) (-2834 (((-114) (-114)) NIL)) (-2675 (((-112) $) 14)) (-3559 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-1394 (((-1092 (-549) (-592 $)) $) NIL)) (-4187 (($ $ (-549)) NIL)) (-3630 (((-1139 $) (-1139 $) (-592 $)) NIL) (((-1139 $) (-1139 $) (-621 (-592 $))) NIL) (($ $ (-592 $)) NIL) (($ $ (-621 (-592 $))) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-1549 (((-1139 $) (-592 $)) NIL (|has| $ (-1018)))) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2797 (($ (-1 $ $) (-592 $)) NIL)) (-2634 (((-3 (-592 $) "failed") $) NIL)) (-3697 (($ (-621 $)) NIL) (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-2071 (((-621 (-592 $)) $) NIL)) (-1476 (($ (-114) $) NIL) (($ (-114) (-621 $)) NIL)) (-3421 (((-112) $ (-114)) NIL) (((-112) $ (-1143)) NIL)) (-1992 (($ $) NIL)) (-4036 (((-747) $) NIL)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ (-621 $)) NIL) (($ $ $) NIL)) (-2979 (((-112) $ $) NIL) (((-112) $ (-1143)) NIL)) (-2121 (((-411 $) $) NIL)) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3450 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-2686 (($ $ (-592 $) $) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-621 (-1143)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-1143)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-1143) (-1 $ (-621 $))) NIL) (($ $ (-1143) (-1 $ $)) NIL) (($ $ (-621 (-114)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-114) (-1 $ (-621 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3684 (((-747) $) NIL)) (-3341 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-621 $)) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3433 (($ $) NIL) (($ $ $) NIL)) (-3456 (($ $ (-747)) NIL) (($ $) NIL)) (-1403 (((-1092 (-549) (-592 $)) $) NIL)) (-2815 (($ $) NIL (|has| $ (-1018)))) (-2845 (((-372) $) NIL) (((-219) $) NIL) (((-167 (-372)) $) NIL)) (-3846 (((-834) $) NIL) (($ (-592 $)) NIL) (($ (-400 (-549))) NIL) (($ $) NIL) (($ (-549)) NIL) (($ (-1092 (-549) (-592 $))) NIL)) (-2082 (((-747)) NIL)) (-4137 (($ $) NIL) (($ (-621 $)) NIL)) (-4285 (((-112) (-114)) NIL)) (-1498 (((-112) $ $) NIL)) (-3276 (($) 7 T CONST)) (-3287 (($) 12 T CONST)) (-1702 (($ $ (-747)) NIL) (($ $) NIL)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 16)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL)) (-2500 (($ $ $) 15) (($ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-400 (-549))) NIL) (($ $ (-549)) NIL) (($ $ (-747)) NIL) (($ $ (-892)) NIL)) (* (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL) (($ $ $) NIL) (($ (-549) $) NIL) (($ (-747) $) NIL) (($ (-892) $) NIL)))
+(((-48) (-13 (-295) (-27) (-1009 (-549)) (-1009 (-400 (-549))) (-617 (-549)) (-993) (-617 (-400 (-549))) (-145) (-594 (-167 (-372))) (-227) (-10 -8 (-15 -3846 ($ (-1092 (-549) (-592 $)))) (-15 -1394 ((-1092 (-549) (-592 $)) $)) (-15 -1403 ((-1092 (-549) (-592 $)) $)) (-15 -2557 ($ $)) (-15 -3630 ((-1139 $) (-1139 $) (-592 $))) (-15 -3630 ((-1139 $) (-1139 $) (-621 (-592 $)))) (-15 -3630 ($ $ (-592 $))) (-15 -3630 ($ $ (-621 (-592 $))))))) (T -48))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1092 (-549) (-592 (-48)))) (-5 *1 (-48)))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-1092 (-549) (-592 (-48)))) (-5 *1 (-48)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-1092 (-549) (-592 (-48)))) (-5 *1 (-48)))) (-2557 (*1 *1 *1) (-5 *1 (-48))) (-3630 (*1 *2 *2 *3) (-12 (-5 *2 (-1139 (-48))) (-5 *3 (-592 (-48))) (-5 *1 (-48)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *2 (-1139 (-48))) (-5 *3 (-621 (-592 (-48)))) (-5 *1 (-48)))) (-3630 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-48))) (-5 *1 (-48)))) (-3630 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-592 (-48)))) (-5 *1 (-48)))))
+(-13 (-295) (-27) (-1009 (-549)) (-1009 (-400 (-549))) (-617 (-549)) (-993) (-617 (-400 (-549))) (-145) (-594 (-167 (-372))) (-227) (-10 -8 (-15 -3846 ($ (-1092 (-549) (-592 $)))) (-15 -1394 ((-1092 (-549) (-592 $)) $)) (-15 -1403 ((-1092 (-549) (-592 $)) $)) (-15 -2557 ($ $)) (-15 -3630 ((-1139 $) (-1139 $) (-592 $))) (-15 -3630 ((-1139 $) (-1139 $) (-621 (-592 $)))) (-15 -3630 ($ $ (-592 $))) (-15 -3630 ($ $ (-621 (-592 $))))))
+((-3834 (((-112) $ $) NIL)) (-2904 (((-621 (-1143)) $) 17)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 7)) (-2492 (((-1148) $) 18)) (-2389 (((-112) $ $) NIL)))
+(((-49) (-13 (-1067) (-10 -8 (-15 -2904 ((-621 (-1143)) $)) (-15 -2492 ((-1148) $))))) (T -49))
+((-2904 (*1 *2 *1) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-49)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-49)))))
+(-13 (-1067) (-10 -8 (-15 -2904 ((-621 (-1143)) $)) (-15 -2492 ((-1148) $))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 61)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-4304 (((-112) $) 20)) (-2714 (((-3 |#1| "failed") $) 23)) (-2659 ((|#1| $) 24)) (-2070 (($ $) 28)) (-2114 (((-3 $ "failed") $) NIL)) (-2675 (((-112) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-2043 ((|#1| $) 21)) (-2928 (($ $) 50)) (-3851 (((-1125) $) NIL)) (-2156 (((-112) $) 30)) (-3990 (((-1087) $) NIL)) (-4248 (($ (-747)) 48)) (-2719 (($ (-621 (-549))) 49)) (-3701 (((-747) $) 31)) (-3846 (((-834) $) 64) (($ (-549)) 45) (($ |#1|) 43)) (-2152 ((|#1| $ $) 19)) (-2082 (((-747)) 47)) (-3276 (($) 32 T CONST)) (-3287 (($) 14 T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 40)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-50 |#1| |#2|) (-13 (-598 |#1|) (-1009 |#1|) (-10 -8 (-15 -2043 (|#1| $)) (-15 -2928 ($ $)) (-15 -2070 ($ $)) (-15 -2152 (|#1| $ $)) (-15 -4248 ($ (-747))) (-15 -2719 ($ (-621 (-549)))) (-15 -2156 ((-112) $)) (-15 -4304 ((-112) $)) (-15 -3701 ((-747) $)) (-15 -2797 ($ (-1 |#1| |#1|) $)))) (-1018) (-621 (-1143))) (T -50))
+((-2043 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-621 (-1143))))) (-2928 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-621 (-1143))))) (-2070 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-621 (-1143))))) (-2152 (*1 *2 *1 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-621 (-1143))))) (-4248 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-621 (-1143))))) (-2719 (*1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-621 (-1143))))) (-2156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-621 (-1143))))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-621 (-1143))))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-621 (-1143))))) (-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-50 *3 *4)) (-14 *4 (-621 (-1143))))))
+(-13 (-598 |#1|) (-1009 |#1|) (-10 -8 (-15 -2043 (|#1| $)) (-15 -2928 ($ $)) (-15 -2070 ($ $)) (-15 -2152 (|#1| $ $)) (-15 -4248 ($ (-747))) (-15 -2719 ($ (-621 (-549)))) (-15 -2156 ((-112) $)) (-15 -4304 ((-112) $)) (-15 -3701 ((-747) $)) (-15 -2797 ($ (-1 |#1| |#1|) $))))
+((-4304 (((-112) (-52)) 13)) (-2714 (((-3 |#1| "failed") (-52)) 21)) (-2659 ((|#1| (-52)) 22)) (-3846 (((-52) |#1|) 18)))
+(((-51 |#1|) (-10 -7 (-15 -3846 ((-52) |#1|)) (-15 -2714 ((-3 |#1| "failed") (-52))) (-15 -4304 ((-112) (-52))) (-15 -2659 (|#1| (-52)))) (-1180)) (T -51))
+((-2659 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1180)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1180)))) (-2714 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1180)))) (-3846 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1180)))))
+(-10 -7 (-15 -3846 ((-52) |#1|)) (-15 -2714 ((-3 |#1| "failed") (-52))) (-15 -4304 ((-112) (-52))) (-15 -2659 (|#1| (-52))))
+((-3834 (((-112) $ $) NIL)) (-4167 (((-1125) (-112)) 25)) (-2947 (((-834) $) 24)) (-1270 (((-750) $) 12)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3822 (((-834) $) 16)) (-1529 (((-1071) $) 14)) (-3846 (((-834) $) 32)) (-3376 (($ (-1071) (-750)) 33)) (-2389 (((-112) $ $) 18)))
+(((-52) (-13 (-1067) (-10 -8 (-15 -3376 ($ (-1071) (-750))) (-15 -3822 ((-834) $)) (-15 -2947 ((-834) $)) (-15 -1529 ((-1071) $)) (-15 -1270 ((-750) $)) (-15 -4167 ((-1125) (-112)))))) (T -52))
+((-3376 (*1 *1 *2 *3) (-12 (-5 *2 (-1071)) (-5 *3 (-750)) (-5 *1 (-52)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-52)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-52)))) (-1529 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-52)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-750)) (-5 *1 (-52)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1125)) (-5 *1 (-52)))))
+(-13 (-1067) (-10 -8 (-15 -3376 ($ (-1071) (-750))) (-15 -3822 ((-834) $)) (-15 -2947 ((-834) $)) (-15 -1529 ((-1071) $)) (-15 -1270 ((-750) $)) (-15 -4167 ((-1125) (-112)))))
+((-3596 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3596 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1018) (-624 |#1|) (-825 |#1|)) (T -53))
+((-3596 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-624 *5)) (-4 *5 (-1018)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-825 *5)))))
+(-10 -7 (-15 -3596 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-3163 ((|#3| |#3| (-621 (-1143))) 35)) (-1817 ((|#3| (-621 (-1042 |#1| |#2| |#3|)) |#3| (-892)) 22) ((|#3| (-621 (-1042 |#1| |#2| |#3|)) |#3|) 20)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1817 (|#3| (-621 (-1042 |#1| |#2| |#3|)) |#3|)) (-15 -1817 (|#3| (-621 (-1042 |#1| |#2| |#3|)) |#3| (-892))) (-15 -3163 (|#3| |#3| (-621 (-1143))))) (-1067) (-13 (-1018) (-857 |#1|) (-823) (-594 (-863 |#1|))) (-13 (-423 |#2|) (-857 |#1|) (-594 (-863 |#1|)))) (T -54))
+((-3163 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-1143))) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))))) (-1817 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-621 (-1042 *5 *6 *2))) (-5 *4 (-892)) (-4 *5 (-1067)) (-4 *6 (-13 (-1018) (-857 *5) (-823) (-594 (-863 *5)))) (-4 *2 (-13 (-423 *6) (-857 *5) (-594 (-863 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1817 (*1 *2 *3 *2) (-12 (-5 *3 (-621 (-1042 *4 *5 *2))) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4)))) (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -1817 (|#3| (-621 (-1042 |#1| |#2| |#3|)) |#3|)) (-15 -1817 (|#3| (-621 (-1042 |#1| |#2| |#3|)) |#3| (-892))) (-15 -3163 (|#3| |#3| (-621 (-1143)))))
+((-1584 (((-112) $ (-747)) 23)) (-3537 (($ $ (-549) |#3|) 46)) (-3815 (($ $ (-549) |#4|) 50)) (-4060 ((|#3| $ (-549)) 59)) (-2989 (((-621 |#2|) $) 30)) (-3194 (((-112) $ (-747)) 25)) (-2090 (((-112) |#2| $) 54)) (-1868 (($ (-1 |#2| |#2|) $) 37)) (-2797 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-1508 (((-112) $ (-747)) 24)) (-1642 (($ $ |#2|) 34)) (-1780 (((-112) (-1 (-112) |#2|) $) 19)) (-3341 ((|#2| $ (-549) (-549)) NIL) ((|#2| $ (-549) (-549) |#2|) 27)) (-4000 (((-747) (-1 (-112) |#2|) $) 28) (((-747) |#2| $) 56)) (-2281 (($ $) 33)) (-2851 ((|#4| $ (-549)) 62)) (-3846 (((-834) $) 68)) (-3527 (((-112) (-1 (-112) |#2|) $) 18)) (-2389 (((-112) $ $) 53)) (-3775 (((-747) $) 26)))
+(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3846 ((-834) |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2797 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3815 (|#1| |#1| (-549) |#4|)) (-15 -3537 (|#1| |#1| (-549) |#3|)) (-15 -2989 ((-621 |#2|) |#1|)) (-15 -2851 (|#4| |#1| (-549))) (-15 -4060 (|#3| |#1| (-549))) (-15 -3341 (|#2| |#1| (-549) (-549) |#2|)) (-15 -3341 (|#2| |#1| (-549) (-549))) (-15 -1642 (|#1| |#1| |#2|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -2090 ((-112) |#2| |#1|)) (-15 -4000 ((-747) |#2| |#1|)) (-15 -4000 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -1780 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3527 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3775 ((-747) |#1|)) (-15 -1584 ((-112) |#1| (-747))) (-15 -3194 ((-112) |#1| (-747))) (-15 -1508 ((-112) |#1| (-747))) (-15 -2281 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1180) (-366 |#2|) (-366 |#2|)) (T -55))
+NIL
+(-10 -8 (-15 -3846 ((-834) |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2797 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3815 (|#1| |#1| (-549) |#4|)) (-15 -3537 (|#1| |#1| (-549) |#3|)) (-15 -2989 ((-621 |#2|) |#1|)) (-15 -2851 (|#4| |#1| (-549))) (-15 -4060 (|#3| |#1| (-549))) (-15 -3341 (|#2| |#1| (-549) (-549) |#2|)) (-15 -3341 (|#2| |#1| (-549) (-549))) (-15 -1642 (|#1| |#1| |#2|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -2090 ((-112) |#2| |#1|)) (-15 -4000 ((-747) |#2| |#1|)) (-15 -4000 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -1780 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3527 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3775 ((-747) |#1|)) (-15 -1584 ((-112) |#1| (-747))) (-15 -3194 ((-112) |#1| (-747))) (-15 -1508 ((-112) |#1| (-747))) (-15 -2281 (|#1| |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) 8)) (-2254 ((|#1| $ (-549) (-549) |#1|) 44)) (-3537 (($ $ (-549) |#2|) 42)) (-3815 (($ $ (-549) |#3|) 41)) (-1682 (($) 7 T CONST)) (-4060 ((|#2| $ (-549)) 46)) (-1879 ((|#1| $ (-549) (-549) |#1|) 43)) (-1809 ((|#1| $ (-549) (-549)) 48)) (-2989 (((-621 |#1|) $) 30)) (-2142 (((-747) $) 51)) (-3743 (($ (-747) (-747) |#1|) 57)) (-2155 (((-747) $) 50)) (-3194 (((-112) $ (-747)) 9)) (-1761 (((-549) $) 55)) (-2703 (((-549) $) 53)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1661 (((-549) $) 54)) (-1887 (((-549) $) 52)) (-1868 (($ (-1 |#1| |#1|) $) 34)) (-2797 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-1642 (($ $ |#1|) 56)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ (-549) (-549)) 49) ((|#1| $ (-549) (-549) |#1|) 47)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2851 ((|#3| $ (-549)) 45)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-56 |#1| |#2| |#3|) (-138) (-1180) (-366 |t#1|) (-366 |t#1|)) (T -56))
+((-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3743 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-747)) (-4 *3 (-1180)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1642 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1180)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-1761 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-549)))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-549)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-549)))) (-1887 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-549)))) (-2142 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-747)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-747)))) (-3341 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-1180)))) (-1809 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-1180)))) (-3341 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1180)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) (-4060 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1180)) (-4 *5 (-366 *4)) (-4 *2 (-366 *4)))) (-2851 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1180)) (-4 *5 (-366 *4)) (-4 *2 (-366 *4)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-621 *3)))) (-2254 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1180)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) (-1879 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1180)) (-4 *4 (-366 *2)) (-4 *5 (-366 *2)))) (-3537 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-549)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1180)) (-4 *3 (-366 *4)) (-4 *5 (-366 *4)))) (-3815 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-549)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1180)) (-4 *5 (-366 *4)) (-4 *3 (-366 *4)))) (-1868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2797 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2797 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))))
+(-13 (-481 |t#1|) (-10 -8 (-6 -4338) (-6 -4337) (-15 -3743 ($ (-747) (-747) |t#1|)) (-15 -1642 ($ $ |t#1|)) (-15 -1761 ((-549) $)) (-15 -1661 ((-549) $)) (-15 -2703 ((-549) $)) (-15 -1887 ((-549) $)) (-15 -2142 ((-747) $)) (-15 -2155 ((-747) $)) (-15 -3341 (|t#1| $ (-549) (-549))) (-15 -1809 (|t#1| $ (-549) (-549))) (-15 -3341 (|t#1| $ (-549) (-549) |t#1|)) (-15 -4060 (|t#2| $ (-549))) (-15 -2851 (|t#3| $ (-549))) (-15 -2989 ((-621 |t#1|) $)) (-15 -2254 (|t#1| $ (-549) (-549) |t#1|)) (-15 -1879 (|t#1| $ (-549) (-549) |t#1|)) (-15 -3537 ($ $ (-549) |t#2|)) (-15 -3815 ($ $ (-549) |t#3|)) (-15 -2797 ($ (-1 |t#1| |t#1|) $)) (-15 -1868 ($ (-1 |t#1| |t#1|) $)) (-15 -2797 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2797 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-3804 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2557 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-2797 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13)))
+(((-57 |#1| |#2|) (-10 -7 (-15 -3804 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2557 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2797 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1180) (-1180)) (T -57))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2557 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1180)) (-4 *2 (-1180)) (-5 *1 (-57 *5 *2)))) (-3804 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1180)) (-4 *5 (-1180)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))))
+(-10 -7 (-15 -3804 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2557 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2797 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4311 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4338))) (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#1| $ (-549) |#1|) 11 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) NIL (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) NIL)) (-2883 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1067))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1067)))) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3891 (($ (-621 |#1|)) 13) (($ (-747) |#1|) 14)) (-3743 (($ (-747) |#1|) 9)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3890 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-2616 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3646 ((|#1| $) NIL (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1642 (($ $ |#1|) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) 7)) (-3341 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-2167 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) NIL)) (-1952 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3891 ($ (-621 |#1|))) (-15 -3891 ($ (-747) |#1|)))) (-1180)) (T -58))
+((-3891 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-58 *3)))) (-3891 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-58 *3)) (-4 *3 (-1180)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -3891 ($ (-621 |#1|))) (-15 -3891 ($ (-747) |#1|))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#1| $ (-549) (-549) |#1|) NIL)) (-3537 (($ $ (-549) (-58 |#1|)) NIL)) (-3815 (($ $ (-549) (-58 |#1|)) NIL)) (-1682 (($) NIL T CONST)) (-4060 (((-58 |#1|) $ (-549)) NIL)) (-1879 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1809 ((|#1| $ (-549) (-549)) NIL)) (-2989 (((-621 |#1|) $) NIL)) (-2142 (((-747) $) NIL)) (-3743 (($ (-747) (-747) |#1|) NIL)) (-2155 (((-747) $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-1761 (((-549) $) NIL)) (-2703 (((-549) $) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1661 (((-549) $) NIL)) (-1887 (((-549) $) NIL)) (-1868 (($ (-1 |#1| |#1|) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1642 (($ $ |#1|) NIL)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-2851 (((-58 |#1|) $ (-549)) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4338))) (-1180)) (T -59))
+NIL
+(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4338)))
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 74) (((-3 $ "failed") (-1226 (-309 (-549)))) 63) (((-3 $ "failed") (-1226 (-923 (-372)))) 94) (((-3 $ "failed") (-1226 (-923 (-549)))) 84) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 52) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 39)) (-2659 (($ (-1226 (-309 (-372)))) 70) (($ (-1226 (-309 (-549)))) 59) (($ (-1226 (-923 (-372)))) 90) (($ (-1226 (-923 (-549)))) 80) (($ (-1226 (-400 (-923 (-372))))) 48) (($ (-1226 (-400 (-923 (-549))))) 32)) (-3316 (((-1231) $) 120)) (-3846 (((-834) $) 113) (($ (-621 (-323))) 103) (($ (-323)) 97) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 101) (($ (-1226 (-332 (-3854 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3854) (-675)))) 31)))
+(((-60 |#1|) (-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3854) (-675))))))) (-1143)) (T -60))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-332 (-3854 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3854) (-675)))) (-5 *1 (-60 *3)) (-14 *3 (-1143)))))
+(-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3854) (-675)))))))
+((-3316 (((-1231) $) 53) (((-1231)) 54)) (-3846 (((-834) $) 50)))
+(((-61 |#1|) (-13 (-388) (-10 -7 (-15 -3316 ((-1231))))) (-1143)) (T -61))
+((-3316 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-61 *3)) (-14 *3 (-1143)))))
+(-13 (-388) (-10 -7 (-15 -3316 ((-1231)))))
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 144) (((-3 $ "failed") (-1226 (-309 (-549)))) 134) (((-3 $ "failed") (-1226 (-923 (-372)))) 164) (((-3 $ "failed") (-1226 (-923 (-549)))) 154) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 123) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 111)) (-2659 (($ (-1226 (-309 (-372)))) 140) (($ (-1226 (-309 (-549)))) 130) (($ (-1226 (-923 (-372)))) 160) (($ (-1226 (-923 (-549)))) 150) (($ (-1226 (-400 (-923 (-372))))) 119) (($ (-1226 (-400 (-923 (-549))))) 104)) (-3316 (((-1231) $) 97)) (-3846 (((-834) $) 91) (($ (-621 (-323))) 29) (($ (-323)) 34) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 32) (($ (-1226 (-332 (-3854) (-3854 (QUOTE XC)) (-675)))) 89)))
+(((-62 |#1|) (-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854) (-3854 (QUOTE XC)) (-675))))))) (-1143)) (T -62))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-332 (-3854) (-3854 (QUOTE XC)) (-675)))) (-5 *1 (-62 *3)) (-14 *3 (-1143)))))
+(-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854) (-3854 (QUOTE XC)) (-675)))))))
+((-2714 (((-3 $ "failed") (-309 (-372))) 41) (((-3 $ "failed") (-309 (-549))) 46) (((-3 $ "failed") (-923 (-372))) 50) (((-3 $ "failed") (-923 (-549))) 54) (((-3 $ "failed") (-400 (-923 (-372)))) 36) (((-3 $ "failed") (-400 (-923 (-549)))) 29)) (-2659 (($ (-309 (-372))) 39) (($ (-309 (-549))) 44) (($ (-923 (-372))) 48) (($ (-923 (-549))) 52) (($ (-400 (-923 (-372)))) 34) (($ (-400 (-923 (-549)))) 26)) (-3316 (((-1231) $) 76)) (-3846 (((-834) $) 69) (($ (-621 (-323))) 61) (($ (-323)) 66) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 64) (($ (-332 (-3854 (QUOTE X)) (-3854) (-675))) 25)))
+(((-63 |#1|) (-13 (-389) (-10 -8 (-15 -3846 ($ (-332 (-3854 (QUOTE X)) (-3854) (-675)))))) (-1143)) (T -63))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-332 (-3854 (QUOTE X)) (-3854) (-675))) (-5 *1 (-63 *3)) (-14 *3 (-1143)))))
+(-13 (-389) (-10 -8 (-15 -3846 ($ (-332 (-3854 (QUOTE X)) (-3854) (-675))))))
+((-2714 (((-3 $ "failed") (-665 (-309 (-372)))) 109) (((-3 $ "failed") (-665 (-309 (-549)))) 97) (((-3 $ "failed") (-665 (-923 (-372)))) 131) (((-3 $ "failed") (-665 (-923 (-549)))) 120) (((-3 $ "failed") (-665 (-400 (-923 (-372))))) 85) (((-3 $ "failed") (-665 (-400 (-923 (-549))))) 71)) (-2659 (($ (-665 (-309 (-372)))) 105) (($ (-665 (-309 (-549)))) 93) (($ (-665 (-923 (-372)))) 127) (($ (-665 (-923 (-549)))) 116) (($ (-665 (-400 (-923 (-372))))) 81) (($ (-665 (-400 (-923 (-549))))) 64)) (-3316 (((-1231) $) 139)) (-3846 (((-834) $) 133) (($ (-621 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 31) (($ (-665 (-332 (-3854) (-3854 (QUOTE X) (QUOTE HESS)) (-675)))) 54)))
+(((-64 |#1|) (-13 (-377) (-10 -8 (-15 -3846 ($ (-665 (-332 (-3854) (-3854 (QUOTE X) (QUOTE HESS)) (-675))))))) (-1143)) (T -64))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3854) (-3854 (QUOTE X) (QUOTE HESS)) (-675)))) (-5 *1 (-64 *3)) (-14 *3 (-1143)))))
+(-13 (-377) (-10 -8 (-15 -3846 ($ (-665 (-332 (-3854) (-3854 (QUOTE X) (QUOTE HESS)) (-675)))))))
+((-2714 (((-3 $ "failed") (-309 (-372))) 59) (((-3 $ "failed") (-309 (-549))) 64) (((-3 $ "failed") (-923 (-372))) 68) (((-3 $ "failed") (-923 (-549))) 72) (((-3 $ "failed") (-400 (-923 (-372)))) 54) (((-3 $ "failed") (-400 (-923 (-549)))) 47)) (-2659 (($ (-309 (-372))) 57) (($ (-309 (-549))) 62) (($ (-923 (-372))) 66) (($ (-923 (-549))) 70) (($ (-400 (-923 (-372)))) 52) (($ (-400 (-923 (-549)))) 44)) (-3316 (((-1231) $) 81)) (-3846 (((-834) $) 75) (($ (-621 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 31) (($ (-332 (-3854) (-3854 (QUOTE XC)) (-675))) 39)))
+(((-65 |#1|) (-13 (-389) (-10 -8 (-15 -3846 ($ (-332 (-3854) (-3854 (QUOTE XC)) (-675)))))) (-1143)) (T -65))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-332 (-3854) (-3854 (QUOTE XC)) (-675))) (-5 *1 (-65 *3)) (-14 *3 (-1143)))))
+(-13 (-389) (-10 -8 (-15 -3846 ($ (-332 (-3854) (-3854 (QUOTE XC)) (-675))))))
+((-3316 (((-1231) $) 63)) (-3846 (((-834) $) 57) (($ (-665 (-675))) 49) (($ (-621 (-323))) 48) (($ (-323)) 55) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 53)))
+(((-66 |#1|) (-376) (-1143)) (T -66))
+NIL
+(-376)
+((-3316 (((-1231) $) 64)) (-3846 (((-834) $) 58) (($ (-665 (-675))) 50) (($ (-621 (-323))) 49) (($ (-323)) 52) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 55)))
+(((-67 |#1|) (-376) (-1143)) (T -67))
+NIL
+(-376)
+((-3316 (((-1231) $) NIL) (((-1231)) 32)) (-3846 (((-834) $) NIL)))
+(((-68 |#1|) (-13 (-388) (-10 -7 (-15 -3316 ((-1231))))) (-1143)) (T -68))
+((-3316 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-68 *3)) (-14 *3 (-1143)))))
+(-13 (-388) (-10 -7 (-15 -3316 ((-1231)))))
+((-3316 (((-1231) $) 73)) (-3846 (((-834) $) 67) (($ (-665 (-675))) 59) (($ (-621 (-323))) 61) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 58)))
+(((-69 |#1|) (-376) (-1143)) (T -69))
+NIL
+(-376)
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 103) (((-3 $ "failed") (-1226 (-309 (-549)))) 92) (((-3 $ "failed") (-1226 (-923 (-372)))) 123) (((-3 $ "failed") (-1226 (-923 (-549)))) 113) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 81) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 68)) (-2659 (($ (-1226 (-309 (-372)))) 99) (($ (-1226 (-309 (-549)))) 88) (($ (-1226 (-923 (-372)))) 119) (($ (-1226 (-923 (-549)))) 109) (($ (-1226 (-400 (-923 (-372))))) 77) (($ (-1226 (-400 (-923 (-549))))) 61)) (-3316 (((-1231) $) 136)) (-3846 (((-834) $) 130) (($ (-621 (-323))) 125) (($ (-323)) 128) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 53) (($ (-1226 (-332 (-3854 (QUOTE X)) (-3854 (QUOTE -2663)) (-675)))) 54)))
+(((-70 |#1|) (-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE X)) (-3854 (QUOTE -2663)) (-675))))))) (-1143)) (T -70))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-332 (-3854 (QUOTE X)) (-3854 (QUOTE -2663)) (-675)))) (-5 *1 (-70 *3)) (-14 *3 (-1143)))))
+(-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE X)) (-3854 (QUOTE -2663)) (-675)))))))
+((-3316 (((-1231) $) 32) (((-1231)) 31)) (-3846 (((-834) $) 35)))
+(((-71 |#1|) (-13 (-388) (-10 -7 (-15 -3316 ((-1231))))) (-1143)) (T -71))
+((-3316 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-71 *3)) (-14 *3 (-1143)))))
+(-13 (-388) (-10 -7 (-15 -3316 ((-1231)))))
+((-3316 (((-1231) $) 63)) (-3846 (((-834) $) 57) (($ (-665 (-675))) 49) (($ (-621 (-323))) 51) (($ (-323)) 54) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 48)))
+(((-72 |#1|) (-376) (-1143)) (T -72))
+NIL
+(-376)
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 125) (((-3 $ "failed") (-1226 (-309 (-549)))) 115) (((-3 $ "failed") (-1226 (-923 (-372)))) 145) (((-3 $ "failed") (-1226 (-923 (-549)))) 135) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 105) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 93)) (-2659 (($ (-1226 (-309 (-372)))) 121) (($ (-1226 (-309 (-549)))) 111) (($ (-1226 (-923 (-372)))) 141) (($ (-1226 (-923 (-549)))) 131) (($ (-1226 (-400 (-923 (-372))))) 101) (($ (-1226 (-400 (-923 (-549))))) 86)) (-3316 (((-1231) $) 78)) (-3846 (((-834) $) 27) (($ (-621 (-323))) 68) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 71) (($ (-1226 (-332 (-3854) (-3854 (QUOTE X)) (-675)))) 65)))
+(((-73 |#1|) (-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854) (-3854 (QUOTE X)) (-675))))))) (-1143)) (T -73))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-332 (-3854) (-3854 (QUOTE X)) (-675)))) (-5 *1 (-73 *3)) (-14 *3 (-1143)))))
+(-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854) (-3854 (QUOTE X)) (-675)))))))
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 130) (((-3 $ "failed") (-1226 (-309 (-549)))) 119) (((-3 $ "failed") (-1226 (-923 (-372)))) 150) (((-3 $ "failed") (-1226 (-923 (-549)))) 140) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 108) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 95)) (-2659 (($ (-1226 (-309 (-372)))) 126) (($ (-1226 (-309 (-549)))) 115) (($ (-1226 (-923 (-372)))) 146) (($ (-1226 (-923 (-549)))) 136) (($ (-1226 (-400 (-923 (-372))))) 104) (($ (-1226 (-400 (-923 (-549))))) 88)) (-3316 (((-1231) $) 79)) (-3846 (((-834) $) 71) (($ (-621 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) NIL) (($ (-1226 (-332 (-3854 (QUOTE X) (QUOTE EPS)) (-3854 (QUOTE -2663)) (-675)))) 66)))
+(((-74 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE X) (QUOTE EPS)) (-3854 (QUOTE -2663)) (-675))))))) (-1143) (-1143) (-1143)) (T -74))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-332 (-3854 (QUOTE X) (QUOTE EPS)) (-3854 (QUOTE -2663)) (-675)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1143)) (-14 *4 (-1143)) (-14 *5 (-1143)))))
+(-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE X) (QUOTE EPS)) (-3854 (QUOTE -2663)) (-675)))))))
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 134) (((-3 $ "failed") (-1226 (-309 (-549)))) 123) (((-3 $ "failed") (-1226 (-923 (-372)))) 154) (((-3 $ "failed") (-1226 (-923 (-549)))) 144) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 112) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 99)) (-2659 (($ (-1226 (-309 (-372)))) 130) (($ (-1226 (-309 (-549)))) 119) (($ (-1226 (-923 (-372)))) 150) (($ (-1226 (-923 (-549)))) 140) (($ (-1226 (-400 (-923 (-372))))) 108) (($ (-1226 (-400 (-923 (-549))))) 92)) (-3316 (((-1231) $) 83)) (-3846 (((-834) $) 75) (($ (-621 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) NIL) (($ (-1226 (-332 (-3854 (QUOTE EPS)) (-3854 (QUOTE YA) (QUOTE YB)) (-675)))) 70)))
+(((-75 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE EPS)) (-3854 (QUOTE YA) (QUOTE YB)) (-675))))))) (-1143) (-1143) (-1143)) (T -75))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-332 (-3854 (QUOTE EPS)) (-3854 (QUOTE YA) (QUOTE YB)) (-675)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1143)) (-14 *4 (-1143)) (-14 *5 (-1143)))))
+(-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE EPS)) (-3854 (QUOTE YA) (QUOTE YB)) (-675)))))))
+((-2714 (((-3 $ "failed") (-309 (-372))) 82) (((-3 $ "failed") (-309 (-549))) 87) (((-3 $ "failed") (-923 (-372))) 91) (((-3 $ "failed") (-923 (-549))) 95) (((-3 $ "failed") (-400 (-923 (-372)))) 77) (((-3 $ "failed") (-400 (-923 (-549)))) 70)) (-2659 (($ (-309 (-372))) 80) (($ (-309 (-549))) 85) (($ (-923 (-372))) 89) (($ (-923 (-549))) 93) (($ (-400 (-923 (-372)))) 75) (($ (-400 (-923 (-549)))) 67)) (-3316 (((-1231) $) 62)) (-3846 (((-834) $) 50) (($ (-621 (-323))) 46) (($ (-323)) 56) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 54) (($ (-332 (-3854) (-3854 (QUOTE X)) (-675))) 47)))
+(((-76 |#1|) (-13 (-389) (-10 -8 (-15 -3846 ($ (-332 (-3854) (-3854 (QUOTE X)) (-675)))))) (-1143)) (T -76))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-332 (-3854) (-3854 (QUOTE X)) (-675))) (-5 *1 (-76 *3)) (-14 *3 (-1143)))))
+(-13 (-389) (-10 -8 (-15 -3846 ($ (-332 (-3854) (-3854 (QUOTE X)) (-675))))))
+((-2714 (((-3 $ "failed") (-309 (-372))) 46) (((-3 $ "failed") (-309 (-549))) 51) (((-3 $ "failed") (-923 (-372))) 55) (((-3 $ "failed") (-923 (-549))) 59) (((-3 $ "failed") (-400 (-923 (-372)))) 41) (((-3 $ "failed") (-400 (-923 (-549)))) 34)) (-2659 (($ (-309 (-372))) 44) (($ (-309 (-549))) 49) (($ (-923 (-372))) 53) (($ (-923 (-549))) 57) (($ (-400 (-923 (-372)))) 39) (($ (-400 (-923 (-549)))) 31)) (-3316 (((-1231) $) 80)) (-3846 (((-834) $) 74) (($ (-621 (-323))) 66) (($ (-323)) 71) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 69) (($ (-332 (-3854) (-3854 (QUOTE X)) (-675))) 30)))
+(((-77 |#1|) (-13 (-389) (-10 -8 (-15 -3846 ($ (-332 (-3854) (-3854 (QUOTE X)) (-675)))))) (-1143)) (T -77))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-332 (-3854) (-3854 (QUOTE X)) (-675))) (-5 *1 (-77 *3)) (-14 *3 (-1143)))))
+(-13 (-389) (-10 -8 (-15 -3846 ($ (-332 (-3854) (-3854 (QUOTE X)) (-675))))))
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 89) (((-3 $ "failed") (-1226 (-309 (-549)))) 78) (((-3 $ "failed") (-1226 (-923 (-372)))) 109) (((-3 $ "failed") (-1226 (-923 (-549)))) 99) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 67) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 54)) (-2659 (($ (-1226 (-309 (-372)))) 85) (($ (-1226 (-309 (-549)))) 74) (($ (-1226 (-923 (-372)))) 105) (($ (-1226 (-923 (-549)))) 95) (($ (-1226 (-400 (-923 (-372))))) 63) (($ (-1226 (-400 (-923 (-549))))) 47)) (-3316 (((-1231) $) 125)) (-3846 (((-834) $) 119) (($ (-621 (-323))) 112) (($ (-323)) 37) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 115) (($ (-1226 (-332 (-3854) (-3854 (QUOTE XC)) (-675)))) 38)))
+(((-78 |#1|) (-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854) (-3854 (QUOTE XC)) (-675))))))) (-1143)) (T -78))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-332 (-3854) (-3854 (QUOTE XC)) (-675)))) (-5 *1 (-78 *3)) (-14 *3 (-1143)))))
+(-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854) (-3854 (QUOTE XC)) (-675)))))))
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 142) (((-3 $ "failed") (-1226 (-309 (-549)))) 132) (((-3 $ "failed") (-1226 (-923 (-372)))) 162) (((-3 $ "failed") (-1226 (-923 (-549)))) 152) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 122) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 110)) (-2659 (($ (-1226 (-309 (-372)))) 138) (($ (-1226 (-309 (-549)))) 128) (($ (-1226 (-923 (-372)))) 158) (($ (-1226 (-923 (-549)))) 148) (($ (-1226 (-400 (-923 (-372))))) 118) (($ (-1226 (-400 (-923 (-549))))) 103)) (-3316 (((-1231) $) 96)) (-3846 (((-834) $) 90) (($ (-621 (-323))) 81) (($ (-323)) 88) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 86) (($ (-1226 (-332 (-3854) (-3854 (QUOTE X)) (-675)))) 82)))
+(((-79 |#1|) (-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854) (-3854 (QUOTE X)) (-675))))))) (-1143)) (T -79))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-332 (-3854) (-3854 (QUOTE X)) (-675)))) (-5 *1 (-79 *3)) (-14 *3 (-1143)))))
+(-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854) (-3854 (QUOTE X)) (-675)))))))
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 78) (((-3 $ "failed") (-1226 (-309 (-549)))) 67) (((-3 $ "failed") (-1226 (-923 (-372)))) 98) (((-3 $ "failed") (-1226 (-923 (-549)))) 88) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 56) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 43)) (-2659 (($ (-1226 (-309 (-372)))) 74) (($ (-1226 (-309 (-549)))) 63) (($ (-1226 (-923 (-372)))) 94) (($ (-1226 (-923 (-549)))) 84) (($ (-1226 (-400 (-923 (-372))))) 52) (($ (-1226 (-400 (-923 (-549))))) 36)) (-3316 (((-1231) $) 124)) (-3846 (((-834) $) 118) (($ (-621 (-323))) 109) (($ (-323)) 115) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 113) (($ (-1226 (-332 (-3854) (-3854 (QUOTE X)) (-675)))) 35)))
+(((-80 |#1|) (-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854) (-3854 (QUOTE X)) (-675))))))) (-1143)) (T -80))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-332 (-3854) (-3854 (QUOTE X)) (-675)))) (-5 *1 (-80 *3)) (-14 *3 (-1143)))))
+(-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854) (-3854 (QUOTE X)) (-675)))))))
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 95) (((-3 $ "failed") (-1226 (-309 (-549)))) 84) (((-3 $ "failed") (-1226 (-923 (-372)))) 115) (((-3 $ "failed") (-1226 (-923 (-549)))) 105) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 73) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 60)) (-2659 (($ (-1226 (-309 (-372)))) 91) (($ (-1226 (-309 (-549)))) 80) (($ (-1226 (-923 (-372)))) 111) (($ (-1226 (-923 (-549)))) 101) (($ (-1226 (-400 (-923 (-372))))) 69) (($ (-1226 (-400 (-923 (-549))))) 53)) (-3316 (((-1231) $) 45)) (-3846 (((-834) $) 39) (($ (-621 (-323))) 29) (($ (-323)) 32) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 35) (($ (-1226 (-332 (-3854 (QUOTE X) (QUOTE -2663)) (-3854) (-675)))) 30)))
+(((-81 |#1|) (-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE X) (QUOTE -2663)) (-3854) (-675))))))) (-1143)) (T -81))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-332 (-3854 (QUOTE X) (QUOTE -2663)) (-3854) (-675)))) (-5 *1 (-81 *3)) (-14 *3 (-1143)))))
+(-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE X) (QUOTE -2663)) (-3854) (-675)))))))
+((-2714 (((-3 $ "failed") (-665 (-309 (-372)))) 115) (((-3 $ "failed") (-665 (-309 (-549)))) 104) (((-3 $ "failed") (-665 (-923 (-372)))) 137) (((-3 $ "failed") (-665 (-923 (-549)))) 126) (((-3 $ "failed") (-665 (-400 (-923 (-372))))) 93) (((-3 $ "failed") (-665 (-400 (-923 (-549))))) 80)) (-2659 (($ (-665 (-309 (-372)))) 111) (($ (-665 (-309 (-549)))) 100) (($ (-665 (-923 (-372)))) 133) (($ (-665 (-923 (-549)))) 122) (($ (-665 (-400 (-923 (-372))))) 89) (($ (-665 (-400 (-923 (-549))))) 73)) (-3316 (((-1231) $) 63)) (-3846 (((-834) $) 50) (($ (-621 (-323))) 57) (($ (-323)) 46) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 55) (($ (-665 (-332 (-3854 (QUOTE X) (QUOTE -2663)) (-3854) (-675)))) 47)))
+(((-82 |#1|) (-13 (-377) (-10 -8 (-15 -3846 ($ (-665 (-332 (-3854 (QUOTE X) (QUOTE -2663)) (-3854) (-675))))))) (-1143)) (T -82))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3854 (QUOTE X) (QUOTE -2663)) (-3854) (-675)))) (-5 *1 (-82 *3)) (-14 *3 (-1143)))))
+(-13 (-377) (-10 -8 (-15 -3846 ($ (-665 (-332 (-3854 (QUOTE X) (QUOTE -2663)) (-3854) (-675)))))))
+((-2714 (((-3 $ "failed") (-665 (-309 (-372)))) 112) (((-3 $ "failed") (-665 (-309 (-549)))) 100) (((-3 $ "failed") (-665 (-923 (-372)))) 134) (((-3 $ "failed") (-665 (-923 (-549)))) 123) (((-3 $ "failed") (-665 (-400 (-923 (-372))))) 88) (((-3 $ "failed") (-665 (-400 (-923 (-549))))) 74)) (-2659 (($ (-665 (-309 (-372)))) 108) (($ (-665 (-309 (-549)))) 96) (($ (-665 (-923 (-372)))) 130) (($ (-665 (-923 (-549)))) 119) (($ (-665 (-400 (-923 (-372))))) 84) (($ (-665 (-400 (-923 (-549))))) 67)) (-3316 (((-1231) $) 59)) (-3846 (((-834) $) 53) (($ (-621 (-323))) 47) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 44) (($ (-665 (-332 (-3854 (QUOTE X)) (-3854) (-675)))) 45)))
+(((-83 |#1|) (-13 (-377) (-10 -8 (-15 -3846 ($ (-665 (-332 (-3854 (QUOTE X)) (-3854) (-675))))))) (-1143)) (T -83))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3854 (QUOTE X)) (-3854) (-675)))) (-5 *1 (-83 *3)) (-14 *3 (-1143)))))
+(-13 (-377) (-10 -8 (-15 -3846 ($ (-665 (-332 (-3854 (QUOTE X)) (-3854) (-675)))))))
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 104) (((-3 $ "failed") (-1226 (-309 (-549)))) 93) (((-3 $ "failed") (-1226 (-923 (-372)))) 124) (((-3 $ "failed") (-1226 (-923 (-549)))) 114) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 82) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 69)) (-2659 (($ (-1226 (-309 (-372)))) 100) (($ (-1226 (-309 (-549)))) 89) (($ (-1226 (-923 (-372)))) 120) (($ (-1226 (-923 (-549)))) 110) (($ (-1226 (-400 (-923 (-372))))) 78) (($ (-1226 (-400 (-923 (-549))))) 62)) (-3316 (((-1231) $) 46)) (-3846 (((-834) $) 40) (($ (-621 (-323))) 49) (($ (-323)) 36) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 52) (($ (-1226 (-332 (-3854 (QUOTE X)) (-3854) (-675)))) 37)))
+(((-84 |#1|) (-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE X)) (-3854) (-675))))))) (-1143)) (T -84))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-332 (-3854 (QUOTE X)) (-3854) (-675)))) (-5 *1 (-84 *3)) (-14 *3 (-1143)))))
+(-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE X)) (-3854) (-675)))))))
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 79) (((-3 $ "failed") (-1226 (-309 (-549)))) 68) (((-3 $ "failed") (-1226 (-923 (-372)))) 99) (((-3 $ "failed") (-1226 (-923 (-549)))) 89) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 57) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 44)) (-2659 (($ (-1226 (-309 (-372)))) 75) (($ (-1226 (-309 (-549)))) 64) (($ (-1226 (-923 (-372)))) 95) (($ (-1226 (-923 (-549)))) 85) (($ (-1226 (-400 (-923 (-372))))) 53) (($ (-1226 (-400 (-923 (-549))))) 37)) (-3316 (((-1231) $) 125)) (-3846 (((-834) $) 119) (($ (-621 (-323))) 110) (($ (-323)) 116) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 114) (($ (-1226 (-332 (-3854 (QUOTE X)) (-3854 (QUOTE -2663)) (-675)))) 36)))
+(((-85 |#1|) (-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE X)) (-3854 (QUOTE -2663)) (-675))))))) (-1143)) (T -85))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-332 (-3854 (QUOTE X)) (-3854 (QUOTE -2663)) (-675)))) (-5 *1 (-85 *3)) (-14 *3 (-1143)))))
+(-13 (-433) (-10 -8 (-15 -3846 ($ (-1226 (-332 (-3854 (QUOTE X)) (-3854 (QUOTE -2663)) (-675)))))))
+((-2714 (((-3 $ "failed") (-665 (-309 (-372)))) 113) (((-3 $ "failed") (-665 (-309 (-549)))) 101) (((-3 $ "failed") (-665 (-923 (-372)))) 135) (((-3 $ "failed") (-665 (-923 (-549)))) 124) (((-3 $ "failed") (-665 (-400 (-923 (-372))))) 89) (((-3 $ "failed") (-665 (-400 (-923 (-549))))) 75)) (-2659 (($ (-665 (-309 (-372)))) 109) (($ (-665 (-309 (-549)))) 97) (($ (-665 (-923 (-372)))) 131) (($ (-665 (-923 (-549)))) 120) (($ (-665 (-400 (-923 (-372))))) 85) (($ (-665 (-400 (-923 (-549))))) 68)) (-3316 (((-1231) $) 59)) (-3846 (((-834) $) 53) (($ (-621 (-323))) 43) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 48) (($ (-665 (-332 (-3854 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3854) (-675)))) 44)))
+(((-86 |#1|) (-13 (-377) (-10 -8 (-15 -3846 ($ (-665 (-332 (-3854 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3854) (-675))))))) (-1143)) (T -86))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-665 (-332 (-3854 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3854) (-675)))) (-5 *1 (-86 *3)) (-14 *3 (-1143)))))
+(-13 (-377) (-10 -8 (-15 -3846 ($ (-665 (-332 (-3854 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3854) (-675)))))))
+((-3316 (((-1231) $) 44)) (-3846 (((-834) $) 38) (($ (-1226 (-675))) 92) (($ (-621 (-323))) 30) (($ (-323)) 35) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 33)))
+(((-87 |#1|) (-432) (-1143)) (T -87))
+NIL
+(-432)
+((-2714 (((-3 $ "failed") (-309 (-372))) 47) (((-3 $ "failed") (-309 (-549))) 52) (((-3 $ "failed") (-923 (-372))) 56) (((-3 $ "failed") (-923 (-549))) 60) (((-3 $ "failed") (-400 (-923 (-372)))) 42) (((-3 $ "failed") (-400 (-923 (-549)))) 35)) (-2659 (($ (-309 (-372))) 45) (($ (-309 (-549))) 50) (($ (-923 (-372))) 54) (($ (-923 (-549))) 58) (($ (-400 (-923 (-372)))) 40) (($ (-400 (-923 (-549)))) 32)) (-3316 (((-1231) $) 90)) (-3846 (((-834) $) 84) (($ (-621 (-323))) 78) (($ (-323)) 81) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 76) (($ (-332 (-3854 (QUOTE X)) (-3854 (QUOTE -2663)) (-675))) 31)))
+(((-88 |#1|) (-13 (-389) (-10 -8 (-15 -3846 ($ (-332 (-3854 (QUOTE X)) (-3854 (QUOTE -2663)) (-675)))))) (-1143)) (T -88))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-332 (-3854 (QUOTE X)) (-3854 (QUOTE -2663)) (-675))) (-5 *1 (-88 *3)) (-14 *3 (-1143)))))
+(-13 (-389) (-10 -8 (-15 -3846 ($ (-332 (-3854 (QUOTE X)) (-3854 (QUOTE -2663)) (-675))))))
+((-3027 (((-1226 (-665 |#1|)) (-665 |#1|)) 54)) (-3079 (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 (-621 (-892))))) |#2| (-892)) 44)) (-3365 (((-2 (|:| |minor| (-621 (-892))) (|:| -2652 |#2|) (|:| |minors| (-621 (-621 (-892)))) (|:| |ops| (-621 |#2|))) |#2| (-892)) 65 (|has| |#1| (-356)))))
+(((-89 |#1| |#2|) (-10 -7 (-15 -3079 ((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 (-621 (-892))))) |#2| (-892))) (-15 -3027 ((-1226 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-356)) (-15 -3365 ((-2 (|:| |minor| (-621 (-892))) (|:| -2652 |#2|) (|:| |minors| (-621 (-621 (-892)))) (|:| |ops| (-621 |#2|))) |#2| (-892))) |%noBranch|)) (-541) (-632 |#1|)) (T -89))
+((-3365 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *5 (-541)) (-5 *2 (-2 (|:| |minor| (-621 (-892))) (|:| -2652 *3) (|:| |minors| (-621 (-621 (-892)))) (|:| |ops| (-621 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-892)) (-4 *3 (-632 *5)))) (-3027 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-1226 (-665 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-665 *4)) (-4 *5 (-632 *4)))) (-3079 (*1 *2 *3 *4) (-12 (-4 *5 (-541)) (-5 *2 (-2 (|:| -3521 (-665 *5)) (|:| |vec| (-1226 (-621 (-892)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-892)) (-4 *3 (-632 *5)))))
+(-10 -7 (-15 -3079 ((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 (-621 (-892))))) |#2| (-892))) (-15 -3027 ((-1226 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-356)) (-15 -3365 ((-2 (|:| |minor| (-621 (-892))) (|:| -2652 |#2|) (|:| |minors| (-621 (-621 (-892)))) (|:| |ops| (-621 |#2|))) |#2| (-892))) |%noBranch|))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2317 ((|#1| $) 35)) (-1584 (((-112) $ (-747)) NIL)) (-1682 (($) NIL T CONST)) (-3204 ((|#1| |#1| $) 30)) (-1350 ((|#1| $) 28)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3504 ((|#1| $) NIL)) (-2751 (($ |#1| $) 31)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3325 ((|#1| $) 29)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 16)) (-3742 (($) 39)) (-1321 (((-747) $) 26)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) 15)) (-3846 (((-834) $) 25 (|has| |#1| (-593 (-834))))) (-3624 (($ (-621 |#1|)) NIL)) (-3580 (($ (-621 |#1|)) 37)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 13 (|has| |#1| (-1067)))) (-3775 (((-747) $) 10 (|has| $ (-6 -4337)))))
+(((-90 |#1|) (-13 (-1088 |#1|) (-10 -8 (-15 -3580 ($ (-621 |#1|))))) (-1067)) (T -90))
+((-3580 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-90 *3)))))
+(-13 (-1088 |#1|) (-10 -8 (-15 -3580 ($ (-621 |#1|)))))
+((-3846 (((-834) $) 12) (((-1148) $) 8)))
+(((-91 |#1|) (-10 -8 (-15 -3846 ((-1148) |#1|)) (-15 -3846 ((-834) |#1|))) (-92)) (T -91))
+NIL
+(-10 -8 (-15 -3846 ((-1148) |#1|)) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (((-1148) $) 14)) (-2389 (((-112) $ $) 6)))
(((-92) (-138)) (T -92))
NIL
-(-13 (-1063) (-591 (-1141)))
-(((-101) . T) ((-591 (-832)) . T) ((-591 (-1141)) . T) ((-1063) . T))
-((-1606 (($ $) 10)) (-1620 (($ $) 12)))
-(((-93 |#1|) (-10 -8 (-15 -1620 (|#1| |#1|)) (-15 -1606 (|#1| |#1|))) (-94)) (T -93))
+(-13 (-1067) (-593 (-1148)))
+(((-101) . T) ((-593 (-834)) . T) ((-593 (-1148)) . T) ((-1067) . T))
+((-1612 (($ $) 10)) (-1627 (($ $) 12)))
+(((-93 |#1|) (-10 -8 (-15 -1627 (|#1| |#1|)) (-15 -1612 (|#1| |#1|))) (-94)) (T -93))
NIL
-(-10 -8 (-15 -1620 (|#1| |#1|)) (-15 -1606 (|#1| |#1|)))
-((-1579 (($ $) 11)) (-1557 (($ $) 10)) (-1606 (($ $) 9)) (-1620 (($ $) 8)) (-1593 (($ $) 7)) (-1569 (($ $) 6)))
+(-10 -8 (-15 -1627 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)))
+((-1587 (($ $) 11)) (-1564 (($ $) 10)) (-1612 (($ $) 9)) (-1627 (($ $) 8)) (-1600 (($ $) 7)) (-1576 (($ $) 6)))
(((-94) (-138)) (T -94))
-((-1579 (*1 *1 *1) (-4 *1 (-94))) (-1557 (*1 *1 *1) (-4 *1 (-94))) (-1606 (*1 *1 *1) (-4 *1 (-94))) (-1620 (*1 *1 *1) (-4 *1 (-94))) (-1593 (*1 *1 *1) (-4 *1 (-94))) (-1569 (*1 *1 *1) (-4 *1 (-94))))
-(-13 (-10 -8 (-15 -1569 ($ $)) (-15 -1593 ($ $)) (-15 -1620 ($ $)) (-15 -1606 ($ $)) (-15 -1557 ($ $)) (-15 -1579 ($ $))))
-((-3826 (((-112) $ $) NIL)) (-2473 (((-1141) $) 9)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-95) (-13 (-1047) (-10 -8 (-15 -2473 ((-1141) $))))) (T -95))
-((-2473 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-95)))))
-(-13 (-1047) (-10 -8 (-15 -2473 ((-1141) $))))
-((-3826 (((-112) $ $) NIL)) (-3178 (((-370) (-1119) (-370)) 42) (((-370) (-1119) (-1119) (-370)) 41)) (-3396 (((-370) (-370)) 33)) (-1602 (((-1224)) 36)) (-1466 (((-1119) $) NIL)) (-1528 (((-370) (-1119) (-1119)) 46) (((-370) (-1119)) 48)) (-3979 (((-1082) $) NIL)) (-3167 (((-370) (-1119) (-1119)) 47)) (-3999 (((-370) (-1119) (-1119)) 49) (((-370) (-1119)) 50)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-96) (-13 (-1063) (-10 -7 (-15 -1528 ((-370) (-1119) (-1119))) (-15 -1528 ((-370) (-1119))) (-15 -3999 ((-370) (-1119) (-1119))) (-15 -3999 ((-370) (-1119))) (-15 -3167 ((-370) (-1119) (-1119))) (-15 -1602 ((-1224))) (-15 -3396 ((-370) (-370))) (-15 -3178 ((-370) (-1119) (-370))) (-15 -3178 ((-370) (-1119) (-1119) (-370))) (-6 -4329)))) (T -96))
-((-1528 (*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-96)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-96)))) (-3999 (*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-96)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-96)))) (-3167 (*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-96)))) (-1602 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-96)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-96)))) (-3178 (*1 *2 *3 *2) (-12 (-5 *2 (-370)) (-5 *3 (-1119)) (-5 *1 (-96)))) (-3178 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-370)) (-5 *3 (-1119)) (-5 *1 (-96)))))
-(-13 (-1063) (-10 -7 (-15 -1528 ((-370) (-1119) (-1119))) (-15 -1528 ((-370) (-1119))) (-15 -3999 ((-370) (-1119) (-1119))) (-15 -3999 ((-370) (-1119))) (-15 -3167 ((-370) (-1119) (-1119))) (-15 -1602 ((-1224))) (-15 -3396 ((-370) (-370))) (-15 -3178 ((-370) (-1119) (-370))) (-15 -3178 ((-370) (-1119) (-1119) (-370))) (-6 -4329)))
+((-1587 (*1 *1 *1) (-4 *1 (-94))) (-1564 (*1 *1 *1) (-4 *1 (-94))) (-1612 (*1 *1 *1) (-4 *1 (-94))) (-1627 (*1 *1 *1) (-4 *1 (-94))) (-1600 (*1 *1 *1) (-4 *1 (-94))) (-1576 (*1 *1 *1) (-4 *1 (-94))))
+(-13 (-10 -8 (-15 -1576 ($ $)) (-15 -1600 ($ $)) (-15 -1627 ($ $)) (-15 -1612 ($ $)) (-15 -1564 ($ $)) (-15 -1587 ($ $))))
+((-3834 (((-112) $ $) NIL)) (-2481 (((-1148) $) 9)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-95) (-13 (-1050) (-10 -8 (-15 -2481 ((-1148) $))))) (T -95))
+((-2481 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-95)))))
+(-13 (-1050) (-10 -8 (-15 -2481 ((-1148) $))))
+((-3834 (((-112) $ $) NIL)) (-3095 (((-372) (-1125) (-372)) 42) (((-372) (-1125) (-1125) (-372)) 41)) (-2554 (((-372) (-372)) 33)) (-3997 (((-1231)) 36)) (-3851 (((-1125) $) NIL)) (-3529 (((-372) (-1125) (-1125)) 46) (((-372) (-1125)) 48)) (-3990 (((-1087) $) NIL)) (-3103 (((-372) (-1125) (-1125)) 47)) (-3144 (((-372) (-1125) (-1125)) 49) (((-372) (-1125)) 50)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-96) (-13 (-1067) (-10 -7 (-15 -3529 ((-372) (-1125) (-1125))) (-15 -3529 ((-372) (-1125))) (-15 -3144 ((-372) (-1125) (-1125))) (-15 -3144 ((-372) (-1125))) (-15 -3103 ((-372) (-1125) (-1125))) (-15 -3997 ((-1231))) (-15 -2554 ((-372) (-372))) (-15 -3095 ((-372) (-1125) (-372))) (-15 -3095 ((-372) (-1125) (-1125) (-372))) (-6 -4337)))) (T -96))
+((-3529 (*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-96)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-96)))) (-3144 (*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-96)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-96)))) (-3103 (*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-96)))) (-3997 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-96)))) (-2554 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-96)))) (-3095 (*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1125)) (-5 *1 (-96)))) (-3095 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1125)) (-5 *1 (-96)))))
+(-13 (-1067) (-10 -7 (-15 -3529 ((-372) (-1125) (-1125))) (-15 -3529 ((-372) (-1125))) (-15 -3144 ((-372) (-1125) (-1125))) (-15 -3144 ((-372) (-1125))) (-15 -3103 ((-372) (-1125) (-1125))) (-15 -3997 ((-1231))) (-15 -2554 ((-372) (-372))) (-15 -3095 ((-372) (-1125) (-372))) (-15 -3095 ((-372) (-1125) (-1125) (-372))) (-6 -4337)))
NIL
(((-97) (-138)) (T -97))
NIL
-(-13 (-10 -7 (-6 -4329) (-6 (-4331 "*")) (-6 -4330) (-6 -4326) (-6 -4324) (-6 -4323) (-6 -4322) (-6 -4327) (-6 -4321) (-6 -4320) (-6 -4319) (-6 -4318) (-6 -4317) (-6 -4325) (-6 -4328) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4316)))
-((-3826 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-2240 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-547))) 22)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 14)) (-3979 (((-1082) $) NIL)) (-3334 ((|#1| $ |#1|) 11)) (-3404 (($ $ $) NIL)) (-1473 (($ $ $) NIL)) (-3838 (((-832) $) 20)) (-3281 (($) 8 T CONST)) (-2381 (((-112) $ $) 10)) (-2506 (($ $ $) NIL)) (** (($ $ (-890)) 27) (($ $ (-745)) NIL) (($ $ (-547)) 16)) (* (($ $ $) 28)))
-(((-98 |#1|) (-13 (-463) (-277 |#1| |#1|) (-10 -8 (-15 -2240 ($ (-1 |#1| |#1|))) (-15 -2240 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2240 ($ (-1 |#1| |#1| (-547)))))) (-1016)) (T -98))
-((-2240 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-2240 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-2240 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-547))) (-4 *3 (-1016)) (-5 *1 (-98 *3)))))
-(-13 (-463) (-277 |#1| |#1|) (-10 -8 (-15 -2240 ($ (-1 |#1| |#1|))) (-15 -2240 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2240 ($ (-1 |#1| |#1| (-547))))))
-((-3204 (((-409 |#2|) |#2| (-619 |#2|)) 10) (((-409 |#2|) |#2| |#2|) 11)))
-(((-99 |#1| |#2|) (-10 -7 (-15 -3204 ((-409 |#2|) |#2| |#2|)) (-15 -3204 ((-409 |#2|) |#2| (-619 |#2|)))) (-13 (-442) (-145)) (-1195 |#1|)) (T -99))
-((-3204 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1195 *5)) (-4 *5 (-13 (-442) (-145))) (-5 *2 (-409 *3)) (-5 *1 (-99 *5 *3)))) (-3204 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-442) (-145))) (-5 *2 (-409 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1195 *4)))))
-(-10 -7 (-15 -3204 ((-409 |#2|) |#2| |#2|)) (-15 -3204 ((-409 |#2|) |#2| (-619 |#2|))))
-((-3826 (((-112) $ $) 10)))
-(((-100 |#1|) (-10 -8 (-15 -3826 ((-112) |#1| |#1|))) (-101)) (T -100))
-NIL
-(-10 -8 (-15 -3826 ((-112) |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-2381 (((-112) $ $) 6)))
+(-13 (-10 -7 (-6 -4337) (-6 (-4339 "*")) (-6 -4338) (-6 -4334) (-6 -4332) (-6 -4331) (-6 -4330) (-6 -4335) (-6 -4329) (-6 -4328) (-6 -4327) (-6 -4326) (-6 -4325) (-6 -4333) (-6 -4336) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4324)))
+((-3834 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) NIL)) (-2675 (((-112) $) NIL)) (-1311 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-549))) 22)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 14)) (-3990 (((-1087) $) NIL)) (-3341 ((|#1| $ |#1|) 11)) (-1955 (($ $ $) NIL)) (-3293 (($ $ $) NIL)) (-3846 (((-834) $) 20)) (-3287 (($) 8 T CONST)) (-2389 (((-112) $ $) 10)) (-2513 (($ $ $) NIL)) (** (($ $ (-892)) 27) (($ $ (-747)) NIL) (($ $ (-549)) 16)) (* (($ $ $) 28)))
+(((-98 |#1|) (-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -1311 ($ (-1 |#1| |#1|))) (-15 -1311 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1311 ($ (-1 |#1| |#1| (-549)))))) (-1018)) (T -98))
+((-1311 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) (-1311 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-549))) (-4 *3 (-1018)) (-5 *1 (-98 *3)))))
+(-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -1311 ($ (-1 |#1| |#1|))) (-15 -1311 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1311 ($ (-1 |#1| |#1| (-549))))))
+((-3155 (((-411 |#2|) |#2| (-621 |#2|)) 10) (((-411 |#2|) |#2| |#2|) 11)))
+(((-99 |#1| |#2|) (-10 -7 (-15 -3155 ((-411 |#2|) |#2| |#2|)) (-15 -3155 ((-411 |#2|) |#2| (-621 |#2|)))) (-13 (-444) (-145)) (-1202 |#1|)) (T -99))
+((-3155 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-1202 *5)) (-4 *5 (-13 (-444) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-99 *5 *3)))) (-3155 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1202 *4)))))
+(-10 -7 (-15 -3155 ((-411 |#2|) |#2| |#2|)) (-15 -3155 ((-411 |#2|) |#2| (-621 |#2|))))
+((-3834 (((-112) $ $) 10)))
+(((-100 |#1|) (-10 -8 (-15 -3834 ((-112) |#1| |#1|))) (-101)) (T -100))
+NIL
+(-10 -8 (-15 -3834 ((-112) |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-2389 (((-112) $ $) 6)))
(((-101) (-138)) (T -101))
-((-3826 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-2381 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -2381 ((-112) $ $)) (-15 -3826 ((-112) $ $))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4153 ((|#1| $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1986 ((|#1| $ |#1|) 13 (|has| $ (-6 -4330)))) (-3460 (($ $ $) NIL (|has| $ (-6 -4330)))) (-2792 (($ $ $) NIL (|has| $ (-6 -4330)))) (-3137 (($ $ (-619 |#1|)) 15)) (-2247 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4330))) (($ $ "left" $) NIL (|has| $ (-6 -4330))) (($ $ "right" $) NIL (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) NIL (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-3840 (($ $) 11)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) NIL)) (-2554 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2232 (($ $ |#1| $) 17)) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3340 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1461 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-619 |#1|) |#1| |#1| |#1|)) 35)) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-3830 (($ $) 10)) (-3583 (((-619 |#1|) $) NIL)) (-1489 (((-112) $) 12)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 9)) (-2245 (($) 16)) (-3334 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2857 (((-547) $ $) NIL)) (-1850 (((-112) $) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) NIL)) (-1421 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1268 (($ (-745) |#1|) 19)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4329) (-6 -4330) (-15 -1268 ($ (-745) |#1|)) (-15 -3137 ($ $ (-619 |#1|))) (-15 -3340 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3340 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1461 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1461 ($ $ |#1| (-1 (-619 |#1|) |#1| |#1| |#1|))))) (-1063)) (T -102))
-((-1268 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-102 *3)) (-4 *3 (-1063)))) (-3137 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1063)))) (-3340 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3)))) (-1461 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (-5 *1 (-102 *2)))) (-1461 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-619 *2) *2 *2 *2)) (-4 *2 (-1063)) (-5 *1 (-102 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4329) (-6 -4330) (-15 -1268 ($ (-745) |#1|)) (-15 -3137 ($ $ (-619 |#1|))) (-15 -3340 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3340 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1461 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1461 ($ $ |#1| (-1 (-619 |#1|) |#1| |#1| |#1|)))))
-((-1978 ((|#3| |#2| |#2|) 29)) (-2793 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4331 "*"))))) (-3036 ((|#3| |#2| |#2|) 30)) (-1913 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4331 "*"))))))
-(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1978 (|#3| |#2| |#2|)) (-15 -3036 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4331 "*"))) (PROGN (-15 -2793 (|#1| |#2| |#2|)) (-15 -1913 (|#1| |#2|))) |%noBranch|)) (-1016) (-1195 |#1|) (-661 |#1| |#4| |#5|) (-364 |#1|) (-364 |#1|)) (T -103))
-((-1913 (*1 *2 *3) (-12 (|has| *2 (-6 (-4331 "*"))) (-4 *5 (-364 *2)) (-4 *6 (-364 *2)) (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1195 *2)) (-4 *4 (-661 *2 *5 *6)))) (-2793 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4331 "*"))) (-4 *5 (-364 *2)) (-4 *6 (-364 *2)) (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1195 *2)) (-4 *4 (-661 *2 *5 *6)))) (-3036 (*1 *2 *3 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1195 *4)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)))) (-1978 (*1 *2 *3 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1195 *4)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)))))
-(-10 -7 (-15 -1978 (|#3| |#2| |#2|)) (-15 -3036 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4331 "*"))) (PROGN (-15 -2793 (|#1| |#2| |#2|)) (-15 -1913 (|#1| |#2|))) |%noBranch|))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2962 (((-619 (-1136))) 33)) (-1272 (((-2 (|:| |zeros| (-1117 (-217))) (|:| |ones| (-1117 (-217))) (|:| |singularities| (-1117 (-217)))) (-1136)) 35)) (-2381 (((-112) $ $) NIL)))
-(((-104) (-13 (-1063) (-10 -7 (-15 -2962 ((-619 (-1136)))) (-15 -1272 ((-2 (|:| |zeros| (-1117 (-217))) (|:| |ones| (-1117 (-217))) (|:| |singularities| (-1117 (-217)))) (-1136))) (-6 -4329)))) (T -104))
-((-2962 (*1 *2) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-104)))) (-1272 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-2 (|:| |zeros| (-1117 (-217))) (|:| |ones| (-1117 (-217))) (|:| |singularities| (-1117 (-217))))) (-5 *1 (-104)))))
-(-13 (-1063) (-10 -7 (-15 -2962 ((-619 (-1136)))) (-15 -1272 ((-2 (|:| |zeros| (-1117 (-217))) (|:| |ones| (-1117 (-217))) (|:| |singularities| (-1117 (-217)))) (-1136))) (-6 -4329)))
-((-2300 (($ (-619 |#2|)) 11)))
-(((-105 |#1| |#2|) (-10 -8 (-15 -2300 (|#1| (-619 |#2|)))) (-106 |#2|) (-1173)) (T -105))
-NIL
-(-10 -8 (-15 -2300 (|#1| (-619 |#2|))))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) 8)) (-1948 (($) 7 T CONST)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-4266 ((|#1| $) 39)) (-2657 (($ |#1| $) 40)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2056 ((|#1| $) 41)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2300 (($ (-619 |#1|)) 42)) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-106 |#1|) (-138) (-1173)) (T -106))
-((-2300 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-4 *1 (-106 *3)))) (-2056 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1173)))) (-2657 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1173)))) (-4266 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1173)))))
-(-13 (-479 |t#1|) (-10 -8 (-6 -4330) (-15 -2300 ($ (-619 |t#1|))) (-15 -2056 (|t#1| $)) (-15 -2657 ($ |t#1| $)) (-15 -4266 (|t#1| $))))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2092 (((-547) $) NIL (|has| (-547) (-298)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL (|has| (-547) (-794)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL) (((-3 (-1136) "failed") $) NIL (|has| (-547) (-1007 (-1136)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-547) (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| (-547) (-1007 (-547))))) (-2652 (((-547) $) NIL) (((-1136) $) NIL (|has| (-547) (-1007 (-1136)))) (((-398 (-547)) $) NIL (|has| (-547) (-1007 (-547)))) (((-547) $) NIL (|has| (-547) (-1007 (-547))))) (-2089 (($ $ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL) (((-663 (-547)) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| (-547) (-532)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-4270 (((-112) $) NIL (|has| (-547) (-794)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-547) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-547) (-855 (-370))))) (-2261 (((-112) $) NIL)) (-4170 (($ $) NIL)) (-1386 (((-547) $) NIL)) (-3477 (((-3 $ "failed") $) NIL (|has| (-547) (-1112)))) (-1860 (((-112) $) NIL (|has| (-547) (-794)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2856 (($ $ $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| (-547) (-821)))) (-2790 (($ (-1 (-547) (-547)) $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| (-547) (-1112)) CONST)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3682 (($ $) NIL (|has| (-547) (-298))) (((-398 (-547)) $) NIL)) (-1276 (((-547) $) NIL (|has| (-547) (-532)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2679 (($ $ (-619 (-547)) (-619 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-547) (-547)) NIL (|has| (-547) (-300 (-547)))) (($ $ (-285 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-285 (-547)))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-1136)) (-619 (-547))) NIL (|has| (-547) (-503 (-1136) (-547)))) (($ $ (-1136) (-547)) NIL (|has| (-547) (-503 (-1136) (-547))))) (-2471 (((-745) $) NIL)) (-3334 (($ $ (-547)) NIL (|has| (-547) (-277 (-547) (-547))))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3448 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1136)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-2995 (($ $) NIL)) (-1396 (((-547) $) NIL)) (-2838 (((-861 (-547)) $) NIL (|has| (-547) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-547) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-547) (-592 (-523)))) (((-370) $) NIL (|has| (-547) (-991))) (((-217) $) NIL (|has| (-547) (-991)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-547) (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) 8) (($ (-547)) NIL) (($ (-1136)) NIL (|has| (-547) (-1007 (-1136)))) (((-398 (-547)) $) NIL) (((-973 2) $) 10)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| (-547) (-878))) (|has| (-547) (-143))))) (-2736 (((-745)) NIL)) (-3720 (((-547) $) NIL (|has| (-547) (-532)))) (-3570 (($ (-398 (-547))) 9)) (-3577 (((-112) $ $) NIL)) (-2255 (($ $) NIL (|has| (-547) (-794)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1136)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-2441 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2418 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2405 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2506 (($ $ $) NIL) (($ (-547) (-547)) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-547) $) NIL) (($ $ (-547)) NIL)))
-(((-107) (-13 (-961 (-547)) (-10 -8 (-15 -3838 ((-398 (-547)) $)) (-15 -3838 ((-973 2) $)) (-15 -3682 ((-398 (-547)) $)) (-15 -3570 ($ (-398 (-547))))))) (T -107))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-107)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-973 2)) (-5 *1 (-107)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-107)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-107)))))
-(-13 (-961 (-547)) (-10 -8 (-15 -3838 ((-398 (-547)) $)) (-15 -3838 ((-973 2) $)) (-15 -3682 ((-398 (-547)) $)) (-15 -3570 ($ (-398 (-547))))))
-((-2766 (((-619 (-934)) $) 14)) (-2473 (((-1136) $) 10)) (-3838 (((-832) $) 23)) (-1596 (($ (-1136) (-619 (-934))) 15)))
-(((-108) (-13 (-591 (-832)) (-10 -8 (-15 -2473 ((-1136) $)) (-15 -2766 ((-619 (-934)) $)) (-15 -1596 ($ (-1136) (-619 (-934))))))) (T -108))
-((-2473 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-108)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-619 (-934))) (-5 *1 (-108)))) (-1596 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-934))) (-5 *1 (-108)))))
-(-13 (-591 (-832)) (-10 -8 (-15 -2473 ((-1136) $)) (-15 -2766 ((-619 (-934)) $)) (-15 -1596 ($ (-1136) (-619 (-934))))))
-((-3826 (((-112) $ $) NIL)) (-2027 (((-1082) $ (-1082)) 24)) (-1566 (($ $ (-1119)) 17)) (-3355 (((-3 (-1082) "failed") $) 23)) (-2569 (((-1082) $) 21)) (-2385 (((-1082) $ (-1082)) 26)) (-2876 (((-1082) $) 25)) (-1352 (($ (-379)) NIL) (($ (-379) (-1119)) 16)) (-2473 (((-379) $) NIL)) (-1466 (((-1119) $) NIL)) (-3818 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-1708 (($ $) 18)) (-2381 (((-112) $ $) NIL)))
-(((-109) (-13 (-355 (-379) (-1082)) (-10 -8 (-15 -3355 ((-3 (-1082) "failed") $)) (-15 -2876 ((-1082) $)) (-15 -2385 ((-1082) $ (-1082)))))) (T -109))
-((-3355 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-109)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-109)))) (-2385 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-109)))))
-(-13 (-355 (-379) (-1082)) (-10 -8 (-15 -3355 ((-3 (-1082) "failed") $)) (-15 -2876 ((-1082) $)) (-15 -2385 ((-1082) $ (-1082)))))
-((-3826 (((-112) $ $) NIL)) (-1333 (($ $) NIL)) (-2456 (($ $ $) NIL)) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) $) NIL (|has| (-112) (-821))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2809 (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| (-112) (-821)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4330)))) (-3185 (($ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-2247 (((-112) $ (-1186 (-547)) (-112)) NIL (|has| $ (-6 -4330))) (((-112) $ (-547) (-112)) NIL (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063))))) (-3803 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4329))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063))))) (-2552 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063))))) (-1872 (((-112) $ (-547) (-112)) NIL (|has| $ (-6 -4330)))) (-1802 (((-112) $ (-547)) NIL)) (-2876 (((-547) (-112) $ (-547)) NIL (|has| (-112) (-1063))) (((-547) (-112) $) NIL (|has| (-112) (-1063))) (((-547) (-1 (-112) (-112)) $) NIL)) (-2982 (((-619 (-112)) $) NIL (|has| $ (-6 -4329)))) (-4199 (($ $ $) NIL)) (-4000 (($ $) NIL)) (-3997 (($ $ $) NIL)) (-3735 (($ (-745) (-112)) 8)) (-4214 (($ $ $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL)) (-2777 (($ $ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2284 (((-619 (-112)) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL)) (-1859 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-2606 (($ $ $ (-547)) NIL) (($ (-112) $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL)) (-3638 (((-112) $) NIL (|has| (-547) (-821)))) (-3650 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3632 (($ $ (-112)) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-112)) (-619 (-112))) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-285 (-112))) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-619 (-285 (-112)))) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063))))) (-2987 (((-619 (-112)) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 (($ $ (-1186 (-547))) NIL) (((-112) $ (-547)) NIL) (((-112) $ (-547) (-112)) NIL)) (-2159 (($ $ (-1186 (-547))) NIL) (($ $ (-547)) NIL)) (-3992 (((-745) (-112) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063)))) (((-745) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4329)))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-112) (-592 (-523))))) (-3846 (($ (-619 (-112))) NIL)) (-1945 (($ (-619 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3838 (((-832) $) NIL)) (-1729 (($ (-745) (-112)) 9)) (-2693 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4329)))) (-1814 (($ $ $) NIL)) (-3700 (($ $ $) NIL)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) NIL)) (-3688 (($ $ $) NIL)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -1729 ($ (-745) (-112)))))) (T -110))
-((-1729 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -1729 ($ (-745) (-112)))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
-(((-111 |#1| |#2|) (-138) (-1016) (-1016)) (T -111))
-NIL
-(-13 (-622 |t#1|) (-1022 |t#2|) (-10 -7 (-6 -4324) (-6 -4323)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-1022 |#2|) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1333 (($ $) 10)) (-2456 (($ $ $) 15)) (-1798 (($) 7 T CONST)) (-3755 (($ $) 6)) (-3608 (((-745)) 24)) (-3232 (($) 30)) (-4199 (($ $ $) 13)) (-4000 (($ $) 9)) (-3997 (($ $ $) 16)) (-4214 (($ $ $) 17)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2402 (((-890) $) 29)) (-1466 (((-1119) $) NIL)) (-3487 (($ (-890)) 28)) (-2435 (($ $ $) 20)) (-3979 (((-1082) $) NIL)) (-3729 (($) 8 T CONST)) (-4116 (($ $ $) 21)) (-2838 (((-523) $) 36)) (-3838 (((-832) $) 39)) (-1814 (($ $ $) 11)) (-3700 (($ $ $) 14)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 19)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 22)) (-3688 (($ $ $) 12)))
-(((-112) (-13 (-815) (-635) (-936) (-592 (-523)) (-10 -8 (-15 -1798 ($) -2582) (-15 -3729 ($) -2582) (-15 -2456 ($ $ $)) (-15 -4214 ($ $ $)) (-15 -3997 ($ $ $)) (-15 -3755 ($ $))))) (T -112))
-((-1798 (*1 *1) (-5 *1 (-112))) (-3729 (*1 *1) (-5 *1 (-112))) (-2456 (*1 *1 *1 *1) (-5 *1 (-112))) (-4214 (*1 *1 *1 *1) (-5 *1 (-112))) (-3997 (*1 *1 *1 *1) (-5 *1 (-112))) (-3755 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-815) (-635) (-936) (-592 (-523)) (-10 -8 (-15 -1798 ($) -2582) (-15 -3729 ($) -2582) (-15 -2456 ($ $ $)) (-15 -4214 ($ $ $)) (-15 -3997 ($ $ $)) (-15 -3755 ($ $))))
-((-1834 (((-3 (-1 |#1| (-619 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-619 |#1|))) 11) (((-3 |#1| "failed") (-114) (-619 |#1|)) 21)) (-2764 (((-3 (-619 (-1 |#1| (-619 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-619 (-1 |#1| (-619 |#1|)))) 26)) (-3552 (((-114) |#1|) 56 (|has| |#1| (-821)))) (-3768 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-821)))))
-(((-113 |#1|) (-10 -7 (-15 -1834 ((-3 |#1| "failed") (-114) (-619 |#1|))) (-15 -1834 ((-114) (-114) (-1 |#1| (-619 |#1|)))) (-15 -1834 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1834 ((-3 (-1 |#1| (-619 |#1|)) "failed") (-114))) (-15 -2764 ((-114) (-114) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2764 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2764 ((-3 (-619 (-1 |#1| (-619 |#1|))) "failed") (-114))) (IF (|has| |#1| (-821)) (PROGN (-15 -3552 ((-114) |#1|)) (-15 -3768 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1063)) (T -113))
-((-3768 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1063)) (-4 *2 (-821)) (-5 *1 (-113 *2)))) (-3552 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-821)) (-4 *3 (-1063)))) (-2764 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-1 *4 (-619 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1063)))) (-2764 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-2764 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 (-1 *4 (-619 *4)))) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-1834 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-619 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1063)))) (-1834 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-1834 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-619 *4))) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-1834 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-619 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1063)))))
-(-10 -7 (-15 -1834 ((-3 |#1| "failed") (-114) (-619 |#1|))) (-15 -1834 ((-114) (-114) (-1 |#1| (-619 |#1|)))) (-15 -1834 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1834 ((-3 (-1 |#1| (-619 |#1|)) "failed") (-114))) (-15 -2764 ((-114) (-114) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2764 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2764 ((-3 (-619 (-1 |#1| (-619 |#1|))) "failed") (-114))) (IF (|has| |#1| (-821)) (PROGN (-15 -3552 ((-114) |#1|)) (-15 -3768 ((-3 |#1| "failed") (-114)))) |%noBranch|))
-((-3826 (((-112) $ $) NIL)) (-2601 (((-745) $) 72) (($ $ (-745)) 30)) (-3363 (((-112) $) 32)) (-4261 (($ $ (-1119) (-748)) 26)) (-3335 (($ $ (-45 (-1119) (-748))) 15)) (-1991 (((-3 (-748) "failed") $ (-1119)) 25)) (-2766 (((-45 (-1119) (-748)) $) 14)) (-4185 (($ (-1136)) 17) (($ (-1136) (-745)) 22)) (-1520 (((-112) $) 31)) (-3466 (((-112) $) 33)) (-2473 (((-1136) $) 8)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-1667 (((-112) $ (-1136)) 10)) (-2734 (($ $ (-1 (-523) (-619 (-523)))) 52) (((-3 (-1 (-523) (-619 (-523))) "failed") $) 56)) (-3979 (((-1082) $) NIL)) (-3453 (((-112) $ (-1119)) 29)) (-1931 (($ $ (-1 (-112) $ $)) 35)) (-2692 (((-3 (-1 (-832) (-619 (-832))) "failed") $) 54) (($ $ (-1 (-832) (-619 (-832)))) 41) (($ $ (-1 (-832) (-832))) 43)) (-2754 (($ $ (-1119)) 45)) (-2274 (($ $) 63)) (-1347 (($ $ (-1 (-112) $ $)) 36)) (-3838 (((-832) $) 48)) (-3046 (($ $ (-1119)) 27)) (-3757 (((-3 (-745) "failed") $) 58)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 71)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 79)))
-(((-114) (-13 (-821) (-10 -8 (-15 -2473 ((-1136) $)) (-15 -2766 ((-45 (-1119) (-748)) $)) (-15 -2274 ($ $)) (-15 -4185 ($ (-1136))) (-15 -4185 ($ (-1136) (-745))) (-15 -3757 ((-3 (-745) "failed") $)) (-15 -1520 ((-112) $)) (-15 -3363 ((-112) $)) (-15 -3466 ((-112) $)) (-15 -2601 ((-745) $)) (-15 -2601 ($ $ (-745))) (-15 -1931 ($ $ (-1 (-112) $ $))) (-15 -1347 ($ $ (-1 (-112) $ $))) (-15 -2692 ((-3 (-1 (-832) (-619 (-832))) "failed") $)) (-15 -2692 ($ $ (-1 (-832) (-619 (-832))))) (-15 -2692 ($ $ (-1 (-832) (-832)))) (-15 -2734 ($ $ (-1 (-523) (-619 (-523))))) (-15 -2734 ((-3 (-1 (-523) (-619 (-523))) "failed") $)) (-15 -1667 ((-112) $ (-1136))) (-15 -3453 ((-112) $ (-1119))) (-15 -3046 ($ $ (-1119))) (-15 -2754 ($ $ (-1119))) (-15 -1991 ((-3 (-748) "failed") $ (-1119))) (-15 -4261 ($ $ (-1119) (-748))) (-15 -3335 ($ $ (-45 (-1119) (-748))))))) (T -114))
-((-2473 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-114)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-45 (-1119) (-748))) (-5 *1 (-114)))) (-2274 (*1 *1 *1) (-5 *1 (-114))) (-4185 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-114)))) (-4185 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-745)) (-5 *1 (-114)))) (-3757 (*1 *2 *1) (|partial| -12 (-5 *2 (-745)) (-5 *1 (-114)))) (-1520 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) (-2601 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) (-1931 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1347 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2692 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) (-2692 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) (-2692 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-832))) (-5 *1 (-114)))) (-2734 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-523) (-619 (-523)))) (-5 *1 (-114)))) (-2734 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-523) (-619 (-523)))) (-5 *1 (-114)))) (-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3453 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-114)))) (-2754 (*1 *1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-114)))) (-1991 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1119)) (-5 *2 (-748)) (-5 *1 (-114)))) (-4261 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1119)) (-5 *3 (-748)) (-5 *1 (-114)))) (-3335 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1119) (-748))) (-5 *1 (-114)))))
-(-13 (-821) (-10 -8 (-15 -2473 ((-1136) $)) (-15 -2766 ((-45 (-1119) (-748)) $)) (-15 -2274 ($ $)) (-15 -4185 ($ (-1136))) (-15 -4185 ($ (-1136) (-745))) (-15 -3757 ((-3 (-745) "failed") $)) (-15 -1520 ((-112) $)) (-15 -3363 ((-112) $)) (-15 -3466 ((-112) $)) (-15 -2601 ((-745) $)) (-15 -2601 ($ $ (-745))) (-15 -1931 ($ $ (-1 (-112) $ $))) (-15 -1347 ($ $ (-1 (-112) $ $))) (-15 -2692 ((-3 (-1 (-832) (-619 (-832))) "failed") $)) (-15 -2692 ($ $ (-1 (-832) (-619 (-832))))) (-15 -2692 ($ $ (-1 (-832) (-832)))) (-15 -2734 ($ $ (-1 (-523) (-619 (-523))))) (-15 -2734 ((-3 (-1 (-523) (-619 (-523))) "failed") $)) (-15 -1667 ((-112) $ (-1136))) (-15 -3453 ((-112) $ (-1119))) (-15 -3046 ($ $ (-1119))) (-15 -2754 ($ $ (-1119))) (-15 -1991 ((-3 (-748) "failed") $ (-1119))) (-15 -4261 ($ $ (-1119) (-748))) (-15 -3335 ($ $ (-45 (-1119) (-748))))))
-((-2149 (((-547) |#2|) 37)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -2149 ((-547) |#2|))) (-13 (-354) (-1007 (-398 (-547)))) (-1195 |#1|)) (T -115))
-((-2149 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-1007 (-398 *2)))) (-5 *2 (-547)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1195 *4)))))
-(-10 -7 (-15 -2149 ((-547) |#2|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2127 (($ $ (-547)) NIL)) (-1547 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-1465 (($ (-1132 (-547)) (-547)) NIL)) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3833 (($ $) NIL)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3275 (((-745) $) NIL)) (-2261 (((-112) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2580 (((-547)) NIL)) (-1904 (((-547) $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3708 (($ $ (-547)) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-2697 (((-1117 (-547)) $) NIL)) (-2804 (($ $) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL)) (-2736 (((-745)) NIL)) (-3577 (((-112) $ $) NIL)) (-2654 (((-547) $ (-547)) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL)))
-(((-116 |#1|) (-838 |#1|) (-547)) (T -116))
-NIL
-(-838 |#1|)
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2092 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-298)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-116 |#1|) (-878)))) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| (-116 |#1|) (-878)))) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL (|has| (-116 |#1|) (-794)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1136) "failed") $) NIL (|has| (-116 |#1|) (-1007 (-1136)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-116 |#1|) (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| (-116 |#1|) (-1007 (-547))))) (-2652 (((-116 |#1|) $) NIL) (((-1136) $) NIL (|has| (-116 |#1|) (-1007 (-1136)))) (((-398 (-547)) $) NIL (|has| (-116 |#1|) (-1007 (-547)))) (((-547) $) NIL (|has| (-116 |#1|) (-1007 (-547))))) (-2708 (($ $) NIL) (($ (-547) $) NIL)) (-2089 (($ $ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| (-116 |#1|) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| (-116 |#1|) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-116 |#1|))) (|:| |vec| (-1219 (-116 |#1|)))) (-663 $) (-1219 $)) NIL) (((-663 (-116 |#1|)) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| (-116 |#1|) (-532)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-4270 (((-112) $) NIL (|has| (-116 |#1|) (-794)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-116 |#1|) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-116 |#1|) (-855 (-370))))) (-2261 (((-112) $) NIL)) (-4170 (($ $) NIL)) (-1386 (((-116 |#1|) $) NIL)) (-3477 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1112)))) (-1860 (((-112) $) NIL (|has| (-116 |#1|) (-794)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2856 (($ $ $) NIL (|has| (-116 |#1|) (-821)))) (-3567 (($ $ $) NIL (|has| (-116 |#1|) (-821)))) (-2790 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| (-116 |#1|) (-1112)) CONST)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3682 (($ $) NIL (|has| (-116 |#1|) (-298)))) (-1276 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-532)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-116 |#1|) (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-116 |#1|) (-878)))) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2679 (($ $ (-619 (-116 |#1|)) (-619 (-116 |#1|))) NIL (|has| (-116 |#1|) (-300 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-300 (-116 |#1|)))) (($ $ (-285 (-116 |#1|))) NIL (|has| (-116 |#1|) (-300 (-116 |#1|)))) (($ $ (-619 (-285 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-300 (-116 |#1|)))) (($ $ (-619 (-1136)) (-619 (-116 |#1|))) NIL (|has| (-116 |#1|) (-503 (-1136) (-116 |#1|)))) (($ $ (-1136) (-116 |#1|)) NIL (|has| (-116 |#1|) (-503 (-1136) (-116 |#1|))))) (-2471 (((-745) $) NIL)) (-3334 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-277 (-116 |#1|) (-116 |#1|))))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3448 (($ $) NIL (|has| (-116 |#1|) (-225))) (($ $ (-745)) NIL (|has| (-116 |#1|) (-225))) (($ $ (-1136)) NIL (|has| (-116 |#1|) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-116 |#1|) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-116 |#1|) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-116 |#1|) (-869 (-1136)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-745)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2995 (($ $) NIL)) (-1396 (((-116 |#1|) $) NIL)) (-2838 (((-861 (-547)) $) NIL (|has| (-116 |#1|) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-116 |#1|) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-116 |#1|) (-592 (-523)))) (((-370) $) NIL (|has| (-116 |#1|) (-991))) (((-217) $) NIL (|has| (-116 |#1|) (-991)))) (-3617 (((-171 (-398 (-547))) $) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-116 |#1|)) NIL) (($ (-1136)) NIL (|has| (-116 |#1|) (-1007 (-1136))))) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-878))) (|has| (-116 |#1|) (-143))))) (-2736 (((-745)) NIL)) (-3720 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-532)))) (-3577 (((-112) $ $) NIL)) (-2654 (((-398 (-547)) $ (-547)) NIL)) (-2255 (($ $) NIL (|has| (-116 |#1|) (-794)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| (-116 |#1|) (-225))) (($ $ (-745)) NIL (|has| (-116 |#1|) (-225))) (($ $ (-1136)) NIL (|has| (-116 |#1|) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-116 |#1|) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-116 |#1|) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-116 |#1|) (-869 (-1136)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-745)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2441 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2418 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2405 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2506 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-961 (-116 |#1|)) (-10 -8 (-15 -2654 ((-398 (-547)) $ (-547))) (-15 -3617 ((-171 (-398 (-547))) $)) (-15 -2708 ($ $)) (-15 -2708 ($ (-547) $)))) (-547)) (T -117))
-((-2654 (*1 *2 *1 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-547)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-171 (-398 (-547)))) (-5 *1 (-117 *3)) (-14 *3 (-547)))) (-2708 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-547)))) (-2708 (*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-961 (-116 |#1|)) (-10 -8 (-15 -2654 ((-398 (-547)) $ (-547))) (-15 -3617 ((-171 (-398 (-547))) $)) (-15 -2708 ($ $)) (-15 -2708 ($ (-547) $))))
-((-2247 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3203 (((-619 $) $) 27)) (-2554 (((-112) $ $) 32)) (-2132 (((-112) |#2| $) 36)) (-3583 (((-619 |#2|) $) 22)) (-1489 (((-112) $) 16)) (-3334 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1850 (((-112) $) 45)) (-3838 (((-832) $) 41)) (-2514 (((-619 $) $) 28)) (-2381 (((-112) $ $) 34)) (-3767 (((-745) $) 43)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -3838 ((-832) |#1|)) (-15 -2247 (|#1| |#1| "right" |#1|)) (-15 -2247 (|#1| |#1| "left" |#1|)) (-15 -3334 (|#1| |#1| "right")) (-15 -3334 (|#1| |#1| "left")) (-15 -2247 (|#2| |#1| "value" |#2|)) (-15 -2554 ((-112) |#1| |#1|)) (-15 -3583 ((-619 |#2|) |#1|)) (-15 -1850 ((-112) |#1|)) (-15 -3334 (|#2| |#1| "value")) (-15 -1489 ((-112) |#1|)) (-15 -3203 ((-619 |#1|) |#1|)) (-15 -2514 ((-619 |#1|) |#1|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -2132 ((-112) |#2| |#1|)) (-15 -3767 ((-745) |#1|))) (-119 |#2|) (-1173)) (T -118))
-NIL
-(-10 -8 (-15 -3838 ((-832) |#1|)) (-15 -2247 (|#1| |#1| "right" |#1|)) (-15 -2247 (|#1| |#1| "left" |#1|)) (-15 -3334 (|#1| |#1| "right")) (-15 -3334 (|#1| |#1| "left")) (-15 -2247 (|#2| |#1| "value" |#2|)) (-15 -2554 ((-112) |#1| |#1|)) (-15 -3583 ((-619 |#2|) |#1|)) (-15 -1850 ((-112) |#1|)) (-15 -3334 (|#2| |#1| "value")) (-15 -1489 ((-112) |#1|)) (-15 -3203 ((-619 |#1|) |#1|)) (-15 -2514 ((-619 |#1|) |#1|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -2132 ((-112) |#2| |#1|)) (-15 -3767 ((-745) |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4153 ((|#1| $) 48)) (-3899 (((-112) $ (-745)) 8)) (-1986 ((|#1| $ |#1|) 39 (|has| $ (-6 -4330)))) (-3460 (($ $ $) 52 (|has| $ (-6 -4330)))) (-2792 (($ $ $) 54 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4330))) (($ $ "left" $) 55 (|has| $ (-6 -4330))) (($ $ "right" $) 53 (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) 41 (|has| $ (-6 -4330)))) (-1948 (($) 7 T CONST)) (-3840 (($ $) 57)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) 50)) (-2554 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-3830 (($ $) 59)) (-3583 (((-619 |#1|) $) 45)) (-1489 (((-112) $) 49)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2857 (((-547) $ $) 44)) (-1850 (((-112) $) 46)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) 51)) (-1421 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-119 |#1|) (-138) (-1173)) (T -119))
-((-3830 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1173)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1173)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1173)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1173)))) (-2247 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4330)) (-4 *1 (-119 *3)) (-4 *3 (-1173)))) (-2792 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-119 *2)) (-4 *2 (-1173)))) (-2247 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4330)) (-4 *1 (-119 *3)) (-4 *3 (-1173)))) (-3460 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-119 *2)) (-4 *2 (-1173)))))
-(-13 (-979 |t#1|) (-10 -8 (-15 -3830 ($ $)) (-15 -3334 ($ $ "left")) (-15 -3840 ($ $)) (-15 -3334 ($ $ "right")) (IF (|has| $ (-6 -4330)) (PROGN (-15 -2247 ($ $ "left" $)) (-15 -2792 ($ $ $)) (-15 -2247 ($ $ "right" $)) (-15 -3460 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-1663 (((-112) |#1|) 24)) (-3496 (((-745) (-745)) 23) (((-745)) 22)) (-4055 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
-(((-120 |#1|) (-10 -7 (-15 -4055 ((-112) |#1|)) (-15 -4055 ((-112) |#1| (-112))) (-15 -3496 ((-745))) (-15 -3496 ((-745) (-745))) (-15 -1663 ((-112) |#1|))) (-1195 (-547))) (T -120))
-((-1663 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1195 (-547))))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1195 (-547))))) (-3496 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1195 (-547))))) (-4055 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1195 (-547))))) (-4055 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1195 (-547))))))
-(-10 -7 (-15 -4055 ((-112) |#1|)) (-15 -4055 ((-112) |#1| (-112))) (-15 -3496 ((-745))) (-15 -3496 ((-745) (-745))) (-15 -1663 ((-112) |#1|)))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4153 ((|#1| $) 15)) (-4194 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3899 (((-112) $ (-745)) NIL)) (-1986 ((|#1| $ |#1|) NIL (|has| $ (-6 -4330)))) (-3460 (($ $ $) 18 (|has| $ (-6 -4330)))) (-2792 (($ $ $) 20 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4330))) (($ $ "left" $) NIL (|has| $ (-6 -4330))) (($ $ "right" $) NIL (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) NIL (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-3840 (($ $) 17)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) NIL)) (-2554 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2232 (($ $ |#1| $) 23)) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-3830 (($ $) 19)) (-3583 (((-619 |#1|) $) NIL)) (-1489 (((-112) $) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3237 (($ |#1| $) 24)) (-2657 (($ |#1| $) 10)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 14)) (-2245 (($) 8)) (-3334 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2857 (((-547) $ $) NIL)) (-1850 (((-112) $) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) NIL)) (-1421 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2179 (($ (-619 |#1|)) 12)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4330) (-6 -4329) (-15 -2179 ($ (-619 |#1|))) (-15 -2657 ($ |#1| $)) (-15 -3237 ($ |#1| $)) (-15 -4194 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-821)) (T -121))
-((-2179 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-121 *3)))) (-2657 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821)))) (-3237 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821)))) (-4194 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-821)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4330) (-6 -4329) (-15 -2179 ($ (-619 |#1|))) (-15 -2657 ($ |#1| $)) (-15 -3237 ($ |#1| $)) (-15 -4194 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-1333 (($ $) 13)) (-4000 (($ $) 11)) (-3997 (($ $ $) 23)) (-4214 (($ $ $) 21)) (-3700 (($ $ $) 19)) (-3688 (($ $ $) 17)))
-(((-122 |#1|) (-10 -8 (-15 -3997 (|#1| |#1| |#1|)) (-15 -4214 (|#1| |#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -1333 (|#1| |#1|)) (-15 -3688 (|#1| |#1| |#1|)) (-15 -3700 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -3997 (|#1| |#1| |#1|)) (-15 -4214 (|#1| |#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -1333 (|#1| |#1|)) (-15 -3688 (|#1| |#1| |#1|)) (-15 -3700 (|#1| |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1333 (($ $) 103)) (-2456 (($ $ $) 25)) (-1652 (((-1224) $ (-547) (-547)) 66 (|has| $ (-6 -4330)))) (-2436 (((-112) $) 98 (|has| (-112) (-821))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2809 (($ $) 102 (-12 (|has| (-112) (-821)) (|has| $ (-6 -4330)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4330)))) (-3185 (($ $) 97 (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3899 (((-112) $ (-745)) 37)) (-2247 (((-112) $ (-1186 (-547)) (-112)) 88 (|has| $ (-6 -4330))) (((-112) $ (-547) (-112)) 54 (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4329)))) (-1948 (($) 38 T CONST)) (-3044 (($ $) 100 (|has| $ (-6 -4330)))) (-3057 (($ $) 90)) (-3668 (($ $) 68 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4329))) (($ (-112) $) 69 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4329))))) (-2552 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4329))))) (-1872 (((-112) $ (-547) (-112)) 53 (|has| $ (-6 -4330)))) (-1802 (((-112) $ (-547)) 55)) (-2876 (((-547) (-112) $ (-547)) 95 (|has| (-112) (-1063))) (((-547) (-112) $) 94 (|has| (-112) (-1063))) (((-547) (-1 (-112) (-112)) $) 93)) (-2982 (((-619 (-112)) $) 45 (|has| $ (-6 -4329)))) (-4199 (($ $ $) 26)) (-4000 (($ $) 30)) (-3997 (($ $ $) 28)) (-3735 (($ (-745) (-112)) 77)) (-4214 (($ $ $) 29)) (-2763 (((-112) $ (-745)) 36)) (-2434 (((-547) $) 63 (|has| (-547) (-821)))) (-2856 (($ $ $) 13)) (-2777 (($ $ $) 96 (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2284 (((-619 (-112)) $) 46 (|has| $ (-6 -4329)))) (-2132 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 62 (|has| (-547) (-821)))) (-3567 (($ $ $) 14)) (-1859 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-3806 (((-112) $ (-745)) 35)) (-1466 (((-1119) $) 9)) (-2606 (($ $ $ (-547)) 87) (($ (-112) $ (-547)) 86)) (-2121 (((-619 (-547)) $) 60)) (-2018 (((-112) (-547) $) 59)) (-3979 (((-1082) $) 10)) (-3638 (((-112) $) 64 (|has| (-547) (-821)))) (-3650 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3632 (($ $ (-112)) 65 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-112)) (-619 (-112))) 52 (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-285 (-112))) 50 (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-619 (-285 (-112)))) 49 (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063))))) (-2052 (((-112) $ $) 31)) (-2075 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063))))) (-2987 (((-619 (-112)) $) 58)) (-2884 (((-112) $) 34)) (-2245 (($) 33)) (-3334 (($ $ (-1186 (-547))) 83) (((-112) $ (-547)) 57) (((-112) $ (-547) (-112)) 56)) (-2159 (($ $ (-1186 (-547))) 85) (($ $ (-547)) 84)) (-3992 (((-745) (-112) $) 47 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4329)))) (((-745) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4329)))) (-4282 (($ $ $ (-547)) 99 (|has| $ (-6 -4330)))) (-2274 (($ $) 32)) (-2838 (((-523) $) 67 (|has| (-112) (-592 (-523))))) (-3846 (($ (-619 (-112))) 76)) (-1945 (($ (-619 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-3838 (((-832) $) 11)) (-2693 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4329)))) (-1814 (($ $ $) 27)) (-3700 (($ $ $) 105)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)) (-3688 (($ $ $) 104)) (-3767 (((-745) $) 39 (|has| $ (-6 -4329)))))
+((-3834 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-2389 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -2389 ((-112) $ $)) (-15 -3834 ((-112) $ $))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4161 ((|#1| $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-2838 ((|#1| $ |#1|) 13 (|has| $ (-6 -4338)))) (-3869 (($ $ $) NIL (|has| $ (-6 -4338)))) (-3811 (($ $ $) NIL (|has| $ (-6 -4338)))) (-2956 (($ $ (-621 |#1|)) 15)) (-2254 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4338))) (($ $ "left" $) NIL (|has| $ (-6 -4338))) (($ $ "right" $) NIL (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) NIL (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-3848 (($ $) 11)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) NIL)) (-3895 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2243 (($ $ |#1| $) 17)) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1621 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1475 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-621 |#1|) |#1| |#1| |#1|)) 35)) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3838 (($ $) 10)) (-3591 (((-621 |#1|) $) NIL)) (-2076 (((-112) $) 12)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 9)) (-3742 (($) 16)) (-3341 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3230 (((-549) $ $) NIL)) (-3497 (((-112) $) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) NIL)) (-1987 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1275 (($ (-747) |#1|) 19)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4337) (-6 -4338) (-15 -1275 ($ (-747) |#1|)) (-15 -2956 ($ $ (-621 |#1|))) (-15 -1621 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1621 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1475 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1475 ($ $ |#1| (-1 (-621 |#1|) |#1| |#1| |#1|))))) (-1067)) (T -102))
+((-1275 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-102 *3)) (-4 *3 (-1067)))) (-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-102 *3)))) (-1621 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1067)))) (-1621 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-102 *3)))) (-1475 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-102 *2)))) (-1475 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-621 *2) *2 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-102 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4337) (-6 -4338) (-15 -1275 ($ (-747) |#1|)) (-15 -2956 ($ $ (-621 |#1|))) (-15 -1621 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1621 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1475 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1475 ($ $ |#1| (-1 (-621 |#1|) |#1| |#1| |#1|)))))
+((-3292 ((|#3| |#2| |#2|) 29)) (-2775 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4339 "*"))))) (-2307 ((|#3| |#2| |#2|) 30)) (-1527 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4339 "*"))))))
+(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3292 (|#3| |#2| |#2|)) (-15 -2307 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4339 "*"))) (PROGN (-15 -2775 (|#1| |#2| |#2|)) (-15 -1527 (|#1| |#2|))) |%noBranch|)) (-1018) (-1202 |#1|) (-663 |#1| |#4| |#5|) (-366 |#1|) (-366 |#1|)) (T -103))
+((-1527 (*1 *2 *3) (-12 (|has| *2 (-6 (-4339 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2)) (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1202 *2)) (-4 *4 (-663 *2 *5 *6)))) (-2775 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4339 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2)) (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1202 *2)) (-4 *4 (-663 *2 *5 *6)))) (-2307 (*1 *2 *3 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-663 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1202 *4)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)))) (-3292 (*1 *2 *3 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-663 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1202 *4)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)))))
+(-10 -7 (-15 -3292 (|#3| |#2| |#2|)) (-15 -2307 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4339 "*"))) (PROGN (-15 -2775 (|#1| |#2| |#2|)) (-15 -1527 (|#1| |#2|))) |%noBranch|))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-1304 (((-621 (-1143))) 33)) (-1752 (((-2 (|:| |zeros| (-1123 (-219))) (|:| |ones| (-1123 (-219))) (|:| |singularities| (-1123 (-219)))) (-1143)) 35)) (-2389 (((-112) $ $) NIL)))
+(((-104) (-13 (-1067) (-10 -7 (-15 -1304 ((-621 (-1143)))) (-15 -1752 ((-2 (|:| |zeros| (-1123 (-219))) (|:| |ones| (-1123 (-219))) (|:| |singularities| (-1123 (-219)))) (-1143))) (-6 -4337)))) (T -104))
+((-1304 (*1 *2) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-104)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-2 (|:| |zeros| (-1123 (-219))) (|:| |ones| (-1123 (-219))) (|:| |singularities| (-1123 (-219))))) (-5 *1 (-104)))))
+(-13 (-1067) (-10 -7 (-15 -1304 ((-621 (-1143)))) (-15 -1752 ((-2 (|:| |zeros| (-1123 (-219))) (|:| |ones| (-1123 (-219))) (|:| |singularities| (-1123 (-219)))) (-1143))) (-6 -4337)))
+((-3624 (($ (-621 |#2|)) 11)))
+(((-105 |#1| |#2|) (-10 -8 (-15 -3624 (|#1| (-621 |#2|)))) (-106 |#2|) (-1180)) (T -105))
+NIL
+(-10 -8 (-15 -3624 (|#1| (-621 |#2|))))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) 8)) (-1682 (($) 7 T CONST)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3504 ((|#1| $) 39)) (-2751 (($ |#1| $) 40)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3325 ((|#1| $) 41)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3624 (($ (-621 |#1|)) 42)) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-106 |#1|) (-138) (-1180)) (T -106))
+((-3624 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-4 *1 (-106 *3)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1180)))) (-2751 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1180)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1180)))))
+(-13 (-481 |t#1|) (-10 -8 (-6 -4338) (-15 -3624 ($ (-621 |t#1|))) (-15 -3325 (|t#1| $)) (-15 -2751 ($ |t#1| $)) (-15 -3504 (|t#1| $))))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3329 (((-549) $) NIL (|has| (-549) (-300)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL (|has| (-549) (-796)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL) (((-3 (-1143) "failed") $) NIL (|has| (-549) (-1009 (-1143)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-549) (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| (-549) (-1009 (-549))))) (-2659 (((-549) $) NIL) (((-1143) $) NIL (|has| (-549) (-1009 (-1143)))) (((-400 (-549)) $) NIL (|has| (-549) (-1009 (-549)))) (((-549) $) NIL (|has| (-549) (-1009 (-549))))) (-2095 (($ $ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL) (((-665 (-549)) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| (-549) (-534)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-2772 (((-112) $) NIL (|has| (-549) (-796)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-549) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-549) (-857 (-372))))) (-2675 (((-112) $) NIL)) (-1726 (($ $) NIL)) (-1394 (((-549) $) NIL)) (-1681 (((-3 $ "failed") $) NIL (|has| (-549) (-1118)))) (-2374 (((-112) $) NIL (|has| (-549) (-796)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2863 (($ $ $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| (-549) (-823)))) (-2797 (($ (-1 (-549) (-549)) $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| (-549) (-1118)) CONST)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2873 (($ $) NIL (|has| (-549) (-300))) (((-400 (-549)) $) NIL)) (-3967 (((-549) $) NIL (|has| (-549) (-534)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2686 (($ $ (-621 (-549)) (-621 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-302 (-549)))) (($ $ (-287 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-287 (-549)))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-1143)) (-621 (-549))) NIL (|has| (-549) (-505 (-1143) (-549)))) (($ $ (-1143) (-549)) NIL (|has| (-549) (-505 (-1143) (-549))))) (-3684 (((-747) $) NIL)) (-3341 (($ $ (-549)) NIL (|has| (-549) (-279 (-549) (-549))))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1143)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-3939 (($ $) NIL)) (-1403 (((-549) $) NIL)) (-2845 (((-863 (-549)) $) NIL (|has| (-549) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-549) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-549) (-594 (-525)))) (((-372) $) NIL (|has| (-549) (-993))) (((-219) $) NIL (|has| (-549) (-993)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-549) (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) 8) (($ (-549)) NIL) (($ (-1143)) NIL (|has| (-549) (-1009 (-1143)))) (((-400 (-549)) $) NIL) (((-975 2) $) 10)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-549) (-880))) (|has| (-549) (-143))))) (-2082 (((-747)) NIL)) (-2546 (((-549) $) NIL (|has| (-549) (-534)))) (-2144 (($ (-400 (-549))) 9)) (-1498 (((-112) $ $) NIL)) (-3212 (($ $) NIL (|has| (-549) (-796)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1143)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2425 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2412 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2513 (($ $ $) NIL) (($ (-549) (-549)) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL)))
+(((-107) (-13 (-963 (-549)) (-10 -8 (-15 -3846 ((-400 (-549)) $)) (-15 -3846 ((-975 2) $)) (-15 -2873 ((-400 (-549)) $)) (-15 -2144 ($ (-400 (-549))))))) (T -107))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-107)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-975 2)) (-5 *1 (-107)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-107)))) (-2144 (*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-107)))))
+(-13 (-963 (-549)) (-10 -8 (-15 -3846 ((-400 (-549)) $)) (-15 -3846 ((-975 2) $)) (-15 -2873 ((-400 (-549)) $)) (-15 -2144 ($ (-400 (-549))))))
+((-2773 (((-621 (-936)) $) 14)) (-2481 (((-1143) $) 10)) (-3846 (((-834) $) 23)) (-1560 (($ (-1143) (-621 (-936))) 15)))
+(((-108) (-13 (-593 (-834)) (-10 -8 (-15 -2481 ((-1143) $)) (-15 -2773 ((-621 (-936)) $)) (-15 -1560 ($ (-1143) (-621 (-936))))))) (T -108))
+((-2481 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-108)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-621 (-936))) (-5 *1 (-108)))) (-1560 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-936))) (-5 *1 (-108)))))
+(-13 (-593 (-834)) (-10 -8 (-15 -2481 ((-1143) $)) (-15 -2773 ((-621 (-936)) $)) (-15 -1560 ($ (-1143) (-621 (-936))))))
+((-3834 (((-112) $ $) NIL)) (-3113 (((-1087) $ (-1087)) 24)) (-2060 (($ $ (-1125)) 17)) (-2023 (((-3 (-1087) "failed") $) 23)) (-3001 (((-1087) $) 21)) (-2849 (((-1087) $ (-1087)) 26)) (-2883 (((-1087) $) 25)) (-1359 (($ (-381)) NIL) (($ (-381) (-1125)) 16)) (-2481 (((-381) $) NIL)) (-3851 (((-1125) $) NIL)) (-2646 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-3578 (($ $) 18)) (-2389 (((-112) $ $) NIL)))
+(((-109) (-13 (-357 (-381) (-1087)) (-10 -8 (-15 -2023 ((-3 (-1087) "failed") $)) (-15 -2883 ((-1087) $)) (-15 -2849 ((-1087) $ (-1087)))))) (T -109))
+((-2023 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-109)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-109)))) (-2849 (*1 *2 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-109)))))
+(-13 (-357 (-381) (-1087)) (-10 -8 (-15 -2023 ((-3 (-1087) "failed") $)) (-15 -2883 ((-1087) $)) (-15 -2849 ((-1087) $ (-1087)))))
+((-3834 (((-112) $ $) NIL)) (-1340 (($ $) NIL)) (-2464 (($ $ $) NIL)) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) $) NIL (|has| (-112) (-823))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4311 (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| (-112) (-823)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4338)))) (-3193 (($ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-2254 (((-112) $ (-1193 (-549)) (-112)) NIL (|has| $ (-6 -4338))) (((-112) $ (-549) (-112)) NIL (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067))))) (-3812 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067))))) (-2557 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067))))) (-1879 (((-112) $ (-549) (-112)) NIL (|has| $ (-6 -4338)))) (-1809 (((-112) $ (-549)) NIL)) (-2883 (((-549) (-112) $ (-549)) NIL (|has| (-112) (-1067))) (((-549) (-112) $) NIL (|has| (-112) (-1067))) (((-549) (-1 (-112) (-112)) $) NIL)) (-2989 (((-621 (-112)) $) NIL (|has| $ (-6 -4337)))) (-4207 (($ $ $) NIL)) (-4008 (($ $) NIL)) (-1396 (($ $ $) NIL)) (-3743 (($ (-747) (-112)) 8)) (-4276 (($ $ $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL)) (-3890 (($ $ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1562 (((-621 (-112)) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL)) (-1868 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-2616 (($ $ $ (-549)) NIL) (($ (-112) $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL)) (-3646 (((-112) $) NIL (|has| (-549) (-823)))) (-3779 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1642 (($ $ (-112)) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-112)) (-621 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-287 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-621 (-287 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067))))) (-2696 (((-621 (-112)) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 (($ $ (-1193 (-549))) NIL) (((-112) $ (-549)) NIL) (((-112) $ (-549) (-112)) NIL)) (-2167 (($ $ (-1193 (-549))) NIL) (($ $ (-549)) NIL)) (-4000 (((-747) (-112) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067)))) (((-747) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-112) (-594 (-525))))) (-3854 (($ (-621 (-112))) NIL)) (-1952 (($ (-621 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3846 (((-834) $) NIL)) (-1502 (($ (-747) (-112)) 9)) (-3527 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-1821 (($ $ $) NIL)) (-3708 (($ $ $) NIL)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) NIL)) (-3695 (($ $ $) NIL)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -1502 ($ (-747) (-112)))))) (T -110))
+((-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -1502 ($ (-747) (-112)))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+(((-111 |#1| |#2|) (-138) (-1018) (-1018)) (T -111))
+NIL
+(-13 (-624 |t#1|) (-1024 |t#2|) (-10 -7 (-6 -4332) (-6 -4331)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-1024 |#2|) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1340 (($ $) 10)) (-2464 (($ $ $) 15)) (-1805 (($) 7 T CONST)) (-3764 (($ $) 6)) (-3614 (((-747)) 24)) (-3239 (($) 30)) (-4207 (($ $ $) 13)) (-4008 (($ $) 9)) (-1396 (($ $ $) 16)) (-4276 (($ $ $) 17)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-1881 (((-892) $) 29)) (-3851 (((-1125) $) NIL)) (-3493 (($ (-892)) 28)) (-2442 (($ $ $) 20)) (-3990 (((-1087) $) NIL)) (-3737 (($) 8 T CONST)) (-1583 (($ $ $) 21)) (-2845 (((-525) $) 36)) (-3846 (((-834) $) 39)) (-1821 (($ $ $) 11)) (-3708 (($ $ $) 14)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 19)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 22)) (-3695 (($ $ $) 12)))
+(((-112) (-13 (-817) (-637) (-938) (-594 (-525)) (-10 -8 (-15 -1805 ($) -2589) (-15 -3737 ($) -2589) (-15 -2464 ($ $ $)) (-15 -4276 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -3764 ($ $))))) (T -112))
+((-1805 (*1 *1) (-5 *1 (-112))) (-3737 (*1 *1) (-5 *1 (-112))) (-2464 (*1 *1 *1 *1) (-5 *1 (-112))) (-4276 (*1 *1 *1 *1) (-5 *1 (-112))) (-1396 (*1 *1 *1 *1) (-5 *1 (-112))) (-3764 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-817) (-637) (-938) (-594 (-525)) (-10 -8 (-15 -1805 ($) -2589) (-15 -3737 ($) -2589) (-15 -2464 ($ $ $)) (-15 -4276 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -3764 ($ $))))
+((-3686 (((-3 (-1 |#1| (-621 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-621 |#1|))) 11) (((-3 |#1| "failed") (-114) (-621 |#1|)) 21)) (-2101 (((-3 (-621 (-1 |#1| (-621 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-621 (-1 |#1| (-621 |#1|)))) 26)) (-3839 (((-114) |#1|) 56 (|has| |#1| (-823)))) (-1676 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-823)))))
+(((-113 |#1|) (-10 -7 (-15 -3686 ((-3 |#1| "failed") (-114) (-621 |#1|))) (-15 -3686 ((-114) (-114) (-1 |#1| (-621 |#1|)))) (-15 -3686 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3686 ((-3 (-1 |#1| (-621 |#1|)) "failed") (-114))) (-15 -2101 ((-114) (-114) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2101 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2101 ((-3 (-621 (-1 |#1| (-621 |#1|))) "failed") (-114))) (IF (|has| |#1| (-823)) (PROGN (-15 -3839 ((-114) |#1|)) (-15 -1676 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1067)) (T -113))
+((-1676 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1067)) (-4 *2 (-823)) (-5 *1 (-113 *2)))) (-3839 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-823)) (-4 *3 (-1067)))) (-2101 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-621 (-1 *4 (-621 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1067)))) (-2101 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1067)) (-5 *1 (-113 *4)))) (-2101 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-621 (-1 *4 (-621 *4)))) (-4 *4 (-1067)) (-5 *1 (-113 *4)))) (-3686 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-621 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1067)))) (-3686 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1067)) (-5 *1 (-113 *4)))) (-3686 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-621 *4))) (-4 *4 (-1067)) (-5 *1 (-113 *4)))) (-3686 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-621 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1067)))))
+(-10 -7 (-15 -3686 ((-3 |#1| "failed") (-114) (-621 |#1|))) (-15 -3686 ((-114) (-114) (-1 |#1| (-621 |#1|)))) (-15 -3686 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3686 ((-3 (-1 |#1| (-621 |#1|)) "failed") (-114))) (-15 -2101 ((-114) (-114) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2101 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2101 ((-3 (-621 (-1 |#1| (-621 |#1|))) "failed") (-114))) (IF (|has| |#1| (-823)) (PROGN (-15 -3839 ((-114) |#1|)) (-15 -1676 ((-3 |#1| "failed") (-114)))) |%noBranch|))
+((-3834 (((-112) $ $) NIL)) (-1637 (((-747) $) 72) (($ $ (-747)) 30)) (-1776 (((-112) $) 32)) (-4174 (($ $ (-1125) (-750)) 26)) (-2456 (($ $ (-45 (-1125) (-750))) 15)) (-1997 (((-3 (-750) "failed") $ (-1125)) 25)) (-2773 (((-45 (-1125) (-750)) $) 14)) (-2834 (($ (-1143)) 17) (($ (-1143) (-747)) 22)) (-2596 (((-112) $) 31)) (-3203 (((-112) $) 33)) (-2481 (((-1143) $) 8)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3421 (((-112) $ (-1143)) 10)) (-2741 (($ $ (-1 (-525) (-621 (-525)))) 52) (((-3 (-1 (-525) (-621 (-525))) "failed") $) 56)) (-3990 (((-1087) $) NIL)) (-3366 (((-112) $ (-1125)) 29)) (-3765 (($ $ (-1 (-112) $ $)) 35)) (-2699 (((-3 (-1 (-834) (-621 (-834))) "failed") $) 54) (($ $ (-1 (-834) (-621 (-834)))) 41) (($ $ (-1 (-834) (-834))) 43)) (-3412 (($ $ (-1125)) 45)) (-2281 (($ $) 63)) (-4084 (($ $ (-1 (-112) $ $)) 36)) (-3846 (((-834) $) 48)) (-3053 (($ $ (-1125)) 27)) (-2286 (((-3 (-747) "failed") $) 58)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 71)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 79)))
+(((-114) (-13 (-823) (-10 -8 (-15 -2481 ((-1143) $)) (-15 -2773 ((-45 (-1125) (-750)) $)) (-15 -2281 ($ $)) (-15 -2834 ($ (-1143))) (-15 -2834 ($ (-1143) (-747))) (-15 -2286 ((-3 (-747) "failed") $)) (-15 -2596 ((-112) $)) (-15 -1776 ((-112) $)) (-15 -3203 ((-112) $)) (-15 -1637 ((-747) $)) (-15 -1637 ($ $ (-747))) (-15 -3765 ($ $ (-1 (-112) $ $))) (-15 -4084 ($ $ (-1 (-112) $ $))) (-15 -2699 ((-3 (-1 (-834) (-621 (-834))) "failed") $)) (-15 -2699 ($ $ (-1 (-834) (-621 (-834))))) (-15 -2699 ($ $ (-1 (-834) (-834)))) (-15 -2741 ($ $ (-1 (-525) (-621 (-525))))) (-15 -2741 ((-3 (-1 (-525) (-621 (-525))) "failed") $)) (-15 -3421 ((-112) $ (-1143))) (-15 -3366 ((-112) $ (-1125))) (-15 -3053 ($ $ (-1125))) (-15 -3412 ($ $ (-1125))) (-15 -1997 ((-3 (-750) "failed") $ (-1125))) (-15 -4174 ($ $ (-1125) (-750))) (-15 -2456 ($ $ (-45 (-1125) (-750))))))) (T -114))
+((-2481 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-114)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-45 (-1125) (-750))) (-5 *1 (-114)))) (-2281 (*1 *1 *1) (-5 *1 (-114))) (-2834 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-114)))) (-2834 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-747)) (-5 *1 (-114)))) (-2286 (*1 *2 *1) (|partial| -12 (-5 *2 (-747)) (-5 *1 (-114)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-114)))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-114)))) (-3765 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4084 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2699 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-834) (-621 (-834)))) (-5 *1 (-114)))) (-2699 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-834) (-621 (-834)))) (-5 *1 (-114)))) (-2699 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-834) (-834))) (-5 *1 (-114)))) (-2741 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-525) (-621 (-525)))) (-5 *1 (-114)))) (-2741 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-525) (-621 (-525)))) (-5 *1 (-114)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3366 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-114)))) (-3412 (*1 *1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-114)))) (-1997 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1125)) (-5 *2 (-750)) (-5 *1 (-114)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-750)) (-5 *1 (-114)))) (-2456 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1125) (-750))) (-5 *1 (-114)))))
+(-13 (-823) (-10 -8 (-15 -2481 ((-1143) $)) (-15 -2773 ((-45 (-1125) (-750)) $)) (-15 -2281 ($ $)) (-15 -2834 ($ (-1143))) (-15 -2834 ($ (-1143) (-747))) (-15 -2286 ((-3 (-747) "failed") $)) (-15 -2596 ((-112) $)) (-15 -1776 ((-112) $)) (-15 -3203 ((-112) $)) (-15 -1637 ((-747) $)) (-15 -1637 ($ $ (-747))) (-15 -3765 ($ $ (-1 (-112) $ $))) (-15 -4084 ($ $ (-1 (-112) $ $))) (-15 -2699 ((-3 (-1 (-834) (-621 (-834))) "failed") $)) (-15 -2699 ($ $ (-1 (-834) (-621 (-834))))) (-15 -2699 ($ $ (-1 (-834) (-834)))) (-15 -2741 ($ $ (-1 (-525) (-621 (-525))))) (-15 -2741 ((-3 (-1 (-525) (-621 (-525))) "failed") $)) (-15 -3421 ((-112) $ (-1143))) (-15 -3366 ((-112) $ (-1125))) (-15 -3053 ($ $ (-1125))) (-15 -3412 ($ $ (-1125))) (-15 -1997 ((-3 (-750) "failed") $ (-1125))) (-15 -4174 ($ $ (-1125) (-750))) (-15 -2456 ($ $ (-45 (-1125) (-750))))))
+((-4253 (((-549) |#2|) 37)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -4253 ((-549) |#2|))) (-13 (-356) (-1009 (-400 (-549)))) (-1202 |#1|)) (T -115))
+((-4253 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-1009 (-400 *2)))) (-5 *2 (-549)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1202 *4)))))
+(-10 -7 (-15 -4253 ((-549) |#2|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $ (-549)) NIL)) (-3866 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-1885 (($ (-1139 (-549)) (-549)) NIL)) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1538 (($ $) NIL)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2088 (((-747) $) NIL)) (-2675 (((-112) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-1591 (((-549)) NIL)) (-3246 (((-549) $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2763 (($ $ (-549)) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3862 (((-1123 (-549)) $) NIL)) (-1977 (($ $) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL)) (-2082 (((-747)) NIL)) (-1498 (((-112) $ $) NIL)) (-2661 (((-549) $ (-549)) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL)))
+(((-116 |#1|) (-840 |#1|) (-549)) (T -116))
+NIL
+(-840 |#1|)
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3329 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-300)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-116 |#1|) (-880)))) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| (-116 |#1|) (-880)))) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL (|has| (-116 |#1|) (-796)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1143) "failed") $) NIL (|has| (-116 |#1|) (-1009 (-1143)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-116 |#1|) (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| (-116 |#1|) (-1009 (-549))))) (-2659 (((-116 |#1|) $) NIL) (((-1143) $) NIL (|has| (-116 |#1|) (-1009 (-1143)))) (((-400 (-549)) $) NIL (|has| (-116 |#1|) (-1009 (-549)))) (((-549) $) NIL (|has| (-116 |#1|) (-1009 (-549))))) (-2294 (($ $) NIL) (($ (-549) $) NIL)) (-2095 (($ $ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| (-116 |#1|) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| (-116 |#1|) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-116 |#1|))) (|:| |vec| (-1226 (-116 |#1|)))) (-665 $) (-1226 $)) NIL) (((-665 (-116 |#1|)) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| (-116 |#1|) (-534)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-2772 (((-112) $) NIL (|has| (-116 |#1|) (-796)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-116 |#1|) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-116 |#1|) (-857 (-372))))) (-2675 (((-112) $) NIL)) (-1726 (($ $) NIL)) (-1394 (((-116 |#1|) $) NIL)) (-1681 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1118)))) (-2374 (((-112) $) NIL (|has| (-116 |#1|) (-796)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2863 (($ $ $) NIL (|has| (-116 |#1|) (-823)))) (-3575 (($ $ $) NIL (|has| (-116 |#1|) (-823)))) (-2797 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| (-116 |#1|) (-1118)) CONST)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2873 (($ $) NIL (|has| (-116 |#1|) (-300)))) (-3967 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-534)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-116 |#1|) (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-116 |#1|) (-880)))) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2686 (($ $ (-621 (-116 |#1|)) (-621 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-287 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-621 (-287 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-621 (-1143)) (-621 (-116 |#1|))) NIL (|has| (-116 |#1|) (-505 (-1143) (-116 |#1|)))) (($ $ (-1143) (-116 |#1|)) NIL (|has| (-116 |#1|) (-505 (-1143) (-116 |#1|))))) (-3684 (((-747) $) NIL)) (-3341 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-279 (-116 |#1|) (-116 |#1|))))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1143)) NIL (|has| (-116 |#1|) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-116 |#1|) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-116 |#1|) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-116 |#1|) (-871 (-1143)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-747)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3939 (($ $) NIL)) (-1403 (((-116 |#1|) $) NIL)) (-2845 (((-863 (-549)) $) NIL (|has| (-116 |#1|) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-116 |#1|) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-116 |#1|) (-594 (-525)))) (((-372) $) NIL (|has| (-116 |#1|) (-993))) (((-219) $) NIL (|has| (-116 |#1|) (-993)))) (-4116 (((-172 (-400 (-549))) $) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-116 |#1|)) NIL) (($ (-1143)) NIL (|has| (-116 |#1|) (-1009 (-1143))))) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-880))) (|has| (-116 |#1|) (-143))))) (-2082 (((-747)) NIL)) (-2546 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-534)))) (-1498 (((-112) $ $) NIL)) (-2661 (((-400 (-549)) $ (-549)) NIL)) (-3212 (($ $) NIL (|has| (-116 |#1|) (-796)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1143)) NIL (|has| (-116 |#1|) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-116 |#1|) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-116 |#1|) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-116 |#1|) (-871 (-1143)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-747)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-2425 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-2412 (((-112) $ $) NIL (|has| (-116 |#1|) (-823)))) (-2513 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-963 (-116 |#1|)) (-10 -8 (-15 -2661 ((-400 (-549)) $ (-549))) (-15 -4116 ((-172 (-400 (-549))) $)) (-15 -2294 ($ $)) (-15 -2294 ($ (-549) $)))) (-549)) (T -117))
+((-2661 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-549)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-549)))) (-5 *1 (-117 *3)) (-14 *3 (-549)))) (-2294 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-549)))) (-2294 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-963 (-116 |#1|)) (-10 -8 (-15 -2661 ((-400 (-549)) $ (-549))) (-15 -4116 ((-172 (-400 (-549))) $)) (-15 -2294 ($ $)) (-15 -2294 ($ (-549) $))))
+((-2254 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3075 (((-621 $) $) 27)) (-3895 (((-112) $ $) 32)) (-2090 (((-112) |#2| $) 36)) (-3591 (((-621 |#2|) $) 22)) (-2076 (((-112) $) 16)) (-3341 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3497 (((-112) $) 45)) (-3846 (((-834) $) 41)) (-2742 (((-621 $) $) 28)) (-2389 (((-112) $ $) 34)) (-3775 (((-747) $) 43)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -3846 ((-834) |#1|)) (-15 -2254 (|#1| |#1| "right" |#1|)) (-15 -2254 (|#1| |#1| "left" |#1|)) (-15 -3341 (|#1| |#1| "right")) (-15 -3341 (|#1| |#1| "left")) (-15 -2254 (|#2| |#1| "value" |#2|)) (-15 -3895 ((-112) |#1| |#1|)) (-15 -3591 ((-621 |#2|) |#1|)) (-15 -3497 ((-112) |#1|)) (-15 -3341 (|#2| |#1| "value")) (-15 -2076 ((-112) |#1|)) (-15 -3075 ((-621 |#1|) |#1|)) (-15 -2742 ((-621 |#1|) |#1|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -2090 ((-112) |#2| |#1|)) (-15 -3775 ((-747) |#1|))) (-119 |#2|) (-1180)) (T -118))
+NIL
+(-10 -8 (-15 -3846 ((-834) |#1|)) (-15 -2254 (|#1| |#1| "right" |#1|)) (-15 -2254 (|#1| |#1| "left" |#1|)) (-15 -3341 (|#1| |#1| "right")) (-15 -3341 (|#1| |#1| "left")) (-15 -2254 (|#2| |#1| "value" |#2|)) (-15 -3895 ((-112) |#1| |#1|)) (-15 -3591 ((-621 |#2|) |#1|)) (-15 -3497 ((-112) |#1|)) (-15 -3341 (|#2| |#1| "value")) (-15 -2076 ((-112) |#1|)) (-15 -3075 ((-621 |#1|) |#1|)) (-15 -2742 ((-621 |#1|) |#1|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -2090 ((-112) |#2| |#1|)) (-15 -3775 ((-747) |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4161 ((|#1| $) 48)) (-1584 (((-112) $ (-747)) 8)) (-2838 ((|#1| $ |#1|) 39 (|has| $ (-6 -4338)))) (-3869 (($ $ $) 52 (|has| $ (-6 -4338)))) (-3811 (($ $ $) 54 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4338))) (($ $ "left" $) 55 (|has| $ (-6 -4338))) (($ $ "right" $) 53 (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) 41 (|has| $ (-6 -4338)))) (-1682 (($) 7 T CONST)) (-3848 (($ $) 57)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) 50)) (-3895 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3838 (($ $) 59)) (-3591 (((-621 |#1|) $) 45)) (-2076 (((-112) $) 49)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3230 (((-549) $ $) 44)) (-3497 (((-112) $) 46)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) 51)) (-1987 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-119 |#1|) (-138) (-1180)) (T -119))
+((-3838 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1180)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1180)))) (-3848 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1180)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1180)))) (-2254 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4338)) (-4 *1 (-119 *3)) (-4 *3 (-1180)))) (-3811 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-119 *2)) (-4 *2 (-1180)))) (-2254 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4338)) (-4 *1 (-119 *3)) (-4 *3 (-1180)))) (-3869 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-119 *2)) (-4 *2 (-1180)))))
+(-13 (-981 |t#1|) (-10 -8 (-15 -3838 ($ $)) (-15 -3341 ($ $ "left")) (-15 -3848 ($ $)) (-15 -3341 ($ $ "right")) (IF (|has| $ (-6 -4338)) (PROGN (-15 -2254 ($ $ "left" $)) (-15 -3811 ($ $ $)) (-15 -2254 ($ $ "right" $)) (-15 -3869 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-4190 (((-112) |#1|) 24)) (-2241 (((-747) (-747)) 23) (((-747)) 22)) (-3499 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26)))
+(((-120 |#1|) (-10 -7 (-15 -3499 ((-112) |#1|)) (-15 -3499 ((-112) |#1| (-112))) (-15 -2241 ((-747))) (-15 -2241 ((-747) (-747))) (-15 -4190 ((-112) |#1|))) (-1202 (-549))) (T -120))
+((-4190 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1202 (-549))))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1202 (-549))))) (-2241 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1202 (-549))))) (-3499 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1202 (-549))))) (-3499 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1202 (-549))))))
+(-10 -7 (-15 -3499 ((-112) |#1|)) (-15 -3499 ((-112) |#1| (-112))) (-15 -2241 ((-747))) (-15 -2241 ((-747) (-747))) (-15 -4190 ((-112) |#1|)))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4161 ((|#1| $) 15)) (-3628 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1584 (((-112) $ (-747)) NIL)) (-2838 ((|#1| $ |#1|) NIL (|has| $ (-6 -4338)))) (-3869 (($ $ $) 18 (|has| $ (-6 -4338)))) (-3811 (($ $ $) 20 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4338))) (($ $ "left" $) NIL (|has| $ (-6 -4338))) (($ $ "right" $) NIL (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) NIL (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-3848 (($ $) 17)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) NIL)) (-3895 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2243 (($ $ |#1| $) 23)) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3838 (($ $) 19)) (-3591 (((-621 |#1|) $) NIL)) (-2076 (((-112) $) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3360 (($ |#1| $) 24)) (-2751 (($ |#1| $) 10)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 14)) (-3742 (($) 8)) (-3341 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3230 (((-549) $ $) NIL)) (-3497 (((-112) $) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) NIL)) (-1987 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1548 (($ (-621 |#1|)) 12)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4338) (-6 -4337) (-15 -1548 ($ (-621 |#1|))) (-15 -2751 ($ |#1| $)) (-15 -3360 ($ |#1| $)) (-15 -3628 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-823)) (T -121))
+((-1548 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-121 *3)))) (-2751 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823)))) (-3360 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823)))) (-3628 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-823)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4338) (-6 -4337) (-15 -1548 ($ (-621 |#1|))) (-15 -2751 ($ |#1| $)) (-15 -3360 ($ |#1| $)) (-15 -3628 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-1340 (($ $) 13)) (-4008 (($ $) 11)) (-1396 (($ $ $) 23)) (-4276 (($ $ $) 21)) (-3708 (($ $ $) 19)) (-3695 (($ $ $) 17)))
+(((-122 |#1|) (-10 -8 (-15 -1396 (|#1| |#1| |#1|)) (-15 -4276 (|#1| |#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -3695 (|#1| |#1| |#1|)) (-15 -3708 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -1396 (|#1| |#1| |#1|)) (-15 -4276 (|#1| |#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -3695 (|#1| |#1| |#1|)) (-15 -3708 (|#1| |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1340 (($ $) 103)) (-2464 (($ $ $) 25)) (-1535 (((-1231) $ (-549) (-549)) 66 (|has| $ (-6 -4338)))) (-4142 (((-112) $) 98 (|has| (-112) (-823))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-4311 (($ $) 102 (-12 (|has| (-112) (-823)) (|has| $ (-6 -4338)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4338)))) (-3193 (($ $) 97 (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1584 (((-112) $ (-747)) 37)) (-2254 (((-112) $ (-1193 (-549)) (-112)) 88 (|has| $ (-6 -4338))) (((-112) $ (-549) (-112)) 54 (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4337)))) (-1682 (($) 38 T CONST)) (-1585 (($ $) 100 (|has| $ (-6 -4338)))) (-3064 (($ $) 90)) (-3676 (($ $) 68 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4337))) (($ (-112) $) 69 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4337))))) (-2557 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4337))))) (-1879 (((-112) $ (-549) (-112)) 53 (|has| $ (-6 -4338)))) (-1809 (((-112) $ (-549)) 55)) (-2883 (((-549) (-112) $ (-549)) 95 (|has| (-112) (-1067))) (((-549) (-112) $) 94 (|has| (-112) (-1067))) (((-549) (-1 (-112) (-112)) $) 93)) (-2989 (((-621 (-112)) $) 45 (|has| $ (-6 -4337)))) (-4207 (($ $ $) 26)) (-4008 (($ $) 30)) (-1396 (($ $ $) 28)) (-3743 (($ (-747) (-112)) 77)) (-4276 (($ $ $) 29)) (-3194 (((-112) $ (-747)) 36)) (-4031 (((-549) $) 63 (|has| (-549) (-823)))) (-2863 (($ $ $) 13)) (-3890 (($ $ $) 96 (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1562 (((-621 (-112)) $) 46 (|has| $ (-6 -4337)))) (-2090 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 62 (|has| (-549) (-823)))) (-3575 (($ $ $) 14)) (-1868 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-1508 (((-112) $ (-747)) 35)) (-3851 (((-1125) $) 9)) (-2616 (($ $ $ (-549)) 87) (($ (-112) $ (-549)) 86)) (-3303 (((-621 (-549)) $) 60)) (-3761 (((-112) (-549) $) 59)) (-3990 (((-1087) $) 10)) (-3646 (((-112) $) 64 (|has| (-549) (-823)))) (-3779 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-1642 (($ $ (-112)) 65 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-112)) (-621 (-112))) 52 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-287 (-112))) 50 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-621 (-287 (-112)))) 49 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))))) (-4144 (((-112) $ $) 31)) (-2265 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067))))) (-2696 (((-621 (-112)) $) 58)) (-3670 (((-112) $) 34)) (-3742 (($) 33)) (-3341 (($ $ (-1193 (-549))) 83) (((-112) $ (-549)) 57) (((-112) $ (-549) (-112)) 56)) (-2167 (($ $ (-1193 (-549))) 85) (($ $ (-549)) 84)) (-4000 (((-747) (-112) $) 47 (-12 (|has| (-112) (-1067)) (|has| $ (-6 -4337)))) (((-747) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4337)))) (-2730 (($ $ $ (-549)) 99 (|has| $ (-6 -4338)))) (-2281 (($ $) 32)) (-2845 (((-525) $) 67 (|has| (-112) (-594 (-525))))) (-3854 (($ (-621 (-112))) 76)) (-1952 (($ (-621 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-3846 (((-834) $) 11)) (-3527 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4337)))) (-1821 (($ $ $) 27)) (-3708 (($ $ $) 105)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)) (-3695 (($ $ $) 104)) (-3775 (((-747) $) 39 (|has| $ (-6 -4337)))))
(((-123) (-138)) (T -123))
-((-4000 (*1 *1 *1) (-4 *1 (-123))) (-4214 (*1 *1 *1 *1) (-4 *1 (-123))) (-3997 (*1 *1 *1 *1) (-4 *1 (-123))) (-1814 (*1 *1 *1 *1) (-4 *1 (-123))) (-4199 (*1 *1 *1 *1) (-4 *1 (-123))) (-2456 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-821) (-635) (-19 (-112)) (-10 -8 (-15 -4000 ($ $)) (-15 -4214 ($ $ $)) (-15 -3997 ($ $ $)) (-15 -1814 ($ $ $)) (-15 -4199 ($ $ $)) (-15 -2456 ($ $ $))))
-(((-34) . T) ((-101) . T) ((-591 (-832)) . T) ((-149 #0=(-112)) . T) ((-592 (-523)) |has| (-112) (-592 (-523))) ((-277 #1=(-547) #0#) . T) ((-279 #1# #0#) . T) ((-300 #0#) -12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063))) ((-364 #0#) . T) ((-479 #0#) . T) ((-582 #1# #0#) . T) ((-503 #0# #0#) -12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063))) ((-625 #0#) . T) ((-635) . T) ((-19 #0#) . T) ((-821) . T) ((-1063) . T) ((-1173) . T))
-((-1859 (($ (-1 |#2| |#2|) $) 22)) (-2274 (($ $) 16)) (-3767 (((-745) $) 24)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -1859 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3767 ((-745) |#1|)) (-15 -2274 (|#1| |#1|))) (-125 |#2|) (-1063)) (T -124))
-NIL
-(-10 -8 (-15 -1859 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3767 ((-745) |#1|)) (-15 -2274 (|#1| |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4153 ((|#1| $) 48)) (-3899 (((-112) $ (-745)) 8)) (-1986 ((|#1| $ |#1|) 39 (|has| $ (-6 -4330)))) (-3460 (($ $ $) 52 (|has| $ (-6 -4330)))) (-2792 (($ $ $) 54 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4330))) (($ $ "left" $) 55 (|has| $ (-6 -4330))) (($ $ "right" $) 53 (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) 41 (|has| $ (-6 -4330)))) (-1948 (($) 7 T CONST)) (-3840 (($ $) 57)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) 50)) (-2554 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-2232 (($ $ |#1| $) 60)) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-3830 (($ $) 59)) (-3583 (((-619 |#1|) $) 45)) (-1489 (((-112) $) 49)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2857 (((-547) $ $) 44)) (-1850 (((-112) $) 46)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) 51)) (-1421 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-125 |#1|) (-138) (-1063)) (T -125))
-((-2232 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1063)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4330) (-6 -4329) (-15 -2232 ($ $ |t#1| $))))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-119 |#1|) . T) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4153 ((|#1| $) 15)) (-3899 (((-112) $ (-745)) NIL)) (-1986 ((|#1| $ |#1|) 19 (|has| $ (-6 -4330)))) (-3460 (($ $ $) 20 (|has| $ (-6 -4330)))) (-2792 (($ $ $) 18 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4330))) (($ $ "left" $) NIL (|has| $ (-6 -4330))) (($ $ "right" $) NIL (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) NIL (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-3840 (($ $) 21)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) NIL)) (-2554 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2232 (($ $ |#1| $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-3830 (($ $) NIL)) (-3583 (((-619 |#1|) $) NIL)) (-1489 (((-112) $) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-2657 (($ |#1| $) 10)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 14)) (-2245 (($) 8)) (-3334 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2857 (((-547) $ $) NIL)) (-1850 (((-112) $) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) 17)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) NIL)) (-1421 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4066 (($ (-619 |#1|)) 12)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4330) (-15 -4066 ($ (-619 |#1|))) (-15 -2657 ($ |#1| $)))) (-821)) (T -126))
-((-4066 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-126 *3)))) (-2657 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-821)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4330) (-15 -4066 ($ (-619 |#1|))) (-15 -2657 ($ |#1| $))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4153 ((|#1| $) 24)) (-3899 (((-112) $ (-745)) NIL)) (-1986 ((|#1| $ |#1|) 26 (|has| $ (-6 -4330)))) (-3460 (($ $ $) 30 (|has| $ (-6 -4330)))) (-2792 (($ $ $) 28 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4330))) (($ $ "left" $) NIL (|has| $ (-6 -4330))) (($ $ "right" $) NIL (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) NIL (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-3840 (($ $) 20)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) NIL)) (-2554 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2232 (($ $ |#1| $) 15)) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-3830 (($ $) 19)) (-3583 (((-619 |#1|) $) NIL)) (-1489 (((-112) $) 21)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 18)) (-2245 (($) 11)) (-3334 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2857 (((-547) $ $) NIL)) (-1850 (((-112) $) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) NIL)) (-1421 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3276 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 10 (|has| |#1| (-1063)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -3276 ($ |#1|)) (-15 -3276 ($ $ |#1| $)))) (-1063)) (T -127))
-((-3276 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063)))) (-3276 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -3276 ($ |#1|)) (-15 -3276 ($ $ |#1| $))))
-((-3826 (((-112) $ $) NIL (|has| (-129) (-1063)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-821)))) (-2809 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4330))) (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| (-129) (-821))))) (-3185 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-821)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 (((-129) $ (-547) (-129)) NIL (|has| $ (-6 -4330))) (((-129) $ (-1186 (-547)) (-129)) NIL (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-129) (-1063))))) (-3803 (($ (-129) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-129) (-1063)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4329)) (|has| (-129) (-1063)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4329))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4329)))) (-1872 (((-129) $ (-547) (-129)) NIL (|has| $ (-6 -4330)))) (-1802 (((-129) $ (-547)) NIL)) (-2876 (((-547) (-1 (-112) (-129)) $) NIL) (((-547) (-129) $) NIL (|has| (-129) (-1063))) (((-547) (-129) $ (-547)) NIL (|has| (-129) (-1063)))) (-2982 (((-619 (-129)) $) NIL (|has| $ (-6 -4329)))) (-3735 (($ (-745) (-129)) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| (-129) (-821)))) (-2777 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-821)))) (-2284 (((-619 (-129)) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-129) (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| (-129) (-821)))) (-1859 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| (-129) (-1063)))) (-2606 (($ (-129) $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| (-129) (-1063)))) (-3638 (((-129) $) NIL (|has| (-547) (-821)))) (-3650 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3632 (($ $ (-129)) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-129)))) NIL (-12 (|has| (-129) (-300 (-129))) (|has| (-129) (-1063)))) (($ $ (-285 (-129))) NIL (-12 (|has| (-129) (-300 (-129))) (|has| (-129) (-1063)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-300 (-129))) (|has| (-129) (-1063)))) (($ $ (-619 (-129)) (-619 (-129))) NIL (-12 (|has| (-129) (-300 (-129))) (|has| (-129) (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-129) (-1063))))) (-2987 (((-619 (-129)) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 (((-129) $ (-547) (-129)) NIL) (((-129) $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-2159 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-3992 (((-745) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4329))) (((-745) (-129) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-129) (-1063))))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-129) (-592 (-523))))) (-3846 (($ (-619 (-129))) NIL)) (-1945 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3838 (((-832) $) NIL (|has| (-129) (-591 (-832))))) (-2693 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| (-129) (-821)))) (-2418 (((-112) $ $) NIL (|has| (-129) (-821)))) (-2381 (((-112) $ $) NIL (|has| (-129) (-1063)))) (-2430 (((-112) $ $) NIL (|has| (-129) (-821)))) (-2405 (((-112) $ $) NIL (|has| (-129) (-821)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
+((-4008 (*1 *1 *1) (-4 *1 (-123))) (-4276 (*1 *1 *1 *1) (-4 *1 (-123))) (-1396 (*1 *1 *1 *1) (-4 *1 (-123))) (-1821 (*1 *1 *1 *1) (-4 *1 (-123))) (-4207 (*1 *1 *1 *1) (-4 *1 (-123))) (-2464 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-823) (-637) (-19 (-112)) (-10 -8 (-15 -4008 ($ $)) (-15 -4276 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -1821 ($ $ $)) (-15 -4207 ($ $ $)) (-15 -2464 ($ $ $))))
+(((-34) . T) ((-101) . T) ((-593 (-834)) . T) ((-149 #0=(-112)) . T) ((-594 (-525)) |has| (-112) (-594 (-525))) ((-279 #1=(-549) #0#) . T) ((-281 #1# #0#) . T) ((-302 #0#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))) ((-366 #0#) . T) ((-481 #0#) . T) ((-584 #1# #0#) . T) ((-505 #0# #0#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))) ((-627 #0#) . T) ((-637) . T) ((-19 #0#) . T) ((-823) . T) ((-1067) . T) ((-1180) . T))
+((-1868 (($ (-1 |#2| |#2|) $) 22)) (-2281 (($ $) 16)) (-3775 (((-747) $) 24)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -1868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3775 ((-747) |#1|)) (-15 -2281 (|#1| |#1|))) (-125 |#2|) (-1067)) (T -124))
+NIL
+(-10 -8 (-15 -1868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3775 ((-747) |#1|)) (-15 -2281 (|#1| |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4161 ((|#1| $) 48)) (-1584 (((-112) $ (-747)) 8)) (-2838 ((|#1| $ |#1|) 39 (|has| $ (-6 -4338)))) (-3869 (($ $ $) 52 (|has| $ (-6 -4338)))) (-3811 (($ $ $) 54 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4338))) (($ $ "left" $) 55 (|has| $ (-6 -4338))) (($ $ "right" $) 53 (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) 41 (|has| $ (-6 -4338)))) (-1682 (($) 7 T CONST)) (-3848 (($ $) 57)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) 50)) (-3895 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-2243 (($ $ |#1| $) 60)) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3838 (($ $) 59)) (-3591 (((-621 |#1|) $) 45)) (-2076 (((-112) $) 49)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3230 (((-549) $ $) 44)) (-3497 (((-112) $) 46)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) 51)) (-1987 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-125 |#1|) (-138) (-1067)) (T -125))
+((-2243 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1067)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4338) (-6 -4337) (-15 -2243 ($ $ |t#1| $))))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-119 |#1|) . T) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4161 ((|#1| $) 15)) (-1584 (((-112) $ (-747)) NIL)) (-2838 ((|#1| $ |#1|) 19 (|has| $ (-6 -4338)))) (-3869 (($ $ $) 20 (|has| $ (-6 -4338)))) (-3811 (($ $ $) 18 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4338))) (($ $ "left" $) NIL (|has| $ (-6 -4338))) (($ $ "right" $) NIL (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) NIL (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-3848 (($ $) 21)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) NIL)) (-3895 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2243 (($ $ |#1| $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3838 (($ $) NIL)) (-3591 (((-621 |#1|) $) NIL)) (-2076 (((-112) $) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-2751 (($ |#1| $) 10)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 14)) (-3742 (($) 8)) (-3341 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3230 (((-549) $ $) NIL)) (-3497 (((-112) $) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) 17)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) NIL)) (-1987 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3152 (($ (-621 |#1|)) 12)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4338) (-15 -3152 ($ (-621 |#1|))) (-15 -2751 ($ |#1| $)))) (-823)) (T -126))
+((-3152 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-126 *3)))) (-2751 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-823)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4338) (-15 -3152 ($ (-621 |#1|))) (-15 -2751 ($ |#1| $))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4161 ((|#1| $) 24)) (-1584 (((-112) $ (-747)) NIL)) (-2838 ((|#1| $ |#1|) 26 (|has| $ (-6 -4338)))) (-3869 (($ $ $) 30 (|has| $ (-6 -4338)))) (-3811 (($ $ $) 28 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4338))) (($ $ "left" $) NIL (|has| $ (-6 -4338))) (($ $ "right" $) NIL (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) NIL (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-3848 (($ $) 20)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) NIL)) (-3895 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2243 (($ $ |#1| $) 15)) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3838 (($ $) 19)) (-3591 (((-621 |#1|) $) NIL)) (-2076 (((-112) $) 21)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 18)) (-3742 (($) 11)) (-3341 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3230 (((-549) $ $) NIL)) (-3497 (((-112) $) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) NIL)) (-1987 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2199 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 10 (|has| |#1| (-1067)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2199 ($ |#1|)) (-15 -2199 ($ $ |#1| $)))) (-1067)) (T -127))
+((-2199 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1067)))) (-2199 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1067)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -2199 ($ |#1|)) (-15 -2199 ($ $ |#1| $))))
+((-3834 (((-112) $ $) NIL (|has| (-129) (-1067)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-823)))) (-4311 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4338))) (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| (-129) (-823))))) (-3193 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-823)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 (((-129) $ (-549) (-129)) NIL (|has| $ (-6 -4338))) (((-129) $ (-1193 (-549)) (-129)) NIL (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-129) (-1067))))) (-3812 (($ (-129) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-129) (-1067)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4337)) (|has| (-129) (-1067)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4337))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4337)))) (-1879 (((-129) $ (-549) (-129)) NIL (|has| $ (-6 -4338)))) (-1809 (((-129) $ (-549)) NIL)) (-2883 (((-549) (-1 (-112) (-129)) $) NIL) (((-549) (-129) $) NIL (|has| (-129) (-1067))) (((-549) (-129) $ (-549)) NIL (|has| (-129) (-1067)))) (-2989 (((-621 (-129)) $) NIL (|has| $ (-6 -4337)))) (-3743 (($ (-747) (-129)) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| (-129) (-823)))) (-3890 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-823)))) (-1562 (((-621 (-129)) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-129) (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| (-129) (-823)))) (-1868 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| (-129) (-1067)))) (-2616 (($ (-129) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (|has| (-129) (-1067)))) (-3646 (((-129) $) NIL (|has| (-549) (-823)))) (-3779 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-1642 (($ $ (-129)) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-129)))) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1067)))) (($ $ (-287 (-129))) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1067)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1067)))) (($ $ (-621 (-129)) (-621 (-129))) NIL (-12 (|has| (-129) (-302 (-129))) (|has| (-129) (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-129) (-1067))))) (-2696 (((-621 (-129)) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 (((-129) $ (-549) (-129)) NIL) (((-129) $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-2167 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-4000 (((-747) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4337))) (((-747) (-129) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-129) (-1067))))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-129) (-594 (-525))))) (-3854 (($ (-621 (-129))) NIL)) (-1952 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3846 (((-834) $) NIL (|has| (-129) (-593 (-834))))) (-3527 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| (-129) (-823)))) (-2425 (((-112) $ $) NIL (|has| (-129) (-823)))) (-2389 (((-112) $ $) NIL (|has| (-129) (-1067)))) (-2438 (((-112) $ $) NIL (|has| (-129) (-823)))) (-2412 (((-112) $ $) NIL (|has| (-129) (-823)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
(((-128) (-19 (-129))) (T -128))
NIL
(-19 (-129))
-((-3826 (((-112) $ $) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 12) (((-745) $) 9) (($ (-745)) 8)) (-3797 (($ (-745)) 7)) (-2321 (($ $ $) 17)) (-2306 (($ $ $) 16)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 14)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 15)))
-(((-129) (-13 (-821) (-591 (-745)) (-10 -8 (-15 -3797 ($ (-745))) (-15 -3838 ($ (-745))) (-15 -2306 ($ $ $)) (-15 -2321 ($ $ $))))) (T -129))
-((-3797 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129)))) (-2306 (*1 *1 *1 *1) (-5 *1 (-129))) (-2321 (*1 *1 *1 *1) (-5 *1 (-129))))
-(-13 (-821) (-591 (-745)) (-10 -8 (-15 -3797 ($ (-745))) (-15 -3838 ($ (-745))) (-15 -2306 ($ $ $)) (-15 -2321 ($ $ $))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15)))
+((-3834 (((-112) $ $) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 12) (((-747) $) 9) (($ (-747)) 8)) (-2276 (($ (-747)) 7)) (-2328 (($ $ $) 17)) (-2313 (($ $ $) 16)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 14)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 15)))
+(((-129) (-13 (-823) (-593 (-747)) (-10 -8 (-15 -2276 ($ (-747))) (-15 -3846 ($ (-747))) (-15 -2313 ($ $ $)) (-15 -2328 ($ $ $))))) (T -129))
+((-2276 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-129)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-129)))) (-2313 (*1 *1 *1 *1) (-5 *1 (-129))) (-2328 (*1 *1 *1 *1) (-5 *1 (-129))))
+(-13 (-823) (-593 (-747)) (-10 -8 (-15 -2276 ($ (-747))) (-15 -3846 ($ (-747))) (-15 -2313 ($ $ $)) (-15 -2328 ($ $ $))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15)))
(((-130) (-138)) (T -130))
-((-3672 (*1 *1 *1 *1) (|partial| -4 *1 (-130))))
-(-13 (-23) (-10 -8 (-15 -3672 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3826 (((-112) $ $) 7)) (-2151 (((-1224) $ (-745)) 19)) (-2876 (((-745) $) 20)) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)))
+((-2001 (*1 *1 *1 *1) (|partial| -4 *1 (-130))))
+(-13 (-23) (-10 -8 (-15 -2001 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3834 (((-112) $ $) 7)) (-3309 (((-1231) $ (-747)) 19)) (-2883 (((-747) $) 20)) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)))
(((-131) (-138)) (T -131))
-((-2876 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-745)))) (-2151 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-745)) (-5 *2 (-1224)))))
-(-13 (-821) (-10 -8 (-15 -2876 ((-745) $)) (-15 -2151 ((-1224) $ (-745)))))
-(((-101) . T) ((-591 (-832)) . T) ((-821) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2487 (((-619 (-1141)) $) 10)) (-2381 (((-112) $ $) NIL)))
-(((-132) (-13 (-1047) (-10 -8 (-15 -2487 ((-619 (-1141)) $))))) (T -132))
-((-2487 (*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-132)))))
-(-13 (-1047) (-10 -8 (-15 -2487 ((-619 (-1141)) $))))
-((-3826 (((-112) $ $) 34)) (-1499 (((-112) $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-745) "failed") $) 40)) (-2652 (((-745) $) 38)) (-3855 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) 27)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2994 (((-112)) 41)) (-2729 (((-112) (-112)) 43)) (-1621 (((-112) $) 24)) (-2770 (((-112) $) 37)) (-3838 (((-832) $) 22) (($ (-745)) 14)) (-3269 (($) 11 T CONST)) (-3281 (($) 12 T CONST)) (-3971 (($ (-745)) 15)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 25)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 26)) (-2493 (((-3 $ "failed") $ $) 30)) (-2479 (($ $ $) 28)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL) (($ $ $) 36)) (* (($ (-745) $) 33) (($ (-890) $) NIL) (($ $ $) 31)))
-(((-133) (-13 (-821) (-23) (-701) (-1007 (-745)) (-10 -8 (-6 (-4331 "*")) (-15 -2493 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3971 ($ (-745))) (-15 -1621 ((-112) $)) (-15 -2770 ((-112) $)) (-15 -2994 ((-112))) (-15 -2729 ((-112) (-112)))))) (T -133))
-((-2493 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-133)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2994 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2729 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(-13 (-821) (-23) (-701) (-1007 (-745)) (-10 -8 (-6 (-4331 "*")) (-15 -2493 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3971 ($ (-745))) (-15 -1621 ((-112) $)) (-15 -2770 ((-112) $)) (-15 -2994 ((-112))) (-15 -2729 ((-112) (-112)))))
-((-3873 (((-135 |#1| |#2| |#4|) (-619 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-2790 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18)))
-(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3873 ((-135 |#1| |#2| |#4|) (-619 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2790 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-547) (-745) (-169) (-169)) (T -134))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-547)) (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-3873 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-547)) (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3873 ((-135 |#1| |#2| |#4|) (-619 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2790 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|))))
-((-3826 (((-112) $ $) NIL)) (-1340 (($ (-619 |#3|)) 40)) (-3890 (($ $) 99) (($ $ (-547) (-547)) 98)) (-1948 (($) 17)) (-2707 (((-3 |#3| "failed") $) 60)) (-2652 ((|#3| $) NIL)) (-1706 (($ $ (-619 (-547))) 100)) (-3866 (((-619 |#3|) $) 36)) (-3116 (((-745) $) 44)) (-4080 (($ $ $) 93)) (-3522 (($) 43)) (-1466 (((-1119) $) NIL)) (-4152 (($) 16)) (-3979 (((-1082) $) NIL)) (-3334 ((|#3| $) 46) ((|#3| $ (-547)) 47) ((|#3| $ (-547) (-547)) 48) ((|#3| $ (-547) (-547) (-547)) 49) ((|#3| $ (-547) (-547) (-547) (-547)) 50) ((|#3| $ (-619 (-547))) 52)) (-3705 (((-745) $) 45)) (-2057 (($ $ (-547) $ (-547)) 94) (($ $ (-547) (-547)) 96)) (-3838 (((-832) $) 67) (($ |#3|) 68) (($ (-232 |#2| |#3|)) 75) (($ (-1103 |#2| |#3|)) 78) (($ (-619 |#3|)) 53) (($ (-619 $)) 58)) (-3269 (($) 69 T CONST)) (-3281 (($) 70 T CONST)) (-2381 (((-112) $ $) 80)) (-2493 (($ $) 86) (($ $ $) 84)) (-2479 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-547)) 89) (($ (-547) $) 88) (($ $ $) 95)))
-(((-135 |#1| |#2| |#3|) (-13 (-455 |#3| (-745)) (-460 (-547) (-745)) (-10 -8 (-15 -3838 ($ (-232 |#2| |#3|))) (-15 -3838 ($ (-1103 |#2| |#3|))) (-15 -3838 ($ (-619 |#3|))) (-15 -3838 ($ (-619 $))) (-15 -3116 ((-745) $)) (-15 -3334 (|#3| $)) (-15 -3334 (|#3| $ (-547))) (-15 -3334 (|#3| $ (-547) (-547))) (-15 -3334 (|#3| $ (-547) (-547) (-547))) (-15 -3334 (|#3| $ (-547) (-547) (-547) (-547))) (-15 -3334 (|#3| $ (-619 (-547)))) (-15 -4080 ($ $ $)) (-15 * ($ $ $)) (-15 -2057 ($ $ (-547) $ (-547))) (-15 -2057 ($ $ (-547) (-547))) (-15 -3890 ($ $)) (-15 -3890 ($ $ (-547) (-547))) (-15 -1706 ($ $ (-619 (-547)))) (-15 -4152 ($)) (-15 -3522 ($)) (-15 -3866 ((-619 |#3|) $)) (-15 -1340 ($ (-619 |#3|))) (-15 -1948 ($)))) (-547) (-745) (-169)) (T -135))
-((-4080 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-232 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1103 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) (-14 *4 (-745)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) (-14 *4 (-745)) (-4 *5 (-169)))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) (-14 *4 *2) (-4 *5 (-169)))) (-3334 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-547)) (-14 *4 (-745)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3334 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3334 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3334 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 (-619 (-547))) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-547)) (-14 *5 (-745)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))) (-2057 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-745)) (-4 *5 (-169)))) (-2057 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-745)) (-4 *5 (-169)))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3890 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-745)) (-4 *5 (-169)))) (-1706 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) (-14 *4 (-745)) (-4 *5 (-169)))) (-4152 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3522 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-619 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) (-14 *4 (-745)) (-4 *5 (-169)))) (-1340 (*1 *1 *2) (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) (-14 *4 (-745)))) (-1948 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))))
-(-13 (-455 |#3| (-745)) (-460 (-547) (-745)) (-10 -8 (-15 -3838 ($ (-232 |#2| |#3|))) (-15 -3838 ($ (-1103 |#2| |#3|))) (-15 -3838 ($ (-619 |#3|))) (-15 -3838 ($ (-619 $))) (-15 -3116 ((-745) $)) (-15 -3334 (|#3| $)) (-15 -3334 (|#3| $ (-547))) (-15 -3334 (|#3| $ (-547) (-547))) (-15 -3334 (|#3| $ (-547) (-547) (-547))) (-15 -3334 (|#3| $ (-547) (-547) (-547) (-547))) (-15 -3334 (|#3| $ (-619 (-547)))) (-15 -4080 ($ $ $)) (-15 * ($ $ $)) (-15 -2057 ($ $ (-547) $ (-547))) (-15 -2057 ($ $ (-547) (-547))) (-15 -3890 ($ $)) (-15 -3890 ($ $ (-547) (-547))) (-15 -1706 ($ $ (-619 (-547)))) (-15 -4152 ($)) (-15 -3522 ($)) (-15 -3866 ((-619 |#3|) $)) (-15 -1340 ($ (-619 |#3|))) (-15 -1948 ($))))
-((-3826 (((-112) $ $) NIL)) (-2196 (((-1141) $) 11)) (-2183 (((-1141) $) 9)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-136) (-13 (-1047) (-10 -8 (-15 -2183 ((-1141) $)) (-15 -2196 ((-1141) $))))) (T -136))
-((-2183 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-136)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-136)))))
-(-13 (-1047) (-10 -8 (-15 -2183 ((-1141) $)) (-15 -2196 ((-1141) $))))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-2701 (((-1136) $) 11)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2487 (((-619 (-1141)) $) 13)) (-2381 (((-112) $ $) NIL)))
-(((-137) (-13 (-1047) (-10 -8 (-15 -2701 ((-1136) $)) (-15 -2487 ((-619 (-1141)) $))))) (T -137))
-((-2701 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-137)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-137)))))
-(-13 (-1047) (-10 -8 (-15 -2701 ((-1136) $)) (-15 -2487 ((-619 (-1141)) $))))
-((-3838 (((-832) $) 7)))
-(((-138) (-591 (-832))) (T -138))
-NIL
-(-591 (-832))
-((-3826 (((-112) $ $) NIL)) (-4306 (($) 15 T CONST)) (-3134 (($) NIL (|has| (-142) (-359)))) (-1435 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-2984 (($ $ $) NIL)) (-1361 (((-112) $ $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-3608 (((-745)) NIL (|has| (-142) (-359)))) (-2782 (($) NIL) (($ (-619 (-142))) NIL)) (-4285 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-1513 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329))) (($ (-142) $) 51 (|has| $ (-6 -4329)))) (-3803 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-2552 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4329))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4329))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-3232 (($) NIL (|has| (-142) (-359)))) (-2982 (((-619 (-142)) $) 60 (|has| $ (-6 -4329)))) (-2841 (((-112) $ $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2856 (((-142) $) NIL (|has| (-142) (-821)))) (-2284 (((-619 (-142)) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-3567 (((-142) $) NIL (|has| (-142) (-821)))) (-1859 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-142) (-142)) $) 55)) (-3093 (($) 16 T CONST)) (-2402 (((-890) $) NIL (|has| (-142) (-359)))) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-3594 (($ $ $) 29)) (-4266 (((-142) $) 52)) (-2657 (($ (-142) $) 50)) (-3487 (($ (-890)) NIL (|has| (-142) (-359)))) (-4059 (($) 14 T CONST)) (-3979 (((-1082) $) NIL)) (-3650 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2056 (((-142) $) 53)) (-1598 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-142)) (-619 (-142))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-285 (-142))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-285 (-142)))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) 48)) (-4293 (($) 13 T CONST)) (-1832 (($ $ $) 31) (($ $ (-142)) NIL)) (-2699 (($ (-619 (-142))) NIL) (($) NIL)) (-3992 (((-745) (-142) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063)))) (((-745) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-1119) $) 36) (((-523) $) NIL (|has| (-142) (-592 (-523)))) (((-619 (-142)) $) 34)) (-3846 (($ (-619 (-142))) NIL)) (-2283 (($ $) 32 (|has| (-142) (-359)))) (-3838 (((-832) $) 46)) (-3953 (($ (-1119)) 12) (($ (-619 (-142))) 43)) (-1952 (((-745) $) NIL)) (-4112 (($) 49) (($ (-619 (-142))) NIL)) (-2300 (($ (-619 (-142))) NIL)) (-2693 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-3033 (($) 19 T CONST)) (-2006 (($) 18 T CONST)) (-2381 (((-112) $ $) 22)) (-3767 (((-745) $) 47 (|has| $ (-6 -4329)))))
-(((-139) (-13 (-1063) (-592 (-1119)) (-416 (-142)) (-592 (-619 (-142))) (-10 -8 (-15 -3953 ($ (-1119))) (-15 -3953 ($ (-619 (-142)))) (-15 -4293 ($) -2582) (-15 -4059 ($) -2582) (-15 -4306 ($) -2582) (-15 -3093 ($) -2582) (-15 -2006 ($) -2582) (-15 -3033 ($) -2582)))) (T -139))
-((-3953 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-139)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-619 (-142))) (-5 *1 (-139)))) (-4293 (*1 *1) (-5 *1 (-139))) (-4059 (*1 *1) (-5 *1 (-139))) (-4306 (*1 *1) (-5 *1 (-139))) (-3093 (*1 *1) (-5 *1 (-139))) (-2006 (*1 *1) (-5 *1 (-139))) (-3033 (*1 *1) (-5 *1 (-139))))
-(-13 (-1063) (-592 (-1119)) (-416 (-142)) (-592 (-619 (-142))) (-10 -8 (-15 -3953 ($ (-1119))) (-15 -3953 ($ (-619 (-142)))) (-15 -4293 ($) -2582) (-15 -4059 ($) -2582) (-15 -4306 ($) -2582) (-15 -3093 ($) -2582) (-15 -2006 ($) -2582) (-15 -3033 ($) -2582)))
-((-3076 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3598 ((|#1| |#3|) 9)) (-3996 ((|#3| |#3|) 15)))
-(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -3598 (|#1| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-539) (-961 |#1|) (-364 |#2|)) (T -140))
-((-3076 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-364 *5)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-539)) (-4 *4 (-961 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-364 *4)))) (-3598 (*1 *2 *3) (-12 (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-364 *4)))))
-(-10 -7 (-15 -3598 (|#1| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3091 (($ $ $) 8)) (-2462 (($ $) 7)) (-3658 (($ $ $) 6)))
+((-2883 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-747)))) (-3309 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-747)) (-5 *2 (-1231)))))
+(-13 (-823) (-10 -8 (-15 -2883 ((-747) $)) (-15 -3309 ((-1231) $ (-747)))))
+(((-101) . T) ((-593 (-834)) . T) ((-823) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2492 (((-621 (-1148)) $) 10)) (-2389 (((-112) $ $) NIL)))
+(((-132) (-13 (-1050) (-10 -8 (-15 -2492 ((-621 (-1148)) $))))) (T -132))
+((-2492 (*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-132)))))
+(-13 (-1050) (-10 -8 (-15 -2492 ((-621 (-1148)) $))))
+((-3834 (((-112) $ $) 34)) (-1763 (((-112) $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-747) "failed") $) 40)) (-2659 (((-747) $) 38)) (-2114 (((-3 $ "failed") $) NIL)) (-2675 (((-112) $) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) 27)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2007 (((-112)) 41)) (-2550 (((-112) (-112)) 43)) (-3195 (((-112) $) 24)) (-2682 (((-112) $) 37)) (-3846 (((-834) $) 22) (($ (-747)) 14)) (-3276 (($) 11 T CONST)) (-3287 (($) 12 T CONST)) (-3054 (($ (-747)) 15)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 25)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 26)) (-2500 (((-3 $ "failed") $ $) 30)) (-2486 (($ $ $) 28)) (** (($ $ (-747)) NIL) (($ $ (-892)) NIL) (($ $ $) 36)) (* (($ (-747) $) 33) (($ (-892) $) NIL) (($ $ $) 31)))
+(((-133) (-13 (-823) (-23) (-703) (-1009 (-747)) (-10 -8 (-6 (-4339 "*")) (-15 -2500 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3054 ($ (-747))) (-15 -3195 ((-112) $)) (-15 -2682 ((-112) $)) (-15 -2007 ((-112))) (-15 -2550 ((-112) (-112)))))) (T -133))
+((-2500 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-3054 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-133)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2007 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2550 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(-13 (-823) (-23) (-703) (-1009 (-747)) (-10 -8 (-6 (-4339 "*")) (-15 -2500 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3054 ($ (-747))) (-15 -3195 ((-112) $)) (-15 -2682 ((-112) $)) (-15 -2007 ((-112))) (-15 -2550 ((-112) (-112)))))
+((-3881 (((-135 |#1| |#2| |#4|) (-621 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-2797 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18)))
+(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3881 ((-135 |#1| |#2| |#4|) (-621 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2797 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-549) (-747) (-170) (-170)) (T -134))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549)) (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549)) (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3881 ((-135 |#1| |#2| |#4|) (-621 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2797 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|))))
+((-3834 (((-112) $ $) NIL)) (-1316 (($ (-621 |#3|)) 40)) (-3682 (($ $) 99) (($ $ (-549) (-549)) 98)) (-1682 (($) 17)) (-2714 (((-3 |#3| "failed") $) 60)) (-2659 ((|#3| $) NIL)) (-3641 (($ $ (-621 (-549))) 100)) (-3874 (((-621 |#3|) $) 36)) (-3123 (((-747) $) 44)) (-1747 (($ $ $) 93)) (-2999 (($) 43)) (-3851 (((-1125) $) NIL)) (-3346 (($) 16)) (-3990 (((-1087) $) NIL)) (-3341 ((|#3| $) 46) ((|#3| $ (-549)) 47) ((|#3| $ (-549) (-549)) 48) ((|#3| $ (-549) (-549) (-549)) 49) ((|#3| $ (-549) (-549) (-549) (-549)) 50) ((|#3| $ (-621 (-549))) 52)) (-3701 (((-747) $) 45)) (-3414 (($ $ (-549) $ (-549)) 94) (($ $ (-549) (-549)) 96)) (-3846 (((-834) $) 67) (($ |#3|) 68) (($ (-234 |#2| |#3|)) 75) (($ (-1109 |#2| |#3|)) 78) (($ (-621 |#3|)) 53) (($ (-621 $)) 58)) (-3276 (($) 69 T CONST)) (-3287 (($) 70 T CONST)) (-2389 (((-112) $ $) 80)) (-2500 (($ $) 86) (($ $ $) 84)) (-2486 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-549)) 89) (($ (-549) $) 88) (($ $ $) 95)))
+(((-135 |#1| |#2| |#3|) (-13 (-457 |#3| (-747)) (-462 (-549) (-747)) (-10 -8 (-15 -3846 ($ (-234 |#2| |#3|))) (-15 -3846 ($ (-1109 |#2| |#3|))) (-15 -3846 ($ (-621 |#3|))) (-15 -3846 ($ (-621 $))) (-15 -3123 ((-747) $)) (-15 -3341 (|#3| $)) (-15 -3341 (|#3| $ (-549))) (-15 -3341 (|#3| $ (-549) (-549))) (-15 -3341 (|#3| $ (-549) (-549) (-549))) (-15 -3341 (|#3| $ (-549) (-549) (-549) (-549))) (-15 -3341 (|#3| $ (-621 (-549)))) (-15 -1747 ($ $ $)) (-15 * ($ $ $)) (-15 -3414 ($ $ (-549) $ (-549))) (-15 -3414 ($ $ (-549) (-549))) (-15 -3682 ($ $)) (-15 -3682 ($ $ (-549) (-549))) (-15 -3641 ($ $ (-621 (-549)))) (-15 -3346 ($)) (-15 -2999 ($)) (-15 -3874 ((-621 |#3|) $)) (-15 -1316 ($ (-621 |#3|))) (-15 -1682 ($)))) (-549) (-747) (-170)) (T -135))
+((-1747 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747)) (-4 *4 (-170)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-234 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1109 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-621 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-747)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-747)) (-4 *5 (-170)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 *2) (-4 *5 (-170)))) (-3341 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-549)) (-14 *4 (-747)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-3341 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-3341 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-3341 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-747)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-621 (-549))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-549)) (-14 *5 (-747)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747)) (-4 *4 (-170)))) (-3414 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) (-4 *5 (-170)))) (-3414 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) (-4 *5 (-170)))) (-3682 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747)) (-4 *4 (-170)))) (-3682 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-747)) (-4 *5 (-170)))) (-3641 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-747)) (-4 *5 (-170)))) (-3346 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747)) (-4 *4 (-170)))) (-2999 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747)) (-4 *4 (-170)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-621 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-747)) (-4 *5 (-170)))) (-1316 (*1 *1 *2) (-12 (-5 *2 (-621 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-747)))) (-1682 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747)) (-4 *4 (-170)))))
+(-13 (-457 |#3| (-747)) (-462 (-549) (-747)) (-10 -8 (-15 -3846 ($ (-234 |#2| |#3|))) (-15 -3846 ($ (-1109 |#2| |#3|))) (-15 -3846 ($ (-621 |#3|))) (-15 -3846 ($ (-621 $))) (-15 -3123 ((-747) $)) (-15 -3341 (|#3| $)) (-15 -3341 (|#3| $ (-549))) (-15 -3341 (|#3| $ (-549) (-549))) (-15 -3341 (|#3| $ (-549) (-549) (-549))) (-15 -3341 (|#3| $ (-549) (-549) (-549) (-549))) (-15 -3341 (|#3| $ (-621 (-549)))) (-15 -1747 ($ $ $)) (-15 * ($ $ $)) (-15 -3414 ($ $ (-549) $ (-549))) (-15 -3414 ($ $ (-549) (-549))) (-15 -3682 ($ $)) (-15 -3682 ($ $ (-549) (-549))) (-15 -3641 ($ $ (-621 (-549)))) (-15 -3346 ($)) (-15 -2999 ($)) (-15 -3874 ((-621 |#3|) $)) (-15 -1316 ($ (-621 |#3|))) (-15 -1682 ($))))
+((-3834 (((-112) $ $) NIL)) (-2203 (((-1148) $) 11)) (-2190 (((-1148) $) 9)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-136) (-13 (-1050) (-10 -8 (-15 -2190 ((-1148) $)) (-15 -2203 ((-1148) $))))) (T -136))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-136)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-136)))))
+(-13 (-1050) (-10 -8 (-15 -2190 ((-1148) $)) (-15 -2203 ((-1148) $))))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-2708 (((-1143) $) 11)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2492 (((-621 (-1148)) $) 13)) (-2389 (((-112) $ $) NIL)))
+(((-137) (-13 (-1050) (-10 -8 (-15 -2708 ((-1143) $)) (-15 -2492 ((-621 (-1148)) $))))) (T -137))
+((-2708 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-137)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-137)))))
+(-13 (-1050) (-10 -8 (-15 -2708 ((-1143) $)) (-15 -2492 ((-621 (-1148)) $))))
+((-3846 (((-834) $) 7)))
+(((-138) (-593 (-834))) (T -138))
+NIL
+(-593 (-834))
+((-3834 (((-112) $ $) NIL)) (-2946 (($) 15 T CONST)) (-2664 (($) NIL (|has| (-142) (-361)))) (-1442 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-2440 (($ $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-3614 (((-747)) NIL (|has| (-142) (-361)))) (-2787 (($) NIL) (($ (-621 (-142))) NIL)) (-1717 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-2129 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337))) (($ (-142) $) 51 (|has| $ (-6 -4337)))) (-3812 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-2557 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4337))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4337))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-3239 (($) NIL (|has| (-142) (-361)))) (-2989 (((-621 (-142)) $) 60 (|has| $ (-6 -4337)))) (-2369 (((-112) $ $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-2863 (((-142) $) NIL (|has| (-142) (-823)))) (-1562 (((-621 (-142)) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-3575 (((-142) $) NIL (|has| (-142) (-823)))) (-1868 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-142) (-142)) $) 55)) (-3408 (($) 16 T CONST)) (-1881 (((-892) $) NIL (|has| (-142) (-361)))) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-3655 (($ $ $) 29)) (-3504 (((-142) $) 52)) (-2751 (($ (-142) $) 50)) (-3493 (($ (-892)) NIL (|has| (-142) (-361)))) (-3819 (($) 14 T CONST)) (-3990 (((-1087) $) NIL)) (-3779 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-3325 (((-142) $) 53)) (-1780 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-142)) (-621 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-287 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-621 (-287 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) 48)) (-4310 (($) 13 T CONST)) (-1334 (($ $ $) 31) (($ $ (-142)) NIL)) (-2898 (($ (-621 (-142))) NIL) (($) NIL)) (-4000 (((-747) (-142) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067)))) (((-747) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-1125) $) 36) (((-525) $) NIL (|has| (-142) (-594 (-525)))) (((-621 (-142)) $) 34)) (-3854 (($ (-621 (-142))) NIL)) (-1417 (($ $) 32 (|has| (-142) (-361)))) (-3846 (((-834) $) 46)) (-1918 (($ (-1125)) 12) (($ (-621 (-142))) 43)) (-3916 (((-747) $) NIL)) (-4120 (($) 49) (($ (-621 (-142))) NIL)) (-3624 (($ (-621 (-142))) NIL)) (-3527 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-2117 (($) 19 T CONST)) (-3923 (($) 18 T CONST)) (-2389 (((-112) $ $) 22)) (-3775 (((-747) $) 47 (|has| $ (-6 -4337)))))
+(((-139) (-13 (-1067) (-594 (-1125)) (-418 (-142)) (-594 (-621 (-142))) (-10 -8 (-15 -1918 ($ (-1125))) (-15 -1918 ($ (-621 (-142)))) (-15 -4310 ($) -2589) (-15 -3819 ($) -2589) (-15 -2946 ($) -2589) (-15 -3408 ($) -2589) (-15 -3923 ($) -2589) (-15 -2117 ($) -2589)))) (T -139))
+((-1918 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-139)))) (-1918 (*1 *1 *2) (-12 (-5 *2 (-621 (-142))) (-5 *1 (-139)))) (-4310 (*1 *1) (-5 *1 (-139))) (-3819 (*1 *1) (-5 *1 (-139))) (-2946 (*1 *1) (-5 *1 (-139))) (-3408 (*1 *1) (-5 *1 (-139))) (-3923 (*1 *1) (-5 *1 (-139))) (-2117 (*1 *1) (-5 *1 (-139))))
+(-13 (-1067) (-594 (-1125)) (-418 (-142)) (-594 (-621 (-142))) (-10 -8 (-15 -1918 ($ (-1125))) (-15 -1918 ($ (-621 (-142)))) (-15 -4310 ($) -2589) (-15 -3819 ($) -2589) (-15 -2946 ($) -2589) (-15 -3408 ($) -2589) (-15 -3923 ($) -2589) (-15 -2117 ($) -2589)))
+((-2050 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2836 ((|#1| |#3|) 9)) (-1308 ((|#3| |#3|) 15)))
+(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -2836 (|#1| |#3|)) (-15 -1308 (|#3| |#3|)) (-15 -2050 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-541) (-963 |#1|) (-366 |#2|)) (T -140))
+((-2050 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-963 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-366 *5)))) (-1308 (*1 *2 *2) (-12 (-4 *3 (-541)) (-4 *4 (-963 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-366 *4)))) (-2836 (*1 *2 *3) (-12 (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-366 *4)))))
+(-10 -7 (-15 -2836 (|#1| |#3|)) (-15 -1308 (|#3| |#3|)) (-15 -2050 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1271 (($ $ $) 8)) (-4005 (($ $) 7)) (-3179 (($ $ $) 6)))
(((-141) (-138)) (T -141))
-((-3091 (*1 *1 *1 *1) (-4 *1 (-141))) (-2462 (*1 *1 *1) (-4 *1 (-141))) (-3658 (*1 *1 *1 *1) (-4 *1 (-141))))
-(-13 (-10 -8 (-15 -3658 ($ $ $)) (-15 -2462 ($ $)) (-15 -3091 ($ $ $))))
-((-3826 (((-112) $ $) NIL)) (-2732 (((-112) $) 30)) (-4306 (($ $) 43)) (-3388 (($) 17)) (-3608 (((-745)) 10)) (-3232 (($) 16)) (-3640 (($) 18)) (-2488 (((-745) $) 14)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2394 (((-112) $) 32)) (-3093 (($ $) 44)) (-2402 (((-890) $) 15)) (-1466 (((-1119) $) 38)) (-3487 (($ (-890)) 13)) (-2661 (((-112) $) 28)) (-3979 (((-1082) $) NIL)) (-2104 (($) 19)) (-3421 (((-112) $) 26)) (-3838 (((-832) $) 21)) (-1300 (($ (-745)) 11) (($ (-1119)) 42)) (-3293 (((-112) $) 36)) (-4010 (((-112) $) 34)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 7)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 8)))
-(((-142) (-13 (-815) (-10 -8 (-15 -2488 ((-745) $)) (-15 -1300 ($ (-745))) (-15 -1300 ($ (-1119))) (-15 -3388 ($)) (-15 -3640 ($)) (-15 -2104 ($)) (-15 -4306 ($ $)) (-15 -3093 ($ $)) (-15 -3421 ((-112) $)) (-15 -2661 ((-112) $)) (-15 -4010 ((-112) $)) (-15 -2732 ((-112) $)) (-15 -2394 ((-112) $)) (-15 -3293 ((-112) $))))) (T -142))
-((-2488 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-142)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-142)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-142)))) (-3388 (*1 *1) (-5 *1 (-142))) (-3640 (*1 *1) (-5 *1 (-142))) (-2104 (*1 *1) (-5 *1 (-142))) (-4306 (*1 *1 *1) (-5 *1 (-142))) (-3093 (*1 *1 *1) (-5 *1 (-142))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2732 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2394 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(-13 (-815) (-10 -8 (-15 -2488 ((-745) $)) (-15 -1300 ($ (-745))) (-15 -1300 ($ (-1119))) (-15 -3388 ($)) (-15 -3640 ($)) (-15 -2104 ($)) (-15 -4306 ($ $)) (-15 -3093 ($ $)) (-15 -3421 ((-112) $)) (-15 -2661 ((-112) $)) (-15 -4010 ((-112) $)) (-15 -2732 ((-112) $)) (-15 -2394 ((-112) $)) (-15 -3293 ((-112) $))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ (-547)) 27)) (-2220 (((-3 $ "failed") $) 33)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
+((-1271 (*1 *1 *1 *1) (-4 *1 (-141))) (-4005 (*1 *1 *1) (-4 *1 (-141))) (-3179 (*1 *1 *1 *1) (-4 *1 (-141))))
+(-13 (-10 -8 (-15 -3179 ($ $ $)) (-15 -4005 ($ $)) (-15 -1271 ($ $ $))))
+((-3834 (((-112) $ $) NIL)) (-2900 (((-112) $) 30)) (-2946 (($ $) 43)) (-3192 (($) 17)) (-3614 (((-747)) 10)) (-3239 (($) 16)) (-4145 (($) 18)) (-2003 (((-747) $) 14)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2416 (((-112) $) 32)) (-3408 (($ $) 44)) (-1881 (((-892) $) 15)) (-3851 (((-1125) $) 38)) (-3493 (($ (-892)) 13)) (-2962 (((-112) $) 28)) (-3990 (((-1087) $) NIL)) (-2051 (($) 19)) (-3429 (((-112) $) 26)) (-3846 (((-834) $) 21)) (-1307 (($ (-747)) 11) (($ (-1125)) 42)) (-3206 (((-112) $) 36)) (-1305 (((-112) $) 34)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 7)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 8)))
+(((-142) (-13 (-817) (-10 -8 (-15 -2003 ((-747) $)) (-15 -1307 ($ (-747))) (-15 -1307 ($ (-1125))) (-15 -3192 ($)) (-15 -4145 ($)) (-15 -2051 ($)) (-15 -2946 ($ $)) (-15 -3408 ($ $)) (-15 -3429 ((-112) $)) (-15 -2962 ((-112) $)) (-15 -1305 ((-112) $)) (-15 -2900 ((-112) $)) (-15 -2416 ((-112) $)) (-15 -3206 ((-112) $))))) (T -142))
+((-2003 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-142)))) (-1307 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-142)))) (-1307 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-142)))) (-3192 (*1 *1) (-5 *1 (-142))) (-4145 (*1 *1) (-5 *1 (-142))) (-2051 (*1 *1) (-5 *1 (-142))) (-2946 (*1 *1 *1) (-5 *1 (-142))) (-3408 (*1 *1 *1) (-5 *1 (-142))) (-3429 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1305 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(-13 (-817) (-10 -8 (-15 -2003 ((-747) $)) (-15 -1307 ($ (-747))) (-15 -1307 ($ (-1125))) (-15 -3192 ($)) (-15 -4145 ($)) (-15 -2051 ($)) (-15 -2946 ($ $)) (-15 -3408 ($ $)) (-15 -3429 ((-112) $)) (-15 -2962 ((-112) $)) (-15 -1305 ((-112) $)) (-15 -2900 ((-112) $)) (-15 -2416 ((-112) $)) (-15 -3206 ((-112) $))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ (-549)) 27)) (-2210 (((-3 $ "failed") $) 33)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
(((-143) (-138)) (T -143))
-((-2220 (*1 *1 *1) (|partial| -4 *1 (-143))))
-(-13 (-1016) (-10 -8 (-15 -2220 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-1316 ((|#1| (-663 |#1|) |#1|) 19)))
-(((-144 |#1|) (-10 -7 (-15 -1316 (|#1| (-663 |#1|) |#1|))) (-169)) (T -144))
-((-1316 (*1 *2 *3 *2) (-12 (-5 *3 (-663 *2)) (-4 *2 (-169)) (-5 *1 (-144 *2)))))
-(-10 -7 (-15 -1316 (|#1| (-663 |#1|) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ (-547)) 27)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
+((-2210 (*1 *1 *1) (|partial| -4 *1 (-143))))
+(-13 (-1018) (-10 -8 (-15 -2210 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-4154 ((|#1| (-665 |#1|) |#1|) 19)))
+(((-144 |#1|) (-10 -7 (-15 -4154 (|#1| (-665 |#1|) |#1|))) (-170)) (T -144))
+((-4154 (*1 *2 *3 *2) (-12 (-5 *3 (-665 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))))
+(-10 -7 (-15 -4154 (|#1| (-665 |#1|) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ (-549)) 27)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
(((-145) (-138)) (T -145))
NIL
-(-13 (-1016))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3253 (((-2 (|:| -3322 (-745)) (|:| -1563 (-398 |#2|)) (|:| |radicand| |#2|)) (-398 |#2|) (-745)) 70)) (-3419 (((-3 (-2 (|:| |radicand| (-398 |#2|)) (|:| |deg| (-745))) "failed") |#3|) 52)) (-3844 (((-2 (|:| -1563 (-398 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1885 ((|#1| |#3| |#3|) 40)) (-2679 ((|#3| |#3| (-398 |#2|) (-398 |#2|)) 19)) (-1254 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-398 |#2|)) (|:| |c2| (-398 |#2|)) (|:| |deg| (-745))) |#3| |#3|) 49)))
-(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -3844 ((-2 (|:| -1563 (-398 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3419 ((-3 (-2 (|:| |radicand| (-398 |#2|)) (|:| |deg| (-745))) "failed") |#3|)) (-15 -3253 ((-2 (|:| -3322 (-745)) (|:| -1563 (-398 |#2|)) (|:| |radicand| |#2|)) (-398 |#2|) (-745))) (-15 -1885 (|#1| |#3| |#3|)) (-15 -2679 (|#3| |#3| (-398 |#2|) (-398 |#2|))) (-15 -1254 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-398 |#2|)) (|:| |c2| (-398 |#2|)) (|:| |deg| (-745))) |#3| |#3|))) (-1177) (-1195 |#1|) (-1195 (-398 |#2|))) (T -146))
-((-1254 (*1 *2 *3 *3) (-12 (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-398 *5)) (|:| |c2| (-398 *5)) (|:| |deg| (-745)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1195 (-398 *5))))) (-2679 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-398 *5)) (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1195 *3)))) (-1885 (*1 *2 *3 *3) (-12 (-4 *4 (-1195 *2)) (-4 *2 (-1177)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1195 (-398 *4))))) (-3253 (*1 *2 *3 *4) (-12 (-5 *3 (-398 *6)) (-4 *5 (-1177)) (-4 *6 (-1195 *5)) (-5 *2 (-2 (|:| -3322 (-745)) (|:| -1563 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-745)) (-4 *7 (-1195 *3)))) (-3419 (*1 *2 *3) (|partial| -12 (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-5 *2 (-2 (|:| |radicand| (-398 *5)) (|:| |deg| (-745)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1195 (-398 *5))))) (-3844 (*1 *2 *3) (-12 (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-5 *2 (-2 (|:| -1563 (-398 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1195 (-398 *5))))))
-(-10 -7 (-15 -3844 ((-2 (|:| -1563 (-398 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3419 ((-3 (-2 (|:| |radicand| (-398 |#2|)) (|:| |deg| (-745))) "failed") |#3|)) (-15 -3253 ((-2 (|:| -3322 (-745)) (|:| -1563 (-398 |#2|)) (|:| |radicand| |#2|)) (-398 |#2|) (-745))) (-15 -1885 (|#1| |#3| |#3|)) (-15 -2679 (|#3| |#3| (-398 |#2|) (-398 |#2|))) (-15 -1254 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-398 |#2|)) (|:| |c2| (-398 |#2|)) (|:| |deg| (-745))) |#3| |#3|)))
-((-4139 (((-3 (-619 (-1132 |#2|)) "failed") (-619 (-1132 |#2|)) (-1132 |#2|)) 32)))
-(((-147 |#1| |#2|) (-10 -7 (-15 -4139 ((-3 (-619 (-1132 |#2|)) "failed") (-619 (-1132 |#2|)) (-1132 |#2|)))) (-532) (-163 |#1|)) (T -147))
-((-4139 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1132 *5))) (-5 *3 (-1132 *5)) (-4 *5 (-163 *4)) (-4 *4 (-532)) (-5 *1 (-147 *4 *5)))))
-(-10 -7 (-15 -4139 ((-3 (-619 (-1132 |#2|)) "failed") (-619 (-1132 |#2|)) (-1132 |#2|))))
-((-1482 (($ (-1 (-112) |#2|) $) 29)) (-3668 (($ $) 36)) (-3803 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-2552 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3650 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-1598 (((-112) (-1 (-112) |#2|) $) 16)) (-3992 (((-745) (-1 (-112) |#2|) $) 14) (((-745) |#2| $) NIL)) (-2693 (((-112) (-1 (-112) |#2|) $) 15)) (-3767 (((-745) $) 11)))
-(((-148 |#1| |#2|) (-10 -8 (-15 -3668 (|#1| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1482 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3803 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3650 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3992 ((-745) |#2| |#1|)) (-15 -3992 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -1598 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2693 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3767 ((-745) |#1|))) (-149 |#2|) (-1173)) (T -148))
-NIL
-(-10 -8 (-15 -3668 (|#1| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1482 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3803 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3650 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3992 ((-745) |#2| |#1|)) (-15 -3992 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -1598 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2693 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3767 ((-745) |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) 8)) (-1482 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-3668 (($ $) 41 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4329))) (($ |#1| $) 42 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-2838 (((-523) $) 40 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 49)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-149 |#1|) (-138) (-1173)) (T -149))
-((-3846 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-4 *1 (-149 *3)))) (-3650 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1173)))) (-2552 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4329)) (-4 *1 (-149 *2)) (-4 *2 (-1173)))) (-2552 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4329)) (-4 *1 (-149 *2)) (-4 *2 (-1173)))) (-3803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4329)) (-4 *1 (-149 *3)) (-4 *3 (-1173)))) (-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4329)) (-4 *1 (-149 *3)) (-4 *3 (-1173)))) (-2552 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (|has| *1 (-6 -4329)) (-4 *1 (-149 *2)) (-4 *2 (-1173)))) (-3803 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-149 *2)) (-4 *2 (-1173)) (-4 *2 (-1063)))) (-3668 (*1 *1 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-149 *2)) (-4 *2 (-1173)) (-4 *2 (-1063)))))
-(-13 (-479 |t#1|) (-10 -8 (-15 -3846 ($ (-619 |t#1|))) (-15 -3650 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4329)) (PROGN (-15 -2552 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2552 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3803 ($ (-1 (-112) |t#1|) $)) (-15 -1482 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -2552 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3803 ($ |t#1| $)) (-15 -3668 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) 86)) (-2261 (((-112) $) NIL)) (-2238 (($ |#2| (-619 (-890))) 56)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1623 (($ (-890)) 47)) (-3970 (((-133)) 23)) (-3838 (((-832) $) 69) (($ (-547)) 45) (($ |#2|) 46)) (-2450 ((|#2| $ (-619 (-890))) 59)) (-2736 (((-745)) 20)) (-3269 (($) 40 T CONST)) (-3281 (($) 43 T CONST)) (-2381 (((-112) $ $) 26)) (-2506 (($ $ |#2|) NIL)) (-2493 (($ $) 34) (($ $ $) 32)) (-2479 (($ $ $) 30)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-150 |#1| |#2| |#3|) (-13 (-1016) (-38 |#2|) (-1226 |#2|) (-10 -8 (-15 -1623 ($ (-890))) (-15 -2238 ($ |#2| (-619 (-890)))) (-15 -2450 (|#2| $ (-619 (-890)))) (-15 -3855 ((-3 $ "failed") $)))) (-890) (-354) (-962 |#1| |#2|)) (T -150))
-((-3855 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-890)) (-4 *3 (-354)) (-14 *4 (-962 *2 *3)))) (-1623 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-354)) (-14 *5 (-962 *3 *4)))) (-2238 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-890))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) (-4 *2 (-354)) (-14 *5 (-962 *4 *2)))) (-2450 (*1 *2 *1 *3) (-12 (-5 *3 (-619 (-890))) (-4 *2 (-354)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) (-14 *5 (-962 *4 *2)))))
-(-13 (-1016) (-38 |#2|) (-1226 |#2|) (-10 -8 (-15 -1623 ($ (-890))) (-15 -2238 ($ |#2| (-619 (-890)))) (-15 -2450 (|#2| $ (-619 (-890)))) (-15 -3855 ((-3 $ "failed") $))))
-((-4111 (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-619 (-912 (-217)))) (-217) (-217) (-217) (-217)) 38)) (-3531 (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896) (-398 (-547)) (-398 (-547))) 63) (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896)) 64)) (-1584 (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-619 (-912 (-217))))) 67) (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-912 (-217)))) 66) (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896) (-398 (-547)) (-398 (-547))) 58) (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896)) 59)))
-(((-151) (-10 -7 (-15 -1584 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896))) (-15 -1584 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896) (-398 (-547)) (-398 (-547)))) (-15 -3531 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896))) (-15 -3531 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896) (-398 (-547)) (-398 (-547)))) (-15 -4111 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-619 (-912 (-217)))) (-217) (-217) (-217) (-217))) (-15 -1584 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-912 (-217))))) (-15 -1584 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-619 (-912 (-217)))))))) (T -151))
-((-1584 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 (-217))))))) (-1584 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) (-5 *1 (-151)) (-5 *3 (-619 (-912 (-217)))))) (-4111 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-217)) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 *4)))) (|:| |xValues| (-1058 *4)) (|:| |yValues| (-1058 *4)))) (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 *4)))))) (-3531 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896)) (-5 *4 (-398 (-547))) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) (-5 *1 (-151)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) (-5 *1 (-151)))) (-1584 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896)) (-5 *4 (-398 (-547))) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) (-5 *1 (-151)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) (-5 *1 (-151)))))
-(-10 -7 (-15 -1584 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896))) (-15 -1584 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896) (-398 (-547)) (-398 (-547)))) (-15 -3531 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896))) (-15 -3531 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896) (-398 (-547)) (-398 (-547)))) (-15 -4111 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-619 (-912 (-217)))) (-217) (-217) (-217) (-217))) (-15 -1584 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-912 (-217))))) (-15 -1584 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-619 (-912 (-217)))))))
-((-2248 (((-619 (-166 |#2|)) |#1| |#2|) 45)))
-(((-152 |#1| |#2|) (-10 -7 (-15 -2248 ((-619 (-166 |#2|)) |#1| |#2|))) (-1195 (-166 (-547))) (-13 (-354) (-819))) (T -152))
-((-2248 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-166 *4))) (-5 *1 (-152 *3 *4)) (-4 *3 (-1195 (-166 (-547)))) (-4 *4 (-13 (-354) (-819))))))
-(-10 -7 (-15 -2248 ((-619 (-166 |#2|)) |#1| |#2|)))
-((-3826 (((-112) $ $) NIL)) (-2196 (((-1172) $) 12)) (-2183 (((-1141) $) 9)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-153) (-13 (-1047) (-10 -8 (-15 -2183 ((-1141) $)) (-15 -2196 ((-1172) $))))) (T -153))
-((-2183 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-153)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-153)))))
-(-13 (-1047) (-10 -8 (-15 -2183 ((-1141) $)) (-15 -2196 ((-1172) $))))
-((-3826 (((-112) $ $) NIL)) (-1845 (($) 15)) (-1553 (($) 14)) (-2921 (((-890)) 22)) (-1466 (((-1119) $) NIL)) (-1733 (((-547) $) 19)) (-3979 (((-1082) $) NIL)) (-3422 (($) 16)) (-3157 (($ (-547)) 23)) (-3838 (((-832) $) 29)) (-3240 (($) 17)) (-2381 (((-112) $ $) 13)) (-2479 (($ $ $) 11)) (* (($ (-890) $) 21) (($ (-217) $) 8)))
-(((-154) (-13 (-25) (-10 -8 (-15 * ($ (-890) $)) (-15 * ($ (-217) $)) (-15 -2479 ($ $ $)) (-15 -1553 ($)) (-15 -1845 ($)) (-15 -3422 ($)) (-15 -3240 ($)) (-15 -1733 ((-547) $)) (-15 -2921 ((-890))) (-15 -3157 ($ (-547)))))) (T -154))
-((-2479 (*1 *1 *1 *1) (-5 *1 (-154))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-154)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-154)))) (-1553 (*1 *1) (-5 *1 (-154))) (-1845 (*1 *1) (-5 *1 (-154))) (-3422 (*1 *1) (-5 *1 (-154))) (-3240 (*1 *1) (-5 *1 (-154))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-154)))) (-2921 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-154)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-154)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-890) $)) (-15 * ($ (-217) $)) (-15 -2479 ($ $ $)) (-15 -1553 ($)) (-15 -1845 ($)) (-15 -3422 ($)) (-15 -3240 ($)) (-15 -1733 ((-547) $)) (-15 -2921 ((-890))) (-15 -3157 ($ (-547)))))
-((-1570 ((|#2| |#2| (-1056 |#2|)) 88) ((|#2| |#2| (-1136)) 68)) (-4080 ((|#2| |#2| (-1056 |#2|)) 87) ((|#2| |#2| (-1136)) 67)) (-3091 ((|#2| |#2| |#2|) 27)) (-4185 (((-114) (-114)) 99)) (-3069 ((|#2| (-619 |#2|)) 117)) (-3896 ((|#2| (-619 |#2|)) 135)) (-1959 ((|#2| (-619 |#2|)) 125)) (-3848 ((|#2| |#2|) 123)) (-2955 ((|#2| (-619 |#2|)) 111)) (-2932 ((|#2| (-619 |#2|)) 112)) (-3346 ((|#2| (-619 |#2|)) 133)) (-2073 ((|#2| |#2| (-1136)) 56) ((|#2| |#2|) 55)) (-2462 ((|#2| |#2|) 23)) (-3658 ((|#2| |#2| |#2|) 26)) (-3128 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -3128 ((-112) (-114))) (-15 -4185 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3658 (|#2| |#2| |#2|)) (-15 -3091 (|#2| |#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -2073 (|#2| |#2| (-1136))) (-15 -1570 (|#2| |#2| (-1136))) (-15 -1570 (|#2| |#2| (-1056 |#2|))) (-15 -4080 (|#2| |#2| (-1136))) (-15 -4080 (|#2| |#2| (-1056 |#2|))) (-15 -3848 (|#2| |#2|)) (-15 -3346 (|#2| (-619 |#2|))) (-15 -1959 (|#2| (-619 |#2|))) (-15 -3896 (|#2| (-619 |#2|))) (-15 -2955 (|#2| (-619 |#2|))) (-15 -2932 (|#2| (-619 |#2|))) (-15 -3069 (|#2| (-619 |#2|)))) (-13 (-821) (-539)) (-421 |#1|)) (T -155))
-((-3069 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-539))))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-539))))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-539))))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-539))))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-539))))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-539))))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) (-4 *2 (-421 *3)))) (-4080 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)))) (-4080 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)) (-4 *2 (-421 *4)))) (-1570 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)))) (-1570 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)) (-4 *2 (-421 *4)))) (-2073 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)) (-4 *2 (-421 *4)))) (-2073 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) (-4 *2 (-421 *3)))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) (-4 *2 (-421 *3)))) (-3091 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) (-4 *2 (-421 *3)))) (-3658 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) (-4 *2 (-421 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) (-4 *2 (-421 *3)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *4)) (-4 *4 (-421 *3)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-155 *4 *5)) (-4 *5 (-421 *4)))))
-(-10 -7 (-15 -3128 ((-112) (-114))) (-15 -4185 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3658 (|#2| |#2| |#2|)) (-15 -3091 (|#2| |#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -2073 (|#2| |#2| (-1136))) (-15 -1570 (|#2| |#2| (-1136))) (-15 -1570 (|#2| |#2| (-1056 |#2|))) (-15 -4080 (|#2| |#2| (-1136))) (-15 -4080 (|#2| |#2| (-1056 |#2|))) (-15 -3848 (|#2| |#2|)) (-15 -3346 (|#2| (-619 |#2|))) (-15 -1959 (|#2| (-619 |#2|))) (-15 -3896 (|#2| (-619 |#2|))) (-15 -2955 (|#2| (-619 |#2|))) (-15 -2932 (|#2| (-619 |#2|))) (-15 -3069 (|#2| (-619 |#2|))))
-((-1852 ((|#1| |#1| |#1|) 53)) (-2396 ((|#1| |#1| |#1|) 50)) (-3091 ((|#1| |#1| |#1|) 44)) (-1527 ((|#1| |#1|) 35)) (-3888 ((|#1| |#1| (-619 |#1|)) 43)) (-2462 ((|#1| |#1|) 37)) (-3658 ((|#1| |#1| |#1|) 40)))
-(((-156 |#1|) (-10 -7 (-15 -3658 (|#1| |#1| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -3888 (|#1| |#1| (-619 |#1|))) (-15 -1527 (|#1| |#1|)) (-15 -3091 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -1852 (|#1| |#1| |#1|))) (-532)) (T -156))
-((-1852 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))) (-2396 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))) (-3091 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))) (-1527 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))) (-3888 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-532)) (-5 *1 (-156 *2)))) (-2462 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))) (-3658 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))))
-(-10 -7 (-15 -3658 (|#1| |#1| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -3888 (|#1| |#1| (-619 |#1|))) (-15 -1527 (|#1| |#1|)) (-15 -3091 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -1852 (|#1| |#1| |#1|)))
-((-1570 (($ $ (-1136)) 12) (($ $ (-1056 $)) 11)) (-4080 (($ $ (-1136)) 10) (($ $ (-1056 $)) 9)) (-3091 (($ $ $) 8)) (-2073 (($ $) 14) (($ $ (-1136)) 13)) (-2462 (($ $) 7)) (-3658 (($ $ $) 6)))
-(((-157) (-138)) (T -157))
-((-2073 (*1 *1 *1) (-4 *1 (-157))) (-2073 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1136)))) (-1570 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1136)))) (-1570 (*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157)))) (-4080 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1136)))) (-4080 (*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157)))))
-(-13 (-141) (-10 -8 (-15 -2073 ($ $)) (-15 -2073 ($ $ (-1136))) (-15 -1570 ($ $ (-1136))) (-15 -1570 ($ $ (-1056 $))) (-15 -4080 ($ $ (-1136))) (-15 -4080 ($ $ (-1056 $)))))
+(-13 (-1018))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-1787 (((-2 (|:| -3731 (-747)) (|:| -1570 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-747)) 70)) (-2852 (((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-747))) "failed") |#3|) 52)) (-3321 (((-2 (|:| -1570 (-400 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3107 ((|#1| |#3| |#3|) 40)) (-2686 ((|#3| |#3| (-400 |#2|) (-400 |#2|)) 19)) (-4029 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-747))) |#3| |#3|) 49)))
+(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -3321 ((-2 (|:| -1570 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2852 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-747))) "failed") |#3|)) (-15 -1787 ((-2 (|:| -3731 (-747)) (|:| -1570 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-747))) (-15 -3107 (|#1| |#3| |#3|)) (-15 -2686 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -4029 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-747))) |#3| |#3|))) (-1184) (-1202 |#1|) (-1202 (-400 |#2|))) (T -146))
+((-4029 (*1 *2 *3 *3) (-12 (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) (|:| |c2| (-400 *5)) (|:| |deg| (-747)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1202 (-400 *5))))) (-2686 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1202 *3)))) (-3107 (*1 *2 *3 *3) (-12 (-4 *4 (-1202 *2)) (-4 *2 (-1184)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1202 (-400 *4))))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *6)) (-4 *5 (-1184)) (-4 *6 (-1202 *5)) (-5 *2 (-2 (|:| -3731 (-747)) (|:| -1570 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-747)) (-4 *7 (-1202 *3)))) (-2852 (*1 *2 *3) (|partial| -12 (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-747)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1202 (-400 *5))))) (-3321 (*1 *2 *3) (-12 (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-5 *2 (-2 (|:| -1570 (-400 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1202 (-400 *5))))))
+(-10 -7 (-15 -3321 ((-2 (|:| -1570 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2852 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-747))) "failed") |#3|)) (-15 -1787 ((-2 (|:| -3731 (-747)) (|:| -1570 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-747))) (-15 -3107 (|#1| |#3| |#3|)) (-15 -2686 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -4029 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-747))) |#3| |#3|)))
+((-1348 (((-3 (-621 (-1139 |#2|)) "failed") (-621 (-1139 |#2|)) (-1139 |#2|)) 32)))
+(((-147 |#1| |#2|) (-10 -7 (-15 -1348 ((-3 (-621 (-1139 |#2|)) "failed") (-621 (-1139 |#2|)) (-1139 |#2|)))) (-534) (-164 |#1|)) (T -147))
+((-1348 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-1139 *5))) (-5 *3 (-1139 *5)) (-4 *5 (-164 *4)) (-4 *4 (-534)) (-5 *1 (-147 *4 *5)))))
+(-10 -7 (-15 -1348 ((-3 (-621 (-1139 |#2|)) "failed") (-621 (-1139 |#2|)) (-1139 |#2|))))
+((-1489 (($ (-1 (-112) |#2|) $) 29)) (-3676 (($ $) 36)) (-3812 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-2557 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3779 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-1780 (((-112) (-1 (-112) |#2|) $) 16)) (-4000 (((-747) (-1 (-112) |#2|) $) 14) (((-747) |#2| $) NIL)) (-3527 (((-112) (-1 (-112) |#2|) $) 15)) (-3775 (((-747) $) 11)))
+(((-148 |#1| |#2|) (-10 -8 (-15 -3676 (|#1| |#1|)) (-15 -3812 (|#1| |#2| |#1|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1489 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3812 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3779 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4000 ((-747) |#2| |#1|)) (-15 -4000 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -1780 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3527 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3775 ((-747) |#1|))) (-149 |#2|) (-1180)) (T -148))
+NIL
+(-10 -8 (-15 -3676 (|#1| |#1|)) (-15 -3812 (|#1| |#2| |#1|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1489 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3812 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3779 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4000 ((-747) |#2| |#1|)) (-15 -4000 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -1780 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3527 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3775 ((-747) |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) 8)) (-1489 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-3676 (($ $) 41 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4337))) (($ |#1| $) 42 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2845 (((-525) $) 40 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 49)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-149 |#1|) (-138) (-1180)) (T -149))
+((-3854 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-4 *1 (-149 *3)))) (-3779 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1180)))) (-2557 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4337)) (-4 *1 (-149 *2)) (-4 *2 (-1180)))) (-2557 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4337)) (-4 *1 (-149 *2)) (-4 *2 (-1180)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4337)) (-4 *1 (-149 *3)) (-4 *3 (-1180)))) (-1489 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4337)) (-4 *1 (-149 *3)) (-4 *3 (-1180)))) (-2557 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1067)) (|has| *1 (-6 -4337)) (-4 *1 (-149 *2)) (-4 *2 (-1180)))) (-3812 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-149 *2)) (-4 *2 (-1180)) (-4 *2 (-1067)))) (-3676 (*1 *1 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-149 *2)) (-4 *2 (-1180)) (-4 *2 (-1067)))))
+(-13 (-481 |t#1|) (-10 -8 (-15 -3854 ($ (-621 |t#1|))) (-15 -3779 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4337)) (PROGN (-15 -2557 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2557 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3812 ($ (-1 (-112) |t#1|) $)) (-15 -1489 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -2557 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3812 ($ |t#1| $)) (-15 -3676 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) 86)) (-2675 (((-112) $) NIL)) (-2246 (($ |#2| (-621 (-892))) 56)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-1630 (($ (-892)) 47)) (-2985 (((-133)) 23)) (-3846 (((-834) $) 69) (($ (-549)) 45) (($ |#2|) 46)) (-2152 ((|#2| $ (-621 (-892))) 59)) (-2082 (((-747)) 20)) (-3276 (($) 40 T CONST)) (-3287 (($) 43 T CONST)) (-2389 (((-112) $ $) 26)) (-2513 (($ $ |#2|) NIL)) (-2500 (($ $) 34) (($ $ $) 32)) (-2486 (($ $ $) 30)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-150 |#1| |#2| |#3|) (-13 (-1018) (-38 |#2|) (-1233 |#2|) (-10 -8 (-15 -1630 ($ (-892))) (-15 -2246 ($ |#2| (-621 (-892)))) (-15 -2152 (|#2| $ (-621 (-892)))) (-15 -2114 ((-3 $ "failed") $)))) (-892) (-356) (-964 |#1| |#2|)) (T -150))
+((-2114 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-892)) (-4 *3 (-356)) (-14 *4 (-964 *2 *3)))) (-1630 (*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-356)) (-14 *5 (-964 *3 *4)))) (-2246 (*1 *1 *2 *3) (-12 (-5 *3 (-621 (-892))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-892)) (-4 *2 (-356)) (-14 *5 (-964 *4 *2)))) (-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-621 (-892))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-892)) (-14 *5 (-964 *4 *2)))))
+(-13 (-1018) (-38 |#2|) (-1233 |#2|) (-10 -8 (-15 -1630 ($ (-892))) (-15 -2246 ($ |#2| (-621 (-892)))) (-15 -2152 (|#2| $ (-621 (-892)))) (-15 -2114 ((-3 $ "failed") $))))
+((-2543 (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-621 (-621 (-914 (-219)))) (-219) (-219) (-219) (-219)) 38)) (-1390 (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-898) (-400 (-549)) (-400 (-549))) 63) (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-898)) 64)) (-3198 (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-621 (-621 (-914 (-219))))) 67) (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-621 (-914 (-219)))) 66) (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-898) (-400 (-549)) (-400 (-549))) 58) (((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-898)) 59)))
+(((-151) (-10 -7 (-15 -3198 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-898))) (-15 -3198 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-898) (-400 (-549)) (-400 (-549)))) (-15 -1390 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-898))) (-15 -1390 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-898) (-400 (-549)) (-400 (-549)))) (-15 -2543 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-621 (-621 (-914 (-219)))) (-219) (-219) (-219) (-219))) (-15 -3198 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-621 (-914 (-219))))) (-15 -3198 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-621 (-621 (-914 (-219)))))))) (T -151))
+((-3198 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219))))) (-5 *1 (-151)) (-5 *3 (-621 (-621 (-914 (-219))))))) (-3198 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219))))) (-5 *1 (-151)) (-5 *3 (-621 (-914 (-219)))))) (-2543 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-219)) (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 *4)))) (|:| |xValues| (-1061 *4)) (|:| |yValues| (-1061 *4)))) (-5 *1 (-151)) (-5 *3 (-621 (-621 (-914 *4)))))) (-1390 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-898)) (-5 *4 (-400 (-549))) (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219))))) (-5 *1 (-151)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219))))) (-5 *1 (-151)))) (-3198 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-898)) (-5 *4 (-400 (-549))) (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219))))) (-5 *1 (-151)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219))))) (-5 *1 (-151)))))
+(-10 -7 (-15 -3198 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-898))) (-15 -3198 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-898) (-400 (-549)) (-400 (-549)))) (-15 -1390 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-898))) (-15 -1390 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-898) (-400 (-549)) (-400 (-549)))) (-15 -2543 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-621 (-621 (-914 (-219)))) (-219) (-219) (-219) (-219))) (-15 -3198 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-621 (-914 (-219))))) (-15 -3198 ((-2 (|:| |brans| (-621 (-621 (-914 (-219))))) (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))) (-621 (-621 (-914 (-219)))))))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3022 (((-621 (-1148)) $) 15)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2492 (((-1148) $) 9)) (-2389 (((-112) $ $) NIL)))
+(((-152) (-13 (-1050) (-10 -8 (-15 -3022 ((-621 (-1148)) $)) (-15 -2492 ((-1148) $))))) (T -152))
+((-3022 (*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-152)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-152)))))
+(-13 (-1050) (-10 -8 (-15 -3022 ((-621 (-1148)) $)) (-15 -2492 ((-1148) $))))
+((-2792 (((-621 (-167 |#2|)) |#1| |#2|) 45)))
+(((-153 |#1| |#2|) (-10 -7 (-15 -2792 ((-621 (-167 |#2|)) |#1| |#2|))) (-1202 (-167 (-549))) (-13 (-356) (-821))) (T -153))
+((-2792 (*1 *2 *3 *4) (-12 (-5 *2 (-621 (-167 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1202 (-167 (-549)))) (-4 *4 (-13 (-356) (-821))))))
+(-10 -7 (-15 -2792 ((-621 (-167 |#2|)) |#1| |#2|)))
+((-3834 (((-112) $ $) NIL)) (-2203 (((-1179) $) 12)) (-2190 (((-1148) $) 9)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-154) (-13 (-1050) (-10 -8 (-15 -2190 ((-1148) $)) (-15 -2203 ((-1179) $))))) (T -154))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-154)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-154)))))
+(-13 (-1050) (-10 -8 (-15 -2190 ((-1148) $)) (-15 -2203 ((-1179) $))))
+((-3834 (((-112) $ $) NIL)) (-1395 (($) 15)) (-3377 (($) 14)) (-2368 (((-892)) 22)) (-3851 (((-1125) $) NIL)) (-1886 (((-549) $) 19)) (-3990 (((-1087) $) NIL)) (-2996 (($) 16)) (-3288 (($ (-549)) 23)) (-3846 (((-834) $) 29)) (-3539 (($) 17)) (-2389 (((-112) $ $) 13)) (-2486 (($ $ $) 11)) (* (($ (-892) $) 21) (($ (-219) $) 8)))
+(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-892) $)) (-15 * ($ (-219) $)) (-15 -2486 ($ $ $)) (-15 -3377 ($)) (-15 -1395 ($)) (-15 -2996 ($)) (-15 -3539 ($)) (-15 -1886 ((-549) $)) (-15 -2368 ((-892))) (-15 -3288 ($ (-549)))))) (T -155))
+((-2486 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-892)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) (-3377 (*1 *1) (-5 *1 (-155))) (-1395 (*1 *1) (-5 *1 (-155))) (-2996 (*1 *1) (-5 *1 (-155))) (-3539 (*1 *1) (-5 *1 (-155))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-155)))) (-2368 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-155)))) (-3288 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-155)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-892) $)) (-15 * ($ (-219) $)) (-15 -2486 ($ $ $)) (-15 -3377 ($)) (-15 -1395 ($)) (-15 -2996 ($)) (-15 -3539 ($)) (-15 -1886 ((-549) $)) (-15 -2368 ((-892))) (-15 -3288 ($ (-549)))))
+((-2441 ((|#2| |#2| (-1059 |#2|)) 88) ((|#2| |#2| (-1143)) 68)) (-1747 ((|#2| |#2| (-1059 |#2|)) 87) ((|#2| |#2| (-1143)) 67)) (-1271 ((|#2| |#2| |#2|) 27)) (-2834 (((-114) (-114)) 99)) (-3698 ((|#2| (-621 |#2|)) 117)) (-4302 ((|#2| (-621 |#2|)) 135)) (-2229 ((|#2| (-621 |#2|)) 125)) (-3643 ((|#2| |#2|) 123)) (-1866 ((|#2| (-621 |#2|)) 111)) (-3226 ((|#2| (-621 |#2|)) 112)) (-4080 ((|#2| (-621 |#2|)) 133)) (-3251 ((|#2| |#2| (-1143)) 56) ((|#2| |#2|) 55)) (-4005 ((|#2| |#2|) 23)) (-3179 ((|#2| |#2| |#2|) 26)) (-4285 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41)))
+(((-156 |#1| |#2|) (-10 -7 (-15 -4285 ((-112) (-114))) (-15 -2834 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3179 (|#2| |#2| |#2|)) (-15 -1271 (|#2| |#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -3251 (|#2| |#2|)) (-15 -3251 (|#2| |#2| (-1143))) (-15 -2441 (|#2| |#2| (-1143))) (-15 -2441 (|#2| |#2| (-1059 |#2|))) (-15 -1747 (|#2| |#2| (-1143))) (-15 -1747 (|#2| |#2| (-1059 |#2|))) (-15 -3643 (|#2| |#2|)) (-15 -4080 (|#2| (-621 |#2|))) (-15 -2229 (|#2| (-621 |#2|))) (-15 -4302 (|#2| (-621 |#2|))) (-15 -1866 (|#2| (-621 |#2|))) (-15 -3226 (|#2| (-621 |#2|))) (-15 -3698 (|#2| (-621 |#2|)))) (-13 (-823) (-541)) (-423 |#1|)) (T -156))
+((-3698 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-541))))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-541))))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-541))))) (-4302 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-541))))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-541))))) (-4080 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-823) (-541))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-1747 (*1 *2 *2 *3) (-12 (-5 *3 (-1059 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2)))) (-1747 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2)) (-4 *2 (-423 *4)))) (-2441 (*1 *2 *2 *3) (-12 (-5 *3 (-1059 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2)))) (-2441 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2)) (-4 *2 (-423 *4)))) (-3251 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2)) (-4 *2 (-423 *4)))) (-3251 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-1271 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-3179 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2)) (-4 *2 (-423 *3)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *4)) (-4 *4 (-423 *3)))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-423 *4)))))
+(-10 -7 (-15 -4285 ((-112) (-114))) (-15 -2834 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3179 (|#2| |#2| |#2|)) (-15 -1271 (|#2| |#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -3251 (|#2| |#2|)) (-15 -3251 (|#2| |#2| (-1143))) (-15 -2441 (|#2| |#2| (-1143))) (-15 -2441 (|#2| |#2| (-1059 |#2|))) (-15 -1747 (|#2| |#2| (-1143))) (-15 -1747 (|#2| |#2| (-1059 |#2|))) (-15 -3643 (|#2| |#2|)) (-15 -4080 (|#2| (-621 |#2|))) (-15 -2229 (|#2| (-621 |#2|))) (-15 -4302 (|#2| (-621 |#2|))) (-15 -1866 (|#2| (-621 |#2|))) (-15 -3226 (|#2| (-621 |#2|))) (-15 -3698 (|#2| (-621 |#2|))))
+((-3586 ((|#1| |#1| |#1|) 53)) (-2610 ((|#1| |#1| |#1|) 50)) (-1271 ((|#1| |#1| |#1|) 44)) (-3457 ((|#1| |#1|) 35)) (-3446 ((|#1| |#1| (-621 |#1|)) 43)) (-4005 ((|#1| |#1|) 37)) (-3179 ((|#1| |#1| |#1|) 40)))
+(((-157 |#1|) (-10 -7 (-15 -3179 (|#1| |#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -3446 (|#1| |#1| (-621 |#1|))) (-15 -3457 (|#1| |#1|)) (-15 -1271 (|#1| |#1| |#1|)) (-15 -2610 (|#1| |#1| |#1|)) (-15 -3586 (|#1| |#1| |#1|))) (-534)) (T -157))
+((-3586 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-2610 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-1271 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-3457 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-3446 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-534)) (-5 *1 (-157 *2)))) (-4005 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))) (-3179 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
+(-10 -7 (-15 -3179 (|#1| |#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -3446 (|#1| |#1| (-621 |#1|))) (-15 -3457 (|#1| |#1|)) (-15 -1271 (|#1| |#1| |#1|)) (-15 -2610 (|#1| |#1| |#1|)) (-15 -3586 (|#1| |#1| |#1|)))
+((-2441 (($ $ (-1143)) 12) (($ $ (-1059 $)) 11)) (-1747 (($ $ (-1143)) 10) (($ $ (-1059 $)) 9)) (-1271 (($ $ $) 8)) (-3251 (($ $) 14) (($ $ (-1143)) 13)) (-4005 (($ $) 7)) (-3179 (($ $ $) 6)))
+(((-158) (-138)) (T -158))
+((-3251 (*1 *1 *1) (-4 *1 (-158))) (-3251 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1143)))) (-2441 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1143)))) (-2441 (*1 *1 *1 *2) (-12 (-5 *2 (-1059 *1)) (-4 *1 (-158)))) (-1747 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1143)))) (-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-1059 *1)) (-4 *1 (-158)))))
+(-13 (-141) (-10 -8 (-15 -3251 ($ $)) (-15 -3251 ($ $ (-1143))) (-15 -2441 ($ $ (-1143))) (-15 -2441 ($ $ (-1059 $))) (-15 -1747 ($ $ (-1143))) (-15 -1747 ($ $ (-1059 $)))))
(((-141) . T))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2487 (((-619 (-1141)) $) 9)) (-2381 (((-112) $ $) NIL)))
-(((-158) (-13 (-1047) (-10 -8 (-15 -2487 ((-619 (-1141)) $))))) (T -158))
-((-2487 (*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-158)))))
-(-13 (-1047) (-10 -8 (-15 -2487 ((-619 (-1141)) $))))
-((-3826 (((-112) $ $) NIL)) (-4166 (($ (-547)) 13) (($ $ $) 14)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 17)) (-2381 (((-112) $ $) 9)))
-(((-159) (-13 (-1063) (-10 -8 (-15 -4166 ($ (-547))) (-15 -4166 ($ $ $))))) (T -159))
-((-4166 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-159)))) (-4166 (*1 *1 *1 *1) (-5 *1 (-159))))
-(-13 (-1063) (-10 -8 (-15 -4166 ($ (-547))) (-15 -4166 ($ $ $))))
-((-4185 (((-114) (-1136)) 97)))
-(((-160) (-10 -7 (-15 -4185 ((-114) (-1136))))) (T -160))
-((-4185 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-114)) (-5 *1 (-160)))))
-(-10 -7 (-15 -4185 ((-114) (-1136))))
-((-2090 ((|#3| |#3|) 19)))
-(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -2090 (|#3| |#3|))) (-1016) (-1195 |#1|) (-1195 |#2|)) (T -161))
-((-2090 (*1 *2 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-1195 *3)) (-5 *1 (-161 *3 *4 *2)) (-4 *2 (-1195 *4)))))
-(-10 -7 (-15 -2090 (|#3| |#3|)))
-((-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 217)) (-2899 ((|#2| $) 96)) (-1656 (($ $) 247)) (-1505 (($ $) 241)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 40)) (-1632 (($ $) 245)) (-1479 (($ $) 239)) (-2707 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2652 (((-547) $) NIL) (((-398 (-547)) $) NIL) ((|#2| $) 139)) (-2089 (($ $ $) 222)) (-1694 (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) 155) (((-663 |#2|) (-663 $)) 149)) (-2552 (($ (-1132 |#2|)) 119) (((-3 $ "failed") (-398 (-1132 |#2|))) NIL)) (-3855 (((-3 $ "failed") $) 209)) (-4265 (((-3 (-398 (-547)) "failed") $) 199)) (-3198 (((-112) $) 194)) (-2453 (((-398 (-547)) $) 197)) (-3116 (((-890)) 89)) (-2061 (($ $ $) 224)) (-2077 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1419 (($) 236)) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 186) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 191)) (-3160 ((|#2| $) 94)) (-3786 (((-1132 |#2|) $) 121)) (-2790 (($ (-1 |#2| |#2|) $) 102)) (-3624 (($ $) 238)) (-2540 (((-1132 |#2|) $) 120)) (-1984 (($ $) 202)) (-2547 (($) 97)) (-2834 (((-409 (-1132 $)) (-1132 $)) 88)) (-4071 (((-409 (-1132 $)) (-1132 $)) 57)) (-2032 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2712 (($ $) 237)) (-2471 (((-745) $) 219)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 229)) (-4056 ((|#2| (-1219 $)) NIL) ((|#2|) 91)) (-3448 (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-1882 (((-1132 |#2|)) 114)) (-1644 (($ $) 246)) (-1493 (($ $) 240)) (-3220 (((-1219 |#2|) $ (-1219 $)) 128) (((-663 |#2|) (-1219 $) (-1219 $)) NIL) (((-1219 |#2|) $) 110) (((-663 |#2|) (-1219 $)) NIL)) (-2838 (((-1219 |#2|) $) NIL) (($ (-1219 |#2|)) NIL) (((-1132 |#2|) $) NIL) (($ (-1132 |#2|)) NIL) (((-861 (-547)) $) 177) (((-861 (-370)) $) 181) (((-166 (-370)) $) 167) (((-166 (-217)) $) 162) (((-523) $) 173)) (-3404 (($ $) 98)) (-3838 (((-832) $) 138) (($ (-547)) NIL) (($ |#2|) NIL) (($ (-398 (-547))) NIL) (($ $) NIL)) (-1316 (((-1132 |#2|) $) 23)) (-2736 (((-745)) 100)) (-1726 (($ $) 250)) (-1579 (($ $) 244)) (-1703 (($ $) 248)) (-1557 (($ $) 242)) (-3027 ((|#2| $) 233)) (-1714 (($ $) 249)) (-1569 (($ $) 243)) (-2255 (($ $) 157)) (-2381 (((-112) $ $) 104)) (-2405 (((-112) $ $) 193)) (-2493 (($ $) 106) (($ $ $) NIL)) (-2479 (($ $ $) 105)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-398 (-547))) 267) (($ $ $) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL)))
-(((-162 |#1| |#2|) (-10 -8 (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3838 (|#1| |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3049 ((-2 (|:| -3825 |#1|) (|:| -4316 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -2471 ((-745) |#1|)) (-15 -4030 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -2061 (|#1| |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -1984 (|#1| |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -2405 ((-112) |#1| |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -2838 ((-166 (-217)) |#1|)) (-15 -2838 ((-166 (-370)) |#1|)) (-15 -1505 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1579 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -1714 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1726 (|#1| |#1|)) (-15 -3624 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1419 (|#1|)) (-15 ** (|#1| |#1| (-398 (-547)))) (-15 -4071 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -2834 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -4139 ((-3 (-619 (-1132 |#1|)) "failed") (-619 (-1132 |#1|)) (-1132 |#1|))) (-15 -4265 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2453 ((-398 (-547)) |#1|)) (-15 -3198 ((-112) |#1|)) (-15 -2077 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -2255 (|#1| |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3404 (|#1| |#1|)) (-15 -2547 (|#1|)) (-15 -2838 ((-861 (-370)) |#1|)) (-15 -2838 ((-861 (-547)) |#1|)) (-15 -3521 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -3521 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -2552 ((-3 |#1| "failed") (-398 (-1132 |#2|)))) (-15 -2540 ((-1132 |#2|) |#1|)) (-15 -2838 (|#1| (-1132 |#2|))) (-15 -2552 (|#1| (-1132 |#2|))) (-15 -1882 ((-1132 |#2|))) (-15 -1694 ((-663 |#2|) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-663 (-547)) (-663 |#1|))) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -2838 ((-1132 |#2|) |#1|)) (-15 -4056 (|#2|)) (-15 -2838 (|#1| (-1219 |#2|))) (-15 -2838 ((-1219 |#2|) |#1|)) (-15 -3220 ((-663 |#2|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1|)) (-15 -3786 ((-1132 |#2|) |#1|)) (-15 -1316 ((-1132 |#2|) |#1|)) (-15 -4056 (|#2| (-1219 |#1|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1| (-1219 |#1|))) (-15 -3160 (|#2| |#1|)) (-15 -2899 (|#2| |#1|)) (-15 -3116 ((-890))) (-15 -3838 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3838 (|#1| (-547))) (-15 -2736 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-547) |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2479 (|#1| |#1| |#1|)) (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|))) (-163 |#2|) (-169)) (T -162))
-((-2736 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-3116 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-890)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-4056 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) (-1882 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1132 *4)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))))
-(-10 -8 (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3838 (|#1| |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3049 ((-2 (|:| -3825 |#1|) (|:| -4316 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -2471 ((-745) |#1|)) (-15 -4030 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -2061 (|#1| |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -1984 (|#1| |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -2405 ((-112) |#1| |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -2838 ((-166 (-217)) |#1|)) (-15 -2838 ((-166 (-370)) |#1|)) (-15 -1505 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1579 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -1714 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1726 (|#1| |#1|)) (-15 -3624 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1419 (|#1|)) (-15 ** (|#1| |#1| (-398 (-547)))) (-15 -4071 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -2834 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -4139 ((-3 (-619 (-1132 |#1|)) "failed") (-619 (-1132 |#1|)) (-1132 |#1|))) (-15 -4265 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2453 ((-398 (-547)) |#1|)) (-15 -3198 ((-112) |#1|)) (-15 -2077 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3027 (|#2| |#1|)) (-15 -2255 (|#1| |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3404 (|#1| |#1|)) (-15 -2547 (|#1|)) (-15 -2838 ((-861 (-370)) |#1|)) (-15 -2838 ((-861 (-547)) |#1|)) (-15 -3521 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -3521 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -2552 ((-3 |#1| "failed") (-398 (-1132 |#2|)))) (-15 -2540 ((-1132 |#2|) |#1|)) (-15 -2838 (|#1| (-1132 |#2|))) (-15 -2552 (|#1| (-1132 |#2|))) (-15 -1882 ((-1132 |#2|))) (-15 -1694 ((-663 |#2|) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-663 (-547)) (-663 |#1|))) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -2838 ((-1132 |#2|) |#1|)) (-15 -4056 (|#2|)) (-15 -2838 (|#1| (-1219 |#2|))) (-15 -2838 ((-1219 |#2|) |#1|)) (-15 -3220 ((-663 |#2|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1|)) (-15 -3786 ((-1132 |#2|) |#1|)) (-15 -1316 ((-1132 |#2|) |#1|)) (-15 -4056 (|#2| (-1219 |#1|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1| (-1219 |#1|))) (-15 -3160 (|#2| |#1|)) (-15 -2899 (|#2| |#1|)) (-15 -3116 ((-890))) (-15 -3838 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3838 (|#1| (-547))) (-15 -2736 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-547) |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2479 (|#1| |#1| |#1|)) (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 91 (-1530 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-3571 (($ $) 92 (-1530 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-3915 (((-112) $) 94 (-1530 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-3401 (((-663 |#1|) (-1219 $)) 44) (((-663 |#1|)) 59)) (-2899 ((|#1| $) 50)) (-1656 (($ $) 225 (|has| |#1| (-1158)))) (-1505 (($ $) 208 (|has| |#1| (-1158)))) (-2797 (((-1146 (-890) (-745)) (-547)) 144 (|has| |#1| (-340)))) (-3672 (((-3 $ "failed") $ $) 19)) (-2277 (((-409 (-1132 $)) (-1132 $)) 239 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-2555 (($ $) 111 (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-3299 (((-409 $) $) 112 (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-2127 (($ $) 238 (-12 (|has| |#1| (-971)) (|has| |#1| (-1158))))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 242 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-1547 (((-112) $ $) 102 (|has| |#1| (-298)))) (-3608 (((-745)) 85 (|has| |#1| (-359)))) (-1632 (($ $) 224 (|has| |#1| (-1158)))) (-1479 (($ $) 209 (|has| |#1| (-1158)))) (-1678 (($ $) 223 (|has| |#1| (-1158)))) (-1532 (($ $) 210 (|has| |#1| (-1158)))) (-1948 (($) 17 T CONST)) (-2707 (((-3 (-547) "failed") $) 166 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 164 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 163)) (-2652 (((-547) $) 167 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 165 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 162)) (-2614 (($ (-1219 |#1|) (-1219 $)) 46) (($ (-1219 |#1|)) 62)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-340)))) (-2089 (($ $ $) 106 (|has| |#1| (-298)))) (-3565 (((-663 |#1|) $ (-1219 $)) 51) (((-663 |#1|) $) 57)) (-1694 (((-663 (-547)) (-663 $)) 161 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 160 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 159) (((-663 |#1|) (-663 $)) 158)) (-2552 (($ (-1132 |#1|)) 155) (((-3 $ "failed") (-398 (-1132 |#1|))) 152 (|has| |#1| (-354)))) (-3855 (((-3 $ "failed") $) 32)) (-2139 ((|#1| $) 250)) (-4265 (((-3 (-398 (-547)) "failed") $) 243 (|has| |#1| (-532)))) (-3198 (((-112) $) 245 (|has| |#1| (-532)))) (-2453 (((-398 (-547)) $) 244 (|has| |#1| (-532)))) (-3116 (((-890)) 52)) (-3232 (($) 88 (|has| |#1| (-359)))) (-2061 (($ $ $) 105 (|has| |#1| (-298)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 100 (|has| |#1| (-298)))) (-3527 (($) 146 (|has| |#1| (-340)))) (-3078 (((-112) $) 147 (|has| |#1| (-340)))) (-1551 (($ $ (-745)) 138 (|has| |#1| (-340))) (($ $) 137 (|has| |#1| (-340)))) (-1791 (((-112) $) 113 (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-2077 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1025)) (|has| |#1| (-1158))))) (-1419 (($) 235 (|has| |#1| (-1158)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 258 (|has| |#1| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 257 (|has| |#1| (-855 (-370))))) (-3275 (((-890) $) 149 (|has| |#1| (-340))) (((-807 (-890)) $) 135 (|has| |#1| (-340)))) (-2261 (((-112) $) 30)) (-3869 (($ $ (-547)) 237 (-12 (|has| |#1| (-971)) (|has| |#1| (-1158))))) (-3160 ((|#1| $) 49)) (-3477 (((-3 $ "failed") $) 139 (|has| |#1| (-340)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 109 (|has| |#1| (-298)))) (-3786 (((-1132 |#1|) $) 42 (|has| |#1| (-354)))) (-2856 (($ $ $) 204 (|has| |#1| (-821)))) (-3567 (($ $ $) 203 (|has| |#1| (-821)))) (-2790 (($ (-1 |#1| |#1|) $) 259)) (-2402 (((-890) $) 87 (|has| |#1| (-359)))) (-3624 (($ $) 232 (|has| |#1| (-1158)))) (-2540 (((-1132 |#1|) $) 153)) (-3689 (($ (-619 $)) 98 (-1530 (|has| |#1| (-298)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (($ $ $) 97 (-1530 (|has| |#1| (-298)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-1466 (((-1119) $) 9)) (-1984 (($ $) 114 (|has| |#1| (-354)))) (-3054 (($) 140 (|has| |#1| (-340)) CONST)) (-3487 (($ (-890)) 86 (|has| |#1| (-359)))) (-2547 (($) 254)) (-2154 ((|#1| $) 251)) (-3979 (((-1082) $) 10)) (-4238 (($) 157)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 99 (-1530 (|has| |#1| (-298)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-3719 (($ (-619 $)) 96 (-1530 (|has| |#1| (-298)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (($ $ $) 95 (-1530 (|has| |#1| (-298)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) 143 (|has| |#1| (-340)))) (-2834 (((-409 (-1132 $)) (-1132 $)) 241 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-4071 (((-409 (-1132 $)) (-1132 $)) 240 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-2115 (((-409 $) $) 110 (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-298))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 107 (|has| |#1| (-298)))) (-2032 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 90 (-1530 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 101 (|has| |#1| (-298)))) (-2712 (($ $) 233 (|has| |#1| (-1158)))) (-2679 (($ $ (-619 |#1|) (-619 |#1|)) 265 (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) 263 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) 262 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1136)) (-619 |#1|)) 261 (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-1136) |#1|) 260 (|has| |#1| (-503 (-1136) |#1|)))) (-2471 (((-745) $) 103 (|has| |#1| (-298)))) (-3334 (($ $ |#1|) 266 (|has| |#1| (-277 |#1| |#1|)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 104 (|has| |#1| (-298)))) (-4056 ((|#1| (-1219 $)) 45) ((|#1|) 58)) (-1422 (((-745) $) 148 (|has| |#1| (-340))) (((-3 (-745) "failed") $ $) 136 (|has| |#1| (-340)))) (-3448 (($ $ (-1 |#1| |#1|) (-745)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-619 (-1136)) (-619 (-745))) 127 (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) 128 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) 129 (|has| |#1| (-869 (-1136)))) (($ $ (-1136)) 130 (|has| |#1| (-869 (-1136)))) (($ $ (-745)) 132 (-1530 (-1814 (|has| |#1| (-354)) (|has| |#1| (-225))) (|has| |#1| (-225)) (-1814 (|has| |#1| (-225)) (|has| |#1| (-354))))) (($ $) 134 (-1530 (-1814 (|has| |#1| (-354)) (|has| |#1| (-225))) (|has| |#1| (-225)) (-1814 (|has| |#1| (-225)) (|has| |#1| (-354)))))) (-3101 (((-663 |#1|) (-1219 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-354)))) (-1882 (((-1132 |#1|)) 156)) (-1690 (($ $) 222 (|has| |#1| (-1158)))) (-1545 (($ $) 211 (|has| |#1| (-1158)))) (-3823 (($) 145 (|has| |#1| (-340)))) (-1668 (($ $) 221 (|has| |#1| (-1158)))) (-1519 (($ $) 212 (|has| |#1| (-1158)))) (-1644 (($ $) 220 (|has| |#1| (-1158)))) (-1493 (($ $) 213 (|has| |#1| (-1158)))) (-3220 (((-1219 |#1|) $ (-1219 $)) 48) (((-663 |#1|) (-1219 $) (-1219 $)) 47) (((-1219 |#1|) $) 64) (((-663 |#1|) (-1219 $)) 63)) (-2838 (((-1219 |#1|) $) 61) (($ (-1219 |#1|)) 60) (((-1132 |#1|) $) 168) (($ (-1132 |#1|)) 154) (((-861 (-547)) $) 256 (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) 255 (|has| |#1| (-592 (-861 (-370))))) (((-166 (-370)) $) 207 (|has| |#1| (-991))) (((-166 (-217)) $) 206 (|has| |#1| (-991))) (((-523) $) 205 (|has| |#1| (-592 (-523))))) (-3404 (($ $) 253)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 142 (-1530 (-1814 (|has| $ (-143)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))) (|has| |#1| (-340))))) (-3402 (($ |#1| |#1|) 252)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35) (($ (-398 (-547))) 84 (-1530 (|has| |#1| (-354)) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) 89 (-1530 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-2220 (($ $) 141 (|has| |#1| (-340))) (((-3 $ "failed") $) 41 (-1530 (-1814 (|has| $ (-143)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))) (|has| |#1| (-143))))) (-1316 (((-1132 |#1|) $) 43)) (-2736 (((-745)) 28)) (-1917 (((-1219 $)) 65)) (-1726 (($ $) 231 (|has| |#1| (-1158)))) (-1579 (($ $) 219 (|has| |#1| (-1158)))) (-3577 (((-112) $ $) 93 (-1530 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-1703 (($ $) 230 (|has| |#1| (-1158)))) (-1557 (($ $) 218 (|has| |#1| (-1158)))) (-1751 (($ $) 229 (|has| |#1| (-1158)))) (-1606 (($ $) 217 (|has| |#1| (-1158)))) (-3027 ((|#1| $) 247 (|has| |#1| (-1158)))) (-1927 (($ $) 228 (|has| |#1| (-1158)))) (-1620 (($ $) 216 (|has| |#1| (-1158)))) (-1738 (($ $) 227 (|has| |#1| (-1158)))) (-1593 (($ $) 215 (|has| |#1| (-1158)))) (-1714 (($ $) 226 (|has| |#1| (-1158)))) (-1569 (($ $) 214 (|has| |#1| (-1158)))) (-2255 (($ $) 248 (|has| |#1| (-1025)))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-1 |#1| |#1|) (-745)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-619 (-1136)) (-619 (-745))) 123 (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) 124 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) 125 (|has| |#1| (-869 (-1136)))) (($ $ (-1136)) 126 (|has| |#1| (-869 (-1136)))) (($ $ (-745)) 131 (-1530 (-1814 (|has| |#1| (-354)) (|has| |#1| (-225))) (|has| |#1| (-225)) (-1814 (|has| |#1| (-225)) (|has| |#1| (-354))))) (($ $) 133 (-1530 (-1814 (|has| |#1| (-354)) (|has| |#1| (-225))) (|has| |#1| (-225)) (-1814 (|has| |#1| (-225)) (|has| |#1| (-354)))))) (-2441 (((-112) $ $) 201 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 200 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 202 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 199 (|has| |#1| (-821)))) (-2506 (($ $ $) 118 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-398 (-547))) 236 (-12 (|has| |#1| (-971)) (|has| |#1| (-1158)))) (($ $ $) 234 (|has| |#1| (-1158))) (($ $ (-547)) 115 (|has| |#1| (-354)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-398 (-547)) $) 117 (|has| |#1| (-354))) (($ $ (-398 (-547))) 116 (|has| |#1| (-354)))))
-(((-163 |#1|) (-138) (-169)) (T -163))
-((-3160 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2547 (*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3404 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3402 (*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2154 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2032 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-539)))) (-2255 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) (-3027 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1158)))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1025)) (-4 *3 (-1158)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-112)))) (-2453 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-398 (-547))))) (-4265 (*1 *2 *1) (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-398 (-547))))))
-(-13 (-699 |t#1| (-1132 |t#1|)) (-402 |t#1|) (-223 |t#1|) (-329 |t#1|) (-391 |t#1|) (-853 |t#1|) (-368 |t#1|) (-169) (-10 -8 (-6 -3402) (-15 -2547 ($)) (-15 -3404 ($ $)) (-15 -3402 ($ |t#1| |t#1|)) (-15 -2154 (|t#1| $)) (-15 -2139 (|t#1| $)) (-15 -3160 (|t#1| $)) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-6 (-539)) (-15 -2032 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|) (IF (|has| |t#1| (-6 -4328)) (-6 -4328) |%noBranch|) (IF (|has| |t#1| (-6 -4325)) (-6 -4325) |%noBranch|) (IF (|has| |t#1| (-354)) (-6 (-354)) |%noBranch|) (IF (|has| |t#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-991)) (PROGN (-6 (-592 (-166 (-217)))) (-6 (-592 (-166 (-370))))) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -2255 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1158)) (PROGN (-6 (-1158)) (-15 -3027 (|t#1| $)) (IF (|has| |t#1| (-971)) (-6 (-971)) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -2077 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-532)) (PROGN (-15 -3198 ((-112) $)) (-15 -2453 ((-398 (-547)) $)) (-15 -4265 ((-3 (-398 (-547)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-878)) (IF (|has| |t#1| (-298)) (-6 (-878)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-38 |#1|) . T) ((-38 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-35) |has| |#1| (-1158)) ((-94) |has| |#1| (-1158)) ((-101) . T) ((-111 #0# #0#) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1530 (|has| |#1| (-340)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) . T) ((-592 (-166 (-217))) |has| |#1| (-991)) ((-592 (-166 (-370))) |has| |#1| (-991)) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-592 (-861 (-370))) |has| |#1| (-592 (-861 (-370)))) ((-592 (-861 (-547))) |has| |#1| (-592 (-861 (-547)))) ((-592 #1=(-1132 |#1|)) . T) ((-223 |#1|) . T) ((-225) -1530 (|has| |#1| (-340)) (|has| |#1| (-225))) ((-235) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-275) |has| |#1| (-1158)) ((-277 |#1| $) |has| |#1| (-277 |#1| |#1|)) ((-281) -1530 (|has| |#1| (-539)) (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-298) -1530 (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-300 |#1|) |has| |#1| (-300 |#1|)) ((-354) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-393) |has| |#1| (-340)) ((-359) -1530 (|has| |#1| (-359)) (|has| |#1| (-340))) ((-340) |has| |#1| (-340)) ((-361 |#1| #1#) . T) ((-400 |#1| #1#) . T) ((-329 |#1|) . T) ((-368 |#1|) . T) ((-391 |#1|) . T) ((-402 |#1|) . T) ((-442) -1530 (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-482) |has| |#1| (-1158)) ((-503 (-1136) |#1|) |has| |#1| (-503 (-1136) |#1|)) ((-503 |#1| |#1|) |has| |#1| (-300 |#1|)) ((-539) -1530 (|has| |#1| (-539)) (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-622 #0#) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-692 |#1|) . T) ((-692 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-699 |#1| #1#) . T) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 (-1136)) |has| |#1| (-869 (-1136))) ((-855 (-370)) |has| |#1| (-855 (-370))) ((-855 (-547)) |has| |#1| (-855 (-547))) ((-853 |#1|) . T) ((-878) -12 (|has| |#1| (-298)) (|has| |#1| (-878))) ((-889) -1530 (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-971) -12 (|has| |#1| (-971)) (|has| |#1| (-1158))) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 #0#) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1112) |has| |#1| (-340)) ((-1158) |has| |#1| (-1158)) ((-1161) |has| |#1| (-1158)) ((-1173) . T) ((-1177) -1530 (|has| |#1| (-340)) (|has| |#1| (-354)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))
-((-2115 (((-409 |#2|) |#2|) 63)))
-(((-164 |#1| |#2|) (-10 -7 (-15 -2115 ((-409 |#2|) |#2|))) (-298) (-1195 (-166 |#1|))) (T -164))
-((-2115 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1195 (-166 *4))))))
-(-10 -7 (-15 -2115 ((-409 |#2|) |#2|)))
-((-2790 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14)))
-(((-165 |#1| |#2|) (-10 -7 (-15 -2790 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-169) (-169)) (T -165))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6)))))
-(-10 -7 (-15 -2790 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 33)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-539))))) (-3571 (($ $) NIL (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-539))))) (-3915 (((-112) $) NIL (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-539))))) (-3401 (((-663 |#1|) (-1219 $)) NIL) (((-663 |#1|)) NIL)) (-2899 ((|#1| $) NIL)) (-1656 (($ $) NIL (|has| |#1| (-1158)))) (-1505 (($ $) NIL (|has| |#1| (-1158)))) (-2797 (((-1146 (-890) (-745)) (-547)) NIL (|has| |#1| (-340)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-2555 (($ $) NIL (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-3299 (((-409 $) $) NIL (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-2127 (($ $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1158))))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-1547 (((-112) $ $) NIL (|has| |#1| (-298)))) (-3608 (((-745)) NIL (|has| |#1| (-359)))) (-1632 (($ $) NIL (|has| |#1| (-1158)))) (-1479 (($ $) NIL (|has| |#1| (-1158)))) (-1678 (($ $) NIL (|has| |#1| (-1158)))) (-1532 (($ $) NIL (|has| |#1| (-1158)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2614 (($ (-1219 |#1|) (-1219 $)) NIL) (($ (-1219 |#1|)) NIL)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-340)))) (-2089 (($ $ $) NIL (|has| |#1| (-298)))) (-3565 (((-663 |#1|) $ (-1219 $)) NIL) (((-663 |#1|) $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2552 (($ (-1132 |#1|)) NIL) (((-3 $ "failed") (-398 (-1132 |#1|))) NIL (|has| |#1| (-354)))) (-3855 (((-3 $ "failed") $) NIL)) (-2139 ((|#1| $) 13)) (-4265 (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-532)))) (-3198 (((-112) $) NIL (|has| |#1| (-532)))) (-2453 (((-398 (-547)) $) NIL (|has| |#1| (-532)))) (-3116 (((-890)) NIL)) (-3232 (($) NIL (|has| |#1| (-359)))) (-2061 (($ $ $) NIL (|has| |#1| (-298)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-298)))) (-3527 (($) NIL (|has| |#1| (-340)))) (-3078 (((-112) $) NIL (|has| |#1| (-340)))) (-1551 (($ $ (-745)) NIL (|has| |#1| (-340))) (($ $) NIL (|has| |#1| (-340)))) (-1791 (((-112) $) NIL (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-2077 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1025)) (|has| |#1| (-1158))))) (-1419 (($) NIL (|has| |#1| (-1158)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| |#1| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| |#1| (-855 (-370))))) (-3275 (((-890) $) NIL (|has| |#1| (-340))) (((-807 (-890)) $) NIL (|has| |#1| (-340)))) (-2261 (((-112) $) 35)) (-3869 (($ $ (-547)) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1158))))) (-3160 ((|#1| $) 46)) (-3477 (((-3 $ "failed") $) NIL (|has| |#1| (-340)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-298)))) (-3786 (((-1132 |#1|) $) NIL (|has| |#1| (-354)))) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-2402 (((-890) $) NIL (|has| |#1| (-359)))) (-3624 (($ $) NIL (|has| |#1| (-1158)))) (-2540 (((-1132 |#1|) $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-298))) (($ $ $) NIL (|has| |#1| (-298)))) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-354)))) (-3054 (($) NIL (|has| |#1| (-340)) CONST)) (-3487 (($ (-890)) NIL (|has| |#1| (-359)))) (-2547 (($) NIL)) (-2154 ((|#1| $) 15)) (-3979 (((-1082) $) NIL)) (-4238 (($) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-298)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-298))) (($ $ $) NIL (|has| |#1| (-298)))) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL (|has| |#1| (-340)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-2115 (((-409 $) $) NIL (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-298))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-298)))) (-2032 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 47 (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-539))))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-298)))) (-2712 (($ $) NIL (|has| |#1| (-1158)))) (-2679 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1136)) (-619 |#1|)) NIL (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-1136) |#1|) NIL (|has| |#1| (-503 (-1136) |#1|)))) (-2471 (((-745) $) NIL (|has| |#1| (-298)))) (-3334 (($ $ |#1|) NIL (|has| |#1| (-277 |#1| |#1|)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-298)))) (-4056 ((|#1| (-1219 $)) NIL) ((|#1|) NIL)) (-1422 (((-745) $) NIL (|has| |#1| (-340))) (((-3 (-745) "failed") $ $) NIL (|has| |#1| (-340)))) (-3448 (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $) NIL (|has| |#1| (-225)))) (-3101 (((-663 |#1|) (-1219 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-354)))) (-1882 (((-1132 |#1|)) NIL)) (-1690 (($ $) NIL (|has| |#1| (-1158)))) (-1545 (($ $) NIL (|has| |#1| (-1158)))) (-3823 (($) NIL (|has| |#1| (-340)))) (-1668 (($ $) NIL (|has| |#1| (-1158)))) (-1519 (($ $) NIL (|has| |#1| (-1158)))) (-1644 (($ $) NIL (|has| |#1| (-1158)))) (-1493 (($ $) NIL (|has| |#1| (-1158)))) (-3220 (((-1219 |#1|) $ (-1219 $)) NIL) (((-663 |#1|) (-1219 $) (-1219 $)) NIL) (((-1219 |#1|) $) NIL) (((-663 |#1|) (-1219 $)) NIL)) (-2838 (((-1219 |#1|) $) NIL) (($ (-1219 |#1|)) NIL) (((-1132 |#1|) $) NIL) (($ (-1132 |#1|)) NIL) (((-861 (-547)) $) NIL (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| |#1| (-592 (-861 (-370))))) (((-166 (-370)) $) NIL (|has| |#1| (-991))) (((-166 (-217)) $) NIL (|has| |#1| (-991))) (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3404 (($ $) 45)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-340))))) (-3402 (($ |#1| |#1|) 37)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) 36) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-354)) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-539))))) (-2220 (($ $) NIL (|has| |#1| (-340))) (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-1316 (((-1132 |#1|) $) NIL)) (-2736 (((-745)) NIL)) (-1917 (((-1219 $)) NIL)) (-1726 (($ $) NIL (|has| |#1| (-1158)))) (-1579 (($ $) NIL (|has| |#1| (-1158)))) (-3577 (((-112) $ $) NIL (-1530 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-539))))) (-1703 (($ $) NIL (|has| |#1| (-1158)))) (-1557 (($ $) NIL (|has| |#1| (-1158)))) (-1751 (($ $) NIL (|has| |#1| (-1158)))) (-1606 (($ $) NIL (|has| |#1| (-1158)))) (-3027 ((|#1| $) NIL (|has| |#1| (-1158)))) (-1927 (($ $) NIL (|has| |#1| (-1158)))) (-1620 (($ $) NIL (|has| |#1| (-1158)))) (-1738 (($ $) NIL (|has| |#1| (-1158)))) (-1593 (($ $) NIL (|has| |#1| (-1158)))) (-1714 (($ $) NIL (|has| |#1| (-1158)))) (-1569 (($ $) NIL (|has| |#1| (-1158)))) (-2255 (($ $) NIL (|has| |#1| (-1025)))) (-3269 (($) 28 T CONST)) (-3281 (($) 30 T CONST)) (-2273 (((-1119) $) 23 (|has| |#1| (-802))) (((-1119) $ (-112)) 25 (|has| |#1| (-802))) (((-1224) (-796) $) 26 (|has| |#1| (-802))) (((-1224) (-796) $ (-112)) 27 (|has| |#1| (-802)))) (-1695 (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $) NIL (|has| |#1| (-225)))) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2506 (($ $ $) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 39)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-398 (-547))) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1158)))) (($ $ $) NIL (|has| |#1| (-1158))) (($ $ (-547)) NIL (|has| |#1| (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-398 (-547)) $) NIL (|has| |#1| (-354))) (($ $ (-398 (-547))) NIL (|has| |#1| (-354)))))
-(((-166 |#1|) (-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|))) (-169)) (T -166))
-NIL
-(-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|)))
-((-2838 (((-861 |#1|) |#3|) 22)))
-(((-167 |#1| |#2| |#3|) (-10 -7 (-15 -2838 ((-861 |#1|) |#3|))) (-1063) (-13 (-592 (-861 |#1|)) (-169)) (-163 |#2|)) (T -167))
-((-2838 (*1 *2 *3) (-12 (-4 *5 (-13 (-592 *2) (-169))) (-5 *2 (-861 *4)) (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1063)) (-4 *3 (-163 *5)))))
-(-10 -7 (-15 -2838 ((-861 |#1|) |#3|)))
-((-3826 (((-112) $ $) NIL)) (-4120 (((-112) $) 9)) (-2926 (((-112) $ (-112)) 11)) (-3735 (($) 12)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2274 (($ $) 13)) (-3838 (((-832) $) 17)) (-2262 (((-112) $) 8)) (-2674 (((-112) $ (-112)) 10)) (-2381 (((-112) $ $) NIL)))
-(((-168) (-13 (-1063) (-10 -8 (-15 -3735 ($)) (-15 -2262 ((-112) $)) (-15 -4120 ((-112) $)) (-15 -2674 ((-112) $ (-112))) (-15 -2926 ((-112) $ (-112))) (-15 -2274 ($ $))))) (T -168))
-((-3735 (*1 *1) (-5 *1 (-168))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-4120 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-2674 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-2926 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-2274 (*1 *1 *1) (-5 *1 (-168))))
-(-13 (-1063) (-10 -8 (-15 -3735 ($)) (-15 -2262 ((-112) $)) (-15 -4120 ((-112) $)) (-15 -2674 ((-112) $ (-112))) (-15 -2926 ((-112) $ (-112))) (-15 -2274 ($ $))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ (-547)) 27)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-169) (-138)) (T -169))
-NIL
-(-13 (-1016) (-111 $ $) (-10 -7 (-6 (-4331 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-1708 (($ $) 6)))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2492 (((-621 (-1148)) $) 9)) (-2389 (((-112) $ $) NIL)))
+(((-159) (-13 (-1050) (-10 -8 (-15 -2492 ((-621 (-1148)) $))))) (T -159))
+((-2492 (*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-159)))))
+(-13 (-1050) (-10 -8 (-15 -2492 ((-621 (-1148)) $))))
+((-3834 (((-112) $ $) NIL)) (-2545 (($ (-549)) 13) (($ $ $) 14)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 17)) (-2389 (((-112) $ $) 9)))
+(((-160) (-13 (-1067) (-10 -8 (-15 -2545 ($ (-549))) (-15 -2545 ($ $ $))))) (T -160))
+((-2545 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-160)))) (-2545 (*1 *1 *1 *1) (-5 *1 (-160))))
+(-13 (-1067) (-10 -8 (-15 -2545 ($ (-549))) (-15 -2545 ($ $ $))))
+((-2834 (((-114) (-1143)) 97)))
+(((-161) (-10 -7 (-15 -2834 ((-114) (-1143))))) (T -161))
+((-2834 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-114)) (-5 *1 (-161)))))
+(-10 -7 (-15 -2834 ((-114) (-1143))))
+((-2053 ((|#3| |#3|) 19)))
+(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -2053 (|#3| |#3|))) (-1018) (-1202 |#1|) (-1202 |#2|)) (T -162))
+((-2053 (*1 *2 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-1202 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1202 *4)))))
+(-10 -7 (-15 -2053 (|#3| |#3|)))
+((-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 217)) (-2906 ((|#2| $) 96)) (-1664 (($ $) 247)) (-1512 (($ $) 241)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 40)) (-1640 (($ $) 245)) (-1486 (($ $) 239)) (-2714 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2659 (((-549) $) NIL) (((-400 (-549)) $) NIL) ((|#2| $) 139)) (-2095 (($ $ $) 222)) (-3879 (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) 155) (((-665 |#2|) (-665 $)) 149)) (-2557 (($ (-1139 |#2|)) 119) (((-3 $ "failed") (-400 (-1139 |#2|))) NIL)) (-2114 (((-3 $ "failed") $) 209)) (-3405 (((-3 (-400 (-549)) "failed") $) 199)) (-3679 (((-112) $) 194)) (-2532 (((-400 (-549)) $) 197)) (-3123 (((-892)) 89)) (-2067 (($ $ $) 224)) (-2467 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1425 (($) 236)) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 186) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 191)) (-3630 ((|#2| $) 94)) (-3788 (((-1139 |#2|) $) 121)) (-2797 (($ (-1 |#2| |#2|) $) 102)) (-3632 (($ $) 238)) (-2548 (((-1139 |#2|) $) 120)) (-1992 (($ $) 202)) (-1429 (($) 97)) (-2905 (((-411 (-1139 $)) (-1139 $)) 88)) (-2413 (((-411 (-1139 $)) (-1139 $)) 57)) (-2042 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2719 (($ $) 237)) (-3684 (((-747) $) 219)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 229)) (-3602 ((|#2| (-1226 $)) NIL) ((|#2|) 91)) (-3456 (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-2815 (((-1139 |#2|)) 114)) (-1651 (($ $) 246)) (-1501 (($ $) 240)) (-4263 (((-1226 |#2|) $ (-1226 $)) 128) (((-665 |#2|) (-1226 $) (-1226 $)) NIL) (((-1226 |#2|) $) 110) (((-665 |#2|) (-1226 $)) NIL)) (-2845 (((-1226 |#2|) $) NIL) (($ (-1226 |#2|)) NIL) (((-1139 |#2|) $) NIL) (($ (-1139 |#2|)) NIL) (((-863 (-549)) $) 177) (((-863 (-372)) $) 181) (((-167 (-372)) $) 167) (((-167 (-219)) $) 162) (((-525) $) 173)) (-1955 (($ $) 98)) (-3846 (((-834) $) 138) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-400 (-549))) NIL) (($ $) NIL)) (-4154 (((-1139 |#2|) $) 23)) (-2082 (((-747)) 100)) (-1733 (($ $) 250)) (-1587 (($ $) 244)) (-1710 (($ $) 248)) (-1564 (($ $) 242)) (-1572 ((|#2| $) 233)) (-1722 (($ $) 249)) (-1576 (($ $) 243)) (-3212 (($ $) 157)) (-2389 (((-112) $ $) 104)) (-2412 (((-112) $ $) 193)) (-2500 (($ $) 106) (($ $ $) NIL)) (-2486 (($ $ $) 105)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-400 (-549))) 267) (($ $ $) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL)))
+(((-163 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3846 (|#1| |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2297 ((-2 (|:| -2207 |#1|) (|:| -4324 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3684 ((-747) |#1|)) (-15 -3148 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -2067 (|#1| |#1| |#1|)) (-15 -2095 (|#1| |#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -2412 ((-112) |#1| |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -2845 ((-167 (-219)) |#1|)) (-15 -2845 ((-167 (-372)) |#1|)) (-15 -1512 (|#1| |#1|)) (-15 -1486 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1651 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1664 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1710 (|#1| |#1|)) (-15 -1733 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2719 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1425 (|#1|)) (-15 ** (|#1| |#1| (-400 (-549)))) (-15 -2413 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -2905 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -1348 ((-3 (-621 (-1139 |#1|)) "failed") (-621 (-1139 |#1|)) (-1139 |#1|))) (-15 -3405 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2532 ((-400 (-549)) |#1|)) (-15 -3679 ((-112) |#1|)) (-15 -2467 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3212 (|#1| |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1955 (|#1| |#1|)) (-15 -1429 (|#1|)) (-15 -2845 ((-863 (-372)) |#1|)) (-15 -2845 ((-863 (-549)) |#1|)) (-15 -2932 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -2932 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2557 ((-3 |#1| "failed") (-400 (-1139 |#2|)))) (-15 -2548 ((-1139 |#2|) |#1|)) (-15 -2845 (|#1| (-1139 |#2|))) (-15 -2557 (|#1| (-1139 |#2|))) (-15 -2815 ((-1139 |#2|))) (-15 -3879 ((-665 |#2|) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-665 (-549)) (-665 |#1|))) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -2845 ((-1139 |#2|) |#1|)) (-15 -3602 (|#2|)) (-15 -2845 (|#1| (-1226 |#2|))) (-15 -2845 ((-1226 |#2|) |#1|)) (-15 -4263 ((-665 |#2|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1|)) (-15 -3788 ((-1139 |#2|) |#1|)) (-15 -4154 ((-1139 |#2|) |#1|)) (-15 -3602 (|#2| (-1226 |#1|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1| (-1226 |#1|))) (-15 -3630 (|#2| |#1|)) (-15 -2906 (|#2| |#1|)) (-15 -3123 ((-892))) (-15 -3846 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3846 (|#1| (-549))) (-15 -2082 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 -2114 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-892))) (-15 * (|#1| (-549) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -2486 (|#1| |#1| |#1|)) (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163))
+((-2082 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3123 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-892)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3602 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-2815 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1139 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))))
+(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3846 (|#1| |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2297 ((-2 (|:| -2207 |#1|) (|:| -4324 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3684 ((-747) |#1|)) (-15 -3148 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -2067 (|#1| |#1| |#1|)) (-15 -2095 (|#1| |#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -2412 ((-112) |#1| |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -2845 ((-167 (-219)) |#1|)) (-15 -2845 ((-167 (-372)) |#1|)) (-15 -1512 (|#1| |#1|)) (-15 -1486 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1651 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1664 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1710 (|#1| |#1|)) (-15 -1733 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2719 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1425 (|#1|)) (-15 ** (|#1| |#1| (-400 (-549)))) (-15 -2413 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -2905 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -1348 ((-3 (-621 (-1139 |#1|)) "failed") (-621 (-1139 |#1|)) (-1139 |#1|))) (-15 -3405 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2532 ((-400 (-549)) |#1|)) (-15 -3679 ((-112) |#1|)) (-15 -2467 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3212 (|#1| |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1955 (|#1| |#1|)) (-15 -1429 (|#1|)) (-15 -2845 ((-863 (-372)) |#1|)) (-15 -2845 ((-863 (-549)) |#1|)) (-15 -2932 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -2932 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2557 ((-3 |#1| "failed") (-400 (-1139 |#2|)))) (-15 -2548 ((-1139 |#2|) |#1|)) (-15 -2845 (|#1| (-1139 |#2|))) (-15 -2557 (|#1| (-1139 |#2|))) (-15 -2815 ((-1139 |#2|))) (-15 -3879 ((-665 |#2|) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-665 (-549)) (-665 |#1|))) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -2845 ((-1139 |#2|) |#1|)) (-15 -3602 (|#2|)) (-15 -2845 (|#1| (-1226 |#2|))) (-15 -2845 ((-1226 |#2|) |#1|)) (-15 -4263 ((-665 |#2|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1|)) (-15 -3788 ((-1139 |#2|) |#1|)) (-15 -4154 ((-1139 |#2|) |#1|)) (-15 -3602 (|#2| (-1226 |#1|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1| (-1226 |#1|))) (-15 -3630 (|#2| |#1|)) (-15 -2906 (|#2| |#1|)) (-15 -3123 ((-892))) (-15 -3846 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3846 (|#1| (-549))) (-15 -2082 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 -2114 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-892))) (-15 * (|#1| (-549) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -2486 (|#1| |#1| |#1|)) (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 91 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-2258 (($ $) 92 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-2799 (((-112) $) 94 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-1738 (((-665 |#1|) (-1226 $)) 44) (((-665 |#1|)) 59)) (-2906 ((|#1| $) 50)) (-1664 (($ $) 225 (|has| |#1| (-1165)))) (-1512 (($ $) 208 (|has| |#1| (-1165)))) (-3062 (((-1153 (-892) (-747)) (-549)) 144 (|has| |#1| (-342)))) (-2001 (((-3 $ "failed") $ $) 19)) (-3231 (((-411 (-1139 $)) (-1139 $)) 239 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-3979 (($ $) 111 (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-2402 (((-411 $) $) 112 (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-2134 (($ $) 238 (-12 (|has| |#1| (-973)) (|has| |#1| (-1165))))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 242 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-3866 (((-112) $ $) 102 (|has| |#1| (-300)))) (-3614 (((-747)) 85 (|has| |#1| (-361)))) (-1640 (($ $) 224 (|has| |#1| (-1165)))) (-1486 (($ $) 209 (|has| |#1| (-1165)))) (-1685 (($ $) 223 (|has| |#1| (-1165)))) (-1539 (($ $) 210 (|has| |#1| (-1165)))) (-1682 (($) 17 T CONST)) (-2714 (((-3 (-549) "failed") $) 166 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 164 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 163)) (-2659 (((-549) $) 167 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 165 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 162)) (-3492 (($ (-1226 |#1|) (-1226 $)) 46) (($ (-1226 |#1|)) 62)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-342)))) (-2095 (($ $ $) 106 (|has| |#1| (-300)))) (-3506 (((-665 |#1|) $ (-1226 $)) 51) (((-665 |#1|) $) 57)) (-3879 (((-665 (-549)) (-665 $)) 161 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 160 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 159) (((-665 |#1|) (-665 $)) 158)) (-2557 (($ (-1139 |#1|)) 155) (((-3 $ "failed") (-400 (-1139 |#1|))) 152 (|has| |#1| (-356)))) (-2114 (((-3 $ "failed") $) 32)) (-2145 ((|#1| $) 250)) (-3405 (((-3 (-400 (-549)) "failed") $) 243 (|has| |#1| (-534)))) (-3679 (((-112) $) 245 (|has| |#1| (-534)))) (-2532 (((-400 (-549)) $) 244 (|has| |#1| (-534)))) (-3123 (((-892)) 52)) (-3239 (($) 88 (|has| |#1| (-361)))) (-2067 (($ $ $) 105 (|has| |#1| (-300)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 100 (|has| |#1| (-300)))) (-2405 (($) 146 (|has| |#1| (-342)))) (-2288 (((-112) $) 147 (|has| |#1| (-342)))) (-3165 (($ $ (-747)) 138 (|has| |#1| (-342))) (($ $) 137 (|has| |#1| (-342)))) (-1420 (((-112) $) 113 (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-2467 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1027)) (|has| |#1| (-1165))))) (-1425 (($) 235 (|has| |#1| (-1165)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 258 (|has| |#1| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 257 (|has| |#1| (-857 (-372))))) (-2088 (((-892) $) 149 (|has| |#1| (-342))) (((-809 (-892)) $) 135 (|has| |#1| (-342)))) (-2675 (((-112) $) 30)) (-4187 (($ $ (-549)) 237 (-12 (|has| |#1| (-973)) (|has| |#1| (-1165))))) (-3630 ((|#1| $) 49)) (-1681 (((-3 $ "failed") $) 139 (|has| |#1| (-342)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 109 (|has| |#1| (-300)))) (-3788 (((-1139 |#1|) $) 42 (|has| |#1| (-356)))) (-2863 (($ $ $) 204 (|has| |#1| (-823)))) (-3575 (($ $ $) 203 (|has| |#1| (-823)))) (-2797 (($ (-1 |#1| |#1|) $) 259)) (-1881 (((-892) $) 87 (|has| |#1| (-361)))) (-3632 (($ $) 232 (|has| |#1| (-1165)))) (-2548 (((-1139 |#1|) $) 153)) (-3697 (($ (-621 $)) 98 (-1536 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (($ $ $) 97 (-1536 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-3851 (((-1125) $) 9)) (-1992 (($ $) 114 (|has| |#1| (-356)))) (-3060 (($) 140 (|has| |#1| (-342)) CONST)) (-3493 (($ (-892)) 86 (|has| |#1| (-361)))) (-1429 (($) 254)) (-2160 ((|#1| $) 251)) (-3990 (((-1087) $) 10)) (-4248 (($) 157)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 99 (-1536 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-3727 (($ (-621 $)) 96 (-1536 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (($ $ $) 95 (-1536 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) 143 (|has| |#1| (-342)))) (-2905 (((-411 (-1139 $)) (-1139 $)) 241 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-2413 (((-411 (-1139 $)) (-1139 $)) 240 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-2121 (((-411 $) $) 110 (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 107 (|has| |#1| (-300)))) (-2042 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 90 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 101 (|has| |#1| (-300)))) (-2719 (($ $) 233 (|has| |#1| (-1165)))) (-2686 (($ $ (-621 |#1|) (-621 |#1|)) 265 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 263 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) 262 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1143)) (-621 |#1|)) 261 (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-1143) |#1|) 260 (|has| |#1| (-505 (-1143) |#1|)))) (-3684 (((-747) $) 103 (|has| |#1| (-300)))) (-3341 (($ $ |#1|) 266 (|has| |#1| (-279 |#1| |#1|)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 104 (|has| |#1| (-300)))) (-3602 ((|#1| (-1226 $)) 45) ((|#1|) 58)) (-3914 (((-747) $) 148 (|has| |#1| (-342))) (((-3 (-747) "failed") $ $) 136 (|has| |#1| (-342)))) (-3456 (($ $ (-1 |#1| |#1|) (-747)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-621 (-1143)) (-621 (-747))) 127 (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) 128 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) 129 (|has| |#1| (-871 (-1143)))) (($ $ (-1143)) 130 (|has| |#1| (-871 (-1143)))) (($ $ (-747)) 132 (-1536 (-1821 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1821 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 134 (-1536 (-1821 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1821 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2901 (((-665 |#1|) (-1226 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-2815 (((-1139 |#1|)) 156)) (-1698 (($ $) 222 (|has| |#1| (-1165)))) (-1552 (($ $) 211 (|has| |#1| (-1165)))) (-3170 (($) 145 (|has| |#1| (-342)))) (-1675 (($ $) 221 (|has| |#1| (-1165)))) (-1526 (($ $) 212 (|has| |#1| (-1165)))) (-1651 (($ $) 220 (|has| |#1| (-1165)))) (-1501 (($ $) 213 (|has| |#1| (-1165)))) (-4263 (((-1226 |#1|) $ (-1226 $)) 48) (((-665 |#1|) (-1226 $) (-1226 $)) 47) (((-1226 |#1|) $) 64) (((-665 |#1|) (-1226 $)) 63)) (-2845 (((-1226 |#1|) $) 61) (($ (-1226 |#1|)) 60) (((-1139 |#1|) $) 168) (($ (-1139 |#1|)) 154) (((-863 (-549)) $) 256 (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) 255 (|has| |#1| (-594 (-863 (-372))))) (((-167 (-372)) $) 207 (|has| |#1| (-993))) (((-167 (-219)) $) 206 (|has| |#1| (-993))) (((-525) $) 205 (|has| |#1| (-594 (-525))))) (-1955 (($ $) 253)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 142 (-1536 (-1821 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))) (|has| |#1| (-342))))) (-3410 (($ |#1| |#1|) 252)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35) (($ (-400 (-549))) 84 (-1536 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) 89 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-2210 (($ $) 141 (|has| |#1| (-342))) (((-3 $ "failed") $) 41 (-1536 (-1821 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))) (|has| |#1| (-143))))) (-4154 (((-1139 |#1|) $) 43)) (-2082 (((-747)) 28)) (-1949 (((-1226 $)) 65)) (-1733 (($ $) 231 (|has| |#1| (-1165)))) (-1587 (($ $) 219 (|has| |#1| (-1165)))) (-1498 (((-112) $ $) 93 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))) (-1710 (($ $) 230 (|has| |#1| (-1165)))) (-1564 (($ $) 218 (|has| |#1| (-1165)))) (-1758 (($ $) 229 (|has| |#1| (-1165)))) (-1612 (($ $) 217 (|has| |#1| (-1165)))) (-1572 ((|#1| $) 247 (|has| |#1| (-1165)))) (-1934 (($ $) 228 (|has| |#1| (-1165)))) (-1627 (($ $) 216 (|has| |#1| (-1165)))) (-1745 (($ $) 227 (|has| |#1| (-1165)))) (-1600 (($ $) 215 (|has| |#1| (-1165)))) (-1722 (($ $) 226 (|has| |#1| (-1165)))) (-1576 (($ $) 214 (|has| |#1| (-1165)))) (-3212 (($ $) 248 (|has| |#1| (-1027)))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-1 |#1| |#1|) (-747)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-621 (-1143)) (-621 (-747))) 123 (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) 124 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) 125 (|has| |#1| (-871 (-1143)))) (($ $ (-1143)) 126 (|has| |#1| (-871 (-1143)))) (($ $ (-747)) 131 (-1536 (-1821 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1821 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 133 (-1536 (-1821 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-1821 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2448 (((-112) $ $) 201 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 200 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 202 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 199 (|has| |#1| (-823)))) (-2513 (($ $ $) 118 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-400 (-549))) 236 (-12 (|has| |#1| (-973)) (|has| |#1| (-1165)))) (($ $ $) 234 (|has| |#1| (-1165))) (($ $ (-549)) 115 (|has| |#1| (-356)))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-549)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-549))) 116 (|has| |#1| (-356)))))
+(((-164 |#1|) (-138) (-170)) (T -164))
+((-3630 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1429 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1955 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3410 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2160 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2145 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2042 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-541)))) (-3212 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1165)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1027)) (-4 *3 (-1165)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-549))))) (-3405 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-549))))))
+(-13 (-701 |t#1| (-1139 |t#1|)) (-404 |t#1|) (-225 |t#1|) (-331 |t#1|) (-393 |t#1|) (-855 |t#1|) (-370 |t#1|) (-170) (-10 -8 (-6 -3410) (-15 -1429 ($)) (-15 -1955 ($ $)) (-15 -3410 ($ |t#1| |t#1|)) (-15 -2160 (|t#1| $)) (-15 -2145 (|t#1| $)) (-15 -3630 (|t#1| $)) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-541)) (PROGN (-6 (-541)) (-15 -2042 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-6 -4336)) (-6 -4336) |%noBranch|) (IF (|has| |t#1| (-6 -4333)) (-6 -4333) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|) (IF (|has| |t#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-993)) (PROGN (-6 (-594 (-167 (-219)))) (-6 (-594 (-167 (-372))))) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3212 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1165)) (PROGN (-6 (-1165)) (-15 -1572 (|t#1| $)) (IF (|has| |t#1| (-973)) (-6 (-973)) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -2467 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3679 ((-112) $)) (-15 -2532 ((-400 (-549)) $)) (-15 -3405 ((-3 (-400 (-549)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-300)) (-6 (-880)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-35) |has| |#1| (-1165)) ((-94) |has| |#1| (-1165)) ((-101) . T) ((-111 #0# #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1536 (|has| |#1| (-342)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) . T) ((-594 (-167 (-219))) |has| |#1| (-993)) ((-594 (-167 (-372))) |has| |#1| (-993)) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-594 (-863 (-372))) |has| |#1| (-594 (-863 (-372)))) ((-594 (-863 (-549))) |has| |#1| (-594 (-863 (-549)))) ((-594 #1=(-1139 |#1|)) . T) ((-225 |#1|) . T) ((-227) -1536 (|has| |#1| (-342)) (|has| |#1| (-227))) ((-237) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-277) |has| |#1| (-1165)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -1536 (|has| |#1| (-541)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-300) -1536 (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-395) |has| |#1| (-342)) ((-361) -1536 (|has| |#1| (-361)) (|has| |#1| (-342))) ((-342) |has| |#1| (-342)) ((-363 |#1| #1#) . T) ((-402 |#1| #1#) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-404 |#1|) . T) ((-444) -1536 (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-484) |has| |#1| (-1165)) ((-505 (-1143) |#1|) |has| |#1| (-505 (-1143) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-541) -1536 (|has| |#1| (-541)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-624 #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-694 |#1|) . T) ((-694 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-701 |#1| #1#) . T) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 (-1143)) |has| |#1| (-871 (-1143))) ((-857 (-372)) |has| |#1| (-857 (-372))) ((-857 (-549)) |has| |#1| (-857 (-549))) ((-855 |#1|) . T) ((-880) -12 (|has| |#1| (-300)) (|has| |#1| (-880))) ((-891) -1536 (|has| |#1| (-342)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-973) -12 (|has| |#1| (-973)) (|has| |#1| (-1165))) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1118) |has| |#1| (-342)) ((-1165) |has| |#1| (-1165)) ((-1168) |has| |#1| (-1165)) ((-1180) . T) ((-1184) -1536 (|has| |#1| (-342)) (|has| |#1| (-356)) (-12 (|has| |#1| (-300)) (|has| |#1| (-880)))))
+((-2121 (((-411 |#2|) |#2|) 63)))
+(((-165 |#1| |#2|) (-10 -7 (-15 -2121 ((-411 |#2|) |#2|))) (-300) (-1202 (-167 |#1|))) (T -165))
+((-2121 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1202 (-167 *4))))))
+(-10 -7 (-15 -2121 ((-411 |#2|) |#2|)))
+((-2797 (((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)) 14)))
+(((-166 |#1| |#2|) (-10 -7 (-15 -2797 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) (-170) (-170)) (T -166))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6)))))
+(-10 -7 (-15 -2797 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 33)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-541))))) (-2258 (($ $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-541))))) (-2799 (((-112) $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-541))))) (-1738 (((-665 |#1|) (-1226 $)) NIL) (((-665 |#1|)) NIL)) (-2906 ((|#1| $) NIL)) (-1664 (($ $) NIL (|has| |#1| (-1165)))) (-1512 (($ $) NIL (|has| |#1| (-1165)))) (-3062 (((-1153 (-892) (-747)) (-549)) NIL (|has| |#1| (-342)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-3979 (($ $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-2402 (((-411 $) $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-2134 (($ $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1165))))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-3866 (((-112) $ $) NIL (|has| |#1| (-300)))) (-3614 (((-747)) NIL (|has| |#1| (-361)))) (-1640 (($ $) NIL (|has| |#1| (-1165)))) (-1486 (($ $) NIL (|has| |#1| (-1165)))) (-1685 (($ $) NIL (|has| |#1| (-1165)))) (-1539 (($ $) NIL (|has| |#1| (-1165)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-3492 (($ (-1226 |#1|) (-1226 $)) NIL) (($ (-1226 |#1|)) NIL)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-2095 (($ $ $) NIL (|has| |#1| (-300)))) (-3506 (((-665 |#1|) $ (-1226 $)) NIL) (((-665 |#1|) $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2557 (($ (-1139 |#1|)) NIL) (((-3 $ "failed") (-400 (-1139 |#1|))) NIL (|has| |#1| (-356)))) (-2114 (((-3 $ "failed") $) NIL)) (-2145 ((|#1| $) 13)) (-3405 (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-534)))) (-3679 (((-112) $) NIL (|has| |#1| (-534)))) (-2532 (((-400 (-549)) $) NIL (|has| |#1| (-534)))) (-3123 (((-892)) NIL)) (-3239 (($) NIL (|has| |#1| (-361)))) (-2067 (($ $ $) NIL (|has| |#1| (-300)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-300)))) (-2405 (($) NIL (|has| |#1| (-342)))) (-2288 (((-112) $) NIL (|has| |#1| (-342)))) (-3165 (($ $ (-747)) NIL (|has| |#1| (-342))) (($ $) NIL (|has| |#1| (-342)))) (-1420 (((-112) $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-2467 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1165))))) (-1425 (($) NIL (|has| |#1| (-1165)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| |#1| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| |#1| (-857 (-372))))) (-2088 (((-892) $) NIL (|has| |#1| (-342))) (((-809 (-892)) $) NIL (|has| |#1| (-342)))) (-2675 (((-112) $) 35)) (-4187 (($ $ (-549)) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1165))))) (-3630 ((|#1| $) 46)) (-1681 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-300)))) (-3788 (((-1139 |#1|) $) NIL (|has| |#1| (-356)))) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1881 (((-892) $) NIL (|has| |#1| (-361)))) (-3632 (($ $) NIL (|has| |#1| (-1165)))) (-2548 (((-1139 |#1|) $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL (|has| |#1| (-356)))) (-3060 (($) NIL (|has| |#1| (-342)) CONST)) (-3493 (($ (-892)) NIL (|has| |#1| (-361)))) (-1429 (($) NIL)) (-2160 ((|#1| $) 15)) (-3990 (((-1087) $) NIL)) (-4248 (($) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-300)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL (|has| |#1| (-342)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-880))))) (-2121 (((-411 $) $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-356))))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-300)))) (-2042 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 47 (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-541))))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-300)))) (-2719 (($ $) NIL (|has| |#1| (-1165)))) (-2686 (($ $ (-621 |#1|) (-621 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1143)) (-621 |#1|)) NIL (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-1143) |#1|) NIL (|has| |#1| (-505 (-1143) |#1|)))) (-3684 (((-747) $) NIL (|has| |#1| (-300)))) (-3341 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-300)))) (-3602 ((|#1| (-1226 $)) NIL) ((|#1|) NIL)) (-3914 (((-747) $) NIL (|has| |#1| (-342))) (((-3 (-747) "failed") $ $) NIL (|has| |#1| (-342)))) (-3456 (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2901 (((-665 |#1|) (-1226 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2815 (((-1139 |#1|)) NIL)) (-1698 (($ $) NIL (|has| |#1| (-1165)))) (-1552 (($ $) NIL (|has| |#1| (-1165)))) (-3170 (($) NIL (|has| |#1| (-342)))) (-1675 (($ $) NIL (|has| |#1| (-1165)))) (-1526 (($ $) NIL (|has| |#1| (-1165)))) (-1651 (($ $) NIL (|has| |#1| (-1165)))) (-1501 (($ $) NIL (|has| |#1| (-1165)))) (-4263 (((-1226 |#1|) $ (-1226 $)) NIL) (((-665 |#1|) (-1226 $) (-1226 $)) NIL) (((-1226 |#1|) $) NIL) (((-665 |#1|) (-1226 $)) NIL)) (-2845 (((-1226 |#1|) $) NIL) (($ (-1226 |#1|)) NIL) (((-1139 |#1|) $) NIL) (($ (-1139 |#1|)) NIL) (((-863 (-549)) $) NIL (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| |#1| (-594 (-863 (-372))))) (((-167 (-372)) $) NIL (|has| |#1| (-993))) (((-167 (-219)) $) NIL (|has| |#1| (-993))) (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-1955 (($ $) 45)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-342))))) (-3410 (($ |#1| |#1|) 37)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) 36) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-541))))) (-2210 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-4154 (((-1139 |#1|) $) NIL)) (-2082 (((-747)) NIL)) (-1949 (((-1226 $)) NIL)) (-1733 (($ $) NIL (|has| |#1| (-1165)))) (-1587 (($ $) NIL (|has| |#1| (-1165)))) (-1498 (((-112) $ $) NIL (-1536 (-12 (|has| |#1| (-300)) (|has| |#1| (-880))) (|has| |#1| (-541))))) (-1710 (($ $) NIL (|has| |#1| (-1165)))) (-1564 (($ $) NIL (|has| |#1| (-1165)))) (-1758 (($ $) NIL (|has| |#1| (-1165)))) (-1612 (($ $) NIL (|has| |#1| (-1165)))) (-1572 ((|#1| $) NIL (|has| |#1| (-1165)))) (-1934 (($ $) NIL (|has| |#1| (-1165)))) (-1627 (($ $) NIL (|has| |#1| (-1165)))) (-1745 (($ $) NIL (|has| |#1| (-1165)))) (-1600 (($ $) NIL (|has| |#1| (-1165)))) (-1722 (($ $) NIL (|has| |#1| (-1165)))) (-1576 (($ $) NIL (|has| |#1| (-1165)))) (-3212 (($ $) NIL (|has| |#1| (-1027)))) (-3276 (($) 28 T CONST)) (-3287 (($) 30 T CONST)) (-4245 (((-1125) $) 23 (|has| |#1| (-804))) (((-1125) $ (-112)) 25 (|has| |#1| (-804))) (((-1231) (-798) $) 26 (|has| |#1| (-804))) (((-1231) (-798) $ (-112)) 27 (|has| |#1| (-804)))) (-1702 (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2513 (($ $ $) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 39)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-400 (-549))) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1165)))) (($ $ $) NIL (|has| |#1| (-1165))) (($ $ (-549)) NIL (|has| |#1| (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-549)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-549))) NIL (|has| |#1| (-356)))))
+(((-167 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|))) (-170)) (T -167))
+NIL
+(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|)))
+((-2845 (((-863 |#1|) |#3|) 22)))
+(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -2845 ((-863 |#1|) |#3|))) (-1067) (-13 (-594 (-863 |#1|)) (-170)) (-164 |#2|)) (T -168))
+((-2845 (*1 *2 *3) (-12 (-4 *5 (-13 (-594 *2) (-170))) (-5 *2 (-863 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1067)) (-4 *3 (-164 *5)))))
+(-10 -7 (-15 -2845 ((-863 |#1|) |#3|)))
+((-3834 (((-112) $ $) NIL)) (-1909 (((-112) $) 9)) (-3831 (((-112) $ (-112)) 11)) (-3743 (($) 12)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2281 (($ $) 13)) (-3846 (((-834) $) 17)) (-2757 (((-112) $) 8)) (-2681 (((-112) $ (-112)) 10)) (-2389 (((-112) $ $) NIL)))
+(((-169) (-13 (-1067) (-10 -8 (-15 -3743 ($)) (-15 -2757 ((-112) $)) (-15 -1909 ((-112) $)) (-15 -2681 ((-112) $ (-112))) (-15 -3831 ((-112) $ (-112))) (-15 -2281 ($ $))))) (T -169))
+((-3743 (*1 *1) (-5 *1 (-169))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2681 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-3831 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2281 (*1 *1 *1) (-5 *1 (-169))))
+(-13 (-1067) (-10 -8 (-15 -3743 ($)) (-15 -2757 ((-112) $)) (-15 -1909 ((-112) $)) (-15 -2681 ((-112) $ (-112))) (-15 -3831 ((-112) $ (-112))) (-15 -2281 ($ $))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ (-549)) 27)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
(((-170) (-138)) (T -170))
-((-1708 (*1 *1 *1) (-4 *1 (-170))))
-(-13 (-10 -8 (-15 -1708 ($ $))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2092 ((|#1| $) 75)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-2089 (($ $ $) NIL)) (-3163 (($ $) 19)) (-2458 (($ |#1| (-1117 |#1|)) 48)) (-3855 (((-3 $ "failed") $) 117)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-3072 (((-1117 |#1|) $) 82)) (-3289 (((-1117 |#1|) $) 79)) (-3304 (((-1117 |#1|) $) 80)) (-2261 (((-112) $) NIL)) (-2420 (((-1117 |#1|) $) 88)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3689 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2115 (((-409 $) $) NIL)) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL)) (-3708 (($ $ (-547)) 91)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-2215 (((-1117 |#1|) $) 89)) (-3547 (((-1117 (-398 |#1|)) $) 14)) (-3617 (($ (-398 |#1|)) 17) (($ |#1| (-1117 |#1|) (-1117 |#1|)) 38)) (-2804 (($ $) 93)) (-3838 (((-832) $) 127) (($ (-547)) 51) (($ |#1|) 52) (($ (-398 |#1|)) 36) (($ (-398 (-547))) NIL) (($ $) NIL)) (-2736 (((-745)) 64)) (-3577 (((-112) $ $) NIL)) (-3771 (((-1117 (-398 |#1|)) $) 18)) (-3269 (($) 25 T CONST)) (-3281 (($) 28 T CONST)) (-2381 (((-112) $ $) 35)) (-2506 (($ $ $) 115)) (-2493 (($ $) 106) (($ $ $) 103)) (-2479 (($ $ $) 101)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-398 |#1|) $) 111) (($ $ (-398 |#1|)) NIL) (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL)))
-(((-171 |#1|) (-13 (-38 |#1|) (-38 (-398 |#1|)) (-354) (-10 -8 (-15 -3617 ($ (-398 |#1|))) (-15 -3617 ($ |#1| (-1117 |#1|) (-1117 |#1|))) (-15 -2458 ($ |#1| (-1117 |#1|))) (-15 -3289 ((-1117 |#1|) $)) (-15 -3304 ((-1117 |#1|) $)) (-15 -3072 ((-1117 |#1|) $)) (-15 -2092 (|#1| $)) (-15 -3163 ($ $)) (-15 -3771 ((-1117 (-398 |#1|)) $)) (-15 -3547 ((-1117 (-398 |#1|)) $)) (-15 -2420 ((-1117 |#1|) $)) (-15 -2215 ((-1117 |#1|) $)) (-15 -3708 ($ $ (-547))) (-15 -2804 ($ $)))) (-298)) (T -171))
-((-3617 (*1 *1 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-298)) (-5 *1 (-171 *3)))) (-3617 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-298)) (-5 *1 (-171 *2)))) (-2458 (*1 *1 *2 *3) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-298)) (-5 *1 (-171 *2)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-2092 (*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-298)))) (-3163 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-298)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-1117 (-398 *3))) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-3547 (*1 *2 *1) (-12 (-5 *2 (-1117 (-398 *3))) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-2804 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-298)))))
-(-13 (-38 |#1|) (-38 (-398 |#1|)) (-354) (-10 -8 (-15 -3617 ($ (-398 |#1|))) (-15 -3617 ($ |#1| (-1117 |#1|) (-1117 |#1|))) (-15 -2458 ($ |#1| (-1117 |#1|))) (-15 -3289 ((-1117 |#1|) $)) (-15 -3304 ((-1117 |#1|) $)) (-15 -3072 ((-1117 |#1|) $)) (-15 -2092 (|#1| $)) (-15 -3163 ($ $)) (-15 -3771 ((-1117 (-398 |#1|)) $)) (-15 -3547 ((-1117 (-398 |#1|)) $)) (-15 -2420 ((-1117 |#1|) $)) (-15 -2215 ((-1117 |#1|) $)) (-15 -3708 ($ $ (-547))) (-15 -2804 ($ $))))
-((-3606 (($ (-108) $) 13)) (-4263 (((-3 (-108) "failed") (-1136) $) 12)) (-3838 (((-832) $) 16)) (-2094 (((-619 (-108)) $) 8)))
-(((-172) (-13 (-591 (-832)) (-10 -8 (-15 -2094 ((-619 (-108)) $)) (-15 -3606 ($ (-108) $)) (-15 -4263 ((-3 (-108) "failed") (-1136) $))))) (T -172))
-((-2094 (*1 *2 *1) (-12 (-5 *2 (-619 (-108))) (-5 *1 (-172)))) (-3606 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172)))) (-4263 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1136)) (-5 *2 (-108)) (-5 *1 (-172)))))
-(-13 (-591 (-832)) (-10 -8 (-15 -2094 ((-619 (-108)) $)) (-15 -3606 ($ (-108) $)) (-15 -4263 ((-3 (-108) "failed") (-1136) $))))
-((-2226 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 40)) (-3347 (((-912 |#1|) (-912 |#1|)) 19)) (-1716 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 36)) (-1444 (((-912 |#1|) (-912 |#1|)) 17)) (-2629 (((-912 |#1|) (-912 |#1|)) 25)) (-2117 (((-912 |#1|) (-912 |#1|)) 24)) (-2949 (((-912 |#1|) (-912 |#1|)) 23)) (-2847 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 37)) (-2860 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 35)) (-1734 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 34)) (-2751 (((-912 |#1|) (-912 |#1|)) 18)) (-4048 (((-1 (-912 |#1|) (-912 |#1|)) |#1| |#1|) 43)) (-2528 (((-912 |#1|) (-912 |#1|)) 8)) (-1590 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 39)) (-3409 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 38)))
-(((-173 |#1|) (-10 -7 (-15 -2528 ((-912 |#1|) (-912 |#1|))) (-15 -1444 ((-912 |#1|) (-912 |#1|))) (-15 -2751 ((-912 |#1|) (-912 |#1|))) (-15 -3347 ((-912 |#1|) (-912 |#1|))) (-15 -2949 ((-912 |#1|) (-912 |#1|))) (-15 -2117 ((-912 |#1|) (-912 |#1|))) (-15 -2629 ((-912 |#1|) (-912 |#1|))) (-15 -1734 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -2860 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1716 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -2847 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -3409 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1590 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -2226 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -4048 ((-1 (-912 |#1|) (-912 |#1|)) |#1| |#1|))) (-13 (-354) (-1158) (-971))) (T -173))
-((-4048 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1158) (-971))))) (-2226 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1158) (-971))))) (-1590 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1158) (-971))))) (-3409 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1158) (-971))))) (-2847 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1158) (-971))))) (-1716 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1158) (-971))))) (-2860 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1158) (-971))))) (-1734 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1158) (-971))))) (-2629 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971))) (-5 *1 (-173 *3)))) (-2117 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971))) (-5 *1 (-173 *3)))) (-2949 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971))) (-5 *1 (-173 *3)))) (-3347 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971))) (-5 *1 (-173 *3)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971))) (-5 *1 (-173 *3)))) (-1444 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971))) (-5 *1 (-173 *3)))) (-2528 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971))) (-5 *1 (-173 *3)))))
-(-10 -7 (-15 -2528 ((-912 |#1|) (-912 |#1|))) (-15 -1444 ((-912 |#1|) (-912 |#1|))) (-15 -2751 ((-912 |#1|) (-912 |#1|))) (-15 -3347 ((-912 |#1|) (-912 |#1|))) (-15 -2949 ((-912 |#1|) (-912 |#1|))) (-15 -2117 ((-912 |#1|) (-912 |#1|))) (-15 -2629 ((-912 |#1|) (-912 |#1|))) (-15 -1734 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -2860 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1716 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -2847 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -3409 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1590 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -2226 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -4048 ((-1 (-912 |#1|) (-912 |#1|)) |#1| |#1|)))
-((-1316 ((|#2| |#3|) 27)))
-(((-174 |#1| |#2| |#3|) (-10 -7 (-15 -1316 (|#2| |#3|))) (-169) (-1195 |#1|) (-699 |#1| |#2|)) (T -174))
-((-1316 (*1 *2 *3) (-12 (-4 *4 (-169)) (-4 *2 (-1195 *4)) (-5 *1 (-174 *4 *2 *3)) (-4 *3 (-699 *4 *2)))))
-(-10 -7 (-15 -1316 (|#2| |#3|)))
-((-3521 (((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)) 47 (|has| (-921 |#2|) (-855 |#1|)))))
-(((-175 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-921 |#2|) (-855 |#1|)) (-15 -3521 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) |%noBranch|)) (-1063) (-13 (-855 |#1|) (-169)) (-163 |#2|)) (T -175))
-((-3521 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *3 (-163 *6)) (-4 (-921 *6) (-855 *5)) (-4 *6 (-13 (-855 *5) (-169))) (-5 *1 (-175 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-921 |#2|) (-855 |#1|)) (-15 -3521 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) |%noBranch|))
-((-1294 (((-619 |#1|) (-619 |#1|) |#1|) 38)) (-1957 (((-619 |#1|) |#1| (-619 |#1|)) 19)) (-3604 (((-619 |#1|) (-619 (-619 |#1|)) (-619 |#1|)) 33) ((|#1| (-619 |#1|) (-619 |#1|)) 31)))
-(((-176 |#1|) (-10 -7 (-15 -1957 ((-619 |#1|) |#1| (-619 |#1|))) (-15 -3604 (|#1| (-619 |#1|) (-619 |#1|))) (-15 -3604 ((-619 |#1|) (-619 (-619 |#1|)) (-619 |#1|))) (-15 -1294 ((-619 |#1|) (-619 |#1|) |#1|))) (-298)) (T -176))
-((-1294 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *3)) (-4 *3 (-298)) (-5 *1 (-176 *3)))) (-3604 (*1 *2 *3 *2) (-12 (-5 *3 (-619 (-619 *4))) (-5 *2 (-619 *4)) (-4 *4 (-298)) (-5 *1 (-176 *4)))) (-3604 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-176 *2)) (-4 *2 (-298)))) (-1957 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-298)) (-5 *1 (-176 *3)))))
-(-10 -7 (-15 -1957 ((-619 |#1|) |#1| (-619 |#1|))) (-15 -3604 (|#1| (-619 |#1|) (-619 |#1|))) (-15 -3604 ((-619 |#1|) (-619 (-619 |#1|)) (-619 |#1|))) (-15 -1294 ((-619 |#1|) (-619 |#1|) |#1|)))
-((-3618 (((-2 (|:| |start| |#2|) (|:| -2534 (-409 |#2|))) |#2|) 61)) (-1947 ((|#1| |#1|) 54)) (-2494 (((-166 |#1|) |#2|) 84)) (-3494 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3511 ((|#2| |#2|) 83)) (-2227 (((-409 |#2|) |#2| |#1|) 113) (((-409 |#2|) |#2| |#1| (-112)) 81)) (-3160 ((|#1| |#2|) 112)) (-2711 ((|#2| |#2|) 119)) (-2115 (((-409 |#2|) |#2|) 134) (((-409 |#2|) |#2| |#1|) 32) (((-409 |#2|) |#2| |#1| (-112)) 133)) (-1287 (((-619 (-2 (|:| -2534 (-619 |#2|)) (|:| -3035 |#1|))) |#2| |#2|) 132) (((-619 (-2 (|:| -2534 (-619 |#2|)) (|:| -3035 |#1|))) |#2| |#2| (-112)) 76)) (-2248 (((-619 (-166 |#1|)) |#2| |#1|) 40) (((-619 (-166 |#1|)) |#2|) 41)))
-(((-177 |#1| |#2|) (-10 -7 (-15 -2248 ((-619 (-166 |#1|)) |#2|)) (-15 -2248 ((-619 (-166 |#1|)) |#2| |#1|)) (-15 -1287 ((-619 (-2 (|:| -2534 (-619 |#2|)) (|:| -3035 |#1|))) |#2| |#2| (-112))) (-15 -1287 ((-619 (-2 (|:| -2534 (-619 |#2|)) (|:| -3035 |#1|))) |#2| |#2|)) (-15 -2115 ((-409 |#2|) |#2| |#1| (-112))) (-15 -2115 ((-409 |#2|) |#2| |#1|)) (-15 -2115 ((-409 |#2|) |#2|)) (-15 -2711 (|#2| |#2|)) (-15 -3160 (|#1| |#2|)) (-15 -2227 ((-409 |#2|) |#2| |#1| (-112))) (-15 -2227 ((-409 |#2|) |#2| |#1|)) (-15 -3511 (|#2| |#2|)) (-15 -3494 (|#1| |#2| |#1|)) (-15 -3494 (|#1| |#2|)) (-15 -2494 ((-166 |#1|) |#2|)) (-15 -1947 (|#1| |#1|)) (-15 -3618 ((-2 (|:| |start| |#2|) (|:| -2534 (-409 |#2|))) |#2|))) (-13 (-354) (-819)) (-1195 (-166 |#1|))) (T -177))
-((-3618 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-2 (|:| |start| *3) (|:| -2534 (-409 *3)))) (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))) (-1947 (*1 *2 *2) (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3)) (-4 *3 (-1195 (-166 *2))))) (-2494 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-177 *4 *3)) (-4 *4 (-13 (-354) (-819))) (-4 *3 (-1195 *2)))) (-3494 (*1 *2 *3) (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3)) (-4 *3 (-1195 (-166 *2))))) (-3494 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3)) (-4 *3 (-1195 (-166 *2))))) (-3511 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-819))) (-5 *1 (-177 *3 *2)) (-4 *2 (-1195 (-166 *3))))) (-2227 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))) (-2227 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))) (-3160 (*1 *2 *3) (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3)) (-4 *3 (-1195 (-166 *2))))) (-2711 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-819))) (-5 *1 (-177 *3 *2)) (-4 *2 (-1195 (-166 *3))))) (-2115 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))) (-2115 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))) (-2115 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))) (-1287 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-619 (-2 (|:| -2534 (-619 *3)) (|:| -3035 *4)))) (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))) (-1287 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-354) (-819))) (-5 *2 (-619 (-2 (|:| -2534 (-619 *3)) (|:| -3035 *5)))) (-5 *1 (-177 *5 *3)) (-4 *3 (-1195 (-166 *5))))) (-2248 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))) (-2248 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))))
-(-10 -7 (-15 -2248 ((-619 (-166 |#1|)) |#2|)) (-15 -2248 ((-619 (-166 |#1|)) |#2| |#1|)) (-15 -1287 ((-619 (-2 (|:| -2534 (-619 |#2|)) (|:| -3035 |#1|))) |#2| |#2| (-112))) (-15 -1287 ((-619 (-2 (|:| -2534 (-619 |#2|)) (|:| -3035 |#1|))) |#2| |#2|)) (-15 -2115 ((-409 |#2|) |#2| |#1| (-112))) (-15 -2115 ((-409 |#2|) |#2| |#1|)) (-15 -2115 ((-409 |#2|) |#2|)) (-15 -2711 (|#2| |#2|)) (-15 -3160 (|#1| |#2|)) (-15 -2227 ((-409 |#2|) |#2| |#1| (-112))) (-15 -2227 ((-409 |#2|) |#2| |#1|)) (-15 -3511 (|#2| |#2|)) (-15 -3494 (|#1| |#2| |#1|)) (-15 -3494 (|#1| |#2|)) (-15 -2494 ((-166 |#1|) |#2|)) (-15 -1947 (|#1| |#1|)) (-15 -3618 ((-2 (|:| |start| |#2|) (|:| -2534 (-409 |#2|))) |#2|)))
-((-3439 (((-3 |#2| "failed") |#2|) 14)) (-3733 (((-745) |#2|) 16)) (-2177 ((|#2| |#2| |#2|) 18)))
-(((-178 |#1| |#2|) (-10 -7 (-15 -3439 ((-3 |#2| "failed") |#2|)) (-15 -3733 ((-745) |#2|)) (-15 -2177 (|#2| |#2| |#2|))) (-1173) (-648 |#1|)) (T -178))
-((-2177 (*1 *2 *2 *2) (-12 (-4 *3 (-1173)) (-5 *1 (-178 *3 *2)) (-4 *2 (-648 *3)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-1173)) (-5 *2 (-745)) (-5 *1 (-178 *4 *3)) (-4 *3 (-648 *4)))) (-3439 (*1 *2 *2) (|partial| -12 (-4 *3 (-1173)) (-5 *1 (-178 *3 *2)) (-4 *2 (-648 *3)))))
-(-10 -7 (-15 -3439 ((-3 |#2| "failed") |#2|)) (-15 -3733 ((-745) |#2|)) (-15 -2177 (|#2| |#2| |#2|)))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2509 (((-1136) $) 10)) (-3838 (((-832) $) 17)) (-2865 (((-619 (-1141)) $) 12)) (-2381 (((-112) $ $) 15)))
-(((-179) (-13 (-1063) (-10 -8 (-15 -2509 ((-1136) $)) (-15 -2865 ((-619 (-1141)) $))))) (T -179))
-((-2509 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-179)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-179)))))
-(-13 (-1063) (-10 -8 (-15 -2509 ((-1136) $)) (-15 -2865 ((-619 (-1141)) $))))
-((-3943 ((|#2| |#2|) 28)) (-4246 (((-112) |#2|) 19)) (-2139 (((-307 |#1|) |#2|) 12)) (-2154 (((-307 |#1|) |#2|) 14)) (-4239 ((|#2| |#2| (-1136)) 68) ((|#2| |#2|) 69)) (-3772 (((-166 (-307 |#1|)) |#2|) 10)) (-3981 ((|#2| |#2| (-1136)) 65) ((|#2| |#2|) 59)))
-(((-180 |#1| |#2|) (-10 -7 (-15 -4239 (|#2| |#2|)) (-15 -4239 (|#2| |#2| (-1136))) (-15 -3981 (|#2| |#2|)) (-15 -3981 (|#2| |#2| (-1136))) (-15 -2139 ((-307 |#1|) |#2|)) (-15 -2154 ((-307 |#1|) |#2|)) (-15 -4246 ((-112) |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -3772 ((-166 (-307 |#1|)) |#2|))) (-13 (-539) (-821) (-1007 (-547))) (-13 (-27) (-1158) (-421 (-166 |#1|)))) (T -180))
-((-3772 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-166 (-307 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 (-166 *4)))))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 (-166 *3)))))) (-4246 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-112)) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 (-166 *4)))))) (-2154 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-307 *4)) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 (-166 *4)))))) (-2139 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-307 *4)) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 (-166 *4)))))) (-3981 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 (-166 *4)))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 (-166 *3)))))) (-4239 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 (-166 *4)))))) (-4239 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 (-166 *3)))))))
-(-10 -7 (-15 -4239 (|#2| |#2|)) (-15 -4239 (|#2| |#2| (-1136))) (-15 -3981 (|#2| |#2|)) (-15 -3981 (|#2| |#2| (-1136))) (-15 -2139 ((-307 |#1|) |#2|)) (-15 -2154 ((-307 |#1|) |#2|)) (-15 -4246 ((-112) |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -3772 ((-166 (-307 |#1|)) |#2|)))
-((-4074 (((-1219 (-663 (-921 |#1|))) (-1219 (-663 |#1|))) 24)) (-3838 (((-1219 (-663 (-398 (-921 |#1|)))) (-1219 (-663 |#1|))) 33)))
-(((-181 |#1|) (-10 -7 (-15 -4074 ((-1219 (-663 (-921 |#1|))) (-1219 (-663 |#1|)))) (-15 -3838 ((-1219 (-663 (-398 (-921 |#1|)))) (-1219 (-663 |#1|))))) (-169)) (T -181))
-((-3838 (*1 *2 *3) (-12 (-5 *3 (-1219 (-663 *4))) (-4 *4 (-169)) (-5 *2 (-1219 (-663 (-398 (-921 *4))))) (-5 *1 (-181 *4)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-1219 (-663 *4))) (-4 *4 (-169)) (-5 *2 (-1219 (-663 (-921 *4)))) (-5 *1 (-181 *4)))))
-(-10 -7 (-15 -4074 ((-1219 (-663 (-921 |#1|))) (-1219 (-663 |#1|)))) (-15 -3838 ((-1219 (-663 (-398 (-921 |#1|)))) (-1219 (-663 |#1|)))))
-((-1810 (((-1138 (-398 (-547))) (-1138 (-398 (-547))) (-1138 (-398 (-547)))) 66)) (-2155 (((-1138 (-398 (-547))) (-619 (-547)) (-619 (-547))) 75)) (-2971 (((-1138 (-398 (-547))) (-547)) 40)) (-2720 (((-1138 (-398 (-547))) (-547)) 52)) (-2679 (((-398 (-547)) (-1138 (-398 (-547)))) 62)) (-3246 (((-1138 (-398 (-547))) (-547)) 32)) (-2727 (((-1138 (-398 (-547))) (-547)) 48)) (-1345 (((-1138 (-398 (-547))) (-547)) 46)) (-2263 (((-1138 (-398 (-547))) (-1138 (-398 (-547))) (-1138 (-398 (-547)))) 60)) (-2804 (((-1138 (-398 (-547))) (-547)) 25)) (-2824 (((-398 (-547)) (-1138 (-398 (-547))) (-1138 (-398 (-547)))) 64)) (-3284 (((-1138 (-398 (-547))) (-547)) 30)) (-2907 (((-1138 (-398 (-547))) (-619 (-547))) 72)))
-(((-182) (-10 -7 (-15 -2804 ((-1138 (-398 (-547))) (-547))) (-15 -2971 ((-1138 (-398 (-547))) (-547))) (-15 -3246 ((-1138 (-398 (-547))) (-547))) (-15 -3284 ((-1138 (-398 (-547))) (-547))) (-15 -1345 ((-1138 (-398 (-547))) (-547))) (-15 -2727 ((-1138 (-398 (-547))) (-547))) (-15 -2720 ((-1138 (-398 (-547))) (-547))) (-15 -2824 ((-398 (-547)) (-1138 (-398 (-547))) (-1138 (-398 (-547))))) (-15 -2263 ((-1138 (-398 (-547))) (-1138 (-398 (-547))) (-1138 (-398 (-547))))) (-15 -2679 ((-398 (-547)) (-1138 (-398 (-547))))) (-15 -1810 ((-1138 (-398 (-547))) (-1138 (-398 (-547))) (-1138 (-398 (-547))))) (-15 -2907 ((-1138 (-398 (-547))) (-619 (-547)))) (-15 -2155 ((-1138 (-398 (-547))) (-619 (-547)) (-619 (-547)))))) (T -182))
-((-2155 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)))) (-1810 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-1138 (-398 (-547)))) (-5 *2 (-398 (-547))) (-5 *1 (-182)))) (-2263 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)))) (-2824 (*1 *2 *3 *3) (-12 (-5 *3 (-1138 (-398 (-547)))) (-5 *2 (-398 (-547))) (-5 *1 (-182)))) (-2720 (*1 *2 *3) (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) (-2727 (*1 *2 *3) (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) (-1345 (*1 *2 *3) (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) (-3284 (*1 *2 *3) (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) (-3246 (*1 *2 *3) (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) (-2971 (*1 *2 *3) (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))))
-(-10 -7 (-15 -2804 ((-1138 (-398 (-547))) (-547))) (-15 -2971 ((-1138 (-398 (-547))) (-547))) (-15 -3246 ((-1138 (-398 (-547))) (-547))) (-15 -3284 ((-1138 (-398 (-547))) (-547))) (-15 -1345 ((-1138 (-398 (-547))) (-547))) (-15 -2727 ((-1138 (-398 (-547))) (-547))) (-15 -2720 ((-1138 (-398 (-547))) (-547))) (-15 -2824 ((-398 (-547)) (-1138 (-398 (-547))) (-1138 (-398 (-547))))) (-15 -2263 ((-1138 (-398 (-547))) (-1138 (-398 (-547))) (-1138 (-398 (-547))))) (-15 -2679 ((-398 (-547)) (-1138 (-398 (-547))))) (-15 -1810 ((-1138 (-398 (-547))) (-1138 (-398 (-547))) (-1138 (-398 (-547))))) (-15 -2907 ((-1138 (-398 (-547))) (-619 (-547)))) (-15 -2155 ((-1138 (-398 (-547))) (-619 (-547)) (-619 (-547)))))
-((-2716 (((-409 (-1132 (-547))) (-547)) 28)) (-3928 (((-619 (-1132 (-547))) (-547)) 23)) (-1484 (((-1132 (-547)) (-547)) 21)))
-(((-183) (-10 -7 (-15 -3928 ((-619 (-1132 (-547))) (-547))) (-15 -1484 ((-1132 (-547)) (-547))) (-15 -2716 ((-409 (-1132 (-547))) (-547))))) (T -183))
-((-2716 (*1 *2 *3) (-12 (-5 *2 (-409 (-1132 (-547)))) (-5 *1 (-183)) (-5 *3 (-547)))) (-1484 (*1 *2 *3) (-12 (-5 *2 (-1132 (-547))) (-5 *1 (-183)) (-5 *3 (-547)))) (-3928 (*1 *2 *3) (-12 (-5 *2 (-619 (-1132 (-547)))) (-5 *1 (-183)) (-5 *3 (-547)))))
-(-10 -7 (-15 -3928 ((-619 (-1132 (-547))) (-547))) (-15 -1484 ((-1132 (-547)) (-547))) (-15 -2716 ((-409 (-1132 (-547))) (-547))))
-((-2170 (((-1117 (-217)) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 105)) (-1334 (((-619 (-1119)) (-1117 (-217))) NIL)) (-4291 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 81)) (-2008 (((-619 (-217)) (-307 (-217)) (-1136) (-1058 (-814 (-217)))) NIL)) (-2129 (((-619 (-1119)) (-619 (-217))) NIL)) (-1367 (((-217) (-1058 (-814 (-217)))) 24)) (-3377 (((-217) (-1058 (-814 (-217)))) 25)) (-2023 (((-370) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 98)) (-2349 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 42)) (-3302 (((-1119) (-217)) NIL)) (-2239 (((-1119) (-619 (-1119))) 20)) (-3225 (((-1004) (-1136) (-1136) (-1004)) 13)))
-(((-184) (-10 -7 (-15 -4291 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2349 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -1367 ((-217) (-1058 (-814 (-217))))) (-15 -3377 ((-217) (-1058 (-814 (-217))))) (-15 -2023 ((-370) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2008 ((-619 (-217)) (-307 (-217)) (-1136) (-1058 (-814 (-217))))) (-15 -2170 ((-1117 (-217)) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3302 ((-1119) (-217))) (-15 -2129 ((-619 (-1119)) (-619 (-217)))) (-15 -1334 ((-619 (-1119)) (-1117 (-217)))) (-15 -2239 ((-1119) (-619 (-1119)))) (-15 -3225 ((-1004) (-1136) (-1136) (-1004))))) (T -184))
-((-3225 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1004)) (-5 *3 (-1136)) (-5 *1 (-184)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-619 (-1119))) (-5 *2 (-1119)) (-5 *1 (-184)))) (-1334 (*1 *2 *3) (-12 (-5 *3 (-1117 (-217))) (-5 *2 (-619 (-1119))) (-5 *1 (-184)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-619 (-217))) (-5 *2 (-619 (-1119))) (-5 *1 (-184)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1119)) (-5 *1 (-184)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-1117 (-217))) (-5 *1 (-184)))) (-2008 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-217))) (-5 *4 (-1136)) (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-184)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-370)) (-5 *1 (-184)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-184)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-184)))) (-2349 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-184)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-184)))))
-(-10 -7 (-15 -4291 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2349 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -1367 ((-217) (-1058 (-814 (-217))))) (-15 -3377 ((-217) (-1058 (-814 (-217))))) (-15 -2023 ((-370) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2008 ((-619 (-217)) (-307 (-217)) (-1136) (-1058 (-814 (-217))))) (-15 -2170 ((-1117 (-217)) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3302 ((-1119) (-217))) (-15 -2129 ((-619 (-1119)) (-619 (-217)))) (-15 -1334 ((-619 (-1119)) (-1117 (-217)))) (-15 -2239 ((-1119) (-619 (-1119)))) (-15 -3225 ((-1004) (-1136) (-1136) (-1004))))
-((-3826 (((-112) $ $) NIL)) (-3190 (((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 55) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 32) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-185) (-761)) (T -185))
-NIL
-(-761)
-((-3826 (((-112) $ $) NIL)) (-3190 (((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 60) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 41) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-186) (-761)) (T -186))
-NIL
-(-761)
-((-3826 (((-112) $ $) NIL)) (-3190 (((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 69) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 40) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-187) (-761)) (T -187))
-NIL
-(-761)
-((-3826 (((-112) $ $) NIL)) (-3190 (((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 56) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 34) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-188) (-761)) (T -188))
-NIL
-(-761)
-((-3826 (((-112) $ $) NIL)) (-3190 (((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 67) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 38) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-189) (-761)) (T -189))
-NIL
-(-761)
-((-3826 (((-112) $ $) NIL)) (-3190 (((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 73) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 36) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-190) (-761)) (T -190))
-NIL
-(-761)
-((-3826 (((-112) $ $) NIL)) (-3190 (((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 80) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 44) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-191) (-761)) (T -191))
-NIL
-(-761)
-((-3826 (((-112) $ $) NIL)) (-3190 (((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 70) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 40) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-192) (-761)) (T -192))
-NIL
-(-761)
-((-3826 (((-112) $ $) NIL)) (-3190 (((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 66)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 32)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-193) (-761)) (T -193))
-NIL
-(-761)
-((-3826 (((-112) $ $) NIL)) (-3190 (((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 63)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 34)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-194) (-761)) (T -194))
-NIL
-(-761)
-((-3826 (((-112) $ $) NIL)) (-3190 (((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 90) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 78) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-195) (-761)) (T -195))
-NIL
-(-761)
-((-4304 (((-3 (-2 (|:| -2714 (-114)) (|:| |w| (-217))) "failed") (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 85)) (-3597 (((-547) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 42)) (-3305 (((-3 (-619 (-217)) "failed") (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 73)))
-(((-196) (-10 -7 (-15 -4304 ((-3 (-2 (|:| -2714 (-114)) (|:| |w| (-217))) "failed") (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3305 ((-3 (-619 (-217)) "failed") (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3597 ((-547) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) (T -196))
-((-3597 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-547)) (-5 *1 (-196)))) (-3305 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-196)))) (-4304 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| -2714 (-114)) (|:| |w| (-217)))) (-5 *1 (-196)))))
-(-10 -7 (-15 -4304 ((-3 (-2 (|:| -2714 (-114)) (|:| |w| (-217))) "failed") (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3305 ((-3 (-619 (-217)) "failed") (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3597 ((-547) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))
-((-2778 (((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 39)) (-1965 (((-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 130)) (-2719 (((-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))) (-663 (-307 (-217)))) 89)) (-2156 (((-370) (-663 (-307 (-217)))) 113)) (-3734 (((-663 (-307 (-217))) (-1219 (-307 (-217))) (-619 (-1136))) 110)) (-3502 (((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 30)) (-3037 (((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 43)) (-2679 (((-663 (-307 (-217))) (-663 (-307 (-217))) (-619 (-1136)) (-1219 (-307 (-217)))) 102)) (-2928 (((-370) (-370) (-619 (-370))) 107) (((-370) (-370) (-370)) 105)) (-3106 (((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 36)))
-(((-197) (-10 -7 (-15 -2928 ((-370) (-370) (-370))) (-15 -2928 ((-370) (-370) (-619 (-370)))) (-15 -2156 ((-370) (-663 (-307 (-217))))) (-15 -3734 ((-663 (-307 (-217))) (-1219 (-307 (-217))) (-619 (-1136)))) (-15 -2679 ((-663 (-307 (-217))) (-663 (-307 (-217))) (-619 (-1136)) (-1219 (-307 (-217))))) (-15 -2719 ((-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))) (-663 (-307 (-217))))) (-15 -1965 ((-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2778 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3037 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3106 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3502 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) (T -197))
-((-3502 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-370)) (-5 *1 (-197)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-370)) (-5 *1 (-197)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-370)) (-5 *1 (-197)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-370)) (-5 *1 (-197)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370)))) (-5 *1 (-197)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-663 (-307 (-217)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370)))) (-5 *1 (-197)))) (-2679 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-663 (-307 (-217)))) (-5 *3 (-619 (-1136))) (-5 *4 (-1219 (-307 (-217)))) (-5 *1 (-197)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *3 (-1219 (-307 (-217)))) (-5 *4 (-619 (-1136))) (-5 *2 (-663 (-307 (-217)))) (-5 *1 (-197)))) (-2156 (*1 *2 *3) (-12 (-5 *3 (-663 (-307 (-217)))) (-5 *2 (-370)) (-5 *1 (-197)))) (-2928 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-370))) (-5 *2 (-370)) (-5 *1 (-197)))) (-2928 (*1 *2 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-197)))))
-(-10 -7 (-15 -2928 ((-370) (-370) (-370))) (-15 -2928 ((-370) (-370) (-619 (-370)))) (-15 -2156 ((-370) (-663 (-307 (-217))))) (-15 -3734 ((-663 (-307 (-217))) (-1219 (-307 (-217))) (-619 (-1136)))) (-15 -2679 ((-663 (-307 (-217))) (-663 (-307 (-217))) (-619 (-1136)) (-1219 (-307 (-217))))) (-15 -2719 ((-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))) (-663 (-307 (-217))))) (-15 -1965 ((-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2778 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3037 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3106 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3502 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))
-((-3826 (((-112) $ $) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 41)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2433 (((-1004) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 64)) (-2381 (((-112) $ $) NIL)))
-(((-198) (-774)) (T -198))
-NIL
-(-774)
-((-3826 (((-112) $ $) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 41)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2433 (((-1004) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 62)) (-2381 (((-112) $ $) NIL)))
-(((-199) (-774)) (T -199))
-NIL
-(-774)
-((-3826 (((-112) $ $) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 40)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2433 (((-1004) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 66)) (-2381 (((-112) $ $) NIL)))
-(((-200) (-774)) (T -200))
-NIL
-(-774)
-((-3826 (((-112) $ $) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 46)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2433 (((-1004) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 75)) (-2381 (((-112) $ $) NIL)))
-(((-201) (-774)) (T -201))
-NIL
-(-774)
-((-3297 (((-619 (-1136)) (-1136) (-745)) 23)) (-2670 (((-307 (-217)) (-307 (-217))) 31)) (-1822 (((-112) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) 74)) (-3845 (((-112) (-217) (-217) (-619 (-307 (-217)))) 45)))
-(((-202) (-10 -7 (-15 -3297 ((-619 (-1136)) (-1136) (-745))) (-15 -2670 ((-307 (-217)) (-307 (-217)))) (-15 -3845 ((-112) (-217) (-217) (-619 (-307 (-217))))) (-15 -1822 ((-112) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217))))))) (T -202))
-((-1822 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) (-5 *2 (-112)) (-5 *1 (-202)))) (-3845 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-619 (-307 (-217)))) (-5 *3 (-217)) (-5 *2 (-112)) (-5 *1 (-202)))) (-2670 (*1 *2 *2) (-12 (-5 *2 (-307 (-217))) (-5 *1 (-202)))) (-3297 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-619 (-1136))) (-5 *1 (-202)) (-5 *3 (-1136)))))
-(-10 -7 (-15 -3297 ((-619 (-1136)) (-1136) (-745))) (-15 -2670 ((-307 (-217)) (-307 (-217)))) (-15 -3845 ((-112) (-217) (-217) (-619 (-307 (-217))))) (-15 -1822 ((-112) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217))))))
-((-3826 (((-112) $ $) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) 26)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2631 (((-1004) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) 57)) (-2381 (((-112) $ $) NIL)))
-(((-203) (-864)) (T -203))
-NIL
-(-864)
-((-3826 (((-112) $ $) NIL)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) 21)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2631 (((-1004) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-204) (-864)) (T -204))
-NIL
-(-864)
-((-3826 (((-112) $ $) NIL)) (-2247 ((|#2| $ (-745) |#2|) 11)) (-3735 (($) 8)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3334 ((|#2| $ (-745)) 10)) (-3838 (((-832) $) 18)) (-2381 (((-112) $ $) 13)))
-(((-205 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3735 ($)) (-15 -3334 (|#2| $ (-745))) (-15 -2247 (|#2| $ (-745) |#2|)))) (-890) (-1063)) (T -205))
-((-3735 (*1 *1) (-12 (-5 *1 (-205 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1063)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *2 (-1063)) (-5 *1 (-205 *4 *2)) (-14 *4 (-890)))) (-2247 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-205 *4 *2)) (-14 *4 (-890)) (-4 *2 (-1063)))))
-(-13 (-1063) (-10 -8 (-15 -3735 ($)) (-15 -3334 (|#2| $ (-745))) (-15 -2247 (|#2| $ (-745) |#2|))))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1764 (((-1224) $) 36) (((-1224) $ (-890) (-890)) 38)) (-3334 (($ $ (-958)) 19) (((-237 (-1119)) $ (-1136)) 15)) (-2692 (((-1224) $) 34)) (-3838 (((-832) $) 31) (($ (-619 |#1|)) 8)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $ $) 27)) (-2479 (($ $ $) 22)))
-(((-206 |#1|) (-13 (-1063) (-10 -8 (-15 -3334 ($ $ (-958))) (-15 -3334 ((-237 (-1119)) $ (-1136))) (-15 -2479 ($ $ $)) (-15 -2493 ($ $ $)) (-15 -3838 ($ (-619 |#1|))) (-15 -2692 ((-1224) $)) (-15 -1764 ((-1224) $)) (-15 -1764 ((-1224) $ (-890) (-890))))) (-13 (-821) (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 ((-1224) $)) (-15 -1764 ((-1224) $))))) (T -206))
-((-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-958)) (-5 *1 (-206 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 ((-1224) $)) (-15 -1764 ((-1224) $))))))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-237 (-1119))) (-5 *1 (-206 *4)) (-4 *4 (-13 (-821) (-10 -8 (-15 -3334 ((-1119) $ *3)) (-15 -2692 ((-1224) $)) (-15 -1764 ((-1224) $))))))) (-2479 (*1 *1 *1 *1) (-12 (-5 *1 (-206 *2)) (-4 *2 (-13 (-821) (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 ((-1224) $)) (-15 -1764 ((-1224) $))))))) (-2493 (*1 *1 *1 *1) (-12 (-5 *1 (-206 *2)) (-4 *2 (-13 (-821) (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 ((-1224) $)) (-15 -1764 ((-1224) $))))))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 ((-1224) $)) (-15 -1764 ((-1224) $))))) (-5 *1 (-206 *3)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-206 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 (*2 $)) (-15 -1764 (*2 $))))))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-206 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 (*2 $)) (-15 -1764 (*2 $))))))) (-1764 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224)) (-5 *1 (-206 *4)) (-4 *4 (-13 (-821) (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 (*2 $)) (-15 -1764 (*2 $))))))))
-(-13 (-1063) (-10 -8 (-15 -3334 ($ $ (-958))) (-15 -3334 ((-237 (-1119)) $ (-1136))) (-15 -2479 ($ $ $)) (-15 -2493 ($ $ $)) (-15 -3838 ($ (-619 |#1|))) (-15 -2692 ((-1224) $)) (-15 -1764 ((-1224) $)) (-15 -1764 ((-1224) $ (-890) (-890)))))
-((-2302 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-207 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2302 (|#2| |#4| (-1 |#2| |#2|)))) (-354) (-1195 |#1|) (-1195 (-398 |#2|)) (-333 |#1| |#2| |#3|)) (T -207))
-((-2302 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-354)) (-4 *6 (-1195 (-398 *2))) (-4 *2 (-1195 *5)) (-5 *1 (-207 *5 *2 *6 *3)) (-4 *3 (-333 *5 *2 *6)))))
-(-10 -7 (-15 -2302 (|#2| |#4| (-1 |#2| |#2|))))
-((-2222 ((|#2| |#2| (-745) |#2|) 42)) (-3341 ((|#2| |#2| (-745) |#2|) 38)) (-1926 (((-619 |#2|) (-619 (-2 (|:| |deg| (-745)) (|:| -3242 |#2|)))) 57)) (-1583 (((-619 (-2 (|:| |deg| (-745)) (|:| -3242 |#2|))) |#2|) 53)) (-1400 (((-112) |#2|) 50)) (-1857 (((-409 |#2|) |#2|) 77)) (-2115 (((-409 |#2|) |#2|) 76)) (-1782 ((|#2| |#2| (-745) |#2|) 36)) (-3762 (((-2 (|:| |cont| |#1|) (|:| -2534 (-619 (-2 (|:| |irr| |#2|) (|:| -3038 (-547)))))) |#2| (-112)) 69)))
-(((-208 |#1| |#2|) (-10 -7 (-15 -2115 ((-409 |#2|) |#2|)) (-15 -1857 ((-409 |#2|) |#2|)) (-15 -3762 ((-2 (|:| |cont| |#1|) (|:| -2534 (-619 (-2 (|:| |irr| |#2|) (|:| -3038 (-547)))))) |#2| (-112))) (-15 -1583 ((-619 (-2 (|:| |deg| (-745)) (|:| -3242 |#2|))) |#2|)) (-15 -1926 ((-619 |#2|) (-619 (-2 (|:| |deg| (-745)) (|:| -3242 |#2|))))) (-15 -1782 (|#2| |#2| (-745) |#2|)) (-15 -3341 (|#2| |#2| (-745) |#2|)) (-15 -2222 (|#2| |#2| (-745) |#2|)) (-15 -1400 ((-112) |#2|))) (-340) (-1195 |#1|)) (T -208))
-((-1400 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-112)) (-5 *1 (-208 *4 *3)) (-4 *3 (-1195 *4)))) (-2222 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-208 *4 *2)) (-4 *2 (-1195 *4)))) (-3341 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-208 *4 *2)) (-4 *2 (-1195 *4)))) (-1782 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-208 *4 *2)) (-4 *2 (-1195 *4)))) (-1926 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |deg| (-745)) (|:| -3242 *5)))) (-4 *5 (-1195 *4)) (-4 *4 (-340)) (-5 *2 (-619 *5)) (-5 *1 (-208 *4 *5)))) (-1583 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -3242 *3)))) (-5 *1 (-208 *4 *3)) (-4 *3 (-1195 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-340)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2534 (-619 (-2 (|:| |irr| *3) (|:| -3038 (-547))))))) (-5 *1 (-208 *5 *3)) (-4 *3 (-1195 *5)))) (-1857 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-409 *3)) (-5 *1 (-208 *4 *3)) (-4 *3 (-1195 *4)))) (-2115 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-409 *3)) (-5 *1 (-208 *4 *3)) (-4 *3 (-1195 *4)))))
-(-10 -7 (-15 -2115 ((-409 |#2|) |#2|)) (-15 -1857 ((-409 |#2|) |#2|)) (-15 -3762 ((-2 (|:| |cont| |#1|) (|:| -2534 (-619 (-2 (|:| |irr| |#2|) (|:| -3038 (-547)))))) |#2| (-112))) (-15 -1583 ((-619 (-2 (|:| |deg| (-745)) (|:| -3242 |#2|))) |#2|)) (-15 -1926 ((-619 |#2|) (-619 (-2 (|:| |deg| (-745)) (|:| -3242 |#2|))))) (-15 -1782 (|#2| |#2| (-745) |#2|)) (-15 -3341 (|#2| |#2| (-745) |#2|)) (-15 -2222 (|#2| |#2| (-745) |#2|)) (-15 -1400 ((-112) |#2|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2092 (((-547) $) NIL (|has| (-547) (-298)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL (|has| (-547) (-794)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL) (((-3 (-1136) "failed") $) NIL (|has| (-547) (-1007 (-1136)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-547) (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| (-547) (-1007 (-547))))) (-2652 (((-547) $) NIL) (((-1136) $) NIL (|has| (-547) (-1007 (-1136)))) (((-398 (-547)) $) NIL (|has| (-547) (-1007 (-547)))) (((-547) $) NIL (|has| (-547) (-1007 (-547))))) (-2089 (($ $ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL) (((-663 (-547)) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| (-547) (-532)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-4270 (((-112) $) NIL (|has| (-547) (-794)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-547) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-547) (-855 (-370))))) (-2261 (((-112) $) NIL)) (-4170 (($ $) NIL)) (-1386 (((-547) $) NIL)) (-3477 (((-3 $ "failed") $) NIL (|has| (-547) (-1112)))) (-1860 (((-112) $) NIL (|has| (-547) (-794)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2856 (($ $ $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| (-547) (-821)))) (-2790 (($ (-1 (-547) (-547)) $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| (-547) (-1112)) CONST)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3682 (($ $) NIL (|has| (-547) (-298))) (((-398 (-547)) $) NIL)) (-1276 (((-547) $) NIL (|has| (-547) (-532)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2679 (($ $ (-619 (-547)) (-619 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-547) (-547)) NIL (|has| (-547) (-300 (-547)))) (($ $ (-285 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-285 (-547)))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-1136)) (-619 (-547))) NIL (|has| (-547) (-503 (-1136) (-547)))) (($ $ (-1136) (-547)) NIL (|has| (-547) (-503 (-1136) (-547))))) (-2471 (((-745) $) NIL)) (-3334 (($ $ (-547)) NIL (|has| (-547) (-277 (-547) (-547))))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3448 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1136)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-2995 (($ $) NIL)) (-1396 (((-547) $) NIL)) (-2798 (($ (-398 (-547))) 9)) (-2838 (((-861 (-547)) $) NIL (|has| (-547) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-547) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-547) (-592 (-523)))) (((-370) $) NIL (|has| (-547) (-991))) (((-217) $) NIL (|has| (-547) (-991)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-547) (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) 8) (($ (-547)) NIL) (($ (-1136)) NIL (|has| (-547) (-1007 (-1136)))) (((-398 (-547)) $) NIL) (((-973 10) $) 10)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| (-547) (-878))) (|has| (-547) (-143))))) (-2736 (((-745)) NIL)) (-3720 (((-547) $) NIL (|has| (-547) (-532)))) (-3577 (((-112) $ $) NIL)) (-2255 (($ $) NIL (|has| (-547) (-794)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1136)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-2441 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2418 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2405 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2506 (($ $ $) NIL) (($ (-547) (-547)) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-547) $) NIL) (($ $ (-547)) NIL)))
-(((-209) (-13 (-961 (-547)) (-10 -8 (-15 -3838 ((-398 (-547)) $)) (-15 -3838 ((-973 10) $)) (-15 -3682 ((-398 (-547)) $)) (-15 -2798 ($ (-398 (-547))))))) (T -209))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-209)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-973 10)) (-5 *1 (-209)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-209)))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-209)))))
-(-13 (-961 (-547)) (-10 -8 (-15 -3838 ((-398 (-547)) $)) (-15 -3838 ((-973 10) $)) (-15 -3682 ((-398 (-547)) $)) (-15 -2798 ($ (-398 (-547))))))
-((-3826 (((-112) $ $) NIL)) (-3977 (((-1080) $) 14)) (-1466 (((-1119) $) NIL)) (-1775 (((-619 (-495)) $) 11)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2487 (((-1141) $) 16)) (-2381 (((-112) $ $) NIL)))
-(((-210) (-13 (-1047) (-10 -8 (-15 -1775 ((-619 (-495)) $)) (-15 -3977 ((-1080) $)) (-15 -2487 ((-1141) $))))) (T -210))
-((-1775 (*1 *2 *1) (-12 (-5 *2 (-619 (-495))) (-5 *1 (-210)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-210)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-210)))))
-(-13 (-1047) (-10 -8 (-15 -1775 ((-619 (-495)) $)) (-15 -3977 ((-1080) $)) (-15 -2487 ((-1141) $))))
-((-3694 (((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)) (-1119)) 28) (((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|))) 24)) (-1870 (((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1136) (-814 |#2|) (-814 |#2|) (-112)) 17)))
-(((-211 |#1| |#2|) (-10 -7 (-15 -3694 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)))) (-15 -3694 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)) (-1119))) (-15 -1870 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1136) (-814 |#2|) (-814 |#2|) (-112)))) (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1158) (-928) (-29 |#1|))) (T -211))
-((-1870 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1136)) (-5 *6 (-112)) (-4 *7 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-4 *3 (-13 (-1158) (-928) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-211 *7 *3)) (-5 *5 (-814 *3)))) (-3694 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1056 (-814 *3))) (-5 *5 (-1119)) (-4 *3 (-13 (-1158) (-928) (-29 *6))) (-4 *6 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-211 *6 *3)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-814 *3))) (-4 *3 (-13 (-1158) (-928) (-29 *5))) (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-211 *5 *3)))))
-(-10 -7 (-15 -3694 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)))) (-15 -3694 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)) (-1119))) (-15 -1870 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1136) (-814 |#2|) (-814 |#2|) (-112))))
-((-3694 (((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-398 (-921 |#1|)))) (-1119)) 46) (((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-398 (-921 |#1|))))) 43) (((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-307 |#1|))) (-1119)) 47) (((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-307 |#1|)))) 20)))
-(((-212 |#1|) (-10 -7 (-15 -3694 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-307 |#1|))))) (-15 -3694 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-307 |#1|))) (-1119))) (-15 -3694 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-398 (-921 |#1|)))))) (-15 -3694 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-398 (-921 |#1|)))) (-1119)))) (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (T -212))
-((-3694 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1056 (-814 (-398 (-921 *6))))) (-5 *5 (-1119)) (-5 *3 (-398 (-921 *6))) (-4 *6 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |f1| (-814 (-307 *6))) (|:| |f2| (-619 (-814 (-307 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *6)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-814 (-398 (-921 *5))))) (-5 *3 (-398 (-921 *5))) (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |f1| (-814 (-307 *5))) (|:| |f2| (-619 (-814 (-307 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *5)))) (-3694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-398 (-921 *6))) (-5 *4 (-1056 (-814 (-307 *6)))) (-5 *5 (-1119)) (-4 *6 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |f1| (-814 (-307 *6))) (|:| |f2| (-619 (-814 (-307 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *6)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1056 (-814 (-307 *5)))) (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |f1| (-814 (-307 *5))) (|:| |f2| (-619 (-814 (-307 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *5)))))
-(-10 -7 (-15 -3694 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-307 |#1|))))) (-15 -3694 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-307 |#1|))) (-1119))) (-15 -3694 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-398 (-921 |#1|)))))) (-15 -3694 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-398 (-921 |#1|)))) (-1119))))
-((-2552 (((-2 (|:| -2447 (-1132 |#1|)) (|:| |deg| (-890))) (-1132 |#1|)) 21)) (-1442 (((-619 (-307 |#2|)) (-307 |#2|) (-890)) 42)))
-(((-213 |#1| |#2|) (-10 -7 (-15 -2552 ((-2 (|:| -2447 (-1132 |#1|)) (|:| |deg| (-890))) (-1132 |#1|))) (-15 -1442 ((-619 (-307 |#2|)) (-307 |#2|) (-890)))) (-1016) (-13 (-539) (-821))) (T -213))
-((-1442 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *6 (-13 (-539) (-821))) (-5 *2 (-619 (-307 *6))) (-5 *1 (-213 *5 *6)) (-5 *3 (-307 *6)) (-4 *5 (-1016)))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-2 (|:| -2447 (-1132 *4)) (|:| |deg| (-890)))) (-5 *1 (-213 *4 *5)) (-5 *3 (-1132 *4)) (-4 *5 (-13 (-539) (-821))))))
-(-10 -7 (-15 -2552 ((-2 (|:| -2447 (-1132 |#1|)) (|:| |deg| (-890))) (-1132 |#1|))) (-15 -1442 ((-619 (-307 |#2|)) (-307 |#2|) (-890))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1949 ((|#1| $) NIL)) (-2312 ((|#1| $) 25)) (-3899 (((-112) $ (-745)) NIL)) (-1948 (($) NIL T CONST)) (-3935 (($ $) NIL)) (-3044 (($ $) 31)) (-3329 ((|#1| |#1| $) NIL)) (-1742 ((|#1| $) NIL)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-4202 (((-745) $) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-4266 ((|#1| $) NIL)) (-2136 ((|#1| |#1| $) 28)) (-3973 ((|#1| |#1| $) 30)) (-2657 (($ |#1| $) NIL)) (-4029 (((-745) $) 27)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3436 ((|#1| $) NIL)) (-3932 ((|#1| $) 26)) (-2289 ((|#1| $) 24)) (-2056 ((|#1| $) NIL)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-1724 ((|#1| |#1| $) NIL)) (-2884 (((-112) $) 9)) (-2245 (($) NIL)) (-2369 ((|#1| $) NIL)) (-1645 (($) NIL) (($ (-619 |#1|)) 16)) (-1314 (((-745) $) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2301 ((|#1| $) 13)) (-2300 (($ (-619 |#1|)) NIL)) (-3819 ((|#1| $) NIL)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-214 |#1|) (-13 (-245 |#1|) (-10 -8 (-15 -1645 ($ (-619 |#1|))))) (-1063)) (T -214))
-((-1645 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-214 *3)))))
-(-13 (-245 |#1|) (-10 -8 (-15 -1645 ($ (-619 |#1|)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3247 (($ (-307 |#1|)) 23)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-1317 (((-112) $) NIL)) (-2707 (((-3 (-307 |#1|) "failed") $) NIL)) (-2652 (((-307 |#1|) $) NIL)) (-2063 (($ $) 31)) (-3855 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-2790 (($ (-1 (-307 |#1|) (-307 |#1|)) $) NIL)) (-2037 (((-307 |#1|) $) NIL)) (-2795 (($ $) 30)) (-1466 (((-1119) $) NIL)) (-2668 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-4238 (($ (-745)) NIL)) (-2372 (($ $) 32)) (-3705 (((-547) $) NIL)) (-3838 (((-832) $) 57) (($ (-547)) NIL) (($ (-307 |#1|)) NIL)) (-2450 (((-307 |#1|) $ $) NIL)) (-2736 (((-745)) NIL)) (-3269 (($) 25 T CONST)) (-3281 (($) 50 T CONST)) (-2381 (((-112) $ $) 28)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 19)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 24) (($ (-307 |#1|) $) 18)))
-(((-215 |#1| |#2|) (-13 (-596 (-307 |#1|)) (-1007 (-307 |#1|)) (-10 -8 (-15 -2037 ((-307 |#1|) $)) (-15 -2795 ($ $)) (-15 -2063 ($ $)) (-15 -2450 ((-307 |#1|) $ $)) (-15 -4238 ($ (-745))) (-15 -2668 ((-112) $)) (-15 -1317 ((-112) $)) (-15 -3705 ((-547) $)) (-15 -2790 ($ (-1 (-307 |#1|) (-307 |#1|)) $)) (-15 -3247 ($ (-307 |#1|))) (-15 -2372 ($ $)))) (-13 (-1016) (-821)) (-619 (-1136))) (T -215))
-((-2037 (*1 *2 *1) (-12 (-5 *2 (-307 *3)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1136))))) (-2795 (*1 *1 *1) (-12 (-5 *1 (-215 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1136))))) (-2063 (*1 *1 *1) (-12 (-5 *1 (-215 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1136))))) (-2450 (*1 *2 *1 *1) (-12 (-5 *2 (-307 *3)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1136))))) (-4238 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1136))))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1136))))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1136))))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1136))))) (-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-307 *3) (-307 *3))) (-4 *3 (-13 (-1016) (-821))) (-5 *1 (-215 *3 *4)) (-14 *4 (-619 (-1136))))) (-3247 (*1 *1 *2) (-12 (-5 *2 (-307 *3)) (-4 *3 (-13 (-1016) (-821))) (-5 *1 (-215 *3 *4)) (-14 *4 (-619 (-1136))))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-215 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1136))))))
-(-13 (-596 (-307 |#1|)) (-1007 (-307 |#1|)) (-10 -8 (-15 -2037 ((-307 |#1|) $)) (-15 -2795 ($ $)) (-15 -2063 ($ $)) (-15 -2450 ((-307 |#1|) $ $)) (-15 -4238 ($ (-745))) (-15 -2668 ((-112) $)) (-15 -1317 ((-112) $)) (-15 -3705 ((-547) $)) (-15 -2790 ($ (-1 (-307 |#1|) (-307 |#1|)) $)) (-15 -3247 ($ (-307 |#1|))) (-15 -2372 ($ $))))
-((-1765 (((-112) (-1119)) 22)) (-2767 (((-3 (-814 |#2|) "failed") (-590 |#2|) |#2| (-814 |#2|) (-814 |#2|) (-112)) 32)) (-3227 (((-3 (-112) "failed") (-1132 |#2|) (-814 |#2|) (-814 |#2|) (-112)) 73) (((-3 (-112) "failed") (-921 |#1|) (-1136) (-814 |#2|) (-814 |#2|) (-112)) 74)))
-(((-216 |#1| |#2|) (-10 -7 (-15 -1765 ((-112) (-1119))) (-15 -2767 ((-3 (-814 |#2|) "failed") (-590 |#2|) |#2| (-814 |#2|) (-814 |#2|) (-112))) (-15 -3227 ((-3 (-112) "failed") (-921 |#1|) (-1136) (-814 |#2|) (-814 |#2|) (-112))) (-15 -3227 ((-3 (-112) "failed") (-1132 |#2|) (-814 |#2|) (-814 |#2|) (-112)))) (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-1158) (-29 |#1|))) (T -216))
-((-3227 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1132 *6)) (-5 *4 (-814 *6)) (-4 *6 (-13 (-1158) (-29 *5))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-216 *5 *6)))) (-3227 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-921 *6)) (-5 *4 (-1136)) (-5 *5 (-814 *7)) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-4 *7 (-13 (-1158) (-29 *6))) (-5 *1 (-216 *6 *7)))) (-2767 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-814 *4)) (-5 *3 (-590 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1158) (-29 *6))) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-216 *6 *4)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-112)) (-5 *1 (-216 *4 *5)) (-4 *5 (-13 (-1158) (-29 *4))))))
-(-10 -7 (-15 -1765 ((-112) (-1119))) (-15 -2767 ((-3 (-814 |#2|) "failed") (-590 |#2|) |#2| (-814 |#2|) (-814 |#2|) (-112))) (-15 -3227 ((-3 (-112) "failed") (-921 |#1|) (-1136) (-814 |#2|) (-814 |#2|) (-112))) (-15 -3227 ((-3 (-112) "failed") (-1132 |#2|) (-814 |#2|) (-814 |#2|) (-112))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 89)) (-2092 (((-547) $) 100)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3931 (($ $) NIL)) (-1656 (($ $) 77)) (-1505 (($ $) 65)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-2127 (($ $) 56)) (-1547 (((-112) $ $) NIL)) (-1632 (($ $) 75)) (-1479 (($ $) 63)) (-2500 (((-547) $) 117)) (-1678 (($ $) 80)) (-1532 (($ $) 67)) (-1948 (($) NIL T CONST)) (-3659 (($ $) NIL)) (-2707 (((-3 (-547) "failed") $) 116) (((-3 (-398 (-547)) "failed") $) 113)) (-2652 (((-547) $) 114) (((-398 (-547)) $) 111)) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) 93)) (-2452 (((-398 (-547)) $ (-745)) 109) (((-398 (-547)) $ (-745) (-745)) 108)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-3228 (((-890)) 29) (((-890) (-890)) NIL (|has| $ (-6 -4320)))) (-4270 (((-112) $) NIL)) (-1419 (($) 39)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL)) (-3275 (((-547) $) 35)) (-2261 (((-112) $) NIL)) (-3869 (($ $ (-547)) NIL)) (-3160 (($ $) NIL)) (-1860 (((-112) $) 88)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2856 (($ $ $) 53) (($) 34 (-12 (-4000 (|has| $ (-6 -4312))) (-4000 (|has| $ (-6 -4320)))))) (-3567 (($ $ $) 52) (($) 33 (-12 (-4000 (|has| $ (-6 -4312))) (-4000 (|has| $ (-6 -4320)))))) (-1454 (((-547) $) 27)) (-3398 (($ $) 30)) (-2293 (($ $) 57)) (-3624 (($ $) 62)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3470 (((-890) (-547)) NIL (|has| $ (-6 -4320)))) (-3979 (((-1082) $) 91)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3682 (($ $) NIL)) (-1276 (($ $) NIL)) (-1348 (($ (-547) (-547)) NIL) (($ (-547) (-547) (-890)) 101)) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3322 (((-547) $) 28)) (-3096 (($) 38)) (-2712 (($ $) 61)) (-2471 (((-745) $) NIL)) (-2241 (((-1119) (-1119)) 8)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-2697 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4320)))) (-3448 (($ $ (-745)) NIL) (($ $) 94)) (-2738 (((-890) (-547)) NIL (|has| $ (-6 -4320)))) (-1690 (($ $) 78)) (-1545 (($ $) 68)) (-1668 (($ $) 79)) (-1519 (($ $) 66)) (-1644 (($ $) 76)) (-1493 (($ $) 64)) (-2838 (((-370) $) 105) (((-217) $) 102) (((-861 (-370)) $) NIL) (((-523) $) 45)) (-3838 (((-832) $) 42) (($ (-547)) 60) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-547)) 60) (($ (-398 (-547))) NIL)) (-2736 (((-745)) NIL)) (-3720 (($ $) NIL)) (-1729 (((-890)) 32) (((-890) (-890)) NIL (|has| $ (-6 -4320)))) (-1856 (((-890)) 25)) (-1726 (($ $) 83)) (-1579 (($ $) 71) (($ $ $) 110)) (-3577 (((-112) $ $) NIL)) (-1703 (($ $) 81)) (-1557 (($ $) 69)) (-1751 (($ $) 86)) (-1606 (($ $) 74)) (-1927 (($ $) 84)) (-1620 (($ $) 72)) (-1738 (($ $) 85)) (-1593 (($ $) 73)) (-1714 (($ $) 82)) (-1569 (($ $) 70)) (-2255 (($ $) 118)) (-3269 (($) 36 T CONST)) (-3281 (($) 37 T CONST)) (-2273 (((-1119) $) 19) (((-1119) $ (-112)) 21) (((-1224) (-796) $) 22) (((-1224) (-796) $ (-112)) 23)) (-1705 (($ $) 97)) (-1695 (($ $ (-745)) NIL) (($ $) NIL)) (-3243 (($ $ $) 99)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 54)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 46)) (-2506 (($ $ $) 87) (($ $ (-547)) 55)) (-2493 (($ $) 47) (($ $ $) 49)) (-2479 (($ $ $) 48)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 58) (($ $ (-398 (-547))) 130) (($ $ $) 59)) (* (($ (-890) $) 31) (($ (-745) $) NIL) (($ (-547) $) 51) (($ $ $) 50) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL)))
-(((-217) (-13 (-395) (-225) (-802) (-1158) (-592 (-523)) (-10 -8 (-15 -2506 ($ $ (-547))) (-15 ** ($ $ $)) (-15 -3096 ($)) (-15 -3398 ($ $)) (-15 -2293 ($ $)) (-15 -1579 ($ $ $)) (-15 -1705 ($ $)) (-15 -3243 ($ $ $)) (-15 -2241 ((-1119) (-1119))) (-15 -2452 ((-398 (-547)) $ (-745))) (-15 -2452 ((-398 (-547)) $ (-745) (-745)))))) (T -217))
-((** (*1 *1 *1 *1) (-5 *1 (-217))) (-2506 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-217)))) (-3096 (*1 *1) (-5 *1 (-217))) (-3398 (*1 *1 *1) (-5 *1 (-217))) (-2293 (*1 *1 *1) (-5 *1 (-217))) (-1579 (*1 *1 *1 *1) (-5 *1 (-217))) (-1705 (*1 *1 *1) (-5 *1 (-217))) (-3243 (*1 *1 *1 *1) (-5 *1 (-217))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-217)))) (-2452 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-217)))) (-2452 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-217)))))
-(-13 (-395) (-225) (-802) (-1158) (-592 (-523)) (-10 -8 (-15 -2506 ($ $ (-547))) (-15 ** ($ $ $)) (-15 -3096 ($)) (-15 -3398 ($ $)) (-15 -2293 ($ $)) (-15 -1579 ($ $ $)) (-15 -1705 ($ $)) (-15 -3243 ($ $ $)) (-15 -2241 ((-1119) (-1119))) (-15 -2452 ((-398 (-547)) $ (-745))) (-15 -2452 ((-398 (-547)) $ (-745) (-745)))))
-((-2758 (((-166 (-217)) (-745) (-166 (-217))) 11) (((-217) (-745) (-217)) 12)) (-4057 (((-166 (-217)) (-166 (-217))) 13) (((-217) (-217)) 14)) (-2873 (((-166 (-217)) (-166 (-217)) (-166 (-217))) 19) (((-217) (-217) (-217)) 22)) (-1878 (((-166 (-217)) (-166 (-217))) 25) (((-217) (-217)) 24)) (-2560 (((-166 (-217)) (-166 (-217)) (-166 (-217))) 43) (((-217) (-217) (-217)) 35)) (-4142 (((-166 (-217)) (-166 (-217)) (-166 (-217))) 48) (((-217) (-217) (-217)) 45)) (-3272 (((-166 (-217)) (-166 (-217)) (-166 (-217))) 15) (((-217) (-217) (-217)) 16)) (-3611 (((-166 (-217)) (-166 (-217)) (-166 (-217))) 17) (((-217) (-217) (-217)) 18)) (-2275 (((-166 (-217)) (-166 (-217))) 60) (((-217) (-217)) 59)) (-1988 (((-217) (-217)) 54) (((-166 (-217)) (-166 (-217))) 58)) (-1705 (((-166 (-217)) (-166 (-217))) 8) (((-217) (-217)) 9)) (-3243 (((-166 (-217)) (-166 (-217)) (-166 (-217))) 30) (((-217) (-217) (-217)) 26)))
-(((-218) (-10 -7 (-15 -1705 ((-217) (-217))) (-15 -1705 ((-166 (-217)) (-166 (-217)))) (-15 -3243 ((-217) (-217) (-217))) (-15 -3243 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -4057 ((-217) (-217))) (-15 -4057 ((-166 (-217)) (-166 (-217)))) (-15 -1878 ((-217) (-217))) (-15 -1878 ((-166 (-217)) (-166 (-217)))) (-15 -2758 ((-217) (-745) (-217))) (-15 -2758 ((-166 (-217)) (-745) (-166 (-217)))) (-15 -3272 ((-217) (-217) (-217))) (-15 -3272 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -2560 ((-217) (-217) (-217))) (-15 -2560 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -3611 ((-217) (-217) (-217))) (-15 -3611 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -4142 ((-217) (-217) (-217))) (-15 -4142 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -1988 ((-166 (-217)) (-166 (-217)))) (-15 -1988 ((-217) (-217))) (-15 -2275 ((-217) (-217))) (-15 -2275 ((-166 (-217)) (-166 (-217)))) (-15 -2873 ((-217) (-217) (-217))) (-15 -2873 ((-166 (-217)) (-166 (-217)) (-166 (-217)))))) (T -218))
-((-2873 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-2873 (*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-2275 (*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-2275 (*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-4142 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-4142 (*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-3611 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-3611 (*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-2560 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-2560 (*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-3272 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-3272 (*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-2758 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-217))) (-5 *3 (-745)) (-5 *1 (-218)))) (-2758 (*1 *2 *3 *2) (-12 (-5 *2 (-217)) (-5 *3 (-745)) (-5 *1 (-218)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-3243 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-3243 (*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-1705 (*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-1705 (*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))))
-(-10 -7 (-15 -1705 ((-217) (-217))) (-15 -1705 ((-166 (-217)) (-166 (-217)))) (-15 -3243 ((-217) (-217) (-217))) (-15 -3243 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -4057 ((-217) (-217))) (-15 -4057 ((-166 (-217)) (-166 (-217)))) (-15 -1878 ((-217) (-217))) (-15 -1878 ((-166 (-217)) (-166 (-217)))) (-15 -2758 ((-217) (-745) (-217))) (-15 -2758 ((-166 (-217)) (-745) (-166 (-217)))) (-15 -3272 ((-217) (-217) (-217))) (-15 -3272 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -2560 ((-217) (-217) (-217))) (-15 -2560 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -3611 ((-217) (-217) (-217))) (-15 -3611 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -4142 ((-217) (-217) (-217))) (-15 -4142 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -1988 ((-166 (-217)) (-166 (-217)))) (-15 -1988 ((-217) (-217))) (-15 -2275 ((-217) (-217))) (-15 -2275 ((-166 (-217)) (-166 (-217)))) (-15 -2873 ((-217) (-217) (-217))) (-15 -2873 ((-166 (-217)) (-166 (-217)) (-166 (-217)))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3761 (($ (-745) (-745)) NIL)) (-3687 (($ $ $) NIL)) (-3890 (($ (-1219 |#1|)) NIL) (($ $) NIL)) (-2776 (($ |#1| |#1| |#1|) 32)) (-2597 (((-112) $) NIL)) (-1955 (($ $ (-547) (-547)) NIL)) (-2680 (($ $ (-547) (-547)) NIL)) (-1914 (($ $ (-547) (-547) (-547) (-547)) NIL)) (-1471 (($ $) NIL)) (-1907 (((-112) $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1464 (($ $ (-547) (-547) $) NIL)) (-2247 ((|#1| $ (-547) (-547) |#1|) NIL) (($ $ (-619 (-547)) (-619 (-547)) $) NIL)) (-1370 (($ $ (-547) (-1219 |#1|)) NIL)) (-2501 (($ $ (-547) (-1219 |#1|)) NIL)) (-1715 (($ |#1| |#1| |#1|) 31)) (-3893 (($ (-745) |#1|) NIL)) (-1948 (($) NIL T CONST)) (-2648 (($ $) NIL (|has| |#1| (-298)))) (-2330 (((-1219 |#1|) $ (-547)) NIL)) (-2945 (($ |#1|) 30)) (-2957 (($ |#1|) 29)) (-1829 (($ |#1|) 28)) (-3116 (((-745) $) NIL (|has| |#1| (-539)))) (-1872 ((|#1| $ (-547) (-547) |#1|) NIL)) (-1802 ((|#1| $ (-547) (-547)) NIL)) (-2982 (((-619 |#1|) $) NIL)) (-3316 (((-745) $) NIL (|has| |#1| (-539)))) (-3861 (((-619 (-1219 |#1|)) $) NIL (|has| |#1| (-539)))) (-2135 (((-745) $) NIL)) (-3735 (($ (-745) (-745) |#1|) NIL)) (-2148 (((-745) $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-3836 ((|#1| $) NIL (|has| |#1| (-6 (-4331 "*"))))) (-3612 (((-547) $) NIL)) (-3628 (((-547) $) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3120 (((-547) $) NIL)) (-1599 (((-547) $) NIL)) (-3938 (($ (-619 (-619 |#1|))) 11)) (-1859 (($ (-1 |#1| |#1|) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1580 (((-619 (-619 |#1|)) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3582 (((-3 $ "failed") $) NIL (|has| |#1| (-354)))) (-3182 (($) 12)) (-2755 (($ $ $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3632 (($ $ |#1|) NIL)) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ (-547) (-547)) NIL) ((|#1| $ (-547) (-547) |#1|) NIL) (($ $ (-619 (-547)) (-619 (-547))) NIL)) (-4123 (($ (-619 |#1|)) NIL) (($ (-619 $)) NIL)) (-3691 (((-112) $) NIL)) (-1299 ((|#1| $) NIL (|has| |#1| (-6 (-4331 "*"))))) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-1295 (((-1219 |#1|) $ (-547)) NIL)) (-3838 (($ (-1219 |#1|)) NIL) (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1485 (((-112) $) NIL)) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $ $) NIL) (($ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-547) $) NIL) (((-1219 |#1|) $ (-1219 |#1|)) 15) (((-1219 |#1|) (-1219 |#1|) $) NIL) (((-912 |#1|) $ (-912 |#1|)) 20)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-219 |#1|) (-13 (-661 |#1| (-1219 |#1|) (-1219 |#1|)) (-10 -8 (-15 * ((-912 |#1|) $ (-912 |#1|))) (-15 -3182 ($)) (-15 -1829 ($ |#1|)) (-15 -2957 ($ |#1|)) (-15 -2945 ($ |#1|)) (-15 -1715 ($ |#1| |#1| |#1|)) (-15 -2776 ($ |#1| |#1| |#1|)))) (-13 (-354) (-1158))) (T -219))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158))) (-5 *1 (-219 *3)))) (-3182 (*1 *1) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1158))))) (-1829 (*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1158))))) (-2957 (*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1158))))) (-2945 (*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1158))))) (-1715 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1158))))) (-2776 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1158))))))
-(-13 (-661 |#1| (-1219 |#1|) (-1219 |#1|)) (-10 -8 (-15 * ((-912 |#1|) $ (-912 |#1|))) (-15 -3182 ($)) (-15 -1829 ($ |#1|)) (-15 -2957 ($ |#1|)) (-15 -2945 ($ |#1|)) (-15 -1715 ($ |#1| |#1| |#1|)) (-15 -2776 ($ |#1| |#1| |#1|))))
-((-4285 (($ (-1 (-112) |#2|) $) 16)) (-1513 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-2699 (($) NIL) (($ (-619 |#2|)) 11)) (-2381 (((-112) $ $) 23)))
-(((-220 |#1| |#2|) (-10 -8 (-15 -4285 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1513 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -2699 (|#1| (-619 |#2|))) (-15 -2699 (|#1|)) (-15 -2381 ((-112) |#1| |#1|))) (-221 |#2|) (-1063)) (T -220))
-NIL
-(-10 -8 (-15 -4285 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1513 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -2699 (|#1| (-619 |#2|))) (-15 -2699 (|#1|)) (-15 -2381 ((-112) |#1| |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) 8)) (-4285 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-3668 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1513 (($ |#1| $) 47 (|has| $ (-6 -4329))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4329)))) (-3803 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4329)))) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-4266 ((|#1| $) 39)) (-2657 (($ |#1| $) 40)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2056 ((|#1| $) 41)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-2699 (($) 49) (($ (-619 |#1|)) 48)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-2838 (((-523) $) 59 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 50)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2300 (($ (-619 |#1|)) 42)) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-221 |#1|) (-138) (-1063)) (T -221))
-NIL
-(-13 (-227 |t#1|))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-227 |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-3448 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) 11) (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136)) 19) (($ $ (-745)) NIL) (($ $) 16)) (-1695 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-745)) 14) (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136)) NIL) (($ $ (-745)) NIL) (($ $) NIL)))
-(((-222 |#1| |#2|) (-10 -8 (-15 -3448 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -1695 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -1695 (|#1| |#1| (-1136))) (-15 -1695 (|#1| |#1| (-619 (-1136)))) (-15 -1695 (|#1| |#1| (-1136) (-745))) (-15 -1695 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -1695 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -1695 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|)))) (-223 |#2|) (-1016)) (T -222))
-NIL
-(-10 -8 (-15 -3448 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -1695 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -1695 (|#1| |#1| (-1136))) (-15 -1695 (|#1| |#1| (-619 (-1136)))) (-15 -1695 (|#1| |#1| (-1136) (-745))) (-15 -1695 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -1695 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -1695 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3448 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-745)) 49) (($ $ (-619 (-1136)) (-619 (-745))) 42 (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) 41 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) 40 (|has| |#1| (-869 (-1136)))) (($ $ (-1136)) 39 (|has| |#1| (-869 (-1136)))) (($ $ (-745)) 37 (|has| |#1| (-225))) (($ $) 35 (|has| |#1| (-225)))) (-3838 (((-832) $) 11) (($ (-547)) 27)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-745)) 47) (($ $ (-619 (-1136)) (-619 (-745))) 46 (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) 45 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) 44 (|has| |#1| (-869 (-1136)))) (($ $ (-1136)) 43 (|has| |#1| (-869 (-1136)))) (($ $ (-745)) 38 (|has| |#1| (-225))) (($ $) 36 (|has| |#1| (-225)))) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-223 |#1|) (-138) (-1016)) (T -223))
-((-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1016)))) (-3448 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-223 *4)) (-4 *4 (-1016)))) (-1695 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1016)))) (-1695 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-223 *4)) (-4 *4 (-1016)))))
-(-13 (-1016) (-10 -8 (-15 -3448 ($ $ (-1 |t#1| |t#1|))) (-15 -3448 ($ $ (-1 |t#1| |t#1|) (-745))) (-15 -1695 ($ $ (-1 |t#1| |t#1|))) (-15 -1695 ($ $ (-1 |t#1| |t#1|) (-745))) (IF (|has| |t#1| (-225)) (-6 (-225)) |%noBranch|) (IF (|has| |t#1| (-869 (-1136))) (-6 (-869 (-1136))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-225) |has| |#1| (-225)) ((-622 $) . T) ((-701) . T) ((-869 (-1136)) |has| |#1| (-869 (-1136))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3448 (($ $) NIL) (($ $ (-745)) 10)) (-1695 (($ $) 8) (($ $ (-745)) 12)))
-(((-224 |#1|) (-10 -8 (-15 -1695 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1| (-745))) (-15 -1695 (|#1| |#1|)) (-15 -3448 (|#1| |#1|))) (-225)) (T -224))
-NIL
-(-10 -8 (-15 -1695 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1| (-745))) (-15 -1695 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3448 (($ $) 36) (($ $ (-745)) 34)) (-3838 (((-832) $) 11) (($ (-547)) 27)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $) 35) (($ $ (-745)) 33)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-225) (-138)) (T -225))
-((-3448 (*1 *1 *1) (-4 *1 (-225))) (-1695 (*1 *1 *1) (-4 *1 (-225))) (-3448 (*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-745)))) (-1695 (*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-745)))))
-(-13 (-1016) (-10 -8 (-15 -3448 ($ $)) (-15 -1695 ($ $)) (-15 -3448 ($ $ (-745))) (-15 -1695 ($ $ (-745)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2699 (($) 12) (($ (-619 |#2|)) NIL)) (-2274 (($ $) 14)) (-3846 (($ (-619 |#2|)) 10)) (-3838 (((-832) $) 21)))
-(((-226 |#1| |#2|) (-10 -8 (-15 -3838 ((-832) |#1|)) (-15 -2699 (|#1| (-619 |#2|))) (-15 -2699 (|#1|)) (-15 -3846 (|#1| (-619 |#2|))) (-15 -2274 (|#1| |#1|))) (-227 |#2|) (-1063)) (T -226))
-NIL
-(-10 -8 (-15 -3838 ((-832) |#1|)) (-15 -2699 (|#1| (-619 |#2|))) (-15 -2699 (|#1|)) (-15 -3846 (|#1| (-619 |#2|))) (-15 -2274 (|#1| |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) 8)) (-4285 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-3668 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1513 (($ |#1| $) 47 (|has| $ (-6 -4329))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4329)))) (-3803 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4329)))) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-4266 ((|#1| $) 39)) (-2657 (($ |#1| $) 40)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2056 ((|#1| $) 41)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-2699 (($) 49) (($ (-619 |#1|)) 48)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-2838 (((-523) $) 59 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 50)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2300 (($ (-619 |#1|)) 42)) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-227 |#1|) (-138) (-1063)) (T -227))
-((-2699 (*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1063)))) (-2699 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-227 *3)))) (-1513 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-227 *2)) (-4 *2 (-1063)))) (-1513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4329)) (-4 *1 (-227 *3)) (-4 *3 (-1063)))) (-4285 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4329)) (-4 *1 (-227 *3)) (-4 *3 (-1063)))))
-(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -2699 ($)) (-15 -2699 ($ (-619 |t#1|))) (IF (|has| $ (-6 -4329)) (PROGN (-15 -1513 ($ |t#1| $)) (-15 -1513 ($ (-1 (-112) |t#1|) $)) (-15 -4285 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-1338 (((-2 (|:| |varOrder| (-619 (-1136))) (|:| |inhom| (-3 (-619 (-1219 (-745))) "failed")) (|:| |hom| (-619 (-1219 (-745))))) (-285 (-921 (-547)))) 27)))
-(((-228) (-10 -7 (-15 -1338 ((-2 (|:| |varOrder| (-619 (-1136))) (|:| |inhom| (-3 (-619 (-1219 (-745))) "failed")) (|:| |hom| (-619 (-1219 (-745))))) (-285 (-921 (-547))))))) (T -228))
-((-1338 (*1 *2 *3) (-12 (-5 *3 (-285 (-921 (-547)))) (-5 *2 (-2 (|:| |varOrder| (-619 (-1136))) (|:| |inhom| (-3 (-619 (-1219 (-745))) "failed")) (|:| |hom| (-619 (-1219 (-745)))))) (-5 *1 (-228)))))
-(-10 -7 (-15 -1338 ((-2 (|:| |varOrder| (-619 (-1136))) (|:| |inhom| (-3 (-619 (-1219 (-745))) "failed")) (|:| |hom| (-619 (-1219 (-745))))) (-285 (-921 (-547))))))
-((-3608 (((-745)) 51)) (-1694 (((-2 (|:| -1877 (-663 |#3|)) (|:| |vec| (-1219 |#3|))) (-663 $) (-1219 $)) 49) (((-663 |#3|) (-663 $)) 41) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL) (((-663 (-547)) (-663 $)) NIL)) (-3970 (((-133)) 57)) (-3448 (($ $ (-1 |#3| |#3|) (-745)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-3838 (((-1219 |#3|) $) NIL) (($ |#3|) NIL) (((-832) $) NIL) (($ (-547)) 12) (($ (-398 (-547))) NIL)) (-2736 (((-745)) 15)) (-2506 (($ $ |#3|) 54)))
-(((-229 |#1| |#2| |#3|) (-10 -8 (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|)) (-15 -2736 ((-745))) (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -1694 ((-663 (-547)) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 |#1|) (-1219 |#1|))) (-15 -3838 (|#1| |#3|)) (-15 -3448 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3448 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -1694 ((-663 |#3|) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 |#3|)) (|:| |vec| (-1219 |#3|))) (-663 |#1|) (-1219 |#1|))) (-15 -3608 ((-745))) (-15 -2506 (|#1| |#1| |#3|)) (-15 -3970 ((-133))) (-15 -3838 ((-1219 |#3|) |#1|))) (-230 |#2| |#3|) (-745) (-1173)) (T -229))
-((-3970 (*1 *2) (-12 (-14 *4 (-745)) (-4 *5 (-1173)) (-5 *2 (-133)) (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))) (-3608 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1173)) (-5 *2 (-745)) (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))) (-2736 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1173)) (-5 *2 (-745)) (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))))
-(-10 -8 (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|)) (-15 -2736 ((-745))) (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -1694 ((-663 (-547)) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 |#1|) (-1219 |#1|))) (-15 -3838 (|#1| |#3|)) (-15 -3448 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3448 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -1694 ((-663 |#3|) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 |#3|)) (|:| |vec| (-1219 |#3|))) (-663 |#1|) (-1219 |#1|))) (-15 -3608 ((-745))) (-15 -2506 (|#1| |#1| |#3|)) (-15 -3970 ((-133))) (-15 -3838 ((-1219 |#3|) |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#2| (-1063)))) (-1499 (((-112) $) 72 (|has| |#2| (-130)))) (-4289 (($ (-890)) 125 (|has| |#2| (-1016)))) (-1652 (((-1224) $ (-547) (-547)) 40 (|has| $ (-6 -4330)))) (-2794 (($ $ $) 121 (|has| |#2| (-767)))) (-3672 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-3899 (((-112) $ (-745)) 8)) (-3608 (((-745)) 107 (|has| |#2| (-359)))) (-2500 (((-547) $) 119 (|has| |#2| (-819)))) (-2247 ((|#2| $ (-547) |#2|) 52 (|has| $ (-6 -4330)))) (-1948 (($) 7 T CONST)) (-2707 (((-3 (-547) "failed") $) 67 (-1814 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-3 (-398 (-547)) "failed") $) 64 (-1814 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1063)))) (-2652 (((-547) $) 68 (-1814 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-398 (-547)) $) 65 (-1814 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) ((|#2| $) 60 (|has| |#2| (-1063)))) (-1694 (((-663 (-547)) (-663 $)) 106 (-1814 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 105 (-1814 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) 104 (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) 103 (|has| |#2| (-1016)))) (-3855 (((-3 $ "failed") $) 79 (|has| |#2| (-701)))) (-3232 (($) 110 (|has| |#2| (-359)))) (-1872 ((|#2| $ (-547) |#2|) 53 (|has| $ (-6 -4330)))) (-1802 ((|#2| $ (-547)) 51)) (-4270 (((-112) $) 117 (|has| |#2| (-819)))) (-2982 (((-619 |#2|) $) 30 (|has| $ (-6 -4329)))) (-2261 (((-112) $) 81 (|has| |#2| (-701)))) (-1860 (((-112) $) 118 (|has| |#2| (-819)))) (-2763 (((-112) $ (-745)) 9)) (-2434 (((-547) $) 43 (|has| (-547) (-821)))) (-2856 (($ $ $) 116 (-1530 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2284 (((-619 |#2|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 44 (|has| (-547) (-821)))) (-3567 (($ $ $) 115 (-1530 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-1859 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#2| |#2|) $) 35)) (-2402 (((-890) $) 109 (|has| |#2| (-359)))) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#2| (-1063)))) (-2121 (((-619 (-547)) $) 46)) (-2018 (((-112) (-547) $) 47)) (-3487 (($ (-890)) 108 (|has| |#2| (-359)))) (-3979 (((-1082) $) 21 (|has| |#2| (-1063)))) (-3638 ((|#2| $) 42 (|has| (-547) (-821)))) (-3632 (($ $ |#2|) 41 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#2|))) 26 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) 25 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 23 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2987 (((-619 |#2|) $) 48)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#2| $ (-547) |#2|) 50) ((|#2| $ (-547)) 49)) (-4117 ((|#2| $ $) 124 (|has| |#2| (-1016)))) (-2162 (($ (-1219 |#2|)) 126)) (-3970 (((-133)) 123 (|has| |#2| (-354)))) (-3448 (($ $) 98 (-1814 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) 96 (-1814 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1136)) 94 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136))) 93 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1136) (-745)) 92 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136)) (-619 (-745))) 91 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) 84 (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1016)))) (-3992 (((-745) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4329))) (((-745) |#2| $) 28 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3838 (((-1219 |#2|) $) 127) (($ (-547)) 66 (-1530 (-1814 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-398 (-547))) 63 (-1814 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (($ |#2|) 62 (|has| |#2| (-1063))) (((-832) $) 18 (|has| |#2| (-591 (-832))))) (-2736 (((-745)) 102 (|has| |#2| (-1016)))) (-2693 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4329)))) (-2255 (($ $) 120 (|has| |#2| (-819)))) (-3269 (($) 71 (|has| |#2| (-130)) CONST)) (-3281 (($) 82 (|has| |#2| (-701)) CONST)) (-1695 (($ $) 97 (-1814 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) 95 (-1814 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1136)) 90 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136))) 89 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1136) (-745)) 88 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136)) (-619 (-745))) 87 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) 86 (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1016)))) (-2441 (((-112) $ $) 113 (-1530 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2418 (((-112) $ $) 112 (-1530 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2381 (((-112) $ $) 20 (|has| |#2| (-1063)))) (-2430 (((-112) $ $) 114 (-1530 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2405 (((-112) $ $) 111 (-1530 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2506 (($ $ |#2|) 122 (|has| |#2| (-354)))) (-2493 (($ $ $) 100 (|has| |#2| (-1016))) (($ $) 99 (|has| |#2| (-1016)))) (-2479 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-745)) 80 (|has| |#2| (-701))) (($ $ (-890)) 77 (|has| |#2| (-701)))) (* (($ (-547) $) 101 (|has| |#2| (-1016))) (($ $ $) 78 (|has| |#2| (-701))) (($ $ |#2|) 76 (|has| |#2| (-701))) (($ |#2| $) 75 (|has| |#2| (-701))) (($ (-745) $) 73 (|has| |#2| (-130))) (($ (-890) $) 70 (|has| |#2| (-25)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-230 |#1| |#2|) (-138) (-745) (-1173)) (T -230))
-((-2162 (*1 *1 *2) (-12 (-5 *2 (-1219 *4)) (-4 *4 (-1173)) (-4 *1 (-230 *3 *4)))) (-4289 (*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-230 *3 *4)) (-4 *4 (-1016)) (-4 *4 (-1173)))) (-4117 (*1 *2 *1 *1) (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1173)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1173)) (-4 *2 (-701)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1173)) (-4 *2 (-701)))))
-(-13 (-582 (-547) |t#2|) (-591 (-1219 |t#2|)) (-10 -8 (-6 -4329) (-15 -2162 ($ (-1219 |t#2|))) (IF (|has| |t#2| (-1063)) (-6 (-402 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1016)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-223 |t#2|)) (-6 (-368 |t#2|)) (-15 -4289 ($ (-890))) (-15 -4117 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-701)) (PROGN (-6 (-701)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-359)) (-6 (-359)) |%noBranch|) (IF (|has| |t#2| (-169)) (PROGN (-6 (-38 |t#2|)) (-6 (-169))) |%noBranch|) (IF (|has| |t#2| (-6 -4326)) (-6 -4326) |%noBranch|) (IF (|has| |t#2| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |t#2| (-767)) (-6 (-767)) |%noBranch|) (IF (|has| |t#2| (-354)) (-6 (-1226 |t#2|)) |%noBranch|)))
-(((-21) -1530 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-354)) (|has| |#2| (-169))) ((-23) -1530 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-354)) (|has| |#2| (-169)) (|has| |#2| (-130))) ((-25) -1530 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-354)) (|has| |#2| (-169)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) -1530 (|has| |#2| (-1063)) (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-701)) (|has| |#2| (-359)) (|has| |#2| (-354)) (|has| |#2| (-169)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -1530 (|has| |#2| (-1016)) (|has| |#2| (-354)) (|has| |#2| (-169))) ((-111 $ $) |has| |#2| (-169)) ((-130) -1530 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-354)) (|has| |#2| (-169)) (|has| |#2| (-130))) ((-591 (-832)) -1530 (|has| |#2| (-1063)) (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-701)) (|has| |#2| (-359)) (|has| |#2| (-354)) (|has| |#2| (-169)) (|has| |#2| (-591 (-832))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-591 (-1219 |#2|)) . T) ((-169) |has| |#2| (-169)) ((-223 |#2|) |has| |#2| (-1016)) ((-225) -12 (|has| |#2| (-225)) (|has| |#2| (-1016))) ((-277 #0=(-547) |#2|) . T) ((-279 #0# |#2|) . T) ((-300 |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-359) |has| |#2| (-359)) ((-368 |#2|) |has| |#2| (-1016)) ((-402 |#2|) |has| |#2| (-1063)) ((-479 |#2|) . T) ((-582 #0# |#2|) . T) ((-503 |#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-622 |#2|) -1530 (|has| |#2| (-1016)) (|has| |#2| (-354)) (|has| |#2| (-169))) ((-622 $) -1530 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-169))) ((-615 (-547)) -12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016))) ((-615 |#2|) |has| |#2| (-1016)) ((-692 |#2|) -1530 (|has| |#2| (-354)) (|has| |#2| (-169))) ((-701) -1530 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-701)) (|has| |#2| (-169))) ((-765) |has| |#2| (-819)) ((-766) -1530 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-767) |has| |#2| (-767)) ((-768) -1530 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-769) -1530 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-819) |has| |#2| (-819)) ((-821) -1530 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-869 (-1136)) -12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016))) ((-1007 (-398 (-547))) -12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063))) ((-1007 (-547)) -12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) ((-1007 |#2|) |has| |#2| (-1063)) ((-1022 |#2|) -1530 (|has| |#2| (-1016)) (|has| |#2| (-354)) (|has| |#2| (-169))) ((-1022 $) |has| |#2| (-169)) ((-1016) -1530 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-169))) ((-1023) -1530 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-169))) ((-1075) -1530 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-701)) (|has| |#2| (-169))) ((-1063) -1530 (|has| |#2| (-1063)) (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-701)) (|has| |#2| (-359)) (|has| |#2| (-354)) (|has| |#2| (-169)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1173) . T) ((-1226 |#2|) |has| |#2| (-354)))
-((-2816 (((-232 |#1| |#3|) (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|) 21)) (-2552 ((|#3| (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|) 23)) (-2790 (((-232 |#1| |#3|) (-1 |#3| |#2|) (-232 |#1| |#2|)) 18)))
-(((-231 |#1| |#2| |#3|) (-10 -7 (-15 -2816 ((-232 |#1| |#3|) (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|)) (-15 -2552 (|#3| (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|)) (-15 -2790 ((-232 |#1| |#3|) (-1 |#3| |#2|) (-232 |#1| |#2|)))) (-745) (-1173) (-1173)) (T -231))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-232 *5 *6)) (-14 *5 (-745)) (-4 *6 (-1173)) (-4 *7 (-1173)) (-5 *2 (-232 *5 *7)) (-5 *1 (-231 *5 *6 *7)))) (-2552 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-232 *5 *6)) (-14 *5 (-745)) (-4 *6 (-1173)) (-4 *2 (-1173)) (-5 *1 (-231 *5 *6 *2)))) (-2816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-232 *6 *7)) (-14 *6 (-745)) (-4 *7 (-1173)) (-4 *5 (-1173)) (-5 *2 (-232 *6 *5)) (-5 *1 (-231 *6 *7 *5)))))
-(-10 -7 (-15 -2816 ((-232 |#1| |#3|) (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|)) (-15 -2552 (|#3| (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|)) (-15 -2790 ((-232 |#1| |#3|) (-1 |#3| |#2|) (-232 |#1| |#2|))))
-((-3826 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-1499 (((-112) $) NIL (|has| |#2| (-130)))) (-4289 (($ (-890)) 56 (|has| |#2| (-1016)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2794 (($ $ $) 60 (|has| |#2| (-767)))) (-3672 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-3899 (((-112) $ (-745)) 17)) (-3608 (((-745)) NIL (|has| |#2| (-359)))) (-2500 (((-547) $) NIL (|has| |#2| (-819)))) (-2247 ((|#2| $ (-547) |#2|) NIL (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1063)))) (-2652 (((-547) $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-398 (-547)) $) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) ((|#2| $) 27 (|has| |#2| (-1063)))) (-1694 (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) NIL (|has| |#2| (-1016)))) (-3855 (((-3 $ "failed") $) 53 (|has| |#2| (-701)))) (-3232 (($) NIL (|has| |#2| (-359)))) (-1872 ((|#2| $ (-547) |#2|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#2| $ (-547)) 51)) (-4270 (((-112) $) NIL (|has| |#2| (-819)))) (-2982 (((-619 |#2|) $) 15 (|has| $ (-6 -4329)))) (-2261 (((-112) $) NIL (|has| |#2| (-701)))) (-1860 (((-112) $) NIL (|has| |#2| (-819)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) 20 (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2284 (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-1416 (((-547) $) 50 (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-1859 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#2| |#2|) $) 41)) (-2402 (((-890) $) NIL (|has| |#2| (-359)))) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#2| (-1063)))) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3487 (($ (-890)) NIL (|has| |#2| (-359)))) (-3979 (((-1082) $) NIL (|has| |#2| (-1063)))) (-3638 ((|#2| $) NIL (|has| (-547) (-821)))) (-3632 (($ $ |#2|) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2987 (((-619 |#2|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#2| $ (-547) |#2|) NIL) ((|#2| $ (-547)) 21)) (-4117 ((|#2| $ $) NIL (|has| |#2| (-1016)))) (-2162 (($ (-1219 |#2|)) 18)) (-3970 (((-133)) NIL (|has| |#2| (-354)))) (-3448 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1136)) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-3992 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-1219 |#2|) $) 10) (($ (-547)) NIL (-1530 (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-398 (-547))) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (($ |#2|) 13 (|has| |#2| (-1063))) (((-832) $) NIL (|has| |#2| (-591 (-832))))) (-2736 (((-745)) NIL (|has| |#2| (-1016)))) (-2693 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2255 (($ $) NIL (|has| |#2| (-819)))) (-3269 (($) 35 (|has| |#2| (-130)) CONST)) (-3281 (($) 38 (|has| |#2| (-701)) CONST)) (-1695 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1136)) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-2441 (((-112) $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2418 (((-112) $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2381 (((-112) $ $) 26 (|has| |#2| (-1063)))) (-2430 (((-112) $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2405 (((-112) $ $) 58 (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2506 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2493 (($ $ $) NIL (|has| |#2| (-1016))) (($ $) NIL (|has| |#2| (-1016)))) (-2479 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-745)) NIL (|has| |#2| (-701))) (($ $ (-890)) NIL (|has| |#2| (-701)))) (* (($ (-547) $) NIL (|has| |#2| (-1016))) (($ $ $) 44 (|has| |#2| (-701))) (($ $ |#2|) 42 (|has| |#2| (-701))) (($ |#2| $) 43 (|has| |#2| (-701))) (($ (-745) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-232 |#1| |#2|) (-230 |#1| |#2|) (-745) (-1173)) (T -232))
-NIL
-(-230 |#1| |#2|)
-((-4128 (((-547) (-619 (-1119))) 24) (((-547) (-1119)) 19)) (-2415 (((-1224) (-619 (-1119))) 29) (((-1224) (-1119)) 28)) (-1261 (((-1119)) 14)) (-3067 (((-1119) (-547) (-1119)) 16)) (-2591 (((-619 (-1119)) (-619 (-1119)) (-547) (-1119)) 25) (((-1119) (-1119) (-547) (-1119)) 23)) (-3267 (((-619 (-1119)) (-619 (-1119))) 13) (((-619 (-1119)) (-1119)) 11)))
-(((-233) (-10 -7 (-15 -3267 ((-619 (-1119)) (-1119))) (-15 -3267 ((-619 (-1119)) (-619 (-1119)))) (-15 -1261 ((-1119))) (-15 -3067 ((-1119) (-547) (-1119))) (-15 -2591 ((-1119) (-1119) (-547) (-1119))) (-15 -2591 ((-619 (-1119)) (-619 (-1119)) (-547) (-1119))) (-15 -2415 ((-1224) (-1119))) (-15 -2415 ((-1224) (-619 (-1119)))) (-15 -4128 ((-547) (-1119))) (-15 -4128 ((-547) (-619 (-1119)))))) (T -233))
-((-4128 (*1 *2 *3) (-12 (-5 *3 (-619 (-1119))) (-5 *2 (-547)) (-5 *1 (-233)))) (-4128 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-547)) (-5 *1 (-233)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-619 (-1119))) (-5 *2 (-1224)) (-5 *1 (-233)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-233)))) (-2591 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-619 (-1119))) (-5 *3 (-547)) (-5 *4 (-1119)) (-5 *1 (-233)))) (-2591 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1119)) (-5 *3 (-547)) (-5 *1 (-233)))) (-3067 (*1 *2 *3 *2) (-12 (-5 *2 (-1119)) (-5 *3 (-547)) (-5 *1 (-233)))) (-1261 (*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-233)))) (-3267 (*1 *2 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-233)))) (-3267 (*1 *2 *3) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-233)) (-5 *3 (-1119)))))
-(-10 -7 (-15 -3267 ((-619 (-1119)) (-1119))) (-15 -3267 ((-619 (-1119)) (-619 (-1119)))) (-15 -1261 ((-1119))) (-15 -3067 ((-1119) (-547) (-1119))) (-15 -2591 ((-1119) (-1119) (-547) (-1119))) (-15 -2591 ((-619 (-1119)) (-619 (-1119)) (-547) (-1119))) (-15 -2415 ((-1224) (-1119))) (-15 -2415 ((-1224) (-619 (-1119)))) (-15 -4128 ((-547) (-1119))) (-15 -4128 ((-547) (-619 (-1119)))))
-((** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 16)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ (-398 (-547)) $) 23) (($ $ (-398 (-547))) NIL)))
-(((-234 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-547))) (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-235)) (T -234))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-547))) (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 37)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 41)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 38)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ (-398 (-547)) $) 40) (($ $ (-398 (-547))) 39)))
-(((-235) (-138)) (T -235))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-235)) (-5 *2 (-547)))) (-1984 (*1 *1 *1) (-4 *1 (-235))))
-(-13 (-281) (-38 (-398 (-547))) (-10 -8 (-15 ** ($ $ (-547))) (-15 -1984 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-281) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-701) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4153 ((|#1| $) 48)) (-1336 (($ $) 57)) (-3899 (((-112) $ (-745)) 8)) (-1986 ((|#1| $ |#1|) 39 (|has| $ (-6 -4330)))) (-1874 (($ $ $) 53 (|has| $ (-6 -4330)))) (-1688 (($ $ $) 52 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) 41 (|has| $ (-6 -4330)))) (-1948 (($) 7 T CONST)) (-1973 (($ $) 56)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) 50)) (-2554 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3039 (($ $) 55)) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-3583 (((-619 |#1|) $) 45)) (-1489 (((-112) $) 49)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-3820 ((|#1| $) 59)) (-1775 (($ $) 58)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ "value") 47)) (-2857 (((-547) $ $) 44)) (-1850 (((-112) $) 46)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3794 (($ $ $) 54 (|has| $ (-6 -4330)))) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) 51)) (-1421 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-236 |#1|) (-138) (-1173)) (T -236))
-((-3820 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1173)))) (-1775 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1173)))) (-1336 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1173)))) (-1973 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1173)))) (-3039 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1173)))) (-3794 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-236 *2)) (-4 *2 (-1173)))) (-1874 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-236 *2)) (-4 *2 (-1173)))) (-1688 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-236 *2)) (-4 *2 (-1173)))))
-(-13 (-979 |t#1|) (-10 -8 (-15 -3820 (|t#1| $)) (-15 -1775 ($ $)) (-15 -1336 ($ $)) (-15 -1973 ($ $)) (-15 -3039 ($ $)) (IF (|has| $ (-6 -4330)) (PROGN (-15 -3794 ($ $ $)) (-15 -1874 ($ $ $)) (-15 -1688 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4153 ((|#1| $) NIL)) (-2832 ((|#1| $) NIL)) (-1336 (($ $) NIL)) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2165 (($ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) $) NIL (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2809 (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| |#1| (-821)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-3185 (($ $) 10 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1986 ((|#1| $ |#1|) NIL (|has| $ (-6 -4330)))) (-2272 (($ $ $) NIL (|has| $ (-6 -4330)))) (-3200 ((|#1| $ |#1|) NIL (|has| $ (-6 -4330)))) (-4086 ((|#1| $ |#1|) NIL (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4330))) (($ $ "rest" $) NIL (|has| $ (-6 -4330))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) NIL (|has| $ (-6 -4330)))) (-4285 (($ (-1 (-112) |#1|) $) NIL)) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2823 ((|#1| $) NIL)) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-3649 (($ $) NIL) (($ $ (-745)) NIL)) (-2968 (($ $) NIL (|has| |#1| (-1063)))) (-3668 (($ $) 7 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1513 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3803 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1872 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) NIL)) (-2963 (((-112) $) NIL)) (-2876 (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063))) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) (-1 (-112) |#1|) $) NIL)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) NIL)) (-2554 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3735 (($ (-745) |#1|) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3145 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2777 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3517 (($ |#1|) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-3583 (((-619 |#1|) $) NIL)) (-1489 (((-112) $) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3820 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2657 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-2606 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3638 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3632 (($ $ |#1|) NIL (|has| $ (-6 -4330)))) (-1884 (((-112) $) NIL)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1186 (-547))) NIL) ((|#1| $ (-547)) NIL) ((|#1| $ (-547) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-745) $ "count") 16)) (-2857 (((-547) $ $) NIL)) (-2649 (($ $ (-1186 (-547))) NIL) (($ $ (-547)) NIL)) (-2159 (($ $ (-1186 (-547))) NIL) (($ $ (-547)) NIL)) (-3074 (($ (-619 |#1|)) 22)) (-1850 (((-112) $) NIL)) (-2005 (($ $) NIL)) (-2632 (($ $) NIL (|has| $ (-6 -4330)))) (-1749 (((-745) $) NIL)) (-2016 (($ $) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) NIL)) (-3794 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1945 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-619 $)) NIL) (($ $ |#1|) NIL)) (-3838 (($ (-619 |#1|)) 17) (((-619 |#1|) $) 18) (((-832) $) 21 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) NIL)) (-1421 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3767 (((-745) $) 14 (|has| $ (-6 -4329)))))
-(((-237 |#1|) (-13 (-640 |#1|) (-10 -8 (-15 -3838 ($ (-619 |#1|))) (-15 -3838 ((-619 |#1|) $)) (-15 -3074 ($ (-619 |#1|))) (-15 -3334 ($ $ "unique")) (-15 -3334 ($ $ "sort")) (-15 -3334 ((-745) $ "count")))) (-821)) (T -237))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-237 *3)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-237 *3)) (-4 *3 (-821)))) (-3074 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-237 *3)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-237 *3)) (-4 *3 (-821)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-237 *3)) (-4 *3 (-821)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-745)) (-5 *1 (-237 *4)) (-4 *4 (-821)))))
-(-13 (-640 |#1|) (-10 -8 (-15 -3838 ($ (-619 |#1|))) (-15 -3838 ((-619 |#1|) $)) (-15 -3074 ($ (-619 |#1|))) (-15 -3334 ($ $ "unique")) (-15 -3334 ($ $ "sort")) (-15 -3334 ((-745) $ "count"))))
-((-2186 (((-3 (-745) "failed") |#1| |#1| (-745)) 27)))
-(((-238 |#1|) (-10 -7 (-15 -2186 ((-3 (-745) "failed") |#1| |#1| (-745)))) (-13 (-701) (-359) (-10 -7 (-15 ** (|#1| |#1| (-547)))))) (T -238))
-((-2186 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-745)) (-4 *3 (-13 (-701) (-359) (-10 -7 (-15 ** (*3 *3 (-547)))))) (-5 *1 (-238 *3)))))
-(-10 -7 (-15 -2186 ((-3 (-745) "failed") |#1| |#1| (-745))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2267 (((-619 (-834 |#1|)) $) NIL)) (-2078 (((-1132 $) $ (-834 |#1|)) NIL) (((-1132 |#2|) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#2| (-539)))) (-3571 (($ $) NIL (|has| |#2| (-539)))) (-3915 (((-112) $) NIL (|has| |#2| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 (-834 |#1|))) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-2555 (($ $) NIL (|has| |#2| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#2| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2652 ((|#2| $) NIL) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-834 |#1|) $) NIL)) (-1496 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3055 (($ $ (-619 (-547))) NIL)) (-2063 (($ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#2| (-878)))) (-3210 (($ $ |#2| (-232 (-3767 |#1|) (-745)) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-2254 (($ (-1132 |#2|) (-834 |#1|)) NIL) (($ (-1132 $) (-834 |#1|)) NIL)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#2| (-232 (-3767 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ (-834 |#1|)) NIL)) (-3095 (((-232 (-3767 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2856 (($ $ $) NIL (|has| |#2| (-821)))) (-3567 (($ $ $) NIL (|has| |#2| (-821)))) (-4182 (($ (-1 (-232 (-3767 |#1|) (-745)) (-232 (-3767 |#1|) (-745))) $) NIL)) (-2790 (($ (-1 |#2| |#2|) $) NIL)) (-1631 (((-3 (-834 |#1|) "failed") $) NIL)) (-2019 (($ $) NIL)) (-2037 ((|#2| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-1466 (((-1119) $) NIL)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -3322 (-745))) "failed") $) NIL)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) NIL)) (-2009 ((|#2| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#2| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#2| (-878)))) (-2032 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-539)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) NIL) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) NIL) (($ $ (-834 |#1|) $) NIL) (($ $ (-619 (-834 |#1|)) (-619 $)) NIL)) (-4056 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3448 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-3705 (((-232 (-3767 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-834 |#1|) (-592 (-523))) (|has| |#2| (-592 (-523)))))) (-2392 ((|#2| $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) NIL) (($ (-834 |#1|)) NIL) (($ (-398 (-547))) NIL (-1530 (|has| |#2| (-38 (-398 (-547)))) (|has| |#2| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#2| (-539)))) (-1277 (((-619 |#2|) $) NIL)) (-2450 ((|#2| $ (-232 (-3767 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#2| (-539)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2441 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2506 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#2| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#2| (-38 (-398 (-547))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-239 |#1| |#2|) (-13 (-918 |#2| (-232 (-3767 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -3055 ($ $ (-619 (-547)))))) (-619 (-1136)) (-1016)) (T -239))
-((-3055 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-239 *3 *4)) (-14 *3 (-619 (-1136))) (-4 *4 (-1016)))))
-(-13 (-918 |#2| (-232 (-3767 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -3055 ($ $ (-619 (-547))))))
-((-3826 (((-112) $ $) NIL)) (-2740 (((-1224) $) 15)) (-2870 (((-179) $) 9)) (-1377 (($ (-179)) 10)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 7)) (-2381 (((-112) $ $) 13)))
-(((-240) (-13 (-1063) (-10 -8 (-15 -2870 ((-179) $)) (-15 -1377 ($ (-179))) (-15 -2740 ((-1224) $))))) (T -240))
-((-2870 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-240)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-240)))) (-2740 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-240)))))
-(-13 (-1063) (-10 -8 (-15 -2870 ((-179) $)) (-15 -1377 ($ (-179))) (-15 -2740 ((-1224) $))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-4289 (($ (-890)) NIL (|has| |#4| (-1016)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2794 (($ $ $) NIL (|has| |#4| (-767)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-3608 (((-745)) NIL (|has| |#4| (-359)))) (-2500 (((-547) $) NIL (|has| |#4| (-819)))) (-2247 ((|#4| $ (-547) |#4|) NIL (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1063))) (((-3 (-547) "failed") $) NIL (-12 (|has| |#4| (-1007 (-547))) (|has| |#4| (-1063)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#4| (-1007 (-398 (-547)))) (|has| |#4| (-1063))))) (-2652 ((|#4| $) NIL (|has| |#4| (-1063))) (((-547) $) NIL (-12 (|has| |#4| (-1007 (-547))) (|has| |#4| (-1063)))) (((-398 (-547)) $) NIL (-12 (|has| |#4| (-1007 (-398 (-547)))) (|has| |#4| (-1063))))) (-1694 (((-2 (|:| -1877 (-663 |#4|)) (|:| |vec| (-1219 |#4|))) (-663 $) (-1219 $)) NIL (|has| |#4| (-1016))) (((-663 |#4|) (-663 $)) NIL (|has| |#4| (-1016))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016)))) (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))))) (-3855 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))))) (-3232 (($) NIL (|has| |#4| (-359)))) (-1872 ((|#4| $ (-547) |#4|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#4| $ (-547)) NIL)) (-4270 (((-112) $) NIL (|has| |#4| (-819)))) (-2982 (((-619 |#4|) $) NIL (|has| $ (-6 -4329)))) (-2261 (((-112) $) NIL (-1530 (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))))) (-1860 (((-112) $) NIL (|has| |#4| (-819)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (-1530 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2284 (((-619 |#4|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (-1530 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-1859 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#4| |#4|) $) NIL)) (-2402 (((-890) $) NIL (|has| |#4| (-359)))) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3487 (($ (-890)) NIL (|has| |#4| (-359)))) (-3979 (((-1082) $) NIL)) (-3638 ((|#4| $) NIL (|has| (-547) (-821)))) (-3632 (($ $ |#4|) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#4|))) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-2987 (((-619 |#4|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#4| $ (-547) |#4|) NIL) ((|#4| $ (-547)) 12)) (-4117 ((|#4| $ $) NIL (|has| |#4| (-1016)))) (-2162 (($ (-1219 |#4|)) NIL)) (-3970 (((-133)) NIL (|has| |#4| (-354)))) (-3448 (($ $ (-1 |#4| |#4|) (-745)) NIL (|has| |#4| (-1016))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1016))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))) (($ $ (-1136)) NIL (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#4| (-225)) (|has| |#4| (-1016)))) (($ $) NIL (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))))) (-3992 (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329))) (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-1219 |#4|) $) NIL) (((-832) $) NIL) (($ |#4|) NIL (|has| |#4| (-1063))) (($ (-547)) NIL (-1530 (-12 (|has| |#4| (-1007 (-547))) (|has| |#4| (-1063))) (|has| |#4| (-1016)))) (($ (-398 (-547))) NIL (-12 (|has| |#4| (-1007 (-398 (-547)))) (|has| |#4| (-1063))))) (-2736 (((-745)) NIL (|has| |#4| (-1016)))) (-2693 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2255 (($ $) NIL (|has| |#4| (-819)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL (-1530 (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))) CONST)) (-1695 (($ $ (-1 |#4| |#4|) (-745)) NIL (|has| |#4| (-1016))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1016))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))) (($ $ (-1136)) NIL (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#4| (-225)) (|has| |#4| (-1016)))) (($ $) NIL (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))))) (-2441 (((-112) $ $) NIL (-1530 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2418 (((-112) $ $) NIL (-1530 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (-1530 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2405 (((-112) $ $) NIL (-1530 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2506 (($ $ |#4|) NIL (|has| |#4| (-354)))) (-2493 (($ $ $) NIL) (($ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-745)) NIL (-1530 (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016))))) (($ $ (-890)) NIL (-1530 (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))))) (* (($ |#2| $) 14) (($ (-547) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-701))) (($ |#4| $) NIL (|has| |#4| (-701))) (($ $ $) NIL (-1530 (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1136))) (|has| |#4| (-1016)))))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-241 |#1| |#2| |#3| |#4|) (-13 (-230 |#1| |#4|) (-622 |#2|) (-622 |#3|)) (-890) (-1016) (-1085 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-622 |#2|)) (T -241))
-NIL
-(-13 (-230 |#1| |#4|) (-622 |#2|) (-622 |#3|))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-4289 (($ (-890)) NIL (|has| |#3| (-1016)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2794 (($ $ $) NIL (|has| |#3| (-767)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-3608 (((-745)) NIL (|has| |#3| (-359)))) (-2500 (((-547) $) NIL (|has| |#3| (-819)))) (-2247 ((|#3| $ (-547) |#3|) NIL (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1063))) (((-3 (-547) "failed") $) NIL (-12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063))))) (-2652 ((|#3| $) NIL (|has| |#3| (-1063))) (((-547) $) NIL (-12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063)))) (((-398 (-547)) $) NIL (-12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063))))) (-1694 (((-2 (|:| -1877 (-663 |#3|)) (|:| |vec| (-1219 |#3|))) (-663 $) (-1219 $)) NIL (|has| |#3| (-1016))) (((-663 |#3|) (-663 $)) NIL (|has| |#3| (-1016))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016)))) (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))))) (-3855 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))))) (-3232 (($) NIL (|has| |#3| (-359)))) (-1872 ((|#3| $ (-547) |#3|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#3| $ (-547)) NIL)) (-4270 (((-112) $) NIL (|has| |#3| (-819)))) (-2982 (((-619 |#3|) $) NIL (|has| $ (-6 -4329)))) (-2261 (((-112) $) NIL (-1530 (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))))) (-1860 (((-112) $) NIL (|has| |#3| (-819)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (-1530 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2284 (((-619 |#3|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#3| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (-1530 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-1859 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#3| |#3|) $) NIL)) (-2402 (((-890) $) NIL (|has| |#3| (-359)))) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3487 (($ (-890)) NIL (|has| |#3| (-359)))) (-3979 (((-1082) $) NIL)) (-3638 ((|#3| $) NIL (|has| (-547) (-821)))) (-3632 (($ $ |#3|) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#3|))) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-285 |#3|)) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 |#3|) (-619 |#3|)) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#3| (-1063))))) (-2987 (((-619 |#3|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#3| $ (-547) |#3|) NIL) ((|#3| $ (-547)) 11)) (-4117 ((|#3| $ $) NIL (|has| |#3| (-1016)))) (-2162 (($ (-1219 |#3|)) NIL)) (-3970 (((-133)) NIL (|has| |#3| (-354)))) (-3448 (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-1136)) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))) (($ $) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))))) (-3992 (((-745) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4329))) (((-745) |#3| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#3| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-1219 |#3|) $) NIL) (((-832) $) NIL) (($ |#3|) NIL (|has| |#3| (-1063))) (($ (-547)) NIL (-1530 (-12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063))) (|has| |#3| (-1016)))) (($ (-398 (-547))) NIL (-12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063))))) (-2736 (((-745)) NIL (|has| |#3| (-1016)))) (-2693 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4329)))) (-2255 (($ $) NIL (|has| |#3| (-819)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL (-1530 (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) CONST)) (-1695 (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-1136)) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))) (($ $) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))))) (-2441 (((-112) $ $) NIL (-1530 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2418 (((-112) $ $) NIL (-1530 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (-1530 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2405 (((-112) $ $) NIL (-1530 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2506 (($ $ |#3|) NIL (|has| |#3| (-354)))) (-2493 (($ $ $) NIL) (($ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-745)) NIL (-1530 (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016))))) (($ $ (-890)) NIL (-1530 (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))))) (* (($ |#2| $) 13) (($ (-547) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-701))) (($ |#3| $) NIL (|has| |#3| (-701))) (($ $ $) NIL (-1530 (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-242 |#1| |#2| |#3|) (-13 (-230 |#1| |#3|) (-622 |#2|)) (-745) (-1016) (-622 |#2|)) (T -242))
-NIL
-(-13 (-230 |#1| |#3|) (-622 |#2|))
-((-3839 (((-619 (-745)) $) 47) (((-619 (-745)) $ |#3|) 50)) (-2601 (((-745) $) 49) (((-745) $ |#3|) 52)) (-2234 (($ $) 65)) (-2707 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 (-547) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3275 (((-745) $ |#3|) 39) (((-745) $) 36)) (-2026 (((-1 $ (-745)) |#3|) 15) (((-1 $ (-745)) $) 77)) (-4044 ((|#4| $) 58)) (-2578 (((-112) $) 56)) (-2250 (($ $) 64)) (-2679 (($ $ (-619 (-285 $))) 97) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-619 |#4|) (-619 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-619 |#4|) (-619 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-619 |#3|) (-619 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-619 |#3|) (-619 |#2|)) 84)) (-3448 (($ $ |#4|) NIL) (($ $ (-619 |#4|)) NIL) (($ $ |#4| (-745)) NIL) (($ $ (-619 |#4|) (-619 (-745))) NIL) (($ $) NIL) (($ $ (-745)) NIL) (($ $ (-1136)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2924 (((-619 |#3|) $) 75)) (-3705 ((|#5| $) NIL) (((-745) $ |#4|) NIL) (((-619 (-745)) $ (-619 |#4|)) NIL) (((-745) $ |#3|) 44)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-398 (-547))) NIL) (($ $) NIL)))
-(((-243 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -2679 (|#1| |#1| (-619 |#3|) (-619 |#2|))) (-15 -2679 (|#1| |#1| |#3| |#2|)) (-15 -2679 (|#1| |#1| (-619 |#3|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#3| |#1|)) (-15 -2026 ((-1 |#1| (-745)) |#1|)) (-15 -2234 (|#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -4044 (|#4| |#1|)) (-15 -2578 ((-112) |#1|)) (-15 -2601 ((-745) |#1| |#3|)) (-15 -3839 ((-619 (-745)) |#1| |#3|)) (-15 -2601 ((-745) |#1|)) (-15 -3839 ((-619 (-745)) |#1|)) (-15 -3705 ((-745) |#1| |#3|)) (-15 -3275 ((-745) |#1|)) (-15 -3275 ((-745) |#1| |#3|)) (-15 -2924 ((-619 |#3|) |#1|)) (-15 -2026 ((-1 |#1| (-745)) |#3|)) (-15 -2707 ((-3 |#3| "failed") |#1|)) (-15 -3838 (|#1| |#3|)) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1|)) (-15 -3705 ((-619 (-745)) |#1| (-619 |#4|))) (-15 -3705 ((-745) |#1| |#4|)) (-15 -2707 ((-3 |#4| "failed") |#1|)) (-15 -3838 (|#1| |#4|)) (-15 -2679 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#4| |#1|)) (-15 -2679 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2679 (|#1| |#1| |#4| |#2|)) (-15 -2679 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-285 |#1|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -3705 (|#5| |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -3448 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -3448 (|#1| |#1| |#4| (-745))) (-15 -3448 (|#1| |#1| (-619 |#4|))) (-15 -3448 (|#1| |#1| |#4|)) (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|))) (-244 |#2| |#3| |#4| |#5|) (-1016) (-821) (-257 |#3|) (-767)) (T -243))
-NIL
-(-10 -8 (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -2679 (|#1| |#1| (-619 |#3|) (-619 |#2|))) (-15 -2679 (|#1| |#1| |#3| |#2|)) (-15 -2679 (|#1| |#1| (-619 |#3|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#3| |#1|)) (-15 -2026 ((-1 |#1| (-745)) |#1|)) (-15 -2234 (|#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -4044 (|#4| |#1|)) (-15 -2578 ((-112) |#1|)) (-15 -2601 ((-745) |#1| |#3|)) (-15 -3839 ((-619 (-745)) |#1| |#3|)) (-15 -2601 ((-745) |#1|)) (-15 -3839 ((-619 (-745)) |#1|)) (-15 -3705 ((-745) |#1| |#3|)) (-15 -3275 ((-745) |#1|)) (-15 -3275 ((-745) |#1| |#3|)) (-15 -2924 ((-619 |#3|) |#1|)) (-15 -2026 ((-1 |#1| (-745)) |#3|)) (-15 -2707 ((-3 |#3| "failed") |#1|)) (-15 -3838 (|#1| |#3|)) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1|)) (-15 -3705 ((-619 (-745)) |#1| (-619 |#4|))) (-15 -3705 ((-745) |#1| |#4|)) (-15 -2707 ((-3 |#4| "failed") |#1|)) (-15 -3838 (|#1| |#4|)) (-15 -2679 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#4| |#1|)) (-15 -2679 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2679 (|#1| |#1| |#4| |#2|)) (-15 -2679 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-285 |#1|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -3705 (|#5| |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -3448 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -3448 (|#1| |#1| |#4| (-745))) (-15 -3448 (|#1| |#1| (-619 |#4|))) (-15 -3448 (|#1| |#1| |#4|)) (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3839 (((-619 (-745)) $) 212) (((-619 (-745)) $ |#2|) 210)) (-2601 (((-745) $) 211) (((-745) $ |#2|) 209)) (-2267 (((-619 |#3|) $) 108)) (-2078 (((-1132 $) $ |#3|) 123) (((-1132 |#1|) $) 122)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 85 (|has| |#1| (-539)))) (-3571 (($ $) 86 (|has| |#1| (-539)))) (-3915 (((-112) $) 88 (|has| |#1| (-539)))) (-2624 (((-745) $) 110) (((-745) $ (-619 |#3|)) 109)) (-3672 (((-3 $ "failed") $ $) 19)) (-2277 (((-409 (-1132 $)) (-1132 $)) 98 (|has| |#1| (-878)))) (-2555 (($ $) 96 (|has| |#1| (-442)))) (-3299 (((-409 $) $) 95 (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 101 (|has| |#1| (-878)))) (-2234 (($ $) 205)) (-1948 (($) 17 T CONST)) (-2707 (((-3 |#1| "failed") $) 162) (((-3 (-398 (-547)) "failed") $) 160 (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) 158 (|has| |#1| (-1007 (-547)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2652 ((|#1| $) 163) (((-398 (-547)) $) 159 (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) 157 (|has| |#1| (-1007 (-547)))) ((|#3| $) 133) ((|#2| $) 218)) (-1496 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-2063 (($ $) 152)) (-1694 (((-663 (-547)) (-663 $)) 132 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 131 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-3855 (((-3 $ "failed") $) 32)) (-3350 (($ $) 174 (|has| |#1| (-442))) (($ $ |#3|) 103 (|has| |#1| (-442)))) (-2049 (((-619 $) $) 107)) (-1791 (((-112) $) 94 (|has| |#1| (-878)))) (-3210 (($ $ |#1| |#4| $) 170)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 82 (-12 (|has| |#3| (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 81 (-12 (|has| |#3| (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3275 (((-745) $ |#2|) 215) (((-745) $) 214)) (-2261 (((-112) $) 30)) (-3376 (((-745) $) 167)) (-2254 (($ (-1132 |#1|) |#3|) 115) (($ (-1132 $) |#3|) 114)) (-4097 (((-619 $) $) 124)) (-1759 (((-112) $) 150)) (-2238 (($ |#1| |#4|) 151) (($ $ |#3| (-745)) 117) (($ $ (-619 |#3|) (-619 (-745))) 116)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ |#3|) 118)) (-3095 ((|#4| $) 168) (((-745) $ |#3|) 120) (((-619 (-745)) $ (-619 |#3|)) 119)) (-2856 (($ $ $) 77 (|has| |#1| (-821)))) (-3567 (($ $ $) 76 (|has| |#1| (-821)))) (-4182 (($ (-1 |#4| |#4|) $) 169)) (-2790 (($ (-1 |#1| |#1|) $) 149)) (-2026 (((-1 $ (-745)) |#2|) 217) (((-1 $ (-745)) $) 204 (|has| |#1| (-225)))) (-1631 (((-3 |#3| "failed") $) 121)) (-2019 (($ $) 147)) (-2037 ((|#1| $) 146)) (-4044 ((|#3| $) 207)) (-3689 (($ (-619 $)) 92 (|has| |#1| (-442))) (($ $ $) 91 (|has| |#1| (-442)))) (-1466 (((-1119) $) 9)) (-2578 (((-112) $) 208)) (-2505 (((-3 (-619 $) "failed") $) 112)) (-3663 (((-3 (-619 $) "failed") $) 113)) (-3949 (((-3 (-2 (|:| |var| |#3|) (|:| -3322 (-745))) "failed") $) 111)) (-2250 (($ $) 206)) (-3979 (((-1082) $) 10)) (-1996 (((-112) $) 164)) (-2009 ((|#1| $) 165)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 93 (|has| |#1| (-442)))) (-3719 (($ (-619 $)) 90 (|has| |#1| (-442))) (($ $ $) 89 (|has| |#1| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) 100 (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) 99 (|has| |#1| (-878)))) (-2115 (((-409 $) $) 97 (|has| |#1| (-878)))) (-2032 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-539)))) (-2679 (($ $ (-619 (-285 $))) 143) (($ $ (-285 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-619 |#3|) (-619 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-619 |#3|) (-619 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-225))) (($ $ (-619 |#2|) (-619 $)) 202 (|has| |#1| (-225))) (($ $ |#2| |#1|) 201 (|has| |#1| (-225))) (($ $ (-619 |#2|) (-619 |#1|)) 200 (|has| |#1| (-225)))) (-4056 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-3448 (($ $ |#3|) 40) (($ $ (-619 |#3|)) 39) (($ $ |#3| (-745)) 38) (($ $ (-619 |#3|) (-619 (-745))) 37) (($ $) 236 (|has| |#1| (-225))) (($ $ (-745)) 234 (|has| |#1| (-225))) (($ $ (-1136)) 232 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) 231 (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) 230 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) 229 (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-2924 (((-619 |#2|) $) 216)) (-3705 ((|#4| $) 148) (((-745) $ |#3|) 128) (((-619 (-745)) $ (-619 |#3|)) 127) (((-745) $ |#2|) 213)) (-2838 (((-861 (-370)) $) 80 (-12 (|has| |#3| (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) 79 (-12 (|has| |#3| (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) 78 (-12 (|has| |#3| (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-2392 ((|#1| $) 173 (|has| |#1| (-442))) (($ $ |#3|) 104 (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 102 (-1814 (|has| $ (-143)) (|has| |#1| (-878))))) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-398 (-547))) 70 (-1530 (|has| |#1| (-1007 (-398 (-547)))) (|has| |#1| (-38 (-398 (-547)))))) (($ $) 83 (|has| |#1| (-539)))) (-1277 (((-619 |#1|) $) 166)) (-2450 ((|#1| $ |#4|) 153) (($ $ |#3| (-745)) 126) (($ $ (-619 |#3|) (-619 (-745))) 125)) (-2220 (((-3 $ "failed") $) 71 (-1530 (-1814 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) 28)) (-1379 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-3577 (((-112) $ $) 87 (|has| |#1| (-539)))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ |#3|) 36) (($ $ (-619 |#3|)) 35) (($ $ |#3| (-745)) 34) (($ $ (-619 |#3|) (-619 (-745))) 33) (($ $) 235 (|has| |#1| (-225))) (($ $ (-745)) 233 (|has| |#1| (-225))) (($ $ (-1136)) 228 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) 227 (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) 226 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) 225 (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2441 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2506 (($ $ |#1|) 154 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 156 (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) 155 (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
-(((-244 |#1| |#2| |#3| |#4|) (-138) (-1016) (-821) (-257 |t#2|) (-767)) (T -244))
-((-2026 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-1 *1 (-745))) (-4 *1 (-244 *4 *3 *5 *6)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-619 *4)))) (-3275 (*1 *2 *1 *3) (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) (-3705 (*1 *2 *1 *3) (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-619 (-745))))) (-2601 (*1 *2 *1) (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) (-3839 (*1 *2 *1 *3) (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-619 (-745))))) (-2601 (*1 *2 *1 *3) (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-112)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-244 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-4 *2 (-257 *4)))) (-2250 (*1 *1 *1) (-12 (-4 *1 (-244 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-257 *3)) (-4 *5 (-767)))) (-2234 (*1 *1 *1) (-12 (-4 *1 (-244 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-257 *3)) (-4 *5 (-767)))) (-2026 (*1 *2 *1) (-12 (-4 *3 (-225)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-1 *1 (-745))) (-4 *1 (-244 *3 *4 *5 *6)))))
-(-13 (-918 |t#1| |t#4| |t#3|) (-223 |t#1|) (-1007 |t#2|) (-10 -8 (-15 -2026 ((-1 $ (-745)) |t#2|)) (-15 -2924 ((-619 |t#2|) $)) (-15 -3275 ((-745) $ |t#2|)) (-15 -3275 ((-745) $)) (-15 -3705 ((-745) $ |t#2|)) (-15 -3839 ((-619 (-745)) $)) (-15 -2601 ((-745) $)) (-15 -3839 ((-619 (-745)) $ |t#2|)) (-15 -2601 ((-745) $ |t#2|)) (-15 -2578 ((-112) $)) (-15 -4044 (|t#3| $)) (-15 -2250 ($ $)) (-15 -2234 ($ $)) (IF (|has| |t#1| (-225)) (PROGN (-6 (-503 |t#2| |t#1|)) (-6 (-503 |t#2| $)) (-6 (-300 $)) (-15 -2026 ((-1 $ (-745)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-592 (-523)) -12 (|has| |#1| (-592 (-523))) (|has| |#3| (-592 (-523)))) ((-592 (-861 (-370))) -12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#3| (-592 (-861 (-370))))) ((-592 (-861 (-547))) -12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#3| (-592 (-861 (-547))))) ((-223 |#1|) . T) ((-225) |has| |#1| (-225)) ((-281) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-300 $) . T) ((-317 |#1| |#4|) . T) ((-368 |#1|) . T) ((-402 |#1|) . T) ((-442) -1530 (|has| |#1| (-878)) (|has| |#1| (-442))) ((-503 |#2| |#1|) |has| |#1| (-225)) ((-503 |#2| $) |has| |#1| (-225)) ((-503 |#3| |#1|) . T) ((-503 |#3| $) . T) ((-503 $ $) . T) ((-539) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 (-1136)) |has| |#1| (-869 (-1136))) ((-869 |#3|) . T) ((-855 (-370)) -12 (|has| |#1| (-855 (-370))) (|has| |#3| (-855 (-370)))) ((-855 (-547)) -12 (|has| |#1| (-855 (-547))) (|has| |#3| (-855 (-547)))) ((-918 |#1| |#4| |#3|) . T) ((-878) |has| |#1| (-878)) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1007 |#2|) . T) ((-1007 |#3|) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1177) |has| |#1| (-878)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-1949 ((|#1| $) 54)) (-2312 ((|#1| $) 44)) (-3899 (((-112) $ (-745)) 8)) (-1948 (($) 7 T CONST)) (-3935 (($ $) 60)) (-3044 (($ $) 48)) (-3329 ((|#1| |#1| $) 46)) (-1742 ((|#1| $) 45)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-4202 (((-745) $) 61)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-4266 ((|#1| $) 39)) (-2136 ((|#1| |#1| $) 52)) (-3973 ((|#1| |#1| $) 51)) (-2657 (($ |#1| $) 40)) (-4029 (((-745) $) 55)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3436 ((|#1| $) 62)) (-3932 ((|#1| $) 50)) (-2289 ((|#1| $) 49)) (-2056 ((|#1| $) 41)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-1724 ((|#1| |#1| $) 58)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-2369 ((|#1| $) 59)) (-1645 (($) 57) (($ (-619 |#1|)) 56)) (-1314 (((-745) $) 43)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2301 ((|#1| $) 53)) (-2300 (($ (-619 |#1|)) 42)) (-3819 ((|#1| $) 63)) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-245 |#1|) (-138) (-1173)) (T -245))
-((-1645 (*1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))) (-1645 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-4 *1 (-245 *3)))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-1173)) (-5 *2 (-745)))) (-1949 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))) (-2136 (*1 *2 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))) (-3973 (*1 *2 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))) (-3044 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))))
-(-13 (-1083 |t#1|) (-964 |t#1|) (-10 -8 (-15 -1645 ($)) (-15 -1645 ($ (-619 |t#1|))) (-15 -4029 ((-745) $)) (-15 -1949 (|t#1| $)) (-15 -2301 (|t#1| $)) (-15 -2136 (|t#1| |t#1| $)) (-15 -3973 (|t#1| |t#1| $)) (-15 -3932 (|t#1| $)) (-15 -2289 (|t#1| $)) (-15 -3044 ($ $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-964 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1083 |#1|) . T) ((-1173) . T))
-((-2666 (((-1 (-912 (-217)) (-217) (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1 (-217) (-217) (-217) (-217))) 139)) (-1535 (((-1095 (-217)) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370))) 160) (((-1095 (-217)) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)) (-619 (-254))) 158) (((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370))) 163) (((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254))) 159) (((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370))) 150) (((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254))) 149) (((-1095 (-217)) (-1 (-912 (-217)) (-217)) (-1058 (-370))) 129) (((-1095 (-217)) (-1 (-912 (-217)) (-217)) (-1058 (-370)) (-619 (-254))) 127) (((-1095 (-217)) (-848 (-1 (-217) (-217))) (-1058 (-370))) 128) (((-1095 (-217)) (-848 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254))) 125)) (-1483 (((-1221) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370))) 162) (((-1221) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)) (-619 (-254))) 161) (((-1221) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370))) 165) (((-1221) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254))) 164) (((-1221) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370))) 152) (((-1221) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254))) 151) (((-1221) (-1 (-912 (-217)) (-217)) (-1058 (-370))) 135) (((-1221) (-1 (-912 (-217)) (-217)) (-1058 (-370)) (-619 (-254))) 134) (((-1221) (-848 (-1 (-217) (-217))) (-1058 (-370))) 133) (((-1221) (-848 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254))) 132) (((-1220) (-846 (-1 (-217) (-217))) (-1058 (-370))) 100) (((-1220) (-846 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254))) 99) (((-1220) (-1 (-217) (-217)) (-1058 (-370))) 96) (((-1220) (-1 (-217) (-217)) (-1058 (-370)) (-619 (-254))) 95)))
-(((-246) (-10 -7 (-15 -1483 ((-1220) (-1 (-217) (-217)) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1220) (-1 (-217) (-217)) (-1058 (-370)))) (-15 -1483 ((-1220) (-846 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1220) (-846 (-1 (-217) (-217))) (-1058 (-370)))) (-15 -1483 ((-1221) (-848 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-848 (-1 (-217) (-217))) (-1058 (-370)))) (-15 -1483 ((-1221) (-1 (-912 (-217)) (-217)) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-1 (-912 (-217)) (-217)) (-1058 (-370)))) (-15 -1535 ((-1095 (-217)) (-848 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-848 (-1 (-217) (-217))) (-1058 (-370)))) (-15 -1535 ((-1095 (-217)) (-1 (-912 (-217)) (-217)) (-1058 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-1 (-912 (-217)) (-217)) (-1058 (-370)))) (-15 -1483 ((-1221) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1535 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1483 ((-1221) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1535 ((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1483 ((-1221) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)))) (-15 -1535 ((-1095 (-217)) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)))) (-15 -2666 ((-1 (-912 (-217)) (-217) (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1 (-217) (-217) (-217) (-217)))))) (T -246))
-((-2666 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-912 (-217)) (-217) (-217))) (-5 *3 (-1 (-217) (-217) (-217) (-217))) (-5 *1 (-246)))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *2 (-1221)) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1221)) (-5 *1 (-246)))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1221)) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1221)) (-5 *1 (-246)))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1221)) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1221)) (-5 *1 (-246)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1221)) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1221)) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *2 (-1221)) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1221)) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-846 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-846 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246)))))
-(-10 -7 (-15 -1483 ((-1220) (-1 (-217) (-217)) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1220) (-1 (-217) (-217)) (-1058 (-370)))) (-15 -1483 ((-1220) (-846 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1220) (-846 (-1 (-217) (-217))) (-1058 (-370)))) (-15 -1483 ((-1221) (-848 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-848 (-1 (-217) (-217))) (-1058 (-370)))) (-15 -1483 ((-1221) (-1 (-912 (-217)) (-217)) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-1 (-912 (-217)) (-217)) (-1058 (-370)))) (-15 -1535 ((-1095 (-217)) (-848 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-848 (-1 (-217) (-217))) (-1058 (-370)))) (-15 -1535 ((-1095 (-217)) (-1 (-912 (-217)) (-217)) (-1058 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-1 (-912 (-217)) (-217)) (-1058 (-370)))) (-15 -1483 ((-1221) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1535 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1483 ((-1221) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1535 ((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1483 ((-1221) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)))) (-15 -1535 ((-1095 (-217)) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)))) (-15 -2666 ((-1 (-912 (-217)) (-217) (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1 (-217) (-217) (-217) (-217)))))
-((-1483 (((-1220) (-285 |#2|) (-1136) (-1136) (-619 (-254))) 96)))
-(((-247 |#1| |#2|) (-10 -7 (-15 -1483 ((-1220) (-285 |#2|) (-1136) (-1136) (-619 (-254))))) (-13 (-539) (-821) (-1007 (-547))) (-421 |#1|)) (T -247))
-((-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-285 *7)) (-5 *4 (-1136)) (-5 *5 (-619 (-254))) (-4 *7 (-421 *6)) (-4 *6 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-1220)) (-5 *1 (-247 *6 *7)))))
-(-10 -7 (-15 -1483 ((-1220) (-285 |#2|) (-1136) (-1136) (-619 (-254)))))
-((-2064 (((-547) (-547)) 50)) (-3135 (((-547) (-547)) 51)) (-3292 (((-217) (-217)) 52)) (-3469 (((-1221) (-1 (-166 (-217)) (-166 (-217))) (-1058 (-217)) (-1058 (-217))) 49)) (-2979 (((-1221) (-1 (-166 (-217)) (-166 (-217))) (-1058 (-217)) (-1058 (-217)) (-112)) 47)))
-(((-248) (-10 -7 (-15 -2979 ((-1221) (-1 (-166 (-217)) (-166 (-217))) (-1058 (-217)) (-1058 (-217)) (-112))) (-15 -3469 ((-1221) (-1 (-166 (-217)) (-166 (-217))) (-1058 (-217)) (-1058 (-217)))) (-15 -2064 ((-547) (-547))) (-15 -3135 ((-547) (-547))) (-15 -3292 ((-217) (-217))))) (T -248))
-((-3292 (*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-248)))) (-3135 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-248)))) (-2064 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-248)))) (-3469 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-217)) (-166 (-217)))) (-5 *4 (-1058 (-217))) (-5 *2 (-1221)) (-5 *1 (-248)))) (-2979 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-217)) (-166 (-217)))) (-5 *4 (-1058 (-217))) (-5 *5 (-112)) (-5 *2 (-1221)) (-5 *1 (-248)))))
-(-10 -7 (-15 -2979 ((-1221) (-1 (-166 (-217)) (-166 (-217))) (-1058 (-217)) (-1058 (-217)) (-112))) (-15 -3469 ((-1221) (-1 (-166 (-217)) (-166 (-217))) (-1058 (-217)) (-1058 (-217)))) (-15 -2064 ((-547) (-547))) (-15 -3135 ((-547) (-547))) (-15 -3292 ((-217) (-217))))
-((-3838 (((-1056 (-370)) (-1056 (-307 |#1|))) 16)))
-(((-249 |#1|) (-10 -7 (-15 -3838 ((-1056 (-370)) (-1056 (-307 |#1|))))) (-13 (-821) (-539) (-592 (-370)))) (T -249))
-((-3838 (*1 *2 *3) (-12 (-5 *3 (-1056 (-307 *4))) (-4 *4 (-13 (-821) (-539) (-592 (-370)))) (-5 *2 (-1056 (-370))) (-5 *1 (-249 *4)))))
-(-10 -7 (-15 -3838 ((-1056 (-370)) (-1056 (-307 |#1|)))))
-((-1535 (((-1095 (-217)) (-851 |#1|) (-1056 (-370)) (-1056 (-370))) 71) (((-1095 (-217)) (-851 |#1|) (-1056 (-370)) (-1056 (-370)) (-619 (-254))) 70) (((-1095 (-217)) |#1| (-1056 (-370)) (-1056 (-370))) 61) (((-1095 (-217)) |#1| (-1056 (-370)) (-1056 (-370)) (-619 (-254))) 60) (((-1095 (-217)) (-848 |#1|) (-1056 (-370))) 52) (((-1095 (-217)) (-848 |#1|) (-1056 (-370)) (-619 (-254))) 51)) (-1483 (((-1221) (-851 |#1|) (-1056 (-370)) (-1056 (-370))) 74) (((-1221) (-851 |#1|) (-1056 (-370)) (-1056 (-370)) (-619 (-254))) 73) (((-1221) |#1| (-1056 (-370)) (-1056 (-370))) 64) (((-1221) |#1| (-1056 (-370)) (-1056 (-370)) (-619 (-254))) 63) (((-1221) (-848 |#1|) (-1056 (-370))) 56) (((-1221) (-848 |#1|) (-1056 (-370)) (-619 (-254))) 55) (((-1220) (-846 |#1|) (-1056 (-370))) 43) (((-1220) (-846 |#1|) (-1056 (-370)) (-619 (-254))) 42) (((-1220) |#1| (-1056 (-370))) 35) (((-1220) |#1| (-1056 (-370)) (-619 (-254))) 34)))
-(((-250 |#1|) (-10 -7 (-15 -1483 ((-1220) |#1| (-1056 (-370)) (-619 (-254)))) (-15 -1483 ((-1220) |#1| (-1056 (-370)))) (-15 -1483 ((-1220) (-846 |#1|) (-1056 (-370)) (-619 (-254)))) (-15 -1483 ((-1220) (-846 |#1|) (-1056 (-370)))) (-15 -1483 ((-1221) (-848 |#1|) (-1056 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-848 |#1|) (-1056 (-370)))) (-15 -1535 ((-1095 (-217)) (-848 |#1|) (-1056 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-848 |#1|) (-1056 (-370)))) (-15 -1483 ((-1221) |#1| (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) |#1| (-1056 (-370)) (-1056 (-370)))) (-15 -1535 ((-1095 (-217)) |#1| (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) |#1| (-1056 (-370)) (-1056 (-370)))) (-15 -1483 ((-1221) (-851 |#1|) (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-851 |#1|) (-1056 (-370)) (-1056 (-370)))) (-15 -1535 ((-1095 (-217)) (-851 |#1|) (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-851 |#1|) (-1056 (-370)) (-1056 (-370))))) (-13 (-592 (-523)) (-1063))) (T -250))
-((-1535 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-370))) (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *5)))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *6)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-370))) (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1221)) (-5 *1 (-250 *5)))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1221)) (-5 *1 (-250 *6)))) (-1535 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1056 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))) (-1535 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1056 (-370))) (-5 *2 (-1221)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1221)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))) (-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-370))) (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *5)))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *6)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-370))) (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1221)) (-5 *1 (-250 *5)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1221)) (-5 *1 (-250 *6)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-846 *5)) (-5 *4 (-1056 (-370))) (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-250 *5)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-846 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-250 *6)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-370))) (-5 *2 (-1220)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))))
-(-10 -7 (-15 -1483 ((-1220) |#1| (-1056 (-370)) (-619 (-254)))) (-15 -1483 ((-1220) |#1| (-1056 (-370)))) (-15 -1483 ((-1220) (-846 |#1|) (-1056 (-370)) (-619 (-254)))) (-15 -1483 ((-1220) (-846 |#1|) (-1056 (-370)))) (-15 -1483 ((-1221) (-848 |#1|) (-1056 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-848 |#1|) (-1056 (-370)))) (-15 -1535 ((-1095 (-217)) (-848 |#1|) (-1056 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-848 |#1|) (-1056 (-370)))) (-15 -1483 ((-1221) |#1| (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) |#1| (-1056 (-370)) (-1056 (-370)))) (-15 -1535 ((-1095 (-217)) |#1| (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) |#1| (-1056 (-370)) (-1056 (-370)))) (-15 -1483 ((-1221) (-851 |#1|) (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1483 ((-1221) (-851 |#1|) (-1056 (-370)) (-1056 (-370)))) (-15 -1535 ((-1095 (-217)) (-851 |#1|) (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1535 ((-1095 (-217)) (-851 |#1|) (-1056 (-370)) (-1056 (-370)))))
-((-1483 (((-1221) (-619 (-217)) (-619 (-217)) (-619 (-217)) (-619 (-254))) 23) (((-1221) (-619 (-217)) (-619 (-217)) (-619 (-217))) 24) (((-1220) (-619 (-912 (-217))) (-619 (-254))) 16) (((-1220) (-619 (-912 (-217)))) 17) (((-1220) (-619 (-217)) (-619 (-217)) (-619 (-254))) 20) (((-1220) (-619 (-217)) (-619 (-217))) 21)))
-(((-251) (-10 -7 (-15 -1483 ((-1220) (-619 (-217)) (-619 (-217)))) (-15 -1483 ((-1220) (-619 (-217)) (-619 (-217)) (-619 (-254)))) (-15 -1483 ((-1220) (-619 (-912 (-217))))) (-15 -1483 ((-1220) (-619 (-912 (-217))) (-619 (-254)))) (-15 -1483 ((-1221) (-619 (-217)) (-619 (-217)) (-619 (-217)))) (-15 -1483 ((-1221) (-619 (-217)) (-619 (-217)) (-619 (-217)) (-619 (-254)))))) (T -251))
-((-1483 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-619 (-217))) (-5 *4 (-619 (-254))) (-5 *2 (-1221)) (-5 *1 (-251)))) (-1483 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-619 (-217))) (-5 *2 (-1221)) (-5 *1 (-251)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-912 (-217)))) (-5 *4 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-251)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-619 (-912 (-217)))) (-5 *2 (-1220)) (-5 *1 (-251)))) (-1483 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-619 (-217))) (-5 *4 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-251)))) (-1483 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-217))) (-5 *2 (-1220)) (-5 *1 (-251)))))
-(-10 -7 (-15 -1483 ((-1220) (-619 (-217)) (-619 (-217)))) (-15 -1483 ((-1220) (-619 (-217)) (-619 (-217)) (-619 (-254)))) (-15 -1483 ((-1220) (-619 (-912 (-217))))) (-15 -1483 ((-1220) (-619 (-912 (-217))) (-619 (-254)))) (-15 -1483 ((-1221) (-619 (-217)) (-619 (-217)) (-619 (-217)))) (-15 -1483 ((-1221) (-619 (-217)) (-619 (-217)) (-619 (-217)) (-619 (-254)))))
-((-1894 (((-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))) (-619 (-254)) (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) 26)) (-3455 (((-890) (-619 (-254)) (-890)) 53)) (-3263 (((-890) (-619 (-254)) (-890)) 52)) (-2029 (((-619 (-370)) (-619 (-254)) (-619 (-370))) 69)) (-3391 (((-370) (-619 (-254)) (-370)) 58)) (-3954 (((-890) (-619 (-254)) (-890)) 54)) (-3326 (((-112) (-619 (-254)) (-112)) 28)) (-1589 (((-1119) (-619 (-254)) (-1119)) 20)) (-4297 (((-1119) (-619 (-254)) (-1119)) 27)) (-3388 (((-1095 (-217)) (-619 (-254))) 47)) (-4157 (((-619 (-1058 (-370))) (-619 (-254)) (-619 (-1058 (-370)))) 41)) (-4011 (((-843) (-619 (-254)) (-843)) 33)) (-2168 (((-843) (-619 (-254)) (-843)) 34)) (-2233 (((-1 (-912 (-217)) (-912 (-217))) (-619 (-254)) (-1 (-912 (-217)) (-912 (-217)))) 64)) (-3061 (((-112) (-619 (-254)) (-112)) 16)) (-4200 (((-112) (-619 (-254)) (-112)) 15)))
-(((-252) (-10 -7 (-15 -4200 ((-112) (-619 (-254)) (-112))) (-15 -3061 ((-112) (-619 (-254)) (-112))) (-15 -1894 ((-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))) (-619 (-254)) (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))) (-15 -1589 ((-1119) (-619 (-254)) (-1119))) (-15 -4297 ((-1119) (-619 (-254)) (-1119))) (-15 -3326 ((-112) (-619 (-254)) (-112))) (-15 -4011 ((-843) (-619 (-254)) (-843))) (-15 -2168 ((-843) (-619 (-254)) (-843))) (-15 -4157 ((-619 (-1058 (-370))) (-619 (-254)) (-619 (-1058 (-370))))) (-15 -3263 ((-890) (-619 (-254)) (-890))) (-15 -3455 ((-890) (-619 (-254)) (-890))) (-15 -3388 ((-1095 (-217)) (-619 (-254)))) (-15 -3954 ((-890) (-619 (-254)) (-890))) (-15 -3391 ((-370) (-619 (-254)) (-370))) (-15 -2233 ((-1 (-912 (-217)) (-912 (-217))) (-619 (-254)) (-1 (-912 (-217)) (-912 (-217))))) (-15 -2029 ((-619 (-370)) (-619 (-254)) (-619 (-370)))))) (T -252))
-((-2029 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-370))) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-2233 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-912 (-217)) (-912 (-217)))) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-3391 (*1 *2 *3 *2) (-12 (-5 *2 (-370)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-3954 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-252)))) (-3455 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-3263 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-4157 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-2168 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-4011 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-3326 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-4297 (*1 *2 *3 *2) (-12 (-5 *2 (-1119)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-1589 (*1 *2 *3 *2) (-12 (-5 *2 (-1119)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-1894 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-3061 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-4200 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))))
-(-10 -7 (-15 -4200 ((-112) (-619 (-254)) (-112))) (-15 -3061 ((-112) (-619 (-254)) (-112))) (-15 -1894 ((-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))) (-619 (-254)) (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))) (-15 -1589 ((-1119) (-619 (-254)) (-1119))) (-15 -4297 ((-1119) (-619 (-254)) (-1119))) (-15 -3326 ((-112) (-619 (-254)) (-112))) (-15 -4011 ((-843) (-619 (-254)) (-843))) (-15 -2168 ((-843) (-619 (-254)) (-843))) (-15 -4157 ((-619 (-1058 (-370))) (-619 (-254)) (-619 (-1058 (-370))))) (-15 -3263 ((-890) (-619 (-254)) (-890))) (-15 -3455 ((-890) (-619 (-254)) (-890))) (-15 -3388 ((-1095 (-217)) (-619 (-254)))) (-15 -3954 ((-890) (-619 (-254)) (-890))) (-15 -3391 ((-370) (-619 (-254)) (-370))) (-15 -2233 ((-1 (-912 (-217)) (-912 (-217))) (-619 (-254)) (-1 (-912 (-217)) (-912 (-217))))) (-15 -2029 ((-619 (-370)) (-619 (-254)) (-619 (-370)))))
-((-3503 (((-3 |#1| "failed") (-619 (-254)) (-1136)) 17)))
-(((-253 |#1|) (-10 -7 (-15 -3503 ((-3 |#1| "failed") (-619 (-254)) (-1136)))) (-1173)) (T -253))
-((-3503 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-619 (-254))) (-5 *4 (-1136)) (-5 *1 (-253 *2)) (-4 *2 (-1173)))))
-(-10 -7 (-15 -3503 ((-3 |#1| "failed") (-619 (-254)) (-1136))))
-((-3826 (((-112) $ $) NIL)) (-1894 (($ (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) 15)) (-3455 (($ (-890)) 76)) (-3263 (($ (-890)) 75)) (-3825 (($ (-619 (-370))) 82)) (-3391 (($ (-370)) 58)) (-3954 (($ (-890)) 77)) (-3326 (($ (-112)) 23)) (-1589 (($ (-1119)) 18)) (-4297 (($ (-1119)) 19)) (-3388 (($ (-1095 (-217))) 71)) (-4157 (($ (-619 (-1058 (-370)))) 67)) (-4232 (($ (-619 (-1058 (-370)))) 59) (($ (-619 (-1058 (-398 (-547))))) 66)) (-3491 (($ (-370)) 29) (($ (-843)) 33)) (-4276 (((-112) (-619 $) (-1136)) 91)) (-3503 (((-3 (-52) "failed") (-619 $) (-1136)) 93)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2213 (($ (-370)) 34) (($ (-843)) 35)) (-3220 (($ (-1 (-912 (-217)) (-912 (-217)))) 57)) (-2233 (($ (-1 (-912 (-217)) (-912 (-217)))) 78)) (-1391 (($ (-1 (-217) (-217))) 39) (($ (-1 (-217) (-217) (-217))) 43) (($ (-1 (-217) (-217) (-217) (-217))) 47)) (-3838 (((-832) $) 87)) (-1584 (($ (-112)) 24) (($ (-619 (-1058 (-370)))) 52)) (-4200 (($ (-112)) 25)) (-2381 (((-112) $ $) 89)))
-(((-254) (-13 (-1063) (-10 -8 (-15 -4200 ($ (-112))) (-15 -1584 ($ (-112))) (-15 -1894 ($ (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))) (-15 -1589 ($ (-1119))) (-15 -4297 ($ (-1119))) (-15 -3326 ($ (-112))) (-15 -1584 ($ (-619 (-1058 (-370))))) (-15 -3220 ($ (-1 (-912 (-217)) (-912 (-217))))) (-15 -3491 ($ (-370))) (-15 -3491 ($ (-843))) (-15 -2213 ($ (-370))) (-15 -2213 ($ (-843))) (-15 -1391 ($ (-1 (-217) (-217)))) (-15 -1391 ($ (-1 (-217) (-217) (-217)))) (-15 -1391 ($ (-1 (-217) (-217) (-217) (-217)))) (-15 -3391 ($ (-370))) (-15 -4232 ($ (-619 (-1058 (-370))))) (-15 -4232 ($ (-619 (-1058 (-398 (-547)))))) (-15 -4157 ($ (-619 (-1058 (-370))))) (-15 -3388 ($ (-1095 (-217)))) (-15 -3263 ($ (-890))) (-15 -3455 ($ (-890))) (-15 -3954 ($ (-890))) (-15 -2233 ($ (-1 (-912 (-217)) (-912 (-217))))) (-15 -3825 ($ (-619 (-370)))) (-15 -3503 ((-3 (-52) "failed") (-619 $) (-1136))) (-15 -4276 ((-112) (-619 $) (-1136)))))) (T -254))
-((-4200 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1584 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1894 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) (-5 *1 (-254)))) (-1589 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-254)))) (-4297 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-254)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1584 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-254)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-1 (-912 (-217)) (-912 (-217)))) (-5 *1 (-254)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-254)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-254)))) (-2213 (*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-254)))) (-2213 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-254)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *1 (-254)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217) (-217))) (-5 *1 (-254)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217) (-217) (-217))) (-5 *1 (-254)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-254)))) (-4232 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-254)))) (-4232 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-398 (-547))))) (-5 *1 (-254)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-254)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-254)))) (-3263 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) (-3455 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1 (-912 (-217)) (-912 (-217)))) (-5 *1 (-254)))) (-3825 (*1 *1 *2) (-12 (-5 *2 (-619 (-370))) (-5 *1 (-254)))) (-3503 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-619 (-254))) (-5 *4 (-1136)) (-5 *2 (-52)) (-5 *1 (-254)))) (-4276 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-254))) (-5 *4 (-1136)) (-5 *2 (-112)) (-5 *1 (-254)))))
-(-13 (-1063) (-10 -8 (-15 -4200 ($ (-112))) (-15 -1584 ($ (-112))) (-15 -1894 ($ (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))) (-15 -1589 ($ (-1119))) (-15 -4297 ($ (-1119))) (-15 -3326 ($ (-112))) (-15 -1584 ($ (-619 (-1058 (-370))))) (-15 -3220 ($ (-1 (-912 (-217)) (-912 (-217))))) (-15 -3491 ($ (-370))) (-15 -3491 ($ (-843))) (-15 -2213 ($ (-370))) (-15 -2213 ($ (-843))) (-15 -1391 ($ (-1 (-217) (-217)))) (-15 -1391 ($ (-1 (-217) (-217) (-217)))) (-15 -1391 ($ (-1 (-217) (-217) (-217) (-217)))) (-15 -3391 ($ (-370))) (-15 -4232 ($ (-619 (-1058 (-370))))) (-15 -4232 ($ (-619 (-1058 (-398 (-547)))))) (-15 -4157 ($ (-619 (-1058 (-370))))) (-15 -3388 ($ (-1095 (-217)))) (-15 -3263 ($ (-890))) (-15 -3455 ($ (-890))) (-15 -3954 ($ (-890))) (-15 -2233 ($ (-1 (-912 (-217)) (-912 (-217))))) (-15 -3825 ($ (-619 (-370)))) (-15 -3503 ((-3 (-52) "failed") (-619 $) (-1136))) (-15 -4276 ((-112) (-619 $) (-1136)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3839 (((-619 (-745)) $) NIL) (((-619 (-745)) $ |#2|) NIL)) (-2601 (((-745) $) NIL) (((-745) $ |#2|) NIL)) (-2267 (((-619 |#3|) $) NIL)) (-2078 (((-1132 $) $ |#3|) NIL) (((-1132 |#1|) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 |#3|)) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2555 (($ $) NIL (|has| |#1| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2234 (($ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1087 |#1| |#2|) "failed") $) 21)) (-2652 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1087 |#1| |#2|) $) NIL)) (-1496 (($ $ $ |#3|) NIL (|has| |#1| (-169)))) (-2063 (($ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#1| (-442))) (($ $ |#3|) NIL (|has| |#1| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#1| (-878)))) (-3210 (($ $ |#1| (-519 |#3|) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| |#1| (-855 (-370))) (|has| |#3| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| |#1| (-855 (-547))) (|has| |#3| (-855 (-547)))))) (-3275 (((-745) $ |#2|) NIL) (((-745) $) 10)) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-2254 (($ (-1132 |#1|) |#3|) NIL) (($ (-1132 $) |#3|) NIL)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-519 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ |#3|) NIL)) (-3095 (((-519 |#3|) $) NIL) (((-745) $ |#3|) NIL) (((-619 (-745)) $ (-619 |#3|)) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-4182 (($ (-1 (-519 |#3|) (-519 |#3|)) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-1 $ (-745)) |#2|) NIL) (((-1 $ (-745)) $) NIL (|has| |#1| (-225)))) (-1631 (((-3 |#3| "failed") $) NIL)) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-4044 ((|#3| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1466 (((-1119) $) NIL)) (-2578 (((-112) $) NIL)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| |#3|) (|:| -3322 (-745))) "failed") $) NIL)) (-2250 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) NIL)) (-2009 ((|#1| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-878)))) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-619 |#3|) (-619 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-619 |#3|) (-619 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-225))) (($ $ (-619 |#2|) (-619 $)) NIL (|has| |#1| (-225))) (($ $ |#2| |#1|) NIL (|has| |#1| (-225))) (($ $ (-619 |#2|) (-619 |#1|)) NIL (|has| |#1| (-225)))) (-4056 (($ $ |#3|) NIL (|has| |#1| (-169)))) (-3448 (($ $ |#3|) NIL) (($ $ (-619 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2924 (((-619 |#2|) $) NIL)) (-3705 (((-519 |#3|) $) NIL) (((-745) $ |#3|) NIL) (((-619 (-745)) $ (-619 |#3|)) NIL) (((-745) $ |#2|) NIL)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#3| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#3| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| |#1| (-592 (-523))) (|has| |#3| (-592 (-523)))))) (-2392 ((|#1| $) NIL (|has| |#1| (-442))) (($ $ |#3|) NIL (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1087 |#1| |#2|)) 30) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-519 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ |#3|) NIL) (($ $ (-619 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-255 |#1| |#2| |#3|) (-13 (-244 |#1| |#2| |#3| (-519 |#3|)) (-1007 (-1087 |#1| |#2|))) (-1016) (-821) (-257 |#2|)) (T -255))
-NIL
-(-13 (-244 |#1| |#2| |#3| (-519 |#3|)) (-1007 (-1087 |#1| |#2|)))
-((-2601 (((-745) $) 30)) (-2707 (((-3 |#2| "failed") $) 17)) (-2652 ((|#2| $) 27)) (-3448 (($ $) 12) (($ $ (-745)) 15)) (-3838 (((-832) $) 26) (($ |#2|) 10)) (-2381 (((-112) $ $) 20)) (-2405 (((-112) $ $) 29)))
-(((-256 |#1| |#2|) (-10 -8 (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1|)) (-15 -2601 ((-745) |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -2405 ((-112) |#1| |#1|)) (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|))) (-257 |#2|) (-821)) (T -256))
-NIL
-(-10 -8 (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1|)) (-15 -2601 ((-745) |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -2405 ((-112) |#1| |#1|)) (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-2601 (((-745) $) 22)) (-3004 ((|#1| $) 23)) (-2707 (((-3 |#1| "failed") $) 27)) (-2652 ((|#1| $) 26)) (-3275 (((-745) $) 24)) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-2026 (($ |#1| (-745)) 25)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3448 (($ $) 21) (($ $ (-745)) 20)) (-3838 (((-832) $) 11) (($ |#1|) 28)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)))
-(((-257 |#1|) (-138) (-821)) (T -257))
-((-3838 (*1 *1 *2) (-12 (-4 *1 (-257 *2)) (-4 *2 (-821)))) (-2026 (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-257 *2)) (-4 *2 (-821)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-821)) (-5 *2 (-745)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-821)))) (-2601 (*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-821)) (-5 *2 (-745)))) (-3448 (*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-821)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-257 *3)) (-4 *3 (-821)))))
-(-13 (-821) (-1007 |t#1|) (-10 -8 (-15 -2026 ($ |t#1| (-745))) (-15 -3275 ((-745) $)) (-15 -3004 (|t#1| $)) (-15 -2601 ((-745) $)) (-15 -3448 ($ $)) (-15 -3448 ($ $ (-745))) (-15 -3838 ($ |t#1|))))
-(((-101) . T) ((-591 (-832)) . T) ((-821) . T) ((-1007 |#1|) . T) ((-1063) . T))
-((-2267 (((-619 (-1136)) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) 41)) (-3297 (((-619 (-1136)) (-307 (-217)) (-745)) 80)) (-3357 (((-3 (-307 (-217)) "failed") (-307 (-217))) 51)) (-4078 (((-307 (-217)) (-307 (-217))) 67)) (-2014 (((-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 26)) (-1616 (((-112) (-619 (-307 (-217)))) 84)) (-1754 (((-112) (-307 (-217))) 24)) (-2980 (((-619 (-1119)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))))) 106)) (-4295 (((-619 (-307 (-217))) (-619 (-307 (-217)))) 88)) (-1795 (((-619 (-307 (-217))) (-619 (-307 (-217)))) 86)) (-4053 (((-663 (-217)) (-619 (-307 (-217))) (-745)) 95)) (-1459 (((-112) (-307 (-217))) 20) (((-112) (-619 (-307 (-217)))) 85)) (-1660 (((-619 (-217)) (-619 (-814 (-217))) (-217)) 14)) (-2725 (((-370) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) 101)) (-1309 (((-1004) (-1136) (-1004)) 34)))
-(((-258) (-10 -7 (-15 -1660 ((-619 (-217)) (-619 (-814 (-217))) (-217))) (-15 -2014 ((-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))))) (-15 -3357 ((-3 (-307 (-217)) "failed") (-307 (-217)))) (-15 -4078 ((-307 (-217)) (-307 (-217)))) (-15 -1616 ((-112) (-619 (-307 (-217))))) (-15 -1459 ((-112) (-619 (-307 (-217))))) (-15 -1459 ((-112) (-307 (-217)))) (-15 -4053 ((-663 (-217)) (-619 (-307 (-217))) (-745))) (-15 -1795 ((-619 (-307 (-217))) (-619 (-307 (-217))))) (-15 -4295 ((-619 (-307 (-217))) (-619 (-307 (-217))))) (-15 -1754 ((-112) (-307 (-217)))) (-15 -2267 ((-619 (-1136)) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))) (-15 -3297 ((-619 (-1136)) (-307 (-217)) (-745))) (-15 -1309 ((-1004) (-1136) (-1004))) (-15 -2725 ((-370) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))) (-15 -2980 ((-619 (-1119)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))))))) (T -258))
-((-2980 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))))) (-5 *2 (-619 (-1119))) (-5 *1 (-258)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) (-5 *2 (-370)) (-5 *1 (-258)))) (-1309 (*1 *2 *3 *2) (-12 (-5 *2 (-1004)) (-5 *3 (-1136)) (-5 *1 (-258)))) (-3297 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-217))) (-5 *4 (-745)) (-5 *2 (-619 (-1136))) (-5 *1 (-258)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) (-5 *2 (-619 (-1136))) (-5 *1 (-258)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-112)) (-5 *1 (-258)))) (-4295 (*1 *2 *2) (-12 (-5 *2 (-619 (-307 (-217)))) (-5 *1 (-258)))) (-1795 (*1 *2 *2) (-12 (-5 *2 (-619 (-307 (-217)))) (-5 *1 (-258)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-307 (-217)))) (-5 *4 (-745)) (-5 *2 (-663 (-217))) (-5 *1 (-258)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-112)) (-5 *1 (-258)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-619 (-307 (-217)))) (-5 *2 (-112)) (-5 *1 (-258)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-619 (-307 (-217)))) (-5 *2 (-112)) (-5 *1 (-258)))) (-4078 (*1 *2 *2) (-12 (-5 *2 (-307 (-217))) (-5 *1 (-258)))) (-3357 (*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-217))) (-5 *1 (-258)))) (-2014 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (-5 *1 (-258)))) (-1660 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-814 (-217)))) (-5 *4 (-217)) (-5 *2 (-619 *4)) (-5 *1 (-258)))))
-(-10 -7 (-15 -1660 ((-619 (-217)) (-619 (-814 (-217))) (-217))) (-15 -2014 ((-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))))) (-15 -3357 ((-3 (-307 (-217)) "failed") (-307 (-217)))) (-15 -4078 ((-307 (-217)) (-307 (-217)))) (-15 -1616 ((-112) (-619 (-307 (-217))))) (-15 -1459 ((-112) (-619 (-307 (-217))))) (-15 -1459 ((-112) (-307 (-217)))) (-15 -4053 ((-663 (-217)) (-619 (-307 (-217))) (-745))) (-15 -1795 ((-619 (-307 (-217))) (-619 (-307 (-217))))) (-15 -4295 ((-619 (-307 (-217))) (-619 (-307 (-217))))) (-15 -1754 ((-112) (-307 (-217)))) (-15 -2267 ((-619 (-1136)) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))) (-15 -3297 ((-619 (-1136)) (-307 (-217)) (-745))) (-15 -1309 ((-1004) (-1136) (-1004))) (-15 -2725 ((-370) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))) (-15 -2980 ((-619 (-1119)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))))))
-((-3826 (((-112) $ $) NIL)) (-2567 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 44)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 26) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-259) (-810)) (T -259))
-NIL
-(-810)
-((-3826 (((-112) $ $) NIL)) (-2567 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) 58) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 54)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 34) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) 36)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-260) (-810)) (T -260))
-NIL
-(-810)
-((-3826 (((-112) $ $) NIL)) (-2567 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) 76) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 73)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 44) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) 55)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-261) (-810)) (T -261))
-NIL
-(-810)
-((-3826 (((-112) $ $) NIL)) (-2567 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 50)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 31) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-262) (-810)) (T -262))
-NIL
-(-810)
-((-3826 (((-112) $ $) NIL)) (-2567 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 50)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 28) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-263) (-810)) (T -263))
-NIL
-(-810)
-((-3826 (((-112) $ $) NIL)) (-2567 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 73)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 28) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-264) (-810)) (T -264))
-NIL
-(-810)
-((-3826 (((-112) $ $) NIL)) (-2567 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 77)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 25) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-265) (-810)) (T -265))
-NIL
-(-810)
-((-3826 (((-112) $ $) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-4217 (((-619 (-547)) $) 19)) (-3705 (((-745) $) 17)) (-3838 (((-832) $) 23) (($ (-619 (-547))) 15)) (-3318 (($ (-745)) 20)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 9)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 11)))
-(((-266) (-13 (-821) (-10 -8 (-15 -3838 ($ (-619 (-547)))) (-15 -3705 ((-745) $)) (-15 -4217 ((-619 (-547)) $)) (-15 -3318 ($ (-745)))))) (T -266))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-266)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-266)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-266)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-266)))))
-(-13 (-821) (-10 -8 (-15 -3838 ($ (-619 (-547)))) (-15 -3705 ((-745) $)) (-15 -4217 ((-619 (-547)) $)) (-15 -3318 ($ (-745)))))
-((-1656 ((|#2| |#2|) 77)) (-1505 ((|#2| |#2|) 65)) (-1307 (((-3 |#2| "failed") |#2| (-619 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-1632 ((|#2| |#2|) 75)) (-1479 ((|#2| |#2|) 63)) (-1678 ((|#2| |#2|) 79)) (-1532 ((|#2| |#2|) 67)) (-1419 ((|#2|) 46)) (-4185 (((-114) (-114)) 95)) (-3624 ((|#2| |#2|) 61)) (-3983 (((-112) |#2|) 134)) (-1468 ((|#2| |#2|) 181)) (-3124 ((|#2| |#2|) 157)) (-2956 ((|#2|) 59)) (-1462 ((|#2|) 58)) (-2376 ((|#2| |#2|) 177)) (-2224 ((|#2| |#2|) 153)) (-4096 ((|#2| |#2|) 185)) (-1909 ((|#2| |#2|) 161)) (-3653 ((|#2| |#2|) 149)) (-3385 ((|#2| |#2|) 151)) (-3480 ((|#2| |#2|) 187)) (-4242 ((|#2| |#2|) 163)) (-2829 ((|#2| |#2|) 183)) (-2665 ((|#2| |#2|) 159)) (-3493 ((|#2| |#2|) 179)) (-1979 ((|#2| |#2|) 155)) (-3266 ((|#2| |#2|) 193)) (-2256 ((|#2| |#2|) 169)) (-3625 ((|#2| |#2|) 189)) (-3884 ((|#2| |#2|) 165)) (-4218 ((|#2| |#2|) 197)) (-4051 ((|#2| |#2|) 173)) (-2902 ((|#2| |#2|) 199)) (-2787 ((|#2| |#2|) 175)) (-2671 ((|#2| |#2|) 195)) (-3589 ((|#2| |#2|) 171)) (-1747 ((|#2| |#2|) 191)) (-2931 ((|#2| |#2|) 167)) (-2712 ((|#2| |#2|) 62)) (-1690 ((|#2| |#2|) 80)) (-1545 ((|#2| |#2|) 68)) (-1668 ((|#2| |#2|) 78)) (-1519 ((|#2| |#2|) 66)) (-1644 ((|#2| |#2|) 76)) (-1493 ((|#2| |#2|) 64)) (-3128 (((-112) (-114)) 93)) (-1726 ((|#2| |#2|) 83)) (-1579 ((|#2| |#2|) 71)) (-1703 ((|#2| |#2|) 81)) (-1557 ((|#2| |#2|) 69)) (-1751 ((|#2| |#2|) 85)) (-1606 ((|#2| |#2|) 73)) (-1927 ((|#2| |#2|) 86)) (-1620 ((|#2| |#2|) 74)) (-1738 ((|#2| |#2|) 84)) (-1593 ((|#2| |#2|) 72)) (-1714 ((|#2| |#2|) 82)) (-1569 ((|#2| |#2|) 70)))
-(((-267 |#1| |#2|) (-10 -7 (-15 -2712 (|#2| |#2|)) (-15 -3624 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -1579 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1620 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1668 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -1714 (|#2| |#2|)) (-15 -1726 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -1419 (|#2|)) (-15 -3128 ((-112) (-114))) (-15 -4185 ((-114) (-114))) (-15 -1462 (|#2|)) (-15 -2956 (|#2|)) (-15 -3385 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -2224 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -3124 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -4242 (|#2| |#2|)) (-15 -3884 (|#2| |#2|)) (-15 -2931 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -3589 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -2787 (|#2| |#2|)) (-15 -2376 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -2829 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -1747 (|#2| |#2|)) (-15 -3266 (|#2| |#2|)) (-15 -2671 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -2902 (|#2| |#2|)) (-15 -1307 ((-3 |#2| "failed") |#2| (-619 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3983 ((-112) |#2|))) (-13 (-821) (-539)) (-13 (-421 |#1|) (-971))) (T -267))
-((-3983 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-421 *4) (-971))))) (-1307 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-619 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-421 *4) (-971))) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-267 *4 *2)))) (-2902 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2671 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3266 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1747 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2829 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1468 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2376 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2787 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-4051 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3589 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2931 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3884 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-4242 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1909 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3124 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3385 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2956 (*1 *2) (-12 (-4 *2 (-13 (-421 *3) (-971))) (-5 *1 (-267 *3 *2)) (-4 *3 (-13 (-821) (-539))))) (-1462 (*1 *2) (-12 (-4 *2 (-13 (-421 *3) (-971))) (-5 *1 (-267 *3 *2)) (-4 *3 (-13 (-821) (-539))))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *4)) (-4 *4 (-13 (-421 *3) (-971))))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-421 *4) (-971))))) (-1419 (*1 *2) (-12 (-4 *2 (-13 (-421 *3) (-971))) (-5 *1 (-267 *3 *2)) (-4 *3 (-13 (-821) (-539))))) (-1927 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1726 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1714 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1690 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1668 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1620 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1579 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1493 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))))
-(-10 -7 (-15 -2712 (|#2| |#2|)) (-15 -3624 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -1579 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1620 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1668 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -1714 (|#2| |#2|)) (-15 -1726 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -1419 (|#2|)) (-15 -3128 ((-112) (-114))) (-15 -4185 ((-114) (-114))) (-15 -1462 (|#2|)) (-15 -2956 (|#2|)) (-15 -3385 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -2224 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -3124 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -4242 (|#2| |#2|)) (-15 -3884 (|#2| |#2|)) (-15 -2931 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -3589 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -2787 (|#2| |#2|)) (-15 -2376 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -2829 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -1747 (|#2| |#2|)) (-15 -3266 (|#2| |#2|)) (-15 -2671 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -2902 (|#2| |#2|)) (-15 -1307 ((-3 |#2| "failed") |#2| (-619 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3983 ((-112) |#2|)))
-((-2568 (((-3 |#2| "failed") (-619 (-590 |#2|)) |#2| (-1136)) 135)) (-3099 ((|#2| (-398 (-547)) |#2|) 51)) (-1371 ((|#2| |#2| (-590 |#2|)) 128)) (-3533 (((-2 (|:| |func| |#2|) (|:| |kers| (-619 (-590 |#2|))) (|:| |vals| (-619 |#2|))) |#2| (-1136)) 127)) (-1866 ((|#2| |#2| (-1136)) 20) ((|#2| |#2|) 23)) (-2055 ((|#2| |#2| (-1136)) 141) ((|#2| |#2|) 139)))
-(((-268 |#1| |#2|) (-10 -7 (-15 -2055 (|#2| |#2|)) (-15 -2055 (|#2| |#2| (-1136))) (-15 -3533 ((-2 (|:| |func| |#2|) (|:| |kers| (-619 (-590 |#2|))) (|:| |vals| (-619 |#2|))) |#2| (-1136))) (-15 -1866 (|#2| |#2|)) (-15 -1866 (|#2| |#2| (-1136))) (-15 -2568 ((-3 |#2| "failed") (-619 (-590 |#2|)) |#2| (-1136))) (-15 -1371 (|#2| |#2| (-590 |#2|))) (-15 -3099 (|#2| (-398 (-547)) |#2|))) (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1158) (-421 |#1|))) (T -268))
-((-3099 (*1 *2 *3 *2) (-12 (-5 *3 (-398 (-547))) (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4))))) (-1371 (*1 *2 *2 *3) (-12 (-5 *3 (-590 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4))) (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *4 *2)))) (-2568 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-619 (-590 *2))) (-5 *4 (-1136)) (-4 *2 (-13 (-27) (-1158) (-421 *5))) (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *5 *2)))) (-1866 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4))))) (-1866 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3))))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-619 (-590 *3))) (|:| |vals| (-619 *3)))) (-5 *1 (-268 *5 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))))) (-2055 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4))))) (-2055 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3))))))
-(-10 -7 (-15 -2055 (|#2| |#2|)) (-15 -2055 (|#2| |#2| (-1136))) (-15 -3533 ((-2 (|:| |func| |#2|) (|:| |kers| (-619 (-590 |#2|))) (|:| |vals| (-619 |#2|))) |#2| (-1136))) (-15 -1866 (|#2| |#2|)) (-15 -1866 (|#2| |#2| (-1136))) (-15 -2568 ((-3 |#2| "failed") (-619 (-590 |#2|)) |#2| (-1136))) (-15 -1371 (|#2| |#2| (-590 |#2|))) (-15 -3099 (|#2| (-398 (-547)) |#2|)))
-((-1862 (((-3 |#3| "failed") |#3|) 110)) (-1656 ((|#3| |#3|) 131)) (-2922 (((-3 |#3| "failed") |#3|) 82)) (-1505 ((|#3| |#3|) 121)) (-1888 (((-3 |#3| "failed") |#3|) 58)) (-1632 ((|#3| |#3|) 129)) (-3411 (((-3 |#3| "failed") |#3|) 46)) (-1479 ((|#3| |#3|) 119)) (-2901 (((-3 |#3| "failed") |#3|) 112)) (-1678 ((|#3| |#3|) 133)) (-4004 (((-3 |#3| "failed") |#3|) 84)) (-1532 ((|#3| |#3|) 123)) (-2310 (((-3 |#3| "failed") |#3| (-745)) 36)) (-1622 (((-3 |#3| "failed") |#3|) 74)) (-3624 ((|#3| |#3|) 118)) (-4040 (((-3 |#3| "failed") |#3|) 44)) (-2712 ((|#3| |#3|) 117)) (-3497 (((-3 |#3| "failed") |#3|) 113)) (-1690 ((|#3| |#3|) 134)) (-2039 (((-3 |#3| "failed") |#3|) 85)) (-1545 ((|#3| |#3|) 124)) (-1896 (((-3 |#3| "failed") |#3|) 111)) (-1668 ((|#3| |#3|) 132)) (-4007 (((-3 |#3| "failed") |#3|) 83)) (-1519 ((|#3| |#3|) 122)) (-4050 (((-3 |#3| "failed") |#3|) 60)) (-1644 ((|#3| |#3|) 130)) (-1875 (((-3 |#3| "failed") |#3|) 48)) (-1493 ((|#3| |#3|) 120)) (-3549 (((-3 |#3| "failed") |#3|) 66)) (-1726 ((|#3| |#3|) 137)) (-2906 (((-3 |#3| "failed") |#3|) 104)) (-1579 ((|#3| |#3|) 142)) (-1789 (((-3 |#3| "failed") |#3|) 62)) (-1703 ((|#3| |#3|) 135)) (-3769 (((-3 |#3| "failed") |#3|) 50)) (-1557 ((|#3| |#3|) 125)) (-3438 (((-3 |#3| "failed") |#3|) 70)) (-1751 ((|#3| |#3|) 139)) (-1646 (((-3 |#3| "failed") |#3|) 54)) (-1606 ((|#3| |#3|) 127)) (-3827 (((-3 |#3| "failed") |#3|) 72)) (-1927 ((|#3| |#3|) 140)) (-3259 (((-3 |#3| "failed") |#3|) 56)) (-1620 ((|#3| |#3|) 128)) (-2640 (((-3 |#3| "failed") |#3|) 68)) (-1738 ((|#3| |#3|) 138)) (-2890 (((-3 |#3| "failed") |#3|) 107)) (-1593 ((|#3| |#3|) 143)) (-2022 (((-3 |#3| "failed") |#3|) 64)) (-1714 ((|#3| |#3|) 136)) (-2812 (((-3 |#3| "failed") |#3|) 52)) (-1569 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-398 (-547))) 40 (|has| |#1| (-354)))))
-(((-269 |#1| |#2| |#3|) (-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-354)) (-15 ** (|#3| |#3| (-398 (-547)))) |%noBranch|) (-15 -2712 (|#3| |#3|)) (-15 -3624 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1493 (|#3| |#3|)) (-15 -1505 (|#3| |#3|)) (-15 -1519 (|#3| |#3|)) (-15 -1532 (|#3| |#3|)) (-15 -1545 (|#3| |#3|)) (-15 -1557 (|#3| |#3|)) (-15 -1569 (|#3| |#3|)) (-15 -1579 (|#3| |#3|)) (-15 -1593 (|#3| |#3|)) (-15 -1606 (|#3| |#3|)) (-15 -1620 (|#3| |#3|)) (-15 -1632 (|#3| |#3|)) (-15 -1644 (|#3| |#3|)) (-15 -1656 (|#3| |#3|)) (-15 -1668 (|#3| |#3|)) (-15 -1678 (|#3| |#3|)) (-15 -1690 (|#3| |#3|)) (-15 -1703 (|#3| |#3|)) (-15 -1714 (|#3| |#3|)) (-15 -1726 (|#3| |#3|)) (-15 -1738 (|#3| |#3|)) (-15 -1751 (|#3| |#3|)) (-15 -1927 (|#3| |#3|)))) (-38 (-398 (-547))) (-1210 |#1|) (-1181 |#1| |#2|)) (T -269))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-398 (-547))) (-4 *4 (-354)) (-4 *4 (-38 *3)) (-4 *5 (-1210 *4)) (-5 *1 (-269 *4 *5 *2)) (-4 *2 (-1181 *4 *5)))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1493 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1579 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1620 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1668 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1690 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1714 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1726 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))) (-1927 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4)))))
-(-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-354)) (-15 ** (|#3| |#3| (-398 (-547)))) |%noBranch|) (-15 -2712 (|#3| |#3|)) (-15 -3624 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1493 (|#3| |#3|)) (-15 -1505 (|#3| |#3|)) (-15 -1519 (|#3| |#3|)) (-15 -1532 (|#3| |#3|)) (-15 -1545 (|#3| |#3|)) (-15 -1557 (|#3| |#3|)) (-15 -1569 (|#3| |#3|)) (-15 -1579 (|#3| |#3|)) (-15 -1593 (|#3| |#3|)) (-15 -1606 (|#3| |#3|)) (-15 -1620 (|#3| |#3|)) (-15 -1632 (|#3| |#3|)) (-15 -1644 (|#3| |#3|)) (-15 -1656 (|#3| |#3|)) (-15 -1668 (|#3| |#3|)) (-15 -1678 (|#3| |#3|)) (-15 -1690 (|#3| |#3|)) (-15 -1703 (|#3| |#3|)) (-15 -1714 (|#3| |#3|)) (-15 -1726 (|#3| |#3|)) (-15 -1738 (|#3| |#3|)) (-15 -1751 (|#3| |#3|)) (-15 -1927 (|#3| |#3|))))
-((-1862 (((-3 |#3| "failed") |#3|) 66)) (-1656 ((|#3| |#3|) 129)) (-2922 (((-3 |#3| "failed") |#3|) 50)) (-1505 ((|#3| |#3|) 117)) (-1888 (((-3 |#3| "failed") |#3|) 62)) (-1632 ((|#3| |#3|) 127)) (-3411 (((-3 |#3| "failed") |#3|) 46)) (-1479 ((|#3| |#3|) 115)) (-2901 (((-3 |#3| "failed") |#3|) 70)) (-1678 ((|#3| |#3|) 131)) (-4004 (((-3 |#3| "failed") |#3|) 54)) (-1532 ((|#3| |#3|) 119)) (-2310 (((-3 |#3| "failed") |#3| (-745)) 35)) (-1622 (((-3 |#3| "failed") |#3|) 44)) (-3624 ((|#3| |#3|) 104)) (-4040 (((-3 |#3| "failed") |#3|) 42)) (-2712 ((|#3| |#3|) 114)) (-3497 (((-3 |#3| "failed") |#3|) 72)) (-1690 ((|#3| |#3|) 132)) (-2039 (((-3 |#3| "failed") |#3|) 56)) (-1545 ((|#3| |#3|) 120)) (-1896 (((-3 |#3| "failed") |#3|) 68)) (-1668 ((|#3| |#3|) 130)) (-4007 (((-3 |#3| "failed") |#3|) 52)) (-1519 ((|#3| |#3|) 118)) (-4050 (((-3 |#3| "failed") |#3|) 64)) (-1644 ((|#3| |#3|) 128)) (-1875 (((-3 |#3| "failed") |#3|) 48)) (-1493 ((|#3| |#3|) 116)) (-3549 (((-3 |#3| "failed") |#3|) 74)) (-1726 ((|#3| |#3|) 135)) (-2906 (((-3 |#3| "failed") |#3|) 58)) (-1579 ((|#3| |#3|) 123)) (-1789 (((-3 |#3| "failed") |#3|) 105)) (-1703 ((|#3| |#3|) 133)) (-3769 (((-3 |#3| "failed") |#3|) 94)) (-1557 ((|#3| |#3|) 121)) (-3438 (((-3 |#3| "failed") |#3|) 109)) (-1751 ((|#3| |#3|) 137)) (-1646 (((-3 |#3| "failed") |#3|) 101)) (-1606 ((|#3| |#3|) 125)) (-3827 (((-3 |#3| "failed") |#3|) 110)) (-1927 ((|#3| |#3|) 138)) (-3259 (((-3 |#3| "failed") |#3|) 103)) (-1620 ((|#3| |#3|) 126)) (-2640 (((-3 |#3| "failed") |#3|) 76)) (-1738 ((|#3| |#3|) 136)) (-2890 (((-3 |#3| "failed") |#3|) 60)) (-1593 ((|#3| |#3|) 124)) (-2022 (((-3 |#3| "failed") |#3|) 106)) (-1714 ((|#3| |#3|) 134)) (-2812 (((-3 |#3| "failed") |#3|) 97)) (-1569 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-398 (-547))) 40 (|has| |#1| (-354)))))
-(((-270 |#1| |#2| |#3| |#4|) (-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-354)) (-15 ** (|#3| |#3| (-398 (-547)))) |%noBranch|) (-15 -2712 (|#3| |#3|)) (-15 -3624 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1493 (|#3| |#3|)) (-15 -1505 (|#3| |#3|)) (-15 -1519 (|#3| |#3|)) (-15 -1532 (|#3| |#3|)) (-15 -1545 (|#3| |#3|)) (-15 -1557 (|#3| |#3|)) (-15 -1569 (|#3| |#3|)) (-15 -1579 (|#3| |#3|)) (-15 -1593 (|#3| |#3|)) (-15 -1606 (|#3| |#3|)) (-15 -1620 (|#3| |#3|)) (-15 -1632 (|#3| |#3|)) (-15 -1644 (|#3| |#3|)) (-15 -1656 (|#3| |#3|)) (-15 -1668 (|#3| |#3|)) (-15 -1678 (|#3| |#3|)) (-15 -1690 (|#3| |#3|)) (-15 -1703 (|#3| |#3|)) (-15 -1714 (|#3| |#3|)) (-15 -1726 (|#3| |#3|)) (-15 -1738 (|#3| |#3|)) (-15 -1751 (|#3| |#3|)) (-15 -1927 (|#3| |#3|)))) (-38 (-398 (-547))) (-1179 |#1|) (-1202 |#1| |#2|) (-952 |#2|)) (T -270))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-398 (-547))) (-4 *4 (-354)) (-4 *4 (-38 *3)) (-4 *5 (-1179 *4)) (-5 *1 (-270 *4 *5 *2 *6)) (-4 *2 (-1202 *4 *5)) (-4 *6 (-952 *5)))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1493 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1579 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1620 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1668 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1690 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1714 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1726 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))) (-1927 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4)))))
-(-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-354)) (-15 ** (|#3| |#3| (-398 (-547)))) |%noBranch|) (-15 -2712 (|#3| |#3|)) (-15 -3624 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1493 (|#3| |#3|)) (-15 -1505 (|#3| |#3|)) (-15 -1519 (|#3| |#3|)) (-15 -1532 (|#3| |#3|)) (-15 -1545 (|#3| |#3|)) (-15 -1557 (|#3| |#3|)) (-15 -1569 (|#3| |#3|)) (-15 -1579 (|#3| |#3|)) (-15 -1593 (|#3| |#3|)) (-15 -1606 (|#3| |#3|)) (-15 -1620 (|#3| |#3|)) (-15 -1632 (|#3| |#3|)) (-15 -1644 (|#3| |#3|)) (-15 -1656 (|#3| |#3|)) (-15 -1668 (|#3| |#3|)) (-15 -1678 (|#3| |#3|)) (-15 -1690 (|#3| |#3|)) (-15 -1703 (|#3| |#3|)) (-15 -1714 (|#3| |#3|)) (-15 -1726 (|#3| |#3|)) (-15 -1738 (|#3| |#3|)) (-15 -1751 (|#3| |#3|)) (-15 -1927 (|#3| |#3|))))
-((-3810 (((-112) $) 19)) (-3100 (((-179) $) 7)) (-1418 (((-3 (-1136) "failed") $) 14)) (-1956 (((-3 (-619 $) "failed") $) NIL)) (-2850 (((-3 (-1136) "failed") $) 21)) (-2058 (((-3 (-1067) "failed") $) 17)) (-4281 (((-112) $) 15)) (-3838 (((-832) $) NIL)) (-3950 (((-112) $) 9)))
-(((-271) (-13 (-591 (-832)) (-10 -8 (-15 -3100 ((-179) $)) (-15 -4281 ((-112) $)) (-15 -2058 ((-3 (-1067) "failed") $)) (-15 -3810 ((-112) $)) (-15 -2850 ((-3 (-1136) "failed") $)) (-15 -3950 ((-112) $)) (-15 -1418 ((-3 (-1136) "failed") $)) (-15 -1956 ((-3 (-619 $) "failed") $))))) (T -271))
-((-3100 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-271)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-2058 (*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-271)))) (-3810 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-2850 (*1 *2 *1) (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-271)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-1418 (*1 *2 *1) (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-271)))) (-1956 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-271))) (-5 *1 (-271)))))
-(-13 (-591 (-832)) (-10 -8 (-15 -3100 ((-179) $)) (-15 -4281 ((-112) $)) (-15 -2058 ((-3 (-1067) "failed") $)) (-15 -3810 ((-112) $)) (-15 -2850 ((-3 (-1136) "failed") $)) (-15 -3950 ((-112) $)) (-15 -1418 ((-3 (-1136) "failed") $)) (-15 -1956 ((-3 (-619 $) "failed") $))))
-((-1482 (($ (-1 (-112) |#2|) $) 24)) (-3668 (($ $) 36)) (-1513 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3803 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3145 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2606 (($ |#2| $ (-547)) 20) (($ $ $ (-547)) 22)) (-2159 (($ $ (-547)) 11) (($ $ (-1186 (-547))) 14)) (-3794 (($ $ |#2|) 30) (($ $ $) NIL)) (-1945 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-619 $)) NIL)))
-(((-272 |#1| |#2|) (-10 -8 (-15 -3145 (|#1| |#1| |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -3145 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1513 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3794 (|#1| |#1| |#2|)) (-15 -2606 (|#1| |#1| |#1| (-547))) (-15 -2606 (|#1| |#2| |#1| (-547))) (-15 -2159 (|#1| |#1| (-1186 (-547)))) (-15 -2159 (|#1| |#1| (-547))) (-15 -1945 (|#1| (-619 |#1|))) (-15 -1945 (|#1| |#1| |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -1945 (|#1| |#1| |#2|)) (-15 -3803 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1482 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3668 (|#1| |#1|))) (-273 |#2|) (-1173)) (T -272))
-NIL
-(-10 -8 (-15 -3145 (|#1| |#1| |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -3145 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1513 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3794 (|#1| |#1| |#2|)) (-15 -2606 (|#1| |#1| |#1| (-547))) (-15 -2606 (|#1| |#2| |#1| (-547))) (-15 -2159 (|#1| |#1| (-1186 (-547)))) (-15 -2159 (|#1| |#1| (-547))) (-15 -1945 (|#1| (-619 |#1|))) (-15 -1945 (|#1| |#1| |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -1945 (|#1| |#1| |#2|)) (-15 -3803 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1482 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3668 (|#1| |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-1652 (((-1224) $ (-547) (-547)) 40 (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) 8)) (-2247 ((|#1| $ (-547) |#1|) 52 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) 58 (|has| $ (-6 -4330)))) (-4285 (($ (-1 (-112) |#1|) $) 85)) (-1482 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-2968 (($ $) 83 (|has| |#1| (-1063)))) (-3668 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1513 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1063)))) (-3803 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) 53 (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) 51)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-3735 (($ (-745) |#1|) 69)) (-2763 (((-112) $ (-745)) 9)) (-2434 (((-547) $) 43 (|has| (-547) (-821)))) (-3145 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 44 (|has| (-547) (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-2657 (($ |#1| $ (-547)) 88) (($ $ $ (-547)) 87)) (-2606 (($ |#1| $ (-547)) 60) (($ $ $ (-547)) 59)) (-2121 (((-619 (-547)) $) 46)) (-2018 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3638 ((|#1| $) 42 (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3632 (($ $ |#1|) 41 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) 48)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ (-547) |#1|) 50) ((|#1| $ (-547)) 49) (($ $ (-1186 (-547))) 63)) (-2649 (($ $ (-547)) 91) (($ $ (-1186 (-547))) 90)) (-2159 (($ $ (-547)) 62) (($ $ (-1186 (-547))) 61)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-2838 (((-523) $) 79 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 70)) (-3794 (($ $ |#1|) 93) (($ $ $) 92)) (-1945 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-273 |#1|) (-138) (-1173)) (T -273))
-((-3794 (*1 *1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1173)))) (-3794 (*1 *1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1173)))) (-2649 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-273 *3)) (-4 *3 (-1173)))) (-2649 (*1 *1 *1 *2) (-12 (-5 *2 (-1186 (-547))) (-4 *1 (-273 *3)) (-4 *3 (-1173)))) (-1513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-273 *3)) (-4 *3 (-1173)))) (-2657 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-273 *2)) (-4 *2 (-1173)))) (-2657 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-273 *3)) (-4 *3 (-1173)))) (-3145 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1173)))) (-4285 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-273 *3)) (-4 *3 (-1173)))) (-1513 (*1 *1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1173)) (-4 *2 (-1063)))) (-2968 (*1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1173)) (-4 *2 (-1063)))) (-3145 (*1 *1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1173)) (-4 *2 (-821)))))
-(-13 (-625 |t#1|) (-10 -8 (-6 -4330) (-15 -3794 ($ $ |t#1|)) (-15 -3794 ($ $ $)) (-15 -2649 ($ $ (-547))) (-15 -2649 ($ $ (-1186 (-547)))) (-15 -1513 ($ (-1 (-112) |t#1|) $)) (-15 -2657 ($ |t#1| $ (-547))) (-15 -2657 ($ $ $ (-547))) (-15 -3145 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4285 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -1513 ($ |t#1| $)) (-15 -2968 ($ $))) |%noBranch|) (IF (|has| |t#1| (-821)) (-15 -3145 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
+NIL
+(-13 (-1018) (-111 $ $) (-10 -7 (-6 (-4339 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3578 (($ $) 6)))
+(((-171) (-138)) (T -171))
+((-3578 (*1 *1 *1) (-4 *1 (-171))))
+(-13 (-10 -8 (-15 -3578 ($ $))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3329 ((|#1| $) 75)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-2095 (($ $ $) NIL)) (-2842 (($ $) 19)) (-1691 (($ |#1| (-1123 |#1|)) 48)) (-2114 (((-3 $ "failed") $) 117)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-2907 (((-1123 |#1|) $) 82)) (-3972 (((-1123 |#1|) $) 79)) (-1468 (((-1123 |#1|) $) 80)) (-2675 (((-112) $) NIL)) (-1990 (((-1123 |#1|) $) 88)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3697 (($ (-621 $)) NIL) (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ (-621 $)) NIL) (($ $ $) NIL)) (-2121 (((-411 $) $) NIL)) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL)) (-2763 (($ $ (-549)) 91)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-4067 (((-1123 |#1|) $) 89)) (-3587 (((-1123 (-400 |#1|)) $) 14)) (-4116 (($ (-400 |#1|)) 17) (($ |#1| (-1123 |#1|) (-1123 |#1|)) 38)) (-1977 (($ $) 93)) (-3846 (((-834) $) 127) (($ (-549)) 51) (($ |#1|) 52) (($ (-400 |#1|)) 36) (($ (-400 (-549))) NIL) (($ $) NIL)) (-2082 (((-747)) 64)) (-1498 (((-112) $ $) NIL)) (-1941 (((-1123 (-400 |#1|)) $) 18)) (-3276 (($) 25 T CONST)) (-3287 (($) 28 T CONST)) (-2389 (((-112) $ $) 35)) (-2513 (($ $ $) 115)) (-2500 (($ $) 106) (($ $ $) 103)) (-2486 (($ $ $) 101)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-400 |#1|) $) 111) (($ $ (-400 |#1|)) NIL) (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL)))
+(((-172 |#1|) (-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -4116 ($ (-400 |#1|))) (-15 -4116 ($ |#1| (-1123 |#1|) (-1123 |#1|))) (-15 -1691 ($ |#1| (-1123 |#1|))) (-15 -3972 ((-1123 |#1|) $)) (-15 -1468 ((-1123 |#1|) $)) (-15 -2907 ((-1123 |#1|) $)) (-15 -3329 (|#1| $)) (-15 -2842 ($ $)) (-15 -1941 ((-1123 (-400 |#1|)) $)) (-15 -3587 ((-1123 (-400 |#1|)) $)) (-15 -1990 ((-1123 |#1|) $)) (-15 -4067 ((-1123 |#1|) $)) (-15 -2763 ($ $ (-549))) (-15 -1977 ($ $)))) (-300)) (T -172))
+((-4116 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) (-4116 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3329 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-2842 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-1941 (*1 *2 *1) (-12 (-5 *2 (-1123 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1123 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-2763 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1977 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))))
+(-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -4116 ($ (-400 |#1|))) (-15 -4116 ($ |#1| (-1123 |#1|) (-1123 |#1|))) (-15 -1691 ($ |#1| (-1123 |#1|))) (-15 -3972 ((-1123 |#1|) $)) (-15 -1468 ((-1123 |#1|) $)) (-15 -2907 ((-1123 |#1|) $)) (-15 -3329 (|#1| $)) (-15 -2842 ($ $)) (-15 -1941 ((-1123 (-400 |#1|)) $)) (-15 -3587 ((-1123 (-400 |#1|)) $)) (-15 -1990 ((-1123 |#1|) $)) (-15 -4067 ((-1123 |#1|) $)) (-15 -2763 ($ $ (-549))) (-15 -1977 ($ $))))
+((-2503 (($ (-108) $) 13)) (-1292 (((-3 (-108) "failed") (-1143) $) 12)) (-3846 (((-834) $) 16)) (-3426 (((-621 (-108)) $) 8)))
+(((-173) (-13 (-593 (-834)) (-10 -8 (-15 -3426 ((-621 (-108)) $)) (-15 -2503 ($ (-108) $)) (-15 -1292 ((-3 (-108) "failed") (-1143) $))))) (T -173))
+((-3426 (*1 *2 *1) (-12 (-5 *2 (-621 (-108))) (-5 *1 (-173)))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))) (-1292 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1143)) (-5 *2 (-108)) (-5 *1 (-173)))))
+(-13 (-593 (-834)) (-10 -8 (-15 -3426 ((-621 (-108)) $)) (-15 -2503 ($ (-108) $)) (-15 -1292 ((-3 (-108) "failed") (-1143) $))))
+((-2723 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 40)) (-4170 (((-914 |#1|) (-914 |#1|)) 19)) (-2997 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 36)) (-3540 (((-914 |#1|) (-914 |#1|)) 17)) (-2300 (((-914 |#1|) (-914 |#1|)) 25)) (-3958 (((-914 |#1|) (-914 |#1|)) 24)) (-2566 (((-914 |#1|) (-914 |#1|)) 23)) (-1713 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 37)) (-3577 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 35)) (-1969 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 34)) (-4208 (((-914 |#1|) (-914 |#1|)) 18)) (-3981 (((-1 (-914 |#1|) (-914 |#1|)) |#1| |#1|) 43)) (-1616 (((-914 |#1|) (-914 |#1|)) 8)) (-2469 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 39)) (-4243 (((-1 (-914 |#1|) (-914 |#1|)) |#1|) 38)))
+(((-174 |#1|) (-10 -7 (-15 -1616 ((-914 |#1|) (-914 |#1|))) (-15 -3540 ((-914 |#1|) (-914 |#1|))) (-15 -4208 ((-914 |#1|) (-914 |#1|))) (-15 -4170 ((-914 |#1|) (-914 |#1|))) (-15 -2566 ((-914 |#1|) (-914 |#1|))) (-15 -3958 ((-914 |#1|) (-914 |#1|))) (-15 -2300 ((-914 |#1|) (-914 |#1|))) (-15 -1969 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -3577 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2997 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1713 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -4243 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2469 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2723 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -3981 ((-1 (-914 |#1|) (-914 |#1|)) |#1| |#1|))) (-13 (-356) (-1165) (-973))) (T -174))
+((-3981 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1165) (-973))))) (-2723 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1165) (-973))))) (-2469 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1165) (-973))))) (-4243 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1165) (-973))))) (-1713 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1165) (-973))))) (-2997 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1165) (-973))))) (-3577 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1165) (-973))))) (-1969 (*1 *2 *3) (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1165) (-973))))) (-2300 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973))) (-5 *1 (-174 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973))) (-5 *1 (-174 *3)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973))) (-5 *1 (-174 *3)))) (-4170 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973))) (-5 *1 (-174 *3)))) (-4208 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973))) (-5 *1 (-174 *3)))) (-3540 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973))) (-5 *1 (-174 *3)))) (-1616 (*1 *2 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973))) (-5 *1 (-174 *3)))))
+(-10 -7 (-15 -1616 ((-914 |#1|) (-914 |#1|))) (-15 -3540 ((-914 |#1|) (-914 |#1|))) (-15 -4208 ((-914 |#1|) (-914 |#1|))) (-15 -4170 ((-914 |#1|) (-914 |#1|))) (-15 -2566 ((-914 |#1|) (-914 |#1|))) (-15 -3958 ((-914 |#1|) (-914 |#1|))) (-15 -2300 ((-914 |#1|) (-914 |#1|))) (-15 -1969 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -3577 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2997 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -1713 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -4243 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2469 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -2723 ((-1 (-914 |#1|) (-914 |#1|)) |#1|)) (-15 -3981 ((-1 (-914 |#1|) (-914 |#1|)) |#1| |#1|)))
+((-4154 ((|#2| |#3|) 27)))
+(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -4154 (|#2| |#3|))) (-170) (-1202 |#1|) (-701 |#1| |#2|)) (T -175))
+((-4154 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1202 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-701 *4 *2)))))
+(-10 -7 (-15 -4154 (|#2| |#3|)))
+((-2932 (((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)) 47 (|has| (-923 |#2|) (-857 |#1|)))))
+(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-923 |#2|) (-857 |#1|)) (-15 -2932 ((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))) |%noBranch|)) (-1067) (-13 (-857 |#1|) (-170)) (-164 |#2|)) (T -176))
+((-2932 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 *3)) (-5 *4 (-863 *5)) (-4 *5 (-1067)) (-4 *3 (-164 *6)) (-4 (-923 *6) (-857 *5)) (-4 *6 (-13 (-857 *5) (-170))) (-5 *1 (-176 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-923 |#2|) (-857 |#1|)) (-15 -2932 ((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))) |%noBranch|))
+((-2738 (((-621 |#1|) (-621 |#1|) |#1|) 38)) (-1317 (((-621 |#1|) |#1| (-621 |#1|)) 19)) (-2264 (((-621 |#1|) (-621 (-621 |#1|)) (-621 |#1|)) 33) ((|#1| (-621 |#1|) (-621 |#1|)) 31)))
+(((-177 |#1|) (-10 -7 (-15 -1317 ((-621 |#1|) |#1| (-621 |#1|))) (-15 -2264 (|#1| (-621 |#1|) (-621 |#1|))) (-15 -2264 ((-621 |#1|) (-621 (-621 |#1|)) (-621 |#1|))) (-15 -2738 ((-621 |#1|) (-621 |#1|) |#1|))) (-300)) (T -177))
+((-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))) (-2264 (*1 *2 *3 *2) (-12 (-5 *3 (-621 (-621 *4))) (-5 *2 (-621 *4)) (-4 *4 (-300)) (-5 *1 (-177 *4)))) (-2264 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) (-1317 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))))
+(-10 -7 (-15 -1317 ((-621 |#1|) |#1| (-621 |#1|))) (-15 -2264 (|#1| (-621 |#1|) (-621 |#1|))) (-15 -2264 ((-621 |#1|) (-621 (-621 |#1|)) (-621 |#1|))) (-15 -2738 ((-621 |#1|) (-621 |#1|) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-2100 (((-1179) $) 12)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3955 (((-1148) $) 9)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-178) (-13 (-1050) (-10 -8 (-15 -3955 ((-1148) $)) (-15 -2100 ((-1179) $))))) (T -178))
+((-3955 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-178)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-178)))))
+(-13 (-1050) (-10 -8 (-15 -3955 ((-1148) $)) (-15 -2100 ((-1179) $))))
+((-4214 (((-2 (|:| |start| |#2|) (|:| -4024 (-411 |#2|))) |#2|) 61)) (-1571 ((|#1| |#1|) 54)) (-2508 (((-167 |#1|) |#2|) 84)) (-2013 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3227 ((|#2| |#2|) 83)) (-1482 (((-411 |#2|) |#2| |#1|) 113) (((-411 |#2|) |#2| |#1| (-112)) 81)) (-3630 ((|#1| |#2|) 112)) (-2578 ((|#2| |#2|) 119)) (-2121 (((-411 |#2|) |#2|) 134) (((-411 |#2|) |#2| |#1|) 32) (((-411 |#2|) |#2| |#1| (-112)) 133)) (-3418 (((-621 (-2 (|:| -4024 (-621 |#2|)) (|:| -3042 |#1|))) |#2| |#2|) 132) (((-621 (-2 (|:| -4024 (-621 |#2|)) (|:| -3042 |#1|))) |#2| |#2| (-112)) 76)) (-2792 (((-621 (-167 |#1|)) |#2| |#1|) 40) (((-621 (-167 |#1|)) |#2|) 41)))
+(((-179 |#1| |#2|) (-10 -7 (-15 -2792 ((-621 (-167 |#1|)) |#2|)) (-15 -2792 ((-621 (-167 |#1|)) |#2| |#1|)) (-15 -3418 ((-621 (-2 (|:| -4024 (-621 |#2|)) (|:| -3042 |#1|))) |#2| |#2| (-112))) (-15 -3418 ((-621 (-2 (|:| -4024 (-621 |#2|)) (|:| -3042 |#1|))) |#2| |#2|)) (-15 -2121 ((-411 |#2|) |#2| |#1| (-112))) (-15 -2121 ((-411 |#2|) |#2| |#1|)) (-15 -2121 ((-411 |#2|) |#2|)) (-15 -2578 (|#2| |#2|)) (-15 -3630 (|#1| |#2|)) (-15 -1482 ((-411 |#2|) |#2| |#1| (-112))) (-15 -1482 ((-411 |#2|) |#2| |#1|)) (-15 -3227 (|#2| |#2|)) (-15 -2013 (|#1| |#2| |#1|)) (-15 -2013 (|#1| |#2|)) (-15 -2508 ((-167 |#1|) |#2|)) (-15 -1571 (|#1| |#1|)) (-15 -4214 ((-2 (|:| |start| |#2|) (|:| -4024 (-411 |#2|))) |#2|))) (-13 (-356) (-821)) (-1202 (-167 |#1|))) (T -179))
+((-4214 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-2 (|:| |start| *3) (|:| -4024 (-411 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))) (-1571 (*1 *2 *2) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1202 (-167 *2))))) (-2508 (*1 *2 *3) (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-356) (-821))) (-4 *3 (-1202 *2)))) (-2013 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1202 (-167 *2))))) (-2013 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1202 (-167 *2))))) (-3227 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1202 (-167 *3))))) (-1482 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))) (-1482 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))) (-3630 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1202 (-167 *2))))) (-2578 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1202 (-167 *3))))) (-2121 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))) (-2121 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))) (-2121 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))) (-3418 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-621 (-2 (|:| -4024 (-621 *3)) (|:| -3042 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))) (-3418 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-821))) (-5 *2 (-621 (-2 (|:| -4024 (-621 *3)) (|:| -3042 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1202 (-167 *5))))) (-2792 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-621 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))) (-2792 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-621 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))))
+(-10 -7 (-15 -2792 ((-621 (-167 |#1|)) |#2|)) (-15 -2792 ((-621 (-167 |#1|)) |#2| |#1|)) (-15 -3418 ((-621 (-2 (|:| -4024 (-621 |#2|)) (|:| -3042 |#1|))) |#2| |#2| (-112))) (-15 -3418 ((-621 (-2 (|:| -4024 (-621 |#2|)) (|:| -3042 |#1|))) |#2| |#2|)) (-15 -2121 ((-411 |#2|) |#2| |#1| (-112))) (-15 -2121 ((-411 |#2|) |#2| |#1|)) (-15 -2121 ((-411 |#2|) |#2|)) (-15 -2578 (|#2| |#2|)) (-15 -3630 (|#1| |#2|)) (-15 -1482 ((-411 |#2|) |#2| |#1| (-112))) (-15 -1482 ((-411 |#2|) |#2| |#1|)) (-15 -3227 (|#2| |#2|)) (-15 -2013 (|#1| |#2| |#1|)) (-15 -2013 (|#1| |#2|)) (-15 -2508 ((-167 |#1|) |#2|)) (-15 -1571 (|#1| |#1|)) (-15 -4214 ((-2 (|:| |start| |#2|) (|:| -4024 (-411 |#2|))) |#2|)))
+((-1601 (((-3 |#2| "failed") |#2|) 14)) (-4107 (((-747) |#2|) 16)) (-1318 ((|#2| |#2| |#2|) 18)))
+(((-180 |#1| |#2|) (-10 -7 (-15 -1601 ((-3 |#2| "failed") |#2|)) (-15 -4107 ((-747) |#2|)) (-15 -1318 (|#2| |#2| |#2|))) (-1180) (-650 |#1|)) (T -180))
+((-1318 (*1 *2 *2 *2) (-12 (-4 *3 (-1180)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3)))) (-4107 (*1 *2 *3) (-12 (-4 *4 (-1180)) (-5 *2 (-747)) (-5 *1 (-180 *4 *3)) (-4 *3 (-650 *4)))) (-1601 (*1 *2 *2) (|partial| -12 (-4 *3 (-1180)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3)))))
+(-10 -7 (-15 -1601 ((-3 |#2| "failed") |#2|)) (-15 -4107 ((-747) |#2|)) (-15 -1318 (|#2| |#2| |#2|)))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2516 (((-1143) $) 10)) (-3846 (((-834) $) 17)) (-2872 (((-621 (-1148)) $) 12)) (-2389 (((-112) $ $) 15)))
+(((-181) (-13 (-1067) (-10 -8 (-15 -2516 ((-1143) $)) (-15 -2872 ((-621 (-1148)) $))))) (T -181))
+((-2516 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-181)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-181)))))
+(-13 (-1067) (-10 -8 (-15 -2516 ((-1143) $)) (-15 -2872 ((-621 (-1148)) $))))
+((-3694 ((|#2| |#2|) 28)) (-3530 (((-112) |#2|) 19)) (-2145 (((-309 |#1|) |#2|) 12)) (-2160 (((-309 |#1|) |#2|) 14)) (-3953 ((|#2| |#2| (-1143)) 68) ((|#2| |#2|) 69)) (-3886 (((-167 (-309 |#1|)) |#2|) 10)) (-2602 ((|#2| |#2| (-1143)) 65) ((|#2| |#2|) 59)))
+(((-182 |#1| |#2|) (-10 -7 (-15 -3953 (|#2| |#2|)) (-15 -3953 (|#2| |#2| (-1143))) (-15 -2602 (|#2| |#2|)) (-15 -2602 (|#2| |#2| (-1143))) (-15 -2145 ((-309 |#1|) |#2|)) (-15 -2160 ((-309 |#1|) |#2|)) (-15 -3530 ((-112) |#2|)) (-15 -3694 (|#2| |#2|)) (-15 -3886 ((-167 (-309 |#1|)) |#2|))) (-13 (-541) (-823) (-1009 (-549))) (-13 (-27) (-1165) (-423 (-167 |#1|)))) (T -182))
+((-3886 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-167 (-309 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 (-167 *4)))))) (-3694 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 (-167 *3)))))) (-3530 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-112)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 (-167 *4)))))) (-2160 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-309 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 (-167 *4)))))) (-2145 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-309 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 (-167 *4)))))) (-2602 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 (-167 *4)))))) (-2602 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 (-167 *3)))))) (-3953 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 (-167 *4)))))) (-3953 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 (-167 *3)))))))
+(-10 -7 (-15 -3953 (|#2| |#2|)) (-15 -3953 (|#2| |#2| (-1143))) (-15 -2602 (|#2| |#2|)) (-15 -2602 (|#2| |#2| (-1143))) (-15 -2145 ((-309 |#1|) |#2|)) (-15 -2160 ((-309 |#1|) |#2|)) (-15 -3530 ((-112) |#2|)) (-15 -3694 (|#2| |#2|)) (-15 -3886 ((-167 (-309 |#1|)) |#2|)))
+((-2522 (((-1226 (-665 (-923 |#1|))) (-1226 (-665 |#1|))) 24)) (-3846 (((-1226 (-665 (-400 (-923 |#1|)))) (-1226 (-665 |#1|))) 33)))
+(((-183 |#1|) (-10 -7 (-15 -2522 ((-1226 (-665 (-923 |#1|))) (-1226 (-665 |#1|)))) (-15 -3846 ((-1226 (-665 (-400 (-923 |#1|)))) (-1226 (-665 |#1|))))) (-170)) (T -183))
+((-3846 (*1 *2 *3) (-12 (-5 *3 (-1226 (-665 *4))) (-4 *4 (-170)) (-5 *2 (-1226 (-665 (-400 (-923 *4))))) (-5 *1 (-183 *4)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-1226 (-665 *4))) (-4 *4 (-170)) (-5 *2 (-1226 (-665 (-923 *4)))) (-5 *1 (-183 *4)))))
+(-10 -7 (-15 -2522 ((-1226 (-665 (-923 |#1|))) (-1226 (-665 |#1|)))) (-15 -3846 ((-1226 (-665 (-400 (-923 |#1|)))) (-1226 (-665 |#1|)))))
+((-2915 (((-1145 (-400 (-549))) (-1145 (-400 (-549))) (-1145 (-400 (-549)))) 66)) (-3629 (((-1145 (-400 (-549))) (-621 (-549)) (-621 (-549))) 75)) (-2766 (((-1145 (-400 (-549))) (-549)) 40)) (-1857 (((-1145 (-400 (-549))) (-549)) 52)) (-2686 (((-400 (-549)) (-1145 (-400 (-549)))) 62)) (-2435 (((-1145 (-400 (-549))) (-549)) 32)) (-2350 (((-1145 (-400 (-549))) (-549)) 48)) (-1877 (((-1145 (-400 (-549))) (-549)) 46)) (-1507 (((-1145 (-400 (-549))) (-1145 (-400 (-549))) (-1145 (-400 (-549)))) 60)) (-1977 (((-1145 (-400 (-549))) (-549)) 25)) (-4228 (((-400 (-549)) (-1145 (-400 (-549))) (-1145 (-400 (-549)))) 64)) (-1689 (((-1145 (-400 (-549))) (-549)) 30)) (-1966 (((-1145 (-400 (-549))) (-621 (-549))) 72)))
+(((-184) (-10 -7 (-15 -1977 ((-1145 (-400 (-549))) (-549))) (-15 -2766 ((-1145 (-400 (-549))) (-549))) (-15 -2435 ((-1145 (-400 (-549))) (-549))) (-15 -1689 ((-1145 (-400 (-549))) (-549))) (-15 -1877 ((-1145 (-400 (-549))) (-549))) (-15 -2350 ((-1145 (-400 (-549))) (-549))) (-15 -1857 ((-1145 (-400 (-549))) (-549))) (-15 -4228 ((-400 (-549)) (-1145 (-400 (-549))) (-1145 (-400 (-549))))) (-15 -1507 ((-1145 (-400 (-549))) (-1145 (-400 (-549))) (-1145 (-400 (-549))))) (-15 -2686 ((-400 (-549)) (-1145 (-400 (-549))))) (-15 -2915 ((-1145 (-400 (-549))) (-1145 (-400 (-549))) (-1145 (-400 (-549))))) (-15 -1966 ((-1145 (-400 (-549))) (-621 (-549)))) (-15 -3629 ((-1145 (-400 (-549))) (-621 (-549)) (-621 (-549)))))) (T -184))
+((-3629 (*1 *2 *3 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)))) (-2915 (*1 *2 *2 *2) (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-1145 (-400 (-549)))) (-5 *2 (-400 (-549))) (-5 *1 (-184)))) (-1507 (*1 *2 *2 *2) (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)))) (-4228 (*1 *2 *3 *3) (-12 (-5 *3 (-1145 (-400 (-549)))) (-5 *2 (-400 (-549))) (-5 *1 (-184)))) (-1857 (*1 *2 *3) (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))) (-2350 (*1 *2 *3) (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))) (-1877 (*1 *2 *3) (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))) (-1689 (*1 *2 *3) (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))) (-2435 (*1 *2 *3) (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))) (-2766 (*1 *2 *3) (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))) (-1977 (*1 *2 *3) (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))))
+(-10 -7 (-15 -1977 ((-1145 (-400 (-549))) (-549))) (-15 -2766 ((-1145 (-400 (-549))) (-549))) (-15 -2435 ((-1145 (-400 (-549))) (-549))) (-15 -1689 ((-1145 (-400 (-549))) (-549))) (-15 -1877 ((-1145 (-400 (-549))) (-549))) (-15 -2350 ((-1145 (-400 (-549))) (-549))) (-15 -1857 ((-1145 (-400 (-549))) (-549))) (-15 -4228 ((-400 (-549)) (-1145 (-400 (-549))) (-1145 (-400 (-549))))) (-15 -1507 ((-1145 (-400 (-549))) (-1145 (-400 (-549))) (-1145 (-400 (-549))))) (-15 -2686 ((-400 (-549)) (-1145 (-400 (-549))))) (-15 -2915 ((-1145 (-400 (-549))) (-1145 (-400 (-549))) (-1145 (-400 (-549))))) (-15 -1966 ((-1145 (-400 (-549))) (-621 (-549)))) (-15 -3629 ((-1145 (-400 (-549))) (-621 (-549)) (-621 (-549)))))
+((-1495 (((-411 (-1139 (-549))) (-549)) 28)) (-1725 (((-621 (-1139 (-549))) (-549)) 23)) (-2856 (((-1139 (-549)) (-549)) 21)))
+(((-185) (-10 -7 (-15 -1725 ((-621 (-1139 (-549))) (-549))) (-15 -2856 ((-1139 (-549)) (-549))) (-15 -1495 ((-411 (-1139 (-549))) (-549))))) (T -185))
+((-1495 (*1 *2 *3) (-12 (-5 *2 (-411 (-1139 (-549)))) (-5 *1 (-185)) (-5 *3 (-549)))) (-2856 (*1 *2 *3) (-12 (-5 *2 (-1139 (-549))) (-5 *1 (-185)) (-5 *3 (-549)))) (-1725 (*1 *2 *3) (-12 (-5 *2 (-621 (-1139 (-549)))) (-5 *1 (-185)) (-5 *3 (-549)))))
+(-10 -7 (-15 -1725 ((-621 (-1139 (-549))) (-549))) (-15 -2856 ((-1139 (-549)) (-549))) (-15 -1495 ((-411 (-1139 (-549))) (-549))))
+((-3639 (((-1123 (-219)) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 105)) (-1972 (((-621 (-1125)) (-1123 (-219))) NIL)) (-4149 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 81)) (-4117 (((-621 (-219)) (-309 (-219)) (-1143) (-1061 (-816 (-219)))) NIL)) (-2965 (((-621 (-1125)) (-621 (-219))) NIL)) (-2980 (((-219) (-1061 (-816 (-219)))) 24)) (-3431 (((-219) (-1061 (-816 (-219)))) 25)) (-2843 (((-372) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 98)) (-3088 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-2649 (((-1125) (-219)) NIL)) (-4280 (((-1125) (-621 (-1125))) 20)) (-3642 (((-1006) (-1143) (-1143) (-1006)) 13)))
+(((-186) (-10 -7 (-15 -4149 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3088 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2980 ((-219) (-1061 (-816 (-219))))) (-15 -3431 ((-219) (-1061 (-816 (-219))))) (-15 -2843 ((-372) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4117 ((-621 (-219)) (-309 (-219)) (-1143) (-1061 (-816 (-219))))) (-15 -3639 ((-1123 (-219)) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2649 ((-1125) (-219))) (-15 -2965 ((-621 (-1125)) (-621 (-219)))) (-15 -1972 ((-621 (-1125)) (-1123 (-219)))) (-15 -4280 ((-1125) (-621 (-1125)))) (-15 -3642 ((-1006) (-1143) (-1143) (-1006))))) (T -186))
+((-3642 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1143)) (-5 *1 (-186)))) (-4280 (*1 *2 *3) (-12 (-5 *3 (-621 (-1125))) (-5 *2 (-1125)) (-5 *1 (-186)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-1123 (-219))) (-5 *2 (-621 (-1125))) (-5 *1 (-186)))) (-2965 (*1 *2 *3) (-12 (-5 *3 (-621 (-219))) (-5 *2 (-621 (-1125))) (-5 *1 (-186)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1125)) (-5 *1 (-186)))) (-3639 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1123 (-219))) (-5 *1 (-186)))) (-4117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1143)) (-5 *5 (-1061 (-816 (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-186)))) (-2843 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-186)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-1061 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-1061 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-186)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-186)))))
+(-10 -7 (-15 -4149 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3088 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2980 ((-219) (-1061 (-816 (-219))))) (-15 -3431 ((-219) (-1061 (-816 (-219))))) (-15 -2843 ((-372) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4117 ((-621 (-219)) (-309 (-219)) (-1143) (-1061 (-816 (-219))))) (-15 -3639 ((-1123 (-219)) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2649 ((-1125) (-219))) (-15 -2965 ((-621 (-1125)) (-621 (-219)))) (-15 -1972 ((-621 (-1125)) (-1123 (-219)))) (-15 -4280 ((-1125) (-621 (-1125)))) (-15 -3642 ((-1006) (-1143) (-1143) (-1006))))
+((-3834 (((-112) $ $) NIL)) (-3868 (((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 55) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-187) (-763)) (T -187))
+NIL
+(-763)
+((-3834 (((-112) $ $) NIL)) (-3868 (((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 60) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-188) (-763)) (T -188))
+NIL
+(-763)
+((-3834 (((-112) $ $) NIL)) (-3868 (((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 69) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-189) (-763)) (T -189))
+NIL
+(-763)
+((-3834 (((-112) $ $) NIL)) (-3868 (((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 56) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-190) (-763)) (T -190))
+NIL
+(-763)
+((-3834 (((-112) $ $) NIL)) (-3868 (((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 67) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 38) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-191) (-763)) (T -191))
+NIL
+(-763)
+((-3834 (((-112) $ $) NIL)) (-3868 (((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 73) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-192) (-763)) (T -192))
+NIL
+(-763)
+((-3834 (((-112) $ $) NIL)) (-3868 (((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 80) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 44) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-193) (-763)) (T -193))
+NIL
+(-763)
+((-3834 (((-112) $ $) NIL)) (-3868 (((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 70) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-194) (-763)) (T -194))
+NIL
+(-763)
+((-3834 (((-112) $ $) NIL)) (-3868 (((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 66)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-195) (-763)) (T -195))
+NIL
+(-763)
+((-3834 (((-112) $ $) NIL)) (-3868 (((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 63)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-196) (-763)) (T -196))
+NIL
+(-763)
+((-3834 (((-112) $ $) NIL)) (-3868 (((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 90) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 78) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-197) (-763)) (T -197))
+NIL
+(-763)
+((-2894 (((-3 (-2 (|:| -2721 (-114)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 85)) (-2733 (((-549) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-1577 (((-3 (-621 (-219)) "failed") (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 73)))
+(((-198) (-10 -7 (-15 -2894 ((-3 (-2 (|:| -2721 (-114)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1577 ((-3 (-621 (-219)) "failed") (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2733 ((-549) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -198))
+((-2733 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-549)) (-5 *1 (-198)))) (-1577 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-198)))) (-2894 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2721 (-114)) (|:| |w| (-219)))) (-5 *1 (-198)))))
+(-10 -7 (-15 -2894 ((-3 (-2 (|:| -2721 (-114)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1577 ((-3 (-621 (-219)) "failed") (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2733 ((-549) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
+((-3973 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-1497 (((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 130)) (-1728 (((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-665 (-309 (-219)))) 89)) (-3735 (((-372) (-665 (-309 (-219)))) 113)) (-4204 (((-665 (-309 (-219))) (-1226 (-309 (-219))) (-621 (-1143))) 110)) (-1683 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 30)) (-2410 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 43)) (-2686 (((-665 (-309 (-219))) (-665 (-309 (-219))) (-621 (-1143)) (-1226 (-309 (-219)))) 102)) (-4030 (((-372) (-372) (-621 (-372))) 107) (((-372) (-372) (-372)) 105)) (-3222 (((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36)))
+(((-199) (-10 -7 (-15 -4030 ((-372) (-372) (-372))) (-15 -4030 ((-372) (-372) (-621 (-372)))) (-15 -3735 ((-372) (-665 (-309 (-219))))) (-15 -4204 ((-665 (-309 (-219))) (-1226 (-309 (-219))) (-621 (-1143)))) (-15 -2686 ((-665 (-309 (-219))) (-665 (-309 (-219))) (-621 (-1143)) (-1226 (-309 (-219))))) (-15 -1728 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-665 (-309 (-219))))) (-15 -1497 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3973 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2410 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3222 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1683 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -199))
+((-1683 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372)))) (-5 *1 (-199)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-665 (-309 (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372)))) (-5 *1 (-199)))) (-2686 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-665 (-309 (-219)))) (-5 *3 (-621 (-1143))) (-5 *4 (-1226 (-309 (-219)))) (-5 *1 (-199)))) (-4204 (*1 *2 *3 *4) (-12 (-5 *3 (-1226 (-309 (-219)))) (-5 *4 (-621 (-1143))) (-5 *2 (-665 (-309 (-219)))) (-5 *1 (-199)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-665 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))) (-4030 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-372))) (-5 *2 (-372)) (-5 *1 (-199)))) (-4030 (*1 *2 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-199)))))
+(-10 -7 (-15 -4030 ((-372) (-372) (-372))) (-15 -4030 ((-372) (-372) (-621 (-372)))) (-15 -3735 ((-372) (-665 (-309 (-219))))) (-15 -4204 ((-665 (-309 (-219))) (-1226 (-309 (-219))) (-621 (-1143)))) (-15 -2686 ((-665 (-309 (-219))) (-665 (-309 (-219))) (-621 (-1143)) (-1226 (-309 (-219))))) (-15 -1728 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-665 (-309 (-219))))) (-15 -1497 ((-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3973 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2410 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3222 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1683 ((-372) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
+((-3834 (((-112) $ $) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-3919 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 64)) (-2389 (((-112) $ $) NIL)))
+(((-200) (-776)) (T -200))
+NIL
+(-776)
+((-3834 (((-112) $ $) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-3919 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 62)) (-2389 (((-112) $ $) NIL)))
+(((-201) (-776)) (T -201))
+NIL
+(-776)
+((-3834 (((-112) $ $) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-3919 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 66)) (-2389 (((-112) $ $) NIL)))
+(((-202) (-776)) (T -202))
+NIL
+(-776)
+((-3834 (((-112) $ $) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 46)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-3919 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 75)) (-2389 (((-112) $ $) NIL)))
+(((-203) (-776)) (T -203))
+NIL
+(-776)
+((-3304 (((-621 (-1143)) (-1143) (-747)) 23)) (-2362 (((-309 (-219)) (-309 (-219))) 31)) (-1531 (((-112) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) 74)) (-3451 (((-112) (-219) (-219) (-621 (-309 (-219)))) 45)))
+(((-204) (-10 -7 (-15 -3304 ((-621 (-1143)) (-1143) (-747))) (-15 -2362 ((-309 (-219)) (-309 (-219)))) (-15 -3451 ((-112) (-219) (-219) (-621 (-309 (-219))))) (-15 -1531 ((-112) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219))))))) (T -204))
+((-1531 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) (-5 *2 (-112)) (-5 *1 (-204)))) (-3451 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-621 (-309 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-204)))) (-2362 (*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-204)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-621 (-1143))) (-5 *1 (-204)) (-5 *3 (-1143)))))
+(-10 -7 (-15 -3304 ((-621 (-1143)) (-1143) (-747))) (-15 -2362 ((-309 (-219)) (-309 (-219)))) (-15 -3451 ((-112) (-219) (-219) (-621 (-309 (-219))))) (-15 -1531 ((-112) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219))))))
+((-3834 (((-112) $ $) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) 26)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2531 (((-1006) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) 57)) (-2389 (((-112) $ $) NIL)))
+(((-205) (-866)) (T -205))
+NIL
+(-866)
+((-3834 (((-112) $ $) NIL)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) 21)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2531 (((-1006) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-206) (-866)) (T -206))
+NIL
+(-866)
+((-3834 (((-112) $ $) NIL)) (-2254 ((|#2| $ (-747) |#2|) 11)) (-3743 (($) 8)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3341 ((|#2| $ (-747)) 10)) (-3846 (((-834) $) 18)) (-2389 (((-112) $ $) 13)))
+(((-207 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -3743 ($)) (-15 -3341 (|#2| $ (-747))) (-15 -2254 (|#2| $ (-747) |#2|)))) (-892) (-1067)) (T -207))
+((-3743 (*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1067)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *2 (-1067)) (-5 *1 (-207 *4 *2)) (-14 *4 (-892)))) (-2254 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-207 *4 *2)) (-14 *4 (-892)) (-4 *2 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -3743 ($)) (-15 -3341 (|#2| $ (-747))) (-15 -2254 (|#2| $ (-747) |#2|))))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2684 (((-1231) $) 36) (((-1231) $ (-892) (-892)) 38)) (-3341 (($ $ (-960)) 19) (((-239 (-1125)) $ (-1143)) 15)) (-2699 (((-1231) $) 34)) (-3846 (((-834) $) 31) (($ (-621 |#1|)) 8)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $ $) 27)) (-2486 (($ $ $) 22)))
+(((-208 |#1|) (-13 (-1067) (-10 -8 (-15 -3341 ($ $ (-960))) (-15 -3341 ((-239 (-1125)) $ (-1143))) (-15 -2486 ($ $ $)) (-15 -2500 ($ $ $)) (-15 -3846 ($ (-621 |#1|))) (-15 -2699 ((-1231) $)) (-15 -2684 ((-1231) $)) (-15 -2684 ((-1231) $ (-892) (-892))))) (-13 (-823) (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 ((-1231) $)) (-15 -2684 ((-1231) $))))) (T -208))
+((-3341 (*1 *1 *1 *2) (-12 (-5 *2 (-960)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 ((-1231) $)) (-15 -2684 ((-1231) $))))))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-239 (-1125))) (-5 *1 (-208 *4)) (-4 *4 (-13 (-823) (-10 -8 (-15 -3341 ((-1125) $ *3)) (-15 -2699 ((-1231) $)) (-15 -2684 ((-1231) $))))))) (-2486 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-823) (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 ((-1231) $)) (-15 -2684 ((-1231) $))))))) (-2500 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-823) (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 ((-1231) $)) (-15 -2684 ((-1231) $))))))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 ((-1231) $)) (-15 -2684 ((-1231) $))))) (-5 *1 (-208 *3)))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 (*2 $)) (-15 -2684 (*2 $))))))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-823) (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 (*2 $)) (-15 -2684 (*2 $))))))) (-2684 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1231)) (-5 *1 (-208 *4)) (-4 *4 (-13 (-823) (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 (*2 $)) (-15 -2684 (*2 $))))))))
+(-13 (-1067) (-10 -8 (-15 -3341 ($ $ (-960))) (-15 -3341 ((-239 (-1125)) $ (-1143))) (-15 -2486 ($ $ $)) (-15 -2500 ($ $ $)) (-15 -3846 ($ (-621 |#1|))) (-15 -2699 ((-1231) $)) (-15 -2684 ((-1231) $)) (-15 -2684 ((-1231) $ (-892) (-892)))))
+((-2706 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 (|#2| |#4| (-1 |#2| |#2|)))) (-356) (-1202 |#1|) (-1202 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -209))
+((-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1202 (-400 *2))) (-4 *2 (-1202 *5)) (-5 *1 (-209 *5 *2 *6 *3)) (-4 *3 (-335 *5 *2 *6)))))
+(-10 -7 (-15 -2706 (|#2| |#4| (-1 |#2| |#2|))))
+((-2385 ((|#2| |#2| (-747) |#2|) 42)) (-1739 ((|#2| |#2| (-747) |#2|) 38)) (-3369 (((-621 |#2|) (-621 (-2 (|:| |deg| (-747)) (|:| -1968 |#2|)))) 57)) (-3142 (((-621 (-2 (|:| |deg| (-747)) (|:| -1968 |#2|))) |#2|) 53)) (-2816 (((-112) |#2|) 50)) (-2131 (((-411 |#2|) |#2|) 77)) (-2121 (((-411 |#2|) |#2|) 76)) (-3003 ((|#2| |#2| (-747) |#2|) 36)) (-2648 (((-2 (|:| |cont| |#1|) (|:| -4024 (-621 (-2 (|:| |irr| |#2|) (|:| -2495 (-549)))))) |#2| (-112)) 69)))
+(((-210 |#1| |#2|) (-10 -7 (-15 -2121 ((-411 |#2|) |#2|)) (-15 -2131 ((-411 |#2|) |#2|)) (-15 -2648 ((-2 (|:| |cont| |#1|) (|:| -4024 (-621 (-2 (|:| |irr| |#2|) (|:| -2495 (-549)))))) |#2| (-112))) (-15 -3142 ((-621 (-2 (|:| |deg| (-747)) (|:| -1968 |#2|))) |#2|)) (-15 -3369 ((-621 |#2|) (-621 (-2 (|:| |deg| (-747)) (|:| -1968 |#2|))))) (-15 -3003 (|#2| |#2| (-747) |#2|)) (-15 -1739 (|#2| |#2| (-747) |#2|)) (-15 -2385 (|#2| |#2| (-747) |#2|)) (-15 -2816 ((-112) |#2|))) (-342) (-1202 |#1|)) (T -210))
+((-2816 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1202 *4)))) (-2385 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1202 *4)))) (-1739 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1202 *4)))) (-3003 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1202 *4)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| |deg| (-747)) (|:| -1968 *5)))) (-4 *5 (-1202 *4)) (-4 *4 (-342)) (-5 *2 (-621 *5)) (-5 *1 (-210 *4 *5)))) (-3142 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-621 (-2 (|:| |deg| (-747)) (|:| -1968 *3)))) (-5 *1 (-210 *4 *3)) (-4 *3 (-1202 *4)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-342)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4024 (-621 (-2 (|:| |irr| *3) (|:| -2495 (-549))))))) (-5 *1 (-210 *5 *3)) (-4 *3 (-1202 *5)))) (-2131 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1202 *4)))) (-2121 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1202 *4)))))
+(-10 -7 (-15 -2121 ((-411 |#2|) |#2|)) (-15 -2131 ((-411 |#2|) |#2|)) (-15 -2648 ((-2 (|:| |cont| |#1|) (|:| -4024 (-621 (-2 (|:| |irr| |#2|) (|:| -2495 (-549)))))) |#2| (-112))) (-15 -3142 ((-621 (-2 (|:| |deg| (-747)) (|:| -1968 |#2|))) |#2|)) (-15 -3369 ((-621 |#2|) (-621 (-2 (|:| |deg| (-747)) (|:| -1968 |#2|))))) (-15 -3003 (|#2| |#2| (-747) |#2|)) (-15 -1739 (|#2| |#2| (-747) |#2|)) (-15 -2385 (|#2| |#2| (-747) |#2|)) (-15 -2816 ((-112) |#2|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3329 (((-549) $) NIL (|has| (-549) (-300)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL (|has| (-549) (-796)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL) (((-3 (-1143) "failed") $) NIL (|has| (-549) (-1009 (-1143)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-549) (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| (-549) (-1009 (-549))))) (-2659 (((-549) $) NIL) (((-1143) $) NIL (|has| (-549) (-1009 (-1143)))) (((-400 (-549)) $) NIL (|has| (-549) (-1009 (-549)))) (((-549) $) NIL (|has| (-549) (-1009 (-549))))) (-2095 (($ $ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL) (((-665 (-549)) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| (-549) (-534)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-2772 (((-112) $) NIL (|has| (-549) (-796)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-549) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-549) (-857 (-372))))) (-2675 (((-112) $) NIL)) (-1726 (($ $) NIL)) (-1394 (((-549) $) NIL)) (-1681 (((-3 $ "failed") $) NIL (|has| (-549) (-1118)))) (-2374 (((-112) $) NIL (|has| (-549) (-796)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2863 (($ $ $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| (-549) (-823)))) (-2797 (($ (-1 (-549) (-549)) $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| (-549) (-1118)) CONST)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2873 (($ $) NIL (|has| (-549) (-300))) (((-400 (-549)) $) NIL)) (-3967 (((-549) $) NIL (|has| (-549) (-534)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2686 (($ $ (-621 (-549)) (-621 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-302 (-549)))) (($ $ (-287 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-287 (-549)))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-1143)) (-621 (-549))) NIL (|has| (-549) (-505 (-1143) (-549)))) (($ $ (-1143) (-549)) NIL (|has| (-549) (-505 (-1143) (-549))))) (-3684 (((-747) $) NIL)) (-3341 (($ $ (-549)) NIL (|has| (-549) (-279 (-549) (-549))))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1143)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-3939 (($ $) NIL)) (-1403 (((-549) $) NIL)) (-3121 (($ (-400 (-549))) 9)) (-2845 (((-863 (-549)) $) NIL (|has| (-549) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-549) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-549) (-594 (-525)))) (((-372) $) NIL (|has| (-549) (-993))) (((-219) $) NIL (|has| (-549) (-993)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-549) (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) 8) (($ (-549)) NIL) (($ (-1143)) NIL (|has| (-549) (-1009 (-1143)))) (((-400 (-549)) $) NIL) (((-975 10) $) 10)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-549) (-880))) (|has| (-549) (-143))))) (-2082 (((-747)) NIL)) (-2546 (((-549) $) NIL (|has| (-549) (-534)))) (-1498 (((-112) $ $) NIL)) (-3212 (($ $) NIL (|has| (-549) (-796)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1143)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2425 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2412 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2513 (($ $ $) NIL) (($ (-549) (-549)) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL)))
+(((-211) (-13 (-963 (-549)) (-10 -8 (-15 -3846 ((-400 (-549)) $)) (-15 -3846 ((-975 10) $)) (-15 -2873 ((-400 (-549)) $)) (-15 -3121 ($ (-400 (-549))))))) (T -211))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-211)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-975 10)) (-5 *1 (-211)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-211)))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-211)))))
+(-13 (-963 (-549)) (-10 -8 (-15 -3846 ((-400 (-549)) $)) (-15 -3846 ((-975 10) $)) (-15 -2873 ((-400 (-549)) $)) (-15 -3121 ($ (-400 (-549))))))
+((-3834 (((-112) $ $) NIL)) (-3986 (((-1085) $) 14)) (-3851 (((-1125) $) NIL)) (-3477 (((-621 (-497)) $) 11)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2492 (((-1148) $) 16)) (-2389 (((-112) $ $) NIL)))
+(((-212) (-13 (-1050) (-10 -8 (-15 -3477 ((-621 (-497)) $)) (-15 -3986 ((-1085) $)) (-15 -2492 ((-1148) $))))) (T -212))
+((-3477 (*1 *2 *1) (-12 (-5 *2 (-621 (-497))) (-5 *1 (-212)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-212)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-212)))))
+(-13 (-1050) (-10 -8 (-15 -3477 ((-621 (-497)) $)) (-15 -3986 ((-1085) $)) (-15 -2492 ((-1148) $))))
+((-3893 (((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1059 (-816 |#2|)) (-1125)) 28) (((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1059 (-816 |#2|))) 24)) (-4040 (((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1143) (-816 |#2|) (-816 |#2|) (-112)) 17)))
+(((-213 |#1| |#2|) (-10 -7 (-15 -3893 ((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1059 (-816 |#2|)))) (-15 -3893 ((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1059 (-816 |#2|)) (-1125))) (-15 -4040 ((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1143) (-816 |#2|) (-816 |#2|) (-112)))) (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1165) (-930) (-29 |#1|))) (T -213))
+((-4040 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1143)) (-5 *6 (-112)) (-4 *7 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-4 *3 (-13 (-1165) (-930) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-816 *3)) (|:| |f2| (-621 (-816 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *7 *3)) (-5 *5 (-816 *3)))) (-3893 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1059 (-816 *3))) (-5 *5 (-1125)) (-4 *3 (-13 (-1165) (-930) (-29 *6))) (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |f1| (-816 *3)) (|:| |f2| (-621 (-816 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *6 *3)))) (-3893 (*1 *2 *3 *4) (-12 (-5 *4 (-1059 (-816 *3))) (-4 *3 (-13 (-1165) (-930) (-29 *5))) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |f1| (-816 *3)) (|:| |f2| (-621 (-816 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *5 *3)))))
+(-10 -7 (-15 -3893 ((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1059 (-816 |#2|)))) (-15 -3893 ((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1059 (-816 |#2|)) (-1125))) (-15 -4040 ((-3 (|:| |f1| (-816 |#2|)) (|:| |f2| (-621 (-816 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1143) (-816 |#2|) (-816 |#2|) (-112))))
+((-3893 (((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1059 (-816 (-400 (-923 |#1|)))) (-1125)) 46) (((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1059 (-816 (-400 (-923 |#1|))))) 43) (((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1059 (-816 (-309 |#1|))) (-1125)) 47) (((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1059 (-816 (-309 |#1|)))) 20)))
+(((-214 |#1|) (-10 -7 (-15 -3893 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1059 (-816 (-309 |#1|))))) (-15 -3893 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1059 (-816 (-309 |#1|))) (-1125))) (-15 -3893 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1059 (-816 (-400 (-923 |#1|)))))) (-15 -3893 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1059 (-816 (-400 (-923 |#1|)))) (-1125)))) (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (T -214))
+((-3893 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1059 (-816 (-400 (-923 *6))))) (-5 *5 (-1125)) (-5 *3 (-400 (-923 *6))) (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |f1| (-816 (-309 *6))) (|:| |f2| (-621 (-816 (-309 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6)))) (-3893 (*1 *2 *3 *4) (-12 (-5 *4 (-1059 (-816 (-400 (-923 *5))))) (-5 *3 (-400 (-923 *5))) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |f1| (-816 (-309 *5))) (|:| |f2| (-621 (-816 (-309 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5)))) (-3893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-400 (-923 *6))) (-5 *4 (-1059 (-816 (-309 *6)))) (-5 *5 (-1125)) (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |f1| (-816 (-309 *6))) (|:| |f2| (-621 (-816 (-309 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6)))) (-3893 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1059 (-816 (-309 *5)))) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |f1| (-816 (-309 *5))) (|:| |f2| (-621 (-816 (-309 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5)))))
+(-10 -7 (-15 -3893 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1059 (-816 (-309 |#1|))))) (-15 -3893 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1059 (-816 (-309 |#1|))) (-1125))) (-15 -3893 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1059 (-816 (-400 (-923 |#1|)))))) (-15 -3893 ((-3 (|:| |f1| (-816 (-309 |#1|))) (|:| |f2| (-621 (-816 (-309 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-400 (-923 |#1|)) (-1059 (-816 (-400 (-923 |#1|)))) (-1125))))
+((-2557 (((-2 (|:| -3028 (-1139 |#1|)) (|:| |deg| (-892))) (-1139 |#1|)) 21)) (-1449 (((-621 (-309 |#2|)) (-309 |#2|) (-892)) 42)))
+(((-215 |#1| |#2|) (-10 -7 (-15 -2557 ((-2 (|:| -3028 (-1139 |#1|)) (|:| |deg| (-892))) (-1139 |#1|))) (-15 -1449 ((-621 (-309 |#2|)) (-309 |#2|) (-892)))) (-1018) (-13 (-541) (-823))) (T -215))
+((-1449 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-4 *6 (-13 (-541) (-823))) (-5 *2 (-621 (-309 *6))) (-5 *1 (-215 *5 *6)) (-5 *3 (-309 *6)) (-4 *5 (-1018)))) (-2557 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-2 (|:| -3028 (-1139 *4)) (|:| |deg| (-892)))) (-5 *1 (-215 *4 *5)) (-5 *3 (-1139 *4)) (-4 *5 (-13 (-541) (-823))))))
+(-10 -7 (-15 -2557 ((-2 (|:| -3028 (-1139 |#1|)) (|:| |deg| (-892))) (-1139 |#1|))) (-15 -1449 ((-621 (-309 |#2|)) (-309 |#2|) (-892))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1785 ((|#1| $) NIL)) (-2317 ((|#1| $) 25)) (-1584 (((-112) $ (-747)) NIL)) (-1682 (($) NIL T CONST)) (-4194 (($ $) NIL)) (-1585 (($ $) 31)) (-3204 ((|#1| |#1| $) NIL)) (-1350 ((|#1| $) NIL)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-4210 (((-747) $) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3504 ((|#1| $) NIL)) (-2454 ((|#1| |#1| $) 28)) (-3218 ((|#1| |#1| $) 30)) (-2751 (($ |#1| $) NIL)) (-4036 (((-747) $) 27)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1409 ((|#1| $) NIL)) (-3993 ((|#1| $) 26)) (-3850 ((|#1| $) 24)) (-3325 ((|#1| $) NIL)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2502 ((|#1| |#1| $) NIL)) (-3670 (((-112) $) 9)) (-3742 (($) NIL)) (-3912 ((|#1| $) NIL)) (-2171 (($) NIL) (($ (-621 |#1|)) 16)) (-1321 (((-747) $) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3720 ((|#1| $) 13)) (-3624 (($ (-621 |#1|)) NIL)) (-1410 ((|#1| $) NIL)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-216 |#1|) (-13 (-247 |#1|) (-10 -8 (-15 -2171 ($ (-621 |#1|))))) (-1067)) (T -216))
+((-2171 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-216 *3)))))
+(-13 (-247 |#1|) (-10 -8 (-15 -2171 ($ (-621 |#1|)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2560 (($ (-309 |#1|)) 23)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-4304 (((-112) $) NIL)) (-2714 (((-3 (-309 |#1|) "failed") $) NIL)) (-2659 (((-309 |#1|) $) NIL)) (-2070 (($ $) 31)) (-2114 (((-3 $ "failed") $) NIL)) (-2675 (((-112) $) NIL)) (-2797 (($ (-1 (-309 |#1|) (-309 |#1|)) $) NIL)) (-2043 (((-309 |#1|) $) NIL)) (-2928 (($ $) 30)) (-3851 (((-1125) $) NIL)) (-2156 (((-112) $) NIL)) (-3990 (((-1087) $) NIL)) (-4248 (($ (-747)) NIL)) (-4183 (($ $) 32)) (-3701 (((-549) $) NIL)) (-3846 (((-834) $) 57) (($ (-549)) NIL) (($ (-309 |#1|)) NIL)) (-2152 (((-309 |#1|) $ $) NIL)) (-2082 (((-747)) NIL)) (-3276 (($) 25 T CONST)) (-3287 (($) 50 T CONST)) (-2389 (((-112) $ $) 28)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 19)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 24) (($ (-309 |#1|) $) 18)))
+(((-217 |#1| |#2|) (-13 (-598 (-309 |#1|)) (-1009 (-309 |#1|)) (-10 -8 (-15 -2043 ((-309 |#1|) $)) (-15 -2928 ($ $)) (-15 -2070 ($ $)) (-15 -2152 ((-309 |#1|) $ $)) (-15 -4248 ($ (-747))) (-15 -2156 ((-112) $)) (-15 -4304 ((-112) $)) (-15 -3701 ((-549) $)) (-15 -2797 ($ (-1 (-309 |#1|) (-309 |#1|)) $)) (-15 -2560 ($ (-309 |#1|))) (-15 -4183 ($ $)))) (-13 (-1018) (-823)) (-621 (-1143))) (T -217))
+((-2043 (*1 *2 *1) (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1143))))) (-2928 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) (-14 *3 (-621 (-1143))))) (-2070 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) (-14 *3 (-621 (-1143))))) (-2152 (*1 *2 *1 *1) (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1143))))) (-4248 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1143))))) (-2156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1143))))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1143))))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1143))))) (-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-309 *3) (-309 *3))) (-4 *3 (-13 (-1018) (-823))) (-5 *1 (-217 *3 *4)) (-14 *4 (-621 (-1143))))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-309 *3)) (-4 *3 (-13 (-1018) (-823))) (-5 *1 (-217 *3 *4)) (-14 *4 (-621 (-1143))))) (-4183 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823))) (-14 *3 (-621 (-1143))))))
+(-13 (-598 (-309 |#1|)) (-1009 (-309 |#1|)) (-10 -8 (-15 -2043 ((-309 |#1|) $)) (-15 -2928 ($ $)) (-15 -2070 ($ $)) (-15 -2152 ((-309 |#1|) $ $)) (-15 -4248 ($ (-747))) (-15 -2156 ((-112) $)) (-15 -4304 ((-112) $)) (-15 -3701 ((-549) $)) (-15 -2797 ($ (-1 (-309 |#1|) (-309 |#1|)) $)) (-15 -2560 ($ (-309 |#1|))) (-15 -4183 ($ $))))
+((-2756 (((-112) (-1125)) 22)) (-2356 (((-3 (-816 |#2|) "failed") (-592 |#2|) |#2| (-816 |#2|) (-816 |#2|) (-112)) 32)) (-2200 (((-3 (-112) "failed") (-1139 |#2|) (-816 |#2|) (-816 |#2|) (-112)) 73) (((-3 (-112) "failed") (-923 |#1|) (-1143) (-816 |#2|) (-816 |#2|) (-112)) 74)))
+(((-218 |#1| |#2|) (-10 -7 (-15 -2756 ((-112) (-1125))) (-15 -2356 ((-3 (-816 |#2|) "failed") (-592 |#2|) |#2| (-816 |#2|) (-816 |#2|) (-112))) (-15 -2200 ((-3 (-112) "failed") (-923 |#1|) (-1143) (-816 |#2|) (-816 |#2|) (-112))) (-15 -2200 ((-3 (-112) "failed") (-1139 |#2|) (-816 |#2|) (-816 |#2|) (-112)))) (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-1165) (-29 |#1|))) (T -218))
+((-2200 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1139 *6)) (-5 *4 (-816 *6)) (-4 *6 (-13 (-1165) (-29 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-218 *5 *6)))) (-2200 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-923 *6)) (-5 *4 (-1143)) (-5 *5 (-816 *7)) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-4 *7 (-13 (-1165) (-29 *6))) (-5 *1 (-218 *6 *7)))) (-2356 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-816 *4)) (-5 *3 (-592 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1165) (-29 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-218 *6 *4)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1165) (-29 *4))))))
+(-10 -7 (-15 -2756 ((-112) (-1125))) (-15 -2356 ((-3 (-816 |#2|) "failed") (-592 |#2|) |#2| (-816 |#2|) (-816 |#2|) (-112))) (-15 -2200 ((-3 (-112) "failed") (-923 |#1|) (-1143) (-816 |#2|) (-816 |#2|) (-112))) (-15 -2200 ((-3 (-112) "failed") (-1139 |#2|) (-816 |#2|) (-816 |#2|) (-112))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 89)) (-3329 (((-549) $) 100)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-3896 (($ $) NIL)) (-1664 (($ $) 77)) (-1512 (($ $) 65)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-2134 (($ $) 56)) (-3866 (((-112) $ $) NIL)) (-1640 (($ $) 75)) (-1486 (($ $) 63)) (-1872 (((-549) $) 117)) (-1685 (($ $) 80)) (-1539 (($ $) 67)) (-1682 (($) NIL T CONST)) (-3252 (($ $) NIL)) (-2714 (((-3 (-549) "failed") $) 116) (((-3 (-400 (-549)) "failed") $) 113)) (-2659 (((-549) $) 114) (((-400 (-549)) $) 111)) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) 93)) (-2393 (((-400 (-549)) $ (-747)) 109) (((-400 (-549)) $ (-747) (-747)) 108)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-3236 (((-892)) 29) (((-892) (-892)) NIL (|has| $ (-6 -4328)))) (-2772 (((-112) $) NIL)) (-1425 (($) 39)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL)) (-2088 (((-549) $) 35)) (-2675 (((-112) $) NIL)) (-4187 (($ $ (-549)) NIL)) (-3630 (($ $) NIL)) (-2374 (((-112) $) 88)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2863 (($ $ $) 53) (($) 34 (-12 (-4008 (|has| $ (-6 -4320))) (-4008 (|has| $ (-6 -4328)))))) (-3575 (($ $ $) 52) (($) 33 (-12 (-4008 (|has| $ (-6 -4320))) (-4008 (|has| $ (-6 -4328)))))) (-1461 (((-549) $) 27)) (-1393 (($ $) 30)) (-2301 (($ $) 57)) (-3632 (($ $) 62)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-2429 (((-892) (-549)) NIL (|has| $ (-6 -4328)))) (-3990 (((-1087) $) 91)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2873 (($ $) NIL)) (-3967 (($ $) NIL)) (-1355 (($ (-549) (-549)) NIL) (($ (-549) (-549) (-892)) 101)) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3731 (((-549) $) 28)) (-3716 (($) 38)) (-2719 (($ $) 61)) (-3684 (((-747) $) NIL)) (-3326 (((-1125) (-1125)) 8)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3862 (((-892)) NIL) (((-892) (-892)) NIL (|has| $ (-6 -4328)))) (-3456 (($ $ (-747)) NIL) (($ $) 94)) (-2324 (((-892) (-549)) NIL (|has| $ (-6 -4328)))) (-1698 (($ $) 78)) (-1552 (($ $) 68)) (-1675 (($ $) 79)) (-1526 (($ $) 66)) (-1651 (($ $) 76)) (-1501 (($ $) 64)) (-2845 (((-372) $) 105) (((-219) $) 102) (((-863 (-372)) $) NIL) (((-525) $) 45)) (-3846 (((-834) $) 42) (($ (-549)) 60) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-549)) 60) (($ (-400 (-549))) NIL)) (-2082 (((-747)) NIL)) (-2546 (($ $) NIL)) (-1502 (((-892)) 32) (((-892) (-892)) NIL (|has| $ (-6 -4328)))) (-1864 (((-892)) 25)) (-1733 (($ $) 83)) (-1587 (($ $) 71) (($ $ $) 110)) (-1498 (((-112) $ $) NIL)) (-1710 (($ $) 81)) (-1564 (($ $) 69)) (-1758 (($ $) 86)) (-1612 (($ $) 74)) (-1934 (($ $) 84)) (-1627 (($ $) 72)) (-1745 (($ $) 85)) (-1600 (($ $) 73)) (-1722 (($ $) 82)) (-1576 (($ $) 70)) (-3212 (($ $) 118)) (-3276 (($) 36 T CONST)) (-3287 (($) 37 T CONST)) (-4245 (((-1125) $) 19) (((-1125) $ (-112)) 21) (((-1231) (-798) $) 22) (((-1231) (-798) $ (-112)) 23)) (-3553 (($ $) 97)) (-1702 (($ $ (-747)) NIL) (($ $) NIL)) (-2096 (($ $ $) 99)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 54)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 46)) (-2513 (($ $ $) 87) (($ $ (-549)) 55)) (-2500 (($ $) 47) (($ $ $) 49)) (-2486 (($ $ $) 48)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 58) (($ $ (-400 (-549))) 130) (($ $ $) 59)) (* (($ (-892) $) 31) (($ (-747) $) NIL) (($ (-549) $) 51) (($ $ $) 50) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
+(((-219) (-13 (-397) (-227) (-804) (-1165) (-594 (-525)) (-10 -8 (-15 -2513 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -3716 ($)) (-15 -1393 ($ $)) (-15 -2301 ($ $)) (-15 -1587 ($ $ $)) (-15 -3553 ($ $)) (-15 -2096 ($ $ $)) (-15 -3326 ((-1125) (-1125))) (-15 -2393 ((-400 (-549)) $ (-747))) (-15 -2393 ((-400 (-549)) $ (-747) (-747)))))) (T -219))
+((** (*1 *1 *1 *1) (-5 *1 (-219))) (-2513 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-219)))) (-3716 (*1 *1) (-5 *1 (-219))) (-1393 (*1 *1 *1) (-5 *1 (-219))) (-2301 (*1 *1 *1) (-5 *1 (-219))) (-1587 (*1 *1 *1 *1) (-5 *1 (-219))) (-3553 (*1 *1 *1) (-5 *1 (-219))) (-2096 (*1 *1 *1 *1) (-5 *1 (-219))) (-3326 (*1 *2 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-219)))) (-2393 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-219)))) (-2393 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-219)))))
+(-13 (-397) (-227) (-804) (-1165) (-594 (-525)) (-10 -8 (-15 -2513 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -3716 ($)) (-15 -1393 ($ $)) (-15 -2301 ($ $)) (-15 -1587 ($ $ $)) (-15 -3553 ($ $)) (-15 -2096 ($ $ $)) (-15 -3326 ((-1125) (-1125))) (-15 -2393 ((-400 (-549)) $ (-747))) (-15 -2393 ((-400 (-549)) $ (-747) (-747)))))
+((-3796 (((-167 (-219)) (-747) (-167 (-219))) 11) (((-219) (-747) (-219)) 12)) (-3673 (((-167 (-219)) (-167 (-219))) 13) (((-219) (-219)) 14)) (-3938 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 19) (((-219) (-219) (-219)) 22)) (-3634 (((-167 (-219)) (-167 (-219))) 25) (((-219) (-219)) 24)) (-1370 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 43) (((-219) (-219) (-219)) 35)) (-1611 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 48) (((-219) (-219) (-219)) 45)) (-2981 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 15) (((-219) (-219) (-219)) 16)) (-1643 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 17) (((-219) (-219) (-219)) 18)) (-1273 (((-167 (-219)) (-167 (-219))) 60) (((-219) (-219)) 59)) (-3000 (((-219) (-219)) 54) (((-167 (-219)) (-167 (-219))) 58)) (-3553 (((-167 (-219)) (-167 (-219))) 8) (((-219) (-219)) 9)) (-2096 (((-167 (-219)) (-167 (-219)) (-167 (-219))) 30) (((-219) (-219) (-219)) 26)))
+(((-220) (-10 -7 (-15 -3553 ((-219) (-219))) (-15 -3553 ((-167 (-219)) (-167 (-219)))) (-15 -2096 ((-219) (-219) (-219))) (-15 -2096 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -3673 ((-219) (-219))) (-15 -3673 ((-167 (-219)) (-167 (-219)))) (-15 -3634 ((-219) (-219))) (-15 -3634 ((-167 (-219)) (-167 (-219)))) (-15 -3796 ((-219) (-747) (-219))) (-15 -3796 ((-167 (-219)) (-747) (-167 (-219)))) (-15 -2981 ((-219) (-219) (-219))) (-15 -2981 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -1370 ((-219) (-219) (-219))) (-15 -1370 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -1643 ((-219) (-219) (-219))) (-15 -1643 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -1611 ((-219) (-219) (-219))) (-15 -1611 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -3000 ((-167 (-219)) (-167 (-219)))) (-15 -3000 ((-219) (-219))) (-15 -1273 ((-219) (-219))) (-15 -1273 ((-167 (-219)) (-167 (-219)))) (-15 -3938 ((-219) (-219) (-219))) (-15 -3938 ((-167 (-219)) (-167 (-219)) (-167 (-219)))))) (T -220))
+((-3938 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3938 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1273 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1273 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3000 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3000 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1611 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1611 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1643 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1643 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-2981 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-2981 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3796 (*1 *2 *3 *2) (-12 (-5 *2 (-167 (-219))) (-5 *3 (-747)) (-5 *1 (-220)))) (-3796 (*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-747)) (-5 *1 (-220)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3673 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3673 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-2096 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-2096 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3553 (*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))) (-3553 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))))
+(-10 -7 (-15 -3553 ((-219) (-219))) (-15 -3553 ((-167 (-219)) (-167 (-219)))) (-15 -2096 ((-219) (-219) (-219))) (-15 -2096 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -3673 ((-219) (-219))) (-15 -3673 ((-167 (-219)) (-167 (-219)))) (-15 -3634 ((-219) (-219))) (-15 -3634 ((-167 (-219)) (-167 (-219)))) (-15 -3796 ((-219) (-747) (-219))) (-15 -3796 ((-167 (-219)) (-747) (-167 (-219)))) (-15 -2981 ((-219) (-219) (-219))) (-15 -2981 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -1370 ((-219) (-219) (-219))) (-15 -1370 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -1643 ((-219) (-219) (-219))) (-15 -1643 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -1611 ((-219) (-219) (-219))) (-15 -1611 ((-167 (-219)) (-167 (-219)) (-167 (-219)))) (-15 -3000 ((-167 (-219)) (-167 (-219)))) (-15 -3000 ((-219) (-219))) (-15 -1273 ((-219) (-219))) (-15 -1273 ((-167 (-219)) (-167 (-219)))) (-15 -3938 ((-219) (-219) (-219))) (-15 -3938 ((-167 (-219)) (-167 (-219)) (-167 (-219)))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3769 (($ (-747) (-747)) NIL)) (-1648 (($ $ $) NIL)) (-3682 (($ (-1226 |#1|)) NIL) (($ $) NIL)) (-2783 (($ |#1| |#1| |#1|) 32)) (-2092 (((-112) $) NIL)) (-4206 (($ $ (-549) (-549)) NIL)) (-1769 (($ $ (-549) (-549)) NIL)) (-1624 (($ $ (-549) (-549) (-549) (-549)) NIL)) (-4218 (($ $) NIL)) (-2340 (((-112) $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-1756 (($ $ (-549) (-549) $) NIL)) (-2254 ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-621 (-549)) (-621 (-549)) $) NIL)) (-3537 (($ $ (-549) (-1226 |#1|)) NIL)) (-3815 (($ $ (-549) (-1226 |#1|)) NIL)) (-2945 (($ |#1| |#1| |#1|) 31)) (-2228 (($ (-747) |#1|) NIL)) (-1682 (($) NIL T CONST)) (-3460 (($ $) NIL (|has| |#1| (-300)))) (-4060 (((-1226 |#1|) $ (-549)) NIL)) (-2136 (($ |#1|) 30)) (-3872 (($ |#1|) 29)) (-4097 (($ |#1|) 28)) (-3123 (((-747) $) NIL (|has| |#1| (-541)))) (-1879 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1809 ((|#1| $ (-549) (-549)) NIL)) (-2989 (((-621 |#1|) $) NIL)) (-1323 (((-747) $) NIL (|has| |#1| (-541)))) (-1479 (((-621 (-1226 |#1|)) $) NIL (|has| |#1| (-541)))) (-2142 (((-747) $) NIL)) (-3743 (($ (-747) (-747) |#1|) NIL)) (-2155 (((-747) $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-1929 ((|#1| $) NIL (|has| |#1| (-6 (-4339 "*"))))) (-1761 (((-549) $) NIL)) (-2703 (((-549) $) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1661 (((-549) $) NIL)) (-1887 (((-549) $) NIL)) (-3946 (($ (-621 (-621 |#1|))) 11)) (-1868 (($ (-1 |#1| |#1|) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2913 (((-621 (-621 |#1|)) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3849 (((-3 $ "failed") $) NIL (|has| |#1| (-356)))) (-2459 (($) 12)) (-3571 (($ $ $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1642 (($ $ |#1|) NIL)) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-621 (-549)) (-621 (-549))) NIL)) (-2133 (($ (-621 |#1|)) NIL) (($ (-621 $)) NIL)) (-1757 (((-112) $) NIL)) (-2029 ((|#1| $) NIL (|has| |#1| (-6 (-4339 "*"))))) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-2851 (((-1226 |#1|) $ (-549)) NIL)) (-3846 (($ (-1226 |#1|)) NIL) (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2974 (((-112) $) NIL)) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $ $) NIL) (($ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-549) $) NIL) (((-1226 |#1|) $ (-1226 |#1|)) 15) (((-1226 |#1|) (-1226 |#1|) $) NIL) (((-914 |#1|) $ (-914 |#1|)) 20)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-221 |#1|) (-13 (-663 |#1| (-1226 |#1|) (-1226 |#1|)) (-10 -8 (-15 * ((-914 |#1|) $ (-914 |#1|))) (-15 -2459 ($)) (-15 -4097 ($ |#1|)) (-15 -3872 ($ |#1|)) (-15 -2136 ($ |#1|)) (-15 -2945 ($ |#1| |#1| |#1|)) (-15 -2783 ($ |#1| |#1| |#1|)))) (-13 (-356) (-1165))) (T -221))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165))) (-5 *1 (-221 *3)))) (-2459 (*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1165))))) (-4097 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1165))))) (-3872 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1165))))) (-2136 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1165))))) (-2945 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1165))))) (-2783 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1165))))))
+(-13 (-663 |#1| (-1226 |#1|) (-1226 |#1|)) (-10 -8 (-15 * ((-914 |#1|) $ (-914 |#1|))) (-15 -2459 ($)) (-15 -4097 ($ |#1|)) (-15 -3872 ($ |#1|)) (-15 -2136 ($ |#1|)) (-15 -2945 ($ |#1| |#1| |#1|)) (-15 -2783 ($ |#1| |#1| |#1|))))
+((-1717 (($ (-1 (-112) |#2|) $) 16)) (-2129 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-2898 (($) NIL) (($ (-621 |#2|)) 11)) (-2389 (((-112) $ $) 23)))
+(((-222 |#1| |#2|) (-10 -8 (-15 -1717 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2129 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2129 (|#1| |#2| |#1|)) (-15 -2898 (|#1| (-621 |#2|))) (-15 -2898 (|#1|)) (-15 -2389 ((-112) |#1| |#1|))) (-223 |#2|) (-1067)) (T -222))
+NIL
+(-10 -8 (-15 -1717 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2129 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2129 (|#1| |#2| |#1|)) (-15 -2898 (|#1| (-621 |#2|))) (-15 -2898 (|#1|)) (-15 -2389 ((-112) |#1| |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) 8)) (-1717 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-3676 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2129 (($ |#1| $) 47 (|has| $ (-6 -4337))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4337)))) (-3812 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4337)))) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3504 ((|#1| $) 39)) (-2751 (($ |#1| $) 40)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3325 ((|#1| $) 41)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-2898 (($) 49) (($ (-621 |#1|)) 48)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2845 (((-525) $) 59 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 50)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3624 (($ (-621 |#1|)) 42)) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-223 |#1|) (-138) (-1067)) (T -223))
+NIL
+(-13 (-229 |t#1|))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-3456 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) 11) (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143)) 19) (($ $ (-747)) NIL) (($ $) 16)) (-1702 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-747)) 14) (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143)) NIL) (($ $ (-747)) NIL) (($ $) NIL)))
+(((-224 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -1702 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -1702 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -1702 (|#1| |#1| (-1143))) (-15 -1702 (|#1| |#1| (-621 (-1143)))) (-15 -1702 (|#1| |#1| (-1143) (-747))) (-15 -1702 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -1702 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -1702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1018)) (T -224))
+NIL
+(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -1702 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -1702 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -1702 (|#1| |#1| (-1143))) (-15 -1702 (|#1| |#1| (-621 (-1143)))) (-15 -1702 (|#1| |#1| (-1143) (-747))) (-15 -1702 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -1702 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -1702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3456 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-747)) 49) (($ $ (-621 (-1143)) (-621 (-747))) 42 (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) 41 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) 40 (|has| |#1| (-871 (-1143)))) (($ $ (-1143)) 39 (|has| |#1| (-871 (-1143)))) (($ $ (-747)) 37 (|has| |#1| (-227))) (($ $) 35 (|has| |#1| (-227)))) (-3846 (((-834) $) 11) (($ (-549)) 27)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-747)) 47) (($ $ (-621 (-1143)) (-621 (-747))) 46 (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) 45 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) 44 (|has| |#1| (-871 (-1143)))) (($ $ (-1143)) 43 (|has| |#1| (-871 (-1143)))) (($ $ (-747)) 38 (|has| |#1| (-227))) (($ $) 36 (|has| |#1| (-227)))) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-225 |#1|) (-138) (-1018)) (T -225))
+((-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018)))) (-3456 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4)) (-4 *4 (-1018)))) (-1702 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018)))) (-1702 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4)) (-4 *4 (-1018)))))
+(-13 (-1018) (-10 -8 (-15 -3456 ($ $ (-1 |t#1| |t#1|))) (-15 -3456 ($ $ (-1 |t#1| |t#1|) (-747))) (-15 -1702 ($ $ (-1 |t#1| |t#1|))) (-15 -1702 ($ $ (-1 |t#1| |t#1|) (-747))) (IF (|has| |t#1| (-227)) (-6 (-227)) |%noBranch|) (IF (|has| |t#1| (-871 (-1143))) (-6 (-871 (-1143))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-227) |has| |#1| (-227)) ((-624 $) . T) ((-703) . T) ((-871 (-1143)) |has| |#1| (-871 (-1143))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3456 (($ $) NIL) (($ $ (-747)) 10)) (-1702 (($ $) 8) (($ $ (-747)) 12)))
+(((-226 |#1|) (-10 -8 (-15 -1702 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1| (-747))) (-15 -1702 (|#1| |#1|)) (-15 -3456 (|#1| |#1|))) (-227)) (T -226))
+NIL
+(-10 -8 (-15 -1702 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1| (-747))) (-15 -1702 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3456 (($ $) 36) (($ $ (-747)) 34)) (-3846 (((-834) $) 11) (($ (-549)) 27)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $) 35) (($ $ (-747)) 33)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-227) (-138)) (T -227))
+((-3456 (*1 *1 *1) (-4 *1 (-227))) (-1702 (*1 *1 *1) (-4 *1 (-227))) (-3456 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747)))) (-1702 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747)))))
+(-13 (-1018) (-10 -8 (-15 -3456 ($ $)) (-15 -1702 ($ $)) (-15 -3456 ($ $ (-747))) (-15 -1702 ($ $ (-747)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-2898 (($) 12) (($ (-621 |#2|)) NIL)) (-2281 (($ $) 14)) (-3854 (($ (-621 |#2|)) 10)) (-3846 (((-834) $) 21)))
+(((-228 |#1| |#2|) (-10 -8 (-15 -3846 ((-834) |#1|)) (-15 -2898 (|#1| (-621 |#2|))) (-15 -2898 (|#1|)) (-15 -3854 (|#1| (-621 |#2|))) (-15 -2281 (|#1| |#1|))) (-229 |#2|) (-1067)) (T -228))
+NIL
+(-10 -8 (-15 -3846 ((-834) |#1|)) (-15 -2898 (|#1| (-621 |#2|))) (-15 -2898 (|#1|)) (-15 -3854 (|#1| (-621 |#2|))) (-15 -2281 (|#1| |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) 8)) (-1717 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-3676 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2129 (($ |#1| $) 47 (|has| $ (-6 -4337))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4337)))) (-3812 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4337)))) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3504 ((|#1| $) 39)) (-2751 (($ |#1| $) 40)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3325 ((|#1| $) 41)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-2898 (($) 49) (($ (-621 |#1|)) 48)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2845 (((-525) $) 59 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 50)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3624 (($ (-621 |#1|)) 42)) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-229 |#1|) (-138) (-1067)) (T -229))
+((-2898 (*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1067)))) (-2898 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-4 *1 (-229 *3)))) (-2129 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-229 *2)) (-4 *2 (-1067)))) (-2129 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4337)) (-4 *1 (-229 *3)) (-4 *3 (-1067)))) (-1717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4337)) (-4 *1 (-229 *3)) (-4 *3 (-1067)))))
+(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -2898 ($)) (-15 -2898 ($ (-621 |t#1|))) (IF (|has| $ (-6 -4337)) (PROGN (-15 -2129 ($ |t#1| $)) (-15 -2129 ($ (-1 (-112) |t#1|) $)) (-15 -1717 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-4195 (((-2 (|:| |varOrder| (-621 (-1143))) (|:| |inhom| (-3 (-621 (-1226 (-747))) "failed")) (|:| |hom| (-621 (-1226 (-747))))) (-287 (-923 (-549)))) 27)))
+(((-230) (-10 -7 (-15 -4195 ((-2 (|:| |varOrder| (-621 (-1143))) (|:| |inhom| (-3 (-621 (-1226 (-747))) "failed")) (|:| |hom| (-621 (-1226 (-747))))) (-287 (-923 (-549))))))) (T -230))
+((-4195 (*1 *2 *3) (-12 (-5 *3 (-287 (-923 (-549)))) (-5 *2 (-2 (|:| |varOrder| (-621 (-1143))) (|:| |inhom| (-3 (-621 (-1226 (-747))) "failed")) (|:| |hom| (-621 (-1226 (-747)))))) (-5 *1 (-230)))))
+(-10 -7 (-15 -4195 ((-2 (|:| |varOrder| (-621 (-1143))) (|:| |inhom| (-3 (-621 (-1226 (-747))) "failed")) (|:| |hom| (-621 (-1226 (-747))))) (-287 (-923 (-549))))))
+((-3614 (((-747)) 51)) (-3879 (((-2 (|:| -3521 (-665 |#3|)) (|:| |vec| (-1226 |#3|))) (-665 $) (-1226 $)) 49) (((-665 |#3|) (-665 $)) 41) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL) (((-665 (-549)) (-665 $)) NIL)) (-2985 (((-133)) 57)) (-3456 (($ $ (-1 |#3| |#3|) (-747)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-3846 (((-1226 |#3|) $) NIL) (($ |#3|) NIL) (((-834) $) NIL) (($ (-549)) 12) (($ (-400 (-549))) NIL)) (-2082 (((-747)) 15)) (-2513 (($ $ |#3|) 54)))
+(((-231 |#1| |#2| |#3|) (-10 -8 (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|)) (-15 -2082 ((-747))) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3879 ((-665 (-549)) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 |#1|) (-1226 |#1|))) (-15 -3846 (|#1| |#3|)) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -3879 ((-665 |#3|) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 |#3|)) (|:| |vec| (-1226 |#3|))) (-665 |#1|) (-1226 |#1|))) (-15 -3614 ((-747))) (-15 -2513 (|#1| |#1| |#3|)) (-15 -2985 ((-133))) (-15 -3846 ((-1226 |#3|) |#1|))) (-232 |#2| |#3|) (-747) (-1180)) (T -231))
+((-2985 (*1 *2) (-12 (-14 *4 (-747)) (-4 *5 (-1180)) (-5 *2 (-133)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-3614 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1180)) (-5 *2 (-747)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-2082 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1180)) (-5 *2 (-747)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))))
+(-10 -8 (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|)) (-15 -2082 ((-747))) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3879 ((-665 (-549)) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 |#1|) (-1226 |#1|))) (-15 -3846 (|#1| |#3|)) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -3879 ((-665 |#3|) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 |#3|)) (|:| |vec| (-1226 |#3|))) (-665 |#1|) (-1226 |#1|))) (-15 -3614 ((-747))) (-15 -2513 (|#1| |#1| |#3|)) (-15 -2985 ((-133))) (-15 -3846 ((-1226 |#3|) |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#2| (-1067)))) (-1763 (((-112) $) 72 (|has| |#2| (-130)))) (-3956 (($ (-892)) 125 (|has| |#2| (-1018)))) (-1535 (((-1231) $ (-549) (-549)) 40 (|has| $ (-6 -4338)))) (-2861 (($ $ $) 121 (|has| |#2| (-769)))) (-2001 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-1584 (((-112) $ (-747)) 8)) (-3614 (((-747)) 107 (|has| |#2| (-361)))) (-1872 (((-549) $) 119 (|has| |#2| (-821)))) (-2254 ((|#2| $ (-549) |#2|) 52 (|has| $ (-6 -4338)))) (-1682 (($) 7 T CONST)) (-2714 (((-3 (-549) "failed") $) 67 (-1821 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067)))) (((-3 (-400 (-549)) "failed") $) 64 (-1821 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1067)))) (-2659 (((-549) $) 68 (-1821 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067)))) (((-400 (-549)) $) 65 (-1821 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067)))) ((|#2| $) 60 (|has| |#2| (-1067)))) (-3879 (((-665 (-549)) (-665 $)) 106 (-1821 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 105 (-1821 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) 104 (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) 103 (|has| |#2| (-1018)))) (-2114 (((-3 $ "failed") $) 79 (|has| |#2| (-703)))) (-3239 (($) 110 (|has| |#2| (-361)))) (-1879 ((|#2| $ (-549) |#2|) 53 (|has| $ (-6 -4338)))) (-1809 ((|#2| $ (-549)) 51)) (-2772 (((-112) $) 117 (|has| |#2| (-821)))) (-2989 (((-621 |#2|) $) 30 (|has| $ (-6 -4337)))) (-2675 (((-112) $) 81 (|has| |#2| (-703)))) (-2374 (((-112) $) 118 (|has| |#2| (-821)))) (-3194 (((-112) $ (-747)) 9)) (-4031 (((-549) $) 43 (|has| (-549) (-823)))) (-2863 (($ $ $) 116 (-1536 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-1562 (((-621 |#2|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 44 (|has| (-549) (-823)))) (-3575 (($ $ $) 115 (-1536 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-1868 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#2| |#2|) $) 35)) (-1881 (((-892) $) 109 (|has| |#2| (-361)))) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#2| (-1067)))) (-3303 (((-621 (-549)) $) 46)) (-3761 (((-112) (-549) $) 47)) (-3493 (($ (-892)) 108 (|has| |#2| (-361)))) (-3990 (((-1087) $) 21 (|has| |#2| (-1067)))) (-3646 ((|#2| $) 42 (|has| (-549) (-823)))) (-1642 (($ $ |#2|) 41 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2696 (((-621 |#2|) $) 48)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#2| $ (-549) |#2|) 50) ((|#2| $ (-549)) 49)) (-1706 ((|#2| $ $) 124 (|has| |#2| (-1018)))) (-2169 (($ (-1226 |#2|)) 126)) (-2985 (((-133)) 123 (|has| |#2| (-356)))) (-3456 (($ $) 98 (-1821 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) 96 (-1821 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1143)) 94 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143))) 93 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1143) (-747)) 92 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143)) (-621 (-747))) 91 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) 84 (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1018)))) (-4000 (((-747) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4337))) (((-747) |#2| $) 28 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3846 (((-1226 |#2|) $) 127) (($ (-549)) 66 (-1536 (-1821 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067))) (|has| |#2| (-1018)))) (($ (-400 (-549))) 63 (-1821 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067)))) (($ |#2|) 62 (|has| |#2| (-1067))) (((-834) $) 18 (|has| |#2| (-593 (-834))))) (-2082 (((-747)) 102 (|has| |#2| (-1018)))) (-3527 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4337)))) (-3212 (($ $) 120 (|has| |#2| (-821)))) (-3276 (($) 71 (|has| |#2| (-130)) CONST)) (-3287 (($) 82 (|has| |#2| (-703)) CONST)) (-1702 (($ $) 97 (-1821 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) 95 (-1821 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1143)) 90 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143))) 89 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1143) (-747)) 88 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143)) (-621 (-747))) 87 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) 86 (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1018)))) (-2448 (((-112) $ $) 113 (-1536 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2425 (((-112) $ $) 112 (-1536 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2389 (((-112) $ $) 20 (|has| |#2| (-1067)))) (-2438 (((-112) $ $) 114 (-1536 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2412 (((-112) $ $) 111 (-1536 (|has| |#2| (-821)) (|has| |#2| (-769))))) (-2513 (($ $ |#2|) 122 (|has| |#2| (-356)))) (-2500 (($ $ $) 100 (|has| |#2| (-1018))) (($ $) 99 (|has| |#2| (-1018)))) (-2486 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-747)) 80 (|has| |#2| (-703))) (($ $ (-892)) 77 (|has| |#2| (-703)))) (* (($ (-549) $) 101 (|has| |#2| (-1018))) (($ $ $) 78 (|has| |#2| (-703))) (($ $ |#2|) 76 (|has| |#2| (-703))) (($ |#2| $) 75 (|has| |#2| (-703))) (($ (-747) $) 73 (|has| |#2| (-130))) (($ (-892) $) 70 (|has| |#2| (-25)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-232 |#1| |#2|) (-138) (-747) (-1180)) (T -232))
+((-2169 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-4 *4 (-1180)) (-4 *1 (-232 *3 *4)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1018)) (-4 *4 (-1180)))) (-1706 (*1 *2 *1 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1180)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1180)) (-4 *2 (-703)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1180)) (-4 *2 (-703)))))
+(-13 (-584 (-549) |t#2|) (-593 (-1226 |t#2|)) (-10 -8 (-6 -4337) (-15 -2169 ($ (-1226 |t#2|))) (IF (|has| |t#2| (-1067)) (-6 (-404 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1018)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-225 |t#2|)) (-6 (-370 |t#2|)) (-15 -3956 ($ (-892))) (-15 -1706 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-703)) (PROGN (-6 (-703)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4334)) (-6 -4334) |%noBranch|) (IF (|has| |t#2| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#2| (-769)) (-6 (-769)) |%noBranch|) (IF (|has| |t#2| (-356)) (-6 (-1233 |t#2|)) |%noBranch|)))
+(((-21) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-23) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) -1536 (|has| |#2| (-1067)) (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-703)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -1536 (|has| |#2| (-1018)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-593 (-834)) -1536 (|has| |#2| (-1067)) (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-703)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-593 (-834))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-593 (-1226 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-225 |#2|) |has| |#2| (-1018)) ((-227) -12 (|has| |#2| (-227)) (|has| |#2| (-1018))) ((-279 #0=(-549) |#2|) . T) ((-281 #0# |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-361) |has| |#2| (-361)) ((-370 |#2|) |has| |#2| (-1018)) ((-404 |#2|) |has| |#2| (-1067)) ((-481 |#2|) . T) ((-584 #0# |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-624 |#2|) -1536 (|has| |#2| (-1018)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-624 $) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-170))) ((-617 (-549)) -12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018))) ((-617 |#2|) |has| |#2| (-1018)) ((-694 |#2|) -1536 (|has| |#2| (-356)) (|has| |#2| (-170))) ((-703) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-703)) (|has| |#2| (-170))) ((-767) |has| |#2| (-821)) ((-768) -1536 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-769) |has| |#2| (-769)) ((-770) -1536 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-771) -1536 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-821) |has| |#2| (-821)) ((-823) -1536 (|has| |#2| (-821)) (|has| |#2| (-769))) ((-871 (-1143)) -12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018))) ((-1009 (-400 (-549))) -12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067))) ((-1009 (-549)) -12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067))) ((-1009 |#2|) |has| |#2| (-1067)) ((-1024 |#2|) -1536 (|has| |#2| (-1018)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-1024 $) |has| |#2| (-170)) ((-1018) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-170))) ((-1025) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-170))) ((-1079) -1536 (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-703)) (|has| |#2| (-170))) ((-1067) -1536 (|has| |#2| (-1067)) (|has| |#2| (-1018)) (|has| |#2| (-821)) (|has| |#2| (-769)) (|has| |#2| (-703)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1180) . T) ((-1233 |#2|) |has| |#2| (-356)))
+((-3804 (((-234 |#1| |#3|) (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|) 21)) (-2557 ((|#3| (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|) 23)) (-2797 (((-234 |#1| |#3|) (-1 |#3| |#2|) (-234 |#1| |#2|)) 18)))
+(((-233 |#1| |#2| |#3|) (-10 -7 (-15 -3804 ((-234 |#1| |#3|) (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2557 (|#3| (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2797 ((-234 |#1| |#3|) (-1 |#3| |#2|) (-234 |#1| |#2|)))) (-747) (-1180) (-1180)) (T -233))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-234 *5 *6)) (-14 *5 (-747)) (-4 *6 (-1180)) (-4 *7 (-1180)) (-5 *2 (-234 *5 *7)) (-5 *1 (-233 *5 *6 *7)))) (-2557 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-234 *5 *6)) (-14 *5 (-747)) (-4 *6 (-1180)) (-4 *2 (-1180)) (-5 *1 (-233 *5 *6 *2)))) (-3804 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-234 *6 *7)) (-14 *6 (-747)) (-4 *7 (-1180)) (-4 *5 (-1180)) (-5 *2 (-234 *6 *5)) (-5 *1 (-233 *6 *7 *5)))))
+(-10 -7 (-15 -3804 ((-234 |#1| |#3|) (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2557 (|#3| (-1 |#3| |#2| |#3|) (-234 |#1| |#2|) |#3|)) (-15 -2797 ((-234 |#1| |#3|) (-1 |#3| |#2|) (-234 |#1| |#2|))))
+((-3834 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-1763 (((-112) $) NIL (|has| |#2| (-130)))) (-3956 (($ (-892)) 56 (|has| |#2| (-1018)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-2861 (($ $ $) 60 (|has| |#2| (-769)))) (-2001 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-1584 (((-112) $ (-747)) 17)) (-3614 (((-747)) NIL (|has| |#2| (-361)))) (-1872 (((-549) $) NIL (|has| |#2| (-821)))) (-2254 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1067)))) (-2659 (((-549) $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067)))) (((-400 (-549)) $) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067)))) ((|#2| $) 27 (|has| |#2| (-1067)))) (-3879 (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) NIL (|has| |#2| (-1018)))) (-2114 (((-3 $ "failed") $) 53 (|has| |#2| (-703)))) (-3239 (($) NIL (|has| |#2| (-361)))) (-1879 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#2| $ (-549)) 51)) (-2772 (((-112) $) NIL (|has| |#2| (-821)))) (-2989 (((-621 |#2|) $) 15 (|has| $ (-6 -4337)))) (-2675 (((-112) $) NIL (|has| |#2| (-703)))) (-2374 (((-112) $) NIL (|has| |#2| (-821)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) 20 (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-1562 (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-1569 (((-549) $) 50 (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-1868 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#2| |#2|) $) 41)) (-1881 (((-892) $) NIL (|has| |#2| (-361)))) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#2| (-1067)))) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3493 (($ (-892)) NIL (|has| |#2| (-361)))) (-3990 (((-1087) $) NIL (|has| |#2| (-1067)))) (-3646 ((|#2| $) NIL (|has| (-549) (-823)))) (-1642 (($ $ |#2|) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2696 (((-621 |#2|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) 21)) (-1706 ((|#2| $ $) NIL (|has| |#2| (-1018)))) (-2169 (($ (-1226 |#2|)) 18)) (-2985 (((-133)) NIL (|has| |#2| (-356)))) (-3456 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1143)) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-4000 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-1226 |#2|) $) 10) (($ (-549)) NIL (-1536 (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067))) (|has| |#2| (-1018)))) (($ (-400 (-549))) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067)))) (($ |#2|) 13 (|has| |#2| (-1067))) (((-834) $) NIL (|has| |#2| (-593 (-834))))) (-2082 (((-747)) NIL (|has| |#2| (-1018)))) (-3527 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-3212 (($ $) NIL (|has| |#2| (-821)))) (-3276 (($) 35 (|has| |#2| (-130)) CONST)) (-3287 (($) 38 (|has| |#2| (-703)) CONST)) (-1702 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1143)) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2448 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2425 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2389 (((-112) $ $) 26 (|has| |#2| (-1067)))) (-2438 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2412 (((-112) $ $) 58 (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2513 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2500 (($ $ $) NIL (|has| |#2| (-1018))) (($ $) NIL (|has| |#2| (-1018)))) (-2486 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-747)) NIL (|has| |#2| (-703))) (($ $ (-892)) NIL (|has| |#2| (-703)))) (* (($ (-549) $) NIL (|has| |#2| (-1018))) (($ $ $) 44 (|has| |#2| (-703))) (($ $ |#2|) 42 (|has| |#2| (-703))) (($ |#2| $) 43 (|has| |#2| (-703))) (($ (-747) $) NIL (|has| |#2| (-130))) (($ (-892) $) NIL (|has| |#2| (-25)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-234 |#1| |#2|) (-232 |#1| |#2|) (-747) (-1180)) (T -234))
+NIL
+(-232 |#1| |#2|)
+((-2603 (((-549) (-621 (-1125))) 24) (((-549) (-1125)) 19)) (-2422 (((-1231) (-621 (-1125))) 29) (((-1231) (-1125)) 28)) (-1521 (((-1125)) 14)) (-3461 (((-1125) (-549) (-1125)) 16)) (-2597 (((-621 (-1125)) (-621 (-1125)) (-549) (-1125)) 25) (((-1125) (-1125) (-549) (-1125)) 23)) (-3274 (((-621 (-1125)) (-621 (-1125))) 13) (((-621 (-1125)) (-1125)) 11)))
+(((-235) (-10 -7 (-15 -3274 ((-621 (-1125)) (-1125))) (-15 -3274 ((-621 (-1125)) (-621 (-1125)))) (-15 -1521 ((-1125))) (-15 -3461 ((-1125) (-549) (-1125))) (-15 -2597 ((-1125) (-1125) (-549) (-1125))) (-15 -2597 ((-621 (-1125)) (-621 (-1125)) (-549) (-1125))) (-15 -2422 ((-1231) (-1125))) (-15 -2422 ((-1231) (-621 (-1125)))) (-15 -2603 ((-549) (-1125))) (-15 -2603 ((-549) (-621 (-1125)))))) (T -235))
+((-2603 (*1 *2 *3) (-12 (-5 *3 (-621 (-1125))) (-5 *2 (-549)) (-5 *1 (-235)))) (-2603 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-549)) (-5 *1 (-235)))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-621 (-1125))) (-5 *2 (-1231)) (-5 *1 (-235)))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-235)))) (-2597 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-621 (-1125))) (-5 *3 (-549)) (-5 *4 (-1125)) (-5 *1 (-235)))) (-2597 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1125)) (-5 *3 (-549)) (-5 *1 (-235)))) (-3461 (*1 *2 *3 *2) (-12 (-5 *2 (-1125)) (-5 *3 (-549)) (-5 *1 (-235)))) (-1521 (*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-235)))) (-3274 (*1 *2 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-235)))) (-3274 (*1 *2 *3) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-235)) (-5 *3 (-1125)))))
+(-10 -7 (-15 -3274 ((-621 (-1125)) (-1125))) (-15 -3274 ((-621 (-1125)) (-621 (-1125)))) (-15 -1521 ((-1125))) (-15 -3461 ((-1125) (-549) (-1125))) (-15 -2597 ((-1125) (-1125) (-549) (-1125))) (-15 -2597 ((-621 (-1125)) (-621 (-1125)) (-549) (-1125))) (-15 -2422 ((-1231) (-1125))) (-15 -2422 ((-1231) (-621 (-1125)))) (-15 -2603 ((-549) (-1125))) (-15 -2603 ((-549) (-621 (-1125)))))
+((** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 16)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ (-400 (-549)) $) 23) (($ $ (-400 (-549))) NIL)))
+(((-236 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-892))) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|))) (-237)) (T -236))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-892))) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 37)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 41)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 38)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ (-400 (-549)) $) 40) (($ $ (-400 (-549))) 39)))
+(((-237) (-138)) (T -237))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-549)))) (-1992 (*1 *1 *1) (-4 *1 (-237))))
+(-13 (-283) (-38 (-400 (-549))) (-10 -8 (-15 ** ($ $ (-549))) (-15 -1992 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-283) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-703) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4161 ((|#1| $) 48)) (-1343 (($ $) 57)) (-1584 (((-112) $ (-747)) 8)) (-2838 ((|#1| $ |#1|) 39 (|has| $ (-6 -4338)))) (-3208 (($ $ $) 53 (|has| $ (-6 -4338)))) (-1505 (($ $ $) 52 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) 41 (|has| $ (-6 -4338)))) (-1682 (($) 7 T CONST)) (-1980 (($ $) 56)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) 50)) (-3895 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3043 (($ $) 55)) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3591 (((-621 |#1|) $) 45)) (-2076 (((-112) $) 49)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3829 ((|#1| $) 59)) (-3477 (($ $) 58)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ "value") 47)) (-3230 (((-549) $ $) 44)) (-3497 (((-112) $) 46)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3196 (($ $ $) 54 (|has| $ (-6 -4338)))) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) 51)) (-1987 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-238 |#1|) (-138) (-1180)) (T -238))
+((-3829 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1180)))) (-3477 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1180)))) (-1343 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1180)))) (-1980 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1180)))) (-3043 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1180)))) (-3196 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-238 *2)) (-4 *2 (-1180)))) (-3208 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-238 *2)) (-4 *2 (-1180)))) (-1505 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-238 *2)) (-4 *2 (-1180)))))
+(-13 (-981 |t#1|) (-10 -8 (-15 -3829 (|t#1| $)) (-15 -3477 ($ $)) (-15 -1343 ($ $)) (-15 -1980 ($ $)) (-15 -3043 ($ $)) (IF (|has| $ (-6 -4338)) (PROGN (-15 -3196 ($ $ $)) (-15 -3208 ($ $ $)) (-15 -1505 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4161 ((|#1| $) NIL)) (-2839 ((|#1| $) NIL)) (-1343 (($ $) NIL)) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-3174 (($ $ (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) $) NIL (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4311 (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| |#1| (-823)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-3193 (($ $) 10 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-2838 ((|#1| $ |#1|) NIL (|has| $ (-6 -4338)))) (-4179 (($ $ $) NIL (|has| $ (-6 -4338)))) (-2780 ((|#1| $ |#1|) NIL (|has| $ (-6 -4338)))) (-4135 ((|#1| $ |#1|) NIL (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4338))) (($ $ "rest" $) NIL (|has| $ (-6 -4338))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) NIL (|has| $ (-6 -4338)))) (-1717 (($ (-1 (-112) |#1|) $) NIL)) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2830 ((|#1| $) NIL)) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3657 (($ $) NIL) (($ $ (-747)) NIL)) (-3745 (($ $) NIL (|has| |#1| (-1067)))) (-3676 (($ $) 7 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2129 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) NIL)) (-3812 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1879 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) NIL)) (-3331 (((-112) $) NIL)) (-2883 (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1067))) (((-549) |#1| $) NIL (|has| |#1| (-1067))) (((-549) (-1 (-112) |#1|) $) NIL)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) NIL)) (-3895 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3743 (($ (-747) |#1|) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-1303 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3890 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3525 (($ |#1|) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3591 (((-621 |#1|) $) NIL)) (-2076 (((-112) $) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3829 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-2751 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2616 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3646 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1642 (($ $ |#1|) NIL (|has| $ (-6 -4338)))) (-3016 (((-112) $) NIL)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1193 (-549))) NIL) ((|#1| $ (-549)) NIL) ((|#1| $ (-549) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-747) $ "count") 16)) (-3230 (((-549) $ $) NIL)) (-3531 (($ $ (-1193 (-549))) NIL) (($ $ (-549)) NIL)) (-2167 (($ $ (-1193 (-549))) NIL) (($ $ (-549)) NIL)) (-3081 (($ (-621 |#1|)) 22)) (-3497 (((-112) $) NIL)) (-1999 (($ $) NIL)) (-2643 (($ $) NIL (|has| $ (-6 -4338)))) (-3798 (((-747) $) NIL)) (-3612 (($ $) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) NIL)) (-3196 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1952 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-621 $)) NIL) (($ $ |#1|) NIL)) (-3846 (($ (-621 |#1|)) 17) (((-621 |#1|) $) 18) (((-834) $) 21 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) NIL)) (-1987 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3775 (((-747) $) 14 (|has| $ (-6 -4337)))))
+(((-239 |#1|) (-13 (-642 |#1|) (-10 -8 (-15 -3846 ($ (-621 |#1|))) (-15 -3846 ((-621 |#1|) $)) (-15 -3081 ($ (-621 |#1|))) (-15 -3341 ($ $ "unique")) (-15 -3341 ($ $ "sort")) (-15 -3341 ((-747) $ "count")))) (-823)) (T -239))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-239 *3)) (-4 *3 (-823)))) (-3081 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-823)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-823)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-747)) (-5 *1 (-239 *4)) (-4 *4 (-823)))))
+(-13 (-642 |#1|) (-10 -8 (-15 -3846 ($ (-621 |#1|))) (-15 -3846 ((-621 |#1|) $)) (-15 -3081 ($ (-621 |#1|))) (-15 -3341 ($ $ "unique")) (-15 -3341 ($ $ "sort")) (-15 -3341 ((-747) $ "count"))))
+((-4090 (((-3 (-747) "failed") |#1| |#1| (-747)) 27)))
+(((-240 |#1|) (-10 -7 (-15 -4090 ((-3 (-747) "failed") |#1| |#1| (-747)))) (-13 (-703) (-361) (-10 -7 (-15 ** (|#1| |#1| (-549)))))) (T -240))
+((-4090 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-747)) (-4 *3 (-13 (-703) (-361) (-10 -7 (-15 ** (*3 *3 (-549)))))) (-5 *1 (-240 *3)))))
+(-10 -7 (-15 -4090 ((-3 (-747) "failed") |#1| |#1| (-747))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2272 (((-621 (-836 |#1|)) $) NIL)) (-2084 (((-1139 $) $ (-836 |#1|)) NIL) (((-1139 |#2|) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#2| (-541)))) (-2258 (($ $) NIL (|has| |#2| (-541)))) (-2799 (((-112) $) NIL (|has| |#2| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 (-836 |#1|))) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-3979 (($ $) NIL (|has| |#2| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-836 |#1|) "failed") $) NIL)) (-2659 ((|#2| $) NIL) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-836 |#1|) $) NIL)) (-1353 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-1457 (($ $ (-621 (-549))) NIL)) (-2070 (($ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#2| (-880)))) (-2691 (($ $ |#2| (-234 (-3775 |#1|) (-747)) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-2261 (($ (-1139 |#2|) (-836 |#1|)) NIL) (($ (-1139 $) (-836 |#1|)) NIL)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#2| (-234 (-3775 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ (-836 |#1|)) NIL)) (-3611 (((-234 (-3775 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-621 (-747)) $ (-621 (-836 |#1|))) NIL)) (-2863 (($ $ $) NIL (|has| |#2| (-823)))) (-3575 (($ $ $) NIL (|has| |#2| (-823)))) (-3705 (($ (-1 (-234 (-3775 |#1|) (-747)) (-234 (-3775 |#1|) (-747))) $) NIL)) (-2797 (($ (-1 |#2| |#2|) $) NIL)) (-1520 (((-3 (-836 |#1|) "failed") $) NIL)) (-2028 (($ $) NIL)) (-2043 ((|#2| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3851 (((-1125) $) NIL)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -3731 (-747))) "failed") $) NIL)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) NIL)) (-2016 ((|#2| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#2| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#2| (-880)))) (-2042 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-541)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-836 |#1|) |#2|) NIL) (($ $ (-621 (-836 |#1|)) (-621 |#2|)) NIL) (($ $ (-836 |#1|) $) NIL) (($ $ (-621 (-836 |#1|)) (-621 $)) NIL)) (-3602 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-3456 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3701 (((-234 (-3775 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-621 (-747)) $ (-621 (-836 |#1|))) NIL)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-836 |#1|) (-594 (-525))) (|has| |#2| (-594 (-525)))))) (-2216 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-836 |#1|)) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#2| (-38 (-400 (-549)))) (|has| |#2| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#2| (-541)))) (-4141 (((-621 |#2|) $) NIL)) (-2152 ((|#2| $ (-234 (-3775 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#2| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#2| (-541)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2513 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#2| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#2| (-38 (-400 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-241 |#1| |#2|) (-13 (-920 |#2| (-234 (-3775 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -1457 ($ $ (-621 (-549)))))) (-621 (-1143)) (-1018)) (T -241))
+((-1457 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-241 *3 *4)) (-14 *3 (-621 (-1143))) (-4 *4 (-1018)))))
+(-13 (-920 |#2| (-234 (-3775 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -1457 ($ $ (-621 (-549))))))
+((-3834 (((-112) $ $) NIL)) (-2747 (((-1231) $) 15)) (-1827 (((-181) $) 9)) (-1764 (($ (-181)) 10)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 7)) (-2389 (((-112) $ $) 13)))
+(((-242) (-13 (-1067) (-10 -8 (-15 -1827 ((-181) $)) (-15 -1764 ($ (-181))) (-15 -2747 ((-1231) $))))) (T -242))
+((-1827 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-2747 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-242)))))
+(-13 (-1067) (-10 -8 (-15 -1827 ((-181) $)) (-15 -1764 ($ (-181))) (-15 -2747 ((-1231) $))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3956 (($ (-892)) NIL (|has| |#4| (-1018)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-2861 (($ $ $) NIL (|has| |#4| (-769)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-3614 (((-747)) NIL (|has| |#4| (-361)))) (-1872 (((-549) $) NIL (|has| |#4| (-821)))) (-2254 ((|#4| $ (-549) |#4|) NIL (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1067))) (((-3 (-549) "failed") $) NIL (-12 (|has| |#4| (-1009 (-549))) (|has| |#4| (-1067)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#4| (-1009 (-400 (-549)))) (|has| |#4| (-1067))))) (-2659 ((|#4| $) NIL (|has| |#4| (-1067))) (((-549) $) NIL (-12 (|has| |#4| (-1009 (-549))) (|has| |#4| (-1067)))) (((-400 (-549)) $) NIL (-12 (|has| |#4| (-1009 (-400 (-549)))) (|has| |#4| (-1067))))) (-3879 (((-2 (|:| -3521 (-665 |#4|)) (|:| |vec| (-1226 |#4|))) (-665 $) (-1226 $)) NIL (|has| |#4| (-1018))) (((-665 |#4|) (-665 $)) NIL (|has| |#4| (-1018))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018)))) (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))))) (-2114 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))))) (-3239 (($) NIL (|has| |#4| (-361)))) (-1879 ((|#4| $ (-549) |#4|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#4| $ (-549)) NIL)) (-2772 (((-112) $) NIL (|has| |#4| (-821)))) (-2989 (((-621 |#4|) $) NIL (|has| $ (-6 -4337)))) (-2675 (((-112) $) NIL (-1536 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))))) (-2374 (((-112) $) NIL (|has| |#4| (-821)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (-1536 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-1562 (((-621 |#4|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (-1536 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-1868 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#4| |#4|) $) NIL)) (-1881 (((-892) $) NIL (|has| |#4| (-361)))) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3493 (($ (-892)) NIL (|has| |#4| (-361)))) (-3990 (((-1087) $) NIL)) (-3646 ((|#4| $) NIL (|has| (-549) (-823)))) (-1642 (($ $ |#4|) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-621 |#4|) (-621 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-2696 (((-621 |#4|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#4| $ (-549) |#4|) NIL) ((|#4| $ (-549)) 12)) (-1706 ((|#4| $ $) NIL (|has| |#4| (-1018)))) (-2169 (($ (-1226 |#4|)) NIL)) (-2985 (((-133)) NIL (|has| |#4| (-356)))) (-3456 (($ $ (-1 |#4| |#4|) (-747)) NIL (|has| |#4| (-1018))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1018))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))) (($ $ (-1143)) NIL (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))))) (-4000 (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337))) (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-1226 |#4|) $) NIL) (((-834) $) NIL) (($ |#4|) NIL (|has| |#4| (-1067))) (($ (-549)) NIL (-1536 (-12 (|has| |#4| (-1009 (-549))) (|has| |#4| (-1067))) (|has| |#4| (-1018)))) (($ (-400 (-549))) NIL (-12 (|has| |#4| (-1009 (-400 (-549)))) (|has| |#4| (-1067))))) (-2082 (((-747)) NIL (|has| |#4| (-1018)))) (-3527 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-3212 (($ $) NIL (|has| |#4| (-821)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL (-1536 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))) CONST)) (-1702 (($ $ (-1 |#4| |#4|) (-747)) NIL (|has| |#4| (-1018))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1018))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))) (($ $ (-1143)) NIL (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))))) (-2448 (((-112) $ $) NIL (-1536 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2425 (((-112) $ $) NIL (-1536 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (-1536 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2412 (((-112) $ $) NIL (-1536 (|has| |#4| (-769)) (|has| |#4| (-821))))) (-2513 (($ $ |#4|) NIL (|has| |#4| (-356)))) (-2500 (($ $ $) NIL) (($ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-747)) NIL (-1536 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018))))) (($ $ (-892)) NIL (-1536 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))))) (* (($ |#2| $) 14) (($ (-549) $) NIL) (($ (-747) $) NIL) (($ (-892) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-703))) (($ |#4| $) NIL (|has| |#4| (-703))) (($ $ $) NIL (-1536 (-12 (|has| |#4| (-227)) (|has| |#4| (-1018))) (-12 (|has| |#4| (-617 (-549))) (|has| |#4| (-1018))) (|has| |#4| (-703)) (-12 (|has| |#4| (-871 (-1143))) (|has| |#4| (-1018)))))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-243 |#1| |#2| |#3| |#4|) (-13 (-232 |#1| |#4|) (-624 |#2|) (-624 |#3|)) (-892) (-1018) (-1090 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-624 |#2|)) (T -243))
+NIL
+(-13 (-232 |#1| |#4|) (-624 |#2|) (-624 |#3|))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3956 (($ (-892)) NIL (|has| |#3| (-1018)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-2861 (($ $ $) NIL (|has| |#3| (-769)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-3614 (((-747)) NIL (|has| |#3| (-361)))) (-1872 (((-549) $) NIL (|has| |#3| (-821)))) (-2254 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1067))) (((-3 (-549) "failed") $) NIL (-12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1067)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1067))))) (-2659 ((|#3| $) NIL (|has| |#3| (-1067))) (((-549) $) NIL (-12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1067)))) (((-400 (-549)) $) NIL (-12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1067))))) (-3879 (((-2 (|:| -3521 (-665 |#3|)) (|:| |vec| (-1226 |#3|))) (-665 $) (-1226 $)) NIL (|has| |#3| (-1018))) (((-665 |#3|) (-665 $)) NIL (|has| |#3| (-1018))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018)))) (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))))) (-2114 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))))) (-3239 (($) NIL (|has| |#3| (-361)))) (-1879 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#3| $ (-549)) NIL)) (-2772 (((-112) $) NIL (|has| |#3| (-821)))) (-2989 (((-621 |#3|) $) NIL (|has| $ (-6 -4337)))) (-2675 (((-112) $) NIL (-1536 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))))) (-2374 (((-112) $) NIL (|has| |#3| (-821)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-1562 (((-621 |#3|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#3| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-1868 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#3| |#3|) $) NIL)) (-1881 (((-892) $) NIL (|has| |#3| (-361)))) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3493 (($ (-892)) NIL (|has| |#3| (-361)))) (-3990 (((-1087) $) NIL)) (-3646 ((|#3| $) NIL (|has| (-549) (-823)))) (-1642 (($ $ |#3|) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-287 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-621 |#3|) (-621 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#3| (-1067))))) (-2696 (((-621 |#3|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#3| $ (-549) |#3|) NIL) ((|#3| $ (-549)) 11)) (-1706 ((|#3| $ $) NIL (|has| |#3| (-1018)))) (-2169 (($ (-1226 |#3|)) NIL)) (-2985 (((-133)) NIL (|has| |#3| (-356)))) (-3456 (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-1143)) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))))) (-4000 (((-747) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4337))) (((-747) |#3| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#3| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-1226 |#3|) $) NIL) (((-834) $) NIL) (($ |#3|) NIL (|has| |#3| (-1067))) (($ (-549)) NIL (-1536 (-12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1067))) (|has| |#3| (-1018)))) (($ (-400 (-549))) NIL (-12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1067))))) (-2082 (((-747)) NIL (|has| |#3| (-1018)))) (-3527 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4337)))) (-3212 (($ $) NIL (|has| |#3| (-821)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL (-1536 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) CONST)) (-1702 (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-1143)) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))))) (-2448 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2425 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2412 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2513 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-2500 (($ $ $) NIL) (($ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-747)) NIL (-1536 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018))))) (($ $ (-892)) NIL (-1536 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))))) (* (($ |#2| $) 13) (($ (-549) $) NIL) (($ (-747) $) NIL) (($ (-892) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-703))) (($ |#3| $) NIL (|has| |#3| (-703))) (($ $ $) NIL (-1536 (-12 (|has| |#3| (-227)) (|has| |#3| (-1018))) (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018))) (|has| |#3| (-703)) (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-244 |#1| |#2| |#3|) (-13 (-232 |#1| |#3|) (-624 |#2|)) (-747) (-1018) (-624 |#2|)) (T -244))
+NIL
+(-13 (-232 |#1| |#3|) (-624 |#2|))
+((-3977 (((-621 (-747)) $) 47) (((-621 (-747)) $ |#3|) 50)) (-1637 (((-747) $) 49) (((-747) $ |#3|) 52)) (-3920 (($ $) 65)) (-2714 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 (-549) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2088 (((-747) $ |#3|) 39) (((-747) $) 36)) (-3040 (((-1 $ (-747)) |#3|) 15) (((-1 $ (-747)) $) 77)) (-4052 ((|#4| $) 58)) (-2709 (((-112) $) 56)) (-2255 (($ $) 64)) (-2686 (($ $ (-621 (-287 $))) 97) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-621 |#4|) (-621 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-621 |#4|) (-621 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-621 |#3|) (-621 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-621 |#3|) (-621 |#2|)) 84)) (-3456 (($ $ |#4|) NIL) (($ $ (-621 |#4|)) NIL) (($ $ |#4| (-747)) NIL) (($ $ (-621 |#4|) (-621 (-747))) NIL) (($ $) NIL) (($ $ (-747)) NIL) (($ $ (-1143)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1920 (((-621 |#3|) $) 75)) (-3701 ((|#5| $) NIL) (((-747) $ |#4|) NIL) (((-621 (-747)) $ (-621 |#4|)) NIL) (((-747) $ |#3|) 44)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-400 (-549))) NIL) (($ $) NIL)))
+(((-245 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3846 (|#1| |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -2686 (|#1| |#1| (-621 |#3|) (-621 |#2|))) (-15 -2686 (|#1| |#1| |#3| |#2|)) (-15 -2686 (|#1| |#1| (-621 |#3|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#3| |#1|)) (-15 -3040 ((-1 |#1| (-747)) |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -2255 (|#1| |#1|)) (-15 -4052 (|#4| |#1|)) (-15 -2709 ((-112) |#1|)) (-15 -1637 ((-747) |#1| |#3|)) (-15 -3977 ((-621 (-747)) |#1| |#3|)) (-15 -1637 ((-747) |#1|)) (-15 -3977 ((-621 (-747)) |#1|)) (-15 -3701 ((-747) |#1| |#3|)) (-15 -2088 ((-747) |#1|)) (-15 -2088 ((-747) |#1| |#3|)) (-15 -1920 ((-621 |#3|) |#1|)) (-15 -3040 ((-1 |#1| (-747)) |#3|)) (-15 -2714 ((-3 |#3| "failed") |#1|)) (-15 -3846 (|#1| |#3|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1|)) (-15 -3701 ((-621 (-747)) |#1| (-621 |#4|))) (-15 -3701 ((-747) |#1| |#4|)) (-15 -2714 ((-3 |#4| "failed") |#1|)) (-15 -3846 (|#1| |#4|)) (-15 -2686 (|#1| |#1| (-621 |#4|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#4| |#1|)) (-15 -2686 (|#1| |#1| (-621 |#4|) (-621 |#2|))) (-15 -2686 (|#1| |#1| |#4| |#2|)) (-15 -2686 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| (-287 |#1|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3701 (|#5| |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -3456 (|#1| |#1| (-621 |#4|) (-621 (-747)))) (-15 -3456 (|#1| |#1| |#4| (-747))) (-15 -3456 (|#1| |#1| (-621 |#4|))) (-15 -3456 (|#1| |#1| |#4|)) (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|))) (-246 |#2| |#3| |#4| |#5|) (-1018) (-823) (-259 |#3|) (-769)) (T -245))
+NIL
+(-10 -8 (-15 -3846 (|#1| |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -2686 (|#1| |#1| (-621 |#3|) (-621 |#2|))) (-15 -2686 (|#1| |#1| |#3| |#2|)) (-15 -2686 (|#1| |#1| (-621 |#3|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#3| |#1|)) (-15 -3040 ((-1 |#1| (-747)) |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -2255 (|#1| |#1|)) (-15 -4052 (|#4| |#1|)) (-15 -2709 ((-112) |#1|)) (-15 -1637 ((-747) |#1| |#3|)) (-15 -3977 ((-621 (-747)) |#1| |#3|)) (-15 -1637 ((-747) |#1|)) (-15 -3977 ((-621 (-747)) |#1|)) (-15 -3701 ((-747) |#1| |#3|)) (-15 -2088 ((-747) |#1|)) (-15 -2088 ((-747) |#1| |#3|)) (-15 -1920 ((-621 |#3|) |#1|)) (-15 -3040 ((-1 |#1| (-747)) |#3|)) (-15 -2714 ((-3 |#3| "failed") |#1|)) (-15 -3846 (|#1| |#3|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1|)) (-15 -3701 ((-621 (-747)) |#1| (-621 |#4|))) (-15 -3701 ((-747) |#1| |#4|)) (-15 -2714 ((-3 |#4| "failed") |#1|)) (-15 -3846 (|#1| |#4|)) (-15 -2686 (|#1| |#1| (-621 |#4|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#4| |#1|)) (-15 -2686 (|#1| |#1| (-621 |#4|) (-621 |#2|))) (-15 -2686 (|#1| |#1| |#4| |#2|)) (-15 -2686 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| (-287 |#1|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3701 (|#5| |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -3456 (|#1| |#1| (-621 |#4|) (-621 (-747)))) (-15 -3456 (|#1| |#1| |#4| (-747))) (-15 -3456 (|#1| |#1| (-621 |#4|))) (-15 -3456 (|#1| |#1| |#4|)) (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-3977 (((-621 (-747)) $) 212) (((-621 (-747)) $ |#2|) 210)) (-1637 (((-747) $) 211) (((-747) $ |#2|) 209)) (-2272 (((-621 |#3|) $) 108)) (-2084 (((-1139 $) $ |#3|) 123) (((-1139 |#1|) $) 122)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 85 (|has| |#1| (-541)))) (-2258 (($ $) 86 (|has| |#1| (-541)))) (-2799 (((-112) $) 88 (|has| |#1| (-541)))) (-3186 (((-747) $) 110) (((-747) $ (-621 |#3|)) 109)) (-2001 (((-3 $ "failed") $ $) 19)) (-3231 (((-411 (-1139 $)) (-1139 $)) 98 (|has| |#1| (-880)))) (-3979 (($ $) 96 (|has| |#1| (-444)))) (-2402 (((-411 $) $) 95 (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 101 (|has| |#1| (-880)))) (-3920 (($ $) 205)) (-1682 (($) 17 T CONST)) (-2714 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-549)) "failed") $) 160 (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) 158 (|has| |#1| (-1009 (-549)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2659 ((|#1| $) 163) (((-400 (-549)) $) 159 (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) 157 (|has| |#1| (-1009 (-549)))) ((|#3| $) 133) ((|#2| $) 218)) (-1353 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-2070 (($ $) 152)) (-3879 (((-665 (-549)) (-665 $)) 132 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 131 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-2114 (((-3 $ "failed") $) 32)) (-1285 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-2058 (((-621 $) $) 107)) (-1420 (((-112) $) 94 (|has| |#1| (-880)))) (-2691 (($ $ |#1| |#4| $) 170)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 82 (-12 (|has| |#3| (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 81 (-12 (|has| |#3| (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2088 (((-747) $ |#2|) 215) (((-747) $) 214)) (-2675 (((-112) $) 30)) (-3347 (((-747) $) 167)) (-2261 (($ (-1139 |#1|) |#3|) 115) (($ (-1139 $) |#3|) 114)) (-3750 (((-621 $) $) 124)) (-2205 (((-112) $) 150)) (-2246 (($ |#1| |#4|) 151) (($ $ |#3| (-747)) 117) (($ $ (-621 |#3|) (-621 (-747))) 116)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ |#3|) 118)) (-3611 ((|#4| $) 168) (((-747) $ |#3|) 120) (((-621 (-747)) $ (-621 |#3|)) 119)) (-2863 (($ $ $) 77 (|has| |#1| (-823)))) (-3575 (($ $ $) 76 (|has| |#1| (-823)))) (-3705 (($ (-1 |#4| |#4|) $) 169)) (-2797 (($ (-1 |#1| |#1|) $) 149)) (-3040 (((-1 $ (-747)) |#2|) 217) (((-1 $ (-747)) $) 204 (|has| |#1| (-227)))) (-1520 (((-3 |#3| "failed") $) 121)) (-2028 (($ $) 147)) (-2043 ((|#1| $) 146)) (-4052 ((|#3| $) 207)) (-3697 (($ (-621 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3851 (((-1125) $) 9)) (-2709 (((-112) $) 208)) (-4266 (((-3 (-621 $) "failed") $) 112)) (-2533 (((-3 (-621 $) "failed") $) 113)) (-1503 (((-3 (-2 (|:| |var| |#3|) (|:| -3731 (-747))) "failed") $) 111)) (-2255 (($ $) 206)) (-3990 (((-1087) $) 10)) (-2004 (((-112) $) 164)) (-2016 ((|#1| $) 165)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 93 (|has| |#1| (-444)))) (-3727 (($ (-621 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) 100 (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) 99 (|has| |#1| (-880)))) (-2121 (((-411 $) $) 97 (|has| |#1| (-880)))) (-2042 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-541)))) (-2686 (($ $ (-621 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-621 $) (-621 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-621 |#3|) (-621 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-621 |#3|) (-621 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-227))) (($ $ (-621 |#2|) (-621 $)) 202 (|has| |#1| (-227))) (($ $ |#2| |#1|) 201 (|has| |#1| (-227))) (($ $ (-621 |#2|) (-621 |#1|)) 200 (|has| |#1| (-227)))) (-3602 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-3456 (($ $ |#3|) 40) (($ $ (-621 |#3|)) 39) (($ $ |#3| (-747)) 38) (($ $ (-621 |#3|) (-621 (-747))) 37) (($ $) 236 (|has| |#1| (-227))) (($ $ (-747)) 234 (|has| |#1| (-227))) (($ $ (-1143)) 232 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) 231 (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) 230 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) 229 (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-1920 (((-621 |#2|) $) 216)) (-3701 ((|#4| $) 148) (((-747) $ |#3|) 128) (((-621 (-747)) $ (-621 |#3|)) 127) (((-747) $ |#2|) 213)) (-2845 (((-863 (-372)) $) 80 (-12 (|has| |#3| (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) 79 (-12 (|has| |#3| (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) 78 (-12 (|has| |#3| (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-2216 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 102 (-1821 (|has| $ (-143)) (|has| |#1| (-880))))) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-400 (-549))) 70 (-1536 (|has| |#1| (-1009 (-400 (-549)))) (|has| |#1| (-38 (-400 (-549)))))) (($ $) 83 (|has| |#1| (-541)))) (-4141 (((-621 |#1|) $) 166)) (-2152 ((|#1| $ |#4|) 153) (($ $ |#3| (-747)) 126) (($ $ (-621 |#3|) (-621 (-747))) 125)) (-2210 (((-3 $ "failed") $) 71 (-1536 (-1821 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) 28)) (-1509 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-1498 (((-112) $ $) 87 (|has| |#1| (-541)))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ |#3|) 36) (($ $ (-621 |#3|)) 35) (($ $ |#3| (-747)) 34) (($ $ (-621 |#3|) (-621 (-747))) 33) (($ $) 235 (|has| |#1| (-227))) (($ $ (-747)) 233 (|has| |#1| (-227))) (($ $ (-1143)) 228 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) 227 (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) 226 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) 225 (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2448 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 73 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 75 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 72 (|has| |#1| (-823)))) (-2513 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 156 (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) 155 (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(((-246 |#1| |#2| |#3| |#4|) (-138) (-1018) (-823) (-259 |t#2|) (-769)) (T -246))
+((-3040 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *4 *3 *5 *6)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-621 *4)))) (-2088 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747)))) (-3701 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) (-3977 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-621 (-747))))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747)))) (-3977 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-621 (-747))))) (-1637 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747)))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-112)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-4 *2 (-259 *4)))) (-2255 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-259 *3)) (-4 *5 (-769)))) (-3920 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-259 *3)) (-4 *5 (-769)))) (-3040 (*1 *2 *1) (-12 (-4 *3 (-227)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *3 *4 *5 *6)))))
+(-13 (-920 |t#1| |t#4| |t#3|) (-225 |t#1|) (-1009 |t#2|) (-10 -8 (-15 -3040 ((-1 $ (-747)) |t#2|)) (-15 -1920 ((-621 |t#2|) $)) (-15 -2088 ((-747) $ |t#2|)) (-15 -2088 ((-747) $)) (-15 -3701 ((-747) $ |t#2|)) (-15 -3977 ((-621 (-747)) $)) (-15 -1637 ((-747) $)) (-15 -3977 ((-621 (-747)) $ |t#2|)) (-15 -1637 ((-747) $ |t#2|)) (-15 -2709 ((-112) $)) (-15 -4052 (|t#3| $)) (-15 -2255 ($ $)) (-15 -3920 ($ $)) (IF (|has| |t#1| (-227)) (PROGN (-6 (-505 |t#2| |t#1|)) (-6 (-505 |t#2| $)) (-6 (-302 $)) (-15 -3040 ((-1 $ (-747)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-594 (-525)) -12 (|has| |#1| (-594 (-525))) (|has| |#3| (-594 (-525)))) ((-594 (-863 (-372))) -12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#3| (-594 (-863 (-372))))) ((-594 (-863 (-549))) -12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#3| (-594 (-863 (-549))))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-283) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#4|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1536 (|has| |#1| (-880)) (|has| |#1| (-444))) ((-505 |#2| |#1|) |has| |#1| (-227)) ((-505 |#2| $) |has| |#1| (-227)) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-541) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 (-1143)) |has| |#1| (-871 (-1143))) ((-871 |#3|) . T) ((-857 (-372)) -12 (|has| |#1| (-857 (-372))) (|has| |#3| (-857 (-372)))) ((-857 (-549)) -12 (|has| |#1| (-857 (-549))) (|has| |#3| (-857 (-549)))) ((-920 |#1| |#4| |#3|) . T) ((-880) |has| |#1| (-880)) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1009 |#2|) . T) ((-1009 |#3|) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1184) |has| |#1| (-880)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1785 ((|#1| $) 54)) (-2317 ((|#1| $) 44)) (-1584 (((-112) $ (-747)) 8)) (-1682 (($) 7 T CONST)) (-4194 (($ $) 60)) (-1585 (($ $) 48)) (-3204 ((|#1| |#1| $) 46)) (-1350 ((|#1| $) 45)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-4210 (((-747) $) 61)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3504 ((|#1| $) 39)) (-2454 ((|#1| |#1| $) 52)) (-3218 ((|#1| |#1| $) 51)) (-2751 (($ |#1| $) 40)) (-4036 (((-747) $) 55)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-1409 ((|#1| $) 62)) (-3993 ((|#1| $) 50)) (-3850 ((|#1| $) 49)) (-3325 ((|#1| $) 41)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-2502 ((|#1| |#1| $) 58)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3912 ((|#1| $) 59)) (-2171 (($) 57) (($ (-621 |#1|)) 56)) (-1321 (((-747) $) 43)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3720 ((|#1| $) 53)) (-3624 (($ (-621 |#1|)) 42)) (-1410 ((|#1| $) 63)) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-247 |#1|) (-138) (-1180)) (T -247))
+((-2171 (*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))) (-2171 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-4 *1 (-247 *3)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1180)) (-5 *2 (-747)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))) (-2454 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))) (-3218 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))) (-1585 (*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))))
+(-13 (-1088 |t#1|) (-966 |t#1|) (-10 -8 (-15 -2171 ($)) (-15 -2171 ($ (-621 |t#1|))) (-15 -4036 ((-747) $)) (-15 -1785 (|t#1| $)) (-15 -3720 (|t#1| $)) (-15 -2454 (|t#1| |t#1| $)) (-15 -3218 (|t#1| |t#1| $)) (-15 -3993 (|t#1| $)) (-15 -3850 (|t#1| $)) (-15 -1585 ($ $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-966 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1088 |#1|) . T) ((-1180) . T))
+((-2173 (((-1 (-914 (-219)) (-219) (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 139)) (-1542 (((-1100 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1061 (-372)) (-1061 (-372))) 160) (((-1100 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1061 (-372)) (-1061 (-372)) (-621 (-256))) 158) (((-1100 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-372)) (-1061 (-372))) 163) (((-1100 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-372)) (-1061 (-372)) (-621 (-256))) 159) (((-1100 (-219)) (-1 (-219) (-219) (-219)) (-1061 (-372)) (-1061 (-372))) 150) (((-1100 (-219)) (-1 (-219) (-219) (-219)) (-1061 (-372)) (-1061 (-372)) (-621 (-256))) 149) (((-1100 (-219)) (-1 (-914 (-219)) (-219)) (-1061 (-372))) 129) (((-1100 (-219)) (-1 (-914 (-219)) (-219)) (-1061 (-372)) (-621 (-256))) 127) (((-1100 (-219)) (-850 (-1 (-219) (-219))) (-1061 (-372))) 128) (((-1100 (-219)) (-850 (-1 (-219) (-219))) (-1061 (-372)) (-621 (-256))) 125)) (-1490 (((-1228) (-853 (-1 (-219) (-219) (-219))) (-1061 (-372)) (-1061 (-372))) 162) (((-1228) (-853 (-1 (-219) (-219) (-219))) (-1061 (-372)) (-1061 (-372)) (-621 (-256))) 161) (((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-372)) (-1061 (-372))) 165) (((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-372)) (-1061 (-372)) (-621 (-256))) 164) (((-1228) (-1 (-219) (-219) (-219)) (-1061 (-372)) (-1061 (-372))) 152) (((-1228) (-1 (-219) (-219) (-219)) (-1061 (-372)) (-1061 (-372)) (-621 (-256))) 151) (((-1228) (-1 (-914 (-219)) (-219)) (-1061 (-372))) 135) (((-1228) (-1 (-914 (-219)) (-219)) (-1061 (-372)) (-621 (-256))) 134) (((-1228) (-850 (-1 (-219) (-219))) (-1061 (-372))) 133) (((-1228) (-850 (-1 (-219) (-219))) (-1061 (-372)) (-621 (-256))) 132) (((-1227) (-848 (-1 (-219) (-219))) (-1061 (-372))) 100) (((-1227) (-848 (-1 (-219) (-219))) (-1061 (-372)) (-621 (-256))) 99) (((-1227) (-1 (-219) (-219)) (-1061 (-372))) 96) (((-1227) (-1 (-219) (-219)) (-1061 (-372)) (-621 (-256))) 95)))
+(((-248) (-10 -7 (-15 -1490 ((-1227) (-1 (-219) (-219)) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1227) (-1 (-219) (-219)) (-1061 (-372)))) (-15 -1490 ((-1227) (-848 (-1 (-219) (-219))) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1227) (-848 (-1 (-219) (-219))) (-1061 (-372)))) (-15 -1490 ((-1228) (-850 (-1 (-219) (-219))) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-850 (-1 (-219) (-219))) (-1061 (-372)))) (-15 -1490 ((-1228) (-1 (-914 (-219)) (-219)) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-1 (-914 (-219)) (-219)) (-1061 (-372)))) (-15 -1542 ((-1100 (-219)) (-850 (-1 (-219) (-219))) (-1061 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-850 (-1 (-219) (-219))) (-1061 (-372)))) (-15 -1542 ((-1100 (-219)) (-1 (-914 (-219)) (-219)) (-1061 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-1 (-914 (-219)) (-219)) (-1061 (-372)))) (-15 -1490 ((-1228) (-1 (-219) (-219) (-219)) (-1061 (-372)) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-1 (-219) (-219) (-219)) (-1061 (-372)) (-1061 (-372)))) (-15 -1542 ((-1100 (-219)) (-1 (-219) (-219) (-219)) (-1061 (-372)) (-1061 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-1 (-219) (-219) (-219)) (-1061 (-372)) (-1061 (-372)))) (-15 -1490 ((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-372)) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-372)) (-1061 (-372)))) (-15 -1542 ((-1100 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-372)) (-1061 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-372)) (-1061 (-372)))) (-15 -1490 ((-1228) (-853 (-1 (-219) (-219) (-219))) (-1061 (-372)) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-853 (-1 (-219) (-219) (-219))) (-1061 (-372)) (-1061 (-372)))) (-15 -1542 ((-1100 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1061 (-372)) (-1061 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1061 (-372)) (-1061 (-372)))) (-15 -2173 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -248))
+((-2173 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219) (-219))) (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-248)))) (-1542 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1061 (-372))) (-5 *2 (-1100 (-219))) (-5 *1 (-248)))) (-1542 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1061 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1061 (-372))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1061 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-1542 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1061 (-372))) (-5 *2 (-1100 (-219))) (-5 *1 (-248)))) (-1542 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1061 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1061 (-372))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1061 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-1542 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1061 (-372))) (-5 *2 (-1100 (-219))) (-5 *1 (-248)))) (-1542 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1061 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1061 (-372))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1061 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-1542 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1061 (-372))) (-5 *2 (-1100 (-219))) (-5 *1 (-248)))) (-1542 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1061 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-248)))) (-1542 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1061 (-372))) (-5 *2 (-1100 (-219))) (-5 *1 (-248)))) (-1542 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1061 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1061 (-372))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1061 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1061 (-372))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1061 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1228)) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1061 (-372))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1061 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1061 (-372))) (-5 *2 (-1227)) (-5 *1 (-248)))) (-1490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1061 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248)))))
+(-10 -7 (-15 -1490 ((-1227) (-1 (-219) (-219)) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1227) (-1 (-219) (-219)) (-1061 (-372)))) (-15 -1490 ((-1227) (-848 (-1 (-219) (-219))) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1227) (-848 (-1 (-219) (-219))) (-1061 (-372)))) (-15 -1490 ((-1228) (-850 (-1 (-219) (-219))) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-850 (-1 (-219) (-219))) (-1061 (-372)))) (-15 -1490 ((-1228) (-1 (-914 (-219)) (-219)) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-1 (-914 (-219)) (-219)) (-1061 (-372)))) (-15 -1542 ((-1100 (-219)) (-850 (-1 (-219) (-219))) (-1061 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-850 (-1 (-219) (-219))) (-1061 (-372)))) (-15 -1542 ((-1100 (-219)) (-1 (-914 (-219)) (-219)) (-1061 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-1 (-914 (-219)) (-219)) (-1061 (-372)))) (-15 -1490 ((-1228) (-1 (-219) (-219) (-219)) (-1061 (-372)) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-1 (-219) (-219) (-219)) (-1061 (-372)) (-1061 (-372)))) (-15 -1542 ((-1100 (-219)) (-1 (-219) (-219) (-219)) (-1061 (-372)) (-1061 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-1 (-219) (-219) (-219)) (-1061 (-372)) (-1061 (-372)))) (-15 -1490 ((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-372)) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-372)) (-1061 (-372)))) (-15 -1542 ((-1100 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-372)) (-1061 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-372)) (-1061 (-372)))) (-15 -1490 ((-1228) (-853 (-1 (-219) (-219) (-219))) (-1061 (-372)) (-1061 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-853 (-1 (-219) (-219) (-219))) (-1061 (-372)) (-1061 (-372)))) (-15 -1542 ((-1100 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1061 (-372)) (-1061 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-853 (-1 (-219) (-219) (-219))) (-1061 (-372)) (-1061 (-372)))) (-15 -2173 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))
+((-1490 (((-1227) (-287 |#2|) (-1143) (-1143) (-621 (-256))) 96)))
+(((-249 |#1| |#2|) (-10 -7 (-15 -1490 ((-1227) (-287 |#2|) (-1143) (-1143) (-621 (-256))))) (-13 (-541) (-823) (-1009 (-549))) (-423 |#1|)) (T -249))
+((-1490 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-287 *7)) (-5 *4 (-1143)) (-5 *5 (-621 (-256))) (-4 *7 (-423 *6)) (-4 *6 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-1227)) (-5 *1 (-249 *6 *7)))))
+(-10 -7 (-15 -1490 ((-1227) (-287 |#2|) (-1143) (-1143) (-621 (-256)))))
+((-3844 (((-549) (-549)) 50)) (-2752 (((-549) (-549)) 51)) (-4261 (((-219) (-219)) 52)) (-2314 (((-1228) (-1 (-167 (-219)) (-167 (-219))) (-1061 (-219)) (-1061 (-219))) 49)) (-2231 (((-1228) (-1 (-167 (-219)) (-167 (-219))) (-1061 (-219)) (-1061 (-219)) (-112)) 47)))
+(((-250) (-10 -7 (-15 -2231 ((-1228) (-1 (-167 (-219)) (-167 (-219))) (-1061 (-219)) (-1061 (-219)) (-112))) (-15 -2314 ((-1228) (-1 (-167 (-219)) (-167 (-219))) (-1061 (-219)) (-1061 (-219)))) (-15 -3844 ((-549) (-549))) (-15 -2752 ((-549) (-549))) (-15 -4261 ((-219) (-219))))) (T -250))
+((-4261 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-250)))) (-2752 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-250)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-250)))) (-2314 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1061 (-219))) (-5 *2 (-1228)) (-5 *1 (-250)))) (-2231 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1061 (-219))) (-5 *5 (-112)) (-5 *2 (-1228)) (-5 *1 (-250)))))
+(-10 -7 (-15 -2231 ((-1228) (-1 (-167 (-219)) (-167 (-219))) (-1061 (-219)) (-1061 (-219)) (-112))) (-15 -2314 ((-1228) (-1 (-167 (-219)) (-167 (-219))) (-1061 (-219)) (-1061 (-219)))) (-15 -3844 ((-549) (-549))) (-15 -2752 ((-549) (-549))) (-15 -4261 ((-219) (-219))))
+((-3846 (((-1059 (-372)) (-1059 (-309 |#1|))) 16)))
+(((-251 |#1|) (-10 -7 (-15 -3846 ((-1059 (-372)) (-1059 (-309 |#1|))))) (-13 (-823) (-541) (-594 (-372)))) (T -251))
+((-3846 (*1 *2 *3) (-12 (-5 *3 (-1059 (-309 *4))) (-4 *4 (-13 (-823) (-541) (-594 (-372)))) (-5 *2 (-1059 (-372))) (-5 *1 (-251 *4)))))
+(-10 -7 (-15 -3846 ((-1059 (-372)) (-1059 (-309 |#1|)))))
+((-1542 (((-1100 (-219)) (-853 |#1|) (-1059 (-372)) (-1059 (-372))) 71) (((-1100 (-219)) (-853 |#1|) (-1059 (-372)) (-1059 (-372)) (-621 (-256))) 70) (((-1100 (-219)) |#1| (-1059 (-372)) (-1059 (-372))) 61) (((-1100 (-219)) |#1| (-1059 (-372)) (-1059 (-372)) (-621 (-256))) 60) (((-1100 (-219)) (-850 |#1|) (-1059 (-372))) 52) (((-1100 (-219)) (-850 |#1|) (-1059 (-372)) (-621 (-256))) 51)) (-1490 (((-1228) (-853 |#1|) (-1059 (-372)) (-1059 (-372))) 74) (((-1228) (-853 |#1|) (-1059 (-372)) (-1059 (-372)) (-621 (-256))) 73) (((-1228) |#1| (-1059 (-372)) (-1059 (-372))) 64) (((-1228) |#1| (-1059 (-372)) (-1059 (-372)) (-621 (-256))) 63) (((-1228) (-850 |#1|) (-1059 (-372))) 56) (((-1228) (-850 |#1|) (-1059 (-372)) (-621 (-256))) 55) (((-1227) (-848 |#1|) (-1059 (-372))) 43) (((-1227) (-848 |#1|) (-1059 (-372)) (-621 (-256))) 42) (((-1227) |#1| (-1059 (-372))) 35) (((-1227) |#1| (-1059 (-372)) (-621 (-256))) 34)))
+(((-252 |#1|) (-10 -7 (-15 -1490 ((-1227) |#1| (-1059 (-372)) (-621 (-256)))) (-15 -1490 ((-1227) |#1| (-1059 (-372)))) (-15 -1490 ((-1227) (-848 |#1|) (-1059 (-372)) (-621 (-256)))) (-15 -1490 ((-1227) (-848 |#1|) (-1059 (-372)))) (-15 -1490 ((-1228) (-850 |#1|) (-1059 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-850 |#1|) (-1059 (-372)))) (-15 -1542 ((-1100 (-219)) (-850 |#1|) (-1059 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-850 |#1|) (-1059 (-372)))) (-15 -1490 ((-1228) |#1| (-1059 (-372)) (-1059 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) |#1| (-1059 (-372)) (-1059 (-372)))) (-15 -1542 ((-1100 (-219)) |#1| (-1059 (-372)) (-1059 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) |#1| (-1059 (-372)) (-1059 (-372)))) (-15 -1490 ((-1228) (-853 |#1|) (-1059 (-372)) (-1059 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-853 |#1|) (-1059 (-372)) (-1059 (-372)))) (-15 -1542 ((-1100 (-219)) (-853 |#1|) (-1059 (-372)) (-1059 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-853 |#1|) (-1059 (-372)) (-1059 (-372))))) (-13 (-594 (-525)) (-1067))) (T -252))
+((-1542 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1059 (-372))) (-4 *5 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1100 (-219))) (-5 *1 (-252 *5)))) (-1542 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256))) (-4 *6 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1100 (-219))) (-5 *1 (-252 *6)))) (-1490 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1059 (-372))) (-4 *5 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-252 *5)))) (-1490 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256))) (-4 *6 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-252 *6)))) (-1542 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1059 (-372))) (-5 *2 (-1100 (-219))) (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1067))))) (-1542 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1067))))) (-1490 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1059 (-372))) (-5 *2 (-1228)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1067))))) (-1490 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1228)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1067))))) (-1542 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-1059 (-372))) (-4 *5 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1100 (-219))) (-5 *1 (-252 *5)))) (-1542 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 *6)) (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256))) (-4 *6 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1100 (-219))) (-5 *1 (-252 *6)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-1059 (-372))) (-4 *5 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-252 *5)))) (-1490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-850 *6)) (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256))) (-4 *6 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1228)) (-5 *1 (-252 *6)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *3 (-848 *5)) (-5 *4 (-1059 (-372))) (-4 *5 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1227)) (-5 *1 (-252 *5)))) (-1490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 *6)) (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256))) (-4 *6 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1227)) (-5 *1 (-252 *6)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *4 (-1059 (-372))) (-5 *2 (-1227)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1067))))) (-1490 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1067))))))
+(-10 -7 (-15 -1490 ((-1227) |#1| (-1059 (-372)) (-621 (-256)))) (-15 -1490 ((-1227) |#1| (-1059 (-372)))) (-15 -1490 ((-1227) (-848 |#1|) (-1059 (-372)) (-621 (-256)))) (-15 -1490 ((-1227) (-848 |#1|) (-1059 (-372)))) (-15 -1490 ((-1228) (-850 |#1|) (-1059 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-850 |#1|) (-1059 (-372)))) (-15 -1542 ((-1100 (-219)) (-850 |#1|) (-1059 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-850 |#1|) (-1059 (-372)))) (-15 -1490 ((-1228) |#1| (-1059 (-372)) (-1059 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) |#1| (-1059 (-372)) (-1059 (-372)))) (-15 -1542 ((-1100 (-219)) |#1| (-1059 (-372)) (-1059 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) |#1| (-1059 (-372)) (-1059 (-372)))) (-15 -1490 ((-1228) (-853 |#1|) (-1059 (-372)) (-1059 (-372)) (-621 (-256)))) (-15 -1490 ((-1228) (-853 |#1|) (-1059 (-372)) (-1059 (-372)))) (-15 -1542 ((-1100 (-219)) (-853 |#1|) (-1059 (-372)) (-1059 (-372)) (-621 (-256)))) (-15 -1542 ((-1100 (-219)) (-853 |#1|) (-1059 (-372)) (-1059 (-372)))))
+((-1490 (((-1228) (-621 (-219)) (-621 (-219)) (-621 (-219)) (-621 (-256))) 23) (((-1228) (-621 (-219)) (-621 (-219)) (-621 (-219))) 24) (((-1227) (-621 (-914 (-219))) (-621 (-256))) 16) (((-1227) (-621 (-914 (-219)))) 17) (((-1227) (-621 (-219)) (-621 (-219)) (-621 (-256))) 20) (((-1227) (-621 (-219)) (-621 (-219))) 21)))
+(((-253) (-10 -7 (-15 -1490 ((-1227) (-621 (-219)) (-621 (-219)))) (-15 -1490 ((-1227) (-621 (-219)) (-621 (-219)) (-621 (-256)))) (-15 -1490 ((-1227) (-621 (-914 (-219))))) (-15 -1490 ((-1227) (-621 (-914 (-219))) (-621 (-256)))) (-15 -1490 ((-1228) (-621 (-219)) (-621 (-219)) (-621 (-219)))) (-15 -1490 ((-1228) (-621 (-219)) (-621 (-219)) (-621 (-219)) (-621 (-256)))))) (T -253))
+((-1490 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-621 (-219))) (-5 *4 (-621 (-256))) (-5 *2 (-1228)) (-5 *1 (-253)))) (-1490 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-621 (-219))) (-5 *2 (-1228)) (-5 *1 (-253)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-914 (-219)))) (-5 *4 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-253)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-621 (-914 (-219)))) (-5 *2 (-1227)) (-5 *1 (-253)))) (-1490 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-621 (-219))) (-5 *4 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-253)))) (-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-621 (-219))) (-5 *2 (-1227)) (-5 *1 (-253)))))
+(-10 -7 (-15 -1490 ((-1227) (-621 (-219)) (-621 (-219)))) (-15 -1490 ((-1227) (-621 (-219)) (-621 (-219)) (-621 (-256)))) (-15 -1490 ((-1227) (-621 (-914 (-219))))) (-15 -1490 ((-1227) (-621 (-914 (-219))) (-621 (-256)))) (-15 -1490 ((-1228) (-621 (-219)) (-621 (-219)) (-621 (-219)))) (-15 -1490 ((-1228) (-621 (-219)) (-621 (-219)) (-621 (-219)) (-621 (-256)))))
+((-1491 (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-621 (-256)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 26)) (-3560 (((-892) (-621 (-256)) (-892)) 53)) (-3471 (((-892) (-621 (-256)) (-892)) 52)) (-2036 (((-621 (-372)) (-621 (-256)) (-621 (-372))) 69)) (-2211 (((-372) (-621 (-256)) (-372)) 58)) (-2017 (((-892) (-621 (-256)) (-892)) 54)) (-2959 (((-112) (-621 (-256)) (-112)) 28)) (-1596 (((-1125) (-621 (-256)) (-1125)) 20)) (-1741 (((-1125) (-621 (-256)) (-1125)) 27)) (-3192 (((-1100 (-219)) (-621 (-256))) 47)) (-2734 (((-621 (-1061 (-372))) (-621 (-256)) (-621 (-1061 (-372)))) 41)) (-3859 (((-845) (-621 (-256)) (-845)) 33)) (-3467 (((-845) (-621 (-256)) (-845)) 34)) (-1994 (((-1 (-914 (-219)) (-914 (-219))) (-621 (-256)) (-1 (-914 (-219)) (-914 (-219)))) 64)) (-3892 (((-112) (-621 (-256)) (-112)) 16)) (-2424 (((-112) (-621 (-256)) (-112)) 15)))
+(((-254) (-10 -7 (-15 -2424 ((-112) (-621 (-256)) (-112))) (-15 -3892 ((-112) (-621 (-256)) (-112))) (-15 -1491 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-621 (-256)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1596 ((-1125) (-621 (-256)) (-1125))) (-15 -1741 ((-1125) (-621 (-256)) (-1125))) (-15 -2959 ((-112) (-621 (-256)) (-112))) (-15 -3859 ((-845) (-621 (-256)) (-845))) (-15 -3467 ((-845) (-621 (-256)) (-845))) (-15 -2734 ((-621 (-1061 (-372))) (-621 (-256)) (-621 (-1061 (-372))))) (-15 -3471 ((-892) (-621 (-256)) (-892))) (-15 -3560 ((-892) (-621 (-256)) (-892))) (-15 -3192 ((-1100 (-219)) (-621 (-256)))) (-15 -2017 ((-892) (-621 (-256)) (-892))) (-15 -2211 ((-372) (-621 (-256)) (-372))) (-15 -1994 ((-1 (-914 (-219)) (-914 (-219))) (-621 (-256)) (-1 (-914 (-219)) (-914 (-219))))) (-15 -2036 ((-621 (-372)) (-621 (-256)) (-621 (-372)))))) (T -254))
+((-2036 (*1 *2 *3 *2) (-12 (-5 *2 (-621 (-372))) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-1994 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-2211 (*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-2017 (*1 *2 *3 *2) (-12 (-5 *2 (-892)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-254)))) (-3560 (*1 *2 *3 *2) (-12 (-5 *2 (-892)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-3471 (*1 *2 *3 *2) (-12 (-5 *2 (-892)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-2734 (*1 *2 *3 *2) (-12 (-5 *2 (-621 (-1061 (-372)))) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-3467 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-3859 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-2959 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-1741 (*1 *2 *3 *2) (-12 (-5 *2 (-1125)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-1596 (*1 *2 *3 *2) (-12 (-5 *2 (-1125)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-1491 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-3892 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))) (-2424 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))))
+(-10 -7 (-15 -2424 ((-112) (-621 (-256)) (-112))) (-15 -3892 ((-112) (-621 (-256)) (-112))) (-15 -1491 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-621 (-256)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1596 ((-1125) (-621 (-256)) (-1125))) (-15 -1741 ((-1125) (-621 (-256)) (-1125))) (-15 -2959 ((-112) (-621 (-256)) (-112))) (-15 -3859 ((-845) (-621 (-256)) (-845))) (-15 -3467 ((-845) (-621 (-256)) (-845))) (-15 -2734 ((-621 (-1061 (-372))) (-621 (-256)) (-621 (-1061 (-372))))) (-15 -3471 ((-892) (-621 (-256)) (-892))) (-15 -3560 ((-892) (-621 (-256)) (-892))) (-15 -3192 ((-1100 (-219)) (-621 (-256)))) (-15 -2017 ((-892) (-621 (-256)) (-892))) (-15 -2211 ((-372) (-621 (-256)) (-372))) (-15 -1994 ((-1 (-914 (-219)) (-914 (-219))) (-621 (-256)) (-1 (-914 (-219)) (-914 (-219))))) (-15 -2036 ((-621 (-372)) (-621 (-256)) (-621 (-372)))))
+((-3510 (((-3 |#1| "failed") (-621 (-256)) (-1143)) 17)))
+(((-255 |#1|) (-10 -7 (-15 -3510 ((-3 |#1| "failed") (-621 (-256)) (-1143)))) (-1180)) (T -255))
+((-3510 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-621 (-256))) (-5 *4 (-1143)) (-5 *1 (-255 *2)) (-4 *2 (-1180)))))
+(-10 -7 (-15 -3510 ((-3 |#1| "failed") (-621 (-256)) (-1143))))
+((-3834 (((-112) $ $) NIL)) (-1491 (($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 15)) (-3560 (($ (-892)) 76)) (-3471 (($ (-892)) 75)) (-2207 (($ (-621 (-372))) 82)) (-2211 (($ (-372)) 58)) (-2017 (($ (-892)) 77)) (-2959 (($ (-112)) 23)) (-1596 (($ (-1125)) 18)) (-1741 (($ (-1125)) 19)) (-3192 (($ (-1100 (-219))) 71)) (-2734 (($ (-621 (-1061 (-372)))) 67)) (-1372 (($ (-621 (-1061 (-372)))) 59) (($ (-621 (-1061 (-400 (-549))))) 66)) (-2919 (($ (-372)) 29) (($ (-845)) 33)) (-3271 (((-112) (-621 $) (-1143)) 91)) (-3510 (((-3 (-52) "failed") (-621 $) (-1143)) 93)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3871 (($ (-372)) 34) (($ (-845)) 35)) (-4263 (($ (-1 (-914 (-219)) (-914 (-219)))) 57)) (-1994 (($ (-1 (-914 (-219)) (-914 (-219)))) 78)) (-1262 (($ (-1 (-219) (-219))) 39) (($ (-1 (-219) (-219) (-219))) 43) (($ (-1 (-219) (-219) (-219) (-219))) 47)) (-3846 (((-834) $) 87)) (-3198 (($ (-112)) 24) (($ (-621 (-1061 (-372)))) 52)) (-2424 (($ (-112)) 25)) (-2389 (((-112) $ $) 89)))
+(((-256) (-13 (-1067) (-10 -8 (-15 -2424 ($ (-112))) (-15 -3198 ($ (-112))) (-15 -1491 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1596 ($ (-1125))) (-15 -1741 ($ (-1125))) (-15 -2959 ($ (-112))) (-15 -3198 ($ (-621 (-1061 (-372))))) (-15 -4263 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -2919 ($ (-372))) (-15 -2919 ($ (-845))) (-15 -3871 ($ (-372))) (-15 -3871 ($ (-845))) (-15 -1262 ($ (-1 (-219) (-219)))) (-15 -1262 ($ (-1 (-219) (-219) (-219)))) (-15 -1262 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -2211 ($ (-372))) (-15 -1372 ($ (-621 (-1061 (-372))))) (-15 -1372 ($ (-621 (-1061 (-400 (-549)))))) (-15 -2734 ($ (-621 (-1061 (-372))))) (-15 -3192 ($ (-1100 (-219)))) (-15 -3471 ($ (-892))) (-15 -3560 ($ (-892))) (-15 -2017 ($ (-892))) (-15 -1994 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -2207 ($ (-621 (-372)))) (-15 -3510 ((-3 (-52) "failed") (-621 $) (-1143))) (-15 -3271 ((-112) (-621 $) (-1143)))))) (T -256))
+((-2424 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-1491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-256)))) (-1596 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-256)))) (-1741 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-256)))) (-2959 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-621 (-1061 (-372)))) (-5 *1 (-256)))) (-4263 (*1 *1 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-256)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-256)))) (-3871 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))) (-3871 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-256)))) (-1262 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-256)))) (-1262 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-256)))) (-1262 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-256)))) (-2211 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))) (-1372 (*1 *1 *2) (-12 (-5 *2 (-621 (-1061 (-372)))) (-5 *1 (-256)))) (-1372 (*1 *1 *2) (-12 (-5 *2 (-621 (-1061 (-400 (-549))))) (-5 *1 (-256)))) (-2734 (*1 *1 *2) (-12 (-5 *2 (-621 (-1061 (-372)))) (-5 *1 (-256)))) (-3192 (*1 *1 *2) (-12 (-5 *2 (-1100 (-219))) (-5 *1 (-256)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-256)))) (-3560 (*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-256)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-256)))) (-1994 (*1 *1 *2) (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-256)))) (-2207 (*1 *1 *2) (-12 (-5 *2 (-621 (-372))) (-5 *1 (-256)))) (-3510 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-621 (-256))) (-5 *4 (-1143)) (-5 *2 (-52)) (-5 *1 (-256)))) (-3271 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-256))) (-5 *4 (-1143)) (-5 *2 (-112)) (-5 *1 (-256)))))
+(-13 (-1067) (-10 -8 (-15 -2424 ($ (-112))) (-15 -3198 ($ (-112))) (-15 -1491 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1596 ($ (-1125))) (-15 -1741 ($ (-1125))) (-15 -2959 ($ (-112))) (-15 -3198 ($ (-621 (-1061 (-372))))) (-15 -4263 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -2919 ($ (-372))) (-15 -2919 ($ (-845))) (-15 -3871 ($ (-372))) (-15 -3871 ($ (-845))) (-15 -1262 ($ (-1 (-219) (-219)))) (-15 -1262 ($ (-1 (-219) (-219) (-219)))) (-15 -1262 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -2211 ($ (-372))) (-15 -1372 ($ (-621 (-1061 (-372))))) (-15 -1372 ($ (-621 (-1061 (-400 (-549)))))) (-15 -2734 ($ (-621 (-1061 (-372))))) (-15 -3192 ($ (-1100 (-219)))) (-15 -3471 ($ (-892))) (-15 -3560 ($ (-892))) (-15 -2017 ($ (-892))) (-15 -1994 ($ (-1 (-914 (-219)) (-914 (-219))))) (-15 -2207 ($ (-621 (-372)))) (-15 -3510 ((-3 (-52) "failed") (-621 $) (-1143))) (-15 -3271 ((-112) (-621 $) (-1143)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3977 (((-621 (-747)) $) NIL) (((-621 (-747)) $ |#2|) NIL)) (-1637 (((-747) $) NIL) (((-747) $ |#2|) NIL)) (-2272 (((-621 |#3|) $) NIL)) (-2084 (((-1139 $) $ |#3|) NIL) (((-1139 |#1|) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 |#3|)) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3979 (($ $) NIL (|has| |#1| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3920 (($ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1092 |#1| |#2|) "failed") $) 21)) (-2659 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1092 |#1| |#2|) $) NIL)) (-1353 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-2070 (($ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-880)))) (-2691 (($ $ |#1| (-521 |#3|) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| |#1| (-857 (-372))) (|has| |#3| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| |#1| (-857 (-549))) (|has| |#3| (-857 (-549)))))) (-2088 (((-747) $ |#2|) NIL) (((-747) $) 10)) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-2261 (($ (-1139 |#1|) |#3|) NIL) (($ (-1139 $) |#3|) NIL)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-521 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-621 |#3|) (-621 (-747))) NIL)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ |#3|) NIL)) (-3611 (((-521 |#3|) $) NIL) (((-747) $ |#3|) NIL) (((-621 (-747)) $ (-621 |#3|)) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-3705 (($ (-1 (-521 |#3|) (-521 |#3|)) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3040 (((-1 $ (-747)) |#2|) NIL) (((-1 $ (-747)) $) NIL (|has| |#1| (-227)))) (-1520 (((-3 |#3| "failed") $) NIL)) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-4052 ((|#3| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3851 (((-1125) $) NIL)) (-2709 (((-112) $) NIL)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| |#3|) (|:| -3731 (-747))) "failed") $) NIL)) (-2255 (($ $) NIL)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) NIL)) (-2016 ((|#1| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-880)))) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-621 |#3|) (-621 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-621 |#3|) (-621 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-227))) (($ $ (-621 |#2|) (-621 $)) NIL (|has| |#1| (-227))) (($ $ |#2| |#1|) NIL (|has| |#1| (-227))) (($ $ (-621 |#2|) (-621 |#1|)) NIL (|has| |#1| (-227)))) (-3602 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-3456 (($ $ |#3|) NIL) (($ $ (-621 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-621 |#3|) (-621 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1920 (((-621 |#2|) $) NIL)) (-3701 (((-521 |#3|) $) NIL) (((-747) $ |#3|) NIL) (((-621 (-747)) $ (-621 |#3|)) NIL) (((-747) $ |#2|) NIL)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#3| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#3| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| |#1| (-594 (-525))) (|has| |#3| (-594 (-525)))))) (-2216 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1092 |#1| |#2|)) 30) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-521 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-621 |#3|) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ |#3|) NIL) (($ $ (-621 |#3|)) NIL) (($ $ |#3| (-747)) NIL) (($ $ (-621 |#3|) (-621 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-257 |#1| |#2| |#3|) (-13 (-246 |#1| |#2| |#3| (-521 |#3|)) (-1009 (-1092 |#1| |#2|))) (-1018) (-823) (-259 |#2|)) (T -257))
+NIL
+(-13 (-246 |#1| |#2| |#3| (-521 |#3|)) (-1009 (-1092 |#1| |#2|)))
+((-1637 (((-747) $) 30)) (-2714 (((-3 |#2| "failed") $) 17)) (-2659 ((|#2| $) 27)) (-3456 (($ $) 12) (($ $ (-747)) 15)) (-3846 (((-834) $) 26) (($ |#2|) 10)) (-2389 (((-112) $ $) 20)) (-2412 (((-112) $ $) 29)))
+(((-258 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1|)) (-15 -1637 ((-747) |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -2412 ((-112) |#1| |#1|)) (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|))) (-259 |#2|) (-823)) (T -258))
+NIL
+(-10 -8 (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1|)) (-15 -1637 ((-747) |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -2412 ((-112) |#1| |#1|)) (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1637 (((-747) $) 22)) (-3011 ((|#1| $) 23)) (-2714 (((-3 |#1| "failed") $) 27)) (-2659 ((|#1| $) 26)) (-2088 (((-747) $) 24)) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-3040 (($ |#1| (-747)) 25)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3456 (($ $) 21) (($ $ (-747)) 20)) (-3846 (((-834) $) 11) (($ |#1|) 28)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)))
+(((-259 |#1|) (-138) (-823)) (T -259))
+((-3846 (*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-3040 (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747)))) (-3456 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-259 *3)) (-4 *3 (-823)))))
+(-13 (-823) (-1009 |t#1|) (-10 -8 (-15 -3040 ($ |t#1| (-747))) (-15 -2088 ((-747) $)) (-15 -3011 (|t#1| $)) (-15 -1637 ((-747) $)) (-15 -3456 ($ $)) (-15 -3456 ($ $ (-747))) (-15 -3846 ($ |t#1|))))
+(((-101) . T) ((-593 (-834)) . T) ((-823) . T) ((-1009 |#1|) . T) ((-1067) . T))
+((-2272 (((-621 (-1143)) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 41)) (-3304 (((-621 (-1143)) (-309 (-219)) (-747)) 80)) (-2592 (((-3 (-309 (-219)) "failed") (-309 (-219))) 51)) (-1540 (((-309 (-219)) (-309 (-219))) 67)) (-3437 (((-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 26)) (-2867 (((-112) (-621 (-309 (-219)))) 84)) (-2984 (((-112) (-309 (-219))) 24)) (-2309 (((-621 (-1125)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))))) 106)) (-1617 (((-621 (-309 (-219))) (-621 (-309 (-219)))) 88)) (-1938 (((-621 (-309 (-219))) (-621 (-309 (-219)))) 86)) (-3319 (((-665 (-219)) (-621 (-309 (-219))) (-747)) 95)) (-2604 (((-112) (-309 (-219))) 20) (((-112) (-621 (-309 (-219)))) 85)) (-3900 (((-621 (-219)) (-621 (-816 (-219))) (-219)) 14)) (-2143 (((-372) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 101)) (-1695 (((-1006) (-1143) (-1006)) 34)))
+(((-260) (-10 -7 (-15 -3900 ((-621 (-219)) (-621 (-816 (-219))) (-219))) (-15 -3437 ((-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))))) (-15 -2592 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -1540 ((-309 (-219)) (-309 (-219)))) (-15 -2867 ((-112) (-621 (-309 (-219))))) (-15 -2604 ((-112) (-621 (-309 (-219))))) (-15 -2604 ((-112) (-309 (-219)))) (-15 -3319 ((-665 (-219)) (-621 (-309 (-219))) (-747))) (-15 -1938 ((-621 (-309 (-219))) (-621 (-309 (-219))))) (-15 -1617 ((-621 (-309 (-219))) (-621 (-309 (-219))))) (-15 -2984 ((-112) (-309 (-219)))) (-15 -2272 ((-621 (-1143)) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -3304 ((-621 (-1143)) (-309 (-219)) (-747))) (-15 -1695 ((-1006) (-1143) (-1006))) (-15 -2143 ((-372) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -2309 ((-621 (-1125)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))))))) (T -260))
+((-2309 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))))) (-5 *2 (-621 (-1125))) (-5 *1 (-260)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) (-5 *2 (-372)) (-5 *1 (-260)))) (-1695 (*1 *2 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1143)) (-5 *1 (-260)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-747)) (-5 *2 (-621 (-1143))) (-5 *1 (-260)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) (-5 *2 (-621 (-1143))) (-5 *1 (-260)))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-621 (-309 (-219)))) (-5 *1 (-260)))) (-1938 (*1 *2 *2) (-12 (-5 *2 (-621 (-309 (-219)))) (-5 *1 (-260)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-309 (-219)))) (-5 *4 (-747)) (-5 *2 (-665 (-219))) (-5 *1 (-260)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-621 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-621 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-260)))) (-2592 (*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-260)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (-5 *1 (-260)))) (-3900 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-816 (-219)))) (-5 *4 (-219)) (-5 *2 (-621 *4)) (-5 *1 (-260)))))
+(-10 -7 (-15 -3900 ((-621 (-219)) (-621 (-816 (-219))) (-219))) (-15 -3437 ((-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))))) (-15 -2592 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -1540 ((-309 (-219)) (-309 (-219)))) (-15 -2867 ((-112) (-621 (-309 (-219))))) (-15 -2604 ((-112) (-621 (-309 (-219))))) (-15 -2604 ((-112) (-309 (-219)))) (-15 -3319 ((-665 (-219)) (-621 (-309 (-219))) (-747))) (-15 -1938 ((-621 (-309 (-219))) (-621 (-309 (-219))))) (-15 -1617 ((-621 (-309 (-219))) (-621 (-309 (-219))))) (-15 -2984 ((-112) (-309 (-219)))) (-15 -2272 ((-621 (-1143)) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -3304 ((-621 (-1143)) (-309 (-219)) (-747))) (-15 -1695 ((-1006) (-1143) (-1006))) (-15 -2143 ((-372) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -2309 ((-621 (-1125)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))))))
+((-3834 (((-112) $ $) NIL)) (-2850 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 44)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 26) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-261) (-812)) (T -261))
+NIL
+(-812)
+((-3834 (((-112) $ $) NIL)) (-2850 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 58) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 54)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 34) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 36)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-262) (-812)) (T -262))
+NIL
+(-812)
+((-3834 (((-112) $ $) NIL)) (-2850 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 76) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 73)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 44) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 55)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-263) (-812)) (T -263))
+NIL
+(-812)
+((-3834 (((-112) $ $) NIL)) (-2850 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 50)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 31) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-264) (-812)) (T -264))
+NIL
+(-812)
+((-3834 (((-112) $ $) NIL)) (-2850 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 50)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 28) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-265) (-812)) (T -265))
+NIL
+(-812)
+((-3834 (((-112) $ $) NIL)) (-2850 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 73)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 28) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-266) (-812)) (T -266))
+NIL
+(-812)
+((-3834 (((-112) $ $) NIL)) (-2850 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 77)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 25) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-267) (-812)) (T -267))
+NIL
+(-812)
+((-3834 (((-112) $ $) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3452 (((-621 (-549)) $) 19)) (-3701 (((-747) $) 17)) (-3846 (((-834) $) 23) (($ (-621 (-549))) 15)) (-3423 (($ (-747)) 20)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 9)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 11)))
+(((-268) (-13 (-823) (-10 -8 (-15 -3846 ($ (-621 (-549)))) (-15 -3701 ((-747) $)) (-15 -3452 ((-621 (-549)) $)) (-15 -3423 ($ (-747)))))) (T -268))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-268)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-268)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-268)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-268)))))
+(-13 (-823) (-10 -8 (-15 -3846 ($ (-621 (-549)))) (-15 -3701 ((-747) $)) (-15 -3452 ((-621 (-549)) $)) (-15 -3423 ($ (-747)))))
+((-1664 ((|#2| |#2|) 77)) (-1512 ((|#2| |#2|) 65)) (-1407 (((-3 |#2| "failed") |#2| (-621 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-1640 ((|#2| |#2|) 75)) (-1486 ((|#2| |#2|) 63)) (-1685 ((|#2| |#2|) 79)) (-1539 ((|#2| |#2|) 67)) (-1425 ((|#2|) 46)) (-2834 (((-114) (-114)) 95)) (-3632 ((|#2| |#2|) 61)) (-1436 (((-112) |#2|) 134)) (-3968 ((|#2| |#2|) 181)) (-3821 ((|#2| |#2|) 157)) (-1964 ((|#2|) 59)) (-1623 ((|#2|) 58)) (-3378 ((|#2| |#2|) 177)) (-2583 ((|#2| |#2|) 153)) (-3669 ((|#2| |#2|) 185)) (-2535 ((|#2| |#2|) 161)) (-2925 ((|#2| |#2|) 149)) (-2939 ((|#2| |#2|) 151)) (-2002 ((|#2| |#2|) 187)) (-4233 ((|#2| |#2|) 163)) (-3613 ((|#2| |#2|) 183)) (-2059 ((|#2| |#2|) 159)) (-3120 ((|#2| |#2|) 179)) (-3390 ((|#2| |#2|) 155)) (-3687 ((|#2| |#2|) 193)) (-2111 ((|#2| |#2|) 169)) (-2451 ((|#2| |#2|) 189)) (-3051 ((|#2| |#2|) 165)) (-3555 ((|#2| |#2|) 197)) (-4262 ((|#2| |#2|) 173)) (-1427 ((|#2| |#2|) 199)) (-3519 ((|#2| |#2|) 175)) (-2461 ((|#2| |#2|) 195)) (-4256 ((|#2| |#2|) 171)) (-3633 ((|#2| |#2|) 191)) (-4277 ((|#2| |#2|) 167)) (-2719 ((|#2| |#2|) 62)) (-1698 ((|#2| |#2|) 80)) (-1552 ((|#2| |#2|) 68)) (-1675 ((|#2| |#2|) 78)) (-1526 ((|#2| |#2|) 66)) (-1651 ((|#2| |#2|) 76)) (-1501 ((|#2| |#2|) 64)) (-4285 (((-112) (-114)) 93)) (-1733 ((|#2| |#2|) 83)) (-1587 ((|#2| |#2|) 71)) (-1710 ((|#2| |#2|) 81)) (-1564 ((|#2| |#2|) 69)) (-1758 ((|#2| |#2|) 85)) (-1612 ((|#2| |#2|) 73)) (-1934 ((|#2| |#2|) 86)) (-1627 ((|#2| |#2|) 74)) (-1745 ((|#2| |#2|) 84)) (-1600 ((|#2| |#2|) 72)) (-1722 ((|#2| |#2|) 82)) (-1576 ((|#2| |#2|) 70)))
+(((-269 |#1| |#2|) (-10 -7 (-15 -2719 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -1486 (|#2| |#2|)) (-15 -1501 (|#2| |#2|)) (-15 -1512 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1587 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1627 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -1664 (|#2| |#2|)) (-15 -1675 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -1733 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -1758 (|#2| |#2|)) (-15 -1934 (|#2| |#2|)) (-15 -1425 (|#2|)) (-15 -4285 ((-112) (-114))) (-15 -2834 ((-114) (-114))) (-15 -1623 (|#2|)) (-15 -1964 (|#2|)) (-15 -2939 (|#2| |#2|)) (-15 -2925 (|#2| |#2|)) (-15 -2583 (|#2| |#2|)) (-15 -3390 (|#2| |#2|)) (-15 -3821 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -4233 (|#2| |#2|)) (-15 -3051 (|#2| |#2|)) (-15 -4277 (|#2| |#2|)) (-15 -2111 (|#2| |#2|)) (-15 -4256 (|#2| |#2|)) (-15 -4262 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -3378 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -3968 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -2451 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3687 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -3555 (|#2| |#2|)) (-15 -1427 (|#2| |#2|)) (-15 -1407 ((-3 |#2| "failed") |#2| (-621 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1436 ((-112) |#2|))) (-13 (-823) (-541)) (-13 (-423 |#1|) (-973))) (T -269))
+((-1436 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-423 *4) (-973))))) (-1407 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-621 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-423 *4) (-973))) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-269 *4 *2)))) (-1427 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3555 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2461 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3687 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2451 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3613 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3968 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3378 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-4262 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-4256 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2111 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-4277 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3051 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-4233 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2059 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3821 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3390 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2583 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2925 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2939 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1964 (*1 *2) (-12 (-4 *2 (-13 (-423 *3) (-973))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-823) (-541))))) (-1623 (*1 *2) (-12 (-4 *2 (-13 (-423 *3) (-973))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-823) (-541))))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *4)) (-4 *4 (-13 (-423 *3) (-973))))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-423 *4) (-973))))) (-1425 (*1 *2) (-12 (-4 *2 (-13 (-423 *3) (-973))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-823) (-541))))) (-1934 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1758 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1675 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1664 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1651 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1627 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1512 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1501 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-1486 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))) (-2719 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-423 *3) (-973))))))
+(-10 -7 (-15 -2719 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -1486 (|#2| |#2|)) (-15 -1501 (|#2| |#2|)) (-15 -1512 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1587 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1627 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -1664 (|#2| |#2|)) (-15 -1675 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -1733 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -1758 (|#2| |#2|)) (-15 -1934 (|#2| |#2|)) (-15 -1425 (|#2|)) (-15 -4285 ((-112) (-114))) (-15 -2834 ((-114) (-114))) (-15 -1623 (|#2|)) (-15 -1964 (|#2|)) (-15 -2939 (|#2| |#2|)) (-15 -2925 (|#2| |#2|)) (-15 -2583 (|#2| |#2|)) (-15 -3390 (|#2| |#2|)) (-15 -3821 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -4233 (|#2| |#2|)) (-15 -3051 (|#2| |#2|)) (-15 -4277 (|#2| |#2|)) (-15 -2111 (|#2| |#2|)) (-15 -4256 (|#2| |#2|)) (-15 -4262 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -3378 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -3968 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -2451 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3687 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -3555 (|#2| |#2|)) (-15 -1427 (|#2| |#2|)) (-15 -1407 ((-3 |#2| "failed") |#2| (-621 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1436 ((-112) |#2|)))
+((-2933 (((-3 |#2| "failed") (-621 (-592 |#2|)) |#2| (-1143)) 135)) (-2805 ((|#2| (-400 (-549)) |#2|) 51)) (-1967 ((|#2| |#2| (-592 |#2|)) 128)) (-1703 (((-2 (|:| |func| |#2|) (|:| |kers| (-621 (-592 |#2|))) (|:| |vals| (-621 |#2|))) |#2| (-1143)) 127)) (-1730 ((|#2| |#2| (-1143)) 20) ((|#2| |#2|) 23)) (-1322 ((|#2| |#2| (-1143)) 141) ((|#2| |#2|) 139)))
+(((-270 |#1| |#2|) (-10 -7 (-15 -1322 (|#2| |#2|)) (-15 -1322 (|#2| |#2| (-1143))) (-15 -1703 ((-2 (|:| |func| |#2|) (|:| |kers| (-621 (-592 |#2|))) (|:| |vals| (-621 |#2|))) |#2| (-1143))) (-15 -1730 (|#2| |#2|)) (-15 -1730 (|#2| |#2| (-1143))) (-15 -2933 ((-3 |#2| "failed") (-621 (-592 |#2|)) |#2| (-1143))) (-15 -1967 (|#2| |#2| (-592 |#2|))) (-15 -2805 (|#2| (-400 (-549)) |#2|))) (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1165) (-423 |#1|))) (T -270))
+((-2805 (*1 *2 *3 *2) (-12 (-5 *3 (-400 (-549))) (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4))))) (-1967 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4))) (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *4 *2)))) (-2933 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-621 (-592 *2))) (-5 *4 (-1143)) (-4 *2 (-13 (-27) (-1165) (-423 *5))) (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *5 *2)))) (-1730 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4))))) (-1730 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3))))) (-1703 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-621 (-592 *3))) (|:| |vals| (-621 *3)))) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))))) (-1322 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4))))) (-1322 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3))))))
+(-10 -7 (-15 -1322 (|#2| |#2|)) (-15 -1322 (|#2| |#2| (-1143))) (-15 -1703 ((-2 (|:| |func| |#2|) (|:| |kers| (-621 (-592 |#2|))) (|:| |vals| (-621 |#2|))) |#2| (-1143))) (-15 -1730 (|#2| |#2|)) (-15 -1730 (|#2| |#2| (-1143))) (-15 -2933 ((-3 |#2| "failed") (-621 (-592 |#2|)) |#2| (-1143))) (-15 -1967 (|#2| |#2| (-592 |#2|))) (-15 -2805 (|#2| (-400 (-549)) |#2|)))
+((-1263 (((-3 |#3| "failed") |#3|) 110)) (-1664 ((|#3| |#3|) 131)) (-3164 (((-3 |#3| "failed") |#3|) 82)) (-1512 ((|#3| |#3|) 121)) (-2278 (((-3 |#3| "failed") |#3|) 58)) (-1640 ((|#3| |#3|) 129)) (-3310 (((-3 |#3| "failed") |#3|) 46)) (-1486 ((|#3| |#3|) 119)) (-2685 (((-3 |#3| "failed") |#3|) 112)) (-1685 ((|#3| |#3|) 133)) (-2141 (((-3 |#3| "failed") |#3|) 84)) (-1539 ((|#3| |#3|) 123)) (-2022 (((-3 |#3| "failed") |#3| (-747)) 36)) (-3284 (((-3 |#3| "failed") |#3|) 74)) (-3632 ((|#3| |#3|) 118)) (-1556 (((-3 |#3| "failed") |#3|) 44)) (-2719 ((|#3| |#3|) 117)) (-2426 (((-3 |#3| "failed") |#3|) 113)) (-1698 ((|#3| |#3|) 134)) (-2639 (((-3 |#3| "failed") |#3|) 85)) (-1552 ((|#3| |#3|) 124)) (-1736 (((-3 |#3| "failed") |#3|) 111)) (-1675 ((|#3| |#3|) 132)) (-2252 (((-3 |#3| "failed") |#3|) 83)) (-1526 ((|#3| |#3|) 122)) (-4178 (((-3 |#3| "failed") |#3|) 60)) (-1651 ((|#3| |#3|) 130)) (-3311 (((-3 |#3| "failed") |#3|) 48)) (-1501 ((|#3| |#3|) 120)) (-3696 (((-3 |#3| "failed") |#3|) 66)) (-1733 ((|#3| |#3|) 137)) (-1871 (((-3 |#3| "failed") |#3|) 104)) (-1587 ((|#3| |#3|) 142)) (-2540 (((-3 |#3| "failed") |#3|) 62)) (-1710 ((|#3| |#3|) 135)) (-1781 (((-3 |#3| "failed") |#3|) 50)) (-1564 ((|#3| |#3|) 125)) (-1528 (((-3 |#3| "failed") |#3|) 70)) (-1758 ((|#3| |#3|) 139)) (-2273 (((-3 |#3| "failed") |#3|) 54)) (-1612 ((|#3| |#3|) 127)) (-2376 (((-3 |#3| "failed") |#3|) 72)) (-1934 ((|#3| |#3|) 140)) (-4219 (((-3 |#3| "failed") |#3|) 56)) (-1627 ((|#3| |#3|) 128)) (-3943 (((-3 |#3| "failed") |#3|) 68)) (-1745 ((|#3| |#3|) 138)) (-3069 (((-3 |#3| "failed") |#3|) 107)) (-1600 ((|#3| |#3|) 143)) (-2767 (((-3 |#3| "failed") |#3|) 64)) (-1722 ((|#3| |#3|) 136)) (-1598 (((-3 |#3| "failed") |#3|) 52)) (-1576 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-400 (-549))) 40 (|has| |#1| (-356)))))
+(((-271 |#1| |#2| |#3|) (-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-549)))) |%noBranch|) (-15 -2719 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -1486 (|#3| |#3|)) (-15 -1501 (|#3| |#3|)) (-15 -1512 (|#3| |#3|)) (-15 -1526 (|#3| |#3|)) (-15 -1539 (|#3| |#3|)) (-15 -1552 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1576 (|#3| |#3|)) (-15 -1587 (|#3| |#3|)) (-15 -1600 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1627 (|#3| |#3|)) (-15 -1640 (|#3| |#3|)) (-15 -1651 (|#3| |#3|)) (-15 -1664 (|#3| |#3|)) (-15 -1675 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1710 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1733 (|#3| |#3|)) (-15 -1745 (|#3| |#3|)) (-15 -1758 (|#3| |#3|)) (-15 -1934 (|#3| |#3|)))) (-38 (-400 (-549))) (-1217 |#1|) (-1188 |#1| |#2|)) (T -271))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-549))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1217 *4)) (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1188 *4 *5)))) (-2719 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1486 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1501 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1512 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1627 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1651 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1664 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1675 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1758 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))) (-1934 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4)))))
+(-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-549)))) |%noBranch|) (-15 -2719 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -1486 (|#3| |#3|)) (-15 -1501 (|#3| |#3|)) (-15 -1512 (|#3| |#3|)) (-15 -1526 (|#3| |#3|)) (-15 -1539 (|#3| |#3|)) (-15 -1552 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1576 (|#3| |#3|)) (-15 -1587 (|#3| |#3|)) (-15 -1600 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1627 (|#3| |#3|)) (-15 -1640 (|#3| |#3|)) (-15 -1651 (|#3| |#3|)) (-15 -1664 (|#3| |#3|)) (-15 -1675 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1710 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1733 (|#3| |#3|)) (-15 -1745 (|#3| |#3|)) (-15 -1758 (|#3| |#3|)) (-15 -1934 (|#3| |#3|))))
+((-1263 (((-3 |#3| "failed") |#3|) 66)) (-1664 ((|#3| |#3|) 129)) (-3164 (((-3 |#3| "failed") |#3|) 50)) (-1512 ((|#3| |#3|) 117)) (-2278 (((-3 |#3| "failed") |#3|) 62)) (-1640 ((|#3| |#3|) 127)) (-3310 (((-3 |#3| "failed") |#3|) 46)) (-1486 ((|#3| |#3|) 115)) (-2685 (((-3 |#3| "failed") |#3|) 70)) (-1685 ((|#3| |#3|) 131)) (-2141 (((-3 |#3| "failed") |#3|) 54)) (-1539 ((|#3| |#3|) 119)) (-2022 (((-3 |#3| "failed") |#3| (-747)) 35)) (-3284 (((-3 |#3| "failed") |#3|) 44)) (-3632 ((|#3| |#3|) 104)) (-1556 (((-3 |#3| "failed") |#3|) 42)) (-2719 ((|#3| |#3|) 114)) (-2426 (((-3 |#3| "failed") |#3|) 72)) (-1698 ((|#3| |#3|) 132)) (-2639 (((-3 |#3| "failed") |#3|) 56)) (-1552 ((|#3| |#3|) 120)) (-1736 (((-3 |#3| "failed") |#3|) 68)) (-1675 ((|#3| |#3|) 130)) (-2252 (((-3 |#3| "failed") |#3|) 52)) (-1526 ((|#3| |#3|) 118)) (-4178 (((-3 |#3| "failed") |#3|) 64)) (-1651 ((|#3| |#3|) 128)) (-3311 (((-3 |#3| "failed") |#3|) 48)) (-1501 ((|#3| |#3|) 116)) (-3696 (((-3 |#3| "failed") |#3|) 74)) (-1733 ((|#3| |#3|) 135)) (-1871 (((-3 |#3| "failed") |#3|) 58)) (-1587 ((|#3| |#3|) 123)) (-2540 (((-3 |#3| "failed") |#3|) 105)) (-1710 ((|#3| |#3|) 133)) (-1781 (((-3 |#3| "failed") |#3|) 94)) (-1564 ((|#3| |#3|) 121)) (-1528 (((-3 |#3| "failed") |#3|) 109)) (-1758 ((|#3| |#3|) 137)) (-2273 (((-3 |#3| "failed") |#3|) 101)) (-1612 ((|#3| |#3|) 125)) (-2376 (((-3 |#3| "failed") |#3|) 110)) (-1934 ((|#3| |#3|) 138)) (-4219 (((-3 |#3| "failed") |#3|) 103)) (-1627 ((|#3| |#3|) 126)) (-3943 (((-3 |#3| "failed") |#3|) 76)) (-1745 ((|#3| |#3|) 136)) (-3069 (((-3 |#3| "failed") |#3|) 60)) (-1600 ((|#3| |#3|) 124)) (-2767 (((-3 |#3| "failed") |#3|) 106)) (-1722 ((|#3| |#3|) 134)) (-1598 (((-3 |#3| "failed") |#3|) 97)) (-1576 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-400 (-549))) 40 (|has| |#1| (-356)))))
+(((-272 |#1| |#2| |#3| |#4|) (-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-549)))) |%noBranch|) (-15 -2719 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -1486 (|#3| |#3|)) (-15 -1501 (|#3| |#3|)) (-15 -1512 (|#3| |#3|)) (-15 -1526 (|#3| |#3|)) (-15 -1539 (|#3| |#3|)) (-15 -1552 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1576 (|#3| |#3|)) (-15 -1587 (|#3| |#3|)) (-15 -1600 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1627 (|#3| |#3|)) (-15 -1640 (|#3| |#3|)) (-15 -1651 (|#3| |#3|)) (-15 -1664 (|#3| |#3|)) (-15 -1675 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1710 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1733 (|#3| |#3|)) (-15 -1745 (|#3| |#3|)) (-15 -1758 (|#3| |#3|)) (-15 -1934 (|#3| |#3|)))) (-38 (-400 (-549))) (-1186 |#1|) (-1209 |#1| |#2|) (-954 |#2|)) (T -272))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-549))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1186 *4)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1209 *4 *5)) (-4 *6 (-954 *5)))) (-2719 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1486 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1501 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1512 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1627 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1651 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1664 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1675 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1758 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))) (-1934 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4)))))
+(-13 (-954 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-549)))) |%noBranch|) (-15 -2719 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -1486 (|#3| |#3|)) (-15 -1501 (|#3| |#3|)) (-15 -1512 (|#3| |#3|)) (-15 -1526 (|#3| |#3|)) (-15 -1539 (|#3| |#3|)) (-15 -1552 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1576 (|#3| |#3|)) (-15 -1587 (|#3| |#3|)) (-15 -1600 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1627 (|#3| |#3|)) (-15 -1640 (|#3| |#3|)) (-15 -1651 (|#3| |#3|)) (-15 -1664 (|#3| |#3|)) (-15 -1675 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1710 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1733 (|#3| |#3|)) (-15 -1745 (|#3| |#3|)) (-15 -1758 (|#3| |#3|)) (-15 -1934 (|#3| |#3|))))
+((-1945 (((-112) $) 19)) (-3110 (((-181) $) 7)) (-1783 (((-3 (-1143) "failed") $) 14)) (-4284 (((-3 (-621 $) "failed") $) NIL)) (-3888 (((-3 (-1143) "failed") $) 21)) (-3505 (((-3 (-1071) "failed") $) 17)) (-2645 (((-112) $) 15)) (-3846 (((-834) $) NIL)) (-1602 (((-112) $) 9)))
+(((-273) (-13 (-593 (-834)) (-10 -8 (-15 -3110 ((-181) $)) (-15 -2645 ((-112) $)) (-15 -3505 ((-3 (-1071) "failed") $)) (-15 -1945 ((-112) $)) (-15 -3888 ((-3 (-1143) "failed") $)) (-15 -1602 ((-112) $)) (-15 -1783 ((-3 (-1143) "failed") $)) (-15 -4284 ((-3 (-621 $) "failed") $))))) (T -273))
+((-3110 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-3505 (*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-273)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-3888 (*1 *2 *1) (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-273)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-1783 (*1 *2 *1) (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-273)))) (-4284 (*1 *2 *1) (|partial| -12 (-5 *2 (-621 (-273))) (-5 *1 (-273)))))
+(-13 (-593 (-834)) (-10 -8 (-15 -3110 ((-181) $)) (-15 -2645 ((-112) $)) (-15 -3505 ((-3 (-1071) "failed") $)) (-15 -1945 ((-112) $)) (-15 -3888 ((-3 (-1143) "failed") $)) (-15 -1602 ((-112) $)) (-15 -1783 ((-3 (-1143) "failed") $)) (-15 -4284 ((-3 (-621 $) "failed") $))))
+((-1489 (($ (-1 (-112) |#2|) $) 24)) (-3676 (($ $) 36)) (-2129 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3812 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-1303 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2616 (($ |#2| $ (-549)) 20) (($ $ $ (-549)) 22)) (-2167 (($ $ (-549)) 11) (($ $ (-1193 (-549))) 14)) (-3196 (($ $ |#2|) 30) (($ $ $) NIL)) (-1952 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-621 $)) NIL)))
+(((-274 |#1| |#2|) (-10 -8 (-15 -1303 (|#1| |#1| |#1|)) (-15 -2129 (|#1| |#2| |#1|)) (-15 -1303 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2129 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3196 (|#1| |#1| |#1|)) (-15 -3196 (|#1| |#1| |#2|)) (-15 -2616 (|#1| |#1| |#1| (-549))) (-15 -2616 (|#1| |#2| |#1| (-549))) (-15 -2167 (|#1| |#1| (-1193 (-549)))) (-15 -2167 (|#1| |#1| (-549))) (-15 -1952 (|#1| (-621 |#1|))) (-15 -1952 (|#1| |#1| |#1|)) (-15 -1952 (|#1| |#2| |#1|)) (-15 -1952 (|#1| |#1| |#2|)) (-15 -3812 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1489 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3812 (|#1| |#2| |#1|)) (-15 -3676 (|#1| |#1|))) (-275 |#2|) (-1180)) (T -274))
+NIL
+(-10 -8 (-15 -1303 (|#1| |#1| |#1|)) (-15 -2129 (|#1| |#2| |#1|)) (-15 -1303 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2129 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3196 (|#1| |#1| |#1|)) (-15 -3196 (|#1| |#1| |#2|)) (-15 -2616 (|#1| |#1| |#1| (-549))) (-15 -2616 (|#1| |#2| |#1| (-549))) (-15 -2167 (|#1| |#1| (-1193 (-549)))) (-15 -2167 (|#1| |#1| (-549))) (-15 -1952 (|#1| (-621 |#1|))) (-15 -1952 (|#1| |#1| |#1|)) (-15 -1952 (|#1| |#2| |#1|)) (-15 -1952 (|#1| |#1| |#2|)) (-15 -3812 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1489 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3812 (|#1| |#2| |#1|)) (-15 -3676 (|#1| |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1535 (((-1231) $ (-549) (-549)) 40 (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) 8)) (-2254 ((|#1| $ (-549) |#1|) 52 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) 58 (|has| $ (-6 -4338)))) (-1717 (($ (-1 (-112) |#1|) $) 85)) (-1489 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-3745 (($ $) 83 (|has| |#1| (-1067)))) (-3676 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2129 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1067)))) (-3812 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) 51)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3743 (($ (-747) |#1|) 69)) (-3194 (((-112) $ (-747)) 9)) (-4031 (((-549) $) 43 (|has| (-549) (-823)))) (-1303 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 44 (|has| (-549) (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-2751 (($ |#1| $ (-549)) 88) (($ $ $ (-549)) 87)) (-2616 (($ |#1| $ (-549)) 60) (($ $ $ (-549)) 59)) (-3303 (((-621 (-549)) $) 46)) (-3761 (((-112) (-549) $) 47)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3646 ((|#1| $) 42 (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-1642 (($ $ |#1|) 41 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) 48)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ (-549) |#1|) 50) ((|#1| $ (-549)) 49) (($ $ (-1193 (-549))) 63)) (-3531 (($ $ (-549)) 91) (($ $ (-1193 (-549))) 90)) (-2167 (($ $ (-549)) 62) (($ $ (-1193 (-549))) 61)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2845 (((-525) $) 79 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 70)) (-3196 (($ $ |#1|) 93) (($ $ $) 92)) (-1952 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-275 |#1|) (-138) (-1180)) (T -275))
+((-3196 (*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1180)))) (-3196 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1180)))) (-3531 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-275 *3)) (-4 *3 (-1180)))) (-3531 (*1 *1 *1 *2) (-12 (-5 *2 (-1193 (-549))) (-4 *1 (-275 *3)) (-4 *3 (-1180)))) (-2129 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1180)))) (-2751 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-275 *2)) (-4 *2 (-1180)))) (-2751 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-275 *3)) (-4 *3 (-1180)))) (-1303 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1180)))) (-1717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1180)))) (-2129 (*1 *1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1180)) (-4 *2 (-1067)))) (-3745 (*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1180)) (-4 *2 (-1067)))) (-1303 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1180)) (-4 *2 (-823)))))
+(-13 (-627 |t#1|) (-10 -8 (-6 -4338) (-15 -3196 ($ $ |t#1|)) (-15 -3196 ($ $ $)) (-15 -3531 ($ $ (-549))) (-15 -3531 ($ $ (-1193 (-549)))) (-15 -2129 ($ (-1 (-112) |t#1|) $)) (-15 -2751 ($ |t#1| $ (-549))) (-15 -2751 ($ $ $ (-549))) (-15 -1303 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1717 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -2129 ($ |t#1| $)) (-15 -3745 ($ $))) |%noBranch|) (IF (|has| |t#1| (-823)) (-15 -1303 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
((** (($ $ $) 10)))
-(((-274 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-275)) (T -274))
+(((-276 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-277)) (T -276))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-3624 (($ $) 6)) (-2712 (($ $) 7)) (** (($ $ $) 8)))
-(((-275) (-138)) (T -275))
-((** (*1 *1 *1 *1) (-4 *1 (-275))) (-2712 (*1 *1 *1) (-4 *1 (-275))) (-3624 (*1 *1 *1) (-4 *1 (-275))))
-(-13 (-10 -8 (-15 -3624 ($ $)) (-15 -2712 ($ $)) (-15 ** ($ $ $))))
-((-3330 (((-619 (-1117 |#1|)) (-1117 |#1|) |#1|) 35)) (-2529 ((|#2| |#2| |#1|) 38)) (-3478 ((|#2| |#2| |#1|) 40)) (-3989 ((|#2| |#2| |#1|) 39)))
-(((-276 |#1| |#2|) (-10 -7 (-15 -2529 (|#2| |#2| |#1|)) (-15 -3989 (|#2| |#2| |#1|)) (-15 -3478 (|#2| |#2| |#1|)) (-15 -3330 ((-619 (-1117 |#1|)) (-1117 |#1|) |#1|))) (-354) (-1210 |#1|)) (T -276))
-((-3330 (*1 *2 *3 *4) (-12 (-4 *4 (-354)) (-5 *2 (-619 (-1117 *4))) (-5 *1 (-276 *4 *5)) (-5 *3 (-1117 *4)) (-4 *5 (-1210 *4)))) (-3478 (*1 *2 *2 *3) (-12 (-4 *3 (-354)) (-5 *1 (-276 *3 *2)) (-4 *2 (-1210 *3)))) (-3989 (*1 *2 *2 *3) (-12 (-4 *3 (-354)) (-5 *1 (-276 *3 *2)) (-4 *2 (-1210 *3)))) (-2529 (*1 *2 *2 *3) (-12 (-4 *3 (-354)) (-5 *1 (-276 *3 *2)) (-4 *2 (-1210 *3)))))
-(-10 -7 (-15 -2529 (|#2| |#2| |#1|)) (-15 -3989 (|#2| |#2| |#1|)) (-15 -3478 (|#2| |#2| |#1|)) (-15 -3330 ((-619 (-1117 |#1|)) (-1117 |#1|) |#1|)))
-((-3334 ((|#2| $ |#1|) 6)))
-(((-277 |#1| |#2|) (-138) (-1063) (-1173)) (T -277))
-((-3334 (*1 *2 *1 *3) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1173)))))
-(-13 (-10 -8 (-15 -3334 (|t#2| $ |t#1|))))
-((-1872 ((|#3| $ |#2| |#3|) 12)) (-1802 ((|#3| $ |#2|) 10)))
-(((-278 |#1| |#2| |#3|) (-10 -8 (-15 -1872 (|#3| |#1| |#2| |#3|)) (-15 -1802 (|#3| |#1| |#2|))) (-279 |#2| |#3|) (-1063) (-1173)) (T -278))
-NIL
-(-10 -8 (-15 -1872 (|#3| |#1| |#2| |#3|)) (-15 -1802 (|#3| |#1| |#2|)))
-((-2247 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4330)))) (-1872 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4330)))) (-1802 ((|#2| $ |#1|) 11)) (-3334 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-279 |#1| |#2|) (-138) (-1063) (-1173)) (T -279))
-((-3334 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1173)))) (-1802 (*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1173)))) (-2247 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1173)))) (-1872 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1173)))))
-(-13 (-277 |t#1| |t#2|) (-10 -8 (-15 -3334 (|t#2| $ |t#1| |t#2|)) (-15 -1802 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4330)) (PROGN (-15 -2247 (|t#2| $ |t#1| |t#2|)) (-15 -1872 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-277 |#1| |#2|) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 35)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 40)) (-3571 (($ $) 38)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1547 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-2089 (($ $ $) 33)) (-2552 (($ |#2| |#3|) 19)) (-3855 (((-3 $ "failed") $) NIL)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-2261 (((-112) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2580 ((|#3| $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 20)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1327 (((-3 $ "failed") $ $) NIL)) (-2471 (((-745) $) 34)) (-3334 ((|#2| $ |#2|) 42)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 24)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2736 (((-745)) NIL)) (-3577 (((-112) $ $) NIL)) (-3269 (($) 29 T CONST)) (-3281 (($) 36 T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 37)))
-(((-280 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-298) (-10 -8 (-15 -2580 (|#3| $)) (-15 -3838 (|#2| $)) (-15 -2552 ($ |#2| |#3|)) (-15 -1327 ((-3 $ "failed") $ $)) (-15 -3855 ((-3 $ "failed") $)) (-15 -1984 ($ $)) (-15 -3334 (|#2| $ |#2|)))) (-169) (-1195 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -280))
-((-3855 (*1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-280 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1195 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2580 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-280 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1195 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3838 (*1 *2 *1) (-12 (-4 *2 (-1195 *3)) (-5 *1 (-280 *3 *2 *4 *5 *6 *7)) (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2552 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-280 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1195 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1327 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-280 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1195 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1984 (*1 *1 *1) (-12 (-4 *2 (-169)) (-5 *1 (-280 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1195 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3334 (*1 *2 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-280 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1195 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-298) (-10 -8 (-15 -2580 (|#3| $)) (-15 -3838 (|#2| $)) (-15 -2552 ($ |#2| |#3|)) (-15 -1327 ((-3 $ "failed") $ $)) (-15 -3855 ((-3 $ "failed") $)) (-15 -1984 ($ $)) (-15 -3334 (|#2| $ |#2|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ (-547)) 27)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-281) (-138)) (T -281))
-NIL
-(-13 (-1016) (-111 $ $) (-10 -7 (-6 -4322)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3066 (($ (-1136) (-1136) (-1067) $) 17)) (-2187 (($ (-1136) (-619 (-934)) $) 22)) (-1853 (((-619 (-1049)) $) 10)) (-2688 (((-3 (-1067) "failed") (-1136) (-1136) $) 16)) (-4114 (((-3 (-619 (-934)) "failed") (-1136) $) 21)) (-2245 (($) 7)) (-3457 (($) 23)) (-3838 (((-832) $) 27)) (-2960 (($) 24)))
-(((-282) (-13 (-591 (-832)) (-10 -8 (-15 -2245 ($)) (-15 -1853 ((-619 (-1049)) $)) (-15 -2688 ((-3 (-1067) "failed") (-1136) (-1136) $)) (-15 -3066 ($ (-1136) (-1136) (-1067) $)) (-15 -4114 ((-3 (-619 (-934)) "failed") (-1136) $)) (-15 -2187 ($ (-1136) (-619 (-934)) $)) (-15 -3457 ($)) (-15 -2960 ($))))) (T -282))
-((-2245 (*1 *1) (-5 *1 (-282))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-619 (-1049))) (-5 *1 (-282)))) (-2688 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1136)) (-5 *2 (-1067)) (-5 *1 (-282)))) (-3066 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1136)) (-5 *3 (-1067)) (-5 *1 (-282)))) (-4114 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1136)) (-5 *2 (-619 (-934))) (-5 *1 (-282)))) (-2187 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-934))) (-5 *1 (-282)))) (-3457 (*1 *1) (-5 *1 (-282))) (-2960 (*1 *1) (-5 *1 (-282))))
-(-13 (-591 (-832)) (-10 -8 (-15 -2245 ($)) (-15 -1853 ((-619 (-1049)) $)) (-15 -2688 ((-3 (-1067) "failed") (-1136) (-1136) $)) (-15 -3066 ($ (-1136) (-1136) (-1067) $)) (-15 -4114 ((-3 (-619 (-934)) "failed") (-1136) $)) (-15 -2187 ($ (-1136) (-619 (-934)) $)) (-15 -3457 ($)) (-15 -2960 ($))))
-((-2761 (((-619 (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|)))) (|:| |geneigvec| (-619 (-663 (-398 (-921 |#1|))))))) (-663 (-398 (-921 |#1|)))) 85)) (-1723 (((-619 (-663 (-398 (-921 |#1|)))) (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 |#1|)))))) (-663 (-398 (-921 |#1|)))) 80) (((-619 (-663 (-398 (-921 |#1|)))) (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|))) (-663 (-398 (-921 |#1|))) (-745) (-745)) 38)) (-2157 (((-619 (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 |#1|))))))) (-663 (-398 (-921 |#1|)))) 82)) (-2937 (((-619 (-663 (-398 (-921 |#1|)))) (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|))) (-663 (-398 (-921 |#1|)))) 62)) (-4228 (((-619 (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|)))) (-663 (-398 (-921 |#1|)))) 61)) (-1316 (((-921 |#1|) (-663 (-398 (-921 |#1|)))) 50) (((-921 |#1|) (-663 (-398 (-921 |#1|))) (-1136)) 51)))
-(((-283 |#1|) (-10 -7 (-15 -1316 ((-921 |#1|) (-663 (-398 (-921 |#1|))) (-1136))) (-15 -1316 ((-921 |#1|) (-663 (-398 (-921 |#1|))))) (-15 -4228 ((-619 (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|)))) (-663 (-398 (-921 |#1|))))) (-15 -2937 ((-619 (-663 (-398 (-921 |#1|)))) (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|))) (-663 (-398 (-921 |#1|))))) (-15 -1723 ((-619 (-663 (-398 (-921 |#1|)))) (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|))) (-663 (-398 (-921 |#1|))) (-745) (-745))) (-15 -1723 ((-619 (-663 (-398 (-921 |#1|)))) (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 |#1|)))))) (-663 (-398 (-921 |#1|))))) (-15 -2761 ((-619 (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|)))) (|:| |geneigvec| (-619 (-663 (-398 (-921 |#1|))))))) (-663 (-398 (-921 |#1|))))) (-15 -2157 ((-619 (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 |#1|))))))) (-663 (-398 (-921 |#1|)))))) (-442)) (T -283))
-((-2157 (*1 *2 *3) (-12 (-4 *4 (-442)) (-5 *2 (-619 (-2 (|:| |eigval| (-3 (-398 (-921 *4)) (-1126 (-1136) (-921 *4)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 *4)))))))) (-5 *1 (-283 *4)) (-5 *3 (-663 (-398 (-921 *4)))))) (-2761 (*1 *2 *3) (-12 (-4 *4 (-442)) (-5 *2 (-619 (-2 (|:| |eigval| (-3 (-398 (-921 *4)) (-1126 (-1136) (-921 *4)))) (|:| |geneigvec| (-619 (-663 (-398 (-921 *4)))))))) (-5 *1 (-283 *4)) (-5 *3 (-663 (-398 (-921 *4)))))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-398 (-921 *5)) (-1126 (-1136) (-921 *5)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 *4)))) (-4 *5 (-442)) (-5 *2 (-619 (-663 (-398 (-921 *5))))) (-5 *1 (-283 *5)) (-5 *4 (-663 (-398 (-921 *5)))))) (-1723 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-398 (-921 *6)) (-1126 (-1136) (-921 *6)))) (-5 *5 (-745)) (-4 *6 (-442)) (-5 *2 (-619 (-663 (-398 (-921 *6))))) (-5 *1 (-283 *6)) (-5 *4 (-663 (-398 (-921 *6)))))) (-2937 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-398 (-921 *5)) (-1126 (-1136) (-921 *5)))) (-4 *5 (-442)) (-5 *2 (-619 (-663 (-398 (-921 *5))))) (-5 *1 (-283 *5)) (-5 *4 (-663 (-398 (-921 *5)))))) (-4228 (*1 *2 *3) (-12 (-5 *3 (-663 (-398 (-921 *4)))) (-4 *4 (-442)) (-5 *2 (-619 (-3 (-398 (-921 *4)) (-1126 (-1136) (-921 *4))))) (-5 *1 (-283 *4)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-663 (-398 (-921 *4)))) (-5 *2 (-921 *4)) (-5 *1 (-283 *4)) (-4 *4 (-442)))) (-1316 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-398 (-921 *5)))) (-5 *4 (-1136)) (-5 *2 (-921 *5)) (-5 *1 (-283 *5)) (-4 *5 (-442)))))
-(-10 -7 (-15 -1316 ((-921 |#1|) (-663 (-398 (-921 |#1|))) (-1136))) (-15 -1316 ((-921 |#1|) (-663 (-398 (-921 |#1|))))) (-15 -4228 ((-619 (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|)))) (-663 (-398 (-921 |#1|))))) (-15 -2937 ((-619 (-663 (-398 (-921 |#1|)))) (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|))) (-663 (-398 (-921 |#1|))))) (-15 -1723 ((-619 (-663 (-398 (-921 |#1|)))) (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|))) (-663 (-398 (-921 |#1|))) (-745) (-745))) (-15 -1723 ((-619 (-663 (-398 (-921 |#1|)))) (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 |#1|)))))) (-663 (-398 (-921 |#1|))))) (-15 -2761 ((-619 (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|)))) (|:| |geneigvec| (-619 (-663 (-398 (-921 |#1|))))))) (-663 (-398 (-921 |#1|))))) (-15 -2157 ((-619 (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1126 (-1136) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 |#1|))))))) (-663 (-398 (-921 |#1|))))))
-((-2790 (((-285 |#2|) (-1 |#2| |#1|) (-285 |#1|)) 14)))
-(((-284 |#1| |#2|) (-10 -7 (-15 -2790 ((-285 |#2|) (-1 |#2| |#1|) (-285 |#1|)))) (-1173) (-1173)) (T -284))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-285 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-285 *6)) (-5 *1 (-284 *5 *6)))))
-(-10 -7 (-15 -2790 ((-285 |#2|) (-1 |#2| |#1|) (-285 |#1|))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1499 (((-112) $) NIL (|has| |#1| (-21)))) (-2090 (($ $) 12)) (-3672 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3008 (($ $ $) 94 (|has| |#1| (-293)))) (-1948 (($) NIL (-1530 (|has| |#1| (-21)) (|has| |#1| (-701))) CONST)) (-2800 (($ $) 50 (|has| |#1| (-21)))) (-3041 (((-3 $ "failed") $) 61 (|has| |#1| (-701)))) (-2196 ((|#1| $) 11)) (-3855 (((-3 $ "failed") $) 59 (|has| |#1| (-701)))) (-2261 (((-112) $) NIL (|has| |#1| (-701)))) (-2790 (($ (-1 |#1| |#1|) $) 14)) (-2183 ((|#1| $) 10)) (-4171 (($ $) 49 (|has| |#1| (-21)))) (-1788 (((-3 $ "failed") $) 60 (|has| |#1| (-701)))) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-1984 (($ $) 63 (-1530 (|has| |#1| (-354)) (|has| |#1| (-463))))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2469 (((-619 $) $) 84 (|has| |#1| (-539)))) (-2679 (($ $ $) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 $)) 28 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-1136) |#1|) 17 (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-619 (-1136)) (-619 |#1|)) 21 (|has| |#1| (-503 (-1136) |#1|)))) (-2384 (($ |#1| |#1|) 9)) (-3970 (((-133)) 89 (|has| |#1| (-354)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136)) 86 (|has| |#1| (-869 (-1136))))) (-3404 (($ $ $) NIL (|has| |#1| (-463)))) (-1473 (($ $ $) NIL (|has| |#1| (-463)))) (-3838 (($ (-547)) NIL (|has| |#1| (-1016))) (((-112) $) 36 (|has| |#1| (-1063))) (((-832) $) 35 (|has| |#1| (-1063)))) (-2736 (((-745)) 66 (|has| |#1| (-1016)))) (-3269 (($) 46 (|has| |#1| (-21)) CONST)) (-3281 (($) 56 (|has| |#1| (-701)) CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136))))) (-2381 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1063)))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) 91 (-1530 (|has| |#1| (-354)) (|has| |#1| (-463))))) (-2493 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2479 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-547)) NIL (|has| |#1| (-463))) (($ $ (-745)) NIL (|has| |#1| (-701))) (($ $ (-890)) NIL (|has| |#1| (-1075)))) (* (($ $ |#1|) 54 (|has| |#1| (-1075))) (($ |#1| $) 53 (|has| |#1| (-1075))) (($ $ $) 52 (|has| |#1| (-1075))) (($ (-547) $) 69 (|has| |#1| (-21))) (($ (-745) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-25)))))
-(((-285 |#1|) (-13 (-1173) (-10 -8 (-15 -2381 ($ |#1| |#1|)) (-15 -2384 ($ |#1| |#1|)) (-15 -2090 ($ $)) (-15 -2183 (|#1| $)) (-15 -2196 (|#1| $)) (-15 -2790 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-503 (-1136) |#1|)) (-6 (-503 (-1136) |#1|)) |%noBranch|) (IF (|has| |#1| (-1063)) (PROGN (-6 (-1063)) (-6 (-591 (-112))) (IF (|has| |#1| (-300 |#1|)) (PROGN (-15 -2679 ($ $ $)) (-15 -2679 ($ $ (-619 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2479 ($ |#1| $)) (-15 -2479 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4171 ($ $)) (-15 -2800 ($ $)) (-15 -2493 ($ |#1| $)) (-15 -2493 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1075)) (PROGN (-6 (-1075)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-701)) (PROGN (-6 (-701)) (-15 -1788 ((-3 $ "failed") $)) (-15 -3041 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-463)) (PROGN (-6 (-463)) (-15 -1788 ((-3 $ "failed") $)) (-15 -3041 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|) (IF (|has| |#1| (-539)) (-15 -2469 ((-619 $) $)) |%noBranch|) (IF (|has| |#1| (-869 (-1136))) (-6 (-869 (-1136))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-6 (-1226 |#1|)) (-15 -2506 ($ $ $)) (-15 -1984 ($ $))) |%noBranch|) (IF (|has| |#1| (-293)) (-15 -3008 ($ $ $)) |%noBranch|))) (-1173)) (T -285))
-((-2381 (*1 *1 *2 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1173)))) (-2384 (*1 *1 *2 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1173)))) (-2090 (*1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1173)))) (-2183 (*1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1173)))) (-2196 (*1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1173)))) (-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1173)) (-5 *1 (-285 *3)))) (-2679 (*1 *1 *1 *1) (-12 (-4 *2 (-300 *2)) (-4 *2 (-1063)) (-4 *2 (-1173)) (-5 *1 (-285 *2)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-285 *3))) (-4 *3 (-300 *3)) (-4 *3 (-1063)) (-4 *3 (-1173)) (-5 *1 (-285 *3)))) (-2479 (*1 *1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-25)) (-4 *2 (-1173)))) (-2479 (*1 *1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-25)) (-4 *2 (-1173)))) (-4171 (*1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1173)))) (-2800 (*1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1173)))) (-2493 (*1 *1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1173)))) (-2493 (*1 *1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1173)))) (-1788 (*1 *1 *1) (|partial| -12 (-5 *1 (-285 *2)) (-4 *2 (-701)) (-4 *2 (-1173)))) (-3041 (*1 *1 *1) (|partial| -12 (-5 *1 (-285 *2)) (-4 *2 (-701)) (-4 *2 (-1173)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-619 (-285 *3))) (-5 *1 (-285 *3)) (-4 *3 (-539)) (-4 *3 (-1173)))) (-3008 (*1 *1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-293)) (-4 *2 (-1173)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1075)) (-4 *2 (-1173)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1075)) (-4 *2 (-1173)))) (-2506 (*1 *1 *1 *1) (-1530 (-12 (-5 *1 (-285 *2)) (-4 *2 (-354)) (-4 *2 (-1173))) (-12 (-5 *1 (-285 *2)) (-4 *2 (-463)) (-4 *2 (-1173))))) (-1984 (*1 *1 *1) (-1530 (-12 (-5 *1 (-285 *2)) (-4 *2 (-354)) (-4 *2 (-1173))) (-12 (-5 *1 (-285 *2)) (-4 *2 (-463)) (-4 *2 (-1173))))))
-(-13 (-1173) (-10 -8 (-15 -2381 ($ |#1| |#1|)) (-15 -2384 ($ |#1| |#1|)) (-15 -2090 ($ $)) (-15 -2183 (|#1| $)) (-15 -2196 (|#1| $)) (-15 -2790 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-503 (-1136) |#1|)) (-6 (-503 (-1136) |#1|)) |%noBranch|) (IF (|has| |#1| (-1063)) (PROGN (-6 (-1063)) (-6 (-591 (-112))) (IF (|has| |#1| (-300 |#1|)) (PROGN (-15 -2679 ($ $ $)) (-15 -2679 ($ $ (-619 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2479 ($ |#1| $)) (-15 -2479 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4171 ($ $)) (-15 -2800 ($ $)) (-15 -2493 ($ |#1| $)) (-15 -2493 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1075)) (PROGN (-6 (-1075)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-701)) (PROGN (-6 (-701)) (-15 -1788 ((-3 $ "failed") $)) (-15 -3041 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-463)) (PROGN (-6 (-463)) (-15 -1788 ((-3 $ "failed") $)) (-15 -3041 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|) (IF (|has| |#1| (-539)) (-15 -2469 ((-619 $) $)) |%noBranch|) (IF (|has| |#1| (-869 (-1136))) (-6 (-869 (-1136))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-6 (-1226 |#1|)) (-15 -2506 ($ $ $)) (-15 -1984 ($ $))) |%noBranch|) (IF (|has| |#1| (-293)) (-15 -3008 ($ $ $)) |%noBranch|)))
-((-3826 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3726 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-1652 (((-1224) $ |#1| |#1|) NIL (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#2| $ |#1| |#2|) NIL)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-3482 (((-3 |#2| "failed") |#1| $) NIL)) (-1948 (($) NIL T CONST)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-1513 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-3 |#2| "failed") |#1| $) NIL)) (-3803 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#2| $ |#1|) NIL)) (-2982 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 ((|#1| $) NIL (|has| |#1| (-821)))) (-2284 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-1416 ((|#1| $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4330))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3441 (((-619 |#1|) $) NIL)) (-4073 (((-112) |#1| $) NIL)) (-4266 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2657 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2121 (((-619 |#1|) $) NIL)) (-2018 (((-112) |#1| $) NIL)) (-3979 (((-1082) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3638 ((|#2| $) NIL (|has| |#1| (-821)))) (-3650 (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL)) (-3632 (($ $ |#2|) NIL (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2987 (((-619 |#2|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2699 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3838 (((-832) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2300 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-286 |#1| |#2|) (-13 (-1149 |#1| |#2|) (-10 -7 (-6 -4329))) (-1063) (-1063)) (T -286))
-NIL
-(-13 (-1149 |#1| |#2|) (-10 -7 (-6 -4329)))
-((-3035 (((-303) (-1119) (-619 (-1119))) 16) (((-303) (-1119) (-1119)) 15) (((-303) (-619 (-1119))) 14) (((-303) (-1119)) 12)))
-(((-287) (-10 -7 (-15 -3035 ((-303) (-1119))) (-15 -3035 ((-303) (-619 (-1119)))) (-15 -3035 ((-303) (-1119) (-1119))) (-15 -3035 ((-303) (-1119) (-619 (-1119)))))) (T -287))
-((-3035 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1119))) (-5 *3 (-1119)) (-5 *2 (-303)) (-5 *1 (-287)))) (-3035 (*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-303)) (-5 *1 (-287)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-619 (-1119))) (-5 *2 (-303)) (-5 *1 (-287)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-303)) (-5 *1 (-287)))))
-(-10 -7 (-15 -3035 ((-303) (-1119))) (-15 -3035 ((-303) (-619 (-1119)))) (-15 -3035 ((-303) (-1119) (-1119))) (-15 -3035 ((-303) (-1119) (-619 (-1119)))))
-((-2790 ((|#2| (-1 |#2| |#1|) (-1119) (-590 |#1|)) 18)))
-(((-288 |#1| |#2|) (-10 -7 (-15 -2790 (|#2| (-1 |#2| |#1|) (-1119) (-590 |#1|)))) (-293) (-1173)) (T -288))
-((-2790 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1119)) (-5 *5 (-590 *6)) (-4 *6 (-293)) (-4 *2 (-1173)) (-5 *1 (-288 *6 *2)))))
-(-10 -7 (-15 -2790 (|#2| (-1 |#2| |#1|) (-1119) (-590 |#1|))))
-((-2790 ((|#2| (-1 |#2| |#1|) (-590 |#1|)) 17)))
-(((-289 |#1| |#2|) (-10 -7 (-15 -2790 (|#2| (-1 |#2| |#1|) (-590 |#1|)))) (-293) (-293)) (T -289))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-590 *5)) (-4 *5 (-293)) (-4 *2 (-293)) (-5 *1 (-289 *5 *2)))))
-(-10 -7 (-15 -2790 (|#2| (-1 |#2| |#1|) (-590 |#1|))))
-((-3929 (((-112) (-217)) 10)))
-(((-290 |#1| |#2|) (-10 -7 (-15 -3929 ((-112) (-217)))) (-217) (-217)) (T -290))
-((-3929 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-112)) (-5 *1 (-290 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -3929 ((-112) (-217))))
-((-3358 (((-1117 (-217)) (-307 (-217)) (-619 (-1136)) (-1058 (-814 (-217)))) 93)) (-2170 (((-1117 (-217)) (-1219 (-307 (-217))) (-619 (-1136)) (-1058 (-814 (-217)))) 107) (((-1117 (-217)) (-307 (-217)) (-619 (-1136)) (-1058 (-814 (-217)))) 61)) (-1334 (((-619 (-1119)) (-1117 (-217))) NIL)) (-2008 (((-619 (-217)) (-307 (-217)) (-1136) (-1058 (-814 (-217)))) 58)) (-3875 (((-619 (-217)) (-921 (-398 (-547))) (-1136) (-1058 (-814 (-217)))) 49)) (-2129 (((-619 (-1119)) (-619 (-217))) NIL)) (-1367 (((-217) (-1058 (-814 (-217)))) 25)) (-3377 (((-217) (-1058 (-814 (-217)))) 26)) (-2933 (((-112) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 54)) (-3302 (((-1119) (-217)) NIL)))
-(((-291) (-10 -7 (-15 -1367 ((-217) (-1058 (-814 (-217))))) (-15 -3377 ((-217) (-1058 (-814 (-217))))) (-15 -2933 ((-112) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2008 ((-619 (-217)) (-307 (-217)) (-1136) (-1058 (-814 (-217))))) (-15 -3358 ((-1117 (-217)) (-307 (-217)) (-619 (-1136)) (-1058 (-814 (-217))))) (-15 -2170 ((-1117 (-217)) (-307 (-217)) (-619 (-1136)) (-1058 (-814 (-217))))) (-15 -2170 ((-1117 (-217)) (-1219 (-307 (-217))) (-619 (-1136)) (-1058 (-814 (-217))))) (-15 -3875 ((-619 (-217)) (-921 (-398 (-547))) (-1136) (-1058 (-814 (-217))))) (-15 -3302 ((-1119) (-217))) (-15 -2129 ((-619 (-1119)) (-619 (-217)))) (-15 -1334 ((-619 (-1119)) (-1117 (-217)))))) (T -291))
-((-1334 (*1 *2 *3) (-12 (-5 *3 (-1117 (-217))) (-5 *2 (-619 (-1119))) (-5 *1 (-291)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-619 (-217))) (-5 *2 (-619 (-1119))) (-5 *1 (-291)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1119)) (-5 *1 (-291)))) (-3875 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-921 (-398 (-547)))) (-5 *4 (-1136)) (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-291)))) (-2170 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1219 (-307 (-217)))) (-5 *4 (-619 (-1136))) (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-1117 (-217))) (-5 *1 (-291)))) (-2170 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-217))) (-5 *4 (-619 (-1136))) (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-1117 (-217))) (-5 *1 (-291)))) (-3358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-217))) (-5 *4 (-619 (-1136))) (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-1117 (-217))) (-5 *1 (-291)))) (-2008 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-217))) (-5 *4 (-1136)) (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-291)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-112)) (-5 *1 (-291)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-291)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-291)))))
-(-10 -7 (-15 -1367 ((-217) (-1058 (-814 (-217))))) (-15 -3377 ((-217) (-1058 (-814 (-217))))) (-15 -2933 ((-112) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2008 ((-619 (-217)) (-307 (-217)) (-1136) (-1058 (-814 (-217))))) (-15 -3358 ((-1117 (-217)) (-307 (-217)) (-619 (-1136)) (-1058 (-814 (-217))))) (-15 -2170 ((-1117 (-217)) (-307 (-217)) (-619 (-1136)) (-1058 (-814 (-217))))) (-15 -2170 ((-1117 (-217)) (-1219 (-307 (-217))) (-619 (-1136)) (-1058 (-814 (-217))))) (-15 -3875 ((-619 (-217)) (-921 (-398 (-547))) (-1136) (-1058 (-814 (-217))))) (-15 -3302 ((-1119) (-217))) (-15 -2129 ((-619 (-1119)) (-619 (-217)))) (-15 -1334 ((-619 (-1119)) (-1117 (-217)))))
-((-1974 (((-619 (-590 $)) $) 30)) (-3008 (($ $ (-285 $)) 81) (($ $ (-619 (-285 $))) 123) (($ $ (-619 (-590 $)) (-619 $)) NIL)) (-2707 (((-3 (-590 $) "failed") $) 113)) (-2652 (((-590 $) $) 112)) (-3590 (($ $) 19) (($ (-619 $)) 56)) (-1408 (((-619 (-114)) $) 38)) (-4185 (((-114) (-114)) 91)) (-2935 (((-112) $) 131)) (-2790 (($ (-1 $ $) (-590 $)) 89)) (-3024 (((-3 (-590 $) "failed") $) 93)) (-1469 (($ (-114) $) 61) (($ (-114) (-619 $)) 100)) (-1667 (((-112) $ (-114)) 117) (((-112) $ (-1136)) 116)) (-4029 (((-745) $) 46)) (-3883 (((-112) $ $) 59) (((-112) $ (-1136)) 51)) (-3874 (((-112) $) 129)) (-2679 (($ $ (-590 $) $) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL) (($ $ (-619 (-285 $))) 121) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1136)) (-619 (-1 $ $))) 84) (($ $ (-619 (-1136)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1136) (-1 $ (-619 $))) 69) (($ $ (-1136) (-1 $ $)) 75) (($ $ (-619 (-114)) (-619 (-1 $ $))) 83) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 85) (($ $ (-114) (-1 $ (-619 $))) 71) (($ $ (-114) (-1 $ $)) 77)) (-3334 (($ (-114) $) 62) (($ (-114) $ $) 63) (($ (-114) $ $ $) 64) (($ (-114) $ $ $ $) 65) (($ (-114) (-619 $)) 109)) (-2242 (($ $) 53) (($ $ $) 119)) (-4129 (($ $) 17) (($ (-619 $)) 55)) (-3128 (((-112) (-114)) 22)))
-(((-292 |#1|) (-10 -8 (-15 -2935 ((-112) |#1|)) (-15 -3874 ((-112) |#1|)) (-15 -2679 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2679 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2679 (|#1| |#1| (-1136) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1136) (-1 |#1| (-619 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 (-1 |#1| |#1|)))) (-15 -3883 ((-112) |#1| (-1136))) (-15 -3883 ((-112) |#1| |#1|)) (-15 -2790 (|#1| (-1 |#1| |#1|) (-590 |#1|))) (-15 -1469 (|#1| (-114) (-619 |#1|))) (-15 -1469 (|#1| (-114) |#1|)) (-15 -1667 ((-112) |#1| (-1136))) (-15 -1667 ((-112) |#1| (-114))) (-15 -3128 ((-112) (-114))) (-15 -4185 ((-114) (-114))) (-15 -1408 ((-619 (-114)) |#1|)) (-15 -1974 ((-619 (-590 |#1|)) |#1|)) (-15 -3024 ((-3 (-590 |#1|) "failed") |#1|)) (-15 -4029 ((-745) |#1|)) (-15 -2242 (|#1| |#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -3590 (|#1| (-619 |#1|))) (-15 -3590 (|#1| |#1|)) (-15 -4129 (|#1| (-619 |#1|))) (-15 -4129 (|#1| |#1|)) (-15 -3008 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -3008 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -3008 (|#1| |#1| (-285 |#1|))) (-15 -3334 (|#1| (-114) (-619 |#1|))) (-15 -3334 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3334 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3334 (|#1| (-114) |#1| |#1|)) (-15 -3334 (|#1| (-114) |#1|)) (-15 -2679 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-285 |#1|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -2679 (|#1| |#1| (-590 |#1|) |#1|)) (-15 -2652 ((-590 |#1|) |#1|)) (-15 -2707 ((-3 (-590 |#1|) "failed") |#1|))) (-293)) (T -292))
-((-4185 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-292 *3)) (-4 *3 (-293)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-292 *4)) (-4 *4 (-293)))))
-(-10 -8 (-15 -2935 ((-112) |#1|)) (-15 -3874 ((-112) |#1|)) (-15 -2679 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2679 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2679 (|#1| |#1| (-1136) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1136) (-1 |#1| (-619 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 (-1 |#1| |#1|)))) (-15 -3883 ((-112) |#1| (-1136))) (-15 -3883 ((-112) |#1| |#1|)) (-15 -2790 (|#1| (-1 |#1| |#1|) (-590 |#1|))) (-15 -1469 (|#1| (-114) (-619 |#1|))) (-15 -1469 (|#1| (-114) |#1|)) (-15 -1667 ((-112) |#1| (-1136))) (-15 -1667 ((-112) |#1| (-114))) (-15 -3128 ((-112) (-114))) (-15 -4185 ((-114) (-114))) (-15 -1408 ((-619 (-114)) |#1|)) (-15 -1974 ((-619 (-590 |#1|)) |#1|)) (-15 -3024 ((-3 (-590 |#1|) "failed") |#1|)) (-15 -4029 ((-745) |#1|)) (-15 -2242 (|#1| |#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -3590 (|#1| (-619 |#1|))) (-15 -3590 (|#1| |#1|)) (-15 -4129 (|#1| (-619 |#1|))) (-15 -4129 (|#1| |#1|)) (-15 -3008 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -3008 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -3008 (|#1| |#1| (-285 |#1|))) (-15 -3334 (|#1| (-114) (-619 |#1|))) (-15 -3334 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3334 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3334 (|#1| (-114) |#1| |#1|)) (-15 -3334 (|#1| (-114) |#1|)) (-15 -2679 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-285 |#1|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -2679 (|#1| |#1| (-590 |#1|) |#1|)) (-15 -2652 ((-590 |#1|) |#1|)) (-15 -2707 ((-3 (-590 |#1|) "failed") |#1|)))
-((-3826 (((-112) $ $) 7)) (-1974 (((-619 (-590 $)) $) 44)) (-3008 (($ $ (-285 $)) 56) (($ $ (-619 (-285 $))) 55) (($ $ (-619 (-590 $)) (-619 $)) 54)) (-2707 (((-3 (-590 $) "failed") $) 69)) (-2652 (((-590 $) $) 68)) (-3590 (($ $) 51) (($ (-619 $)) 50)) (-1408 (((-619 (-114)) $) 43)) (-4185 (((-114) (-114)) 42)) (-2935 (((-112) $) 22 (|has| $ (-1007 (-547))))) (-2428 (((-1132 $) (-590 $)) 25 (|has| $ (-1016)))) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-2790 (($ (-1 $ $) (-590 $)) 36)) (-3024 (((-3 (-590 $) "failed") $) 46)) (-1466 (((-1119) $) 9)) (-2065 (((-619 (-590 $)) $) 45)) (-1469 (($ (-114) $) 38) (($ (-114) (-619 $)) 37)) (-1667 (((-112) $ (-114)) 40) (((-112) $ (-1136)) 39)) (-4029 (((-745) $) 47)) (-3979 (((-1082) $) 10)) (-3883 (((-112) $ $) 35) (((-112) $ (-1136)) 34)) (-3874 (((-112) $) 23 (|has| $ (-1007 (-547))))) (-2679 (($ $ (-590 $) $) 67) (($ $ (-619 (-590 $)) (-619 $)) 66) (($ $ (-619 (-285 $))) 65) (($ $ (-285 $)) 64) (($ $ $ $) 63) (($ $ (-619 $) (-619 $)) 62) (($ $ (-619 (-1136)) (-619 (-1 $ $))) 33) (($ $ (-619 (-1136)) (-619 (-1 $ (-619 $)))) 32) (($ $ (-1136) (-1 $ (-619 $))) 31) (($ $ (-1136) (-1 $ $)) 30) (($ $ (-619 (-114)) (-619 (-1 $ $))) 29) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 28) (($ $ (-114) (-1 $ (-619 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-3334 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-619 $)) 57)) (-2242 (($ $) 49) (($ $ $) 48)) (-1882 (($ $) 24 (|has| $ (-1016)))) (-3838 (((-832) $) 11) (($ (-590 $)) 70)) (-4129 (($ $) 53) (($ (-619 $)) 52)) (-3128 (((-112) (-114)) 41)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)))
-(((-293) (-138)) (T -293))
-((-3334 (*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) (-3334 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) (-3334 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) (-3334 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) (-3334 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-293)))) (-3008 (*1 *1 *1 *2) (-12 (-5 *2 (-285 *1)) (-4 *1 (-293)))) (-3008 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-285 *1))) (-4 *1 (-293)))) (-3008 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-590 *1))) (-5 *3 (-619 *1)) (-4 *1 (-293)))) (-4129 (*1 *1 *1) (-4 *1 (-293))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-293)))) (-3590 (*1 *1 *1) (-4 *1 (-293))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-293)))) (-2242 (*1 *1 *1) (-4 *1 (-293))) (-2242 (*1 *1 *1 *1) (-4 *1 (-293))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-745)))) (-3024 (*1 *2 *1) (|partial| -12 (-5 *2 (-590 *1)) (-4 *1 (-293)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-619 (-590 *1))) (-4 *1 (-293)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-619 (-590 *1))) (-4 *1 (-293)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-619 (-114))))) (-4185 (*1 *2 *2) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) (-3128 (*1 *2 *3) (-12 (-4 *1 (-293)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1667 (*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1667 (*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1136)) (-5 *2 (-112)))) (-1469 (*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) (-1469 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-293)))) (-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-590 *1)) (-4 *1 (-293)))) (-3883 (*1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-112)))) (-3883 (*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1136)) (-5 *2 (-112)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-293)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-293)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-293)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-293)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-293)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-293)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-590 *1)) (-4 *1 (-1016)) (-4 *1 (-293)) (-5 *2 (-1132 *1)))) (-1882 (*1 *1 *1) (-12 (-4 *1 (-1016)) (-4 *1 (-293)))) (-3874 (*1 *2 *1) (-12 (-4 *1 (-1007 (-547))) (-4 *1 (-293)) (-5 *2 (-112)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-1007 (-547))) (-4 *1 (-293)) (-5 *2 (-112)))))
-(-13 (-821) (-1007 (-590 $)) (-503 (-590 $) $) (-300 $) (-10 -8 (-15 -3334 ($ (-114) $)) (-15 -3334 ($ (-114) $ $)) (-15 -3334 ($ (-114) $ $ $)) (-15 -3334 ($ (-114) $ $ $ $)) (-15 -3334 ($ (-114) (-619 $))) (-15 -3008 ($ $ (-285 $))) (-15 -3008 ($ $ (-619 (-285 $)))) (-15 -3008 ($ $ (-619 (-590 $)) (-619 $))) (-15 -4129 ($ $)) (-15 -4129 ($ (-619 $))) (-15 -3590 ($ $)) (-15 -3590 ($ (-619 $))) (-15 -2242 ($ $)) (-15 -2242 ($ $ $)) (-15 -4029 ((-745) $)) (-15 -3024 ((-3 (-590 $) "failed") $)) (-15 -2065 ((-619 (-590 $)) $)) (-15 -1974 ((-619 (-590 $)) $)) (-15 -1408 ((-619 (-114)) $)) (-15 -4185 ((-114) (-114))) (-15 -3128 ((-112) (-114))) (-15 -1667 ((-112) $ (-114))) (-15 -1667 ((-112) $ (-1136))) (-15 -1469 ($ (-114) $)) (-15 -1469 ($ (-114) (-619 $))) (-15 -2790 ($ (-1 $ $) (-590 $))) (-15 -3883 ((-112) $ $)) (-15 -3883 ((-112) $ (-1136))) (-15 -2679 ($ $ (-619 (-1136)) (-619 (-1 $ $)))) (-15 -2679 ($ $ (-619 (-1136)) (-619 (-1 $ (-619 $))))) (-15 -2679 ($ $ (-1136) (-1 $ (-619 $)))) (-15 -2679 ($ $ (-1136) (-1 $ $))) (-15 -2679 ($ $ (-619 (-114)) (-619 (-1 $ $)))) (-15 -2679 ($ $ (-619 (-114)) (-619 (-1 $ (-619 $))))) (-15 -2679 ($ $ (-114) (-1 $ (-619 $)))) (-15 -2679 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1016)) (PROGN (-15 -2428 ((-1132 $) (-590 $))) (-15 -1882 ($ $))) |%noBranch|) (IF (|has| $ (-1007 (-547))) (PROGN (-15 -3874 ((-112) $)) (-15 -2935 ((-112) $))) |%noBranch|)))
-(((-101) . T) ((-591 (-832)) . T) ((-300 $) . T) ((-503 (-590 $) $) . T) ((-503 $ $) . T) ((-821) . T) ((-1007 (-590 $)) . T) ((-1063) . T))
-((-4309 (((-619 |#1|) (-619 |#1|)) 10)))
-(((-294 |#1|) (-10 -7 (-15 -4309 ((-619 |#1|) (-619 |#1|)))) (-819)) (T -294))
-((-4309 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-819)) (-5 *1 (-294 *3)))))
-(-10 -7 (-15 -4309 ((-619 |#1|) (-619 |#1|))))
-((-2790 (((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)) 17)))
-(((-295 |#1| |#2|) (-10 -7 (-15 -2790 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)))) (-1016) (-1016)) (T -295))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-663 *6)) (-5 *1 (-295 *5 *6)))))
-(-10 -7 (-15 -2790 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|))))
-((-2774 (((-1219 (-307 (-370))) (-1219 (-307 (-217)))) 105)) (-2409 (((-1058 (-814 (-217))) (-1058 (-814 (-370)))) 40)) (-1334 (((-619 (-1119)) (-1117 (-217))) 87)) (-1500 (((-307 (-370)) (-921 (-217))) 50)) (-2915 (((-217) (-921 (-217))) 46)) (-3010 (((-1119) (-370)) 169)) (-3472 (((-814 (-217)) (-814 (-370))) 34)) (-2269 (((-2 (|:| |additions| (-547)) (|:| |multiplications| (-547)) (|:| |exponentiations| (-547)) (|:| |functionCalls| (-547))) (-1219 (-307 (-217)))) 143)) (-2142 (((-1004) (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004)))) 181) (((-1004) (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))))) 179)) (-1877 (((-663 (-217)) (-619 (-217)) (-745)) 14)) (-4087 (((-1219 (-673)) (-619 (-217))) 94)) (-2129 (((-619 (-1119)) (-619 (-217))) 75)) (-3976 (((-3 (-307 (-217)) "failed") (-307 (-217))) 120)) (-3929 (((-112) (-217) (-1058 (-814 (-217)))) 109)) (-1898 (((-1004) (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))) 198)) (-1367 (((-217) (-1058 (-814 (-217)))) 107)) (-3377 (((-217) (-1058 (-814 (-217)))) 108)) (-3998 (((-217) (-398 (-547))) 27)) (-1692 (((-1119) (-370)) 73)) (-2368 (((-217) (-370)) 17)) (-2725 (((-370) (-1219 (-307 (-217)))) 154)) (-1344 (((-307 (-217)) (-307 (-370))) 23)) (-2387 (((-398 (-547)) (-307 (-217))) 53)) (-2637 (((-307 (-398 (-547))) (-307 (-217))) 69)) (-3483 (((-307 (-370)) (-307 (-217))) 98)) (-4196 (((-217) (-307 (-217))) 54)) (-3777 (((-619 (-217)) (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) 64)) (-3154 (((-1058 (-814 (-217))) (-1058 (-814 (-217)))) 61)) (-3302 (((-1119) (-217)) 72)) (-2361 (((-673) (-217)) 90)) (-2074 (((-398 (-547)) (-217)) 55)) (-2411 (((-307 (-370)) (-217)) 49)) (-2838 (((-619 (-1058 (-814 (-217)))) (-619 (-1058 (-814 (-370))))) 43)) (-1945 (((-1004) (-619 (-1004))) 165) (((-1004) (-1004) (-1004)) 162)) (-2827 (((-1004) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
-(((-296) (-10 -7 (-15 -2368 ((-217) (-370))) (-15 -1344 ((-307 (-217)) (-307 (-370)))) (-15 -3472 ((-814 (-217)) (-814 (-370)))) (-15 -2409 ((-1058 (-814 (-217))) (-1058 (-814 (-370))))) (-15 -2838 ((-619 (-1058 (-814 (-217)))) (-619 (-1058 (-814 (-370)))))) (-15 -2074 ((-398 (-547)) (-217))) (-15 -2387 ((-398 (-547)) (-307 (-217)))) (-15 -4196 ((-217) (-307 (-217)))) (-15 -3976 ((-3 (-307 (-217)) "failed") (-307 (-217)))) (-15 -2725 ((-370) (-1219 (-307 (-217))))) (-15 -2269 ((-2 (|:| |additions| (-547)) (|:| |multiplications| (-547)) (|:| |exponentiations| (-547)) (|:| |functionCalls| (-547))) (-1219 (-307 (-217))))) (-15 -2637 ((-307 (-398 (-547))) (-307 (-217)))) (-15 -3154 ((-1058 (-814 (-217))) (-1058 (-814 (-217))))) (-15 -3777 ((-619 (-217)) (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))) (-15 -2361 ((-673) (-217))) (-15 -4087 ((-1219 (-673)) (-619 (-217)))) (-15 -3483 ((-307 (-370)) (-307 (-217)))) (-15 -2774 ((-1219 (-307 (-370))) (-1219 (-307 (-217))))) (-15 -3929 ((-112) (-217) (-1058 (-814 (-217))))) (-15 -3302 ((-1119) (-217))) (-15 -1692 ((-1119) (-370))) (-15 -2129 ((-619 (-1119)) (-619 (-217)))) (-15 -1334 ((-619 (-1119)) (-1117 (-217)))) (-15 -1367 ((-217) (-1058 (-814 (-217))))) (-15 -3377 ((-217) (-1058 (-814 (-217))))) (-15 -1945 ((-1004) (-1004) (-1004))) (-15 -1945 ((-1004) (-619 (-1004)))) (-15 -3010 ((-1119) (-370))) (-15 -2142 ((-1004) (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))))) (-15 -2142 ((-1004) (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004))))) (-15 -2827 ((-1004) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1898 ((-1004) (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))))) (-15 -1500 ((-307 (-370)) (-921 (-217)))) (-15 -2915 ((-217) (-921 (-217)))) (-15 -2411 ((-307 (-370)) (-217))) (-15 -3998 ((-217) (-398 (-547)))) (-15 -1877 ((-663 (-217)) (-619 (-217)) (-745))))) (T -296))
-((-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-217))) (-5 *4 (-745)) (-5 *2 (-663 (-217))) (-5 *1 (-296)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-398 (-547))) (-5 *2 (-217)) (-5 *1 (-296)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-307 (-370))) (-5 *1 (-296)))) (-2915 (*1 *2 *3) (-12 (-5 *3 (-921 (-217))) (-5 *2 (-217)) (-5 *1 (-296)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-921 (-217))) (-5 *2 (-307 (-370))) (-5 *1 (-296)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))) (-5 *2 (-1004)) (-5 *1 (-296)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1004)) (-5 *1 (-296)))) (-2142 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004)))) (-5 *2 (-1004)) (-5 *1 (-296)))) (-2142 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))))) (-5 *2 (-1004)) (-5 *1 (-296)))) (-3010 (*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1119)) (-5 *1 (-296)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-619 (-1004))) (-5 *2 (-1004)) (-5 *1 (-296)))) (-1945 (*1 *2 *2 *2) (-12 (-5 *2 (-1004)) (-5 *1 (-296)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-296)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-296)))) (-1334 (*1 *2 *3) (-12 (-5 *3 (-1117 (-217))) (-5 *2 (-619 (-1119))) (-5 *1 (-296)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-619 (-217))) (-5 *2 (-619 (-1119))) (-5 *1 (-296)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1119)) (-5 *1 (-296)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1119)) (-5 *1 (-296)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-814 (-217)))) (-5 *3 (-217)) (-5 *2 (-112)) (-5 *1 (-296)))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-1219 (-307 (-217)))) (-5 *2 (-1219 (-307 (-370)))) (-5 *1 (-296)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-307 (-370))) (-5 *1 (-296)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-619 (-217))) (-5 *2 (-1219 (-673))) (-5 *1 (-296)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-673)) (-5 *1 (-296)))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-5 *2 (-619 (-217))) (-5 *1 (-296)))) (-3154 (*1 *2 *2) (-12 (-5 *2 (-1058 (-814 (-217)))) (-5 *1 (-296)))) (-2637 (*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-307 (-398 (-547)))) (-5 *1 (-296)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-1219 (-307 (-217)))) (-5 *2 (-2 (|:| |additions| (-547)) (|:| |multiplications| (-547)) (|:| |exponentiations| (-547)) (|:| |functionCalls| (-547)))) (-5 *1 (-296)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-1219 (-307 (-217)))) (-5 *2 (-370)) (-5 *1 (-296)))) (-3976 (*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-217))) (-5 *1 (-296)))) (-4196 (*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-217)) (-5 *1 (-296)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-398 (-547))) (-5 *1 (-296)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-398 (-547))) (-5 *1 (-296)))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-619 (-1058 (-814 (-370))))) (-5 *2 (-619 (-1058 (-814 (-217))))) (-5 *1 (-296)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-370)))) (-5 *2 (-1058 (-814 (-217)))) (-5 *1 (-296)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-814 (-370))) (-5 *2 (-814 (-217))) (-5 *1 (-296)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-307 (-370))) (-5 *2 (-307 (-217))) (-5 *1 (-296)))) (-2368 (*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-217)) (-5 *1 (-296)))))
-(-10 -7 (-15 -2368 ((-217) (-370))) (-15 -1344 ((-307 (-217)) (-307 (-370)))) (-15 -3472 ((-814 (-217)) (-814 (-370)))) (-15 -2409 ((-1058 (-814 (-217))) (-1058 (-814 (-370))))) (-15 -2838 ((-619 (-1058 (-814 (-217)))) (-619 (-1058 (-814 (-370)))))) (-15 -2074 ((-398 (-547)) (-217))) (-15 -2387 ((-398 (-547)) (-307 (-217)))) (-15 -4196 ((-217) (-307 (-217)))) (-15 -3976 ((-3 (-307 (-217)) "failed") (-307 (-217)))) (-15 -2725 ((-370) (-1219 (-307 (-217))))) (-15 -2269 ((-2 (|:| |additions| (-547)) (|:| |multiplications| (-547)) (|:| |exponentiations| (-547)) (|:| |functionCalls| (-547))) (-1219 (-307 (-217))))) (-15 -2637 ((-307 (-398 (-547))) (-307 (-217)))) (-15 -3154 ((-1058 (-814 (-217))) (-1058 (-814 (-217))))) (-15 -3777 ((-619 (-217)) (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))) (-15 -2361 ((-673) (-217))) (-15 -4087 ((-1219 (-673)) (-619 (-217)))) (-15 -3483 ((-307 (-370)) (-307 (-217)))) (-15 -2774 ((-1219 (-307 (-370))) (-1219 (-307 (-217))))) (-15 -3929 ((-112) (-217) (-1058 (-814 (-217))))) (-15 -3302 ((-1119) (-217))) (-15 -1692 ((-1119) (-370))) (-15 -2129 ((-619 (-1119)) (-619 (-217)))) (-15 -1334 ((-619 (-1119)) (-1117 (-217)))) (-15 -1367 ((-217) (-1058 (-814 (-217))))) (-15 -3377 ((-217) (-1058 (-814 (-217))))) (-15 -1945 ((-1004) (-1004) (-1004))) (-15 -1945 ((-1004) (-619 (-1004)))) (-15 -3010 ((-1119) (-370))) (-15 -2142 ((-1004) (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))))) (-15 -2142 ((-1004) (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004))))) (-15 -2827 ((-1004) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1898 ((-1004) (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))))) (-15 -1500 ((-307 (-370)) (-921 (-217)))) (-15 -2915 ((-217) (-921 (-217)))) (-15 -2411 ((-307 (-370)) (-217))) (-15 -3998 ((-217) (-398 (-547)))) (-15 -1877 ((-663 (-217)) (-619 (-217)) (-745))))
-((-1547 (((-112) $ $) 11)) (-2089 (($ $ $) 15)) (-2061 (($ $ $) 14)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 44)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 53)) (-3719 (($ $ $) 21) (($ (-619 $)) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2032 (((-3 $ "failed") $ $) 17)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 46)))
-(((-297 |#1|) (-10 -8 (-15 -3561 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -3853 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3853 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4238 |#1|)) |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -2061 (|#1| |#1| |#1|)) (-15 -1547 ((-112) |#1| |#1|)) (-15 -2512 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -4203 ((-2 (|:| -1563 (-619 |#1|)) (|:| -4238 |#1|)) (-619 |#1|))) (-15 -3719 (|#1| (-619 |#1|))) (-15 -3719 (|#1| |#1| |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#1|))) (-298)) (T -297))
-NIL
-(-10 -8 (-15 -3561 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -3853 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3853 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4238 |#1|)) |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -2061 (|#1| |#1| |#1|)) (-15 -1547 ((-112) |#1| |#1|)) (-15 -2512 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -4203 ((-2 (|:| -1563 (-619 |#1|)) (|:| -4238 |#1|)) (-619 |#1|))) (-15 -3719 (|#1| (-619 |#1|))) (-15 -3719 (|#1| |#1| |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-1547 (((-112) $ $) 57)) (-1948 (($) 17 T CONST)) (-2089 (($ $ $) 53)) (-3855 (((-3 $ "failed") $) 32)) (-2061 (($ $ $) 54)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-2261 (((-112) $) 30)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2471 (((-745) $) 56)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-298) (-138)) (T -298))
-((-1547 (*1 *2 *1 *1) (-12 (-4 *1 (-298)) (-5 *2 (-112)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-745)))) (-4030 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-298)))) (-2061 (*1 *1 *1 *1) (-4 *1 (-298))) (-2089 (*1 *1 *1 *1) (-4 *1 (-298))) (-3853 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4238 *1))) (-4 *1 (-298)))) (-3853 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-298)))) (-3561 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-298)))))
-(-13 (-889) (-10 -8 (-15 -1547 ((-112) $ $)) (-15 -2471 ((-745) $)) (-15 -4030 ((-2 (|:| -2235 $) (|:| -2916 $)) $ $)) (-15 -2061 ($ $ $)) (-15 -2089 ($ $ $)) (-15 -3853 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $)) (-15 -3853 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3561 ((-3 (-619 $) "failed") (-619 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-442) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2679 (($ $ (-619 |#2|) (-619 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-285 |#2|)) 11) (($ $ (-619 (-285 |#2|))) NIL)))
-(((-299 |#1| |#2|) (-10 -8 (-15 -2679 (|#1| |#1| (-619 (-285 |#2|)))) (-15 -2679 (|#1| |#1| (-285 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-619 |#2|) (-619 |#2|)))) (-300 |#2|) (-1063)) (T -299))
-NIL
-(-10 -8 (-15 -2679 (|#1| |#1| (-619 (-285 |#2|)))) (-15 -2679 (|#1| |#1| (-285 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-619 |#2|) (-619 |#2|))))
-((-2679 (($ $ (-619 |#1|) (-619 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-285 |#1|)) 11) (($ $ (-619 (-285 |#1|))) 10)))
-(((-300 |#1|) (-138) (-1063)) (T -300))
-((-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-285 *3)) (-4 *1 (-300 *3)) (-4 *3 (-1063)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-285 *3))) (-4 *1 (-300 *3)) (-4 *3 (-1063)))))
-(-13 (-503 |t#1| |t#1|) (-10 -8 (-15 -2679 ($ $ (-285 |t#1|))) (-15 -2679 ($ $ (-619 (-285 |t#1|))))))
-(((-503 |#1| |#1|) . T))
-((-2679 ((|#1| (-1 |#1| (-547)) (-1138 (-398 (-547)))) 25)))
-(((-301 |#1|) (-10 -7 (-15 -2679 (|#1| (-1 |#1| (-547)) (-1138 (-398 (-547)))))) (-38 (-398 (-547)))) (T -301))
-((-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-547))) (-5 *4 (-1138 (-398 (-547)))) (-5 *1 (-301 *2)) (-4 *2 (-38 (-398 (-547)))))))
-(-10 -7 (-15 -2679 (|#1| (-1 |#1| (-547)) (-1138 (-398 (-547))))))
-((-3826 (((-112) $ $) NIL)) (-1486 (((-547) $) 12)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3947 (((-1141) $) 9)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-302) (-13 (-1047) (-10 -8 (-15 -3947 ((-1141) $)) (-15 -1486 ((-547) $))))) (T -302))
-((-3947 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-302)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-302)))))
-(-13 (-1047) (-10 -8 (-15 -3947 ((-1141) $)) (-15 -1486 ((-547) $))))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 7)) (-2381 (((-112) $ $) 9)))
-(((-303) (-1063)) (T -303))
-NIL
-(-1063)
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 62)) (-2092 (((-1205 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-298)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-878)))) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-878)))) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-794)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-1205 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1136) "failed") $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-1007 (-1136)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-1007 (-547)))) (((-3 (-1204 |#2| |#3| |#4|) "failed") $) 25)) (-2652 (((-1205 |#1| |#2| |#3| |#4|) $) NIL) (((-1136) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-1007 (-1136)))) (((-398 (-547)) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-1007 (-547)))) (((-547) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-1007 (-547)))) (((-1204 |#2| |#3| |#4|) $) NIL)) (-2089 (($ $ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-1205 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1219 (-1205 |#1| |#2| |#3| |#4|)))) (-663 $) (-1219 $)) NIL) (((-663 (-1205 |#1| |#2| |#3| |#4|)) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-532)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-4270 (((-112) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-794)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-855 (-370))))) (-2261 (((-112) $) NIL)) (-4170 (($ $) NIL)) (-1386 (((-1205 |#1| |#2| |#3| |#4|) $) 21)) (-3477 (((-3 $ "failed") $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-1112)))) (-1860 (((-112) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-794)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2856 (($ $ $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-821)))) (-3567 (($ $ $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-821)))) (-2790 (($ (-1 (-1205 |#1| |#2| |#3| |#4|) (-1205 |#1| |#2| |#3| |#4|)) $) NIL)) (-3671 (((-3 (-814 |#2|) "failed") $) 78)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-1112)) CONST)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3682 (($ $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-298)))) (-1276 (((-1205 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-532)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-878)))) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2679 (($ $ (-619 (-1205 |#1| |#2| |#3| |#4|)) (-619 (-1205 |#1| |#2| |#3| |#4|))) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-300 (-1205 |#1| |#2| |#3| |#4|)))) (($ $ (-1205 |#1| |#2| |#3| |#4|) (-1205 |#1| |#2| |#3| |#4|)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-300 (-1205 |#1| |#2| |#3| |#4|)))) (($ $ (-285 (-1205 |#1| |#2| |#3| |#4|))) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-300 (-1205 |#1| |#2| |#3| |#4|)))) (($ $ (-619 (-285 (-1205 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-300 (-1205 |#1| |#2| |#3| |#4|)))) (($ $ (-619 (-1136)) (-619 (-1205 |#1| |#2| |#3| |#4|))) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-503 (-1136) (-1205 |#1| |#2| |#3| |#4|)))) (($ $ (-1136) (-1205 |#1| |#2| |#3| |#4|)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-503 (-1136) (-1205 |#1| |#2| |#3| |#4|))))) (-2471 (((-745) $) NIL)) (-3334 (($ $ (-1205 |#1| |#2| |#3| |#4|)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-277 (-1205 |#1| |#2| |#3| |#4|) (-1205 |#1| |#2| |#3| |#4|))))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3448 (($ $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-225))) (($ $ (-745)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-225))) (($ $ (-1136)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-869 (-1136)))) (($ $ (-1 (-1205 |#1| |#2| |#3| |#4|) (-1205 |#1| |#2| |#3| |#4|)) (-745)) NIL) (($ $ (-1 (-1205 |#1| |#2| |#3| |#4|) (-1205 |#1| |#2| |#3| |#4|))) NIL)) (-2995 (($ $) NIL)) (-1396 (((-1205 |#1| |#2| |#3| |#4|) $) 17)) (-2838 (((-861 (-547)) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-592 (-523)))) (((-370) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-991))) (((-217) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-991)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-1205 |#1| |#2| |#3| |#4|) (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-1205 |#1| |#2| |#3| |#4|)) 29) (($ (-1136)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-1007 (-1136)))) (($ (-1204 |#2| |#3| |#4|)) 36)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| (-1205 |#1| |#2| |#3| |#4|) (-878))) (|has| (-1205 |#1| |#2| |#3| |#4|) (-143))))) (-2736 (((-745)) NIL)) (-3720 (((-1205 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-532)))) (-3577 (((-112) $ $) NIL)) (-2255 (($ $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-794)))) (-3269 (($) 41 T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-225))) (($ $ (-745)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-225))) (($ $ (-1136)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-869 (-1136)))) (($ $ (-1 (-1205 |#1| |#2| |#3| |#4|) (-1205 |#1| |#2| |#3| |#4|)) (-745)) NIL) (($ $ (-1 (-1205 |#1| |#2| |#3| |#4|) (-1205 |#1| |#2| |#3| |#4|))) NIL)) (-2441 (((-112) $ $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-821)))) (-2418 (((-112) $ $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-821)))) (-2405 (((-112) $ $) NIL (|has| (-1205 |#1| |#2| |#3| |#4|) (-821)))) (-2506 (($ $ $) 34) (($ (-1205 |#1| |#2| |#3| |#4|) (-1205 |#1| |#2| |#3| |#4|)) 31)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-1205 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1205 |#1| |#2| |#3| |#4|)) NIL)))
-(((-304 |#1| |#2| |#3| |#4|) (-13 (-961 (-1205 |#1| |#2| |#3| |#4|)) (-1007 (-1204 |#2| |#3| |#4|)) (-10 -8 (-15 -3671 ((-3 (-814 |#2|) "failed") $)) (-15 -3838 ($ (-1204 |#2| |#3| |#4|))))) (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442)) (-13 (-27) (-1158) (-421 |#1|)) (-1136) |#2|) (T -304))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1204 *4 *5 *6)) (-4 *4 (-13 (-27) (-1158) (-421 *3))) (-14 *5 (-1136)) (-14 *6 *4) (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442))) (-5 *1 (-304 *3 *4 *5 *6)))) (-3671 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442))) (-5 *2 (-814 *4)) (-5 *1 (-304 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1158) (-421 *3))) (-14 *5 (-1136)) (-14 *6 *4))))
-(-13 (-961 (-1205 |#1| |#2| |#3| |#4|)) (-1007 (-1204 |#2| |#3| |#4|)) (-10 -8 (-15 -3671 ((-3 (-814 |#2|) "failed") $)) (-15 -3838 ($ (-1204 |#2| |#3| |#4|)))))
-((-2790 (((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)) 13)))
-(((-305 |#1| |#2|) (-10 -7 (-15 -2790 ((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)))) (-821) (-821)) (T -305))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-307 *5)) (-4 *5 (-821)) (-4 *6 (-821)) (-5 *2 (-307 *6)) (-5 *1 (-305 *5 *6)))))
-(-10 -7 (-15 -2790 ((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|))))
-((-2334 (((-52) |#2| (-285 |#2|) (-745)) 33) (((-52) |#2| (-285 |#2|)) 24) (((-52) |#2| (-745)) 28) (((-52) |#2|) 25) (((-52) (-1136)) 21)) (-2819 (((-52) |#2| (-285 |#2|) (-398 (-547))) 51) (((-52) |#2| (-285 |#2|)) 48) (((-52) |#2| (-398 (-547))) 50) (((-52) |#2|) 49) (((-52) (-1136)) 47)) (-2356 (((-52) |#2| (-285 |#2|) (-398 (-547))) 46) (((-52) |#2| (-285 |#2|)) 43) (((-52) |#2| (-398 (-547))) 45) (((-52) |#2|) 44) (((-52) (-1136)) 42)) (-2343 (((-52) |#2| (-285 |#2|) (-547)) 39) (((-52) |#2| (-285 |#2|)) 35) (((-52) |#2| (-547)) 38) (((-52) |#2|) 36) (((-52) (-1136)) 34)))
-(((-306 |#1| |#2|) (-10 -7 (-15 -2334 ((-52) (-1136))) (-15 -2334 ((-52) |#2|)) (-15 -2334 ((-52) |#2| (-745))) (-15 -2334 ((-52) |#2| (-285 |#2|))) (-15 -2334 ((-52) |#2| (-285 |#2|) (-745))) (-15 -2343 ((-52) (-1136))) (-15 -2343 ((-52) |#2|)) (-15 -2343 ((-52) |#2| (-547))) (-15 -2343 ((-52) |#2| (-285 |#2|))) (-15 -2343 ((-52) |#2| (-285 |#2|) (-547))) (-15 -2356 ((-52) (-1136))) (-15 -2356 ((-52) |#2|)) (-15 -2356 ((-52) |#2| (-398 (-547)))) (-15 -2356 ((-52) |#2| (-285 |#2|))) (-15 -2356 ((-52) |#2| (-285 |#2|) (-398 (-547)))) (-15 -2819 ((-52) (-1136))) (-15 -2819 ((-52) |#2|)) (-15 -2819 ((-52) |#2| (-398 (-547)))) (-15 -2819 ((-52) |#2| (-285 |#2|))) (-15 -2819 ((-52) |#2| (-285 |#2|) (-398 (-547))))) (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1158) (-421 |#1|))) (T -306))
-((-2819 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-285 *3)) (-5 *5 (-398 (-547))) (-4 *3 (-13 (-27) (-1158) (-421 *6))) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *6 *3)))) (-2819 (*1 *2 *3 *4) (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)))) (-2819 (*1 *2 *3 *4) (-12 (-5 *4 (-398 (-547))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))))) (-2819 (*1 *2 *3) (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *4))))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *5)) (-4 *5 (-13 (-27) (-1158) (-421 *4))))) (-2356 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-285 *3)) (-5 *5 (-398 (-547))) (-4 *3 (-13 (-27) (-1158) (-421 *6))) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *6 *3)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-398 (-547))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))))) (-2356 (*1 *2 *3) (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *4))))) (-2356 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *5)) (-4 *5 (-13 (-27) (-1158) (-421 *4))))) (-2343 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *6))) (-4 *6 (-13 (-442) (-821) (-1007 *5) (-615 *5))) (-5 *5 (-547)) (-5 *2 (-52)) (-5 *1 (-306 *6 *3)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *4 (-547)) (-4 *5 (-13 (-442) (-821) (-1007 *4) (-615 *4))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))))) (-2343 (*1 *2 *3) (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *4))))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *5)) (-4 *5 (-13 (-27) (-1158) (-421 *4))))) (-2334 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-285 *3)) (-5 *5 (-745)) (-4 *3 (-13 (-27) (-1158) (-421 *6))) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *6 *3)))) (-2334 (*1 *2 *3 *4) (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)))) (-2334 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))))) (-2334 (*1 *2 *3) (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *4))))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *5)) (-4 *5 (-13 (-27) (-1158) (-421 *4))))))
-(-10 -7 (-15 -2334 ((-52) (-1136))) (-15 -2334 ((-52) |#2|)) (-15 -2334 ((-52) |#2| (-745))) (-15 -2334 ((-52) |#2| (-285 |#2|))) (-15 -2334 ((-52) |#2| (-285 |#2|) (-745))) (-15 -2343 ((-52) (-1136))) (-15 -2343 ((-52) |#2|)) (-15 -2343 ((-52) |#2| (-547))) (-15 -2343 ((-52) |#2| (-285 |#2|))) (-15 -2343 ((-52) |#2| (-285 |#2|) (-547))) (-15 -2356 ((-52) (-1136))) (-15 -2356 ((-52) |#2|)) (-15 -2356 ((-52) |#2| (-398 (-547)))) (-15 -2356 ((-52) |#2| (-285 |#2|))) (-15 -2356 ((-52) |#2| (-285 |#2|) (-398 (-547)))) (-15 -2819 ((-52) (-1136))) (-15 -2819 ((-52) |#2|)) (-15 -2819 ((-52) |#2| (-398 (-547)))) (-15 -2819 ((-52) |#2| (-285 |#2|))) (-15 -2819 ((-52) |#2| (-285 |#2|) (-398 (-547)))))
-((-3826 (((-112) $ $) NIL)) (-3358 (((-619 $) $ (-1136)) NIL (|has| |#1| (-539))) (((-619 $) $) NIL (|has| |#1| (-539))) (((-619 $) (-1132 $) (-1136)) NIL (|has| |#1| (-539))) (((-619 $) (-1132 $)) NIL (|has| |#1| (-539))) (((-619 $) (-921 $)) NIL (|has| |#1| (-539)))) (-2336 (($ $ (-1136)) NIL (|has| |#1| (-539))) (($ $) NIL (|has| |#1| (-539))) (($ (-1132 $) (-1136)) NIL (|has| |#1| (-539))) (($ (-1132 $)) NIL (|has| |#1| (-539))) (($ (-921 $)) NIL (|has| |#1| (-539)))) (-1499 (((-112) $) 27 (-1530 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))))) (-2267 (((-619 (-1136)) $) 351)) (-2078 (((-398 (-1132 $)) $ (-590 $)) NIL (|has| |#1| (-539)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-1974 (((-619 (-590 $)) $) NIL)) (-1656 (($ $) 161 (|has| |#1| (-539)))) (-1505 (($ $) 137 (|has| |#1| (-539)))) (-1570 (($ $ (-1056 $)) 222 (|has| |#1| (-539))) (($ $ (-1136)) 218 (|has| |#1| (-539)))) (-3672 (((-3 $ "failed") $ $) NIL (-1530 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))))) (-3008 (($ $ (-285 $)) NIL) (($ $ (-619 (-285 $))) 368) (($ $ (-619 (-590 $)) (-619 $)) 412)) (-2277 (((-409 (-1132 $)) (-1132 $)) 295 (-12 (|has| |#1| (-442)) (|has| |#1| (-539))))) (-2555 (($ $) NIL (|has| |#1| (-539)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-539)))) (-2127 (($ $) NIL (|has| |#1| (-539)))) (-1547 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1632 (($ $) 157 (|has| |#1| (-539)))) (-1479 (($ $) 133 (|has| |#1| (-539)))) (-2840 (($ $ (-547)) 72 (|has| |#1| (-539)))) (-1678 (($ $) 165 (|has| |#1| (-539)))) (-1532 (($ $) 141 (|has| |#1| (-539)))) (-1948 (($) NIL (-1530 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075))) CONST)) (-3952 (((-619 $) $ (-1136)) NIL (|has| |#1| (-539))) (((-619 $) $) NIL (|has| |#1| (-539))) (((-619 $) (-1132 $) (-1136)) NIL (|has| |#1| (-539))) (((-619 $) (-1132 $)) NIL (|has| |#1| (-539))) (((-619 $) (-921 $)) NIL (|has| |#1| (-539)))) (-1531 (($ $ (-1136)) NIL (|has| |#1| (-539))) (($ $) NIL (|has| |#1| (-539))) (($ (-1132 $) (-1136)) 124 (|has| |#1| (-539))) (($ (-1132 $)) NIL (|has| |#1| (-539))) (($ (-921 $)) NIL (|has| |#1| (-539)))) (-2707 (((-3 (-590 $) "failed") $) 17) (((-3 (-1136) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-921 |#1|)) "failed") $) NIL (|has| |#1| (-539))) (((-3 (-921 |#1|) "failed") $) NIL (|has| |#1| (-1016))) (((-3 (-398 (-547)) "failed") $) 46 (-1530 (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-2652 (((-590 $) $) 11) (((-1136) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-921 |#1|)) $) NIL (|has| |#1| (-539))) (((-921 |#1|) $) NIL (|has| |#1| (-1016))) (((-398 (-547)) $) 306 (-1530 (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-2089 (($ $ $) NIL (|has| |#1| (-539)))) (-1694 (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 117 (|has| |#1| (-1016))) (((-663 |#1|) (-663 $)) 107 (|has| |#1| (-1016))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))) (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))))) (-2552 (($ $) 89 (|has| |#1| (-539)))) (-3855 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075))))) (-2061 (($ $ $) NIL (|has| |#1| (-539)))) (-4080 (($ $ (-1056 $)) 226 (|has| |#1| (-539))) (($ $ (-1136)) 224 (|has| |#1| (-539)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-539)))) (-1791 (((-112) $) NIL (|has| |#1| (-539)))) (-2758 (($ $ $) 192 (|has| |#1| (-539)))) (-1419 (($) 127 (|has| |#1| (-539)))) (-3091 (($ $ $) 212 (|has| |#1| (-539)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 374 (|has| |#1| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 381 (|has| |#1| (-855 (-370))))) (-3590 (($ $) NIL) (($ (-619 $)) NIL)) (-1408 (((-619 (-114)) $) NIL)) (-4185 (((-114) (-114)) 267)) (-2261 (((-112) $) 25 (-1530 (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075))))) (-2935 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-4170 (($ $) 71 (|has| |#1| (-1016)))) (-1386 (((-1087 |#1| (-590 $)) $) 84 (|has| |#1| (-1016)))) (-1938 (((-112) $) 64 (|has| |#1| (-539)))) (-3869 (($ $ (-547)) NIL (|has| |#1| (-539)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-539)))) (-2428 (((-1132 $) (-590 $)) 268 (|has| $ (-1016)))) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2790 (($ (-1 $ $) (-590 $)) 408)) (-3024 (((-3 (-590 $) "failed") $) NIL)) (-3624 (($ $) 131 (|has| |#1| (-539)))) (-1707 (($ $) 237 (|has| |#1| (-539)))) (-3689 (($ (-619 $)) NIL (|has| |#1| (-539))) (($ $ $) NIL (|has| |#1| (-539)))) (-1466 (((-1119) $) NIL)) (-2065 (((-619 (-590 $)) $) 49)) (-1469 (($ (-114) $) NIL) (($ (-114) (-619 $)) 413)) (-2505 (((-3 (-619 $) "failed") $) NIL (|has| |#1| (-1075)))) (-1376 (((-3 (-2 (|:| |val| $) (|:| -3322 (-547))) "failed") $) NIL (|has| |#1| (-1016)))) (-3663 (((-3 (-619 $) "failed") $) 416 (|has| |#1| (-25)))) (-4221 (((-3 (-2 (|:| -1563 (-547)) (|:| |var| (-590 $))) "failed") $) 420 (|has| |#1| (-25)))) (-3949 (((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $) NIL (|has| |#1| (-1075))) (((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $ (-114)) NIL (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $ (-1136)) NIL (|has| |#1| (-1016)))) (-1667 (((-112) $ (-114)) NIL) (((-112) $ (-1136)) 53)) (-1984 (($ $) NIL (-1530 (|has| |#1| (-463)) (|has| |#1| (-539))))) (-4277 (($ $ (-1136)) 241 (|has| |#1| (-539))) (($ $ (-1056 $)) 243 (|has| |#1| (-539)))) (-4029 (((-745) $) NIL)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) 43)) (-2009 ((|#1| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 288 (|has| |#1| (-539)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-539))) (($ $ $) NIL (|has| |#1| (-539)))) (-3883 (((-112) $ $) NIL) (((-112) $ (-1136)) NIL)) (-2073 (($ $ (-1136)) 216 (|has| |#1| (-539))) (($ $) 214 (|has| |#1| (-539)))) (-2462 (($ $) 208 (|has| |#1| (-539)))) (-4071 (((-409 (-1132 $)) (-1132 $)) 293 (-12 (|has| |#1| (-442)) (|has| |#1| (-539))))) (-2115 (((-409 $) $) NIL (|has| |#1| (-539)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-539))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-539)))) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-539)))) (-2712 (($ $) 129 (|has| |#1| (-539)))) (-3874 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-2679 (($ $ (-590 $) $) NIL) (($ $ (-619 (-590 $)) (-619 $)) 407) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1136)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1136)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1136) (-1 $ (-619 $))) NIL) (($ $ (-1136) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) 361) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1136)) NIL (|has| |#1| (-592 (-523)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-592 (-523)))) (($ $) NIL (|has| |#1| (-592 (-523)))) (($ $ (-114) $ (-1136)) 349 (|has| |#1| (-592 (-523)))) (($ $ (-619 (-114)) (-619 $) (-1136)) 348 (|has| |#1| (-592 (-523)))) (($ $ (-619 (-1136)) (-619 (-745)) (-619 (-1 $ $))) NIL (|has| |#1| (-1016))) (($ $ (-619 (-1136)) (-619 (-745)) (-619 (-1 $ (-619 $)))) NIL (|has| |#1| (-1016))) (($ $ (-1136) (-745) (-1 $ (-619 $))) NIL (|has| |#1| (-1016))) (($ $ (-1136) (-745) (-1 $ $)) NIL (|has| |#1| (-1016)))) (-2471 (((-745) $) NIL (|has| |#1| (-539)))) (-1425 (($ $) 229 (|has| |#1| (-539)))) (-3334 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-539)))) (-2242 (($ $) NIL) (($ $ $) NIL)) (-1463 (($ $) 239 (|has| |#1| (-539)))) (-1878 (($ $) 190 (|has| |#1| (-539)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-1016))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-1016))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-1016))) (($ $ (-1136)) NIL (|has| |#1| (-1016)))) (-2995 (($ $) 73 (|has| |#1| (-539)))) (-1396 (((-1087 |#1| (-590 $)) $) 86 (|has| |#1| (-539)))) (-1882 (($ $) 304 (|has| $ (-1016)))) (-1690 (($ $) 167 (|has| |#1| (-539)))) (-1545 (($ $) 143 (|has| |#1| (-539)))) (-1668 (($ $) 163 (|has| |#1| (-539)))) (-1519 (($ $) 139 (|has| |#1| (-539)))) (-1644 (($ $) 159 (|has| |#1| (-539)))) (-1493 (($ $) 135 (|has| |#1| (-539)))) (-2838 (((-861 (-547)) $) NIL (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| |#1| (-592 (-861 (-370))))) (($ (-409 $)) NIL (|has| |#1| (-539))) (((-523) $) 346 (|has| |#1| (-592 (-523))))) (-3404 (($ $ $) NIL (|has| |#1| (-463)))) (-1473 (($ $ $) NIL (|has| |#1| (-463)))) (-3838 (((-832) $) 406) (($ (-590 $)) 397) (($ (-1136)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-539))) (($ (-48)) 299 (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547))))) (($ (-1087 |#1| (-590 $))) 88 (|has| |#1| (-1016))) (($ (-398 |#1|)) NIL (|has| |#1| (-539))) (($ (-921 (-398 |#1|))) NIL (|has| |#1| (-539))) (($ (-398 (-921 (-398 |#1|)))) NIL (|has| |#1| (-539))) (($ (-398 (-921 |#1|))) NIL (|has| |#1| (-539))) (($ (-921 |#1|)) NIL (|has| |#1| (-1016))) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-539)) (|has| |#1| (-1007 (-398 (-547)))))) (($ (-547)) 34 (-1530 (|has| |#1| (-1007 (-547))) (|has| |#1| (-1016))))) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL (|has| |#1| (-1016)))) (-4129 (($ $) NIL) (($ (-619 $)) NIL)) (-3658 (($ $ $) 210 (|has| |#1| (-539)))) (-2560 (($ $ $) 196 (|has| |#1| (-539)))) (-4142 (($ $ $) 200 (|has| |#1| (-539)))) (-3272 (($ $ $) 194 (|has| |#1| (-539)))) (-3611 (($ $ $) 198 (|has| |#1| (-539)))) (-3128 (((-112) (-114)) 9)) (-1726 (($ $) 173 (|has| |#1| (-539)))) (-1579 (($ $) 149 (|has| |#1| (-539)))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1703 (($ $) 169 (|has| |#1| (-539)))) (-1557 (($ $) 145 (|has| |#1| (-539)))) (-1751 (($ $) 177 (|has| |#1| (-539)))) (-1606 (($ $) 153 (|has| |#1| (-539)))) (-1780 (($ (-1136) $) NIL) (($ (-1136) $ $) NIL) (($ (-1136) $ $ $) NIL) (($ (-1136) $ $ $ $) NIL) (($ (-1136) (-619 $)) NIL)) (-2275 (($ $) 204 (|has| |#1| (-539)))) (-1988 (($ $) 202 (|has| |#1| (-539)))) (-1927 (($ $) 179 (|has| |#1| (-539)))) (-1620 (($ $) 155 (|has| |#1| (-539)))) (-1738 (($ $) 175 (|has| |#1| (-539)))) (-1593 (($ $) 151 (|has| |#1| (-539)))) (-1714 (($ $) 171 (|has| |#1| (-539)))) (-1569 (($ $) 147 (|has| |#1| (-539)))) (-2255 (($ $) 182 (|has| |#1| (-539)))) (-3269 (($) 20 (-1530 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))) CONST)) (-4288 (($ $) 233 (|has| |#1| (-539)))) (-3281 (($) 22 (-1530 (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075))) CONST)) (-1705 (($ $) 184 (|has| |#1| (-539))) (($ $ $) 186 (|has| |#1| (-539)))) (-3222 (($ $) 231 (|has| |#1| (-539)))) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-1016))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-1016))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-1016))) (($ $ (-1136)) NIL (|has| |#1| (-1016)))) (-1264 (($ $) 235 (|has| |#1| (-539)))) (-3243 (($ $ $) 188 (|has| |#1| (-539)))) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 81)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 80)) (-2506 (($ (-1087 |#1| (-590 $)) (-1087 |#1| (-590 $))) 98 (|has| |#1| (-539))) (($ $ $) 42 (-1530 (|has| |#1| (-463)) (|has| |#1| (-539))))) (-2493 (($ $ $) 40 (-1530 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))))) (($ $) 29 (-1530 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))))) (-2479 (($ $ $) 38 (-1530 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))))) (** (($ $ $) 66 (|has| |#1| (-539))) (($ $ (-398 (-547))) 301 (|has| |#1| (-539))) (($ $ (-547)) 76 (-1530 (|has| |#1| (-463)) (|has| |#1| (-539)))) (($ $ (-745)) 74 (-1530 (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075)))) (($ $ (-890)) 78 (-1530 (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075))))) (* (($ (-398 (-547)) $) NIL (|has| |#1| (-539))) (($ $ (-398 (-547))) NIL (|has| |#1| (-539))) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))) (($ $ $) 36 (-1530 (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075)))) (($ (-547) $) 32 (-1530 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))))) (($ (-745) $) NIL (-1530 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))))) (($ (-890) $) NIL (-1530 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))))))
-(((-307 |#1|) (-13 (-421 |#1|) (-10 -8 (IF (|has| |#1| (-539)) (PROGN (-6 (-29 |#1|)) (-6 (-1158)) (-6 (-157)) (-6 (-605)) (-6 (-1100)) (-15 -2552 ($ $)) (-15 -1938 ((-112) $)) (-15 -2840 ($ $ (-547))) (IF (|has| |#1| (-442)) (PROGN (-15 -4071 ((-409 (-1132 $)) (-1132 $))) (-15 -2277 ((-409 (-1132 $)) (-1132 $)))) |%noBranch|) (IF (|has| |#1| (-1007 (-547))) (-6 (-1007 (-48))) |%noBranch|)) |%noBranch|))) (-821)) (T -307))
-((-2552 (*1 *1 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-539)) (-4 *2 (-821)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-307 *3)) (-4 *3 (-539)) (-4 *3 (-821)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-307 *3)) (-4 *3 (-539)) (-4 *3 (-821)))) (-4071 (*1 *2 *3) (-12 (-5 *2 (-409 (-1132 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1132 *1)) (-4 *4 (-442)) (-4 *4 (-539)) (-4 *4 (-821)))) (-2277 (*1 *2 *3) (-12 (-5 *2 (-409 (-1132 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1132 *1)) (-4 *4 (-442)) (-4 *4 (-539)) (-4 *4 (-821)))))
-(-13 (-421 |#1|) (-10 -8 (IF (|has| |#1| (-539)) (PROGN (-6 (-29 |#1|)) (-6 (-1158)) (-6 (-157)) (-6 (-605)) (-6 (-1100)) (-15 -2552 ($ $)) (-15 -1938 ((-112) $)) (-15 -2840 ($ $ (-547))) (IF (|has| |#1| (-442)) (PROGN (-15 -4071 ((-409 (-1132 $)) (-1132 $))) (-15 -2277 ((-409 (-1132 $)) (-1132 $)))) |%noBranch|) (IF (|has| |#1| (-1007 (-547))) (-6 (-1007 (-48))) |%noBranch|)) |%noBranch|)))
-((-3075 (((-52) |#2| (-114) (-285 |#2|) (-619 |#2|)) 88) (((-52) |#2| (-114) (-285 |#2|) (-285 |#2|)) 84) (((-52) |#2| (-114) (-285 |#2|) |#2|) 86) (((-52) (-285 |#2|) (-114) (-285 |#2|) |#2|) 87) (((-52) (-619 |#2|) (-619 (-114)) (-285 |#2|) (-619 (-285 |#2|))) 80) (((-52) (-619 |#2|) (-619 (-114)) (-285 |#2|) (-619 |#2|)) 82) (((-52) (-619 (-285 |#2|)) (-619 (-114)) (-285 |#2|) (-619 |#2|)) 83) (((-52) (-619 (-285 |#2|)) (-619 (-114)) (-285 |#2|) (-619 (-285 |#2|))) 81) (((-52) (-285 |#2|) (-114) (-285 |#2|) (-619 |#2|)) 89) (((-52) (-285 |#2|) (-114) (-285 |#2|) (-285 |#2|)) 85)))
-(((-308 |#1| |#2|) (-10 -7 (-15 -3075 ((-52) (-285 |#2|) (-114) (-285 |#2|) (-285 |#2|))) (-15 -3075 ((-52) (-285 |#2|) (-114) (-285 |#2|) (-619 |#2|))) (-15 -3075 ((-52) (-619 (-285 |#2|)) (-619 (-114)) (-285 |#2|) (-619 (-285 |#2|)))) (-15 -3075 ((-52) (-619 (-285 |#2|)) (-619 (-114)) (-285 |#2|) (-619 |#2|))) (-15 -3075 ((-52) (-619 |#2|) (-619 (-114)) (-285 |#2|) (-619 |#2|))) (-15 -3075 ((-52) (-619 |#2|) (-619 (-114)) (-285 |#2|) (-619 (-285 |#2|)))) (-15 -3075 ((-52) (-285 |#2|) (-114) (-285 |#2|) |#2|)) (-15 -3075 ((-52) |#2| (-114) (-285 |#2|) |#2|)) (-15 -3075 ((-52) |#2| (-114) (-285 |#2|) (-285 |#2|))) (-15 -3075 ((-52) |#2| (-114) (-285 |#2|) (-619 |#2|)))) (-13 (-821) (-539) (-592 (-523))) (-421 |#1|)) (T -308))
-((-3075 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-285 *3)) (-5 *6 (-619 *3)) (-4 *3 (-421 *7)) (-4 *7 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *7 *3)))) (-3075 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-285 *3)) (-4 *3 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-3075 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-285 *3)) (-4 *3 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-3075 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-285 *5)) (-5 *4 (-114)) (-4 *5 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *5)))) (-3075 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-114))) (-5 *6 (-619 (-285 *8))) (-4 *8 (-421 *7)) (-5 *5 (-285 *8)) (-4 *7 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *7 *8)))) (-3075 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-285 *7)) (-4 *7 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *7)))) (-3075 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-619 (-285 *8))) (-5 *4 (-619 (-114))) (-5 *5 (-285 *8)) (-5 *6 (-619 *8)) (-4 *8 (-421 *7)) (-4 *7 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *7 *8)))) (-3075 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-619 (-285 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-285 *7)) (-4 *7 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *7)))) (-3075 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-285 *7)) (-5 *4 (-114)) (-5 *5 (-619 *7)) (-4 *7 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *7)))) (-3075 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-285 *6)) (-5 *4 (-114)) (-4 *6 (-421 *5)) (-4 *5 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *6)))))
-(-10 -7 (-15 -3075 ((-52) (-285 |#2|) (-114) (-285 |#2|) (-285 |#2|))) (-15 -3075 ((-52) (-285 |#2|) (-114) (-285 |#2|) (-619 |#2|))) (-15 -3075 ((-52) (-619 (-285 |#2|)) (-619 (-114)) (-285 |#2|) (-619 (-285 |#2|)))) (-15 -3075 ((-52) (-619 (-285 |#2|)) (-619 (-114)) (-285 |#2|) (-619 |#2|))) (-15 -3075 ((-52) (-619 |#2|) (-619 (-114)) (-285 |#2|) (-619 |#2|))) (-15 -3075 ((-52) (-619 |#2|) (-619 (-114)) (-285 |#2|) (-619 (-285 |#2|)))) (-15 -3075 ((-52) (-285 |#2|) (-114) (-285 |#2|) |#2|)) (-15 -3075 ((-52) |#2| (-114) (-285 |#2|) |#2|)) (-15 -3075 ((-52) |#2| (-114) (-285 |#2|) (-285 |#2|))) (-15 -3075 ((-52) |#2| (-114) (-285 |#2|) (-619 |#2|))))
-((-1508 (((-1168 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-217) (-547) (-1119)) 46) (((-1168 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-217) (-547)) 47) (((-1168 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-1 (-217) (-217)) (-547) (-1119)) 43) (((-1168 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-1 (-217) (-217)) (-547)) 44)) (-1797 (((-1 (-217) (-217)) (-217)) 45)))
-(((-309) (-10 -7 (-15 -1797 ((-1 (-217) (-217)) (-217))) (-15 -1508 ((-1168 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-1 (-217) (-217)) (-547))) (-15 -1508 ((-1168 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-1 (-217) (-217)) (-547) (-1119))) (-15 -1508 ((-1168 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-217) (-547))) (-15 -1508 ((-1168 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-217) (-547) (-1119))))) (T -309))
-((-1508 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) (-5 *5 (-1058 (-217))) (-5 *6 (-217)) (-5 *7 (-547)) (-5 *8 (-1119)) (-5 *2 (-1168 (-895))) (-5 *1 (-309)))) (-1508 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) (-5 *5 (-1058 (-217))) (-5 *6 (-217)) (-5 *7 (-547)) (-5 *2 (-1168 (-895))) (-5 *1 (-309)))) (-1508 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) (-5 *5 (-1058 (-217))) (-5 *6 (-547)) (-5 *7 (-1119)) (-5 *2 (-1168 (-895))) (-5 *1 (-309)))) (-1508 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) (-5 *5 (-1058 (-217))) (-5 *6 (-547)) (-5 *2 (-1168 (-895))) (-5 *1 (-309)))) (-1797 (*1 *2 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *1 (-309)) (-5 *3 (-217)))))
-(-10 -7 (-15 -1797 ((-1 (-217) (-217)) (-217))) (-15 -1508 ((-1168 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-1 (-217) (-217)) (-547))) (-15 -1508 ((-1168 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-1 (-217) (-217)) (-547) (-1119))) (-15 -1508 ((-1168 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-217) (-547))) (-15 -1508 ((-1168 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-217) (-547) (-1119))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 25)) (-2267 (((-619 (-1045)) $) NIL)) (-3004 (((-1136) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-3931 (($ $ (-398 (-547))) NIL) (($ $ (-398 (-547)) (-398 (-547))) NIL)) (-2203 (((-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) 20)) (-1656 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL (|has| |#1| (-354)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2127 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1632 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2819 (($ (-745) (-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) NIL)) (-1678 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-2063 (($ $) 32)) (-3855 (((-3 $ "failed") $) NIL)) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-1791 (((-112) $) NIL (|has| |#1| (-354)))) (-1713 (((-112) $) NIL)) (-1419 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-398 (-547)) $) NIL) (((-398 (-547)) $ (-398 (-547))) 16)) (-2261 (((-112) $) NIL)) (-3869 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3852 (($ $ (-890)) NIL) (($ $ (-398 (-547))) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-398 (-547))) NIL) (($ $ (-1045) (-398 (-547))) NIL) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-354)))) (-3694 (($ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) NIL (-1530 (-12 (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1158)))))) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-354)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-3708 (($ $ (-398 (-547))) NIL)) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2030 (((-398 (-547)) $) 17)) (-3722 (($ (-1204 |#1| |#2| |#3|)) 11)) (-3322 (((-1204 |#1| |#2| |#3|) $) 12)) (-2712 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2471 (((-745) $) NIL (|has| |#1| (-354)))) (-3334 ((|#1| $ (-398 (-547))) NIL) (($ $ $) NIL (|has| (-398 (-547)) (-1075)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-3705 (((-398 (-547)) $) NIL)) (-1690 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) 10)) (-3838 (((-832) $) 38) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539)))) (-2450 ((|#1| $ (-398 (-547))) 30)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-2591 ((|#1| $) NIL)) (-1726 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-398 (-547))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 27)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 33)) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-310 |#1| |#2| |#3|) (-13 (-1200 |#1|) (-766) (-10 -8 (-15 -3722 ($ (-1204 |#1| |#2| |#3|))) (-15 -3322 ((-1204 |#1| |#2| |#3|) $)) (-15 -2030 ((-398 (-547)) $)))) (-13 (-354) (-821)) (-1136) |#1|) (T -310))
-((-3722 (*1 *1 *2) (-12 (-5 *2 (-1204 *3 *4 *5)) (-4 *3 (-13 (-354) (-821))) (-14 *4 (-1136)) (-14 *5 *3) (-5 *1 (-310 *3 *4 *5)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-1204 *3 *4 *5)) (-5 *1 (-310 *3 *4 *5)) (-4 *3 (-13 (-354) (-821))) (-14 *4 (-1136)) (-14 *5 *3))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-310 *3 *4 *5)) (-4 *3 (-13 (-354) (-821))) (-14 *4 (-1136)) (-14 *5 *3))))
-(-13 (-1200 |#1|) (-766) (-10 -8 (-15 -3722 ($ (-1204 |#1| |#2| |#3|))) (-15 -3322 ((-1204 |#1| |#2| |#3|) $)) (-15 -2030 ((-398 (-547)) $))))
-((-3869 (((-2 (|:| -3322 (-745)) (|:| -1563 |#1|) (|:| |radicand| (-619 |#1|))) (-409 |#1|) (-745)) 24)) (-3624 (((-619 (-2 (|:| -1563 (-745)) (|:| |logand| |#1|))) (-409 |#1|)) 28)))
-(((-311 |#1|) (-10 -7 (-15 -3869 ((-2 (|:| -3322 (-745)) (|:| -1563 |#1|) (|:| |radicand| (-619 |#1|))) (-409 |#1|) (-745))) (-15 -3624 ((-619 (-2 (|:| -1563 (-745)) (|:| |logand| |#1|))) (-409 |#1|)))) (-539)) (T -311))
-((-3624 (*1 *2 *3) (-12 (-5 *3 (-409 *4)) (-4 *4 (-539)) (-5 *2 (-619 (-2 (|:| -1563 (-745)) (|:| |logand| *4)))) (-5 *1 (-311 *4)))) (-3869 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *5)) (-4 *5 (-539)) (-5 *2 (-2 (|:| -3322 (-745)) (|:| -1563 *5) (|:| |radicand| (-619 *5)))) (-5 *1 (-311 *5)) (-5 *4 (-745)))))
-(-10 -7 (-15 -3869 ((-2 (|:| -3322 (-745)) (|:| -1563 |#1|) (|:| |radicand| (-619 |#1|))) (-409 |#1|) (-745))) (-15 -3624 ((-619 (-2 (|:| -1563 (-745)) (|:| |logand| |#1|))) (-409 |#1|))))
-((-2267 (((-619 |#2|) (-1132 |#4|)) 43)) (-1925 ((|#3| (-547)) 46)) (-3047 (((-1132 |#4|) (-1132 |#3|)) 30)) (-2669 (((-1132 |#4|) (-1132 |#4|) (-547)) 56)) (-3669 (((-1132 |#3|) (-1132 |#4|)) 21)) (-3705 (((-619 (-745)) (-1132 |#4|) (-619 |#2|)) 40)) (-2422 (((-1132 |#3|) (-1132 |#4|) (-619 |#2|) (-619 |#3|)) 35)))
-(((-312 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 ((-1132 |#3|) (-1132 |#4|) (-619 |#2|) (-619 |#3|))) (-15 -3705 ((-619 (-745)) (-1132 |#4|) (-619 |#2|))) (-15 -2267 ((-619 |#2|) (-1132 |#4|))) (-15 -3669 ((-1132 |#3|) (-1132 |#4|))) (-15 -3047 ((-1132 |#4|) (-1132 |#3|))) (-15 -2669 ((-1132 |#4|) (-1132 |#4|) (-547))) (-15 -1925 (|#3| (-547)))) (-767) (-821) (-1016) (-918 |#3| |#1| |#2|)) (T -312))
-((-1925 (*1 *2 *3) (-12 (-5 *3 (-547)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1016)) (-5 *1 (-312 *4 *5 *2 *6)) (-4 *6 (-918 *2 *4 *5)))) (-2669 (*1 *2 *2 *3) (-12 (-5 *2 (-1132 *7)) (-5 *3 (-547)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *1 (-312 *4 *5 *6 *7)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-1132 *6)) (-4 *6 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-1132 *7)) (-5 *1 (-312 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-1132 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-1132 *6)) (-5 *1 (-312 *4 *5 *6 *7)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-1132 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-619 *5)) (-5 *1 (-312 *4 *5 *6 *7)))) (-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-1132 *8)) (-5 *4 (-619 *6)) (-4 *6 (-821)) (-4 *8 (-918 *7 *5 *6)) (-4 *5 (-767)) (-4 *7 (-1016)) (-5 *2 (-619 (-745))) (-5 *1 (-312 *5 *6 *7 *8)))) (-2422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1132 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 *8)) (-4 *7 (-821)) (-4 *8 (-1016)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-5 *2 (-1132 *8)) (-5 *1 (-312 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2422 ((-1132 |#3|) (-1132 |#4|) (-619 |#2|) (-619 |#3|))) (-15 -3705 ((-619 (-745)) (-1132 |#4|) (-619 |#2|))) (-15 -2267 ((-619 |#2|) (-1132 |#4|))) (-15 -3669 ((-1132 |#3|) (-1132 |#4|))) (-15 -3047 ((-1132 |#4|) (-1132 |#3|))) (-15 -2669 ((-1132 |#4|) (-1132 |#4|) (-547))) (-15 -1925 (|#3| (-547))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 14)) (-2203 (((-619 (-2 (|:| |gen| |#1|) (|:| -2712 (-547)))) $) 18)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3608 (((-745) $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL)) (-2652 ((|#1| $) NIL)) (-1607 ((|#1| $ (-547)) NIL)) (-2440 (((-547) $ (-547)) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-3513 (($ (-1 |#1| |#1|) $) NIL)) (-1353 (($ (-1 (-547) (-547)) $) 10)) (-1466 (((-1119) $) NIL)) (-2307 (($ $ $) NIL (|has| (-547) (-766)))) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (($ |#1|) NIL)) (-2450 (((-547) |#1| $) NIL)) (-3269 (($) 15 T CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) 21 (|has| |#1| (-821)))) (-2493 (($ $) 11) (($ $ $) 20)) (-2479 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ (-547)) NIL) (($ (-547) |#1|) 19)))
-(((-313 |#1|) (-13 (-21) (-692 (-547)) (-314 |#1| (-547)) (-10 -7 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) (-1063)) (T -313))
-NIL
-(-13 (-21) (-692 (-547)) (-314 |#1| (-547)) (-10 -7 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2203 (((-619 (-2 (|:| |gen| |#1|) (|:| -2712 |#2|))) $) 27)) (-3672 (((-3 $ "failed") $ $) 19)) (-3608 (((-745) $) 28)) (-1948 (($) 17 T CONST)) (-2707 (((-3 |#1| "failed") $) 32)) (-2652 ((|#1| $) 31)) (-1607 ((|#1| $ (-547)) 25)) (-2440 ((|#2| $ (-547)) 26)) (-3513 (($ (-1 |#1| |#1|) $) 22)) (-1353 (($ (-1 |#2| |#2|) $) 23)) (-1466 (((-1119) $) 9)) (-2307 (($ $ $) 21 (|has| |#2| (-766)))) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ |#1|) 33)) (-2450 ((|#2| |#1| $) 24)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2479 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ |#2| |#1|) 29)))
-(((-314 |#1| |#2|) (-138) (-1063) (-130)) (T -314))
-((-2479 (*1 *1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) (-5 *2 (-745)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2712 *4)))))) (-2440 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-314 *4 *2)) (-4 *4 (-1063)) (-4 *2 (-130)))) (-1607 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-314 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1063)))) (-2450 (*1 *2 *3 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) (-1353 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)))) (-2307 (*1 *1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)) (-4 *3 (-766)))))
-(-13 (-130) (-1007 |t#1|) (-10 -8 (-15 -2479 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3608 ((-745) $)) (-15 -2203 ((-619 (-2 (|:| |gen| |t#1|) (|:| -2712 |t#2|))) $)) (-15 -2440 (|t#2| $ (-547))) (-15 -1607 (|t#1| $ (-547))) (-15 -2450 (|t#2| |t#1| $)) (-15 -1353 ($ (-1 |t#2| |t#2|) $)) (-15 -3513 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-766)) (-15 -2307 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-1007 |#1|) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2203 (((-619 (-2 (|:| |gen| |#1|) (|:| -2712 (-745)))) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3608 (((-745) $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL)) (-2652 ((|#1| $) NIL)) (-1607 ((|#1| $ (-547)) NIL)) (-2440 (((-745) $ (-547)) NIL)) (-3513 (($ (-1 |#1| |#1|) $) NIL)) (-1353 (($ (-1 (-745) (-745)) $) NIL)) (-1466 (((-1119) $) NIL)) (-2307 (($ $ $) NIL (|has| (-745) (-766)))) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (($ |#1|) NIL)) (-2450 (((-745) |#1| $) NIL)) (-3269 (($) NIL T CONST)) (-2381 (((-112) $ $) NIL)) (-2479 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-745) |#1|) NIL)))
-(((-315 |#1|) (-314 |#1| (-745)) (-1063)) (T -315))
-NIL
-(-314 |#1| (-745))
-((-3350 (($ $) 53)) (-3210 (($ $ |#2| |#3| $) 14)) (-4182 (($ (-1 |#3| |#3|) $) 33)) (-1996 (((-112) $) 24)) (-2009 ((|#2| $) 26)) (-2032 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-2392 ((|#2| $) 49)) (-1277 (((-619 |#2|) $) 36)) (-1379 (($ $ $ (-745)) 20)) (-2506 (($ $ |#2|) 40)))
-(((-316 |#1| |#2| |#3|) (-10 -8 (-15 -3350 (|#1| |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1379 (|#1| |#1| |#1| (-745))) (-15 -3210 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4182 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1277 ((-619 |#2|) |#1|)) (-15 -2009 (|#2| |#1|)) (-15 -1996 ((-112) |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2506 (|#1| |#1| |#2|))) (-317 |#2| |#3|) (-1016) (-766)) (T -316))
-NIL
-(-10 -8 (-15 -3350 (|#1| |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1379 (|#1| |#1| |#1| (-745))) (-15 -3210 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4182 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1277 ((-619 |#2|) |#1|)) (-15 -2009 (|#2| |#1|)) (-15 -1996 ((-112) |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2506 (|#1| |#1| |#2|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3571 (($ $) 50 (|has| |#1| (-539)))) (-3915 (((-112) $) 52 (|has| |#1| (-539)))) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-2707 (((-3 (-547) "failed") $) 88 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 86 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 85)) (-2652 (((-547) $) 89 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 87 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 84)) (-2063 (($ $) 58)) (-3855 (((-3 $ "failed") $) 32)) (-3350 (($ $) 73 (|has| |#1| (-442)))) (-3210 (($ $ |#1| |#2| $) 77)) (-2261 (((-112) $) 30)) (-3376 (((-745) $) 80)) (-1759 (((-112) $) 60)) (-2238 (($ |#1| |#2|) 59)) (-3095 ((|#2| $) 79)) (-4182 (($ (-1 |#2| |#2|) $) 78)) (-2790 (($ (-1 |#1| |#1|) $) 61)) (-2019 (($ $) 63)) (-2037 ((|#1| $) 64)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-1996 (((-112) $) 83)) (-2009 ((|#1| $) 82)) (-2032 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-539)))) (-3705 ((|#2| $) 62)) (-2392 ((|#1| $) 74 (|has| |#1| (-442)))) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 47 (|has| |#1| (-539))) (($ |#1|) 45) (($ (-398 (-547))) 55 (-1530 (|has| |#1| (-1007 (-398 (-547)))) (|has| |#1| (-38 (-398 (-547))))))) (-1277 (((-619 |#1|) $) 81)) (-2450 ((|#1| $ |#2|) 57)) (-2220 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2736 (((-745)) 28)) (-1379 (($ $ $ (-745)) 76 (|has| |#1| (-169)))) (-3577 (((-112) $ $) 51 (|has| |#1| (-539)))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#1|) 56 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547)))))))
-(((-317 |#1| |#2|) (-138) (-1016) (-766)) (T -317))
-((-1996 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-112)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-619 *3)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-745)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-4182 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) (-3210 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-1379 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-4 *3 (-169)))) (-2032 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *2 (-539)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)) (-4 *2 (-442)))) (-3350 (*1 *1 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *2 (-442)))))
-(-13 (-47 |t#1| |t#2|) (-402 |t#1|) (-10 -8 (-15 -1996 ((-112) $)) (-15 -2009 (|t#1| $)) (-15 -1277 ((-619 |t#1|) $)) (-15 -3376 ((-745) $)) (-15 -3095 (|t#2| $)) (-15 -4182 ($ (-1 |t#2| |t#2|) $)) (-15 -3210 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-169)) (-15 -1379 ($ $ $ (-745))) |%noBranch|) (IF (|has| |t#1| (-539)) (-15 -2032 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-442)) (PROGN (-15 -2392 (|t#1| $)) (-15 -3350 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-281) |has| |#1| (-539)) ((-402 |#1|) . T) ((-539) |has| |#1| (-539)) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) . T) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2809 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4330))) (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| |#1| (-821))))) (-3185 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-3899 (((-112) $ (-745)) NIL)) (-2416 (((-112) (-112)) NIL)) (-2247 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) NIL (|has| $ (-6 -4330)))) (-4285 (($ (-1 (-112) |#1|) $) NIL)) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-2968 (($ $) NIL (|has| |#1| (-1063)))) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1513 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3803 (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) NIL)) (-2876 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-3248 (($ $ (-547)) NIL)) (-1304 (((-745) $) NIL)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-3735 (($ (-745) |#1|) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3145 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2777 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-2657 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-2606 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3034 (($ (-619 |#1|)) NIL)) (-3638 ((|#1| $) NIL (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3632 (($ $ |#1|) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-2649 (($ $ (-1186 (-547))) NIL) (($ $ (-547)) NIL)) (-2159 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) NIL)) (-3794 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1945 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-318 |#1|) (-13 (-19 |#1|) (-273 |#1|) (-10 -8 (-15 -3034 ($ (-619 |#1|))) (-15 -1304 ((-745) $)) (-15 -3248 ($ $ (-547))) (-15 -2416 ((-112) (-112))))) (-1173)) (T -318))
-((-3034 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-318 *3)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-318 *3)) (-4 *3 (-1173)))) (-3248 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-318 *3)) (-4 *3 (-1173)))) (-2416 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-318 *3)) (-4 *3 (-1173)))))
-(-13 (-19 |#1|) (-273 |#1|) (-10 -8 (-15 -3034 ($ (-619 |#1|))) (-15 -1304 ((-745) $)) (-15 -3248 ($ $ (-547))) (-15 -2416 ((-112) (-112)))))
-((-1452 (((-112) $) 42)) (-1440 (((-745)) 22)) (-2899 ((|#2| $) 46) (($ $ (-890)) 101)) (-3608 (((-745)) 102)) (-2614 (($ (-1219 |#2|)) 20)) (-3841 (((-112) $) 115)) (-3160 ((|#2| $) 48) (($ $ (-890)) 99)) (-3786 (((-1132 |#2|) $) NIL) (((-1132 $) $ (-890)) 95)) (-3168 (((-1132 |#2|) $) 82)) (-1600 (((-1132 |#2|) $) 79) (((-3 (-1132 |#2|) "failed") $ $) 76)) (-2830 (($ $ (-1132 |#2|)) 53)) (-3327 (((-807 (-890))) 28) (((-890)) 43)) (-3970 (((-133)) 25)) (-3705 (((-807 (-890)) $) 30) (((-890) $) 117)) (-3532 (($) 108)) (-3220 (((-1219 |#2|) $) NIL) (((-663 |#2|) (-1219 $)) 39)) (-2220 (($ $) NIL) (((-3 $ "failed") $) 85)) (-2593 (((-112) $) 41)))
-(((-319 |#1| |#2|) (-10 -8 (-15 -2220 ((-3 |#1| "failed") |#1|)) (-15 -3608 ((-745))) (-15 -2220 (|#1| |#1|)) (-15 -1600 ((-3 (-1132 |#2|) "failed") |#1| |#1|)) (-15 -1600 ((-1132 |#2|) |#1|)) (-15 -3168 ((-1132 |#2|) |#1|)) (-15 -2830 (|#1| |#1| (-1132 |#2|))) (-15 -3841 ((-112) |#1|)) (-15 -3532 (|#1|)) (-15 -2899 (|#1| |#1| (-890))) (-15 -3160 (|#1| |#1| (-890))) (-15 -3786 ((-1132 |#1|) |#1| (-890))) (-15 -2899 (|#2| |#1|)) (-15 -3160 (|#2| |#1|)) (-15 -3705 ((-890) |#1|)) (-15 -3327 ((-890))) (-15 -3786 ((-1132 |#2|) |#1|)) (-15 -2614 (|#1| (-1219 |#2|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1|)) (-15 -1440 ((-745))) (-15 -3327 ((-807 (-890)))) (-15 -3705 ((-807 (-890)) |#1|)) (-15 -1452 ((-112) |#1|)) (-15 -2593 ((-112) |#1|)) (-15 -3970 ((-133)))) (-320 |#2|) (-354)) (T -319))
-((-3970 (*1 *2) (-12 (-4 *4 (-354)) (-5 *2 (-133)) (-5 *1 (-319 *3 *4)) (-4 *3 (-320 *4)))) (-3327 (*1 *2) (-12 (-4 *4 (-354)) (-5 *2 (-807 (-890))) (-5 *1 (-319 *3 *4)) (-4 *3 (-320 *4)))) (-1440 (*1 *2) (-12 (-4 *4 (-354)) (-5 *2 (-745)) (-5 *1 (-319 *3 *4)) (-4 *3 (-320 *4)))) (-3327 (*1 *2) (-12 (-4 *4 (-354)) (-5 *2 (-890)) (-5 *1 (-319 *3 *4)) (-4 *3 (-320 *4)))) (-3608 (*1 *2) (-12 (-4 *4 (-354)) (-5 *2 (-745)) (-5 *1 (-319 *3 *4)) (-4 *3 (-320 *4)))))
-(-10 -8 (-15 -2220 ((-3 |#1| "failed") |#1|)) (-15 -3608 ((-745))) (-15 -2220 (|#1| |#1|)) (-15 -1600 ((-3 (-1132 |#2|) "failed") |#1| |#1|)) (-15 -1600 ((-1132 |#2|) |#1|)) (-15 -3168 ((-1132 |#2|) |#1|)) (-15 -2830 (|#1| |#1| (-1132 |#2|))) (-15 -3841 ((-112) |#1|)) (-15 -3532 (|#1|)) (-15 -2899 (|#1| |#1| (-890))) (-15 -3160 (|#1| |#1| (-890))) (-15 -3786 ((-1132 |#1|) |#1| (-890))) (-15 -2899 (|#2| |#1|)) (-15 -3160 (|#2| |#1|)) (-15 -3705 ((-890) |#1|)) (-15 -3327 ((-890))) (-15 -3786 ((-1132 |#2|) |#1|)) (-15 -2614 (|#1| (-1219 |#2|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1|)) (-15 -1440 ((-745))) (-15 -3327 ((-807 (-890)))) (-15 -3705 ((-807 (-890)) |#1|)) (-15 -1452 ((-112) |#1|)) (-15 -2593 ((-112) |#1|)) (-15 -3970 ((-133))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-1452 (((-112) $) 91)) (-1440 (((-745)) 87)) (-2899 ((|#1| $) 137) (($ $ (-890)) 134 (|has| |#1| (-359)))) (-2797 (((-1146 (-890) (-745)) (-547)) 119 (|has| |#1| (-359)))) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 70)) (-3299 (((-409 $) $) 69)) (-1547 (((-112) $ $) 57)) (-3608 (((-745)) 109 (|has| |#1| (-359)))) (-1948 (($) 17 T CONST)) (-2707 (((-3 |#1| "failed") $) 98)) (-2652 ((|#1| $) 97)) (-2614 (($ (-1219 |#1|)) 143)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-359)))) (-2089 (($ $ $) 53)) (-3855 (((-3 $ "failed") $) 32)) (-3232 (($) 106 (|has| |#1| (-359)))) (-2061 (($ $ $) 54)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-3527 (($) 121 (|has| |#1| (-359)))) (-3078 (((-112) $) 122 (|has| |#1| (-359)))) (-1551 (($ $ (-745)) 84 (-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) 83 (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-1791 (((-112) $) 68)) (-3275 (((-890) $) 124 (|has| |#1| (-359))) (((-807 (-890)) $) 81 (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2261 (((-112) $) 30)) (-2460 (($) 132 (|has| |#1| (-359)))) (-3841 (((-112) $) 131 (|has| |#1| (-359)))) (-3160 ((|#1| $) 138) (($ $ (-890)) 135 (|has| |#1| (-359)))) (-3477 (((-3 $ "failed") $) 110 (|has| |#1| (-359)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3786 (((-1132 |#1|) $) 142) (((-1132 $) $ (-890)) 136 (|has| |#1| (-359)))) (-2402 (((-890) $) 107 (|has| |#1| (-359)))) (-3168 (((-1132 |#1|) $) 128 (|has| |#1| (-359)))) (-1600 (((-1132 |#1|) $) 127 (|has| |#1| (-359))) (((-3 (-1132 |#1|) "failed") $ $) 126 (|has| |#1| (-359)))) (-2830 (($ $ (-1132 |#1|)) 129 (|has| |#1| (-359)))) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 67)) (-3054 (($) 111 (|has| |#1| (-359)) CONST)) (-3487 (($ (-890)) 108 (|has| |#1| (-359)))) (-1290 (((-112) $) 90)) (-3979 (((-1082) $) 10)) (-4238 (($) 130 (|has| |#1| (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) 118 (|has| |#1| (-359)))) (-2115 (((-409 $) $) 71)) (-3327 (((-807 (-890))) 88) (((-890)) 140)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2471 (((-745) $) 56)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55)) (-1422 (((-745) $) 123 (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) 82 (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3970 (((-133)) 96)) (-3448 (($ $) 115 (|has| |#1| (-359))) (($ $ (-745)) 113 (|has| |#1| (-359)))) (-3705 (((-807 (-890)) $) 89) (((-890) $) 139)) (-1882 (((-1132 |#1|)) 141)) (-3823 (($) 120 (|has| |#1| (-359)))) (-3532 (($) 133 (|has| |#1| (-359)))) (-3220 (((-1219 |#1|) $) 145) (((-663 |#1|) (-1219 $)) 144)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 117 (|has| |#1| (-359)))) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63) (($ |#1|) 99)) (-2220 (($ $) 116 (|has| |#1| (-359))) (((-3 $ "failed") $) 80 (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2736 (((-745)) 28)) (-1917 (((-1219 $)) 147) (((-1219 $) (-890)) 146)) (-3577 (((-112) $ $) 37)) (-2593 (((-112) $) 92)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1693 (($ $) 86 (|has| |#1| (-359))) (($ $ (-745)) 85 (|has| |#1| (-359)))) (-1695 (($ $) 114 (|has| |#1| (-359))) (($ $ (-745)) 112 (|has| |#1| (-359)))) (-2381 (((-112) $ $) 6)) (-2506 (($ $ $) 62) (($ $ |#1|) 95)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
-(((-320 |#1|) (-138) (-354)) (T -320))
-((-1917 (*1 *2) (-12 (-4 *3 (-354)) (-5 *2 (-1219 *1)) (-4 *1 (-320 *3)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-354)) (-5 *2 (-1219 *1)) (-4 *1 (-320 *4)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-1219 *3)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-320 *4)) (-4 *4 (-354)) (-5 *2 (-663 *4)))) (-2614 (*1 *1 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-354)) (-4 *1 (-320 *3)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-1132 *3)))) (-1882 (*1 *2) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-1132 *3)))) (-3327 (*1 *2) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-890)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-890)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-354)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-354)))) (-3786 (*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-4 *4 (-359)) (-4 *4 (-354)) (-5 *2 (-1132 *1)) (-4 *1 (-320 *4)))) (-3160 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)))) (-2899 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)))) (-3532 (*1 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-359)) (-4 *2 (-354)))) (-2460 (*1 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-359)) (-4 *2 (-354)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) (-5 *2 (-112)))) (-4238 (*1 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-359)) (-4 *2 (-354)))) (-2830 (*1 *1 *1 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-359)) (-4 *1 (-320 *3)) (-4 *3 (-354)))) (-3168 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) (-5 *2 (-1132 *3)))) (-1600 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) (-5 *2 (-1132 *3)))) (-1600 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) (-5 *2 (-1132 *3)))))
-(-13 (-1238 |t#1|) (-1007 |t#1|) (-10 -8 (-15 -1917 ((-1219 $))) (-15 -1917 ((-1219 $) (-890))) (-15 -3220 ((-1219 |t#1|) $)) (-15 -3220 ((-663 |t#1|) (-1219 $))) (-15 -2614 ($ (-1219 |t#1|))) (-15 -3786 ((-1132 |t#1|) $)) (-15 -1882 ((-1132 |t#1|))) (-15 -3327 ((-890))) (-15 -3705 ((-890) $)) (-15 -3160 (|t#1| $)) (-15 -2899 (|t#1| $)) (IF (|has| |t#1| (-359)) (PROGN (-6 (-340)) (-15 -3786 ((-1132 $) $ (-890))) (-15 -3160 ($ $ (-890))) (-15 -2899 ($ $ (-890))) (-15 -3532 ($)) (-15 -2460 ($)) (-15 -3841 ((-112) $)) (-15 -4238 ($)) (-15 -2830 ($ $ (-1132 |t#1|))) (-15 -3168 ((-1132 |t#1|) $)) (-15 -1600 ((-1132 |t#1|) $)) (-15 -1600 ((-3 (-1132 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1530 (|has| |#1| (-359)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) . T) ((-225) |has| |#1| (-359)) ((-235) . T) ((-281) . T) ((-298) . T) ((-1238 |#1|) . T) ((-354) . T) ((-393) -1530 (|has| |#1| (-359)) (|has| |#1| (-143))) ((-359) |has| |#1| (-359)) ((-340) |has| |#1| (-359)) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 |#1|) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1112) |has| |#1| (-359)) ((-1177) . T) ((-1226 |#1|) . T))
-((-3826 (((-112) $ $) NIL)) (-1490 (($ (-1135) $) 88)) (-4141 (($) 77)) (-2482 (((-1082) (-1082)) 11)) (-2530 (($) 78)) (-2070 (($) 90) (($ (-307 (-673))) 98) (($ (-307 (-675))) 94) (($ (-307 (-668))) 102) (($ (-307 (-370))) 109) (($ (-307 (-547))) 105) (($ (-307 (-166 (-370)))) 113)) (-1712 (($ (-1135) $) 89)) (-1661 (($ (-619 (-832))) 79)) (-1741 (((-1224) $) 75)) (-3369 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-4307 (($ (-1082)) 51)) (-2249 (((-1067) $) 25)) (-3025 (($ (-1056 (-921 (-547))) $) 85) (($ (-1056 (-921 (-547))) (-921 (-547)) $) 86)) (-2322 (($ (-1082)) 87)) (-4101 (($ (-1135) $) 115) (($ (-1135) $ $) 116)) (-3548 (($ (-1136) (-619 (-1136))) 76)) (-1255 (($ (-1119)) 82) (($ (-619 (-1119))) 80)) (-3838 (((-832) $) 118)) (-2096 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1136)) (|:| |arrayIndex| (-619 (-921 (-547)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2970 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1136)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1135)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2884 (-112)) (|:| -4153 (-2 (|:| |ints2Floats?| (-112)) (|:| -2970 (-832)))))) (|:| |blockBranch| (-619 $)) (|:| |commentBranch| (-619 (-1119))) (|:| |callBranch| (-1119)) (|:| |forBranch| (-2 (|:| -4232 (-1056 (-921 (-547)))) (|:| |span| (-921 (-547))) (|:| -2487 $))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1135)) (|:| -2487 $))) (|:| |commonBranch| (-2 (|:| -2473 (-1136)) (|:| |contents| (-619 (-1136))))) (|:| |printBranch| (-619 (-832)))) $) 44)) (-3505 (($ (-1119)) 187)) (-2003 (($ (-619 $)) 114)) (-1594 (($ (-1136) (-1119)) 120) (($ (-1136) (-307 (-675))) 160) (($ (-1136) (-307 (-673))) 161) (($ (-1136) (-307 (-668))) 162) (($ (-1136) (-663 (-675))) 123) (($ (-1136) (-663 (-673))) 126) (($ (-1136) (-663 (-668))) 129) (($ (-1136) (-1219 (-675))) 132) (($ (-1136) (-1219 (-673))) 135) (($ (-1136) (-1219 (-668))) 138) (($ (-1136) (-663 (-307 (-675)))) 141) (($ (-1136) (-663 (-307 (-673)))) 144) (($ (-1136) (-663 (-307 (-668)))) 147) (($ (-1136) (-1219 (-307 (-675)))) 150) (($ (-1136) (-1219 (-307 (-673)))) 153) (($ (-1136) (-1219 (-307 (-668)))) 156) (($ (-1136) (-619 (-921 (-547))) (-307 (-675))) 157) (($ (-1136) (-619 (-921 (-547))) (-307 (-673))) 158) (($ (-1136) (-619 (-921 (-547))) (-307 (-668))) 159) (($ (-1136) (-307 (-547))) 184) (($ (-1136) (-307 (-370))) 185) (($ (-1136) (-307 (-166 (-370)))) 186) (($ (-1136) (-663 (-307 (-547)))) 165) (($ (-1136) (-663 (-307 (-370)))) 168) (($ (-1136) (-663 (-307 (-166 (-370))))) 171) (($ (-1136) (-1219 (-307 (-547)))) 174) (($ (-1136) (-1219 (-307 (-370)))) 177) (($ (-1136) (-1219 (-307 (-166 (-370))))) 180) (($ (-1136) (-619 (-921 (-547))) (-307 (-547))) 181) (($ (-1136) (-619 (-921 (-547))) (-307 (-370))) 182) (($ (-1136) (-619 (-921 (-547))) (-307 (-166 (-370)))) 183)) (-2381 (((-112) $ $) NIL)))
-(((-321) (-13 (-1063) (-10 -8 (-15 -3838 ((-832) $)) (-15 -3025 ($ (-1056 (-921 (-547))) $)) (-15 -3025 ($ (-1056 (-921 (-547))) (-921 (-547)) $)) (-15 -1490 ($ (-1135) $)) (-15 -1712 ($ (-1135) $)) (-15 -4307 ($ (-1082))) (-15 -2322 ($ (-1082))) (-15 -1255 ($ (-1119))) (-15 -1255 ($ (-619 (-1119)))) (-15 -3505 ($ (-1119))) (-15 -2070 ($)) (-15 -2070 ($ (-307 (-673)))) (-15 -2070 ($ (-307 (-675)))) (-15 -2070 ($ (-307 (-668)))) (-15 -2070 ($ (-307 (-370)))) (-15 -2070 ($ (-307 (-547)))) (-15 -2070 ($ (-307 (-166 (-370))))) (-15 -4101 ($ (-1135) $)) (-15 -4101 ($ (-1135) $ $)) (-15 -1594 ($ (-1136) (-1119))) (-15 -1594 ($ (-1136) (-307 (-675)))) (-15 -1594 ($ (-1136) (-307 (-673)))) (-15 -1594 ($ (-1136) (-307 (-668)))) (-15 -1594 ($ (-1136) (-663 (-675)))) (-15 -1594 ($ (-1136) (-663 (-673)))) (-15 -1594 ($ (-1136) (-663 (-668)))) (-15 -1594 ($ (-1136) (-1219 (-675)))) (-15 -1594 ($ (-1136) (-1219 (-673)))) (-15 -1594 ($ (-1136) (-1219 (-668)))) (-15 -1594 ($ (-1136) (-663 (-307 (-675))))) (-15 -1594 ($ (-1136) (-663 (-307 (-673))))) (-15 -1594 ($ (-1136) (-663 (-307 (-668))))) (-15 -1594 ($ (-1136) (-1219 (-307 (-675))))) (-15 -1594 ($ (-1136) (-1219 (-307 (-673))))) (-15 -1594 ($ (-1136) (-1219 (-307 (-668))))) (-15 -1594 ($ (-1136) (-619 (-921 (-547))) (-307 (-675)))) (-15 -1594 ($ (-1136) (-619 (-921 (-547))) (-307 (-673)))) (-15 -1594 ($ (-1136) (-619 (-921 (-547))) (-307 (-668)))) (-15 -1594 ($ (-1136) (-307 (-547)))) (-15 -1594 ($ (-1136) (-307 (-370)))) (-15 -1594 ($ (-1136) (-307 (-166 (-370))))) (-15 -1594 ($ (-1136) (-663 (-307 (-547))))) (-15 -1594 ($ (-1136) (-663 (-307 (-370))))) (-15 -1594 ($ (-1136) (-663 (-307 (-166 (-370)))))) (-15 -1594 ($ (-1136) (-1219 (-307 (-547))))) (-15 -1594 ($ (-1136) (-1219 (-307 (-370))))) (-15 -1594 ($ (-1136) (-1219 (-307 (-166 (-370)))))) (-15 -1594 ($ (-1136) (-619 (-921 (-547))) (-307 (-547)))) (-15 -1594 ($ (-1136) (-619 (-921 (-547))) (-307 (-370)))) (-15 -1594 ($ (-1136) (-619 (-921 (-547))) (-307 (-166 (-370))))) (-15 -2003 ($ (-619 $))) (-15 -4141 ($)) (-15 -2530 ($)) (-15 -1661 ($ (-619 (-832)))) (-15 -3548 ($ (-1136) (-619 (-1136)))) (-15 -3369 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2096 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1136)) (|:| |arrayIndex| (-619 (-921 (-547)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2970 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1136)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1135)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2884 (-112)) (|:| -4153 (-2 (|:| |ints2Floats?| (-112)) (|:| -2970 (-832)))))) (|:| |blockBranch| (-619 $)) (|:| |commentBranch| (-619 (-1119))) (|:| |callBranch| (-1119)) (|:| |forBranch| (-2 (|:| -4232 (-1056 (-921 (-547)))) (|:| |span| (-921 (-547))) (|:| -2487 $))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1135)) (|:| -2487 $))) (|:| |commonBranch| (-2 (|:| -2473 (-1136)) (|:| |contents| (-619 (-1136))))) (|:| |printBranch| (-619 (-832)))) $)) (-15 -1741 ((-1224) $)) (-15 -2249 ((-1067) $)) (-15 -2482 ((-1082) (-1082)))))) (T -321))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-321)))) (-3025 (*1 *1 *2 *1) (-12 (-5 *2 (-1056 (-921 (-547)))) (-5 *1 (-321)))) (-3025 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1056 (-921 (-547)))) (-5 *3 (-921 (-547))) (-5 *1 (-321)))) (-1490 (*1 *1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-321)))) (-1712 (*1 *1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-321)))) (-4307 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-321)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-321)))) (-1255 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-321)))) (-1255 (*1 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-321)))) (-3505 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-321)))) (-2070 (*1 *1) (-5 *1 (-321))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-307 (-673))) (-5 *1 (-321)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-307 (-675))) (-5 *1 (-321)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-307 (-668))) (-5 *1 (-321)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-307 (-370))) (-5 *1 (-321)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-307 (-547))) (-5 *1 (-321)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-370)))) (-5 *1 (-321)))) (-4101 (*1 *1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-321)))) (-4101 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1119)) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-307 (-675))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-307 (-673))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-307 (-668))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-675))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-673))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-668))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-675))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-673))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-668))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-307 (-675)))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-307 (-673)))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-307 (-668)))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-307 (-675)))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-307 (-673)))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-307 (-668)))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-307 (-675))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-307 (-673))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-307 (-668))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-307 (-547))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-307 (-370))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-307 (-166 (-370)))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-307 (-547)))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-307 (-370)))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-307 (-166 (-370))))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-307 (-547)))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-307 (-370)))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-307 (-166 (-370))))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-307 (-547))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-307 (-370))) (-5 *1 (-321)))) (-1594 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-307 (-166 (-370)))) (-5 *1 (-321)))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-5 *1 (-321)))) (-4141 (*1 *1) (-5 *1 (-321))) (-2530 (*1 *1) (-5 *1 (-321))) (-1661 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-321)))) (-3548 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-1136))) (-5 *2 (-1136)) (-5 *1 (-321)))) (-3369 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-321)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1136)) (|:| |arrayIndex| (-619 (-921 (-547)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2970 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1136)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1135)) (|:| |thenClause| (-321)) (|:| |elseClause| (-321)))) (|:| |returnBranch| (-2 (|:| -2884 (-112)) (|:| -4153 (-2 (|:| |ints2Floats?| (-112)) (|:| -2970 (-832)))))) (|:| |blockBranch| (-619 (-321))) (|:| |commentBranch| (-619 (-1119))) (|:| |callBranch| (-1119)) (|:| |forBranch| (-2 (|:| -4232 (-1056 (-921 (-547)))) (|:| |span| (-921 (-547))) (|:| -2487 (-321)))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1135)) (|:| -2487 (-321)))) (|:| |commonBranch| (-2 (|:| -2473 (-1136)) (|:| |contents| (-619 (-1136))))) (|:| |printBranch| (-619 (-832))))) (-5 *1 (-321)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-321)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-321)))) (-2482 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-321)))))
-(-13 (-1063) (-10 -8 (-15 -3838 ((-832) $)) (-15 -3025 ($ (-1056 (-921 (-547))) $)) (-15 -3025 ($ (-1056 (-921 (-547))) (-921 (-547)) $)) (-15 -1490 ($ (-1135) $)) (-15 -1712 ($ (-1135) $)) (-15 -4307 ($ (-1082))) (-15 -2322 ($ (-1082))) (-15 -1255 ($ (-1119))) (-15 -1255 ($ (-619 (-1119)))) (-15 -3505 ($ (-1119))) (-15 -2070 ($)) (-15 -2070 ($ (-307 (-673)))) (-15 -2070 ($ (-307 (-675)))) (-15 -2070 ($ (-307 (-668)))) (-15 -2070 ($ (-307 (-370)))) (-15 -2070 ($ (-307 (-547)))) (-15 -2070 ($ (-307 (-166 (-370))))) (-15 -4101 ($ (-1135) $)) (-15 -4101 ($ (-1135) $ $)) (-15 -1594 ($ (-1136) (-1119))) (-15 -1594 ($ (-1136) (-307 (-675)))) (-15 -1594 ($ (-1136) (-307 (-673)))) (-15 -1594 ($ (-1136) (-307 (-668)))) (-15 -1594 ($ (-1136) (-663 (-675)))) (-15 -1594 ($ (-1136) (-663 (-673)))) (-15 -1594 ($ (-1136) (-663 (-668)))) (-15 -1594 ($ (-1136) (-1219 (-675)))) (-15 -1594 ($ (-1136) (-1219 (-673)))) (-15 -1594 ($ (-1136) (-1219 (-668)))) (-15 -1594 ($ (-1136) (-663 (-307 (-675))))) (-15 -1594 ($ (-1136) (-663 (-307 (-673))))) (-15 -1594 ($ (-1136) (-663 (-307 (-668))))) (-15 -1594 ($ (-1136) (-1219 (-307 (-675))))) (-15 -1594 ($ (-1136) (-1219 (-307 (-673))))) (-15 -1594 ($ (-1136) (-1219 (-307 (-668))))) (-15 -1594 ($ (-1136) (-619 (-921 (-547))) (-307 (-675)))) (-15 -1594 ($ (-1136) (-619 (-921 (-547))) (-307 (-673)))) (-15 -1594 ($ (-1136) (-619 (-921 (-547))) (-307 (-668)))) (-15 -1594 ($ (-1136) (-307 (-547)))) (-15 -1594 ($ (-1136) (-307 (-370)))) (-15 -1594 ($ (-1136) (-307 (-166 (-370))))) (-15 -1594 ($ (-1136) (-663 (-307 (-547))))) (-15 -1594 ($ (-1136) (-663 (-307 (-370))))) (-15 -1594 ($ (-1136) (-663 (-307 (-166 (-370)))))) (-15 -1594 ($ (-1136) (-1219 (-307 (-547))))) (-15 -1594 ($ (-1136) (-1219 (-307 (-370))))) (-15 -1594 ($ (-1136) (-1219 (-307 (-166 (-370)))))) (-15 -1594 ($ (-1136) (-619 (-921 (-547))) (-307 (-547)))) (-15 -1594 ($ (-1136) (-619 (-921 (-547))) (-307 (-370)))) (-15 -1594 ($ (-1136) (-619 (-921 (-547))) (-307 (-166 (-370))))) (-15 -2003 ($ (-619 $))) (-15 -4141 ($)) (-15 -2530 ($)) (-15 -1661 ($ (-619 (-832)))) (-15 -3548 ($ (-1136) (-619 (-1136)))) (-15 -3369 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2096 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1136)) (|:| |arrayIndex| (-619 (-921 (-547)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2970 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1136)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1135)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2884 (-112)) (|:| -4153 (-2 (|:| |ints2Floats?| (-112)) (|:| -2970 (-832)))))) (|:| |blockBranch| (-619 $)) (|:| |commentBranch| (-619 (-1119))) (|:| |callBranch| (-1119)) (|:| |forBranch| (-2 (|:| -4232 (-1056 (-921 (-547)))) (|:| |span| (-921 (-547))) (|:| -2487 $))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1135)) (|:| -2487 $))) (|:| |commonBranch| (-2 (|:| -2473 (-1136)) (|:| |contents| (-619 (-1136))))) (|:| |printBranch| (-619 (-832)))) $)) (-15 -1741 ((-1224) $)) (-15 -2249 ((-1067) $)) (-15 -2482 ((-1082) (-1082)))))
-((-3826 (((-112) $ $) NIL)) (-1390 (((-112) $) 11)) (-1479 (($ |#1|) 8)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1493 (($ |#1|) 9)) (-3838 (((-832) $) 17)) (-3027 ((|#1| $) 12)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 19)))
-(((-322 |#1|) (-13 (-821) (-10 -8 (-15 -1479 ($ |#1|)) (-15 -1493 ($ |#1|)) (-15 -1390 ((-112) $)) (-15 -3027 (|#1| $)))) (-821)) (T -322))
-((-1479 (*1 *1 *2) (-12 (-5 *1 (-322 *2)) (-4 *2 (-821)))) (-1493 (*1 *1 *2) (-12 (-5 *1 (-322 *2)) (-4 *2 (-821)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-821)))) (-3027 (*1 *2 *1) (-12 (-5 *1 (-322 *2)) (-4 *2 (-821)))))
-(-13 (-821) (-10 -8 (-15 -1479 ($ |#1|)) (-15 -1493 ($ |#1|)) (-15 -1390 ((-112) $)) (-15 -3027 (|#1| $))))
-((-1939 (((-321) (-1136) (-921 (-547))) 23)) (-1506 (((-321) (-1136) (-921 (-547))) 27)) (-3345 (((-321) (-1136) (-1056 (-921 (-547))) (-1056 (-921 (-547)))) 26) (((-321) (-1136) (-921 (-547)) (-921 (-547))) 24)) (-1445 (((-321) (-1136) (-921 (-547))) 31)))
-(((-323) (-10 -7 (-15 -1939 ((-321) (-1136) (-921 (-547)))) (-15 -3345 ((-321) (-1136) (-921 (-547)) (-921 (-547)))) (-15 -3345 ((-321) (-1136) (-1056 (-921 (-547))) (-1056 (-921 (-547))))) (-15 -1506 ((-321) (-1136) (-921 (-547)))) (-15 -1445 ((-321) (-1136) (-921 (-547)))))) (T -323))
-((-1445 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-921 (-547))) (-5 *2 (-321)) (-5 *1 (-323)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-921 (-547))) (-5 *2 (-321)) (-5 *1 (-323)))) (-3345 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-1056 (-921 (-547)))) (-5 *2 (-321)) (-5 *1 (-323)))) (-3345 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-921 (-547))) (-5 *2 (-321)) (-5 *1 (-323)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-921 (-547))) (-5 *2 (-321)) (-5 *1 (-323)))))
-(-10 -7 (-15 -1939 ((-321) (-1136) (-921 (-547)))) (-15 -3345 ((-321) (-1136) (-921 (-547)) (-921 (-547)))) (-15 -3345 ((-321) (-1136) (-1056 (-921 (-547))) (-1056 (-921 (-547))))) (-15 -1506 ((-321) (-1136) (-921 (-547)))) (-15 -1445 ((-321) (-1136) (-921 (-547)))))
-((-2790 (((-327 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-327 |#1| |#2| |#3| |#4|)) 33)))
-(((-324 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2790 ((-327 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-327 |#1| |#2| |#3| |#4|)))) (-354) (-1195 |#1|) (-1195 (-398 |#2|)) (-333 |#1| |#2| |#3|) (-354) (-1195 |#5|) (-1195 (-398 |#6|)) (-333 |#5| |#6| |#7|)) (T -324))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-327 *5 *6 *7 *8)) (-4 *5 (-354)) (-4 *6 (-1195 *5)) (-4 *7 (-1195 (-398 *6))) (-4 *8 (-333 *5 *6 *7)) (-4 *9 (-354)) (-4 *10 (-1195 *9)) (-4 *11 (-1195 (-398 *10))) (-5 *2 (-327 *9 *10 *11 *12)) (-5 *1 (-324 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-333 *9 *10 *11)))))
-(-10 -7 (-15 -2790 ((-327 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-327 |#1| |#2| |#3| |#4|))))
-((-2717 (((-112) $) 14)))
-(((-325 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2717 ((-112) |#1|))) (-326 |#2| |#3| |#4| |#5|) (-354) (-1195 |#2|) (-1195 (-398 |#3|)) (-333 |#2| |#3| |#4|)) (T -325))
-NIL
-(-10 -8 (-15 -2717 ((-112) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-2552 (($ $) 26)) (-2717 (((-112) $) 25)) (-1466 (((-1119) $) 9)) (-2532 (((-404 |#2| (-398 |#2|) |#3| |#4|) $) 32)) (-3979 (((-1082) $) 10)) (-4238 (((-3 |#4| "failed") $) 24)) (-2123 (($ (-404 |#2| (-398 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-547)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2773 (((-2 (|:| -3707 (-404 |#2| (-398 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3838 (((-832) $) 11)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20)))
-(((-326 |#1| |#2| |#3| |#4|) (-138) (-354) (-1195 |t#1|) (-1195 (-398 |t#2|)) (-333 |t#1| |t#2| |t#3|)) (T -326))
-((-2532 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-354)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) (-5 *2 (-404 *4 (-398 *4) *5 *6)))) (-2123 (*1 *1 *2) (-12 (-5 *2 (-404 *4 (-398 *4) *5 *6)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) (-4 *3 (-354)) (-4 *1 (-326 *3 *4 *5 *6)))) (-2123 (*1 *1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-4 *1 (-326 *3 *4 *5 *2)) (-4 *2 (-333 *3 *4 *5)))) (-2123 (*1 *1 *2 *2) (-12 (-4 *2 (-354)) (-4 *3 (-1195 *2)) (-4 *4 (-1195 (-398 *3))) (-4 *1 (-326 *2 *3 *4 *5)) (-4 *5 (-333 *2 *3 *4)))) (-2123 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-547)) (-4 *2 (-354)) (-4 *4 (-1195 *2)) (-4 *5 (-1195 (-398 *4))) (-4 *1 (-326 *2 *4 *5 *6)) (-4 *6 (-333 *2 *4 *5)))) (-2773 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-354)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) (-5 *2 (-2 (|:| -3707 (-404 *4 (-398 *4) *5 *6)) (|:| |principalPart| *6))))) (-2552 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3 *4 *5)) (-4 *2 (-354)) (-4 *3 (-1195 *2)) (-4 *4 (-1195 (-398 *3))) (-4 *5 (-333 *2 *3 *4)))) (-2717 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-354)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) (-5 *2 (-112)))) (-4238 (*1 *2 *1) (|partial| -12 (-4 *1 (-326 *3 *4 *5 *2)) (-4 *3 (-354)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-4 *2 (-333 *3 *4 *5)))) (-2123 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-354)) (-4 *3 (-1195 *4)) (-4 *5 (-1195 (-398 *3))) (-4 *1 (-326 *4 *3 *5 *2)) (-4 *2 (-333 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -2532 ((-404 |t#2| (-398 |t#2|) |t#3| |t#4|) $)) (-15 -2123 ($ (-404 |t#2| (-398 |t#2|) |t#3| |t#4|))) (-15 -2123 ($ |t#4|)) (-15 -2123 ($ |t#1| |t#1|)) (-15 -2123 ($ |t#1| |t#1| (-547))) (-15 -2773 ((-2 (|:| -3707 (-404 |t#2| (-398 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2552 ($ $)) (-15 -2717 ((-112) $)) (-15 -4238 ((-3 |t#4| "failed") $)) (-15 -2123 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2552 (($ $) 33)) (-2717 (((-112) $) NIL)) (-1466 (((-1119) $) NIL)) (-1581 (((-1219 |#4|) $) 125)) (-2532 (((-404 |#2| (-398 |#2|) |#3| |#4|) $) 31)) (-3979 (((-1082) $) NIL)) (-4238 (((-3 |#4| "failed") $) 36)) (-3467 (((-1219 |#4|) $) 118)) (-2123 (($ (-404 |#2| (-398 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-547)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2773 (((-2 (|:| -3707 (-404 |#2| (-398 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3838 (((-832) $) 17)) (-3269 (($) 14 T CONST)) (-2381 (((-112) $ $) 20)) (-2493 (($ $) 27) (($ $ $) NIL)) (-2479 (($ $ $) 25)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 23)))
-(((-327 |#1| |#2| |#3| |#4|) (-13 (-326 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3467 ((-1219 |#4|) $)) (-15 -1581 ((-1219 |#4|) $)))) (-354) (-1195 |#1|) (-1195 (-398 |#2|)) (-333 |#1| |#2| |#3|)) (T -327))
-((-3467 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-1219 *6)) (-5 *1 (-327 *3 *4 *5 *6)) (-4 *6 (-333 *3 *4 *5)))) (-1581 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-1219 *6)) (-5 *1 (-327 *3 *4 *5 *6)) (-4 *6 (-333 *3 *4 *5)))))
-(-13 (-326 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3467 ((-1219 |#4|) $)) (-15 -1581 ((-1219 |#4|) $))))
-((-2679 (($ $ (-1136) |#2|) NIL) (($ $ (-619 (-1136)) (-619 |#2|)) 20) (($ $ (-619 (-285 |#2|))) 15) (($ $ (-285 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-619 |#2|) (-619 |#2|)) NIL)) (-3334 (($ $ |#2|) 11)))
-(((-328 |#1| |#2|) (-10 -8 (-15 -3334 (|#1| |#1| |#2|)) (-15 -2679 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-285 |#2|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#2|)))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 |#2|))) (-15 -2679 (|#1| |#1| (-1136) |#2|))) (-329 |#2|) (-1063)) (T -328))
-NIL
-(-10 -8 (-15 -3334 (|#1| |#1| |#2|)) (-15 -2679 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-285 |#2|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#2|)))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 |#2|))) (-15 -2679 (|#1| |#1| (-1136) |#2|)))
-((-2790 (($ (-1 |#1| |#1|) $) 6)) (-2679 (($ $ (-1136) |#1|) 17 (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-619 (-1136)) (-619 |#1|)) 16 (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-619 (-285 |#1|))) 15 (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) 14 (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-300 |#1|))) (($ $ (-619 |#1|) (-619 |#1|)) 12 (|has| |#1| (-300 |#1|)))) (-3334 (($ $ |#1|) 11 (|has| |#1| (-277 |#1| |#1|)))))
-(((-329 |#1|) (-138) (-1063)) (T -329))
-((-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3)) (-4 *3 (-1063)))))
-(-13 (-10 -8 (-15 -2790 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-277 |t#1| |t#1|)) (-6 (-277 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-300 |t#1|)) (-6 (-300 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-503 (-1136) |t#1|)) (-6 (-503 (-1136) |t#1|)) |%noBranch|)))
-(((-277 |#1| $) |has| |#1| (-277 |#1| |#1|)) ((-300 |#1|) |has| |#1| (-300 |#1|)) ((-503 (-1136) |#1|) |has| |#1| (-503 (-1136) |#1|)) ((-503 |#1| |#1|) |has| |#1| (-300 |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2267 (((-619 (-1136)) $) NIL)) (-3495 (((-112)) 91) (((-112) (-112)) 92)) (-1974 (((-619 (-590 $)) $) NIL)) (-1656 (($ $) NIL)) (-1505 (($ $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3008 (($ $ (-285 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL)) (-2127 (($ $) NIL)) (-1632 (($ $) NIL)) (-1479 (($ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-590 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-307 |#3|)) 71) (((-3 $ "failed") (-1136)) 97) (((-3 $ "failed") (-307 (-547))) 59 (|has| |#3| (-1007 (-547)))) (((-3 $ "failed") (-398 (-921 (-547)))) 65 (|has| |#3| (-1007 (-547)))) (((-3 $ "failed") (-921 (-547))) 60 (|has| |#3| (-1007 (-547)))) (((-3 $ "failed") (-307 (-370))) 89 (|has| |#3| (-1007 (-370)))) (((-3 $ "failed") (-398 (-921 (-370)))) 83 (|has| |#3| (-1007 (-370)))) (((-3 $ "failed") (-921 (-370))) 78 (|has| |#3| (-1007 (-370))))) (-2652 (((-590 $) $) NIL) ((|#3| $) NIL) (($ (-307 |#3|)) 72) (($ (-1136)) 98) (($ (-307 (-547))) 61 (|has| |#3| (-1007 (-547)))) (($ (-398 (-921 (-547)))) 66 (|has| |#3| (-1007 (-547)))) (($ (-921 (-547))) 62 (|has| |#3| (-1007 (-547)))) (($ (-307 (-370))) 90 (|has| |#3| (-1007 (-370)))) (($ (-398 (-921 (-370)))) 84 (|has| |#3| (-1007 (-370)))) (($ (-921 (-370))) 80 (|has| |#3| (-1007 (-370))))) (-3855 (((-3 $ "failed") $) NIL)) (-1419 (($) 10)) (-3590 (($ $) NIL) (($ (-619 $)) NIL)) (-1408 (((-619 (-114)) $) NIL)) (-4185 (((-114) (-114)) NIL)) (-2261 (((-112) $) NIL)) (-2935 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-2428 (((-1132 $) (-590 $)) NIL (|has| $ (-1016)))) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2790 (($ (-1 $ $) (-590 $)) NIL)) (-3024 (((-3 (-590 $) "failed") $) NIL)) (-2293 (($ $) 94)) (-3624 (($ $) NIL)) (-1466 (((-1119) $) NIL)) (-2065 (((-619 (-590 $)) $) NIL)) (-1469 (($ (-114) $) 93) (($ (-114) (-619 $)) NIL)) (-1667 (((-112) $ (-114)) NIL) (((-112) $ (-1136)) NIL)) (-4029 (((-745) $) NIL)) (-3979 (((-1082) $) NIL)) (-3883 (((-112) $ $) NIL) (((-112) $ (-1136)) NIL)) (-2712 (($ $) NIL)) (-3874 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-2679 (($ $ (-590 $) $) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1136)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1136)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1136) (-1 $ (-619 $))) NIL) (($ $ (-1136) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3334 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-2242 (($ $) NIL) (($ $ $) NIL)) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136)) NIL)) (-1882 (($ $) NIL (|has| $ (-1016)))) (-1644 (($ $) NIL)) (-1493 (($ $) NIL)) (-3838 (((-832) $) NIL) (($ (-590 $)) NIL) (($ |#3|) NIL) (($ (-547)) NIL) (((-307 |#3|) $) 96)) (-2736 (((-745)) NIL)) (-4129 (($ $) NIL) (($ (-619 $)) NIL)) (-3128 (((-112) (-114)) NIL)) (-1579 (($ $) NIL)) (-1557 (($ $) NIL)) (-1569 (($ $) NIL)) (-2255 (($ $) NIL)) (-3269 (($) 95 T CONST)) (-3281 (($) 24 T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136)) NIL)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) NIL)) (-2493 (($ $ $) NIL) (($ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-547) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL)))
-(((-330 |#1| |#2| |#3|) (-13 (-293) (-38 |#3|) (-1007 |#3|) (-869 (-1136)) (-10 -8 (-15 -2652 ($ (-307 |#3|))) (-15 -2707 ((-3 $ "failed") (-307 |#3|))) (-15 -2652 ($ (-1136))) (-15 -2707 ((-3 $ "failed") (-1136))) (-15 -3838 ((-307 |#3|) $)) (IF (|has| |#3| (-1007 (-547))) (PROGN (-15 -2652 ($ (-307 (-547)))) (-15 -2707 ((-3 $ "failed") (-307 (-547)))) (-15 -2652 ($ (-398 (-921 (-547))))) (-15 -2707 ((-3 $ "failed") (-398 (-921 (-547))))) (-15 -2652 ($ (-921 (-547)))) (-15 -2707 ((-3 $ "failed") (-921 (-547))))) |%noBranch|) (IF (|has| |#3| (-1007 (-370))) (PROGN (-15 -2652 ($ (-307 (-370)))) (-15 -2707 ((-3 $ "failed") (-307 (-370)))) (-15 -2652 ($ (-398 (-921 (-370))))) (-15 -2707 ((-3 $ "failed") (-398 (-921 (-370))))) (-15 -2652 ($ (-921 (-370)))) (-15 -2707 ((-3 $ "failed") (-921 (-370))))) |%noBranch|) (-15 -2255 ($ $)) (-15 -2127 ($ $)) (-15 -2712 ($ $)) (-15 -3624 ($ $)) (-15 -2293 ($ $)) (-15 -1479 ($ $)) (-15 -1493 ($ $)) (-15 -1505 ($ $)) (-15 -1557 ($ $)) (-15 -1569 ($ $)) (-15 -1579 ($ $)) (-15 -1632 ($ $)) (-15 -1644 ($ $)) (-15 -1656 ($ $)) (-15 -1419 ($)) (-15 -2267 ((-619 (-1136)) $)) (-15 -3495 ((-112))) (-15 -3495 ((-112) (-112))))) (-619 (-1136)) (-619 (-1136)) (-378)) (T -330))
-((-2652 (*1 *1 *2) (-12 (-5 *2 (-307 *5)) (-4 *5 (-378)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 *5)) (-4 *5 (-378)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 *2)) (-14 *4 (-619 *2)) (-4 *5 (-378)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 *2)) (-14 *4 (-619 *2)) (-4 *5 (-378)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-307 *5)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-307 (-547))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-547))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-547)))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-398 (-921 (-547)))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-921 (-547))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-547))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-307 (-370))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-370))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-370)))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-398 (-921 (-370)))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-921 (-370))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-370))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-2255 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-2127 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-2712 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-3624 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-2293 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-1479 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-1493 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-1505 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-1557 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-1569 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-1579 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-1632 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-1644 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-1656 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-1419 (*1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136))) (-14 *3 (-619 (-1136))) (-4 *4 (-378)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-330 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-378)))) (-3495 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378)))))
-(-13 (-293) (-38 |#3|) (-1007 |#3|) (-869 (-1136)) (-10 -8 (-15 -2652 ($ (-307 |#3|))) (-15 -2707 ((-3 $ "failed") (-307 |#3|))) (-15 -2652 ($ (-1136))) (-15 -2707 ((-3 $ "failed") (-1136))) (-15 -3838 ((-307 |#3|) $)) (IF (|has| |#3| (-1007 (-547))) (PROGN (-15 -2652 ($ (-307 (-547)))) (-15 -2707 ((-3 $ "failed") (-307 (-547)))) (-15 -2652 ($ (-398 (-921 (-547))))) (-15 -2707 ((-3 $ "failed") (-398 (-921 (-547))))) (-15 -2652 ($ (-921 (-547)))) (-15 -2707 ((-3 $ "failed") (-921 (-547))))) |%noBranch|) (IF (|has| |#3| (-1007 (-370))) (PROGN (-15 -2652 ($ (-307 (-370)))) (-15 -2707 ((-3 $ "failed") (-307 (-370)))) (-15 -2652 ($ (-398 (-921 (-370))))) (-15 -2707 ((-3 $ "failed") (-398 (-921 (-370))))) (-15 -2652 ($ (-921 (-370)))) (-15 -2707 ((-3 $ "failed") (-921 (-370))))) |%noBranch|) (-15 -2255 ($ $)) (-15 -2127 ($ $)) (-15 -2712 ($ $)) (-15 -3624 ($ $)) (-15 -2293 ($ $)) (-15 -1479 ($ $)) (-15 -1493 ($ $)) (-15 -1505 ($ $)) (-15 -1557 ($ $)) (-15 -1569 ($ $)) (-15 -1579 ($ $)) (-15 -1632 ($ $)) (-15 -1644 ($ $)) (-15 -1656 ($ $)) (-15 -1419 ($)) (-15 -2267 ((-619 (-1136)) $)) (-15 -3495 ((-112))) (-15 -3495 ((-112) (-112)))))
-((-2790 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-331 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2790 (|#8| (-1 |#5| |#1|) |#4|))) (-1177) (-1195 |#1|) (-1195 (-398 |#2|)) (-333 |#1| |#2| |#3|) (-1177) (-1195 |#5|) (-1195 (-398 |#6|)) (-333 |#5| |#6| |#7|)) (T -331))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1177)) (-4 *8 (-1177)) (-4 *6 (-1195 *5)) (-4 *7 (-1195 (-398 *6))) (-4 *9 (-1195 *8)) (-4 *2 (-333 *8 *9 *10)) (-5 *1 (-331 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-333 *5 *6 *7)) (-4 *10 (-1195 (-398 *9))))))
-(-10 -7 (-15 -2790 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2675 (((-2 (|:| |num| (-1219 |#3|)) (|:| |den| |#3|)) $) 38)) (-2614 (($ (-1219 (-398 |#3|)) (-1219 $)) NIL) (($ (-1219 (-398 |#3|))) NIL) (($ (-1219 |#3|) |#3|) 161)) (-2451 (((-1219 $) (-1219 $)) 145)) (-2564 (((-619 (-619 |#2|))) 119)) (-3454 (((-112) |#2| |#2|) 73)) (-3350 (($ $) 139)) (-3209 (((-745)) 31)) (-3278 (((-1219 $) (-1219 $)) 198)) (-3361 (((-619 (-921 |#2|)) (-1136)) 110)) (-3019 (((-112) $) 158)) (-1322 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-4052 (((-3 |#3| "failed")) 50)) (-2489 (((-745)) 170)) (-3334 ((|#2| $ |#2| |#2|) 132)) (-1734 (((-3 |#3| "failed")) 68)) (-3448 (($ $ (-1 (-398 |#3|) (-398 |#3|)) (-745)) NIL) (($ $ (-1 (-398 |#3|) (-398 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-4308 (((-1219 $) (-1219 $)) 151)) (-4226 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2887 (((-112)) 33)))
-(((-332 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -2564 ((-619 (-619 |#2|)))) (-15 -3361 ((-619 (-921 |#2|)) (-1136))) (-15 -4226 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4052 ((-3 |#3| "failed"))) (-15 -1734 ((-3 |#3| "failed"))) (-15 -3334 (|#2| |#1| |#2| |#2|)) (-15 -3350 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1322 ((-112) |#1| |#3|)) (-15 -1322 ((-112) |#1| |#2|)) (-15 -2614 (|#1| (-1219 |#3|) |#3|)) (-15 -2675 ((-2 (|:| |num| (-1219 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2451 ((-1219 |#1|) (-1219 |#1|))) (-15 -3278 ((-1219 |#1|) (-1219 |#1|))) (-15 -4308 ((-1219 |#1|) (-1219 |#1|))) (-15 -1322 ((-112) |#1|)) (-15 -3019 ((-112) |#1|)) (-15 -3454 ((-112) |#2| |#2|)) (-15 -2887 ((-112))) (-15 -2489 ((-745))) (-15 -3209 ((-745))) (-15 -3448 (|#1| |#1| (-1 (-398 |#3|) (-398 |#3|)))) (-15 -3448 (|#1| |#1| (-1 (-398 |#3|) (-398 |#3|)) (-745))) (-15 -2614 (|#1| (-1219 (-398 |#3|)))) (-15 -2614 (|#1| (-1219 (-398 |#3|)) (-1219 |#1|)))) (-333 |#2| |#3| |#4|) (-1177) (-1195 |#2|) (-1195 (-398 |#3|))) (T -332))
-((-3209 (*1 *2) (-12 (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5))) (-5 *2 (-745)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6)))) (-2489 (*1 *2) (-12 (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5))) (-5 *2 (-745)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6)))) (-2887 (*1 *2) (-12 (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5))) (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6)))) (-3454 (*1 *2 *3 *3) (-12 (-4 *3 (-1177)) (-4 *5 (-1195 *3)) (-4 *6 (-1195 (-398 *5))) (-5 *2 (-112)) (-5 *1 (-332 *4 *3 *5 *6)) (-4 *4 (-333 *3 *5 *6)))) (-1734 (*1 *2) (|partial| -12 (-4 *4 (-1177)) (-4 *5 (-1195 (-398 *2))) (-4 *2 (-1195 *4)) (-5 *1 (-332 *3 *4 *2 *5)) (-4 *3 (-333 *4 *2 *5)))) (-4052 (*1 *2) (|partial| -12 (-4 *4 (-1177)) (-4 *5 (-1195 (-398 *2))) (-4 *2 (-1195 *4)) (-5 *1 (-332 *3 *4 *2 *5)) (-4 *3 (-333 *4 *2 *5)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-4 *5 (-1177)) (-4 *6 (-1195 *5)) (-4 *7 (-1195 (-398 *6))) (-5 *2 (-619 (-921 *5))) (-5 *1 (-332 *4 *5 *6 *7)) (-4 *4 (-333 *5 *6 *7)))) (-2564 (*1 *2) (-12 (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5))) (-5 *2 (-619 (-619 *4))) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6)))))
-(-10 -8 (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -2564 ((-619 (-619 |#2|)))) (-15 -3361 ((-619 (-921 |#2|)) (-1136))) (-15 -4226 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4052 ((-3 |#3| "failed"))) (-15 -1734 ((-3 |#3| "failed"))) (-15 -3334 (|#2| |#1| |#2| |#2|)) (-15 -3350 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1322 ((-112) |#1| |#3|)) (-15 -1322 ((-112) |#1| |#2|)) (-15 -2614 (|#1| (-1219 |#3|) |#3|)) (-15 -2675 ((-2 (|:| |num| (-1219 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2451 ((-1219 |#1|) (-1219 |#1|))) (-15 -3278 ((-1219 |#1|) (-1219 |#1|))) (-15 -4308 ((-1219 |#1|) (-1219 |#1|))) (-15 -1322 ((-112) |#1|)) (-15 -3019 ((-112) |#1|)) (-15 -3454 ((-112) |#2| |#2|)) (-15 -2887 ((-112))) (-15 -2489 ((-745))) (-15 -3209 ((-745))) (-15 -3448 (|#1| |#1| (-1 (-398 |#3|) (-398 |#3|)))) (-15 -3448 (|#1| |#1| (-1 (-398 |#3|) (-398 |#3|)) (-745))) (-15 -2614 (|#1| (-1219 (-398 |#3|)))) (-15 -2614 (|#1| (-1219 (-398 |#3|)) (-1219 |#1|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2675 (((-2 (|:| |num| (-1219 |#2|)) (|:| |den| |#2|)) $) 193)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 91 (|has| (-398 |#2|) (-354)))) (-3571 (($ $) 92 (|has| (-398 |#2|) (-354)))) (-3915 (((-112) $) 94 (|has| (-398 |#2|) (-354)))) (-3401 (((-663 (-398 |#2|)) (-1219 $)) 44) (((-663 (-398 |#2|))) 59)) (-2899 (((-398 |#2|) $) 50)) (-2797 (((-1146 (-890) (-745)) (-547)) 144 (|has| (-398 |#2|) (-340)))) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 111 (|has| (-398 |#2|) (-354)))) (-3299 (((-409 $) $) 112 (|has| (-398 |#2|) (-354)))) (-1547 (((-112) $ $) 102 (|has| (-398 |#2|) (-354)))) (-3608 (((-745)) 85 (|has| (-398 |#2|) (-359)))) (-3451 (((-112)) 210)) (-3303 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-1948 (($) 17 T CONST)) (-2707 (((-3 (-547) "failed") $) 166 (|has| (-398 |#2|) (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 164 (|has| (-398 |#2|) (-1007 (-398 (-547))))) (((-3 (-398 |#2|) "failed") $) 163)) (-2652 (((-547) $) 167 (|has| (-398 |#2|) (-1007 (-547)))) (((-398 (-547)) $) 165 (|has| (-398 |#2|) (-1007 (-398 (-547))))) (((-398 |#2|) $) 162)) (-2614 (($ (-1219 (-398 |#2|)) (-1219 $)) 46) (($ (-1219 (-398 |#2|))) 62) (($ (-1219 |#2|) |#2|) 192)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-398 |#2|) (-340)))) (-2089 (($ $ $) 106 (|has| (-398 |#2|) (-354)))) (-3565 (((-663 (-398 |#2|)) $ (-1219 $)) 51) (((-663 (-398 |#2|)) $) 57)) (-1694 (((-663 (-547)) (-663 $)) 161 (|has| (-398 |#2|) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 160 (|has| (-398 |#2|) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-398 |#2|))) (|:| |vec| (-1219 (-398 |#2|)))) (-663 $) (-1219 $)) 159) (((-663 (-398 |#2|)) (-663 $)) 158)) (-2451 (((-1219 $) (-1219 $)) 198)) (-2552 (($ |#3|) 155) (((-3 $ "failed") (-398 |#3|)) 152 (|has| (-398 |#2|) (-354)))) (-3855 (((-3 $ "failed") $) 32)) (-2564 (((-619 (-619 |#1|))) 179 (|has| |#1| (-359)))) (-3454 (((-112) |#1| |#1|) 214)) (-3116 (((-890)) 52)) (-3232 (($) 88 (|has| (-398 |#2|) (-359)))) (-3165 (((-112)) 207)) (-3012 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-2061 (($ $ $) 105 (|has| (-398 |#2|) (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 100 (|has| (-398 |#2|) (-354)))) (-3350 (($ $) 185)) (-3527 (($) 146 (|has| (-398 |#2|) (-340)))) (-3078 (((-112) $) 147 (|has| (-398 |#2|) (-340)))) (-1551 (($ $ (-745)) 138 (|has| (-398 |#2|) (-340))) (($ $) 137 (|has| (-398 |#2|) (-340)))) (-1791 (((-112) $) 113 (|has| (-398 |#2|) (-354)))) (-3275 (((-890) $) 149 (|has| (-398 |#2|) (-340))) (((-807 (-890)) $) 135 (|has| (-398 |#2|) (-340)))) (-2261 (((-112) $) 30)) (-3209 (((-745)) 217)) (-3278 (((-1219 $) (-1219 $)) 199)) (-3160 (((-398 |#2|) $) 49)) (-3361 (((-619 (-921 |#1|)) (-1136)) 180 (|has| |#1| (-354)))) (-3477 (((-3 $ "failed") $) 139 (|has| (-398 |#2|) (-340)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 109 (|has| (-398 |#2|) (-354)))) (-3786 ((|#3| $) 42 (|has| (-398 |#2|) (-354)))) (-2402 (((-890) $) 87 (|has| (-398 |#2|) (-359)))) (-2540 ((|#3| $) 153)) (-3689 (($ (-619 $)) 98 (|has| (-398 |#2|) (-354))) (($ $ $) 97 (|has| (-398 |#2|) (-354)))) (-1466 (((-1119) $) 9)) (-1560 (((-663 (-398 |#2|))) 194)) (-1311 (((-663 (-398 |#2|))) 196)) (-1984 (($ $) 114 (|has| (-398 |#2|) (-354)))) (-3132 (($ (-1219 |#2|) |#2|) 190)) (-1524 (((-663 (-398 |#2|))) 195)) (-3476 (((-663 (-398 |#2|))) 197)) (-2650 (((-2 (|:| |num| (-663 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1321 (((-2 (|:| |num| (-1219 |#2|)) (|:| |den| |#2|)) $) 191)) (-3787 (((-1219 $)) 203)) (-1380 (((-1219 $)) 204)) (-3019 (((-112) $) 202)) (-1322 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3054 (($) 140 (|has| (-398 |#2|) (-340)) CONST)) (-3487 (($ (-890)) 86 (|has| (-398 |#2|) (-359)))) (-4052 (((-3 |#2| "failed")) 182)) (-3979 (((-1082) $) 10)) (-2489 (((-745)) 216)) (-4238 (($) 157)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 99 (|has| (-398 |#2|) (-354)))) (-3719 (($ (-619 $)) 96 (|has| (-398 |#2|) (-354))) (($ $ $) 95 (|has| (-398 |#2|) (-354)))) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) 143 (|has| (-398 |#2|) (-340)))) (-2115 (((-409 $) $) 110 (|has| (-398 |#2|) (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-398 |#2|) (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 107 (|has| (-398 |#2|) (-354)))) (-2032 (((-3 $ "failed") $ $) 90 (|has| (-398 |#2|) (-354)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 101 (|has| (-398 |#2|) (-354)))) (-2471 (((-745) $) 103 (|has| (-398 |#2|) (-354)))) (-3334 ((|#1| $ |#1| |#1|) 184)) (-1734 (((-3 |#2| "failed")) 183)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 104 (|has| (-398 |#2|) (-354)))) (-4056 (((-398 |#2|) (-1219 $)) 45) (((-398 |#2|)) 58)) (-1422 (((-745) $) 148 (|has| (-398 |#2|) (-340))) (((-3 (-745) "failed") $ $) 136 (|has| (-398 |#2|) (-340)))) (-3448 (($ $ (-1 (-398 |#2|) (-398 |#2|)) (-745)) 120 (|has| (-398 |#2|) (-354))) (($ $ (-1 (-398 |#2|) (-398 |#2|))) 119 (|has| (-398 |#2|) (-354))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-619 (-1136)) (-619 (-745))) 127 (-1530 (-1814 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136)))) (-1814 (|has| (-398 |#2|) (-869 (-1136))) (|has| (-398 |#2|) (-354))))) (($ $ (-1136) (-745)) 128 (-1530 (-1814 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136)))) (-1814 (|has| (-398 |#2|) (-869 (-1136))) (|has| (-398 |#2|) (-354))))) (($ $ (-619 (-1136))) 129 (-1530 (-1814 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136)))) (-1814 (|has| (-398 |#2|) (-869 (-1136))) (|has| (-398 |#2|) (-354))))) (($ $ (-1136)) 130 (-1530 (-1814 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136)))) (-1814 (|has| (-398 |#2|) (-869 (-1136))) (|has| (-398 |#2|) (-354))))) (($ $ (-745)) 132 (-1530 (-1814 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-225))) (-1814 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340)))) (($ $) 134 (-1530 (-1814 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-225))) (-1814 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340))))) (-3101 (((-663 (-398 |#2|)) (-1219 $) (-1 (-398 |#2|) (-398 |#2|))) 151 (|has| (-398 |#2|) (-354)))) (-1882 ((|#3|) 156)) (-3823 (($) 145 (|has| (-398 |#2|) (-340)))) (-3220 (((-1219 (-398 |#2|)) $ (-1219 $)) 48) (((-663 (-398 |#2|)) (-1219 $) (-1219 $)) 47) (((-1219 (-398 |#2|)) $) 64) (((-663 (-398 |#2|)) (-1219 $)) 63)) (-2838 (((-1219 (-398 |#2|)) $) 61) (($ (-1219 (-398 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 142 (|has| (-398 |#2|) (-340)))) (-4308 (((-1219 $) (-1219 $)) 200)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ (-398 |#2|)) 35) (($ (-398 (-547))) 84 (-1530 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-1007 (-398 (-547)))))) (($ $) 89 (|has| (-398 |#2|) (-354)))) (-2220 (($ $) 141 (|has| (-398 |#2|) (-340))) (((-3 $ "failed") $) 41 (|has| (-398 |#2|) (-143)))) (-1316 ((|#3| $) 43)) (-2736 (((-745)) 28)) (-2861 (((-112)) 213)) (-2204 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-1917 (((-1219 $)) 65)) (-3577 (((-112) $ $) 93 (|has| (-398 |#2|) (-354)))) (-4226 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-2887 (((-112)) 215)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-1 (-398 |#2|) (-398 |#2|)) (-745)) 122 (|has| (-398 |#2|) (-354))) (($ $ (-1 (-398 |#2|) (-398 |#2|))) 121 (|has| (-398 |#2|) (-354))) (($ $ (-619 (-1136)) (-619 (-745))) 123 (-1530 (-1814 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136)))) (-1814 (|has| (-398 |#2|) (-869 (-1136))) (|has| (-398 |#2|) (-354))))) (($ $ (-1136) (-745)) 124 (-1530 (-1814 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136)))) (-1814 (|has| (-398 |#2|) (-869 (-1136))) (|has| (-398 |#2|) (-354))))) (($ $ (-619 (-1136))) 125 (-1530 (-1814 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136)))) (-1814 (|has| (-398 |#2|) (-869 (-1136))) (|has| (-398 |#2|) (-354))))) (($ $ (-1136)) 126 (-1530 (-1814 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136)))) (-1814 (|has| (-398 |#2|) (-869 (-1136))) (|has| (-398 |#2|) (-354))))) (($ $ (-745)) 131 (-1530 (-1814 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-225))) (-1814 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340)))) (($ $) 133 (-1530 (-1814 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-225))) (-1814 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340))))) (-2381 (((-112) $ $) 6)) (-2506 (($ $ $) 118 (|has| (-398 |#2|) (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 115 (|has| (-398 |#2|) (-354)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 |#2|)) 37) (($ (-398 |#2|) $) 36) (($ (-398 (-547)) $) 117 (|has| (-398 |#2|) (-354))) (($ $ (-398 (-547))) 116 (|has| (-398 |#2|) (-354)))))
-(((-333 |#1| |#2| |#3|) (-138) (-1177) (-1195 |t#1|) (-1195 (-398 |t#2|))) (T -333))
-((-3209 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-745)))) (-2489 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-745)))) (-2887 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))) (-3454 (*1 *2 *3 *3) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))) (-2861 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))) (-2204 (*1 *2 *3) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))) (-2204 (*1 *2 *3) (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1177)) (-4 *3 (-1195 *4)) (-4 *5 (-1195 (-398 *3))) (-5 *2 (-112)))) (-3451 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))) (-3303 (*1 *2 *3) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))) (-3303 (*1 *2 *3) (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1177)) (-4 *3 (-1195 *4)) (-4 *5 (-1195 (-398 *3))) (-5 *2 (-112)))) (-3165 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))) (-3012 (*1 *2 *3) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))) (-3012 (*1 *2 *3) (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1177)) (-4 *3 (-1195 *4)) (-4 *5 (-1195 (-398 *3))) (-5 *2 (-112)))) (-1380 (*1 *2) (-12 (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-1219 *1)) (-4 *1 (-333 *3 *4 *5)))) (-3787 (*1 *2) (-12 (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-1219 *1)) (-4 *1 (-333 *3 *4 *5)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))) (-4308 (*1 *2 *2) (-12 (-5 *2 (-1219 *1)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))))) (-3278 (*1 *2 *2) (-12 (-5 *2 (-1219 *1)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))))) (-2451 (*1 *2 *2) (-12 (-5 *2 (-1219 *1)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))))) (-3476 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-663 (-398 *4))))) (-1311 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-663 (-398 *4))))) (-1524 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-663 (-398 *4))))) (-1560 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-663 (-398 *4))))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-2 (|:| |num| (-1219 *4)) (|:| |den| *4))))) (-2614 (*1 *1 *2 *3) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-1195 *4)) (-4 *4 (-1177)) (-4 *1 (-333 *4 *3 *5)) (-4 *5 (-1195 (-398 *3))))) (-1321 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-2 (|:| |num| (-1219 *4)) (|:| |den| *4))))) (-3132 (*1 *1 *2 *3) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-1195 *4)) (-4 *4 (-1177)) (-4 *1 (-333 *4 *3 *5)) (-4 *5 (-1195 (-398 *3))))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-333 *4 *5 *6)) (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5))) (-5 *2 (-2 (|:| |num| (-663 *5)) (|:| |den| *5))))) (-1322 (*1 *2 *1 *3) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))) (-1322 (*1 *2 *1 *3) (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1177)) (-4 *3 (-1195 *4)) (-4 *5 (-1195 (-398 *3))) (-5 *2 (-112)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))))) (-3350 (*1 *1 *1) (-12 (-4 *1 (-333 *2 *3 *4)) (-4 *2 (-1177)) (-4 *3 (-1195 *2)) (-4 *4 (-1195 (-398 *3))))) (-3334 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-333 *2 *3 *4)) (-4 *2 (-1177)) (-4 *3 (-1195 *2)) (-4 *4 (-1195 (-398 *3))))) (-1734 (*1 *2) (|partial| -12 (-4 *1 (-333 *3 *2 *4)) (-4 *3 (-1177)) (-4 *4 (-1195 (-398 *2))) (-4 *2 (-1195 *3)))) (-4052 (*1 *2) (|partial| -12 (-4 *1 (-333 *3 *2 *4)) (-4 *3 (-1177)) (-4 *4 (-1195 (-398 *2))) (-4 *2 (-1195 *3)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1195 *4)) (-4 *4 (-1177)) (-4 *6 (-1195 (-398 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-333 *4 *5 *6)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-4 *1 (-333 *4 *5 *6)) (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5))) (-4 *4 (-354)) (-5 *2 (-619 (-921 *4))))) (-2564 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))) (-4 *3 (-359)) (-5 *2 (-619 (-619 *3))))))
-(-13 (-699 (-398 |t#2|) |t#3|) (-10 -8 (-15 -3209 ((-745))) (-15 -2489 ((-745))) (-15 -2887 ((-112))) (-15 -3454 ((-112) |t#1| |t#1|)) (-15 -2861 ((-112))) (-15 -2204 ((-112) |t#1|)) (-15 -2204 ((-112) |t#2|)) (-15 -3451 ((-112))) (-15 -3303 ((-112) |t#1|)) (-15 -3303 ((-112) |t#2|)) (-15 -3165 ((-112))) (-15 -3012 ((-112) |t#1|)) (-15 -3012 ((-112) |t#2|)) (-15 -1380 ((-1219 $))) (-15 -3787 ((-1219 $))) (-15 -3019 ((-112) $)) (-15 -1322 ((-112) $)) (-15 -4308 ((-1219 $) (-1219 $))) (-15 -3278 ((-1219 $) (-1219 $))) (-15 -2451 ((-1219 $) (-1219 $))) (-15 -3476 ((-663 (-398 |t#2|)))) (-15 -1311 ((-663 (-398 |t#2|)))) (-15 -1524 ((-663 (-398 |t#2|)))) (-15 -1560 ((-663 (-398 |t#2|)))) (-15 -2675 ((-2 (|:| |num| (-1219 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2614 ($ (-1219 |t#2|) |t#2|)) (-15 -1321 ((-2 (|:| |num| (-1219 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3132 ($ (-1219 |t#2|) |t#2|)) (-15 -2650 ((-2 (|:| |num| (-663 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1322 ((-112) $ |t#1|)) (-15 -1322 ((-112) $ |t#2|)) (-15 -3448 ($ $ (-1 |t#2| |t#2|))) (-15 -3350 ($ $)) (-15 -3334 (|t#1| $ |t#1| |t#1|)) (-15 -1734 ((-3 |t#2| "failed"))) (-15 -4052 ((-3 |t#2| "failed"))) (-15 -4226 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-354)) (-15 -3361 ((-619 (-921 |t#1|)) (-1136))) |%noBranch|) (IF (|has| |t#1| (-359)) (-15 -2564 ((-619 (-619 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-38 #1=(-398 |#2|)) . T) ((-38 $) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-101) . T) ((-111 #0# #0#) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-143))) ((-145) |has| (-398 |#2|) (-145)) ((-591 (-832)) . T) ((-169) . T) ((-592 |#3|) . T) ((-223 #1#) |has| (-398 |#2|) (-354)) ((-225) -1530 (|has| (-398 |#2|) (-340)) (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354)))) ((-235) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-281) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-298) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-354) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-393) |has| (-398 |#2|) (-340)) ((-359) -1530 (|has| (-398 |#2|) (-359)) (|has| (-398 |#2|) (-340))) ((-340) |has| (-398 |#2|) (-340)) ((-361 #1# |#3|) . T) ((-400 #1# |#3|) . T) ((-368 #1#) . T) ((-402 #1#) . T) ((-442) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-539) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-622 #0#) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-622 #1#) . T) ((-622 $) . T) ((-615 #1#) . T) ((-615 (-547)) |has| (-398 |#2|) (-615 (-547))) ((-692 #0#) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-692 #1#) . T) ((-692 $) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-699 #1# |#3|) . T) ((-701) . T) ((-869 (-1136)) -12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136)))) ((-889) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-1007 (-398 (-547))) |has| (-398 |#2|) (-1007 (-398 (-547)))) ((-1007 #1#) . T) ((-1007 (-547)) |has| (-398 |#2|) (-1007 (-547))) ((-1022 #0#) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-1022 #1#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1112) |has| (-398 |#2|) (-340)) ((-1177) -1530 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1452 (((-112) $) NIL)) (-1440 (((-745)) NIL)) (-2899 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-2797 (((-1146 (-890) (-745)) (-547)) NIL (|has| (-879 |#1|) (-359)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-3608 (((-745)) NIL (|has| (-879 |#1|) (-359)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-879 |#1|) "failed") $) NIL)) (-2652 (((-879 |#1|) $) NIL)) (-2614 (($ (-1219 (-879 |#1|))) NIL)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-879 |#1|) (-359)))) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| (-879 |#1|) (-359)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3527 (($) NIL (|has| (-879 |#1|) (-359)))) (-3078 (((-112) $) NIL (|has| (-879 |#1|) (-359)))) (-1551 (($ $ (-745)) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359)))) (($ $) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-1791 (((-112) $) NIL)) (-3275 (((-890) $) NIL (|has| (-879 |#1|) (-359))) (((-807 (-890)) $) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-2261 (((-112) $) NIL)) (-2460 (($) NIL (|has| (-879 |#1|) (-359)))) (-3841 (((-112) $) NIL (|has| (-879 |#1|) (-359)))) (-3160 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-3477 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-359)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3786 (((-1132 (-879 |#1|)) $) NIL) (((-1132 $) $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-2402 (((-890) $) NIL (|has| (-879 |#1|) (-359)))) (-3168 (((-1132 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-359)))) (-1600 (((-1132 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-359))) (((-3 (-1132 (-879 |#1|)) "failed") $ $) NIL (|has| (-879 |#1|) (-359)))) (-2830 (($ $ (-1132 (-879 |#1|))) NIL (|has| (-879 |#1|) (-359)))) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| (-879 |#1|) (-359)) CONST)) (-3487 (($ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-1290 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-1537 (((-927 (-1082))) NIL)) (-4238 (($) NIL (|has| (-879 |#1|) (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL (|has| (-879 |#1|) (-359)))) (-2115 (((-409 $) $) NIL)) (-3327 (((-807 (-890))) NIL) (((-890)) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1422 (((-745) $) NIL (|has| (-879 |#1|) (-359))) (((-3 (-745) "failed") $ $) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-3970 (((-133)) NIL)) (-3448 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-3705 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1882 (((-1132 (-879 |#1|))) NIL)) (-3823 (($) NIL (|has| (-879 |#1|) (-359)))) (-3532 (($) NIL (|has| (-879 |#1|) (-359)))) (-3220 (((-1219 (-879 |#1|)) $) NIL) (((-663 (-879 |#1|)) (-1219 $)) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| (-879 |#1|) (-359)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-879 |#1|)) NIL)) (-2220 (($ $) NIL (|has| (-879 |#1|) (-359))) (((-3 $ "failed") $) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-2736 (((-745)) NIL)) (-1917 (((-1219 $)) NIL) (((-1219 $) (-890)) NIL)) (-3577 (((-112) $ $) NIL)) (-2593 (((-112) $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1693 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-1695 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL) (($ $ (-879 |#1|)) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ (-879 |#1|)) NIL) (($ (-879 |#1|) $) NIL)))
-(((-334 |#1| |#2|) (-13 (-320 (-879 |#1|)) (-10 -7 (-15 -1537 ((-927 (-1082)))))) (-890) (-890)) (T -334))
-((-1537 (*1 *2) (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-334 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))))
-(-13 (-320 (-879 |#1|)) (-10 -7 (-15 -1537 ((-927 (-1082))))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 44)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1452 (((-112) $) NIL)) (-1440 (((-745)) NIL)) (-2899 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-2797 (((-1146 (-890) (-745)) (-547)) 41 (|has| |#1| (-359)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-3608 (((-745)) NIL (|has| |#1| (-359)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) 115)) (-2652 ((|#1| $) 86)) (-2614 (($ (-1219 |#1|)) 104)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-359)))) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) 98 (|has| |#1| (-359)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3527 (($) 129 (|has| |#1| (-359)))) (-3078 (((-112) $) 48 (|has| |#1| (-359)))) (-1551 (($ $ (-745)) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-1791 (((-112) $) NIL)) (-3275 (((-890) $) 45 (|has| |#1| (-359))) (((-807 (-890)) $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2261 (((-112) $) NIL)) (-2460 (($) 131 (|has| |#1| (-359)))) (-3841 (((-112) $) NIL (|has| |#1| (-359)))) (-3160 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-3477 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3786 (((-1132 |#1|) $) 90) (((-1132 $) $ (-890)) NIL (|has| |#1| (-359)))) (-2402 (((-890) $) 139 (|has| |#1| (-359)))) (-3168 (((-1132 |#1|) $) NIL (|has| |#1| (-359)))) (-1600 (((-1132 |#1|) $) NIL (|has| |#1| (-359))) (((-3 (-1132 |#1|) "failed") $ $) NIL (|has| |#1| (-359)))) (-2830 (($ $ (-1132 |#1|)) NIL (|has| |#1| (-359)))) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 146)) (-3054 (($) NIL (|has| |#1| (-359)) CONST)) (-3487 (($ (-890)) 71 (|has| |#1| (-359)))) (-1290 (((-112) $) 118)) (-3979 (((-1082) $) NIL)) (-1537 (((-927 (-1082))) 42)) (-4238 (($) 127 (|has| |#1| (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) 93 (|has| |#1| (-359)))) (-2115 (((-409 $) $) NIL)) (-3327 (((-807 (-890))) 67) (((-890)) 68)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1422 (((-745) $) 130 (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) 125 (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3970 (((-133)) NIL)) (-3448 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-3705 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1882 (((-1132 |#1|)) 96)) (-3823 (($) 128 (|has| |#1| (-359)))) (-3532 (($) 136 (|has| |#1| (-359)))) (-3220 (((-1219 |#1|) $) 59) (((-663 |#1|) (-1219 $)) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| |#1| (-359)))) (-3838 (((-832) $) 142) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) 75)) (-2220 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2736 (((-745)) 138)) (-1917 (((-1219 $)) 117) (((-1219 $) (-890)) 73)) (-3577 (((-112) $ $) NIL)) (-2593 (((-112) $) NIL)) (-3269 (($) 49 T CONST)) (-3281 (($) 46 T CONST)) (-1693 (($ $) 81 (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1695 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-2381 (((-112) $ $) 47)) (-2506 (($ $ $) 144) (($ $ |#1|) 145)) (-2493 (($ $) 126) (($ $ $) NIL)) (-2479 (($ $ $) 61)) (** (($ $ (-890)) 148) (($ $ (-745)) 149) (($ $ (-547)) 147)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 77) (($ $ $) 76) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
-(((-335 |#1| |#2|) (-13 (-320 |#1|) (-10 -7 (-15 -1537 ((-927 (-1082)))))) (-340) (-1132 |#1|)) (T -335))
-((-1537 (*1 *2) (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-335 *3 *4)) (-4 *3 (-340)) (-14 *4 (-1132 *3)))))
-(-13 (-320 |#1|) (-10 -7 (-15 -1537 ((-927 (-1082))))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1452 (((-112) $) NIL)) (-1440 (((-745)) NIL)) (-2899 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-2797 (((-1146 (-890) (-745)) (-547)) NIL (|has| |#1| (-359)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-3608 (((-745)) NIL (|has| |#1| (-359)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL)) (-2652 ((|#1| $) NIL)) (-2614 (($ (-1219 |#1|)) NIL)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-359)))) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| |#1| (-359)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3527 (($) NIL (|has| |#1| (-359)))) (-3078 (((-112) $) NIL (|has| |#1| (-359)))) (-1551 (($ $ (-745)) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-1791 (((-112) $) NIL)) (-3275 (((-890) $) NIL (|has| |#1| (-359))) (((-807 (-890)) $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2261 (((-112) $) NIL)) (-2460 (($) NIL (|has| |#1| (-359)))) (-3841 (((-112) $) NIL (|has| |#1| (-359)))) (-3160 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-3477 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3786 (((-1132 |#1|) $) NIL) (((-1132 $) $ (-890)) NIL (|has| |#1| (-359)))) (-2402 (((-890) $) NIL (|has| |#1| (-359)))) (-3168 (((-1132 |#1|) $) NIL (|has| |#1| (-359)))) (-1600 (((-1132 |#1|) $) NIL (|has| |#1| (-359))) (((-3 (-1132 |#1|) "failed") $ $) NIL (|has| |#1| (-359)))) (-2830 (($ $ (-1132 |#1|)) NIL (|has| |#1| (-359)))) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| |#1| (-359)) CONST)) (-3487 (($ (-890)) NIL (|has| |#1| (-359)))) (-1290 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-1537 (((-927 (-1082))) NIL)) (-4238 (($) NIL (|has| |#1| (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL (|has| |#1| (-359)))) (-2115 (((-409 $) $) NIL)) (-3327 (((-807 (-890))) NIL) (((-890)) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1422 (((-745) $) NIL (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3970 (((-133)) NIL)) (-3448 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-3705 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1882 (((-1132 |#1|)) NIL)) (-3823 (($) NIL (|has| |#1| (-359)))) (-3532 (($) NIL (|has| |#1| (-359)))) (-3220 (((-1219 |#1|) $) NIL) (((-663 |#1|) (-1219 $)) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| |#1| (-359)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) NIL)) (-2220 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2736 (((-745)) NIL)) (-1917 (((-1219 $)) NIL) (((-1219 $) (-890)) NIL)) (-3577 (((-112) $ $) NIL)) (-2593 (((-112) $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1693 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1695 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-336 |#1| |#2|) (-13 (-320 |#1|) (-10 -7 (-15 -1537 ((-927 (-1082)))))) (-340) (-890)) (T -336))
-((-1537 (*1 *2) (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-336 *3 *4)) (-4 *3 (-340)) (-14 *4 (-890)))))
-(-13 (-320 |#1|) (-10 -7 (-15 -1537 ((-927 (-1082))))))
-((-4067 (((-745) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082)))))) 42)) (-2192 (((-927 (-1082)) (-1132 |#1|)) 85)) (-4251 (((-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))) (-1132 |#1|)) 78)) (-2199 (((-663 |#1|) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082)))))) 86)) (-1502 (((-3 (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))) "failed") (-890)) 13)) (-2839 (((-3 (-1132 |#1|) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082)))))) (-890)) 18)))
-(((-337 |#1|) (-10 -7 (-15 -2192 ((-927 (-1082)) (-1132 |#1|))) (-15 -4251 ((-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))) (-1132 |#1|))) (-15 -2199 ((-663 |#1|) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))))) (-15 -4067 ((-745) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))))) (-15 -1502 ((-3 (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))) "failed") (-890))) (-15 -2839 ((-3 (-1132 |#1|) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082)))))) (-890)))) (-340)) (T -337))
-((-2839 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-3 (-1132 *4) (-1219 (-619 (-2 (|:| -4153 *4) (|:| -3487 (-1082))))))) (-5 *1 (-337 *4)) (-4 *4 (-340)))) (-1502 (*1 *2 *3) (|partial| -12 (-5 *3 (-890)) (-5 *2 (-1219 (-619 (-2 (|:| -4153 *4) (|:| -3487 (-1082)))))) (-5 *1 (-337 *4)) (-4 *4 (-340)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-1219 (-619 (-2 (|:| -4153 *4) (|:| -3487 (-1082)))))) (-4 *4 (-340)) (-5 *2 (-745)) (-5 *1 (-337 *4)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-1219 (-619 (-2 (|:| -4153 *4) (|:| -3487 (-1082)))))) (-4 *4 (-340)) (-5 *2 (-663 *4)) (-5 *1 (-337 *4)))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-1132 *4)) (-4 *4 (-340)) (-5 *2 (-1219 (-619 (-2 (|:| -4153 *4) (|:| -3487 (-1082)))))) (-5 *1 (-337 *4)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-1132 *4)) (-4 *4 (-340)) (-5 *2 (-927 (-1082))) (-5 *1 (-337 *4)))))
-(-10 -7 (-15 -2192 ((-927 (-1082)) (-1132 |#1|))) (-15 -4251 ((-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))) (-1132 |#1|))) (-15 -2199 ((-663 |#1|) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))))) (-15 -4067 ((-745) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))))) (-15 -1502 ((-3 (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))) "failed") (-890))) (-15 -2839 ((-3 (-1132 |#1|) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082)))))) (-890))))
-((-3838 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
-(((-338 |#1| |#2| |#3|) (-10 -7 (-15 -3838 (|#3| |#1|)) (-15 -3838 (|#1| |#3|))) (-320 |#2|) (-340) (-320 |#2|)) (T -338))
-((-3838 (*1 *2 *3) (-12 (-4 *4 (-340)) (-4 *2 (-320 *4)) (-5 *1 (-338 *2 *4 *3)) (-4 *3 (-320 *4)))) (-3838 (*1 *2 *3) (-12 (-4 *4 (-340)) (-4 *2 (-320 *4)) (-5 *1 (-338 *3 *4 *2)) (-4 *3 (-320 *4)))))
-(-10 -7 (-15 -3838 (|#3| |#1|)) (-15 -3838 (|#1| |#3|)))
-((-3078 (((-112) $) 51)) (-3275 (((-807 (-890)) $) 21) (((-890) $) 52)) (-3477 (((-3 $ "failed") $) 16)) (-3054 (($) 9)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 93)) (-1422 (((-3 (-745) "failed") $ $) 71) (((-745) $) 60)) (-3448 (($ $ (-745)) NIL) (($ $) 8)) (-3823 (($) 44)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 34)) (-2220 (((-3 $ "failed") $) 38) (($ $) 37)))
-(((-339 |#1|) (-10 -8 (-15 -3275 ((-890) |#1|)) (-15 -1422 ((-745) |#1|)) (-15 -3078 ((-112) |#1|)) (-15 -3823 (|#1|)) (-15 -1427 ((-3 (-1219 |#1|) "failed") (-663 |#1|))) (-15 -2220 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3054 (|#1|)) (-15 -3477 ((-3 |#1| "failed") |#1|)) (-15 -1422 ((-3 (-745) "failed") |#1| |#1|)) (-15 -3275 ((-807 (-890)) |#1|)) (-15 -2220 ((-3 |#1| "failed") |#1|)) (-15 -2429 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)))) (-340)) (T -339))
-NIL
-(-10 -8 (-15 -3275 ((-890) |#1|)) (-15 -1422 ((-745) |#1|)) (-15 -3078 ((-112) |#1|)) (-15 -3823 (|#1|)) (-15 -1427 ((-3 (-1219 |#1|) "failed") (-663 |#1|))) (-15 -2220 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3054 (|#1|)) (-15 -3477 ((-3 |#1| "failed") |#1|)) (-15 -1422 ((-3 (-745) "failed") |#1| |#1|)) (-15 -3275 ((-807 (-890)) |#1|)) (-15 -2220 ((-3 |#1| "failed") |#1|)) (-15 -2429 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-2797 (((-1146 (-890) (-745)) (-547)) 90)) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 70)) (-3299 (((-409 $) $) 69)) (-1547 (((-112) $ $) 57)) (-3608 (((-745)) 100)) (-1948 (($) 17 T CONST)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2089 (($ $ $) 53)) (-3855 (((-3 $ "failed") $) 32)) (-3232 (($) 103)) (-2061 (($ $ $) 54)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-3527 (($) 88)) (-3078 (((-112) $) 87)) (-1551 (($ $) 76) (($ $ (-745)) 75)) (-1791 (((-112) $) 68)) (-3275 (((-807 (-890)) $) 78) (((-890) $) 85)) (-2261 (((-112) $) 30)) (-3477 (((-3 $ "failed") $) 99)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2402 (((-890) $) 102)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 67)) (-3054 (($) 98 T CONST)) (-3487 (($ (-890)) 101)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) 91)) (-2115 (((-409 $) $) 71)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2471 (((-745) $) 56)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55)) (-1422 (((-3 (-745) "failed") $ $) 77) (((-745) $) 86)) (-3448 (($ $ (-745)) 96) (($ $) 94)) (-3823 (($) 89)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 92)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63)) (-2220 (((-3 $ "failed") $) 79) (($ $) 93)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-745)) 97) (($ $) 95)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ $) 62)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64)))
-(((-340) (-138)) (T -340))
-((-2220 (*1 *1 *1) (-4 *1 (-340))) (-1427 (*1 *2 *3) (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-340)) (-5 *2 (-1219 *1)))) (-2954 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))))) (-2797 (*1 *2 *3) (-12 (-4 *1 (-340)) (-5 *3 (-547)) (-5 *2 (-1146 (-890) (-745))))) (-3823 (*1 *1) (-4 *1 (-340))) (-3527 (*1 *1) (-4 *1 (-340))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-112)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-745)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-890)))) (-2424 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-393) (-359) (-1112) (-225) (-10 -8 (-15 -2220 ($ $)) (-15 -1427 ((-3 (-1219 $) "failed") (-663 $))) (-15 -2954 ((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547)))))) (-15 -2797 ((-1146 (-890) (-745)) (-547))) (-15 -3823 ($)) (-15 -3527 ($)) (-15 -3078 ((-112) $)) (-15 -1422 ((-745) $)) (-15 -3275 ((-890) $)) (-15 -2424 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-591 (-832)) . T) ((-169) . T) ((-225) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-393) . T) ((-359) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1112) . T) ((-1177) . T))
-((-3213 (((-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) |#1|) 53)) (-1380 (((-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))) 51)))
-(((-341 |#1| |#2| |#3|) (-10 -7 (-15 -1380 ((-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))))) (-15 -3213 ((-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) |#1|))) (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $)))) (-1195 |#1|) (-400 |#1| |#2|)) (T -341))
-((-3213 (*1 *2 *3) (-12 (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $))))) (-4 *4 (-1195 *3)) (-5 *2 (-2 (|:| -1917 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) (-1380 (*1 *2) (-12 (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $))))) (-4 *4 (-1195 *3)) (-5 *2 (-2 (|:| -1917 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-400 *3 *4)))))
-(-10 -7 (-15 -1380 ((-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))))) (-15 -3213 ((-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1452 (((-112) $) NIL)) (-1440 (((-745)) NIL)) (-2899 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-2797 (((-1146 (-890) (-745)) (-547)) NIL (|has| (-879 |#1|) (-359)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-4067 (((-745)) NIL)) (-1547 (((-112) $ $) NIL)) (-3608 (((-745)) NIL (|has| (-879 |#1|) (-359)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-879 |#1|) "failed") $) NIL)) (-2652 (((-879 |#1|) $) NIL)) (-2614 (($ (-1219 (-879 |#1|))) NIL)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-879 |#1|) (-359)))) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| (-879 |#1|) (-359)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3527 (($) NIL (|has| (-879 |#1|) (-359)))) (-3078 (((-112) $) NIL (|has| (-879 |#1|) (-359)))) (-1551 (($ $ (-745)) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359)))) (($ $) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-1791 (((-112) $) NIL)) (-3275 (((-890) $) NIL (|has| (-879 |#1|) (-359))) (((-807 (-890)) $) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-2261 (((-112) $) NIL)) (-2460 (($) NIL (|has| (-879 |#1|) (-359)))) (-3841 (((-112) $) NIL (|has| (-879 |#1|) (-359)))) (-3160 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-3477 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-359)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3786 (((-1132 (-879 |#1|)) $) NIL) (((-1132 $) $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-2402 (((-890) $) NIL (|has| (-879 |#1|) (-359)))) (-3168 (((-1132 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-359)))) (-1600 (((-1132 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-359))) (((-3 (-1132 (-879 |#1|)) "failed") $ $) NIL (|has| (-879 |#1|) (-359)))) (-2830 (($ $ (-1132 (-879 |#1|))) NIL (|has| (-879 |#1|) (-359)))) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| (-879 |#1|) (-359)) CONST)) (-3487 (($ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-1290 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-3400 (((-1219 (-619 (-2 (|:| -4153 (-879 |#1|)) (|:| -3487 (-1082)))))) NIL)) (-2124 (((-663 (-879 |#1|))) NIL)) (-4238 (($) NIL (|has| (-879 |#1|) (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL (|has| (-879 |#1|) (-359)))) (-2115 (((-409 $) $) NIL)) (-3327 (((-807 (-890))) NIL) (((-890)) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1422 (((-745) $) NIL (|has| (-879 |#1|) (-359))) (((-3 (-745) "failed") $ $) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-3970 (((-133)) NIL)) (-3448 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-3705 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1882 (((-1132 (-879 |#1|))) NIL)) (-3823 (($) NIL (|has| (-879 |#1|) (-359)))) (-3532 (($) NIL (|has| (-879 |#1|) (-359)))) (-3220 (((-1219 (-879 |#1|)) $) NIL) (((-663 (-879 |#1|)) (-1219 $)) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| (-879 |#1|) (-359)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-879 |#1|)) NIL)) (-2220 (($ $) NIL (|has| (-879 |#1|) (-359))) (((-3 $ "failed") $) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-2736 (((-745)) NIL)) (-1917 (((-1219 $)) NIL) (((-1219 $) (-890)) NIL)) (-3577 (((-112) $ $) NIL)) (-2593 (((-112) $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1693 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-1695 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL) (($ $ (-879 |#1|)) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ (-879 |#1|)) NIL) (($ (-879 |#1|) $) NIL)))
-(((-342 |#1| |#2|) (-13 (-320 (-879 |#1|)) (-10 -7 (-15 -3400 ((-1219 (-619 (-2 (|:| -4153 (-879 |#1|)) (|:| -3487 (-1082))))))) (-15 -2124 ((-663 (-879 |#1|)))) (-15 -4067 ((-745))))) (-890) (-890)) (T -342))
-((-3400 (*1 *2) (-12 (-5 *2 (-1219 (-619 (-2 (|:| -4153 (-879 *3)) (|:| -3487 (-1082)))))) (-5 *1 (-342 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-2124 (*1 *2) (-12 (-5 *2 (-663 (-879 *3))) (-5 *1 (-342 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-4067 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-342 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))))
-(-13 (-320 (-879 |#1|)) (-10 -7 (-15 -3400 ((-1219 (-619 (-2 (|:| -4153 (-879 |#1|)) (|:| -3487 (-1082))))))) (-15 -2124 ((-663 (-879 |#1|)))) (-15 -4067 ((-745)))))
-((-3826 (((-112) $ $) 61)) (-1499 (((-112) $) 74)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1452 (((-112) $) NIL)) (-1440 (((-745)) NIL)) (-2899 ((|#1| $) 92) (($ $ (-890)) 90 (|has| |#1| (-359)))) (-2797 (((-1146 (-890) (-745)) (-547)) 148 (|has| |#1| (-359)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-4067 (((-745)) 89)) (-1547 (((-112) $ $) NIL)) (-3608 (((-745)) 162 (|has| |#1| (-359)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) 112)) (-2652 ((|#1| $) 91)) (-2614 (($ (-1219 |#1|)) 58)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-359)))) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) 158 (|has| |#1| (-359)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3527 (($) 149 (|has| |#1| (-359)))) (-3078 (((-112) $) NIL (|has| |#1| (-359)))) (-1551 (($ $ (-745)) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-1791 (((-112) $) NIL)) (-3275 (((-890) $) NIL (|has| |#1| (-359))) (((-807 (-890)) $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2261 (((-112) $) NIL)) (-2460 (($) 98 (|has| |#1| (-359)))) (-3841 (((-112) $) 175 (|has| |#1| (-359)))) (-3160 ((|#1| $) 94) (($ $ (-890)) 93 (|has| |#1| (-359)))) (-3477 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3786 (((-1132 |#1|) $) 189) (((-1132 $) $ (-890)) NIL (|has| |#1| (-359)))) (-2402 (((-890) $) 134 (|has| |#1| (-359)))) (-3168 (((-1132 |#1|) $) 73 (|has| |#1| (-359)))) (-1600 (((-1132 |#1|) $) 70 (|has| |#1| (-359))) (((-3 (-1132 |#1|) "failed") $ $) 82 (|has| |#1| (-359)))) (-2830 (($ $ (-1132 |#1|)) 69 (|has| |#1| (-359)))) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 192)) (-3054 (($) NIL (|has| |#1| (-359)) CONST)) (-3487 (($ (-890)) 137 (|has| |#1| (-359)))) (-1290 (((-112) $) 108)) (-3979 (((-1082) $) NIL)) (-3400 (((-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082)))))) 83)) (-2124 (((-663 |#1|)) 87)) (-4238 (($) 96 (|has| |#1| (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) 150 (|has| |#1| (-359)))) (-2115 (((-409 $) $) NIL)) (-3327 (((-807 (-890))) NIL) (((-890)) 151)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1422 (((-745) $) NIL (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3970 (((-133)) NIL)) (-3448 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-3705 (((-807 (-890)) $) NIL) (((-890) $) 62)) (-1882 (((-1132 |#1|)) 152)) (-3823 (($) 133 (|has| |#1| (-359)))) (-3532 (($) NIL (|has| |#1| (-359)))) (-3220 (((-1219 |#1|) $) 106) (((-663 |#1|) (-1219 $)) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| |#1| (-359)))) (-3838 (((-832) $) 124) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) 57)) (-2220 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2736 (((-745)) 156)) (-1917 (((-1219 $)) 172) (((-1219 $) (-890)) 101)) (-3577 (((-112) $ $) NIL)) (-2593 (((-112) $) NIL)) (-3269 (($) 117 T CONST)) (-3281 (($) 33 T CONST)) (-1693 (($ $) 107 (|has| |#1| (-359))) (($ $ (-745)) 99 (|has| |#1| (-359)))) (-1695 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-2381 (((-112) $ $) 183)) (-2506 (($ $ $) 104) (($ $ |#1|) 105)) (-2493 (($ $) 177) (($ $ $) 181)) (-2479 (($ $ $) 179)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 138)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 186) (($ $ $) 142) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
-(((-343 |#1| |#2|) (-13 (-320 |#1|) (-10 -7 (-15 -3400 ((-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))))) (-15 -2124 ((-663 |#1|))) (-15 -4067 ((-745))))) (-340) (-3 (-1132 |#1|) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))))) (T -343))
-((-3400 (*1 *2) (-12 (-5 *2 (-1219 (-619 (-2 (|:| -4153 *3) (|:| -3487 (-1082)))))) (-5 *1 (-343 *3 *4)) (-4 *3 (-340)) (-14 *4 (-3 (-1132 *3) *2)))) (-2124 (*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-343 *3 *4)) (-4 *3 (-340)) (-14 *4 (-3 (-1132 *3) (-1219 (-619 (-2 (|:| -4153 *3) (|:| -3487 (-1082))))))))) (-4067 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-343 *3 *4)) (-4 *3 (-340)) (-14 *4 (-3 (-1132 *3) (-1219 (-619 (-2 (|:| -4153 *3) (|:| -3487 (-1082))))))))))
-(-13 (-320 |#1|) (-10 -7 (-15 -3400 ((-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))))) (-15 -2124 ((-663 |#1|))) (-15 -4067 ((-745)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1452 (((-112) $) NIL)) (-1440 (((-745)) NIL)) (-2899 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-2797 (((-1146 (-890) (-745)) (-547)) NIL (|has| |#1| (-359)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-4067 (((-745)) NIL)) (-1547 (((-112) $ $) NIL)) (-3608 (((-745)) NIL (|has| |#1| (-359)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL)) (-2652 ((|#1| $) NIL)) (-2614 (($ (-1219 |#1|)) NIL)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-359)))) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| |#1| (-359)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3527 (($) NIL (|has| |#1| (-359)))) (-3078 (((-112) $) NIL (|has| |#1| (-359)))) (-1551 (($ $ (-745)) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-1791 (((-112) $) NIL)) (-3275 (((-890) $) NIL (|has| |#1| (-359))) (((-807 (-890)) $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2261 (((-112) $) NIL)) (-2460 (($) NIL (|has| |#1| (-359)))) (-3841 (((-112) $) NIL (|has| |#1| (-359)))) (-3160 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-3477 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3786 (((-1132 |#1|) $) NIL) (((-1132 $) $ (-890)) NIL (|has| |#1| (-359)))) (-2402 (((-890) $) NIL (|has| |#1| (-359)))) (-3168 (((-1132 |#1|) $) NIL (|has| |#1| (-359)))) (-1600 (((-1132 |#1|) $) NIL (|has| |#1| (-359))) (((-3 (-1132 |#1|) "failed") $ $) NIL (|has| |#1| (-359)))) (-2830 (($ $ (-1132 |#1|)) NIL (|has| |#1| (-359)))) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| |#1| (-359)) CONST)) (-3487 (($ (-890)) NIL (|has| |#1| (-359)))) (-1290 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-3400 (((-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082)))))) NIL)) (-2124 (((-663 |#1|)) NIL)) (-4238 (($) NIL (|has| |#1| (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL (|has| |#1| (-359)))) (-2115 (((-409 $) $) NIL)) (-3327 (((-807 (-890))) NIL) (((-890)) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1422 (((-745) $) NIL (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3970 (((-133)) NIL)) (-3448 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-3705 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1882 (((-1132 |#1|)) NIL)) (-3823 (($) NIL (|has| |#1| (-359)))) (-3532 (($) NIL (|has| |#1| (-359)))) (-3220 (((-1219 |#1|) $) NIL) (((-663 |#1|) (-1219 $)) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| |#1| (-359)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) NIL)) (-2220 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2736 (((-745)) NIL)) (-1917 (((-1219 $)) NIL) (((-1219 $) (-890)) NIL)) (-3577 (((-112) $ $) NIL)) (-2593 (((-112) $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1693 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1695 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-344 |#1| |#2|) (-13 (-320 |#1|) (-10 -7 (-15 -3400 ((-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))))) (-15 -2124 ((-663 |#1|))) (-15 -4067 ((-745))))) (-340) (-890)) (T -344))
-((-3400 (*1 *2) (-12 (-5 *2 (-1219 (-619 (-2 (|:| -4153 *3) (|:| -3487 (-1082)))))) (-5 *1 (-344 *3 *4)) (-4 *3 (-340)) (-14 *4 (-890)))) (-2124 (*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-344 *3 *4)) (-4 *3 (-340)) (-14 *4 (-890)))) (-4067 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-344 *3 *4)) (-4 *3 (-340)) (-14 *4 (-890)))))
-(-13 (-320 |#1|) (-10 -7 (-15 -3400 ((-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))))) (-15 -2124 ((-663 |#1|))) (-15 -4067 ((-745)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1452 (((-112) $) NIL)) (-1440 (((-745)) NIL)) (-2899 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-2797 (((-1146 (-890) (-745)) (-547)) NIL (|has| (-879 |#1|) (-359)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-3608 (((-745)) NIL (|has| (-879 |#1|) (-359)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-879 |#1|) "failed") $) NIL)) (-2652 (((-879 |#1|) $) NIL)) (-2614 (($ (-1219 (-879 |#1|))) NIL)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-879 |#1|) (-359)))) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| (-879 |#1|) (-359)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3527 (($) NIL (|has| (-879 |#1|) (-359)))) (-3078 (((-112) $) NIL (|has| (-879 |#1|) (-359)))) (-1551 (($ $ (-745)) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359)))) (($ $) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-1791 (((-112) $) NIL)) (-3275 (((-890) $) NIL (|has| (-879 |#1|) (-359))) (((-807 (-890)) $) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-2261 (((-112) $) NIL)) (-2460 (($) NIL (|has| (-879 |#1|) (-359)))) (-3841 (((-112) $) NIL (|has| (-879 |#1|) (-359)))) (-3160 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-3477 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-359)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3786 (((-1132 (-879 |#1|)) $) NIL) (((-1132 $) $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-2402 (((-890) $) NIL (|has| (-879 |#1|) (-359)))) (-3168 (((-1132 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-359)))) (-1600 (((-1132 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-359))) (((-3 (-1132 (-879 |#1|)) "failed") $ $) NIL (|has| (-879 |#1|) (-359)))) (-2830 (($ $ (-1132 (-879 |#1|))) NIL (|has| (-879 |#1|) (-359)))) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| (-879 |#1|) (-359)) CONST)) (-3487 (($ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-1290 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-4238 (($) NIL (|has| (-879 |#1|) (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL (|has| (-879 |#1|) (-359)))) (-2115 (((-409 $) $) NIL)) (-3327 (((-807 (-890))) NIL) (((-890)) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1422 (((-745) $) NIL (|has| (-879 |#1|) (-359))) (((-3 (-745) "failed") $ $) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-3970 (((-133)) NIL)) (-3448 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-3705 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1882 (((-1132 (-879 |#1|))) NIL)) (-3823 (($) NIL (|has| (-879 |#1|) (-359)))) (-3532 (($) NIL (|has| (-879 |#1|) (-359)))) (-3220 (((-1219 (-879 |#1|)) $) NIL) (((-663 (-879 |#1|)) (-1219 $)) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| (-879 |#1|) (-359)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-879 |#1|)) NIL)) (-2220 (($ $) NIL (|has| (-879 |#1|) (-359))) (((-3 $ "failed") $) NIL (-1530 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-2736 (((-745)) NIL)) (-1917 (((-1219 $)) NIL) (((-1219 $) (-890)) NIL)) (-3577 (((-112) $ $) NIL)) (-2593 (((-112) $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1693 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-1695 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL) (($ $ (-879 |#1|)) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ (-879 |#1|)) NIL) (($ (-879 |#1|) $) NIL)))
-(((-345 |#1| |#2|) (-320 (-879 |#1|)) (-890) (-890)) (T -345))
-NIL
-(-320 (-879 |#1|))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1452 (((-112) $) NIL)) (-1440 (((-745)) NIL)) (-2899 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-2797 (((-1146 (-890) (-745)) (-547)) 120 (|has| |#1| (-359)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-3608 (((-745)) 140 (|has| |#1| (-359)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) 93)) (-2652 ((|#1| $) 90)) (-2614 (($ (-1219 |#1|)) 85)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-359)))) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) 82 (|has| |#1| (-359)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3527 (($) 42 (|has| |#1| (-359)))) (-3078 (((-112) $) NIL (|has| |#1| (-359)))) (-1551 (($ $ (-745)) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-1791 (((-112) $) NIL)) (-3275 (((-890) $) NIL (|has| |#1| (-359))) (((-807 (-890)) $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2261 (((-112) $) NIL)) (-2460 (($) 121 (|has| |#1| (-359)))) (-3841 (((-112) $) 74 (|has| |#1| (-359)))) (-3160 ((|#1| $) 39) (($ $ (-890)) 43 (|has| |#1| (-359)))) (-3477 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3786 (((-1132 |#1|) $) 65) (((-1132 $) $ (-890)) NIL (|has| |#1| (-359)))) (-2402 (((-890) $) 97 (|has| |#1| (-359)))) (-3168 (((-1132 |#1|) $) NIL (|has| |#1| (-359)))) (-1600 (((-1132 |#1|) $) NIL (|has| |#1| (-359))) (((-3 (-1132 |#1|) "failed") $ $) NIL (|has| |#1| (-359)))) (-2830 (($ $ (-1132 |#1|)) NIL (|has| |#1| (-359)))) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| |#1| (-359)) CONST)) (-3487 (($ (-890)) 95 (|has| |#1| (-359)))) (-1290 (((-112) $) 142)) (-3979 (((-1082) $) NIL)) (-4238 (($) 36 (|has| |#1| (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) 115 (|has| |#1| (-359)))) (-2115 (((-409 $) $) NIL)) (-3327 (((-807 (-890))) NIL) (((-890)) 139)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1422 (((-745) $) NIL (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3970 (((-133)) NIL)) (-3448 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-3705 (((-807 (-890)) $) NIL) (((-890) $) 59)) (-1882 (((-1132 |#1|)) 88)) (-3823 (($) 126 (|has| |#1| (-359)))) (-3532 (($) NIL (|has| |#1| (-359)))) (-3220 (((-1219 |#1|) $) 53) (((-663 |#1|) (-1219 $)) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| |#1| (-359)))) (-3838 (((-832) $) 138) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) 87)) (-2220 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2736 (((-745)) 144)) (-1917 (((-1219 $)) 109) (((-1219 $) (-890)) 49)) (-3577 (((-112) $ $) NIL)) (-2593 (((-112) $) NIL)) (-3269 (($) 111 T CONST)) (-3281 (($) 32 T CONST)) (-1693 (($ $) 68 (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1695 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-2381 (((-112) $ $) 107)) (-2506 (($ $ $) 99) (($ $ |#1|) 100)) (-2493 (($ $) 80) (($ $ $) 105)) (-2479 (($ $ $) 103)) (** (($ $ (-890)) NIL) (($ $ (-745)) 44) (($ $ (-547)) 130)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 78) (($ $ $) 56) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
-(((-346 |#1| |#2|) (-320 |#1|) (-340) (-1132 |#1|)) (T -346))
-NIL
-(-320 |#1|)
-((-4225 ((|#1| (-1132 |#2|)) 52)))
-(((-347 |#1| |#2|) (-10 -7 (-15 -4225 (|#1| (-1132 |#2|)))) (-13 (-393) (-10 -7 (-15 -3838 (|#1| |#2|)) (-15 -2402 ((-890) |#1|)) (-15 -1917 ((-1219 |#1|) (-890))) (-15 -1693 (|#1| |#1|)))) (-340)) (T -347))
-((-4225 (*1 *2 *3) (-12 (-5 *3 (-1132 *4)) (-4 *4 (-340)) (-4 *2 (-13 (-393) (-10 -7 (-15 -3838 (*2 *4)) (-15 -2402 ((-890) *2)) (-15 -1917 ((-1219 *2) (-890))) (-15 -1693 (*2 *2))))) (-5 *1 (-347 *2 *4)))))
-(-10 -7 (-15 -4225 (|#1| (-1132 |#2|))))
-((-1641 (((-927 (-1132 |#1|)) (-1132 |#1|)) 36)) (-3232 (((-1132 |#1|) (-890) (-890)) 113) (((-1132 |#1|) (-890)) 112)) (-3078 (((-112) (-1132 |#1|)) 84)) (-1700 (((-890) (-890)) 71)) (-2130 (((-890) (-890)) 74)) (-3208 (((-890) (-890)) 69)) (-3841 (((-112) (-1132 |#1|)) 88)) (-3032 (((-3 (-1132 |#1|) "failed") (-1132 |#1|)) 101)) (-3028 (((-3 (-1132 |#1|) "failed") (-1132 |#1|)) 104)) (-1288 (((-3 (-1132 |#1|) "failed") (-1132 |#1|)) 103)) (-2395 (((-3 (-1132 |#1|) "failed") (-1132 |#1|)) 102)) (-1280 (((-3 (-1132 |#1|) "failed") (-1132 |#1|)) 98)) (-2137 (((-1132 |#1|) (-1132 |#1|)) 62)) (-2243 (((-1132 |#1|) (-890)) 107)) (-1374 (((-1132 |#1|) (-890)) 110)) (-2511 (((-1132 |#1|) (-890)) 109)) (-1970 (((-1132 |#1|) (-890)) 108)) (-3413 (((-1132 |#1|) (-890)) 105)))
-(((-348 |#1|) (-10 -7 (-15 -3078 ((-112) (-1132 |#1|))) (-15 -3841 ((-112) (-1132 |#1|))) (-15 -3208 ((-890) (-890))) (-15 -1700 ((-890) (-890))) (-15 -2130 ((-890) (-890))) (-15 -3413 ((-1132 |#1|) (-890))) (-15 -2243 ((-1132 |#1|) (-890))) (-15 -1970 ((-1132 |#1|) (-890))) (-15 -2511 ((-1132 |#1|) (-890))) (-15 -1374 ((-1132 |#1|) (-890))) (-15 -1280 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -3032 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -2395 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -1288 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -3028 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -3232 ((-1132 |#1|) (-890))) (-15 -3232 ((-1132 |#1|) (-890) (-890))) (-15 -2137 ((-1132 |#1|) (-1132 |#1|))) (-15 -1641 ((-927 (-1132 |#1|)) (-1132 |#1|)))) (-340)) (T -348))
-((-1641 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-927 (-1132 *4))) (-5 *1 (-348 *4)) (-5 *3 (-1132 *4)))) (-2137 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))) (-3232 (*1 *2 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-3028 (*1 *2 *2) (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))) (-1288 (*1 *2 *2) (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))) (-2395 (*1 *2 *2) (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))) (-3032 (*1 *2 *2) (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))) (-1280 (*1 *2 *2) (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-2243 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-2130 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-348 *3)) (-4 *3 (-340)))) (-1700 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-348 *3)) (-4 *3 (-340)))) (-3208 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-348 *3)) (-4 *3 (-340)))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-1132 *4)) (-4 *4 (-340)) (-5 *2 (-112)) (-5 *1 (-348 *4)))) (-3078 (*1 *2 *3) (-12 (-5 *3 (-1132 *4)) (-4 *4 (-340)) (-5 *2 (-112)) (-5 *1 (-348 *4)))))
-(-10 -7 (-15 -3078 ((-112) (-1132 |#1|))) (-15 -3841 ((-112) (-1132 |#1|))) (-15 -3208 ((-890) (-890))) (-15 -1700 ((-890) (-890))) (-15 -2130 ((-890) (-890))) (-15 -3413 ((-1132 |#1|) (-890))) (-15 -2243 ((-1132 |#1|) (-890))) (-15 -1970 ((-1132 |#1|) (-890))) (-15 -2511 ((-1132 |#1|) (-890))) (-15 -1374 ((-1132 |#1|) (-890))) (-15 -1280 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -3032 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -2395 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -1288 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -3028 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -3232 ((-1132 |#1|) (-890))) (-15 -3232 ((-1132 |#1|) (-890) (-890))) (-15 -2137 ((-1132 |#1|) (-1132 |#1|))) (-15 -1641 ((-927 (-1132 |#1|)) (-1132 |#1|))))
-((-4139 (((-3 (-619 |#3|) "failed") (-619 |#3|) |#3|) 34)))
-(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -4139 ((-3 (-619 |#3|) "failed") (-619 |#3|) |#3|))) (-340) (-1195 |#1|) (-1195 |#2|)) (T -349))
-((-4139 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 *3)) (-4 *3 (-1195 *5)) (-4 *5 (-1195 *4)) (-4 *4 (-340)) (-5 *1 (-349 *4 *5 *3)))))
-(-10 -7 (-15 -4139 ((-3 (-619 |#3|) "failed") (-619 |#3|) |#3|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1452 (((-112) $) NIL)) (-1440 (((-745)) NIL)) (-2899 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-2797 (((-1146 (-890) (-745)) (-547)) NIL (|has| |#1| (-359)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-3608 (((-745)) NIL (|has| |#1| (-359)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL)) (-2652 ((|#1| $) NIL)) (-2614 (($ (-1219 |#1|)) NIL)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-359)))) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| |#1| (-359)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3527 (($) NIL (|has| |#1| (-359)))) (-3078 (((-112) $) NIL (|has| |#1| (-359)))) (-1551 (($ $ (-745)) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-1791 (((-112) $) NIL)) (-3275 (((-890) $) NIL (|has| |#1| (-359))) (((-807 (-890)) $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2261 (((-112) $) NIL)) (-2460 (($) NIL (|has| |#1| (-359)))) (-3841 (((-112) $) NIL (|has| |#1| (-359)))) (-3160 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-3477 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3786 (((-1132 |#1|) $) NIL) (((-1132 $) $ (-890)) NIL (|has| |#1| (-359)))) (-2402 (((-890) $) NIL (|has| |#1| (-359)))) (-3168 (((-1132 |#1|) $) NIL (|has| |#1| (-359)))) (-1600 (((-1132 |#1|) $) NIL (|has| |#1| (-359))) (((-3 (-1132 |#1|) "failed") $ $) NIL (|has| |#1| (-359)))) (-2830 (($ $ (-1132 |#1|)) NIL (|has| |#1| (-359)))) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| |#1| (-359)) CONST)) (-3487 (($ (-890)) NIL (|has| |#1| (-359)))) (-1290 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-4238 (($) NIL (|has| |#1| (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL (|has| |#1| (-359)))) (-2115 (((-409 $) $) NIL)) (-3327 (((-807 (-890))) NIL) (((-890)) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1422 (((-745) $) NIL (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3970 (((-133)) NIL)) (-3448 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-3705 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1882 (((-1132 |#1|)) NIL)) (-3823 (($) NIL (|has| |#1| (-359)))) (-3532 (($) NIL (|has| |#1| (-359)))) (-3220 (((-1219 |#1|) $) NIL) (((-663 |#1|) (-1219 $)) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| |#1| (-359)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) NIL)) (-2220 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2736 (((-745)) NIL)) (-1917 (((-1219 $)) NIL) (((-1219 $) (-890)) NIL)) (-3577 (((-112) $ $) NIL)) (-2593 (((-112) $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1693 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1695 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-350 |#1| |#2|) (-320 |#1|) (-340) (-890)) (T -350))
-NIL
-(-320 |#1|)
-((-3968 (((-112) (-619 (-921 |#1|))) 34)) (-3191 (((-619 (-921 |#1|)) (-619 (-921 |#1|))) 46)) (-2153 (((-3 (-619 (-921 |#1|)) "failed") (-619 (-921 |#1|))) 41)))
-(((-351 |#1| |#2|) (-10 -7 (-15 -3968 ((-112) (-619 (-921 |#1|)))) (-15 -2153 ((-3 (-619 (-921 |#1|)) "failed") (-619 (-921 |#1|)))) (-15 -3191 ((-619 (-921 |#1|)) (-619 (-921 |#1|))))) (-442) (-619 (-1136))) (T -351))
-((-3191 (*1 *2 *2) (-12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-442)) (-5 *1 (-351 *3 *4)) (-14 *4 (-619 (-1136))))) (-2153 (*1 *2 *2) (|partial| -12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-442)) (-5 *1 (-351 *3 *4)) (-14 *4 (-619 (-1136))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-442)) (-5 *2 (-112)) (-5 *1 (-351 *4 *5)) (-14 *5 (-619 (-1136))))))
-(-10 -7 (-15 -3968 ((-112) (-619 (-921 |#1|)))) (-15 -2153 ((-3 (-619 (-921 |#1|)) "failed") (-619 (-921 |#1|)))) (-15 -3191 ((-619 (-921 |#1|)) (-619 (-921 |#1|)))))
-((-3826 (((-112) $ $) NIL)) (-3608 (((-745) $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL)) (-2652 ((|#1| $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) 15)) (-1607 ((|#1| $ (-547)) NIL)) (-3602 (((-547) $ (-547)) NIL)) (-3513 (($ (-1 |#1| |#1|) $) 32)) (-4022 (($ (-1 (-547) (-547)) $) 24)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 26)) (-3979 (((-1082) $) NIL)) (-2534 (((-619 (-2 (|:| |gen| |#1|) (|:| -2712 (-547)))) $) 28)) (-3404 (($ $ $) NIL)) (-1473 (($ $ $) NIL)) (-3838 (((-832) $) 38) (($ |#1|) NIL)) (-3281 (($) 9 T CONST)) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL) (($ |#1| (-547)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-352 |#1|) (-13 (-463) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-547))) (-15 -3608 ((-745) $)) (-15 -3602 ((-547) $ (-547))) (-15 -1607 (|#1| $ (-547))) (-15 -4022 ($ (-1 (-547) (-547)) $)) (-15 -3513 ($ (-1 |#1| |#1|) $)) (-15 -2534 ((-619 (-2 (|:| |gen| |#1|) (|:| -2712 (-547)))) $)))) (-1063)) (T -352))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-352 *2)) (-4 *2 (-1063)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-352 *2)) (-4 *2 (-1063)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-352 *2)) (-4 *2 (-1063)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-352 *3)) (-4 *3 (-1063)))) (-3602 (*1 *2 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-352 *3)) (-4 *3 (-1063)))) (-1607 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-352 *2)) (-4 *2 (-1063)))) (-4022 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-547) (-547))) (-5 *1 (-352 *3)) (-4 *3 (-1063)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-352 *3)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2712 (-547))))) (-5 *1 (-352 *3)) (-4 *3 (-1063)))))
-(-13 (-463) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-547))) (-15 -3608 ((-745) $)) (-15 -3602 ((-547) $ (-547))) (-15 -1607 (|#1| $ (-547))) (-15 -4022 ($ (-1 (-547) (-547)) $)) (-15 -3513 ($ (-1 |#1| |#1|) $)) (-15 -2534 ((-619 (-2 (|:| |gen| |#1|) (|:| -2712 (-547)))) $))))
-((-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 13)) (-3571 (($ $) 14)) (-3299 (((-409 $) $) 30)) (-1791 (((-112) $) 26)) (-1984 (($ $) 19)) (-3719 (($ $ $) 23) (($ (-619 $)) NIL)) (-2115 (((-409 $) $) 31)) (-2032 (((-3 $ "failed") $ $) 22)) (-2471 (((-745) $) 25)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 35)) (-3577 (((-112) $ $) 16)) (-2506 (($ $ $) 33)))
-(((-353 |#1|) (-10 -8 (-15 -2506 (|#1| |#1| |#1|)) (-15 -1984 (|#1| |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -3299 ((-409 |#1|) |#1|)) (-15 -2115 ((-409 |#1|) |#1|)) (-15 -4030 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -2471 ((-745) |#1|)) (-15 -3719 (|#1| (-619 |#1|))) (-15 -3719 (|#1| |#1| |#1|)) (-15 -3577 ((-112) |#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 -3049 ((-2 (|:| -3825 |#1|) (|:| -4316 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#1|))) (-354)) (T -353))
-NIL
-(-10 -8 (-15 -2506 (|#1| |#1| |#1|)) (-15 -1984 (|#1| |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -3299 ((-409 |#1|) |#1|)) (-15 -2115 ((-409 |#1|) |#1|)) (-15 -4030 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -2471 ((-745) |#1|)) (-15 -3719 (|#1| (-619 |#1|))) (-15 -3719 (|#1| |#1| |#1|)) (-15 -3577 ((-112) |#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 -3049 ((-2 (|:| -3825 |#1|) (|:| -4316 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 70)) (-3299 (((-409 $) $) 69)) (-1547 (((-112) $ $) 57)) (-1948 (($) 17 T CONST)) (-2089 (($ $ $) 53)) (-3855 (((-3 $ "failed") $) 32)) (-2061 (($ $ $) 54)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-1791 (((-112) $) 68)) (-2261 (((-112) $) 30)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 67)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-2115 (((-409 $) $) 71)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2471 (((-745) $) 56)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ $) 62)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64)))
-(((-354) (-138)) (T -354))
-((-2506 (*1 *1 *1 *1) (-4 *1 (-354))))
-(-13 (-298) (-1177) (-235) (-10 -8 (-15 -2506 ($ $ $)) (-6 -4327) (-6 -4321)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1177) . T))
-((-3826 (((-112) $ $) 7)) (-2027 ((|#2| $ |#2|) 13)) (-1566 (($ $ (-1119)) 18)) (-2569 ((|#2| $) 14)) (-1352 (($ |#1|) 20) (($ |#1| (-1119)) 19)) (-2473 ((|#1| $) 16)) (-1466 (((-1119) $) 9)) (-3818 (((-1119) $) 15)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-1708 (($ $) 17)) (-2381 (((-112) $ $) 6)))
-(((-355 |#1| |#2|) (-138) (-1063) (-1063)) (T -355))
-((-1352 (*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1352 (*1 *1 *2 *3) (-12 (-5 *3 (-1119)) (-4 *1 (-355 *2 *4)) (-4 *2 (-1063)) (-4 *4 (-1063)))) (-1566 (*1 *1 *1 *2) (-12 (-5 *2 (-1119)) (-4 *1 (-355 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-1708 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-1119)))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-2027 (*1 *2 *1 *2) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))))
-(-13 (-1063) (-10 -8 (-15 -1352 ($ |t#1|)) (-15 -1352 ($ |t#1| (-1119))) (-15 -1566 ($ $ (-1119))) (-15 -1708 ($ $)) (-15 -2473 (|t#1| $)) (-15 -3818 ((-1119) $)) (-15 -2569 (|t#2| $)) (-15 -2027 (|t#2| $ |t#2|))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-2027 ((|#1| $ |#1|) 30)) (-1566 (($ $ (-1119)) 22)) (-3355 (((-3 |#1| "failed") $) 29)) (-2569 ((|#1| $) 27)) (-1352 (($ (-379)) 21) (($ (-379) (-1119)) 20)) (-2473 (((-379) $) 24)) (-1466 (((-1119) $) NIL)) (-3818 (((-1119) $) 25)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 19)) (-1708 (($ $) 23)) (-2381 (((-112) $ $) 18)))
-(((-356 |#1|) (-13 (-355 (-379) |#1|) (-10 -8 (-15 -3355 ((-3 |#1| "failed") $)))) (-1063)) (T -356))
-((-3355 (*1 *2 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1063)))))
-(-13 (-355 (-379) |#1|) (-10 -8 (-15 -3355 ((-3 |#1| "failed") $))))
-((-3620 (((-1219 (-663 |#2|)) (-1219 $)) 61)) (-2877 (((-663 |#2|) (-1219 $)) 120)) (-3652 ((|#2| $) 32)) (-1252 (((-663 |#2|) $ (-1219 $)) 123)) (-2702 (((-3 $ "failed") $) 75)) (-2105 ((|#2| $) 35)) (-3685 (((-1132 |#2|) $) 83)) (-1936 ((|#2| (-1219 $)) 106)) (-3543 (((-1132 |#2|) $) 28)) (-4130 (((-112)) 100)) (-2614 (($ (-1219 |#2|) (-1219 $)) 113)) (-3855 (((-3 $ "failed") $) 79)) (-2270 (((-112)) 95)) (-3661 (((-112)) 90)) (-1790 (((-112)) 53)) (-2972 (((-663 |#2|) (-1219 $)) 118)) (-2080 ((|#2| $) 31)) (-2574 (((-663 |#2|) $ (-1219 $)) 122)) (-4082 (((-3 $ "failed") $) 73)) (-4005 ((|#2| $) 34)) (-1964 (((-1132 |#2|) $) 82)) (-4062 ((|#2| (-1219 $)) 104)) (-2317 (((-1132 |#2|) $) 26)) (-3912 (((-112)) 99)) (-3795 (((-112)) 92)) (-2759 (((-112)) 51)) (-3892 (((-112)) 87)) (-1889 (((-112)) 101)) (-3220 (((-1219 |#2|) $ (-1219 $)) NIL) (((-663 |#2|) (-1219 $) (-1219 $)) 111)) (-3274 (((-112)) 97)) (-3778 (((-619 (-1219 |#2|))) 86)) (-3592 (((-112)) 98)) (-3271 (((-112)) 96)) (-4150 (((-112)) 46)) (-2004 (((-112)) 102)))
-(((-357 |#1| |#2|) (-10 -8 (-15 -3685 ((-1132 |#2|) |#1|)) (-15 -1964 ((-1132 |#2|) |#1|)) (-15 -3778 ((-619 (-1219 |#2|)))) (-15 -2702 ((-3 |#1| "failed") |#1|)) (-15 -4082 ((-3 |#1| "failed") |#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 -3661 ((-112))) (-15 -3795 ((-112))) (-15 -2270 ((-112))) (-15 -2759 ((-112))) (-15 -1790 ((-112))) (-15 -3892 ((-112))) (-15 -2004 ((-112))) (-15 -1889 ((-112))) (-15 -4130 ((-112))) (-15 -3912 ((-112))) (-15 -4150 ((-112))) (-15 -3592 ((-112))) (-15 -3271 ((-112))) (-15 -3274 ((-112))) (-15 -3543 ((-1132 |#2|) |#1|)) (-15 -2317 ((-1132 |#2|) |#1|)) (-15 -2877 ((-663 |#2|) (-1219 |#1|))) (-15 -2972 ((-663 |#2|) (-1219 |#1|))) (-15 -1936 (|#2| (-1219 |#1|))) (-15 -4062 (|#2| (-1219 |#1|))) (-15 -2614 (|#1| (-1219 |#2|) (-1219 |#1|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1| (-1219 |#1|))) (-15 -2105 (|#2| |#1|)) (-15 -4005 (|#2| |#1|)) (-15 -3652 (|#2| |#1|)) (-15 -2080 (|#2| |#1|)) (-15 -1252 ((-663 |#2|) |#1| (-1219 |#1|))) (-15 -2574 ((-663 |#2|) |#1| (-1219 |#1|))) (-15 -3620 ((-1219 (-663 |#2|)) (-1219 |#1|)))) (-358 |#2|) (-169)) (T -357))
-((-3274 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-3271 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-3592 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-4150 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-3912 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-4130 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1889 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-2004 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-3892 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1790 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-2759 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-2270 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-3795 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-3661 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-3778 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-619 (-1219 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))))
-(-10 -8 (-15 -3685 ((-1132 |#2|) |#1|)) (-15 -1964 ((-1132 |#2|) |#1|)) (-15 -3778 ((-619 (-1219 |#2|)))) (-15 -2702 ((-3 |#1| "failed") |#1|)) (-15 -4082 ((-3 |#1| "failed") |#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 -3661 ((-112))) (-15 -3795 ((-112))) (-15 -2270 ((-112))) (-15 -2759 ((-112))) (-15 -1790 ((-112))) (-15 -3892 ((-112))) (-15 -2004 ((-112))) (-15 -1889 ((-112))) (-15 -4130 ((-112))) (-15 -3912 ((-112))) (-15 -4150 ((-112))) (-15 -3592 ((-112))) (-15 -3271 ((-112))) (-15 -3274 ((-112))) (-15 -3543 ((-1132 |#2|) |#1|)) (-15 -2317 ((-1132 |#2|) |#1|)) (-15 -2877 ((-663 |#2|) (-1219 |#1|))) (-15 -2972 ((-663 |#2|) (-1219 |#1|))) (-15 -1936 (|#2| (-1219 |#1|))) (-15 -4062 (|#2| (-1219 |#1|))) (-15 -2614 (|#1| (-1219 |#2|) (-1219 |#1|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1| (-1219 |#1|))) (-15 -2105 (|#2| |#1|)) (-15 -4005 (|#2| |#1|)) (-15 -3652 (|#2| |#1|)) (-15 -2080 (|#2| |#1|)) (-15 -1252 ((-663 |#2|) |#1| (-1219 |#1|))) (-15 -2574 ((-663 |#2|) |#1| (-1219 |#1|))) (-15 -3620 ((-1219 (-663 |#2|)) (-1219 |#1|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3825 (((-3 $ "failed")) 37 (|has| |#1| (-539)))) (-3672 (((-3 $ "failed") $ $) 19)) (-3620 (((-1219 (-663 |#1|)) (-1219 $)) 78)) (-1342 (((-1219 $)) 81)) (-1948 (($) 17 T CONST)) (-4106 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) 40 (|has| |#1| (-539)))) (-2169 (((-3 $ "failed")) 38 (|has| |#1| (-539)))) (-2877 (((-663 |#1|) (-1219 $)) 65)) (-3652 ((|#1| $) 74)) (-1252 (((-663 |#1|) $ (-1219 $)) 76)) (-2702 (((-3 $ "failed") $) 45 (|has| |#1| (-539)))) (-3387 (($ $ (-890)) 28)) (-2105 ((|#1| $) 72)) (-3685 (((-1132 |#1|) $) 42 (|has| |#1| (-539)))) (-1936 ((|#1| (-1219 $)) 67)) (-3543 (((-1132 |#1|) $) 63)) (-4130 (((-112)) 57)) (-2614 (($ (-1219 |#1|) (-1219 $)) 69)) (-3855 (((-3 $ "failed") $) 47 (|has| |#1| (-539)))) (-3116 (((-890)) 80)) (-2470 (((-112)) 54)) (-1296 (($ $ (-890)) 33)) (-2270 (((-112)) 50)) (-3661 (((-112)) 48)) (-1790 (((-112)) 52)) (-2499 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) 41 (|has| |#1| (-539)))) (-1549 (((-3 $ "failed")) 39 (|has| |#1| (-539)))) (-2972 (((-663 |#1|) (-1219 $)) 66)) (-2080 ((|#1| $) 75)) (-2574 (((-663 |#1|) $ (-1219 $)) 77)) (-4082 (((-3 $ "failed") $) 46 (|has| |#1| (-539)))) (-3851 (($ $ (-890)) 29)) (-4005 ((|#1| $) 73)) (-1964 (((-1132 |#1|) $) 43 (|has| |#1| (-539)))) (-4062 ((|#1| (-1219 $)) 68)) (-2317 (((-1132 |#1|) $) 64)) (-3912 (((-112)) 58)) (-1466 (((-1119) $) 9)) (-3795 (((-112)) 49)) (-2759 (((-112)) 51)) (-3892 (((-112)) 53)) (-3979 (((-1082) $) 10)) (-1889 (((-112)) 56)) (-3220 (((-1219 |#1|) $ (-1219 $)) 71) (((-663 |#1|) (-1219 $) (-1219 $)) 70)) (-3906 (((-619 (-921 |#1|)) (-1219 $)) 79)) (-1473 (($ $ $) 25)) (-3274 (((-112)) 62)) (-3838 (((-832) $) 11)) (-3778 (((-619 (-1219 |#1|))) 44 (|has| |#1| (-539)))) (-2781 (($ $ $ $) 26)) (-3592 (((-112)) 60)) (-2031 (($ $ $) 24)) (-3271 (((-112)) 61)) (-4150 (((-112)) 59)) (-2004 (((-112)) 55)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-358 |#1|) (-138) (-169)) (T -358))
-((-1342 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1219 *1)) (-4 *1 (-358 *3)))) (-3116 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-890)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-619 (-921 *4))))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-1219 (-663 *4))))) (-2574 (*1 *2 *1 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-1252 (*1 *2 *1 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2080 (*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169)))) (-2105 (*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169)))) (-3220 (*1 *2 *1 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-1219 *4)))) (-3220 (*1 *2 *3 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2614 (*1 *1 *2 *3) (-12 (-5 *2 (-1219 *4)) (-5 *3 (-1219 *1)) (-4 *4 (-169)) (-4 *1 (-358 *4)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *2)) (-4 *2 (-169)))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *2)) (-4 *2 (-169)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-1132 *3)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-1132 *3)))) (-3274 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-3271 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-3592 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-4150 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-3912 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-4130 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-1889 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2004 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2470 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-3892 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-1790 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2759 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2270 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-3795 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-3661 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-3855 (*1 *1 *1) (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-169)) (-4 *2 (-539)))) (-4082 (*1 *1 *1) (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-169)) (-4 *2 (-539)))) (-2702 (*1 *1 *1) (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-169)) (-4 *2 (-539)))) (-3778 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-4 *3 (-539)) (-5 *2 (-619 (-1219 *3))))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-4 *3 (-539)) (-5 *2 (-1132 *3)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-4 *3 (-539)) (-5 *2 (-1132 *3)))) (-2499 (*1 *2) (|partial| -12 (-4 *3 (-539)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1917 (-619 *1)))) (-4 *1 (-358 *3)))) (-4106 (*1 *2) (|partial| -12 (-4 *3 (-539)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1917 (-619 *1)))) (-4 *1 (-358 *3)))) (-1549 (*1 *1) (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-539)) (-4 *2 (-169)))) (-2169 (*1 *1) (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-539)) (-4 *2 (-169)))) (-3825 (*1 *1) (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-539)) (-4 *2 (-169)))))
-(-13 (-719 |t#1|) (-10 -8 (-15 -1342 ((-1219 $))) (-15 -3116 ((-890))) (-15 -3906 ((-619 (-921 |t#1|)) (-1219 $))) (-15 -3620 ((-1219 (-663 |t#1|)) (-1219 $))) (-15 -2574 ((-663 |t#1|) $ (-1219 $))) (-15 -1252 ((-663 |t#1|) $ (-1219 $))) (-15 -2080 (|t#1| $)) (-15 -3652 (|t#1| $)) (-15 -4005 (|t#1| $)) (-15 -2105 (|t#1| $)) (-15 -3220 ((-1219 |t#1|) $ (-1219 $))) (-15 -3220 ((-663 |t#1|) (-1219 $) (-1219 $))) (-15 -2614 ($ (-1219 |t#1|) (-1219 $))) (-15 -4062 (|t#1| (-1219 $))) (-15 -1936 (|t#1| (-1219 $))) (-15 -2972 ((-663 |t#1|) (-1219 $))) (-15 -2877 ((-663 |t#1|) (-1219 $))) (-15 -2317 ((-1132 |t#1|) $)) (-15 -3543 ((-1132 |t#1|) $)) (-15 -3274 ((-112))) (-15 -3271 ((-112))) (-15 -3592 ((-112))) (-15 -4150 ((-112))) (-15 -3912 ((-112))) (-15 -4130 ((-112))) (-15 -1889 ((-112))) (-15 -2004 ((-112))) (-15 -2470 ((-112))) (-15 -3892 ((-112))) (-15 -1790 ((-112))) (-15 -2759 ((-112))) (-15 -2270 ((-112))) (-15 -3795 ((-112))) (-15 -3661 ((-112))) (IF (|has| |t#1| (-539)) (PROGN (-15 -3855 ((-3 $ "failed") $)) (-15 -4082 ((-3 $ "failed") $)) (-15 -2702 ((-3 $ "failed") $)) (-15 -3778 ((-619 (-1219 |t#1|)))) (-15 -1964 ((-1132 |t#1|) $)) (-15 -3685 ((-1132 |t#1|) $)) (-15 -2499 ((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed"))) (-15 -4106 ((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed"))) (-15 -1549 ((-3 $ "failed"))) (-15 -2169 ((-3 $ "failed"))) (-15 -3825 ((-3 $ "failed"))) (-6 -4326)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-695) . T) ((-719 |#1|) . T) ((-736) . T) ((-1022 |#1|) . T) ((-1063) . T))
-((-3826 (((-112) $ $) 7)) (-3608 (((-745)) 16)) (-3232 (($) 13)) (-2402 (((-890) $) 14)) (-1466 (((-1119) $) 9)) (-3487 (($ (-890)) 15)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2381 (((-112) $ $) 6)))
-(((-359) (-138)) (T -359))
-((-3608 (*1 *2) (-12 (-4 *1 (-359)) (-5 *2 (-745)))) (-3487 (*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-359)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-890)))) (-3232 (*1 *1) (-4 *1 (-359))))
-(-13 (-1063) (-10 -8 (-15 -3608 ((-745))) (-15 -3487 ($ (-890))) (-15 -2402 ((-890) $)) (-15 -3232 ($))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3401 (((-663 |#2|) (-1219 $)) 40)) (-2614 (($ (-1219 |#2|) (-1219 $)) 34)) (-3565 (((-663 |#2|) $ (-1219 $)) 42)) (-4056 ((|#2| (-1219 $)) 13)) (-3220 (((-1219 |#2|) $ (-1219 $)) NIL) (((-663 |#2|) (-1219 $) (-1219 $)) 25)))
-(((-360 |#1| |#2| |#3|) (-10 -8 (-15 -3401 ((-663 |#2|) (-1219 |#1|))) (-15 -4056 (|#2| (-1219 |#1|))) (-15 -2614 (|#1| (-1219 |#2|) (-1219 |#1|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1| (-1219 |#1|))) (-15 -3565 ((-663 |#2|) |#1| (-1219 |#1|)))) (-361 |#2| |#3|) (-169) (-1195 |#2|)) (T -360))
-NIL
-(-10 -8 (-15 -3401 ((-663 |#2|) (-1219 |#1|))) (-15 -4056 (|#2| (-1219 |#1|))) (-15 -2614 (|#1| (-1219 |#2|) (-1219 |#1|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1| (-1219 |#1|))) (-15 -3565 ((-663 |#2|) |#1| (-1219 |#1|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3401 (((-663 |#1|) (-1219 $)) 44)) (-2899 ((|#1| $) 50)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-2614 (($ (-1219 |#1|) (-1219 $)) 46)) (-3565 (((-663 |#1|) $ (-1219 $)) 51)) (-3855 (((-3 $ "failed") $) 32)) (-3116 (((-890)) 52)) (-2261 (((-112) $) 30)) (-3160 ((|#1| $) 49)) (-3786 ((|#2| $) 42 (|has| |#1| (-354)))) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-4056 ((|#1| (-1219 $)) 45)) (-3220 (((-1219 |#1|) $ (-1219 $)) 48) (((-663 |#1|) (-1219 $) (-1219 $)) 47)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35)) (-2220 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-1316 ((|#2| $) 43)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-361 |#1| |#2|) (-138) (-169) (-1195 |t#1|)) (T -361))
-((-3116 (*1 *2) (-12 (-4 *1 (-361 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1195 *3)) (-5 *2 (-890)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1195 *4)) (-5 *2 (-663 *4)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-361 *2 *3)) (-4 *3 (-1195 *2)) (-4 *2 (-169)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-361 *2 *3)) (-4 *3 (-1195 *2)) (-4 *2 (-169)))) (-3220 (*1 *2 *1 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1195 *4)) (-5 *2 (-1219 *4)))) (-3220 (*1 *2 *3 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1195 *4)) (-5 *2 (-663 *4)))) (-2614 (*1 *1 *2 *3) (-12 (-5 *2 (-1219 *4)) (-5 *3 (-1219 *1)) (-4 *4 (-169)) (-4 *1 (-361 *4 *5)) (-4 *5 (-1195 *4)))) (-4056 (*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-361 *2 *4)) (-4 *4 (-1195 *2)) (-4 *2 (-169)))) (-3401 (*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1195 *4)) (-5 *2 (-663 *4)))) (-1316 (*1 *2 *1) (-12 (-4 *1 (-361 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1195 *3)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-361 *3 *2)) (-4 *3 (-169)) (-4 *3 (-354)) (-4 *2 (-1195 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -3116 ((-890))) (-15 -3565 ((-663 |t#1|) $ (-1219 $))) (-15 -2899 (|t#1| $)) (-15 -3160 (|t#1| $)) (-15 -3220 ((-1219 |t#1|) $ (-1219 $))) (-15 -3220 ((-663 |t#1|) (-1219 $) (-1219 $))) (-15 -2614 ($ (-1219 |t#1|) (-1219 $))) (-15 -4056 (|t#1| (-1219 $))) (-15 -3401 ((-663 |t#1|) (-1219 $))) (-15 -1316 (|t#2| $)) (IF (|has| |t#1| (-354)) (-15 -3786 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2816 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2552 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2790 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2790 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2552 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2816 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1173) (-364 |#1|) (-1173) (-364 |#3|)) (T -362))
-((-2816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1173)) (-4 *5 (-1173)) (-4 *2 (-364 *5)) (-5 *1 (-362 *6 *4 *5 *2)) (-4 *4 (-364 *6)))) (-2552 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1173)) (-4 *2 (-1173)) (-5 *1 (-362 *5 *4 *2 *6)) (-4 *4 (-364 *5)) (-4 *6 (-364 *2)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-4 *2 (-364 *6)) (-5 *1 (-362 *5 *4 *6 *2)) (-4 *4 (-364 *5)))))
-(-10 -7 (-15 -2790 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2552 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2816 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2436 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2809 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3185 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3057 (($ $) 25)) (-2876 (((-547) (-1 (-112) |#2|) $) NIL) (((-547) |#2| $) 11) (((-547) |#2| $ (-547)) NIL)) (-2777 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-363 |#1| |#2|) (-10 -8 (-15 -2809 (|#1| |#1|)) (-15 -2809 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2436 ((-112) |#1|)) (-15 -3185 (|#1| |#1|)) (-15 -2777 (|#1| |#1| |#1|)) (-15 -2876 ((-547) |#2| |#1| (-547))) (-15 -2876 ((-547) |#2| |#1|)) (-15 -2876 ((-547) (-1 (-112) |#2|) |#1|)) (-15 -2436 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3185 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -2777 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-364 |#2|) (-1173)) (T -363))
-NIL
-(-10 -8 (-15 -2809 (|#1| |#1|)) (-15 -2809 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2436 ((-112) |#1|)) (-15 -3185 (|#1| |#1|)) (-15 -2777 (|#1| |#1| |#1|)) (-15 -2876 ((-547) |#2| |#1| (-547))) (-15 -2876 ((-547) |#2| |#1|)) (-15 -2876 ((-547) (-1 (-112) |#2|) |#1|)) (-15 -2436 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3185 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -2777 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-1652 (((-1224) $ (-547) (-547)) 40 (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2809 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4330))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4330))))) (-3185 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-3899 (((-112) $ (-745)) 8)) (-2247 ((|#1| $ (-547) |#1|) 52 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) 58 (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-3044 (($ $) 90 (|has| $ (-6 -4330)))) (-3057 (($ $) 100)) (-3668 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) 53 (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) 51)) (-2876 (((-547) (-1 (-112) |#1|) $) 97) (((-547) |#1| $) 96 (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) 95 (|has| |#1| (-1063)))) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-3735 (($ (-745) |#1|) 69)) (-2763 (((-112) $ (-745)) 9)) (-2434 (((-547) $) 43 (|has| (-547) (-821)))) (-2856 (($ $ $) 87 (|has| |#1| (-821)))) (-2777 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 44 (|has| (-547) (-821)))) (-3567 (($ $ $) 86 (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-2606 (($ |#1| $ (-547)) 60) (($ $ $ (-547)) 59)) (-2121 (((-619 (-547)) $) 46)) (-2018 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3638 ((|#1| $) 42 (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3632 (($ $ |#1|) 41 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) 48)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ (-547) |#1|) 50) ((|#1| $ (-547)) 49) (($ $ (-1186 (-547))) 63)) (-2159 (($ $ (-547)) 62) (($ $ (-1186 (-547))) 61)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-4282 (($ $ $ (-547)) 91 (|has| $ (-6 -4330)))) (-2274 (($ $) 13)) (-2838 (((-523) $) 79 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 70)) (-1945 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2430 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 82 (|has| |#1| (-821)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-364 |#1|) (-138) (-1173)) (T -364))
-((-2777 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-364 *3)) (-4 *3 (-1173)))) (-3057 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1173)))) (-3185 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-364 *3)) (-4 *3 (-1173)))) (-2436 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-364 *4)) (-4 *4 (-1173)) (-5 *2 (-112)))) (-2876 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-364 *4)) (-4 *4 (-1173)) (-5 *2 (-547)))) (-2876 (*1 *2 *3 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1173)) (-4 *3 (-1063)) (-5 *2 (-547)))) (-2876 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-364 *3)) (-4 *3 (-1173)) (-4 *3 (-1063)))) (-2777 (*1 *1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1173)) (-4 *2 (-821)))) (-3185 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1173)) (-4 *2 (-821)))) (-2436 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1173)) (-4 *3 (-821)) (-5 *2 (-112)))) (-4282 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-547)) (|has| *1 (-6 -4330)) (-4 *1 (-364 *3)) (-4 *3 (-1173)))) (-3044 (*1 *1 *1) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-364 *2)) (-4 *2 (-1173)))) (-2809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4330)) (-4 *1 (-364 *3)) (-4 *3 (-1173)))) (-2809 (*1 *1 *1) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-364 *2)) (-4 *2 (-1173)) (-4 *2 (-821)))))
-(-13 (-625 |t#1|) (-10 -8 (-6 -4329) (-15 -2777 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3057 ($ $)) (-15 -3185 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2436 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2876 ((-547) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -2876 ((-547) |t#1| $)) (-15 -2876 ((-547) |t#1| $ (-547)))) |%noBranch|) (IF (|has| |t#1| (-821)) (PROGN (-6 (-821)) (-15 -2777 ($ $ $)) (-15 -3185 ($ $)) (-15 -2436 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4330)) (PROGN (-15 -4282 ($ $ $ (-547))) (-15 -3044 ($ $)) (-15 -2809 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-821)) (-15 -2809 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-101) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1173) . T))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3297 (((-619 |#1|) $) 32)) (-1813 (($ $ (-745)) 33)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3085 (((-1243 |#1| |#2|) (-1243 |#1| |#2|) $) 36)) (-2961 (($ $) 34)) (-3982 (((-1243 |#1| |#2|) (-1243 |#1| |#2|) $) 37)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2679 (($ $ |#1| $) 31) (($ $ (-619 |#1|) (-619 $)) 30)) (-3705 (((-745) $) 38)) (-3846 (($ $ $) 29)) (-3838 (((-832) $) 11) (($ |#1|) 41) (((-1234 |#1| |#2|) $) 40) (((-1243 |#1| |#2|) $) 39)) (-1563 ((|#2| (-1243 |#1| |#2|) $) 42)) (-3269 (($) 18 T CONST)) (-2252 (($ (-646 |#1|)) 35)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#2|) 28 (|has| |#2| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
-(((-365 |#1| |#2|) (-138) (-821) (-169)) (T -365))
-((-1563 (*1 *2 *3 *1) (-12 (-5 *3 (-1243 *4 *2)) (-4 *1 (-365 *4 *2)) (-4 *4 (-821)) (-4 *2 (-169)))) (-3838 (*1 *1 *2) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-1234 *3 *4)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-1243 *3 *4)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-745)))) (-3982 (*1 *2 *2 *1) (-12 (-5 *2 (-1243 *3 *4)) (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-3085 (*1 *2 *2 *1) (-12 (-5 *2 (-1243 *3 *4)) (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2252 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-4 *1 (-365 *3 *4)) (-4 *4 (-169)))) (-2961 (*1 *1 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) (-1813 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-619 *3)))) (-2679 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-821)) (-4 *5 (-169)))))
-(-13 (-610 |t#2|) (-10 -8 (-15 -1563 (|t#2| (-1243 |t#1| |t#2|) $)) (-15 -3838 ($ |t#1|)) (-15 -3838 ((-1234 |t#1| |t#2|) $)) (-15 -3838 ((-1243 |t#1| |t#2|) $)) (-15 -3705 ((-745) $)) (-15 -3982 ((-1243 |t#1| |t#2|) (-1243 |t#1| |t#2|) $)) (-15 -3085 ((-1243 |t#1| |t#2|) (-1243 |t#1| |t#2|) $)) (-15 -2252 ($ (-646 |t#1|))) (-15 -2961 ($ $)) (-15 -1813 ($ $ (-745))) (-15 -3297 ((-619 |t#1|) $)) (-15 -2679 ($ $ |t#1| $)) (-15 -2679 ($ $ (-619 |t#1|) (-619 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#2|) . T) ((-610 |#2|) . T) ((-692 |#2|) . T) ((-1022 |#2|) . T) ((-1063) . T))
-((-3643 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-3261 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3544 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
-(((-366 |#1| |#2|) (-10 -7 (-15 -3261 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3544 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3643 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1173) (-13 (-364 |#1|) (-10 -7 (-6 -4330)))) (T -366))
-((-3643 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1173)) (-5 *1 (-366 *4 *2)) (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4330)))))) (-3544 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1173)) (-5 *1 (-366 *4 *2)) (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4330)))))) (-3261 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1173)) (-5 *1 (-366 *4 *2)) (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4330)))))))
-(-10 -7 (-15 -3261 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3544 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3643 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-1694 (((-663 |#2|) (-663 $)) NIL) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 22) (((-663 (-547)) (-663 $)) 14)))
-(((-367 |#1| |#2|) (-10 -8 (-15 -1694 ((-663 (-547)) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-663 |#2|) (-663 |#1|)))) (-368 |#2|) (-1016)) (T -367))
-NIL
-(-10 -8 (-15 -1694 ((-663 (-547)) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-663 |#2|) (-663 |#1|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1694 (((-663 |#1|) (-663 $)) 34) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 33) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 41 (|has| |#1| (-615 (-547)))) (((-663 (-547)) (-663 $)) 40 (|has| |#1| (-615 (-547))))) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ (-547)) 27)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-368 |#1|) (-138) (-1016)) (T -368))
-NIL
-(-13 (-615 |t#1|) (-10 -7 (IF (|has| |t#1| (-615 (-547))) (-6 (-615 (-547))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2745 (((-619 (-285 (-921 (-166 |#1|)))) (-285 (-398 (-921 (-166 (-547))))) |#1|) 51) (((-619 (-285 (-921 (-166 |#1|)))) (-398 (-921 (-166 (-547)))) |#1|) 50) (((-619 (-619 (-285 (-921 (-166 |#1|))))) (-619 (-285 (-398 (-921 (-166 (-547)))))) |#1|) 47) (((-619 (-619 (-285 (-921 (-166 |#1|))))) (-619 (-398 (-921 (-166 (-547))))) |#1|) 41)) (-3117 (((-619 (-619 (-166 |#1|))) (-619 (-398 (-921 (-166 (-547))))) (-619 (-1136)) |#1|) 30) (((-619 (-166 |#1|)) (-398 (-921 (-166 (-547)))) |#1|) 18)))
-(((-369 |#1|) (-10 -7 (-15 -2745 ((-619 (-619 (-285 (-921 (-166 |#1|))))) (-619 (-398 (-921 (-166 (-547))))) |#1|)) (-15 -2745 ((-619 (-619 (-285 (-921 (-166 |#1|))))) (-619 (-285 (-398 (-921 (-166 (-547)))))) |#1|)) (-15 -2745 ((-619 (-285 (-921 (-166 |#1|)))) (-398 (-921 (-166 (-547)))) |#1|)) (-15 -2745 ((-619 (-285 (-921 (-166 |#1|)))) (-285 (-398 (-921 (-166 (-547))))) |#1|)) (-15 -3117 ((-619 (-166 |#1|)) (-398 (-921 (-166 (-547)))) |#1|)) (-15 -3117 ((-619 (-619 (-166 |#1|))) (-619 (-398 (-921 (-166 (-547))))) (-619 (-1136)) |#1|))) (-13 (-354) (-819))) (T -369))
-((-3117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-398 (-921 (-166 (-547)))))) (-5 *4 (-619 (-1136))) (-5 *2 (-619 (-619 (-166 *5)))) (-5 *1 (-369 *5)) (-4 *5 (-13 (-354) (-819))))) (-3117 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 (-166 (-547))))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-369 *4)) (-4 *4 (-13 (-354) (-819))))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-285 (-398 (-921 (-166 (-547)))))) (-5 *2 (-619 (-285 (-921 (-166 *4))))) (-5 *1 (-369 *4)) (-4 *4 (-13 (-354) (-819))))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 (-166 (-547))))) (-5 *2 (-619 (-285 (-921 (-166 *4))))) (-5 *1 (-369 *4)) (-4 *4 (-13 (-354) (-819))))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-285 (-398 (-921 (-166 (-547))))))) (-5 *2 (-619 (-619 (-285 (-921 (-166 *4)))))) (-5 *1 (-369 *4)) (-4 *4 (-13 (-354) (-819))))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-398 (-921 (-166 (-547)))))) (-5 *2 (-619 (-619 (-285 (-921 (-166 *4)))))) (-5 *1 (-369 *4)) (-4 *4 (-13 (-354) (-819))))))
-(-10 -7 (-15 -2745 ((-619 (-619 (-285 (-921 (-166 |#1|))))) (-619 (-398 (-921 (-166 (-547))))) |#1|)) (-15 -2745 ((-619 (-619 (-285 (-921 (-166 |#1|))))) (-619 (-285 (-398 (-921 (-166 (-547)))))) |#1|)) (-15 -2745 ((-619 (-285 (-921 (-166 |#1|)))) (-398 (-921 (-166 (-547)))) |#1|)) (-15 -2745 ((-619 (-285 (-921 (-166 |#1|)))) (-285 (-398 (-921 (-166 (-547))))) |#1|)) (-15 -3117 ((-619 (-166 |#1|)) (-398 (-921 (-166 (-547)))) |#1|)) (-15 -3117 ((-619 (-619 (-166 |#1|))) (-619 (-398 (-921 (-166 (-547))))) (-619 (-1136)) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 33)) (-2092 (((-547) $) 55)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3931 (($ $) 110)) (-1656 (($ $) 82)) (-1505 (($ $) 71)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-2127 (($ $) 44)) (-1547 (((-112) $ $) NIL)) (-1632 (($ $) 80)) (-1479 (($ $) 69)) (-2500 (((-547) $) 64)) (-1303 (($ $ (-547)) 62)) (-1678 (($ $) NIL)) (-1532 (($ $) NIL)) (-1948 (($) NIL T CONST)) (-3659 (($ $) 112)) (-2707 (((-3 (-547) "failed") $) 189) (((-3 (-398 (-547)) "failed") $) 185)) (-2652 (((-547) $) 187) (((-398 (-547)) $) 183)) (-2089 (($ $ $) NIL)) (-2686 (((-547) $ $) 102)) (-3855 (((-3 $ "failed") $) 114)) (-2452 (((-398 (-547)) $ (-745)) 190) (((-398 (-547)) $ (-745) (-745)) 182)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-3228 (((-890)) 73) (((-890) (-890)) 98 (|has| $ (-6 -4320)))) (-4270 (((-112) $) 106)) (-1419 (($) 40)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL)) (-2565 (((-1224) (-745)) 152)) (-2110 (((-1224)) 157) (((-1224) (-745)) 158)) (-4160 (((-1224)) 159) (((-1224) (-745)) 160)) (-3944 (((-1224)) 155) (((-1224) (-745)) 156)) (-3275 (((-547) $) 58)) (-2261 (((-112) $) 104)) (-3869 (($ $ (-547)) NIL)) (-2055 (($ $) 48)) (-3160 (($ $) NIL)) (-1860 (((-112) $) 35)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2856 (($ $ $) NIL) (($) NIL (-12 (-4000 (|has| $ (-6 -4312))) (-4000 (|has| $ (-6 -4320)))))) (-3567 (($ $ $) NIL) (($) 99 (-12 (-4000 (|has| $ (-6 -4312))) (-4000 (|has| $ (-6 -4320)))))) (-1454 (((-547) $) 17)) (-3398 (($) 87) (($ $) 92)) (-2293 (($) 91) (($ $) 93)) (-3624 (($ $) 83)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 116)) (-3470 (((-890) (-547)) 43 (|has| $ (-6 -4320)))) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3682 (($ $) 53)) (-1276 (($ $) 109)) (-1348 (($ (-547) (-547)) 107) (($ (-547) (-547) (-890)) 108)) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3322 (((-547) $) 19)) (-3096 (($) 94)) (-2712 (($ $) 79)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-2697 (((-890)) 100) (((-890) (-890)) 101 (|has| $ (-6 -4320)))) (-3448 (($ $ (-745)) NIL) (($ $) 115)) (-2738 (((-890) (-547)) 47 (|has| $ (-6 -4320)))) (-1690 (($ $) NIL)) (-1545 (($ $) NIL)) (-1668 (($ $) NIL)) (-1519 (($ $) NIL)) (-1644 (($ $) 81)) (-1493 (($ $) 70)) (-2838 (((-370) $) 175) (((-217) $) 177) (((-861 (-370)) $) NIL) (((-1119) $) 162) (((-523) $) 173) (($ (-217)) 181)) (-3838 (((-832) $) 164) (($ (-547)) 186) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-547)) 186) (($ (-398 (-547))) NIL) (((-217) $) 178)) (-2736 (((-745)) NIL)) (-3720 (($ $) 111)) (-1729 (((-890)) 54) (((-890) (-890)) 66 (|has| $ (-6 -4320)))) (-1856 (((-890)) 103)) (-1726 (($ $) 86)) (-1579 (($ $) 46) (($ $ $) 52)) (-3577 (((-112) $ $) NIL)) (-1703 (($ $) 84)) (-1557 (($ $) 37)) (-1751 (($ $) NIL)) (-1606 (($ $) NIL)) (-1927 (($ $) NIL)) (-1620 (($ $) NIL)) (-1738 (($ $) NIL)) (-1593 (($ $) NIL)) (-1714 (($ $) 85)) (-1569 (($ $) 49)) (-2255 (($ $) 51)) (-3269 (($) 34 T CONST)) (-3281 (($) 38 T CONST)) (-2273 (((-1119) $) 27) (((-1119) $ (-112)) 29) (((-1224) (-796) $) 30) (((-1224) (-796) $ (-112)) 31)) (-1695 (($ $ (-745)) NIL) (($ $) NIL)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 39)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 42)) (-2506 (($ $ $) 45) (($ $ (-547)) 41)) (-2493 (($ $) 36) (($ $ $) 50)) (-2479 (($ $ $) 61)) (** (($ $ (-890)) 67) (($ $ (-745)) NIL) (($ $ (-547)) 88) (($ $ (-398 (-547))) 125) (($ $ $) 117)) (* (($ (-890) $) 65) (($ (-745) $) NIL) (($ (-547) $) 68) (($ $ $) 60) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL)))
-(((-370) (-13 (-395) (-225) (-592 (-1119)) (-802) (-591 (-217)) (-1158) (-592 (-523)) (-10 -8 (-15 -2506 ($ $ (-547))) (-15 ** ($ $ $)) (-15 -2055 ($ $)) (-15 -2686 ((-547) $ $)) (-15 -1303 ($ $ (-547))) (-15 -2452 ((-398 (-547)) $ (-745))) (-15 -2452 ((-398 (-547)) $ (-745) (-745))) (-15 -3398 ($)) (-15 -2293 ($)) (-15 -3096 ($)) (-15 -1579 ($ $ $)) (-15 -3398 ($ $)) (-15 -2293 ($ $)) (-15 -2838 ($ (-217))) (-15 -4160 ((-1224))) (-15 -4160 ((-1224) (-745))) (-15 -3944 ((-1224))) (-15 -3944 ((-1224) (-745))) (-15 -2110 ((-1224))) (-15 -2110 ((-1224) (-745))) (-15 -2565 ((-1224) (-745))) (-6 -4320) (-6 -4312)))) (T -370))
-((** (*1 *1 *1 *1) (-5 *1 (-370))) (-2506 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-370)))) (-2055 (*1 *1 *1) (-5 *1 (-370))) (-2686 (*1 *2 *1 *1) (-12 (-5 *2 (-547)) (-5 *1 (-370)))) (-1303 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-370)))) (-2452 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-370)))) (-2452 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-370)))) (-3398 (*1 *1) (-5 *1 (-370))) (-2293 (*1 *1) (-5 *1 (-370))) (-3096 (*1 *1) (-5 *1 (-370))) (-1579 (*1 *1 *1 *1) (-5 *1 (-370))) (-3398 (*1 *1 *1) (-5 *1 (-370))) (-2293 (*1 *1 *1) (-5 *1 (-370))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-370)))) (-4160 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-370)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-370)))) (-3944 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-370)))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-370)))) (-2110 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-370)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-370)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-370)))))
-(-13 (-395) (-225) (-592 (-1119)) (-802) (-591 (-217)) (-1158) (-592 (-523)) (-10 -8 (-15 -2506 ($ $ (-547))) (-15 ** ($ $ $)) (-15 -2055 ($ $)) (-15 -2686 ((-547) $ $)) (-15 -1303 ($ $ (-547))) (-15 -2452 ((-398 (-547)) $ (-745))) (-15 -2452 ((-398 (-547)) $ (-745) (-745))) (-15 -3398 ($)) (-15 -2293 ($)) (-15 -3096 ($)) (-15 -1579 ($ $ $)) (-15 -3398 ($ $)) (-15 -2293 ($ $)) (-15 -2838 ($ (-217))) (-15 -4160 ((-1224))) (-15 -4160 ((-1224) (-745))) (-15 -3944 ((-1224))) (-15 -3944 ((-1224) (-745))) (-15 -2110 ((-1224))) (-15 -2110 ((-1224) (-745))) (-15 -2565 ((-1224) (-745))) (-6 -4320) (-6 -4312)))
-((-3468 (((-619 (-285 (-921 |#1|))) (-285 (-398 (-921 (-547)))) |#1|) 46) (((-619 (-285 (-921 |#1|))) (-398 (-921 (-547))) |#1|) 45) (((-619 (-619 (-285 (-921 |#1|)))) (-619 (-285 (-398 (-921 (-547))))) |#1|) 42) (((-619 (-619 (-285 (-921 |#1|)))) (-619 (-398 (-921 (-547)))) |#1|) 36)) (-2228 (((-619 |#1|) (-398 (-921 (-547))) |#1|) 20) (((-619 (-619 |#1|)) (-619 (-398 (-921 (-547)))) (-619 (-1136)) |#1|) 30)))
-(((-371 |#1|) (-10 -7 (-15 -3468 ((-619 (-619 (-285 (-921 |#1|)))) (-619 (-398 (-921 (-547)))) |#1|)) (-15 -3468 ((-619 (-619 (-285 (-921 |#1|)))) (-619 (-285 (-398 (-921 (-547))))) |#1|)) (-15 -3468 ((-619 (-285 (-921 |#1|))) (-398 (-921 (-547))) |#1|)) (-15 -3468 ((-619 (-285 (-921 |#1|))) (-285 (-398 (-921 (-547)))) |#1|)) (-15 -2228 ((-619 (-619 |#1|)) (-619 (-398 (-921 (-547)))) (-619 (-1136)) |#1|)) (-15 -2228 ((-619 |#1|) (-398 (-921 (-547))) |#1|))) (-13 (-819) (-354))) (T -371))
-((-2228 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 (-547)))) (-5 *2 (-619 *4)) (-5 *1 (-371 *4)) (-4 *4 (-13 (-819) (-354))))) (-2228 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-398 (-921 (-547))))) (-5 *4 (-619 (-1136))) (-5 *2 (-619 (-619 *5))) (-5 *1 (-371 *5)) (-4 *5 (-13 (-819) (-354))))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-285 (-398 (-921 (-547))))) (-5 *2 (-619 (-285 (-921 *4)))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-819) (-354))))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 (-547)))) (-5 *2 (-619 (-285 (-921 *4)))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-819) (-354))))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-285 (-398 (-921 (-547)))))) (-5 *2 (-619 (-619 (-285 (-921 *4))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-819) (-354))))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-398 (-921 (-547))))) (-5 *2 (-619 (-619 (-285 (-921 *4))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-819) (-354))))))
-(-10 -7 (-15 -3468 ((-619 (-619 (-285 (-921 |#1|)))) (-619 (-398 (-921 (-547)))) |#1|)) (-15 -3468 ((-619 (-619 (-285 (-921 |#1|)))) (-619 (-285 (-398 (-921 (-547))))) |#1|)) (-15 -3468 ((-619 (-285 (-921 |#1|))) (-398 (-921 (-547))) |#1|)) (-15 -3468 ((-619 (-285 (-921 |#1|))) (-285 (-398 (-921 (-547)))) |#1|)) (-15 -2228 ((-619 (-619 |#1|)) (-619 (-398 (-921 (-547)))) (-619 (-1136)) |#1|)) (-15 -2228 ((-619 |#1|) (-398 (-921 (-547))) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#2| "failed") $) 26)) (-2652 ((|#2| $) 28)) (-2063 (($ $) NIL)) (-3376 (((-745) $) 10)) (-4097 (((-619 $) $) 20)) (-1759 (((-112) $) NIL)) (-3518 (($ |#2| |#1|) 18)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3456 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2019 ((|#2| $) 15)) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 45) (($ |#2|) 27)) (-1277 (((-619 |#1|) $) 17)) (-2450 ((|#1| $ |#2|) 47)) (-3269 (($) 29 T CONST)) (-3721 (((-619 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
-(((-372 |#1| |#2|) (-13 (-373 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1016) (-821)) (T -372))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821)))))
-(-13 (-373 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-2707 (((-3 |#2| "failed") $) 44)) (-2652 ((|#2| $) 43)) (-2063 (($ $) 30)) (-3376 (((-745) $) 34)) (-4097 (((-619 $) $) 35)) (-1759 (((-112) $) 38)) (-3518 (($ |#2| |#1|) 39)) (-2790 (($ (-1 |#1| |#1|) $) 40)) (-3456 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2019 ((|#2| $) 33)) (-2037 ((|#1| $) 32)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ |#2|) 45)) (-1277 (((-619 |#1|) $) 36)) (-2450 ((|#1| $ |#2|) 41)) (-3269 (($) 18 T CONST)) (-3721 (((-619 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-373 |#1| |#2|) (-138) (-1016) (-1063)) (T -373))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063)))) (-2450 (*1 *2 *1 *3) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) (-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)))) (-3518 (*1 *1 *2 *3) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-112)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 *3)))) (-4097 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 *1)) (-4 *1 (-373 *3 *4)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-745)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2063 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063)))))
-(-13 (-111 |t#1| |t#1|) (-1007 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2450 (|t#1| $ |t#2|)) (-15 -2790 ($ (-1 |t#1| |t#1|) $)) (-15 -3518 ($ |t#2| |t#1|)) (-15 -1759 ((-112) $)) (-15 -3721 ((-619 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1277 ((-619 |t#1|) $)) (-15 -4097 ((-619 $) $)) (-15 -3376 ((-745) $)) (-15 -2019 (|t#2| $)) (-15 -2037 (|t#1| $)) (-15 -3456 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2063 ($ $)) (IF (|has| |t#1| (-169)) (-6 (-692 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) |has| |#1| (-169)) ((-1007 |#2|) . T) ((-1022 |#1|) . T) ((-1063) . T))
-((-3309 (((-1224) $) 7)) (-3838 (((-832) $) 8) (($ (-663 (-673))) 14) (($ (-619 (-321))) 13) (($ (-321)) 12) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 11)))
-(((-374) (-138)) (T -374))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-663 (-673))) (-4 *1 (-374)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-374)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-374)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) (-4 *1 (-374)))))
-(-13 (-386) (-10 -8 (-15 -3838 ($ (-663 (-673)))) (-15 -3838 ($ (-619 (-321)))) (-15 -3838 ($ (-321))) (-15 -3838 ($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))))))
-(((-591 (-832)) . T) ((-386) . T) ((-1173) . T))
-((-2707 (((-3 $ "failed") (-663 (-307 (-370)))) 21) (((-3 $ "failed") (-663 (-307 (-547)))) 19) (((-3 $ "failed") (-663 (-921 (-370)))) 17) (((-3 $ "failed") (-663 (-921 (-547)))) 15) (((-3 $ "failed") (-663 (-398 (-921 (-370))))) 13) (((-3 $ "failed") (-663 (-398 (-921 (-547))))) 11)) (-2652 (($ (-663 (-307 (-370)))) 22) (($ (-663 (-307 (-547)))) 20) (($ (-663 (-921 (-370)))) 18) (($ (-663 (-921 (-547)))) 16) (($ (-663 (-398 (-921 (-370))))) 14) (($ (-663 (-398 (-921 (-547))))) 12)) (-3309 (((-1224) $) 7)) (-3838 (((-832) $) 8) (($ (-619 (-321))) 25) (($ (-321)) 24) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 23)))
-(((-375) (-138)) (T -375))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-375)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-375)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) (-4 *1 (-375)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-663 (-307 (-370)))) (-4 *1 (-375)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-307 (-370)))) (-4 *1 (-375)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-663 (-307 (-547)))) (-4 *1 (-375)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-307 (-547)))) (-4 *1 (-375)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-370)))) (-4 *1 (-375)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-921 (-370)))) (-4 *1 (-375)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-547)))) (-4 *1 (-375)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-921 (-547)))) (-4 *1 (-375)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-663 (-398 (-921 (-370))))) (-4 *1 (-375)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-398 (-921 (-370))))) (-4 *1 (-375)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-663 (-398 (-921 (-547))))) (-4 *1 (-375)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-398 (-921 (-547))))) (-4 *1 (-375)))))
-(-13 (-386) (-10 -8 (-15 -3838 ($ (-619 (-321)))) (-15 -3838 ($ (-321))) (-15 -3838 ($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321)))))) (-15 -2652 ($ (-663 (-307 (-370))))) (-15 -2707 ((-3 $ "failed") (-663 (-307 (-370))))) (-15 -2652 ($ (-663 (-307 (-547))))) (-15 -2707 ((-3 $ "failed") (-663 (-307 (-547))))) (-15 -2652 ($ (-663 (-921 (-370))))) (-15 -2707 ((-3 $ "failed") (-663 (-921 (-370))))) (-15 -2652 ($ (-663 (-921 (-547))))) (-15 -2707 ((-3 $ "failed") (-663 (-921 (-547))))) (-15 -2652 ($ (-663 (-398 (-921 (-370)))))) (-15 -2707 ((-3 $ "failed") (-663 (-398 (-921 (-370)))))) (-15 -2652 ($ (-663 (-398 (-921 (-547)))))) (-15 -2707 ((-3 $ "failed") (-663 (-398 (-921 (-547))))))))
-(((-591 (-832)) . T) ((-386) . T) ((-1173) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2063 (($ $) NIL)) (-2238 (($ |#1| |#2|) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 28)) (-3269 (($) 12 T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
-(((-376 |#1| |#2|) (-13 (-111 |#1| |#1|) (-498 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|))) (-1016) (-821)) (T -376))
-NIL
-(-13 (-111 |#1| |#1|) (-498 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|)))
-((-3826 (((-112) $ $) NIL)) (-3608 (((-745) $) 59)) (-1948 (($) NIL T CONST)) (-3085 (((-3 $ "failed") $ $) 61)) (-2707 (((-3 |#1| "failed") $) NIL)) (-2652 ((|#1| $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-1793 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2261 (((-112) $) 15)) (-1607 ((|#1| $ (-547)) NIL)) (-3602 (((-745) $ (-547)) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-3513 (($ (-1 |#1| |#1|) $) 38)) (-4022 (($ (-1 (-745) (-745)) $) 35)) (-3982 (((-3 $ "failed") $ $) 50)) (-1466 (((-1119) $) NIL)) (-2587 (($ $ $) 26)) (-2292 (($ $ $) 24)) (-3979 (((-1082) $) NIL)) (-2534 (((-619 (-2 (|:| |gen| |#1|) (|:| -2712 (-745)))) $) 32)) (-4030 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-3838 (((-832) $) 22) (($ |#1|) NIL)) (-3281 (($) 9 T CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) 41)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) 63 (|has| |#1| (-821)))) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ |#1| (-745)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
-(((-377 |#1|) (-13 (-701) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -2292 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -3982 ((-3 $ "failed") $ $)) (-15 -3085 ((-3 $ "failed") $ $)) (-15 -4030 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1793 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3608 ((-745) $)) (-15 -2534 ((-619 (-2 (|:| |gen| |#1|) (|:| -2712 (-745)))) $)) (-15 -3602 ((-745) $ (-547))) (-15 -1607 (|#1| $ (-547))) (-15 -4022 ($ (-1 (-745) (-745)) $)) (-15 -3513 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) (-1063)) (T -377))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (-2292 (*1 *1 *1 *1) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (-2587 (*1 *1 *1 *1) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (-3982 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (-3085 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (-4030 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-377 *3)) (|:| |rm| (-377 *3)))) (-5 *1 (-377 *3)) (-4 *3 (-1063)))) (-1793 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-377 *3)) (|:| |mm| (-377 *3)) (|:| |rm| (-377 *3)))) (-5 *1 (-377 *3)) (-4 *3 (-1063)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-377 *3)) (-4 *3 (-1063)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2712 (-745))))) (-5 *1 (-377 *3)) (-4 *3 (-1063)))) (-3602 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-745)) (-5 *1 (-377 *4)) (-4 *4 (-1063)))) (-1607 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (-4022 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-745) (-745))) (-5 *1 (-377 *3)) (-4 *3 (-1063)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-377 *3)))))
-(-13 (-701) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -2292 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -3982 ((-3 $ "failed") $ $)) (-15 -3085 ((-3 $ "failed") $ $)) (-15 -4030 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1793 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3608 ((-745) $)) (-15 -2534 ((-619 (-2 (|:| |gen| |#1|) (|:| -2712 (-745)))) $)) (-15 -3602 ((-745) $ (-547))) (-15 -1607 (|#1| $ (-547))) (-15 -4022 ($ (-1 (-745) (-745)) $)) (-15 -3513 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-2707 (((-3 (-547) "failed") $) 45)) (-2652 (((-547) $) 44)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-2856 (($ $ $) 52)) (-3567 (($ $ $) 51)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2032 (((-3 $ "failed") $ $) 40)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-547)) 46)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2441 (((-112) $ $) 49)) (-2418 (((-112) $ $) 48)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 50)) (-2405 (((-112) $ $) 47)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-378) (-138)) (T -378))
-NIL
-(-13 (-539) (-821) (-1007 (-547)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-821) . T) ((-1007 (-547)) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-2943 (((-112) $) 20)) (-3485 (((-112) $) 19)) (-3735 (($ (-1119) (-1119) (-1119)) 21)) (-2473 (((-1119) $) 16)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3348 (($ (-1119) (-1119) (-1119)) 14)) (-3645 (((-1119) $) 17)) (-3867 (((-112) $) 18)) (-4063 (((-1119) $) 15)) (-3838 (((-832) $) 12) (($ (-1119)) 13) (((-1119) $) 9)) (-2381 (((-112) $ $) 7)))
-(((-379) (-380)) (T -379))
-NIL
-(-380)
-((-3826 (((-112) $ $) 7)) (-2943 (((-112) $) 14)) (-3485 (((-112) $) 15)) (-3735 (($ (-1119) (-1119) (-1119)) 13)) (-2473 (((-1119) $) 18)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3348 (($ (-1119) (-1119) (-1119)) 20)) (-3645 (((-1119) $) 17)) (-3867 (((-112) $) 16)) (-4063 (((-1119) $) 19)) (-3838 (((-832) $) 11) (($ (-1119)) 22) (((-1119) $) 21)) (-2381 (((-112) $ $) 6)))
+((-3632 (($ $) 6)) (-2719 (($ $) 7)) (** (($ $ $) 8)))
+(((-277) (-138)) (T -277))
+((** (*1 *1 *1 *1) (-4 *1 (-277))) (-2719 (*1 *1 *1) (-4 *1 (-277))) (-3632 (*1 *1 *1) (-4 *1 (-277))))
+(-13 (-10 -8 (-15 -3632 ($ $)) (-15 -2719 ($ $)) (-15 ** ($ $ $))))
+((-2124 (((-621 (-1123 |#1|)) (-1123 |#1|) |#1|) 35)) (-1748 ((|#2| |#2| |#1|) 38)) (-1786 ((|#2| |#2| |#1|) 40)) (-4002 ((|#2| |#2| |#1|) 39)))
+(((-278 |#1| |#2|) (-10 -7 (-15 -1748 (|#2| |#2| |#1|)) (-15 -4002 (|#2| |#2| |#1|)) (-15 -1786 (|#2| |#2| |#1|)) (-15 -2124 ((-621 (-1123 |#1|)) (-1123 |#1|) |#1|))) (-356) (-1217 |#1|)) (T -278))
+((-2124 (*1 *2 *3 *4) (-12 (-4 *4 (-356)) (-5 *2 (-621 (-1123 *4))) (-5 *1 (-278 *4 *5)) (-5 *3 (-1123 *4)) (-4 *5 (-1217 *4)))) (-1786 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))) (-4002 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))) (-1748 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))))
+(-10 -7 (-15 -1748 (|#2| |#2| |#1|)) (-15 -4002 (|#2| |#2| |#1|)) (-15 -1786 (|#2| |#2| |#1|)) (-15 -2124 ((-621 (-1123 |#1|)) (-1123 |#1|) |#1|)))
+((-3341 ((|#2| $ |#1|) 6)))
+(((-279 |#1| |#2|) (-138) (-1067) (-1180)) (T -279))
+((-3341 (*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1180)))))
+(-13 (-10 -8 (-15 -3341 (|t#2| $ |t#1|))))
+((-1879 ((|#3| $ |#2| |#3|) 12)) (-1809 ((|#3| $ |#2|) 10)))
+(((-280 |#1| |#2| |#3|) (-10 -8 (-15 -1879 (|#3| |#1| |#2| |#3|)) (-15 -1809 (|#3| |#1| |#2|))) (-281 |#2| |#3|) (-1067) (-1180)) (T -280))
+NIL
+(-10 -8 (-15 -1879 (|#3| |#1| |#2| |#3|)) (-15 -1809 (|#3| |#1| |#2|)))
+((-2254 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4338)))) (-1879 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4338)))) (-1809 ((|#2| $ |#1|) 11)) (-3341 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-281 |#1| |#2|) (-138) (-1067) (-1180)) (T -281))
+((-3341 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1180)))) (-1809 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1180)))) (-2254 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1180)))) (-1879 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1180)))))
+(-13 (-279 |t#1| |t#2|) (-10 -8 (-15 -3341 (|t#2| $ |t#1| |t#2|)) (-15 -1809 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4338)) (PROGN (-15 -2254 (|t#2| $ |t#1| |t#2|)) (-15 -1879 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((-279 |#1| |#2|) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 35)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 40)) (-2258 (($ $) 38)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3866 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-2095 (($ $ $) 33)) (-2557 (($ |#2| |#3|) 19)) (-2114 (((-3 $ "failed") $) NIL)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2675 (((-112) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-1591 ((|#3| $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 20)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3147 (((-3 $ "failed") $ $) NIL)) (-3684 (((-747) $) 34)) (-3341 ((|#2| $ |#2|) 42)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 24)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2082 (((-747)) NIL)) (-1498 (((-112) $ $) NIL)) (-3276 (($) 29 T CONST)) (-3287 (($) 36 T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 37)))
+(((-282 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-300) (-10 -8 (-15 -1591 (|#3| $)) (-15 -3846 (|#2| $)) (-15 -2557 ($ |#2| |#3|)) (-15 -3147 ((-3 $ "failed") $ $)) (-15 -2114 ((-3 $ "failed") $)) (-15 -1992 ($ $)) (-15 -3341 (|#2| $ |#2|)))) (-170) (-1202 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -282))
+((-2114 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1202 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1591 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1202 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3846 (*1 *2 *1) (-12 (-4 *2 (-1202 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2557 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1202 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3147 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1202 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1992 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1202 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3341 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1202 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-300) (-10 -8 (-15 -1591 (|#3| $)) (-15 -3846 (|#2| $)) (-15 -2557 ($ |#2| |#3|)) (-15 -3147 ((-3 $ "failed") $ $)) (-15 -2114 ((-3 $ "failed") $)) (-15 -1992 ($ $)) (-15 -3341 (|#2| $ |#2|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ (-549)) 27)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-283) (-138)) (T -283))
+NIL
+(-13 (-1018) (-111 $ $) (-10 -7 (-6 -4330)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3354 (($ (-1143) (-1143) (-1071) $) 17)) (-4198 (($ (-1143) (-621 (-936)) $) 22)) (-3692 (((-621 (-1052)) $) 10)) (-4305 (((-3 (-1071) "failed") (-1143) (-1143) $) 16)) (-2710 (((-3 (-621 (-936)) "failed") (-1143) $) 21)) (-3742 (($) 7)) (-3463 (($) 23)) (-3846 (((-834) $) 27)) (-4168 (($) 24)))
+(((-284) (-13 (-593 (-834)) (-10 -8 (-15 -3742 ($)) (-15 -3692 ((-621 (-1052)) $)) (-15 -4305 ((-3 (-1071) "failed") (-1143) (-1143) $)) (-15 -3354 ($ (-1143) (-1143) (-1071) $)) (-15 -2710 ((-3 (-621 (-936)) "failed") (-1143) $)) (-15 -4198 ($ (-1143) (-621 (-936)) $)) (-15 -3463 ($)) (-15 -4168 ($))))) (T -284))
+((-3742 (*1 *1) (-5 *1 (-284))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-621 (-1052))) (-5 *1 (-284)))) (-4305 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1143)) (-5 *2 (-1071)) (-5 *1 (-284)))) (-3354 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1143)) (-5 *3 (-1071)) (-5 *1 (-284)))) (-2710 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1143)) (-5 *2 (-621 (-936))) (-5 *1 (-284)))) (-4198 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-936))) (-5 *1 (-284)))) (-3463 (*1 *1) (-5 *1 (-284))) (-4168 (*1 *1) (-5 *1 (-284))))
+(-13 (-593 (-834)) (-10 -8 (-15 -3742 ($)) (-15 -3692 ((-621 (-1052)) $)) (-15 -4305 ((-3 (-1071) "failed") (-1143) (-1143) $)) (-15 -3354 ($ (-1143) (-1143) (-1071) $)) (-15 -2710 ((-3 (-621 (-936)) "failed") (-1143) $)) (-15 -4198 ($ (-1143) (-621 (-936)) $)) (-15 -3463 ($)) (-15 -4168 ($))))
+((-2957 (((-621 (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|)))) (|:| |geneigvec| (-621 (-665 (-400 (-923 |#1|))))))) (-665 (-400 (-923 |#1|)))) 85)) (-2390 (((-621 (-665 (-400 (-923 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 |#1|)))))) (-665 (-400 (-923 |#1|)))) 80) (((-621 (-665 (-400 (-923 |#1|)))) (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|))) (-665 (-400 (-923 |#1|))) (-747) (-747)) 38)) (-2222 (((-621 (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 |#1|))))))) (-665 (-400 (-923 |#1|)))) 82)) (-3739 (((-621 (-665 (-400 (-923 |#1|)))) (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|))) (-665 (-400 (-923 |#1|)))) 62)) (-2247 (((-621 (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|)))) (-665 (-400 (-923 |#1|)))) 61)) (-4154 (((-923 |#1|) (-665 (-400 (-923 |#1|)))) 50) (((-923 |#1|) (-665 (-400 (-923 |#1|))) (-1143)) 51)))
+(((-285 |#1|) (-10 -7 (-15 -4154 ((-923 |#1|) (-665 (-400 (-923 |#1|))) (-1143))) (-15 -4154 ((-923 |#1|) (-665 (-400 (-923 |#1|))))) (-15 -2247 ((-621 (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|)))) (-665 (-400 (-923 |#1|))))) (-15 -3739 ((-621 (-665 (-400 (-923 |#1|)))) (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|))) (-665 (-400 (-923 |#1|))))) (-15 -2390 ((-621 (-665 (-400 (-923 |#1|)))) (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|))) (-665 (-400 (-923 |#1|))) (-747) (-747))) (-15 -2390 ((-621 (-665 (-400 (-923 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 |#1|)))))) (-665 (-400 (-923 |#1|))))) (-15 -2957 ((-621 (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|)))) (|:| |geneigvec| (-621 (-665 (-400 (-923 |#1|))))))) (-665 (-400 (-923 |#1|))))) (-15 -2222 ((-621 (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 |#1|))))))) (-665 (-400 (-923 |#1|)))))) (-444)) (T -285))
+((-2222 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-621 (-2 (|:| |eigval| (-3 (-400 (-923 *4)) (-1132 (-1143) (-923 *4)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-923 *4)))))) (-2957 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-621 (-2 (|:| |eigval| (-3 (-400 (-923 *4)) (-1132 (-1143) (-923 *4)))) (|:| |geneigvec| (-621 (-665 (-400 (-923 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-923 *4)))))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-400 (-923 *5)) (-1132 (-1143) (-923 *5)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 *4)))) (-4 *5 (-444)) (-5 *2 (-621 (-665 (-400 (-923 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-665 (-400 (-923 *5)))))) (-2390 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-400 (-923 *6)) (-1132 (-1143) (-923 *6)))) (-5 *5 (-747)) (-4 *6 (-444)) (-5 *2 (-621 (-665 (-400 (-923 *6))))) (-5 *1 (-285 *6)) (-5 *4 (-665 (-400 (-923 *6)))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-400 (-923 *5)) (-1132 (-1143) (-923 *5)))) (-4 *5 (-444)) (-5 *2 (-621 (-665 (-400 (-923 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-665 (-400 (-923 *5)))))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-923 *4)))) (-4 *4 (-444)) (-5 *2 (-621 (-3 (-400 (-923 *4)) (-1132 (-1143) (-923 *4))))) (-5 *1 (-285 *4)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-923 *4)))) (-5 *2 (-923 *4)) (-5 *1 (-285 *4)) (-4 *4 (-444)))) (-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-923 *5)))) (-5 *4 (-1143)) (-5 *2 (-923 *5)) (-5 *1 (-285 *5)) (-4 *5 (-444)))))
+(-10 -7 (-15 -4154 ((-923 |#1|) (-665 (-400 (-923 |#1|))) (-1143))) (-15 -4154 ((-923 |#1|) (-665 (-400 (-923 |#1|))))) (-15 -2247 ((-621 (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|)))) (-665 (-400 (-923 |#1|))))) (-15 -3739 ((-621 (-665 (-400 (-923 |#1|)))) (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|))) (-665 (-400 (-923 |#1|))))) (-15 -2390 ((-621 (-665 (-400 (-923 |#1|)))) (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|))) (-665 (-400 (-923 |#1|))) (-747) (-747))) (-15 -2390 ((-621 (-665 (-400 (-923 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 |#1|)))))) (-665 (-400 (-923 |#1|))))) (-15 -2957 ((-621 (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|)))) (|:| |geneigvec| (-621 (-665 (-400 (-923 |#1|))))))) (-665 (-400 (-923 |#1|))))) (-15 -2222 ((-621 (-2 (|:| |eigval| (-3 (-400 (-923 |#1|)) (-1132 (-1143) (-923 |#1|)))) (|:| |eigmult| (-747)) (|:| |eigvec| (-621 (-665 (-400 (-923 |#1|))))))) (-665 (-400 (-923 |#1|))))))
+((-2797 (((-287 |#2|) (-1 |#2| |#1|) (-287 |#1|)) 14)))
+(((-286 |#1| |#2|) (-10 -7 (-15 -2797 ((-287 |#2|) (-1 |#2| |#1|) (-287 |#1|)))) (-1180) (-1180)) (T -286))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-287 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-287 *6)) (-5 *1 (-286 *5 *6)))))
+(-10 -7 (-15 -2797 ((-287 |#2|) (-1 |#2| |#1|) (-287 |#1|))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1763 (((-112) $) NIL (|has| |#1| (-21)))) (-2053 (($ $) 12)) (-2001 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3015 (($ $ $) 94 (|has| |#1| (-295)))) (-1682 (($) NIL (-1536 (|has| |#1| (-21)) (|has| |#1| (-703))) CONST)) (-3384 (($ $) 50 (|has| |#1| (-21)))) (-1357 (((-3 $ "failed") $) 61 (|has| |#1| (-703)))) (-2203 ((|#1| $) 11)) (-2114 (((-3 $ "failed") $) 59 (|has| |#1| (-703)))) (-2675 (((-112) $) NIL (|has| |#1| (-703)))) (-2797 (($ (-1 |#1| |#1|) $) 14)) (-2190 ((|#1| $) 10)) (-1852 (($ $) 49 (|has| |#1| (-21)))) (-2386 (((-3 $ "failed") $) 60 (|has| |#1| (-703)))) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-1992 (($ $) 63 (-1536 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3478 (((-621 $) $) 84 (|has| |#1| (-541)))) (-2686 (($ $ $) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 $)) 28 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-1143) |#1|) 17 (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-621 (-1143)) (-621 |#1|)) 21 (|has| |#1| (-505 (-1143) |#1|)))) (-2391 (($ |#1| |#1|) 9)) (-2985 (((-133)) 89 (|has| |#1| (-356)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143)) 86 (|has| |#1| (-871 (-1143))))) (-1955 (($ $ $) NIL (|has| |#1| (-465)))) (-3293 (($ $ $) NIL (|has| |#1| (-465)))) (-3846 (($ (-549)) NIL (|has| |#1| (-1018))) (((-112) $) 36 (|has| |#1| (-1067))) (((-834) $) 35 (|has| |#1| (-1067)))) (-2082 (((-747)) 66 (|has| |#1| (-1018)))) (-3276 (($) 46 (|has| |#1| (-21)) CONST)) (-3287 (($) 56 (|has| |#1| (-703)) CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143))))) (-2389 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1067)))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 91 (-1536 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-2500 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2486 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-549)) NIL (|has| |#1| (-465))) (($ $ (-747)) NIL (|has| |#1| (-703))) (($ $ (-892)) NIL (|has| |#1| (-1079)))) (* (($ $ |#1|) 54 (|has| |#1| (-1079))) (($ |#1| $) 53 (|has| |#1| (-1079))) (($ $ $) 52 (|has| |#1| (-1079))) (($ (-549) $) 69 (|has| |#1| (-21))) (($ (-747) $) NIL (|has| |#1| (-21))) (($ (-892) $) NIL (|has| |#1| (-25)))))
+(((-287 |#1|) (-13 (-1180) (-10 -8 (-15 -2389 ($ |#1| |#1|)) (-15 -2391 ($ |#1| |#1|)) (-15 -2053 ($ $)) (-15 -2190 (|#1| $)) (-15 -2203 (|#1| $)) (-15 -2797 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1143) |#1|)) (-6 (-505 (-1143) |#1|)) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-6 (-1067)) (-6 (-593 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -2686 ($ $ $)) (-15 -2686 ($ $ (-621 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2486 ($ |#1| $)) (-15 -2486 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1852 ($ $)) (-15 -3384 ($ $)) (-15 -2500 ($ |#1| $)) (-15 -2500 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-6 (-1079)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-703)) (PROGN (-6 (-703)) (-15 -2386 ((-3 $ "failed") $)) (-15 -1357 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -2386 ((-3 $ "failed") $)) (-15 -1357 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|) (IF (|has| |#1| (-541)) (-15 -3478 ((-621 $) $)) |%noBranch|) (IF (|has| |#1| (-871 (-1143))) (-6 (-871 (-1143))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1233 |#1|)) (-15 -2513 ($ $ $)) (-15 -1992 ($ $))) |%noBranch|) (IF (|has| |#1| (-295)) (-15 -3015 ($ $ $)) |%noBranch|))) (-1180)) (T -287))
+((-2389 (*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1180)))) (-2391 (*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1180)))) (-2053 (*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1180)))) (-2190 (*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1180)))) (-2203 (*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1180)))) (-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1180)) (-5 *1 (-287 *3)))) (-2686 (*1 *1 *1 *1) (-12 (-4 *2 (-302 *2)) (-4 *2 (-1067)) (-4 *2 (-1180)) (-5 *1 (-287 *2)))) (-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-287 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1067)) (-4 *3 (-1180)) (-5 *1 (-287 *3)))) (-2486 (*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1180)))) (-2486 (*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1180)))) (-1852 (*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1180)))) (-3384 (*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1180)))) (-2500 (*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1180)))) (-2500 (*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1180)))) (-2386 (*1 *1 *1) (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-703)) (-4 *2 (-1180)))) (-1357 (*1 *1 *1) (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-703)) (-4 *2 (-1180)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-621 (-287 *3))) (-5 *1 (-287 *3)) (-4 *3 (-541)) (-4 *3 (-1180)))) (-3015 (*1 *1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-295)) (-4 *2 (-1180)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1079)) (-4 *2 (-1180)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1079)) (-4 *2 (-1180)))) (-2513 (*1 *1 *1 *1) (-1536 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1180))) (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1180))))) (-1992 (*1 *1 *1) (-1536 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1180))) (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1180))))))
+(-13 (-1180) (-10 -8 (-15 -2389 ($ |#1| |#1|)) (-15 -2391 ($ |#1| |#1|)) (-15 -2053 ($ $)) (-15 -2190 (|#1| $)) (-15 -2203 (|#1| $)) (-15 -2797 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1143) |#1|)) (-6 (-505 (-1143) |#1|)) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-6 (-1067)) (-6 (-593 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -2686 ($ $ $)) (-15 -2686 ($ $ (-621 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2486 ($ |#1| $)) (-15 -2486 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1852 ($ $)) (-15 -3384 ($ $)) (-15 -2500 ($ |#1| $)) (-15 -2500 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-6 (-1079)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-703)) (PROGN (-6 (-703)) (-15 -2386 ((-3 $ "failed") $)) (-15 -1357 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -2386 ((-3 $ "failed") $)) (-15 -1357 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|) (IF (|has| |#1| (-541)) (-15 -3478 ((-621 $) $)) |%noBranch|) (IF (|has| |#1| (-871 (-1143))) (-6 (-871 (-1143))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1233 |#1|)) (-15 -2513 ($ $ $)) (-15 -1992 ($ $))) |%noBranch|) (IF (|has| |#1| (-295)) (-15 -3015 ($ $ $)) |%noBranch|)))
+((-3834 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3733 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-1535 (((-1231) $ |#1| |#1|) NIL (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#2| $ |#1| |#2|) NIL)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-3490 (((-3 |#2| "failed") |#1| $) NIL)) (-1682 (($) NIL T CONST)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-2129 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-3 |#2| "failed") |#1| $) NIL)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#2| $ |#1|) NIL)) (-2989 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 ((|#1| $) NIL (|has| |#1| (-823)))) (-1562 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-1569 ((|#1| $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4338))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3449 (((-621 |#1|) $) NIL)) (-2427 (((-112) |#1| $) NIL)) (-3504 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-2751 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-3303 (((-621 |#1|) $) NIL)) (-3761 (((-112) |#1| $) NIL)) (-3990 (((-1087) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3646 ((|#2| $) NIL (|has| |#1| (-823)))) (-3779 (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL)) (-1642 (($ $ |#2|) NIL (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2696 (((-621 |#2|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2898 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3846 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-3624 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-288 |#1| |#2|) (-13 (-1156 |#1| |#2|) (-10 -7 (-6 -4337))) (-1067) (-1067)) (T -288))
+NIL
+(-13 (-1156 |#1| |#2|) (-10 -7 (-6 -4337)))
+((-3042 (((-305) (-1125) (-621 (-1125))) 16) (((-305) (-1125) (-1125)) 15) (((-305) (-621 (-1125))) 14) (((-305) (-1125)) 12)))
+(((-289) (-10 -7 (-15 -3042 ((-305) (-1125))) (-15 -3042 ((-305) (-621 (-1125)))) (-15 -3042 ((-305) (-1125) (-1125))) (-15 -3042 ((-305) (-1125) (-621 (-1125)))))) (T -289))
+((-3042 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-1125))) (-5 *3 (-1125)) (-5 *2 (-305)) (-5 *1 (-289)))) (-3042 (*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-305)) (-5 *1 (-289)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-621 (-1125))) (-5 *2 (-305)) (-5 *1 (-289)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-305)) (-5 *1 (-289)))))
+(-10 -7 (-15 -3042 ((-305) (-1125))) (-15 -3042 ((-305) (-621 (-1125)))) (-15 -3042 ((-305) (-1125) (-1125))) (-15 -3042 ((-305) (-1125) (-621 (-1125)))))
+((-2797 ((|#2| (-1 |#2| |#1|) (-1125) (-592 |#1|)) 18)))
+(((-290 |#1| |#2|) (-10 -7 (-15 -2797 (|#2| (-1 |#2| |#1|) (-1125) (-592 |#1|)))) (-295) (-1180)) (T -290))
+((-2797 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1125)) (-5 *5 (-592 *6)) (-4 *6 (-295)) (-4 *2 (-1180)) (-5 *1 (-290 *6 *2)))))
+(-10 -7 (-15 -2797 (|#2| (-1 |#2| |#1|) (-1125) (-592 |#1|))))
+((-2797 ((|#2| (-1 |#2| |#1|) (-592 |#1|)) 17)))
+(((-291 |#1| |#2|) (-10 -7 (-15 -2797 (|#2| (-1 |#2| |#1|) (-592 |#1|)))) (-295) (-295)) (T -291))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-592 *5)) (-4 *5 (-295)) (-4 *2 (-295)) (-5 *1 (-291 *5 *2)))))
+(-10 -7 (-15 -2797 (|#2| (-1 |#2| |#1|) (-592 |#1|))))
+((-1818 (((-112) (-219)) 10)))
+(((-292 |#1| |#2|) (-10 -7 (-15 -1818 ((-112) (-219)))) (-219) (-219)) (T -292))
+((-1818 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-292 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -1818 ((-112) (-219))))
+((-1329 (((-1123 (-219)) (-309 (-219)) (-621 (-1143)) (-1061 (-816 (-219)))) 93)) (-3639 (((-1123 (-219)) (-1226 (-309 (-219))) (-621 (-1143)) (-1061 (-816 (-219)))) 107) (((-1123 (-219)) (-309 (-219)) (-621 (-1143)) (-1061 (-816 (-219)))) 61)) (-1972 (((-621 (-1125)) (-1123 (-219))) NIL)) (-4117 (((-621 (-219)) (-309 (-219)) (-1143) (-1061 (-816 (-219)))) 58)) (-3552 (((-621 (-219)) (-923 (-400 (-549))) (-1143) (-1061 (-816 (-219)))) 49)) (-2965 (((-621 (-1125)) (-621 (-219))) NIL)) (-2980 (((-219) (-1061 (-816 (-219)))) 25)) (-3431 (((-219) (-1061 (-816 (-219)))) 26)) (-3323 (((-112) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 54)) (-2649 (((-1125) (-219)) NIL)))
+(((-293) (-10 -7 (-15 -2980 ((-219) (-1061 (-816 (-219))))) (-15 -3431 ((-219) (-1061 (-816 (-219))))) (-15 -3323 ((-112) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4117 ((-621 (-219)) (-309 (-219)) (-1143) (-1061 (-816 (-219))))) (-15 -1329 ((-1123 (-219)) (-309 (-219)) (-621 (-1143)) (-1061 (-816 (-219))))) (-15 -3639 ((-1123 (-219)) (-309 (-219)) (-621 (-1143)) (-1061 (-816 (-219))))) (-15 -3639 ((-1123 (-219)) (-1226 (-309 (-219))) (-621 (-1143)) (-1061 (-816 (-219))))) (-15 -3552 ((-621 (-219)) (-923 (-400 (-549))) (-1143) (-1061 (-816 (-219))))) (-15 -2649 ((-1125) (-219))) (-15 -2965 ((-621 (-1125)) (-621 (-219)))) (-15 -1972 ((-621 (-1125)) (-1123 (-219)))))) (T -293))
+((-1972 (*1 *2 *3) (-12 (-5 *3 (-1123 (-219))) (-5 *2 (-621 (-1125))) (-5 *1 (-293)))) (-2965 (*1 *2 *3) (-12 (-5 *3 (-621 (-219))) (-5 *2 (-621 (-1125))) (-5 *1 (-293)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1125)) (-5 *1 (-293)))) (-3552 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-923 (-400 (-549)))) (-5 *4 (-1143)) (-5 *5 (-1061 (-816 (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-293)))) (-3639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1226 (-309 (-219)))) (-5 *4 (-621 (-1143))) (-5 *5 (-1061 (-816 (-219)))) (-5 *2 (-1123 (-219))) (-5 *1 (-293)))) (-3639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-621 (-1143))) (-5 *5 (-1061 (-816 (-219)))) (-5 *2 (-1123 (-219))) (-5 *1 (-293)))) (-1329 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-621 (-1143))) (-5 *5 (-1061 (-816 (-219)))) (-5 *2 (-1123 (-219))) (-5 *1 (-293)))) (-4117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1143)) (-5 *5 (-1061 (-816 (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-293)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-112)) (-5 *1 (-293)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-1061 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-293)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-1061 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-293)))))
+(-10 -7 (-15 -2980 ((-219) (-1061 (-816 (-219))))) (-15 -3431 ((-219) (-1061 (-816 (-219))))) (-15 -3323 ((-112) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4117 ((-621 (-219)) (-309 (-219)) (-1143) (-1061 (-816 (-219))))) (-15 -1329 ((-1123 (-219)) (-309 (-219)) (-621 (-1143)) (-1061 (-816 (-219))))) (-15 -3639 ((-1123 (-219)) (-309 (-219)) (-621 (-1143)) (-1061 (-816 (-219))))) (-15 -3639 ((-1123 (-219)) (-1226 (-309 (-219))) (-621 (-1143)) (-1061 (-816 (-219))))) (-15 -3552 ((-621 (-219)) (-923 (-400 (-549))) (-1143) (-1061 (-816 (-219))))) (-15 -2649 ((-1125) (-219))) (-15 -2965 ((-621 (-1125)) (-621 (-219)))) (-15 -1972 ((-621 (-1125)) (-1123 (-219)))))
+((-1981 (((-621 (-592 $)) $) 30)) (-3015 (($ $ (-287 $)) 81) (($ $ (-621 (-287 $))) 123) (($ $ (-621 (-592 $)) (-621 $)) NIL)) (-2714 (((-3 (-592 $) "failed") $) 113)) (-2659 (((-592 $) $) 112)) (-3225 (($ $) 19) (($ (-621 $)) 56)) (-2162 (((-621 (-114)) $) 38)) (-2834 (((-114) (-114)) 91)) (-3559 (((-112) $) 131)) (-2797 (($ (-1 $ $) (-592 $)) 89)) (-2634 (((-3 (-592 $) "failed") $) 93)) (-1476 (($ (-114) $) 61) (($ (-114) (-621 $)) 100)) (-3421 (((-112) $ (-114)) 117) (((-112) $ (-1143)) 116)) (-4036 (((-747) $) 46)) (-2979 (((-112) $ $) 59) (((-112) $ (-1143)) 51)) (-3450 (((-112) $) 129)) (-2686 (($ $ (-592 $) $) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL) (($ $ (-621 (-287 $))) 121) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-621 (-1143)) (-621 (-1 $ $))) 84) (($ $ (-621 (-1143)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-1143) (-1 $ (-621 $))) 69) (($ $ (-1143) (-1 $ $)) 75) (($ $ (-621 (-114)) (-621 (-1 $ $))) 83) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) 85) (($ $ (-114) (-1 $ (-621 $))) 71) (($ $ (-114) (-1 $ $)) 77)) (-3341 (($ (-114) $) 62) (($ (-114) $ $) 63) (($ (-114) $ $ $) 64) (($ (-114) $ $ $ $) 65) (($ (-114) (-621 $)) 109)) (-3433 (($ $) 53) (($ $ $) 119)) (-4137 (($ $) 17) (($ (-621 $)) 55)) (-4285 (((-112) (-114)) 22)))
+(((-294 |#1|) (-10 -8 (-15 -3559 ((-112) |#1|)) (-15 -3450 ((-112) |#1|)) (-15 -2686 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2686 (|#1| |#1| (-114) (-1 |#1| (-621 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2686 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| |#1|)))) (-15 -2686 (|#1| |#1| (-1143) (-1 |#1| |#1|))) (-15 -2686 (|#1| |#1| (-1143) (-1 |#1| (-621 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 (-1 |#1| |#1|)))) (-15 -2979 ((-112) |#1| (-1143))) (-15 -2979 ((-112) |#1| |#1|)) (-15 -2797 (|#1| (-1 |#1| |#1|) (-592 |#1|))) (-15 -1476 (|#1| (-114) (-621 |#1|))) (-15 -1476 (|#1| (-114) |#1|)) (-15 -3421 ((-112) |#1| (-1143))) (-15 -3421 ((-112) |#1| (-114))) (-15 -4285 ((-112) (-114))) (-15 -2834 ((-114) (-114))) (-15 -2162 ((-621 (-114)) |#1|)) (-15 -1981 ((-621 (-592 |#1|)) |#1|)) (-15 -2634 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -4036 ((-747) |#1|)) (-15 -3433 (|#1| |#1| |#1|)) (-15 -3433 (|#1| |#1|)) (-15 -3225 (|#1| (-621 |#1|))) (-15 -3225 (|#1| |#1|)) (-15 -4137 (|#1| (-621 |#1|))) (-15 -4137 (|#1| |#1|)) (-15 -3015 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -3015 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3015 (|#1| |#1| (-287 |#1|))) (-15 -3341 (|#1| (-114) (-621 |#1|))) (-15 -3341 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3341 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3341 (|#1| (-114) |#1| |#1|)) (-15 -3341 (|#1| (-114) |#1|)) (-15 -2686 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| (-287 |#1|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -2686 (|#1| |#1| (-592 |#1|) |#1|)) (-15 -2659 ((-592 |#1|) |#1|)) (-15 -2714 ((-3 (-592 |#1|) "failed") |#1|))) (-295)) (T -294))
+((-2834 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-294 *3)) (-4 *3 (-295)))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-294 *4)) (-4 *4 (-295)))))
+(-10 -8 (-15 -3559 ((-112) |#1|)) (-15 -3450 ((-112) |#1|)) (-15 -2686 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2686 (|#1| |#1| (-114) (-1 |#1| (-621 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2686 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| |#1|)))) (-15 -2686 (|#1| |#1| (-1143) (-1 |#1| |#1|))) (-15 -2686 (|#1| |#1| (-1143) (-1 |#1| (-621 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 (-1 |#1| |#1|)))) (-15 -2979 ((-112) |#1| (-1143))) (-15 -2979 ((-112) |#1| |#1|)) (-15 -2797 (|#1| (-1 |#1| |#1|) (-592 |#1|))) (-15 -1476 (|#1| (-114) (-621 |#1|))) (-15 -1476 (|#1| (-114) |#1|)) (-15 -3421 ((-112) |#1| (-1143))) (-15 -3421 ((-112) |#1| (-114))) (-15 -4285 ((-112) (-114))) (-15 -2834 ((-114) (-114))) (-15 -2162 ((-621 (-114)) |#1|)) (-15 -1981 ((-621 (-592 |#1|)) |#1|)) (-15 -2634 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -4036 ((-747) |#1|)) (-15 -3433 (|#1| |#1| |#1|)) (-15 -3433 (|#1| |#1|)) (-15 -3225 (|#1| (-621 |#1|))) (-15 -3225 (|#1| |#1|)) (-15 -4137 (|#1| (-621 |#1|))) (-15 -4137 (|#1| |#1|)) (-15 -3015 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -3015 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3015 (|#1| |#1| (-287 |#1|))) (-15 -3341 (|#1| (-114) (-621 |#1|))) (-15 -3341 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3341 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3341 (|#1| (-114) |#1| |#1|)) (-15 -3341 (|#1| (-114) |#1|)) (-15 -2686 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| (-287 |#1|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -2686 (|#1| |#1| (-592 |#1|) |#1|)) (-15 -2659 ((-592 |#1|) |#1|)) (-15 -2714 ((-3 (-592 |#1|) "failed") |#1|)))
+((-3834 (((-112) $ $) 7)) (-1981 (((-621 (-592 $)) $) 44)) (-3015 (($ $ (-287 $)) 56) (($ $ (-621 (-287 $))) 55) (($ $ (-621 (-592 $)) (-621 $)) 54)) (-2714 (((-3 (-592 $) "failed") $) 69)) (-2659 (((-592 $) $) 68)) (-3225 (($ $) 51) (($ (-621 $)) 50)) (-2162 (((-621 (-114)) $) 43)) (-2834 (((-114) (-114)) 42)) (-3559 (((-112) $) 22 (|has| $ (-1009 (-549))))) (-1549 (((-1139 $) (-592 $)) 25 (|has| $ (-1018)))) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-2797 (($ (-1 $ $) (-592 $)) 36)) (-2634 (((-3 (-592 $) "failed") $) 46)) (-3851 (((-1125) $) 9)) (-2071 (((-621 (-592 $)) $) 45)) (-1476 (($ (-114) $) 38) (($ (-114) (-621 $)) 37)) (-3421 (((-112) $ (-114)) 40) (((-112) $ (-1143)) 39)) (-4036 (((-747) $) 47)) (-3990 (((-1087) $) 10)) (-2979 (((-112) $ $) 35) (((-112) $ (-1143)) 34)) (-3450 (((-112) $) 23 (|has| $ (-1009 (-549))))) (-2686 (($ $ (-592 $) $) 67) (($ $ (-621 (-592 $)) (-621 $)) 66) (($ $ (-621 (-287 $))) 65) (($ $ (-287 $)) 64) (($ $ $ $) 63) (($ $ (-621 $) (-621 $)) 62) (($ $ (-621 (-1143)) (-621 (-1 $ $))) 33) (($ $ (-621 (-1143)) (-621 (-1 $ (-621 $)))) 32) (($ $ (-1143) (-1 $ (-621 $))) 31) (($ $ (-1143) (-1 $ $)) 30) (($ $ (-621 (-114)) (-621 (-1 $ $))) 29) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) 28) (($ $ (-114) (-1 $ (-621 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-3341 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-621 $)) 57)) (-3433 (($ $) 49) (($ $ $) 48)) (-2815 (($ $) 24 (|has| $ (-1018)))) (-3846 (((-834) $) 11) (($ (-592 $)) 70)) (-4137 (($ $) 53) (($ (-621 $)) 52)) (-4285 (((-112) (-114)) 41)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)))
+(((-295) (-138)) (T -295))
+((-3341 (*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-3341 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-3341 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-3341 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-3341 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-621 *1)) (-4 *1 (-295)))) (-3015 (*1 *1 *1 *2) (-12 (-5 *2 (-287 *1)) (-4 *1 (-295)))) (-3015 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-287 *1))) (-4 *1 (-295)))) (-3015 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-592 *1))) (-5 *3 (-621 *1)) (-4 *1 (-295)))) (-4137 (*1 *1 *1) (-4 *1 (-295))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-295)))) (-3225 (*1 *1 *1) (-4 *1 (-295))) (-3225 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-295)))) (-3433 (*1 *1 *1) (-4 *1 (-295))) (-3433 (*1 *1 *1 *1) (-4 *1 (-295))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-747)))) (-2634 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-295)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-621 (-592 *1))) (-4 *1 (-295)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-621 (-592 *1))) (-4 *1 (-295)))) (-2162 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-621 (-114))))) (-2834 (*1 *2 *2) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-4285 (*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3421 (*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3421 (*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1143)) (-5 *2 (-112)))) (-1476 (*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114)))) (-1476 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-621 *1)) (-4 *1 (-295)))) (-2797 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-592 *1)) (-4 *1 (-295)))) (-2979 (*1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-112)))) (-2979 (*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1143)) (-5 *2 (-112)))) (-2686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-621 (-1 *1 *1))) (-4 *1 (-295)))) (-2686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-621 (-1 *1 (-621 *1)))) (-4 *1 (-295)))) (-2686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1 *1 (-621 *1))) (-4 *1 (-295)))) (-2686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295)))) (-2686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-114))) (-5 *3 (-621 (-1 *1 *1))) (-4 *1 (-295)))) (-2686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-114))) (-5 *3 (-621 (-1 *1 (-621 *1)))) (-4 *1 (-295)))) (-2686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-621 *1))) (-4 *1 (-295)))) (-2686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-1018)) (-4 *1 (-295)) (-5 *2 (-1139 *1)))) (-2815 (*1 *1 *1) (-12 (-4 *1 (-1018)) (-4 *1 (-295)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-1009 (-549))) (-4 *1 (-295)) (-5 *2 (-112)))) (-3559 (*1 *2 *1) (-12 (-4 *1 (-1009 (-549))) (-4 *1 (-295)) (-5 *2 (-112)))))
+(-13 (-823) (-1009 (-592 $)) (-505 (-592 $) $) (-302 $) (-10 -8 (-15 -3341 ($ (-114) $)) (-15 -3341 ($ (-114) $ $)) (-15 -3341 ($ (-114) $ $ $)) (-15 -3341 ($ (-114) $ $ $ $)) (-15 -3341 ($ (-114) (-621 $))) (-15 -3015 ($ $ (-287 $))) (-15 -3015 ($ $ (-621 (-287 $)))) (-15 -3015 ($ $ (-621 (-592 $)) (-621 $))) (-15 -4137 ($ $)) (-15 -4137 ($ (-621 $))) (-15 -3225 ($ $)) (-15 -3225 ($ (-621 $))) (-15 -3433 ($ $)) (-15 -3433 ($ $ $)) (-15 -4036 ((-747) $)) (-15 -2634 ((-3 (-592 $) "failed") $)) (-15 -2071 ((-621 (-592 $)) $)) (-15 -1981 ((-621 (-592 $)) $)) (-15 -2162 ((-621 (-114)) $)) (-15 -2834 ((-114) (-114))) (-15 -4285 ((-112) (-114))) (-15 -3421 ((-112) $ (-114))) (-15 -3421 ((-112) $ (-1143))) (-15 -1476 ($ (-114) $)) (-15 -1476 ($ (-114) (-621 $))) (-15 -2797 ($ (-1 $ $) (-592 $))) (-15 -2979 ((-112) $ $)) (-15 -2979 ((-112) $ (-1143))) (-15 -2686 ($ $ (-621 (-1143)) (-621 (-1 $ $)))) (-15 -2686 ($ $ (-621 (-1143)) (-621 (-1 $ (-621 $))))) (-15 -2686 ($ $ (-1143) (-1 $ (-621 $)))) (-15 -2686 ($ $ (-1143) (-1 $ $))) (-15 -2686 ($ $ (-621 (-114)) (-621 (-1 $ $)))) (-15 -2686 ($ $ (-621 (-114)) (-621 (-1 $ (-621 $))))) (-15 -2686 ($ $ (-114) (-1 $ (-621 $)))) (-15 -2686 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1018)) (PROGN (-15 -1549 ((-1139 $) (-592 $))) (-15 -2815 ($ $))) |%noBranch|) (IF (|has| $ (-1009 (-549))) (PROGN (-15 -3450 ((-112) $)) (-15 -3559 ((-112) $))) |%noBranch|)))
+(((-101) . T) ((-593 (-834)) . T) ((-302 $) . T) ((-505 (-592 $) $) . T) ((-505 $ $) . T) ((-823) . T) ((-1009 (-592 $)) . T) ((-1067) . T))
+((-3435 (((-621 |#1|) (-621 |#1|)) 10)))
+(((-296 |#1|) (-10 -7 (-15 -3435 ((-621 |#1|) (-621 |#1|)))) (-821)) (T -296))
+((-3435 (*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-821)) (-5 *1 (-296 *3)))))
+(-10 -7 (-15 -3435 ((-621 |#1|) (-621 |#1|))))
+((-2797 (((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)) 17)))
+(((-297 |#1| |#2|) (-10 -7 (-15 -2797 ((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)))) (-1018) (-1018)) (T -297))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-665 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-665 *6)) (-5 *1 (-297 *5 *6)))))
+(-10 -7 (-15 -2797 ((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|))))
+((-1749 (((-1226 (-309 (-372))) (-1226 (-309 (-219)))) 105)) (-2284 (((-1061 (-816 (-219))) (-1061 (-816 (-372)))) 40)) (-1972 (((-621 (-1125)) (-1123 (-219))) 87)) (-1890 (((-309 (-372)) (-923 (-219))) 50)) (-3253 (((-219) (-923 (-219))) 46)) (-2793 (((-1125) (-372)) 169)) (-2621 (((-816 (-219)) (-816 (-372))) 34)) (-2054 (((-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))) (-1226 (-309 (-219)))) 143)) (-1772 (((-1006) (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006)))) 181) (((-1006) (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))))) 179)) (-3521 (((-665 (-219)) (-621 (-219)) (-747)) 14)) (-4201 (((-1226 (-675)) (-621 (-219))) 94)) (-2965 (((-621 (-1125)) (-621 (-219))) 75)) (-3984 (((-3 (-309 (-219)) "failed") (-309 (-219))) 120)) (-1818 (((-112) (-219) (-1061 (-816 (-219)))) 109)) (-3810 (((-1006) (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))) 198)) (-2980 (((-219) (-1061 (-816 (-219)))) 107)) (-3431 (((-219) (-1061 (-816 (-219)))) 108)) (-3262 (((-219) (-400 (-549))) 27)) (-1829 (((-1125) (-372)) 73)) (-1982 (((-219) (-372)) 17)) (-2143 (((-372) (-1226 (-309 (-219)))) 154)) (-1737 (((-309 (-219)) (-309 (-372))) 23)) (-2993 (((-400 (-549)) (-309 (-219))) 53)) (-1804 (((-309 (-400 (-549))) (-309 (-219))) 69)) (-2086 (((-309 (-372)) (-309 (-219))) 98)) (-2026 (((-219) (-309 (-219))) 54)) (-4231 (((-621 (-219)) (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) 64)) (-4136 (((-1061 (-816 (-219))) (-1061 (-816 (-219)))) 61)) (-2649 (((-1125) (-219)) 72)) (-2678 (((-675) (-219)) 90)) (-2163 (((-400 (-549)) (-219)) 55)) (-3714 (((-309 (-372)) (-219)) 49)) (-2845 (((-621 (-1061 (-816 (-219)))) (-621 (-1061 (-816 (-372))))) 43)) (-1952 (((-1006) (-621 (-1006))) 165) (((-1006) (-1006) (-1006)) 162)) (-3399 (((-1006) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
+(((-298) (-10 -7 (-15 -1982 ((-219) (-372))) (-15 -1737 ((-309 (-219)) (-309 (-372)))) (-15 -2621 ((-816 (-219)) (-816 (-372)))) (-15 -2284 ((-1061 (-816 (-219))) (-1061 (-816 (-372))))) (-15 -2845 ((-621 (-1061 (-816 (-219)))) (-621 (-1061 (-816 (-372)))))) (-15 -2163 ((-400 (-549)) (-219))) (-15 -2993 ((-400 (-549)) (-309 (-219)))) (-15 -2026 ((-219) (-309 (-219)))) (-15 -3984 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -2143 ((-372) (-1226 (-309 (-219))))) (-15 -2054 ((-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))) (-1226 (-309 (-219))))) (-15 -1804 ((-309 (-400 (-549))) (-309 (-219)))) (-15 -4136 ((-1061 (-816 (-219))) (-1061 (-816 (-219))))) (-15 -4231 ((-621 (-219)) (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))) (-15 -2678 ((-675) (-219))) (-15 -4201 ((-1226 (-675)) (-621 (-219)))) (-15 -2086 ((-309 (-372)) (-309 (-219)))) (-15 -1749 ((-1226 (-309 (-372))) (-1226 (-309 (-219))))) (-15 -1818 ((-112) (-219) (-1061 (-816 (-219))))) (-15 -2649 ((-1125) (-219))) (-15 -1829 ((-1125) (-372))) (-15 -2965 ((-621 (-1125)) (-621 (-219)))) (-15 -1972 ((-621 (-1125)) (-1123 (-219)))) (-15 -2980 ((-219) (-1061 (-816 (-219))))) (-15 -3431 ((-219) (-1061 (-816 (-219))))) (-15 -1952 ((-1006) (-1006) (-1006))) (-15 -1952 ((-1006) (-621 (-1006)))) (-15 -2793 ((-1125) (-372))) (-15 -1772 ((-1006) (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))))) (-15 -1772 ((-1006) (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006))))) (-15 -3399 ((-1006) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3810 ((-1006) (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))) (-15 -1890 ((-309 (-372)) (-923 (-219)))) (-15 -3253 ((-219) (-923 (-219)))) (-15 -3714 ((-309 (-372)) (-219))) (-15 -3262 ((-219) (-400 (-549)))) (-15 -3521 ((-665 (-219)) (-621 (-219)) (-747))))) (T -298))
+((-3521 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-219))) (-5 *4 (-747)) (-5 *2 (-665 (-219))) (-5 *1 (-298)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-400 (-549))) (-5 *2 (-219)) (-5 *1 (-298)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-309 (-372))) (-5 *1 (-298)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-923 (-219))) (-5 *2 (-219)) (-5 *1 (-298)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-923 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298)))) (-3810 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))) (-5 *2 (-1006)) (-5 *1 (-298)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1006)) (-5 *1 (-298)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006)))) (-5 *2 (-1006)) (-5 *1 (-298)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))))) (-5 *2 (-1006)) (-5 *1 (-298)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1125)) (-5 *1 (-298)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-621 (-1006))) (-5 *2 (-1006)) (-5 *1 (-298)))) (-1952 (*1 *2 *2 *2) (-12 (-5 *2 (-1006)) (-5 *1 (-298)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-1061 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-298)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-1061 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-298)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-1123 (-219))) (-5 *2 (-621 (-1125))) (-5 *1 (-298)))) (-2965 (*1 *2 *3) (-12 (-5 *3 (-621 (-219))) (-5 *2 (-621 (-1125))) (-5 *1 (-298)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1125)) (-5 *1 (-298)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1125)) (-5 *1 (-298)))) (-1818 (*1 *2 *3 *4) (-12 (-5 *4 (-1061 (-816 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-298)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-1226 (-309 (-219)))) (-5 *2 (-1226 (-309 (-372)))) (-5 *1 (-298)))) (-2086 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-621 (-219))) (-5 *2 (-1226 (-675))) (-5 *1 (-298)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-675)) (-5 *1 (-298)))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-5 *2 (-621 (-219))) (-5 *1 (-298)))) (-4136 (*1 *2 *2) (-12 (-5 *2 (-1061 (-816 (-219)))) (-5 *1 (-298)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-400 (-549)))) (-5 *1 (-298)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-1226 (-309 (-219)))) (-5 *2 (-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549)))) (-5 *1 (-298)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-1226 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-298)))) (-3984 (*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-298)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-219)) (-5 *1 (-298)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-400 (-549))) (-5 *1 (-298)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-549))) (-5 *1 (-298)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-621 (-1061 (-816 (-372))))) (-5 *2 (-621 (-1061 (-816 (-219))))) (-5 *1 (-298)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-1061 (-816 (-372)))) (-5 *2 (-1061 (-816 (-219)))) (-5 *1 (-298)))) (-2621 (*1 *2 *3) (-12 (-5 *3 (-816 (-372))) (-5 *2 (-816 (-219))) (-5 *1 (-298)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-309 (-372))) (-5 *2 (-309 (-219))) (-5 *1 (-298)))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-298)))))
+(-10 -7 (-15 -1982 ((-219) (-372))) (-15 -1737 ((-309 (-219)) (-309 (-372)))) (-15 -2621 ((-816 (-219)) (-816 (-372)))) (-15 -2284 ((-1061 (-816 (-219))) (-1061 (-816 (-372))))) (-15 -2845 ((-621 (-1061 (-816 (-219)))) (-621 (-1061 (-816 (-372)))))) (-15 -2163 ((-400 (-549)) (-219))) (-15 -2993 ((-400 (-549)) (-309 (-219)))) (-15 -2026 ((-219) (-309 (-219)))) (-15 -3984 ((-3 (-309 (-219)) "failed") (-309 (-219)))) (-15 -2143 ((-372) (-1226 (-309 (-219))))) (-15 -2054 ((-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))) (-1226 (-309 (-219))))) (-15 -1804 ((-309 (-400 (-549))) (-309 (-219)))) (-15 -4136 ((-1061 (-816 (-219))) (-1061 (-816 (-219))))) (-15 -4231 ((-621 (-219)) (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))) (-15 -2678 ((-675) (-219))) (-15 -4201 ((-1226 (-675)) (-621 (-219)))) (-15 -2086 ((-309 (-372)) (-309 (-219)))) (-15 -1749 ((-1226 (-309 (-372))) (-1226 (-309 (-219))))) (-15 -1818 ((-112) (-219) (-1061 (-816 (-219))))) (-15 -2649 ((-1125) (-219))) (-15 -1829 ((-1125) (-372))) (-15 -2965 ((-621 (-1125)) (-621 (-219)))) (-15 -1972 ((-621 (-1125)) (-1123 (-219)))) (-15 -2980 ((-219) (-1061 (-816 (-219))))) (-15 -3431 ((-219) (-1061 (-816 (-219))))) (-15 -1952 ((-1006) (-1006) (-1006))) (-15 -1952 ((-1006) (-621 (-1006)))) (-15 -2793 ((-1125) (-372))) (-15 -1772 ((-1006) (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))))) (-15 -1772 ((-1006) (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006))))) (-15 -3399 ((-1006) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3810 ((-1006) (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))) (-15 -1890 ((-309 (-372)) (-923 (-219)))) (-15 -3253 ((-219) (-923 (-219)))) (-15 -3714 ((-309 (-372)) (-219))) (-15 -3262 ((-219) (-400 (-549)))) (-15 -3521 ((-665 (-219)) (-621 (-219)) (-747))))
+((-3866 (((-112) $ $) 11)) (-2095 (($ $ $) 15)) (-2067 (($ $ $) 14)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 44)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 53)) (-3727 (($ $ $) 21) (($ (-621 $)) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2042 (((-3 $ "failed") $ $) 17)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 46)))
+(((-299 |#1|) (-10 -8 (-15 -2748 ((-3 (-621 |#1|) "failed") (-621 |#1|) |#1|)) (-15 -3083 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3083 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4248 |#1|)) |#1| |#1|)) (-15 -2095 (|#1| |#1| |#1|)) (-15 -2067 (|#1| |#1| |#1|)) (-15 -3866 ((-112) |#1| |#1|)) (-15 -3644 ((-3 (-621 |#1|) "failed") (-621 |#1|) |#1|)) (-15 -1309 ((-2 (|:| -1570 (-621 |#1|)) (|:| -4248 |#1|)) (-621 |#1|))) (-15 -3727 (|#1| (-621 |#1|))) (-15 -3727 (|#1| |#1| |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#1|))) (-300)) (T -299))
+NIL
+(-10 -8 (-15 -2748 ((-3 (-621 |#1|) "failed") (-621 |#1|) |#1|)) (-15 -3083 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3083 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4248 |#1|)) |#1| |#1|)) (-15 -2095 (|#1| |#1| |#1|)) (-15 -2067 (|#1| |#1| |#1|)) (-15 -3866 ((-112) |#1| |#1|)) (-15 -3644 ((-3 (-621 |#1|) "failed") (-621 |#1|) |#1|)) (-15 -1309 ((-2 (|:| -1570 (-621 |#1|)) (|:| -4248 |#1|)) (-621 |#1|))) (-15 -3727 (|#1| (-621 |#1|))) (-15 -3727 (|#1| |#1| |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-3866 (((-112) $ $) 57)) (-1682 (($) 17 T CONST)) (-2095 (($ $ $) 53)) (-2114 (((-3 $ "failed") $) 32)) (-2067 (($ $ $) 54)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-2675 (((-112) $) 30)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3684 (((-747) $) 56)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-300) (-138)) (T -300))
+((-3866 (*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-747)))) (-3148 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-300)))) (-2067 (*1 *1 *1 *1) (-4 *1 (-300))) (-2095 (*1 *1 *1 *1) (-4 *1 (-300))) (-3083 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4248 *1))) (-4 *1 (-300)))) (-3083 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-300)))) (-2748 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-621 *1)) (-4 *1 (-300)))))
+(-13 (-891) (-10 -8 (-15 -3866 ((-112) $ $)) (-15 -3684 ((-747) $)) (-15 -3148 ((-2 (|:| -4013 $) (|:| -3675 $)) $ $)) (-15 -2067 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -3083 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $)) (-15 -3083 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2748 ((-3 (-621 $) "failed") (-621 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-2686 (($ $ (-621 |#2|) (-621 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-287 |#2|)) 11) (($ $ (-621 (-287 |#2|))) NIL)))
+(((-301 |#1| |#2|) (-10 -8 (-15 -2686 (|#1| |#1| (-621 (-287 |#2|)))) (-15 -2686 (|#1| |#1| (-287 |#2|))) (-15 -2686 (|#1| |#1| |#2| |#2|)) (-15 -2686 (|#1| |#1| (-621 |#2|) (-621 |#2|)))) (-302 |#2|) (-1067)) (T -301))
+NIL
+(-10 -8 (-15 -2686 (|#1| |#1| (-621 (-287 |#2|)))) (-15 -2686 (|#1| |#1| (-287 |#2|))) (-15 -2686 (|#1| |#1| |#2| |#2|)) (-15 -2686 (|#1| |#1| (-621 |#2|) (-621 |#2|))))
+((-2686 (($ $ (-621 |#1|) (-621 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-287 |#1|)) 11) (($ $ (-621 (-287 |#1|))) 10)))
+(((-302 |#1|) (-138) (-1067)) (T -302))
+((-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-287 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1067)))) (-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-287 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1067)))))
+(-13 (-505 |t#1| |t#1|) (-10 -8 (-15 -2686 ($ $ (-287 |t#1|))) (-15 -2686 ($ $ (-621 (-287 |t#1|))))))
+(((-505 |#1| |#1|) . T))
+((-2686 ((|#1| (-1 |#1| (-549)) (-1145 (-400 (-549)))) 25)))
+(((-303 |#1|) (-10 -7 (-15 -2686 (|#1| (-1 |#1| (-549)) (-1145 (-400 (-549)))))) (-38 (-400 (-549)))) (T -303))
+((-2686 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-549))) (-5 *4 (-1145 (-400 (-549)))) (-5 *1 (-303 *2)) (-4 *2 (-38 (-400 (-549)))))))
+(-10 -7 (-15 -2686 (|#1| (-1 |#1| (-549)) (-1145 (-400 (-549))))))
+((-3834 (((-112) $ $) NIL)) (-1494 (((-549) $) 12)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3955 (((-1148) $) 9)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-304) (-13 (-1050) (-10 -8 (-15 -3955 ((-1148) $)) (-15 -1494 ((-549) $))))) (T -304))
+((-3955 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-304)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-304)))))
+(-13 (-1050) (-10 -8 (-15 -3955 ((-1148) $)) (-15 -1494 ((-549) $))))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 7)) (-2389 (((-112) $ $) 9)))
+(((-305) (-1067)) (T -305))
+NIL
+(-1067)
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 62)) (-3329 (((-1212 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-300)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-880)))) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-880)))) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-796)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-1212 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1143) "failed") $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-1009 (-1143)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-1009 (-549)))) (((-3 (-1211 |#2| |#3| |#4|) "failed") $) 25)) (-2659 (((-1212 |#1| |#2| |#3| |#4|) $) NIL) (((-1143) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-1009 (-1143)))) (((-400 (-549)) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-1009 (-549)))) (((-549) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-1009 (-549)))) (((-1211 |#2| |#3| |#4|) $) NIL)) (-2095 (($ $ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-1212 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1226 (-1212 |#1| |#2| |#3| |#4|)))) (-665 $) (-1226 $)) NIL) (((-665 (-1212 |#1| |#2| |#3| |#4|)) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-534)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-2772 (((-112) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-796)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-857 (-372))))) (-2675 (((-112) $) NIL)) (-1726 (($ $) NIL)) (-1394 (((-1212 |#1| |#2| |#3| |#4|) $) 21)) (-1681 (((-3 $ "failed") $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-1118)))) (-2374 (((-112) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-796)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2863 (($ $ $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-823)))) (-3575 (($ $ $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-823)))) (-2797 (($ (-1 (-1212 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2| |#3| |#4|)) $) NIL)) (-1914 (((-3 (-816 |#2|) "failed") $) 78)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-1118)) CONST)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2873 (($ $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-300)))) (-3967 (((-1212 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-534)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-880)))) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2686 (($ $ (-621 (-1212 |#1| |#2| |#3| |#4|)) (-621 (-1212 |#1| |#2| |#3| |#4|))) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-302 (-1212 |#1| |#2| |#3| |#4|)))) (($ $ (-1212 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2| |#3| |#4|)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-302 (-1212 |#1| |#2| |#3| |#4|)))) (($ $ (-287 (-1212 |#1| |#2| |#3| |#4|))) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-302 (-1212 |#1| |#2| |#3| |#4|)))) (($ $ (-621 (-287 (-1212 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-302 (-1212 |#1| |#2| |#3| |#4|)))) (($ $ (-621 (-1143)) (-621 (-1212 |#1| |#2| |#3| |#4|))) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-505 (-1143) (-1212 |#1| |#2| |#3| |#4|)))) (($ $ (-1143) (-1212 |#1| |#2| |#3| |#4|)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-505 (-1143) (-1212 |#1| |#2| |#3| |#4|))))) (-3684 (((-747) $) NIL)) (-3341 (($ $ (-1212 |#1| |#2| |#3| |#4|)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-279 (-1212 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2| |#3| |#4|))))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-747)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1143)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-871 (-1143)))) (($ $ (-1 (-1212 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2| |#3| |#4|)) (-747)) NIL) (($ $ (-1 (-1212 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2| |#3| |#4|))) NIL)) (-3939 (($ $) NIL)) (-1403 (((-1212 |#1| |#2| |#3| |#4|) $) 17)) (-2845 (((-863 (-549)) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-594 (-525)))) (((-372) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-993))) (((-219) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-993)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-1212 |#1| |#2| |#3| |#4|) (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-1212 |#1| |#2| |#3| |#4|)) 29) (($ (-1143)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-1009 (-1143)))) (($ (-1211 |#2| |#3| |#4|)) 36)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-1212 |#1| |#2| |#3| |#4|) (-880))) (|has| (-1212 |#1| |#2| |#3| |#4|) (-143))))) (-2082 (((-747)) NIL)) (-2546 (((-1212 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-534)))) (-1498 (((-112) $ $) NIL)) (-3212 (($ $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-796)))) (-3276 (($) 41 T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-747)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1143)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-871 (-1143)))) (($ $ (-1 (-1212 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2| |#3| |#4|)) (-747)) NIL) (($ $ (-1 (-1212 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2| |#3| |#4|))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-823)))) (-2425 (((-112) $ $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-823)))) (-2412 (((-112) $ $) NIL (|has| (-1212 |#1| |#2| |#3| |#4|) (-823)))) (-2513 (($ $ $) 34) (($ (-1212 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2| |#3| |#4|)) 31)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-1212 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1212 |#1| |#2| |#3| |#4|)) NIL)))
+(((-306 |#1| |#2| |#3| |#4|) (-13 (-963 (-1212 |#1| |#2| |#3| |#4|)) (-1009 (-1211 |#2| |#3| |#4|)) (-10 -8 (-15 -1914 ((-3 (-816 |#2|) "failed") $)) (-15 -3846 ($ (-1211 |#2| |#3| |#4|))))) (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444)) (-13 (-27) (-1165) (-423 |#1|)) (-1143) |#2|) (T -306))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1211 *4 *5 *6)) (-4 *4 (-13 (-27) (-1165) (-423 *3))) (-14 *5 (-1143)) (-14 *6 *4) (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444))) (-5 *1 (-306 *3 *4 *5 *6)))) (-1914 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444))) (-5 *2 (-816 *4)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1165) (-423 *3))) (-14 *5 (-1143)) (-14 *6 *4))))
+(-13 (-963 (-1212 |#1| |#2| |#3| |#4|)) (-1009 (-1211 |#2| |#3| |#4|)) (-10 -8 (-15 -1914 ((-3 (-816 |#2|) "failed") $)) (-15 -3846 ($ (-1211 |#2| |#3| |#4|)))))
+((-2797 (((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)) 13)))
+(((-307 |#1| |#2|) (-10 -7 (-15 -2797 ((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)))) (-823) (-823)) (T -307))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-309 *5)) (-4 *5 (-823)) (-4 *6 (-823)) (-5 *2 (-309 *6)) (-5 *1 (-307 *5 *6)))))
+(-10 -7 (-15 -2797 ((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|))))
+((-2336 (((-52) |#2| (-287 |#2|) (-747)) 33) (((-52) |#2| (-287 |#2|)) 24) (((-52) |#2| (-747)) 28) (((-52) |#2|) 25) (((-52) (-1143)) 21)) (-2826 (((-52) |#2| (-287 |#2|) (-400 (-549))) 51) (((-52) |#2| (-287 |#2|)) 48) (((-52) |#2| (-400 (-549))) 50) (((-52) |#2|) 49) (((-52) (-1143)) 47)) (-2366 (((-52) |#2| (-287 |#2|) (-400 (-549))) 46) (((-52) |#2| (-287 |#2|)) 43) (((-52) |#2| (-400 (-549))) 45) (((-52) |#2|) 44) (((-52) (-1143)) 42)) (-2352 (((-52) |#2| (-287 |#2|) (-549)) 39) (((-52) |#2| (-287 |#2|)) 35) (((-52) |#2| (-549)) 38) (((-52) |#2|) 36) (((-52) (-1143)) 34)))
+(((-308 |#1| |#2|) (-10 -7 (-15 -2336 ((-52) (-1143))) (-15 -2336 ((-52) |#2|)) (-15 -2336 ((-52) |#2| (-747))) (-15 -2336 ((-52) |#2| (-287 |#2|))) (-15 -2336 ((-52) |#2| (-287 |#2|) (-747))) (-15 -2352 ((-52) (-1143))) (-15 -2352 ((-52) |#2|)) (-15 -2352 ((-52) |#2| (-549))) (-15 -2352 ((-52) |#2| (-287 |#2|))) (-15 -2352 ((-52) |#2| (-287 |#2|) (-549))) (-15 -2366 ((-52) (-1143))) (-15 -2366 ((-52) |#2|)) (-15 -2366 ((-52) |#2| (-400 (-549)))) (-15 -2366 ((-52) |#2| (-287 |#2|))) (-15 -2366 ((-52) |#2| (-287 |#2|) (-400 (-549)))) (-15 -2826 ((-52) (-1143))) (-15 -2826 ((-52) |#2|)) (-15 -2826 ((-52) |#2| (-400 (-549)))) (-15 -2826 ((-52) |#2| (-287 |#2|))) (-15 -2826 ((-52) |#2| (-287 |#2|) (-400 (-549))))) (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1165) (-423 |#1|))) (T -308))
+((-2826 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-549))) (-4 *3 (-13 (-27) (-1165) (-423 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-549))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))))) (-2826 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *4))))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1165) (-423 *4))))) (-2366 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-549))) (-4 *3 (-13 (-27) (-1165) (-423 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-549))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))))) (-2366 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *4))))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1165) (-423 *4))))) (-2352 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *6))) (-4 *6 (-13 (-444) (-823) (-1009 *5) (-617 *5))) (-5 *5 (-549)) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-4 *5 (-13 (-444) (-823) (-1009 *4) (-617 *4))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))))) (-2352 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *4))))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1165) (-423 *4))))) (-2336 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-287 *3)) (-5 *5 (-747)) (-4 *3 (-13 (-27) (-1165) (-423 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))))) (-2336 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *4))))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-308 *4 *5)) (-4 *5 (-13 (-27) (-1165) (-423 *4))))))
+(-10 -7 (-15 -2336 ((-52) (-1143))) (-15 -2336 ((-52) |#2|)) (-15 -2336 ((-52) |#2| (-747))) (-15 -2336 ((-52) |#2| (-287 |#2|))) (-15 -2336 ((-52) |#2| (-287 |#2|) (-747))) (-15 -2352 ((-52) (-1143))) (-15 -2352 ((-52) |#2|)) (-15 -2352 ((-52) |#2| (-549))) (-15 -2352 ((-52) |#2| (-287 |#2|))) (-15 -2352 ((-52) |#2| (-287 |#2|) (-549))) (-15 -2366 ((-52) (-1143))) (-15 -2366 ((-52) |#2|)) (-15 -2366 ((-52) |#2| (-400 (-549)))) (-15 -2366 ((-52) |#2| (-287 |#2|))) (-15 -2366 ((-52) |#2| (-287 |#2|) (-400 (-549)))) (-15 -2826 ((-52) (-1143))) (-15 -2826 ((-52) |#2|)) (-15 -2826 ((-52) |#2| (-400 (-549)))) (-15 -2826 ((-52) |#2| (-287 |#2|))) (-15 -2826 ((-52) |#2| (-287 |#2|) (-400 (-549)))))
+((-3834 (((-112) $ $) NIL)) (-1329 (((-621 $) $ (-1143)) NIL (|has| |#1| (-541))) (((-621 $) $) NIL (|has| |#1| (-541))) (((-621 $) (-1139 $) (-1143)) NIL (|has| |#1| (-541))) (((-621 $) (-1139 $)) NIL (|has| |#1| (-541))) (((-621 $) (-923 $)) NIL (|has| |#1| (-541)))) (-3289 (($ $ (-1143)) NIL (|has| |#1| (-541))) (($ $) NIL (|has| |#1| (-541))) (($ (-1139 $) (-1143)) NIL (|has| |#1| (-541))) (($ (-1139 $)) NIL (|has| |#1| (-541))) (($ (-923 $)) NIL (|has| |#1| (-541)))) (-1763 (((-112) $) 27 (-1536 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))))) (-2272 (((-621 (-1143)) $) 351)) (-2084 (((-400 (-1139 $)) $ (-592 $)) NIL (|has| |#1| (-541)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-1981 (((-621 (-592 $)) $) NIL)) (-1664 (($ $) 161 (|has| |#1| (-541)))) (-1512 (($ $) 137 (|has| |#1| (-541)))) (-2441 (($ $ (-1059 $)) 222 (|has| |#1| (-541))) (($ $ (-1143)) 218 (|has| |#1| (-541)))) (-2001 (((-3 $ "failed") $ $) NIL (-1536 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))))) (-3015 (($ $ (-287 $)) NIL) (($ $ (-621 (-287 $))) 368) (($ $ (-621 (-592 $)) (-621 $)) 412)) (-3231 (((-411 (-1139 $)) (-1139 $)) 295 (-12 (|has| |#1| (-444)) (|has| |#1| (-541))))) (-3979 (($ $) NIL (|has| |#1| (-541)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-541)))) (-2134 (($ $) NIL (|has| |#1| (-541)))) (-3866 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1640 (($ $) 157 (|has| |#1| (-541)))) (-1486 (($ $) 133 (|has| |#1| (-541)))) (-2223 (($ $ (-549)) 72 (|has| |#1| (-541)))) (-1685 (($ $) 165 (|has| |#1| (-541)))) (-1539 (($ $) 141 (|has| |#1| (-541)))) (-1682 (($) NIL (-1536 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1079))) CONST)) (-1815 (((-621 $) $ (-1143)) NIL (|has| |#1| (-541))) (((-621 $) $) NIL (|has| |#1| (-541))) (((-621 $) (-1139 $) (-1143)) NIL (|has| |#1| (-541))) (((-621 $) (-1139 $)) NIL (|has| |#1| (-541))) (((-621 $) (-923 $)) NIL (|has| |#1| (-541)))) (-1947 (($ $ (-1143)) NIL (|has| |#1| (-541))) (($ $) NIL (|has| |#1| (-541))) (($ (-1139 $) (-1143)) 124 (|has| |#1| (-541))) (($ (-1139 $)) NIL (|has| |#1| (-541))) (($ (-923 $)) NIL (|has| |#1| (-541)))) (-2714 (((-3 (-592 $) "failed") $) 17) (((-3 (-1143) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-923 |#1|)) "failed") $) NIL (|has| |#1| (-541))) (((-3 (-923 |#1|) "failed") $) NIL (|has| |#1| (-1018))) (((-3 (-400 (-549)) "failed") $) 46 (-1536 (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-2659 (((-592 $) $) 11) (((-1143) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-923 |#1|)) $) NIL (|has| |#1| (-541))) (((-923 |#1|) $) NIL (|has| |#1| (-1018))) (((-400 (-549)) $) 306 (-1536 (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-2095 (($ $ $) NIL (|has| |#1| (-541)))) (-3879 (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 117 (|has| |#1| (-1018))) (((-665 |#1|) (-665 $)) 107 (|has| |#1| (-1018))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))) (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))))) (-2557 (($ $) 89 (|has| |#1| (-541)))) (-2114 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1079))))) (-2067 (($ $ $) NIL (|has| |#1| (-541)))) (-1747 (($ $ (-1059 $)) 226 (|has| |#1| (-541))) (($ $ (-1143)) 224 (|has| |#1| (-541)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-541)))) (-1420 (((-112) $) NIL (|has| |#1| (-541)))) (-3796 (($ $ $) 192 (|has| |#1| (-541)))) (-1425 (($) 127 (|has| |#1| (-541)))) (-1271 (($ $ $) 212 (|has| |#1| (-541)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 374 (|has| |#1| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 381 (|has| |#1| (-857 (-372))))) (-3225 (($ $) NIL) (($ (-621 $)) NIL)) (-2162 (((-621 (-114)) $) NIL)) (-2834 (((-114) (-114)) 267)) (-2675 (((-112) $) 25 (-1536 (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1079))))) (-3559 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-1726 (($ $) 71 (|has| |#1| (-1018)))) (-1394 (((-1092 |#1| (-592 $)) $) 84 (|has| |#1| (-1018)))) (-3240 (((-112) $) 64 (|has| |#1| (-541)))) (-4187 (($ $ (-549)) NIL (|has| |#1| (-541)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-541)))) (-1549 (((-1139 $) (-592 $)) 268 (|has| $ (-1018)))) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2797 (($ (-1 $ $) (-592 $)) 408)) (-2634 (((-3 (-592 $) "failed") $) NIL)) (-3632 (($ $) 131 (|has| |#1| (-541)))) (-1714 (($ $) 237 (|has| |#1| (-541)))) (-3697 (($ (-621 $)) NIL (|has| |#1| (-541))) (($ $ $) NIL (|has| |#1| (-541)))) (-3851 (((-1125) $) NIL)) (-2071 (((-621 (-592 $)) $) 49)) (-1476 (($ (-114) $) NIL) (($ (-114) (-621 $)) 413)) (-4266 (((-3 (-621 $) "failed") $) NIL (|has| |#1| (-1079)))) (-1671 (((-3 (-2 (|:| |val| $) (|:| -3731 (-549))) "failed") $) NIL (|has| |#1| (-1018)))) (-2533 (((-3 (-621 $) "failed") $) 416 (|has| |#1| (-25)))) (-2761 (((-3 (-2 (|:| -1570 (-549)) (|:| |var| (-592 $))) "failed") $) 420 (|has| |#1| (-25)))) (-1503 (((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $) NIL (|has| |#1| (-1079))) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $ (-114)) NIL (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $ (-1143)) NIL (|has| |#1| (-1018)))) (-3421 (((-112) $ (-114)) NIL) (((-112) $ (-1143)) 53)) (-1992 (($ $) NIL (-1536 (|has| |#1| (-465)) (|has| |#1| (-541))))) (-2204 (($ $ (-1143)) 241 (|has| |#1| (-541))) (($ $ (-1059 $)) 243 (|has| |#1| (-541)))) (-4036 (((-747) $) NIL)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) 43)) (-2016 ((|#1| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 288 (|has| |#1| (-541)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-541))) (($ $ $) NIL (|has| |#1| (-541)))) (-2979 (((-112) $ $) NIL) (((-112) $ (-1143)) NIL)) (-3251 (($ $ (-1143)) 216 (|has| |#1| (-541))) (($ $) 214 (|has| |#1| (-541)))) (-4005 (($ $) 208 (|has| |#1| (-541)))) (-2413 (((-411 (-1139 $)) (-1139 $)) 293 (-12 (|has| |#1| (-444)) (|has| |#1| (-541))))) (-2121 (((-411 $) $) NIL (|has| |#1| (-541)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-541))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-541)))) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-541)))) (-2719 (($ $) 129 (|has| |#1| (-541)))) (-3450 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-2686 (($ $ (-592 $) $) NIL) (($ $ (-621 (-592 $)) (-621 $)) 407) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-621 (-1143)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-1143)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-1143) (-1 $ (-621 $))) NIL) (($ $ (-1143) (-1 $ $)) NIL) (($ $ (-621 (-114)) (-621 (-1 $ $))) 361) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-114) (-1 $ (-621 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1143)) NIL (|has| |#1| (-594 (-525)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-594 (-525)))) (($ $) NIL (|has| |#1| (-594 (-525)))) (($ $ (-114) $ (-1143)) 349 (|has| |#1| (-594 (-525)))) (($ $ (-621 (-114)) (-621 $) (-1143)) 348 (|has| |#1| (-594 (-525)))) (($ $ (-621 (-1143)) (-621 (-747)) (-621 (-1 $ $))) NIL (|has| |#1| (-1018))) (($ $ (-621 (-1143)) (-621 (-747)) (-621 (-1 $ (-621 $)))) NIL (|has| |#1| (-1018))) (($ $ (-1143) (-747) (-1 $ (-621 $))) NIL (|has| |#1| (-1018))) (($ $ (-1143) (-747) (-1 $ $)) NIL (|has| |#1| (-1018)))) (-3684 (((-747) $) NIL (|has| |#1| (-541)))) (-1430 (($ $) 229 (|has| |#1| (-541)))) (-3341 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-621 $)) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-541)))) (-3433 (($ $) NIL) (($ $ $) NIL)) (-1469 (($ $) 239 (|has| |#1| (-541)))) (-3634 (($ $) 190 (|has| |#1| (-541)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-1018))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-1018))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-1018))) (($ $ (-1143)) NIL (|has| |#1| (-1018)))) (-3939 (($ $) 73 (|has| |#1| (-541)))) (-1403 (((-1092 |#1| (-592 $)) $) 86 (|has| |#1| (-541)))) (-2815 (($ $) 304 (|has| $ (-1018)))) (-1698 (($ $) 167 (|has| |#1| (-541)))) (-1552 (($ $) 143 (|has| |#1| (-541)))) (-1675 (($ $) 163 (|has| |#1| (-541)))) (-1526 (($ $) 139 (|has| |#1| (-541)))) (-1651 (($ $) 159 (|has| |#1| (-541)))) (-1501 (($ $) 135 (|has| |#1| (-541)))) (-2845 (((-863 (-549)) $) NIL (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| |#1| (-594 (-863 (-372))))) (($ (-411 $)) NIL (|has| |#1| (-541))) (((-525) $) 346 (|has| |#1| (-594 (-525))))) (-1955 (($ $ $) NIL (|has| |#1| (-465)))) (-3293 (($ $ $) NIL (|has| |#1| (-465)))) (-3846 (((-834) $) 406) (($ (-592 $)) 397) (($ (-1143)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-541))) (($ (-48)) 299 (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549))))) (($ (-1092 |#1| (-592 $))) 88 (|has| |#1| (-1018))) (($ (-400 |#1|)) NIL (|has| |#1| (-541))) (($ (-923 (-400 |#1|))) NIL (|has| |#1| (-541))) (($ (-400 (-923 (-400 |#1|)))) NIL (|has| |#1| (-541))) (($ (-400 (-923 |#1|))) NIL (|has| |#1| (-541))) (($ (-923 |#1|)) NIL (|has| |#1| (-1018))) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-541)) (|has| |#1| (-1009 (-400 (-549)))))) (($ (-549)) 34 (-1536 (|has| |#1| (-1009 (-549))) (|has| |#1| (-1018))))) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL (|has| |#1| (-1018)))) (-4137 (($ $) NIL) (($ (-621 $)) NIL)) (-3179 (($ $ $) 210 (|has| |#1| (-541)))) (-1370 (($ $ $) 196 (|has| |#1| (-541)))) (-1611 (($ $ $) 200 (|has| |#1| (-541)))) (-2981 (($ $ $) 194 (|has| |#1| (-541)))) (-1643 (($ $ $) 198 (|has| |#1| (-541)))) (-4285 (((-112) (-114)) 9)) (-1733 (($ $) 173 (|has| |#1| (-541)))) (-1587 (($ $) 149 (|has| |#1| (-541)))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1710 (($ $) 169 (|has| |#1| (-541)))) (-1564 (($ $) 145 (|has| |#1| (-541)))) (-1758 (($ $) 177 (|has| |#1| (-541)))) (-1612 (($ $) 153 (|has| |#1| (-541)))) (-1789 (($ (-1143) $) NIL) (($ (-1143) $ $) NIL) (($ (-1143) $ $ $) NIL) (($ (-1143) $ $ $ $) NIL) (($ (-1143) (-621 $)) NIL)) (-1273 (($ $) 204 (|has| |#1| (-541)))) (-3000 (($ $) 202 (|has| |#1| (-541)))) (-1934 (($ $) 179 (|has| |#1| (-541)))) (-1627 (($ $) 155 (|has| |#1| (-541)))) (-1745 (($ $) 175 (|has| |#1| (-541)))) (-1600 (($ $) 151 (|has| |#1| (-541)))) (-1722 (($ $) 171 (|has| |#1| (-541)))) (-1576 (($ $) 147 (|has| |#1| (-541)))) (-3212 (($ $) 182 (|has| |#1| (-541)))) (-3276 (($) 20 (-1536 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))) CONST)) (-2024 (($ $) 233 (|has| |#1| (-541)))) (-3287 (($) 22 (-1536 (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1079))) CONST)) (-3553 (($ $) 184 (|has| |#1| (-541))) (($ $ $) 186 (|has| |#1| (-541)))) (-3320 (($ $) 231 (|has| |#1| (-541)))) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-1018))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-1018))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-1018))) (($ $ (-1143)) NIL (|has| |#1| (-1018)))) (-1846 (($ $) 235 (|has| |#1| (-541)))) (-2096 (($ $ $) 188 (|has| |#1| (-541)))) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 81)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 80)) (-2513 (($ (-1092 |#1| (-592 $)) (-1092 |#1| (-592 $))) 98 (|has| |#1| (-541))) (($ $ $) 42 (-1536 (|has| |#1| (-465)) (|has| |#1| (-541))))) (-2500 (($ $ $) 40 (-1536 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))))) (($ $) 29 (-1536 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))))) (-2486 (($ $ $) 38 (-1536 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))))) (** (($ $ $) 66 (|has| |#1| (-541))) (($ $ (-400 (-549))) 301 (|has| |#1| (-541))) (($ $ (-549)) 76 (-1536 (|has| |#1| (-465)) (|has| |#1| (-541)))) (($ $ (-747)) 74 (-1536 (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1079)))) (($ $ (-892)) 78 (-1536 (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1079))))) (* (($ (-400 (-549)) $) NIL (|has| |#1| (-541))) (($ $ (-400 (-549))) NIL (|has| |#1| (-541))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-1536 (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) (|has| |#1| (-1079)))) (($ (-549) $) 32 (-1536 (|has| |#1| (-21)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))))) (($ (-747) $) NIL (-1536 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))))) (($ (-892) $) NIL (-1536 (|has| |#1| (-25)) (-12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))))))
+(((-309 |#1|) (-13 (-423 |#1|) (-10 -8 (IF (|has| |#1| (-541)) (PROGN (-6 (-29 |#1|)) (-6 (-1165)) (-6 (-158)) (-6 (-607)) (-6 (-1106)) (-15 -2557 ($ $)) (-15 -3240 ((-112) $)) (-15 -2223 ($ $ (-549))) (IF (|has| |#1| (-444)) (PROGN (-15 -2413 ((-411 (-1139 $)) (-1139 $))) (-15 -3231 ((-411 (-1139 $)) (-1139 $)))) |%noBranch|) (IF (|has| |#1| (-1009 (-549))) (-6 (-1009 (-48))) |%noBranch|)) |%noBranch|))) (-823)) (T -309))
+((-2557 (*1 *1 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-541)) (-4 *2 (-823)))) (-3240 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-309 *3)) (-4 *3 (-541)) (-4 *3 (-823)))) (-2223 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-309 *3)) (-4 *3 (-541)) (-4 *3 (-823)))) (-2413 (*1 *2 *3) (-12 (-5 *2 (-411 (-1139 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1139 *1)) (-4 *4 (-444)) (-4 *4 (-541)) (-4 *4 (-823)))) (-3231 (*1 *2 *3) (-12 (-5 *2 (-411 (-1139 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1139 *1)) (-4 *4 (-444)) (-4 *4 (-541)) (-4 *4 (-823)))))
+(-13 (-423 |#1|) (-10 -8 (IF (|has| |#1| (-541)) (PROGN (-6 (-29 |#1|)) (-6 (-1165)) (-6 (-158)) (-6 (-607)) (-6 (-1106)) (-15 -2557 ($ $)) (-15 -3240 ((-112) $)) (-15 -2223 ($ $ (-549))) (IF (|has| |#1| (-444)) (PROGN (-15 -2413 ((-411 (-1139 $)) (-1139 $))) (-15 -3231 ((-411 (-1139 $)) (-1139 $)))) |%noBranch|) (IF (|has| |#1| (-1009 (-549))) (-6 (-1009 (-48))) |%noBranch|)) |%noBranch|)))
+((-3099 (((-52) |#2| (-114) (-287 |#2|) (-621 |#2|)) 88) (((-52) |#2| (-114) (-287 |#2|) (-287 |#2|)) 84) (((-52) |#2| (-114) (-287 |#2|) |#2|) 86) (((-52) (-287 |#2|) (-114) (-287 |#2|) |#2|) 87) (((-52) (-621 |#2|) (-621 (-114)) (-287 |#2|) (-621 (-287 |#2|))) 80) (((-52) (-621 |#2|) (-621 (-114)) (-287 |#2|) (-621 |#2|)) 82) (((-52) (-621 (-287 |#2|)) (-621 (-114)) (-287 |#2|) (-621 |#2|)) 83) (((-52) (-621 (-287 |#2|)) (-621 (-114)) (-287 |#2|) (-621 (-287 |#2|))) 81) (((-52) (-287 |#2|) (-114) (-287 |#2|) (-621 |#2|)) 89) (((-52) (-287 |#2|) (-114) (-287 |#2|) (-287 |#2|)) 85)))
+(((-310 |#1| |#2|) (-10 -7 (-15 -3099 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-287 |#2|))) (-15 -3099 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-621 |#2|))) (-15 -3099 ((-52) (-621 (-287 |#2|)) (-621 (-114)) (-287 |#2|) (-621 (-287 |#2|)))) (-15 -3099 ((-52) (-621 (-287 |#2|)) (-621 (-114)) (-287 |#2|) (-621 |#2|))) (-15 -3099 ((-52) (-621 |#2|) (-621 (-114)) (-287 |#2|) (-621 |#2|))) (-15 -3099 ((-52) (-621 |#2|) (-621 (-114)) (-287 |#2|) (-621 (-287 |#2|)))) (-15 -3099 ((-52) (-287 |#2|) (-114) (-287 |#2|) |#2|)) (-15 -3099 ((-52) |#2| (-114) (-287 |#2|) |#2|)) (-15 -3099 ((-52) |#2| (-114) (-287 |#2|) (-287 |#2|))) (-15 -3099 ((-52) |#2| (-114) (-287 |#2|) (-621 |#2|)))) (-13 (-823) (-541) (-594 (-525))) (-423 |#1|)) (T -310))
+((-3099 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-5 *6 (-621 *3)) (-4 *3 (-423 *7)) (-4 *7 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *7 *3)))) (-3099 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-3099 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-3099 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-287 *5)) (-5 *4 (-114)) (-4 *5 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *5)))) (-3099 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 (-114))) (-5 *6 (-621 (-287 *8))) (-4 *8 (-423 *7)) (-5 *5 (-287 *8)) (-4 *7 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *7 *8)))) (-3099 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-621 *7)) (-5 *4 (-621 (-114))) (-5 *5 (-287 *7)) (-4 *7 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) (-3099 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 (-287 *8))) (-5 *4 (-621 (-114))) (-5 *5 (-287 *8)) (-5 *6 (-621 *8)) (-4 *8 (-423 *7)) (-4 *7 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *7 *8)))) (-3099 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-621 (-287 *7))) (-5 *4 (-621 (-114))) (-5 *5 (-287 *7)) (-4 *7 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) (-3099 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-621 *7)) (-4 *7 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *7)))) (-3099 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-287 *6)) (-5 *4 (-114)) (-4 *6 (-423 *5)) (-4 *5 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *6)))))
+(-10 -7 (-15 -3099 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-287 |#2|))) (-15 -3099 ((-52) (-287 |#2|) (-114) (-287 |#2|) (-621 |#2|))) (-15 -3099 ((-52) (-621 (-287 |#2|)) (-621 (-114)) (-287 |#2|) (-621 (-287 |#2|)))) (-15 -3099 ((-52) (-621 (-287 |#2|)) (-621 (-114)) (-287 |#2|) (-621 |#2|))) (-15 -3099 ((-52) (-621 |#2|) (-621 (-114)) (-287 |#2|) (-621 |#2|))) (-15 -3099 ((-52) (-621 |#2|) (-621 (-114)) (-287 |#2|) (-621 (-287 |#2|)))) (-15 -3099 ((-52) (-287 |#2|) (-114) (-287 |#2|) |#2|)) (-15 -3099 ((-52) |#2| (-114) (-287 |#2|) |#2|)) (-15 -3099 ((-52) |#2| (-114) (-287 |#2|) (-287 |#2|))) (-15 -3099 ((-52) |#2| (-114) (-287 |#2|) (-621 |#2|))))
+((-3213 (((-1175 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-219) (-549) (-1125)) 46) (((-1175 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-219) (-549)) 47) (((-1175 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-1 (-219) (-219)) (-549) (-1125)) 43) (((-1175 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-1 (-219) (-219)) (-549)) 44)) (-4011 (((-1 (-219) (-219)) (-219)) 45)))
+(((-311) (-10 -7 (-15 -4011 ((-1 (-219) (-219)) (-219))) (-15 -3213 ((-1175 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-1 (-219) (-219)) (-549))) (-15 -3213 ((-1175 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-1 (-219) (-219)) (-549) (-1125))) (-15 -3213 ((-1175 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-219) (-549))) (-15 -3213 ((-1175 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-219) (-549) (-1125))))) (T -311))
+((-3213 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1061 (-219))) (-5 *6 (-219)) (-5 *7 (-549)) (-5 *8 (-1125)) (-5 *2 (-1175 (-897))) (-5 *1 (-311)))) (-3213 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1061 (-219))) (-5 *6 (-219)) (-5 *7 (-549)) (-5 *2 (-1175 (-897))) (-5 *1 (-311)))) (-3213 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1061 (-219))) (-5 *6 (-549)) (-5 *7 (-1125)) (-5 *2 (-1175 (-897))) (-5 *1 (-311)))) (-3213 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1061 (-219))) (-5 *6 (-549)) (-5 *2 (-1175 (-897))) (-5 *1 (-311)))) (-4011 (*1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219)))))
+(-10 -7 (-15 -4011 ((-1 (-219) (-219)) (-219))) (-15 -3213 ((-1175 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-1 (-219) (-219)) (-549))) (-15 -3213 ((-1175 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-1 (-219) (-219)) (-549) (-1125))) (-15 -3213 ((-1175 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-219) (-549))) (-15 -3213 ((-1175 (-897)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-219) (-549) (-1125))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 25)) (-2272 (((-621 (-1048)) $) NIL)) (-3011 (((-1143) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3896 (($ $ (-400 (-549))) NIL) (($ $ (-400 (-549)) (-400 (-549))) NIL)) (-2212 (((-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) 20)) (-1664 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL (|has| |#1| (-356)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1640 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2826 (($ (-747) (-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) NIL)) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) NIL T CONST)) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-2070 (($ $) 32)) (-2114 (((-3 $ "failed") $) NIL)) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-1420 (((-112) $) NIL (|has| |#1| (-356)))) (-2871 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-400 (-549)) $) NIL) (((-400 (-549)) $ (-400 (-549))) 16)) (-2675 (((-112) $) NIL)) (-4187 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2992 (($ $ (-892)) NIL) (($ $ (-400 (-549))) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-400 (-549))) NIL) (($ $ (-1048) (-400 (-549))) NIL) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3632 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL (|has| |#1| (-356)))) (-3893 (($ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) NIL (-1536 (-12 (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1165)))))) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-356)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2763 (($ $ (-400 (-549))) NIL)) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-3244 (((-400 (-549)) $) 17)) (-1374 (($ (-1211 |#1| |#2| |#3|)) 11)) (-3731 (((-1211 |#1| |#2| |#3|) $) 12)) (-2719 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-3684 (((-747) $) NIL (|has| |#1| (-356)))) (-3341 ((|#1| $ (-400 (-549))) NIL) (($ $ $) NIL (|has| (-400 (-549)) (-1079)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-3701 (((-400 (-549)) $) NIL)) (-1698 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) 10)) (-3846 (((-834) $) 38) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541)))) (-2152 ((|#1| $ (-400 (-549))) 30)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-2597 ((|#1| $) NIL)) (-1733 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1710 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-400 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 27)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 33)) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-312 |#1| |#2| |#3|) (-13 (-1207 |#1|) (-768) (-10 -8 (-15 -1374 ($ (-1211 |#1| |#2| |#3|))) (-15 -3731 ((-1211 |#1| |#2| |#3|) $)) (-15 -3244 ((-400 (-549)) $)))) (-13 (-356) (-823)) (-1143) |#1|) (T -312))
+((-1374 (*1 *1 *2) (-12 (-5 *2 (-1211 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1143)) (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-1211 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1143)) (-14 *5 *3))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1143)) (-14 *5 *3))))
+(-13 (-1207 |#1|) (-768) (-10 -8 (-15 -1374 ($ (-1211 |#1| |#2| |#3|))) (-15 -3731 ((-1211 |#1| |#2| |#3|) $)) (-15 -3244 ((-400 (-549)) $))))
+((-4187 (((-2 (|:| -3731 (-747)) (|:| -1570 |#1|) (|:| |radicand| (-621 |#1|))) (-411 |#1|) (-747)) 24)) (-3632 (((-621 (-2 (|:| -1570 (-747)) (|:| |logand| |#1|))) (-411 |#1|)) 28)))
+(((-313 |#1|) (-10 -7 (-15 -4187 ((-2 (|:| -3731 (-747)) (|:| -1570 |#1|) (|:| |radicand| (-621 |#1|))) (-411 |#1|) (-747))) (-15 -3632 ((-621 (-2 (|:| -1570 (-747)) (|:| |logand| |#1|))) (-411 |#1|)))) (-541)) (T -313))
+((-3632 (*1 *2 *3) (-12 (-5 *3 (-411 *4)) (-4 *4 (-541)) (-5 *2 (-621 (-2 (|:| -1570 (-747)) (|:| |logand| *4)))) (-5 *1 (-313 *4)))) (-4187 (*1 *2 *3 *4) (-12 (-5 *3 (-411 *5)) (-4 *5 (-541)) (-5 *2 (-2 (|:| -3731 (-747)) (|:| -1570 *5) (|:| |radicand| (-621 *5)))) (-5 *1 (-313 *5)) (-5 *4 (-747)))))
+(-10 -7 (-15 -4187 ((-2 (|:| -3731 (-747)) (|:| -1570 |#1|) (|:| |radicand| (-621 |#1|))) (-411 |#1|) (-747))) (-15 -3632 ((-621 (-2 (|:| -1570 (-747)) (|:| |logand| |#1|))) (-411 |#1|))))
+((-2272 (((-621 |#2|) (-1139 |#4|)) 43)) (-1349 ((|#3| (-549)) 46)) (-1800 (((-1139 |#4|) (-1139 |#3|)) 30)) (-2298 (((-1139 |#4|) (-1139 |#4|) (-549)) 56)) (-1693 (((-1139 |#3|) (-1139 |#4|)) 21)) (-3701 (((-621 (-747)) (-1139 |#4|) (-621 |#2|)) 40)) (-2270 (((-1139 |#3|) (-1139 |#4|) (-621 |#2|) (-621 |#3|)) 35)))
+(((-314 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-1139 |#3|) (-1139 |#4|) (-621 |#2|) (-621 |#3|))) (-15 -3701 ((-621 (-747)) (-1139 |#4|) (-621 |#2|))) (-15 -2272 ((-621 |#2|) (-1139 |#4|))) (-15 -1693 ((-1139 |#3|) (-1139 |#4|))) (-15 -1800 ((-1139 |#4|) (-1139 |#3|))) (-15 -2298 ((-1139 |#4|) (-1139 |#4|) (-549))) (-15 -1349 (|#3| (-549)))) (-769) (-823) (-1018) (-920 |#3| |#1| |#2|)) (T -314))
+((-1349 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1018)) (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-920 *2 *4 *5)))) (-2298 (*1 *2 *2 *3) (-12 (-5 *2 (-1139 *7)) (-5 *3 (-549)) (-4 *7 (-920 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *1 (-314 *4 *5 *6 *7)))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-1139 *6)) (-4 *6 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-1139 *7)) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-1139 *7)) (-4 *7 (-920 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *2 (-1139 *6)) (-5 *1 (-314 *4 *5 *6 *7)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-1139 *7)) (-4 *7 (-920 *6 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *2 (-621 *5)) (-5 *1 (-314 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-1139 *8)) (-5 *4 (-621 *6)) (-4 *6 (-823)) (-4 *8 (-920 *7 *5 *6)) (-4 *5 (-769)) (-4 *7 (-1018)) (-5 *2 (-621 (-747))) (-5 *1 (-314 *5 *6 *7 *8)))) (-2270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1139 *9)) (-5 *4 (-621 *7)) (-5 *5 (-621 *8)) (-4 *7 (-823)) (-4 *8 (-1018)) (-4 *9 (-920 *8 *6 *7)) (-4 *6 (-769)) (-5 *2 (-1139 *8)) (-5 *1 (-314 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2270 ((-1139 |#3|) (-1139 |#4|) (-621 |#2|) (-621 |#3|))) (-15 -3701 ((-621 (-747)) (-1139 |#4|) (-621 |#2|))) (-15 -2272 ((-621 |#2|) (-1139 |#4|))) (-15 -1693 ((-1139 |#3|) (-1139 |#4|))) (-15 -1800 ((-1139 |#4|) (-1139 |#3|))) (-15 -2298 ((-1139 |#4|) (-1139 |#4|) (-549))) (-15 -1349 (|#3| (-549))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 14)) (-2212 (((-621 (-2 (|:| |gen| |#1|) (|:| -2719 (-549)))) $) 18)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3614 (((-747) $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL)) (-2659 ((|#1| $) NIL)) (-1302 ((|#1| $ (-549)) NIL)) (-3472 (((-549) $ (-549)) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-3482 (($ (-1 |#1| |#1|) $) NIL)) (-3904 (($ (-1 (-549) (-549)) $) 10)) (-3851 (((-1125) $) NIL)) (-2958 (($ $ $) NIL (|has| (-549) (-768)))) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (($ |#1|) NIL)) (-2152 (((-549) |#1| $) NIL)) (-3276 (($) 15 T CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) 21 (|has| |#1| (-823)))) (-2500 (($ $) 11) (($ $ $) 20)) (-2486 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL) (($ (-549) |#1|) 19)))
+(((-315 |#1|) (-13 (-21) (-694 (-549)) (-316 |#1| (-549)) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-1067)) (T -315))
+NIL
+(-13 (-21) (-694 (-549)) (-316 |#1| (-549)) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2212 (((-621 (-2 (|:| |gen| |#1|) (|:| -2719 |#2|))) $) 27)) (-2001 (((-3 $ "failed") $ $) 19)) (-3614 (((-747) $) 28)) (-1682 (($) 17 T CONST)) (-2714 (((-3 |#1| "failed") $) 32)) (-2659 ((|#1| $) 31)) (-1302 ((|#1| $ (-549)) 25)) (-3472 ((|#2| $ (-549)) 26)) (-3482 (($ (-1 |#1| |#1|) $) 22)) (-3904 (($ (-1 |#2| |#2|) $) 23)) (-3851 (((-1125) $) 9)) (-2958 (($ $ $) 21 (|has| |#2| (-768)))) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ |#1|) 33)) (-2152 ((|#2| |#1| $) 24)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2486 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ |#2| |#1|) 29)))
+(((-316 |#1| |#2|) (-138) (-1067) (-130)) (T -316))
+((-2486 (*1 *1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-130)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)) (-5 *2 (-747)))) (-2212 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)) (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2719 *4)))))) (-3472 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1067)) (-4 *2 (-130)))) (-1302 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1067)))) (-2152 (*1 *2 *3 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-130)))) (-3904 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)))) (-3482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130)))) (-2958 (*1 *1 *1 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-130)) (-4 *3 (-768)))))
+(-13 (-130) (-1009 |t#1|) (-10 -8 (-15 -2486 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3614 ((-747) $)) (-15 -2212 ((-621 (-2 (|:| |gen| |t#1|) (|:| -2719 |t#2|))) $)) (-15 -3472 (|t#2| $ (-549))) (-15 -1302 (|t#1| $ (-549))) (-15 -2152 (|t#2| |t#1| $)) (-15 -3904 ($ (-1 |t#2| |t#2|) $)) (-15 -3482 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-768)) (-15 -2958 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-1009 |#1|) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2212 (((-621 (-2 (|:| |gen| |#1|) (|:| -2719 (-747)))) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3614 (((-747) $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL)) (-2659 ((|#1| $) NIL)) (-1302 ((|#1| $ (-549)) NIL)) (-3472 (((-747) $ (-549)) NIL)) (-3482 (($ (-1 |#1| |#1|) $) NIL)) (-3904 (($ (-1 (-747) (-747)) $) NIL)) (-3851 (((-1125) $) NIL)) (-2958 (($ $ $) NIL (|has| (-747) (-768)))) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (($ |#1|) NIL)) (-2152 (((-747) |#1| $) NIL)) (-3276 (($) NIL T CONST)) (-2389 (((-112) $ $) NIL)) (-2486 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-747) |#1|) NIL)))
+(((-317 |#1|) (-316 |#1| (-747)) (-1067)) (T -317))
+NIL
+(-316 |#1| (-747))
+((-1285 (($ $) 53)) (-2691 (($ $ |#2| |#3| $) 14)) (-3705 (($ (-1 |#3| |#3|) $) 33)) (-2004 (((-112) $) 24)) (-2016 ((|#2| $) 26)) (-2042 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-2216 ((|#2| $) 49)) (-4141 (((-621 |#2|) $) 36)) (-1509 (($ $ $ (-747)) 20)) (-2513 (($ $ |#2|) 40)))
+(((-318 |#1| |#2| |#3|) (-10 -8 (-15 -1285 (|#1| |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1509 (|#1| |#1| |#1| (-747))) (-15 -2691 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3705 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4141 ((-621 |#2|) |#1|)) (-15 -2016 (|#2| |#1|)) (-15 -2004 ((-112) |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2513 (|#1| |#1| |#2|))) (-319 |#2| |#3|) (-1018) (-768)) (T -318))
+NIL
+(-10 -8 (-15 -1285 (|#1| |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1509 (|#1| |#1| |#1| (-747))) (-15 -2691 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3705 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4141 ((-621 |#2|) |#1|)) (-15 -2016 (|#2| |#1|)) (-15 -2004 ((-112) |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2513 (|#1| |#1| |#2|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2258 (($ $) 50 (|has| |#1| (-541)))) (-2799 (((-112) $) 52 (|has| |#1| (-541)))) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2714 (((-3 (-549) "failed") $) 88 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 86 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 85)) (-2659 (((-549) $) 89 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 87 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 84)) (-2070 (($ $) 58)) (-2114 (((-3 $ "failed") $) 32)) (-1285 (($ $) 73 (|has| |#1| (-444)))) (-2691 (($ $ |#1| |#2| $) 77)) (-2675 (((-112) $) 30)) (-3347 (((-747) $) 80)) (-2205 (((-112) $) 60)) (-2246 (($ |#1| |#2|) 59)) (-3611 ((|#2| $) 79)) (-3705 (($ (-1 |#2| |#2|) $) 78)) (-2797 (($ (-1 |#1| |#1|) $) 61)) (-2028 (($ $) 63)) (-2043 ((|#1| $) 64)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2004 (((-112) $) 83)) (-2016 ((|#1| $) 82)) (-2042 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-541)))) (-3701 ((|#2| $) 62)) (-2216 ((|#1| $) 74 (|has| |#1| (-444)))) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 47 (|has| |#1| (-541))) (($ |#1|) 45) (($ (-400 (-549))) 55 (-1536 (|has| |#1| (-1009 (-400 (-549)))) (|has| |#1| (-38 (-400 (-549))))))) (-4141 (((-621 |#1|) $) 81)) (-2152 ((|#1| $ |#2|) 57)) (-2210 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2082 (((-747)) 28)) (-1509 (($ $ $ (-747)) 76 (|has| |#1| (-170)))) (-1498 (((-112) $ $) 51 (|has| |#1| (-541)))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+(((-319 |#1| |#2|) (-138) (-1018) (-768)) (T -319))
+((-2004 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-112)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-621 *3)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-747)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-3705 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) (-2691 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))) (-1509 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *3 (-170)))) (-2042 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-541)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)) (-4 *2 (-444)))) (-1285 (*1 *1 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *2 (-444)))))
+(-13 (-47 |t#1| |t#2|) (-404 |t#1|) (-10 -8 (-15 -2004 ((-112) $)) (-15 -2016 (|t#1| $)) (-15 -4141 ((-621 |t#1|) $)) (-15 -3347 ((-747) $)) (-15 -3611 (|t#2| $)) (-15 -3705 ($ (-1 |t#2| |t#2|) $)) (-15 -2691 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -1509 ($ $ $ (-747))) |%noBranch|) (IF (|has| |t#1| (-541)) (-15 -2042 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -2216 (|t#1| $)) (-15 -1285 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-283) |has| |#1| (-541)) ((-404 |#1|) . T) ((-541) |has| |#1| (-541)) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) . T) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4311 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4338))) (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1584 (((-112) $ (-747)) NIL)) (-2927 (((-112) (-112)) NIL)) (-2254 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) NIL (|has| $ (-6 -4338)))) (-1717 (($ (-1 (-112) |#1|) $) NIL)) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3745 (($ $) NIL (|has| |#1| (-1067)))) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2129 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) NIL)) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) NIL)) (-2883 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1067))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1067)))) (-1337 (($ $ (-549)) NIL)) (-2399 (((-747) $) NIL)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3743 (($ (-747) |#1|) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-1303 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3890 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-2751 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2616 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-2208 (($ (-621 |#1|)) NIL)) (-3646 ((|#1| $) NIL (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1642 (($ $ |#1|) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-3531 (($ $ (-1193 (-549))) NIL) (($ $ (-549)) NIL)) (-2167 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) NIL)) (-3196 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1952 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-320 |#1|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2208 ($ (-621 |#1|))) (-15 -2399 ((-747) $)) (-15 -1337 ($ $ (-549))) (-15 -2927 ((-112) (-112))))) (-1180)) (T -320))
+((-2208 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-320 *3)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-320 *3)) (-4 *3 (-1180)))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-320 *3)) (-4 *3 (-1180)))) (-2927 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1180)))))
+(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2208 ($ (-621 |#1|))) (-15 -2399 ((-747) $)) (-15 -1337 ($ $ (-549))) (-15 -2927 ((-112) (-112)))))
+((-2044 (((-112) $) 42)) (-3214 (((-747)) 22)) (-2906 ((|#2| $) 46) (($ $ (-892)) 101)) (-3614 (((-747)) 102)) (-3492 (($ (-1226 |#2|)) 20)) (-4091 (((-112) $) 115)) (-3630 ((|#2| $) 48) (($ $ (-892)) 99)) (-3788 (((-1139 |#2|) $) NIL) (((-1139 $) $ (-892)) 95)) (-3318 (((-1139 |#2|) $) 82)) (-1983 (((-1139 |#2|) $) 79) (((-3 (-1139 |#2|) "failed") $ $) 76)) (-3719 (($ $ (-1139 |#2|)) 53)) (-3049 (((-809 (-892))) 28) (((-892)) 43)) (-2985 (((-133)) 25)) (-3701 (((-809 (-892)) $) 30) (((-892) $) 117)) (-1544 (($) 108)) (-4263 (((-1226 |#2|) $) NIL) (((-665 |#2|) (-1226 $)) 39)) (-2210 (($ $) NIL) (((-3 $ "failed") $) 85)) (-1606 (((-112) $) 41)))
+(((-321 |#1| |#2|) (-10 -8 (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -3614 ((-747))) (-15 -2210 (|#1| |#1|)) (-15 -1983 ((-3 (-1139 |#2|) "failed") |#1| |#1|)) (-15 -1983 ((-1139 |#2|) |#1|)) (-15 -3318 ((-1139 |#2|) |#1|)) (-15 -3719 (|#1| |#1| (-1139 |#2|))) (-15 -4091 ((-112) |#1|)) (-15 -1544 (|#1|)) (-15 -2906 (|#1| |#1| (-892))) (-15 -3630 (|#1| |#1| (-892))) (-15 -3788 ((-1139 |#1|) |#1| (-892))) (-15 -2906 (|#2| |#1|)) (-15 -3630 (|#2| |#1|)) (-15 -3701 ((-892) |#1|)) (-15 -3049 ((-892))) (-15 -3788 ((-1139 |#2|) |#1|)) (-15 -3492 (|#1| (-1226 |#2|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1|)) (-15 -3214 ((-747))) (-15 -3049 ((-809 (-892)))) (-15 -3701 ((-809 (-892)) |#1|)) (-15 -2044 ((-112) |#1|)) (-15 -1606 ((-112) |#1|)) (-15 -2985 ((-133)))) (-322 |#2|) (-356)) (T -321))
+((-2985 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3049 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-809 (-892))) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3214 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3049 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-892)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3614 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))))
+(-10 -8 (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -3614 ((-747))) (-15 -2210 (|#1| |#1|)) (-15 -1983 ((-3 (-1139 |#2|) "failed") |#1| |#1|)) (-15 -1983 ((-1139 |#2|) |#1|)) (-15 -3318 ((-1139 |#2|) |#1|)) (-15 -3719 (|#1| |#1| (-1139 |#2|))) (-15 -4091 ((-112) |#1|)) (-15 -1544 (|#1|)) (-15 -2906 (|#1| |#1| (-892))) (-15 -3630 (|#1| |#1| (-892))) (-15 -3788 ((-1139 |#1|) |#1| (-892))) (-15 -2906 (|#2| |#1|)) (-15 -3630 (|#2| |#1|)) (-15 -3701 ((-892) |#1|)) (-15 -3049 ((-892))) (-15 -3788 ((-1139 |#2|) |#1|)) (-15 -3492 (|#1| (-1226 |#2|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1|)) (-15 -3214 ((-747))) (-15 -3049 ((-809 (-892)))) (-15 -3701 ((-809 (-892)) |#1|)) (-15 -2044 ((-112) |#1|)) (-15 -1606 ((-112) |#1|)) (-15 -2985 ((-133))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2044 (((-112) $) 91)) (-3214 (((-747)) 87)) (-2906 ((|#1| $) 137) (($ $ (-892)) 134 (|has| |#1| (-361)))) (-3062 (((-1153 (-892) (-747)) (-549)) 119 (|has| |#1| (-361)))) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 70)) (-2402 (((-411 $) $) 69)) (-3866 (((-112) $ $) 57)) (-3614 (((-747)) 109 (|has| |#1| (-361)))) (-1682 (($) 17 T CONST)) (-2714 (((-3 |#1| "failed") $) 98)) (-2659 ((|#1| $) 97)) (-3492 (($ (-1226 |#1|)) 143)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-361)))) (-2095 (($ $ $) 53)) (-2114 (((-3 $ "failed") $) 32)) (-3239 (($) 106 (|has| |#1| (-361)))) (-2067 (($ $ $) 54)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-2405 (($) 121 (|has| |#1| (-361)))) (-2288 (((-112) $) 122 (|has| |#1| (-361)))) (-3165 (($ $ (-747)) 84 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1420 (((-112) $) 68)) (-2088 (((-892) $) 124 (|has| |#1| (-361))) (((-809 (-892)) $) 81 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2675 (((-112) $) 30)) (-1973 (($) 132 (|has| |#1| (-361)))) (-4091 (((-112) $) 131 (|has| |#1| (-361)))) (-3630 ((|#1| $) 138) (($ $ (-892)) 135 (|has| |#1| (-361)))) (-1681 (((-3 $ "failed") $) 110 (|has| |#1| (-361)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-3788 (((-1139 |#1|) $) 142) (((-1139 $) $ (-892)) 136 (|has| |#1| (-361)))) (-1881 (((-892) $) 107 (|has| |#1| (-361)))) (-3318 (((-1139 |#1|) $) 128 (|has| |#1| (-361)))) (-1983 (((-1139 |#1|) $) 127 (|has| |#1| (-361))) (((-3 (-1139 |#1|) "failed") $ $) 126 (|has| |#1| (-361)))) (-3719 (($ $ (-1139 |#1|)) 129 (|has| |#1| (-361)))) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 67)) (-3060 (($) 111 (|has| |#1| (-361)) CONST)) (-3493 (($ (-892)) 108 (|has| |#1| (-361)))) (-3980 (((-112) $) 90)) (-3990 (((-1087) $) 10)) (-4248 (($) 130 (|has| |#1| (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) 118 (|has| |#1| (-361)))) (-2121 (((-411 $) $) 71)) (-3049 (((-809 (-892))) 88) (((-892)) 140)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3684 (((-747) $) 56)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55)) (-3914 (((-747) $) 123 (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) 82 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2985 (((-133)) 96)) (-3456 (($ $) 115 (|has| |#1| (-361))) (($ $ (-747)) 113 (|has| |#1| (-361)))) (-3701 (((-809 (-892)) $) 89) (((-892) $) 139)) (-2815 (((-1139 |#1|)) 141)) (-3170 (($) 120 (|has| |#1| (-361)))) (-1544 (($) 133 (|has| |#1| (-361)))) (-4263 (((-1226 |#1|) $) 145) (((-665 |#1|) (-1226 $)) 144)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 117 (|has| |#1| (-361)))) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63) (($ |#1|) 99)) (-2210 (($ $) 116 (|has| |#1| (-361))) (((-3 $ "failed") $) 80 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2082 (((-747)) 28)) (-1949 (((-1226 $)) 147) (((-1226 $) (-892)) 146)) (-1498 (((-112) $ $) 37)) (-1606 (((-112) $) 92)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1933 (($ $) 86 (|has| |#1| (-361))) (($ $ (-747)) 85 (|has| |#1| (-361)))) (-1702 (($ $) 114 (|has| |#1| (-361))) (($ $ (-747)) 112 (|has| |#1| (-361)))) (-2389 (((-112) $ $) 6)) (-2513 (($ $ $) 62) (($ $ |#1|) 95)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
+(((-322 |#1|) (-138) (-356)) (T -322))
+((-1949 (*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1226 *1)) (-4 *1 (-322 *3)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-892)) (-4 *4 (-356)) (-5 *2 (-1226 *1)) (-4 *1 (-322 *4)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1226 *3)))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4)))) (-3492 (*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1139 *3)))) (-2815 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1139 *3)))) (-3049 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-892)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-892)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-3788 (*1 *2 *1 *3) (-12 (-5 *3 (-892)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1139 *1)) (-4 *1 (-322 *4)))) (-3630 (*1 *1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-2906 (*1 *1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-1544 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-1973 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) (-4248 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-1139 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) (-4 *3 (-356)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1139 *3)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1139 *3)))) (-1983 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1139 *3)))))
+(-13 (-1245 |t#1|) (-1009 |t#1|) (-10 -8 (-15 -1949 ((-1226 $))) (-15 -1949 ((-1226 $) (-892))) (-15 -4263 ((-1226 |t#1|) $)) (-15 -4263 ((-665 |t#1|) (-1226 $))) (-15 -3492 ($ (-1226 |t#1|))) (-15 -3788 ((-1139 |t#1|) $)) (-15 -2815 ((-1139 |t#1|))) (-15 -3049 ((-892))) (-15 -3701 ((-892) $)) (-15 -3630 (|t#1| $)) (-15 -2906 (|t#1| $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-342)) (-15 -3788 ((-1139 $) $ (-892))) (-15 -3630 ($ $ (-892))) (-15 -2906 ($ $ (-892))) (-15 -1544 ($)) (-15 -1973 ($)) (-15 -4091 ((-112) $)) (-15 -4248 ($)) (-15 -3719 ($ $ (-1139 |t#1|))) (-15 -3318 ((-1139 |t#1|) $)) (-15 -1983 ((-1139 |t#1|) $)) (-15 -1983 ((-3 (-1139 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1536 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) . T) ((-227) |has| |#1| (-361)) ((-237) . T) ((-283) . T) ((-300) . T) ((-1245 |#1|) . T) ((-356) . T) ((-395) -1536 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-361) |has| |#1| (-361)) ((-342) |has| |#1| (-361)) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 |#1|) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1009 |#1|) . T) ((-1024 #0#) . T) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1118) |has| |#1| (-361)) ((-1184) . T) ((-1233 |#1|) . T))
+((-3834 (((-112) $ $) NIL)) (-2186 (($ (-1142) $) 88)) (-4150 (($) 77)) (-3295 (((-1087) (-1087)) 11)) (-2536 (($) 78)) (-3029 (($) 90) (($ (-309 (-675))) 98) (($ (-309 (-677))) 94) (($ (-309 (-670))) 102) (($ (-309 (-372))) 109) (($ (-309 (-549))) 105) (($ (-309 (-167 (-372)))) 113)) (-2795 (($ (-1142) $) 89)) (-3987 (($ (-621 (-834))) 79)) (-1268 (((-1231) $) 75)) (-3379 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3145 (($ (-1087)) 51)) (-2889 (((-1071) $) 25)) (-2718 (($ (-1059 (-923 (-549))) $) 85) (($ (-1059 (-923 (-549))) (-923 (-549)) $) 86)) (-2329 (($ (-1087)) 87)) (-4109 (($ (-1142) $) 115) (($ (-1142) $ $) 116)) (-3556 (($ (-1143) (-621 (-1143))) 76)) (-1264 (($ (-1125)) 82) (($ (-621 (-1125))) 80)) (-3846 (((-834) $) 118)) (-2103 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1143)) (|:| |arrayIndex| (-621 (-923 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2977 (-834)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1143)) (|:| |rand| (-834)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1142)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3670 (-112)) (|:| -4161 (-2 (|:| |ints2Floats?| (-112)) (|:| -2977 (-834)))))) (|:| |blockBranch| (-621 $)) (|:| |commentBranch| (-621 (-1125))) (|:| |callBranch| (-1125)) (|:| |forBranch| (-2 (|:| -1372 (-1059 (-923 (-549)))) (|:| |span| (-923 (-549))) (|:| -2492 $))) (|:| |labelBranch| (-1087)) (|:| |loopBranch| (-2 (|:| |switch| (-1142)) (|:| -2492 $))) (|:| |commonBranch| (-2 (|:| -2481 (-1143)) (|:| |contents| (-621 (-1143))))) (|:| |printBranch| (-621 (-834)))) $) 44)) (-3511 (($ (-1125)) 187)) (-1795 (($ (-621 $)) 114)) (-2712 (($ (-1143) (-1125)) 120) (($ (-1143) (-309 (-677))) 160) (($ (-1143) (-309 (-675))) 161) (($ (-1143) (-309 (-670))) 162) (($ (-1143) (-665 (-677))) 123) (($ (-1143) (-665 (-675))) 126) (($ (-1143) (-665 (-670))) 129) (($ (-1143) (-1226 (-677))) 132) (($ (-1143) (-1226 (-675))) 135) (($ (-1143) (-1226 (-670))) 138) (($ (-1143) (-665 (-309 (-677)))) 141) (($ (-1143) (-665 (-309 (-675)))) 144) (($ (-1143) (-665 (-309 (-670)))) 147) (($ (-1143) (-1226 (-309 (-677)))) 150) (($ (-1143) (-1226 (-309 (-675)))) 153) (($ (-1143) (-1226 (-309 (-670)))) 156) (($ (-1143) (-621 (-923 (-549))) (-309 (-677))) 157) (($ (-1143) (-621 (-923 (-549))) (-309 (-675))) 158) (($ (-1143) (-621 (-923 (-549))) (-309 (-670))) 159) (($ (-1143) (-309 (-549))) 184) (($ (-1143) (-309 (-372))) 185) (($ (-1143) (-309 (-167 (-372)))) 186) (($ (-1143) (-665 (-309 (-549)))) 165) (($ (-1143) (-665 (-309 (-372)))) 168) (($ (-1143) (-665 (-309 (-167 (-372))))) 171) (($ (-1143) (-1226 (-309 (-549)))) 174) (($ (-1143) (-1226 (-309 (-372)))) 177) (($ (-1143) (-1226 (-309 (-167 (-372))))) 180) (($ (-1143) (-621 (-923 (-549))) (-309 (-549))) 181) (($ (-1143) (-621 (-923 (-549))) (-309 (-372))) 182) (($ (-1143) (-621 (-923 (-549))) (-309 (-167 (-372)))) 183)) (-2389 (((-112) $ $) NIL)))
+(((-323) (-13 (-1067) (-10 -8 (-15 -3846 ((-834) $)) (-15 -2718 ($ (-1059 (-923 (-549))) $)) (-15 -2718 ($ (-1059 (-923 (-549))) (-923 (-549)) $)) (-15 -2186 ($ (-1142) $)) (-15 -2795 ($ (-1142) $)) (-15 -3145 ($ (-1087))) (-15 -2329 ($ (-1087))) (-15 -1264 ($ (-1125))) (-15 -1264 ($ (-621 (-1125)))) (-15 -3511 ($ (-1125))) (-15 -3029 ($)) (-15 -3029 ($ (-309 (-675)))) (-15 -3029 ($ (-309 (-677)))) (-15 -3029 ($ (-309 (-670)))) (-15 -3029 ($ (-309 (-372)))) (-15 -3029 ($ (-309 (-549)))) (-15 -3029 ($ (-309 (-167 (-372))))) (-15 -4109 ($ (-1142) $)) (-15 -4109 ($ (-1142) $ $)) (-15 -2712 ($ (-1143) (-1125))) (-15 -2712 ($ (-1143) (-309 (-677)))) (-15 -2712 ($ (-1143) (-309 (-675)))) (-15 -2712 ($ (-1143) (-309 (-670)))) (-15 -2712 ($ (-1143) (-665 (-677)))) (-15 -2712 ($ (-1143) (-665 (-675)))) (-15 -2712 ($ (-1143) (-665 (-670)))) (-15 -2712 ($ (-1143) (-1226 (-677)))) (-15 -2712 ($ (-1143) (-1226 (-675)))) (-15 -2712 ($ (-1143) (-1226 (-670)))) (-15 -2712 ($ (-1143) (-665 (-309 (-677))))) (-15 -2712 ($ (-1143) (-665 (-309 (-675))))) (-15 -2712 ($ (-1143) (-665 (-309 (-670))))) (-15 -2712 ($ (-1143) (-1226 (-309 (-677))))) (-15 -2712 ($ (-1143) (-1226 (-309 (-675))))) (-15 -2712 ($ (-1143) (-1226 (-309 (-670))))) (-15 -2712 ($ (-1143) (-621 (-923 (-549))) (-309 (-677)))) (-15 -2712 ($ (-1143) (-621 (-923 (-549))) (-309 (-675)))) (-15 -2712 ($ (-1143) (-621 (-923 (-549))) (-309 (-670)))) (-15 -2712 ($ (-1143) (-309 (-549)))) (-15 -2712 ($ (-1143) (-309 (-372)))) (-15 -2712 ($ (-1143) (-309 (-167 (-372))))) (-15 -2712 ($ (-1143) (-665 (-309 (-549))))) (-15 -2712 ($ (-1143) (-665 (-309 (-372))))) (-15 -2712 ($ (-1143) (-665 (-309 (-167 (-372)))))) (-15 -2712 ($ (-1143) (-1226 (-309 (-549))))) (-15 -2712 ($ (-1143) (-1226 (-309 (-372))))) (-15 -2712 ($ (-1143) (-1226 (-309 (-167 (-372)))))) (-15 -2712 ($ (-1143) (-621 (-923 (-549))) (-309 (-549)))) (-15 -2712 ($ (-1143) (-621 (-923 (-549))) (-309 (-372)))) (-15 -2712 ($ (-1143) (-621 (-923 (-549))) (-309 (-167 (-372))))) (-15 -1795 ($ (-621 $))) (-15 -4150 ($)) (-15 -2536 ($)) (-15 -3987 ($ (-621 (-834)))) (-15 -3556 ($ (-1143) (-621 (-1143)))) (-15 -3379 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2103 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1143)) (|:| |arrayIndex| (-621 (-923 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2977 (-834)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1143)) (|:| |rand| (-834)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1142)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3670 (-112)) (|:| -4161 (-2 (|:| |ints2Floats?| (-112)) (|:| -2977 (-834)))))) (|:| |blockBranch| (-621 $)) (|:| |commentBranch| (-621 (-1125))) (|:| |callBranch| (-1125)) (|:| |forBranch| (-2 (|:| -1372 (-1059 (-923 (-549)))) (|:| |span| (-923 (-549))) (|:| -2492 $))) (|:| |labelBranch| (-1087)) (|:| |loopBranch| (-2 (|:| |switch| (-1142)) (|:| -2492 $))) (|:| |commonBranch| (-2 (|:| -2481 (-1143)) (|:| |contents| (-621 (-1143))))) (|:| |printBranch| (-621 (-834)))) $)) (-15 -1268 ((-1231) $)) (-15 -2889 ((-1071) $)) (-15 -3295 ((-1087) (-1087)))))) (T -323))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-323)))) (-2718 (*1 *1 *2 *1) (-12 (-5 *2 (-1059 (-923 (-549)))) (-5 *1 (-323)))) (-2718 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1059 (-923 (-549)))) (-5 *3 (-923 (-549))) (-5 *1 (-323)))) (-2186 (*1 *1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-323)))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-323)))) (-3145 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-323)))) (-2329 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-323)))) (-1264 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-323)))) (-1264 (*1 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-323)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-323)))) (-3029 (*1 *1) (-5 *1 (-323))) (-3029 (*1 *1 *2) (-12 (-5 *2 (-309 (-675))) (-5 *1 (-323)))) (-3029 (*1 *1 *2) (-12 (-5 *2 (-309 (-677))) (-5 *1 (-323)))) (-3029 (*1 *1 *2) (-12 (-5 *2 (-309 (-670))) (-5 *1 (-323)))) (-3029 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-323)))) (-3029 (*1 *1 *2) (-12 (-5 *2 (-309 (-549))) (-5 *1 (-323)))) (-3029 (*1 *1 *2) (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-323)))) (-4109 (*1 *1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-323)))) (-4109 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1125)) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-309 (-677))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-309 (-675))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-309 (-670))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-677))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-675))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-670))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-677))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-675))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-670))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-309 (-677)))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-309 (-675)))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-309 (-670)))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-309 (-677)))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-309 (-675)))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-309 (-670)))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-309 (-677))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-309 (-675))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-309 (-670))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-309 (-549))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-309 (-372))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-309 (-167 (-372)))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-309 (-549)))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-309 (-372)))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-309 (-167 (-372))))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-309 (-549)))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-309 (-372)))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-309 (-167 (-372))))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-309 (-549))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-309 (-372))) (-5 *1 (-323)))) (-2712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-309 (-167 (-372)))) (-5 *1 (-323)))) (-1795 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-5 *1 (-323)))) (-4150 (*1 *1) (-5 *1 (-323))) (-2536 (*1 *1) (-5 *1 (-323))) (-3987 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-323)))) (-3556 (*1 *1 *2 *3) (-12 (-5 *3 (-621 (-1143))) (-5 *2 (-1143)) (-5 *1 (-323)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-323)))) (-2103 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1143)) (|:| |arrayIndex| (-621 (-923 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2977 (-834)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1143)) (|:| |rand| (-834)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1142)) (|:| |thenClause| (-323)) (|:| |elseClause| (-323)))) (|:| |returnBranch| (-2 (|:| -3670 (-112)) (|:| -4161 (-2 (|:| |ints2Floats?| (-112)) (|:| -2977 (-834)))))) (|:| |blockBranch| (-621 (-323))) (|:| |commentBranch| (-621 (-1125))) (|:| |callBranch| (-1125)) (|:| |forBranch| (-2 (|:| -1372 (-1059 (-923 (-549)))) (|:| |span| (-923 (-549))) (|:| -2492 (-323)))) (|:| |labelBranch| (-1087)) (|:| |loopBranch| (-2 (|:| |switch| (-1142)) (|:| -2492 (-323)))) (|:| |commonBranch| (-2 (|:| -2481 (-1143)) (|:| |contents| (-621 (-1143))))) (|:| |printBranch| (-621 (-834))))) (-5 *1 (-323)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-323)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-323)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-323)))))
+(-13 (-1067) (-10 -8 (-15 -3846 ((-834) $)) (-15 -2718 ($ (-1059 (-923 (-549))) $)) (-15 -2718 ($ (-1059 (-923 (-549))) (-923 (-549)) $)) (-15 -2186 ($ (-1142) $)) (-15 -2795 ($ (-1142) $)) (-15 -3145 ($ (-1087))) (-15 -2329 ($ (-1087))) (-15 -1264 ($ (-1125))) (-15 -1264 ($ (-621 (-1125)))) (-15 -3511 ($ (-1125))) (-15 -3029 ($)) (-15 -3029 ($ (-309 (-675)))) (-15 -3029 ($ (-309 (-677)))) (-15 -3029 ($ (-309 (-670)))) (-15 -3029 ($ (-309 (-372)))) (-15 -3029 ($ (-309 (-549)))) (-15 -3029 ($ (-309 (-167 (-372))))) (-15 -4109 ($ (-1142) $)) (-15 -4109 ($ (-1142) $ $)) (-15 -2712 ($ (-1143) (-1125))) (-15 -2712 ($ (-1143) (-309 (-677)))) (-15 -2712 ($ (-1143) (-309 (-675)))) (-15 -2712 ($ (-1143) (-309 (-670)))) (-15 -2712 ($ (-1143) (-665 (-677)))) (-15 -2712 ($ (-1143) (-665 (-675)))) (-15 -2712 ($ (-1143) (-665 (-670)))) (-15 -2712 ($ (-1143) (-1226 (-677)))) (-15 -2712 ($ (-1143) (-1226 (-675)))) (-15 -2712 ($ (-1143) (-1226 (-670)))) (-15 -2712 ($ (-1143) (-665 (-309 (-677))))) (-15 -2712 ($ (-1143) (-665 (-309 (-675))))) (-15 -2712 ($ (-1143) (-665 (-309 (-670))))) (-15 -2712 ($ (-1143) (-1226 (-309 (-677))))) (-15 -2712 ($ (-1143) (-1226 (-309 (-675))))) (-15 -2712 ($ (-1143) (-1226 (-309 (-670))))) (-15 -2712 ($ (-1143) (-621 (-923 (-549))) (-309 (-677)))) (-15 -2712 ($ (-1143) (-621 (-923 (-549))) (-309 (-675)))) (-15 -2712 ($ (-1143) (-621 (-923 (-549))) (-309 (-670)))) (-15 -2712 ($ (-1143) (-309 (-549)))) (-15 -2712 ($ (-1143) (-309 (-372)))) (-15 -2712 ($ (-1143) (-309 (-167 (-372))))) (-15 -2712 ($ (-1143) (-665 (-309 (-549))))) (-15 -2712 ($ (-1143) (-665 (-309 (-372))))) (-15 -2712 ($ (-1143) (-665 (-309 (-167 (-372)))))) (-15 -2712 ($ (-1143) (-1226 (-309 (-549))))) (-15 -2712 ($ (-1143) (-1226 (-309 (-372))))) (-15 -2712 ($ (-1143) (-1226 (-309 (-167 (-372)))))) (-15 -2712 ($ (-1143) (-621 (-923 (-549))) (-309 (-549)))) (-15 -2712 ($ (-1143) (-621 (-923 (-549))) (-309 (-372)))) (-15 -2712 ($ (-1143) (-621 (-923 (-549))) (-309 (-167 (-372))))) (-15 -1795 ($ (-621 $))) (-15 -4150 ($)) (-15 -2536 ($)) (-15 -3987 ($ (-621 (-834)))) (-15 -3556 ($ (-1143) (-621 (-1143)))) (-15 -3379 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2103 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1143)) (|:| |arrayIndex| (-621 (-923 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2977 (-834)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1143)) (|:| |rand| (-834)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1142)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3670 (-112)) (|:| -4161 (-2 (|:| |ints2Floats?| (-112)) (|:| -2977 (-834)))))) (|:| |blockBranch| (-621 $)) (|:| |commentBranch| (-621 (-1125))) (|:| |callBranch| (-1125)) (|:| |forBranch| (-2 (|:| -1372 (-1059 (-923 (-549)))) (|:| |span| (-923 (-549))) (|:| -2492 $))) (|:| |labelBranch| (-1087)) (|:| |loopBranch| (-2 (|:| |switch| (-1142)) (|:| -2492 $))) (|:| |commonBranch| (-2 (|:| -2481 (-1143)) (|:| |contents| (-621 (-1143))))) (|:| |printBranch| (-621 (-834)))) $)) (-15 -1268 ((-1231) $)) (-15 -2889 ((-1071) $)) (-15 -3295 ((-1087) (-1087)))))
+((-3834 (((-112) $ $) NIL)) (-4238 (((-112) $) 11)) (-1486 (($ |#1|) 8)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-1501 (($ |#1|) 9)) (-3846 (((-834) $) 17)) (-1572 ((|#1| $) 12)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 19)))
+(((-324 |#1|) (-13 (-823) (-10 -8 (-15 -1486 ($ |#1|)) (-15 -1501 ($ |#1|)) (-15 -4238 ((-112) $)) (-15 -1572 (|#1| $)))) (-823)) (T -324))
+((-1486 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))) (-1501 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-823)))) (-1572 (*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823)))))
+(-13 (-823) (-10 -8 (-15 -1486 ($ |#1|)) (-15 -1501 ($ |#1|)) (-15 -4238 ((-112) $)) (-15 -1572 (|#1| $))))
+((-2165 (((-323) (-1143) (-923 (-549))) 23)) (-1261 (((-323) (-1143) (-923 (-549))) 27)) (-3985 (((-323) (-1143) (-1059 (-923 (-549))) (-1059 (-923 (-549)))) 26) (((-323) (-1143) (-923 (-549)) (-923 (-549))) 24)) (-3640 (((-323) (-1143) (-923 (-549))) 31)))
+(((-325) (-10 -7 (-15 -2165 ((-323) (-1143) (-923 (-549)))) (-15 -3985 ((-323) (-1143) (-923 (-549)) (-923 (-549)))) (-15 -3985 ((-323) (-1143) (-1059 (-923 (-549))) (-1059 (-923 (-549))))) (-15 -1261 ((-323) (-1143) (-923 (-549)))) (-15 -3640 ((-323) (-1143) (-923 (-549)))))) (T -325))
+((-3640 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-923 (-549))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1261 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-923 (-549))) (-5 *2 (-323)) (-5 *1 (-325)))) (-3985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-1059 (-923 (-549)))) (-5 *2 (-323)) (-5 *1 (-325)))) (-3985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-923 (-549))) (-5 *2 (-323)) (-5 *1 (-325)))) (-2165 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-923 (-549))) (-5 *2 (-323)) (-5 *1 (-325)))))
+(-10 -7 (-15 -2165 ((-323) (-1143) (-923 (-549)))) (-15 -3985 ((-323) (-1143) (-923 (-549)) (-923 (-549)))) (-15 -3985 ((-323) (-1143) (-1059 (-923 (-549))) (-1059 (-923 (-549))))) (-15 -1261 ((-323) (-1143) (-923 (-549)))) (-15 -3640 ((-323) (-1143) (-923 (-549)))))
+((-2797 (((-329 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-329 |#1| |#2| |#3| |#4|)) 33)))
+(((-326 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2797 ((-329 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-329 |#1| |#2| |#3| |#4|)))) (-356) (-1202 |#1|) (-1202 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-356) (-1202 |#5|) (-1202 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -326))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-329 *5 *6 *7 *8)) (-4 *5 (-356)) (-4 *6 (-1202 *5)) (-4 *7 (-1202 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *9 (-356)) (-4 *10 (-1202 *9)) (-4 *11 (-1202 (-400 *10))) (-5 *2 (-329 *9 *10 *11 *12)) (-5 *1 (-326 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-335 *9 *10 *11)))))
+(-10 -7 (-15 -2797 ((-329 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-329 |#1| |#2| |#3| |#4|))))
+((-1607 (((-112) $) 14)))
+(((-327 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1607 ((-112) |#1|))) (-328 |#2| |#3| |#4| |#5|) (-356) (-1202 |#2|) (-1202 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -327))
+NIL
+(-10 -8 (-15 -1607 ((-112) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2557 (($ $) 26)) (-1607 (((-112) $) 25)) (-3851 (((-1125) $) 9)) (-3818 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 32)) (-3990 (((-1087) $) 10)) (-4248 (((-3 |#4| "failed") $) 24)) (-3533 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-549)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1655 (((-2 (|:| -3715 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3846 (((-834) $) 11)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20)))
+(((-328 |#1| |#2| |#3| |#4|) (-138) (-356) (-1202 |t#1|) (-1202 (-400 |t#2|)) (-335 |t#1| |t#2| |t#3|)) (T -328))
+((-3818 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-406 *4 (-400 *4) *5 *6)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) (-4 *1 (-328 *3 *4 *5 *6)))) (-3533 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-4 *1 (-328 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) (-3533 (*1 *1 *2 *2) (-12 (-4 *2 (-356)) (-4 *3 (-1202 *2)) (-4 *4 (-1202 (-400 *3))) (-4 *1 (-328 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) (-3533 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-549)) (-4 *2 (-356)) (-4 *4 (-1202 *2)) (-4 *5 (-1202 (-400 *4))) (-4 *1 (-328 *2 *4 *5 *6)) (-4 *6 (-335 *2 *4 *5)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-2 (|:| -3715 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) (-2557 (*1 *1 *1) (-12 (-4 *1 (-328 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1202 *2)) (-4 *4 (-1202 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (|partial| -12 (-4 *1 (-328 *3 *4 *5 *2)) (-4 *3 (-356)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-4 *2 (-335 *3 *4 *5)))) (-3533 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-356)) (-4 *3 (-1202 *4)) (-4 *5 (-1202 (-400 *3))) (-4 *1 (-328 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -3818 ((-406 |t#2| (-400 |t#2|) |t#3| |t#4|) $)) (-15 -3533 ($ (-406 |t#2| (-400 |t#2|) |t#3| |t#4|))) (-15 -3533 ($ |t#4|)) (-15 -3533 ($ |t#1| |t#1|)) (-15 -3533 ($ |t#1| |t#1| (-549))) (-15 -1655 ((-2 (|:| -3715 (-406 |t#2| (-400 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2557 ($ $)) (-15 -1607 ((-112) $)) (-15 -4248 ((-3 |t#4| "failed") $)) (-15 -3533 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2557 (($ $) 33)) (-1607 (((-112) $) NIL)) (-3851 (((-1125) $) NIL)) (-2987 (((-1226 |#4|) $) 125)) (-3818 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 31)) (-3990 (((-1087) $) NIL)) (-4248 (((-3 |#4| "failed") $) 36)) (-3283 (((-1226 |#4|) $) 118)) (-3533 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-549)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1655 (((-2 (|:| -3715 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3846 (((-834) $) 17)) (-3276 (($) 14 T CONST)) (-2389 (((-112) $ $) 20)) (-2500 (($ $) 27) (($ $ $) NIL)) (-2486 (($ $ $) 25)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 23)))
+(((-329 |#1| |#2| |#3| |#4|) (-13 (-328 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3283 ((-1226 |#4|) $)) (-15 -2987 ((-1226 |#4|) $)))) (-356) (-1202 |#1|) (-1202 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -329))
+((-3283 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-1226 *6)) (-5 *1 (-329 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))) (-2987 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-1226 *6)) (-5 *1 (-329 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))))
+(-13 (-328 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3283 ((-1226 |#4|) $)) (-15 -2987 ((-1226 |#4|) $))))
+((-2686 (($ $ (-1143) |#2|) NIL) (($ $ (-621 (-1143)) (-621 |#2|)) 20) (($ $ (-621 (-287 |#2|))) 15) (($ $ (-287 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-621 |#2|) (-621 |#2|)) NIL)) (-3341 (($ $ |#2|) 11)))
+(((-330 |#1| |#2|) (-10 -8 (-15 -3341 (|#1| |#1| |#2|)) (-15 -2686 (|#1| |#1| (-621 |#2|) (-621 |#2|))) (-15 -2686 (|#1| |#1| |#2| |#2|)) (-15 -2686 (|#1| |#1| (-287 |#2|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#2|)))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 |#2|))) (-15 -2686 (|#1| |#1| (-1143) |#2|))) (-331 |#2|) (-1067)) (T -330))
+NIL
+(-10 -8 (-15 -3341 (|#1| |#1| |#2|)) (-15 -2686 (|#1| |#1| (-621 |#2|) (-621 |#2|))) (-15 -2686 (|#1| |#1| |#2| |#2|)) (-15 -2686 (|#1| |#1| (-287 |#2|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#2|)))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 |#2|))) (-15 -2686 (|#1| |#1| (-1143) |#2|)))
+((-2797 (($ (-1 |#1| |#1|) $) 6)) (-2686 (($ $ (-1143) |#1|) 17 (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-621 (-1143)) (-621 |#1|)) 16 (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-621 (-287 |#1|))) 15 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 14 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-302 |#1|))) (($ $ (-621 |#1|) (-621 |#1|)) 12 (|has| |#1| (-302 |#1|)))) (-3341 (($ $ |#1|) 11 (|has| |#1| (-279 |#1| |#1|)))))
+(((-331 |#1|) (-138) (-1067)) (T -331))
+((-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1067)))))
+(-13 (-10 -8 (-15 -2797 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-279 |t#1| |t#1|)) (-6 (-279 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-505 (-1143) |t#1|)) (-6 (-505 (-1143) |t#1|)) |%noBranch|)))
+(((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-505 (-1143) |#1|) |has| |#1| (-505 (-1143) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2272 (((-621 (-1143)) $) NIL)) (-2107 (((-112)) 91) (((-112) (-112)) 92)) (-1981 (((-621 (-592 $)) $) NIL)) (-1664 (($ $) NIL)) (-1512 (($ $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3015 (($ $ (-287 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL)) (-2134 (($ $) NIL)) (-1640 (($ $) NIL)) (-1486 (($ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-592 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-309 |#3|)) 71) (((-3 $ "failed") (-1143)) 97) (((-3 $ "failed") (-309 (-549))) 59 (|has| |#3| (-1009 (-549)))) (((-3 $ "failed") (-400 (-923 (-549)))) 65 (|has| |#3| (-1009 (-549)))) (((-3 $ "failed") (-923 (-549))) 60 (|has| |#3| (-1009 (-549)))) (((-3 $ "failed") (-309 (-372))) 89 (|has| |#3| (-1009 (-372)))) (((-3 $ "failed") (-400 (-923 (-372)))) 83 (|has| |#3| (-1009 (-372)))) (((-3 $ "failed") (-923 (-372))) 78 (|has| |#3| (-1009 (-372))))) (-2659 (((-592 $) $) NIL) ((|#3| $) NIL) (($ (-309 |#3|)) 72) (($ (-1143)) 98) (($ (-309 (-549))) 61 (|has| |#3| (-1009 (-549)))) (($ (-400 (-923 (-549)))) 66 (|has| |#3| (-1009 (-549)))) (($ (-923 (-549))) 62 (|has| |#3| (-1009 (-549)))) (($ (-309 (-372))) 90 (|has| |#3| (-1009 (-372)))) (($ (-400 (-923 (-372)))) 84 (|has| |#3| (-1009 (-372)))) (($ (-923 (-372))) 80 (|has| |#3| (-1009 (-372))))) (-2114 (((-3 $ "failed") $) NIL)) (-1425 (($) 10)) (-3225 (($ $) NIL) (($ (-621 $)) NIL)) (-2162 (((-621 (-114)) $) NIL)) (-2834 (((-114) (-114)) NIL)) (-2675 (((-112) $) NIL)) (-3559 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-1549 (((-1139 $) (-592 $)) NIL (|has| $ (-1018)))) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2797 (($ (-1 $ $) (-592 $)) NIL)) (-2634 (((-3 (-592 $) "failed") $) NIL)) (-2301 (($ $) 94)) (-3632 (($ $) NIL)) (-3851 (((-1125) $) NIL)) (-2071 (((-621 (-592 $)) $) NIL)) (-1476 (($ (-114) $) 93) (($ (-114) (-621 $)) NIL)) (-3421 (((-112) $ (-114)) NIL) (((-112) $ (-1143)) NIL)) (-4036 (((-747) $) NIL)) (-3990 (((-1087) $) NIL)) (-2979 (((-112) $ $) NIL) (((-112) $ (-1143)) NIL)) (-2719 (($ $) NIL)) (-3450 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-2686 (($ $ (-592 $) $) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-621 (-1143)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-1143)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-1143) (-1 $ (-621 $))) NIL) (($ $ (-1143) (-1 $ $)) NIL) (($ $ (-621 (-114)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-114) (-1 $ (-621 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3341 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-621 $)) NIL)) (-3433 (($ $) NIL) (($ $ $) NIL)) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143)) NIL)) (-2815 (($ $) NIL (|has| $ (-1018)))) (-1651 (($ $) NIL)) (-1501 (($ $) NIL)) (-3846 (((-834) $) NIL) (($ (-592 $)) NIL) (($ |#3|) NIL) (($ (-549)) NIL) (((-309 |#3|) $) 96)) (-2082 (((-747)) NIL)) (-4137 (($ $) NIL) (($ (-621 $)) NIL)) (-4285 (((-112) (-114)) NIL)) (-1587 (($ $) NIL)) (-1564 (($ $) NIL)) (-1576 (($ $) NIL)) (-3212 (($ $) NIL)) (-3276 (($) 95 T CONST)) (-3287 (($) 24 T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143)) NIL)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) NIL)) (-2500 (($ $ $) NIL) (($ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-892)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-549) $) NIL) (($ (-747) $) NIL) (($ (-892) $) NIL)))
+(((-332 |#1| |#2| |#3|) (-13 (-295) (-38 |#3|) (-1009 |#3|) (-871 (-1143)) (-10 -8 (-15 -2659 ($ (-309 |#3|))) (-15 -2714 ((-3 $ "failed") (-309 |#3|))) (-15 -2659 ($ (-1143))) (-15 -2714 ((-3 $ "failed") (-1143))) (-15 -3846 ((-309 |#3|) $)) (IF (|has| |#3| (-1009 (-549))) (PROGN (-15 -2659 ($ (-309 (-549)))) (-15 -2714 ((-3 $ "failed") (-309 (-549)))) (-15 -2659 ($ (-400 (-923 (-549))))) (-15 -2714 ((-3 $ "failed") (-400 (-923 (-549))))) (-15 -2659 ($ (-923 (-549)))) (-15 -2714 ((-3 $ "failed") (-923 (-549))))) |%noBranch|) (IF (|has| |#3| (-1009 (-372))) (PROGN (-15 -2659 ($ (-309 (-372)))) (-15 -2714 ((-3 $ "failed") (-309 (-372)))) (-15 -2659 ($ (-400 (-923 (-372))))) (-15 -2714 ((-3 $ "failed") (-400 (-923 (-372))))) (-15 -2659 ($ (-923 (-372)))) (-15 -2714 ((-3 $ "failed") (-923 (-372))))) |%noBranch|) (-15 -3212 ($ $)) (-15 -2134 ($ $)) (-15 -2719 ($ $)) (-15 -3632 ($ $)) (-15 -2301 ($ $)) (-15 -1486 ($ $)) (-15 -1501 ($ $)) (-15 -1512 ($ $)) (-15 -1564 ($ $)) (-15 -1576 ($ $)) (-15 -1587 ($ $)) (-15 -1640 ($ $)) (-15 -1651 ($ $)) (-15 -1664 ($ $)) (-15 -1425 ($)) (-15 -2272 ((-621 (-1143)) $)) (-15 -2107 ((-112))) (-15 -2107 ((-112) (-112))))) (-621 (-1143)) (-621 (-1143)) (-380)) (T -332))
+((-2659 (*1 *1 *2) (-12 (-5 *2 (-309 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 *2)) (-14 *4 (-621 *2)) (-4 *5 (-380)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 *2)) (-14 *4 (-621 *2)) (-4 *5 (-380)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-309 *5)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-309 (-549))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-549))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-549)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-923 (-549)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-923 (-549))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-549))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-372)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-923 (-372)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-923 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-372))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-3212 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-2134 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-2719 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-3632 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-2301 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-1486 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-1501 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-1512 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-1564 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-1576 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-1587 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-1640 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-1651 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-1664 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-1425 (*1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143))) (-14 *3 (-621 (-1143))) (-4 *4 (-380)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-380)))) (-2107 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380)))))
+(-13 (-295) (-38 |#3|) (-1009 |#3|) (-871 (-1143)) (-10 -8 (-15 -2659 ($ (-309 |#3|))) (-15 -2714 ((-3 $ "failed") (-309 |#3|))) (-15 -2659 ($ (-1143))) (-15 -2714 ((-3 $ "failed") (-1143))) (-15 -3846 ((-309 |#3|) $)) (IF (|has| |#3| (-1009 (-549))) (PROGN (-15 -2659 ($ (-309 (-549)))) (-15 -2714 ((-3 $ "failed") (-309 (-549)))) (-15 -2659 ($ (-400 (-923 (-549))))) (-15 -2714 ((-3 $ "failed") (-400 (-923 (-549))))) (-15 -2659 ($ (-923 (-549)))) (-15 -2714 ((-3 $ "failed") (-923 (-549))))) |%noBranch|) (IF (|has| |#3| (-1009 (-372))) (PROGN (-15 -2659 ($ (-309 (-372)))) (-15 -2714 ((-3 $ "failed") (-309 (-372)))) (-15 -2659 ($ (-400 (-923 (-372))))) (-15 -2714 ((-3 $ "failed") (-400 (-923 (-372))))) (-15 -2659 ($ (-923 (-372)))) (-15 -2714 ((-3 $ "failed") (-923 (-372))))) |%noBranch|) (-15 -3212 ($ $)) (-15 -2134 ($ $)) (-15 -2719 ($ $)) (-15 -3632 ($ $)) (-15 -2301 ($ $)) (-15 -1486 ($ $)) (-15 -1501 ($ $)) (-15 -1512 ($ $)) (-15 -1564 ($ $)) (-15 -1576 ($ $)) (-15 -1587 ($ $)) (-15 -1640 ($ $)) (-15 -1651 ($ $)) (-15 -1664 ($ $)) (-15 -1425 ($)) (-15 -2272 ((-621 (-1143)) $)) (-15 -2107 ((-112))) (-15 -2107 ((-112) (-112)))))
+((-2797 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2797 (|#8| (-1 |#5| |#1|) |#4|))) (-1184) (-1202 |#1|) (-1202 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-1184) (-1202 |#5|) (-1202 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -333))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1184)) (-4 *8 (-1184)) (-4 *6 (-1202 *5)) (-4 *7 (-1202 (-400 *6))) (-4 *9 (-1202 *8)) (-4 *2 (-335 *8 *9 *10)) (-5 *1 (-333 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-335 *5 *6 *7)) (-4 *10 (-1202 (-400 *9))))))
+(-10 -7 (-15 -2797 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2724 (((-2 (|:| |num| (-1226 |#3|)) (|:| |den| |#3|)) $) 38)) (-3492 (($ (-1226 (-400 |#3|)) (-1226 $)) NIL) (($ (-1226 (-400 |#3|))) NIL) (($ (-1226 |#3|) |#3|) 161)) (-2263 (((-1226 $) (-1226 $)) 145)) (-3690 (((-621 (-621 |#2|))) 119)) (-3465 (((-112) |#2| |#2|) 73)) (-1285 (($ $) 139)) (-2609 (((-747)) 31)) (-2453 (((-1226 $) (-1226 $)) 198)) (-1672 (((-621 (-923 |#2|)) (-1143)) 110)) (-2128 (((-112) $) 158)) (-3710 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1314 (((-3 |#3| "failed")) 50)) (-2118 (((-747)) 170)) (-3341 ((|#2| $ |#2| |#2|) 132)) (-1969 (((-3 |#3| "failed")) 68)) (-3456 (($ $ (-1 (-400 |#3|) (-400 |#3|)) (-747)) NIL) (($ $ (-1 (-400 |#3|) (-400 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-3339 (((-1226 $) (-1226 $)) 151)) (-2033 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2810 (((-112)) 33)))
+(((-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3690 ((-621 (-621 |#2|)))) (-15 -1672 ((-621 (-923 |#2|)) (-1143))) (-15 -2033 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1314 ((-3 |#3| "failed"))) (-15 -1969 ((-3 |#3| "failed"))) (-15 -3341 (|#2| |#1| |#2| |#2|)) (-15 -1285 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3710 ((-112) |#1| |#3|)) (-15 -3710 ((-112) |#1| |#2|)) (-15 -3492 (|#1| (-1226 |#3|) |#3|)) (-15 -2724 ((-2 (|:| |num| (-1226 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2263 ((-1226 |#1|) (-1226 |#1|))) (-15 -2453 ((-1226 |#1|) (-1226 |#1|))) (-15 -3339 ((-1226 |#1|) (-1226 |#1|))) (-15 -3710 ((-112) |#1|)) (-15 -2128 ((-112) |#1|)) (-15 -3465 ((-112) |#2| |#2|)) (-15 -2810 ((-112))) (-15 -2118 ((-747))) (-15 -2609 ((-747))) (-15 -3456 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -3456 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-747))) (-15 -3492 (|#1| (-1226 (-400 |#3|)))) (-15 -3492 (|#1| (-1226 (-400 |#3|)) (-1226 |#1|)))) (-335 |#2| |#3| |#4|) (-1184) (-1202 |#2|) (-1202 (-400 |#3|))) (T -334))
+((-2609 (*1 *2) (-12 (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5))) (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-2118 (*1 *2) (-12 (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5))) (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-2810 (*1 *2) (-12 (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-3465 (*1 *2 *3 *3) (-12 (-4 *3 (-1184)) (-4 *5 (-1202 *3)) (-4 *6 (-1202 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) (-1969 (*1 *2) (|partial| -12 (-4 *4 (-1184)) (-4 *5 (-1202 (-400 *2))) (-4 *2 (-1202 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1314 (*1 *2) (|partial| -12 (-4 *4 (-1184)) (-4 *5 (-1202 (-400 *2))) (-4 *2 (-1202 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *5 (-1184)) (-4 *6 (-1202 *5)) (-4 *7 (-1202 (-400 *6))) (-5 *2 (-621 (-923 *5))) (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) (-3690 (*1 *2) (-12 (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5))) (-5 *2 (-621 (-621 *4))) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))))
+(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3690 ((-621 (-621 |#2|)))) (-15 -1672 ((-621 (-923 |#2|)) (-1143))) (-15 -2033 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1314 ((-3 |#3| "failed"))) (-15 -1969 ((-3 |#3| "failed"))) (-15 -3341 (|#2| |#1| |#2| |#2|)) (-15 -1285 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3710 ((-112) |#1| |#3|)) (-15 -3710 ((-112) |#1| |#2|)) (-15 -3492 (|#1| (-1226 |#3|) |#3|)) (-15 -2724 ((-2 (|:| |num| (-1226 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2263 ((-1226 |#1|) (-1226 |#1|))) (-15 -2453 ((-1226 |#1|) (-1226 |#1|))) (-15 -3339 ((-1226 |#1|) (-1226 |#1|))) (-15 -3710 ((-112) |#1|)) (-15 -2128 ((-112) |#1|)) (-15 -3465 ((-112) |#2| |#2|)) (-15 -2810 ((-112))) (-15 -2118 ((-747))) (-15 -2609 ((-747))) (-15 -3456 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -3456 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-747))) (-15 -3492 (|#1| (-1226 (-400 |#3|)))) (-15 -3492 (|#1| (-1226 (-400 |#3|)) (-1226 |#1|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2724 (((-2 (|:| |num| (-1226 |#2|)) (|:| |den| |#2|)) $) 193)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 91 (|has| (-400 |#2|) (-356)))) (-2258 (($ $) 92 (|has| (-400 |#2|) (-356)))) (-2799 (((-112) $) 94 (|has| (-400 |#2|) (-356)))) (-1738 (((-665 (-400 |#2|)) (-1226 $)) 44) (((-665 (-400 |#2|))) 59)) (-2906 (((-400 |#2|) $) 50)) (-3062 (((-1153 (-892) (-747)) (-549)) 144 (|has| (-400 |#2|) (-342)))) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 111 (|has| (-400 |#2|) (-356)))) (-2402 (((-411 $) $) 112 (|has| (-400 |#2|) (-356)))) (-3866 (((-112) $ $) 102 (|has| (-400 |#2|) (-356)))) (-3614 (((-747)) 85 (|has| (-400 |#2|) (-361)))) (-1279 (((-112)) 210)) (-1388 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-1682 (($) 17 T CONST)) (-2714 (((-3 (-549) "failed") $) 166 (|has| (-400 |#2|) (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 164 (|has| (-400 |#2|) (-1009 (-400 (-549))))) (((-3 (-400 |#2|) "failed") $) 163)) (-2659 (((-549) $) 167 (|has| (-400 |#2|) (-1009 (-549)))) (((-400 (-549)) $) 165 (|has| (-400 |#2|) (-1009 (-400 (-549))))) (((-400 |#2|) $) 162)) (-3492 (($ (-1226 (-400 |#2|)) (-1226 $)) 46) (($ (-1226 (-400 |#2|))) 62) (($ (-1226 |#2|) |#2|) 192)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-400 |#2|) (-342)))) (-2095 (($ $ $) 106 (|has| (-400 |#2|) (-356)))) (-3506 (((-665 (-400 |#2|)) $ (-1226 $)) 51) (((-665 (-400 |#2|)) $) 57)) (-3879 (((-665 (-549)) (-665 $)) 161 (|has| (-400 |#2|) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 160 (|has| (-400 |#2|) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-400 |#2|))) (|:| |vec| (-1226 (-400 |#2|)))) (-665 $) (-1226 $)) 159) (((-665 (-400 |#2|)) (-665 $)) 158)) (-2263 (((-1226 $) (-1226 $)) 198)) (-2557 (($ |#3|) 155) (((-3 $ "failed") (-400 |#3|)) 152 (|has| (-400 |#2|) (-356)))) (-2114 (((-3 $ "failed") $) 32)) (-3690 (((-621 (-621 |#1|))) 179 (|has| |#1| (-361)))) (-3465 (((-112) |#1| |#1|) 214)) (-3123 (((-892)) 52)) (-3239 (($) 88 (|has| (-400 |#2|) (-361)))) (-3031 (((-112)) 207)) (-2941 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-2067 (($ $ $) 105 (|has| (-400 |#2|) (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 100 (|has| (-400 |#2|) (-356)))) (-1285 (($ $) 185)) (-2405 (($) 146 (|has| (-400 |#2|) (-342)))) (-2288 (((-112) $) 147 (|has| (-400 |#2|) (-342)))) (-3165 (($ $ (-747)) 138 (|has| (-400 |#2|) (-342))) (($ $) 137 (|has| (-400 |#2|) (-342)))) (-1420 (((-112) $) 113 (|has| (-400 |#2|) (-356)))) (-2088 (((-892) $) 149 (|has| (-400 |#2|) (-342))) (((-809 (-892)) $) 135 (|has| (-400 |#2|) (-342)))) (-2675 (((-112) $) 30)) (-2609 (((-747)) 217)) (-2453 (((-1226 $) (-1226 $)) 199)) (-3630 (((-400 |#2|) $) 49)) (-1672 (((-621 (-923 |#1|)) (-1143)) 180 (|has| |#1| (-356)))) (-1681 (((-3 $ "failed") $) 139 (|has| (-400 |#2|) (-342)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 109 (|has| (-400 |#2|) (-356)))) (-3788 ((|#3| $) 42 (|has| (-400 |#2|) (-356)))) (-1881 (((-892) $) 87 (|has| (-400 |#2|) (-361)))) (-2548 ((|#3| $) 153)) (-3697 (($ (-621 $)) 98 (|has| (-400 |#2|) (-356))) (($ $ $) 97 (|has| (-400 |#2|) (-356)))) (-3851 (((-1125) $) 9)) (-2768 (((-665 (-400 |#2|))) 194)) (-1948 (((-665 (-400 |#2|))) 196)) (-1992 (($ $) 114 (|has| (-400 |#2|) (-356)))) (-3569 (($ (-1226 |#2|) |#2|) 190)) (-2955 (((-665 (-400 |#2|))) 195)) (-1519 (((-665 (-400 |#2|))) 197)) (-3621 (((-2 (|:| |num| (-665 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-3581 (((-2 (|:| |num| (-1226 |#2|)) (|:| |den| |#2|)) $) 191)) (-3852 (((-1226 $)) 203)) (-1613 (((-1226 $)) 204)) (-2128 (((-112) $) 202)) (-3710 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3060 (($) 140 (|has| (-400 |#2|) (-342)) CONST)) (-3493 (($ (-892)) 86 (|has| (-400 |#2|) (-361)))) (-1314 (((-3 |#2| "failed")) 182)) (-3990 (((-1087) $) 10)) (-2118 (((-747)) 216)) (-4248 (($) 157)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 99 (|has| (-400 |#2|) (-356)))) (-3727 (($ (-621 $)) 96 (|has| (-400 |#2|) (-356))) (($ $ $) 95 (|has| (-400 |#2|) (-356)))) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) 143 (|has| (-400 |#2|) (-342)))) (-2121 (((-411 $) $) 110 (|has| (-400 |#2|) (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 107 (|has| (-400 |#2|) (-356)))) (-2042 (((-3 $ "failed") $ $) 90 (|has| (-400 |#2|) (-356)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 101 (|has| (-400 |#2|) (-356)))) (-3684 (((-747) $) 103 (|has| (-400 |#2|) (-356)))) (-3341 ((|#1| $ |#1| |#1|) 184)) (-1969 (((-3 |#2| "failed")) 183)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 104 (|has| (-400 |#2|) (-356)))) (-3602 (((-400 |#2|) (-1226 $)) 45) (((-400 |#2|)) 58)) (-3914 (((-747) $) 148 (|has| (-400 |#2|) (-342))) (((-3 (-747) "failed") $ $) 136 (|has| (-400 |#2|) (-342)))) (-3456 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) 120 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 119 (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-621 (-1143)) (-621 (-747))) 127 (-1536 (-1821 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143)))) (-1821 (|has| (-400 |#2|) (-871 (-1143))) (|has| (-400 |#2|) (-356))))) (($ $ (-1143) (-747)) 128 (-1536 (-1821 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143)))) (-1821 (|has| (-400 |#2|) (-871 (-1143))) (|has| (-400 |#2|) (-356))))) (($ $ (-621 (-1143))) 129 (-1536 (-1821 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143)))) (-1821 (|has| (-400 |#2|) (-871 (-1143))) (|has| (-400 |#2|) (-356))))) (($ $ (-1143)) 130 (-1536 (-1821 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143)))) (-1821 (|has| (-400 |#2|) (-871 (-1143))) (|has| (-400 |#2|) (-356))))) (($ $ (-747)) 132 (-1536 (-1821 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1821 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) 134 (-1536 (-1821 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1821 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2901 (((-665 (-400 |#2|)) (-1226 $) (-1 (-400 |#2|) (-400 |#2|))) 151 (|has| (-400 |#2|) (-356)))) (-2815 ((|#3|) 156)) (-3170 (($) 145 (|has| (-400 |#2|) (-342)))) (-4263 (((-1226 (-400 |#2|)) $ (-1226 $)) 48) (((-665 (-400 |#2|)) (-1226 $) (-1226 $)) 47) (((-1226 (-400 |#2|)) $) 64) (((-665 (-400 |#2|)) (-1226 $)) 63)) (-2845 (((-1226 (-400 |#2|)) $) 61) (($ (-1226 (-400 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 142 (|has| (-400 |#2|) (-342)))) (-3339 (((-1226 $) (-1226 $)) 200)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ (-400 |#2|)) 35) (($ (-400 (-549))) 84 (-1536 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1009 (-400 (-549)))))) (($ $) 89 (|has| (-400 |#2|) (-356)))) (-2210 (($ $) 141 (|has| (-400 |#2|) (-342))) (((-3 $ "failed") $) 41 (|has| (-400 |#2|) (-143)))) (-4154 ((|#3| $) 43)) (-2082 (((-747)) 28)) (-3672 (((-112)) 213)) (-2330 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-1949 (((-1226 $)) 65)) (-1498 (((-112) $ $) 93 (|has| (-400 |#2|) (-356)))) (-2033 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-2810 (((-112)) 215)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) 122 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 121 (|has| (-400 |#2|) (-356))) (($ $ (-621 (-1143)) (-621 (-747))) 123 (-1536 (-1821 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143)))) (-1821 (|has| (-400 |#2|) (-871 (-1143))) (|has| (-400 |#2|) (-356))))) (($ $ (-1143) (-747)) 124 (-1536 (-1821 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143)))) (-1821 (|has| (-400 |#2|) (-871 (-1143))) (|has| (-400 |#2|) (-356))))) (($ $ (-621 (-1143))) 125 (-1536 (-1821 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143)))) (-1821 (|has| (-400 |#2|) (-871 (-1143))) (|has| (-400 |#2|) (-356))))) (($ $ (-1143)) 126 (-1536 (-1821 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143)))) (-1821 (|has| (-400 |#2|) (-871 (-1143))) (|has| (-400 |#2|) (-356))))) (($ $ (-747)) 131 (-1536 (-1821 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1821 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) 133 (-1536 (-1821 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-1821 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2389 (((-112) $ $) 6)) (-2513 (($ $ $) 118 (|has| (-400 |#2|) (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 115 (|has| (-400 |#2|) (-356)))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 |#2|)) 37) (($ (-400 |#2|) $) 36) (($ (-400 (-549)) $) 117 (|has| (-400 |#2|) (-356))) (($ $ (-400 (-549))) 116 (|has| (-400 |#2|) (-356)))))
+(((-335 |#1| |#2| |#3|) (-138) (-1184) (-1202 |t#1|) (-1202 (-400 |t#2|))) (T -335))
+((-2609 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-747)))) (-2118 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-747)))) (-2810 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))) (-3465 (*1 *2 *3 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))) (-3672 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))) (-2330 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))) (-2330 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1184)) (-4 *3 (-1202 *4)) (-4 *5 (-1202 (-400 *3))) (-5 *2 (-112)))) (-1279 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))) (-1388 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))) (-1388 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1184)) (-4 *3 (-1202 *4)) (-4 *5 (-1202 (-400 *3))) (-5 *2 (-112)))) (-3031 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))) (-2941 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))) (-2941 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1184)) (-4 *3 (-1202 *4)) (-4 *5 (-1202 (-400 *3))) (-5 *2 (-112)))) (-1613 (*1 *2) (-12 (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-1226 *1)) (-4 *1 (-335 *3 *4 *5)))) (-3852 (*1 *2) (-12 (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-1226 *1)) (-4 *1 (-335 *3 *4 *5)))) (-2128 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))) (-3339 (*1 *2 *2) (-12 (-5 *2 (-1226 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))))) (-2453 (*1 *2 *2) (-12 (-5 *2 (-1226 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))))) (-2263 (*1 *2 *2) (-12 (-5 *2 (-1226 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))))) (-1519 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-1948 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-2955 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-2768 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-665 (-400 *4))))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1226 *4)) (|:| |den| *4))))) (-3492 (*1 *1 *2 *3) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-1202 *4)) (-4 *4 (-1184)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1202 (-400 *3))))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1226 *4)) (|:| |den| *4))))) (-3569 (*1 *1 *2 *3) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-1202 *4)) (-4 *4 (-1184)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1202 (-400 *3))))) (-3621 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5))) (-5 *2 (-2 (|:| |num| (-665 *5)) (|:| |den| *5))))) (-3710 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))) (-3710 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1184)) (-4 *3 (-1202 *4)) (-4 *5 (-1202 (-400 *3))) (-5 *2 (-112)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))))) (-1285 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1184)) (-4 *3 (-1202 *2)) (-4 *4 (-1202 (-400 *3))))) (-3341 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1184)) (-4 *3 (-1202 *2)) (-4 *4 (-1202 (-400 *3))))) (-1969 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1184)) (-4 *4 (-1202 (-400 *2))) (-4 *2 (-1202 *3)))) (-1314 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1184)) (-4 *4 (-1202 (-400 *2))) (-4 *2 (-1202 *3)))) (-2033 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1202 *4)) (-4 *4 (-1184)) (-4 *6 (-1202 (-400 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-335 *4 *5 *6)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5))) (-4 *4 (-356)) (-5 *2 (-621 (-923 *4))))) (-3690 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-621 (-621 *3))))))
+(-13 (-701 (-400 |t#2|) |t#3|) (-10 -8 (-15 -2609 ((-747))) (-15 -2118 ((-747))) (-15 -2810 ((-112))) (-15 -3465 ((-112) |t#1| |t#1|)) (-15 -3672 ((-112))) (-15 -2330 ((-112) |t#1|)) (-15 -2330 ((-112) |t#2|)) (-15 -1279 ((-112))) (-15 -1388 ((-112) |t#1|)) (-15 -1388 ((-112) |t#2|)) (-15 -3031 ((-112))) (-15 -2941 ((-112) |t#1|)) (-15 -2941 ((-112) |t#2|)) (-15 -1613 ((-1226 $))) (-15 -3852 ((-1226 $))) (-15 -2128 ((-112) $)) (-15 -3710 ((-112) $)) (-15 -3339 ((-1226 $) (-1226 $))) (-15 -2453 ((-1226 $) (-1226 $))) (-15 -2263 ((-1226 $) (-1226 $))) (-15 -1519 ((-665 (-400 |t#2|)))) (-15 -1948 ((-665 (-400 |t#2|)))) (-15 -2955 ((-665 (-400 |t#2|)))) (-15 -2768 ((-665 (-400 |t#2|)))) (-15 -2724 ((-2 (|:| |num| (-1226 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3492 ($ (-1226 |t#2|) |t#2|)) (-15 -3581 ((-2 (|:| |num| (-1226 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3569 ($ (-1226 |t#2|) |t#2|)) (-15 -3621 ((-2 (|:| |num| (-665 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3710 ((-112) $ |t#1|)) (-15 -3710 ((-112) $ |t#2|)) (-15 -3456 ($ $ (-1 |t#2| |t#2|))) (-15 -1285 ($ $)) (-15 -3341 (|t#1| $ |t#1| |t#1|)) (-15 -1969 ((-3 |t#2| "failed"))) (-15 -1314 ((-3 |t#2| "failed"))) (-15 -2033 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-356)) (-15 -1672 ((-621 (-923 |t#1|)) (-1143))) |%noBranch|) (IF (|has| |t#1| (-361)) (-15 -3690 ((-621 (-621 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-38 #1=(-400 |#2|)) . T) ((-38 $) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-101) . T) ((-111 #0# #0#) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-143))) ((-145) |has| (-400 |#2|) (-145)) ((-593 (-834)) . T) ((-170) . T) ((-594 |#3|) . T) ((-225 #1#) |has| (-400 |#2|) (-356)) ((-227) -1536 (|has| (-400 |#2|) (-342)) (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356)))) ((-237) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-283) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-300) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-356) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-395) |has| (-400 |#2|) (-342)) ((-361) -1536 (|has| (-400 |#2|) (-361)) (|has| (-400 |#2|) (-342))) ((-342) |has| (-400 |#2|) (-342)) ((-363 #1# |#3|) . T) ((-402 #1# |#3|) . T) ((-370 #1#) . T) ((-404 #1#) . T) ((-444) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-541) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-624 #0#) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-624 #1#) . T) ((-624 $) . T) ((-617 #1#) . T) ((-617 (-549)) |has| (-400 |#2|) (-617 (-549))) ((-694 #0#) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-694 #1#) . T) ((-694 $) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-701 #1# |#3|) . T) ((-703) . T) ((-871 (-1143)) -12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143)))) ((-891) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-1009 (-400 (-549))) |has| (-400 |#2|) (-1009 (-400 (-549)))) ((-1009 #1#) . T) ((-1009 (-549)) |has| (-400 |#2|) (-1009 (-549))) ((-1024 #0#) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1118) |has| (-400 |#2|) (-342)) ((-1184) -1536 (|has| (-400 |#2|) (-342)) (|has| (-400 |#2|) (-356))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2044 (((-112) $) NIL)) (-3214 (((-747)) NIL)) (-2906 (((-881 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-3062 (((-1153 (-892) (-747)) (-549)) NIL (|has| (-881 |#1|) (-361)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-3614 (((-747)) NIL (|has| (-881 |#1|) (-361)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-881 |#1|) "failed") $) NIL)) (-2659 (((-881 |#1|) $) NIL)) (-3492 (($ (-1226 (-881 |#1|))) NIL)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-881 |#1|) (-361)))) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| (-881 |#1|) (-361)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2405 (($) NIL (|has| (-881 |#1|) (-361)))) (-2288 (((-112) $) NIL (|has| (-881 |#1|) (-361)))) (-3165 (($ $ (-747)) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361)))) (($ $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-1420 (((-112) $) NIL)) (-2088 (((-892) $) NIL (|has| (-881 |#1|) (-361))) (((-809 (-892)) $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-2675 (((-112) $) NIL)) (-1973 (($) NIL (|has| (-881 |#1|) (-361)))) (-4091 (((-112) $) NIL (|has| (-881 |#1|) (-361)))) (-3630 (((-881 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-1681 (((-3 $ "failed") $) NIL (|has| (-881 |#1|) (-361)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3788 (((-1139 (-881 |#1|)) $) NIL) (((-1139 $) $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-1881 (((-892) $) NIL (|has| (-881 |#1|) (-361)))) (-3318 (((-1139 (-881 |#1|)) $) NIL (|has| (-881 |#1|) (-361)))) (-1983 (((-1139 (-881 |#1|)) $) NIL (|has| (-881 |#1|) (-361))) (((-3 (-1139 (-881 |#1|)) "failed") $ $) NIL (|has| (-881 |#1|) (-361)))) (-3719 (($ $ (-1139 (-881 |#1|))) NIL (|has| (-881 |#1|) (-361)))) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| (-881 |#1|) (-361)) CONST)) (-3493 (($ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-3980 (((-112) $) NIL)) (-3990 (((-1087) $) NIL)) (-2447 (((-929 (-1087))) NIL)) (-4248 (($) NIL (|has| (-881 |#1|) (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL (|has| (-881 |#1|) (-361)))) (-2121 (((-411 $) $) NIL)) (-3049 (((-809 (-892))) NIL) (((-892)) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3914 (((-747) $) NIL (|has| (-881 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-2985 (((-133)) NIL)) (-3456 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-3701 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2815 (((-1139 (-881 |#1|))) NIL)) (-3170 (($) NIL (|has| (-881 |#1|) (-361)))) (-1544 (($) NIL (|has| (-881 |#1|) (-361)))) (-4263 (((-1226 (-881 |#1|)) $) NIL) (((-665 (-881 |#1|)) (-1226 $)) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| (-881 |#1|) (-361)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-881 |#1|)) NIL)) (-2210 (($ $) NIL (|has| (-881 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-2082 (((-747)) NIL)) (-1949 (((-1226 $)) NIL) (((-1226 $) (-892)) NIL)) (-1498 (((-112) $ $) NIL)) (-1606 (((-112) $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1933 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-1702 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL) (($ $ (-881 |#1|)) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ (-881 |#1|)) NIL) (($ (-881 |#1|) $) NIL)))
+(((-336 |#1| |#2|) (-13 (-322 (-881 |#1|)) (-10 -7 (-15 -2447 ((-929 (-1087)))))) (-892) (-892)) (T -336))
+((-2447 (*1 *2) (-12 (-5 *2 (-929 (-1087))) (-5 *1 (-336 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))))
+(-13 (-322 (-881 |#1|)) (-10 -7 (-15 -2447 ((-929 (-1087))))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 44)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2044 (((-112) $) NIL)) (-3214 (((-747)) NIL)) (-2906 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-3062 (((-1153 (-892) (-747)) (-549)) 41 (|has| |#1| (-361)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-3614 (((-747)) NIL (|has| |#1| (-361)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) 115)) (-2659 ((|#1| $) 86)) (-3492 (($ (-1226 |#1|)) 104)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-361)))) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) 98 (|has| |#1| (-361)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2405 (($) 129 (|has| |#1| (-361)))) (-2288 (((-112) $) 48 (|has| |#1| (-361)))) (-3165 (($ $ (-747)) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1420 (((-112) $) NIL)) (-2088 (((-892) $) 45 (|has| |#1| (-361))) (((-809 (-892)) $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2675 (((-112) $) NIL)) (-1973 (($) 131 (|has| |#1| (-361)))) (-4091 (((-112) $) NIL (|has| |#1| (-361)))) (-3630 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-1681 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3788 (((-1139 |#1|) $) 90) (((-1139 $) $ (-892)) NIL (|has| |#1| (-361)))) (-1881 (((-892) $) 139 (|has| |#1| (-361)))) (-3318 (((-1139 |#1|) $) NIL (|has| |#1| (-361)))) (-1983 (((-1139 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1139 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-3719 (($ $ (-1139 |#1|)) NIL (|has| |#1| (-361)))) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 146)) (-3060 (($) NIL (|has| |#1| (-361)) CONST)) (-3493 (($ (-892)) 71 (|has| |#1| (-361)))) (-3980 (((-112) $) 118)) (-3990 (((-1087) $) NIL)) (-2447 (((-929 (-1087))) 42)) (-4248 (($) 127 (|has| |#1| (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) 93 (|has| |#1| (-361)))) (-2121 (((-411 $) $) NIL)) (-3049 (((-809 (-892))) 67) (((-892)) 68)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3914 (((-747) $) 130 (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) 125 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2985 (((-133)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3701 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2815 (((-1139 |#1|)) 96)) (-3170 (($) 128 (|has| |#1| (-361)))) (-1544 (($) 136 (|has| |#1| (-361)))) (-4263 (((-1226 |#1|) $) 59) (((-665 |#1|) (-1226 $)) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-3846 (((-834) $) 142) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) 75)) (-2210 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2082 (((-747)) 138)) (-1949 (((-1226 $)) 117) (((-1226 $) (-892)) 73)) (-1498 (((-112) $ $) NIL)) (-1606 (((-112) $) NIL)) (-3276 (($) 49 T CONST)) (-3287 (($) 46 T CONST)) (-1933 (($ $) 81 (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-1702 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2389 (((-112) $ $) 47)) (-2513 (($ $ $) 144) (($ $ |#1|) 145)) (-2500 (($ $) 126) (($ $ $) NIL)) (-2486 (($ $ $) 61)) (** (($ $ (-892)) 148) (($ $ (-747)) 149) (($ $ (-549)) 147)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 77) (($ $ $) 76) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
+(((-337 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -2447 ((-929 (-1087)))))) (-342) (-1139 |#1|)) (T -337))
+((-2447 (*1 *2) (-12 (-5 *2 (-929 (-1087))) (-5 *1 (-337 *3 *4)) (-4 *3 (-342)) (-14 *4 (-1139 *3)))))
+(-13 (-322 |#1|) (-10 -7 (-15 -2447 ((-929 (-1087))))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2044 (((-112) $) NIL)) (-3214 (((-747)) NIL)) (-2906 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-3062 (((-1153 (-892) (-747)) (-549)) NIL (|has| |#1| (-361)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-3614 (((-747)) NIL (|has| |#1| (-361)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL)) (-2659 ((|#1| $) NIL)) (-3492 (($ (-1226 |#1|)) NIL)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| |#1| (-361)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2405 (($) NIL (|has| |#1| (-361)))) (-2288 (((-112) $) NIL (|has| |#1| (-361)))) (-3165 (($ $ (-747)) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1420 (((-112) $) NIL)) (-2088 (((-892) $) NIL (|has| |#1| (-361))) (((-809 (-892)) $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2675 (((-112) $) NIL)) (-1973 (($) NIL (|has| |#1| (-361)))) (-4091 (((-112) $) NIL (|has| |#1| (-361)))) (-3630 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-1681 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3788 (((-1139 |#1|) $) NIL) (((-1139 $) $ (-892)) NIL (|has| |#1| (-361)))) (-1881 (((-892) $) NIL (|has| |#1| (-361)))) (-3318 (((-1139 |#1|) $) NIL (|has| |#1| (-361)))) (-1983 (((-1139 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1139 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-3719 (($ $ (-1139 |#1|)) NIL (|has| |#1| (-361)))) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| |#1| (-361)) CONST)) (-3493 (($ (-892)) NIL (|has| |#1| (-361)))) (-3980 (((-112) $) NIL)) (-3990 (((-1087) $) NIL)) (-2447 (((-929 (-1087))) NIL)) (-4248 (($) NIL (|has| |#1| (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL (|has| |#1| (-361)))) (-2121 (((-411 $) $) NIL)) (-3049 (((-809 (-892))) NIL) (((-892)) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3914 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2985 (((-133)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3701 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2815 (((-1139 |#1|)) NIL)) (-3170 (($) NIL (|has| |#1| (-361)))) (-1544 (($) NIL (|has| |#1| (-361)))) (-4263 (((-1226 |#1|) $) NIL) (((-665 |#1|) (-1226 $)) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) NIL)) (-2210 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2082 (((-747)) NIL)) (-1949 (((-1226 $)) NIL) (((-1226 $) (-892)) NIL)) (-1498 (((-112) $ $) NIL)) (-1606 (((-112) $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1933 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-1702 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-338 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -2447 ((-929 (-1087)))))) (-342) (-892)) (T -338))
+((-2447 (*1 *2) (-12 (-5 *2 (-929 (-1087))) (-5 *1 (-338 *3 *4)) (-4 *3 (-342)) (-14 *4 (-892)))))
+(-13 (-322 |#1|) (-10 -7 (-15 -2447 ((-929 (-1087))))))
+((-3223 (((-747) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087)))))) 42)) (-3491 (((-929 (-1087)) (-1139 |#1|)) 85)) (-2935 (((-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))) (-1139 |#1|)) 78)) (-2964 (((-665 |#1|) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087)))))) 86)) (-3940 (((-3 (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))) "failed") (-892)) 13)) (-2102 (((-3 (-1139 |#1|) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087)))))) (-892)) 18)))
+(((-339 |#1|) (-10 -7 (-15 -3491 ((-929 (-1087)) (-1139 |#1|))) (-15 -2935 ((-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))) (-1139 |#1|))) (-15 -2964 ((-665 |#1|) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))))) (-15 -3223 ((-747) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))))) (-15 -3940 ((-3 (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))) "failed") (-892))) (-15 -2102 ((-3 (-1139 |#1|) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087)))))) (-892)))) (-342)) (T -339))
+((-2102 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-3 (-1139 *4) (-1226 (-621 (-2 (|:| -4161 *4) (|:| -3493 (-1087))))))) (-5 *1 (-339 *4)) (-4 *4 (-342)))) (-3940 (*1 *2 *3) (|partial| -12 (-5 *3 (-892)) (-5 *2 (-1226 (-621 (-2 (|:| -4161 *4) (|:| -3493 (-1087)))))) (-5 *1 (-339 *4)) (-4 *4 (-342)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1226 (-621 (-2 (|:| -4161 *4) (|:| -3493 (-1087)))))) (-4 *4 (-342)) (-5 *2 (-747)) (-5 *1 (-339 *4)))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-1226 (-621 (-2 (|:| -4161 *4) (|:| -3493 (-1087)))))) (-4 *4 (-342)) (-5 *2 (-665 *4)) (-5 *1 (-339 *4)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-1139 *4)) (-4 *4 (-342)) (-5 *2 (-1226 (-621 (-2 (|:| -4161 *4) (|:| -3493 (-1087)))))) (-5 *1 (-339 *4)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-1139 *4)) (-4 *4 (-342)) (-5 *2 (-929 (-1087))) (-5 *1 (-339 *4)))))
+(-10 -7 (-15 -3491 ((-929 (-1087)) (-1139 |#1|))) (-15 -2935 ((-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))) (-1139 |#1|))) (-15 -2964 ((-665 |#1|) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))))) (-15 -3223 ((-747) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))))) (-15 -3940 ((-3 (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))) "failed") (-892))) (-15 -2102 ((-3 (-1139 |#1|) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087)))))) (-892))))
+((-3846 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
+(((-340 |#1| |#2| |#3|) (-10 -7 (-15 -3846 (|#3| |#1|)) (-15 -3846 (|#1| |#3|))) (-322 |#2|) (-342) (-322 |#2|)) (T -340))
+((-3846 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *2 *4 *3)) (-4 *3 (-322 *4)))) (-3846 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *3 *4 *2)) (-4 *3 (-322 *4)))))
+(-10 -7 (-15 -3846 (|#3| |#1|)) (-15 -3846 (|#1| |#3|)))
+((-2288 (((-112) $) 51)) (-2088 (((-809 (-892)) $) 21) (((-892) $) 52)) (-1681 (((-3 $ "failed") $) 16)) (-3060 (($) 9)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 93)) (-3914 (((-3 (-747) "failed") $ $) 71) (((-747) $) 60)) (-3456 (($ $ (-747)) NIL) (($ $) 8)) (-3170 (($) 44)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 34)) (-2210 (((-3 $ "failed") $) 38) (($ $) 37)))
+(((-341 |#1|) (-10 -8 (-15 -2088 ((-892) |#1|)) (-15 -3914 ((-747) |#1|)) (-15 -2288 ((-112) |#1|)) (-15 -3170 (|#1|)) (-15 -4186 ((-3 (-1226 |#1|) "failed") (-665 |#1|))) (-15 -2210 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3060 (|#1|)) (-15 -1681 ((-3 |#1| "failed") |#1|)) (-15 -3914 ((-3 (-747) "failed") |#1| |#1|)) (-15 -2088 ((-809 (-892)) |#1|)) (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -1721 ((-1139 |#1|) (-1139 |#1|) (-1139 |#1|)))) (-342)) (T -341))
+NIL
+(-10 -8 (-15 -2088 ((-892) |#1|)) (-15 -3914 ((-747) |#1|)) (-15 -2288 ((-112) |#1|)) (-15 -3170 (|#1|)) (-15 -4186 ((-3 (-1226 |#1|) "failed") (-665 |#1|))) (-15 -2210 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3060 (|#1|)) (-15 -1681 ((-3 |#1| "failed") |#1|)) (-15 -3914 ((-3 (-747) "failed") |#1| |#1|)) (-15 -2088 ((-809 (-892)) |#1|)) (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -1721 ((-1139 |#1|) (-1139 |#1|) (-1139 |#1|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-3062 (((-1153 (-892) (-747)) (-549)) 90)) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 70)) (-2402 (((-411 $) $) 69)) (-3866 (((-112) $ $) 57)) (-3614 (((-747)) 100)) (-1682 (($) 17 T CONST)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2095 (($ $ $) 53)) (-2114 (((-3 $ "failed") $) 32)) (-3239 (($) 103)) (-2067 (($ $ $) 54)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-2405 (($) 88)) (-2288 (((-112) $) 87)) (-3165 (($ $) 76) (($ $ (-747)) 75)) (-1420 (((-112) $) 68)) (-2088 (((-809 (-892)) $) 78) (((-892) $) 85)) (-2675 (((-112) $) 30)) (-1681 (((-3 $ "failed") $) 99)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-1881 (((-892) $) 102)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 67)) (-3060 (($) 98 T CONST)) (-3493 (($ (-892)) 101)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) 91)) (-2121 (((-411 $) $) 71)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3684 (((-747) $) 56)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55)) (-3914 (((-3 (-747) "failed") $ $) 77) (((-747) $) 86)) (-3456 (($ $ (-747)) 96) (($ $) 94)) (-3170 (($) 89)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 92)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63)) (-2210 (((-3 $ "failed") $) 79) (($ $) 93)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-747)) 97) (($ $) 95)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ $) 62)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64)))
+(((-342) (-138)) (T -342))
+((-2210 (*1 *1 *1) (-4 *1 (-342))) (-4186 (*1 *2 *3) (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-342)) (-5 *2 (-1226 *1)))) (-1762 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))))) (-3062 (*1 *2 *3) (-12 (-4 *1 (-342)) (-5 *3 (-549)) (-5 *2 (-1153 (-892) (-747))))) (-3170 (*1 *1) (-4 *1 (-342))) (-2405 (*1 *1) (-4 *1 (-342))) (-2288 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-112)))) (-3914 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-747)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-892)))) (-2523 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-395) (-361) (-1118) (-227) (-10 -8 (-15 -2210 ($ $)) (-15 -4186 ((-3 (-1226 $) "failed") (-665 $))) (-15 -1762 ((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549)))))) (-15 -3062 ((-1153 (-892) (-747)) (-549))) (-15 -3170 ($)) (-15 -2405 ($)) (-15 -2288 ((-112) $)) (-15 -3914 ((-747) $)) (-15 -2088 ((-892) $)) (-15 -2523 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-593 (-834)) . T) ((-170) . T) ((-227) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) . T) ((-361) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1118) . T) ((-1184) . T))
+((-1784 (((-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) |#1|) 53)) (-1613 (((-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))) 51)))
+(((-343 |#1| |#2| |#3|) (-10 -7 (-15 -1613 ((-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))))) (-15 -1784 ((-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) |#1|))) (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $)))) (-1202 |#1|) (-402 |#1| |#2|)) (T -343))
+((-1784 (*1 *2 *3) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $))))) (-4 *4 (-1202 *3)) (-5 *2 (-2 (|:| -1949 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-1613 (*1 *2) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $))))) (-4 *4 (-1202 *3)) (-5 *2 (-2 (|:| -1949 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4)))))
+(-10 -7 (-15 -1613 ((-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))))) (-15 -1784 ((-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2044 (((-112) $) NIL)) (-3214 (((-747)) NIL)) (-2906 (((-881 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-3062 (((-1153 (-892) (-747)) (-549)) NIL (|has| (-881 |#1|) (-361)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3223 (((-747)) NIL)) (-3866 (((-112) $ $) NIL)) (-3614 (((-747)) NIL (|has| (-881 |#1|) (-361)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-881 |#1|) "failed") $) NIL)) (-2659 (((-881 |#1|) $) NIL)) (-3492 (($ (-1226 (-881 |#1|))) NIL)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-881 |#1|) (-361)))) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| (-881 |#1|) (-361)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2405 (($) NIL (|has| (-881 |#1|) (-361)))) (-2288 (((-112) $) NIL (|has| (-881 |#1|) (-361)))) (-3165 (($ $ (-747)) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361)))) (($ $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-1420 (((-112) $) NIL)) (-2088 (((-892) $) NIL (|has| (-881 |#1|) (-361))) (((-809 (-892)) $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-2675 (((-112) $) NIL)) (-1973 (($) NIL (|has| (-881 |#1|) (-361)))) (-4091 (((-112) $) NIL (|has| (-881 |#1|) (-361)))) (-3630 (((-881 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-1681 (((-3 $ "failed") $) NIL (|has| (-881 |#1|) (-361)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3788 (((-1139 (-881 |#1|)) $) NIL) (((-1139 $) $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-1881 (((-892) $) NIL (|has| (-881 |#1|) (-361)))) (-3318 (((-1139 (-881 |#1|)) $) NIL (|has| (-881 |#1|) (-361)))) (-1983 (((-1139 (-881 |#1|)) $) NIL (|has| (-881 |#1|) (-361))) (((-3 (-1139 (-881 |#1|)) "failed") $ $) NIL (|has| (-881 |#1|) (-361)))) (-3719 (($ $ (-1139 (-881 |#1|))) NIL (|has| (-881 |#1|) (-361)))) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| (-881 |#1|) (-361)) CONST)) (-3493 (($ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-3980 (((-112) $) NIL)) (-3990 (((-1087) $) NIL)) (-1619 (((-1226 (-621 (-2 (|:| -4161 (-881 |#1|)) (|:| -3493 (-1087)))))) NIL)) (-3665 (((-665 (-881 |#1|))) NIL)) (-4248 (($) NIL (|has| (-881 |#1|) (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL (|has| (-881 |#1|) (-361)))) (-2121 (((-411 $) $) NIL)) (-3049 (((-809 (-892))) NIL) (((-892)) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3914 (((-747) $) NIL (|has| (-881 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-2985 (((-133)) NIL)) (-3456 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-3701 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2815 (((-1139 (-881 |#1|))) NIL)) (-3170 (($) NIL (|has| (-881 |#1|) (-361)))) (-1544 (($) NIL (|has| (-881 |#1|) (-361)))) (-4263 (((-1226 (-881 |#1|)) $) NIL) (((-665 (-881 |#1|)) (-1226 $)) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| (-881 |#1|) (-361)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-881 |#1|)) NIL)) (-2210 (($ $) NIL (|has| (-881 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-2082 (((-747)) NIL)) (-1949 (((-1226 $)) NIL) (((-1226 $) (-892)) NIL)) (-1498 (((-112) $ $) NIL)) (-1606 (((-112) $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1933 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-1702 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL) (($ $ (-881 |#1|)) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ (-881 |#1|)) NIL) (($ (-881 |#1|) $) NIL)))
+(((-344 |#1| |#2|) (-13 (-322 (-881 |#1|)) (-10 -7 (-15 -1619 ((-1226 (-621 (-2 (|:| -4161 (-881 |#1|)) (|:| -3493 (-1087))))))) (-15 -3665 ((-665 (-881 |#1|)))) (-15 -3223 ((-747))))) (-892) (-892)) (T -344))
+((-1619 (*1 *2) (-12 (-5 *2 (-1226 (-621 (-2 (|:| -4161 (-881 *3)) (|:| -3493 (-1087)))))) (-5 *1 (-344 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))) (-3665 (*1 *2) (-12 (-5 *2 (-665 (-881 *3))) (-5 *1 (-344 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))) (-3223 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-344 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))))
+(-13 (-322 (-881 |#1|)) (-10 -7 (-15 -1619 ((-1226 (-621 (-2 (|:| -4161 (-881 |#1|)) (|:| -3493 (-1087))))))) (-15 -3665 ((-665 (-881 |#1|)))) (-15 -3223 ((-747)))))
+((-3834 (((-112) $ $) 61)) (-1763 (((-112) $) 74)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2044 (((-112) $) NIL)) (-3214 (((-747)) NIL)) (-2906 ((|#1| $) 92) (($ $ (-892)) 90 (|has| |#1| (-361)))) (-3062 (((-1153 (-892) (-747)) (-549)) 148 (|has| |#1| (-361)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3223 (((-747)) 89)) (-3866 (((-112) $ $) NIL)) (-3614 (((-747)) 162 (|has| |#1| (-361)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) 112)) (-2659 ((|#1| $) 91)) (-3492 (($ (-1226 |#1|)) 58)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-361)))) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) 158 (|has| |#1| (-361)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2405 (($) 149 (|has| |#1| (-361)))) (-2288 (((-112) $) NIL (|has| |#1| (-361)))) (-3165 (($ $ (-747)) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1420 (((-112) $) NIL)) (-2088 (((-892) $) NIL (|has| |#1| (-361))) (((-809 (-892)) $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2675 (((-112) $) NIL)) (-1973 (($) 98 (|has| |#1| (-361)))) (-4091 (((-112) $) 175 (|has| |#1| (-361)))) (-3630 ((|#1| $) 94) (($ $ (-892)) 93 (|has| |#1| (-361)))) (-1681 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3788 (((-1139 |#1|) $) 189) (((-1139 $) $ (-892)) NIL (|has| |#1| (-361)))) (-1881 (((-892) $) 134 (|has| |#1| (-361)))) (-3318 (((-1139 |#1|) $) 73 (|has| |#1| (-361)))) (-1983 (((-1139 |#1|) $) 70 (|has| |#1| (-361))) (((-3 (-1139 |#1|) "failed") $ $) 82 (|has| |#1| (-361)))) (-3719 (($ $ (-1139 |#1|)) 69 (|has| |#1| (-361)))) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 192)) (-3060 (($) NIL (|has| |#1| (-361)) CONST)) (-3493 (($ (-892)) 137 (|has| |#1| (-361)))) (-3980 (((-112) $) 108)) (-3990 (((-1087) $) NIL)) (-1619 (((-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087)))))) 83)) (-3665 (((-665 |#1|)) 87)) (-4248 (($) 96 (|has| |#1| (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) 150 (|has| |#1| (-361)))) (-2121 (((-411 $) $) NIL)) (-3049 (((-809 (-892))) NIL) (((-892)) 151)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3914 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2985 (((-133)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3701 (((-809 (-892)) $) NIL) (((-892) $) 62)) (-2815 (((-1139 |#1|)) 152)) (-3170 (($) 133 (|has| |#1| (-361)))) (-1544 (($) NIL (|has| |#1| (-361)))) (-4263 (((-1226 |#1|) $) 106) (((-665 |#1|) (-1226 $)) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-3846 (((-834) $) 124) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) 57)) (-2210 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2082 (((-747)) 156)) (-1949 (((-1226 $)) 172) (((-1226 $) (-892)) 101)) (-1498 (((-112) $ $) NIL)) (-1606 (((-112) $) NIL)) (-3276 (($) 117 T CONST)) (-3287 (($) 33 T CONST)) (-1933 (($ $) 107 (|has| |#1| (-361))) (($ $ (-747)) 99 (|has| |#1| (-361)))) (-1702 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2389 (((-112) $ $) 183)) (-2513 (($ $ $) 104) (($ $ |#1|) 105)) (-2500 (($ $) 177) (($ $ $) 181)) (-2486 (($ $ $) 179)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 138)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 186) (($ $ $) 142) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
+(((-345 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1619 ((-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))))) (-15 -3665 ((-665 |#1|))) (-15 -3223 ((-747))))) (-342) (-3 (-1139 |#1|) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))))) (T -345))
+((-1619 (*1 *2) (-12 (-5 *2 (-1226 (-621 (-2 (|:| -4161 *3) (|:| -3493 (-1087)))))) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1139 *3) *2)))) (-3665 (*1 *2) (-12 (-5 *2 (-665 *3)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1139 *3) (-1226 (-621 (-2 (|:| -4161 *3) (|:| -3493 (-1087))))))))) (-3223 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1139 *3) (-1226 (-621 (-2 (|:| -4161 *3) (|:| -3493 (-1087))))))))))
+(-13 (-322 |#1|) (-10 -7 (-15 -1619 ((-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))))) (-15 -3665 ((-665 |#1|))) (-15 -3223 ((-747)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2044 (((-112) $) NIL)) (-3214 (((-747)) NIL)) (-2906 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-3062 (((-1153 (-892) (-747)) (-549)) NIL (|has| |#1| (-361)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3223 (((-747)) NIL)) (-3866 (((-112) $ $) NIL)) (-3614 (((-747)) NIL (|has| |#1| (-361)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL)) (-2659 ((|#1| $) NIL)) (-3492 (($ (-1226 |#1|)) NIL)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| |#1| (-361)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2405 (($) NIL (|has| |#1| (-361)))) (-2288 (((-112) $) NIL (|has| |#1| (-361)))) (-3165 (($ $ (-747)) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1420 (((-112) $) NIL)) (-2088 (((-892) $) NIL (|has| |#1| (-361))) (((-809 (-892)) $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2675 (((-112) $) NIL)) (-1973 (($) NIL (|has| |#1| (-361)))) (-4091 (((-112) $) NIL (|has| |#1| (-361)))) (-3630 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-1681 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3788 (((-1139 |#1|) $) NIL) (((-1139 $) $ (-892)) NIL (|has| |#1| (-361)))) (-1881 (((-892) $) NIL (|has| |#1| (-361)))) (-3318 (((-1139 |#1|) $) NIL (|has| |#1| (-361)))) (-1983 (((-1139 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1139 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-3719 (($ $ (-1139 |#1|)) NIL (|has| |#1| (-361)))) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| |#1| (-361)) CONST)) (-3493 (($ (-892)) NIL (|has| |#1| (-361)))) (-3980 (((-112) $) NIL)) (-3990 (((-1087) $) NIL)) (-1619 (((-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087)))))) NIL)) (-3665 (((-665 |#1|)) NIL)) (-4248 (($) NIL (|has| |#1| (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL (|has| |#1| (-361)))) (-2121 (((-411 $) $) NIL)) (-3049 (((-809 (-892))) NIL) (((-892)) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3914 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2985 (((-133)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3701 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2815 (((-1139 |#1|)) NIL)) (-3170 (($) NIL (|has| |#1| (-361)))) (-1544 (($) NIL (|has| |#1| (-361)))) (-4263 (((-1226 |#1|) $) NIL) (((-665 |#1|) (-1226 $)) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) NIL)) (-2210 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2082 (((-747)) NIL)) (-1949 (((-1226 $)) NIL) (((-1226 $) (-892)) NIL)) (-1498 (((-112) $ $) NIL)) (-1606 (((-112) $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1933 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-1702 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-346 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1619 ((-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))))) (-15 -3665 ((-665 |#1|))) (-15 -3223 ((-747))))) (-342) (-892)) (T -346))
+((-1619 (*1 *2) (-12 (-5 *2 (-1226 (-621 (-2 (|:| -4161 *3) (|:| -3493 (-1087)))))) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-892)))) (-3665 (*1 *2) (-12 (-5 *2 (-665 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-892)))) (-3223 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-892)))))
+(-13 (-322 |#1|) (-10 -7 (-15 -1619 ((-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))))) (-15 -3665 ((-665 |#1|))) (-15 -3223 ((-747)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2044 (((-112) $) NIL)) (-3214 (((-747)) NIL)) (-2906 (((-881 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-3062 (((-1153 (-892) (-747)) (-549)) NIL (|has| (-881 |#1|) (-361)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-3614 (((-747)) NIL (|has| (-881 |#1|) (-361)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-881 |#1|) "failed") $) NIL)) (-2659 (((-881 |#1|) $) NIL)) (-3492 (($ (-1226 (-881 |#1|))) NIL)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-881 |#1|) (-361)))) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| (-881 |#1|) (-361)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2405 (($) NIL (|has| (-881 |#1|) (-361)))) (-2288 (((-112) $) NIL (|has| (-881 |#1|) (-361)))) (-3165 (($ $ (-747)) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361)))) (($ $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-1420 (((-112) $) NIL)) (-2088 (((-892) $) NIL (|has| (-881 |#1|) (-361))) (((-809 (-892)) $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-2675 (((-112) $) NIL)) (-1973 (($) NIL (|has| (-881 |#1|) (-361)))) (-4091 (((-112) $) NIL (|has| (-881 |#1|) (-361)))) (-3630 (((-881 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-1681 (((-3 $ "failed") $) NIL (|has| (-881 |#1|) (-361)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3788 (((-1139 (-881 |#1|)) $) NIL) (((-1139 $) $ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-1881 (((-892) $) NIL (|has| (-881 |#1|) (-361)))) (-3318 (((-1139 (-881 |#1|)) $) NIL (|has| (-881 |#1|) (-361)))) (-1983 (((-1139 (-881 |#1|)) $) NIL (|has| (-881 |#1|) (-361))) (((-3 (-1139 (-881 |#1|)) "failed") $ $) NIL (|has| (-881 |#1|) (-361)))) (-3719 (($ $ (-1139 (-881 |#1|))) NIL (|has| (-881 |#1|) (-361)))) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| (-881 |#1|) (-361)) CONST)) (-3493 (($ (-892)) NIL (|has| (-881 |#1|) (-361)))) (-3980 (((-112) $) NIL)) (-3990 (((-1087) $) NIL)) (-4248 (($) NIL (|has| (-881 |#1|) (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL (|has| (-881 |#1|) (-361)))) (-2121 (((-411 $) $) NIL)) (-3049 (((-809 (-892))) NIL) (((-892)) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3914 (((-747) $) NIL (|has| (-881 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-2985 (((-133)) NIL)) (-3456 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-3701 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2815 (((-1139 (-881 |#1|))) NIL)) (-3170 (($) NIL (|has| (-881 |#1|) (-361)))) (-1544 (($) NIL (|has| (-881 |#1|) (-361)))) (-4263 (((-1226 (-881 |#1|)) $) NIL) (((-665 (-881 |#1|)) (-1226 $)) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| (-881 |#1|) (-361)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-881 |#1|)) NIL)) (-2210 (($ $) NIL (|has| (-881 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| (-881 |#1|) (-143)) (|has| (-881 |#1|) (-361))))) (-2082 (((-747)) NIL)) (-1949 (((-1226 $)) NIL) (((-1226 $) (-892)) NIL)) (-1498 (((-112) $ $) NIL)) (-1606 (((-112) $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1933 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-1702 (($ $) NIL (|has| (-881 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-881 |#1|) (-361)))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL) (($ $ (-881 |#1|)) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ (-881 |#1|)) NIL) (($ (-881 |#1|) $) NIL)))
+(((-347 |#1| |#2|) (-322 (-881 |#1|)) (-892) (-892)) (T -347))
+NIL
+(-322 (-881 |#1|))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2044 (((-112) $) NIL)) (-3214 (((-747)) NIL)) (-2906 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-3062 (((-1153 (-892) (-747)) (-549)) 120 (|has| |#1| (-361)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-3614 (((-747)) 140 (|has| |#1| (-361)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) 93)) (-2659 ((|#1| $) 90)) (-3492 (($ (-1226 |#1|)) 85)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-361)))) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) 82 (|has| |#1| (-361)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2405 (($) 42 (|has| |#1| (-361)))) (-2288 (((-112) $) NIL (|has| |#1| (-361)))) (-3165 (($ $ (-747)) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1420 (((-112) $) NIL)) (-2088 (((-892) $) NIL (|has| |#1| (-361))) (((-809 (-892)) $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2675 (((-112) $) NIL)) (-1973 (($) 121 (|has| |#1| (-361)))) (-4091 (((-112) $) 74 (|has| |#1| (-361)))) (-3630 ((|#1| $) 39) (($ $ (-892)) 43 (|has| |#1| (-361)))) (-1681 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3788 (((-1139 |#1|) $) 65) (((-1139 $) $ (-892)) NIL (|has| |#1| (-361)))) (-1881 (((-892) $) 97 (|has| |#1| (-361)))) (-3318 (((-1139 |#1|) $) NIL (|has| |#1| (-361)))) (-1983 (((-1139 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1139 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-3719 (($ $ (-1139 |#1|)) NIL (|has| |#1| (-361)))) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| |#1| (-361)) CONST)) (-3493 (($ (-892)) 95 (|has| |#1| (-361)))) (-3980 (((-112) $) 142)) (-3990 (((-1087) $) NIL)) (-4248 (($) 36 (|has| |#1| (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) 115 (|has| |#1| (-361)))) (-2121 (((-411 $) $) NIL)) (-3049 (((-809 (-892))) NIL) (((-892)) 139)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3914 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2985 (((-133)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3701 (((-809 (-892)) $) NIL) (((-892) $) 59)) (-2815 (((-1139 |#1|)) 88)) (-3170 (($) 126 (|has| |#1| (-361)))) (-1544 (($) NIL (|has| |#1| (-361)))) (-4263 (((-1226 |#1|) $) 53) (((-665 |#1|) (-1226 $)) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-3846 (((-834) $) 138) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) 87)) (-2210 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2082 (((-747)) 144)) (-1949 (((-1226 $)) 109) (((-1226 $) (-892)) 49)) (-1498 (((-112) $ $) NIL)) (-1606 (((-112) $) NIL)) (-3276 (($) 111 T CONST)) (-3287 (($) 32 T CONST)) (-1933 (($ $) 68 (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-1702 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2389 (((-112) $ $) 107)) (-2513 (($ $ $) 99) (($ $ |#1|) 100)) (-2500 (($ $) 80) (($ $ $) 105)) (-2486 (($ $ $) 103)) (** (($ $ (-892)) NIL) (($ $ (-747)) 44) (($ $ (-549)) 130)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 78) (($ $ $) 56) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
+(((-348 |#1| |#2|) (-322 |#1|) (-342) (-1139 |#1|)) (T -348))
+NIL
+(-322 |#1|)
+((-3134 ((|#1| (-1139 |#2|)) 52)))
+(((-349 |#1| |#2|) (-10 -7 (-15 -3134 (|#1| (-1139 |#2|)))) (-13 (-395) (-10 -7 (-15 -3846 (|#1| |#2|)) (-15 -1881 ((-892) |#1|)) (-15 -1949 ((-1226 |#1|) (-892))) (-15 -1933 (|#1| |#1|)))) (-342)) (T -349))
+((-3134 (*1 *2 *3) (-12 (-5 *3 (-1139 *4)) (-4 *4 (-342)) (-4 *2 (-13 (-395) (-10 -7 (-15 -3846 (*2 *4)) (-15 -1881 ((-892) *2)) (-15 -1949 ((-1226 *2) (-892))) (-15 -1933 (*2 *2))))) (-5 *1 (-349 *2 *4)))))
+(-10 -7 (-15 -3134 (|#1| (-1139 |#2|))))
+((-1985 (((-929 (-1139 |#1|)) (-1139 |#1|)) 36)) (-3239 (((-1139 |#1|) (-892) (-892)) 113) (((-1139 |#1|) (-892)) 112)) (-2288 (((-112) (-1139 |#1|)) 84)) (-1272 (((-892) (-892)) 71)) (-3066 (((-892) (-892)) 74)) (-2465 (((-892) (-892)) 69)) (-4091 (((-112) (-1139 |#1|)) 88)) (-2015 (((-3 (-1139 |#1|) "failed") (-1139 |#1|)) 101)) (-1694 (((-3 (-1139 |#1|) "failed") (-1139 |#1|)) 104)) (-3565 (((-3 (-1139 |#1|) "failed") (-1139 |#1|)) 103)) (-2520 (((-3 (-1139 |#1|) "failed") (-1139 |#1|)) 102)) (-2567 (((-3 (-1139 |#1|) "failed") (-1139 |#1|)) 98)) (-2576 (((-1139 |#1|) (-1139 |#1|)) 62)) (-3522 (((-1139 |#1|) (-892)) 107)) (-2184 (((-1139 |#1|) (-892)) 110)) (-3534 (((-1139 |#1|) (-892)) 109)) (-3876 (((-1139 |#1|) (-892)) 108)) (-3479 (((-1139 |#1|) (-892)) 105)))
+(((-350 |#1|) (-10 -7 (-15 -2288 ((-112) (-1139 |#1|))) (-15 -4091 ((-112) (-1139 |#1|))) (-15 -2465 ((-892) (-892))) (-15 -1272 ((-892) (-892))) (-15 -3066 ((-892) (-892))) (-15 -3479 ((-1139 |#1|) (-892))) (-15 -3522 ((-1139 |#1|) (-892))) (-15 -3876 ((-1139 |#1|) (-892))) (-15 -3534 ((-1139 |#1|) (-892))) (-15 -2184 ((-1139 |#1|) (-892))) (-15 -2567 ((-3 (-1139 |#1|) "failed") (-1139 |#1|))) (-15 -2015 ((-3 (-1139 |#1|) "failed") (-1139 |#1|))) (-15 -2520 ((-3 (-1139 |#1|) "failed") (-1139 |#1|))) (-15 -3565 ((-3 (-1139 |#1|) "failed") (-1139 |#1|))) (-15 -1694 ((-3 (-1139 |#1|) "failed") (-1139 |#1|))) (-15 -3239 ((-1139 |#1|) (-892))) (-15 -3239 ((-1139 |#1|) (-892) (-892))) (-15 -2576 ((-1139 |#1|) (-1139 |#1|))) (-15 -1985 ((-929 (-1139 |#1|)) (-1139 |#1|)))) (-342)) (T -350))
+((-1985 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-929 (-1139 *4))) (-5 *1 (-350 *4)) (-5 *3 (-1139 *4)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-1139 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-3239 (*1 *2 *3 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-1694 (*1 *2 *2) (|partial| -12 (-5 *2 (-1139 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-3565 (*1 *2 *2) (|partial| -12 (-5 *2 (-1139 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-2520 (*1 *2 *2) (|partial| -12 (-5 *2 (-1139 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-2015 (*1 *2 *2) (|partial| -12 (-5 *2 (-1139 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-2567 (*1 *2 *2) (|partial| -12 (-5 *2 (-1139 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4)) (-4 *4 (-342)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-350 *3)) (-4 *3 (-342)))) (-1272 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-350 *3)) (-4 *3 (-342)))) (-2465 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-350 *3)) (-4 *3 (-342)))) (-4091 (*1 *2 *3) (-12 (-5 *3 (-1139 *4)) (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-350 *4)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-1139 *4)) (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-350 *4)))))
+(-10 -7 (-15 -2288 ((-112) (-1139 |#1|))) (-15 -4091 ((-112) (-1139 |#1|))) (-15 -2465 ((-892) (-892))) (-15 -1272 ((-892) (-892))) (-15 -3066 ((-892) (-892))) (-15 -3479 ((-1139 |#1|) (-892))) (-15 -3522 ((-1139 |#1|) (-892))) (-15 -3876 ((-1139 |#1|) (-892))) (-15 -3534 ((-1139 |#1|) (-892))) (-15 -2184 ((-1139 |#1|) (-892))) (-15 -2567 ((-3 (-1139 |#1|) "failed") (-1139 |#1|))) (-15 -2015 ((-3 (-1139 |#1|) "failed") (-1139 |#1|))) (-15 -2520 ((-3 (-1139 |#1|) "failed") (-1139 |#1|))) (-15 -3565 ((-3 (-1139 |#1|) "failed") (-1139 |#1|))) (-15 -1694 ((-3 (-1139 |#1|) "failed") (-1139 |#1|))) (-15 -3239 ((-1139 |#1|) (-892))) (-15 -3239 ((-1139 |#1|) (-892) (-892))) (-15 -2576 ((-1139 |#1|) (-1139 |#1|))) (-15 -1985 ((-929 (-1139 |#1|)) (-1139 |#1|))))
+((-1348 (((-3 (-621 |#3|) "failed") (-621 |#3|) |#3|) 34)))
+(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -1348 ((-3 (-621 |#3|) "failed") (-621 |#3|) |#3|))) (-342) (-1202 |#1|) (-1202 |#2|)) (T -351))
+((-1348 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 *3)) (-4 *3 (-1202 *5)) (-4 *5 (-1202 *4)) (-4 *4 (-342)) (-5 *1 (-351 *4 *5 *3)))))
+(-10 -7 (-15 -1348 ((-3 (-621 |#3|) "failed") (-621 |#3|) |#3|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2044 (((-112) $) NIL)) (-3214 (((-747)) NIL)) (-2906 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-3062 (((-1153 (-892) (-747)) (-549)) NIL (|has| |#1| (-361)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-3614 (((-747)) NIL (|has| |#1| (-361)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL)) (-2659 ((|#1| $) NIL)) (-3492 (($ (-1226 |#1|)) NIL)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| |#1| (-361)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2405 (($) NIL (|has| |#1| (-361)))) (-2288 (((-112) $) NIL (|has| |#1| (-361)))) (-3165 (($ $ (-747)) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1420 (((-112) $) NIL)) (-2088 (((-892) $) NIL (|has| |#1| (-361))) (((-809 (-892)) $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2675 (((-112) $) NIL)) (-1973 (($) NIL (|has| |#1| (-361)))) (-4091 (((-112) $) NIL (|has| |#1| (-361)))) (-3630 ((|#1| $) NIL) (($ $ (-892)) NIL (|has| |#1| (-361)))) (-1681 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3788 (((-1139 |#1|) $) NIL) (((-1139 $) $ (-892)) NIL (|has| |#1| (-361)))) (-1881 (((-892) $) NIL (|has| |#1| (-361)))) (-3318 (((-1139 |#1|) $) NIL (|has| |#1| (-361)))) (-1983 (((-1139 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1139 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-3719 (($ $ (-1139 |#1|)) NIL (|has| |#1| (-361)))) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| |#1| (-361)) CONST)) (-3493 (($ (-892)) NIL (|has| |#1| (-361)))) (-3980 (((-112) $) NIL)) (-3990 (((-1087) $) NIL)) (-4248 (($) NIL (|has| |#1| (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL (|has| |#1| (-361)))) (-2121 (((-411 $) $) NIL)) (-3049 (((-809 (-892))) NIL) (((-892)) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3914 (((-747) $) NIL (|has| |#1| (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2985 (((-133)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-3701 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2815 (((-1139 |#1|)) NIL)) (-3170 (($) NIL (|has| |#1| (-361)))) (-1544 (($) NIL (|has| |#1| (-361)))) (-4263 (((-1226 |#1|) $) NIL) (((-665 |#1|) (-1226 $)) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| |#1| (-361)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) NIL)) (-2210 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2082 (((-747)) NIL)) (-1949 (((-1226 $)) NIL) (((-1226 $) (-892)) NIL)) (-1498 (((-112) $ $) NIL)) (-1606 (((-112) $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1933 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-1702 (($ $) NIL (|has| |#1| (-361))) (($ $ (-747)) NIL (|has| |#1| (-361)))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-352 |#1| |#2|) (-322 |#1|) (-342) (-892)) (T -352))
+NIL
+(-322 |#1|)
+((-2819 (((-112) (-621 (-923 |#1|))) 34)) (-3989 (((-621 (-923 |#1|)) (-621 (-923 |#1|))) 46)) (-3532 (((-3 (-621 (-923 |#1|)) "failed") (-621 (-923 |#1|))) 41)))
+(((-353 |#1| |#2|) (-10 -7 (-15 -2819 ((-112) (-621 (-923 |#1|)))) (-15 -3532 ((-3 (-621 (-923 |#1|)) "failed") (-621 (-923 |#1|)))) (-15 -3989 ((-621 (-923 |#1|)) (-621 (-923 |#1|))))) (-444) (-621 (-1143))) (T -353))
+((-3989 (*1 *2 *2) (-12 (-5 *2 (-621 (-923 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-621 (-1143))))) (-3532 (*1 *2 *2) (|partial| -12 (-5 *2 (-621 (-923 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-621 (-1143))))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-444)) (-5 *2 (-112)) (-5 *1 (-353 *4 *5)) (-14 *5 (-621 (-1143))))))
+(-10 -7 (-15 -2819 ((-112) (-621 (-923 |#1|)))) (-15 -3532 ((-3 (-621 (-923 |#1|)) "failed") (-621 (-923 |#1|)))) (-15 -3989 ((-621 (-923 |#1|)) (-621 (-923 |#1|)))))
+((-3834 (((-112) $ $) NIL)) (-3614 (((-747) $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL)) (-2659 ((|#1| $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2675 (((-112) $) 15)) (-1302 ((|#1| $ (-549)) NIL)) (-2009 (((-549) $ (-549)) NIL)) (-3482 (($ (-1 |#1| |#1|) $) 32)) (-3653 (($ (-1 (-549) (-549)) $) 24)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 26)) (-3990 (((-1087) $) NIL)) (-4024 (((-621 (-2 (|:| |gen| |#1|) (|:| -2719 (-549)))) $) 28)) (-1955 (($ $ $) NIL)) (-3293 (($ $ $) NIL)) (-3846 (((-834) $) 38) (($ |#1|) NIL)) (-3287 (($) 9 T CONST)) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL) (($ |#1| (-549)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-354 |#1|) (-13 (-465) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-549))) (-15 -3614 ((-747) $)) (-15 -2009 ((-549) $ (-549))) (-15 -1302 (|#1| $ (-549))) (-15 -3653 ($ (-1 (-549) (-549)) $)) (-15 -3482 ($ (-1 |#1| |#1|) $)) (-15 -4024 ((-621 (-2 (|:| |gen| |#1|) (|:| -2719 (-549)))) $)))) (-1067)) (T -354))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1067)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1067)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-354 *2)) (-4 *2 (-1067)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-354 *3)) (-4 *3 (-1067)))) (-2009 (*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-354 *3)) (-4 *3 (-1067)))) (-1302 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-354 *2)) (-4 *2 (-1067)))) (-3653 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-549) (-549))) (-5 *1 (-354 *3)) (-4 *3 (-1067)))) (-3482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-354 *3)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2719 (-549))))) (-5 *1 (-354 *3)) (-4 *3 (-1067)))))
+(-13 (-465) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-549))) (-15 -3614 ((-747) $)) (-15 -2009 ((-549) $ (-549))) (-15 -1302 (|#1| $ (-549))) (-15 -3653 ($ (-1 (-549) (-549)) $)) (-15 -3482 ($ (-1 |#1| |#1|) $)) (-15 -4024 ((-621 (-2 (|:| |gen| |#1|) (|:| -2719 (-549)))) $))))
+((-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 13)) (-2258 (($ $) 14)) (-2402 (((-411 $) $) 30)) (-1420 (((-112) $) 26)) (-1992 (($ $) 19)) (-3727 (($ $ $) 23) (($ (-621 $)) NIL)) (-2121 (((-411 $) $) 31)) (-2042 (((-3 $ "failed") $ $) 22)) (-3684 (((-747) $) 25)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 35)) (-1498 (((-112) $ $) 16)) (-2513 (($ $ $) 33)))
+(((-355 |#1|) (-10 -8 (-15 -2513 (|#1| |#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -1420 ((-112) |#1|)) (-15 -2402 ((-411 |#1|) |#1|)) (-15 -2121 ((-411 |#1|) |#1|)) (-15 -3148 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -3684 ((-747) |#1|)) (-15 -3727 (|#1| (-621 |#1|))) (-15 -3727 (|#1| |#1| |#1|)) (-15 -1498 ((-112) |#1| |#1|)) (-15 -2258 (|#1| |#1|)) (-15 -2297 ((-2 (|:| -2207 |#1|) (|:| -4324 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#1|))) (-356)) (T -355))
+NIL
+(-10 -8 (-15 -2513 (|#1| |#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -1420 ((-112) |#1|)) (-15 -2402 ((-411 |#1|) |#1|)) (-15 -2121 ((-411 |#1|) |#1|)) (-15 -3148 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -3684 ((-747) |#1|)) (-15 -3727 (|#1| (-621 |#1|))) (-15 -3727 (|#1| |#1| |#1|)) (-15 -1498 ((-112) |#1| |#1|)) (-15 -2258 (|#1| |#1|)) (-15 -2297 ((-2 (|:| -2207 |#1|) (|:| -4324 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 70)) (-2402 (((-411 $) $) 69)) (-3866 (((-112) $ $) 57)) (-1682 (($) 17 T CONST)) (-2095 (($ $ $) 53)) (-2114 (((-3 $ "failed") $) 32)) (-2067 (($ $ $) 54)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-1420 (((-112) $) 68)) (-2675 (((-112) $) 30)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 67)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2121 (((-411 $) $) 71)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3684 (((-747) $) 56)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ $) 62)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64)))
+(((-356) (-138)) (T -356))
+((-2513 (*1 *1 *1 *1) (-4 *1 (-356))))
+(-13 (-300) (-1184) (-237) (-10 -8 (-15 -2513 ($ $ $)) (-6 -4335) (-6 -4329)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1184) . T))
+((-3834 (((-112) $ $) 7)) (-3113 ((|#2| $ |#2|) 13)) (-2060 (($ $ (-1125)) 18)) (-3001 ((|#2| $) 14)) (-1359 (($ |#1|) 20) (($ |#1| (-1125)) 19)) (-2481 ((|#1| $) 16)) (-3851 (((-1125) $) 9)) (-2646 (((-1125) $) 15)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3578 (($ $) 17)) (-2389 (((-112) $ $) 6)))
+(((-357 |#1| |#2|) (-138) (-1067) (-1067)) (T -357))
+((-1359 (*1 *1 *2) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-1359 (*1 *1 *2 *3) (-12 (-5 *3 (-1125)) (-4 *1 (-357 *2 *4)) (-4 *2 (-1067)) (-4 *4 (-1067)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-1125)) (-4 *1 (-357 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3578 (*1 *1 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-2481 (*1 *2 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-2646 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-1125)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-3113 (*1 *2 *1 *2) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -1359 ($ |t#1|)) (-15 -1359 ($ |t#1| (-1125))) (-15 -2060 ($ $ (-1125))) (-15 -3578 ($ $)) (-15 -2481 (|t#1| $)) (-15 -2646 ((-1125) $)) (-15 -3001 (|t#2| $)) (-15 -3113 (|t#2| $ |t#2|))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-3113 ((|#1| $ |#1|) 30)) (-2060 (($ $ (-1125)) 22)) (-2023 (((-3 |#1| "failed") $) 29)) (-3001 ((|#1| $) 27)) (-1359 (($ (-381)) 21) (($ (-381) (-1125)) 20)) (-2481 (((-381) $) 24)) (-3851 (((-1125) $) NIL)) (-2646 (((-1125) $) 25)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 19)) (-3578 (($ $) 23)) (-2389 (((-112) $ $) 18)))
+(((-358 |#1|) (-13 (-357 (-381) |#1|) (-10 -8 (-15 -2023 ((-3 |#1| "failed") $)))) (-1067)) (T -358))
+((-2023 (*1 *2 *1) (|partial| -12 (-5 *1 (-358 *2)) (-4 *2 (-1067)))))
+(-13 (-357 (-381) |#1|) (-10 -8 (-15 -2023 ((-3 |#1| "failed") $))))
+((-3277 (((-1226 (-665 |#2|)) (-1226 $)) 61)) (-4212 (((-665 |#2|) (-1226 $)) 120)) (-2840 ((|#2| $) 32)) (-3841 (((-665 |#2|) $ (-1226 $)) 123)) (-3038 (((-3 $ "failed") $) 75)) (-2182 ((|#2| $) 35)) (-2289 (((-1139 |#2|) $) 83)) (-3076 ((|#2| (-1226 $)) 106)) (-3266 (((-1139 |#2|) $) 28)) (-1368 (((-112)) 100)) (-3492 (($ (-1226 |#2|) (-1226 $)) 113)) (-2114 (((-3 $ "failed") $) 79)) (-3975 (((-112)) 95)) (-2291 (((-112)) 90)) (-2647 (((-112)) 53)) (-2870 (((-665 |#2|) (-1226 $)) 118)) (-2654 ((|#2| $) 31)) (-2303 (((-665 |#2|) $ (-1226 $)) 122)) (-1919 (((-3 $ "failed") $) 73)) (-2248 ((|#2| $) 34)) (-1378 (((-1139 |#2|) $) 82)) (-2920 ((|#2| (-1226 $)) 104)) (-2443 (((-1139 |#2|) $) 26)) (-3623 (((-112)) 99)) (-3260 (((-112)) 92)) (-2754 (((-112)) 51)) (-2055 (((-112)) 87)) (-2392 (((-112)) 101)) (-4263 (((-1226 |#2|) $ (-1226 $)) NIL) (((-665 |#2|) (-1226 $) (-1226 $)) 111)) (-1942 (((-112)) 97)) (-4315 (((-621 (-1226 |#2|))) 86)) (-3430 (((-112)) 98)) (-2864 (((-112)) 96)) (-4257 (((-112)) 46)) (-1898 (((-112)) 102)))
+(((-359 |#1| |#2|) (-10 -8 (-15 -2289 ((-1139 |#2|) |#1|)) (-15 -1378 ((-1139 |#2|) |#1|)) (-15 -4315 ((-621 (-1226 |#2|)))) (-15 -3038 ((-3 |#1| "failed") |#1|)) (-15 -1919 ((-3 |#1| "failed") |#1|)) (-15 -2114 ((-3 |#1| "failed") |#1|)) (-15 -2291 ((-112))) (-15 -3260 ((-112))) (-15 -3975 ((-112))) (-15 -2754 ((-112))) (-15 -2647 ((-112))) (-15 -2055 ((-112))) (-15 -1898 ((-112))) (-15 -2392 ((-112))) (-15 -1368 ((-112))) (-15 -3623 ((-112))) (-15 -4257 ((-112))) (-15 -3430 ((-112))) (-15 -2864 ((-112))) (-15 -1942 ((-112))) (-15 -3266 ((-1139 |#2|) |#1|)) (-15 -2443 ((-1139 |#2|) |#1|)) (-15 -4212 ((-665 |#2|) (-1226 |#1|))) (-15 -2870 ((-665 |#2|) (-1226 |#1|))) (-15 -3076 (|#2| (-1226 |#1|))) (-15 -2920 (|#2| (-1226 |#1|))) (-15 -3492 (|#1| (-1226 |#2|) (-1226 |#1|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1| (-1226 |#1|))) (-15 -2182 (|#2| |#1|)) (-15 -2248 (|#2| |#1|)) (-15 -2840 (|#2| |#1|)) (-15 -2654 (|#2| |#1|)) (-15 -3841 ((-665 |#2|) |#1| (-1226 |#1|))) (-15 -2303 ((-665 |#2|) |#1| (-1226 |#1|))) (-15 -3277 ((-1226 (-665 |#2|)) (-1226 |#1|)))) (-360 |#2|) (-170)) (T -359))
+((-1942 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2864 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3430 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-4257 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3623 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1368 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2392 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1898 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2055 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2647 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2754 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3975 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-3260 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-2291 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-4315 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-621 (-1226 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))))
+(-10 -8 (-15 -2289 ((-1139 |#2|) |#1|)) (-15 -1378 ((-1139 |#2|) |#1|)) (-15 -4315 ((-621 (-1226 |#2|)))) (-15 -3038 ((-3 |#1| "failed") |#1|)) (-15 -1919 ((-3 |#1| "failed") |#1|)) (-15 -2114 ((-3 |#1| "failed") |#1|)) (-15 -2291 ((-112))) (-15 -3260 ((-112))) (-15 -3975 ((-112))) (-15 -2754 ((-112))) (-15 -2647 ((-112))) (-15 -2055 ((-112))) (-15 -1898 ((-112))) (-15 -2392 ((-112))) (-15 -1368 ((-112))) (-15 -3623 ((-112))) (-15 -4257 ((-112))) (-15 -3430 ((-112))) (-15 -2864 ((-112))) (-15 -1942 ((-112))) (-15 -3266 ((-1139 |#2|) |#1|)) (-15 -2443 ((-1139 |#2|) |#1|)) (-15 -4212 ((-665 |#2|) (-1226 |#1|))) (-15 -2870 ((-665 |#2|) (-1226 |#1|))) (-15 -3076 (|#2| (-1226 |#1|))) (-15 -2920 (|#2| (-1226 |#1|))) (-15 -3492 (|#1| (-1226 |#2|) (-1226 |#1|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1| (-1226 |#1|))) (-15 -2182 (|#2| |#1|)) (-15 -2248 (|#2| |#1|)) (-15 -2840 (|#2| |#1|)) (-15 -2654 (|#2| |#1|)) (-15 -3841 ((-665 |#2|) |#1| (-1226 |#1|))) (-15 -2303 ((-665 |#2|) |#1| (-1226 |#1|))) (-15 -3277 ((-1226 (-665 |#2|)) (-1226 |#1|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2207 (((-3 $ "failed")) 37 (|has| |#1| (-541)))) (-2001 (((-3 $ "failed") $ $) 19)) (-3277 (((-1226 (-665 |#1|)) (-1226 $)) 78)) (-3945 (((-1226 $)) 81)) (-1682 (($) 17 T CONST)) (-3219 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) 40 (|has| |#1| (-541)))) (-3550 (((-3 $ "failed")) 38 (|has| |#1| (-541)))) (-4212 (((-665 |#1|) (-1226 $)) 65)) (-2840 ((|#1| $) 74)) (-3841 (((-665 |#1|) $ (-1226 $)) 76)) (-3038 (((-3 $ "failed") $) 45 (|has| |#1| (-541)))) (-3117 (($ $ (-892)) 28)) (-2182 ((|#1| $) 72)) (-2289 (((-1139 |#1|) $) 42 (|has| |#1| (-541)))) (-3076 ((|#1| (-1226 $)) 67)) (-3266 (((-1139 |#1|) $) 63)) (-1368 (((-112)) 57)) (-3492 (($ (-1226 |#1|) (-1226 $)) 69)) (-2114 (((-3 $ "failed") $) 47 (|has| |#1| (-541)))) (-3123 (((-892)) 80)) (-3601 (((-112)) 54)) (-2943 (($ $ (-892)) 33)) (-3975 (((-112)) 50)) (-2291 (((-112)) 48)) (-2647 (((-112)) 52)) (-1742 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) 41 (|has| |#1| (-541)))) (-4101 (((-3 $ "failed")) 39 (|has| |#1| (-541)))) (-2870 (((-665 |#1|) (-1226 $)) 66)) (-2654 ((|#1| $) 75)) (-2303 (((-665 |#1|) $ (-1226 $)) 77)) (-1919 (((-3 $ "failed") $) 46 (|has| |#1| (-541)))) (-2884 (($ $ (-892)) 29)) (-2248 ((|#1| $) 73)) (-1378 (((-1139 |#1|) $) 43 (|has| |#1| (-541)))) (-2920 ((|#1| (-1226 $)) 68)) (-2443 (((-1139 |#1|) $) 64)) (-3623 (((-112)) 58)) (-3851 (((-1125) $) 9)) (-3260 (((-112)) 49)) (-2754 (((-112)) 51)) (-2055 (((-112)) 53)) (-3990 (((-1087) $) 10)) (-2392 (((-112)) 56)) (-4263 (((-1226 |#1|) $ (-1226 $)) 71) (((-665 |#1|) (-1226 $) (-1226 $)) 70)) (-4111 (((-621 (-923 |#1|)) (-1226 $)) 79)) (-3293 (($ $ $) 25)) (-1942 (((-112)) 62)) (-3846 (((-834) $) 11)) (-4315 (((-621 (-1226 |#1|))) 44 (|has| |#1| (-541)))) (-4272 (($ $ $ $) 26)) (-3430 (((-112)) 60)) (-2174 (($ $ $) 24)) (-2864 (((-112)) 61)) (-4257 (((-112)) 59)) (-1898 (((-112)) 55)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 30)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-360 |#1|) (-138) (-170)) (T -360))
+((-3945 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1226 *1)) (-4 *1 (-360 *3)))) (-3123 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-892)))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-621 (-923 *4))))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1226 (-665 *4))))) (-2303 (*1 *2 *1 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-3841 (*1 *2 *1 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-2248 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-4263 (*1 *2 *1 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1226 *4)))) (-4263 (*1 *2 *3 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-3492 (*1 *1 *2 *3) (-12 (-5 *2 (-1226 *4)) (-5 *3 (-1226 *1)) (-4 *4 (-170)) (-4 *1 (-360 *4)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1139 *3)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1139 *3)))) (-1942 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2864 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3430 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4257 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3623 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1368 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2392 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1898 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3601 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2055 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2647 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2754 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3975 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3260 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2291 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2114 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-541)))) (-1919 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-541)))) (-3038 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-541)))) (-4315 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-541)) (-5 *2 (-621 (-1226 *3))))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-541)) (-5 *2 (-1139 *3)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-541)) (-5 *2 (-1139 *3)))) (-1742 (*1 *2) (|partial| -12 (-4 *3 (-541)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1949 (-621 *1)))) (-4 *1 (-360 *3)))) (-3219 (*1 *2) (|partial| -12 (-4 *3 (-541)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1949 (-621 *1)))) (-4 *1 (-360 *3)))) (-4101 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-541)) (-4 *2 (-170)))) (-3550 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-541)) (-4 *2 (-170)))) (-2207 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-541)) (-4 *2 (-170)))))
+(-13 (-721 |t#1|) (-10 -8 (-15 -3945 ((-1226 $))) (-15 -3123 ((-892))) (-15 -4111 ((-621 (-923 |t#1|)) (-1226 $))) (-15 -3277 ((-1226 (-665 |t#1|)) (-1226 $))) (-15 -2303 ((-665 |t#1|) $ (-1226 $))) (-15 -3841 ((-665 |t#1|) $ (-1226 $))) (-15 -2654 (|t#1| $)) (-15 -2840 (|t#1| $)) (-15 -2248 (|t#1| $)) (-15 -2182 (|t#1| $)) (-15 -4263 ((-1226 |t#1|) $ (-1226 $))) (-15 -4263 ((-665 |t#1|) (-1226 $) (-1226 $))) (-15 -3492 ($ (-1226 |t#1|) (-1226 $))) (-15 -2920 (|t#1| (-1226 $))) (-15 -3076 (|t#1| (-1226 $))) (-15 -2870 ((-665 |t#1|) (-1226 $))) (-15 -4212 ((-665 |t#1|) (-1226 $))) (-15 -2443 ((-1139 |t#1|) $)) (-15 -3266 ((-1139 |t#1|) $)) (-15 -1942 ((-112))) (-15 -2864 ((-112))) (-15 -3430 ((-112))) (-15 -4257 ((-112))) (-15 -3623 ((-112))) (-15 -1368 ((-112))) (-15 -2392 ((-112))) (-15 -1898 ((-112))) (-15 -3601 ((-112))) (-15 -2055 ((-112))) (-15 -2647 ((-112))) (-15 -2754 ((-112))) (-15 -3975 ((-112))) (-15 -3260 ((-112))) (-15 -2291 ((-112))) (IF (|has| |t#1| (-541)) (PROGN (-15 -2114 ((-3 $ "failed") $)) (-15 -1919 ((-3 $ "failed") $)) (-15 -3038 ((-3 $ "failed") $)) (-15 -4315 ((-621 (-1226 |t#1|)))) (-15 -1378 ((-1139 |t#1|) $)) (-15 -2289 ((-1139 |t#1|) $)) (-15 -1742 ((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed"))) (-15 -3219 ((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed"))) (-15 -4101 ((-3 $ "failed"))) (-15 -3550 ((-3 $ "failed"))) (-15 -2207 ((-3 $ "failed"))) (-6 -4334)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-697) . T) ((-721 |#1|) . T) ((-738) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-3834 (((-112) $ $) 7)) (-3614 (((-747)) 16)) (-3239 (($) 13)) (-1881 (((-892) $) 14)) (-3851 (((-1125) $) 9)) (-3493 (($ (-892)) 15)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2389 (((-112) $ $) 6)))
+(((-361) (-138)) (T -361))
+((-3614 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-747)))) (-3493 (*1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-361)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-892)))) (-3239 (*1 *1) (-4 *1 (-361))))
+(-13 (-1067) (-10 -8 (-15 -3614 ((-747))) (-15 -3493 ($ (-892))) (-15 -1881 ((-892) $)) (-15 -3239 ($))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-1738 (((-665 |#2|) (-1226 $)) 40)) (-3492 (($ (-1226 |#2|) (-1226 $)) 34)) (-3506 (((-665 |#2|) $ (-1226 $)) 42)) (-3602 ((|#2| (-1226 $)) 13)) (-4263 (((-1226 |#2|) $ (-1226 $)) NIL) (((-665 |#2|) (-1226 $) (-1226 $)) 25)))
+(((-362 |#1| |#2| |#3|) (-10 -8 (-15 -1738 ((-665 |#2|) (-1226 |#1|))) (-15 -3602 (|#2| (-1226 |#1|))) (-15 -3492 (|#1| (-1226 |#2|) (-1226 |#1|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1| (-1226 |#1|))) (-15 -3506 ((-665 |#2|) |#1| (-1226 |#1|)))) (-363 |#2| |#3|) (-170) (-1202 |#2|)) (T -362))
+NIL
+(-10 -8 (-15 -1738 ((-665 |#2|) (-1226 |#1|))) (-15 -3602 (|#2| (-1226 |#1|))) (-15 -3492 (|#1| (-1226 |#2|) (-1226 |#1|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1| (-1226 |#1|))) (-15 -3506 ((-665 |#2|) |#1| (-1226 |#1|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-1738 (((-665 |#1|) (-1226 $)) 44)) (-2906 ((|#1| $) 50)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3492 (($ (-1226 |#1|) (-1226 $)) 46)) (-3506 (((-665 |#1|) $ (-1226 $)) 51)) (-2114 (((-3 $ "failed") $) 32)) (-3123 (((-892)) 52)) (-2675 (((-112) $) 30)) (-3630 ((|#1| $) 49)) (-3788 ((|#2| $) 42 (|has| |#1| (-356)))) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3602 ((|#1| (-1226 $)) 45)) (-4263 (((-1226 |#1|) $ (-1226 $)) 48) (((-665 |#1|) (-1226 $) (-1226 $)) 47)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35)) (-2210 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-4154 ((|#2| $) 43)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-363 |#1| |#2|) (-138) (-170) (-1202 |t#1|)) (T -363))
+((-3123 (*1 *2) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1202 *3)) (-5 *2 (-892)))) (-3506 (*1 *2 *1 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1202 *4)) (-5 *2 (-665 *4)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1202 *2)) (-4 *2 (-170)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1202 *2)) (-4 *2 (-170)))) (-4263 (*1 *2 *1 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1202 *4)) (-5 *2 (-1226 *4)))) (-4263 (*1 *2 *3 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1202 *4)) (-5 *2 (-665 *4)))) (-3492 (*1 *1 *2 *3) (-12 (-5 *2 (-1226 *4)) (-5 *3 (-1226 *1)) (-4 *4 (-170)) (-4 *1 (-363 *4 *5)) (-4 *5 (-1202 *4)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1202 *2)) (-4 *2 (-170)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1202 *4)) (-5 *2 (-665 *4)))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1202 *3)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) (-4 *2 (-1202 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3123 ((-892))) (-15 -3506 ((-665 |t#1|) $ (-1226 $))) (-15 -2906 (|t#1| $)) (-15 -3630 (|t#1| $)) (-15 -4263 ((-1226 |t#1|) $ (-1226 $))) (-15 -4263 ((-665 |t#1|) (-1226 $) (-1226 $))) (-15 -3492 ($ (-1226 |t#1|) (-1226 $))) (-15 -3602 (|t#1| (-1226 $))) (-15 -1738 ((-665 |t#1|) (-1226 $))) (-15 -4154 (|t#2| $)) (IF (|has| |t#1| (-356)) (-15 -3788 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3804 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2557 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2797 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-364 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2797 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2557 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3804 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1180) (-366 |#1|) (-1180) (-366 |#3|)) (T -364))
+((-3804 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1180)) (-4 *5 (-1180)) (-4 *2 (-366 *5)) (-5 *1 (-364 *6 *4 *5 *2)) (-4 *4 (-366 *6)))) (-2557 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1180)) (-4 *2 (-1180)) (-5 *1 (-364 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-4 *2 (-366 *6)) (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-366 *5)))))
+(-10 -7 (-15 -2797 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2557 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3804 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-4142 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-4311 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3193 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3064 (($ $) 25)) (-2883 (((-549) (-1 (-112) |#2|) $) NIL) (((-549) |#2| $) 11) (((-549) |#2| $ (-549)) NIL)) (-3890 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-365 |#1| |#2|) (-10 -8 (-15 -4311 (|#1| |#1|)) (-15 -4311 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4142 ((-112) |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3890 (|#1| |#1| |#1|)) (-15 -2883 ((-549) |#2| |#1| (-549))) (-15 -2883 ((-549) |#2| |#1|)) (-15 -2883 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -4142 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3193 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3064 (|#1| |#1|)) (-15 -3890 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-366 |#2|) (-1180)) (T -365))
+NIL
+(-10 -8 (-15 -4311 (|#1| |#1|)) (-15 -4311 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4142 ((-112) |#1|)) (-15 -3193 (|#1| |#1|)) (-15 -3890 (|#1| |#1| |#1|)) (-15 -2883 ((-549) |#2| |#1| (-549))) (-15 -2883 ((-549) |#2| |#1|)) (-15 -2883 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -4142 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3193 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3064 (|#1| |#1|)) (-15 -3890 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1535 (((-1231) $ (-549) (-549)) 40 (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-4311 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4338))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4338))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1584 (((-112) $ (-747)) 8)) (-2254 ((|#1| $ (-549) |#1|) 52 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) 58 (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-1585 (($ $) 90 (|has| $ (-6 -4338)))) (-3064 (($ $) 100)) (-3676 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) 51)) (-2883 (((-549) (-1 (-112) |#1|) $) 97) (((-549) |#1| $) 96 (|has| |#1| (-1067))) (((-549) |#1| $ (-549)) 95 (|has| |#1| (-1067)))) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3743 (($ (-747) |#1|) 69)) (-3194 (((-112) $ (-747)) 9)) (-4031 (((-549) $) 43 (|has| (-549) (-823)))) (-2863 (($ $ $) 87 (|has| |#1| (-823)))) (-3890 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 44 (|has| (-549) (-823)))) (-3575 (($ $ $) 86 (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-2616 (($ |#1| $ (-549)) 60) (($ $ $ (-549)) 59)) (-3303 (((-621 (-549)) $) 46)) (-3761 (((-112) (-549) $) 47)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3646 ((|#1| $) 42 (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-1642 (($ $ |#1|) 41 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) 48)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ (-549) |#1|) 50) ((|#1| $ (-549)) 49) (($ $ (-1193 (-549))) 63)) (-2167 (($ $ (-549)) 62) (($ $ (-1193 (-549))) 61)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2730 (($ $ $ (-549)) 91 (|has| $ (-6 -4338)))) (-2281 (($ $) 13)) (-2845 (((-525) $) 79 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 70)) (-1952 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 83 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-2438 (((-112) $ $) 85 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 82 (|has| |#1| (-823)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-366 |#1|) (-138) (-1180)) (T -366))
+((-3890 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1180)))) (-3064 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1180)))) (-3193 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1180)))) (-4142 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-366 *4)) (-4 *4 (-1180)) (-5 *2 (-112)))) (-2883 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-366 *4)) (-4 *4 (-1180)) (-5 *2 (-549)))) (-2883 (*1 *2 *3 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1180)) (-4 *3 (-1067)) (-5 *2 (-549)))) (-2883 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-366 *3)) (-4 *3 (-1180)) (-4 *3 (-1067)))) (-3890 (*1 *1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1180)) (-4 *2 (-823)))) (-3193 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1180)) (-4 *2 (-823)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1180)) (-4 *3 (-823)) (-5 *2 (-112)))) (-2730 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (|has| *1 (-6 -4338)) (-4 *1 (-366 *3)) (-4 *3 (-1180)))) (-1585 (*1 *1 *1) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-366 *2)) (-4 *2 (-1180)))) (-4311 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4338)) (-4 *1 (-366 *3)) (-4 *3 (-1180)))) (-4311 (*1 *1 *1) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-366 *2)) (-4 *2 (-1180)) (-4 *2 (-823)))))
+(-13 (-627 |t#1|) (-10 -8 (-6 -4337) (-15 -3890 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3064 ($ $)) (-15 -3193 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -4142 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2883 ((-549) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -2883 ((-549) |t#1| $)) (-15 -2883 ((-549) |t#1| $ (-549)))) |%noBranch|) (IF (|has| |t#1| (-823)) (PROGN (-6 (-823)) (-15 -3890 ($ $ $)) (-15 -3193 ($ $)) (-15 -4142 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4338)) (PROGN (-15 -2730 ($ $ $ (-549))) (-15 -1585 ($ $)) (-15 -4311 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-823)) (-15 -4311 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-101) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1067) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1180) . T))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-3304 (((-621 |#1|) $) 32)) (-3210 (($ $ (-747)) 33)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-1869 (((-1250 |#1| |#2|) (-1250 |#1| |#2|) $) 36)) (-4273 (($ $) 34)) (-2694 (((-1250 |#1| |#2|) (-1250 |#1| |#2|) $) 37)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2686 (($ $ |#1| $) 31) (($ $ (-621 |#1|) (-621 $)) 30)) (-3701 (((-747) $) 38)) (-3854 (($ $ $) 29)) (-3846 (((-834) $) 11) (($ |#1|) 41) (((-1241 |#1| |#2|) $) 40) (((-1250 |#1| |#2|) $) 39)) (-1570 ((|#2| (-1250 |#1| |#2|) $) 42)) (-3276 (($) 18 T CONST)) (-3037 (($ (-648 |#1|)) 35)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#2|) 28 (|has| |#2| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+(((-367 |#1| |#2|) (-138) (-823) (-170)) (T -367))
+((-1570 (*1 *2 *3 *1) (-12 (-5 *3 (-1250 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-823)) (-4 *2 (-170)))) (-3846 (*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-1241 *3 *4)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-1250 *3 *4)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-747)))) (-2694 (*1 *2 *2 *1) (-12 (-5 *2 (-1250 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-1869 (*1 *2 *2 *1) (-12 (-5 *2 (-1250 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-3037 (*1 *1 *2) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-4 *1 (-367 *3 *4)) (-4 *4 (-170)))) (-4273 (*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) (-3210 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *2 (-621 *3)))) (-2686 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170)))) (-2686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 *1)) (-4 *1 (-367 *4 *5)) (-4 *4 (-823)) (-4 *5 (-170)))))
+(-13 (-612 |t#2|) (-10 -8 (-15 -1570 (|t#2| (-1250 |t#1| |t#2|) $)) (-15 -3846 ($ |t#1|)) (-15 -3846 ((-1241 |t#1| |t#2|) $)) (-15 -3846 ((-1250 |t#1| |t#2|) $)) (-15 -3701 ((-747) $)) (-15 -2694 ((-1250 |t#1| |t#2|) (-1250 |t#1| |t#2|) $)) (-15 -1869 ((-1250 |t#1| |t#2|) (-1250 |t#1| |t#2|) $)) (-15 -3037 ($ (-648 |t#1|))) (-15 -4273 ($ $)) (-15 -3210 ($ $ (-747))) (-15 -3304 ((-621 |t#1|) $)) (-15 -2686 ($ $ |t#1| $)) (-15 -2686 ($ $ (-621 |t#1|) (-621 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#2|) . T) ((-612 |#2|) . T) ((-694 |#2|) . T) ((-1024 |#2|) . T) ((-1067) . T))
+((-1360 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-3257 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3373 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22)))
+(((-368 |#1| |#2|) (-10 -7 (-15 -3257 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3373 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1360 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1180) (-13 (-366 |#1|) (-10 -7 (-6 -4338)))) (T -368))
+((-1360 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1180)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4338)))))) (-3373 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1180)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4338)))))) (-3257 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1180)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4338)))))))
+(-10 -7 (-15 -3257 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3373 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1360 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-3879 (((-665 |#2|) (-665 $)) NIL) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 22) (((-665 (-549)) (-665 $)) 14)))
+(((-369 |#1| |#2|) (-10 -8 (-15 -3879 ((-665 (-549)) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-665 |#2|) (-665 |#1|)))) (-370 |#2|) (-1018)) (T -369))
+NIL
+(-10 -8 (-15 -3879 ((-665 (-549)) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-665 |#2|) (-665 |#1|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3879 (((-665 |#1|) (-665 $)) 34) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 33) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 41 (|has| |#1| (-617 (-549)))) (((-665 (-549)) (-665 $)) 40 (|has| |#1| (-617 (-549))))) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ (-549)) 27)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-370 |#1|) (-138) (-1018)) (T -370))
+NIL
+(-13 (-617 |t#1|) (-10 -7 (IF (|has| |t#1| (-617 (-549))) (-6 (-617 (-549))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-1788 (((-621 (-287 (-923 (-167 |#1|)))) (-287 (-400 (-923 (-167 (-549))))) |#1|) 51) (((-621 (-287 (-923 (-167 |#1|)))) (-400 (-923 (-167 (-549)))) |#1|) 50) (((-621 (-621 (-287 (-923 (-167 |#1|))))) (-621 (-287 (-400 (-923 (-167 (-549)))))) |#1|) 47) (((-621 (-621 (-287 (-923 (-167 |#1|))))) (-621 (-400 (-923 (-167 (-549))))) |#1|) 41)) (-1298 (((-621 (-621 (-167 |#1|))) (-621 (-400 (-923 (-167 (-549))))) (-621 (-1143)) |#1|) 30) (((-621 (-167 |#1|)) (-400 (-923 (-167 (-549)))) |#1|) 18)))
+(((-371 |#1|) (-10 -7 (-15 -1788 ((-621 (-621 (-287 (-923 (-167 |#1|))))) (-621 (-400 (-923 (-167 (-549))))) |#1|)) (-15 -1788 ((-621 (-621 (-287 (-923 (-167 |#1|))))) (-621 (-287 (-400 (-923 (-167 (-549)))))) |#1|)) (-15 -1788 ((-621 (-287 (-923 (-167 |#1|)))) (-400 (-923 (-167 (-549)))) |#1|)) (-15 -1788 ((-621 (-287 (-923 (-167 |#1|)))) (-287 (-400 (-923 (-167 (-549))))) |#1|)) (-15 -1298 ((-621 (-167 |#1|)) (-400 (-923 (-167 (-549)))) |#1|)) (-15 -1298 ((-621 (-621 (-167 |#1|))) (-621 (-400 (-923 (-167 (-549))))) (-621 (-1143)) |#1|))) (-13 (-356) (-821))) (T -371))
+((-1298 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 (-400 (-923 (-167 (-549)))))) (-5 *4 (-621 (-1143))) (-5 *2 (-621 (-621 (-167 *5)))) (-5 *1 (-371 *5)) (-4 *5 (-13 (-356) (-821))))) (-1298 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 (-167 (-549))))) (-5 *2 (-621 (-167 *4))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-821))))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-923 (-167 (-549)))))) (-5 *2 (-621 (-287 (-923 (-167 *4))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-821))))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 (-167 (-549))))) (-5 *2 (-621 (-287 (-923 (-167 *4))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-821))))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-287 (-400 (-923 (-167 (-549))))))) (-5 *2 (-621 (-621 (-287 (-923 (-167 *4)))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-821))))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-400 (-923 (-167 (-549)))))) (-5 *2 (-621 (-621 (-287 (-923 (-167 *4)))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-821))))))
+(-10 -7 (-15 -1788 ((-621 (-621 (-287 (-923 (-167 |#1|))))) (-621 (-400 (-923 (-167 (-549))))) |#1|)) (-15 -1788 ((-621 (-621 (-287 (-923 (-167 |#1|))))) (-621 (-287 (-400 (-923 (-167 (-549)))))) |#1|)) (-15 -1788 ((-621 (-287 (-923 (-167 |#1|)))) (-400 (-923 (-167 (-549)))) |#1|)) (-15 -1788 ((-621 (-287 (-923 (-167 |#1|)))) (-287 (-400 (-923 (-167 (-549))))) |#1|)) (-15 -1298 ((-621 (-167 |#1|)) (-400 (-923 (-167 (-549)))) |#1|)) (-15 -1298 ((-621 (-621 (-167 |#1|))) (-621 (-400 (-923 (-167 (-549))))) (-621 (-1143)) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 33)) (-3329 (((-549) $) 55)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-3896 (($ $) 110)) (-1664 (($ $) 82)) (-1512 (($ $) 71)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-2134 (($ $) 44)) (-3866 (((-112) $ $) NIL)) (-1640 (($ $) 80)) (-1486 (($ $) 69)) (-1872 (((-549) $) 64)) (-1310 (($ $ (-549)) 62)) (-1685 (($ $) NIL)) (-1539 (($ $) NIL)) (-1682 (($) NIL T CONST)) (-3252 (($ $) 112)) (-2714 (((-3 (-549) "failed") $) 189) (((-3 (-400 (-549)) "failed") $) 185)) (-2659 (((-549) $) 187) (((-400 (-549)) $) 183)) (-2095 (($ $ $) NIL)) (-4155 (((-549) $ $) 102)) (-2114 (((-3 $ "failed") $) 114)) (-2393 (((-400 (-549)) $ (-747)) 190) (((-400 (-549)) $ (-747) (-747)) 182)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-3236 (((-892)) 73) (((-892) (-892)) 98 (|has| $ (-6 -4328)))) (-2772 (((-112) $) 106)) (-1425 (($) 40)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL)) (-3785 (((-1231) (-747)) 152)) (-1500 (((-1231)) 157) (((-1231) (-747)) 158)) (-3017 (((-1231)) 159) (((-1231) (-747)) 160)) (-2687 (((-1231)) 155) (((-1231) (-747)) 156)) (-2088 (((-549) $) 58)) (-2675 (((-112) $) 104)) (-4187 (($ $ (-549)) NIL)) (-1322 (($ $) 48)) (-3630 (($ $) NIL)) (-2374 (((-112) $) 35)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2863 (($ $ $) NIL) (($) NIL (-12 (-4008 (|has| $ (-6 -4320))) (-4008 (|has| $ (-6 -4328)))))) (-3575 (($ $ $) NIL) (($) 99 (-12 (-4008 (|has| $ (-6 -4320))) (-4008 (|has| $ (-6 -4328)))))) (-1461 (((-549) $) 17)) (-1393 (($) 87) (($ $) 92)) (-2301 (($) 91) (($ $) 93)) (-3632 (($ $) 83)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 116)) (-2429 (((-892) (-549)) 43 (|has| $ (-6 -4328)))) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2873 (($ $) 53)) (-3967 (($ $) 109)) (-1355 (($ (-549) (-549)) 107) (($ (-549) (-549) (-892)) 108)) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3731 (((-549) $) 19)) (-3716 (($) 94)) (-2719 (($ $) 79)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3862 (((-892)) 100) (((-892) (-892)) 101 (|has| $ (-6 -4328)))) (-3456 (($ $ (-747)) NIL) (($ $) 115)) (-2324 (((-892) (-549)) 47 (|has| $ (-6 -4328)))) (-1698 (($ $) NIL)) (-1552 (($ $) NIL)) (-1675 (($ $) NIL)) (-1526 (($ $) NIL)) (-1651 (($ $) 81)) (-1501 (($ $) 70)) (-2845 (((-372) $) 175) (((-219) $) 177) (((-863 (-372)) $) NIL) (((-1125) $) 162) (((-525) $) 173) (($ (-219)) 181)) (-3846 (((-834) $) 164) (($ (-549)) 186) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-549)) 186) (($ (-400 (-549))) NIL) (((-219) $) 178)) (-2082 (((-747)) NIL)) (-2546 (($ $) 111)) (-1502 (((-892)) 54) (((-892) (-892)) 66 (|has| $ (-6 -4328)))) (-1864 (((-892)) 103)) (-1733 (($ $) 86)) (-1587 (($ $) 46) (($ $ $) 52)) (-1498 (((-112) $ $) NIL)) (-1710 (($ $) 84)) (-1564 (($ $) 37)) (-1758 (($ $) NIL)) (-1612 (($ $) NIL)) (-1934 (($ $) NIL)) (-1627 (($ $) NIL)) (-1745 (($ $) NIL)) (-1600 (($ $) NIL)) (-1722 (($ $) 85)) (-1576 (($ $) 49)) (-3212 (($ $) 51)) (-3276 (($) 34 T CONST)) (-3287 (($) 38 T CONST)) (-4245 (((-1125) $) 27) (((-1125) $ (-112)) 29) (((-1231) (-798) $) 30) (((-1231) (-798) $ (-112)) 31)) (-1702 (($ $ (-747)) NIL) (($ $) NIL)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 39)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 42)) (-2513 (($ $ $) 45) (($ $ (-549)) 41)) (-2500 (($ $) 36) (($ $ $) 50)) (-2486 (($ $ $) 61)) (** (($ $ (-892)) 67) (($ $ (-747)) NIL) (($ $ (-549)) 88) (($ $ (-400 (-549))) 125) (($ $ $) 117)) (* (($ (-892) $) 65) (($ (-747) $) NIL) (($ (-549) $) 68) (($ $ $) 60) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
+(((-372) (-13 (-397) (-227) (-594 (-1125)) (-804) (-593 (-219)) (-1165) (-594 (-525)) (-10 -8 (-15 -2513 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -1322 ($ $)) (-15 -4155 ((-549) $ $)) (-15 -1310 ($ $ (-549))) (-15 -2393 ((-400 (-549)) $ (-747))) (-15 -2393 ((-400 (-549)) $ (-747) (-747))) (-15 -1393 ($)) (-15 -2301 ($)) (-15 -3716 ($)) (-15 -1587 ($ $ $)) (-15 -1393 ($ $)) (-15 -2301 ($ $)) (-15 -2845 ($ (-219))) (-15 -3017 ((-1231))) (-15 -3017 ((-1231) (-747))) (-15 -2687 ((-1231))) (-15 -2687 ((-1231) (-747))) (-15 -1500 ((-1231))) (-15 -1500 ((-1231) (-747))) (-15 -3785 ((-1231) (-747))) (-6 -4328) (-6 -4320)))) (T -372))
+((** (*1 *1 *1 *1) (-5 *1 (-372))) (-2513 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-372)))) (-1322 (*1 *1 *1) (-5 *1 (-372))) (-4155 (*1 *2 *1 *1) (-12 (-5 *2 (-549)) (-5 *1 (-372)))) (-1310 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-372)))) (-2393 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-372)))) (-2393 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-372)))) (-1393 (*1 *1) (-5 *1 (-372))) (-2301 (*1 *1) (-5 *1 (-372))) (-3716 (*1 *1) (-5 *1 (-372))) (-1587 (*1 *1 *1 *1) (-5 *1 (-372))) (-1393 (*1 *1 *1) (-5 *1 (-372))) (-2301 (*1 *1 *1) (-5 *1 (-372))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-372)))) (-3017 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-372)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-372)))) (-2687 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-372)))) (-2687 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-372)))) (-1500 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-372)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-372)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-372)))))
+(-13 (-397) (-227) (-594 (-1125)) (-804) (-593 (-219)) (-1165) (-594 (-525)) (-10 -8 (-15 -2513 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -1322 ($ $)) (-15 -4155 ((-549) $ $)) (-15 -1310 ($ $ (-549))) (-15 -2393 ((-400 (-549)) $ (-747))) (-15 -2393 ((-400 (-549)) $ (-747) (-747))) (-15 -1393 ($)) (-15 -2301 ($)) (-15 -3716 ($)) (-15 -1587 ($ $ $)) (-15 -1393 ($ $)) (-15 -2301 ($ $)) (-15 -2845 ($ (-219))) (-15 -3017 ((-1231))) (-15 -3017 ((-1231) (-747))) (-15 -2687 ((-1231))) (-15 -2687 ((-1231) (-747))) (-15 -1500 ((-1231))) (-15 -1500 ((-1231) (-747))) (-15 -3785 ((-1231) (-747))) (-6 -4328) (-6 -4320)))
+((-2227 (((-621 (-287 (-923 |#1|))) (-287 (-400 (-923 (-549)))) |#1|) 46) (((-621 (-287 (-923 |#1|))) (-400 (-923 (-549))) |#1|) 45) (((-621 (-621 (-287 (-923 |#1|)))) (-621 (-287 (-400 (-923 (-549))))) |#1|) 42) (((-621 (-621 (-287 (-923 |#1|)))) (-621 (-400 (-923 (-549)))) |#1|) 36)) (-1588 (((-621 |#1|) (-400 (-923 (-549))) |#1|) 20) (((-621 (-621 |#1|)) (-621 (-400 (-923 (-549)))) (-621 (-1143)) |#1|) 30)))
+(((-373 |#1|) (-10 -7 (-15 -2227 ((-621 (-621 (-287 (-923 |#1|)))) (-621 (-400 (-923 (-549)))) |#1|)) (-15 -2227 ((-621 (-621 (-287 (-923 |#1|)))) (-621 (-287 (-400 (-923 (-549))))) |#1|)) (-15 -2227 ((-621 (-287 (-923 |#1|))) (-400 (-923 (-549))) |#1|)) (-15 -2227 ((-621 (-287 (-923 |#1|))) (-287 (-400 (-923 (-549)))) |#1|)) (-15 -1588 ((-621 (-621 |#1|)) (-621 (-400 (-923 (-549)))) (-621 (-1143)) |#1|)) (-15 -1588 ((-621 |#1|) (-400 (-923 (-549))) |#1|))) (-13 (-821) (-356))) (T -373))
+((-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 (-549)))) (-5 *2 (-621 *4)) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-1588 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 (-400 (-923 (-549))))) (-5 *4 (-621 (-1143))) (-5 *2 (-621 (-621 *5))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-821) (-356))))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-923 (-549))))) (-5 *2 (-621 (-287 (-923 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 (-549)))) (-5 *2 (-621 (-287 (-923 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-287 (-400 (-923 (-549)))))) (-5 *2 (-621 (-621 (-287 (-923 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-400 (-923 (-549))))) (-5 *2 (-621 (-621 (-287 (-923 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356))))))
+(-10 -7 (-15 -2227 ((-621 (-621 (-287 (-923 |#1|)))) (-621 (-400 (-923 (-549)))) |#1|)) (-15 -2227 ((-621 (-621 (-287 (-923 |#1|)))) (-621 (-287 (-400 (-923 (-549))))) |#1|)) (-15 -2227 ((-621 (-287 (-923 |#1|))) (-400 (-923 (-549))) |#1|)) (-15 -2227 ((-621 (-287 (-923 |#1|))) (-287 (-400 (-923 (-549)))) |#1|)) (-15 -1588 ((-621 (-621 |#1|)) (-621 (-400 (-923 (-549)))) (-621 (-1143)) |#1|)) (-15 -1588 ((-621 |#1|) (-400 (-923 (-549))) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#2| "failed") $) 26)) (-2659 ((|#2| $) 28)) (-2070 (($ $) NIL)) (-3347 (((-747) $) 10)) (-3750 (((-621 $) $) 20)) (-2205 (((-112) $) NIL)) (-3526 (($ |#2| |#1|) 18)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3647 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2028 ((|#2| $) 15)) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 45) (($ |#2|) 27)) (-4141 (((-621 |#1|) $) 17)) (-2152 ((|#1| $ |#2|) 47)) (-3276 (($) 29 T CONST)) (-2631 (((-621 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
+(((-374 |#1| |#2|) (-13 (-375 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1018) (-823)) (T -374))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-374 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823)))))
+(-13 (-375 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2714 (((-3 |#2| "failed") $) 44)) (-2659 ((|#2| $) 43)) (-2070 (($ $) 30)) (-3347 (((-747) $) 34)) (-3750 (((-621 $) $) 35)) (-2205 (((-112) $) 38)) (-3526 (($ |#2| |#1|) 39)) (-2797 (($ (-1 |#1| |#1|) $) 40)) (-3647 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2028 ((|#2| $) 33)) (-2043 ((|#1| $) 32)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ |#2|) 45)) (-4141 (((-621 |#1|) $) 36)) (-2152 ((|#1| $ |#2|) 41)) (-3276 (($) 18 T CONST)) (-2631 (((-621 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-375 |#1| |#2|) (-138) (-1018) (-1067)) (T -375))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1067)))) (-2152 (*1 *2 *1 *3) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1018)))) (-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)))) (-3526 (*1 *1 *2 *3) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1067)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-112)))) (-2631 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-621 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-621 *3)))) (-3750 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-621 *1)) (-4 *1 (-375 *3 *4)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-747)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1067)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1018)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1067)))))
+(-13 (-111 |t#1| |t#1|) (-1009 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2152 (|t#1| $ |t#2|)) (-15 -2797 ($ (-1 |t#1| |t#1|) $)) (-15 -3526 ($ |t#2| |t#1|)) (-15 -2205 ((-112) $)) (-15 -2631 ((-621 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4141 ((-621 |t#1|) $)) (-15 -3750 ((-621 $) $)) (-15 -3347 ((-747) $)) (-15 -2028 (|t#2| $)) (-15 -2043 (|t#1| $)) (-15 -3647 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2070 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-694 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-694 |#1|) |has| |#1| (-170)) ((-1009 |#2|) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-3316 (((-1231) $) 7)) (-3846 (((-834) $) 8) (($ (-665 (-675))) 14) (($ (-621 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 11)))
+(((-376) (-138)) (T -376))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-665 (-675))) (-4 *1 (-376)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-376)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) (-4 *1 (-376)))))
+(-13 (-388) (-10 -8 (-15 -3846 ($ (-665 (-675)))) (-15 -3846 ($ (-621 (-323)))) (-15 -3846 ($ (-323))) (-15 -3846 ($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))))))
+(((-593 (-834)) . T) ((-388) . T) ((-1180) . T))
+((-2714 (((-3 $ "failed") (-665 (-309 (-372)))) 21) (((-3 $ "failed") (-665 (-309 (-549)))) 19) (((-3 $ "failed") (-665 (-923 (-372)))) 17) (((-3 $ "failed") (-665 (-923 (-549)))) 15) (((-3 $ "failed") (-665 (-400 (-923 (-372))))) 13) (((-3 $ "failed") (-665 (-400 (-923 (-549))))) 11)) (-2659 (($ (-665 (-309 (-372)))) 22) (($ (-665 (-309 (-549)))) 20) (($ (-665 (-923 (-372)))) 18) (($ (-665 (-923 (-549)))) 16) (($ (-665 (-400 (-923 (-372))))) 14) (($ (-665 (-400 (-923 (-549))))) 12)) (-3316 (((-1231) $) 7)) (-3846 (((-834) $) 8) (($ (-621 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 23)))
+(((-377) (-138)) (T -377))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-377)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-377)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) (-4 *1 (-377)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-665 (-309 (-372)))) (-4 *1 (-377)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-309 (-372)))) (-4 *1 (-377)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-665 (-309 (-549)))) (-4 *1 (-377)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-309 (-549)))) (-4 *1 (-377)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-665 (-923 (-372)))) (-4 *1 (-377)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-923 (-372)))) (-4 *1 (-377)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-665 (-923 (-549)))) (-4 *1 (-377)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-923 (-549)))) (-4 *1 (-377)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-923 (-372))))) (-4 *1 (-377)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-400 (-923 (-372))))) (-4 *1 (-377)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-923 (-549))))) (-4 *1 (-377)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 (-400 (-923 (-549))))) (-4 *1 (-377)))))
+(-13 (-388) (-10 -8 (-15 -3846 ($ (-621 (-323)))) (-15 -3846 ($ (-323))) (-15 -3846 ($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323)))))) (-15 -2659 ($ (-665 (-309 (-372))))) (-15 -2714 ((-3 $ "failed") (-665 (-309 (-372))))) (-15 -2659 ($ (-665 (-309 (-549))))) (-15 -2714 ((-3 $ "failed") (-665 (-309 (-549))))) (-15 -2659 ($ (-665 (-923 (-372))))) (-15 -2714 ((-3 $ "failed") (-665 (-923 (-372))))) (-15 -2659 ($ (-665 (-923 (-549))))) (-15 -2714 ((-3 $ "failed") (-665 (-923 (-549))))) (-15 -2659 ($ (-665 (-400 (-923 (-372)))))) (-15 -2714 ((-3 $ "failed") (-665 (-400 (-923 (-372)))))) (-15 -2659 ($ (-665 (-400 (-923 (-549)))))) (-15 -2714 ((-3 $ "failed") (-665 (-400 (-923 (-549))))))))
+(((-593 (-834)) . T) ((-388) . T) ((-1180) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2070 (($ $) NIL)) (-2246 (($ |#1| |#2|) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1823 ((|#2| $) NIL)) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 28)) (-3276 (($) 12 T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-378 |#1| |#2|) (-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|))) (-1018) (-823)) (T -378))
+NIL
+(-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-694 |#1|)) |%noBranch|)))
+((-3834 (((-112) $ $) NIL)) (-3614 (((-747) $) 59)) (-1682 (($) NIL T CONST)) (-1869 (((-3 $ "failed") $ $) 61)) (-2714 (((-3 |#1| "failed") $) NIL)) (-2659 ((|#1| $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1707 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2675 (((-112) $) 15)) (-1302 ((|#1| $ (-549)) NIL)) (-2009 (((-747) $ (-549)) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-3482 (($ (-1 |#1| |#1|) $) 38)) (-3653 (($ (-1 (-747) (-747)) $) 35)) (-2694 (((-3 $ "failed") $ $) 50)) (-3851 (((-1125) $) NIL)) (-4039 (($ $ $) 26)) (-4122 (($ $ $) 24)) (-3990 (((-1087) $) NIL)) (-4024 (((-621 (-2 (|:| |gen| |#1|) (|:| -2719 (-747)))) $) 32)) (-3148 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-3846 (((-834) $) 22) (($ |#1|) NIL)) (-3287 (($) 9 T CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) 41)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) 63 (|has| |#1| (-823)))) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ |#1| (-747)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
+(((-379 |#1|) (-13 (-703) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -4122 ($ $ $)) (-15 -4039 ($ $ $)) (-15 -2694 ((-3 $ "failed") $ $)) (-15 -1869 ((-3 $ "failed") $ $)) (-15 -3148 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1707 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3614 ((-747) $)) (-15 -4024 ((-621 (-2 (|:| |gen| |#1|) (|:| -2719 (-747)))) $)) (-15 -2009 ((-747) $ (-549))) (-15 -1302 (|#1| $ (-549))) (-15 -3653 ($ (-1 (-747) (-747)) $)) (-15 -3482 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-1067)) (T -379))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-4122 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-4039 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-2694 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-1869 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-3148 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-1707 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2719 (-747))))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-2009 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-747)) (-5 *1 (-379 *4)) (-4 *4 (-1067)))) (-1302 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-379 *2)) (-4 *2 (-1067)))) (-3653 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-747) (-747))) (-5 *1 (-379 *3)) (-4 *3 (-1067)))) (-3482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-379 *3)))))
+(-13 (-703) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -4122 ($ $ $)) (-15 -4039 ($ $ $)) (-15 -2694 ((-3 $ "failed") $ $)) (-15 -1869 ((-3 $ "failed") $ $)) (-15 -3148 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1707 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3614 ((-747) $)) (-15 -4024 ((-621 (-2 (|:| |gen| |#1|) (|:| -2719 (-747)))) $)) (-15 -2009 ((-747) $ (-549))) (-15 -1302 (|#1| $ (-549))) (-15 -3653 ($ (-1 (-747) (-747)) $)) (-15 -3482 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2714 (((-3 (-549) "failed") $) 45)) (-2659 (((-549) $) 44)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-2863 (($ $ $) 52)) (-3575 (($ $ $) 51)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2042 (((-3 $ "failed") $ $) 40)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-549)) 46)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 49)) (-2425 (((-112) $ $) 48)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 50)) (-2412 (((-112) $ $) 47)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
(((-380) (-138)) (T -380))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-4 *1 (-380)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1119)))) (-3348 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1119)) (-4 *1 (-380)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1119)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1119)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1119)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-112)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-112)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-112)))) (-3735 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1119)) (-4 *1 (-380)))))
-(-13 (-1063) (-10 -8 (-15 -3838 ($ (-1119))) (-15 -3838 ((-1119) $)) (-15 -3348 ($ (-1119) (-1119) (-1119))) (-15 -4063 ((-1119) $)) (-15 -2473 ((-1119) $)) (-15 -3645 ((-1119) $)) (-15 -3867 ((-112) $)) (-15 -3485 ((-112) $)) (-15 -2943 ((-112) $)) (-15 -3735 ($ (-1119) (-1119) (-1119)))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1539 (((-832) $) 50)) (-1948 (($) NIL T CONST)) (-3387 (($ $ (-890)) NIL)) (-1296 (($ $ (-890)) NIL)) (-3851 (($ $ (-890)) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-4238 (($ (-745)) 26)) (-3970 (((-745)) 17)) (-2351 (((-832) $) 52)) (-1473 (($ $ $) NIL)) (-3838 (((-832) $) NIL)) (-2781 (($ $ $ $) NIL)) (-2031 (($ $ $) NIL)) (-3269 (($) 20 T CONST)) (-2381 (((-112) $ $) 28)) (-2493 (($ $) 34) (($ $ $) 36)) (-2479 (($ $ $) 37)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-381 |#1| |#2| |#3|) (-13 (-719 |#3|) (-10 -8 (-15 -3970 ((-745))) (-15 -2351 ((-832) $)) (-15 -1539 ((-832) $)) (-15 -4238 ($ (-745))))) (-745) (-745) (-169)) (T -381))
-((-3970 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-169)))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-169)))) (-4238 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169)))))
-(-13 (-719 |#3|) (-10 -8 (-15 -3970 ((-745))) (-15 -2351 ((-832) $)) (-15 -1539 ((-832) $)) (-15 -4238 ($ (-745)))))
-((-4268 (((-1119)) 10)) (-3211 (((-1108 (-1119))) 28)) (-3287 (((-1224) (-1119)) 25) (((-1224) (-379)) 24)) (-3298 (((-1224)) 26)) (-2536 (((-1108 (-1119))) 27)))
-(((-382) (-10 -7 (-15 -2536 ((-1108 (-1119)))) (-15 -3211 ((-1108 (-1119)))) (-15 -3298 ((-1224))) (-15 -3287 ((-1224) (-379))) (-15 -3287 ((-1224) (-1119))) (-15 -4268 ((-1119))))) (T -382))
-((-4268 (*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-382)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-382)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1224)) (-5 *1 (-382)))) (-3298 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-382)))) (-3211 (*1 *2) (-12 (-5 *2 (-1108 (-1119))) (-5 *1 (-382)))) (-2536 (*1 *2) (-12 (-5 *2 (-1108 (-1119))) (-5 *1 (-382)))))
-(-10 -7 (-15 -2536 ((-1108 (-1119)))) (-15 -3211 ((-1108 (-1119)))) (-15 -3298 ((-1224))) (-15 -3287 ((-1224) (-379))) (-15 -3287 ((-1224) (-1119))) (-15 -4268 ((-1119))))
-((-3275 (((-745) (-327 |#1| |#2| |#3| |#4|)) 16)))
-(((-383 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3275 ((-745) (-327 |#1| |#2| |#3| |#4|)))) (-13 (-359) (-354)) (-1195 |#1|) (-1195 (-398 |#2|)) (-333 |#1| |#2| |#3|)) (T -383))
-((-3275 (*1 *2 *3) (-12 (-5 *3 (-327 *4 *5 *6 *7)) (-4 *4 (-13 (-359) (-354))) (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5))) (-4 *7 (-333 *4 *5 *6)) (-5 *2 (-745)) (-5 *1 (-383 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3275 ((-745) (-327 |#1| |#2| |#3| |#4|))))
-((-3838 (((-385) |#1|) 11)))
-(((-384 |#1|) (-10 -7 (-15 -3838 ((-385) |#1|))) (-1063)) (T -384))
-((-3838 (*1 *2 *3) (-12 (-5 *2 (-385)) (-5 *1 (-384 *3)) (-4 *3 (-1063)))))
-(-10 -7 (-15 -3838 ((-385) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-2147 (((-619 (-1119)) $ (-619 (-1119))) 38)) (-3113 (((-619 (-1119)) $ (-619 (-1119))) 39)) (-3728 (((-619 (-1119)) $ (-619 (-1119))) 40)) (-2843 (((-619 (-1119)) $) 35)) (-3735 (($) 23)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2084 (((-619 (-1119)) $) 36)) (-1518 (((-619 (-1119)) $) 37)) (-2692 (((-1224) $ (-547)) 33) (((-1224) $) 34)) (-2838 (($ (-832) (-547)) 30)) (-3838 (((-832) $) 42) (($ (-832)) 25)) (-2381 (((-112) $ $) NIL)))
-(((-385) (-13 (-1063) (-10 -8 (-15 -3838 ($ (-832))) (-15 -2838 ($ (-832) (-547))) (-15 -2692 ((-1224) $ (-547))) (-15 -2692 ((-1224) $)) (-15 -1518 ((-619 (-1119)) $)) (-15 -2084 ((-619 (-1119)) $)) (-15 -3735 ($)) (-15 -2843 ((-619 (-1119)) $)) (-15 -3728 ((-619 (-1119)) $ (-619 (-1119)))) (-15 -3113 ((-619 (-1119)) $ (-619 (-1119)))) (-15 -2147 ((-619 (-1119)) $ (-619 (-1119))))))) (T -385))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-385)))) (-2838 (*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-547)) (-5 *1 (-385)))) (-2692 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-385)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-385)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-385)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-385)))) (-3735 (*1 *1) (-5 *1 (-385))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-385)))) (-3728 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-385)))) (-3113 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-385)))) (-2147 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-385)))))
-(-13 (-1063) (-10 -8 (-15 -3838 ($ (-832))) (-15 -2838 ($ (-832) (-547))) (-15 -2692 ((-1224) $ (-547))) (-15 -2692 ((-1224) $)) (-15 -1518 ((-619 (-1119)) $)) (-15 -2084 ((-619 (-1119)) $)) (-15 -3735 ($)) (-15 -2843 ((-619 (-1119)) $)) (-15 -3728 ((-619 (-1119)) $ (-619 (-1119)))) (-15 -3113 ((-619 (-1119)) $ (-619 (-1119)))) (-15 -2147 ((-619 (-1119)) $ (-619 (-1119))))))
-((-3309 (((-1224) $) 7)) (-3838 (((-832) $) 8)))
-(((-386) (-138)) (T -386))
-((-3309 (*1 *2 *1) (-12 (-4 *1 (-386)) (-5 *2 (-1224)))))
-(-13 (-1173) (-591 (-832)) (-10 -8 (-15 -3309 ((-1224) $))))
-(((-591 (-832)) . T) ((-1173) . T))
-((-2707 (((-3 $ "failed") (-307 (-370))) 21) (((-3 $ "failed") (-307 (-547))) 19) (((-3 $ "failed") (-921 (-370))) 17) (((-3 $ "failed") (-921 (-547))) 15) (((-3 $ "failed") (-398 (-921 (-370)))) 13) (((-3 $ "failed") (-398 (-921 (-547)))) 11)) (-2652 (($ (-307 (-370))) 22) (($ (-307 (-547))) 20) (($ (-921 (-370))) 18) (($ (-921 (-547))) 16) (($ (-398 (-921 (-370)))) 14) (($ (-398 (-921 (-547)))) 12)) (-3309 (((-1224) $) 7)) (-3838 (((-832) $) 8) (($ (-619 (-321))) 25) (($ (-321)) 24) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 23)))
-(((-387) (-138)) (T -387))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-387)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-387)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) (-4 *1 (-387)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-307 (-370))) (-4 *1 (-387)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-370))) (-4 *1 (-387)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-307 (-547))) (-4 *1 (-387)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-547))) (-4 *1 (-387)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-921 (-370))) (-4 *1 (-387)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-370))) (-4 *1 (-387)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-921 (-547))) (-4 *1 (-387)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-547))) (-4 *1 (-387)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-370)))) (-4 *1 (-387)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-398 (-921 (-370)))) (-4 *1 (-387)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-547)))) (-4 *1 (-387)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-398 (-921 (-547)))) (-4 *1 (-387)))))
-(-13 (-386) (-10 -8 (-15 -3838 ($ (-619 (-321)))) (-15 -3838 ($ (-321))) (-15 -3838 ($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321)))))) (-15 -2652 ($ (-307 (-370)))) (-15 -2707 ((-3 $ "failed") (-307 (-370)))) (-15 -2652 ($ (-307 (-547)))) (-15 -2707 ((-3 $ "failed") (-307 (-547)))) (-15 -2652 ($ (-921 (-370)))) (-15 -2707 ((-3 $ "failed") (-921 (-370)))) (-15 -2652 ($ (-921 (-547)))) (-15 -2707 ((-3 $ "failed") (-921 (-547)))) (-15 -2652 ($ (-398 (-921 (-370))))) (-15 -2707 ((-3 $ "failed") (-398 (-921 (-370))))) (-15 -2652 ($ (-398 (-921 (-547))))) (-15 -2707 ((-3 $ "failed") (-398 (-921 (-547)))))))
-(((-591 (-832)) . T) ((-386) . T) ((-1173) . T))
-((-1269 (((-619 (-1119)) (-619 (-1119))) 9)) (-3309 (((-1224) (-379)) 27)) (-3431 (((-1067) (-1136) (-619 (-1136)) (-1139) (-619 (-1136))) 60) (((-1067) (-1136) (-619 (-3 (|:| |array| (-619 (-1136))) (|:| |scalar| (-1136)))) (-619 (-619 (-3 (|:| |array| (-619 (-1136))) (|:| |scalar| (-1136))))) (-619 (-1136)) (-1136)) 35) (((-1067) (-1136) (-619 (-3 (|:| |array| (-619 (-1136))) (|:| |scalar| (-1136)))) (-619 (-619 (-3 (|:| |array| (-619 (-1136))) (|:| |scalar| (-1136))))) (-619 (-1136))) 34)))
-(((-388) (-10 -7 (-15 -3431 ((-1067) (-1136) (-619 (-3 (|:| |array| (-619 (-1136))) (|:| |scalar| (-1136)))) (-619 (-619 (-3 (|:| |array| (-619 (-1136))) (|:| |scalar| (-1136))))) (-619 (-1136)))) (-15 -3431 ((-1067) (-1136) (-619 (-3 (|:| |array| (-619 (-1136))) (|:| |scalar| (-1136)))) (-619 (-619 (-3 (|:| |array| (-619 (-1136))) (|:| |scalar| (-1136))))) (-619 (-1136)) (-1136))) (-15 -3431 ((-1067) (-1136) (-619 (-1136)) (-1139) (-619 (-1136)))) (-15 -3309 ((-1224) (-379))) (-15 -1269 ((-619 (-1119)) (-619 (-1119)))))) (T -388))
-((-1269 (*1 *2 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-388)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1224)) (-5 *1 (-388)))) (-3431 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-619 (-1136))) (-5 *5 (-1139)) (-5 *3 (-1136)) (-5 *2 (-1067)) (-5 *1 (-388)))) (-3431 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1136))))) (-5 *6 (-619 (-1136))) (-5 *3 (-1136)) (-5 *2 (-1067)) (-5 *1 (-388)))) (-3431 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1136))))) (-5 *6 (-619 (-1136))) (-5 *3 (-1136)) (-5 *2 (-1067)) (-5 *1 (-388)))))
-(-10 -7 (-15 -3431 ((-1067) (-1136) (-619 (-3 (|:| |array| (-619 (-1136))) (|:| |scalar| (-1136)))) (-619 (-619 (-3 (|:| |array| (-619 (-1136))) (|:| |scalar| (-1136))))) (-619 (-1136)))) (-15 -3431 ((-1067) (-1136) (-619 (-3 (|:| |array| (-619 (-1136))) (|:| |scalar| (-1136)))) (-619 (-619 (-3 (|:| |array| (-619 (-1136))) (|:| |scalar| (-1136))))) (-619 (-1136)) (-1136))) (-15 -3431 ((-1067) (-1136) (-619 (-1136)) (-1139) (-619 (-1136)))) (-15 -3309 ((-1224) (-379))) (-15 -1269 ((-619 (-1119)) (-619 (-1119)))))
-((-3309 (((-1224) $) 38)) (-3838 (((-832) $) 98) (($ (-321)) 100) (($ (-619 (-321))) 99) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 97) (($ (-307 (-675))) 54) (($ (-307 (-673))) 73) (($ (-307 (-668))) 86) (($ (-285 (-307 (-675)))) 68) (($ (-285 (-307 (-673)))) 81) (($ (-285 (-307 (-668)))) 94) (($ (-307 (-547))) 104) (($ (-307 (-370))) 117) (($ (-307 (-166 (-370)))) 130) (($ (-285 (-307 (-547)))) 112) (($ (-285 (-307 (-370)))) 125) (($ (-285 (-307 (-166 (-370))))) 138)))
-(((-389 |#1| |#2| |#3| |#4|) (-13 (-386) (-10 -8 (-15 -3838 ($ (-321))) (-15 -3838 ($ (-619 (-321)))) (-15 -3838 ($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321)))))) (-15 -3838 ($ (-307 (-675)))) (-15 -3838 ($ (-307 (-673)))) (-15 -3838 ($ (-307 (-668)))) (-15 -3838 ($ (-285 (-307 (-675))))) (-15 -3838 ($ (-285 (-307 (-673))))) (-15 -3838 ($ (-285 (-307 (-668))))) (-15 -3838 ($ (-307 (-547)))) (-15 -3838 ($ (-307 (-370)))) (-15 -3838 ($ (-307 (-166 (-370))))) (-15 -3838 ($ (-285 (-307 (-547))))) (-15 -3838 ($ (-285 (-307 (-370))))) (-15 -3838 ($ (-285 (-307 (-166 (-370)))))))) (-1136) (-3 (|:| |fst| (-425)) (|:| -2896 "void")) (-619 (-1136)) (-1140)) (T -389))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-321)) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-307 (-675))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-307 (-673))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-307 (-668))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-285 (-307 (-675)))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-285 (-307 (-673)))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-285 (-307 (-668)))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-307 (-547))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-307 (-370))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-370)))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-285 (-307 (-547)))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-285 (-307 (-370)))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-285 (-307 (-166 (-370))))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-14 *5 (-619 (-1136))) (-14 *6 (-1140)))))
-(-13 (-386) (-10 -8 (-15 -3838 ($ (-321))) (-15 -3838 ($ (-619 (-321)))) (-15 -3838 ($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321)))))) (-15 -3838 ($ (-307 (-675)))) (-15 -3838 ($ (-307 (-673)))) (-15 -3838 ($ (-307 (-668)))) (-15 -3838 ($ (-285 (-307 (-675))))) (-15 -3838 ($ (-285 (-307 (-673))))) (-15 -3838 ($ (-285 (-307 (-668))))) (-15 -3838 ($ (-307 (-547)))) (-15 -3838 ($ (-307 (-370)))) (-15 -3838 ($ (-307 (-166 (-370))))) (-15 -3838 ($ (-285 (-307 (-547))))) (-15 -3838 ($ (-285 (-307 (-370))))) (-15 -3838 ($ (-285 (-307 (-166 (-370))))))))
-((-3826 (((-112) $ $) NIL)) (-4136 ((|#2| $) 36)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-4089 (($ (-398 |#2|)) 85)) (-3965 (((-619 (-2 (|:| -3322 (-745)) (|:| -2591 |#2|) (|:| |num| |#2|))) $) 37)) (-3448 (($ $) 32) (($ $ (-745)) 34)) (-2838 (((-398 |#2|) $) 46)) (-3846 (($ (-619 (-2 (|:| -3322 (-745)) (|:| -2591 |#2|) (|:| |num| |#2|)))) 31)) (-3838 (((-832) $) 120)) (-1695 (($ $) 33) (($ $ (-745)) 35)) (-2381 (((-112) $ $) NIL)) (-2479 (($ |#2| $) 39)))
-(((-390 |#1| |#2|) (-13 (-1063) (-592 (-398 |#2|)) (-10 -8 (-15 -2479 ($ |#2| $)) (-15 -4089 ($ (-398 |#2|))) (-15 -4136 (|#2| $)) (-15 -3965 ((-619 (-2 (|:| -3322 (-745)) (|:| -2591 |#2|) (|:| |num| |#2|))) $)) (-15 -3846 ($ (-619 (-2 (|:| -3322 (-745)) (|:| -2591 |#2|) (|:| |num| |#2|))))) (-15 -3448 ($ $)) (-15 -1695 ($ $)) (-15 -3448 ($ $ (-745))) (-15 -1695 ($ $ (-745))))) (-13 (-354) (-145)) (-1195 |#1|)) (T -390))
-((-2479 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *2)) (-4 *2 (-1195 *3)))) (-4089 (*1 *1 *2) (-12 (-5 *2 (-398 *4)) (-4 *4 (-1195 *3)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4)))) (-4136 (*1 *2 *1) (-12 (-4 *2 (-1195 *3)) (-5 *1 (-390 *3 *2)) (-4 *3 (-13 (-354) (-145))))) (-3965 (*1 *2 *1) (-12 (-4 *3 (-13 (-354) (-145))) (-5 *2 (-619 (-2 (|:| -3322 (-745)) (|:| -2591 *4) (|:| |num| *4)))) (-5 *1 (-390 *3 *4)) (-4 *4 (-1195 *3)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3322 (-745)) (|:| -2591 *4) (|:| |num| *4)))) (-4 *4 (-1195 *3)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4)))) (-3448 (*1 *1 *1) (-12 (-4 *2 (-13 (-354) (-145))) (-5 *1 (-390 *2 *3)) (-4 *3 (-1195 *2)))) (-1695 (*1 *1 *1) (-12 (-4 *2 (-13 (-354) (-145))) (-5 *1 (-390 *2 *3)) (-4 *3 (-1195 *2)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4)) (-4 *4 (-1195 *3)))) (-1695 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4)) (-4 *4 (-1195 *3)))))
-(-13 (-1063) (-592 (-398 |#2|)) (-10 -8 (-15 -2479 ($ |#2| $)) (-15 -4089 ($ (-398 |#2|))) (-15 -4136 (|#2| $)) (-15 -3965 ((-619 (-2 (|:| -3322 (-745)) (|:| -2591 |#2|) (|:| |num| |#2|))) $)) (-15 -3846 ($ (-619 (-2 (|:| -3322 (-745)) (|:| -2591 |#2|) (|:| |num| |#2|))))) (-15 -3448 ($ $)) (-15 -1695 ($ $)) (-15 -3448 ($ $ (-745))) (-15 -1695 ($ $ (-745)))))
-((-3826 (((-112) $ $) 9 (-1530 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))))) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 15 (|has| |#1| (-855 (-370)))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 14 (|has| |#1| (-855 (-547))))) (-1466 (((-1119) $) 13 (-1530 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))))) (-3979 (((-1082) $) 12 (-1530 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))))) (-3838 (((-832) $) 11 (-1530 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))))) (-2381 (((-112) $ $) 10 (-1530 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))))))
-(((-391 |#1|) (-138) (-1173)) (T -391))
-NIL
-(-13 (-1173) (-10 -7 (IF (|has| |t#1| (-855 (-547))) (-6 (-855 (-547))) |%noBranch|) (IF (|has| |t#1| (-855 (-370))) (-6 (-855 (-370))) |%noBranch|)))
-(((-101) -1530 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))) ((-591 (-832)) -1530 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))) ((-855 (-370)) |has| |#1| (-855 (-370))) ((-855 (-547)) |has| |#1| (-855 (-547))) ((-1063) -1530 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))) ((-1173) . T))
-((-1551 (($ $) 10) (($ $ (-745)) 11)))
-(((-392 |#1|) (-10 -8 (-15 -1551 (|#1| |#1| (-745))) (-15 -1551 (|#1| |#1|))) (-393)) (T -392))
-NIL
-(-10 -8 (-15 -1551 (|#1| |#1| (-745))) (-15 -1551 (|#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 70)) (-3299 (((-409 $) $) 69)) (-1547 (((-112) $ $) 57)) (-1948 (($) 17 T CONST)) (-2089 (($ $ $) 53)) (-3855 (((-3 $ "failed") $) 32)) (-2061 (($ $ $) 54)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-1551 (($ $) 76) (($ $ (-745)) 75)) (-1791 (((-112) $) 68)) (-3275 (((-807 (-890)) $) 78)) (-2261 (((-112) $) 30)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 67)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-2115 (((-409 $) $) 71)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2471 (((-745) $) 56)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55)) (-1422 (((-3 (-745) "failed") $ $) 77)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63)) (-2220 (((-3 $ "failed") $) 79)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ $) 62)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64)))
-(((-393) (-138)) (T -393))
-((-3275 (*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-807 (-890))))) (-1422 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-393)) (-5 *2 (-745)))) (-1551 (*1 *1 *1) (-4 *1 (-393))) (-1551 (*1 *1 *1 *2) (-12 (-4 *1 (-393)) (-5 *2 (-745)))))
-(-13 (-354) (-143) (-10 -8 (-15 -3275 ((-807 (-890)) $)) (-15 -1422 ((-3 (-745) "failed") $ $)) (-15 -1551 ($ $)) (-15 -1551 ($ $ (-745)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-591 (-832)) . T) ((-169) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1177) . T))
-((-1348 (($ (-547) (-547)) 11) (($ (-547) (-547) (-890)) NIL)) (-2697 (((-890)) 16) (((-890) (-890)) NIL)))
-(((-394 |#1|) (-10 -8 (-15 -2697 ((-890) (-890))) (-15 -2697 ((-890))) (-15 -1348 (|#1| (-547) (-547) (-890))) (-15 -1348 (|#1| (-547) (-547)))) (-395)) (T -394))
-((-2697 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-394 *3)) (-4 *3 (-395)))) (-2697 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-394 *3)) (-4 *3 (-395)))))
-(-10 -8 (-15 -2697 ((-890) (-890))) (-15 -2697 ((-890))) (-15 -1348 (|#1| (-547) (-547) (-890))) (-15 -1348 (|#1| (-547) (-547))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2092 (((-547) $) 86)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3931 (($ $) 84)) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 70)) (-3299 (((-409 $) $) 69)) (-2127 (($ $) 94)) (-1547 (((-112) $ $) 57)) (-2500 (((-547) $) 111)) (-1948 (($) 17 T CONST)) (-3659 (($ $) 83)) (-2707 (((-3 (-547) "failed") $) 99) (((-3 (-398 (-547)) "failed") $) 96)) (-2652 (((-547) $) 98) (((-398 (-547)) $) 95)) (-2089 (($ $ $) 53)) (-3855 (((-3 $ "failed") $) 32)) (-2061 (($ $ $) 54)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-1791 (((-112) $) 68)) (-3228 (((-890)) 127) (((-890) (-890)) 124 (|has| $ (-6 -4320)))) (-4270 (((-112) $) 109)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 90)) (-3275 (((-547) $) 133)) (-2261 (((-112) $) 30)) (-3869 (($ $ (-547)) 93)) (-3160 (($ $) 89)) (-1860 (((-112) $) 110)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2856 (($ $ $) 108) (($) 121 (-12 (-4000 (|has| $ (-6 -4320))) (-4000 (|has| $ (-6 -4312)))))) (-3567 (($ $ $) 107) (($) 120 (-12 (-4000 (|has| $ (-6 -4320))) (-4000 (|has| $ (-6 -4312)))))) (-1454 (((-547) $) 130)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 67)) (-3470 (((-890) (-547)) 123 (|has| $ (-6 -4320)))) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-3682 (($ $) 85)) (-1276 (($ $) 87)) (-1348 (($ (-547) (-547)) 135) (($ (-547) (-547) (-890)) 134)) (-2115 (((-409 $) $) 71)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-3322 (((-547) $) 131)) (-2471 (((-745) $) 56)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55)) (-2697 (((-890)) 128) (((-890) (-890)) 125 (|has| $ (-6 -4320)))) (-2738 (((-890) (-547)) 122 (|has| $ (-6 -4320)))) (-2838 (((-370) $) 102) (((-217) $) 101) (((-861 (-370)) $) 91)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63) (($ (-547)) 100) (($ (-398 (-547))) 97)) (-2736 (((-745)) 28)) (-3720 (($ $) 88)) (-1729 (((-890)) 129) (((-890) (-890)) 126 (|has| $ (-6 -4320)))) (-1856 (((-890)) 132)) (-3577 (((-112) $ $) 37)) (-2255 (($ $) 112)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2441 (((-112) $ $) 105)) (-2418 (((-112) $ $) 104)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 106)) (-2405 (((-112) $ $) 103)) (-2506 (($ $ $) 62)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66) (($ $ (-398 (-547))) 92)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64)))
+NIL
+(-13 (-541) (-823) (-1009 (-549)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-823) . T) ((-1009 (-549)) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-3135 (((-112) $) 20)) (-2296 (((-112) $) 19)) (-3743 (($ (-1125) (-1125) (-1125)) 21)) (-2481 (((-1125) $) 16)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3356 (($ (-1125) (-1125) (-1125)) 14)) (-3474 (((-1125) $) 17)) (-3983 (((-112) $) 18)) (-4071 (((-1125) $) 15)) (-3846 (((-834) $) 12) (($ (-1125)) 13) (((-1125) $) 9)) (-2389 (((-112) $ $) 7)))
+(((-381) (-382)) (T -381))
+NIL
+(-382)
+((-3834 (((-112) $ $) 7)) (-3135 (((-112) $) 14)) (-2296 (((-112) $) 15)) (-3743 (($ (-1125) (-1125) (-1125)) 13)) (-2481 (((-1125) $) 18)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3356 (($ (-1125) (-1125) (-1125)) 20)) (-3474 (((-1125) $) 17)) (-3983 (((-112) $) 16)) (-4071 (((-1125) $) 19)) (-3846 (((-834) $) 11) (($ (-1125)) 22) (((-1125) $) 21)) (-2389 (((-112) $ $) 6)))
+(((-382) (-138)) (T -382))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-4 *1 (-382)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1125)))) (-3356 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1125)) (-4 *1 (-382)))) (-4071 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1125)))) (-2481 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1125)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1125)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-2296 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-3743 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1125)) (-4 *1 (-382)))))
+(-13 (-1067) (-10 -8 (-15 -3846 ($ (-1125))) (-15 -3846 ((-1125) $)) (-15 -3356 ($ (-1125) (-1125) (-1125))) (-15 -4071 ((-1125) $)) (-15 -2481 ((-1125) $)) (-15 -3474 ((-1125) $)) (-15 -3983 ((-112) $)) (-15 -2296 ((-112) $)) (-15 -3135 ((-112) $)) (-15 -3743 ($ (-1125) (-1125) (-1125)))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1328 (((-834) $) 50)) (-1682 (($) NIL T CONST)) (-3117 (($ $ (-892)) NIL)) (-2943 (($ $ (-892)) NIL)) (-2884 (($ $ (-892)) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-4248 (($ (-747)) 26)) (-2985 (((-747)) 17)) (-3080 (((-834) $) 52)) (-3293 (($ $ $) NIL)) (-3846 (((-834) $) NIL)) (-4272 (($ $ $ $) NIL)) (-2174 (($ $ $) NIL)) (-3276 (($) 20 T CONST)) (-2389 (((-112) $ $) 28)) (-2500 (($ $) 34) (($ $ $) 36)) (-2486 (($ $ $) 37)) (** (($ $ (-892)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-383 |#1| |#2| |#3|) (-13 (-721 |#3|) (-10 -8 (-15 -2985 ((-747))) (-15 -3080 ((-834) $)) (-15 -1328 ((-834) $)) (-15 -4248 ($ (-747))))) (-747) (-747) (-170)) (T -383))
+((-2985 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) (-4 *5 (-170)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) (-4 *5 (-170)))) (-4248 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))))
+(-13 (-721 |#3|) (-10 -8 (-15 -2985 ((-747))) (-15 -3080 ((-834) $)) (-15 -1328 ((-834) $)) (-15 -4248 ($ (-747)))))
+((-3712 (((-1125)) 10)) (-1451 (((-1114 (-1125))) 28)) (-3294 (((-1231) (-1125)) 25) (((-1231) (-381)) 24)) (-3300 (((-1231)) 26)) (-4224 (((-1114 (-1125))) 27)))
+(((-384) (-10 -7 (-15 -4224 ((-1114 (-1125)))) (-15 -1451 ((-1114 (-1125)))) (-15 -3300 ((-1231))) (-15 -3294 ((-1231) (-381))) (-15 -3294 ((-1231) (-1125))) (-15 -3712 ((-1125))))) (T -384))
+((-3712 (*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-384)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-384)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1231)) (-5 *1 (-384)))) (-3300 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-384)))) (-1451 (*1 *2) (-12 (-5 *2 (-1114 (-1125))) (-5 *1 (-384)))) (-4224 (*1 *2) (-12 (-5 *2 (-1114 (-1125))) (-5 *1 (-384)))))
+(-10 -7 (-15 -4224 ((-1114 (-1125)))) (-15 -1451 ((-1114 (-1125)))) (-15 -3300 ((-1231))) (-15 -3294 ((-1231) (-381))) (-15 -3294 ((-1231) (-1125))) (-15 -3712 ((-1125))))
+((-2088 (((-747) (-329 |#1| |#2| |#3| |#4|)) 16)))
+(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2088 ((-747) (-329 |#1| |#2| |#3| |#4|)))) (-13 (-361) (-356)) (-1202 |#1|) (-1202 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -385))
+((-2088 (*1 *2 *3) (-12 (-5 *3 (-329 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) (-5 *2 (-747)) (-5 *1 (-385 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2088 ((-747) (-329 |#1| |#2| |#3| |#4|))))
+((-3846 (((-387) |#1|) 11)))
+(((-386 |#1|) (-10 -7 (-15 -3846 ((-387) |#1|))) (-1067)) (T -386))
+((-3846 (*1 *2 *3) (-12 (-5 *2 (-387)) (-5 *1 (-386 *3)) (-4 *3 (-1067)))))
+(-10 -7 (-15 -3846 ((-387) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-4169 (((-621 (-1125)) $ (-621 (-1125))) 38)) (-2242 (((-621 (-1125)) $ (-621 (-1125))) 39)) (-1922 (((-621 (-1125)) $ (-621 (-1125))) 40)) (-2607 (((-621 (-1125)) $) 35)) (-3743 (($) 23)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2087 (((-621 (-1125)) $) 36)) (-2617 (((-621 (-1125)) $) 37)) (-2699 (((-1231) $ (-549)) 33) (((-1231) $) 34)) (-2845 (($ (-834) (-549)) 30)) (-3846 (((-834) $) 42) (($ (-834)) 25)) (-2389 (((-112) $ $) NIL)))
+(((-387) (-13 (-1067) (-10 -8 (-15 -3846 ($ (-834))) (-15 -2845 ($ (-834) (-549))) (-15 -2699 ((-1231) $ (-549))) (-15 -2699 ((-1231) $)) (-15 -2617 ((-621 (-1125)) $)) (-15 -2087 ((-621 (-1125)) $)) (-15 -3743 ($)) (-15 -2607 ((-621 (-1125)) $)) (-15 -1922 ((-621 (-1125)) $ (-621 (-1125)))) (-15 -2242 ((-621 (-1125)) $ (-621 (-1125)))) (-15 -4169 ((-621 (-1125)) $ (-621 (-1125))))))) (T -387))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-387)))) (-2845 (*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-549)) (-5 *1 (-387)))) (-2699 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-387)))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-387)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-387)))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-387)))) (-3743 (*1 *1) (-5 *1 (-387))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-387)))) (-1922 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-387)))) (-2242 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-387)))) (-4169 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-387)))))
+(-13 (-1067) (-10 -8 (-15 -3846 ($ (-834))) (-15 -2845 ($ (-834) (-549))) (-15 -2699 ((-1231) $ (-549))) (-15 -2699 ((-1231) $)) (-15 -2617 ((-621 (-1125)) $)) (-15 -2087 ((-621 (-1125)) $)) (-15 -3743 ($)) (-15 -2607 ((-621 (-1125)) $)) (-15 -1922 ((-621 (-1125)) $ (-621 (-1125)))) (-15 -2242 ((-621 (-1125)) $ (-621 (-1125)))) (-15 -4169 ((-621 (-1125)) $ (-621 (-1125))))))
+((-3316 (((-1231) $) 7)) (-3846 (((-834) $) 8)))
+(((-388) (-138)) (T -388))
+((-3316 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1231)))))
+(-13 (-1180) (-593 (-834)) (-10 -8 (-15 -3316 ((-1231) $))))
+(((-593 (-834)) . T) ((-1180) . T))
+((-2714 (((-3 $ "failed") (-309 (-372))) 21) (((-3 $ "failed") (-309 (-549))) 19) (((-3 $ "failed") (-923 (-372))) 17) (((-3 $ "failed") (-923 (-549))) 15) (((-3 $ "failed") (-400 (-923 (-372)))) 13) (((-3 $ "failed") (-400 (-923 (-549)))) 11)) (-2659 (($ (-309 (-372))) 22) (($ (-309 (-549))) 20) (($ (-923 (-372))) 18) (($ (-923 (-549))) 16) (($ (-400 (-923 (-372)))) 14) (($ (-400 (-923 (-549)))) 12)) (-3316 (((-1231) $) 7)) (-3846 (((-834) $) 8) (($ (-621 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 23)))
+(((-389) (-138)) (T -389))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-389)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-389)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) (-4 *1 (-389)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-4 *1 (-389)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-372))) (-4 *1 (-389)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-309 (-549))) (-4 *1 (-389)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-549))) (-4 *1 (-389)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-923 (-372))) (-4 *1 (-389)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-372))) (-4 *1 (-389)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-923 (-549))) (-4 *1 (-389)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-549))) (-4 *1 (-389)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-372)))) (-4 *1 (-389)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-923 (-372)))) (-4 *1 (-389)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-549)))) (-4 *1 (-389)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-923 (-549)))) (-4 *1 (-389)))))
+(-13 (-388) (-10 -8 (-15 -3846 ($ (-621 (-323)))) (-15 -3846 ($ (-323))) (-15 -3846 ($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323)))))) (-15 -2659 ($ (-309 (-372)))) (-15 -2714 ((-3 $ "failed") (-309 (-372)))) (-15 -2659 ($ (-309 (-549)))) (-15 -2714 ((-3 $ "failed") (-309 (-549)))) (-15 -2659 ($ (-923 (-372)))) (-15 -2714 ((-3 $ "failed") (-923 (-372)))) (-15 -2659 ($ (-923 (-549)))) (-15 -2714 ((-3 $ "failed") (-923 (-549)))) (-15 -2659 ($ (-400 (-923 (-372))))) (-15 -2714 ((-3 $ "failed") (-400 (-923 (-372))))) (-15 -2659 ($ (-400 (-923 (-549))))) (-15 -2714 ((-3 $ "failed") (-400 (-923 (-549)))))))
+(((-593 (-834)) . T) ((-388) . T) ((-1180) . T))
+((-2470 (((-621 (-1125)) (-621 (-1125))) 9)) (-3316 (((-1231) (-381)) 27)) (-2401 (((-1071) (-1143) (-621 (-1143)) (-1146) (-621 (-1143))) 60) (((-1071) (-1143) (-621 (-3 (|:| |array| (-621 (-1143))) (|:| |scalar| (-1143)))) (-621 (-621 (-3 (|:| |array| (-621 (-1143))) (|:| |scalar| (-1143))))) (-621 (-1143)) (-1143)) 35) (((-1071) (-1143) (-621 (-3 (|:| |array| (-621 (-1143))) (|:| |scalar| (-1143)))) (-621 (-621 (-3 (|:| |array| (-621 (-1143))) (|:| |scalar| (-1143))))) (-621 (-1143))) 34)))
+(((-390) (-10 -7 (-15 -2401 ((-1071) (-1143) (-621 (-3 (|:| |array| (-621 (-1143))) (|:| |scalar| (-1143)))) (-621 (-621 (-3 (|:| |array| (-621 (-1143))) (|:| |scalar| (-1143))))) (-621 (-1143)))) (-15 -2401 ((-1071) (-1143) (-621 (-3 (|:| |array| (-621 (-1143))) (|:| |scalar| (-1143)))) (-621 (-621 (-3 (|:| |array| (-621 (-1143))) (|:| |scalar| (-1143))))) (-621 (-1143)) (-1143))) (-15 -2401 ((-1071) (-1143) (-621 (-1143)) (-1146) (-621 (-1143)))) (-15 -3316 ((-1231) (-381))) (-15 -2470 ((-621 (-1125)) (-621 (-1125)))))) (T -390))
+((-2470 (*1 *2 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-390)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1231)) (-5 *1 (-390)))) (-2401 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-621 (-1143))) (-5 *5 (-1146)) (-5 *3 (-1143)) (-5 *2 (-1071)) (-5 *1 (-390)))) (-2401 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-621 (-621 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-621 (-3 (|:| |array| (-621 *3)) (|:| |scalar| (-1143))))) (-5 *6 (-621 (-1143))) (-5 *3 (-1143)) (-5 *2 (-1071)) (-5 *1 (-390)))) (-2401 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-621 (-621 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-621 (-3 (|:| |array| (-621 *3)) (|:| |scalar| (-1143))))) (-5 *6 (-621 (-1143))) (-5 *3 (-1143)) (-5 *2 (-1071)) (-5 *1 (-390)))))
+(-10 -7 (-15 -2401 ((-1071) (-1143) (-621 (-3 (|:| |array| (-621 (-1143))) (|:| |scalar| (-1143)))) (-621 (-621 (-3 (|:| |array| (-621 (-1143))) (|:| |scalar| (-1143))))) (-621 (-1143)))) (-15 -2401 ((-1071) (-1143) (-621 (-3 (|:| |array| (-621 (-1143))) (|:| |scalar| (-1143)))) (-621 (-621 (-3 (|:| |array| (-621 (-1143))) (|:| |scalar| (-1143))))) (-621 (-1143)) (-1143))) (-15 -2401 ((-1071) (-1143) (-621 (-1143)) (-1146) (-621 (-1143)))) (-15 -3316 ((-1231) (-381))) (-15 -2470 ((-621 (-1125)) (-621 (-1125)))))
+((-3316 (((-1231) $) 38)) (-3846 (((-834) $) 98) (($ (-323)) 100) (($ (-621 (-323))) 99) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 97) (($ (-309 (-677))) 54) (($ (-309 (-675))) 73) (($ (-309 (-670))) 86) (($ (-287 (-309 (-677)))) 68) (($ (-287 (-309 (-675)))) 81) (($ (-287 (-309 (-670)))) 94) (($ (-309 (-549))) 104) (($ (-309 (-372))) 117) (($ (-309 (-167 (-372)))) 130) (($ (-287 (-309 (-549)))) 112) (($ (-287 (-309 (-372)))) 125) (($ (-287 (-309 (-167 (-372))))) 138)))
+(((-391 |#1| |#2| |#3| |#4|) (-13 (-388) (-10 -8 (-15 -3846 ($ (-323))) (-15 -3846 ($ (-621 (-323)))) (-15 -3846 ($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323)))))) (-15 -3846 ($ (-309 (-677)))) (-15 -3846 ($ (-309 (-675)))) (-15 -3846 ($ (-309 (-670)))) (-15 -3846 ($ (-287 (-309 (-677))))) (-15 -3846 ($ (-287 (-309 (-675))))) (-15 -3846 ($ (-287 (-309 (-670))))) (-15 -3846 ($ (-309 (-549)))) (-15 -3846 ($ (-309 (-372)))) (-15 -3846 ($ (-309 (-167 (-372))))) (-15 -3846 ($ (-287 (-309 (-549))))) (-15 -3846 ($ (-287 (-309 (-372))))) (-15 -3846 ($ (-287 (-309 (-167 (-372)))))))) (-1143) (-3 (|:| |fst| (-427)) (|:| -2903 "void")) (-621 (-1143)) (-1147)) (T -391))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-309 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-309 (-675))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-309 (-670))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-675)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-670)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-309 (-549))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-549)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-372)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-287 (-309 (-167 (-372))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-14 *5 (-621 (-1143))) (-14 *6 (-1147)))))
+(-13 (-388) (-10 -8 (-15 -3846 ($ (-323))) (-15 -3846 ($ (-621 (-323)))) (-15 -3846 ($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323)))))) (-15 -3846 ($ (-309 (-677)))) (-15 -3846 ($ (-309 (-675)))) (-15 -3846 ($ (-309 (-670)))) (-15 -3846 ($ (-287 (-309 (-677))))) (-15 -3846 ($ (-287 (-309 (-675))))) (-15 -3846 ($ (-287 (-309 (-670))))) (-15 -3846 ($ (-309 (-549)))) (-15 -3846 ($ (-309 (-372)))) (-15 -3846 ($ (-309 (-167 (-372))))) (-15 -3846 ($ (-287 (-309 (-549))))) (-15 -3846 ($ (-287 (-309 (-372))))) (-15 -3846 ($ (-287 (-309 (-167 (-372))))))))
+((-3834 (((-112) $ $) NIL)) (-2285 ((|#2| $) 36)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-4279 (($ (-400 |#2|)) 85)) (-3658 (((-621 (-2 (|:| -3731 (-747)) (|:| -2597 |#2|) (|:| |num| |#2|))) $) 37)) (-3456 (($ $) 32) (($ $ (-747)) 34)) (-2845 (((-400 |#2|) $) 46)) (-3854 (($ (-621 (-2 (|:| -3731 (-747)) (|:| -2597 |#2|) (|:| |num| |#2|)))) 31)) (-3846 (((-834) $) 120)) (-1702 (($ $) 33) (($ $ (-747)) 35)) (-2389 (((-112) $ $) NIL)) (-2486 (($ |#2| $) 39)))
+(((-392 |#1| |#2|) (-13 (-1067) (-594 (-400 |#2|)) (-10 -8 (-15 -2486 ($ |#2| $)) (-15 -4279 ($ (-400 |#2|))) (-15 -2285 (|#2| $)) (-15 -3658 ((-621 (-2 (|:| -3731 (-747)) (|:| -2597 |#2|) (|:| |num| |#2|))) $)) (-15 -3854 ($ (-621 (-2 (|:| -3731 (-747)) (|:| -2597 |#2|) (|:| |num| |#2|))))) (-15 -3456 ($ $)) (-15 -1702 ($ $)) (-15 -3456 ($ $ (-747))) (-15 -1702 ($ $ (-747))))) (-13 (-356) (-145)) (-1202 |#1|)) (T -392))
+((-2486 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) (-4 *2 (-1202 *3)))) (-4279 (*1 *1 *2) (-12 (-5 *2 (-400 *4)) (-4 *4 (-1202 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-2285 (*1 *2 *1) (-12 (-4 *2 (-1202 *3)) (-5 *1 (-392 *3 *2)) (-4 *3 (-13 (-356) (-145))))) (-3658 (*1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *2 (-621 (-2 (|:| -3731 (-747)) (|:| -2597 *4) (|:| |num| *4)))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1202 *3)))) (-3854 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -3731 (-747)) (|:| -2597 *4) (|:| |num| *4)))) (-4 *4 (-1202 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-3456 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1202 *2)))) (-1702 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1202 *2)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1202 *3)))) (-1702 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1202 *3)))))
+(-13 (-1067) (-594 (-400 |#2|)) (-10 -8 (-15 -2486 ($ |#2| $)) (-15 -4279 ($ (-400 |#2|))) (-15 -2285 (|#2| $)) (-15 -3658 ((-621 (-2 (|:| -3731 (-747)) (|:| -2597 |#2|) (|:| |num| |#2|))) $)) (-15 -3854 ($ (-621 (-2 (|:| -3731 (-747)) (|:| -2597 |#2|) (|:| |num| |#2|))))) (-15 -3456 ($ $)) (-15 -1702 ($ $)) (-15 -3456 ($ $ (-747))) (-15 -1702 ($ $ (-747)))))
+((-3834 (((-112) $ $) 9 (-1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))))) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 15 (|has| |#1| (-857 (-372)))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 14 (|has| |#1| (-857 (-549))))) (-3851 (((-1125) $) 13 (-1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))))) (-3990 (((-1087) $) 12 (-1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))))) (-3846 (((-834) $) 11 (-1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))))) (-2389 (((-112) $ $) 10 (-1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))))))
+(((-393 |#1|) (-138) (-1180)) (T -393))
+NIL
+(-13 (-1180) (-10 -7 (IF (|has| |t#1| (-857 (-549))) (-6 (-857 (-549))) |%noBranch|) (IF (|has| |t#1| (-857 (-372))) (-6 (-857 (-372))) |%noBranch|)))
+(((-101) -1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))) ((-593 (-834)) -1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))) ((-857 (-372)) |has| |#1| (-857 (-372))) ((-857 (-549)) |has| |#1| (-857 (-549))) ((-1067) -1536 (|has| |#1| (-857 (-549))) (|has| |#1| (-857 (-372)))) ((-1180) . T))
+((-3165 (($ $) 10) (($ $ (-747)) 11)))
+(((-394 |#1|) (-10 -8 (-15 -3165 (|#1| |#1| (-747))) (-15 -3165 (|#1| |#1|))) (-395)) (T -394))
+NIL
+(-10 -8 (-15 -3165 (|#1| |#1| (-747))) (-15 -3165 (|#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 70)) (-2402 (((-411 $) $) 69)) (-3866 (((-112) $ $) 57)) (-1682 (($) 17 T CONST)) (-2095 (($ $ $) 53)) (-2114 (((-3 $ "failed") $) 32)) (-2067 (($ $ $) 54)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-3165 (($ $) 76) (($ $ (-747)) 75)) (-1420 (((-112) $) 68)) (-2088 (((-809 (-892)) $) 78)) (-2675 (((-112) $) 30)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 67)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2121 (((-411 $) $) 71)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3684 (((-747) $) 56)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55)) (-3914 (((-3 (-747) "failed") $ $) 77)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63)) (-2210 (((-3 $ "failed") $) 79)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ $) 62)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64)))
(((-395) (-138)) (T -395))
-((-1348 (*1 *1 *2 *2) (-12 (-5 *2 (-547)) (-4 *1 (-395)))) (-1348 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-547)) (-5 *3 (-890)) (-4 *1 (-395)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-547)))) (-1856 (*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-547)))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-547)))) (-1729 (*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))) (-2697 (*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))) (-3228 (*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))) (-1729 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4320)) (-4 *1 (-395)))) (-2697 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4320)) (-4 *1 (-395)))) (-3228 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4320)) (-4 *1 (-395)))) (-3470 (*1 *2 *3) (-12 (-5 *3 (-547)) (|has| *1 (-6 -4320)) (-4 *1 (-395)) (-5 *2 (-890)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-547)) (|has| *1 (-6 -4320)) (-4 *1 (-395)) (-5 *2 (-890)))) (-2856 (*1 *1) (-12 (-4 *1 (-395)) (-4000 (|has| *1 (-6 -4320))) (-4000 (|has| *1 (-6 -4312))))) (-3567 (*1 *1) (-12 (-4 *1 (-395)) (-4000 (|has| *1 (-6 -4320))) (-4000 (|has| *1 (-6 -4312))))))
-(-13 (-1025) (-10 -8 (-6 -2654) (-15 -1348 ($ (-547) (-547))) (-15 -1348 ($ (-547) (-547) (-890))) (-15 -3275 ((-547) $)) (-15 -1856 ((-890))) (-15 -3322 ((-547) $)) (-15 -1454 ((-547) $)) (-15 -1729 ((-890))) (-15 -2697 ((-890))) (-15 -3228 ((-890))) (IF (|has| $ (-6 -4320)) (PROGN (-15 -1729 ((-890) (-890))) (-15 -2697 ((-890) (-890))) (-15 -3228 ((-890) (-890))) (-15 -3470 ((-890) (-547))) (-15 -2738 ((-890) (-547)))) |%noBranch|) (IF (|has| $ (-6 -4312)) |%noBranch| (IF (|has| $ (-6 -4320)) |%noBranch| (PROGN (-15 -2856 ($)) (-15 -3567 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-591 (-832)) . T) ((-169) . T) ((-592 (-217)) . T) ((-592 (-370)) . T) ((-592 (-861 (-370))) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-855 (-370)) . T) ((-889) . T) ((-971) . T) ((-991) . T) ((-1025) . T) ((-1007 (-398 (-547))) . T) ((-1007 (-547)) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1177) . T))
-((-2790 (((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)) 20)))
-(((-396 |#1| |#2|) (-10 -7 (-15 -2790 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) (-539) (-539)) (T -396))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-539)) (-4 *6 (-539)) (-5 *2 (-409 *6)) (-5 *1 (-396 *5 *6)))))
-(-10 -7 (-15 -2790 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|))))
-((-2790 (((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)) 13)))
-(((-397 |#1| |#2|) (-10 -7 (-15 -2790 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)))) (-539) (-539)) (T -397))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-539)) (-4 *6 (-539)) (-5 *2 (-398 *6)) (-5 *1 (-397 *5 *6)))))
-(-10 -7 (-15 -2790 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 13)) (-2092 ((|#1| $) 21 (|has| |#1| (-298)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL (|has| |#1| (-794)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) 17) (((-3 (-1136) "failed") $) NIL (|has| |#1| (-1007 (-1136)))) (((-3 (-398 (-547)) "failed") $) 70 (|has| |#1| (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547))))) (-2652 ((|#1| $) 15) (((-1136) $) NIL (|has| |#1| (-1007 (-1136)))) (((-398 (-547)) $) 67 (|has| |#1| (-1007 (-547)))) (((-547) $) NIL (|has| |#1| (-1007 (-547))))) (-2089 (($ $ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) 50)) (-3232 (($) NIL (|has| |#1| (-532)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-4270 (((-112) $) NIL (|has| |#1| (-794)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| |#1| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| |#1| (-855 (-370))))) (-2261 (((-112) $) 64)) (-4170 (($ $) NIL)) (-1386 ((|#1| $) 71)) (-3477 (((-3 $ "failed") $) NIL (|has| |#1| (-1112)))) (-1860 (((-112) $) NIL (|has| |#1| (-794)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| |#1| (-1112)) CONST)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 97)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3682 (($ $) NIL (|has| |#1| (-298)))) (-1276 ((|#1| $) 28 (|has| |#1| (-532)))) (-2834 (((-409 (-1132 $)) (-1132 $)) 135 (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) 131 (|has| |#1| (-878)))) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2679 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1136)) (-619 |#1|)) NIL (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-1136) |#1|) NIL (|has| |#1| (-503 (-1136) |#1|)))) (-2471 (((-745) $) NIL)) (-3334 (($ $ |#1|) NIL (|has| |#1| (-277 |#1| |#1|)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3448 (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2995 (($ $) NIL)) (-1396 ((|#1| $) 73)) (-2838 (((-861 (-547)) $) NIL (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| |#1| (-592 (-861 (-370))))) (((-523) $) NIL (|has| |#1| (-592 (-523)))) (((-370) $) NIL (|has| |#1| (-991))) (((-217) $) NIL (|has| |#1| (-991)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) 10) (($ (-1136)) NIL (|has| |#1| (-1007 (-1136))))) (-2220 (((-3 $ "failed") $) 99 (-1530 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) 100)) (-3720 ((|#1| $) 26 (|has| |#1| (-532)))) (-3577 (((-112) $ $) NIL)) (-2255 (($ $) NIL (|has| |#1| (-794)))) (-3269 (($) 22 T CONST)) (-3281 (($) 8 T CONST)) (-2273 (((-1119) $) 43 (-12 (|has| |#1| (-532)) (|has| |#1| (-802)))) (((-1119) $ (-112)) 44 (-12 (|has| |#1| (-532)) (|has| |#1| (-802)))) (((-1224) (-796) $) 45 (-12 (|has| |#1| (-532)) (|has| |#1| (-802)))) (((-1224) (-796) $ (-112)) 46 (-12 (|has| |#1| (-532)) (|has| |#1| (-802))))) (-1695 (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) 56)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) 24 (|has| |#1| (-821)))) (-2506 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2493 (($ $) 25) (($ $ $) 55)) (-2479 (($ $ $) 53)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 125)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 60) (($ $ $) 57) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-398 |#1|) (-13 (-961 |#1|) (-10 -7 (IF (|has| |#1| (-532)) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4316)) (IF (|has| |#1| (-442)) (IF (|has| |#1| (-6 -4327)) (-6 -4316) |%noBranch|) |%noBranch|) |%noBranch|))) (-539)) (T -398))
-NIL
-(-13 (-961 |#1|) (-10 -7 (IF (|has| |#1| (-532)) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4316)) (IF (|has| |#1| (-442)) (IF (|has| |#1| (-6 -4327)) (-6 -4316) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-3401 (((-663 |#2|) (-1219 $)) NIL) (((-663 |#2|)) 18)) (-2614 (($ (-1219 |#2|) (-1219 $)) NIL) (($ (-1219 |#2|)) 24)) (-3565 (((-663 |#2|) $ (-1219 $)) NIL) (((-663 |#2|) $) 38)) (-3786 ((|#3| $) 60)) (-4056 ((|#2| (-1219 $)) NIL) ((|#2|) 20)) (-3220 (((-1219 |#2|) $ (-1219 $)) NIL) (((-663 |#2|) (-1219 $) (-1219 $)) NIL) (((-1219 |#2|) $) 22) (((-663 |#2|) (-1219 $)) 36)) (-2838 (((-1219 |#2|) $) 11) (($ (-1219 |#2|)) 13)) (-1316 ((|#3| $) 52)))
-(((-399 |#1| |#2| |#3|) (-10 -8 (-15 -3565 ((-663 |#2|) |#1|)) (-15 -4056 (|#2|)) (-15 -3401 ((-663 |#2|))) (-15 -2838 (|#1| (-1219 |#2|))) (-15 -2838 ((-1219 |#2|) |#1|)) (-15 -2614 (|#1| (-1219 |#2|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1|)) (-15 -3786 (|#3| |#1|)) (-15 -1316 (|#3| |#1|)) (-15 -3401 ((-663 |#2|) (-1219 |#1|))) (-15 -4056 (|#2| (-1219 |#1|))) (-15 -2614 (|#1| (-1219 |#2|) (-1219 |#1|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1| (-1219 |#1|))) (-15 -3565 ((-663 |#2|) |#1| (-1219 |#1|)))) (-400 |#2| |#3|) (-169) (-1195 |#2|)) (T -399))
-((-3401 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1195 *4)) (-5 *2 (-663 *4)) (-5 *1 (-399 *3 *4 *5)) (-4 *3 (-400 *4 *5)))) (-4056 (*1 *2) (-12 (-4 *4 (-1195 *2)) (-4 *2 (-169)) (-5 *1 (-399 *3 *2 *4)) (-4 *3 (-400 *2 *4)))))
-(-10 -8 (-15 -3565 ((-663 |#2|) |#1|)) (-15 -4056 (|#2|)) (-15 -3401 ((-663 |#2|))) (-15 -2838 (|#1| (-1219 |#2|))) (-15 -2838 ((-1219 |#2|) |#1|)) (-15 -2614 (|#1| (-1219 |#2|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1|)) (-15 -3786 (|#3| |#1|)) (-15 -1316 (|#3| |#1|)) (-15 -3401 ((-663 |#2|) (-1219 |#1|))) (-15 -4056 (|#2| (-1219 |#1|))) (-15 -2614 (|#1| (-1219 |#2|) (-1219 |#1|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1| (-1219 |#1|))) (-15 -3565 ((-663 |#2|) |#1| (-1219 |#1|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3401 (((-663 |#1|) (-1219 $)) 44) (((-663 |#1|)) 59)) (-2899 ((|#1| $) 50)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-2614 (($ (-1219 |#1|) (-1219 $)) 46) (($ (-1219 |#1|)) 62)) (-3565 (((-663 |#1|) $ (-1219 $)) 51) (((-663 |#1|) $) 57)) (-3855 (((-3 $ "failed") $) 32)) (-3116 (((-890)) 52)) (-2261 (((-112) $) 30)) (-3160 ((|#1| $) 49)) (-3786 ((|#2| $) 42 (|has| |#1| (-354)))) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-4056 ((|#1| (-1219 $)) 45) ((|#1|) 58)) (-3220 (((-1219 |#1|) $ (-1219 $)) 48) (((-663 |#1|) (-1219 $) (-1219 $)) 47) (((-1219 |#1|) $) 64) (((-663 |#1|) (-1219 $)) 63)) (-2838 (((-1219 |#1|) $) 61) (($ (-1219 |#1|)) 60)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35)) (-2220 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-1316 ((|#2| $) 43)) (-2736 (((-745)) 28)) (-1917 (((-1219 $)) 65)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-400 |#1| |#2|) (-138) (-169) (-1195 |t#1|)) (T -400))
-((-1917 (*1 *2) (-12 (-4 *3 (-169)) (-4 *4 (-1195 *3)) (-5 *2 (-1219 *1)) (-4 *1 (-400 *3 *4)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1195 *3)) (-5 *2 (-1219 *3)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-400 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1195 *4)) (-5 *2 (-663 *4)))) (-2614 (*1 *1 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-169)) (-4 *1 (-400 *3 *4)) (-4 *4 (-1195 *3)))) (-2838 (*1 *2 *1) (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1195 *3)) (-5 *2 (-1219 *3)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-169)) (-4 *1 (-400 *3 *4)) (-4 *4 (-1195 *3)))) (-3401 (*1 *2) (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1195 *3)) (-5 *2 (-663 *3)))) (-4056 (*1 *2) (-12 (-4 *1 (-400 *2 *3)) (-4 *3 (-1195 *2)) (-4 *2 (-169)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1195 *3)) (-5 *2 (-663 *3)))))
-(-13 (-361 |t#1| |t#2|) (-10 -8 (-15 -1917 ((-1219 $))) (-15 -3220 ((-1219 |t#1|) $)) (-15 -3220 ((-663 |t#1|) (-1219 $))) (-15 -2614 ($ (-1219 |t#1|))) (-15 -2838 ((-1219 |t#1|) $)) (-15 -2838 ($ (-1219 |t#1|))) (-15 -3401 ((-663 |t#1|))) (-15 -4056 (|t#1|)) (-15 -3565 ((-663 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-361 |#1| |#2|) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2707 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) 27) (((-3 (-547) "failed") $) 19)) (-2652 ((|#2| $) NIL) (((-398 (-547)) $) 24) (((-547) $) 14)) (-3838 (($ |#2|) NIL) (($ (-398 (-547))) 22) (($ (-547)) 11)))
-(((-401 |#1| |#2|) (-10 -8 (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -3838 (|#1| (-547))) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 (|#1| |#2|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2652 (|#2| |#1|))) (-402 |#2|) (-1173)) (T -401))
-NIL
-(-10 -8 (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -3838 (|#1| (-547))) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 (|#1| |#2|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2652 (|#2| |#1|)))
-((-2707 (((-3 |#1| "failed") $) 7) (((-3 (-398 (-547)) "failed") $) 16 (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) 13 (|has| |#1| (-1007 (-547))))) (-2652 ((|#1| $) 8) (((-398 (-547)) $) 15 (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) 12 (|has| |#1| (-1007 (-547))))) (-3838 (($ |#1|) 6) (($ (-398 (-547))) 17 (|has| |#1| (-1007 (-398 (-547))))) (($ (-547)) 14 (|has| |#1| (-1007 (-547))))))
-(((-402 |#1|) (-138) (-1173)) (T -402))
-NIL
-(-13 (-1007 |t#1|) (-10 -7 (IF (|has| |t#1| (-1007 (-547))) (-6 (-1007 (-547))) |%noBranch|) (IF (|has| |t#1| (-1007 (-398 (-547)))) (-6 (-1007 (-398 (-547)))) |%noBranch|)))
-(((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T))
-((-2790 (((-404 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-404 |#1| |#2| |#3| |#4|)) 33)))
-(((-403 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2790 ((-404 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-404 |#1| |#2| |#3| |#4|)))) (-298) (-961 |#1|) (-1195 |#2|) (-13 (-400 |#2| |#3|) (-1007 |#2|)) (-298) (-961 |#5|) (-1195 |#6|) (-13 (-400 |#6| |#7|) (-1007 |#6|))) (T -403))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-404 *5 *6 *7 *8)) (-4 *5 (-298)) (-4 *6 (-961 *5)) (-4 *7 (-1195 *6)) (-4 *8 (-13 (-400 *6 *7) (-1007 *6))) (-4 *9 (-298)) (-4 *10 (-961 *9)) (-4 *11 (-1195 *10)) (-5 *2 (-404 *9 *10 *11 *12)) (-5 *1 (-403 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-400 *10 *11) (-1007 *10))))))
-(-10 -7 (-15 -2790 ((-404 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-404 |#1| |#2| |#3| |#4|))))
-((-3826 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) NIL)) (-2484 ((|#4| (-745) (-1219 |#4|)) 56)) (-2261 (((-112) $) NIL)) (-1386 (((-1219 |#4|) $) 17)) (-3160 ((|#2| $) 54)) (-2989 (($ $) 139)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 100)) (-2532 (($ (-1219 |#4|)) 99)) (-3979 (((-1082) $) NIL)) (-1396 ((|#1| $) 18)) (-3404 (($ $ $) NIL)) (-1473 (($ $ $) NIL)) (-3838 (((-832) $) 134)) (-1917 (((-1219 |#4|) $) 129)) (-3281 (($) 11 T CONST)) (-2381 (((-112) $ $) 40)) (-2506 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 122)) (* (($ $ $) 121)))
-(((-404 |#1| |#2| |#3| |#4|) (-13 (-463) (-10 -8 (-15 -2532 ($ (-1219 |#4|))) (-15 -1917 ((-1219 |#4|) $)) (-15 -3160 (|#2| $)) (-15 -1386 ((-1219 |#4|) $)) (-15 -1396 (|#1| $)) (-15 -2989 ($ $)) (-15 -2484 (|#4| (-745) (-1219 |#4|))))) (-298) (-961 |#1|) (-1195 |#2|) (-13 (-400 |#2| |#3|) (-1007 |#2|))) (T -404))
-((-2532 (*1 *1 *2) (-12 (-5 *2 (-1219 *6)) (-4 *6 (-13 (-400 *4 *5) (-1007 *4))) (-4 *4 (-961 *3)) (-4 *5 (-1195 *4)) (-4 *3 (-298)) (-5 *1 (-404 *3 *4 *5 *6)))) (-1917 (*1 *2 *1) (-12 (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1195 *4)) (-5 *2 (-1219 *6)) (-5 *1 (-404 *3 *4 *5 *6)) (-4 *6 (-13 (-400 *4 *5) (-1007 *4))))) (-3160 (*1 *2 *1) (-12 (-4 *4 (-1195 *2)) (-4 *2 (-961 *3)) (-5 *1 (-404 *3 *2 *4 *5)) (-4 *3 (-298)) (-4 *5 (-13 (-400 *2 *4) (-1007 *2))))) (-1386 (*1 *2 *1) (-12 (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1195 *4)) (-5 *2 (-1219 *6)) (-5 *1 (-404 *3 *4 *5 *6)) (-4 *6 (-13 (-400 *4 *5) (-1007 *4))))) (-1396 (*1 *2 *1) (-12 (-4 *3 (-961 *2)) (-4 *4 (-1195 *3)) (-4 *2 (-298)) (-5 *1 (-404 *2 *3 *4 *5)) (-4 *5 (-13 (-400 *3 *4) (-1007 *3))))) (-2989 (*1 *1 *1) (-12 (-4 *2 (-298)) (-4 *3 (-961 *2)) (-4 *4 (-1195 *3)) (-5 *1 (-404 *2 *3 *4 *5)) (-4 *5 (-13 (-400 *3 *4) (-1007 *3))))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-1219 *2)) (-4 *5 (-298)) (-4 *6 (-961 *5)) (-4 *2 (-13 (-400 *6 *7) (-1007 *6))) (-5 *1 (-404 *5 *6 *7 *2)) (-4 *7 (-1195 *6)))))
-(-13 (-463) (-10 -8 (-15 -2532 ($ (-1219 |#4|))) (-15 -1917 ((-1219 |#4|) $)) (-15 -3160 (|#2| $)) (-15 -1386 ((-1219 |#4|) $)) (-15 -1396 (|#1| $)) (-15 -2989 ($ $)) (-15 -2484 (|#4| (-745) (-1219 |#4|)))))
-((-3826 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-3160 ((|#2| $) 61)) (-3816 (($ (-1219 |#4|)) 25) (($ (-404 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1007 |#2|)))) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 34)) (-1917 (((-1219 |#4|) $) 26)) (-3281 (($) 23 T CONST)) (-2381 (((-112) $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ $ $) 72)))
-(((-405 |#1| |#2| |#3| |#4| |#5|) (-13 (-701) (-10 -8 (-15 -1917 ((-1219 |#4|) $)) (-15 -3160 (|#2| $)) (-15 -3816 ($ (-1219 |#4|))) (IF (|has| |#4| (-1007 |#2|)) (-15 -3816 ($ (-404 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-298) (-961 |#1|) (-1195 |#2|) (-400 |#2| |#3|) (-1219 |#4|)) (T -405))
-((-1917 (*1 *2 *1) (-12 (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1195 *4)) (-5 *2 (-1219 *6)) (-5 *1 (-405 *3 *4 *5 *6 *7)) (-4 *6 (-400 *4 *5)) (-14 *7 *2))) (-3160 (*1 *2 *1) (-12 (-4 *4 (-1195 *2)) (-4 *2 (-961 *3)) (-5 *1 (-405 *3 *2 *4 *5 *6)) (-4 *3 (-298)) (-4 *5 (-400 *2 *4)) (-14 *6 (-1219 *5)))) (-3816 (*1 *1 *2) (-12 (-5 *2 (-1219 *6)) (-4 *6 (-400 *4 *5)) (-4 *4 (-961 *3)) (-4 *5 (-1195 *4)) (-4 *3 (-298)) (-5 *1 (-405 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3816 (*1 *1 *2) (-12 (-5 *2 (-404 *3 *4 *5 *6)) (-4 *6 (-1007 *4)) (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1195 *4)) (-4 *6 (-400 *4 *5)) (-14 *7 (-1219 *6)) (-5 *1 (-405 *3 *4 *5 *6 *7)))))
-(-13 (-701) (-10 -8 (-15 -1917 ((-1219 |#4|) $)) (-15 -3160 (|#2| $)) (-15 -3816 ($ (-1219 |#4|))) (IF (|has| |#4| (-1007 |#2|)) (-15 -3816 ($ (-404 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-2790 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-406 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2790 (|#3| (-1 |#4| |#2|) |#1|))) (-408 |#2|) (-169) (-408 |#4|) (-169)) (T -406))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-408 *6)) (-5 *1 (-406 *4 *5 *2 *6)) (-4 *4 (-408 *5)))))
-(-10 -7 (-15 -2790 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3825 (((-3 $ "failed")) 86)) (-3620 (((-1219 (-663 |#2|)) (-1219 $)) NIL) (((-1219 (-663 |#2|))) 91)) (-4106 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) 85)) (-2169 (((-3 $ "failed")) 84)) (-2877 (((-663 |#2|) (-1219 $)) NIL) (((-663 |#2|)) 102)) (-1252 (((-663 |#2|) $ (-1219 $)) NIL) (((-663 |#2|) $) 110)) (-4036 (((-1132 (-921 |#2|))) 55)) (-1936 ((|#2| (-1219 $)) NIL) ((|#2|) 106)) (-2614 (($ (-1219 |#2|) (-1219 $)) NIL) (($ (-1219 |#2|)) 112)) (-2499 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) 83)) (-1549 (((-3 $ "failed")) 75)) (-2972 (((-663 |#2|) (-1219 $)) NIL) (((-663 |#2|)) 100)) (-2574 (((-663 |#2|) $ (-1219 $)) NIL) (((-663 |#2|) $) 108)) (-3569 (((-1132 (-921 |#2|))) 54)) (-4062 ((|#2| (-1219 $)) NIL) ((|#2|) 104)) (-3220 (((-1219 |#2|) $ (-1219 $)) NIL) (((-663 |#2|) (-1219 $) (-1219 $)) NIL) (((-1219 |#2|) $) 111) (((-663 |#2|) (-1219 $)) 118)) (-2838 (((-1219 |#2|) $) 96) (($ (-1219 |#2|)) 98)) (-3906 (((-619 (-921 |#2|)) (-1219 $)) NIL) (((-619 (-921 |#2|))) 94)) (-3587 (($ (-663 |#2|) $) 90)))
-(((-407 |#1| |#2|) (-10 -8 (-15 -3587 (|#1| (-663 |#2|) |#1|)) (-15 -4036 ((-1132 (-921 |#2|)))) (-15 -3569 ((-1132 (-921 |#2|)))) (-15 -1252 ((-663 |#2|) |#1|)) (-15 -2574 ((-663 |#2|) |#1|)) (-15 -2877 ((-663 |#2|))) (-15 -2972 ((-663 |#2|))) (-15 -1936 (|#2|)) (-15 -4062 (|#2|)) (-15 -2838 (|#1| (-1219 |#2|))) (-15 -2838 ((-1219 |#2|) |#1|)) (-15 -2614 (|#1| (-1219 |#2|))) (-15 -3906 ((-619 (-921 |#2|)))) (-15 -3620 ((-1219 (-663 |#2|)))) (-15 -3220 ((-663 |#2|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1|)) (-15 -3825 ((-3 |#1| "failed"))) (-15 -2169 ((-3 |#1| "failed"))) (-15 -1549 ((-3 |#1| "failed"))) (-15 -4106 ((-3 (-2 (|:| |particular| |#1|) (|:| -1917 (-619 |#1|))) "failed"))) (-15 -2499 ((-3 (-2 (|:| |particular| |#1|) (|:| -1917 (-619 |#1|))) "failed"))) (-15 -2877 ((-663 |#2|) (-1219 |#1|))) (-15 -2972 ((-663 |#2|) (-1219 |#1|))) (-15 -1936 (|#2| (-1219 |#1|))) (-15 -4062 (|#2| (-1219 |#1|))) (-15 -2614 (|#1| (-1219 |#2|) (-1219 |#1|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1| (-1219 |#1|))) (-15 -1252 ((-663 |#2|) |#1| (-1219 |#1|))) (-15 -2574 ((-663 |#2|) |#1| (-1219 |#1|))) (-15 -3620 ((-1219 (-663 |#2|)) (-1219 |#1|))) (-15 -3906 ((-619 (-921 |#2|)) (-1219 |#1|)))) (-408 |#2|) (-169)) (T -407))
-((-3620 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1219 (-663 *4))) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-3906 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-619 (-921 *4))) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-4062 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-407 *3 *2)) (-4 *3 (-408 *2)))) (-1936 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-407 *3 *2)) (-4 *3 (-408 *2)))) (-2972 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-2877 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-3569 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1132 (-921 *4))) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-4036 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1132 (-921 *4))) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))))
-(-10 -8 (-15 -3587 (|#1| (-663 |#2|) |#1|)) (-15 -4036 ((-1132 (-921 |#2|)))) (-15 -3569 ((-1132 (-921 |#2|)))) (-15 -1252 ((-663 |#2|) |#1|)) (-15 -2574 ((-663 |#2|) |#1|)) (-15 -2877 ((-663 |#2|))) (-15 -2972 ((-663 |#2|))) (-15 -1936 (|#2|)) (-15 -4062 (|#2|)) (-15 -2838 (|#1| (-1219 |#2|))) (-15 -2838 ((-1219 |#2|) |#1|)) (-15 -2614 (|#1| (-1219 |#2|))) (-15 -3906 ((-619 (-921 |#2|)))) (-15 -3620 ((-1219 (-663 |#2|)))) (-15 -3220 ((-663 |#2|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1|)) (-15 -3825 ((-3 |#1| "failed"))) (-15 -2169 ((-3 |#1| "failed"))) (-15 -1549 ((-3 |#1| "failed"))) (-15 -4106 ((-3 (-2 (|:| |particular| |#1|) (|:| -1917 (-619 |#1|))) "failed"))) (-15 -2499 ((-3 (-2 (|:| |particular| |#1|) (|:| -1917 (-619 |#1|))) "failed"))) (-15 -2877 ((-663 |#2|) (-1219 |#1|))) (-15 -2972 ((-663 |#2|) (-1219 |#1|))) (-15 -1936 (|#2| (-1219 |#1|))) (-15 -4062 (|#2| (-1219 |#1|))) (-15 -2614 (|#1| (-1219 |#2|) (-1219 |#1|))) (-15 -3220 ((-663 |#2|) (-1219 |#1|) (-1219 |#1|))) (-15 -3220 ((-1219 |#2|) |#1| (-1219 |#1|))) (-15 -1252 ((-663 |#2|) |#1| (-1219 |#1|))) (-15 -2574 ((-663 |#2|) |#1| (-1219 |#1|))) (-15 -3620 ((-1219 (-663 |#2|)) (-1219 |#1|))) (-15 -3906 ((-619 (-921 |#2|)) (-1219 |#1|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3825 (((-3 $ "failed")) 37 (|has| |#1| (-539)))) (-3672 (((-3 $ "failed") $ $) 19)) (-3620 (((-1219 (-663 |#1|)) (-1219 $)) 78) (((-1219 (-663 |#1|))) 100)) (-1342 (((-1219 $)) 81)) (-1948 (($) 17 T CONST)) (-4106 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) 40 (|has| |#1| (-539)))) (-2169 (((-3 $ "failed")) 38 (|has| |#1| (-539)))) (-2877 (((-663 |#1|) (-1219 $)) 65) (((-663 |#1|)) 92)) (-3652 ((|#1| $) 74)) (-1252 (((-663 |#1|) $ (-1219 $)) 76) (((-663 |#1|) $) 90)) (-2702 (((-3 $ "failed") $) 45 (|has| |#1| (-539)))) (-4036 (((-1132 (-921 |#1|))) 88 (|has| |#1| (-354)))) (-3387 (($ $ (-890)) 28)) (-2105 ((|#1| $) 72)) (-3685 (((-1132 |#1|) $) 42 (|has| |#1| (-539)))) (-1936 ((|#1| (-1219 $)) 67) ((|#1|) 94)) (-3543 (((-1132 |#1|) $) 63)) (-4130 (((-112)) 57)) (-2614 (($ (-1219 |#1|) (-1219 $)) 69) (($ (-1219 |#1|)) 98)) (-3855 (((-3 $ "failed") $) 47 (|has| |#1| (-539)))) (-3116 (((-890)) 80)) (-2470 (((-112)) 54)) (-1296 (($ $ (-890)) 33)) (-2270 (((-112)) 50)) (-3661 (((-112)) 48)) (-1790 (((-112)) 52)) (-2499 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) 41 (|has| |#1| (-539)))) (-1549 (((-3 $ "failed")) 39 (|has| |#1| (-539)))) (-2972 (((-663 |#1|) (-1219 $)) 66) (((-663 |#1|)) 93)) (-2080 ((|#1| $) 75)) (-2574 (((-663 |#1|) $ (-1219 $)) 77) (((-663 |#1|) $) 91)) (-4082 (((-3 $ "failed") $) 46 (|has| |#1| (-539)))) (-3569 (((-1132 (-921 |#1|))) 89 (|has| |#1| (-354)))) (-3851 (($ $ (-890)) 29)) (-4005 ((|#1| $) 73)) (-1964 (((-1132 |#1|) $) 43 (|has| |#1| (-539)))) (-4062 ((|#1| (-1219 $)) 68) ((|#1|) 95)) (-2317 (((-1132 |#1|) $) 64)) (-3912 (((-112)) 58)) (-1466 (((-1119) $) 9)) (-3795 (((-112)) 49)) (-2759 (((-112)) 51)) (-3892 (((-112)) 53)) (-3979 (((-1082) $) 10)) (-1889 (((-112)) 56)) (-3334 ((|#1| $ (-547)) 101)) (-3220 (((-1219 |#1|) $ (-1219 $)) 71) (((-663 |#1|) (-1219 $) (-1219 $)) 70) (((-1219 |#1|) $) 103) (((-663 |#1|) (-1219 $)) 102)) (-2838 (((-1219 |#1|) $) 97) (($ (-1219 |#1|)) 96)) (-3906 (((-619 (-921 |#1|)) (-1219 $)) 79) (((-619 (-921 |#1|))) 99)) (-1473 (($ $ $) 25)) (-3274 (((-112)) 62)) (-3838 (((-832) $) 11)) (-1917 (((-1219 $)) 104)) (-3778 (((-619 (-1219 |#1|))) 44 (|has| |#1| (-539)))) (-2781 (($ $ $ $) 26)) (-3592 (((-112)) 60)) (-3587 (($ (-663 |#1|) $) 87)) (-2031 (($ $ $) 24)) (-3271 (((-112)) 61)) (-4150 (((-112)) 59)) (-2004 (((-112)) 55)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-408 |#1|) (-138) (-169)) (T -408))
-((-1917 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1219 *1)) (-4 *1 (-408 *3)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-1219 *3)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-408 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-408 *2)) (-4 *2 (-169)))) (-3620 (*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-1219 (-663 *3))))) (-3906 (*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-619 (-921 *3))))) (-2614 (*1 *1 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-169)) (-4 *1 (-408 *3)))) (-2838 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-1219 *3)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-169)) (-4 *1 (-408 *3)))) (-4062 (*1 *2) (-12 (-4 *1 (-408 *2)) (-4 *2 (-169)))) (-1936 (*1 *2) (-12 (-4 *1 (-408 *2)) (-4 *2 (-169)))) (-2972 (*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-2877 (*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-2574 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-1252 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-3569 (*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-4 *3 (-354)) (-5 *2 (-1132 (-921 *3))))) (-4036 (*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-4 *3 (-354)) (-5 *2 (-1132 (-921 *3))))) (-3587 (*1 *1 *2 *1) (-12 (-5 *2 (-663 *3)) (-4 *1 (-408 *3)) (-4 *3 (-169)))))
-(-13 (-358 |t#1|) (-10 -8 (-15 -1917 ((-1219 $))) (-15 -3220 ((-1219 |t#1|) $)) (-15 -3220 ((-663 |t#1|) (-1219 $))) (-15 -3334 (|t#1| $ (-547))) (-15 -3620 ((-1219 (-663 |t#1|)))) (-15 -3906 ((-619 (-921 |t#1|)))) (-15 -2614 ($ (-1219 |t#1|))) (-15 -2838 ((-1219 |t#1|) $)) (-15 -2838 ($ (-1219 |t#1|))) (-15 -4062 (|t#1|)) (-15 -1936 (|t#1|)) (-15 -2972 ((-663 |t#1|))) (-15 -2877 ((-663 |t#1|))) (-15 -2574 ((-663 |t#1|) $)) (-15 -1252 ((-663 |t#1|) $)) (IF (|has| |t#1| (-354)) (PROGN (-15 -3569 ((-1132 (-921 |t#1|)))) (-15 -4036 ((-1132 (-921 |t#1|))))) |%noBranch|) (-15 -3587 ($ (-663 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-358 |#1|) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-695) . T) ((-719 |#1|) . T) ((-736) . T) ((-1022 |#1|) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 42)) (-3285 (($ $) 57)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 146)) (-3571 (($ $) NIL)) (-3915 (((-112) $) 36)) (-3825 ((|#1| $) 13)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL (|has| |#1| (-1177)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-1177)))) (-1787 (($ |#1| (-547)) 31)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 116)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 55)) (-3855 (((-3 $ "failed") $) 131)) (-4265 (((-3 (-398 (-547)) "failed") $) 63 (|has| |#1| (-532)))) (-3198 (((-112) $) 59 (|has| |#1| (-532)))) (-2453 (((-398 (-547)) $) 70 (|has| |#1| (-532)))) (-2060 (($ |#1| (-547)) 33)) (-1791 (((-112) $) 152 (|has| |#1| (-1177)))) (-2261 (((-112) $) 43)) (-3523 (((-745) $) 38)) (-3813 (((-3 "nil" "sqfr" "irred" "prime") $ (-547)) 137)) (-1607 ((|#1| $ (-547)) 136)) (-1359 (((-547) $ (-547)) 135)) (-3603 (($ |#1| (-547)) 30)) (-2790 (($ (-1 |#1| |#1|) $) 143)) (-3651 (($ |#1| (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-547))))) 58)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1466 (((-1119) $) NIL)) (-3566 (($ |#1| (-547)) 32)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) 147 (|has| |#1| (-442)))) (-2950 (($ |#1| (-547) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-2534 (((-619 (-2 (|:| -2115 |#1|) (|:| -3322 (-547)))) $) 54)) (-3744 (((-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-547)))) $) 12)) (-2115 (((-409 $) $) NIL (|has| |#1| (-1177)))) (-2032 (((-3 $ "failed") $ $) 138)) (-3322 (((-547) $) 132)) (-1442 ((|#1| $) 56)) (-2679 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) 79 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1136)) (-619 |#1|)) 85 (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-1136) |#1|) NIL (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-1136) $) NIL (|has| |#1| (-503 (-1136) $))) (($ $ (-619 (-1136)) (-619 $)) 86 (|has| |#1| (-503 (-1136) $))) (($ $ (-619 (-285 $))) 82 (|has| |#1| (-300 $))) (($ $ (-285 $)) NIL (|has| |#1| (-300 $))) (($ $ $ $) NIL (|has| |#1| (-300 $))) (($ $ (-619 $) (-619 $)) NIL (|has| |#1| (-300 $)))) (-3334 (($ $ |#1|) 71 (|has| |#1| (-277 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-277 $ $)))) (-3448 (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-2838 (((-523) $) 27 (|has| |#1| (-592 (-523)))) (((-370) $) 92 (|has| |#1| (-991))) (((-217) $) 95 (|has| |#1| (-991)))) (-3838 (((-832) $) 114) (($ (-547)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547)))))) (-2736 (((-745)) 48)) (-3577 (((-112) $ $) NIL)) (-3269 (($) 40 T CONST)) (-3281 (($) 39 T CONST)) (-1695 (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2381 (((-112) $ $) 96)) (-2493 (($ $) 128) (($ $ $) NIL)) (-2479 (($ $ $) 140)) (** (($ $ (-890)) NIL) (($ $ (-745)) 102)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
-(((-409 |#1|) (-13 (-539) (-223 |#1|) (-38 |#1|) (-329 |#1|) (-402 |#1|) (-10 -8 (-15 -1442 (|#1| $)) (-15 -3322 ((-547) $)) (-15 -3651 ($ |#1| (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-547)))))) (-15 -3744 ((-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-547)))) $)) (-15 -3603 ($ |#1| (-547))) (-15 -2534 ((-619 (-2 (|:| -2115 |#1|) (|:| -3322 (-547)))) $)) (-15 -3566 ($ |#1| (-547))) (-15 -1359 ((-547) $ (-547))) (-15 -1607 (|#1| $ (-547))) (-15 -3813 ((-3 "nil" "sqfr" "irred" "prime") $ (-547))) (-15 -3523 ((-745) $)) (-15 -2060 ($ |#1| (-547))) (-15 -1787 ($ |#1| (-547))) (-15 -2950 ($ |#1| (-547) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3825 (|#1| $)) (-15 -3285 ($ $)) (-15 -2790 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-442)) (-6 (-442)) |%noBranch|) (IF (|has| |#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |#1| (-1177)) (-6 (-1177)) |%noBranch|) (IF (|has| |#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |#1| (-532)) (PROGN (-15 -3198 ((-112) $)) (-15 -2453 ((-398 (-547)) $)) (-15 -4265 ((-3 (-398 (-547)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-277 $ $)) (-6 (-277 $ $)) |%noBranch|) (IF (|has| |#1| (-300 $)) (-6 (-300 $)) |%noBranch|) (IF (|has| |#1| (-503 (-1136) $)) (-6 (-503 (-1136) $)) |%noBranch|))) (-539)) (T -409))
-((-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-539)) (-5 *1 (-409 *3)))) (-1442 (*1 *2 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-409 *3)) (-4 *3 (-539)))) (-3651 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-547))))) (-4 *2 (-539)) (-5 *1 (-409 *2)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-547))))) (-5 *1 (-409 *3)) (-4 *3 (-539)))) (-3603 (*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -2115 *3) (|:| -3322 (-547))))) (-5 *1 (-409 *3)) (-4 *3 (-539)))) (-3566 (*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-1359 (*1 *2 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-409 *3)) (-4 *3 (-539)))) (-1607 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-3813 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-409 *4)) (-4 *4 (-539)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-409 *3)) (-4 *3 (-539)))) (-2060 (*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-1787 (*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-2950 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-547)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-3825 (*1 *2 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-3285 (*1 *1 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-409 *3)) (-4 *3 (-532)) (-4 *3 (-539)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-409 *3)) (-4 *3 (-532)) (-4 *3 (-539)))) (-4265 (*1 *2 *1) (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-409 *3)) (-4 *3 (-532)) (-4 *3 (-539)))))
-(-13 (-539) (-223 |#1|) (-38 |#1|) (-329 |#1|) (-402 |#1|) (-10 -8 (-15 -1442 (|#1| $)) (-15 -3322 ((-547) $)) (-15 -3651 ($ |#1| (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-547)))))) (-15 -3744 ((-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-547)))) $)) (-15 -3603 ($ |#1| (-547))) (-15 -2534 ((-619 (-2 (|:| -2115 |#1|) (|:| -3322 (-547)))) $)) (-15 -3566 ($ |#1| (-547))) (-15 -1359 ((-547) $ (-547))) (-15 -1607 (|#1| $ (-547))) (-15 -3813 ((-3 "nil" "sqfr" "irred" "prime") $ (-547))) (-15 -3523 ((-745) $)) (-15 -2060 ($ |#1| (-547))) (-15 -1787 ($ |#1| (-547))) (-15 -2950 ($ |#1| (-547) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3825 (|#1| $)) (-15 -3285 ($ $)) (-15 -2790 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-442)) (-6 (-442)) |%noBranch|) (IF (|has| |#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |#1| (-1177)) (-6 (-1177)) |%noBranch|) (IF (|has| |#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |#1| (-532)) (PROGN (-15 -3198 ((-112) $)) (-15 -2453 ((-398 (-547)) $)) (-15 -4265 ((-3 (-398 (-547)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-277 $ $)) (-6 (-277 $ $)) |%noBranch|) (IF (|has| |#1| (-300 $)) (-6 (-300 $)) |%noBranch|) (IF (|has| |#1| (-503 (-1136) $)) (-6 (-503 (-1136) $)) |%noBranch|)))
-((-2557 (((-409 |#1|) (-409 |#1|) (-1 (-409 |#1|) |#1|)) 21)) (-3562 (((-409 |#1|) (-409 |#1|) (-409 |#1|)) 16)))
-(((-410 |#1|) (-10 -7 (-15 -2557 ((-409 |#1|) (-409 |#1|) (-1 (-409 |#1|) |#1|))) (-15 -3562 ((-409 |#1|) (-409 |#1|) (-409 |#1|)))) (-539)) (T -410))
-((-3562 (*1 *2 *2 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-539)) (-5 *1 (-410 *3)))) (-2557 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-409 *4) *4)) (-4 *4 (-539)) (-5 *2 (-409 *4)) (-5 *1 (-410 *4)))))
-(-10 -7 (-15 -2557 ((-409 |#1|) (-409 |#1|) (-1 (-409 |#1|) |#1|))) (-15 -3562 ((-409 |#1|) (-409 |#1|) (-409 |#1|))))
-((-2282 ((|#2| |#2|) 166)) (-2779 (((-3 (|:| |%expansion| (-304 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119))))) |#2| (-112)) 57)))
-(((-411 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2779 ((-3 (|:| |%expansion| (-304 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119))))) |#2| (-112))) (-15 -2282 (|#2| |#2|))) (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1158) (-421 |#1|)) (-1136) |#2|) (T -411))
-((-2282 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-411 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1158) (-421 *3))) (-14 *4 (-1136)) (-14 *5 *2))) (-2779 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |%expansion| (-304 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119)))))) (-5 *1 (-411 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1158) (-421 *5))) (-14 *6 (-1136)) (-14 *7 *3))))
-(-10 -7 (-15 -2779 ((-3 (|:| |%expansion| (-304 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119))))) |#2| (-112))) (-15 -2282 (|#2| |#2|)))
-((-2790 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-412 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2790 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1016) (-821)) (-421 |#1|) (-13 (-1016) (-821)) (-421 |#3|)) (T -412))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1016) (-821))) (-4 *6 (-13 (-1016) (-821))) (-4 *2 (-421 *6)) (-5 *1 (-412 *5 *4 *6 *2)) (-4 *4 (-421 *5)))))
-(-10 -7 (-15 -2790 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2282 ((|#2| |#2|) 90)) (-2502 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119))))) |#2| (-112) (-1119)) 48)) (-1455 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119))))) |#2| (-112) (-1119)) 154)))
-(((-413 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2502 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119))))) |#2| (-112) (-1119))) (-15 -1455 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119))))) |#2| (-112) (-1119))) (-15 -2282 (|#2| |#2|))) (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1158) (-421 |#1|) (-10 -8 (-15 -3838 ($ |#3|)))) (-819) (-13 (-1197 |#2| |#3|) (-354) (-1158) (-10 -8 (-15 -3448 ($ $)) (-15 -3694 ($ $)))) (-952 |#4|) (-1136)) (T -413))
-((-2282 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-4 *2 (-13 (-27) (-1158) (-421 *3) (-10 -8 (-15 -3838 ($ *4))))) (-4 *4 (-819)) (-4 *5 (-13 (-1197 *2 *4) (-354) (-1158) (-10 -8 (-15 -3448 ($ $)) (-15 -3694 ($ $))))) (-5 *1 (-413 *3 *2 *4 *5 *6 *7)) (-4 *6 (-952 *5)) (-14 *7 (-1136)))) (-1455 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-4 *3 (-13 (-27) (-1158) (-421 *6) (-10 -8 (-15 -3838 ($ *7))))) (-4 *7 (-819)) (-4 *8 (-13 (-1197 *3 *7) (-354) (-1158) (-10 -8 (-15 -3448 ($ $)) (-15 -3694 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119)))))) (-5 *1 (-413 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1119)) (-4 *9 (-952 *8)) (-14 *10 (-1136)))) (-2502 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-4 *3 (-13 (-27) (-1158) (-421 *6) (-10 -8 (-15 -3838 ($ *7))))) (-4 *7 (-819)) (-4 *8 (-13 (-1197 *3 *7) (-354) (-1158) (-10 -8 (-15 -3448 ($ $)) (-15 -3694 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119)))))) (-5 *1 (-413 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1119)) (-4 *9 (-952 *8)) (-14 *10 (-1136)))))
-(-10 -7 (-15 -2502 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119))))) |#2| (-112) (-1119))) (-15 -1455 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119))))) |#2| (-112) (-1119))) (-15 -2282 (|#2| |#2|)))
-((-2816 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2552 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2790 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2790 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2552 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2816 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1063) (-416 |#1|) (-1063) (-416 |#3|)) (T -414))
-((-2816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1063)) (-4 *5 (-1063)) (-4 *2 (-416 *5)) (-5 *1 (-414 *6 *4 *5 *2)) (-4 *4 (-416 *6)))) (-2552 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1063)) (-4 *2 (-1063)) (-5 *1 (-414 *5 *4 *2 *6)) (-4 *4 (-416 *5)) (-4 *6 (-416 *2)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-416 *6)) (-5 *1 (-414 *5 *4 *6 *2)) (-4 *4 (-416 *5)))))
-(-10 -7 (-15 -2790 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2552 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2816 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3134 (($) 44)) (-1435 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2984 (($ $ $) 39)) (-1361 (((-112) $ $) 28)) (-3608 (((-745)) 47)) (-2782 (($ (-619 |#2|)) 20) (($) NIL)) (-3232 (($) 53)) (-2841 (((-112) $ $) 13)) (-2856 ((|#2| $) 61)) (-3567 ((|#2| $) 59)) (-2402 (((-890) $) 55)) (-3594 (($ $ $) 35)) (-3487 (($ (-890)) 50)) (-1832 (($ $ |#2|) NIL) (($ $ $) 38)) (-3992 (((-745) (-1 (-112) |#2|) $) NIL) (((-745) |#2| $) 26)) (-3846 (($ (-619 |#2|)) 24)) (-2283 (($ $) 46)) (-3838 (((-832) $) 33)) (-1952 (((-745) $) 21)) (-4112 (($ (-619 |#2|)) 19) (($) NIL)) (-2381 (((-112) $ $) 16)))
-(((-415 |#1| |#2|) (-10 -8 (-15 -3608 ((-745))) (-15 -3487 (|#1| (-890))) (-15 -2402 ((-890) |#1|)) (-15 -3232 (|#1|)) (-15 -2856 (|#2| |#1|)) (-15 -3567 (|#2| |#1|)) (-15 -3134 (|#1|)) (-15 -2283 (|#1| |#1|)) (-15 -1952 ((-745) |#1|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -3838 ((-832) |#1|)) (-15 -2841 ((-112) |#1| |#1|)) (-15 -4112 (|#1|)) (-15 -4112 (|#1| (-619 |#2|))) (-15 -2782 (|#1|)) (-15 -2782 (|#1| (-619 |#2|))) (-15 -3594 (|#1| |#1| |#1|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -1832 (|#1| |#1| |#2|)) (-15 -2984 (|#1| |#1| |#1|)) (-15 -1361 ((-112) |#1| |#1|)) (-15 -1435 (|#1| |#1| |#1|)) (-15 -1435 (|#1| |#1| |#2|)) (-15 -1435 (|#1| |#2| |#1|)) (-15 -3846 (|#1| (-619 |#2|))) (-15 -3992 ((-745) |#2| |#1|)) (-15 -3992 ((-745) (-1 (-112) |#2|) |#1|))) (-416 |#2|) (-1063)) (T -415))
-((-3608 (*1 *2) (-12 (-4 *4 (-1063)) (-5 *2 (-745)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))))
-(-10 -8 (-15 -3608 ((-745))) (-15 -3487 (|#1| (-890))) (-15 -2402 ((-890) |#1|)) (-15 -3232 (|#1|)) (-15 -2856 (|#2| |#1|)) (-15 -3567 (|#2| |#1|)) (-15 -3134 (|#1|)) (-15 -2283 (|#1| |#1|)) (-15 -1952 ((-745) |#1|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -3838 ((-832) |#1|)) (-15 -2841 ((-112) |#1| |#1|)) (-15 -4112 (|#1|)) (-15 -4112 (|#1| (-619 |#2|))) (-15 -2782 (|#1|)) (-15 -2782 (|#1| (-619 |#2|))) (-15 -3594 (|#1| |#1| |#1|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -1832 (|#1| |#1| |#2|)) (-15 -2984 (|#1| |#1| |#1|)) (-15 -1361 ((-112) |#1| |#1|)) (-15 -1435 (|#1| |#1| |#1|)) (-15 -1435 (|#1| |#1| |#2|)) (-15 -1435 (|#1| |#2| |#1|)) (-15 -3846 (|#1| (-619 |#2|))) (-15 -3992 ((-745) |#2| |#1|)) (-15 -3992 ((-745) (-1 (-112) |#2|) |#1|)))
-((-3826 (((-112) $ $) 19)) (-3134 (($) 67 (|has| |#1| (-359)))) (-1435 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2984 (($ $ $) 78)) (-1361 (((-112) $ $) 79)) (-3899 (((-112) $ (-745)) 8)) (-3608 (((-745)) 61 (|has| |#1| (-359)))) (-2782 (($ (-619 |#1|)) 74) (($) 73)) (-4285 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-3668 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1513 (($ |#1| $) 47 (|has| $ (-6 -4329))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4329)))) (-3803 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4329)))) (-3232 (($) 64 (|has| |#1| (-359)))) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2841 (((-112) $ $) 70)) (-2763 (((-112) $ (-745)) 9)) (-2856 ((|#1| $) 65 (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3567 ((|#1| $) 66 (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-2402 (((-890) $) 63 (|has| |#1| (-359)))) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22)) (-3594 (($ $ $) 75)) (-4266 ((|#1| $) 39)) (-2657 (($ |#1| $) 40)) (-3487 (($ (-890)) 62 (|has| |#1| (-359)))) (-3979 (((-1082) $) 21)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2056 ((|#1| $) 41)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-1832 (($ $ |#1|) 77) (($ $ $) 76)) (-2699 (($) 49) (($ (-619 |#1|)) 48)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-2838 (((-523) $) 59 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 50)) (-2283 (($ $) 68 (|has| |#1| (-359)))) (-3838 (((-832) $) 18)) (-1952 (((-745) $) 69)) (-4112 (($ (-619 |#1|)) 72) (($) 71)) (-2300 (($ (-619 |#1|)) 42)) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20)) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-416 |#1|) (-138) (-1063)) (T -416))
-((-1952 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-1063)) (-5 *2 (-745)))) (-2283 (*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-1063)) (-4 *2 (-359)))) (-3134 (*1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-359)) (-4 *2 (-1063)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-1063)) (-4 *2 (-821)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-1063)) (-4 *2 (-821)))))
-(-13 (-221 |t#1|) (-1061 |t#1|) (-10 -8 (-6 -4329) (-15 -1952 ((-745) $)) (IF (|has| |t#1| (-359)) (PROGN (-6 (-359)) (-15 -2283 ($ $)) (-15 -3134 ($))) |%noBranch|) (IF (|has| |t#1| (-821)) (PROGN (-15 -3567 (|t#1| $)) (-15 -2856 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-591 (-832)) . T) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-221 |#1|) . T) ((-227 |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-359) |has| |#1| (-359)) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1061 |#1|) . T) ((-1063) . T) ((-1173) . T))
-((-2940 (((-565 |#2|) |#2| (-1136)) 36)) (-2854 (((-565 |#2|) |#2| (-1136)) 20)) (-2295 ((|#2| |#2| (-1136)) 25)))
-(((-417 |#1| |#2|) (-10 -7 (-15 -2854 ((-565 |#2|) |#2| (-1136))) (-15 -2940 ((-565 |#2|) |#2| (-1136))) (-15 -2295 (|#2| |#2| (-1136)))) (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1158) (-29 |#1|))) (T -417))
-((-2295 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-417 *4 *2)) (-4 *2 (-13 (-1158) (-29 *4))))) (-2940 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-565 *3)) (-5 *1 (-417 *5 *3)) (-4 *3 (-13 (-1158) (-29 *5))))) (-2854 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-565 *3)) (-5 *1 (-417 *5 *3)) (-4 *3 (-13 (-1158) (-29 *5))))))
-(-10 -7 (-15 -2854 ((-565 |#2|) |#2| (-1136))) (-15 -2940 ((-565 |#2|) |#2| (-1136))) (-15 -2295 (|#2| |#2| (-1136))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-3086 (($ |#2| |#1|) 35)) (-3990 (($ |#2| |#1|) 33)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-322 |#2|)) 25)) (-2736 (((-745)) NIL)) (-3269 (($) 10 T CONST)) (-3281 (($) 16 T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 34)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-418 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4316)) (IF (|has| |#1| (-6 -4316)) (-6 -4316) |%noBranch|) |%noBranch|) (-15 -3838 ($ |#1|)) (-15 -3838 ($ (-322 |#2|))) (-15 -3086 ($ |#2| |#1|)) (-15 -3990 ($ |#2| |#1|)))) (-13 (-169) (-38 (-398 (-547)))) (-13 (-821) (-21))) (T -418))
-((-3838 (*1 *1 *2) (-12 (-5 *1 (-418 *2 *3)) (-4 *2 (-13 (-169) (-38 (-398 (-547))))) (-4 *3 (-13 (-821) (-21))))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-322 *4)) (-4 *4 (-13 (-821) (-21))) (-5 *1 (-418 *3 *4)) (-4 *3 (-13 (-169) (-38 (-398 (-547))))))) (-3086 (*1 *1 *2 *3) (-12 (-5 *1 (-418 *3 *2)) (-4 *3 (-13 (-169) (-38 (-398 (-547))))) (-4 *2 (-13 (-821) (-21))))) (-3990 (*1 *1 *2 *3) (-12 (-5 *1 (-418 *3 *2)) (-4 *3 (-13 (-169) (-38 (-398 (-547))))) (-4 *2 (-13 (-821) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4316)) (IF (|has| |#1| (-6 -4316)) (-6 -4316) |%noBranch|) |%noBranch|) (-15 -3838 ($ |#1|)) (-15 -3838 ($ (-322 |#2|))) (-15 -3086 ($ |#2| |#1|)) (-15 -3990 ($ |#2| |#1|))))
-((-3694 (((-3 |#2| (-619 |#2|)) |#2| (-1136)) 109)))
-(((-419 |#1| |#2|) (-10 -7 (-15 -3694 ((-3 |#2| (-619 |#2|)) |#2| (-1136)))) (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1158) (-928) (-29 |#1|))) (T -419))
-((-3694 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 *3 (-619 *3))) (-5 *1 (-419 *5 *3)) (-4 *3 (-13 (-1158) (-928) (-29 *5))))))
-(-10 -7 (-15 -3694 ((-3 |#2| (-619 |#2|)) |#2| (-1136))))
-((-2267 (((-619 (-1136)) $) 72)) (-2078 (((-398 (-1132 $)) $ (-590 $)) 273)) (-3008 (($ $ (-285 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-619 (-590 $)) (-619 $)) 237)) (-2707 (((-3 (-590 $) "failed") $) NIL) (((-3 (-1136) "failed") $) 75) (((-3 (-547) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-398 (-921 |#2|)) "failed") $) 324) (((-3 (-921 |#2|) "failed") $) 235) (((-3 (-398 (-547)) "failed") $) NIL)) (-2652 (((-590 $) $) NIL) (((-1136) $) 30) (((-547) $) NIL) ((|#2| $) 231) (((-398 (-921 |#2|)) $) 305) (((-921 |#2|) $) 232) (((-398 (-547)) $) NIL)) (-4185 (((-114) (-114)) 47)) (-4170 (($ $) 87)) (-3024 (((-3 (-590 $) "failed") $) 228)) (-2065 (((-619 (-590 $)) $) 229)) (-2505 (((-3 (-619 $) "failed") $) 247)) (-1376 (((-3 (-2 (|:| |val| $) (|:| -3322 (-547))) "failed") $) 254)) (-3663 (((-3 (-619 $) "failed") $) 245)) (-4221 (((-3 (-2 (|:| -1563 (-547)) (|:| |var| (-590 $))) "failed") $) 264)) (-3949 (((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $) 251) (((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $ (-1136)) 219)) (-1996 (((-112) $) 19)) (-2009 ((|#2| $) 21)) (-2679 (($ $ (-590 $) $) NIL) (($ $ (-619 (-590 $)) (-619 $)) 236) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1136)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1136)) (-619 (-1 $ (-619 $)))) 96) (($ $ (-1136) (-1 $ (-619 $))) NIL) (($ $ (-1136) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1136)) 57) (($ $ (-619 (-1136))) 240) (($ $) 241) (($ $ (-114) $ (-1136)) 60) (($ $ (-619 (-114)) (-619 $) (-1136)) 67) (($ $ (-619 (-1136)) (-619 (-745)) (-619 (-1 $ $))) 107) (($ $ (-619 (-1136)) (-619 (-745)) (-619 (-1 $ (-619 $)))) 242) (($ $ (-1136) (-745) (-1 $ (-619 $))) 94) (($ $ (-1136) (-745) (-1 $ $)) 93)) (-3334 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) 106)) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136)) 238)) (-2995 (($ $) 284)) (-2838 (((-861 (-547)) $) 257) (((-861 (-370)) $) 261) (($ (-409 $)) 320) (((-523) $) NIL)) (-3838 (((-832) $) 239) (($ (-590 $)) 84) (($ (-1136)) 26) (($ |#2|) NIL) (($ (-1087 |#2| (-590 $))) NIL) (($ (-398 |#2|)) 289) (($ (-921 (-398 |#2|))) 329) (($ (-398 (-921 (-398 |#2|)))) 301) (($ (-398 (-921 |#2|))) 295) (($ $) NIL) (($ (-921 |#2|)) 185) (($ (-398 (-547))) 334) (($ (-547)) NIL)) (-2736 (((-745)) 79)) (-3128 (((-112) (-114)) 41)) (-1780 (($ (-1136) $) 33) (($ (-1136) $ $) 34) (($ (-1136) $ $ $) 35) (($ (-1136) $ $ $ $) 36) (($ (-1136) (-619 $)) 39)) (* (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-547) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL)))
-(((-420 |#1| |#2|) (-10 -8 (-15 * (|#1| (-890) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2736 ((-745))) (-15 -3838 (|#1| (-547))) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -2838 ((-523) |#1|)) (-15 -2652 ((-921 |#2|) |#1|)) (-15 -2707 ((-3 (-921 |#2|) "failed") |#1|)) (-15 -3838 (|#1| (-921 |#2|))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -2652 ((-398 (-921 |#2|)) |#1|)) (-15 -2707 ((-3 (-398 (-921 |#2|)) "failed") |#1|)) (-15 -3838 (|#1| (-398 (-921 |#2|)))) (-15 -2078 ((-398 (-1132 |#1|)) |#1| (-590 |#1|))) (-15 -3838 (|#1| (-398 (-921 (-398 |#2|))))) (-15 -3838 (|#1| (-921 (-398 |#2|)))) (-15 -3838 (|#1| (-398 |#2|))) (-15 -2995 (|#1| |#1|)) (-15 -2838 (|#1| (-409 |#1|))) (-15 -2679 (|#1| |#1| (-1136) (-745) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1136) (-745) (-1 |#1| (-619 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 (-745)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 (-745)) (-619 (-1 |#1| |#1|)))) (-15 -1376 ((-3 (-2 (|:| |val| |#1|) (|:| -3322 (-547))) "failed") |#1|)) (-15 -3949 ((-3 (-2 (|:| |var| (-590 |#1|)) (|:| -3322 (-547))) "failed") |#1| (-1136))) (-15 -3949 ((-3 (-2 (|:| |var| (-590 |#1|)) (|:| -3322 (-547))) "failed") |#1| (-114))) (-15 -4170 (|#1| |#1|)) (-15 -3838 (|#1| (-1087 |#2| (-590 |#1|)))) (-15 -4221 ((-3 (-2 (|:| -1563 (-547)) (|:| |var| (-590 |#1|))) "failed") |#1|)) (-15 -3663 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3949 ((-3 (-2 (|:| |var| (-590 |#1|)) (|:| -3322 (-547))) "failed") |#1|)) (-15 -2505 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2679 (|#1| |#1| (-619 (-114)) (-619 |#1|) (-1136))) (-15 -2679 (|#1| |#1| (-114) |#1| (-1136))) (-15 -2679 (|#1| |#1|)) (-15 -2679 (|#1| |#1| (-619 (-1136)))) (-15 -2679 (|#1| |#1| (-1136))) (-15 -1780 (|#1| (-1136) (-619 |#1|))) (-15 -1780 (|#1| (-1136) |#1| |#1| |#1| |#1|)) (-15 -1780 (|#1| (-1136) |#1| |#1| |#1|)) (-15 -1780 (|#1| (-1136) |#1| |#1|)) (-15 -1780 (|#1| (-1136) |#1|)) (-15 -2267 ((-619 (-1136)) |#1|)) (-15 -2009 (|#2| |#1|)) (-15 -1996 ((-112) |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -2838 ((-861 (-370)) |#1|)) (-15 -2838 ((-861 (-547)) |#1|)) (-15 -2652 ((-1136) |#1|)) (-15 -2707 ((-3 (-1136) "failed") |#1|)) (-15 -3838 (|#1| (-1136))) (-15 -2679 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2679 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2679 (|#1| |#1| (-1136) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1136) (-1 |#1| (-619 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 (-1 |#1| |#1|)))) (-15 -3128 ((-112) (-114))) (-15 -4185 ((-114) (-114))) (-15 -2065 ((-619 (-590 |#1|)) |#1|)) (-15 -3024 ((-3 (-590 |#1|) "failed") |#1|)) (-15 -3008 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -3008 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -3008 (|#1| |#1| (-285 |#1|))) (-15 -3334 (|#1| (-114) (-619 |#1|))) (-15 -3334 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3334 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3334 (|#1| (-114) |#1| |#1|)) (-15 -3334 (|#1| (-114) |#1|)) (-15 -2679 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-285 |#1|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -2679 (|#1| |#1| (-590 |#1|) |#1|)) (-15 -2652 ((-590 |#1|) |#1|)) (-15 -2707 ((-3 (-590 |#1|) "failed") |#1|)) (-15 -3838 (|#1| (-590 |#1|))) (-15 -3838 ((-832) |#1|))) (-421 |#2|) (-821)) (T -420))
-((-4185 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-821)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-420 *4 *5)) (-4 *4 (-421 *5)))) (-2736 (*1 *2) (-12 (-4 *4 (-821)) (-5 *2 (-745)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))))
-(-10 -8 (-15 * (|#1| (-890) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2736 ((-745))) (-15 -3838 (|#1| (-547))) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -2838 ((-523) |#1|)) (-15 -2652 ((-921 |#2|) |#1|)) (-15 -2707 ((-3 (-921 |#2|) "failed") |#1|)) (-15 -3838 (|#1| (-921 |#2|))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -2652 ((-398 (-921 |#2|)) |#1|)) (-15 -2707 ((-3 (-398 (-921 |#2|)) "failed") |#1|)) (-15 -3838 (|#1| (-398 (-921 |#2|)))) (-15 -2078 ((-398 (-1132 |#1|)) |#1| (-590 |#1|))) (-15 -3838 (|#1| (-398 (-921 (-398 |#2|))))) (-15 -3838 (|#1| (-921 (-398 |#2|)))) (-15 -3838 (|#1| (-398 |#2|))) (-15 -2995 (|#1| |#1|)) (-15 -2838 (|#1| (-409 |#1|))) (-15 -2679 (|#1| |#1| (-1136) (-745) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1136) (-745) (-1 |#1| (-619 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 (-745)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 (-745)) (-619 (-1 |#1| |#1|)))) (-15 -1376 ((-3 (-2 (|:| |val| |#1|) (|:| -3322 (-547))) "failed") |#1|)) (-15 -3949 ((-3 (-2 (|:| |var| (-590 |#1|)) (|:| -3322 (-547))) "failed") |#1| (-1136))) (-15 -3949 ((-3 (-2 (|:| |var| (-590 |#1|)) (|:| -3322 (-547))) "failed") |#1| (-114))) (-15 -4170 (|#1| |#1|)) (-15 -3838 (|#1| (-1087 |#2| (-590 |#1|)))) (-15 -4221 ((-3 (-2 (|:| -1563 (-547)) (|:| |var| (-590 |#1|))) "failed") |#1|)) (-15 -3663 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3949 ((-3 (-2 (|:| |var| (-590 |#1|)) (|:| -3322 (-547))) "failed") |#1|)) (-15 -2505 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2679 (|#1| |#1| (-619 (-114)) (-619 |#1|) (-1136))) (-15 -2679 (|#1| |#1| (-114) |#1| (-1136))) (-15 -2679 (|#1| |#1|)) (-15 -2679 (|#1| |#1| (-619 (-1136)))) (-15 -2679 (|#1| |#1| (-1136))) (-15 -1780 (|#1| (-1136) (-619 |#1|))) (-15 -1780 (|#1| (-1136) |#1| |#1| |#1| |#1|)) (-15 -1780 (|#1| (-1136) |#1| |#1| |#1|)) (-15 -1780 (|#1| (-1136) |#1| |#1|)) (-15 -1780 (|#1| (-1136) |#1|)) (-15 -2267 ((-619 (-1136)) |#1|)) (-15 -2009 (|#2| |#1|)) (-15 -1996 ((-112) |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -2838 ((-861 (-370)) |#1|)) (-15 -2838 ((-861 (-547)) |#1|)) (-15 -2652 ((-1136) |#1|)) (-15 -2707 ((-3 (-1136) "failed") |#1|)) (-15 -3838 (|#1| (-1136))) (-15 -2679 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2679 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2679 (|#1| |#1| (-1136) (-1 |#1| |#1|))) (-15 -2679 (|#1| |#1| (-1136) (-1 |#1| (-619 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2679 (|#1| |#1| (-619 (-1136)) (-619 (-1 |#1| |#1|)))) (-15 -3128 ((-112) (-114))) (-15 -4185 ((-114) (-114))) (-15 -2065 ((-619 (-590 |#1|)) |#1|)) (-15 -3024 ((-3 (-590 |#1|) "failed") |#1|)) (-15 -3008 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -3008 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -3008 (|#1| |#1| (-285 |#1|))) (-15 -3334 (|#1| (-114) (-619 |#1|))) (-15 -3334 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3334 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3334 (|#1| (-114) |#1| |#1|)) (-15 -3334 (|#1| (-114) |#1|)) (-15 -2679 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-285 |#1|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2679 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -2679 (|#1| |#1| (-590 |#1|) |#1|)) (-15 -2652 ((-590 |#1|) |#1|)) (-15 -2707 ((-3 (-590 |#1|) "failed") |#1|)) (-15 -3838 (|#1| (-590 |#1|))) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 113 (|has| |#1| (-25)))) (-2267 (((-619 (-1136)) $) 200)) (-2078 (((-398 (-1132 $)) $ (-590 $)) 168 (|has| |#1| (-539)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 140 (|has| |#1| (-539)))) (-3571 (($ $) 141 (|has| |#1| (-539)))) (-3915 (((-112) $) 143 (|has| |#1| (-539)))) (-1974 (((-619 (-590 $)) $) 44)) (-3672 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-3008 (($ $ (-285 $)) 56) (($ $ (-619 (-285 $))) 55) (($ $ (-619 (-590 $)) (-619 $)) 54)) (-2555 (($ $) 160 (|has| |#1| (-539)))) (-3299 (((-409 $) $) 161 (|has| |#1| (-539)))) (-1547 (((-112) $ $) 151 (|has| |#1| (-539)))) (-1948 (($) 101 (-1530 (|has| |#1| (-1075)) (|has| |#1| (-25))) CONST)) (-2707 (((-3 (-590 $) "failed") $) 69) (((-3 (-1136) "failed") $) 213) (((-3 (-547) "failed") $) 206 (|has| |#1| (-1007 (-547)))) (((-3 |#1| "failed") $) 204) (((-3 (-398 (-921 |#1|)) "failed") $) 166 (|has| |#1| (-539))) (((-3 (-921 |#1|) "failed") $) 120 (|has| |#1| (-1016))) (((-3 (-398 (-547)) "failed") $) 95 (-1530 (-12 (|has| |#1| (-1007 (-547))) (|has| |#1| (-539))) (|has| |#1| (-1007 (-398 (-547))))))) (-2652 (((-590 $) $) 68) (((-1136) $) 212) (((-547) $) 207 (|has| |#1| (-1007 (-547)))) ((|#1| $) 203) (((-398 (-921 |#1|)) $) 165 (|has| |#1| (-539))) (((-921 |#1|) $) 119 (|has| |#1| (-1016))) (((-398 (-547)) $) 94 (-1530 (-12 (|has| |#1| (-1007 (-547))) (|has| |#1| (-539))) (|has| |#1| (-1007 (-398 (-547))))))) (-2089 (($ $ $) 155 (|has| |#1| (-539)))) (-1694 (((-663 (-547)) (-663 $)) 134 (-1814 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 133 (-1814 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 132 (|has| |#1| (-1016))) (((-663 |#1|) (-663 $)) 131 (|has| |#1| (-1016)))) (-3855 (((-3 $ "failed") $) 103 (|has| |#1| (-1075)))) (-2061 (($ $ $) 154 (|has| |#1| (-539)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 149 (|has| |#1| (-539)))) (-1791 (((-112) $) 162 (|has| |#1| (-539)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 209 (|has| |#1| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 208 (|has| |#1| (-855 (-370))))) (-3590 (($ $) 51) (($ (-619 $)) 50)) (-1408 (((-619 (-114)) $) 43)) (-4185 (((-114) (-114)) 42)) (-2261 (((-112) $) 102 (|has| |#1| (-1075)))) (-2935 (((-112) $) 22 (|has| $ (-1007 (-547))))) (-4170 (($ $) 183 (|has| |#1| (-1016)))) (-1386 (((-1087 |#1| (-590 $)) $) 184 (|has| |#1| (-1016)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-539)))) (-2428 (((-1132 $) (-590 $)) 25 (|has| $ (-1016)))) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-2790 (($ (-1 $ $) (-590 $)) 36)) (-3024 (((-3 (-590 $) "failed") $) 46)) (-3689 (($ (-619 $)) 147 (|has| |#1| (-539))) (($ $ $) 146 (|has| |#1| (-539)))) (-1466 (((-1119) $) 9)) (-2065 (((-619 (-590 $)) $) 45)) (-1469 (($ (-114) $) 38) (($ (-114) (-619 $)) 37)) (-2505 (((-3 (-619 $) "failed") $) 189 (|has| |#1| (-1075)))) (-1376 (((-3 (-2 (|:| |val| $) (|:| -3322 (-547))) "failed") $) 180 (|has| |#1| (-1016)))) (-3663 (((-3 (-619 $) "failed") $) 187 (|has| |#1| (-25)))) (-4221 (((-3 (-2 (|:| -1563 (-547)) (|:| |var| (-590 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3949 (((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $) 188 (|has| |#1| (-1075))) (((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $ (-114)) 182 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $ (-1136)) 181 (|has| |#1| (-1016)))) (-1667 (((-112) $ (-114)) 40) (((-112) $ (-1136)) 39)) (-1984 (($ $) 105 (-1530 (|has| |#1| (-463)) (|has| |#1| (-539))))) (-4029 (((-745) $) 47)) (-3979 (((-1082) $) 10)) (-1996 (((-112) $) 202)) (-2009 ((|#1| $) 201)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 148 (|has| |#1| (-539)))) (-3719 (($ (-619 $)) 145 (|has| |#1| (-539))) (($ $ $) 144 (|has| |#1| (-539)))) (-3883 (((-112) $ $) 35) (((-112) $ (-1136)) 34)) (-2115 (((-409 $) $) 159 (|has| |#1| (-539)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-539))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 156 (|has| |#1| (-539)))) (-2032 (((-3 $ "failed") $ $) 139 (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-539)))) (-3874 (((-112) $) 23 (|has| $ (-1007 (-547))))) (-2679 (($ $ (-590 $) $) 67) (($ $ (-619 (-590 $)) (-619 $)) 66) (($ $ (-619 (-285 $))) 65) (($ $ (-285 $)) 64) (($ $ $ $) 63) (($ $ (-619 $) (-619 $)) 62) (($ $ (-619 (-1136)) (-619 (-1 $ $))) 33) (($ $ (-619 (-1136)) (-619 (-1 $ (-619 $)))) 32) (($ $ (-1136) (-1 $ (-619 $))) 31) (($ $ (-1136) (-1 $ $)) 30) (($ $ (-619 (-114)) (-619 (-1 $ $))) 29) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 28) (($ $ (-114) (-1 $ (-619 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1136)) 194 (|has| |#1| (-592 (-523)))) (($ $ (-619 (-1136))) 193 (|has| |#1| (-592 (-523)))) (($ $) 192 (|has| |#1| (-592 (-523)))) (($ $ (-114) $ (-1136)) 191 (|has| |#1| (-592 (-523)))) (($ $ (-619 (-114)) (-619 $) (-1136)) 190 (|has| |#1| (-592 (-523)))) (($ $ (-619 (-1136)) (-619 (-745)) (-619 (-1 $ $))) 179 (|has| |#1| (-1016))) (($ $ (-619 (-1136)) (-619 (-745)) (-619 (-1 $ (-619 $)))) 178 (|has| |#1| (-1016))) (($ $ (-1136) (-745) (-1 $ (-619 $))) 177 (|has| |#1| (-1016))) (($ $ (-1136) (-745) (-1 $ $)) 176 (|has| |#1| (-1016)))) (-2471 (((-745) $) 152 (|has| |#1| (-539)))) (-3334 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-619 $)) 57)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 153 (|has| |#1| (-539)))) (-2242 (($ $) 49) (($ $ $) 48)) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) 125 (|has| |#1| (-1016))) (($ $ (-1136) (-745)) 124 (|has| |#1| (-1016))) (($ $ (-619 (-1136))) 123 (|has| |#1| (-1016))) (($ $ (-1136)) 122 (|has| |#1| (-1016)))) (-2995 (($ $) 173 (|has| |#1| (-539)))) (-1396 (((-1087 |#1| (-590 $)) $) 174 (|has| |#1| (-539)))) (-1882 (($ $) 24 (|has| $ (-1016)))) (-2838 (((-861 (-547)) $) 211 (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) 210 (|has| |#1| (-592 (-861 (-370))))) (($ (-409 $)) 175 (|has| |#1| (-539))) (((-523) $) 97 (|has| |#1| (-592 (-523))))) (-3404 (($ $ $) 108 (|has| |#1| (-463)))) (-1473 (($ $ $) 109 (|has| |#1| (-463)))) (-3838 (((-832) $) 11) (($ (-590 $)) 70) (($ (-1136)) 214) (($ |#1|) 205) (($ (-1087 |#1| (-590 $))) 185 (|has| |#1| (-1016))) (($ (-398 |#1|)) 171 (|has| |#1| (-539))) (($ (-921 (-398 |#1|))) 170 (|has| |#1| (-539))) (($ (-398 (-921 (-398 |#1|)))) 169 (|has| |#1| (-539))) (($ (-398 (-921 |#1|))) 167 (|has| |#1| (-539))) (($ $) 138 (|has| |#1| (-539))) (($ (-921 |#1|)) 121 (|has| |#1| (-1016))) (($ (-398 (-547))) 96 (-1530 (|has| |#1| (-539)) (-12 (|has| |#1| (-1007 (-547))) (|has| |#1| (-539))) (|has| |#1| (-1007 (-398 (-547)))))) (($ (-547)) 93 (-1530 (|has| |#1| (-1016)) (|has| |#1| (-1007 (-547)))))) (-2220 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-2736 (((-745)) 130 (|has| |#1| (-1016)))) (-4129 (($ $) 53) (($ (-619 $)) 52)) (-3128 (((-112) (-114)) 41)) (-3577 (((-112) $ $) 142 (|has| |#1| (-539)))) (-1780 (($ (-1136) $) 199) (($ (-1136) $ $) 198) (($ (-1136) $ $ $) 197) (($ (-1136) $ $ $ $) 196) (($ (-1136) (-619 $)) 195)) (-3269 (($) 112 (|has| |#1| (-25)) CONST)) (-3281 (($) 100 (|has| |#1| (-1075)) CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) 129 (|has| |#1| (-1016))) (($ $ (-1136) (-745)) 128 (|has| |#1| (-1016))) (($ $ (-619 (-1136))) 127 (|has| |#1| (-1016))) (($ $ (-1136)) 126 (|has| |#1| (-1016)))) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)) (-2506 (($ (-1087 |#1| (-590 $)) (-1087 |#1| (-590 $))) 172 (|has| |#1| (-539))) (($ $ $) 106 (-1530 (|has| |#1| (-463)) (|has| |#1| (-539))))) (-2493 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2479 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-547)) 107 (-1530 (|has| |#1| (-463)) (|has| |#1| (-539)))) (($ $ (-745)) 104 (|has| |#1| (-1075))) (($ $ (-890)) 99 (|has| |#1| (-1075)))) (* (($ (-398 (-547)) $) 164 (|has| |#1| (-539))) (($ $ (-398 (-547))) 163 (|has| |#1| (-539))) (($ |#1| $) 137 (|has| |#1| (-169))) (($ $ |#1|) 136 (|has| |#1| (-169))) (($ (-547) $) 118 (|has| |#1| (-21))) (($ (-745) $) 114 (|has| |#1| (-25))) (($ (-890) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1075)))))
-(((-421 |#1|) (-138) (-821)) (T -421))
-((-1996 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-821)) (-5 *2 (-112)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-821)) (-5 *2 (-619 (-1136))))) (-1780 (*1 *1 *2 *1) (-12 (-5 *2 (-1136)) (-4 *1 (-421 *3)) (-4 *3 (-821)))) (-1780 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1136)) (-4 *1 (-421 *3)) (-4 *3 (-821)))) (-1780 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1136)) (-4 *1 (-421 *3)) (-4 *3 (-821)))) (-1780 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1136)) (-4 *1 (-421 *3)) (-4 *3 (-821)))) (-1780 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-619 *1)) (-4 *1 (-421 *4)) (-4 *4 (-821)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-1136)) (-4 *1 (-421 *3)) (-4 *3 (-821)) (-4 *3 (-592 (-523))))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1136))) (-4 *1 (-421 *3)) (-4 *3 (-821)) (-4 *3 (-592 (-523))))) (-2679 (*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)) (-4 *2 (-592 (-523))))) (-2679 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1136)) (-4 *1 (-421 *4)) (-4 *4 (-821)) (-4 *4 (-592 (-523))))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 *1)) (-5 *4 (-1136)) (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-592 (-523))))) (-2505 (*1 *2 *1) (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-421 *3)))) (-3949 (*1 *2 *1) (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) (-5 *2 (-2 (|:| |var| (-590 *1)) (|:| -3322 (-547)))) (-4 *1 (-421 *3)))) (-3663 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-421 *3)))) (-4221 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -1563 (-547)) (|:| |var| (-590 *1)))) (-4 *1 (-421 *3)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1087 *3 (-590 *1))) (-4 *3 (-1016)) (-4 *3 (-821)) (-4 *1 (-421 *3)))) (-1386 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-590 *1))) (-4 *1 (-421 *3)))) (-4170 (*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)) (-4 *2 (-1016)))) (-3949 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1016)) (-4 *4 (-821)) (-5 *2 (-2 (|:| |var| (-590 *1)) (|:| -3322 (-547)))) (-4 *1 (-421 *4)))) (-3949 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1136)) (-4 *4 (-1016)) (-4 *4 (-821)) (-5 *2 (-2 (|:| |var| (-590 *1)) (|:| -3322 (-547)))) (-4 *1 (-421 *4)))) (-1376 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-821)) (-5 *2 (-2 (|:| |val| *1) (|:| -3322 (-547)))) (-4 *1 (-421 *3)))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-619 (-745))) (-5 *4 (-619 (-1 *1 *1))) (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-619 (-745))) (-5 *4 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1136)) (-5 *3 (-745)) (-5 *4 (-1 *1 (-619 *1))) (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2679 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1136)) (-5 *3 (-745)) (-5 *4 (-1 *1 *1)) (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-409 *1)) (-4 *1 (-421 *3)) (-4 *3 (-539)) (-4 *3 (-821)))) (-1396 (*1 *2 *1) (-12 (-4 *3 (-539)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-590 *1))) (-4 *1 (-421 *3)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)) (-4 *2 (-539)))) (-2506 (*1 *1 *2 *2) (-12 (-5 *2 (-1087 *3 (-590 *1))) (-4 *3 (-539)) (-4 *3 (-821)) (-4 *1 (-421 *3)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-539)) (-4 *3 (-821)) (-4 *1 (-421 *3)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-921 (-398 *3))) (-4 *3 (-539)) (-4 *3 (-821)) (-4 *1 (-421 *3)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-398 *3)))) (-4 *3 (-539)) (-4 *3 (-821)) (-4 *1 (-421 *3)))) (-2078 (*1 *2 *1 *3) (-12 (-5 *3 (-590 *1)) (-4 *1 (-421 *4)) (-4 *4 (-821)) (-4 *4 (-539)) (-5 *2 (-398 (-1132 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-421 *3)) (-4 *3 (-821)) (-4 *3 (-1075)))))
-(-13 (-293) (-1007 (-1136)) (-853 |t#1|) (-391 |t#1|) (-402 |t#1|) (-10 -8 (-15 -1996 ((-112) $)) (-15 -2009 (|t#1| $)) (-15 -2267 ((-619 (-1136)) $)) (-15 -1780 ($ (-1136) $)) (-15 -1780 ($ (-1136) $ $)) (-15 -1780 ($ (-1136) $ $ $)) (-15 -1780 ($ (-1136) $ $ $ $)) (-15 -1780 ($ (-1136) (-619 $))) (IF (|has| |t#1| (-592 (-523))) (PROGN (-6 (-592 (-523))) (-15 -2679 ($ $ (-1136))) (-15 -2679 ($ $ (-619 (-1136)))) (-15 -2679 ($ $)) (-15 -2679 ($ $ (-114) $ (-1136))) (-15 -2679 ($ $ (-619 (-114)) (-619 $) (-1136)))) |%noBranch|) (IF (|has| |t#1| (-1075)) (PROGN (-6 (-701)) (-15 ** ($ $ (-745))) (-15 -2505 ((-3 (-619 $) "failed") $)) (-15 -3949 ((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-463)) (-6 (-463)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3663 ((-3 (-619 $) "failed") $)) (-15 -4221 ((-3 (-2 (|:| -1563 (-547)) (|:| |var| (-590 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-1007 (-921 |t#1|))) (-6 (-869 (-1136))) (-6 (-368 |t#1|)) (-15 -3838 ($ (-1087 |t#1| (-590 $)))) (-15 -1386 ((-1087 |t#1| (-590 $)) $)) (-15 -4170 ($ $)) (-15 -3949 ((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $ (-114))) (-15 -3949 ((-3 (-2 (|:| |var| (-590 $)) (|:| -3322 (-547))) "failed") $ (-1136))) (-15 -1376 ((-3 (-2 (|:| |val| $) (|:| -3322 (-547))) "failed") $)) (-15 -2679 ($ $ (-619 (-1136)) (-619 (-745)) (-619 (-1 $ $)))) (-15 -2679 ($ $ (-619 (-1136)) (-619 (-745)) (-619 (-1 $ (-619 $))))) (-15 -2679 ($ $ (-1136) (-745) (-1 $ (-619 $)))) (-15 -2679 ($ $ (-1136) (-745) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-6 (-354)) (-6 (-1007 (-398 (-921 |t#1|)))) (-15 -2838 ($ (-409 $))) (-15 -1396 ((-1087 |t#1| (-590 $)) $)) (-15 -2995 ($ $)) (-15 -2506 ($ (-1087 |t#1| (-590 $)) (-1087 |t#1| (-590 $)))) (-15 -3838 ($ (-398 |t#1|))) (-15 -3838 ($ (-921 (-398 |t#1|)))) (-15 -3838 ($ (-398 (-921 (-398 |t#1|))))) (-15 -2078 ((-398 (-1132 $)) $ (-590 $))) (IF (|has| |t#1| (-1007 (-547))) (-6 (-1007 (-398 (-547)))) |%noBranch|)) |%noBranch|)))
-(((-21) -1530 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -1530 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1530 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-398 (-547))) |has| |#1| (-539)) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-539)) ((-111 |#1| |#1|) |has| |#1| (-169)) ((-111 $ $) |has| |#1| (-539)) ((-130) -1530 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) |has| |#1| (-539)) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-592 (-861 (-370))) |has| |#1| (-592 (-861 (-370)))) ((-592 (-861 (-547))) |has| |#1| (-592 (-861 (-547)))) ((-235) |has| |#1| (-539)) ((-281) |has| |#1| (-539)) ((-298) |has| |#1| (-539)) ((-300 $) . T) ((-293) . T) ((-354) |has| |#1| (-539)) ((-368 |#1|) |has| |#1| (-1016)) ((-391 |#1|) . T) ((-402 |#1|) . T) ((-442) |has| |#1| (-539)) ((-463) |has| |#1| (-463)) ((-503 (-590 $) $) . T) ((-503 $ $) . T) ((-539) |has| |#1| (-539)) ((-622 #0#) |has| |#1| (-539)) ((-622 |#1|) |has| |#1| (-169)) ((-622 $) -1530 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-615 (-547)) -12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) ((-615 |#1|) |has| |#1| (-1016)) ((-692 #0#) |has| |#1| (-539)) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) -1530 (|has| |#1| (-1075)) (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-463)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-821) . T) ((-869 (-1136)) |has| |#1| (-1016)) ((-855 (-370)) |has| |#1| (-855 (-370))) ((-855 (-547)) |has| |#1| (-855 (-547))) ((-853 |#1|) . T) ((-889) |has| |#1| (-539)) ((-1007 (-398 (-547))) -1530 (|has| |#1| (-1007 (-398 (-547)))) (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547))))) ((-1007 (-398 (-921 |#1|))) |has| |#1| (-539)) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 (-590 $)) . T) ((-1007 (-921 |#1|)) |has| |#1| (-1016)) ((-1007 (-1136)) . T) ((-1007 |#1|) . T) ((-1022 #0#) |has| |#1| (-539)) ((-1022 |#1|) |has| |#1| (-169)) ((-1022 $) |has| |#1| (-539)) ((-1016) -1530 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1023) -1530 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1075) -1530 (|has| |#1| (-1075)) (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-463)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1063) . T) ((-1173) . T) ((-1177) |has| |#1| (-539)))
-((-2758 ((|#2| |#2| |#2|) 33)) (-4185 (((-114) (-114)) 44)) (-2413 ((|#2| |#2|) 66)) (-2166 ((|#2| |#2|) 69)) (-1878 ((|#2| |#2|) 32)) (-2560 ((|#2| |#2| |#2|) 35)) (-4142 ((|#2| |#2| |#2|) 37)) (-3272 ((|#2| |#2| |#2|) 34)) (-3611 ((|#2| |#2| |#2|) 36)) (-3128 (((-112) (-114)) 42)) (-2275 ((|#2| |#2|) 39)) (-1988 ((|#2| |#2|) 38)) (-2255 ((|#2| |#2|) 27)) (-1705 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3243 ((|#2| |#2| |#2|) 31)))
-(((-422 |#1| |#2|) (-10 -7 (-15 -3128 ((-112) (-114))) (-15 -4185 ((-114) (-114))) (-15 -2255 (|#2| |#2|)) (-15 -1705 (|#2| |#2|)) (-15 -1705 (|#2| |#2| |#2|)) (-15 -3243 (|#2| |#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -2758 (|#2| |#2| |#2|)) (-15 -3272 (|#2| |#2| |#2|)) (-15 -2560 (|#2| |#2| |#2|)) (-15 -3611 (|#2| |#2| |#2|)) (-15 -4142 (|#2| |#2| |#2|)) (-15 -1988 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -2166 (|#2| |#2|)) (-15 -2413 (|#2| |#2|))) (-13 (-821) (-539)) (-421 |#1|)) (T -422))
-((-2413 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-2166 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-1988 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-4142 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-3611 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-2560 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-3272 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-2758 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-3243 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-1705 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-1705 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *4)) (-4 *4 (-421 *3)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-422 *4 *5)) (-4 *5 (-421 *4)))))
-(-10 -7 (-15 -3128 ((-112) (-114))) (-15 -4185 ((-114) (-114))) (-15 -2255 (|#2| |#2|)) (-15 -1705 (|#2| |#2|)) (-15 -1705 (|#2| |#2| |#2|)) (-15 -3243 (|#2| |#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -2758 (|#2| |#2| |#2|)) (-15 -3272 (|#2| |#2| |#2|)) (-15 -2560 (|#2| |#2| |#2|)) (-15 -3611 (|#2| |#2| |#2|)) (-15 -4142 (|#2| |#2| |#2|)) (-15 -1988 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -2166 (|#2| |#2|)) (-15 -2413 (|#2| |#2|)))
-((-3527 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1132 |#2|)) (|:| |pol2| (-1132 |#2|)) (|:| |prim| (-1132 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-619 (-1132 |#2|))) (|:| |prim| (-1132 |#2|))) (-619 |#2|)) 61)))
-(((-423 |#1| |#2|) (-10 -7 (-15 -3527 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-619 (-1132 |#2|))) (|:| |prim| (-1132 |#2|))) (-619 |#2|))) (IF (|has| |#2| (-27)) (-15 -3527 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1132 |#2|)) (|:| |pol2| (-1132 |#2|)) (|:| |prim| (-1132 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-539) (-821) (-145)) (-421 |#1|)) (T -423))
-((-3527 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-539) (-821) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1132 *3)) (|:| |pol2| (-1132 *3)) (|:| |prim| (-1132 *3)))) (-5 *1 (-423 *4 *3)) (-4 *3 (-27)) (-4 *3 (-421 *4)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-619 *5)) (-4 *5 (-421 *4)) (-4 *4 (-13 (-539) (-821) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-619 (-1132 *5))) (|:| |prim| (-1132 *5)))) (-5 *1 (-423 *4 *5)))))
-(-10 -7 (-15 -3527 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-619 (-1132 |#2|))) (|:| |prim| (-1132 |#2|))) (-619 |#2|))) (IF (|has| |#2| (-27)) (-15 -3527 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1132 |#2|)) (|:| |pol2| (-1132 |#2|)) (|:| |prim| (-1132 |#2|))) |#2| |#2|)) |%noBranch|))
-((-2871 (((-1224)) 19)) (-4305 (((-1132 (-398 (-547))) |#2| (-590 |#2|)) 41) (((-398 (-547)) |#2|) 25)))
-(((-424 |#1| |#2|) (-10 -7 (-15 -4305 ((-398 (-547)) |#2|)) (-15 -4305 ((-1132 (-398 (-547))) |#2| (-590 |#2|))) (-15 -2871 ((-1224)))) (-13 (-821) (-539) (-1007 (-547))) (-421 |#1|)) (T -424))
-((-2871 (*1 *2) (-12 (-4 *3 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-1224)) (-5 *1 (-424 *3 *4)) (-4 *4 (-421 *3)))) (-4305 (*1 *2 *3 *4) (-12 (-5 *4 (-590 *3)) (-4 *3 (-421 *5)) (-4 *5 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-1132 (-398 (-547)))) (-5 *1 (-424 *5 *3)))) (-4305 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-398 (-547))) (-5 *1 (-424 *4 *3)) (-4 *3 (-421 *4)))))
-(-10 -7 (-15 -4305 ((-398 (-547)) |#2|)) (-15 -4305 ((-1132 (-398 (-547))) |#2| (-590 |#2|))) (-15 -2871 ((-1224))))
-((-4246 (((-112) $) 28)) (-2886 (((-112) $) 30)) (-4072 (((-112) $) 31)) (-2291 (((-112) $) 34)) (-1971 (((-112) $) 29)) (-1755 (((-112) $) 33)) (-3838 (((-832) $) 18) (($ (-1119)) 27) (($ (-1136)) 23) (((-1136) $) 22) (((-1067) $) 21)) (-3294 (((-112) $) 32)) (-2381 (((-112) $ $) 15)))
-(((-425) (-13 (-591 (-832)) (-10 -8 (-15 -3838 ($ (-1119))) (-15 -3838 ($ (-1136))) (-15 -3838 ((-1136) $)) (-15 -3838 ((-1067) $)) (-15 -4246 ((-112) $)) (-15 -1971 ((-112) $)) (-15 -4072 ((-112) $)) (-15 -1755 ((-112) $)) (-15 -2291 ((-112) $)) (-15 -3294 ((-112) $)) (-15 -2886 ((-112) $)) (-15 -2381 ((-112) $ $))))) (T -425))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-425)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-425)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-425)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-425)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-1971 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-2381 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))))
-(-13 (-591 (-832)) (-10 -8 (-15 -3838 ($ (-1119))) (-15 -3838 ($ (-1136))) (-15 -3838 ((-1136) $)) (-15 -3838 ((-1067) $)) (-15 -4246 ((-112) $)) (-15 -1971 ((-112) $)) (-15 -4072 ((-112) $)) (-15 -1755 ((-112) $)) (-15 -2291 ((-112) $)) (-15 -3294 ((-112) $)) (-15 -2886 ((-112) $)) (-15 -2381 ((-112) $ $))))
-((-1846 (((-3 (-409 (-1132 (-398 (-547)))) "failed") |#3|) 70)) (-1561 (((-409 |#3|) |#3|) 34)) (-2432 (((-3 (-409 (-1132 (-48))) "failed") |#3|) 46 (|has| |#2| (-1007 (-48))))) (-1297 (((-3 (|:| |overq| (-1132 (-398 (-547)))) (|:| |overan| (-1132 (-48))) (|:| -4143 (-112))) |#3|) 37)))
-(((-426 |#1| |#2| |#3|) (-10 -7 (-15 -1561 ((-409 |#3|) |#3|)) (-15 -1846 ((-3 (-409 (-1132 (-398 (-547)))) "failed") |#3|)) (-15 -1297 ((-3 (|:| |overq| (-1132 (-398 (-547)))) (|:| |overan| (-1132 (-48))) (|:| -4143 (-112))) |#3|)) (IF (|has| |#2| (-1007 (-48))) (-15 -2432 ((-3 (-409 (-1132 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-539) (-821) (-1007 (-547))) (-421 |#1|) (-1195 |#2|)) (T -426))
-((-2432 (*1 *2 *3) (|partial| -12 (-4 *5 (-1007 (-48))) (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4)) (-5 *2 (-409 (-1132 (-48)))) (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1195 *5)))) (-1297 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4)) (-5 *2 (-3 (|:| |overq| (-1132 (-398 (-547)))) (|:| |overan| (-1132 (-48))) (|:| -4143 (-112)))) (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1195 *5)))) (-1846 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4)) (-5 *2 (-409 (-1132 (-398 (-547))))) (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1195 *5)))) (-1561 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4)) (-5 *2 (-409 *3)) (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1195 *5)))))
-(-10 -7 (-15 -1561 ((-409 |#3|) |#3|)) (-15 -1846 ((-3 (-409 (-1132 (-398 (-547)))) "failed") |#3|)) (-15 -1297 ((-3 (|:| |overq| (-1132 (-398 (-547)))) (|:| |overan| (-1132 (-48))) (|:| -4143 (-112))) |#3|)) (IF (|has| |#2| (-1007 (-48))) (-15 -2432 ((-3 (-409 (-1132 (-48))) "failed") |#3|)) |%noBranch|))
-((-3826 (((-112) $ $) NIL)) (-2027 (((-1119) $ (-1119)) NIL)) (-1566 (($ $ (-1119)) NIL)) (-2569 (((-1119) $) NIL)) (-3696 (((-379) (-379) (-379)) 17) (((-379) (-379)) 15)) (-1352 (($ (-379)) NIL) (($ (-379) (-1119)) NIL)) (-2473 (((-379) $) NIL)) (-1466 (((-1119) $) NIL)) (-3818 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3814 (((-1224) (-1119)) 9)) (-1582 (((-1224) (-1119)) 10)) (-2900 (((-1224)) 11)) (-3838 (((-832) $) NIL)) (-1708 (($ $) 35)) (-2381 (((-112) $ $) NIL)))
-(((-427) (-13 (-355 (-379) (-1119)) (-10 -7 (-15 -3696 ((-379) (-379) (-379))) (-15 -3696 ((-379) (-379))) (-15 -3814 ((-1224) (-1119))) (-15 -1582 ((-1224) (-1119))) (-15 -2900 ((-1224)))))) (T -427))
-((-3696 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-427)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-427)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-427)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-427)))) (-2900 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-427)))))
-(-13 (-355 (-379) (-1119)) (-10 -7 (-15 -3696 ((-379) (-379) (-379))) (-15 -3696 ((-379) (-379))) (-15 -3814 ((-1224) (-1119))) (-15 -1582 ((-1224) (-1119))) (-15 -2900 ((-1224)))))
-((-3826 (((-112) $ $) NIL)) (-3673 (((-3 (|:| |fst| (-425)) (|:| -2896 "void")) $) 11)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2627 (($) 32)) (-4274 (($) 38)) (-3406 (($) 34)) (-3586 (($) 36)) (-2294 (($) 33)) (-3002 (($) 35)) (-1899 (($) 37)) (-3268 (((-112) $) 8)) (-1430 (((-619 (-921 (-547))) $) 19)) (-3846 (($ (-3 (|:| |fst| (-425)) (|:| -2896 "void")) (-619 (-1136)) (-112)) 27) (($ (-3 (|:| |fst| (-425)) (|:| -2896 "void")) (-619 (-921 (-547))) (-112)) 28)) (-3838 (((-832) $) 23) (($ (-425)) 29)) (-2381 (((-112) $ $) NIL)))
-(((-428) (-13 (-1063) (-10 -8 (-15 -3838 ((-832) $)) (-15 -3838 ($ (-425))) (-15 -3673 ((-3 (|:| |fst| (-425)) (|:| -2896 "void")) $)) (-15 -1430 ((-619 (-921 (-547))) $)) (-15 -3268 ((-112) $)) (-15 -3846 ($ (-3 (|:| |fst| (-425)) (|:| -2896 "void")) (-619 (-1136)) (-112))) (-15 -3846 ($ (-3 (|:| |fst| (-425)) (|:| -2896 "void")) (-619 (-921 (-547))) (-112))) (-15 -2627 ($)) (-15 -2294 ($)) (-15 -3406 ($)) (-15 -4274 ($)) (-15 -3002 ($)) (-15 -3586 ($)) (-15 -1899 ($))))) (T -428))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-428)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-425)) (-5 *1 (-428)))) (-3673 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-5 *1 (-428)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-619 (-921 (-547)))) (-5 *1 (-428)))) (-3268 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-428)))) (-3846 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-5 *3 (-619 (-1136))) (-5 *4 (-112)) (-5 *1 (-428)))) (-3846 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-112)) (-5 *1 (-428)))) (-2627 (*1 *1) (-5 *1 (-428))) (-2294 (*1 *1) (-5 *1 (-428))) (-3406 (*1 *1) (-5 *1 (-428))) (-4274 (*1 *1) (-5 *1 (-428))) (-3002 (*1 *1) (-5 *1 (-428))) (-3586 (*1 *1) (-5 *1 (-428))) (-1899 (*1 *1) (-5 *1 (-428))))
-(-13 (-1063) (-10 -8 (-15 -3838 ((-832) $)) (-15 -3838 ($ (-425))) (-15 -3673 ((-3 (|:| |fst| (-425)) (|:| -2896 "void")) $)) (-15 -1430 ((-619 (-921 (-547))) $)) (-15 -3268 ((-112) $)) (-15 -3846 ($ (-3 (|:| |fst| (-425)) (|:| -2896 "void")) (-619 (-1136)) (-112))) (-15 -3846 ($ (-3 (|:| |fst| (-425)) (|:| -2896 "void")) (-619 (-921 (-547))) (-112))) (-15 -2627 ($)) (-15 -2294 ($)) (-15 -3406 ($)) (-15 -4274 ($)) (-15 -3002 ($)) (-15 -3586 ($)) (-15 -1899 ($))))
-((-3826 (((-112) $ $) NIL)) (-2473 (((-1136) $) 8)) (-1466 (((-1119) $) 16)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 11)) (-2381 (((-112) $ $) 13)))
-(((-429 |#1|) (-13 (-1063) (-10 -8 (-15 -2473 ((-1136) $)))) (-1136)) (T -429))
-((-2473 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-429 *3)) (-14 *3 *2))))
-(-13 (-1063) (-10 -8 (-15 -2473 ((-1136) $))))
-((-3309 (((-1224) $) 7)) (-3838 (((-832) $) 8) (($ (-1219 (-673))) 14) (($ (-619 (-321))) 13) (($ (-321)) 12) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 11)))
-(((-430) (-138)) (T -430))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-673))) (-4 *1 (-430)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-430)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-430)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) (-4 *1 (-430)))))
-(-13 (-386) (-10 -8 (-15 -3838 ($ (-1219 (-673)))) (-15 -3838 ($ (-619 (-321)))) (-15 -3838 ($ (-321))) (-15 -3838 ($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))))))
-(((-591 (-832)) . T) ((-386) . T) ((-1173) . T))
-((-2707 (((-3 $ "failed") (-1219 (-307 (-370)))) 21) (((-3 $ "failed") (-1219 (-307 (-547)))) 19) (((-3 $ "failed") (-1219 (-921 (-370)))) 17) (((-3 $ "failed") (-1219 (-921 (-547)))) 15) (((-3 $ "failed") (-1219 (-398 (-921 (-370))))) 13) (((-3 $ "failed") (-1219 (-398 (-921 (-547))))) 11)) (-2652 (($ (-1219 (-307 (-370)))) 22) (($ (-1219 (-307 (-547)))) 20) (($ (-1219 (-921 (-370)))) 18) (($ (-1219 (-921 (-547)))) 16) (($ (-1219 (-398 (-921 (-370))))) 14) (($ (-1219 (-398 (-921 (-547))))) 12)) (-3309 (((-1224) $) 7)) (-3838 (((-832) $) 8) (($ (-619 (-321))) 25) (($ (-321)) 24) (($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) 23)))
-(((-431) (-138)) (T -431))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-431)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-431)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321))))) (-4 *1 (-431)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-1219 (-307 (-370)))) (-4 *1 (-431)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-1219 (-307 (-370)))) (-4 *1 (-431)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-1219 (-307 (-547)))) (-4 *1 (-431)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-1219 (-307 (-547)))) (-4 *1 (-431)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-1219 (-921 (-370)))) (-4 *1 (-431)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-1219 (-921 (-370)))) (-4 *1 (-431)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-1219 (-921 (-547)))) (-4 *1 (-431)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-1219 (-921 (-547)))) (-4 *1 (-431)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-1219 (-398 (-921 (-370))))) (-4 *1 (-431)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-1219 (-398 (-921 (-370))))) (-4 *1 (-431)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-1219 (-398 (-921 (-547))))) (-4 *1 (-431)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-1219 (-398 (-921 (-547))))) (-4 *1 (-431)))))
-(-13 (-386) (-10 -8 (-15 -3838 ($ (-619 (-321)))) (-15 -3838 ($ (-321))) (-15 -3838 ($ (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321)))))) (-15 -2652 ($ (-1219 (-307 (-370))))) (-15 -2707 ((-3 $ "failed") (-1219 (-307 (-370))))) (-15 -2652 ($ (-1219 (-307 (-547))))) (-15 -2707 ((-3 $ "failed") (-1219 (-307 (-547))))) (-15 -2652 ($ (-1219 (-921 (-370))))) (-15 -2707 ((-3 $ "failed") (-1219 (-921 (-370))))) (-15 -2652 ($ (-1219 (-921 (-547))))) (-15 -2707 ((-3 $ "failed") (-1219 (-921 (-547))))) (-15 -2652 ($ (-1219 (-398 (-921 (-370)))))) (-15 -2707 ((-3 $ "failed") (-1219 (-398 (-921 (-370)))))) (-15 -2652 ($ (-1219 (-398 (-921 (-547)))))) (-15 -2707 ((-3 $ "failed") (-1219 (-398 (-921 (-547))))))))
-(((-591 (-832)) . T) ((-386) . T) ((-1173) . T))
-((-2811 (((-112)) 17)) (-3320 (((-112) (-112)) 18)) (-3958 (((-112)) 13)) (-4024 (((-112) (-112)) 14)) (-2910 (((-112)) 15)) (-4183 (((-112) (-112)) 16)) (-2449 (((-890) (-890)) 21) (((-890)) 20)) (-3523 (((-745) (-619 (-2 (|:| -2115 |#1|) (|:| -3705 (-547))))) 42)) (-1597 (((-890) (-890)) 23) (((-890)) 22)) (-2616 (((-2 (|:| -2831 (-547)) (|:| -2534 (-619 |#1|))) |#1|) 62)) (-3651 (((-409 |#1|) (-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| |#1|) (|:| -3038 (-547))))))) 126)) (-4077 (((-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| |#1|) (|:| -3038 (-547)))))) |#1| (-112)) 152)) (-1857 (((-409 |#1|) |#1| (-745) (-745)) 165) (((-409 |#1|) |#1| (-619 (-745)) (-745)) 162) (((-409 |#1|) |#1| (-619 (-745))) 164) (((-409 |#1|) |#1| (-745)) 163) (((-409 |#1|) |#1|) 161)) (-2193 (((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745) (-112)) 167) (((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745)) 168) (((-3 |#1| "failed") (-890) |#1| (-619 (-745))) 170) (((-3 |#1| "failed") (-890) |#1| (-745)) 169) (((-3 |#1| "failed") (-890) |#1|) 171)) (-2115 (((-409 |#1|) |#1| (-745) (-745)) 160) (((-409 |#1|) |#1| (-619 (-745)) (-745)) 156) (((-409 |#1|) |#1| (-619 (-745))) 158) (((-409 |#1|) |#1| (-745)) 157) (((-409 |#1|) |#1|) 155)) (-3410 (((-112) |#1|) 37)) (-1923 (((-712 (-745)) (-619 (-2 (|:| -2115 |#1|) (|:| -3705 (-547))))) 67)) (-3525 (((-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| |#1|) (|:| -3038 (-547)))))) |#1| (-112) (-1065 (-745)) (-745)) 154)))
-(((-432 |#1|) (-10 -7 (-15 -3651 ((-409 |#1|) (-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| |#1|) (|:| -3038 (-547)))))))) (-15 -1923 ((-712 (-745)) (-619 (-2 (|:| -2115 |#1|) (|:| -3705 (-547)))))) (-15 -1597 ((-890))) (-15 -1597 ((-890) (-890))) (-15 -2449 ((-890))) (-15 -2449 ((-890) (-890))) (-15 -3523 ((-745) (-619 (-2 (|:| -2115 |#1|) (|:| -3705 (-547)))))) (-15 -2616 ((-2 (|:| -2831 (-547)) (|:| -2534 (-619 |#1|))) |#1|)) (-15 -2811 ((-112))) (-15 -3320 ((-112) (-112))) (-15 -3958 ((-112))) (-15 -4024 ((-112) (-112))) (-15 -3410 ((-112) |#1|)) (-15 -2910 ((-112))) (-15 -4183 ((-112) (-112))) (-15 -2115 ((-409 |#1|) |#1|)) (-15 -2115 ((-409 |#1|) |#1| (-745))) (-15 -2115 ((-409 |#1|) |#1| (-619 (-745)))) (-15 -2115 ((-409 |#1|) |#1| (-619 (-745)) (-745))) (-15 -2115 ((-409 |#1|) |#1| (-745) (-745))) (-15 -1857 ((-409 |#1|) |#1|)) (-15 -1857 ((-409 |#1|) |#1| (-745))) (-15 -1857 ((-409 |#1|) |#1| (-619 (-745)))) (-15 -1857 ((-409 |#1|) |#1| (-619 (-745)) (-745))) (-15 -1857 ((-409 |#1|) |#1| (-745) (-745))) (-15 -2193 ((-3 |#1| "failed") (-890) |#1|)) (-15 -2193 ((-3 |#1| "failed") (-890) |#1| (-745))) (-15 -2193 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)))) (-15 -2193 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745))) (-15 -2193 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745) (-112))) (-15 -4077 ((-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| |#1|) (|:| -3038 (-547)))))) |#1| (-112))) (-15 -3525 ((-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| |#1|) (|:| -3038 (-547)))))) |#1| (-112) (-1065 (-745)) (-745)))) (-1195 (-547))) (T -432))
-((-3525 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1065 (-745))) (-5 *6 (-745)) (-5 *2 (-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| *3) (|:| -3038 (-547))))))) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| *3) (|:| -3038 (-547))))))) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-2193 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *6 (-112)) (-5 *1 (-432 *2)) (-4 *2 (-1195 (-547))))) (-2193 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *1 (-432 *2)) (-4 *2 (-1195 (-547))))) (-2193 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *1 (-432 *2)) (-4 *2 (-1195 (-547))))) (-2193 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-745)) (-5 *1 (-432 *2)) (-4 *2 (-1195 (-547))))) (-2193 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-890)) (-5 *1 (-432 *2)) (-4 *2 (-1195 (-547))))) (-1857 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-1857 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-745))) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-1857 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-2115 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-2115 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-2115 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-745))) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-2115 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-2115 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-2910 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-3410 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-4024 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-3958 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-3320 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-2811 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-2616 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2831 (-547)) (|:| -2534 (-619 *3)))) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -2115 *4) (|:| -3705 (-547))))) (-4 *4 (-1195 (-547))) (-5 *2 (-745)) (-5 *1 (-432 *4)))) (-2449 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-2449 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-1597 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -2115 *4) (|:| -3705 (-547))))) (-4 *4 (-1195 (-547))) (-5 *2 (-712 (-745))) (-5 *1 (-432 *4)))) (-3651 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| *4) (|:| -3038 (-547))))))) (-4 *4 (-1195 (-547))) (-5 *2 (-409 *4)) (-5 *1 (-432 *4)))))
-(-10 -7 (-15 -3651 ((-409 |#1|) (-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| |#1|) (|:| -3038 (-547)))))))) (-15 -1923 ((-712 (-745)) (-619 (-2 (|:| -2115 |#1|) (|:| -3705 (-547)))))) (-15 -1597 ((-890))) (-15 -1597 ((-890) (-890))) (-15 -2449 ((-890))) (-15 -2449 ((-890) (-890))) (-15 -3523 ((-745) (-619 (-2 (|:| -2115 |#1|) (|:| -3705 (-547)))))) (-15 -2616 ((-2 (|:| -2831 (-547)) (|:| -2534 (-619 |#1|))) |#1|)) (-15 -2811 ((-112))) (-15 -3320 ((-112) (-112))) (-15 -3958 ((-112))) (-15 -4024 ((-112) (-112))) (-15 -3410 ((-112) |#1|)) (-15 -2910 ((-112))) (-15 -4183 ((-112) (-112))) (-15 -2115 ((-409 |#1|) |#1|)) (-15 -2115 ((-409 |#1|) |#1| (-745))) (-15 -2115 ((-409 |#1|) |#1| (-619 (-745)))) (-15 -2115 ((-409 |#1|) |#1| (-619 (-745)) (-745))) (-15 -2115 ((-409 |#1|) |#1| (-745) (-745))) (-15 -1857 ((-409 |#1|) |#1|)) (-15 -1857 ((-409 |#1|) |#1| (-745))) (-15 -1857 ((-409 |#1|) |#1| (-619 (-745)))) (-15 -1857 ((-409 |#1|) |#1| (-619 (-745)) (-745))) (-15 -1857 ((-409 |#1|) |#1| (-745) (-745))) (-15 -2193 ((-3 |#1| "failed") (-890) |#1|)) (-15 -2193 ((-3 |#1| "failed") (-890) |#1| (-745))) (-15 -2193 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)))) (-15 -2193 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745))) (-15 -2193 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745) (-112))) (-15 -4077 ((-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| |#1|) (|:| -3038 (-547)))))) |#1| (-112))) (-15 -3525 ((-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| |#1|) (|:| -3038 (-547)))))) |#1| (-112) (-1065 (-745)) (-745))))
-((-2559 (((-547) |#2|) 48) (((-547) |#2| (-745)) 47)) (-1404 (((-547) |#2|) 55)) (-1954 ((|#3| |#2|) 25)) (-3160 ((|#3| |#2| (-890)) 14)) (-4202 ((|#3| |#2|) 15)) (-3474 ((|#3| |#2|) 9)) (-4029 ((|#3| |#2|) 10)) (-1710 ((|#3| |#2| (-890)) 62) ((|#3| |#2|) 30)) (-2939 (((-547) |#2|) 57)))
-(((-433 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-547) |#2|)) (-15 -1710 (|#3| |#2|)) (-15 -1710 (|#3| |#2| (-890))) (-15 -1404 ((-547) |#2|)) (-15 -2559 ((-547) |#2| (-745))) (-15 -2559 ((-547) |#2|)) (-15 -3160 (|#3| |#2| (-890))) (-15 -1954 (|#3| |#2|)) (-15 -3474 (|#3| |#2|)) (-15 -4029 (|#3| |#2|)) (-15 -4202 (|#3| |#2|))) (-1016) (-1195 |#1|) (-13 (-395) (-1007 |#1|) (-354) (-1158) (-275))) (T -433))
-((-4202 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1158) (-275))) (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1195 *4)))) (-4029 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1158) (-275))) (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1195 *4)))) (-3474 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1158) (-275))) (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1195 *4)))) (-1954 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1158) (-275))) (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1195 *4)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *2 (-13 (-395) (-1007 *5) (-354) (-1158) (-275))) (-5 *1 (-433 *5 *3 *2)) (-4 *3 (-1195 *5)))) (-2559 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *4 *3 *5)) (-4 *3 (-1195 *4)) (-4 *5 (-13 (-395) (-1007 *4) (-354) (-1158) (-275))))) (-2559 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *5 *3 *6)) (-4 *3 (-1195 *5)) (-4 *6 (-13 (-395) (-1007 *5) (-354) (-1158) (-275))))) (-1404 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *4 *3 *5)) (-4 *3 (-1195 *4)) (-4 *5 (-13 (-395) (-1007 *4) (-354) (-1158) (-275))))) (-1710 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *2 (-13 (-395) (-1007 *5) (-354) (-1158) (-275))) (-5 *1 (-433 *5 *3 *2)) (-4 *3 (-1195 *5)))) (-1710 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1158) (-275))) (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1195 *4)))) (-2939 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *4 *3 *5)) (-4 *3 (-1195 *4)) (-4 *5 (-13 (-395) (-1007 *4) (-354) (-1158) (-275))))))
-(-10 -7 (-15 -2939 ((-547) |#2|)) (-15 -1710 (|#3| |#2|)) (-15 -1710 (|#3| |#2| (-890))) (-15 -1404 ((-547) |#2|)) (-15 -2559 ((-547) |#2| (-745))) (-15 -2559 ((-547) |#2|)) (-15 -3160 (|#3| |#2| (-890))) (-15 -1954 (|#3| |#2|)) (-15 -3474 (|#3| |#2|)) (-15 -4029 (|#3| |#2|)) (-15 -4202 (|#3| |#2|)))
-((-3199 ((|#2| (-1219 |#1|)) 36)) (-2503 ((|#2| |#2| |#1|) 49)) (-2726 ((|#2| |#2| |#1|) 41)) (-3057 ((|#2| |#2|) 38)) (-2769 (((-112) |#2|) 30)) (-3955 (((-619 |#2|) (-890) (-409 |#2|)) 17)) (-2193 ((|#2| (-890) (-409 |#2|)) 21)) (-1923 (((-712 (-745)) (-409 |#2|)) 25)))
-(((-434 |#1| |#2|) (-10 -7 (-15 -2769 ((-112) |#2|)) (-15 -3199 (|#2| (-1219 |#1|))) (-15 -3057 (|#2| |#2|)) (-15 -2726 (|#2| |#2| |#1|)) (-15 -2503 (|#2| |#2| |#1|)) (-15 -1923 ((-712 (-745)) (-409 |#2|))) (-15 -2193 (|#2| (-890) (-409 |#2|))) (-15 -3955 ((-619 |#2|) (-890) (-409 |#2|)))) (-1016) (-1195 |#1|)) (T -434))
-((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-409 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-1016)) (-5 *2 (-619 *6)) (-5 *1 (-434 *5 *6)))) (-2193 (*1 *2 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-409 *2)) (-4 *2 (-1195 *5)) (-5 *1 (-434 *5 *2)) (-4 *5 (-1016)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *5 (-1195 *4)) (-4 *4 (-1016)) (-5 *2 (-712 (-745))) (-5 *1 (-434 *4 *5)))) (-2503 (*1 *2 *2 *3) (-12 (-4 *3 (-1016)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1195 *3)))) (-2726 (*1 *2 *2 *3) (-12 (-4 *3 (-1016)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1195 *3)))) (-3057 (*1 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1195 *3)))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-1219 *4)) (-4 *4 (-1016)) (-4 *2 (-1195 *4)) (-5 *1 (-434 *4 *2)))) (-2769 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-112)) (-5 *1 (-434 *4 *3)) (-4 *3 (-1195 *4)))))
-(-10 -7 (-15 -2769 ((-112) |#2|)) (-15 -3199 (|#2| (-1219 |#1|))) (-15 -3057 (|#2| |#2|)) (-15 -2726 (|#2| |#2| |#1|)) (-15 -2503 (|#2| |#2| |#1|)) (-15 -1923 ((-712 (-745)) (-409 |#2|))) (-15 -2193 (|#2| (-890) (-409 |#2|))) (-15 -3955 ((-619 |#2|) (-890) (-409 |#2|))))
-((-2044 (((-745)) 41)) (-2398 (((-745)) 23 (|has| |#1| (-395))) (((-745) (-745)) 22 (|has| |#1| (-395)))) (-2041 (((-547) |#1|) 18 (|has| |#1| (-395)))) (-1257 (((-547) |#1|) 20 (|has| |#1| (-395)))) (-3184 (((-745)) 40) (((-745) (-745)) 39)) (-3173 ((|#1| (-745) (-547)) 29)) (-2225 (((-1224)) 43)))
-(((-435 |#1|) (-10 -7 (-15 -3173 (|#1| (-745) (-547))) (-15 -3184 ((-745) (-745))) (-15 -3184 ((-745))) (-15 -2044 ((-745))) (-15 -2225 ((-1224))) (IF (|has| |#1| (-395)) (PROGN (-15 -1257 ((-547) |#1|)) (-15 -2041 ((-547) |#1|)) (-15 -2398 ((-745) (-745))) (-15 -2398 ((-745)))) |%noBranch|)) (-1016)) (T -435))
-((-2398 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016)))) (-2398 (*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016)))) (-2041 (*1 *2 *3) (-12 (-5 *2 (-547)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016)))) (-1257 (*1 *2 *3) (-12 (-5 *2 (-547)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016)))) (-2225 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-435 *3)) (-4 *3 (-1016)))) (-2044 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-1016)))) (-3184 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-1016)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-1016)))) (-3173 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-547)) (-5 *1 (-435 *2)) (-4 *2 (-1016)))))
-(-10 -7 (-15 -3173 (|#1| (-745) (-547))) (-15 -3184 ((-745) (-745))) (-15 -3184 ((-745))) (-15 -2044 ((-745))) (-15 -2225 ((-1224))) (IF (|has| |#1| (-395)) (PROGN (-15 -1257 ((-547) |#1|)) (-15 -2041 ((-547) |#1|)) (-15 -2398 ((-745) (-745))) (-15 -2398 ((-745)))) |%noBranch|))
-((-2112 (((-619 (-547)) (-547)) 61)) (-1791 (((-112) (-166 (-547))) 65)) (-2115 (((-409 (-166 (-547))) (-166 (-547))) 60)))
-(((-436) (-10 -7 (-15 -2115 ((-409 (-166 (-547))) (-166 (-547)))) (-15 -2112 ((-619 (-547)) (-547))) (-15 -1791 ((-112) (-166 (-547)))))) (T -436))
-((-1791 (*1 *2 *3) (-12 (-5 *3 (-166 (-547))) (-5 *2 (-112)) (-5 *1 (-436)))) (-2112 (*1 *2 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-436)) (-5 *3 (-547)))) (-2115 (*1 *2 *3) (-12 (-5 *2 (-409 (-166 (-547)))) (-5 *1 (-436)) (-5 *3 (-166 (-547))))))
-(-10 -7 (-15 -2115 ((-409 (-166 (-547))) (-166 (-547)))) (-15 -2112 ((-619 (-547)) (-547))) (-15 -1791 ((-112) (-166 (-547)))))
-((-1529 ((|#4| |#4| (-619 |#4|)) 61)) (-3636 (((-619 |#4|) (-619 |#4|) (-1119) (-1119)) 17) (((-619 |#4|) (-619 |#4|) (-1119)) 16) (((-619 |#4|) (-619 |#4|)) 11)))
-(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1529 (|#4| |#4| (-619 |#4|))) (-15 -3636 ((-619 |#4|) (-619 |#4|))) (-15 -3636 ((-619 |#4|) (-619 |#4|) (-1119))) (-15 -3636 ((-619 |#4|) (-619 |#4|) (-1119) (-1119)))) (-298) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -437))
-((-3636 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1119)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-298)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-437 *4 *5 *6 *7)))) (-3636 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1119)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-298)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-437 *4 *5 *6 *7)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-298)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-437 *3 *4 *5 *6)))) (-1529 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-298)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-437 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1529 (|#4| |#4| (-619 |#4|))) (-15 -3636 ((-619 |#4|) (-619 |#4|))) (-15 -3636 ((-619 |#4|) (-619 |#4|) (-1119))) (-15 -3636 ((-619 |#4|) (-619 |#4|) (-1119) (-1119))))
-((-1735 (((-619 (-619 |#4|)) (-619 |#4|) (-112)) 73) (((-619 (-619 |#4|)) (-619 |#4|)) 72) (((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|) (-112)) 66) (((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|)) 67)) (-3667 (((-619 (-619 |#4|)) (-619 |#4|) (-112)) 42) (((-619 (-619 |#4|)) (-619 |#4|)) 63)))
-(((-438 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3667 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -3667 ((-619 (-619 |#4|)) (-619 |#4|) (-112))) (-15 -1735 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|))) (-15 -1735 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|) (-112))) (-15 -1735 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -1735 ((-619 (-619 |#4|)) (-619 |#4|) (-112)))) (-13 (-298) (-145)) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -438))
-((-1735 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) (-5 *1 (-438 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) (-1735 (*1 *2 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-438 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-1735 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) (-5 *1 (-438 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) (-1735 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-438 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-3667 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) (-5 *1 (-438 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) (-3667 (*1 *2 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-438 *4 *5 *6 *7)) (-5 *3 (-619 *7)))))
-(-10 -7 (-15 -3667 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -3667 ((-619 (-619 |#4|)) (-619 |#4|) (-112))) (-15 -1735 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|))) (-15 -1735 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|) (-112))) (-15 -1735 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -1735 ((-619 (-619 |#4|)) (-619 |#4|) (-112))))
-((-1585 (((-745) |#4|) 12)) (-3118 (((-619 (-2 (|:| |totdeg| (-745)) (|:| -2447 |#4|))) |#4| (-745) (-619 (-2 (|:| |totdeg| (-745)) (|:| -2447 |#4|)))) 31)) (-4126 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1389 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1871 ((|#4| |#4| (-619 |#4|)) 40)) (-2475 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-619 |#4|)) 70)) (-1972 (((-1224) |#4|) 42)) (-2684 (((-1224) (-619 |#4|)) 51)) (-2681 (((-547) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-547) (-547) (-547)) 48)) (-1575 (((-1224) (-547)) 79)) (-3783 (((-619 |#4|) (-619 |#4|)) 77)) (-2704 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-745)) (|:| -2447 |#4|)) |#4| (-745)) 25)) (-3084 (((-547) |#4|) 78)) (-3011 ((|#4| |#4|) 29)) (-1762 (((-619 |#4|) (-619 |#4|) (-547) (-547)) 56)) (-1533 (((-547) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-547) (-547) (-547) (-547)) 89)) (-1680 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1365 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1323 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1778 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1488 (((-112) |#2| |#2|) 57)) (-2741 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3576 (((-112) |#2| |#2| |#2| |#2|) 60)) (-3127 ((|#4| |#4| (-619 |#4|)) 71)))
-(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3127 (|#4| |#4| (-619 |#4|))) (-15 -1871 (|#4| |#4| (-619 |#4|))) (-15 -1762 ((-619 |#4|) (-619 |#4|) (-547) (-547))) (-15 -1365 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1488 ((-112) |#2| |#2|)) (-15 -3576 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2741 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1778 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1323 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2475 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-619 |#4|))) (-15 -3011 (|#4| |#4|)) (-15 -3118 ((-619 (-2 (|:| |totdeg| (-745)) (|:| -2447 |#4|))) |#4| (-745) (-619 (-2 (|:| |totdeg| (-745)) (|:| -2447 |#4|))))) (-15 -1389 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4126 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3783 ((-619 |#4|) (-619 |#4|))) (-15 -3084 ((-547) |#4|)) (-15 -1972 ((-1224) |#4|)) (-15 -2681 ((-547) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-547) (-547) (-547))) (-15 -1533 ((-547) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-547) (-547) (-547) (-547))) (-15 -2684 ((-1224) (-619 |#4|))) (-15 -1575 ((-1224) (-547))) (-15 -1680 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2704 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-745)) (|:| -2447 |#4|)) |#4| (-745))) (-15 -1585 ((-745) |#4|))) (-442) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -439))
-((-1585 (*1 *2 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)) (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-2704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-745)) (|:| -2447 *4))) (-5 *5 (-745)) (-4 *4 (-918 *6 *7 *8)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-439 *6 *7 *8 *4)))) (-1680 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-439 *4 *5 *6 *7)))) (-1575 (*1 *2 *3) (-12 (-5 *3 (-547)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1224)) (-5 *1 (-439 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-2684 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1224)) (-5 *1 (-439 *4 *5 *6 *7)))) (-1533 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *7 (-821)) (-5 *1 (-439 *5 *6 *7 *4)))) (-2681 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *7 (-821)) (-5 *1 (-439 *5 *6 *7 *4)))) (-1972 (*1 *2 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1224)) (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-3084 (*1 *2 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-547)) (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-439 *3 *4 *5 *6)))) (-4126 (*1 *2 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) (-4 *5 (-821)) (-5 *1 (-439 *3 *4 *5 *6)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-767)) (-4 *2 (-918 *4 *5 *6)) (-5 *1 (-439 *4 *5 *6 *2)) (-4 *4 (-442)) (-4 *6 (-821)))) (-3118 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-619 (-2 (|:| |totdeg| (-745)) (|:| -2447 *3)))) (-5 *4 (-745)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-439 *5 *6 *7 *3)))) (-3011 (*1 *2 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-439 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) (-2475 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-439 *5 *6 *7 *3)))) (-1323 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-745)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-767)) (-4 *6 (-918 *4 *3 *5)) (-4 *4 (-442)) (-4 *5 (-821)) (-5 *1 (-439 *4 *3 *5 *6)))) (-1778 (*1 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) (-4 *5 (-821)) (-5 *1 (-439 *3 *4 *5 *6)))) (-2741 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-767)) (-4 *3 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *6 (-821)) (-5 *1 (-439 *4 *5 *6 *3)))) (-3576 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-442)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-439 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5)))) (-1488 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-439 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-439 *4 *5 *6 *7)))) (-1762 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-547)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-439 *4 *5 *6 *7)))) (-1871 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-439 *4 *5 *6 *2)))) (-3127 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-439 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3127 (|#4| |#4| (-619 |#4|))) (-15 -1871 (|#4| |#4| (-619 |#4|))) (-15 -1762 ((-619 |#4|) (-619 |#4|) (-547) (-547))) (-15 -1365 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1488 ((-112) |#2| |#2|)) (-15 -3576 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2741 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1778 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1323 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2475 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-619 |#4|))) (-15 -3011 (|#4| |#4|)) (-15 -3118 ((-619 (-2 (|:| |totdeg| (-745)) (|:| -2447 |#4|))) |#4| (-745) (-619 (-2 (|:| |totdeg| (-745)) (|:| -2447 |#4|))))) (-15 -1389 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4126 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3783 ((-619 |#4|) (-619 |#4|))) (-15 -3084 ((-547) |#4|)) (-15 -1972 ((-1224) |#4|)) (-15 -2681 ((-547) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-547) (-547) (-547))) (-15 -1533 ((-547) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-547) (-547) (-547) (-547))) (-15 -2684 ((-1224) (-619 |#4|))) (-15 -1575 ((-1224) (-547))) (-15 -1680 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2704 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-745)) (|:| -2447 |#4|)) |#4| (-745))) (-15 -1585 ((-745) |#4|)))
-((-3529 ((|#4| |#4| (-619 |#4|)) 22 (|has| |#1| (-354)))) (-3191 (((-619 |#4|) (-619 |#4|) (-1119) (-1119)) 41) (((-619 |#4|) (-619 |#4|) (-1119)) 40) (((-619 |#4|) (-619 |#4|)) 35)))
-(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3191 ((-619 |#4|) (-619 |#4|))) (-15 -3191 ((-619 |#4|) (-619 |#4|) (-1119))) (-15 -3191 ((-619 |#4|) (-619 |#4|) (-1119) (-1119))) (IF (|has| |#1| (-354)) (-15 -3529 (|#4| |#4| (-619 |#4|))) |%noBranch|)) (-442) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -440))
-((-3529 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-354)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *2)))) (-3191 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1119)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *7)))) (-3191 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1119)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *7)))) (-3191 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3191 ((-619 |#4|) (-619 |#4|))) (-15 -3191 ((-619 |#4|) (-619 |#4|) (-1119))) (-15 -3191 ((-619 |#4|) (-619 |#4|) (-1119) (-1119))) (IF (|has| |#1| (-354)) (-15 -3529 (|#4| |#4| (-619 |#4|))) |%noBranch|))
-((-3689 (($ $ $) 14) (($ (-619 $)) 21)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 41)) (-3719 (($ $ $) NIL) (($ (-619 $)) 22)))
-(((-441 |#1|) (-10 -8 (-15 -2429 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3689 (|#1| (-619 |#1|))) (-15 -3689 (|#1| |#1| |#1|)) (-15 -3719 (|#1| (-619 |#1|))) (-15 -3719 (|#1| |#1| |#1|))) (-442)) (T -441))
-NIL
-(-10 -8 (-15 -2429 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3689 (|#1| (-619 |#1|))) (-15 -3689 (|#1| |#1| |#1|)) (-15 -3719 (|#1| (-619 |#1|))) (-15 -3719 (|#1| |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-2032 (((-3 $ "failed") $ $) 40)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-442) (-138)) (T -442))
-((-3719 (*1 *1 *1 *1) (-4 *1 (-442))) (-3719 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-442)))) (-3689 (*1 *1 *1 *1) (-4 *1 (-442))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-442)))) (-2429 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *1)) (-4 *1 (-442)))))
-(-13 (-539) (-10 -8 (-15 -3719 ($ $ $)) (-15 -3719 ($ (-619 $))) (-15 -3689 ($ $ $)) (-15 -3689 ($ (-619 $))) (-15 -2429 ((-1132 $) (-1132 $) (-1132 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3825 (((-3 $ "failed")) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-3620 (((-1219 (-663 (-398 (-921 |#1|)))) (-1219 $)) NIL) (((-1219 (-663 (-398 (-921 |#1|))))) NIL)) (-1342 (((-1219 $)) NIL)) (-1948 (($) NIL T CONST)) (-4106 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) NIL)) (-2169 (((-3 $ "failed")) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-2877 (((-663 (-398 (-921 |#1|))) (-1219 $)) NIL) (((-663 (-398 (-921 |#1|)))) NIL)) (-3652 (((-398 (-921 |#1|)) $) NIL)) (-1252 (((-663 (-398 (-921 |#1|))) $ (-1219 $)) NIL) (((-663 (-398 (-921 |#1|))) $) NIL)) (-2702 (((-3 $ "failed") $) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-4036 (((-1132 (-921 (-398 (-921 |#1|))))) NIL (|has| (-398 (-921 |#1|)) (-354))) (((-1132 (-398 (-921 |#1|)))) 84 (|has| |#1| (-539)))) (-3387 (($ $ (-890)) NIL)) (-2105 (((-398 (-921 |#1|)) $) NIL)) (-3685 (((-1132 (-398 (-921 |#1|))) $) 82 (|has| (-398 (-921 |#1|)) (-539)))) (-1936 (((-398 (-921 |#1|)) (-1219 $)) NIL) (((-398 (-921 |#1|))) NIL)) (-3543 (((-1132 (-398 (-921 |#1|))) $) NIL)) (-4130 (((-112)) NIL)) (-2614 (($ (-1219 (-398 (-921 |#1|))) (-1219 $)) 103) (($ (-1219 (-398 (-921 |#1|)))) NIL)) (-3855 (((-3 $ "failed") $) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-3116 (((-890)) NIL)) (-2470 (((-112)) NIL)) (-1296 (($ $ (-890)) NIL)) (-2270 (((-112)) NIL)) (-3661 (((-112)) NIL)) (-1790 (((-112)) NIL)) (-2499 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) NIL)) (-1549 (((-3 $ "failed")) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-2972 (((-663 (-398 (-921 |#1|))) (-1219 $)) NIL) (((-663 (-398 (-921 |#1|)))) NIL)) (-2080 (((-398 (-921 |#1|)) $) NIL)) (-2574 (((-663 (-398 (-921 |#1|))) $ (-1219 $)) NIL) (((-663 (-398 (-921 |#1|))) $) NIL)) (-4082 (((-3 $ "failed") $) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-3569 (((-1132 (-921 (-398 (-921 |#1|))))) NIL (|has| (-398 (-921 |#1|)) (-354))) (((-1132 (-398 (-921 |#1|)))) 83 (|has| |#1| (-539)))) (-3851 (($ $ (-890)) NIL)) (-4005 (((-398 (-921 |#1|)) $) NIL)) (-1964 (((-1132 (-398 (-921 |#1|))) $) 77 (|has| (-398 (-921 |#1|)) (-539)))) (-4062 (((-398 (-921 |#1|)) (-1219 $)) NIL) (((-398 (-921 |#1|))) NIL)) (-2317 (((-1132 (-398 (-921 |#1|))) $) NIL)) (-3912 (((-112)) NIL)) (-1466 (((-1119) $) NIL)) (-3795 (((-112)) NIL)) (-2759 (((-112)) NIL)) (-3892 (((-112)) NIL)) (-3979 (((-1082) $) NIL)) (-1315 (((-398 (-921 |#1|)) $ $) 71 (|has| |#1| (-539)))) (-4161 (((-398 (-921 |#1|)) $) 93 (|has| |#1| (-539)))) (-2696 (((-398 (-921 |#1|)) $) 95 (|has| |#1| (-539)))) (-2628 (((-1132 (-398 (-921 |#1|))) $) 88 (|has| |#1| (-539)))) (-2941 (((-398 (-921 |#1|))) 72 (|has| |#1| (-539)))) (-2882 (((-398 (-921 |#1|)) $ $) 64 (|has| |#1| (-539)))) (-2114 (((-398 (-921 |#1|)) $) 92 (|has| |#1| (-539)))) (-3591 (((-398 (-921 |#1|)) $) 94 (|has| |#1| (-539)))) (-3914 (((-1132 (-398 (-921 |#1|))) $) 87 (|has| |#1| (-539)))) (-1571 (((-398 (-921 |#1|))) 68 (|has| |#1| (-539)))) (-1410 (($) 101) (($ (-1136)) 107) (($ (-1219 (-1136))) 106) (($ (-1219 $)) 96) (($ (-1136) (-1219 $)) 105) (($ (-1219 (-1136)) (-1219 $)) 104)) (-1889 (((-112)) NIL)) (-3334 (((-398 (-921 |#1|)) $ (-547)) NIL)) (-3220 (((-1219 (-398 (-921 |#1|))) $ (-1219 $)) 98) (((-663 (-398 (-921 |#1|))) (-1219 $) (-1219 $)) NIL) (((-1219 (-398 (-921 |#1|))) $) 40) (((-663 (-398 (-921 |#1|))) (-1219 $)) NIL)) (-2838 (((-1219 (-398 (-921 |#1|))) $) NIL) (($ (-1219 (-398 (-921 |#1|)))) 37)) (-3906 (((-619 (-921 (-398 (-921 |#1|)))) (-1219 $)) NIL) (((-619 (-921 (-398 (-921 |#1|))))) NIL) (((-619 (-921 |#1|)) (-1219 $)) 99 (|has| |#1| (-539))) (((-619 (-921 |#1|))) 100 (|has| |#1| (-539)))) (-1473 (($ $ $) NIL)) (-3274 (((-112)) NIL)) (-3838 (((-832) $) NIL) (($ (-1219 (-398 (-921 |#1|)))) NIL)) (-1917 (((-1219 $)) 60)) (-3778 (((-619 (-1219 (-398 (-921 |#1|))))) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-2781 (($ $ $ $) NIL)) (-3592 (((-112)) NIL)) (-3587 (($ (-663 (-398 (-921 |#1|))) $) NIL)) (-2031 (($ $ $) NIL)) (-3271 (((-112)) NIL)) (-4150 (((-112)) NIL)) (-2004 (((-112)) NIL)) (-3269 (($) NIL T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) 97)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 56) (($ $ (-398 (-921 |#1|))) NIL) (($ (-398 (-921 |#1|)) $) NIL) (($ (-1103 |#2| (-398 (-921 |#1|))) $) NIL)))
-(((-443 |#1| |#2| |#3| |#4|) (-13 (-408 (-398 (-921 |#1|))) (-622 (-1103 |#2| (-398 (-921 |#1|)))) (-10 -8 (-15 -3838 ($ (-1219 (-398 (-921 |#1|))))) (-15 -2499 ((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed"))) (-15 -4106 ((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed"))) (-15 -1410 ($)) (-15 -1410 ($ (-1136))) (-15 -1410 ($ (-1219 (-1136)))) (-15 -1410 ($ (-1219 $))) (-15 -1410 ($ (-1136) (-1219 $))) (-15 -1410 ($ (-1219 (-1136)) (-1219 $))) (IF (|has| |#1| (-539)) (PROGN (-15 -3569 ((-1132 (-398 (-921 |#1|))))) (-15 -3914 ((-1132 (-398 (-921 |#1|))) $)) (-15 -2114 ((-398 (-921 |#1|)) $)) (-15 -3591 ((-398 (-921 |#1|)) $)) (-15 -4036 ((-1132 (-398 (-921 |#1|))))) (-15 -2628 ((-1132 (-398 (-921 |#1|))) $)) (-15 -4161 ((-398 (-921 |#1|)) $)) (-15 -2696 ((-398 (-921 |#1|)) $)) (-15 -2882 ((-398 (-921 |#1|)) $ $)) (-15 -1571 ((-398 (-921 |#1|)))) (-15 -1315 ((-398 (-921 |#1|)) $ $)) (-15 -2941 ((-398 (-921 |#1|)))) (-15 -3906 ((-619 (-921 |#1|)) (-1219 $))) (-15 -3906 ((-619 (-921 |#1|))))) |%noBranch|))) (-169) (-890) (-619 (-1136)) (-1219 (-663 |#1|))) (T -443))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1219 (-398 (-921 *3)))) (-4 *3 (-169)) (-14 *6 (-1219 (-663 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))))) (-2499 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-443 *3 *4 *5 *6)) (|:| -1917 (-619 (-443 *3 *4 *5 *6))))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-4106 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-443 *3 *4 *5 *6)) (|:| -1917 (-619 (-443 *3 *4 *5 *6))))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-1410 (*1 *1) (-12 (-5 *1 (-443 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-890)) (-14 *4 (-619 (-1136))) (-14 *5 (-1219 (-663 *2))))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 *2)) (-14 *6 (-1219 (-663 *3))))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-1219 (-1136))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-1219 (-443 *3 *4 *5 *6))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-1410 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-443 *4 *5 *6 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) (-14 *6 (-619 *2)) (-14 *7 (-1219 (-663 *4))))) (-1410 (*1 *1 *2 *3) (-12 (-5 *2 (-1219 (-1136))) (-5 *3 (-1219 (-443 *4 *5 *6 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) (-14 *6 (-619 (-1136))) (-14 *7 (-1219 (-663 *4))))) (-3569 (*1 *2) (-12 (-5 *2 (-1132 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-1132 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-2114 (*1 *2 *1) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-4036 (*1 *2) (-12 (-5 *2 (-1132 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-1132 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-2882 (*1 *2 *1 *1) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-1571 (*1 *2) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-1315 (*1 *2 *1 *1) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-2941 (*1 *2) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1219 (-443 *4 *5 *6 *7))) (-5 *2 (-619 (-921 *4))) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *4 (-539)) (-4 *4 (-169)) (-14 *5 (-890)) (-14 *6 (-619 (-1136))) (-14 *7 (-1219 (-663 *4))))) (-3906 (*1 *2) (-12 (-5 *2 (-619 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(-13 (-408 (-398 (-921 |#1|))) (-622 (-1103 |#2| (-398 (-921 |#1|)))) (-10 -8 (-15 -3838 ($ (-1219 (-398 (-921 |#1|))))) (-15 -2499 ((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed"))) (-15 -4106 ((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed"))) (-15 -1410 ($)) (-15 -1410 ($ (-1136))) (-15 -1410 ($ (-1219 (-1136)))) (-15 -1410 ($ (-1219 $))) (-15 -1410 ($ (-1136) (-1219 $))) (-15 -1410 ($ (-1219 (-1136)) (-1219 $))) (IF (|has| |#1| (-539)) (PROGN (-15 -3569 ((-1132 (-398 (-921 |#1|))))) (-15 -3914 ((-1132 (-398 (-921 |#1|))) $)) (-15 -2114 ((-398 (-921 |#1|)) $)) (-15 -3591 ((-398 (-921 |#1|)) $)) (-15 -4036 ((-1132 (-398 (-921 |#1|))))) (-15 -2628 ((-1132 (-398 (-921 |#1|))) $)) (-15 -4161 ((-398 (-921 |#1|)) $)) (-15 -2696 ((-398 (-921 |#1|)) $)) (-15 -2882 ((-398 (-921 |#1|)) $ $)) (-15 -1571 ((-398 (-921 |#1|)))) (-15 -1315 ((-398 (-921 |#1|)) $ $)) (-15 -2941 ((-398 (-921 |#1|)))) (-15 -3906 ((-619 (-921 |#1|)) (-1219 $))) (-15 -3906 ((-619 (-921 |#1|))))) |%noBranch|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 13)) (-2267 (((-619 (-834 |#1|)) $) 75)) (-2078 (((-1132 $) $ (-834 |#1|)) 46) (((-1132 |#2|) $) 118)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#2| (-539)))) (-3571 (($ $) NIL (|has| |#2| (-539)))) (-3915 (((-112) $) NIL (|has| |#2| (-539)))) (-2624 (((-745) $) 21) (((-745) $ (-619 (-834 |#1|))) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-2555 (($ $) NIL (|has| |#2| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#2| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#2| "failed") $) 44) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2652 ((|#2| $) 42) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-834 |#1|) $) NIL)) (-1496 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3055 (($ $ (-619 (-547))) 80)) (-2063 (($ $) 68)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#2| (-878)))) (-3210 (($ $ |#2| |#3| $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) 58)) (-2254 (($ (-1132 |#2|) (-834 |#1|)) 123) (($ (-1132 $) (-834 |#1|)) 52)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) 59)) (-2238 (($ |#2| |#3|) 28) (($ $ (-834 |#1|) (-745)) 30) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ (-834 |#1|)) NIL)) (-3095 ((|#3| $) NIL) (((-745) $ (-834 |#1|)) 50) (((-619 (-745)) $ (-619 (-834 |#1|))) 57)) (-2856 (($ $ $) NIL (|has| |#2| (-821)))) (-3567 (($ $ $) NIL (|has| |#2| (-821)))) (-4182 (($ (-1 |#3| |#3|) $) NIL)) (-2790 (($ (-1 |#2| |#2|) $) NIL)) (-1631 (((-3 (-834 |#1|) "failed") $) 39)) (-2019 (($ $) NIL)) (-2037 ((|#2| $) 41)) (-3689 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-1466 (((-1119) $) NIL)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -3322 (-745))) "failed") $) NIL)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) 40)) (-2009 ((|#2| $) 116)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#2| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) 128 (|has| |#2| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#2| (-878)))) (-2032 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-539)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) 87) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) 90) (($ $ (-834 |#1|) $) 85) (($ $ (-619 (-834 |#1|)) (-619 $)) 106)) (-4056 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3448 (($ $ (-834 |#1|)) 53) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-3705 ((|#3| $) 67) (((-745) $ (-834 |#1|)) 37) (((-619 (-745)) $ (-619 (-834 |#1|))) 56)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-834 |#1|) (-592 (-523))) (|has| |#2| (-592 (-523)))))) (-2392 ((|#2| $) 125 (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3838 (((-832) $) 145) (($ (-547)) NIL) (($ |#2|) 86) (($ (-834 |#1|)) 31) (($ (-398 (-547))) NIL (-1530 (|has| |#2| (-38 (-398 (-547)))) (|has| |#2| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#2| (-539)))) (-1277 (((-619 |#2|) $) NIL)) (-2450 ((|#2| $ |#3|) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#2| (-539)))) (-3269 (($) 17 T CONST)) (-3281 (($) 25 T CONST)) (-1695 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2441 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2506 (($ $ |#2|) 64 (|has| |#2| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 111)) (** (($ $ (-890)) NIL) (($ $ (-745)) 109)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 29) (($ $ (-398 (-547))) NIL (|has| |#2| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#2| (-38 (-398 (-547))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-444 |#1| |#2| |#3|) (-13 (-918 |#2| |#3| (-834 |#1|)) (-10 -8 (-15 -3055 ($ $ (-619 (-547)))))) (-619 (-1136)) (-1016) (-230 (-3767 |#1|) (-745))) (T -444))
-((-3055 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-14 *3 (-619 (-1136))) (-5 *1 (-444 *3 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-230 (-3767 *3) (-745))))))
-(-13 (-918 |#2| |#3| (-834 |#1|)) (-10 -8 (-15 -3055 ($ $ (-619 (-547))))))
-((-3881 (((-112) |#1| (-619 |#2|)) 69)) (-4245 (((-3 (-1219 (-619 |#2|)) "failed") (-745) |#1| (-619 |#2|)) 78)) (-2446 (((-3 (-619 |#2|) "failed") |#2| |#1| (-1219 (-619 |#2|))) 80)) (-2378 ((|#2| |#2| |#1|) 28)) (-3119 (((-745) |#2| (-619 |#2|)) 20)))
-(((-445 |#1| |#2|) (-10 -7 (-15 -2378 (|#2| |#2| |#1|)) (-15 -3119 ((-745) |#2| (-619 |#2|))) (-15 -4245 ((-3 (-1219 (-619 |#2|)) "failed") (-745) |#1| (-619 |#2|))) (-15 -2446 ((-3 (-619 |#2|) "failed") |#2| |#1| (-1219 (-619 |#2|)))) (-15 -3881 ((-112) |#1| (-619 |#2|)))) (-298) (-1195 |#1|)) (T -445))
-((-3881 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *5)) (-4 *5 (-1195 *3)) (-4 *3 (-298)) (-5 *2 (-112)) (-5 *1 (-445 *3 *5)))) (-2446 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1219 (-619 *3))) (-4 *4 (-298)) (-5 *2 (-619 *3)) (-5 *1 (-445 *4 *3)) (-4 *3 (-1195 *4)))) (-4245 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-745)) (-4 *4 (-298)) (-4 *6 (-1195 *4)) (-5 *2 (-1219 (-619 *6))) (-5 *1 (-445 *4 *6)) (-5 *5 (-619 *6)))) (-3119 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1195 *5)) (-4 *5 (-298)) (-5 *2 (-745)) (-5 *1 (-445 *5 *3)))) (-2378 (*1 *2 *2 *3) (-12 (-4 *3 (-298)) (-5 *1 (-445 *3 *2)) (-4 *2 (-1195 *3)))))
-(-10 -7 (-15 -2378 (|#2| |#2| |#1|)) (-15 -3119 ((-745) |#2| (-619 |#2|))) (-15 -4245 ((-3 (-1219 (-619 |#2|)) "failed") (-745) |#1| (-619 |#2|))) (-15 -2446 ((-3 (-619 |#2|) "failed") |#2| |#1| (-1219 (-619 |#2|)))) (-15 -3881 ((-112) |#1| (-619 |#2|))))
-((-2115 (((-409 |#5|) |#5|) 24)))
-(((-446 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2115 ((-409 |#5|) |#5|))) (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $)) (-15 -3004 ((-3 $ "failed") (-1136))))) (-767) (-539) (-539) (-918 |#4| |#2| |#1|)) (T -446))
-((-2115 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $)) (-15 -3004 ((-3 $ "failed") (-1136)))))) (-4 *5 (-767)) (-4 *7 (-539)) (-5 *2 (-409 *3)) (-5 *1 (-446 *4 *5 *6 *7 *3)) (-4 *6 (-539)) (-4 *3 (-918 *7 *5 *4)))))
-(-10 -7 (-15 -2115 ((-409 |#5|) |#5|)))
-((-2025 ((|#3|) 37)) (-2429 (((-1132 |#4|) (-1132 |#4|) (-1132 |#4|)) 33)))
-(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2429 ((-1132 |#4|) (-1132 |#4|) (-1132 |#4|))) (-15 -2025 (|#3|))) (-767) (-821) (-878) (-918 |#3| |#1| |#2|)) (T -447))
-((-2025 (*1 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) (-5 *1 (-447 *3 *4 *2 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2429 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-878)) (-5 *1 (-447 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2429 ((-1132 |#4|) (-1132 |#4|) (-1132 |#4|))) (-15 -2025 (|#3|)))
-((-2115 (((-409 (-1132 |#1|)) (-1132 |#1|)) 43)))
-(((-448 |#1|) (-10 -7 (-15 -2115 ((-409 (-1132 |#1|)) (-1132 |#1|)))) (-298)) (T -448))
-((-2115 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-409 (-1132 *4))) (-5 *1 (-448 *4)) (-5 *3 (-1132 *4)))))
-(-10 -7 (-15 -2115 ((-409 (-1132 |#1|)) (-1132 |#1|))))
-((-2334 (((-52) |#2| (-1136) (-285 |#2|) (-1186 (-745))) 42) (((-52) (-1 |#2| (-547)) (-285 |#2|) (-1186 (-745))) 41) (((-52) |#2| (-1136) (-285 |#2|)) 35) (((-52) (-1 |#2| (-547)) (-285 |#2|)) 28)) (-2819 (((-52) |#2| (-1136) (-285 |#2|) (-1186 (-398 (-547))) (-398 (-547))) 80) (((-52) (-1 |#2| (-398 (-547))) (-285 |#2|) (-1186 (-398 (-547))) (-398 (-547))) 79) (((-52) |#2| (-1136) (-285 |#2|) (-1186 (-547))) 78) (((-52) (-1 |#2| (-547)) (-285 |#2|) (-1186 (-547))) 77) (((-52) |#2| (-1136) (-285 |#2|)) 72) (((-52) (-1 |#2| (-547)) (-285 |#2|)) 71)) (-2356 (((-52) |#2| (-1136) (-285 |#2|) (-1186 (-398 (-547))) (-398 (-547))) 66) (((-52) (-1 |#2| (-398 (-547))) (-285 |#2|) (-1186 (-398 (-547))) (-398 (-547))) 64)) (-2343 (((-52) |#2| (-1136) (-285 |#2|) (-1186 (-547))) 48) (((-52) (-1 |#2| (-547)) (-285 |#2|) (-1186 (-547))) 47)))
-(((-449 |#1| |#2|) (-10 -7 (-15 -2334 ((-52) (-1 |#2| (-547)) (-285 |#2|))) (-15 -2334 ((-52) |#2| (-1136) (-285 |#2|))) (-15 -2334 ((-52) (-1 |#2| (-547)) (-285 |#2|) (-1186 (-745)))) (-15 -2334 ((-52) |#2| (-1136) (-285 |#2|) (-1186 (-745)))) (-15 -2343 ((-52) (-1 |#2| (-547)) (-285 |#2|) (-1186 (-547)))) (-15 -2343 ((-52) |#2| (-1136) (-285 |#2|) (-1186 (-547)))) (-15 -2356 ((-52) (-1 |#2| (-398 (-547))) (-285 |#2|) (-1186 (-398 (-547))) (-398 (-547)))) (-15 -2356 ((-52) |#2| (-1136) (-285 |#2|) (-1186 (-398 (-547))) (-398 (-547)))) (-15 -2819 ((-52) (-1 |#2| (-547)) (-285 |#2|))) (-15 -2819 ((-52) |#2| (-1136) (-285 |#2|))) (-15 -2819 ((-52) (-1 |#2| (-547)) (-285 |#2|) (-1186 (-547)))) (-15 -2819 ((-52) |#2| (-1136) (-285 |#2|) (-1186 (-547)))) (-15 -2819 ((-52) (-1 |#2| (-398 (-547))) (-285 |#2|) (-1186 (-398 (-547))) (-398 (-547)))) (-15 -2819 ((-52) |#2| (-1136) (-285 |#2|) (-1186 (-398 (-547))) (-398 (-547))))) (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1158) (-421 |#1|))) (T -449))
-((-2819 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3)) (-5 *6 (-1186 (-398 (-547)))) (-5 *7 (-398 (-547))) (-4 *3 (-13 (-27) (-1158) (-421 *8))) (-4 *8 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *8 *3)))) (-2819 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-398 (-547)))) (-5 *4 (-285 *8)) (-5 *5 (-1186 (-398 (-547)))) (-5 *6 (-398 (-547))) (-4 *8 (-13 (-27) (-1158) (-421 *7))) (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *7 *8)))) (-2819 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3)) (-5 *6 (-1186 (-547))) (-4 *3 (-13 (-27) (-1158) (-421 *7))) (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *7 *3)))) (-2819 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-547))) (-5 *4 (-285 *7)) (-5 *5 (-1186 (-547))) (-4 *7 (-13 (-27) (-1158) (-421 *6))) (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *6 *7)))) (-2819 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *6))) (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *6 *3)))) (-2819 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-547))) (-5 *4 (-285 *6)) (-4 *6 (-13 (-27) (-1158) (-421 *5))) (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *5 *6)))) (-2356 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3)) (-5 *6 (-1186 (-398 (-547)))) (-5 *7 (-398 (-547))) (-4 *3 (-13 (-27) (-1158) (-421 *8))) (-4 *8 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *8 *3)))) (-2356 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-398 (-547)))) (-5 *4 (-285 *8)) (-5 *5 (-1186 (-398 (-547)))) (-5 *6 (-398 (-547))) (-4 *8 (-13 (-27) (-1158) (-421 *7))) (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *7 *8)))) (-2343 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3)) (-5 *6 (-1186 (-547))) (-4 *3 (-13 (-27) (-1158) (-421 *7))) (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *7 *3)))) (-2343 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-547))) (-5 *4 (-285 *7)) (-5 *5 (-1186 (-547))) (-4 *7 (-13 (-27) (-1158) (-421 *6))) (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *6 *7)))) (-2334 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3)) (-5 *6 (-1186 (-745))) (-4 *3 (-13 (-27) (-1158) (-421 *7))) (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *7 *3)))) (-2334 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-547))) (-5 *4 (-285 *7)) (-5 *5 (-1186 (-745))) (-4 *7 (-13 (-27) (-1158) (-421 *6))) (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *6 *7)))) (-2334 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *6))) (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *6 *3)))) (-2334 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-547))) (-5 *4 (-285 *6)) (-4 *6 (-13 (-27) (-1158) (-421 *5))) (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *5 *6)))))
-(-10 -7 (-15 -2334 ((-52) (-1 |#2| (-547)) (-285 |#2|))) (-15 -2334 ((-52) |#2| (-1136) (-285 |#2|))) (-15 -2334 ((-52) (-1 |#2| (-547)) (-285 |#2|) (-1186 (-745)))) (-15 -2334 ((-52) |#2| (-1136) (-285 |#2|) (-1186 (-745)))) (-15 -2343 ((-52) (-1 |#2| (-547)) (-285 |#2|) (-1186 (-547)))) (-15 -2343 ((-52) |#2| (-1136) (-285 |#2|) (-1186 (-547)))) (-15 -2356 ((-52) (-1 |#2| (-398 (-547))) (-285 |#2|) (-1186 (-398 (-547))) (-398 (-547)))) (-15 -2356 ((-52) |#2| (-1136) (-285 |#2|) (-1186 (-398 (-547))) (-398 (-547)))) (-15 -2819 ((-52) (-1 |#2| (-547)) (-285 |#2|))) (-15 -2819 ((-52) |#2| (-1136) (-285 |#2|))) (-15 -2819 ((-52) (-1 |#2| (-547)) (-285 |#2|) (-1186 (-547)))) (-15 -2819 ((-52) |#2| (-1136) (-285 |#2|) (-1186 (-547)))) (-15 -2819 ((-52) (-1 |#2| (-398 (-547))) (-285 |#2|) (-1186 (-398 (-547))) (-398 (-547)))) (-15 -2819 ((-52) |#2| (-1136) (-285 |#2|) (-1186 (-398 (-547))) (-398 (-547)))))
-((-2378 ((|#2| |#2| |#1|) 15)) (-4197 (((-619 |#2|) |#2| (-619 |#2|) |#1| (-890)) 69)) (-3962 (((-2 (|:| |plist| (-619 |#2|)) (|:| |modulo| |#1|)) |#2| (-619 |#2|) |#1| (-890)) 60)))
-(((-450 |#1| |#2|) (-10 -7 (-15 -3962 ((-2 (|:| |plist| (-619 |#2|)) (|:| |modulo| |#1|)) |#2| (-619 |#2|) |#1| (-890))) (-15 -4197 ((-619 |#2|) |#2| (-619 |#2|) |#1| (-890))) (-15 -2378 (|#2| |#2| |#1|))) (-298) (-1195 |#1|)) (T -450))
-((-2378 (*1 *2 *2 *3) (-12 (-4 *3 (-298)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1195 *3)))) (-4197 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-619 *3)) (-5 *5 (-890)) (-4 *3 (-1195 *4)) (-4 *4 (-298)) (-5 *1 (-450 *4 *3)))) (-3962 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-890)) (-4 *5 (-298)) (-4 *3 (-1195 *5)) (-5 *2 (-2 (|:| |plist| (-619 *3)) (|:| |modulo| *5))) (-5 *1 (-450 *5 *3)) (-5 *4 (-619 *3)))))
-(-10 -7 (-15 -3962 ((-2 (|:| |plist| (-619 |#2|)) (|:| |modulo| |#1|)) |#2| (-619 |#2|) |#1| (-890))) (-15 -4197 ((-619 |#2|) |#2| (-619 |#2|) |#1| (-890))) (-15 -2378 (|#2| |#2| |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 28)) (-4289 (($ |#3|) 25)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2063 (($ $) 32)) (-2596 (($ |#2| |#4| $) 33)) (-2238 (($ |#2| (-688 |#3| |#4| |#5|)) 24)) (-2019 (((-688 |#3| |#4| |#5|) $) 15)) (-1647 ((|#3| $) 19)) (-3882 ((|#4| $) 17)) (-2037 ((|#2| $) 29)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-3138 (($ |#2| |#3| |#4|) 26)) (-3269 (($) 36 T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 34)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-451 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-692 |#6|) (-692 |#2|) (-10 -8 (-15 -2037 (|#2| $)) (-15 -2019 ((-688 |#3| |#4| |#5|) $)) (-15 -3882 (|#4| $)) (-15 -1647 (|#3| $)) (-15 -2063 ($ $)) (-15 -2238 ($ |#2| (-688 |#3| |#4| |#5|))) (-15 -4289 ($ |#3|)) (-15 -3138 ($ |#2| |#3| |#4|)) (-15 -2596 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-619 (-1136)) (-169) (-821) (-230 (-3767 |#1|) (-745)) (-1 (-112) (-2 (|:| -3487 |#3|) (|:| -3322 |#4|)) (-2 (|:| -3487 |#3|) (|:| -3322 |#4|))) (-918 |#2| |#4| (-834 |#1|))) (T -451))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-619 (-1136))) (-4 *4 (-169)) (-4 *6 (-230 (-3767 *3) (-745))) (-14 *7 (-1 (-112) (-2 (|:| -3487 *5) (|:| -3322 *6)) (-2 (|:| -3487 *5) (|:| -3322 *6)))) (-5 *1 (-451 *3 *4 *5 *6 *7 *2)) (-4 *5 (-821)) (-4 *2 (-918 *4 *6 (-834 *3))))) (-2037 (*1 *2 *1) (-12 (-14 *3 (-619 (-1136))) (-4 *5 (-230 (-3767 *3) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3487 *4) (|:| -3322 *5)) (-2 (|:| -3487 *4) (|:| -3322 *5)))) (-4 *2 (-169)) (-5 *1 (-451 *3 *2 *4 *5 *6 *7)) (-4 *4 (-821)) (-4 *7 (-918 *2 *5 (-834 *3))))) (-2019 (*1 *2 *1) (-12 (-14 *3 (-619 (-1136))) (-4 *4 (-169)) (-4 *6 (-230 (-3767 *3) (-745))) (-14 *7 (-1 (-112) (-2 (|:| -3487 *5) (|:| -3322 *6)) (-2 (|:| -3487 *5) (|:| -3322 *6)))) (-5 *2 (-688 *5 *6 *7)) (-5 *1 (-451 *3 *4 *5 *6 *7 *8)) (-4 *5 (-821)) (-4 *8 (-918 *4 *6 (-834 *3))))) (-3882 (*1 *2 *1) (-12 (-14 *3 (-619 (-1136))) (-4 *4 (-169)) (-14 *6 (-1 (-112) (-2 (|:| -3487 *5) (|:| -3322 *2)) (-2 (|:| -3487 *5) (|:| -3322 *2)))) (-4 *2 (-230 (-3767 *3) (-745))) (-5 *1 (-451 *3 *4 *5 *2 *6 *7)) (-4 *5 (-821)) (-4 *7 (-918 *4 *2 (-834 *3))))) (-1647 (*1 *2 *1) (-12 (-14 *3 (-619 (-1136))) (-4 *4 (-169)) (-4 *5 (-230 (-3767 *3) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3487 *2) (|:| -3322 *5)) (-2 (|:| -3487 *2) (|:| -3322 *5)))) (-4 *2 (-821)) (-5 *1 (-451 *3 *4 *2 *5 *6 *7)) (-4 *7 (-918 *4 *5 (-834 *3))))) (-2063 (*1 *1 *1) (-12 (-14 *2 (-619 (-1136))) (-4 *3 (-169)) (-4 *5 (-230 (-3767 *2) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3487 *4) (|:| -3322 *5)) (-2 (|:| -3487 *4) (|:| -3322 *5)))) (-5 *1 (-451 *2 *3 *4 *5 *6 *7)) (-4 *4 (-821)) (-4 *7 (-918 *3 *5 (-834 *2))))) (-2238 (*1 *1 *2 *3) (-12 (-5 *3 (-688 *5 *6 *7)) (-4 *5 (-821)) (-4 *6 (-230 (-3767 *4) (-745))) (-14 *7 (-1 (-112) (-2 (|:| -3487 *5) (|:| -3322 *6)) (-2 (|:| -3487 *5) (|:| -3322 *6)))) (-14 *4 (-619 (-1136))) (-4 *2 (-169)) (-5 *1 (-451 *4 *2 *5 *6 *7 *8)) (-4 *8 (-918 *2 *6 (-834 *4))))) (-4289 (*1 *1 *2) (-12 (-14 *3 (-619 (-1136))) (-4 *4 (-169)) (-4 *5 (-230 (-3767 *3) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3487 *2) (|:| -3322 *5)) (-2 (|:| -3487 *2) (|:| -3322 *5)))) (-5 *1 (-451 *3 *4 *2 *5 *6 *7)) (-4 *2 (-821)) (-4 *7 (-918 *4 *5 (-834 *3))))) (-3138 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-619 (-1136))) (-4 *2 (-169)) (-4 *4 (-230 (-3767 *5) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3487 *3) (|:| -3322 *4)) (-2 (|:| -3487 *3) (|:| -3322 *4)))) (-5 *1 (-451 *5 *2 *3 *4 *6 *7)) (-4 *3 (-821)) (-4 *7 (-918 *2 *4 (-834 *5))))) (-2596 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-619 (-1136))) (-4 *2 (-169)) (-4 *3 (-230 (-3767 *4) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3487 *5) (|:| -3322 *3)) (-2 (|:| -3487 *5) (|:| -3322 *3)))) (-5 *1 (-451 *4 *2 *5 *3 *6 *7)) (-4 *5 (-821)) (-4 *7 (-918 *2 *3 (-834 *4))))))
-(-13 (-692 |#6|) (-692 |#2|) (-10 -8 (-15 -2037 (|#2| $)) (-15 -2019 ((-688 |#3| |#4| |#5|) $)) (-15 -3882 (|#4| $)) (-15 -1647 (|#3| $)) (-15 -2063 ($ $)) (-15 -2238 ($ |#2| (-688 |#3| |#4| |#5|))) (-15 -4289 ($ |#3|)) (-15 -3138 ($ |#2| |#3| |#4|)) (-15 -2596 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-2374 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
-(((-452 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2374 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-767) (-821) (-539) (-918 |#3| |#1| |#2|) (-13 (-1007 (-398 (-547))) (-354) (-10 -8 (-15 -3838 ($ |#4|)) (-15 -1386 (|#4| $)) (-15 -1396 (|#4| $))))) (T -452))
-((-2374 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-821)) (-4 *5 (-767)) (-4 *6 (-539)) (-4 *7 (-918 *6 *5 *3)) (-5 *1 (-452 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1007 (-398 (-547))) (-354) (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $))))))))
-(-10 -7 (-15 -2374 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-3826 (((-112) $ $) NIL)) (-2267 (((-619 |#3|) $) 41)) (-1474 (((-112) $) NIL)) (-1843 (((-112) $) NIL (|has| |#1| (-539)))) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |#3|) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1482 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-1651 (((-112) $) NIL (|has| |#1| (-539)))) (-4230 (((-112) $ $) NIL (|has| |#1| (-539)))) (-2360 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1840 (((-112) $) NIL (|has| |#1| (-539)))) (-4017 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-1900 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-2707 (((-3 $ "failed") (-619 |#4|)) 47)) (-2652 (($ (-619 |#4|)) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-3803 (($ |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2916 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2552 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4329))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4329)))) (-2982 (((-619 |#4|) $) 18 (|has| $ (-6 -4329)))) (-3338 ((|#3| $) 45)) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#4|) $) 14 (|has| $ (-6 -4329)))) (-2132 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-1859 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#4| |#4|) $) 21)) (-4138 (((-619 |#3|) $) NIL)) (-3758 (((-112) |#3| $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-1770 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-3979 (((-1082) $) NIL)) (-3650 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1598 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 39)) (-2245 (($) 17)) (-3992 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) 16)) (-2838 (((-523) $) NIL (|has| |#4| (-592 (-523)))) (($ (-619 |#4|)) 49)) (-3846 (($ (-619 |#4|)) 13)) (-3461 (($ $ |#3|) NIL)) (-3007 (($ $ |#3|) NIL)) (-3619 (($ $ |#3|) NIL)) (-3838 (((-832) $) 38) (((-619 |#4|) $) 48)) (-2693 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 30)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-453 |#1| |#2| |#3| |#4|) (-13 (-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2838 ($ (-619 |#4|))) (-6 -4329) (-6 -4330))) (-1016) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -453))
-((-2838 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-453 *3 *4 *5 *6)))))
-(-13 (-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2838 ($ (-619 |#4|))) (-6 -4329) (-6 -4330)))
-((-3269 (($) 11)) (-3281 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-454 |#1| |#2| |#3|) (-10 -8 (-15 -3281 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3269 (|#1|))) (-455 |#2| |#3|) (-169) (-23)) (T -454))
-NIL
-(-10 -8 (-15 -3281 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3269 (|#1|)))
-((-3826 (((-112) $ $) 7)) (-2707 (((-3 |#1| "failed") $) 26)) (-2652 ((|#1| $) 25)) (-4080 (($ $ $) 23)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3705 ((|#2| $) 19)) (-3838 (((-832) $) 11) (($ |#1|) 27)) (-3269 (($) 18 T CONST)) (-3281 (($) 24 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 15) (($ $ $) 13)) (-2479 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-455 |#1| |#2|) (-138) (-169) (-23)) (T -455))
-((-3281 (*1 *1) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-4080 (*1 *1 *1 *1) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))))
-(-13 (-460 |t#1| |t#2|) (-1007 |t#1|) (-10 -8 (-15 (-3281) ($) -2582) (-15 -4080 ($ $ $))))
-(((-101) . T) ((-591 (-832)) . T) ((-460 |#1| |#2|) . T) ((-1007 |#1|) . T) ((-1063) . T))
-((-2739 (((-1219 (-1219 (-547))) (-1219 (-1219 (-547))) (-890)) 18)) (-3142 (((-1219 (-1219 (-547))) (-890)) 16)))
-(((-456) (-10 -7 (-15 -2739 ((-1219 (-1219 (-547))) (-1219 (-1219 (-547))) (-890))) (-15 -3142 ((-1219 (-1219 (-547))) (-890))))) (T -456))
-((-3142 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1219 (-1219 (-547)))) (-5 *1 (-456)))) (-2739 (*1 *2 *2 *3) (-12 (-5 *2 (-1219 (-1219 (-547)))) (-5 *3 (-890)) (-5 *1 (-456)))))
-(-10 -7 (-15 -2739 ((-1219 (-1219 (-547))) (-1219 (-1219 (-547))) (-890))) (-15 -3142 ((-1219 (-1219 (-547))) (-890))))
-((-1476 (((-547) (-547)) 30) (((-547)) 22)) (-3759 (((-547) (-547)) 26) (((-547)) 18)) (-2892 (((-547) (-547)) 28) (((-547)) 20)) (-1592 (((-112) (-112)) 12) (((-112)) 10)) (-1536 (((-112) (-112)) 11) (((-112)) 9)) (-4200 (((-112) (-112)) 24) (((-112)) 15)))
-(((-457) (-10 -7 (-15 -1536 ((-112))) (-15 -1592 ((-112))) (-15 -1536 ((-112) (-112))) (-15 -1592 ((-112) (-112))) (-15 -4200 ((-112))) (-15 -2892 ((-547))) (-15 -3759 ((-547))) (-15 -1476 ((-547))) (-15 -4200 ((-112) (-112))) (-15 -2892 ((-547) (-547))) (-15 -3759 ((-547) (-547))) (-15 -1476 ((-547) (-547))))) (T -457))
-((-1476 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) (-2892 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) (-4200 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) (-1476 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) (-3759 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) (-2892 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) (-4200 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) (-1592 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) (-1536 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))))
-(-10 -7 (-15 -1536 ((-112))) (-15 -1592 ((-112))) (-15 -1536 ((-112) (-112))) (-15 -1592 ((-112) (-112))) (-15 -4200 ((-112))) (-15 -2892 ((-547))) (-15 -3759 ((-547))) (-15 -1476 ((-547))) (-15 -4200 ((-112) (-112))) (-15 -2892 ((-547) (-547))) (-15 -3759 ((-547) (-547))) (-15 -1476 ((-547) (-547))))
-((-3826 (((-112) $ $) NIL)) (-2029 (((-619 (-370)) $) 28) (((-619 (-370)) $ (-619 (-370))) 96)) (-4157 (((-619 (-1058 (-370))) $) 16) (((-619 (-1058 (-370))) $ (-619 (-1058 (-370)))) 94)) (-2851 (((-619 (-619 (-912 (-217)))) (-619 (-619 (-912 (-217)))) (-619 (-843))) 45)) (-3788 (((-619 (-619 (-912 (-217)))) $) 90)) (-2791 (((-1224) $ (-912 (-217)) (-843)) 108)) (-1624 (($ $) 89) (($ (-619 (-619 (-912 (-217))))) 99) (($ (-619 (-619 (-912 (-217)))) (-619 (-843)) (-619 (-843)) (-619 (-890))) 98) (($ (-619 (-619 (-912 (-217)))) (-619 (-843)) (-619 (-843)) (-619 (-890)) (-619 (-254))) 100)) (-1466 (((-1119) $) NIL)) (-3331 (((-547) $) 71)) (-3979 (((-1082) $) NIL)) (-1375 (($) 97)) (-4070 (((-619 (-217)) (-619 (-619 (-912 (-217))))) 56)) (-3139 (((-1224) $ (-619 (-912 (-217))) (-843) (-843) (-890)) 102) (((-1224) $ (-912 (-217))) 104) (((-1224) $ (-912 (-217)) (-843) (-843) (-890)) 103)) (-3838 (((-832) $) 114) (($ (-619 (-619 (-912 (-217))))) 109)) (-3686 (((-1224) $ (-912 (-217))) 107)) (-2381 (((-112) $ $) NIL)))
-(((-458) (-13 (-1063) (-10 -8 (-15 -1375 ($)) (-15 -1624 ($ $)) (-15 -1624 ($ (-619 (-619 (-912 (-217)))))) (-15 -1624 ($ (-619 (-619 (-912 (-217)))) (-619 (-843)) (-619 (-843)) (-619 (-890)))) (-15 -1624 ($ (-619 (-619 (-912 (-217)))) (-619 (-843)) (-619 (-843)) (-619 (-890)) (-619 (-254)))) (-15 -3788 ((-619 (-619 (-912 (-217)))) $)) (-15 -3331 ((-547) $)) (-15 -4157 ((-619 (-1058 (-370))) $)) (-15 -4157 ((-619 (-1058 (-370))) $ (-619 (-1058 (-370))))) (-15 -2029 ((-619 (-370)) $)) (-15 -2029 ((-619 (-370)) $ (-619 (-370)))) (-15 -3139 ((-1224) $ (-619 (-912 (-217))) (-843) (-843) (-890))) (-15 -3139 ((-1224) $ (-912 (-217)))) (-15 -3139 ((-1224) $ (-912 (-217)) (-843) (-843) (-890))) (-15 -3686 ((-1224) $ (-912 (-217)))) (-15 -2791 ((-1224) $ (-912 (-217)) (-843))) (-15 -3838 ($ (-619 (-619 (-912 (-217)))))) (-15 -3838 ((-832) $)) (-15 -2851 ((-619 (-619 (-912 (-217)))) (-619 (-619 (-912 (-217)))) (-619 (-843)))) (-15 -4070 ((-619 (-217)) (-619 (-619 (-912 (-217))))))))) (T -458))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-458)))) (-1375 (*1 *1) (-5 *1 (-458))) (-1624 (*1 *1 *1) (-5 *1 (-458))) (-1624 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-458)))) (-1624 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *3 (-619 (-843))) (-5 *4 (-619 (-890))) (-5 *1 (-458)))) (-1624 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *3 (-619 (-843))) (-5 *4 (-619 (-890))) (-5 *5 (-619 (-254))) (-5 *1 (-458)))) (-3788 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-458)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-458)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-458)))) (-4157 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-458)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-619 (-370))) (-5 *1 (-458)))) (-2029 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-370))) (-5 *1 (-458)))) (-3139 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-619 (-912 (-217)))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *2 (-1224)) (-5 *1 (-458)))) (-3139 (*1 *2 *1 *3) (-12 (-5 *3 (-912 (-217))) (-5 *2 (-1224)) (-5 *1 (-458)))) (-3139 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-912 (-217))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *2 (-1224)) (-5 *1 (-458)))) (-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-912 (-217))) (-5 *2 (-1224)) (-5 *1 (-458)))) (-2791 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912 (-217))) (-5 *4 (-843)) (-5 *2 (-1224)) (-5 *1 (-458)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-458)))) (-2851 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *3 (-619 (-843))) (-5 *1 (-458)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *2 (-619 (-217))) (-5 *1 (-458)))))
-(-13 (-1063) (-10 -8 (-15 -1375 ($)) (-15 -1624 ($ $)) (-15 -1624 ($ (-619 (-619 (-912 (-217)))))) (-15 -1624 ($ (-619 (-619 (-912 (-217)))) (-619 (-843)) (-619 (-843)) (-619 (-890)))) (-15 -1624 ($ (-619 (-619 (-912 (-217)))) (-619 (-843)) (-619 (-843)) (-619 (-890)) (-619 (-254)))) (-15 -3788 ((-619 (-619 (-912 (-217)))) $)) (-15 -3331 ((-547) $)) (-15 -4157 ((-619 (-1058 (-370))) $)) (-15 -4157 ((-619 (-1058 (-370))) $ (-619 (-1058 (-370))))) (-15 -2029 ((-619 (-370)) $)) (-15 -2029 ((-619 (-370)) $ (-619 (-370)))) (-15 -3139 ((-1224) $ (-619 (-912 (-217))) (-843) (-843) (-890))) (-15 -3139 ((-1224) $ (-912 (-217)))) (-15 -3139 ((-1224) $ (-912 (-217)) (-843) (-843) (-890))) (-15 -3686 ((-1224) $ (-912 (-217)))) (-15 -2791 ((-1224) $ (-912 (-217)) (-843))) (-15 -3838 ($ (-619 (-619 (-912 (-217)))))) (-15 -3838 ((-832) $)) (-15 -2851 ((-619 (-619 (-912 (-217)))) (-619 (-619 (-912 (-217)))) (-619 (-843)))) (-15 -4070 ((-619 (-217)) (-619 (-619 (-912 (-217))))))))
-((-2493 (($ $) NIL) (($ $ $) 11)))
-(((-459 |#1| |#2| |#3|) (-10 -8 (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|))) (-460 |#2| |#3|) (-169) (-23)) (T -459))
-NIL
-(-10 -8 (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3705 ((|#2| $) 19)) (-3838 (((-832) $) 11)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 15) (($ $ $) 13)) (-2479 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-460 |#1| |#2|) (-138) (-169) (-23)) (T -460))
-((-3705 (*1 *2 *1) (-12 (-4 *1 (-460 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) (-3269 (*1 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2493 (*1 *1 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2479 (*1 *1 *1 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2493 (*1 *1 *1 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))))
-(-13 (-1063) (-10 -8 (-15 -3705 (|t#2| $)) (-15 (-3269) ($) -2582) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2493 ($ $)) (-15 -2479 ($ $ $)) (-15 -2493 ($ $ $))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-2171 (((-3 (-619 (-471 |#1| |#2|)) "failed") (-619 (-471 |#1| |#2|)) (-619 (-834 |#1|))) 92)) (-1721 (((-619 (-619 (-239 |#1| |#2|))) (-619 (-239 |#1| |#2|)) (-619 (-834 |#1|))) 90)) (-1987 (((-2 (|:| |dpolys| (-619 (-239 |#1| |#2|))) (|:| |coords| (-619 (-547)))) (-619 (-239 |#1| |#2|)) (-619 (-834 |#1|))) 61)))
-(((-461 |#1| |#2| |#3|) (-10 -7 (-15 -1721 ((-619 (-619 (-239 |#1| |#2|))) (-619 (-239 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -2171 ((-3 (-619 (-471 |#1| |#2|)) "failed") (-619 (-471 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -1987 ((-2 (|:| |dpolys| (-619 (-239 |#1| |#2|))) (|:| |coords| (-619 (-547)))) (-619 (-239 |#1| |#2|)) (-619 (-834 |#1|))))) (-619 (-1136)) (-442) (-442)) (T -461))
-((-1987 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1136))) (-4 *6 (-442)) (-5 *2 (-2 (|:| |dpolys| (-619 (-239 *5 *6))) (|:| |coords| (-619 (-547))))) (-5 *1 (-461 *5 *6 *7)) (-5 *3 (-619 (-239 *5 *6))) (-4 *7 (-442)))) (-2171 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-471 *4 *5))) (-5 *3 (-619 (-834 *4))) (-14 *4 (-619 (-1136))) (-4 *5 (-442)) (-5 *1 (-461 *4 *5 *6)) (-4 *6 (-442)))) (-1721 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1136))) (-4 *6 (-442)) (-5 *2 (-619 (-619 (-239 *5 *6)))) (-5 *1 (-461 *5 *6 *7)) (-5 *3 (-619 (-239 *5 *6))) (-4 *7 (-442)))))
-(-10 -7 (-15 -1721 ((-619 (-619 (-239 |#1| |#2|))) (-619 (-239 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -2171 ((-3 (-619 (-471 |#1| |#2|)) "failed") (-619 (-471 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -1987 ((-2 (|:| |dpolys| (-619 (-239 |#1| |#2|))) (|:| |coords| (-619 (-547)))) (-619 (-239 |#1| |#2|)) (-619 (-834 |#1|)))))
-((-3855 (((-3 $ "failed") $) 11)) (-3404 (($ $ $) 18)) (-1473 (($ $ $) 19)) (-2506 (($ $ $) 9)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 17)))
-(((-462 |#1|) (-10 -8 (-15 -1473 (|#1| |#1| |#1|)) (-15 -3404 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 -2506 (|#1| |#1| |#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) (-463)) (T -462))
-NIL
-(-10 -8 (-15 -1473 (|#1| |#1| |#1|)) (-15 -3404 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 -2506 (|#1| |#1| |#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))))
-((-3826 (((-112) $ $) 7)) (-1948 (($) 18 T CONST)) (-3855 (((-3 $ "failed") $) 15)) (-2261 (((-112) $) 17)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 24)) (-3979 (((-1082) $) 10)) (-3404 (($ $ $) 21)) (-1473 (($ $ $) 20)) (-3838 (((-832) $) 11)) (-3281 (($) 19 T CONST)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ $) 23)) (** (($ $ (-890)) 13) (($ $ (-745)) 16) (($ $ (-547)) 22)) (* (($ $ $) 14)))
-(((-463) (-138)) (T -463))
-((-1984 (*1 *1 *1) (-4 *1 (-463))) (-2506 (*1 *1 *1 *1) (-4 *1 (-463))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-463)) (-5 *2 (-547)))) (-3404 (*1 *1 *1 *1) (-4 *1 (-463))) (-1473 (*1 *1 *1 *1) (-4 *1 (-463))))
-(-13 (-701) (-10 -8 (-15 -1984 ($ $)) (-15 -2506 ($ $ $)) (-15 ** ($ $ (-547))) (-6 -4326) (-15 -3404 ($ $ $)) (-15 -1473 ($ $ $))))
-(((-101) . T) ((-591 (-832)) . T) ((-701) . T) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2267 (((-619 (-1045)) $) NIL)) (-3004 (((-1136) $) 17)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-3931 (($ $ (-398 (-547))) NIL) (($ $ (-398 (-547)) (-398 (-547))) NIL)) (-2203 (((-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) NIL)) (-1656 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL (|has| |#1| (-354)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2127 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1632 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2819 (($ (-745) (-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) NIL)) (-1678 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-1791 (((-112) $) NIL (|has| |#1| (-354)))) (-1713 (((-112) $) NIL)) (-1419 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-398 (-547)) $) NIL) (((-398 (-547)) $ (-398 (-547))) NIL)) (-2261 (((-112) $) NIL)) (-3869 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3852 (($ $ (-890)) NIL) (($ $ (-398 (-547))) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-398 (-547))) NIL) (($ $ (-1045) (-398 (-547))) NIL) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) NIL)) (-2790 (($ (-1 |#1| |#1|) $) 22)) (-3624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-354)))) (-3694 (($ $) 26 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) 33 (-1530 (-12 (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1158))))) (($ $ (-1215 |#2|)) 27 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-354)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-3708 (($ $ (-398 (-547))) NIL)) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2712 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2471 (((-745) $) NIL (|has| |#1| (-354)))) (-3334 ((|#1| $ (-398 (-547))) NIL) (($ $ $) NIL (|has| (-398 (-547)) (-1075)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) 25 (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $ (-1215 |#2|)) 15)) (-3705 (((-398 (-547)) $) NIL)) (-1690 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1215 |#2|)) NIL) (($ (-1204 |#1| |#2| |#3|)) 9) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539)))) (-2450 ((|#1| $ (-398 (-547))) NIL)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-2591 ((|#1| $) 18)) (-1726 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-398 (-547))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) 24)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-464 |#1| |#2| |#3|) (-13 (-1200 |#1|) (-10 -8 (-15 -3838 ($ (-1215 |#2|))) (-15 -3838 ($ (-1204 |#1| |#2| |#3|))) (-15 -3448 ($ $ (-1215 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|))) (-1016) (-1136) |#1|) (T -464))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-464 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1204 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1136)) (-14 *5 *3) (-5 *1 (-464 *3 *4 *5)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-464 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3694 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-464 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))))
-(-13 (-1200 |#1|) (-10 -8 (-15 -3838 ($ (-1215 |#2|))) (-15 -3838 ($ (-1204 |#1| |#2| |#3|))) (-15 -3448 ($ $ (-1215 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|)))
-((-3826 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3726 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-1652 (((-1224) $ |#1| |#1|) NIL (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#2| $ |#1| |#2|) 18)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-3482 (((-3 |#2| "failed") |#1| $) 19)) (-1948 (($) NIL T CONST)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-1513 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-3 |#2| "failed") |#1| $) 16)) (-3803 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#2| $ |#1|) NIL)) (-2982 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 ((|#1| $) NIL (|has| |#1| (-821)))) (-2284 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-1416 ((|#1| $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4330))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3441 (((-619 |#1|) $) NIL)) (-4073 (((-112) |#1| $) NIL)) (-4266 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2657 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2121 (((-619 |#1|) $) NIL)) (-2018 (((-112) |#1| $) NIL)) (-3979 (((-1082) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3638 ((|#2| $) NIL (|has| |#1| (-821)))) (-3650 (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL)) (-3632 (($ $ |#2|) NIL (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2987 (((-619 |#2|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2699 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3838 (((-832) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2300 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-465 |#1| |#2| |#3| |#4|) (-1149 |#1| |#2|) (-1063) (-1063) (-1149 |#1| |#2|) |#2|) (T -465))
-NIL
-(-1149 |#1| |#2|)
-((-3826 (((-112) $ $) NIL)) (-1320 (((-619 (-2 (|:| -2674 $) (|:| -1352 (-619 |#4|)))) (-619 |#4|)) NIL)) (-2128 (((-619 $) (-619 |#4|)) NIL)) (-2267 (((-619 |#3|) $) NIL)) (-1474 (((-112) $) NIL)) (-1843 (((-112) $) NIL (|has| |#1| (-539)))) (-4151 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2081 ((|#4| |#4| $) NIL)) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |#3|) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1482 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1948 (($) NIL T CONST)) (-1651 (((-112) $) 26 (|has| |#1| (-539)))) (-4230 (((-112) $ $) NIL (|has| |#1| (-539)))) (-2360 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1840 (((-112) $) NIL (|has| |#1| (-539)))) (-3805 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4017 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-1900 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-2707 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2652 (($ (-619 |#4|)) NIL)) (-3649 (((-3 $ "failed") $) 39)) (-2584 ((|#4| |#4| $) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-3803 (($ |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2916 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2173 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2442 ((|#4| |#4| $) NIL)) (-2552 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4329))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4329))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2951 (((-2 (|:| -2674 (-619 |#4|)) (|:| -1352 (-619 |#4|))) $) NIL)) (-2982 (((-619 |#4|) $) 16 (|has| $ (-6 -4329)))) (-1779 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#3| $) 33)) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#4|) $) 17 (|has| $ (-6 -4329)))) (-2132 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-1859 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#4| |#4|) $) 21)) (-4138 (((-619 |#3|) $) NIL)) (-3758 (((-112) |#3| $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-3820 (((-3 |#4| "failed") $) 37)) (-2498 (((-619 |#4|) $) NIL)) (-3112 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3065 ((|#4| |#4| $) NIL)) (-1458 (((-112) $ $) NIL)) (-1770 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2012 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1772 ((|#4| |#4| $) NIL)) (-3979 (((-1082) $) NIL)) (-3638 (((-3 |#4| "failed") $) 35)) (-3650 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1362 (((-3 $ "failed") $ |#4|) 47)) (-3708 (($ $ |#4|) NIL)) (-1598 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 15)) (-2245 (($) 13)) (-3705 (((-745) $) NIL)) (-3992 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) 12)) (-2838 (((-523) $) NIL (|has| |#4| (-592 (-523))))) (-3846 (($ (-619 |#4|)) 20)) (-3461 (($ $ |#3|) 42)) (-3007 (($ $ |#3|) 44)) (-2553 (($ $) NIL)) (-3619 (($ $ |#3|) NIL)) (-3838 (((-832) $) 31) (((-619 |#4|) $) 40)) (-2815 (((-745) $) NIL (|has| |#3| (-359)))) (-2672 (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2636 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-2693 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-3463 (((-619 |#3|) $) NIL)) (-2593 (((-112) |#3| $) NIL)) (-2381 (((-112) $ $) NIL)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-466 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|) (-539) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -466))
-NIL
-(-1166 |#1| |#2| |#3| |#4|)
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL)) (-2652 (((-547) $) NIL) (((-398 (-547)) $) NIL)) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-1419 (($) 18)) (-2261 (((-112) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-2838 (((-370) $) 22) (((-217) $) 25) (((-398 (-1132 (-547))) $) 19) (((-523) $) 52)) (-3838 (((-832) $) 50) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (((-217) $) 24) (((-370) $) 21)) (-2736 (((-745)) NIL)) (-3577 (((-112) $ $) NIL)) (-3269 (($) 36 T CONST)) (-3281 (($) 11 T CONST)) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL)))
-(((-467) (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))) (-991) (-591 (-217)) (-591 (-370)) (-592 (-398 (-1132 (-547)))) (-592 (-523)) (-10 -8 (-15 -1419 ($))))) (T -467))
-((-1419 (*1 *1) (-5 *1 (-467))))
-(-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))) (-991) (-591 (-217)) (-591 (-370)) (-592 (-398 (-1132 (-547)))) (-592 (-523)) (-10 -8 (-15 -1419 ($))))
-((-3826 (((-112) $ $) NIL)) (-2196 (((-1141) $) 11)) (-2183 (((-1141) $) 9)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-468) (-13 (-1047) (-10 -8 (-15 -2183 ((-1141) $)) (-15 -2196 ((-1141) $))))) (T -468))
-((-2183 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-468)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-468)))))
-(-13 (-1047) (-10 -8 (-15 -2183 ((-1141) $)) (-15 -2196 ((-1141) $))))
-((-3826 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3726 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-1652 (((-1224) $ |#1| |#1|) NIL (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#2| $ |#1| |#2|) 16)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-3482 (((-3 |#2| "failed") |#1| $) 20)) (-1948 (($) NIL T CONST)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-1513 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-3 |#2| "failed") |#1| $) 18)) (-3803 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#2| $ |#1|) NIL)) (-2982 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 ((|#1| $) NIL (|has| |#1| (-821)))) (-2284 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-1416 ((|#1| $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4330))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3441 (((-619 |#1|) $) 13)) (-4073 (((-112) |#1| $) NIL)) (-4266 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2657 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2121 (((-619 |#1|) $) NIL)) (-2018 (((-112) |#1| $) NIL)) (-3979 (((-1082) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3638 ((|#2| $) NIL (|has| |#1| (-821)))) (-3650 (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL)) (-3632 (($ $ |#2|) NIL (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2987 (((-619 |#2|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) 19)) (-3334 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2699 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3838 (((-832) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2300 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 11 (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3767 (((-745) $) 15 (|has| $ (-6 -4329)))))
-(((-469 |#1| |#2| |#3|) (-13 (-1149 |#1| |#2|) (-10 -7 (-6 -4329))) (-1063) (-1063) (-1119)) (T -469))
-NIL
-(-13 (-1149 |#1| |#2|) (-10 -7 (-6 -4329)))
-((-3492 (((-547) (-547) (-547)) 7)) (-3111 (((-112) (-547) (-547) (-547) (-547)) 11)) (-1405 (((-1219 (-619 (-547))) (-745) (-745)) 23)))
-(((-470) (-10 -7 (-15 -3492 ((-547) (-547) (-547))) (-15 -3111 ((-112) (-547) (-547) (-547) (-547))) (-15 -1405 ((-1219 (-619 (-547))) (-745) (-745))))) (T -470))
-((-1405 (*1 *2 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1219 (-619 (-547)))) (-5 *1 (-470)))) (-3111 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-547)) (-5 *2 (-112)) (-5 *1 (-470)))) (-3492 (*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-470)))))
-(-10 -7 (-15 -3492 ((-547) (-547) (-547))) (-15 -3111 ((-112) (-547) (-547) (-547) (-547))) (-15 -1405 ((-1219 (-619 (-547))) (-745) (-745))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2267 (((-619 (-834 |#1|)) $) NIL)) (-2078 (((-1132 $) $ (-834 |#1|)) NIL) (((-1132 |#2|) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#2| (-539)))) (-3571 (($ $) NIL (|has| |#2| (-539)))) (-3915 (((-112) $) NIL (|has| |#2| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 (-834 |#1|))) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-2555 (($ $) NIL (|has| |#2| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#2| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2652 ((|#2| $) NIL) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-834 |#1|) $) NIL)) (-1496 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3055 (($ $ (-619 (-547))) NIL)) (-2063 (($ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#2| (-878)))) (-3210 (($ $ |#2| (-472 (-3767 |#1|) (-745)) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-2254 (($ (-1132 |#2|) (-834 |#1|)) NIL) (($ (-1132 $) (-834 |#1|)) NIL)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#2| (-472 (-3767 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ (-834 |#1|)) NIL)) (-3095 (((-472 (-3767 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2856 (($ $ $) NIL (|has| |#2| (-821)))) (-3567 (($ $ $) NIL (|has| |#2| (-821)))) (-4182 (($ (-1 (-472 (-3767 |#1|) (-745)) (-472 (-3767 |#1|) (-745))) $) NIL)) (-2790 (($ (-1 |#2| |#2|) $) NIL)) (-1631 (((-3 (-834 |#1|) "failed") $) NIL)) (-2019 (($ $) NIL)) (-2037 ((|#2| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-1466 (((-1119) $) NIL)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -3322 (-745))) "failed") $) NIL)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) NIL)) (-2009 ((|#2| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#2| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#2| (-878)))) (-2032 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-539)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) NIL) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) NIL) (($ $ (-834 |#1|) $) NIL) (($ $ (-619 (-834 |#1|)) (-619 $)) NIL)) (-4056 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3448 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-3705 (((-472 (-3767 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-834 |#1|) (-592 (-523))) (|has| |#2| (-592 (-523)))))) (-2392 ((|#2| $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) NIL) (($ (-834 |#1|)) NIL) (($ (-398 (-547))) NIL (-1530 (|has| |#2| (-38 (-398 (-547)))) (|has| |#2| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#2| (-539)))) (-1277 (((-619 |#2|) $) NIL)) (-2450 ((|#2| $ (-472 (-3767 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#2| (-539)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2441 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2506 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#2| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#2| (-38 (-398 (-547))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-471 |#1| |#2|) (-13 (-918 |#2| (-472 (-3767 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -3055 ($ $ (-619 (-547)))))) (-619 (-1136)) (-1016)) (T -471))
-((-3055 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-471 *3 *4)) (-14 *3 (-619 (-1136))) (-4 *4 (-1016)))))
-(-13 (-918 |#2| (-472 (-3767 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -3055 ($ $ (-619 (-547))))))
-((-3826 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-1499 (((-112) $) NIL (|has| |#2| (-130)))) (-4289 (($ (-890)) NIL (|has| |#2| (-1016)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2794 (($ $ $) NIL (|has| |#2| (-767)))) (-3672 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3899 (((-112) $ (-745)) NIL)) (-3608 (((-745)) NIL (|has| |#2| (-359)))) (-2500 (((-547) $) NIL (|has| |#2| (-819)))) (-2247 ((|#2| $ (-547) |#2|) NIL (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1063)))) (-2652 (((-547) $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-398 (-547)) $) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) ((|#2| $) NIL (|has| |#2| (-1063)))) (-1694 (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) NIL (|has| |#2| (-1016)))) (-3855 (((-3 $ "failed") $) NIL (|has| |#2| (-701)))) (-3232 (($) NIL (|has| |#2| (-359)))) (-1872 ((|#2| $ (-547) |#2|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#2| $ (-547)) 11)) (-4270 (((-112) $) NIL (|has| |#2| (-819)))) (-2982 (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2261 (((-112) $) NIL (|has| |#2| (-701)))) (-1860 (((-112) $) NIL (|has| |#2| (-819)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2284 (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-1859 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#2| |#2|) $) NIL)) (-2402 (((-890) $) NIL (|has| |#2| (-359)))) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#2| (-1063)))) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3487 (($ (-890)) NIL (|has| |#2| (-359)))) (-3979 (((-1082) $) NIL (|has| |#2| (-1063)))) (-3638 ((|#2| $) NIL (|has| (-547) (-821)))) (-3632 (($ $ |#2|) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2987 (((-619 |#2|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#2| $ (-547) |#2|) NIL) ((|#2| $ (-547)) NIL)) (-4117 ((|#2| $ $) NIL (|has| |#2| (-1016)))) (-2162 (($ (-1219 |#2|)) NIL)) (-3970 (((-133)) NIL (|has| |#2| (-354)))) (-3448 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1136)) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-3992 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-1219 |#2|) $) NIL) (($ (-547)) NIL (-1530 (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-398 (-547))) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (($ |#2|) NIL (|has| |#2| (-1063))) (((-832) $) NIL (|has| |#2| (-591 (-832))))) (-2736 (((-745)) NIL (|has| |#2| (-1016)))) (-2693 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2255 (($ $) NIL (|has| |#2| (-819)))) (-3269 (($) NIL (|has| |#2| (-130)) CONST)) (-3281 (($) NIL (|has| |#2| (-701)) CONST)) (-1695 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1136)) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-2441 (((-112) $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2418 (((-112) $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2381 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-2430 (((-112) $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2405 (((-112) $ $) 15 (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2506 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2493 (($ $ $) NIL (|has| |#2| (-1016))) (($ $) NIL (|has| |#2| (-1016)))) (-2479 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-745)) NIL (|has| |#2| (-701))) (($ $ (-890)) NIL (|has| |#2| (-701)))) (* (($ (-547) $) NIL (|has| |#2| (-1016))) (($ $ $) NIL (|has| |#2| (-701))) (($ $ |#2|) NIL (|has| |#2| (-701))) (($ |#2| $) NIL (|has| |#2| (-701))) (($ (-745) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-472 |#1| |#2|) (-230 |#1| |#2|) (-745) (-767)) (T -472))
-NIL
-(-230 |#1| |#2|)
-((-3826 (((-112) $ $) NIL)) (-2897 (((-619 (-495)) $) 11)) (-2473 (((-495) $) 10)) (-1466 (((-1119) $) NIL)) (-2119 (($ (-495) (-619 (-495))) 9)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-473) (-13 (-1047) (-10 -8 (-15 -2119 ($ (-495) (-619 (-495)))) (-15 -2473 ((-495) $)) (-15 -2897 ((-619 (-495)) $))))) (T -473))
-((-2119 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-495))) (-5 *2 (-495)) (-5 *1 (-473)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-473)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-619 (-495))) (-5 *1 (-473)))))
-(-13 (-1047) (-10 -8 (-15 -2119 ($ (-495) (-619 (-495)))) (-15 -2473 ((-495) $)) (-15 -2897 ((-619 (-495)) $))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) NIL)) (-1948 (($) NIL T CONST)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-3145 (($ $ $) 32)) (-2777 (($ $ $) 31)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3567 ((|#1| $) 26)) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-4266 ((|#1| $) 27)) (-2657 (($ |#1| $) 10)) (-2705 (($ (-619 |#1|)) 12)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2056 ((|#1| $) 23)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) 9)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2300 (($ (-619 |#1|)) 29)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3767 (((-745) $) 21 (|has| $ (-6 -4329)))))
-(((-474 |#1|) (-13 (-937 |#1|) (-10 -8 (-15 -2705 ($ (-619 |#1|))))) (-821)) (T -474))
-((-2705 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-474 *3)))))
-(-13 (-937 |#1|) (-10 -8 (-15 -2705 ($ (-619 |#1|)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2552 (($ $) 69)) (-2717 (((-112) $) NIL)) (-1466 (((-1119) $) NIL)) (-2532 (((-404 |#2| (-398 |#2|) |#3| |#4|) $) 44)) (-3979 (((-1082) $) NIL)) (-4238 (((-3 |#4| "failed") $) 107)) (-2123 (($ (-404 |#2| (-398 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-547)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-2773 (((-2 (|:| -3707 (-404 |#2| (-398 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-3838 (((-832) $) 102)) (-3269 (($) 33 T CONST)) (-2381 (((-112) $ $) 109)) (-2493 (($ $) 72) (($ $ $) NIL)) (-2479 (($ $ $) 70)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 73)))
-(((-475 |#1| |#2| |#3| |#4|) (-326 |#1| |#2| |#3| |#4|) (-354) (-1195 |#1|) (-1195 (-398 |#2|)) (-333 |#1| |#2| |#3|)) (T -475))
-NIL
-(-326 |#1| |#2| |#3| |#4|)
-((-2350 (((-547) (-619 (-547))) 30)) (-2747 ((|#1| (-619 |#1|)) 56)) (-2113 (((-619 |#1|) (-619 |#1|)) 57)) (-2852 (((-619 |#1|) (-619 |#1|)) 59)) (-3719 ((|#1| (-619 |#1|)) 58)) (-2392 (((-619 (-547)) (-619 |#1|)) 33)))
-(((-476 |#1|) (-10 -7 (-15 -3719 (|#1| (-619 |#1|))) (-15 -2747 (|#1| (-619 |#1|))) (-15 -2852 ((-619 |#1|) (-619 |#1|))) (-15 -2113 ((-619 |#1|) (-619 |#1|))) (-15 -2392 ((-619 (-547)) (-619 |#1|))) (-15 -2350 ((-547) (-619 (-547))))) (-1195 (-547))) (T -476))
-((-2350 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-547)) (-5 *1 (-476 *4)) (-4 *4 (-1195 *2)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1195 (-547))) (-5 *2 (-619 (-547))) (-5 *1 (-476 *4)))) (-2113 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1195 (-547))) (-5 *1 (-476 *3)))) (-2852 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1195 (-547))) (-5 *1 (-476 *3)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-476 *2)) (-4 *2 (-1195 (-547))))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-476 *2)) (-4 *2 (-1195 (-547))))))
-(-10 -7 (-15 -3719 (|#1| (-619 |#1|))) (-15 -2747 (|#1| (-619 |#1|))) (-15 -2852 ((-619 |#1|) (-619 |#1|))) (-15 -2113 ((-619 |#1|) (-619 |#1|))) (-15 -2392 ((-619 (-547)) (-619 |#1|))) (-15 -2350 ((-547) (-619 (-547)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2092 (((-547) $) NIL (|has| (-547) (-298)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL (|has| (-547) (-794)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL) (((-3 (-1136) "failed") $) NIL (|has| (-547) (-1007 (-1136)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-547) (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| (-547) (-1007 (-547))))) (-2652 (((-547) $) NIL) (((-1136) $) NIL (|has| (-547) (-1007 (-1136)))) (((-398 (-547)) $) NIL (|has| (-547) (-1007 (-547)))) (((-547) $) NIL (|has| (-547) (-1007 (-547))))) (-2089 (($ $ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL) (((-663 (-547)) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| (-547) (-532)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-4270 (((-112) $) NIL (|has| (-547) (-794)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-547) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-547) (-855 (-370))))) (-2261 (((-112) $) NIL)) (-4170 (($ $) NIL)) (-1386 (((-547) $) NIL)) (-3477 (((-3 $ "failed") $) NIL (|has| (-547) (-1112)))) (-1860 (((-112) $) NIL (|has| (-547) (-794)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2856 (($ $ $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| (-547) (-821)))) (-2790 (($ (-1 (-547) (-547)) $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| (-547) (-1112)) CONST)) (-4292 (($ (-398 (-547))) 9)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3682 (($ $) NIL (|has| (-547) (-298))) (((-398 (-547)) $) NIL)) (-1276 (((-547) $) NIL (|has| (-547) (-532)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2679 (($ $ (-619 (-547)) (-619 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-547) (-547)) NIL (|has| (-547) (-300 (-547)))) (($ $ (-285 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-285 (-547)))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-1136)) (-619 (-547))) NIL (|has| (-547) (-503 (-1136) (-547)))) (($ $ (-1136) (-547)) NIL (|has| (-547) (-503 (-1136) (-547))))) (-2471 (((-745) $) NIL)) (-3334 (($ $ (-547)) NIL (|has| (-547) (-277 (-547) (-547))))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3448 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1136)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-2995 (($ $) NIL)) (-1396 (((-547) $) NIL)) (-2838 (((-861 (-547)) $) NIL (|has| (-547) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-547) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-547) (-592 (-523)))) (((-370) $) NIL (|has| (-547) (-991))) (((-217) $) NIL (|has| (-547) (-991)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-547) (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) 8) (($ (-547)) NIL) (($ (-1136)) NIL (|has| (-547) (-1007 (-1136)))) (((-398 (-547)) $) NIL) (((-973 16) $) 10)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| (-547) (-878))) (|has| (-547) (-143))))) (-2736 (((-745)) NIL)) (-3720 (((-547) $) NIL (|has| (-547) (-532)))) (-3577 (((-112) $ $) NIL)) (-2255 (($ $) NIL (|has| (-547) (-794)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1136)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-2441 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2418 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2405 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2506 (($ $ $) NIL) (($ (-547) (-547)) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-547) $) NIL) (($ $ (-547)) NIL)))
-(((-477) (-13 (-961 (-547)) (-10 -8 (-15 -3838 ((-398 (-547)) $)) (-15 -3838 ((-973 16) $)) (-15 -3682 ((-398 (-547)) $)) (-15 -4292 ($ (-398 (-547))))))) (T -477))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-477)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-973 16)) (-5 *1 (-477)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-477)))) (-4292 (*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-477)))))
-(-13 (-961 (-547)) (-10 -8 (-15 -3838 ((-398 (-547)) $)) (-15 -3838 ((-973 16) $)) (-15 -3682 ((-398 (-547)) $)) (-15 -4292 ($ (-398 (-547))))))
-((-2284 (((-619 |#2|) $) 23)) (-2132 (((-112) |#2| $) 28)) (-1598 (((-112) (-1 (-112) |#2|) $) 21)) (-2679 (($ $ (-619 (-285 |#2|))) 13) (($ $ (-285 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-619 |#2|) (-619 |#2|)) NIL)) (-3992 (((-745) (-1 (-112) |#2|) $) 22) (((-745) |#2| $) 26)) (-3838 (((-832) $) 37)) (-2693 (((-112) (-1 (-112) |#2|) $) 20)) (-2381 (((-112) $ $) 31)) (-3767 (((-745) $) 17)))
-(((-478 |#1| |#2|) (-10 -8 (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -2679 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-285 |#2|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#2|)))) (-15 -2132 ((-112) |#2| |#1|)) (-15 -3992 ((-745) |#2| |#1|)) (-15 -2284 ((-619 |#2|) |#1|)) (-15 -3992 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -1598 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2693 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3767 ((-745) |#1|))) (-479 |#2|) (-1173)) (T -478))
-NIL
-(-10 -8 (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -2679 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2679 (|#1| |#1| |#2| |#2|)) (-15 -2679 (|#1| |#1| (-285 |#2|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#2|)))) (-15 -2132 ((-112) |#2| |#1|)) (-15 -3992 ((-745) |#2| |#1|)) (-15 -2284 ((-619 |#2|) |#1|)) (-15 -3992 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -1598 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2693 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3767 ((-745) |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) 8)) (-1948 (($) 7 T CONST)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-479 |#1|) (-138) (-1173)) (T -479))
-((-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-479 *3)) (-4 *3 (-1173)))) (-1859 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4330)) (-4 *1 (-479 *3)) (-4 *3 (-1173)))) (-2693 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4329)) (-4 *1 (-479 *4)) (-4 *4 (-1173)) (-5 *2 (-112)))) (-1598 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4329)) (-4 *1 (-479 *4)) (-4 *4 (-1173)) (-5 *2 (-112)))) (-3992 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4329)) (-4 *1 (-479 *4)) (-4 *4 (-1173)) (-5 *2 (-745)))) (-2982 (*1 *2 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-479 *3)) (-4 *3 (-1173)) (-5 *2 (-619 *3)))) (-2284 (*1 *2 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-479 *3)) (-4 *3 (-1173)) (-5 *2 (-619 *3)))) (-3992 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-479 *3)) (-4 *3 (-1173)) (-4 *3 (-1063)) (-5 *2 (-745)))) (-2132 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-479 *3)) (-4 *3 (-1173)) (-4 *3 (-1063)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-591 (-832))) (-6 (-591 (-832))) |%noBranch|) (IF (|has| |t#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |t#1| (-1063)) (IF (|has| |t#1| (-300 |t#1|)) (-6 (-300 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2790 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4330)) (-15 -1859 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4329)) (PROGN (-15 -2693 ((-112) (-1 (-112) |t#1|) $)) (-15 -1598 ((-112) (-1 (-112) |t#1|) $)) (-15 -3992 ((-745) (-1 (-112) |t#1|) $)) (-15 -2982 ((-619 |t#1|) $)) (-15 -2284 ((-619 |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -3992 ((-745) |t#1| $)) (-15 -2132 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-1823 (($ (-1119)) 8)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 14) (((-1119) $) 11)) (-2381 (((-112) $ $) 10)))
-(((-480) (-13 (-1063) (-591 (-1119)) (-10 -8 (-15 -1823 ($ (-1119)))))) (T -480))
-((-1823 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-480)))))
-(-13 (-1063) (-591 (-1119)) (-10 -8 (-15 -1823 ($ (-1119)))))
-((-1656 (($ $) 15)) (-1632 (($ $) 24)) (-1678 (($ $) 12)) (-1690 (($ $) 10)) (-1668 (($ $) 17)) (-1644 (($ $) 22)))
-(((-481 |#1|) (-10 -8 (-15 -1644 (|#1| |#1|)) (-15 -1668 (|#1| |#1|)) (-15 -1690 (|#1| |#1|)) (-15 -1678 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1656 (|#1| |#1|))) (-482)) (T -481))
-NIL
-(-10 -8 (-15 -1644 (|#1| |#1|)) (-15 -1668 (|#1| |#1|)) (-15 -1690 (|#1| |#1|)) (-15 -1678 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)))
-((-1656 (($ $) 11)) (-1632 (($ $) 10)) (-1678 (($ $) 9)) (-1690 (($ $) 8)) (-1668 (($ $) 7)) (-1644 (($ $) 6)))
-(((-482) (-138)) (T -482))
-((-1656 (*1 *1 *1) (-4 *1 (-482))) (-1632 (*1 *1 *1) (-4 *1 (-482))) (-1678 (*1 *1 *1) (-4 *1 (-482))) (-1690 (*1 *1 *1) (-4 *1 (-482))) (-1668 (*1 *1 *1) (-4 *1 (-482))) (-1644 (*1 *1 *1) (-4 *1 (-482))))
-(-13 (-10 -8 (-15 -1644 ($ $)) (-15 -1668 ($ $)) (-15 -1690 ($ $)) (-15 -1678 ($ $)) (-15 -1632 ($ $)) (-15 -1656 ($ $))))
-((-2115 (((-409 |#4|) |#4| (-1 (-409 |#2|) |#2|)) 42)))
-(((-483 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2115 ((-409 |#4|) |#4| (-1 (-409 |#2|) |#2|)))) (-354) (-1195 |#1|) (-13 (-354) (-145) (-699 |#1| |#2|)) (-1195 |#3|)) (T -483))
-((-2115 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1195 *5)) (-4 *5 (-354)) (-4 *7 (-13 (-354) (-145) (-699 *5 *6))) (-5 *2 (-409 *3)) (-5 *1 (-483 *5 *6 *7 *3)) (-4 *3 (-1195 *7)))))
-(-10 -7 (-15 -2115 ((-409 |#4|) |#4| (-1 (-409 |#2|) |#2|))))
-((-3826 (((-112) $ $) NIL)) (-3358 (((-619 $) (-1132 $) (-1136)) NIL) (((-619 $) (-1132 $)) NIL) (((-619 $) (-921 $)) NIL)) (-2336 (($ (-1132 $) (-1136)) NIL) (($ (-1132 $)) NIL) (($ (-921 $)) NIL)) (-1499 (((-112) $) 39)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3556 (((-112) $ $) 64)) (-1974 (((-619 (-590 $)) $) 48)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3008 (($ $ (-285 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-2127 (($ $) NIL)) (-1547 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-3952 (((-619 $) (-1132 $) (-1136)) NIL) (((-619 $) (-1132 $)) NIL) (((-619 $) (-921 $)) NIL)) (-1531 (($ (-1132 $) (-1136)) NIL) (($ (-1132 $)) NIL) (($ (-921 $)) NIL)) (-2707 (((-3 (-590 $) "failed") $) NIL) (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL)) (-2652 (((-590 $) $) NIL) (((-547) $) NIL) (((-398 (-547)) $) 50)) (-2089 (($ $ $) NIL)) (-1694 (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL) (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -1877 (-663 (-398 (-547)))) (|:| |vec| (-1219 (-398 (-547))))) (-663 $) (-1219 $)) NIL) (((-663 (-398 (-547))) (-663 $)) NIL)) (-2552 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-3590 (($ $) NIL) (($ (-619 $)) NIL)) (-1408 (((-619 (-114)) $) NIL)) (-4185 (((-114) (-114)) NIL)) (-2261 (((-112) $) 42)) (-2935 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-1386 (((-1087 (-547) (-590 $)) $) 37)) (-3869 (($ $ (-547)) NIL)) (-3160 (((-1132 $) (-1132 $) (-590 $)) 78) (((-1132 $) (-1132 $) (-619 (-590 $))) 55) (($ $ (-590 $)) 67) (($ $ (-619 (-590 $))) 68)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2428 (((-1132 $) (-590 $)) 65 (|has| $ (-1016)))) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2790 (($ (-1 $ $) (-590 $)) NIL)) (-3024 (((-3 (-590 $) "failed") $) NIL)) (-3689 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-2065 (((-619 (-590 $)) $) NIL)) (-1469 (($ (-114) $) NIL) (($ (-114) (-619 $)) NIL)) (-1667 (((-112) $ (-114)) NIL) (((-112) $ (-1136)) NIL)) (-1984 (($ $) NIL)) (-4029 (((-745) $) NIL)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ (-619 $)) NIL) (($ $ $) NIL)) (-3883 (((-112) $ $) NIL) (((-112) $ (-1136)) NIL)) (-2115 (((-409 $) $) NIL)) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3874 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-2679 (($ $ (-590 $) $) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1136)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1136)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1136) (-1 $ (-619 $))) NIL) (($ $ (-1136) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2471 (((-745) $) NIL)) (-3334 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-2242 (($ $) NIL) (($ $ $) NIL)) (-3448 (($ $ (-745)) NIL) (($ $) 36)) (-1396 (((-1087 (-547) (-590 $)) $) 20)) (-1882 (($ $) NIL (|has| $ (-1016)))) (-2838 (((-370) $) 92) (((-217) $) 100) (((-166 (-370)) $) 108)) (-3838 (((-832) $) NIL) (($ (-590 $)) NIL) (($ (-398 (-547))) NIL) (($ $) NIL) (($ (-547)) NIL) (($ (-1087 (-547) (-590 $))) 21)) (-2736 (((-745)) NIL)) (-4129 (($ $) NIL) (($ (-619 $)) NIL)) (-3128 (((-112) (-114)) 84)) (-3577 (((-112) $ $) NIL)) (-3269 (($) 10 T CONST)) (-3281 (($) 22 T CONST)) (-1695 (($ $ (-745)) NIL) (($ $) NIL)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 24)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) NIL)) (-2506 (($ $ $) 44)) (-2493 (($ $ $) NIL) (($ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-398 (-547))) NIL) (($ $ (-547)) 46) (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL) (($ $ $) 27) (($ (-547) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL)))
-(((-484) (-13 (-293) (-27) (-1007 (-547)) (-1007 (-398 (-547))) (-615 (-547)) (-991) (-615 (-398 (-547))) (-145) (-592 (-166 (-370))) (-225) (-10 -8 (-15 -3838 ($ (-1087 (-547) (-590 $)))) (-15 -1386 ((-1087 (-547) (-590 $)) $)) (-15 -1396 ((-1087 (-547) (-590 $)) $)) (-15 -2552 ($ $)) (-15 -3556 ((-112) $ $)) (-15 -3160 ((-1132 $) (-1132 $) (-590 $))) (-15 -3160 ((-1132 $) (-1132 $) (-619 (-590 $)))) (-15 -3160 ($ $ (-590 $))) (-15 -3160 ($ $ (-619 (-590 $))))))) (T -484))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1087 (-547) (-590 (-484)))) (-5 *1 (-484)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-484)))) (-5 *1 (-484)))) (-1396 (*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-484)))) (-5 *1 (-484)))) (-2552 (*1 *1 *1) (-5 *1 (-484))) (-3556 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-484)))) (-3160 (*1 *2 *2 *3) (-12 (-5 *2 (-1132 (-484))) (-5 *3 (-590 (-484))) (-5 *1 (-484)))) (-3160 (*1 *2 *2 *3) (-12 (-5 *2 (-1132 (-484))) (-5 *3 (-619 (-590 (-484)))) (-5 *1 (-484)))) (-3160 (*1 *1 *1 *2) (-12 (-5 *2 (-590 (-484))) (-5 *1 (-484)))) (-3160 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-590 (-484)))) (-5 *1 (-484)))))
-(-13 (-293) (-27) (-1007 (-547)) (-1007 (-398 (-547))) (-615 (-547)) (-991) (-615 (-398 (-547))) (-145) (-592 (-166 (-370))) (-225) (-10 -8 (-15 -3838 ($ (-1087 (-547) (-590 $)))) (-15 -1386 ((-1087 (-547) (-590 $)) $)) (-15 -1396 ((-1087 (-547) (-590 $)) $)) (-15 -2552 ($ $)) (-15 -3556 ((-112) $ $)) (-15 -3160 ((-1132 $) (-1132 $) (-590 $))) (-15 -3160 ((-1132 $) (-1132 $) (-619 (-590 $)))) (-15 -3160 ($ $ (-590 $))) (-15 -3160 ($ $ (-619 (-590 $))))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2809 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4330))) (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| |#1| (-821))))) (-3185 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#1| $ (-547) |#1|) 25 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) NIL (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3803 (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) 22 (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) 21)) (-2876 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-3735 (($ (-745) |#1|) 14)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) 12 (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-2777 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-547) $) 23 (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-2606 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3638 ((|#1| $) NIL (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3632 (($ $ |#1|) 10 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) 13)) (-3334 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) 24) (($ $ (-1186 (-547))) NIL)) (-2159 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) NIL)) (-1945 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3767 (((-745) $) 9 (|has| $ (-6 -4329)))))
-(((-485 |#1| |#2|) (-19 |#1|) (-1173) (-547)) (T -485))
+((-2088 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-809 (-892))))) (-3914 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-747)))) (-3165 (*1 *1 *1) (-4 *1 (-395))) (-3165 (*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-747)))))
+(-13 (-356) (-143) (-10 -8 (-15 -2088 ((-809 (-892)) $)) (-15 -3914 ((-3 (-747) "failed") $ $)) (-15 -3165 ($ $)) (-15 -3165 ($ $ (-747)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-593 (-834)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1184) . T))
+((-1355 (($ (-549) (-549)) 11) (($ (-549) (-549) (-892)) NIL)) (-3862 (((-892)) 16) (((-892) (-892)) NIL)))
+(((-396 |#1|) (-10 -8 (-15 -3862 ((-892) (-892))) (-15 -3862 ((-892))) (-15 -1355 (|#1| (-549) (-549) (-892))) (-15 -1355 (|#1| (-549) (-549)))) (-397)) (T -396))
+((-3862 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) (-3862 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-396 *3)) (-4 *3 (-397)))))
+(-10 -8 (-15 -3862 ((-892) (-892))) (-15 -3862 ((-892))) (-15 -1355 (|#1| (-549) (-549) (-892))) (-15 -1355 (|#1| (-549) (-549))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-3329 (((-549) $) 86)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-3896 (($ $) 84)) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 70)) (-2402 (((-411 $) $) 69)) (-2134 (($ $) 94)) (-3866 (((-112) $ $) 57)) (-1872 (((-549) $) 111)) (-1682 (($) 17 T CONST)) (-3252 (($ $) 83)) (-2714 (((-3 (-549) "failed") $) 99) (((-3 (-400 (-549)) "failed") $) 96)) (-2659 (((-549) $) 98) (((-400 (-549)) $) 95)) (-2095 (($ $ $) 53)) (-2114 (((-3 $ "failed") $) 32)) (-2067 (($ $ $) 54)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-1420 (((-112) $) 68)) (-3236 (((-892)) 127) (((-892) (-892)) 124 (|has| $ (-6 -4328)))) (-2772 (((-112) $) 109)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 90)) (-2088 (((-549) $) 133)) (-2675 (((-112) $) 30)) (-4187 (($ $ (-549)) 93)) (-3630 (($ $) 89)) (-2374 (((-112) $) 110)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-2863 (($ $ $) 108) (($) 121 (-12 (-4008 (|has| $ (-6 -4328))) (-4008 (|has| $ (-6 -4320)))))) (-3575 (($ $ $) 107) (($) 120 (-12 (-4008 (|has| $ (-6 -4328))) (-4008 (|has| $ (-6 -4320)))))) (-1461 (((-549) $) 130)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 67)) (-2429 (((-892) (-549)) 123 (|has| $ (-6 -4328)))) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2873 (($ $) 85)) (-3967 (($ $) 87)) (-1355 (($ (-549) (-549)) 135) (($ (-549) (-549) (-892)) 134)) (-2121 (((-411 $) $) 71)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3731 (((-549) $) 131)) (-3684 (((-747) $) 56)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55)) (-3862 (((-892)) 128) (((-892) (-892)) 125 (|has| $ (-6 -4328)))) (-2324 (((-892) (-549)) 122 (|has| $ (-6 -4328)))) (-2845 (((-372) $) 102) (((-219) $) 101) (((-863 (-372)) $) 91)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63) (($ (-549)) 100) (($ (-400 (-549))) 97)) (-2082 (((-747)) 28)) (-2546 (($ $) 88)) (-1502 (((-892)) 129) (((-892) (-892)) 126 (|has| $ (-6 -4328)))) (-1864 (((-892)) 132)) (-1498 (((-112) $ $) 37)) (-3212 (($ $) 112)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 105)) (-2425 (((-112) $ $) 104)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 106)) (-2412 (((-112) $ $) 103)) (-2513 (($ $ $) 62)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66) (($ $ (-400 (-549))) 92)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64)))
+(((-397) (-138)) (T -397))
+((-1355 (*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-397)))) (-1355 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-892)) (-4 *1 (-397)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-549)))) (-1864 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-549)))) (-1461 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-549)))) (-1502 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892)))) (-3862 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892)))) (-3236 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-892)) (|has| *1 (-6 -4328)) (-4 *1 (-397)))) (-3862 (*1 *2 *2) (-12 (-5 *2 (-892)) (|has| *1 (-6 -4328)) (-4 *1 (-397)))) (-3236 (*1 *2 *2) (-12 (-5 *2 (-892)) (|has| *1 (-6 -4328)) (-4 *1 (-397)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-549)) (|has| *1 (-6 -4328)) (-4 *1 (-397)) (-5 *2 (-892)))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-549)) (|has| *1 (-6 -4328)) (-4 *1 (-397)) (-5 *2 (-892)))) (-2863 (*1 *1) (-12 (-4 *1 (-397)) (-4008 (|has| *1 (-6 -4328))) (-4008 (|has| *1 (-6 -4320))))) (-3575 (*1 *1) (-12 (-4 *1 (-397)) (-4008 (|has| *1 (-6 -4328))) (-4008 (|has| *1 (-6 -4320))))))
+(-13 (-1027) (-10 -8 (-6 -2661) (-15 -1355 ($ (-549) (-549))) (-15 -1355 ($ (-549) (-549) (-892))) (-15 -2088 ((-549) $)) (-15 -1864 ((-892))) (-15 -3731 ((-549) $)) (-15 -1461 ((-549) $)) (-15 -1502 ((-892))) (-15 -3862 ((-892))) (-15 -3236 ((-892))) (IF (|has| $ (-6 -4328)) (PROGN (-15 -1502 ((-892) (-892))) (-15 -3862 ((-892) (-892))) (-15 -3236 ((-892) (-892))) (-15 -2429 ((-892) (-549))) (-15 -2324 ((-892) (-549)))) |%noBranch|) (IF (|has| $ (-6 -4320)) |%noBranch| (IF (|has| $ (-6 -4328)) |%noBranch| (PROGN (-15 -2863 ($)) (-15 -3575 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-834)) . T) ((-170) . T) ((-594 (-219)) . T) ((-594 (-372)) . T) ((-594 (-863 (-372))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-821) . T) ((-823) . T) ((-857 (-372)) . T) ((-891) . T) ((-973) . T) ((-993) . T) ((-1027) . T) ((-1009 (-400 (-549))) . T) ((-1009 (-549)) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1184) . T))
+((-2797 (((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)) 20)))
+(((-398 |#1| |#2|) (-10 -7 (-15 -2797 ((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|)))) (-541) (-541)) (T -398))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-411 *5)) (-4 *5 (-541)) (-4 *6 (-541)) (-5 *2 (-411 *6)) (-5 *1 (-398 *5 *6)))))
+(-10 -7 (-15 -2797 ((-411 |#2|) (-1 |#2| |#1|) (-411 |#1|))))
+((-2797 (((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)) 13)))
+(((-399 |#1| |#2|) (-10 -7 (-15 -2797 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) (-541) (-541)) (T -399))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-541)) (-4 *6 (-541)) (-5 *2 (-400 *6)) (-5 *1 (-399 *5 *6)))))
+(-10 -7 (-15 -2797 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 13)) (-3329 ((|#1| $) 21 (|has| |#1| (-300)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL (|has| |#1| (-796)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) 17) (((-3 (-1143) "failed") $) NIL (|has| |#1| (-1009 (-1143)))) (((-3 (-400 (-549)) "failed") $) 70 (|has| |#1| (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549))))) (-2659 ((|#1| $) 15) (((-1143) $) NIL (|has| |#1| (-1009 (-1143)))) (((-400 (-549)) $) 67 (|has| |#1| (-1009 (-549)))) (((-549) $) NIL (|has| |#1| (-1009 (-549))))) (-2095 (($ $ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) 50)) (-3239 (($) NIL (|has| |#1| (-534)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-2772 (((-112) $) NIL (|has| |#1| (-796)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| |#1| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| |#1| (-857 (-372))))) (-2675 (((-112) $) 64)) (-1726 (($ $) NIL)) (-1394 ((|#1| $) 71)) (-1681 (((-3 $ "failed") $) NIL (|has| |#1| (-1118)))) (-2374 (((-112) $) NIL (|has| |#1| (-796)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| |#1| (-1118)) CONST)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 97)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2873 (($ $) NIL (|has| |#1| (-300)))) (-3967 ((|#1| $) 28 (|has| |#1| (-534)))) (-2905 (((-411 (-1139 $)) (-1139 $)) 135 (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) 131 (|has| |#1| (-880)))) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2686 (($ $ (-621 |#1|) (-621 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1143)) (-621 |#1|)) NIL (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-1143) |#1|) NIL (|has| |#1| (-505 (-1143) |#1|)))) (-3684 (((-747) $) NIL)) (-3341 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3939 (($ $) NIL)) (-1403 ((|#1| $) 73)) (-2845 (((-863 (-549)) $) NIL (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| |#1| (-594 (-863 (-372))))) (((-525) $) NIL (|has| |#1| (-594 (-525)))) (((-372) $) NIL (|has| |#1| (-993))) (((-219) $) NIL (|has| |#1| (-993)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) 10) (($ (-1143)) NIL (|has| |#1| (-1009 (-1143))))) (-2210 (((-3 $ "failed") $) 99 (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) 100)) (-2546 ((|#1| $) 26 (|has| |#1| (-534)))) (-1498 (((-112) $ $) NIL)) (-3212 (($ $) NIL (|has| |#1| (-796)))) (-3276 (($) 22 T CONST)) (-3287 (($) 8 T CONST)) (-4245 (((-1125) $) 43 (-12 (|has| |#1| (-534)) (|has| |#1| (-804)))) (((-1125) $ (-112)) 44 (-12 (|has| |#1| (-534)) (|has| |#1| (-804)))) (((-1231) (-798) $) 45 (-12 (|has| |#1| (-534)) (|has| |#1| (-804)))) (((-1231) (-798) $ (-112)) 46 (-12 (|has| |#1| (-534)) (|has| |#1| (-804))))) (-1702 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) 56)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) 24 (|has| |#1| (-823)))) (-2513 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2500 (($ $) 25) (($ $ $) 55)) (-2486 (($ $ $) 53)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 125)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 60) (($ $ $) 57) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-400 |#1|) (-13 (-963 |#1|) (-10 -7 (IF (|has| |#1| (-534)) (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4324)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4335)) (-6 -4324) |%noBranch|) |%noBranch|) |%noBranch|))) (-541)) (T -400))
+NIL
+(-13 (-963 |#1|) (-10 -7 (IF (|has| |#1| (-534)) (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4324)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4335)) (-6 -4324) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-1738 (((-665 |#2|) (-1226 $)) NIL) (((-665 |#2|)) 18)) (-3492 (($ (-1226 |#2|) (-1226 $)) NIL) (($ (-1226 |#2|)) 24)) (-3506 (((-665 |#2|) $ (-1226 $)) NIL) (((-665 |#2|) $) 38)) (-3788 ((|#3| $) 60)) (-3602 ((|#2| (-1226 $)) NIL) ((|#2|) 20)) (-4263 (((-1226 |#2|) $ (-1226 $)) NIL) (((-665 |#2|) (-1226 $) (-1226 $)) NIL) (((-1226 |#2|) $) 22) (((-665 |#2|) (-1226 $)) 36)) (-2845 (((-1226 |#2|) $) 11) (($ (-1226 |#2|)) 13)) (-4154 ((|#3| $) 52)))
+(((-401 |#1| |#2| |#3|) (-10 -8 (-15 -3506 ((-665 |#2|) |#1|)) (-15 -3602 (|#2|)) (-15 -1738 ((-665 |#2|))) (-15 -2845 (|#1| (-1226 |#2|))) (-15 -2845 ((-1226 |#2|) |#1|)) (-15 -3492 (|#1| (-1226 |#2|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1|)) (-15 -3788 (|#3| |#1|)) (-15 -4154 (|#3| |#1|)) (-15 -1738 ((-665 |#2|) (-1226 |#1|))) (-15 -3602 (|#2| (-1226 |#1|))) (-15 -3492 (|#1| (-1226 |#2|) (-1226 |#1|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1| (-1226 |#1|))) (-15 -3506 ((-665 |#2|) |#1| (-1226 |#1|)))) (-402 |#2| |#3|) (-170) (-1202 |#2|)) (T -401))
+((-1738 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1202 *4)) (-5 *2 (-665 *4)) (-5 *1 (-401 *3 *4 *5)) (-4 *3 (-402 *4 *5)))) (-3602 (*1 *2) (-12 (-4 *4 (-1202 *2)) (-4 *2 (-170)) (-5 *1 (-401 *3 *2 *4)) (-4 *3 (-402 *2 *4)))))
+(-10 -8 (-15 -3506 ((-665 |#2|) |#1|)) (-15 -3602 (|#2|)) (-15 -1738 ((-665 |#2|))) (-15 -2845 (|#1| (-1226 |#2|))) (-15 -2845 ((-1226 |#2|) |#1|)) (-15 -3492 (|#1| (-1226 |#2|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1|)) (-15 -3788 (|#3| |#1|)) (-15 -4154 (|#3| |#1|)) (-15 -1738 ((-665 |#2|) (-1226 |#1|))) (-15 -3602 (|#2| (-1226 |#1|))) (-15 -3492 (|#1| (-1226 |#2|) (-1226 |#1|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1| (-1226 |#1|))) (-15 -3506 ((-665 |#2|) |#1| (-1226 |#1|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-1738 (((-665 |#1|) (-1226 $)) 44) (((-665 |#1|)) 59)) (-2906 ((|#1| $) 50)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3492 (($ (-1226 |#1|) (-1226 $)) 46) (($ (-1226 |#1|)) 62)) (-3506 (((-665 |#1|) $ (-1226 $)) 51) (((-665 |#1|) $) 57)) (-2114 (((-3 $ "failed") $) 32)) (-3123 (((-892)) 52)) (-2675 (((-112) $) 30)) (-3630 ((|#1| $) 49)) (-3788 ((|#2| $) 42 (|has| |#1| (-356)))) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3602 ((|#1| (-1226 $)) 45) ((|#1|) 58)) (-4263 (((-1226 |#1|) $ (-1226 $)) 48) (((-665 |#1|) (-1226 $) (-1226 $)) 47) (((-1226 |#1|) $) 64) (((-665 |#1|) (-1226 $)) 63)) (-2845 (((-1226 |#1|) $) 61) (($ (-1226 |#1|)) 60)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35)) (-2210 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-4154 ((|#2| $) 43)) (-2082 (((-747)) 28)) (-1949 (((-1226 $)) 65)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-402 |#1| |#2|) (-138) (-170) (-1202 |t#1|)) (T -402))
+((-1949 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1202 *3)) (-5 *2 (-1226 *1)) (-4 *1 (-402 *3 *4)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1202 *3)) (-5 *2 (-1226 *3)))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-402 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1202 *4)) (-5 *2 (-665 *4)))) (-3492 (*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4)) (-4 *4 (-1202 *3)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1202 *3)) (-5 *2 (-1226 *3)))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4)) (-4 *4 (-1202 *3)))) (-1738 (*1 *2) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1202 *3)) (-5 *2 (-665 *3)))) (-3602 (*1 *2) (-12 (-4 *1 (-402 *2 *3)) (-4 *3 (-1202 *2)) (-4 *2 (-170)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1202 *3)) (-5 *2 (-665 *3)))))
+(-13 (-363 |t#1| |t#2|) (-10 -8 (-15 -1949 ((-1226 $))) (-15 -4263 ((-1226 |t#1|) $)) (-15 -4263 ((-665 |t#1|) (-1226 $))) (-15 -3492 ($ (-1226 |t#1|))) (-15 -2845 ((-1226 |t#1|) $)) (-15 -2845 ($ (-1226 |t#1|))) (-15 -1738 ((-665 |t#1|))) (-15 -3602 (|t#1|)) (-15 -3506 ((-665 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-363 |#1| |#2|) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-2714 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) 27) (((-3 (-549) "failed") $) 19)) (-2659 ((|#2| $) NIL) (((-400 (-549)) $) 24) (((-549) $) 14)) (-3846 (($ |#2|) NIL) (($ (-400 (-549))) 22) (($ (-549)) 11)))
+(((-403 |#1| |#2|) (-10 -8 (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -3846 (|#1| (-549))) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 (|#1| |#2|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2659 (|#2| |#1|))) (-404 |#2|) (-1180)) (T -403))
+NIL
+(-10 -8 (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -3846 (|#1| (-549))) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 (|#1| |#2|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2659 (|#2| |#1|)))
+((-2714 (((-3 |#1| "failed") $) 7) (((-3 (-400 (-549)) "failed") $) 16 (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) 13 (|has| |#1| (-1009 (-549))))) (-2659 ((|#1| $) 8) (((-400 (-549)) $) 15 (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) 12 (|has| |#1| (-1009 (-549))))) (-3846 (($ |#1|) 6) (($ (-400 (-549))) 17 (|has| |#1| (-1009 (-400 (-549))))) (($ (-549)) 14 (|has| |#1| (-1009 (-549))))))
+(((-404 |#1|) (-138) (-1180)) (T -404))
+NIL
+(-13 (-1009 |t#1|) (-10 -7 (IF (|has| |t#1| (-1009 (-549))) (-6 (-1009 (-549))) |%noBranch|) (IF (|has| |t#1| (-1009 (-400 (-549)))) (-6 (-1009 (-400 (-549)))) |%noBranch|)))
+(((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T))
+((-2797 (((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)) 33)))
+(((-405 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2797 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) (-300) (-963 |#1|) (-1202 |#2|) (-13 (-402 |#2| |#3|) (-1009 |#2|)) (-300) (-963 |#5|) (-1202 |#6|) (-13 (-402 |#6| |#7|) (-1009 |#6|))) (T -405))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300)) (-4 *6 (-963 *5)) (-4 *7 (-1202 *6)) (-4 *8 (-13 (-402 *6 *7) (-1009 *6))) (-4 *9 (-300)) (-4 *10 (-963 *9)) (-4 *11 (-1202 *10)) (-5 *2 (-406 *9 *10 *11 *12)) (-5 *1 (-405 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-402 *10 *11) (-1009 *10))))))
+(-10 -7 (-15 -2797 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|))))
+((-3834 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) NIL)) (-3517 ((|#4| (-747) (-1226 |#4|)) 56)) (-2675 (((-112) $) NIL)) (-1394 (((-1226 |#4|) $) 17)) (-3630 ((|#2| $) 54)) (-1553 (($ $) 139)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 100)) (-3818 (($ (-1226 |#4|)) 99)) (-3990 (((-1087) $) NIL)) (-1403 ((|#1| $) 18)) (-1955 (($ $ $) NIL)) (-3293 (($ $ $) NIL)) (-3846 (((-834) $) 134)) (-1949 (((-1226 |#4|) $) 129)) (-3287 (($) 11 T CONST)) (-2389 (((-112) $ $) 40)) (-2513 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 122)) (* (($ $ $) 121)))
+(((-406 |#1| |#2| |#3| |#4|) (-13 (-465) (-10 -8 (-15 -3818 ($ (-1226 |#4|))) (-15 -1949 ((-1226 |#4|) $)) (-15 -3630 (|#2| $)) (-15 -1394 ((-1226 |#4|) $)) (-15 -1403 (|#1| $)) (-15 -1553 ($ $)) (-15 -3517 (|#4| (-747) (-1226 |#4|))))) (-300) (-963 |#1|) (-1202 |#2|) (-13 (-402 |#2| |#3|) (-1009 |#2|))) (T -406))
+((-3818 (*1 *1 *2) (-12 (-5 *2 (-1226 *6)) (-4 *6 (-13 (-402 *4 *5) (-1009 *4))) (-4 *4 (-963 *3)) (-4 *5 (-1202 *4)) (-4 *3 (-300)) (-5 *1 (-406 *3 *4 *5 *6)))) (-1949 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1202 *4)) (-5 *2 (-1226 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-402 *4 *5) (-1009 *4))))) (-3630 (*1 *2 *1) (-12 (-4 *4 (-1202 *2)) (-4 *2 (-963 *3)) (-5 *1 (-406 *3 *2 *4 *5)) (-4 *3 (-300)) (-4 *5 (-13 (-402 *2 *4) (-1009 *2))))) (-1394 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1202 *4)) (-5 *2 (-1226 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-402 *4 *5) (-1009 *4))))) (-1403 (*1 *2 *1) (-12 (-4 *3 (-963 *2)) (-4 *4 (-1202 *3)) (-4 *2 (-300)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1009 *3))))) (-1553 (*1 *1 *1) (-12 (-4 *2 (-300)) (-4 *3 (-963 *2)) (-4 *4 (-1202 *3)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1009 *3))))) (-3517 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-1226 *2)) (-4 *5 (-300)) (-4 *6 (-963 *5)) (-4 *2 (-13 (-402 *6 *7) (-1009 *6))) (-5 *1 (-406 *5 *6 *7 *2)) (-4 *7 (-1202 *6)))))
+(-13 (-465) (-10 -8 (-15 -3818 ($ (-1226 |#4|))) (-15 -1949 ((-1226 |#4|) $)) (-15 -3630 (|#2| $)) (-15 -1394 ((-1226 |#4|) $)) (-15 -1403 (|#1| $)) (-15 -1553 ($ $)) (-15 -3517 (|#4| (-747) (-1226 |#4|)))))
+((-3834 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) NIL)) (-2675 (((-112) $) NIL)) (-3630 ((|#2| $) 61)) (-2460 (($ (-1226 |#4|)) 25) (($ (-406 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1009 |#2|)))) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 34)) (-1949 (((-1226 |#4|) $) 26)) (-3287 (($) 23 T CONST)) (-2389 (((-112) $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ $ $) 72)))
+(((-407 |#1| |#2| |#3| |#4| |#5|) (-13 (-703) (-10 -8 (-15 -1949 ((-1226 |#4|) $)) (-15 -3630 (|#2| $)) (-15 -2460 ($ (-1226 |#4|))) (IF (|has| |#4| (-1009 |#2|)) (-15 -2460 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-300) (-963 |#1|) (-1202 |#2|) (-402 |#2| |#3|) (-1226 |#4|)) (T -407))
+((-1949 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1202 *4)) (-5 *2 (-1226 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7)) (-4 *6 (-402 *4 *5)) (-14 *7 *2))) (-3630 (*1 *2 *1) (-12 (-4 *4 (-1202 *2)) (-4 *2 (-963 *3)) (-5 *1 (-407 *3 *2 *4 *5 *6)) (-4 *3 (-300)) (-4 *5 (-402 *2 *4)) (-14 *6 (-1226 *5)))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-1226 *6)) (-4 *6 (-402 *4 *5)) (-4 *4 (-963 *3)) (-4 *5 (-1202 *4)) (-4 *3 (-300)) (-5 *1 (-407 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1009 *4)) (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1202 *4)) (-4 *6 (-402 *4 *5)) (-14 *7 (-1226 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7)))))
+(-13 (-703) (-10 -8 (-15 -1949 ((-1226 |#4|) $)) (-15 -3630 (|#2| $)) (-15 -2460 ($ (-1226 |#4|))) (IF (|has| |#4| (-1009 |#2|)) (-15 -2460 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-2797 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-408 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2797 (|#3| (-1 |#4| |#2|) |#1|))) (-410 |#2|) (-170) (-410 |#4|) (-170)) (T -408))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-410 *6)) (-5 *1 (-408 *4 *5 *2 *6)) (-4 *4 (-410 *5)))))
+(-10 -7 (-15 -2797 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2207 (((-3 $ "failed")) 86)) (-3277 (((-1226 (-665 |#2|)) (-1226 $)) NIL) (((-1226 (-665 |#2|))) 91)) (-3219 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) 85)) (-3550 (((-3 $ "failed")) 84)) (-4212 (((-665 |#2|) (-1226 $)) NIL) (((-665 |#2|)) 102)) (-3841 (((-665 |#2|) $ (-1226 $)) NIL) (((-665 |#2|) $) 110)) (-2478 (((-1139 (-923 |#2|))) 55)) (-3076 ((|#2| (-1226 $)) NIL) ((|#2|) 106)) (-3492 (($ (-1226 |#2|) (-1226 $)) NIL) (($ (-1226 |#2|)) 112)) (-1742 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) 83)) (-4101 (((-3 $ "failed")) 75)) (-2870 (((-665 |#2|) (-1226 $)) NIL) (((-665 |#2|)) 100)) (-2303 (((-665 |#2|) $ (-1226 $)) NIL) (((-665 |#2|) $) 108)) (-2014 (((-1139 (-923 |#2|))) 54)) (-2920 ((|#2| (-1226 $)) NIL) ((|#2|) 104)) (-4263 (((-1226 |#2|) $ (-1226 $)) NIL) (((-665 |#2|) (-1226 $) (-1226 $)) NIL) (((-1226 |#2|) $) 111) (((-665 |#2|) (-1226 $)) 118)) (-2845 (((-1226 |#2|) $) 96) (($ (-1226 |#2|)) 98)) (-4111 (((-621 (-923 |#2|)) (-1226 $)) NIL) (((-621 (-923 |#2|))) 94)) (-3596 (($ (-665 |#2|) $) 90)))
+(((-409 |#1| |#2|) (-10 -8 (-15 -3596 (|#1| (-665 |#2|) |#1|)) (-15 -2478 ((-1139 (-923 |#2|)))) (-15 -2014 ((-1139 (-923 |#2|)))) (-15 -3841 ((-665 |#2|) |#1|)) (-15 -2303 ((-665 |#2|) |#1|)) (-15 -4212 ((-665 |#2|))) (-15 -2870 ((-665 |#2|))) (-15 -3076 (|#2|)) (-15 -2920 (|#2|)) (-15 -2845 (|#1| (-1226 |#2|))) (-15 -2845 ((-1226 |#2|) |#1|)) (-15 -3492 (|#1| (-1226 |#2|))) (-15 -4111 ((-621 (-923 |#2|)))) (-15 -3277 ((-1226 (-665 |#2|)))) (-15 -4263 ((-665 |#2|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1|)) (-15 -2207 ((-3 |#1| "failed"))) (-15 -3550 ((-3 |#1| "failed"))) (-15 -4101 ((-3 |#1| "failed"))) (-15 -3219 ((-3 (-2 (|:| |particular| |#1|) (|:| -1949 (-621 |#1|))) "failed"))) (-15 -1742 ((-3 (-2 (|:| |particular| |#1|) (|:| -1949 (-621 |#1|))) "failed"))) (-15 -4212 ((-665 |#2|) (-1226 |#1|))) (-15 -2870 ((-665 |#2|) (-1226 |#1|))) (-15 -3076 (|#2| (-1226 |#1|))) (-15 -2920 (|#2| (-1226 |#1|))) (-15 -3492 (|#1| (-1226 |#2|) (-1226 |#1|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1| (-1226 |#1|))) (-15 -3841 ((-665 |#2|) |#1| (-1226 |#1|))) (-15 -2303 ((-665 |#2|) |#1| (-1226 |#1|))) (-15 -3277 ((-1226 (-665 |#2|)) (-1226 |#1|))) (-15 -4111 ((-621 (-923 |#2|)) (-1226 |#1|)))) (-410 |#2|) (-170)) (T -409))
+((-3277 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1226 (-665 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-4111 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-621 (-923 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-2920 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2)))) (-3076 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2)))) (-2870 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-4212 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-2014 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1139 (-923 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))) (-2478 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1139 (-923 *4))) (-5 *1 (-409 *3 *4)) (-4 *3 (-410 *4)))))
+(-10 -8 (-15 -3596 (|#1| (-665 |#2|) |#1|)) (-15 -2478 ((-1139 (-923 |#2|)))) (-15 -2014 ((-1139 (-923 |#2|)))) (-15 -3841 ((-665 |#2|) |#1|)) (-15 -2303 ((-665 |#2|) |#1|)) (-15 -4212 ((-665 |#2|))) (-15 -2870 ((-665 |#2|))) (-15 -3076 (|#2|)) (-15 -2920 (|#2|)) (-15 -2845 (|#1| (-1226 |#2|))) (-15 -2845 ((-1226 |#2|) |#1|)) (-15 -3492 (|#1| (-1226 |#2|))) (-15 -4111 ((-621 (-923 |#2|)))) (-15 -3277 ((-1226 (-665 |#2|)))) (-15 -4263 ((-665 |#2|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1|)) (-15 -2207 ((-3 |#1| "failed"))) (-15 -3550 ((-3 |#1| "failed"))) (-15 -4101 ((-3 |#1| "failed"))) (-15 -3219 ((-3 (-2 (|:| |particular| |#1|) (|:| -1949 (-621 |#1|))) "failed"))) (-15 -1742 ((-3 (-2 (|:| |particular| |#1|) (|:| -1949 (-621 |#1|))) "failed"))) (-15 -4212 ((-665 |#2|) (-1226 |#1|))) (-15 -2870 ((-665 |#2|) (-1226 |#1|))) (-15 -3076 (|#2| (-1226 |#1|))) (-15 -2920 (|#2| (-1226 |#1|))) (-15 -3492 (|#1| (-1226 |#2|) (-1226 |#1|))) (-15 -4263 ((-665 |#2|) (-1226 |#1|) (-1226 |#1|))) (-15 -4263 ((-1226 |#2|) |#1| (-1226 |#1|))) (-15 -3841 ((-665 |#2|) |#1| (-1226 |#1|))) (-15 -2303 ((-665 |#2|) |#1| (-1226 |#1|))) (-15 -3277 ((-1226 (-665 |#2|)) (-1226 |#1|))) (-15 -4111 ((-621 (-923 |#2|)) (-1226 |#1|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2207 (((-3 $ "failed")) 37 (|has| |#1| (-541)))) (-2001 (((-3 $ "failed") $ $) 19)) (-3277 (((-1226 (-665 |#1|)) (-1226 $)) 78) (((-1226 (-665 |#1|))) 100)) (-3945 (((-1226 $)) 81)) (-1682 (($) 17 T CONST)) (-3219 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) 40 (|has| |#1| (-541)))) (-3550 (((-3 $ "failed")) 38 (|has| |#1| (-541)))) (-4212 (((-665 |#1|) (-1226 $)) 65) (((-665 |#1|)) 92)) (-2840 ((|#1| $) 74)) (-3841 (((-665 |#1|) $ (-1226 $)) 76) (((-665 |#1|) $) 90)) (-3038 (((-3 $ "failed") $) 45 (|has| |#1| (-541)))) (-2478 (((-1139 (-923 |#1|))) 88 (|has| |#1| (-356)))) (-3117 (($ $ (-892)) 28)) (-2182 ((|#1| $) 72)) (-2289 (((-1139 |#1|) $) 42 (|has| |#1| (-541)))) (-3076 ((|#1| (-1226 $)) 67) ((|#1|) 94)) (-3266 (((-1139 |#1|) $) 63)) (-1368 (((-112)) 57)) (-3492 (($ (-1226 |#1|) (-1226 $)) 69) (($ (-1226 |#1|)) 98)) (-2114 (((-3 $ "failed") $) 47 (|has| |#1| (-541)))) (-3123 (((-892)) 80)) (-3601 (((-112)) 54)) (-2943 (($ $ (-892)) 33)) (-3975 (((-112)) 50)) (-2291 (((-112)) 48)) (-2647 (((-112)) 52)) (-1742 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) 41 (|has| |#1| (-541)))) (-4101 (((-3 $ "failed")) 39 (|has| |#1| (-541)))) (-2870 (((-665 |#1|) (-1226 $)) 66) (((-665 |#1|)) 93)) (-2654 ((|#1| $) 75)) (-2303 (((-665 |#1|) $ (-1226 $)) 77) (((-665 |#1|) $) 91)) (-1919 (((-3 $ "failed") $) 46 (|has| |#1| (-541)))) (-2014 (((-1139 (-923 |#1|))) 89 (|has| |#1| (-356)))) (-2884 (($ $ (-892)) 29)) (-2248 ((|#1| $) 73)) (-1378 (((-1139 |#1|) $) 43 (|has| |#1| (-541)))) (-2920 ((|#1| (-1226 $)) 68) ((|#1|) 95)) (-2443 (((-1139 |#1|) $) 64)) (-3623 (((-112)) 58)) (-3851 (((-1125) $) 9)) (-3260 (((-112)) 49)) (-2754 (((-112)) 51)) (-2055 (((-112)) 53)) (-3990 (((-1087) $) 10)) (-2392 (((-112)) 56)) (-3341 ((|#1| $ (-549)) 101)) (-4263 (((-1226 |#1|) $ (-1226 $)) 71) (((-665 |#1|) (-1226 $) (-1226 $)) 70) (((-1226 |#1|) $) 103) (((-665 |#1|) (-1226 $)) 102)) (-2845 (((-1226 |#1|) $) 97) (($ (-1226 |#1|)) 96)) (-4111 (((-621 (-923 |#1|)) (-1226 $)) 79) (((-621 (-923 |#1|))) 99)) (-3293 (($ $ $) 25)) (-1942 (((-112)) 62)) (-3846 (((-834) $) 11)) (-1949 (((-1226 $)) 104)) (-4315 (((-621 (-1226 |#1|))) 44 (|has| |#1| (-541)))) (-4272 (($ $ $ $) 26)) (-3430 (((-112)) 60)) (-3596 (($ (-665 |#1|) $) 87)) (-2174 (($ $ $) 24)) (-2864 (((-112)) 61)) (-4257 (((-112)) 59)) (-1898 (((-112)) 55)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 30)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-410 |#1|) (-138) (-170)) (T -410))
+((-1949 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1226 *1)) (-4 *1 (-410 *3)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1226 *3)))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-410 *4)) (-4 *4 (-170)) (-5 *2 (-665 *4)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-410 *2)) (-4 *2 (-170)))) (-3277 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1226 (-665 *3))))) (-4111 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-621 (-923 *3))))) (-3492 (*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1226 *3)))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3)))) (-2920 (*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170)))) (-3076 (*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170)))) (-2870 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-4212 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-2303 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))) (-2014 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1139 (-923 *3))))) (-2478 (*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1139 (-923 *3))))) (-3596 (*1 *1 *2 *1) (-12 (-5 *2 (-665 *3)) (-4 *1 (-410 *3)) (-4 *3 (-170)))))
+(-13 (-360 |t#1|) (-10 -8 (-15 -1949 ((-1226 $))) (-15 -4263 ((-1226 |t#1|) $)) (-15 -4263 ((-665 |t#1|) (-1226 $))) (-15 -3341 (|t#1| $ (-549))) (-15 -3277 ((-1226 (-665 |t#1|)))) (-15 -4111 ((-621 (-923 |t#1|)))) (-15 -3492 ($ (-1226 |t#1|))) (-15 -2845 ((-1226 |t#1|) $)) (-15 -2845 ($ (-1226 |t#1|))) (-15 -2920 (|t#1|)) (-15 -3076 (|t#1|)) (-15 -2870 ((-665 |t#1|))) (-15 -4212 ((-665 |t#1|))) (-15 -2303 ((-665 |t#1|) $)) (-15 -3841 ((-665 |t#1|) $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -2014 ((-1139 (-923 |t#1|)))) (-15 -2478 ((-1139 (-923 |t#1|))))) |%noBranch|) (-15 -3596 ($ (-665 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-360 |#1|) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-697) . T) ((-721 |#1|) . T) ((-738) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 42)) (-1794 (($ $) 57)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 146)) (-2258 (($ $) NIL)) (-2799 (((-112) $) 36)) (-2207 ((|#1| $) 13)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL (|has| |#1| (-1184)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-1184)))) (-2257 (($ |#1| (-549)) 31)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 116)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 55)) (-2114 (((-3 $ "failed") $) 131)) (-3405 (((-3 (-400 (-549)) "failed") $) 63 (|has| |#1| (-534)))) (-3679 (((-112) $) 59 (|has| |#1| (-534)))) (-2532 (((-400 (-549)) $) 70 (|has| |#1| (-534)))) (-3691 (($ |#1| (-549)) 33)) (-1420 (((-112) $) 152 (|has| |#1| (-1184)))) (-2675 (((-112) $) 43)) (-3116 (((-747) $) 38)) (-2158 (((-3 "nil" "sqfr" "irred" "prime") $ (-549)) 137)) (-1302 ((|#1| $ (-549)) 136)) (-3573 (((-549) $ (-549)) 135)) (-2137 (($ |#1| (-549)) 30)) (-2797 (($ (-1 |#1| |#1|) $) 143)) (-3861 (($ |#1| (-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549))))) 58)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3851 (((-1125) $) NIL)) (-3599 (($ |#1| (-549)) 32)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) 147 (|has| |#1| (-444)))) (-2683 (($ |#1| (-549) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-4024 (((-621 (-2 (|:| -2121 |#1|) (|:| -3731 (-549)))) $) 54)) (-3840 (((-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))) $) 12)) (-2121 (((-411 $) $) NIL (|has| |#1| (-1184)))) (-2042 (((-3 $ "failed") $ $) 138)) (-3731 (((-549) $) 132)) (-1449 ((|#1| $) 56)) (-2686 (($ $ (-621 |#1|) (-621 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) 79 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1143)) (-621 |#1|)) 85 (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-1143) |#1|) NIL (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-1143) $) NIL (|has| |#1| (-505 (-1143) $))) (($ $ (-621 (-1143)) (-621 $)) 86 (|has| |#1| (-505 (-1143) $))) (($ $ (-621 (-287 $))) 82 (|has| |#1| (-302 $))) (($ $ (-287 $)) NIL (|has| |#1| (-302 $))) (($ $ $ $) NIL (|has| |#1| (-302 $))) (($ $ (-621 $) (-621 $)) NIL (|has| |#1| (-302 $)))) (-3341 (($ $ |#1|) 71 (|has| |#1| (-279 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-279 $ $)))) (-3456 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-2845 (((-525) $) 27 (|has| |#1| (-594 (-525)))) (((-372) $) 92 (|has| |#1| (-993))) (((-219) $) 95 (|has| |#1| (-993)))) (-3846 (((-834) $) 114) (($ (-549)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549)))))) (-2082 (((-747)) 48)) (-1498 (((-112) $ $) NIL)) (-3276 (($) 40 T CONST)) (-3287 (($) 39 T CONST)) (-1702 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2389 (((-112) $ $) 96)) (-2500 (($ $) 128) (($ $ $) NIL)) (-2486 (($ $ $) 140)) (** (($ $ (-892)) NIL) (($ $ (-747)) 102)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
+(((-411 |#1|) (-13 (-541) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-404 |#1|) (-10 -8 (-15 -1449 (|#1| $)) (-15 -3731 ((-549) $)) (-15 -3861 ($ |#1| (-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))))) (-15 -3840 ((-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))) $)) (-15 -2137 ($ |#1| (-549))) (-15 -4024 ((-621 (-2 (|:| -2121 |#1|) (|:| -3731 (-549)))) $)) (-15 -3599 ($ |#1| (-549))) (-15 -3573 ((-549) $ (-549))) (-15 -1302 (|#1| $ (-549))) (-15 -2158 ((-3 "nil" "sqfr" "irred" "prime") $ (-549))) (-15 -3116 ((-747) $)) (-15 -3691 ($ |#1| (-549))) (-15 -2257 ($ |#1| (-549))) (-15 -2683 ($ |#1| (-549) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2207 (|#1| $)) (-15 -1794 ($ $)) (-15 -2797 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-993)) (-6 (-993)) |%noBranch|) (IF (|has| |#1| (-1184)) (-6 (-1184)) |%noBranch|) (IF (|has| |#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3679 ((-112) $)) (-15 -2532 ((-400 (-549)) $)) (-15 -3405 ((-3 (-400 (-549)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1143) $)) (-6 (-505 (-1143) $)) |%noBranch|))) (-541)) (T -411))
+((-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-541)) (-5 *1 (-411 *3)))) (-1449 (*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-411 *3)) (-4 *3 (-541)))) (-3861 (*1 *1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-549))))) (-4 *2 (-541)) (-5 *1 (-411 *2)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-549))))) (-5 *1 (-411 *3)) (-4 *3 (-541)))) (-2137 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| -2121 *3) (|:| -3731 (-549))))) (-5 *1 (-411 *3)) (-4 *3 (-541)))) (-3599 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-3573 (*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-411 *3)) (-4 *3 (-541)))) (-1302 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-2158 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-411 *4)) (-4 *4 (-541)))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-411 *3)) (-4 *3 (-541)))) (-3691 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-2257 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-2683 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-549)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-2207 (*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-1794 (*1 *1 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-541)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-411 *3)) (-4 *3 (-534)) (-4 *3 (-541)))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-411 *3)) (-4 *3 (-534)) (-4 *3 (-541)))) (-3405 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-411 *3)) (-4 *3 (-534)) (-4 *3 (-541)))))
+(-13 (-541) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-404 |#1|) (-10 -8 (-15 -1449 (|#1| $)) (-15 -3731 ((-549) $)) (-15 -3861 ($ |#1| (-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))))) (-15 -3840 ((-621 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))) $)) (-15 -2137 ($ |#1| (-549))) (-15 -4024 ((-621 (-2 (|:| -2121 |#1|) (|:| -3731 (-549)))) $)) (-15 -3599 ($ |#1| (-549))) (-15 -3573 ((-549) $ (-549))) (-15 -1302 (|#1| $ (-549))) (-15 -2158 ((-3 "nil" "sqfr" "irred" "prime") $ (-549))) (-15 -3116 ((-747) $)) (-15 -3691 ($ |#1| (-549))) (-15 -2257 ($ |#1| (-549))) (-15 -2683 ($ |#1| (-549) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2207 (|#1| $)) (-15 -1794 ($ $)) (-15 -2797 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-993)) (-6 (-993)) |%noBranch|) (IF (|has| |#1| (-1184)) (-6 (-1184)) |%noBranch|) (IF (|has| |#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3679 ((-112) $)) (-15 -2532 ((-400 (-549)) $)) (-15 -3405 ((-3 (-400 (-549)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1143) $)) (-6 (-505 (-1143) $)) |%noBranch|)))
+((-4166 (((-411 |#1|) (-411 |#1|) (-1 (-411 |#1|) |#1|)) 21)) (-3317 (((-411 |#1|) (-411 |#1|) (-411 |#1|)) 16)))
+(((-412 |#1|) (-10 -7 (-15 -4166 ((-411 |#1|) (-411 |#1|) (-1 (-411 |#1|) |#1|))) (-15 -3317 ((-411 |#1|) (-411 |#1|) (-411 |#1|)))) (-541)) (T -412))
+((-3317 (*1 *2 *2 *2) (-12 (-5 *2 (-411 *3)) (-4 *3 (-541)) (-5 *1 (-412 *3)))) (-4166 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-411 *4) *4)) (-4 *4 (-541)) (-5 *2 (-411 *4)) (-5 *1 (-412 *4)))))
+(-10 -7 (-15 -4166 ((-411 |#1|) (-411 |#1|) (-1 (-411 |#1|) |#1|))) (-15 -3317 ((-411 |#1|) (-411 |#1|) (-411 |#1|))))
+((-1347 ((|#2| |#2|) 166)) (-4087 (((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125))))) |#2| (-112)) 57)))
+(((-413 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125))))) |#2| (-112))) (-15 -1347 (|#2| |#2|))) (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1165) (-423 |#1|)) (-1143) |#2|) (T -413))
+((-1347 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1165) (-423 *3))) (-14 *4 (-1143)) (-14 *5 *2))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125)))))) (-5 *1 (-413 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1165) (-423 *5))) (-14 *6 (-1143)) (-14 *7 *3))))
+(-10 -7 (-15 -4087 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125))))) |#2| (-112))) (-15 -1347 (|#2| |#2|)))
+((-2797 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2797 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1018) (-823)) (-423 |#1|) (-13 (-1018) (-823)) (-423 |#3|)) (T -414))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1018) (-823))) (-4 *6 (-13 (-1018) (-823))) (-4 *2 (-423 *6)) (-5 *1 (-414 *5 *4 *6 *2)) (-4 *4 (-423 *5)))))
+(-10 -7 (-15 -2797 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1347 ((|#2| |#2|) 90)) (-3926 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125))))) |#2| (-112) (-1125)) 48)) (-2193 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125))))) |#2| (-112) (-1125)) 154)))
+(((-415 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3926 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125))))) |#2| (-112) (-1125))) (-15 -2193 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125))))) |#2| (-112) (-1125))) (-15 -1347 (|#2| |#2|))) (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1165) (-423 |#1|) (-10 -8 (-15 -3846 ($ |#3|)))) (-821) (-13 (-1204 |#2| |#3|) (-356) (-1165) (-10 -8 (-15 -3456 ($ $)) (-15 -3893 ($ $)))) (-954 |#4|) (-1143)) (T -415))
+((-1347 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-4 *2 (-13 (-27) (-1165) (-423 *3) (-10 -8 (-15 -3846 ($ *4))))) (-4 *4 (-821)) (-4 *5 (-13 (-1204 *2 *4) (-356) (-1165) (-10 -8 (-15 -3456 ($ $)) (-15 -3893 ($ $))))) (-5 *1 (-415 *3 *2 *4 *5 *6 *7)) (-4 *6 (-954 *5)) (-14 *7 (-1143)))) (-2193 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-4 *3 (-13 (-27) (-1165) (-423 *6) (-10 -8 (-15 -3846 ($ *7))))) (-4 *7 (-821)) (-4 *8 (-13 (-1204 *3 *7) (-356) (-1165) (-10 -8 (-15 -3456 ($ $)) (-15 -3893 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125)))))) (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1125)) (-4 *9 (-954 *8)) (-14 *10 (-1143)))) (-3926 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-4 *3 (-13 (-27) (-1165) (-423 *6) (-10 -8 (-15 -3846 ($ *7))))) (-4 *7 (-821)) (-4 *8 (-13 (-1204 *3 *7) (-356) (-1165) (-10 -8 (-15 -3456 ($ $)) (-15 -3893 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125)))))) (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1125)) (-4 *9 (-954 *8)) (-14 *10 (-1143)))))
+(-10 -7 (-15 -3926 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125))))) |#2| (-112) (-1125))) (-15 -2193 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125))))) |#2| (-112) (-1125))) (-15 -1347 (|#2| |#2|)))
+((-3804 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2557 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2797 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2797 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2557 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3804 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1067) (-418 |#1|) (-1067) (-418 |#3|)) (T -416))
+((-3804 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1067)) (-4 *5 (-1067)) (-4 *2 (-418 *5)) (-5 *1 (-416 *6 *4 *5 *2)) (-4 *4 (-418 *6)))) (-2557 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1067)) (-4 *2 (-1067)) (-5 *1 (-416 *5 *4 *2 *6)) (-4 *4 (-418 *5)) (-4 *6 (-418 *2)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-418 *6)) (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-418 *5)))))
+(-10 -7 (-15 -2797 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2557 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3804 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2664 (($) 44)) (-1442 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2440 (($ $ $) 39)) (-2695 (((-112) $ $) 28)) (-3614 (((-747)) 47)) (-2787 (($ (-621 |#2|)) 20) (($) NIL)) (-3239 (($) 53)) (-2369 (((-112) $ $) 13)) (-2863 ((|#2| $) 61)) (-3575 ((|#2| $) 59)) (-1881 (((-892) $) 55)) (-3655 (($ $ $) 35)) (-3493 (($ (-892)) 50)) (-1334 (($ $ |#2|) NIL) (($ $ $) 38)) (-4000 (((-747) (-1 (-112) |#2|) $) NIL) (((-747) |#2| $) 26)) (-3854 (($ (-621 |#2|)) 24)) (-1417 (($ $) 46)) (-3846 (((-834) $) 33)) (-3916 (((-747) $) 21)) (-4120 (($ (-621 |#2|)) 19) (($) NIL)) (-2389 (((-112) $ $) 16)))
+(((-417 |#1| |#2|) (-10 -8 (-15 -3614 ((-747))) (-15 -3493 (|#1| (-892))) (-15 -1881 ((-892) |#1|)) (-15 -3239 (|#1|)) (-15 -2863 (|#2| |#1|)) (-15 -3575 (|#2| |#1|)) (-15 -2664 (|#1|)) (-15 -1417 (|#1| |#1|)) (-15 -3916 ((-747) |#1|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -3846 ((-834) |#1|)) (-15 -2369 ((-112) |#1| |#1|)) (-15 -4120 (|#1|)) (-15 -4120 (|#1| (-621 |#2|))) (-15 -2787 (|#1|)) (-15 -2787 (|#1| (-621 |#2|))) (-15 -3655 (|#1| |#1| |#1|)) (-15 -1334 (|#1| |#1| |#1|)) (-15 -1334 (|#1| |#1| |#2|)) (-15 -2440 (|#1| |#1| |#1|)) (-15 -2695 ((-112) |#1| |#1|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -1442 (|#1| |#1| |#2|)) (-15 -1442 (|#1| |#2| |#1|)) (-15 -3854 (|#1| (-621 |#2|))) (-15 -4000 ((-747) |#2| |#1|)) (-15 -4000 ((-747) (-1 (-112) |#2|) |#1|))) (-418 |#2|) (-1067)) (T -417))
+((-3614 (*1 *2) (-12 (-4 *4 (-1067)) (-5 *2 (-747)) (-5 *1 (-417 *3 *4)) (-4 *3 (-418 *4)))))
+(-10 -8 (-15 -3614 ((-747))) (-15 -3493 (|#1| (-892))) (-15 -1881 ((-892) |#1|)) (-15 -3239 (|#1|)) (-15 -2863 (|#2| |#1|)) (-15 -3575 (|#2| |#1|)) (-15 -2664 (|#1|)) (-15 -1417 (|#1| |#1|)) (-15 -3916 ((-747) |#1|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -3846 ((-834) |#1|)) (-15 -2369 ((-112) |#1| |#1|)) (-15 -4120 (|#1|)) (-15 -4120 (|#1| (-621 |#2|))) (-15 -2787 (|#1|)) (-15 -2787 (|#1| (-621 |#2|))) (-15 -3655 (|#1| |#1| |#1|)) (-15 -1334 (|#1| |#1| |#1|)) (-15 -1334 (|#1| |#1| |#2|)) (-15 -2440 (|#1| |#1| |#1|)) (-15 -2695 ((-112) |#1| |#1|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -1442 (|#1| |#1| |#2|)) (-15 -1442 (|#1| |#2| |#1|)) (-15 -3854 (|#1| (-621 |#2|))) (-15 -4000 ((-747) |#2| |#1|)) (-15 -4000 ((-747) (-1 (-112) |#2|) |#1|)))
+((-3834 (((-112) $ $) 19)) (-2664 (($) 67 (|has| |#1| (-361)))) (-1442 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2440 (($ $ $) 78)) (-2695 (((-112) $ $) 79)) (-1584 (((-112) $ (-747)) 8)) (-3614 (((-747)) 61 (|has| |#1| (-361)))) (-2787 (($ (-621 |#1|)) 74) (($) 73)) (-1717 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-3676 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2129 (($ |#1| $) 47 (|has| $ (-6 -4337))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4337)))) (-3812 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4337)))) (-3239 (($) 64 (|has| |#1| (-361)))) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-2369 (((-112) $ $) 70)) (-3194 (((-112) $ (-747)) 9)) (-2863 ((|#1| $) 65 (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-3575 ((|#1| $) 66 (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1881 (((-892) $) 63 (|has| |#1| (-361)))) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22)) (-3655 (($ $ $) 75)) (-3504 ((|#1| $) 39)) (-2751 (($ |#1| $) 40)) (-3493 (($ (-892)) 62 (|has| |#1| (-361)))) (-3990 (((-1087) $) 21)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3325 ((|#1| $) 41)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-1334 (($ $ |#1|) 77) (($ $ $) 76)) (-2898 (($) 49) (($ (-621 |#1|)) 48)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2845 (((-525) $) 59 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 50)) (-1417 (($ $) 68 (|has| |#1| (-361)))) (-3846 (((-834) $) 18)) (-3916 (((-747) $) 69)) (-4120 (($ (-621 |#1|)) 72) (($) 71)) (-3624 (($ (-621 |#1|)) 42)) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20)) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-418 |#1|) (-138) (-1067)) (T -418))
+((-3916 (*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-1067)) (-5 *2 (-747)))) (-1417 (*1 *1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1067)) (-4 *2 (-361)))) (-2664 (*1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-361)) (-4 *2 (-1067)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1067)) (-4 *2 (-823)))) (-2863 (*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1067)) (-4 *2 (-823)))))
+(-13 (-223 |t#1|) (-1065 |t#1|) (-10 -8 (-6 -4337) (-15 -3916 ((-747) $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-361)) (-15 -1417 ($ $)) (-15 -2664 ($))) |%noBranch|) (IF (|has| |t#1| (-823)) (PROGN (-15 -3575 (|t#1| $)) (-15 -2863 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-593 (-834)) . T) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-223 |#1|) . T) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-361) |has| |#1| (-361)) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1065 |#1|) . T) ((-1067) . T) ((-1180) . T))
+((-2875 (((-567 |#2|) |#2| (-1143)) 36)) (-4176 (((-567 |#2|) |#2| (-1143)) 20)) (-4294 ((|#2| |#2| (-1143)) 25)))
+(((-419 |#1| |#2|) (-10 -7 (-15 -4176 ((-567 |#2|) |#2| (-1143))) (-15 -2875 ((-567 |#2|) |#2| (-1143))) (-15 -4294 (|#2| |#2| (-1143)))) (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1165) (-29 |#1|))) (T -419))
+((-4294 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-419 *4 *2)) (-4 *2 (-13 (-1165) (-29 *4))))) (-2875 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-567 *3)) (-5 *1 (-419 *5 *3)) (-4 *3 (-13 (-1165) (-29 *5))))) (-4176 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-567 *3)) (-5 *1 (-419 *5 *3)) (-4 *3 (-13 (-1165) (-29 *5))))))
+(-10 -7 (-15 -4176 ((-567 |#2|) |#2| (-1143))) (-15 -2875 ((-567 |#2|) |#2| (-1143))) (-15 -4294 (|#2| |#2| (-1143))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) NIL)) (-2675 (((-112) $) NIL)) (-1954 (($ |#2| |#1|) 35)) (-2091 (($ |#2| |#1|) 33)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-324 |#2|)) 25)) (-2082 (((-747)) NIL)) (-3276 (($) 10 T CONST)) (-3287 (($) 16 T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 34)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-420 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4324)) (IF (|has| |#1| (-6 -4324)) (-6 -4324) |%noBranch|) |%noBranch|) (-15 -3846 ($ |#1|)) (-15 -3846 ($ (-324 |#2|))) (-15 -1954 ($ |#2| |#1|)) (-15 -2091 ($ |#2| |#1|)))) (-13 (-170) (-38 (-400 (-549)))) (-13 (-823) (-21))) (T -420))
+((-3846 (*1 *1 *2) (-12 (-5 *1 (-420 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-549))))) (-4 *3 (-13 (-823) (-21))))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-823) (-21))) (-5 *1 (-420 *3 *4)) (-4 *3 (-13 (-170) (-38 (-400 (-549))))))) (-1954 (*1 *1 *2 *3) (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-549))))) (-4 *2 (-13 (-823) (-21))))) (-2091 (*1 *1 *2 *3) (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-549))))) (-4 *2 (-13 (-823) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4324)) (IF (|has| |#1| (-6 -4324)) (-6 -4324) |%noBranch|) |%noBranch|) (-15 -3846 ($ |#1|)) (-15 -3846 ($ (-324 |#2|))) (-15 -1954 ($ |#2| |#1|)) (-15 -2091 ($ |#2| |#1|))))
+((-3893 (((-3 |#2| (-621 |#2|)) |#2| (-1143)) 109)))
+(((-421 |#1| |#2|) (-10 -7 (-15 -3893 ((-3 |#2| (-621 |#2|)) |#2| (-1143)))) (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1165) (-930) (-29 |#1|))) (T -421))
+((-3893 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 *3 (-621 *3))) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1165) (-930) (-29 *5))))))
+(-10 -7 (-15 -3893 ((-3 |#2| (-621 |#2|)) |#2| (-1143))))
+((-2272 (((-621 (-1143)) $) 72)) (-2084 (((-400 (-1139 $)) $ (-592 $)) 273)) (-3015 (($ $ (-287 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-621 (-592 $)) (-621 $)) 237)) (-2714 (((-3 (-592 $) "failed") $) NIL) (((-3 (-1143) "failed") $) 75) (((-3 (-549) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-400 (-923 |#2|)) "failed") $) 324) (((-3 (-923 |#2|) "failed") $) 235) (((-3 (-400 (-549)) "failed") $) NIL)) (-2659 (((-592 $) $) NIL) (((-1143) $) 30) (((-549) $) NIL) ((|#2| $) 231) (((-400 (-923 |#2|)) $) 305) (((-923 |#2|) $) 232) (((-400 (-549)) $) NIL)) (-2834 (((-114) (-114)) 47)) (-1726 (($ $) 87)) (-2634 (((-3 (-592 $) "failed") $) 228)) (-2071 (((-621 (-592 $)) $) 229)) (-4266 (((-3 (-621 $) "failed") $) 247)) (-1671 (((-3 (-2 (|:| |val| $) (|:| -3731 (-549))) "failed") $) 254)) (-2533 (((-3 (-621 $) "failed") $) 245)) (-2761 (((-3 (-2 (|:| -1570 (-549)) (|:| |var| (-592 $))) "failed") $) 264)) (-1503 (((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $) 251) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $ (-1143)) 219)) (-2004 (((-112) $) 19)) (-2016 ((|#2| $) 21)) (-2686 (($ $ (-592 $) $) NIL) (($ $ (-621 (-592 $)) (-621 $)) 236) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-621 (-1143)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-1143)) (-621 (-1 $ (-621 $)))) 96) (($ $ (-1143) (-1 $ (-621 $))) NIL) (($ $ (-1143) (-1 $ $)) NIL) (($ $ (-621 (-114)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-114) (-1 $ (-621 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1143)) 57) (($ $ (-621 (-1143))) 240) (($ $) 241) (($ $ (-114) $ (-1143)) 60) (($ $ (-621 (-114)) (-621 $) (-1143)) 67) (($ $ (-621 (-1143)) (-621 (-747)) (-621 (-1 $ $))) 107) (($ $ (-621 (-1143)) (-621 (-747)) (-621 (-1 $ (-621 $)))) 242) (($ $ (-1143) (-747) (-1 $ (-621 $))) 94) (($ $ (-1143) (-747) (-1 $ $)) 93)) (-3341 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-621 $)) 106)) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143)) 238)) (-3939 (($ $) 284)) (-2845 (((-863 (-549)) $) 257) (((-863 (-372)) $) 261) (($ (-411 $)) 320) (((-525) $) NIL)) (-3846 (((-834) $) 239) (($ (-592 $)) 84) (($ (-1143)) 26) (($ |#2|) NIL) (($ (-1092 |#2| (-592 $))) NIL) (($ (-400 |#2|)) 289) (($ (-923 (-400 |#2|))) 329) (($ (-400 (-923 (-400 |#2|)))) 301) (($ (-400 (-923 |#2|))) 295) (($ $) NIL) (($ (-923 |#2|)) 185) (($ (-400 (-549))) 334) (($ (-549)) NIL)) (-2082 (((-747)) 79)) (-4285 (((-112) (-114)) 41)) (-1789 (($ (-1143) $) 33) (($ (-1143) $ $) 34) (($ (-1143) $ $ $) 35) (($ (-1143) $ $ $ $) 36) (($ (-1143) (-621 $)) 39)) (* (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-549) $) NIL) (($ (-747) $) NIL) (($ (-892) $) NIL)))
+(((-422 |#1| |#2|) (-10 -8 (-15 * (|#1| (-892) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2082 ((-747))) (-15 -3846 (|#1| (-549))) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -2845 ((-525) |#1|)) (-15 -2659 ((-923 |#2|) |#1|)) (-15 -2714 ((-3 (-923 |#2|) "failed") |#1|)) (-15 -3846 (|#1| (-923 |#2|))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -2659 ((-400 (-923 |#2|)) |#1|)) (-15 -2714 ((-3 (-400 (-923 |#2|)) "failed") |#1|)) (-15 -3846 (|#1| (-400 (-923 |#2|)))) (-15 -2084 ((-400 (-1139 |#1|)) |#1| (-592 |#1|))) (-15 -3846 (|#1| (-400 (-923 (-400 |#2|))))) (-15 -3846 (|#1| (-923 (-400 |#2|)))) (-15 -3846 (|#1| (-400 |#2|))) (-15 -3939 (|#1| |#1|)) (-15 -2845 (|#1| (-411 |#1|))) (-15 -2686 (|#1| |#1| (-1143) (-747) (-1 |#1| |#1|))) (-15 -2686 (|#1| |#1| (-1143) (-747) (-1 |#1| (-621 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 (-747)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 (-747)) (-621 (-1 |#1| |#1|)))) (-15 -1671 ((-3 (-2 (|:| |val| |#1|) (|:| -3731 (-549))) "failed") |#1|)) (-15 -1503 ((-3 (-2 (|:| |var| (-592 |#1|)) (|:| -3731 (-549))) "failed") |#1| (-1143))) (-15 -1503 ((-3 (-2 (|:| |var| (-592 |#1|)) (|:| -3731 (-549))) "failed") |#1| (-114))) (-15 -1726 (|#1| |#1|)) (-15 -3846 (|#1| (-1092 |#2| (-592 |#1|)))) (-15 -2761 ((-3 (-2 (|:| -1570 (-549)) (|:| |var| (-592 |#1|))) "failed") |#1|)) (-15 -2533 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -1503 ((-3 (-2 (|:| |var| (-592 |#1|)) (|:| -3731 (-549))) "failed") |#1|)) (-15 -4266 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2686 (|#1| |#1| (-621 (-114)) (-621 |#1|) (-1143))) (-15 -2686 (|#1| |#1| (-114) |#1| (-1143))) (-15 -2686 (|#1| |#1|)) (-15 -2686 (|#1| |#1| (-621 (-1143)))) (-15 -2686 (|#1| |#1| (-1143))) (-15 -1789 (|#1| (-1143) (-621 |#1|))) (-15 -1789 (|#1| (-1143) |#1| |#1| |#1| |#1|)) (-15 -1789 (|#1| (-1143) |#1| |#1| |#1|)) (-15 -1789 (|#1| (-1143) |#1| |#1|)) (-15 -1789 (|#1| (-1143) |#1|)) (-15 -2272 ((-621 (-1143)) |#1|)) (-15 -2016 (|#2| |#1|)) (-15 -2004 ((-112) |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -2845 ((-863 (-372)) |#1|)) (-15 -2845 ((-863 (-549)) |#1|)) (-15 -2659 ((-1143) |#1|)) (-15 -2714 ((-3 (-1143) "failed") |#1|)) (-15 -3846 (|#1| (-1143))) (-15 -2686 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2686 (|#1| |#1| (-114) (-1 |#1| (-621 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2686 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| |#1|)))) (-15 -2686 (|#1| |#1| (-1143) (-1 |#1| |#1|))) (-15 -2686 (|#1| |#1| (-1143) (-1 |#1| (-621 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 (-1 |#1| |#1|)))) (-15 -4285 ((-112) (-114))) (-15 -2834 ((-114) (-114))) (-15 -2071 ((-621 (-592 |#1|)) |#1|)) (-15 -2634 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3015 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -3015 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3015 (|#1| |#1| (-287 |#1|))) (-15 -3341 (|#1| (-114) (-621 |#1|))) (-15 -3341 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3341 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3341 (|#1| (-114) |#1| |#1|)) (-15 -3341 (|#1| (-114) |#1|)) (-15 -2686 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| (-287 |#1|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -2686 (|#1| |#1| (-592 |#1|) |#1|)) (-15 -2659 ((-592 |#1|) |#1|)) (-15 -2714 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3846 (|#1| (-592 |#1|))) (-15 -3846 ((-834) |#1|))) (-423 |#2|) (-823)) (T -422))
+((-2834 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-823)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-422 *4 *5)) (-4 *4 (-423 *5)))) (-2082 (*1 *2) (-12 (-4 *4 (-823)) (-5 *2 (-747)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))))
+(-10 -8 (-15 * (|#1| (-892) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2082 ((-747))) (-15 -3846 (|#1| (-549))) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -2845 ((-525) |#1|)) (-15 -2659 ((-923 |#2|) |#1|)) (-15 -2714 ((-3 (-923 |#2|) "failed") |#1|)) (-15 -3846 (|#1| (-923 |#2|))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -2659 ((-400 (-923 |#2|)) |#1|)) (-15 -2714 ((-3 (-400 (-923 |#2|)) "failed") |#1|)) (-15 -3846 (|#1| (-400 (-923 |#2|)))) (-15 -2084 ((-400 (-1139 |#1|)) |#1| (-592 |#1|))) (-15 -3846 (|#1| (-400 (-923 (-400 |#2|))))) (-15 -3846 (|#1| (-923 (-400 |#2|)))) (-15 -3846 (|#1| (-400 |#2|))) (-15 -3939 (|#1| |#1|)) (-15 -2845 (|#1| (-411 |#1|))) (-15 -2686 (|#1| |#1| (-1143) (-747) (-1 |#1| |#1|))) (-15 -2686 (|#1| |#1| (-1143) (-747) (-1 |#1| (-621 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 (-747)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 (-747)) (-621 (-1 |#1| |#1|)))) (-15 -1671 ((-3 (-2 (|:| |val| |#1|) (|:| -3731 (-549))) "failed") |#1|)) (-15 -1503 ((-3 (-2 (|:| |var| (-592 |#1|)) (|:| -3731 (-549))) "failed") |#1| (-1143))) (-15 -1503 ((-3 (-2 (|:| |var| (-592 |#1|)) (|:| -3731 (-549))) "failed") |#1| (-114))) (-15 -1726 (|#1| |#1|)) (-15 -3846 (|#1| (-1092 |#2| (-592 |#1|)))) (-15 -2761 ((-3 (-2 (|:| -1570 (-549)) (|:| |var| (-592 |#1|))) "failed") |#1|)) (-15 -2533 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -1503 ((-3 (-2 (|:| |var| (-592 |#1|)) (|:| -3731 (-549))) "failed") |#1|)) (-15 -4266 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2686 (|#1| |#1| (-621 (-114)) (-621 |#1|) (-1143))) (-15 -2686 (|#1| |#1| (-114) |#1| (-1143))) (-15 -2686 (|#1| |#1|)) (-15 -2686 (|#1| |#1| (-621 (-1143)))) (-15 -2686 (|#1| |#1| (-1143))) (-15 -1789 (|#1| (-1143) (-621 |#1|))) (-15 -1789 (|#1| (-1143) |#1| |#1| |#1| |#1|)) (-15 -1789 (|#1| (-1143) |#1| |#1| |#1|)) (-15 -1789 (|#1| (-1143) |#1| |#1|)) (-15 -1789 (|#1| (-1143) |#1|)) (-15 -2272 ((-621 (-1143)) |#1|)) (-15 -2016 (|#2| |#1|)) (-15 -2004 ((-112) |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -2845 ((-863 (-372)) |#1|)) (-15 -2845 ((-863 (-549)) |#1|)) (-15 -2659 ((-1143) |#1|)) (-15 -2714 ((-3 (-1143) "failed") |#1|)) (-15 -3846 (|#1| (-1143))) (-15 -2686 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2686 (|#1| |#1| (-114) (-1 |#1| (-621 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2686 (|#1| |#1| (-621 (-114)) (-621 (-1 |#1| |#1|)))) (-15 -2686 (|#1| |#1| (-1143) (-1 |#1| |#1|))) (-15 -2686 (|#1| |#1| (-1143) (-1 |#1| (-621 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 (-1 |#1| (-621 |#1|))))) (-15 -2686 (|#1| |#1| (-621 (-1143)) (-621 (-1 |#1| |#1|)))) (-15 -4285 ((-112) (-114))) (-15 -2834 ((-114) (-114))) (-15 -2071 ((-621 (-592 |#1|)) |#1|)) (-15 -2634 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3015 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -3015 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3015 (|#1| |#1| (-287 |#1|))) (-15 -3341 (|#1| (-114) (-621 |#1|))) (-15 -3341 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3341 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3341 (|#1| (-114) |#1| |#1|)) (-15 -3341 (|#1| (-114) |#1|)) (-15 -2686 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| (-287 |#1|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -2686 (|#1| |#1| (-621 (-592 |#1|)) (-621 |#1|))) (-15 -2686 (|#1| |#1| (-592 |#1|) |#1|)) (-15 -2659 ((-592 |#1|) |#1|)) (-15 -2714 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3846 (|#1| (-592 |#1|))) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 113 (|has| |#1| (-25)))) (-2272 (((-621 (-1143)) $) 200)) (-2084 (((-400 (-1139 $)) $ (-592 $)) 168 (|has| |#1| (-541)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 140 (|has| |#1| (-541)))) (-2258 (($ $) 141 (|has| |#1| (-541)))) (-2799 (((-112) $) 143 (|has| |#1| (-541)))) (-1981 (((-621 (-592 $)) $) 44)) (-2001 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-3015 (($ $ (-287 $)) 56) (($ $ (-621 (-287 $))) 55) (($ $ (-621 (-592 $)) (-621 $)) 54)) (-3979 (($ $) 160 (|has| |#1| (-541)))) (-2402 (((-411 $) $) 161 (|has| |#1| (-541)))) (-3866 (((-112) $ $) 151 (|has| |#1| (-541)))) (-1682 (($) 101 (-1536 (|has| |#1| (-1079)) (|has| |#1| (-25))) CONST)) (-2714 (((-3 (-592 $) "failed") $) 69) (((-3 (-1143) "failed") $) 213) (((-3 (-549) "failed") $) 206 (|has| |#1| (-1009 (-549)))) (((-3 |#1| "failed") $) 204) (((-3 (-400 (-923 |#1|)) "failed") $) 166 (|has| |#1| (-541))) (((-3 (-923 |#1|) "failed") $) 120 (|has| |#1| (-1018))) (((-3 (-400 (-549)) "failed") $) 95 (-1536 (-12 (|has| |#1| (-1009 (-549))) (|has| |#1| (-541))) (|has| |#1| (-1009 (-400 (-549))))))) (-2659 (((-592 $) $) 68) (((-1143) $) 212) (((-549) $) 207 (|has| |#1| (-1009 (-549)))) ((|#1| $) 203) (((-400 (-923 |#1|)) $) 165 (|has| |#1| (-541))) (((-923 |#1|) $) 119 (|has| |#1| (-1018))) (((-400 (-549)) $) 94 (-1536 (-12 (|has| |#1| (-1009 (-549))) (|has| |#1| (-541))) (|has| |#1| (-1009 (-400 (-549))))))) (-2095 (($ $ $) 155 (|has| |#1| (-541)))) (-3879 (((-665 (-549)) (-665 $)) 134 (-1821 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 133 (-1821 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 132 (|has| |#1| (-1018))) (((-665 |#1|) (-665 $)) 131 (|has| |#1| (-1018)))) (-2114 (((-3 $ "failed") $) 103 (|has| |#1| (-1079)))) (-2067 (($ $ $) 154 (|has| |#1| (-541)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 149 (|has| |#1| (-541)))) (-1420 (((-112) $) 162 (|has| |#1| (-541)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 209 (|has| |#1| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 208 (|has| |#1| (-857 (-372))))) (-3225 (($ $) 51) (($ (-621 $)) 50)) (-2162 (((-621 (-114)) $) 43)) (-2834 (((-114) (-114)) 42)) (-2675 (((-112) $) 102 (|has| |#1| (-1079)))) (-3559 (((-112) $) 22 (|has| $ (-1009 (-549))))) (-1726 (($ $) 183 (|has| |#1| (-1018)))) (-1394 (((-1092 |#1| (-592 $)) $) 184 (|has| |#1| (-1018)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 158 (|has| |#1| (-541)))) (-1549 (((-1139 $) (-592 $)) 25 (|has| $ (-1018)))) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-2797 (($ (-1 $ $) (-592 $)) 36)) (-2634 (((-3 (-592 $) "failed") $) 46)) (-3697 (($ (-621 $)) 147 (|has| |#1| (-541))) (($ $ $) 146 (|has| |#1| (-541)))) (-3851 (((-1125) $) 9)) (-2071 (((-621 (-592 $)) $) 45)) (-1476 (($ (-114) $) 38) (($ (-114) (-621 $)) 37)) (-4266 (((-3 (-621 $) "failed") $) 189 (|has| |#1| (-1079)))) (-1671 (((-3 (-2 (|:| |val| $) (|:| -3731 (-549))) "failed") $) 180 (|has| |#1| (-1018)))) (-2533 (((-3 (-621 $) "failed") $) 187 (|has| |#1| (-25)))) (-2761 (((-3 (-2 (|:| -1570 (-549)) (|:| |var| (-592 $))) "failed") $) 186 (|has| |#1| (-25)))) (-1503 (((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $) 188 (|has| |#1| (-1079))) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $ (-114)) 182 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $ (-1143)) 181 (|has| |#1| (-1018)))) (-3421 (((-112) $ (-114)) 40) (((-112) $ (-1143)) 39)) (-1992 (($ $) 105 (-1536 (|has| |#1| (-465)) (|has| |#1| (-541))))) (-4036 (((-747) $) 47)) (-3990 (((-1087) $) 10)) (-2004 (((-112) $) 202)) (-2016 ((|#1| $) 201)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 148 (|has| |#1| (-541)))) (-3727 (($ (-621 $)) 145 (|has| |#1| (-541))) (($ $ $) 144 (|has| |#1| (-541)))) (-2979 (((-112) $ $) 35) (((-112) $ (-1143)) 34)) (-2121 (((-411 $) $) 159 (|has| |#1| (-541)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-541))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 156 (|has| |#1| (-541)))) (-2042 (((-3 $ "failed") $ $) 139 (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 150 (|has| |#1| (-541)))) (-3450 (((-112) $) 23 (|has| $ (-1009 (-549))))) (-2686 (($ $ (-592 $) $) 67) (($ $ (-621 (-592 $)) (-621 $)) 66) (($ $ (-621 (-287 $))) 65) (($ $ (-287 $)) 64) (($ $ $ $) 63) (($ $ (-621 $) (-621 $)) 62) (($ $ (-621 (-1143)) (-621 (-1 $ $))) 33) (($ $ (-621 (-1143)) (-621 (-1 $ (-621 $)))) 32) (($ $ (-1143) (-1 $ (-621 $))) 31) (($ $ (-1143) (-1 $ $)) 30) (($ $ (-621 (-114)) (-621 (-1 $ $))) 29) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) 28) (($ $ (-114) (-1 $ (-621 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1143)) 194 (|has| |#1| (-594 (-525)))) (($ $ (-621 (-1143))) 193 (|has| |#1| (-594 (-525)))) (($ $) 192 (|has| |#1| (-594 (-525)))) (($ $ (-114) $ (-1143)) 191 (|has| |#1| (-594 (-525)))) (($ $ (-621 (-114)) (-621 $) (-1143)) 190 (|has| |#1| (-594 (-525)))) (($ $ (-621 (-1143)) (-621 (-747)) (-621 (-1 $ $))) 179 (|has| |#1| (-1018))) (($ $ (-621 (-1143)) (-621 (-747)) (-621 (-1 $ (-621 $)))) 178 (|has| |#1| (-1018))) (($ $ (-1143) (-747) (-1 $ (-621 $))) 177 (|has| |#1| (-1018))) (($ $ (-1143) (-747) (-1 $ $)) 176 (|has| |#1| (-1018)))) (-3684 (((-747) $) 152 (|has| |#1| (-541)))) (-3341 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-621 $)) 57)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 153 (|has| |#1| (-541)))) (-3433 (($ $) 49) (($ $ $) 48)) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) 125 (|has| |#1| (-1018))) (($ $ (-1143) (-747)) 124 (|has| |#1| (-1018))) (($ $ (-621 (-1143))) 123 (|has| |#1| (-1018))) (($ $ (-1143)) 122 (|has| |#1| (-1018)))) (-3939 (($ $) 173 (|has| |#1| (-541)))) (-1403 (((-1092 |#1| (-592 $)) $) 174 (|has| |#1| (-541)))) (-2815 (($ $) 24 (|has| $ (-1018)))) (-2845 (((-863 (-549)) $) 211 (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) 210 (|has| |#1| (-594 (-863 (-372))))) (($ (-411 $)) 175 (|has| |#1| (-541))) (((-525) $) 97 (|has| |#1| (-594 (-525))))) (-1955 (($ $ $) 108 (|has| |#1| (-465)))) (-3293 (($ $ $) 109 (|has| |#1| (-465)))) (-3846 (((-834) $) 11) (($ (-592 $)) 70) (($ (-1143)) 214) (($ |#1|) 205) (($ (-1092 |#1| (-592 $))) 185 (|has| |#1| (-1018))) (($ (-400 |#1|)) 171 (|has| |#1| (-541))) (($ (-923 (-400 |#1|))) 170 (|has| |#1| (-541))) (($ (-400 (-923 (-400 |#1|)))) 169 (|has| |#1| (-541))) (($ (-400 (-923 |#1|))) 167 (|has| |#1| (-541))) (($ $) 138 (|has| |#1| (-541))) (($ (-923 |#1|)) 121 (|has| |#1| (-1018))) (($ (-400 (-549))) 96 (-1536 (|has| |#1| (-541)) (-12 (|has| |#1| (-1009 (-549))) (|has| |#1| (-541))) (|has| |#1| (-1009 (-400 (-549)))))) (($ (-549)) 93 (-1536 (|has| |#1| (-1018)) (|has| |#1| (-1009 (-549)))))) (-2210 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-2082 (((-747)) 130 (|has| |#1| (-1018)))) (-4137 (($ $) 53) (($ (-621 $)) 52)) (-4285 (((-112) (-114)) 41)) (-1498 (((-112) $ $) 142 (|has| |#1| (-541)))) (-1789 (($ (-1143) $) 199) (($ (-1143) $ $) 198) (($ (-1143) $ $ $) 197) (($ (-1143) $ $ $ $) 196) (($ (-1143) (-621 $)) 195)) (-3276 (($) 112 (|has| |#1| (-25)) CONST)) (-3287 (($) 100 (|has| |#1| (-1079)) CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) 129 (|has| |#1| (-1018))) (($ $ (-1143) (-747)) 128 (|has| |#1| (-1018))) (($ $ (-621 (-1143))) 127 (|has| |#1| (-1018))) (($ $ (-1143)) 126 (|has| |#1| (-1018)))) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)) (-2513 (($ (-1092 |#1| (-592 $)) (-1092 |#1| (-592 $))) 172 (|has| |#1| (-541))) (($ $ $) 106 (-1536 (|has| |#1| (-465)) (|has| |#1| (-541))))) (-2500 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2486 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-549)) 107 (-1536 (|has| |#1| (-465)) (|has| |#1| (-541)))) (($ $ (-747)) 104 (|has| |#1| (-1079))) (($ $ (-892)) 99 (|has| |#1| (-1079)))) (* (($ (-400 (-549)) $) 164 (|has| |#1| (-541))) (($ $ (-400 (-549))) 163 (|has| |#1| (-541))) (($ |#1| $) 137 (|has| |#1| (-170))) (($ $ |#1|) 136 (|has| |#1| (-170))) (($ (-549) $) 118 (|has| |#1| (-21))) (($ (-747) $) 114 (|has| |#1| (-25))) (($ (-892) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1079)))))
+(((-423 |#1|) (-138) (-823)) (T -423))
+((-2004 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-823)) (-5 *2 (-112)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-823)) (-5 *2 (-621 (-1143))))) (-1789 (*1 *1 *2 *1) (-12 (-5 *2 (-1143)) (-4 *1 (-423 *3)) (-4 *3 (-823)))) (-1789 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1143)) (-4 *1 (-423 *3)) (-4 *3 (-823)))) (-1789 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1143)) (-4 *1 (-423 *3)) (-4 *3 (-823)))) (-1789 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1143)) (-4 *1 (-423 *3)) (-4 *3 (-823)))) (-1789 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-621 *1)) (-4 *1 (-423 *4)) (-4 *4 (-823)))) (-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-1143)) (-4 *1 (-423 *3)) (-4 *3 (-823)) (-4 *3 (-594 (-525))))) (-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-1143))) (-4 *1 (-423 *3)) (-4 *3 (-823)) (-4 *3 (-594 (-525))))) (-2686 (*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)) (-4 *2 (-594 (-525))))) (-2686 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1143)) (-4 *1 (-423 *4)) (-4 *4 (-823)) (-4 *4 (-594 (-525))))) (-2686 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-621 (-114))) (-5 *3 (-621 *1)) (-5 *4 (-1143)) (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-594 (-525))))) (-4266 (*1 *2 *1) (|partial| -12 (-4 *3 (-1079)) (-4 *3 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-423 *3)))) (-1503 (*1 *2 *1) (|partial| -12 (-4 *3 (-1079)) (-4 *3 (-823)) (-5 *2 (-2 (|:| |var| (-592 *1)) (|:| -3731 (-549)))) (-4 *1 (-423 *3)))) (-2533 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-423 *3)))) (-2761 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -1570 (-549)) (|:| |var| (-592 *1)))) (-4 *1 (-423 *3)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1092 *3 (-592 *1))) (-4 *3 (-1018)) (-4 *3 (-823)) (-4 *1 (-423 *3)))) (-1394 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *3 (-823)) (-5 *2 (-1092 *3 (-592 *1))) (-4 *1 (-423 *3)))) (-1726 (*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)) (-4 *2 (-1018)))) (-1503 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1018)) (-4 *4 (-823)) (-5 *2 (-2 (|:| |var| (-592 *1)) (|:| -3731 (-549)))) (-4 *1 (-423 *4)))) (-1503 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1143)) (-4 *4 (-1018)) (-4 *4 (-823)) (-5 *2 (-2 (|:| |var| (-592 *1)) (|:| -3731 (-549)))) (-4 *1 (-423 *4)))) (-1671 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-823)) (-5 *2 (-2 (|:| |val| *1) (|:| -3731 (-549)))) (-4 *1 (-423 *3)))) (-2686 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-621 (-747))) (-5 *4 (-621 (-1 *1 *1))) (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-2686 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-621 (-747))) (-5 *4 (-621 (-1 *1 (-621 *1)))) (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-2686 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1143)) (-5 *3 (-747)) (-5 *4 (-1 *1 (-621 *1))) (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-2686 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1143)) (-5 *3 (-747)) (-5 *4 (-1 *1 *1)) (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-1018)))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-411 *1)) (-4 *1 (-423 *3)) (-4 *3 (-541)) (-4 *3 (-823)))) (-1403 (*1 *2 *1) (-12 (-4 *3 (-541)) (-4 *3 (-823)) (-5 *2 (-1092 *3 (-592 *1))) (-4 *1 (-423 *3)))) (-3939 (*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)) (-4 *2 (-541)))) (-2513 (*1 *1 *2 *2) (-12 (-5 *2 (-1092 *3 (-592 *1))) (-4 *3 (-541)) (-4 *3 (-823)) (-4 *1 (-423 *3)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-541)) (-4 *3 (-823)) (-4 *1 (-423 *3)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-923 (-400 *3))) (-4 *3 (-541)) (-4 *3 (-823)) (-4 *1 (-423 *3)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-400 *3)))) (-4 *3 (-541)) (-4 *3 (-823)) (-4 *1 (-423 *3)))) (-2084 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-423 *4)) (-4 *4 (-823)) (-4 *4 (-541)) (-5 *2 (-400 (-1139 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-423 *3)) (-4 *3 (-823)) (-4 *3 (-1079)))))
+(-13 (-295) (-1009 (-1143)) (-855 |t#1|) (-393 |t#1|) (-404 |t#1|) (-10 -8 (-15 -2004 ((-112) $)) (-15 -2016 (|t#1| $)) (-15 -2272 ((-621 (-1143)) $)) (-15 -1789 ($ (-1143) $)) (-15 -1789 ($ (-1143) $ $)) (-15 -1789 ($ (-1143) $ $ $)) (-15 -1789 ($ (-1143) $ $ $ $)) (-15 -1789 ($ (-1143) (-621 $))) (IF (|has| |t#1| (-594 (-525))) (PROGN (-6 (-594 (-525))) (-15 -2686 ($ $ (-1143))) (-15 -2686 ($ $ (-621 (-1143)))) (-15 -2686 ($ $)) (-15 -2686 ($ $ (-114) $ (-1143))) (-15 -2686 ($ $ (-621 (-114)) (-621 $) (-1143)))) |%noBranch|) (IF (|has| |t#1| (-1079)) (PROGN (-6 (-703)) (-15 ** ($ $ (-747))) (-15 -4266 ((-3 (-621 $) "failed") $)) (-15 -1503 ((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2533 ((-3 (-621 $) "failed") $)) (-15 -2761 ((-3 (-2 (|:| -1570 (-549)) (|:| |var| (-592 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-1009 (-923 |t#1|))) (-6 (-871 (-1143))) (-6 (-370 |t#1|)) (-15 -3846 ($ (-1092 |t#1| (-592 $)))) (-15 -1394 ((-1092 |t#1| (-592 $)) $)) (-15 -1726 ($ $)) (-15 -1503 ((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $ (-114))) (-15 -1503 ((-3 (-2 (|:| |var| (-592 $)) (|:| -3731 (-549))) "failed") $ (-1143))) (-15 -1671 ((-3 (-2 (|:| |val| $) (|:| -3731 (-549))) "failed") $)) (-15 -2686 ($ $ (-621 (-1143)) (-621 (-747)) (-621 (-1 $ $)))) (-15 -2686 ($ $ (-621 (-1143)) (-621 (-747)) (-621 (-1 $ (-621 $))))) (-15 -2686 ($ $ (-1143) (-747) (-1 $ (-621 $)))) (-15 -2686 ($ $ (-1143) (-747) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-541)) (PROGN (-6 (-356)) (-6 (-1009 (-400 (-923 |t#1|)))) (-15 -2845 ($ (-411 $))) (-15 -1403 ((-1092 |t#1| (-592 $)) $)) (-15 -3939 ($ $)) (-15 -2513 ($ (-1092 |t#1| (-592 $)) (-1092 |t#1| (-592 $)))) (-15 -3846 ($ (-400 |t#1|))) (-15 -3846 ($ (-923 (-400 |t#1|)))) (-15 -3846 ($ (-400 (-923 (-400 |t#1|))))) (-15 -2084 ((-400 (-1139 $)) $ (-592 $))) (IF (|has| |t#1| (-1009 (-549))) (-6 (-1009 (-400 (-549)))) |%noBranch|)) |%noBranch|)))
+(((-21) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-400 (-549))) |has| |#1| (-541)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-541)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-541)) ((-130) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) |has| |#1| (-541)) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-594 (-863 (-372))) |has| |#1| (-594 (-863 (-372)))) ((-594 (-863 (-549))) |has| |#1| (-594 (-863 (-549)))) ((-237) |has| |#1| (-541)) ((-283) |has| |#1| (-541)) ((-300) |has| |#1| (-541)) ((-302 $) . T) ((-295) . T) ((-356) |has| |#1| (-541)) ((-370 |#1|) |has| |#1| (-1018)) ((-393 |#1|) . T) ((-404 |#1|) . T) ((-444) |has| |#1| (-541)) ((-465) |has| |#1| (-465)) ((-505 (-592 $) $) . T) ((-505 $ $) . T) ((-541) |has| |#1| (-541)) ((-624 #0#) |has| |#1| (-541)) ((-624 |#1|) |has| |#1| (-170)) ((-624 $) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-617 (-549)) -12 (|has| |#1| (-617 (-549))) (|has| |#1| (-1018))) ((-617 |#1|) |has| |#1| (-1018)) ((-694 #0#) |has| |#1| (-541)) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) -1536 (|has| |#1| (-1079)) (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-823) . T) ((-871 (-1143)) |has| |#1| (-1018)) ((-857 (-372)) |has| |#1| (-857 (-372))) ((-857 (-549)) |has| |#1| (-857 (-549))) ((-855 |#1|) . T) ((-891) |has| |#1| (-541)) ((-1009 (-400 (-549))) -1536 (|has| |#1| (-1009 (-400 (-549)))) (-12 (|has| |#1| (-541)) (|has| |#1| (-1009 (-549))))) ((-1009 (-400 (-923 |#1|))) |has| |#1| (-541)) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 (-592 $)) . T) ((-1009 (-923 |#1|)) |has| |#1| (-1018)) ((-1009 (-1143)) . T) ((-1009 |#1|) . T) ((-1024 #0#) |has| |#1| (-541)) ((-1024 |#1|) |has| |#1| (-170)) ((-1024 $) |has| |#1| (-541)) ((-1018) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1025) -1536 (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1079) -1536 (|has| |#1| (-1079)) (|has| |#1| (-1018)) (|has| |#1| (-541)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1067) . T) ((-1180) . T) ((-1184) |has| |#1| (-541)))
+((-3796 ((|#2| |#2| |#2|) 33)) (-2834 (((-114) (-114)) 44)) (-2820 ((|#2| |#2|) 66)) (-3254 ((|#2| |#2|) 69)) (-3634 ((|#2| |#2|) 32)) (-1370 ((|#2| |#2| |#2|) 35)) (-1611 ((|#2| |#2| |#2|) 37)) (-2981 ((|#2| |#2| |#2|) 34)) (-1643 ((|#2| |#2| |#2|) 36)) (-4285 (((-112) (-114)) 42)) (-1273 ((|#2| |#2|) 39)) (-3000 ((|#2| |#2|) 38)) (-3212 ((|#2| |#2|) 27)) (-3553 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2096 ((|#2| |#2| |#2|) 31)))
+(((-424 |#1| |#2|) (-10 -7 (-15 -4285 ((-112) (-114))) (-15 -2834 ((-114) (-114))) (-15 -3212 (|#2| |#2|)) (-15 -3553 (|#2| |#2|)) (-15 -3553 (|#2| |#2| |#2|)) (-15 -2096 (|#2| |#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3796 (|#2| |#2| |#2|)) (-15 -2981 (|#2| |#2| |#2|)) (-15 -1370 (|#2| |#2| |#2|)) (-15 -1643 (|#2| |#2| |#2|)) (-15 -1611 (|#2| |#2| |#2|)) (-15 -3000 (|#2| |#2|)) (-15 -1273 (|#2| |#2|)) (-15 -3254 (|#2| |#2|)) (-15 -2820 (|#2| |#2|))) (-13 (-823) (-541)) (-423 |#1|)) (T -424))
+((-2820 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3254 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1273 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3000 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1611 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1643 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-1370 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-2981 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3796 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-2096 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3553 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3553 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-3212 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2)) (-4 *2 (-423 *3)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *4)) (-4 *4 (-423 *3)))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *5 (-423 *4)))))
+(-10 -7 (-15 -4285 ((-112) (-114))) (-15 -2834 ((-114) (-114))) (-15 -3212 (|#2| |#2|)) (-15 -3553 (|#2| |#2|)) (-15 -3553 (|#2| |#2| |#2|)) (-15 -2096 (|#2| |#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3796 (|#2| |#2| |#2|)) (-15 -2981 (|#2| |#2| |#2|)) (-15 -1370 (|#2| |#2| |#2|)) (-15 -1643 (|#2| |#2| |#2|)) (-15 -1611 (|#2| |#2| |#2|)) (-15 -3000 (|#2| |#2|)) (-15 -1273 (|#2| |#2|)) (-15 -3254 (|#2| |#2|)) (-15 -2820 (|#2| |#2|)))
+((-2405 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1139 |#2|)) (|:| |pol2| (-1139 |#2|)) (|:| |prim| (-1139 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-621 (-1139 |#2|))) (|:| |prim| (-1139 |#2|))) (-621 |#2|)) 61)))
+(((-425 |#1| |#2|) (-10 -7 (-15 -2405 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-621 (-1139 |#2|))) (|:| |prim| (-1139 |#2|))) (-621 |#2|))) (IF (|has| |#2| (-27)) (-15 -2405 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1139 |#2|)) (|:| |pol2| (-1139 |#2|)) (|:| |prim| (-1139 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-541) (-823) (-145)) (-423 |#1|)) (T -425))
+((-2405 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-541) (-823) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1139 *3)) (|:| |pol2| (-1139 *3)) (|:| |prim| (-1139 *3)))) (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-423 *4)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-423 *4)) (-4 *4 (-13 (-541) (-823) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-621 (-1139 *5))) (|:| |prim| (-1139 *5)))) (-5 *1 (-425 *4 *5)))))
+(-10 -7 (-15 -2405 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-621 (-1139 |#2|))) (|:| |prim| (-1139 |#2|))) (-621 |#2|))) (IF (|has| |#2| (-27)) (-15 -2405 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1139 |#2|)) (|:| |pol2| (-1139 |#2|)) (|:| |prim| (-1139 |#2|))) |#2| |#2|)) |%noBranch|))
+((-1930 (((-1231)) 19)) (-4046 (((-1139 (-400 (-549))) |#2| (-592 |#2|)) 41) (((-400 (-549)) |#2|) 25)))
+(((-426 |#1| |#2|) (-10 -7 (-15 -4046 ((-400 (-549)) |#2|)) (-15 -4046 ((-1139 (-400 (-549))) |#2| (-592 |#2|))) (-15 -1930 ((-1231)))) (-13 (-823) (-541) (-1009 (-549))) (-423 |#1|)) (T -426))
+((-1930 (*1 *2) (-12 (-4 *3 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-1231)) (-5 *1 (-426 *3 *4)) (-4 *4 (-423 *3)))) (-4046 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-423 *5)) (-4 *5 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-1139 (-400 (-549)))) (-5 *1 (-426 *5 *3)))) (-4046 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-400 (-549))) (-5 *1 (-426 *4 *3)) (-4 *3 (-423 *4)))))
+(-10 -7 (-15 -4046 ((-400 (-549)) |#2|)) (-15 -4046 ((-1139 (-400 (-549))) |#2| (-592 |#2|))) (-15 -1930 ((-1231))))
+((-3530 (((-112) $) 28)) (-3833 (((-112) $) 30)) (-2528 (((-112) $) 31)) (-3998 (((-112) $) 34)) (-3959 (((-112) $) 29)) (-3058 (((-112) $) 33)) (-3846 (((-834) $) 18) (($ (-1125)) 27) (($ (-1143)) 23) (((-1143) $) 22) (((-1071) $) 21)) (-2109 (((-112) $) 32)) (-2389 (((-112) $ $) 15)))
+(((-427) (-13 (-593 (-834)) (-10 -8 (-15 -3846 ($ (-1125))) (-15 -3846 ($ (-1143))) (-15 -3846 ((-1143) $)) (-15 -3846 ((-1071) $)) (-15 -3530 ((-112) $)) (-15 -3959 ((-112) $)) (-15 -2528 ((-112) $)) (-15 -3058 ((-112) $)) (-15 -3998 ((-112) $)) (-15 -2109 ((-112) $)) (-15 -3833 ((-112) $)) (-15 -2389 ((-112) $ $))))) (T -427))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-427)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-427)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-427)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-427)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-2389 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
+(-13 (-593 (-834)) (-10 -8 (-15 -3846 ($ (-1125))) (-15 -3846 ($ (-1143))) (-15 -3846 ((-1143) $)) (-15 -3846 ((-1071) $)) (-15 -3530 ((-112) $)) (-15 -3959 ((-112) $)) (-15 -2528 ((-112) $)) (-15 -3058 ((-112) $)) (-15 -3998 ((-112) $)) (-15 -2109 ((-112) $)) (-15 -3833 ((-112) $)) (-15 -2389 ((-112) $ $))))
+((-2509 (((-3 (-411 (-1139 (-400 (-549)))) "failed") |#3|) 70)) (-2874 (((-411 |#3|) |#3|) 34)) (-1959 (((-3 (-411 (-1139 (-48))) "failed") |#3|) 46 (|has| |#2| (-1009 (-48))))) (-3023 (((-3 (|:| |overq| (-1139 (-400 (-549)))) (|:| |overan| (-1139 (-48))) (|:| -4151 (-112))) |#3|) 37)))
+(((-428 |#1| |#2| |#3|) (-10 -7 (-15 -2874 ((-411 |#3|) |#3|)) (-15 -2509 ((-3 (-411 (-1139 (-400 (-549)))) "failed") |#3|)) (-15 -3023 ((-3 (|:| |overq| (-1139 (-400 (-549)))) (|:| |overan| (-1139 (-48))) (|:| -4151 (-112))) |#3|)) (IF (|has| |#2| (-1009 (-48))) (-15 -1959 ((-3 (-411 (-1139 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-541) (-823) (-1009 (-549))) (-423 |#1|) (-1202 |#2|)) (T -428))
+((-1959 (*1 *2 *3) (|partial| -12 (-4 *5 (-1009 (-48))) (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4)) (-5 *2 (-411 (-1139 (-48)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1202 *5)))) (-3023 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4)) (-5 *2 (-3 (|:| |overq| (-1139 (-400 (-549)))) (|:| |overan| (-1139 (-48))) (|:| -4151 (-112)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1202 *5)))) (-2509 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4)) (-5 *2 (-411 (-1139 (-400 (-549))))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1202 *5)))) (-2874 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4)) (-5 *2 (-411 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1202 *5)))))
+(-10 -7 (-15 -2874 ((-411 |#3|) |#3|)) (-15 -2509 ((-3 (-411 (-1139 (-400 (-549)))) "failed") |#3|)) (-15 -3023 ((-3 (|:| |overq| (-1139 (-400 (-549)))) (|:| |overan| (-1139 (-48))) (|:| -4151 (-112))) |#3|)) (IF (|has| |#2| (-1009 (-48))) (-15 -1959 ((-3 (-411 (-1139 (-48))) "failed") |#3|)) |%noBranch|))
+((-3834 (((-112) $ $) NIL)) (-3113 (((-1125) $ (-1125)) NIL)) (-2060 (($ $ (-1125)) NIL)) (-3001 (((-1125) $) NIL)) (-4063 (((-381) (-381) (-381)) 17) (((-381) (-381)) 15)) (-1359 (($ (-381)) NIL) (($ (-381) (-1125)) NIL)) (-2481 (((-381) $) NIL)) (-3851 (((-1125) $) NIL)) (-2646 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2244 (((-1231) (-1125)) 9)) (-3071 (((-1231) (-1125)) 10)) (-2590 (((-1231)) 11)) (-3846 (((-834) $) NIL)) (-3578 (($ $) 35)) (-2389 (((-112) $ $) NIL)))
+(((-429) (-13 (-357 (-381) (-1125)) (-10 -7 (-15 -4063 ((-381) (-381) (-381))) (-15 -4063 ((-381) (-381))) (-15 -2244 ((-1231) (-1125))) (-15 -3071 ((-1231) (-1125))) (-15 -2590 ((-1231)))))) (T -429))
+((-4063 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429)))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-429)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-429)))) (-2590 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-429)))))
+(-13 (-357 (-381) (-1125)) (-10 -7 (-15 -4063 ((-381) (-381) (-381))) (-15 -4063 ((-381) (-381))) (-15 -2244 ((-1231) (-1125))) (-15 -3071 ((-1231) (-1125))) (-15 -2590 ((-1231)))))
+((-3834 (((-112) $ $) NIL)) (-3925 (((-3 (|:| |fst| (-427)) (|:| -2903 "void")) $) 11)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2073 (($) 32)) (-3101 (($) 38)) (-3974 (($) 34)) (-4053 (($) 36)) (-4199 (($) 33)) (-3392 (($) 35)) (-3913 (($) 37)) (-2680 (((-112) $) 8)) (-3342 (((-621 (-923 (-549))) $) 19)) (-3854 (($ (-3 (|:| |fst| (-427)) (|:| -2903 "void")) (-621 (-1143)) (-112)) 27) (($ (-3 (|:| |fst| (-427)) (|:| -2903 "void")) (-621 (-923 (-549))) (-112)) 28)) (-3846 (((-834) $) 23) (($ (-427)) 29)) (-2389 (((-112) $ $) NIL)))
+(((-430) (-13 (-1067) (-10 -8 (-15 -3846 ((-834) $)) (-15 -3846 ($ (-427))) (-15 -3925 ((-3 (|:| |fst| (-427)) (|:| -2903 "void")) $)) (-15 -3342 ((-621 (-923 (-549))) $)) (-15 -2680 ((-112) $)) (-15 -3854 ($ (-3 (|:| |fst| (-427)) (|:| -2903 "void")) (-621 (-1143)) (-112))) (-15 -3854 ($ (-3 (|:| |fst| (-427)) (|:| -2903 "void")) (-621 (-923 (-549))) (-112))) (-15 -2073 ($)) (-15 -4199 ($)) (-15 -3974 ($)) (-15 -3101 ($)) (-15 -3392 ($)) (-15 -4053 ($)) (-15 -3913 ($))))) (T -430))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-430)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-430)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-5 *1 (-430)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-621 (-923 (-549)))) (-5 *1 (-430)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430)))) (-3854 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-5 *3 (-621 (-1143))) (-5 *4 (-112)) (-5 *1 (-430)))) (-3854 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-112)) (-5 *1 (-430)))) (-2073 (*1 *1) (-5 *1 (-430))) (-4199 (*1 *1) (-5 *1 (-430))) (-3974 (*1 *1) (-5 *1 (-430))) (-3101 (*1 *1) (-5 *1 (-430))) (-3392 (*1 *1) (-5 *1 (-430))) (-4053 (*1 *1) (-5 *1 (-430))) (-3913 (*1 *1) (-5 *1 (-430))))
+(-13 (-1067) (-10 -8 (-15 -3846 ((-834) $)) (-15 -3846 ($ (-427))) (-15 -3925 ((-3 (|:| |fst| (-427)) (|:| -2903 "void")) $)) (-15 -3342 ((-621 (-923 (-549))) $)) (-15 -2680 ((-112) $)) (-15 -3854 ($ (-3 (|:| |fst| (-427)) (|:| -2903 "void")) (-621 (-1143)) (-112))) (-15 -3854 ($ (-3 (|:| |fst| (-427)) (|:| -2903 "void")) (-621 (-923 (-549))) (-112))) (-15 -2073 ($)) (-15 -4199 ($)) (-15 -3974 ($)) (-15 -3101 ($)) (-15 -3392 ($)) (-15 -4053 ($)) (-15 -3913 ($))))
+((-3834 (((-112) $ $) NIL)) (-2481 (((-1143) $) 8)) (-3851 (((-1125) $) 16)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 11)) (-2389 (((-112) $ $) 13)))
+(((-431 |#1|) (-13 (-1067) (-10 -8 (-15 -2481 ((-1143) $)))) (-1143)) (T -431))
+((-2481 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-431 *3)) (-14 *3 *2))))
+(-13 (-1067) (-10 -8 (-15 -2481 ((-1143) $))))
+((-3316 (((-1231) $) 7)) (-3846 (((-834) $) 8) (($ (-1226 (-675))) 14) (($ (-621 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 11)))
+(((-432) (-138)) (T -432))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-675))) (-4 *1 (-432)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-432)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) (-4 *1 (-432)))))
+(-13 (-388) (-10 -8 (-15 -3846 ($ (-1226 (-675)))) (-15 -3846 ($ (-621 (-323)))) (-15 -3846 ($ (-323))) (-15 -3846 ($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))))))
+(((-593 (-834)) . T) ((-388) . T) ((-1180) . T))
+((-2714 (((-3 $ "failed") (-1226 (-309 (-372)))) 21) (((-3 $ "failed") (-1226 (-309 (-549)))) 19) (((-3 $ "failed") (-1226 (-923 (-372)))) 17) (((-3 $ "failed") (-1226 (-923 (-549)))) 15) (((-3 $ "failed") (-1226 (-400 (-923 (-372))))) 13) (((-3 $ "failed") (-1226 (-400 (-923 (-549))))) 11)) (-2659 (($ (-1226 (-309 (-372)))) 22) (($ (-1226 (-309 (-549)))) 20) (($ (-1226 (-923 (-372)))) 18) (($ (-1226 (-923 (-549)))) 16) (($ (-1226 (-400 (-923 (-372))))) 14) (($ (-1226 (-400 (-923 (-549))))) 12)) (-3316 (((-1231) $) 7)) (-3846 (((-834) $) 8) (($ (-621 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) 23)))
+(((-433) (-138)) (T -433))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-433)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323))))) (-4 *1 (-433)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-1226 (-309 (-372)))) (-4 *1 (-433)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-1226 (-309 (-372)))) (-4 *1 (-433)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-1226 (-309 (-549)))) (-4 *1 (-433)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-1226 (-309 (-549)))) (-4 *1 (-433)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-1226 (-923 (-372)))) (-4 *1 (-433)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-1226 (-923 (-372)))) (-4 *1 (-433)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-1226 (-923 (-549)))) (-4 *1 (-433)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-1226 (-923 (-549)))) (-4 *1 (-433)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-1226 (-400 (-923 (-372))))) (-4 *1 (-433)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-1226 (-400 (-923 (-372))))) (-4 *1 (-433)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-1226 (-400 (-923 (-549))))) (-4 *1 (-433)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-1226 (-400 (-923 (-549))))) (-4 *1 (-433)))))
+(-13 (-388) (-10 -8 (-15 -3846 ($ (-621 (-323)))) (-15 -3846 ($ (-323))) (-15 -3846 ($ (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323)))))) (-15 -2659 ($ (-1226 (-309 (-372))))) (-15 -2714 ((-3 $ "failed") (-1226 (-309 (-372))))) (-15 -2659 ($ (-1226 (-309 (-549))))) (-15 -2714 ((-3 $ "failed") (-1226 (-309 (-549))))) (-15 -2659 ($ (-1226 (-923 (-372))))) (-15 -2714 ((-3 $ "failed") (-1226 (-923 (-372))))) (-15 -2659 ($ (-1226 (-923 (-549))))) (-15 -2714 ((-3 $ "failed") (-1226 (-923 (-549))))) (-15 -2659 ($ (-1226 (-400 (-923 (-372)))))) (-15 -2714 ((-3 $ "failed") (-1226 (-400 (-923 (-372)))))) (-15 -2659 ($ (-1226 (-400 (-923 (-549)))))) (-15 -2714 ((-3 $ "failed") (-1226 (-400 (-923 (-549))))))))
+(((-593 (-834)) . T) ((-388) . T) ((-1180) . T))
+((-1455 (((-112)) 17)) (-3637 (((-112) (-112)) 18)) (-4124 (((-112)) 13)) (-2716 (((-112) (-112)) 14)) (-4099 (((-112)) 15)) (-3791 (((-112) (-112)) 16)) (-3201 (((-892) (-892)) 21) (((-892)) 20)) (-3116 (((-747) (-621 (-2 (|:| -2121 |#1|) (|:| -3701 (-549))))) 42)) (-1677 (((-892) (-892)) 23) (((-892)) 22)) (-3688 (((-2 (|:| -2715 (-549)) (|:| -4024 (-621 |#1|))) |#1|) 62)) (-3861 (((-411 |#1|) (-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| |#1|) (|:| -2495 (-549))))))) 126)) (-1448 (((-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| |#1|) (|:| -2495 (-549)))))) |#1| (-112)) 152)) (-2131 (((-411 |#1|) |#1| (-747) (-747)) 165) (((-411 |#1|) |#1| (-621 (-747)) (-747)) 162) (((-411 |#1|) |#1| (-621 (-747))) 164) (((-411 |#1|) |#1| (-747)) 163) (((-411 |#1|) |#1|) 161)) (-3604 (((-3 |#1| "failed") (-892) |#1| (-621 (-747)) (-747) (-112)) 167) (((-3 |#1| "failed") (-892) |#1| (-621 (-747)) (-747)) 168) (((-3 |#1| "failed") (-892) |#1| (-621 (-747))) 170) (((-3 |#1| "failed") (-892) |#1| (-747)) 169) (((-3 |#1| "failed") (-892) |#1|) 171)) (-2121 (((-411 |#1|) |#1| (-747) (-747)) 160) (((-411 |#1|) |#1| (-621 (-747)) (-747)) 156) (((-411 |#1|) |#1| (-621 (-747))) 158) (((-411 |#1|) |#1| (-747)) 157) (((-411 |#1|) |#1|) 155)) (-1282 (((-112) |#1|) 37)) (-4232 (((-714 (-747)) (-621 (-2 (|:| -2121 |#1|) (|:| -3701 (-549))))) 67)) (-2126 (((-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| |#1|) (|:| -2495 (-549)))))) |#1| (-112) (-1069 (-747)) (-747)) 154)))
+(((-434 |#1|) (-10 -7 (-15 -3861 ((-411 |#1|) (-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| |#1|) (|:| -2495 (-549)))))))) (-15 -4232 ((-714 (-747)) (-621 (-2 (|:| -2121 |#1|) (|:| -3701 (-549)))))) (-15 -1677 ((-892))) (-15 -1677 ((-892) (-892))) (-15 -3201 ((-892))) (-15 -3201 ((-892) (-892))) (-15 -3116 ((-747) (-621 (-2 (|:| -2121 |#1|) (|:| -3701 (-549)))))) (-15 -3688 ((-2 (|:| -2715 (-549)) (|:| -4024 (-621 |#1|))) |#1|)) (-15 -1455 ((-112))) (-15 -3637 ((-112) (-112))) (-15 -4124 ((-112))) (-15 -2716 ((-112) (-112))) (-15 -1282 ((-112) |#1|)) (-15 -4099 ((-112))) (-15 -3791 ((-112) (-112))) (-15 -2121 ((-411 |#1|) |#1|)) (-15 -2121 ((-411 |#1|) |#1| (-747))) (-15 -2121 ((-411 |#1|) |#1| (-621 (-747)))) (-15 -2121 ((-411 |#1|) |#1| (-621 (-747)) (-747))) (-15 -2121 ((-411 |#1|) |#1| (-747) (-747))) (-15 -2131 ((-411 |#1|) |#1|)) (-15 -2131 ((-411 |#1|) |#1| (-747))) (-15 -2131 ((-411 |#1|) |#1| (-621 (-747)))) (-15 -2131 ((-411 |#1|) |#1| (-621 (-747)) (-747))) (-15 -2131 ((-411 |#1|) |#1| (-747) (-747))) (-15 -3604 ((-3 |#1| "failed") (-892) |#1|)) (-15 -3604 ((-3 |#1| "failed") (-892) |#1| (-747))) (-15 -3604 ((-3 |#1| "failed") (-892) |#1| (-621 (-747)))) (-15 -3604 ((-3 |#1| "failed") (-892) |#1| (-621 (-747)) (-747))) (-15 -3604 ((-3 |#1| "failed") (-892) |#1| (-621 (-747)) (-747) (-112))) (-15 -1448 ((-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| |#1|) (|:| -2495 (-549)))))) |#1| (-112))) (-15 -2126 ((-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| |#1|) (|:| -2495 (-549)))))) |#1| (-112) (-1069 (-747)) (-747)))) (-1202 (-549))) (T -434))
+((-2126 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1069 (-747))) (-5 *6 (-747)) (-5 *2 (-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| *3) (|:| -2495 (-549))))))) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-1448 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| *3) (|:| -2495 (-549))))))) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-3604 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-892)) (-5 *4 (-621 (-747))) (-5 *5 (-747)) (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1202 (-549))))) (-3604 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-892)) (-5 *4 (-621 (-747))) (-5 *5 (-747)) (-5 *1 (-434 *2)) (-4 *2 (-1202 (-549))))) (-3604 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-892)) (-5 *4 (-621 (-747))) (-5 *1 (-434 *2)) (-4 *2 (-1202 (-549))))) (-3604 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-892)) (-5 *4 (-747)) (-5 *1 (-434 *2)) (-4 *2 (-1202 (-549))))) (-3604 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-892)) (-5 *1 (-434 *2)) (-4 *2 (-1202 (-549))))) (-2131 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-2131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-621 (-747))) (-5 *5 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-2131 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-747))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-2131 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-2131 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-2121 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-2121 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-621 (-747))) (-5 *5 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-747))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-2121 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-4099 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-1282 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-2716 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-4124 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-1455 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2715 (-549)) (|:| -4024 (-621 *3)))) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -2121 *4) (|:| -3701 (-549))))) (-4 *4 (-1202 (-549))) (-5 *2 (-747)) (-5 *1 (-434 *4)))) (-3201 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-3201 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-1677 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-1677 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -2121 *4) (|:| -3701 (-549))))) (-4 *4 (-1202 (-549))) (-5 *2 (-714 (-747))) (-5 *1 (-434 *4)))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| *4) (|:| -2495 (-549))))))) (-4 *4 (-1202 (-549))) (-5 *2 (-411 *4)) (-5 *1 (-434 *4)))))
+(-10 -7 (-15 -3861 ((-411 |#1|) (-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| |#1|) (|:| -2495 (-549)))))))) (-15 -4232 ((-714 (-747)) (-621 (-2 (|:| -2121 |#1|) (|:| -3701 (-549)))))) (-15 -1677 ((-892))) (-15 -1677 ((-892) (-892))) (-15 -3201 ((-892))) (-15 -3201 ((-892) (-892))) (-15 -3116 ((-747) (-621 (-2 (|:| -2121 |#1|) (|:| -3701 (-549)))))) (-15 -3688 ((-2 (|:| -2715 (-549)) (|:| -4024 (-621 |#1|))) |#1|)) (-15 -1455 ((-112))) (-15 -3637 ((-112) (-112))) (-15 -4124 ((-112))) (-15 -2716 ((-112) (-112))) (-15 -1282 ((-112) |#1|)) (-15 -4099 ((-112))) (-15 -3791 ((-112) (-112))) (-15 -2121 ((-411 |#1|) |#1|)) (-15 -2121 ((-411 |#1|) |#1| (-747))) (-15 -2121 ((-411 |#1|) |#1| (-621 (-747)))) (-15 -2121 ((-411 |#1|) |#1| (-621 (-747)) (-747))) (-15 -2121 ((-411 |#1|) |#1| (-747) (-747))) (-15 -2131 ((-411 |#1|) |#1|)) (-15 -2131 ((-411 |#1|) |#1| (-747))) (-15 -2131 ((-411 |#1|) |#1| (-621 (-747)))) (-15 -2131 ((-411 |#1|) |#1| (-621 (-747)) (-747))) (-15 -2131 ((-411 |#1|) |#1| (-747) (-747))) (-15 -3604 ((-3 |#1| "failed") (-892) |#1|)) (-15 -3604 ((-3 |#1| "failed") (-892) |#1| (-747))) (-15 -3604 ((-3 |#1| "failed") (-892) |#1| (-621 (-747)))) (-15 -3604 ((-3 |#1| "failed") (-892) |#1| (-621 (-747)) (-747))) (-15 -3604 ((-3 |#1| "failed") (-892) |#1| (-621 (-747)) (-747) (-112))) (-15 -1448 ((-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| |#1|) (|:| -2495 (-549)))))) |#1| (-112))) (-15 -2126 ((-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| |#1|) (|:| -2495 (-549)))))) |#1| (-112) (-1069 (-747)) (-747))))
+((-1269 (((-549) |#2|) 48) (((-549) |#2| (-747)) 47)) (-3156 (((-549) |#2|) 55)) (-4119 ((|#3| |#2|) 25)) (-3630 ((|#3| |#2| (-892)) 14)) (-4210 ((|#3| |#2|) 15)) (-1428 ((|#3| |#2|) 9)) (-4036 ((|#3| |#2|) 10)) (-3759 ((|#3| |#2| (-892)) 62) ((|#3| |#2|) 30)) (-2769 (((-549) |#2|) 57)))
+(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -2769 ((-549) |#2|)) (-15 -3759 (|#3| |#2|)) (-15 -3759 (|#3| |#2| (-892))) (-15 -3156 ((-549) |#2|)) (-15 -1269 ((-549) |#2| (-747))) (-15 -1269 ((-549) |#2|)) (-15 -3630 (|#3| |#2| (-892))) (-15 -4119 (|#3| |#2|)) (-15 -1428 (|#3| |#2|)) (-15 -4036 (|#3| |#2|)) (-15 -4210 (|#3| |#2|))) (-1018) (-1202 |#1|) (-13 (-397) (-1009 |#1|) (-356) (-1165) (-277))) (T -435))
+((-4210 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1165) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1202 *4)))) (-4036 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1165) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1202 *4)))) (-1428 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1165) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1202 *4)))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1165) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1202 *4)))) (-3630 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-4 *5 (-1018)) (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1165) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1202 *5)))) (-1269 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1202 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1165) (-277))))) (-1269 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *5 *3 *6)) (-4 *3 (-1202 *5)) (-4 *6 (-13 (-397) (-1009 *5) (-356) (-1165) (-277))))) (-3156 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1202 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1165) (-277))))) (-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-4 *5 (-1018)) (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1165) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1202 *5)))) (-3759 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1165) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1202 *4)))) (-2769 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1202 *4)) (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1165) (-277))))))
+(-10 -7 (-15 -2769 ((-549) |#2|)) (-15 -3759 (|#3| |#2|)) (-15 -3759 (|#3| |#2| (-892))) (-15 -3156 ((-549) |#2|)) (-15 -1269 ((-549) |#2| (-747))) (-15 -1269 ((-549) |#2|)) (-15 -3630 (|#3| |#2| (-892))) (-15 -4119 (|#3| |#2|)) (-15 -1428 (|#3| |#2|)) (-15 -4036 (|#3| |#2|)) (-15 -4210 (|#3| |#2|)))
+((-3787 ((|#2| (-1226 |#1|)) 36)) (-4062 ((|#2| |#2| |#1|) 49)) (-2259 ((|#2| |#2| |#1|) 41)) (-3064 ((|#2| |#2|) 38)) (-2600 (((-112) |#2|) 30)) (-3950 (((-621 |#2|) (-892) (-411 |#2|)) 17)) (-3604 ((|#2| (-892) (-411 |#2|)) 21)) (-4232 (((-714 (-747)) (-411 |#2|)) 25)))
+(((-436 |#1| |#2|) (-10 -7 (-15 -2600 ((-112) |#2|)) (-15 -3787 (|#2| (-1226 |#1|))) (-15 -3064 (|#2| |#2|)) (-15 -2259 (|#2| |#2| |#1|)) (-15 -4062 (|#2| |#2| |#1|)) (-15 -4232 ((-714 (-747)) (-411 |#2|))) (-15 -3604 (|#2| (-892) (-411 |#2|))) (-15 -3950 ((-621 |#2|) (-892) (-411 |#2|)))) (-1018) (-1202 |#1|)) (T -436))
+((-3950 (*1 *2 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-411 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-1018)) (-5 *2 (-621 *6)) (-5 *1 (-436 *5 *6)))) (-3604 (*1 *2 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-411 *2)) (-4 *2 (-1202 *5)) (-5 *1 (-436 *5 *2)) (-4 *5 (-1018)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-411 *5)) (-4 *5 (-1202 *4)) (-4 *4 (-1018)) (-5 *2 (-714 (-747))) (-5 *1 (-436 *4 *5)))) (-4062 (*1 *2 *2 *3) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1202 *3)))) (-2259 (*1 *2 *2 *3) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1202 *3)))) (-3064 (*1 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1202 *3)))) (-3787 (*1 *2 *3) (-12 (-5 *3 (-1226 *4)) (-4 *4 (-1018)) (-4 *2 (-1202 *4)) (-5 *1 (-436 *4 *2)))) (-2600 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) (-4 *3 (-1202 *4)))))
+(-10 -7 (-15 -2600 ((-112) |#2|)) (-15 -3787 (|#2| (-1226 |#1|))) (-15 -3064 (|#2| |#2|)) (-15 -2259 (|#2| |#2| |#1|)) (-15 -4062 (|#2| |#2| |#1|)) (-15 -4232 ((-714 (-747)) (-411 |#2|))) (-15 -3604 (|#2| (-892) (-411 |#2|))) (-15 -3950 ((-621 |#2|) (-892) (-411 |#2|))))
+((-1754 (((-747)) 41)) (-1441 (((-747)) 23 (|has| |#1| (-397))) (((-747) (-747)) 22 (|has| |#1| (-397)))) (-1456 (((-549) |#1|) 18 (|has| |#1| (-397)))) (-2526 (((-549) |#1|) 20 (|has| |#1| (-397)))) (-1369 (((-747)) 40) (((-747) (-747)) 39)) (-2749 ((|#1| (-747) (-549)) 29)) (-2656 (((-1231)) 43)))
+(((-437 |#1|) (-10 -7 (-15 -2749 (|#1| (-747) (-549))) (-15 -1369 ((-747) (-747))) (-15 -1369 ((-747))) (-15 -1754 ((-747))) (-15 -2656 ((-1231))) (IF (|has| |#1| (-397)) (PROGN (-15 -2526 ((-549) |#1|)) (-15 -1456 ((-549) |#1|)) (-15 -1441 ((-747) (-747))) (-15 -1441 ((-747)))) |%noBranch|)) (-1018)) (T -437))
+((-1441 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-1456 (*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-2526 (*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))) (-2656 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-1754 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-1369 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-1369 (*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-549)) (-5 *1 (-437 *2)) (-4 *2 (-1018)))))
+(-10 -7 (-15 -2749 (|#1| (-747) (-549))) (-15 -1369 ((-747) (-747))) (-15 -1369 ((-747))) (-15 -1754 ((-747))) (-15 -2656 ((-1231))) (IF (|has| |#1| (-397)) (PROGN (-15 -2526 ((-549) |#1|)) (-15 -1456 ((-549) |#1|)) (-15 -1441 ((-747) (-747))) (-15 -1441 ((-747)))) |%noBranch|))
+((-1767 (((-621 (-549)) (-549)) 61)) (-1420 (((-112) (-167 (-549))) 65)) (-2121 (((-411 (-167 (-549))) (-167 (-549))) 60)))
+(((-438) (-10 -7 (-15 -2121 ((-411 (-167 (-549))) (-167 (-549)))) (-15 -1767 ((-621 (-549)) (-549))) (-15 -1420 ((-112) (-167 (-549)))))) (T -438))
+((-1420 (*1 *2 *3) (-12 (-5 *3 (-167 (-549))) (-5 *2 (-112)) (-5 *1 (-438)))) (-1767 (*1 *2 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-438)) (-5 *3 (-549)))) (-2121 (*1 *2 *3) (-12 (-5 *2 (-411 (-167 (-549)))) (-5 *1 (-438)) (-5 *3 (-167 (-549))))))
+(-10 -7 (-15 -2121 ((-411 (-167 (-549))) (-167 (-549)))) (-15 -1767 ((-621 (-549)) (-549))) (-15 -1420 ((-112) (-167 (-549)))))
+((-3649 ((|#4| |#4| (-621 |#4|)) 61)) (-2046 (((-621 |#4|) (-621 |#4|) (-1125) (-1125)) 17) (((-621 |#4|) (-621 |#4|) (-1125)) 16) (((-621 |#4|) (-621 |#4|)) 11)))
+(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3649 (|#4| |#4| (-621 |#4|))) (-15 -2046 ((-621 |#4|) (-621 |#4|))) (-15 -2046 ((-621 |#4|) (-621 |#4|) (-1125))) (-15 -2046 ((-621 |#4|) (-621 |#4|) (-1125) (-1125)))) (-300) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -439))
+((-2046 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-1125)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2046 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-1125)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2046 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-439 *3 *4 *5 *6)))) (-3649 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3649 (|#4| |#4| (-621 |#4|))) (-15 -2046 ((-621 |#4|) (-621 |#4|))) (-15 -2046 ((-621 |#4|) (-621 |#4|) (-1125))) (-15 -2046 ((-621 |#4|) (-621 |#4|) (-1125) (-1125))))
+((-3902 (((-621 (-621 |#4|)) (-621 |#4|) (-112)) 73) (((-621 (-621 |#4|)) (-621 |#4|)) 72) (((-621 (-621 |#4|)) (-621 |#4|) (-621 |#4|) (-112)) 66) (((-621 (-621 |#4|)) (-621 |#4|) (-621 |#4|)) 67)) (-1582 (((-621 (-621 |#4|)) (-621 |#4|) (-112)) 42) (((-621 (-621 |#4|)) (-621 |#4|)) 63)))
+(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1582 ((-621 (-621 |#4|)) (-621 |#4|))) (-15 -1582 ((-621 (-621 |#4|)) (-621 |#4|) (-112))) (-15 -3902 ((-621 (-621 |#4|)) (-621 |#4|) (-621 |#4|))) (-15 -3902 ((-621 (-621 |#4|)) (-621 |#4|) (-621 |#4|) (-112))) (-15 -3902 ((-621 (-621 |#4|)) (-621 |#4|))) (-15 -3902 ((-621 (-621 |#4|)) (-621 |#4|) (-112)))) (-13 (-300) (-145)) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -440))
+((-3902 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-621 (-621 *8))) (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-621 *8)))) (-3902 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-621 (-621 *7))) (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-3902 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-621 (-621 *8))) (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-621 *8)))) (-3902 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-621 (-621 *7))) (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-1582 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-621 (-621 *8))) (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-621 *8)))) (-1582 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-621 (-621 *7))) (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
+(-10 -7 (-15 -1582 ((-621 (-621 |#4|)) (-621 |#4|))) (-15 -1582 ((-621 (-621 |#4|)) (-621 |#4|) (-112))) (-15 -3902 ((-621 (-621 |#4|)) (-621 |#4|) (-621 |#4|))) (-15 -3902 ((-621 (-621 |#4|)) (-621 |#4|) (-621 |#4|) (-112))) (-15 -3902 ((-621 (-621 |#4|)) (-621 |#4|))) (-15 -3902 ((-621 (-621 |#4|)) (-621 |#4|) (-112))))
+((-2097 (((-747) |#4|) 12)) (-1397 (((-621 (-2 (|:| |totdeg| (-747)) (|:| -3028 |#4|))) |#4| (-747) (-621 (-2 (|:| |totdeg| (-747)) (|:| -3028 |#4|)))) 31)) (-2423 (((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-4153 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-4152 ((|#4| |#4| (-621 |#4|)) 40)) (-2813 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-621 |#4|)) 70)) (-4073 (((-1231) |#4|) 42)) (-3960 (((-1231) (-621 |#4|)) 51)) (-1859 (((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549)) 48)) (-1678 (((-1231) (-549)) 79)) (-3515 (((-621 |#4|) (-621 |#4|)) 77)) (-3187 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-747)) (|:| -3028 |#4|)) |#4| (-747)) 25)) (-1715 (((-549) |#4|) 78)) (-2868 ((|#4| |#4|) 29)) (-2506 (((-621 |#4|) (-621 |#4|) (-549) (-549)) 56)) (-2063 (((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549) (-549)) 89)) (-2104 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3327 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-3805 (((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-2711 (((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3166 (((-112) |#2| |#2|) 57)) (-2593 (((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1377 (((-112) |#2| |#2| |#2| |#2|) 60)) (-4180 ((|#4| |#4| (-621 |#4|)) 71)))
+(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4180 (|#4| |#4| (-621 |#4|))) (-15 -4152 (|#4| |#4| (-621 |#4|))) (-15 -2506 ((-621 |#4|) (-621 |#4|) (-549) (-549))) (-15 -3327 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3166 ((-112) |#2| |#2|)) (-15 -1377 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2593 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2711 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3805 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2813 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-621 |#4|))) (-15 -2868 (|#4| |#4|)) (-15 -1397 ((-621 (-2 (|:| |totdeg| (-747)) (|:| -3028 |#4|))) |#4| (-747) (-621 (-2 (|:| |totdeg| (-747)) (|:| -3028 |#4|))))) (-15 -4153 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2423 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3515 ((-621 |#4|) (-621 |#4|))) (-15 -1715 ((-549) |#4|)) (-15 -4073 ((-1231) |#4|)) (-15 -1859 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549))) (-15 -2063 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549) (-549))) (-15 -3960 ((-1231) (-621 |#4|))) (-15 -1678 ((-1231) (-549))) (-15 -2104 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3187 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-747)) (|:| -3028 |#4|)) |#4| (-747))) (-15 -2097 ((-747) |#4|))) (-444) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -441))
+((-2097 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))) (-3187 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-747)) (|:| -3028 *4))) (-5 *5 (-747)) (-4 *4 (-920 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-441 *6 *7 *8 *4)))) (-2104 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-769)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1231)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1231)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2063 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-769)) (-4 *4 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823)) (-5 *1 (-441 *5 *6 *7 *4)))) (-1859 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-769)) (-4 *4 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823)) (-5 *1 (-441 *5 *6 *7 *4)))) (-4073 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1231)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))) (-1715 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-549)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-441 *3 *4 *5 *6)))) (-2423 (*1 *2 *2 *2) (-12 (-5 *2 (-621 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-769)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823)) (-5 *1 (-441 *3 *4 *5 *6)))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-769)) (-4 *2 (-920 *4 *5 *6)) (-5 *1 (-441 *4 *5 *6 *2)) (-4 *4 (-444)) (-4 *6 (-823)))) (-1397 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-621 (-2 (|:| |totdeg| (-747)) (|:| -3028 *3)))) (-5 *4 (-747)) (-4 *3 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-441 *5 *6 *7 *3)))) (-2868 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-920 *3 *4 *5)))) (-2813 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-441 *5 *6 *7 *3)))) (-3805 (*1 *2 *3 *2) (-12 (-5 *2 (-621 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-747)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-769)) (-4 *6 (-920 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-823)) (-5 *1 (-441 *4 *3 *5 *6)))) (-2711 (*1 *2 *2) (-12 (-5 *2 (-621 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-769)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823)) (-5 *1 (-441 *3 *4 *5 *6)))) (-2593 (*1 *2 *3 *2) (-12 (-5 *2 (-621 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-769)) (-4 *3 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) (-5 *1 (-441 *4 *5 *6 *3)))) (-1377 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-920 *4 *3 *5)))) (-3166 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-920 *4 *3 *5)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-769)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2506 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-549)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-441 *4 *5 *6 *7)))) (-4152 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-441 *4 *5 *6 *2)))) (-4180 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-441 *4 *5 *6 *2)))))
+(-10 -7 (-15 -4180 (|#4| |#4| (-621 |#4|))) (-15 -4152 (|#4| |#4| (-621 |#4|))) (-15 -2506 ((-621 |#4|) (-621 |#4|) (-549) (-549))) (-15 -3327 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3166 ((-112) |#2| |#2|)) (-15 -1377 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2593 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2711 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3805 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2813 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-621 |#4|))) (-15 -2868 (|#4| |#4|)) (-15 -1397 ((-621 (-2 (|:| |totdeg| (-747)) (|:| -3028 |#4|))) |#4| (-747) (-621 (-2 (|:| |totdeg| (-747)) (|:| -3028 |#4|))))) (-15 -4153 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2423 ((-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-621 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3515 ((-621 |#4|) (-621 |#4|))) (-15 -1715 ((-549) |#4|)) (-15 -4073 ((-1231) |#4|)) (-15 -1859 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549))) (-15 -2063 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549) (-549))) (-15 -3960 ((-1231) (-621 |#4|))) (-15 -1678 ((-1231) (-549))) (-15 -2104 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3187 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-747)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-747)) (|:| -3028 |#4|)) |#4| (-747))) (-15 -2097 ((-747) |#4|)))
+((-2519 ((|#4| |#4| (-621 |#4|)) 22 (|has| |#1| (-356)))) (-3989 (((-621 |#4|) (-621 |#4|) (-1125) (-1125)) 41) (((-621 |#4|) (-621 |#4|) (-1125)) 40) (((-621 |#4|) (-621 |#4|)) 35)))
+(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3989 ((-621 |#4|) (-621 |#4|))) (-15 -3989 ((-621 |#4|) (-621 |#4|) (-1125))) (-15 -3989 ((-621 |#4|) (-621 |#4|) (-1125) (-1125))) (IF (|has| |#1| (-356)) (-15 -2519 (|#4| |#4| (-621 |#4|))) |%noBranch|)) (-444) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -442))
+((-2519 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-356)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *2)))) (-3989 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-1125)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *7)))) (-3989 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-1125)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-442 *4 *5 *6 *7)))) (-3989 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3989 ((-621 |#4|) (-621 |#4|))) (-15 -3989 ((-621 |#4|) (-621 |#4|) (-1125))) (-15 -3989 ((-621 |#4|) (-621 |#4|) (-1125) (-1125))) (IF (|has| |#1| (-356)) (-15 -2519 (|#4| |#4| (-621 |#4|))) |%noBranch|))
+((-3697 (($ $ $) 14) (($ (-621 $)) 21)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 41)) (-3727 (($ $ $) NIL) (($ (-621 $)) 22)))
+(((-443 |#1|) (-10 -8 (-15 -1721 ((-1139 |#1|) (-1139 |#1|) (-1139 |#1|))) (-15 -3697 (|#1| (-621 |#1|))) (-15 -3697 (|#1| |#1| |#1|)) (-15 -3727 (|#1| (-621 |#1|))) (-15 -3727 (|#1| |#1| |#1|))) (-444)) (T -443))
+NIL
+(-10 -8 (-15 -1721 ((-1139 |#1|) (-1139 |#1|) (-1139 |#1|))) (-15 -3697 (|#1| (-621 |#1|))) (-15 -3697 (|#1| |#1| |#1|)) (-15 -3727 (|#1| (-621 |#1|))) (-15 -3727 (|#1| |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2042 (((-3 $ "failed") $ $) 40)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-444) (-138)) (T -444))
+((-3727 (*1 *1 *1 *1) (-4 *1 (-444))) (-3727 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-444)))) (-3697 (*1 *1 *1 *1) (-4 *1 (-444))) (-3697 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-444)))) (-1721 (*1 *2 *2 *2) (-12 (-5 *2 (-1139 *1)) (-4 *1 (-444)))))
+(-13 (-541) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3727 ($ (-621 $))) (-15 -3697 ($ $ $)) (-15 -3697 ($ (-621 $))) (-15 -1721 ((-1139 $) (-1139 $) (-1139 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2207 (((-3 $ "failed")) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3277 (((-1226 (-665 (-400 (-923 |#1|)))) (-1226 $)) NIL) (((-1226 (-665 (-400 (-923 |#1|))))) NIL)) (-3945 (((-1226 $)) NIL)) (-1682 (($) NIL T CONST)) (-3219 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) NIL)) (-3550 (((-3 $ "failed")) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-4212 (((-665 (-400 (-923 |#1|))) (-1226 $)) NIL) (((-665 (-400 (-923 |#1|)))) NIL)) (-2840 (((-400 (-923 |#1|)) $) NIL)) (-3841 (((-665 (-400 (-923 |#1|))) $ (-1226 $)) NIL) (((-665 (-400 (-923 |#1|))) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-2478 (((-1139 (-923 (-400 (-923 |#1|))))) NIL (|has| (-400 (-923 |#1|)) (-356))) (((-1139 (-400 (-923 |#1|)))) 84 (|has| |#1| (-541)))) (-3117 (($ $ (-892)) NIL)) (-2182 (((-400 (-923 |#1|)) $) NIL)) (-2289 (((-1139 (-400 (-923 |#1|))) $) 82 (|has| (-400 (-923 |#1|)) (-541)))) (-3076 (((-400 (-923 |#1|)) (-1226 $)) NIL) (((-400 (-923 |#1|))) NIL)) (-3266 (((-1139 (-400 (-923 |#1|))) $) NIL)) (-1368 (((-112)) NIL)) (-3492 (($ (-1226 (-400 (-923 |#1|))) (-1226 $)) 103) (($ (-1226 (-400 (-923 |#1|)))) NIL)) (-2114 (((-3 $ "failed") $) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-3123 (((-892)) NIL)) (-3601 (((-112)) NIL)) (-2943 (($ $ (-892)) NIL)) (-3975 (((-112)) NIL)) (-2291 (((-112)) NIL)) (-2647 (((-112)) NIL)) (-1742 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) NIL)) (-4101 (((-3 $ "failed")) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-2870 (((-665 (-400 (-923 |#1|))) (-1226 $)) NIL) (((-665 (-400 (-923 |#1|)))) NIL)) (-2654 (((-400 (-923 |#1|)) $) NIL)) (-2303 (((-665 (-400 (-923 |#1|))) $ (-1226 $)) NIL) (((-665 (-400 (-923 |#1|))) $) NIL)) (-1919 (((-3 $ "failed") $) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-2014 (((-1139 (-923 (-400 (-923 |#1|))))) NIL (|has| (-400 (-923 |#1|)) (-356))) (((-1139 (-400 (-923 |#1|)))) 83 (|has| |#1| (-541)))) (-2884 (($ $ (-892)) NIL)) (-2248 (((-400 (-923 |#1|)) $) NIL)) (-1378 (((-1139 (-400 (-923 |#1|))) $) 77 (|has| (-400 (-923 |#1|)) (-541)))) (-2920 (((-400 (-923 |#1|)) (-1226 $)) NIL) (((-400 (-923 |#1|))) NIL)) (-2443 (((-1139 (-400 (-923 |#1|))) $) NIL)) (-3623 (((-112)) NIL)) (-3851 (((-1125) $) NIL)) (-3260 (((-112)) NIL)) (-2754 (((-112)) NIL)) (-2055 (((-112)) NIL)) (-3990 (((-1087) $) NIL)) (-4020 (((-400 (-923 |#1|)) $ $) 71 (|has| |#1| (-541)))) (-3137 (((-400 (-923 |#1|)) $) 93 (|has| |#1| (-541)))) (-3780 (((-400 (-923 |#1|)) $) 95 (|has| |#1| (-541)))) (-2187 (((-1139 (-400 (-923 |#1|))) $) 88 (|has| |#1| (-541)))) (-2973 (((-400 (-923 |#1|))) 72 (|has| |#1| (-541)))) (-3439 (((-400 (-923 |#1|)) $ $) 64 (|has| |#1| (-541)))) (-3860 (((-400 (-923 |#1|)) $) 92 (|has| |#1| (-541)))) (-3322 (((-400 (-923 |#1|)) $) 94 (|has| |#1| (-541)))) (-2705 (((-1139 (-400 (-923 |#1|))) $) 87 (|has| |#1| (-541)))) (-2565 (((-400 (-923 |#1|))) 68 (|has| |#1| (-541)))) (-2394 (($) 101) (($ (-1143)) 107) (($ (-1226 (-1143))) 106) (($ (-1226 $)) 96) (($ (-1143) (-1226 $)) 105) (($ (-1226 (-1143)) (-1226 $)) 104)) (-2392 (((-112)) NIL)) (-3341 (((-400 (-923 |#1|)) $ (-549)) NIL)) (-4263 (((-1226 (-400 (-923 |#1|))) $ (-1226 $)) 98) (((-665 (-400 (-923 |#1|))) (-1226 $) (-1226 $)) NIL) (((-1226 (-400 (-923 |#1|))) $) 40) (((-665 (-400 (-923 |#1|))) (-1226 $)) NIL)) (-2845 (((-1226 (-400 (-923 |#1|))) $) NIL) (($ (-1226 (-400 (-923 |#1|)))) 37)) (-4111 (((-621 (-923 (-400 (-923 |#1|)))) (-1226 $)) NIL) (((-621 (-923 (-400 (-923 |#1|))))) NIL) (((-621 (-923 |#1|)) (-1226 $)) 99 (|has| |#1| (-541))) (((-621 (-923 |#1|))) 100 (|has| |#1| (-541)))) (-3293 (($ $ $) NIL)) (-1942 (((-112)) NIL)) (-3846 (((-834) $) NIL) (($ (-1226 (-400 (-923 |#1|)))) NIL)) (-1949 (((-1226 $)) 60)) (-4315 (((-621 (-1226 (-400 (-923 |#1|))))) NIL (|has| (-400 (-923 |#1|)) (-541)))) (-4272 (($ $ $ $) NIL)) (-3430 (((-112)) NIL)) (-3596 (($ (-665 (-400 (-923 |#1|))) $) NIL)) (-2174 (($ $ $) NIL)) (-2864 (((-112)) NIL)) (-4257 (((-112)) NIL)) (-1898 (((-112)) NIL)) (-3276 (($) NIL T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) 97)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 56) (($ $ (-400 (-923 |#1|))) NIL) (($ (-400 (-923 |#1|)) $) NIL) (($ (-1109 |#2| (-400 (-923 |#1|))) $) NIL)))
+(((-445 |#1| |#2| |#3| |#4|) (-13 (-410 (-400 (-923 |#1|))) (-624 (-1109 |#2| (-400 (-923 |#1|)))) (-10 -8 (-15 -3846 ($ (-1226 (-400 (-923 |#1|))))) (-15 -1742 ((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed"))) (-15 -3219 ((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed"))) (-15 -2394 ($)) (-15 -2394 ($ (-1143))) (-15 -2394 ($ (-1226 (-1143)))) (-15 -2394 ($ (-1226 $))) (-15 -2394 ($ (-1143) (-1226 $))) (-15 -2394 ($ (-1226 (-1143)) (-1226 $))) (IF (|has| |#1| (-541)) (PROGN (-15 -2014 ((-1139 (-400 (-923 |#1|))))) (-15 -2705 ((-1139 (-400 (-923 |#1|))) $)) (-15 -3860 ((-400 (-923 |#1|)) $)) (-15 -3322 ((-400 (-923 |#1|)) $)) (-15 -2478 ((-1139 (-400 (-923 |#1|))))) (-15 -2187 ((-1139 (-400 (-923 |#1|))) $)) (-15 -3137 ((-400 (-923 |#1|)) $)) (-15 -3780 ((-400 (-923 |#1|)) $)) (-15 -3439 ((-400 (-923 |#1|)) $ $)) (-15 -2565 ((-400 (-923 |#1|)))) (-15 -4020 ((-400 (-923 |#1|)) $ $)) (-15 -2973 ((-400 (-923 |#1|)))) (-15 -4111 ((-621 (-923 |#1|)) (-1226 $))) (-15 -4111 ((-621 (-923 |#1|))))) |%noBranch|))) (-170) (-892) (-621 (-1143)) (-1226 (-665 |#1|))) (T -445))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1226 (-400 (-923 *3)))) (-4 *3 (-170)) (-14 *6 (-1226 (-665 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))))) (-1742 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -1949 (-621 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-3219 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -1949 (-621 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-2394 (*1 *1) (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-892)) (-14 *4 (-621 (-1143))) (-14 *5 (-1226 (-665 *2))))) (-2394 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 *2)) (-14 *6 (-1226 (-665 *3))))) (-2394 (*1 *1 *2) (-12 (-5 *2 (-1226 (-1143))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-2394 (*1 *1 *2) (-12 (-5 *2 (-1226 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-2394 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-892)) (-14 *6 (-621 *2)) (-14 *7 (-1226 (-665 *4))))) (-2394 (*1 *1 *2 *3) (-12 (-5 *2 (-1226 (-1143))) (-5 *3 (-1226 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-892)) (-14 *6 (-621 (-1143))) (-14 *7 (-1226 (-665 *4))))) (-2014 (*1 *2) (-12 (-5 *2 (-1139 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-1139 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-2478 (*1 *2) (-12 (-5 *2 (-1139 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-1139 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-3439 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-2565 (*1 *2) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-4020 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-2973 (*1 *2) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-1226 (-445 *4 *5 *6 *7))) (-5 *2 (-621 (-923 *4))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-541)) (-4 *4 (-170)) (-14 *5 (-892)) (-14 *6 (-621 (-1143))) (-14 *7 (-1226 (-665 *4))))) (-4111 (*1 *2) (-12 (-5 *2 (-621 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(-13 (-410 (-400 (-923 |#1|))) (-624 (-1109 |#2| (-400 (-923 |#1|)))) (-10 -8 (-15 -3846 ($ (-1226 (-400 (-923 |#1|))))) (-15 -1742 ((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed"))) (-15 -3219 ((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed"))) (-15 -2394 ($)) (-15 -2394 ($ (-1143))) (-15 -2394 ($ (-1226 (-1143)))) (-15 -2394 ($ (-1226 $))) (-15 -2394 ($ (-1143) (-1226 $))) (-15 -2394 ($ (-1226 (-1143)) (-1226 $))) (IF (|has| |#1| (-541)) (PROGN (-15 -2014 ((-1139 (-400 (-923 |#1|))))) (-15 -2705 ((-1139 (-400 (-923 |#1|))) $)) (-15 -3860 ((-400 (-923 |#1|)) $)) (-15 -3322 ((-400 (-923 |#1|)) $)) (-15 -2478 ((-1139 (-400 (-923 |#1|))))) (-15 -2187 ((-1139 (-400 (-923 |#1|))) $)) (-15 -3137 ((-400 (-923 |#1|)) $)) (-15 -3780 ((-400 (-923 |#1|)) $)) (-15 -3439 ((-400 (-923 |#1|)) $ $)) (-15 -2565 ((-400 (-923 |#1|)))) (-15 -4020 ((-400 (-923 |#1|)) $ $)) (-15 -2973 ((-400 (-923 |#1|)))) (-15 -4111 ((-621 (-923 |#1|)) (-1226 $))) (-15 -4111 ((-621 (-923 |#1|))))) |%noBranch|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 13)) (-2272 (((-621 (-836 |#1|)) $) 75)) (-2084 (((-1139 $) $ (-836 |#1|)) 46) (((-1139 |#2|) $) 118)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#2| (-541)))) (-2258 (($ $) NIL (|has| |#2| (-541)))) (-2799 (((-112) $) NIL (|has| |#2| (-541)))) (-3186 (((-747) $) 21) (((-747) $ (-621 (-836 |#1|))) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-3979 (($ $) NIL (|has| |#2| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#2| "failed") $) 44) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-836 |#1|) "failed") $) NIL)) (-2659 ((|#2| $) 42) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-836 |#1|) $) NIL)) (-1353 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-1457 (($ $ (-621 (-549))) 80)) (-2070 (($ $) 68)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#2| (-880)))) (-2691 (($ $ |#2| |#3| $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) 58)) (-2261 (($ (-1139 |#2|) (-836 |#1|)) 123) (($ (-1139 $) (-836 |#1|)) 52)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) 59)) (-2246 (($ |#2| |#3|) 28) (($ $ (-836 |#1|) (-747)) 30) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ (-836 |#1|)) NIL)) (-3611 ((|#3| $) NIL) (((-747) $ (-836 |#1|)) 50) (((-621 (-747)) $ (-621 (-836 |#1|))) 57)) (-2863 (($ $ $) NIL (|has| |#2| (-823)))) (-3575 (($ $ $) NIL (|has| |#2| (-823)))) (-3705 (($ (-1 |#3| |#3|) $) NIL)) (-2797 (($ (-1 |#2| |#2|) $) NIL)) (-1520 (((-3 (-836 |#1|) "failed") $) 39)) (-2028 (($ $) NIL)) (-2043 ((|#2| $) 41)) (-3697 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3851 (((-1125) $) NIL)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -3731 (-747))) "failed") $) NIL)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) 40)) (-2016 ((|#2| $) 116)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#2| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) 128 (|has| |#2| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#2| (-880)))) (-2042 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-541)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-836 |#1|) |#2|) 87) (($ $ (-621 (-836 |#1|)) (-621 |#2|)) 90) (($ $ (-836 |#1|) $) 85) (($ $ (-621 (-836 |#1|)) (-621 $)) 106)) (-3602 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-3456 (($ $ (-836 |#1|)) 53) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3701 ((|#3| $) 67) (((-747) $ (-836 |#1|)) 37) (((-621 (-747)) $ (-621 (-836 |#1|))) 56)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-836 |#1|) (-594 (-525))) (|has| |#2| (-594 (-525)))))) (-2216 ((|#2| $) 125 (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880))))) (-3846 (((-834) $) 145) (($ (-549)) NIL) (($ |#2|) 86) (($ (-836 |#1|)) 31) (($ (-400 (-549))) NIL (-1536 (|has| |#2| (-38 (-400 (-549)))) (|has| |#2| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#2| (-541)))) (-4141 (((-621 |#2|) $) NIL)) (-2152 ((|#2| $ |#3|) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#2| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#2| (-541)))) (-3276 (($) 17 T CONST)) (-3287 (($) 25 T CONST)) (-1702 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2513 (($ $ |#2|) 64 (|has| |#2| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 111)) (** (($ $ (-892)) NIL) (($ $ (-747)) 109)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 29) (($ $ (-400 (-549))) NIL (|has| |#2| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#2| (-38 (-400 (-549))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-446 |#1| |#2| |#3|) (-13 (-920 |#2| |#3| (-836 |#1|)) (-10 -8 (-15 -1457 ($ $ (-621 (-549)))))) (-621 (-1143)) (-1018) (-232 (-3775 |#1|) (-747))) (T -446))
+((-1457 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-14 *3 (-621 (-1143))) (-5 *1 (-446 *3 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-232 (-3775 *3) (-747))))))
+(-13 (-920 |#2| |#3| (-836 |#1|)) (-10 -8 (-15 -1457 ($ $ (-621 (-549))))))
+((-2853 (((-112) |#1| (-621 |#2|)) 69)) (-3372 (((-3 (-1226 (-621 |#2|)) "failed") (-747) |#1| (-621 |#2|)) 78)) (-2923 (((-3 (-621 |#2|) "failed") |#2| |#1| (-1226 (-621 |#2|))) 80)) (-3574 ((|#2| |#2| |#1|) 28)) (-1522 (((-747) |#2| (-621 |#2|)) 20)))
+(((-447 |#1| |#2|) (-10 -7 (-15 -3574 (|#2| |#2| |#1|)) (-15 -1522 ((-747) |#2| (-621 |#2|))) (-15 -3372 ((-3 (-1226 (-621 |#2|)) "failed") (-747) |#1| (-621 |#2|))) (-15 -2923 ((-3 (-621 |#2|) "failed") |#2| |#1| (-1226 (-621 |#2|)))) (-15 -2853 ((-112) |#1| (-621 |#2|)))) (-300) (-1202 |#1|)) (T -447))
+((-2853 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *5)) (-4 *5 (-1202 *3)) (-4 *3 (-300)) (-5 *2 (-112)) (-5 *1 (-447 *3 *5)))) (-2923 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1226 (-621 *3))) (-4 *4 (-300)) (-5 *2 (-621 *3)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1202 *4)))) (-3372 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-747)) (-4 *4 (-300)) (-4 *6 (-1202 *4)) (-5 *2 (-1226 (-621 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-621 *6)))) (-1522 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-1202 *5)) (-4 *5 (-300)) (-5 *2 (-747)) (-5 *1 (-447 *5 *3)))) (-3574 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1202 *3)))))
+(-10 -7 (-15 -3574 (|#2| |#2| |#1|)) (-15 -1522 ((-747) |#2| (-621 |#2|))) (-15 -3372 ((-3 (-1226 (-621 |#2|)) "failed") (-747) |#1| (-621 |#2|))) (-15 -2923 ((-3 (-621 |#2|) "failed") |#2| |#1| (-1226 (-621 |#2|)))) (-15 -2853 ((-112) |#1| (-621 |#2|))))
+((-2121 (((-411 |#5|) |#5|) 24)))
+(((-448 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2121 ((-411 |#5|) |#5|))) (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $)) (-15 -3011 ((-3 $ "failed") (-1143))))) (-769) (-541) (-541) (-920 |#4| |#2| |#1|)) (T -448))
+((-2121 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $)) (-15 -3011 ((-3 $ "failed") (-1143)))))) (-4 *5 (-769)) (-4 *7 (-541)) (-5 *2 (-411 *3)) (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-541)) (-4 *3 (-920 *7 *5 *4)))))
+(-10 -7 (-15 -2121 ((-411 |#5|) |#5|)))
+((-2971 ((|#3|) 37)) (-1721 (((-1139 |#4|) (-1139 |#4|) (-1139 |#4|)) 33)))
+(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1721 ((-1139 |#4|) (-1139 |#4|) (-1139 |#4|))) (-15 -2971 (|#3|))) (-769) (-823) (-880) (-920 |#3| |#1| |#2|)) (T -449))
+((-2971 (*1 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-880)) (-5 *1 (-449 *3 *4 *2 *5)) (-4 *5 (-920 *2 *3 *4)))) (-1721 (*1 *2 *2 *2) (-12 (-5 *2 (-1139 *6)) (-4 *6 (-920 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-880)) (-5 *1 (-449 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1721 ((-1139 |#4|) (-1139 |#4|) (-1139 |#4|))) (-15 -2971 (|#3|)))
+((-2121 (((-411 (-1139 |#1|)) (-1139 |#1|)) 43)))
+(((-450 |#1|) (-10 -7 (-15 -2121 ((-411 (-1139 |#1|)) (-1139 |#1|)))) (-300)) (T -450))
+((-2121 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-411 (-1139 *4))) (-5 *1 (-450 *4)) (-5 *3 (-1139 *4)))))
+(-10 -7 (-15 -2121 ((-411 (-1139 |#1|)) (-1139 |#1|))))
+((-2336 (((-52) |#2| (-1143) (-287 |#2|) (-1193 (-747))) 42) (((-52) (-1 |#2| (-549)) (-287 |#2|) (-1193 (-747))) 41) (((-52) |#2| (-1143) (-287 |#2|)) 35) (((-52) (-1 |#2| (-549)) (-287 |#2|)) 28)) (-2826 (((-52) |#2| (-1143) (-287 |#2|) (-1193 (-400 (-549))) (-400 (-549))) 80) (((-52) (-1 |#2| (-400 (-549))) (-287 |#2|) (-1193 (-400 (-549))) (-400 (-549))) 79) (((-52) |#2| (-1143) (-287 |#2|) (-1193 (-549))) 78) (((-52) (-1 |#2| (-549)) (-287 |#2|) (-1193 (-549))) 77) (((-52) |#2| (-1143) (-287 |#2|)) 72) (((-52) (-1 |#2| (-549)) (-287 |#2|)) 71)) (-2366 (((-52) |#2| (-1143) (-287 |#2|) (-1193 (-400 (-549))) (-400 (-549))) 66) (((-52) (-1 |#2| (-400 (-549))) (-287 |#2|) (-1193 (-400 (-549))) (-400 (-549))) 64)) (-2352 (((-52) |#2| (-1143) (-287 |#2|) (-1193 (-549))) 48) (((-52) (-1 |#2| (-549)) (-287 |#2|) (-1193 (-549))) 47)))
+(((-451 |#1| |#2|) (-10 -7 (-15 -2336 ((-52) (-1 |#2| (-549)) (-287 |#2|))) (-15 -2336 ((-52) |#2| (-1143) (-287 |#2|))) (-15 -2336 ((-52) (-1 |#2| (-549)) (-287 |#2|) (-1193 (-747)))) (-15 -2336 ((-52) |#2| (-1143) (-287 |#2|) (-1193 (-747)))) (-15 -2352 ((-52) (-1 |#2| (-549)) (-287 |#2|) (-1193 (-549)))) (-15 -2352 ((-52) |#2| (-1143) (-287 |#2|) (-1193 (-549)))) (-15 -2366 ((-52) (-1 |#2| (-400 (-549))) (-287 |#2|) (-1193 (-400 (-549))) (-400 (-549)))) (-15 -2366 ((-52) |#2| (-1143) (-287 |#2|) (-1193 (-400 (-549))) (-400 (-549)))) (-15 -2826 ((-52) (-1 |#2| (-549)) (-287 |#2|))) (-15 -2826 ((-52) |#2| (-1143) (-287 |#2|))) (-15 -2826 ((-52) (-1 |#2| (-549)) (-287 |#2|) (-1193 (-549)))) (-15 -2826 ((-52) |#2| (-1143) (-287 |#2|) (-1193 (-549)))) (-15 -2826 ((-52) (-1 |#2| (-400 (-549))) (-287 |#2|) (-1193 (-400 (-549))) (-400 (-549)))) (-15 -2826 ((-52) |#2| (-1143) (-287 |#2|) (-1193 (-400 (-549))) (-400 (-549))))) (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1165) (-423 |#1|))) (T -451))
+((-2826 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3)) (-5 *6 (-1193 (-400 (-549)))) (-5 *7 (-400 (-549))) (-4 *3 (-13 (-27) (-1165) (-423 *8))) (-4 *8 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *8 *3)))) (-2826 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-549)))) (-5 *4 (-287 *8)) (-5 *5 (-1193 (-400 (-549)))) (-5 *6 (-400 (-549))) (-4 *8 (-13 (-27) (-1165) (-423 *7))) (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *8)))) (-2826 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3)) (-5 *6 (-1193 (-549))) (-4 *3 (-13 (-27) (-1165) (-423 *7))) (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) (-2826 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-287 *7)) (-5 *5 (-1193 (-549))) (-4 *7 (-13 (-27) (-1165) (-423 *6))) (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) (-2826 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *6))) (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *3)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-287 *6)) (-4 *6 (-13 (-27) (-1165) (-423 *5))) (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *5 *6)))) (-2366 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3)) (-5 *6 (-1193 (-400 (-549)))) (-5 *7 (-400 (-549))) (-4 *3 (-13 (-27) (-1165) (-423 *8))) (-4 *8 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *8 *3)))) (-2366 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-549)))) (-5 *4 (-287 *8)) (-5 *5 (-1193 (-400 (-549)))) (-5 *6 (-400 (-549))) (-4 *8 (-13 (-27) (-1165) (-423 *7))) (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *8)))) (-2352 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3)) (-5 *6 (-1193 (-549))) (-4 *3 (-13 (-27) (-1165) (-423 *7))) (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) (-2352 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-287 *7)) (-5 *5 (-1193 (-549))) (-4 *7 (-13 (-27) (-1165) (-423 *6))) (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) (-2336 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3)) (-5 *6 (-1193 (-747))) (-4 *3 (-13 (-27) (-1165) (-423 *7))) (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *7 *3)))) (-2336 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-287 *7)) (-5 *5 (-1193 (-747))) (-4 *7 (-13 (-27) (-1165) (-423 *6))) (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *7)))) (-2336 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *6))) (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *6 *3)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-287 *6)) (-4 *6 (-13 (-27) (-1165) (-423 *5))) (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-52)) (-5 *1 (-451 *5 *6)))))
+(-10 -7 (-15 -2336 ((-52) (-1 |#2| (-549)) (-287 |#2|))) (-15 -2336 ((-52) |#2| (-1143) (-287 |#2|))) (-15 -2336 ((-52) (-1 |#2| (-549)) (-287 |#2|) (-1193 (-747)))) (-15 -2336 ((-52) |#2| (-1143) (-287 |#2|) (-1193 (-747)))) (-15 -2352 ((-52) (-1 |#2| (-549)) (-287 |#2|) (-1193 (-549)))) (-15 -2352 ((-52) |#2| (-1143) (-287 |#2|) (-1193 (-549)))) (-15 -2366 ((-52) (-1 |#2| (-400 (-549))) (-287 |#2|) (-1193 (-400 (-549))) (-400 (-549)))) (-15 -2366 ((-52) |#2| (-1143) (-287 |#2|) (-1193 (-400 (-549))) (-400 (-549)))) (-15 -2826 ((-52) (-1 |#2| (-549)) (-287 |#2|))) (-15 -2826 ((-52) |#2| (-1143) (-287 |#2|))) (-15 -2826 ((-52) (-1 |#2| (-549)) (-287 |#2|) (-1193 (-549)))) (-15 -2826 ((-52) |#2| (-1143) (-287 |#2|) (-1193 (-549)))) (-15 -2826 ((-52) (-1 |#2| (-400 (-549))) (-287 |#2|) (-1193 (-400 (-549))) (-400 (-549)))) (-15 -2826 ((-52) |#2| (-1143) (-287 |#2|) (-1193 (-400 (-549))) (-400 (-549)))))
+((-3574 ((|#2| |#2| |#1|) 15)) (-2157 (((-621 |#2|) |#2| (-621 |#2|) |#1| (-892)) 69)) (-3348 (((-2 (|:| |plist| (-621 |#2|)) (|:| |modulo| |#1|)) |#2| (-621 |#2|) |#1| (-892)) 60)))
+(((-452 |#1| |#2|) (-10 -7 (-15 -3348 ((-2 (|:| |plist| (-621 |#2|)) (|:| |modulo| |#1|)) |#2| (-621 |#2|) |#1| (-892))) (-15 -2157 ((-621 |#2|) |#2| (-621 |#2|) |#1| (-892))) (-15 -3574 (|#2| |#2| |#1|))) (-300) (-1202 |#1|)) (T -452))
+((-3574 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1202 *3)))) (-2157 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-621 *3)) (-5 *5 (-892)) (-4 *3 (-1202 *4)) (-4 *4 (-300)) (-5 *1 (-452 *4 *3)))) (-3348 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-892)) (-4 *5 (-300)) (-4 *3 (-1202 *5)) (-5 *2 (-2 (|:| |plist| (-621 *3)) (|:| |modulo| *5))) (-5 *1 (-452 *5 *3)) (-5 *4 (-621 *3)))))
+(-10 -7 (-15 -3348 ((-2 (|:| |plist| (-621 |#2|)) (|:| |modulo| |#1|)) |#2| (-621 |#2|) |#1| (-892))) (-15 -2157 ((-621 |#2|) |#2| (-621 |#2|) |#1| (-892))) (-15 -3574 (|#2| |#2| |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 28)) (-3956 (($ |#3|) 25)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2070 (($ $) 32)) (-2623 (($ |#2| |#4| $) 33)) (-2246 (($ |#2| (-690 |#3| |#4| |#5|)) 24)) (-2028 (((-690 |#3| |#4| |#5|) $) 15)) (-2375 ((|#3| $) 19)) (-2936 ((|#4| $) 17)) (-2043 ((|#2| $) 29)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-3044 (($ |#2| |#3| |#4|) 26)) (-3276 (($) 36 T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 34)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-453 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-694 |#6|) (-694 |#2|) (-10 -8 (-15 -2043 (|#2| $)) (-15 -2028 ((-690 |#3| |#4| |#5|) $)) (-15 -2936 (|#4| $)) (-15 -2375 (|#3| $)) (-15 -2070 ($ $)) (-15 -2246 ($ |#2| (-690 |#3| |#4| |#5|))) (-15 -3956 ($ |#3|)) (-15 -3044 ($ |#2| |#3| |#4|)) (-15 -2623 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-621 (-1143)) (-170) (-823) (-232 (-3775 |#1|) (-747)) (-1 (-112) (-2 (|:| -3493 |#3|) (|:| -3731 |#4|)) (-2 (|:| -3493 |#3|) (|:| -3731 |#4|))) (-920 |#2| |#4| (-836 |#1|))) (T -453))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-621 (-1143))) (-4 *4 (-170)) (-4 *6 (-232 (-3775 *3) (-747))) (-14 *7 (-1 (-112) (-2 (|:| -3493 *5) (|:| -3731 *6)) (-2 (|:| -3493 *5) (|:| -3731 *6)))) (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-823)) (-4 *2 (-920 *4 *6 (-836 *3))))) (-2043 (*1 *2 *1) (-12 (-14 *3 (-621 (-1143))) (-4 *5 (-232 (-3775 *3) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -3493 *4) (|:| -3731 *5)) (-2 (|:| -3493 *4) (|:| -3731 *5)))) (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-823)) (-4 *7 (-920 *2 *5 (-836 *3))))) (-2028 (*1 *2 *1) (-12 (-14 *3 (-621 (-1143))) (-4 *4 (-170)) (-4 *6 (-232 (-3775 *3) (-747))) (-14 *7 (-1 (-112) (-2 (|:| -3493 *5) (|:| -3731 *6)) (-2 (|:| -3493 *5) (|:| -3731 *6)))) (-5 *2 (-690 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) (-4 *5 (-823)) (-4 *8 (-920 *4 *6 (-836 *3))))) (-2936 (*1 *2 *1) (-12 (-14 *3 (-621 (-1143))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -3493 *5) (|:| -3731 *2)) (-2 (|:| -3493 *5) (|:| -3731 *2)))) (-4 *2 (-232 (-3775 *3) (-747))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) (-4 *5 (-823)) (-4 *7 (-920 *4 *2 (-836 *3))))) (-2375 (*1 *2 *1) (-12 (-14 *3 (-621 (-1143))) (-4 *4 (-170)) (-4 *5 (-232 (-3775 *3) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -3493 *2) (|:| -3731 *5)) (-2 (|:| -3493 *2) (|:| -3731 *5)))) (-4 *2 (-823)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *7 (-920 *4 *5 (-836 *3))))) (-2070 (*1 *1 *1) (-12 (-14 *2 (-621 (-1143))) (-4 *3 (-170)) (-4 *5 (-232 (-3775 *2) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -3493 *4) (|:| -3731 *5)) (-2 (|:| -3493 *4) (|:| -3731 *5)))) (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-823)) (-4 *7 (-920 *3 *5 (-836 *2))))) (-2246 (*1 *1 *2 *3) (-12 (-5 *3 (-690 *5 *6 *7)) (-4 *5 (-823)) (-4 *6 (-232 (-3775 *4) (-747))) (-14 *7 (-1 (-112) (-2 (|:| -3493 *5) (|:| -3731 *6)) (-2 (|:| -3493 *5) (|:| -3731 *6)))) (-14 *4 (-621 (-1143))) (-4 *2 (-170)) (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) (-4 *8 (-920 *2 *6 (-836 *4))))) (-3956 (*1 *1 *2) (-12 (-14 *3 (-621 (-1143))) (-4 *4 (-170)) (-4 *5 (-232 (-3775 *3) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -3493 *2) (|:| -3731 *5)) (-2 (|:| -3493 *2) (|:| -3731 *5)))) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-823)) (-4 *7 (-920 *4 *5 (-836 *3))))) (-3044 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-621 (-1143))) (-4 *2 (-170)) (-4 *4 (-232 (-3775 *5) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -3493 *3) (|:| -3731 *4)) (-2 (|:| -3493 *3) (|:| -3731 *4)))) (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-823)) (-4 *7 (-920 *2 *4 (-836 *5))))) (-2623 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-621 (-1143))) (-4 *2 (-170)) (-4 *3 (-232 (-3775 *4) (-747))) (-14 *6 (-1 (-112) (-2 (|:| -3493 *5) (|:| -3731 *3)) (-2 (|:| -3493 *5) (|:| -3731 *3)))) (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-823)) (-4 *7 (-920 *2 *3 (-836 *4))))))
+(-13 (-694 |#6|) (-694 |#2|) (-10 -8 (-15 -2043 (|#2| $)) (-15 -2028 ((-690 |#3| |#4| |#5|) $)) (-15 -2936 (|#4| $)) (-15 -2375 (|#3| $)) (-15 -2070 ($ $)) (-15 -2246 ($ |#2| (-690 |#3| |#4| |#5|))) (-15 -3956 ($ |#3|)) (-15 -3044 ($ |#2| |#3| |#4|)) (-15 -2623 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-1291 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
+(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1291 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-769) (-823) (-541) (-920 |#3| |#1| |#2|) (-13 (-1009 (-400 (-549))) (-356) (-10 -8 (-15 -3846 ($ |#4|)) (-15 -1394 (|#4| $)) (-15 -1403 (|#4| $))))) (T -454))
+((-1291 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-823)) (-4 *5 (-769)) (-4 *6 (-541)) (-4 *7 (-920 *6 *5 *3)) (-5 *1 (-454 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1009 (-400 (-549))) (-356) (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $))))))))
+(-10 -7 (-15 -1291 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-3834 (((-112) $ $) NIL)) (-2272 (((-621 |#3|) $) 41)) (-3422 (((-112) $) NIL)) (-2527 (((-112) $) NIL (|has| |#1| (-541)))) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |#3|) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-1489 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-1433 (((-112) $) NIL (|has| |#1| (-541)))) (-2555 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2595 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2397 (((-112) $) NIL (|has| |#1| (-541)))) (-3269 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2953 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2714 (((-3 $ "failed") (-621 |#4|)) 47)) (-2659 (($ (-621 |#4|)) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-3812 (($ |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-3675 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-2557 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4337))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4337)))) (-2989 (((-621 |#4|) $) 18 (|has| $ (-6 -4337)))) (-2745 ((|#3| $) 45)) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#4|) $) 14 (|has| $ (-6 -4337)))) (-2090 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-1868 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#4| |#4|) $) 21)) (-2561 (((-621 |#3|) $) NIL)) (-2378 (((-112) |#3| $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-4203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-3990 (((-1087) $) NIL)) (-3779 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1780 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#4|) (-621 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-621 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 39)) (-3742 (($) 17)) (-4000 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) 16)) (-2845 (((-525) $) NIL (|has| |#4| (-594 (-525)))) (($ (-621 |#4|)) 49)) (-3854 (($ (-621 |#4|)) 13)) (-2858 (($ $ |#3|) NIL)) (-3758 (($ $ |#3|) NIL)) (-4317 (($ $ |#3|) NIL)) (-3846 (((-834) $) 38) (((-621 |#4|) $) 48)) (-3527 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 30)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-455 |#1| |#2| |#3| |#4|) (-13 (-947 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2845 ($ (-621 |#4|))) (-6 -4337) (-6 -4338))) (-1018) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -455))
+((-2845 (*1 *1 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-455 *3 *4 *5 *6)))))
+(-13 (-947 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2845 ($ (-621 |#4|))) (-6 -4337) (-6 -4338)))
+((-3276 (($) 11)) (-3287 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-456 |#1| |#2| |#3|) (-10 -8 (-15 -3287 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3276 (|#1|))) (-457 |#2| |#3|) (-170) (-23)) (T -456))
+NIL
+(-10 -8 (-15 -3287 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3276 (|#1|)))
+((-3834 (((-112) $ $) 7)) (-2714 (((-3 |#1| "failed") $) 26)) (-2659 ((|#1| $) 25)) (-1747 (($ $ $) 23)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3701 ((|#2| $) 19)) (-3846 (((-834) $) 11) (($ |#1|) 27)) (-3276 (($) 18 T CONST)) (-3287 (($) 24 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 15) (($ $ $) 13)) (-2486 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-457 |#1| |#2|) (-138) (-170) (-23)) (T -457))
+((-3287 (*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-1747 (*1 *1 *1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))))
+(-13 (-462 |t#1| |t#2|) (-1009 |t#1|) (-10 -8 (-15 (-3287) ($) -2589) (-15 -1747 ($ $ $))))
+(((-101) . T) ((-593 (-834)) . T) ((-462 |#1| |#2|) . T) ((-1009 |#1|) . T) ((-1067) . T))
+((-2483 (((-1226 (-1226 (-549))) (-1226 (-1226 (-549))) (-892)) 18)) (-2302 (((-1226 (-1226 (-549))) (-892)) 16)))
+(((-458) (-10 -7 (-15 -2483 ((-1226 (-1226 (-549))) (-1226 (-1226 (-549))) (-892))) (-15 -2302 ((-1226 (-1226 (-549))) (-892))))) (T -458))
+((-2302 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1226 (-1226 (-549)))) (-5 *1 (-458)))) (-2483 (*1 *2 *2 *3) (-12 (-5 *2 (-1226 (-1226 (-549)))) (-5 *3 (-892)) (-5 *1 (-458)))))
+(-10 -7 (-15 -2483 ((-1226 (-1226 (-549))) (-1226 (-1226 (-549))) (-892))) (-15 -2302 ((-1226 (-1226 (-549))) (-892))))
+((-3654 (((-549) (-549)) 30) (((-549)) 22)) (-2474 (((-549) (-549)) 26) (((-549)) 18)) (-3228 (((-549) (-549)) 28) (((-549)) 20)) (-2636 (((-112) (-112)) 12) (((-112)) 10)) (-2295 (((-112) (-112)) 11) (((-112)) 9)) (-2424 (((-112) (-112)) 24) (((-112)) 15)))
+(((-459) (-10 -7 (-15 -2295 ((-112))) (-15 -2636 ((-112))) (-15 -2295 ((-112) (-112))) (-15 -2636 ((-112) (-112))) (-15 -2424 ((-112))) (-15 -3228 ((-549))) (-15 -2474 ((-549))) (-15 -3654 ((-549))) (-15 -2424 ((-112) (-112))) (-15 -3228 ((-549) (-549))) (-15 -2474 ((-549) (-549))) (-15 -3654 ((-549) (-549))))) (T -459))
+((-3654 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459)))) (-2474 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459)))) (-3228 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459)))) (-2424 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-3654 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459)))) (-2474 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459)))) (-3228 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459)))) (-2424 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2636 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2636 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2295 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))))
+(-10 -7 (-15 -2295 ((-112))) (-15 -2636 ((-112))) (-15 -2295 ((-112) (-112))) (-15 -2636 ((-112) (-112))) (-15 -2424 ((-112))) (-15 -3228 ((-549))) (-15 -2474 ((-549))) (-15 -3654 ((-549))) (-15 -2424 ((-112) (-112))) (-15 -3228 ((-549) (-549))) (-15 -2474 ((-549) (-549))) (-15 -3654 ((-549) (-549))))
+((-3834 (((-112) $ $) NIL)) (-2036 (((-621 (-372)) $) 28) (((-621 (-372)) $ (-621 (-372))) 96)) (-2734 (((-621 (-1061 (-372))) $) 16) (((-621 (-1061 (-372))) $ (-621 (-1061 (-372)))) 94)) (-4004 (((-621 (-621 (-914 (-219)))) (-621 (-621 (-914 (-219)))) (-621 (-845))) 45)) (-2818 (((-621 (-621 (-914 (-219)))) $) 90)) (-2798 (((-1231) $ (-914 (-219)) (-845)) 108)) (-2213 (($ $) 89) (($ (-621 (-621 (-914 (-219))))) 99) (($ (-621 (-621 (-914 (-219)))) (-621 (-845)) (-621 (-845)) (-621 (-892))) 98) (($ (-621 (-621 (-914 (-219)))) (-621 (-845)) (-621 (-845)) (-621 (-892)) (-621 (-256))) 100)) (-3851 (((-1125) $) NIL)) (-3337 (((-549) $) 71)) (-3990 (((-1087) $) NIL)) (-1546 (($) 97)) (-2326 (((-621 (-219)) (-621 (-621 (-914 (-219))))) 56)) (-3146 (((-1231) $ (-621 (-914 (-219))) (-845) (-845) (-892)) 102) (((-1231) $ (-914 (-219))) 104) (((-1231) $ (-914 (-219)) (-845) (-845) (-892)) 103)) (-3846 (((-834) $) 114) (($ (-621 (-621 (-914 (-219))))) 109)) (-2403 (((-1231) $ (-914 (-219))) 107)) (-2389 (((-112) $ $) NIL)))
+(((-460) (-13 (-1067) (-10 -8 (-15 -1546 ($)) (-15 -2213 ($ $)) (-15 -2213 ($ (-621 (-621 (-914 (-219)))))) (-15 -2213 ($ (-621 (-621 (-914 (-219)))) (-621 (-845)) (-621 (-845)) (-621 (-892)))) (-15 -2213 ($ (-621 (-621 (-914 (-219)))) (-621 (-845)) (-621 (-845)) (-621 (-892)) (-621 (-256)))) (-15 -2818 ((-621 (-621 (-914 (-219)))) $)) (-15 -3337 ((-549) $)) (-15 -2734 ((-621 (-1061 (-372))) $)) (-15 -2734 ((-621 (-1061 (-372))) $ (-621 (-1061 (-372))))) (-15 -2036 ((-621 (-372)) $)) (-15 -2036 ((-621 (-372)) $ (-621 (-372)))) (-15 -3146 ((-1231) $ (-621 (-914 (-219))) (-845) (-845) (-892))) (-15 -3146 ((-1231) $ (-914 (-219)))) (-15 -3146 ((-1231) $ (-914 (-219)) (-845) (-845) (-892))) (-15 -2403 ((-1231) $ (-914 (-219)))) (-15 -2798 ((-1231) $ (-914 (-219)) (-845))) (-15 -3846 ($ (-621 (-621 (-914 (-219)))))) (-15 -3846 ((-834) $)) (-15 -4004 ((-621 (-621 (-914 (-219)))) (-621 (-621 (-914 (-219)))) (-621 (-845)))) (-15 -2326 ((-621 (-219)) (-621 (-621 (-914 (-219))))))))) (T -460))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-460)))) (-1546 (*1 *1) (-5 *1 (-460))) (-2213 (*1 *1 *1) (-5 *1 (-460))) (-2213 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-460)))) (-2213 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *3 (-621 (-845))) (-5 *4 (-621 (-892))) (-5 *1 (-460)))) (-2213 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *3 (-621 (-845))) (-5 *4 (-621 (-892))) (-5 *5 (-621 (-256))) (-5 *1 (-460)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-460)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-460)))) (-2734 (*1 *2 *1) (-12 (-5 *2 (-621 (-1061 (-372)))) (-5 *1 (-460)))) (-2734 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1061 (-372)))) (-5 *1 (-460)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-621 (-372))) (-5 *1 (-460)))) (-2036 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-372))) (-5 *1 (-460)))) (-3146 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-621 (-914 (-219)))) (-5 *4 (-845)) (-5 *5 (-892)) (-5 *2 (-1231)) (-5 *1 (-460)))) (-3146 (*1 *2 *1 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1231)) (-5 *1 (-460)))) (-3146 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *5 (-892)) (-5 *2 (-1231)) (-5 *1 (-460)))) (-2403 (*1 *2 *1 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1231)) (-5 *1 (-460)))) (-2798 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *2 (-1231)) (-5 *1 (-460)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-460)))) (-4004 (*1 *2 *2 *3) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *3 (-621 (-845))) (-5 *1 (-460)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *2 (-621 (-219))) (-5 *1 (-460)))))
+(-13 (-1067) (-10 -8 (-15 -1546 ($)) (-15 -2213 ($ $)) (-15 -2213 ($ (-621 (-621 (-914 (-219)))))) (-15 -2213 ($ (-621 (-621 (-914 (-219)))) (-621 (-845)) (-621 (-845)) (-621 (-892)))) (-15 -2213 ($ (-621 (-621 (-914 (-219)))) (-621 (-845)) (-621 (-845)) (-621 (-892)) (-621 (-256)))) (-15 -2818 ((-621 (-621 (-914 (-219)))) $)) (-15 -3337 ((-549) $)) (-15 -2734 ((-621 (-1061 (-372))) $)) (-15 -2734 ((-621 (-1061 (-372))) $ (-621 (-1061 (-372))))) (-15 -2036 ((-621 (-372)) $)) (-15 -2036 ((-621 (-372)) $ (-621 (-372)))) (-15 -3146 ((-1231) $ (-621 (-914 (-219))) (-845) (-845) (-892))) (-15 -3146 ((-1231) $ (-914 (-219)))) (-15 -3146 ((-1231) $ (-914 (-219)) (-845) (-845) (-892))) (-15 -2403 ((-1231) $ (-914 (-219)))) (-15 -2798 ((-1231) $ (-914 (-219)) (-845))) (-15 -3846 ($ (-621 (-621 (-914 (-219)))))) (-15 -3846 ((-834) $)) (-15 -4004 ((-621 (-621 (-914 (-219)))) (-621 (-621 (-914 (-219)))) (-621 (-845)))) (-15 -2326 ((-621 (-219)) (-621 (-621 (-914 (-219))))))))
+((-2500 (($ $) NIL) (($ $ $) 11)))
+(((-461 |#1| |#2| |#3|) (-10 -8 (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|))) (-462 |#2| |#3|) (-170) (-23)) (T -461))
+NIL
+(-10 -8 (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3701 ((|#2| $) 19)) (-3846 (((-834) $) 11)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 15) (($ $ $) 13)) (-2486 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-462 |#1| |#2|) (-138) (-170) (-23)) (T -462))
+((-3701 (*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-3276 (*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2486 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2500 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))))
+(-13 (-1067) (-10 -8 (-15 -3701 (|t#2| $)) (-15 (-3276) ($) -2589) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2500 ($ $)) (-15 -2486 ($ $ $)) (-15 -2500 ($ $ $))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-1937 (((-3 (-621 (-473 |#1| |#2|)) "failed") (-621 (-473 |#1| |#2|)) (-621 (-836 |#1|))) 92)) (-2209 (((-621 (-621 (-241 |#1| |#2|))) (-621 (-241 |#1| |#2|)) (-621 (-836 |#1|))) 90)) (-2916 (((-2 (|:| |dpolys| (-621 (-241 |#1| |#2|))) (|:| |coords| (-621 (-549)))) (-621 (-241 |#1| |#2|)) (-621 (-836 |#1|))) 61)))
+(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -2209 ((-621 (-621 (-241 |#1| |#2|))) (-621 (-241 |#1| |#2|)) (-621 (-836 |#1|)))) (-15 -1937 ((-3 (-621 (-473 |#1| |#2|)) "failed") (-621 (-473 |#1| |#2|)) (-621 (-836 |#1|)))) (-15 -2916 ((-2 (|:| |dpolys| (-621 (-241 |#1| |#2|))) (|:| |coords| (-621 (-549)))) (-621 (-241 |#1| |#2|)) (-621 (-836 |#1|))))) (-621 (-1143)) (-444) (-444)) (T -463))
+((-2916 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-836 *5))) (-14 *5 (-621 (-1143))) (-4 *6 (-444)) (-5 *2 (-2 (|:| |dpolys| (-621 (-241 *5 *6))) (|:| |coords| (-621 (-549))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-621 (-241 *5 *6))) (-4 *7 (-444)))) (-1937 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-473 *4 *5))) (-5 *3 (-621 (-836 *4))) (-14 *4 (-621 (-1143))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) (-4 *6 (-444)))) (-2209 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-836 *5))) (-14 *5 (-621 (-1143))) (-4 *6 (-444)) (-5 *2 (-621 (-621 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-621 (-241 *5 *6))) (-4 *7 (-444)))))
+(-10 -7 (-15 -2209 ((-621 (-621 (-241 |#1| |#2|))) (-621 (-241 |#1| |#2|)) (-621 (-836 |#1|)))) (-15 -1937 ((-3 (-621 (-473 |#1| |#2|)) "failed") (-621 (-473 |#1| |#2|)) (-621 (-836 |#1|)))) (-15 -2916 ((-2 (|:| |dpolys| (-621 (-241 |#1| |#2|))) (|:| |coords| (-621 (-549)))) (-621 (-241 |#1| |#2|)) (-621 (-836 |#1|)))))
+((-2114 (((-3 $ "failed") $) 11)) (-1955 (($ $ $) 18)) (-3293 (($ $ $) 19)) (-2513 (($ $ $) 9)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 17)))
+(((-464 |#1|) (-10 -8 (-15 -3293 (|#1| |#1| |#1|)) (-15 -1955 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -2513 (|#1| |#1| |#1|)) (-15 -2114 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892)))) (-465)) (T -464))
+NIL
+(-10 -8 (-15 -3293 (|#1| |#1| |#1|)) (-15 -1955 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -2513 (|#1| |#1| |#1|)) (-15 -2114 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892))))
+((-3834 (((-112) $ $) 7)) (-1682 (($) 18 T CONST)) (-2114 (((-3 $ "failed") $) 15)) (-2675 (((-112) $) 17)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 24)) (-3990 (((-1087) $) 10)) (-1955 (($ $ $) 21)) (-3293 (($ $ $) 20)) (-3846 (((-834) $) 11)) (-3287 (($) 19 T CONST)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ $) 23)) (** (($ $ (-892)) 13) (($ $ (-747)) 16) (($ $ (-549)) 22)) (* (($ $ $) 14)))
+(((-465) (-138)) (T -465))
+((-1992 (*1 *1 *1) (-4 *1 (-465))) (-2513 (*1 *1 *1 *1) (-4 *1 (-465))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-549)))) (-1955 (*1 *1 *1 *1) (-4 *1 (-465))) (-3293 (*1 *1 *1 *1) (-4 *1 (-465))))
+(-13 (-703) (-10 -8 (-15 -1992 ($ $)) (-15 -2513 ($ $ $)) (-15 ** ($ $ (-549))) (-6 -4334) (-15 -1955 ($ $ $)) (-15 -3293 ($ $ $))))
+(((-101) . T) ((-593 (-834)) . T) ((-703) . T) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2272 (((-621 (-1048)) $) NIL)) (-3011 (((-1143) $) 17)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3896 (($ $ (-400 (-549))) NIL) (($ $ (-400 (-549)) (-400 (-549))) NIL)) (-2212 (((-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) NIL)) (-1664 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL (|has| |#1| (-356)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1640 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2826 (($ (-747) (-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) NIL)) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) NIL T CONST)) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-1420 (((-112) $) NIL (|has| |#1| (-356)))) (-2871 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-400 (-549)) $) NIL) (((-400 (-549)) $ (-400 (-549))) NIL)) (-2675 (((-112) $) NIL)) (-4187 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2992 (($ $ (-892)) NIL) (($ $ (-400 (-549))) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-400 (-549))) NIL) (($ $ (-1048) (-400 (-549))) NIL) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) NIL)) (-2797 (($ (-1 |#1| |#1|) $) 22)) (-3632 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL (|has| |#1| (-356)))) (-3893 (($ $) 26 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) 33 (-1536 (-12 (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1165))))) (($ $ (-1222 |#2|)) 27 (|has| |#1| (-38 (-400 (-549)))))) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-356)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2763 (($ $ (-400 (-549))) NIL)) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2719 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-3684 (((-747) $) NIL (|has| |#1| (-356)))) (-3341 ((|#1| $ (-400 (-549))) NIL) (($ $ $) NIL (|has| (-400 (-549)) (-1079)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) 25 (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $ (-1222 |#2|)) 15)) (-3701 (((-400 (-549)) $) NIL)) (-1698 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1222 |#2|)) NIL) (($ (-1211 |#1| |#2| |#3|)) 9) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541)))) (-2152 ((|#1| $ (-400 (-549))) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-2597 ((|#1| $) 18)) (-1733 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1710 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-400 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) 24)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-466 |#1| |#2| |#3|) (-13 (-1207 |#1|) (-10 -8 (-15 -3846 ($ (-1222 |#2|))) (-15 -3846 ($ (-1211 |#1| |#2| |#3|))) (-15 -3456 ($ $ (-1222 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|))) (-1018) (-1143) |#1|) (T -466))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1211 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1143)) (-14 *5 *3) (-5 *1 (-466 *3 *4 *5)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1207 |#1|) (-10 -8 (-15 -3846 ($ (-1222 |#2|))) (-15 -3846 ($ (-1211 |#1| |#2| |#3|))) (-15 -3456 ($ $ (-1222 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|)))
+((-3834 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3733 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-1535 (((-1231) $ |#1| |#1|) NIL (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#2| $ |#1| |#2|) 18)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-3490 (((-3 |#2| "failed") |#1| $) 19)) (-1682 (($) NIL T CONST)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-2129 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-3 |#2| "failed") |#1| $) 16)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#2| $ |#1|) NIL)) (-2989 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 ((|#1| $) NIL (|has| |#1| (-823)))) (-1562 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-1569 ((|#1| $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4338))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3449 (((-621 |#1|) $) NIL)) (-2427 (((-112) |#1| $) NIL)) (-3504 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-2751 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-3303 (((-621 |#1|) $) NIL)) (-3761 (((-112) |#1| $) NIL)) (-3990 (((-1087) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3646 ((|#2| $) NIL (|has| |#1| (-823)))) (-3779 (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL)) (-1642 (($ $ |#2|) NIL (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2696 (((-621 |#2|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2898 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3846 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-3624 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-467 |#1| |#2| |#3| |#4|) (-1156 |#1| |#2|) (-1067) (-1067) (-1156 |#1| |#2|) |#2|) (T -467))
+NIL
+(-1156 |#1| |#2|)
+((-3834 (((-112) $ $) NIL)) (-3514 (((-621 (-2 (|:| -2681 $) (|:| -1359 (-621 |#4|)))) (-621 |#4|)) NIL)) (-2866 (((-621 $) (-621 |#4|)) NIL)) (-2272 (((-621 |#3|) $) NIL)) (-3422 (((-112) $) NIL)) (-2527 (((-112) $) NIL (|has| |#1| (-541)))) (-3282 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2731 ((|#4| |#4| $) NIL)) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |#3|) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-1489 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1682 (($) NIL T CONST)) (-1433 (((-112) $) 26 (|has| |#1| (-541)))) (-2555 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2595 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2397 (((-112) $) NIL (|has| |#1| (-541)))) (-2737 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3269 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2953 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2714 (((-3 $ "failed") (-621 |#4|)) NIL)) (-2659 (($ (-621 |#4|)) NIL)) (-3657 (((-3 $ "failed") $) 39)) (-1903 ((|#4| |#4| $) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-3812 (($ |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-3675 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-2217 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3615 ((|#4| |#4| $) NIL)) (-2557 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4337))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4337))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1439 (((-2 (|:| -2681 (-621 |#4|)) (|:| -1359 (-621 |#4|))) $) NIL)) (-2989 (((-621 |#4|) $) 16 (|has| $ (-6 -4337)))) (-2812 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2745 ((|#3| $) 33)) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#4|) $) 17 (|has| $ (-6 -4337)))) (-2090 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-1868 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#4| |#4|) $) 21)) (-2561 (((-621 |#3|) $) NIL)) (-2378 (((-112) |#3| $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-3829 (((-3 |#4| "failed") $) 37)) (-1638 (((-621 |#4|) $) NIL)) (-2170 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3270 ((|#4| |#4| $) NIL)) (-2473 (((-112) $ $) NIL)) (-4203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-1335 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4298 ((|#4| |#4| $) NIL)) (-3990 (((-1087) $) NIL)) (-3646 (((-3 |#4| "failed") $) 35)) (-3779 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2640 (((-3 $ "failed") $ |#4|) 47)) (-2763 (($ $ |#4|) NIL)) (-1780 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#4|) (-621 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-621 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 15)) (-3742 (($) 13)) (-3701 (((-747) $) NIL)) (-4000 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) 12)) (-2845 (((-525) $) NIL (|has| |#4| (-594 (-525))))) (-3854 (($ (-621 |#4|)) 20)) (-2858 (($ $ |#3|) 42)) (-3758 (($ $ |#3|) 44)) (-1962 (($ $) NIL)) (-4317 (($ $ |#3|) NIL)) (-3846 (((-834) $) 31) (((-621 |#4|) $) 40)) (-1824 (((-747) $) NIL (|has| |#3| (-361)))) (-2574 (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1716 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) NIL)) (-3527 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-3002 (((-621 |#3|) $) NIL)) (-1606 (((-112) |#3| $) NIL)) (-2389 (((-112) $ $) NIL)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-468 |#1| |#2| |#3| |#4|) (-1173 |#1| |#2| |#3| |#4|) (-541) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -468))
+NIL
+(-1173 |#1| |#2| |#3| |#4|)
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL)) (-2659 (((-549) $) NIL) (((-400 (-549)) $) NIL)) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-1425 (($) 18)) (-2675 (((-112) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-2845 (((-372) $) 22) (((-219) $) 25) (((-400 (-1139 (-549))) $) 19) (((-525) $) 52)) (-3846 (((-834) $) 50) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (((-219) $) 24) (((-372) $) 21)) (-2082 (((-747)) NIL)) (-1498 (((-112) $ $) NIL)) (-3276 (($) 36 T CONST)) (-3287 (($) 11 T CONST)) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
+(((-469) (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))) (-993) (-593 (-219)) (-593 (-372)) (-594 (-400 (-1139 (-549)))) (-594 (-525)) (-10 -8 (-15 -1425 ($))))) (T -469))
+((-1425 (*1 *1) (-5 *1 (-469))))
+(-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))) (-993) (-593 (-219)) (-593 (-372)) (-594 (-400 (-1139 (-549)))) (-594 (-525)) (-10 -8 (-15 -1425 ($))))
+((-3834 (((-112) $ $) NIL)) (-2203 (((-1148) $) 11)) (-2190 (((-1148) $) 9)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-470) (-13 (-1050) (-10 -8 (-15 -2190 ((-1148) $)) (-15 -2203 ((-1148) $))))) (T -470))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-470)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-470)))))
+(-13 (-1050) (-10 -8 (-15 -2190 ((-1148) $)) (-15 -2203 ((-1148) $))))
+((-3834 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3733 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-1535 (((-1231) $ |#1| |#1|) NIL (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#2| $ |#1| |#2|) 16)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-3490 (((-3 |#2| "failed") |#1| $) 20)) (-1682 (($) NIL T CONST)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-2129 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-3 |#2| "failed") |#1| $) 18)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#2| $ |#1|) NIL)) (-2989 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 ((|#1| $) NIL (|has| |#1| (-823)))) (-1562 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-1569 ((|#1| $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4338))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3449 (((-621 |#1|) $) 13)) (-2427 (((-112) |#1| $) NIL)) (-3504 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-2751 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-3303 (((-621 |#1|) $) NIL)) (-3761 (((-112) |#1| $) NIL)) (-3990 (((-1087) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3646 ((|#2| $) NIL (|has| |#1| (-823)))) (-3779 (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL)) (-1642 (($ $ |#2|) NIL (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2696 (((-621 |#2|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) 19)) (-3341 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2898 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3846 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-3624 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 11 (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3775 (((-747) $) 15 (|has| $ (-6 -4337)))))
+(((-471 |#1| |#2| |#3|) (-13 (-1156 |#1| |#2|) (-10 -7 (-6 -4337))) (-1067) (-1067) (-1125)) (T -471))
+NIL
+(-13 (-1156 |#1| |#2|) (-10 -7 (-6 -4337)))
+((-2995 (((-549) (-549) (-549)) 7)) (-2037 (((-112) (-549) (-549) (-549) (-549)) 11)) (-1412 (((-1226 (-621 (-549))) (-747) (-747)) 23)))
+(((-472) (-10 -7 (-15 -2995 ((-549) (-549) (-549))) (-15 -2037 ((-112) (-549) (-549) (-549) (-549))) (-15 -1412 ((-1226 (-621 (-549))) (-747) (-747))))) (T -472))
+((-1412 (*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1226 (-621 (-549)))) (-5 *1 (-472)))) (-2037 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-472)))) (-2995 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-472)))))
+(-10 -7 (-15 -2995 ((-549) (-549) (-549))) (-15 -2037 ((-112) (-549) (-549) (-549) (-549))) (-15 -1412 ((-1226 (-621 (-549))) (-747) (-747))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2272 (((-621 (-836 |#1|)) $) NIL)) (-2084 (((-1139 $) $ (-836 |#1|)) NIL) (((-1139 |#2|) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#2| (-541)))) (-2258 (($ $) NIL (|has| |#2| (-541)))) (-2799 (((-112) $) NIL (|has| |#2| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 (-836 |#1|))) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-3979 (($ $) NIL (|has| |#2| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-836 |#1|) "failed") $) NIL)) (-2659 ((|#2| $) NIL) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-836 |#1|) $) NIL)) (-1353 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-1457 (($ $ (-621 (-549))) NIL)) (-2070 (($ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#2| (-880)))) (-2691 (($ $ |#2| (-474 (-3775 |#1|) (-747)) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-2261 (($ (-1139 |#2|) (-836 |#1|)) NIL) (($ (-1139 $) (-836 |#1|)) NIL)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#2| (-474 (-3775 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ (-836 |#1|)) NIL)) (-3611 (((-474 (-3775 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-621 (-747)) $ (-621 (-836 |#1|))) NIL)) (-2863 (($ $ $) NIL (|has| |#2| (-823)))) (-3575 (($ $ $) NIL (|has| |#2| (-823)))) (-3705 (($ (-1 (-474 (-3775 |#1|) (-747)) (-474 (-3775 |#1|) (-747))) $) NIL)) (-2797 (($ (-1 |#2| |#2|) $) NIL)) (-1520 (((-3 (-836 |#1|) "failed") $) NIL)) (-2028 (($ $) NIL)) (-2043 ((|#2| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3851 (((-1125) $) NIL)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -3731 (-747))) "failed") $) NIL)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) NIL)) (-2016 ((|#2| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#2| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#2| (-880)))) (-2042 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-541)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-836 |#1|) |#2|) NIL) (($ $ (-621 (-836 |#1|)) (-621 |#2|)) NIL) (($ $ (-836 |#1|) $) NIL) (($ $ (-621 (-836 |#1|)) (-621 $)) NIL)) (-3602 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-3456 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3701 (((-474 (-3775 |#1|) (-747)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-621 (-747)) $ (-621 (-836 |#1|))) NIL)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-836 |#1|) (-594 (-525))) (|has| |#2| (-594 (-525)))))) (-2216 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-836 |#1|)) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#2| (-38 (-400 (-549)))) (|has| |#2| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#2| (-541)))) (-4141 (((-621 |#2|) $) NIL)) (-2152 ((|#2| $ (-474 (-3775 |#1|) (-747))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#2| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#2| (-541)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2513 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#2| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#2| (-38 (-400 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-473 |#1| |#2|) (-13 (-920 |#2| (-474 (-3775 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -1457 ($ $ (-621 (-549)))))) (-621 (-1143)) (-1018)) (T -473))
+((-1457 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-473 *3 *4)) (-14 *3 (-621 (-1143))) (-4 *4 (-1018)))))
+(-13 (-920 |#2| (-474 (-3775 |#1|) (-747)) (-836 |#1|)) (-10 -8 (-15 -1457 ($ $ (-621 (-549))))))
+((-3834 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-1763 (((-112) $) NIL (|has| |#2| (-130)))) (-3956 (($ (-892)) NIL (|has| |#2| (-1018)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-2861 (($ $ $) NIL (|has| |#2| (-769)))) (-2001 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1584 (((-112) $ (-747)) NIL)) (-3614 (((-747)) NIL (|has| |#2| (-361)))) (-1872 (((-549) $) NIL (|has| |#2| (-821)))) (-2254 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1067)))) (-2659 (((-549) $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067)))) (((-400 (-549)) $) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067)))) ((|#2| $) NIL (|has| |#2| (-1067)))) (-3879 (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) NIL (|has| |#2| (-1018)))) (-2114 (((-3 $ "failed") $) NIL (|has| |#2| (-703)))) (-3239 (($) NIL (|has| |#2| (-361)))) (-1879 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#2| $ (-549)) 11)) (-2772 (((-112) $) NIL (|has| |#2| (-821)))) (-2989 (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2675 (((-112) $) NIL (|has| |#2| (-703)))) (-2374 (((-112) $) NIL (|has| |#2| (-821)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-1562 (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-1868 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#2| |#2|) $) NIL)) (-1881 (((-892) $) NIL (|has| |#2| (-361)))) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#2| (-1067)))) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3493 (($ (-892)) NIL (|has| |#2| (-361)))) (-3990 (((-1087) $) NIL (|has| |#2| (-1067)))) (-3646 ((|#2| $) NIL (|has| (-549) (-823)))) (-1642 (($ $ |#2|) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2696 (((-621 |#2|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) NIL)) (-1706 ((|#2| $ $) NIL (|has| |#2| (-1018)))) (-2169 (($ (-1226 |#2|)) NIL)) (-2985 (((-133)) NIL (|has| |#2| (-356)))) (-3456 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1143)) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-4000 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-1226 |#2|) $) NIL) (($ (-549)) NIL (-1536 (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067))) (|has| |#2| (-1018)))) (($ (-400 (-549))) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067)))) (($ |#2|) NIL (|has| |#2| (-1067))) (((-834) $) NIL (|has| |#2| (-593 (-834))))) (-2082 (((-747)) NIL (|has| |#2| (-1018)))) (-3527 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-3212 (($ $) NIL (|has| |#2| (-821)))) (-3276 (($) NIL (|has| |#2| (-130)) CONST)) (-3287 (($) NIL (|has| |#2| (-703)) CONST)) (-1702 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1143)) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2448 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2425 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2389 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-2438 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2412 (((-112) $ $) 15 (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2513 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2500 (($ $ $) NIL (|has| |#2| (-1018))) (($ $) NIL (|has| |#2| (-1018)))) (-2486 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-747)) NIL (|has| |#2| (-703))) (($ $ (-892)) NIL (|has| |#2| (-703)))) (* (($ (-549) $) NIL (|has| |#2| (-1018))) (($ $ $) NIL (|has| |#2| (-703))) (($ $ |#2|) NIL (|has| |#2| (-703))) (($ |#2| $) NIL (|has| |#2| (-703))) (($ (-747) $) NIL (|has| |#2| (-130))) (($ (-892) $) NIL (|has| |#2| (-25)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-474 |#1| |#2|) (-232 |#1| |#2|) (-747) (-769)) (T -474))
+NIL
+(-232 |#1| |#2|)
+((-3834 (((-112) $ $) NIL)) (-2904 (((-621 (-497)) $) 11)) (-2481 (((-497) $) 10)) (-3851 (((-1125) $) NIL)) (-4229 (($ (-497) (-621 (-497))) 9)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-475) (-13 (-1050) (-10 -8 (-15 -4229 ($ (-497) (-621 (-497)))) (-15 -2481 ((-497) $)) (-15 -2904 ((-621 (-497)) $))))) (T -475))
+((-4229 (*1 *1 *2 *3) (-12 (-5 *3 (-621 (-497))) (-5 *2 (-497)) (-5 *1 (-475)))) (-2481 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) (-2904 (*1 *2 *1) (-12 (-5 *2 (-621 (-497))) (-5 *1 (-475)))))
+(-13 (-1050) (-10 -8 (-15 -4229 ($ (-497) (-621 (-497)))) (-15 -2481 ((-497) $)) (-15 -2904 ((-621 (-497)) $))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) NIL)) (-1682 (($) NIL T CONST)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-1303 (($ $ $) 32)) (-3890 (($ $ $) 31)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-3575 ((|#1| $) 26)) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3504 ((|#1| $) 27)) (-2751 (($ |#1| $) 10)) (-3273 (($ (-621 |#1|)) 12)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3325 ((|#1| $) 23)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) 9)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3624 (($ (-621 |#1|)) 29)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3775 (((-747) $) 21 (|has| $ (-6 -4337)))))
+(((-476 |#1|) (-13 (-939 |#1|) (-10 -8 (-15 -3273 ($ (-621 |#1|))))) (-823)) (T -476))
+((-3273 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-476 *3)))))
+(-13 (-939 |#1|) (-10 -8 (-15 -3273 ($ (-621 |#1|)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2557 (($ $) 69)) (-1607 (((-112) $) NIL)) (-3851 (((-1125) $) NIL)) (-3818 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 44)) (-3990 (((-1087) $) NIL)) (-4248 (((-3 |#4| "failed") $) 107)) (-3533 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-549)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-1655 (((-2 (|:| -3715 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-3846 (((-834) $) 102)) (-3276 (($) 33 T CONST)) (-2389 (((-112) $ $) 109)) (-2500 (($ $) 72) (($ $ $) NIL)) (-2486 (($ $ $) 70)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 73)))
+(((-477 |#1| |#2| |#3| |#4|) (-328 |#1| |#2| |#3| |#4|) (-356) (-1202 |#1|) (-1202 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -477))
+NIL
+(-328 |#1| |#2| |#3| |#4|)
+((-3004 (((-549) (-621 (-549))) 30)) (-1916 ((|#1| (-621 |#1|)) 56)) (-1894 (((-621 |#1|) (-621 |#1|)) 57)) (-4086 (((-621 |#1|) (-621 |#1|)) 59)) (-3727 ((|#1| (-621 |#1|)) 58)) (-2216 (((-621 (-549)) (-621 |#1|)) 33)))
+(((-478 |#1|) (-10 -7 (-15 -3727 (|#1| (-621 |#1|))) (-15 -1916 (|#1| (-621 |#1|))) (-15 -4086 ((-621 |#1|) (-621 |#1|))) (-15 -1894 ((-621 |#1|) (-621 |#1|))) (-15 -2216 ((-621 (-549)) (-621 |#1|))) (-15 -3004 ((-549) (-621 (-549))))) (-1202 (-549))) (T -478))
+((-3004 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-549)) (-5 *1 (-478 *4)) (-4 *4 (-1202 *2)))) (-2216 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-1202 (-549))) (-5 *2 (-621 (-549))) (-5 *1 (-478 *4)))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1202 (-549))) (-5 *1 (-478 *3)))) (-4086 (*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1202 (-549))) (-5 *1 (-478 *3)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1202 (-549))))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1202 (-549))))))
+(-10 -7 (-15 -3727 (|#1| (-621 |#1|))) (-15 -1916 (|#1| (-621 |#1|))) (-15 -4086 ((-621 |#1|) (-621 |#1|))) (-15 -1894 ((-621 |#1|) (-621 |#1|))) (-15 -2216 ((-621 (-549)) (-621 |#1|))) (-15 -3004 ((-549) (-621 (-549)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3329 (((-549) $) NIL (|has| (-549) (-300)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL (|has| (-549) (-796)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL) (((-3 (-1143) "failed") $) NIL (|has| (-549) (-1009 (-1143)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-549) (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| (-549) (-1009 (-549))))) (-2659 (((-549) $) NIL) (((-1143) $) NIL (|has| (-549) (-1009 (-1143)))) (((-400 (-549)) $) NIL (|has| (-549) (-1009 (-549)))) (((-549) $) NIL (|has| (-549) (-1009 (-549))))) (-2095 (($ $ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL) (((-665 (-549)) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| (-549) (-534)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-2772 (((-112) $) NIL (|has| (-549) (-796)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-549) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-549) (-857 (-372))))) (-2675 (((-112) $) NIL)) (-1726 (($ $) NIL)) (-1394 (((-549) $) NIL)) (-1681 (((-3 $ "failed") $) NIL (|has| (-549) (-1118)))) (-2374 (((-112) $) NIL (|has| (-549) (-796)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2863 (($ $ $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| (-549) (-823)))) (-2797 (($ (-1 (-549) (-549)) $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| (-549) (-1118)) CONST)) (-4236 (($ (-400 (-549))) 9)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2873 (($ $) NIL (|has| (-549) (-300))) (((-400 (-549)) $) NIL)) (-3967 (((-549) $) NIL (|has| (-549) (-534)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2686 (($ $ (-621 (-549)) (-621 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-302 (-549)))) (($ $ (-287 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-287 (-549)))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-1143)) (-621 (-549))) NIL (|has| (-549) (-505 (-1143) (-549)))) (($ $ (-1143) (-549)) NIL (|has| (-549) (-505 (-1143) (-549))))) (-3684 (((-747) $) NIL)) (-3341 (($ $ (-549)) NIL (|has| (-549) (-279 (-549) (-549))))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1143)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-3939 (($ $) NIL)) (-1403 (((-549) $) NIL)) (-2845 (((-863 (-549)) $) NIL (|has| (-549) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-549) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-549) (-594 (-525)))) (((-372) $) NIL (|has| (-549) (-993))) (((-219) $) NIL (|has| (-549) (-993)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-549) (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) 8) (($ (-549)) NIL) (($ (-1143)) NIL (|has| (-549) (-1009 (-1143)))) (((-400 (-549)) $) NIL) (((-975 16) $) 10)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-549) (-880))) (|has| (-549) (-143))))) (-2082 (((-747)) NIL)) (-2546 (((-549) $) NIL (|has| (-549) (-534)))) (-1498 (((-112) $ $) NIL)) (-3212 (($ $) NIL (|has| (-549) (-796)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1143)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2425 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2412 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2513 (($ $ $) NIL) (($ (-549) (-549)) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL)))
+(((-479) (-13 (-963 (-549)) (-10 -8 (-15 -3846 ((-400 (-549)) $)) (-15 -3846 ((-975 16) $)) (-15 -2873 ((-400 (-549)) $)) (-15 -4236 ($ (-400 (-549))))))) (T -479))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-479)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-975 16)) (-5 *1 (-479)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-479)))) (-4236 (*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-479)))))
+(-13 (-963 (-549)) (-10 -8 (-15 -3846 ((-400 (-549)) $)) (-15 -3846 ((-975 16) $)) (-15 -2873 ((-400 (-549)) $)) (-15 -4236 ($ (-400 (-549))))))
+((-1562 (((-621 |#2|) $) 23)) (-2090 (((-112) |#2| $) 28)) (-1780 (((-112) (-1 (-112) |#2|) $) 21)) (-2686 (($ $ (-621 (-287 |#2|))) 13) (($ $ (-287 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-621 |#2|) (-621 |#2|)) NIL)) (-4000 (((-747) (-1 (-112) |#2|) $) 22) (((-747) |#2| $) 26)) (-3846 (((-834) $) 37)) (-3527 (((-112) (-1 (-112) |#2|) $) 20)) (-2389 (((-112) $ $) 31)) (-3775 (((-747) $) 17)))
+(((-480 |#1| |#2|) (-10 -8 (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -2686 (|#1| |#1| (-621 |#2|) (-621 |#2|))) (-15 -2686 (|#1| |#1| |#2| |#2|)) (-15 -2686 (|#1| |#1| (-287 |#2|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#2|)))) (-15 -2090 ((-112) |#2| |#1|)) (-15 -4000 ((-747) |#2| |#1|)) (-15 -1562 ((-621 |#2|) |#1|)) (-15 -4000 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -1780 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3527 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3775 ((-747) |#1|))) (-481 |#2|) (-1180)) (T -480))
+NIL
+(-10 -8 (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -2686 (|#1| |#1| (-621 |#2|) (-621 |#2|))) (-15 -2686 (|#1| |#1| |#2| |#2|)) (-15 -2686 (|#1| |#1| (-287 |#2|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#2|)))) (-15 -2090 ((-112) |#2| |#1|)) (-15 -4000 ((-747) |#2| |#1|)) (-15 -1562 ((-621 |#2|) |#1|)) (-15 -4000 ((-747) (-1 (-112) |#2|) |#1|)) (-15 -1780 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3527 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3775 ((-747) |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) 8)) (-1682 (($) 7 T CONST)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-481 |#1|) (-138) (-1180)) (T -481))
+((-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1180)))) (-1868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4338)) (-4 *1 (-481 *3)) (-4 *3 (-1180)))) (-3527 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4337)) (-4 *1 (-481 *4)) (-4 *4 (-1180)) (-5 *2 (-112)))) (-1780 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4337)) (-4 *1 (-481 *4)) (-4 *4 (-1180)) (-5 *2 (-112)))) (-4000 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4337)) (-4 *1 (-481 *4)) (-4 *4 (-1180)) (-5 *2 (-747)))) (-2989 (*1 *2 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-481 *3)) (-4 *3 (-1180)) (-5 *2 (-621 *3)))) (-1562 (*1 *2 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-481 *3)) (-4 *3 (-1180)) (-5 *2 (-621 *3)))) (-4000 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-481 *3)) (-4 *3 (-1180)) (-4 *3 (-1067)) (-5 *2 (-747)))) (-2090 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-481 *3)) (-4 *3 (-1180)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-593 (-834))) (-6 (-593 (-834))) |%noBranch|) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-1067)) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2797 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4338)) (-15 -1868 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4337)) (PROGN (-15 -3527 ((-112) (-1 (-112) |t#1|) $)) (-15 -1780 ((-112) (-1 (-112) |t#1|) $)) (-15 -4000 ((-747) (-1 (-112) |t#1|) $)) (-15 -2989 ((-621 |t#1|) $)) (-15 -1562 ((-621 |t#1|) $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -4000 ((-747) |t#1| $)) (-15 -2090 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-1679 (($ (-1125)) 8)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 14) (((-1125) $) 11)) (-2389 (((-112) $ $) 10)))
+(((-482) (-13 (-1067) (-593 (-1125)) (-10 -8 (-15 -1679 ($ (-1125)))))) (T -482))
+((-1679 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-482)))))
+(-13 (-1067) (-593 (-1125)) (-10 -8 (-15 -1679 ($ (-1125)))))
+((-1664 (($ $) 15)) (-1640 (($ $) 24)) (-1685 (($ $) 12)) (-1698 (($ $) 10)) (-1675 (($ $) 17)) (-1651 (($ $) 22)))
+(((-483 |#1|) (-10 -8 (-15 -1651 (|#1| |#1|)) (-15 -1675 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1664 (|#1| |#1|))) (-484)) (T -483))
+NIL
+(-10 -8 (-15 -1651 (|#1| |#1|)) (-15 -1675 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1664 (|#1| |#1|)))
+((-1664 (($ $) 11)) (-1640 (($ $) 10)) (-1685 (($ $) 9)) (-1698 (($ $) 8)) (-1675 (($ $) 7)) (-1651 (($ $) 6)))
+(((-484) (-138)) (T -484))
+((-1664 (*1 *1 *1) (-4 *1 (-484))) (-1640 (*1 *1 *1) (-4 *1 (-484))) (-1685 (*1 *1 *1) (-4 *1 (-484))) (-1698 (*1 *1 *1) (-4 *1 (-484))) (-1675 (*1 *1 *1) (-4 *1 (-484))) (-1651 (*1 *1 *1) (-4 *1 (-484))))
+(-13 (-10 -8 (-15 -1651 ($ $)) (-15 -1675 ($ $)) (-15 -1698 ($ $)) (-15 -1685 ($ $)) (-15 -1640 ($ $)) (-15 -1664 ($ $))))
+((-2121 (((-411 |#4|) |#4| (-1 (-411 |#2|) |#2|)) 42)))
+(((-485 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2121 ((-411 |#4|) |#4| (-1 (-411 |#2|) |#2|)))) (-356) (-1202 |#1|) (-13 (-356) (-145) (-701 |#1| |#2|)) (-1202 |#3|)) (T -485))
+((-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1202 *5)) (-4 *5 (-356)) (-4 *7 (-13 (-356) (-145) (-701 *5 *6))) (-5 *2 (-411 *3)) (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1202 *7)))))
+(-10 -7 (-15 -2121 ((-411 |#4|) |#4| (-1 (-411 |#2|) |#2|))))
+((-3834 (((-112) $ $) NIL)) (-1329 (((-621 $) (-1139 $) (-1143)) NIL) (((-621 $) (-1139 $)) NIL) (((-621 $) (-923 $)) NIL)) (-3289 (($ (-1139 $) (-1143)) NIL) (($ (-1139 $)) NIL) (($ (-923 $)) NIL)) (-1763 (((-112) $) 39)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2537 (((-112) $ $) 64)) (-1981 (((-621 (-592 $)) $) 48)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3015 (($ $ (-287 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-2134 (($ $) NIL)) (-3866 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-1815 (((-621 $) (-1139 $) (-1143)) NIL) (((-621 $) (-1139 $)) NIL) (((-621 $) (-923 $)) NIL)) (-1947 (($ (-1139 $) (-1143)) NIL) (($ (-1139 $)) NIL) (($ (-923 $)) NIL)) (-2714 (((-3 (-592 $) "failed") $) NIL) (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL)) (-2659 (((-592 $) $) NIL) (((-549) $) NIL) (((-400 (-549)) $) 50)) (-2095 (($ $ $) NIL)) (-3879 (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL) (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -3521 (-665 (-400 (-549)))) (|:| |vec| (-1226 (-400 (-549))))) (-665 $) (-1226 $)) NIL) (((-665 (-400 (-549))) (-665 $)) NIL)) (-2557 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-3225 (($ $) NIL) (($ (-621 $)) NIL)) (-2162 (((-621 (-114)) $) NIL)) (-2834 (((-114) (-114)) NIL)) (-2675 (((-112) $) 42)) (-3559 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-1394 (((-1092 (-549) (-592 $)) $) 37)) (-4187 (($ $ (-549)) NIL)) (-3630 (((-1139 $) (-1139 $) (-592 $)) 78) (((-1139 $) (-1139 $) (-621 (-592 $))) 55) (($ $ (-592 $)) 67) (($ $ (-621 (-592 $))) 68)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-1549 (((-1139 $) (-592 $)) 65 (|has| $ (-1018)))) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2797 (($ (-1 $ $) (-592 $)) NIL)) (-2634 (((-3 (-592 $) "failed") $) NIL)) (-3697 (($ (-621 $)) NIL) (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-2071 (((-621 (-592 $)) $) NIL)) (-1476 (($ (-114) $) NIL) (($ (-114) (-621 $)) NIL)) (-3421 (((-112) $ (-114)) NIL) (((-112) $ (-1143)) NIL)) (-1992 (($ $) NIL)) (-4036 (((-747) $) NIL)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ (-621 $)) NIL) (($ $ $) NIL)) (-2979 (((-112) $ $) NIL) (((-112) $ (-1143)) NIL)) (-2121 (((-411 $) $) NIL)) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3450 (((-112) $) NIL (|has| $ (-1009 (-549))))) (-2686 (($ $ (-592 $) $) NIL) (($ $ (-621 (-592 $)) (-621 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-621 (-1143)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-1143)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-1143) (-1 $ (-621 $))) NIL) (($ $ (-1143) (-1 $ $)) NIL) (($ $ (-621 (-114)) (-621 (-1 $ $))) NIL) (($ $ (-621 (-114)) (-621 (-1 $ (-621 $)))) NIL) (($ $ (-114) (-1 $ (-621 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3684 (((-747) $) NIL)) (-3341 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-621 $)) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3433 (($ $) NIL) (($ $ $) NIL)) (-3456 (($ $ (-747)) NIL) (($ $) 36)) (-1403 (((-1092 (-549) (-592 $)) $) 20)) (-2815 (($ $) NIL (|has| $ (-1018)))) (-2845 (((-372) $) 92) (((-219) $) 100) (((-167 (-372)) $) 108)) (-3846 (((-834) $) NIL) (($ (-592 $)) NIL) (($ (-400 (-549))) NIL) (($ $) NIL) (($ (-549)) NIL) (($ (-1092 (-549) (-592 $))) 21)) (-2082 (((-747)) NIL)) (-4137 (($ $) NIL) (($ (-621 $)) NIL)) (-4285 (((-112) (-114)) 84)) (-1498 (((-112) $ $) NIL)) (-3276 (($) 10 T CONST)) (-3287 (($) 22 T CONST)) (-1702 (($ $ (-747)) NIL) (($ $) NIL)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 24)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) NIL)) (-2513 (($ $ $) 44)) (-2500 (($ $ $) NIL) (($ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-400 (-549))) NIL) (($ $ (-549)) 46) (($ $ (-747)) NIL) (($ $ (-892)) NIL)) (* (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL) (($ $ $) 27) (($ (-549) $) NIL) (($ (-747) $) NIL) (($ (-892) $) NIL)))
+(((-486) (-13 (-295) (-27) (-1009 (-549)) (-1009 (-400 (-549))) (-617 (-549)) (-993) (-617 (-400 (-549))) (-145) (-594 (-167 (-372))) (-227) (-10 -8 (-15 -3846 ($ (-1092 (-549) (-592 $)))) (-15 -1394 ((-1092 (-549) (-592 $)) $)) (-15 -1403 ((-1092 (-549) (-592 $)) $)) (-15 -2557 ($ $)) (-15 -2537 ((-112) $ $)) (-15 -3630 ((-1139 $) (-1139 $) (-592 $))) (-15 -3630 ((-1139 $) (-1139 $) (-621 (-592 $)))) (-15 -3630 ($ $ (-592 $))) (-15 -3630 ($ $ (-621 (-592 $))))))) (T -486))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1092 (-549) (-592 (-486)))) (-5 *1 (-486)))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-1092 (-549) (-592 (-486)))) (-5 *1 (-486)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-1092 (-549) (-592 (-486)))) (-5 *1 (-486)))) (-2557 (*1 *1 *1) (-5 *1 (-486))) (-2537 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *2 (-1139 (-486))) (-5 *3 (-592 (-486))) (-5 *1 (-486)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *2 (-1139 (-486))) (-5 *3 (-621 (-592 (-486)))) (-5 *1 (-486)))) (-3630 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-486))) (-5 *1 (-486)))) (-3630 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-592 (-486)))) (-5 *1 (-486)))))
+(-13 (-295) (-27) (-1009 (-549)) (-1009 (-400 (-549))) (-617 (-549)) (-993) (-617 (-400 (-549))) (-145) (-594 (-167 (-372))) (-227) (-10 -8 (-15 -3846 ($ (-1092 (-549) (-592 $)))) (-15 -1394 ((-1092 (-549) (-592 $)) $)) (-15 -1403 ((-1092 (-549) (-592 $)) $)) (-15 -2557 ($ $)) (-15 -2537 ((-112) $ $)) (-15 -3630 ((-1139 $) (-1139 $) (-592 $))) (-15 -3630 ((-1139 $) (-1139 $) (-621 (-592 $)))) (-15 -3630 ($ $ (-592 $))) (-15 -3630 ($ $ (-621 (-592 $))))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4311 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4338))) (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#1| $ (-549) |#1|) 25 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) NIL (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) 22 (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) 21)) (-2883 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1067))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1067)))) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3743 (($ (-747) |#1|) 14)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) 12 (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3890 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-549) $) 23 (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-2616 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3646 ((|#1| $) NIL (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1642 (($ $ |#1|) 10 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) 13)) (-3341 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 24) (($ $ (-1193 (-549))) NIL)) (-2167 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) NIL)) (-1952 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3775 (((-747) $) 9 (|has| $ (-6 -4337)))))
+(((-487 |#1| |#2|) (-19 |#1|) (-1180) (-549)) (T -487))
NIL
(-19 |#1|)
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#1| $ (-547) (-547) |#1|) NIL)) (-1370 (($ $ (-547) (-485 |#1| |#3|)) NIL)) (-2501 (($ $ (-547) (-485 |#1| |#2|)) NIL)) (-1948 (($) NIL T CONST)) (-2330 (((-485 |#1| |#3|) $ (-547)) NIL)) (-1872 ((|#1| $ (-547) (-547) |#1|) NIL)) (-1802 ((|#1| $ (-547) (-547)) NIL)) (-2982 (((-619 |#1|) $) NIL)) (-2135 (((-745) $) NIL)) (-3735 (($ (-745) (-745) |#1|) NIL)) (-2148 (((-745) $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-3612 (((-547) $) NIL)) (-3628 (((-547) $) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3120 (((-547) $) NIL)) (-1599 (((-547) $) NIL)) (-1859 (($ (-1 |#1| |#1|) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3632 (($ $ |#1|) NIL)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ (-547) (-547)) NIL) ((|#1| $ (-547) (-547) |#1|) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-1295 (((-485 |#1| |#2|) $ (-547)) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-486 |#1| |#2| |#3|) (-56 |#1| (-485 |#1| |#3|) (-485 |#1| |#2|)) (-1173) (-547) (-547)) (T -486))
-NIL
-(-56 |#1| (-485 |#1| |#3|) (-485 |#1| |#2|))
-((-1883 (((-619 (-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-745) (-745)) 27)) (-3744 (((-619 (-1132 |#1|)) |#1| (-745) (-745) (-745)) 34)) (-3604 (((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-619 |#3|) (-619 (-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-745)) 85)))
-(((-487 |#1| |#2| |#3|) (-10 -7 (-15 -3744 ((-619 (-1132 |#1|)) |#1| (-745) (-745) (-745))) (-15 -1883 ((-619 (-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-745) (-745))) (-15 -3604 ((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-619 |#3|) (-619 (-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-745)))) (-340) (-1195 |#1|) (-1195 |#2|)) (T -487))
-((-3604 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-2 (|:| -1917 (-663 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-663 *7))))) (-5 *5 (-745)) (-4 *8 (-1195 *7)) (-4 *7 (-1195 *6)) (-4 *6 (-340)) (-5 *2 (-2 (|:| -1917 (-663 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-663 *7)))) (-5 *1 (-487 *6 *7 *8)))) (-1883 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-745)) (-4 *5 (-340)) (-4 *6 (-1195 *5)) (-5 *2 (-619 (-2 (|:| -1917 (-663 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-663 *6))))) (-5 *1 (-487 *5 *6 *7)) (-5 *3 (-2 (|:| -1917 (-663 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-663 *6)))) (-4 *7 (-1195 *6)))) (-3744 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-745)) (-4 *3 (-340)) (-4 *5 (-1195 *3)) (-5 *2 (-619 (-1132 *3))) (-5 *1 (-487 *3 *5 *6)) (-4 *6 (-1195 *5)))))
-(-10 -7 (-15 -3744 ((-619 (-1132 |#1|)) |#1| (-745) (-745) (-745))) (-15 -1883 ((-619 (-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-745) (-745))) (-15 -3604 ((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-619 |#3|) (-619 (-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-745))))
-((-4303 (((-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))) 62)) (-3731 ((|#1| (-663 |#1|) |#1| (-745)) 25)) (-2788 (((-745) (-745) (-745)) 30)) (-3507 (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 42)) (-1863 (((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|) 50) (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 47)) (-4184 ((|#1| (-663 |#1|) (-663 |#1|) |#1| (-547)) 29)) (-2278 ((|#1| (-663 |#1|)) 18)))
-(((-488 |#1| |#2| |#3|) (-10 -7 (-15 -2278 (|#1| (-663 |#1|))) (-15 -3731 (|#1| (-663 |#1|) |#1| (-745))) (-15 -4184 (|#1| (-663 |#1|) (-663 |#1|) |#1| (-547))) (-15 -2788 ((-745) (-745) (-745))) (-15 -1863 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1863 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -3507 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -4303 ((-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))))) (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $)))) (-1195 |#1|) (-400 |#1| |#2|)) (T -488))
-((-4303 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1917 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $))))) (-4 *4 (-1195 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) (-3507 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $))))) (-4 *4 (-1195 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) (-1863 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $))))) (-4 *4 (-1195 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) (-1863 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $))))) (-4 *4 (-1195 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) (-2788 (*1 *2 *2 *2) (-12 (-5 *2 (-745)) (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $))))) (-4 *4 (-1195 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) (-4184 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-663 *2)) (-5 *4 (-547)) (-4 *2 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $))))) (-4 *5 (-1195 *2)) (-5 *1 (-488 *2 *5 *6)) (-4 *6 (-400 *2 *5)))) (-3731 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-663 *2)) (-5 *4 (-745)) (-4 *2 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $))))) (-4 *5 (-1195 *2)) (-5 *1 (-488 *2 *5 *6)) (-4 *6 (-400 *2 *5)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *4 (-1195 *2)) (-4 *2 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $))))) (-5 *1 (-488 *2 *4 *5)) (-4 *5 (-400 *2 *4)))))
-(-10 -7 (-15 -2278 (|#1| (-663 |#1|))) (-15 -3731 (|#1| (-663 |#1|) |#1| (-745))) (-15 -4184 (|#1| (-663 |#1|) (-663 |#1|) |#1| (-547))) (-15 -2788 ((-745) (-745) (-745))) (-15 -1863 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1863 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -3507 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -4303 ((-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -1917 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))))))
-((-3826 (((-112) $ $) NIL)) (-1333 (($ $) NIL)) (-2456 (($ $ $) 35)) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) $) NIL (|has| (-112) (-821))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2809 (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| (-112) (-821)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4330)))) (-3185 (($ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-2247 (((-112) $ (-1186 (-547)) (-112)) NIL (|has| $ (-6 -4330))) (((-112) $ (-547) (-112)) 36 (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063))))) (-3803 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4329))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063))))) (-2552 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063))))) (-1872 (((-112) $ (-547) (-112)) NIL (|has| $ (-6 -4330)))) (-1802 (((-112) $ (-547)) NIL)) (-2876 (((-547) (-112) $ (-547)) NIL (|has| (-112) (-1063))) (((-547) (-112) $) NIL (|has| (-112) (-1063))) (((-547) (-1 (-112) (-112)) $) NIL)) (-2982 (((-619 (-112)) $) NIL (|has| $ (-6 -4329)))) (-4199 (($ $ $) 33)) (-4000 (($ $) NIL)) (-3997 (($ $ $) NIL)) (-3735 (($ (-745) (-112)) 23)) (-4214 (($ $ $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) 8 (|has| (-547) (-821)))) (-2856 (($ $ $) NIL)) (-2777 (($ $ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2284 (((-619 (-112)) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL)) (-1859 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-2606 (($ $ $ (-547)) NIL) (($ (-112) $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL)) (-3638 (((-112) $) NIL (|has| (-547) (-821)))) (-3650 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3632 (($ $ (-112)) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-112)) (-619 (-112))) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-285 (-112))) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-619 (-285 (-112)))) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063))))) (-2987 (((-619 (-112)) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) 24)) (-3334 (($ $ (-1186 (-547))) NIL) (((-112) $ (-547)) 18) (((-112) $ (-547) (-112)) NIL)) (-2159 (($ $ (-1186 (-547))) NIL) (($ $ (-547)) NIL)) (-3992 (((-745) (-112) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-1063)))) (((-745) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4329)))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) 25)) (-2838 (((-523) $) NIL (|has| (-112) (-592 (-523))))) (-3846 (($ (-619 (-112))) NIL)) (-1945 (($ (-619 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3838 (((-832) $) 22)) (-2693 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4329)))) (-1814 (($ $ $) 31)) (-3700 (($ $ $) NIL)) (-3791 (($ $ $) 39)) (-3801 (($ $) 37)) (-3781 (($ $ $) 38)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 26)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 27)) (-3688 (($ $ $) NIL)) (-3767 (((-745) $) 10 (|has| $ (-6 -4329)))))
-(((-489 |#1|) (-13 (-123) (-10 -8 (-15 -3801 ($ $)) (-15 -3791 ($ $ $)) (-15 -3781 ($ $ $)))) (-547)) (T -489))
-((-3801 (*1 *1 *1) (-12 (-5 *1 (-489 *2)) (-14 *2 (-547)))) (-3791 (*1 *1 *1 *1) (-12 (-5 *1 (-489 *2)) (-14 *2 (-547)))) (-3781 (*1 *1 *1 *1) (-12 (-5 *1 (-489 *2)) (-14 *2 (-547)))))
-(-13 (-123) (-10 -8 (-15 -3801 ($ $)) (-15 -3791 ($ $ $)) (-15 -3781 ($ $ $))))
-((-1989 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1132 |#4|)) 35)) (-4271 (((-1132 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1132 |#4|)) 22)) (-2054 (((-3 (-663 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-663 (-1132 |#4|))) 46)) (-1448 (((-1132 (-1132 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-490 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4271 (|#2| (-1 |#1| |#4|) (-1132 |#4|))) (-15 -4271 ((-1132 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1989 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1132 |#4|))) (-15 -2054 ((-3 (-663 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-663 (-1132 |#4|)))) (-15 -1448 ((-1132 (-1132 |#4|)) (-1 |#4| |#1|) |#3|))) (-1016) (-1195 |#1|) (-1195 |#2|) (-1016)) (T -490))
-((-1448 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *6 (-1195 *5)) (-5 *2 (-1132 (-1132 *7))) (-5 *1 (-490 *5 *6 *4 *7)) (-4 *4 (-1195 *6)))) (-2054 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-663 (-1132 *8))) (-4 *5 (-1016)) (-4 *8 (-1016)) (-4 *6 (-1195 *5)) (-5 *2 (-663 *6)) (-5 *1 (-490 *5 *6 *7 *8)) (-4 *7 (-1195 *6)))) (-1989 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1132 *7)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *2 (-1195 *5)) (-5 *1 (-490 *5 *2 *6 *7)) (-4 *6 (-1195 *2)))) (-4271 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *4 (-1195 *5)) (-5 *2 (-1132 *7)) (-5 *1 (-490 *5 *4 *6 *7)) (-4 *6 (-1195 *4)))) (-4271 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1132 *7)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *2 (-1195 *5)) (-5 *1 (-490 *5 *2 *6 *7)) (-4 *6 (-1195 *2)))))
-(-10 -7 (-15 -4271 (|#2| (-1 |#1| |#4|) (-1132 |#4|))) (-15 -4271 ((-1132 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1989 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1132 |#4|))) (-15 -2054 ((-3 (-663 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-663 (-1132 |#4|)))) (-15 -1448 ((-1132 (-1132 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-3826 (((-112) $ $) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1764 (((-1224) $) 19)) (-3334 (((-1119) $ (-1136)) 23)) (-2692 (((-1224) $) 15)) (-3838 (((-832) $) 21) (($ (-1119)) 20)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 9)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 8)))
-(((-491) (-13 (-821) (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 ((-1224) $)) (-15 -1764 ((-1224) $)) (-15 -3838 ($ (-1119)))))) (T -491))
-((-3334 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1119)) (-5 *1 (-491)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-491)))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-491)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-491)))))
-(-13 (-821) (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 ((-1224) $)) (-15 -1764 ((-1224) $)) (-15 -3838 ($ (-1119)))))
-((-3076 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3598 ((|#1| |#4|) 10)) (-3996 ((|#3| |#4|) 17)))
-(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3598 (|#1| |#4|)) (-15 -3996 (|#3| |#4|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-539) (-961 |#1|) (-364 |#1|) (-364 |#2|)) (T -492))
-((-3076 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *6 (-364 *4)) (-4 *3 (-364 *5)))) (-3996 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) (-4 *2 (-364 *4)) (-5 *1 (-492 *4 *5 *2 *3)) (-4 *3 (-364 *5)))) (-3598 (*1 *2 *3) (-12 (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-492 *2 *4 *5 *3)) (-4 *5 (-364 *2)) (-4 *3 (-364 *4)))))
-(-10 -7 (-15 -3598 (|#1| |#4|)) (-15 -3996 (|#3| |#4|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-3826 (((-112) $ $) NIL)) (-1808 (((-112) $ (-619 |#3|)) 105) (((-112) $) 106)) (-1499 (((-112) $) 149)) (-1392 (($ $ |#4|) 97) (($ $ |#4| (-619 |#3|)) 101)) (-2244 (((-1126 (-619 (-921 |#1|)) (-619 (-285 (-921 |#1|)))) (-619 |#4|)) 142 (|has| |#3| (-592 (-1136))))) (-2235 (($ $ $) 91) (($ $ |#4|) 89)) (-2261 (((-112) $) 148)) (-2042 (($ $) 109)) (-1466 (((-1119) $) NIL)) (-3594 (($ $ $) 83) (($ (-619 $)) 85)) (-1951 (((-112) |#4| $) 108)) (-3929 (((-112) $ $) 72)) (-2532 (($ (-619 |#4|)) 90)) (-3979 (((-1082) $) NIL)) (-2678 (($ (-619 |#4|)) 146)) (-3601 (((-112) $) 147)) (-3191 (($ $) 74)) (-4006 (((-619 |#4|) $) 63)) (-1745 (((-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)) $ (-619 |#3|)) NIL)) (-2903 (((-112) |#4| $) 77)) (-3970 (((-547) $ (-619 |#3|)) 110) (((-547) $) 111)) (-3838 (((-832) $) 145) (($ (-619 |#4|)) 86)) (-3579 (($ (-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $))) NIL)) (-2381 (((-112) $ $) 73)) (-2479 (($ $ $) 93)) (** (($ $ (-745)) 96)) (* (($ $ $) 95)))
-(((-493 |#1| |#2| |#3| |#4|) (-13 (-1063) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 -2479 ($ $ $)) (-15 -2261 ((-112) $)) (-15 -1499 ((-112) $)) (-15 -2903 ((-112) |#4| $)) (-15 -3929 ((-112) $ $)) (-15 -1951 ((-112) |#4| $)) (-15 -1808 ((-112) $ (-619 |#3|))) (-15 -1808 ((-112) $)) (-15 -3594 ($ $ $)) (-15 -3594 ($ (-619 $))) (-15 -2235 ($ $ $)) (-15 -2235 ($ $ |#4|)) (-15 -3191 ($ $)) (-15 -1745 ((-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)) $ (-619 |#3|))) (-15 -3579 ($ (-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)))) (-15 -3970 ((-547) $ (-619 |#3|))) (-15 -3970 ((-547) $)) (-15 -2042 ($ $)) (-15 -2532 ($ (-619 |#4|))) (-15 -2678 ($ (-619 |#4|))) (-15 -3601 ((-112) $)) (-15 -4006 ((-619 |#4|) $)) (-15 -3838 ($ (-619 |#4|))) (-15 -1392 ($ $ |#4|)) (-15 -1392 ($ $ |#4| (-619 |#3|))) (IF (|has| |#3| (-592 (-1136))) (-15 -2244 ((-1126 (-619 (-921 |#1|)) (-619 (-285 (-921 |#1|)))) (-619 |#4|))) |%noBranch|))) (-354) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -493))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-2479 (*1 *1 *1 *1) (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2261 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-1499 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-2903 (*1 *2 *3 *1) (-12 (-4 *4 (-354)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-3929 (*1 *2 *1 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-1951 (*1 *2 *3 *1) (-12 (-4 *4 (-354)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-1808 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-493 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-1808 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3594 (*1 *1 *1 *1) (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-619 (-493 *3 *4 *5 *6))) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-2235 (*1 *1 *1 *1) (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2235 (*1 *1 *1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) (-3191 (*1 *1 *1) (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-1745 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767)) (-5 *2 (-2 (|:| |mval| (-663 *4)) (|:| |invmval| (-663 *4)) (|:| |genIdeal| (-493 *4 *5 *6 *7)))) (-5 *1 (-493 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-3579 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-663 *3)) (|:| |invmval| (-663 *3)) (|:| |genIdeal| (-493 *3 *4 *5 *6)))) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3970 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767)) (-5 *2 (-547)) (-5 *1 (-493 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-3970 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-547)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-2042 (*1 *1 *1) (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)))) (-2678 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)))) (-3601 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-4006 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *6)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)))) (-1392 (*1 *1 *1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) (-1392 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767)) (-5 *1 (-493 *4 *5 *6 *2)) (-4 *2 (-918 *4 *5 *6)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *6 (-592 (-1136))) (-4 *4 (-354)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1126 (-619 (-921 *4)) (-619 (-285 (-921 *4))))) (-5 *1 (-493 *4 *5 *6 *7)))))
-(-13 (-1063) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 -2479 ($ $ $)) (-15 -2261 ((-112) $)) (-15 -1499 ((-112) $)) (-15 -2903 ((-112) |#4| $)) (-15 -3929 ((-112) $ $)) (-15 -1951 ((-112) |#4| $)) (-15 -1808 ((-112) $ (-619 |#3|))) (-15 -1808 ((-112) $)) (-15 -3594 ($ $ $)) (-15 -3594 ($ (-619 $))) (-15 -2235 ($ $ $)) (-15 -2235 ($ $ |#4|)) (-15 -3191 ($ $)) (-15 -1745 ((-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)) $ (-619 |#3|))) (-15 -3579 ($ (-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)))) (-15 -3970 ((-547) $ (-619 |#3|))) (-15 -3970 ((-547) $)) (-15 -2042 ($ $)) (-15 -2532 ($ (-619 |#4|))) (-15 -2678 ($ (-619 |#4|))) (-15 -3601 ((-112) $)) (-15 -4006 ((-619 |#4|) $)) (-15 -3838 ($ (-619 |#4|))) (-15 -1392 ($ $ |#4|)) (-15 -1392 ($ $ |#4| (-619 |#3|))) (IF (|has| |#3| (-592 (-1136))) (-15 -2244 ((-1126 (-619 (-921 |#1|)) (-619 (-285 (-921 |#1|)))) (-619 |#4|))) |%noBranch|)))
-((-3798 (((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) 150)) (-1363 (((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) 151)) (-1625 (((-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) 108)) (-1791 (((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) NIL)) (-2504 (((-619 (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) 153)) (-2057 (((-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-619 (-834 |#1|))) 165)))
-(((-494 |#1| |#2|) (-10 -7 (-15 -3798 ((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1363 ((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1791 ((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1625 ((-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -2504 ((-619 (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -2057 ((-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-619 (-834 |#1|))))) (-619 (-1136)) (-745)) (T -494))
-((-2057 (*1 *2 *2 *3) (-12 (-5 *2 (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) (-239 *4 (-398 (-547))))) (-5 *3 (-619 (-834 *4))) (-14 *4 (-619 (-1136))) (-14 *5 (-745)) (-5 *1 (-494 *4 *5)))) (-2504 (*1 *2 *3) (-12 (-14 *4 (-619 (-1136))) (-14 *5 (-745)) (-5 *2 (-619 (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) (-239 *4 (-398 (-547)))))) (-5 *1 (-494 *4 *5)) (-5 *3 (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) (-239 *4 (-398 (-547))))))) (-1625 (*1 *2 *2) (-12 (-5 *2 (-493 (-398 (-547)) (-232 *4 (-745)) (-834 *3) (-239 *3 (-398 (-547))))) (-14 *3 (-619 (-1136))) (-14 *4 (-745)) (-5 *1 (-494 *3 *4)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) (-239 *4 (-398 (-547))))) (-14 *4 (-619 (-1136))) (-14 *5 (-745)) (-5 *2 (-112)) (-5 *1 (-494 *4 *5)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) (-239 *4 (-398 (-547))))) (-14 *4 (-619 (-1136))) (-14 *5 (-745)) (-5 *2 (-112)) (-5 *1 (-494 *4 *5)))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) (-239 *4 (-398 (-547))))) (-14 *4 (-619 (-1136))) (-14 *5 (-745)) (-5 *2 (-112)) (-5 *1 (-494 *4 *5)))))
-(-10 -7 (-15 -3798 ((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1363 ((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1791 ((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1625 ((-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -2504 ((-619 (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -2057 ((-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-619 (-834 |#1|)))))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 11) (((-1141) $) NIL) (((-1136) $) 8)) (-2381 (((-112) $ $) NIL)))
-(((-495) (-13 (-1047) (-591 (-1136)))) (T -495))
-NIL
-(-13 (-1047) (-591 (-1136)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2063 (($ $) NIL)) (-2238 (($ |#1| |#2|) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-3269 (($) 12 T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) 11) (($ $ $) 24)) (-2479 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 18)))
-(((-496 |#1| |#2|) (-13 (-21) (-498 |#1| |#2|)) (-21) (-821)) (T -496))
-NIL
-(-13 (-21) (-498 |#1| |#2|))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 12)) (-1948 (($) NIL T CONST)) (-2063 (($ $) 28)) (-2238 (($ |#1| |#2|) 25)) (-2790 (($ (-1 |#1| |#1|) $) 27)) (-1968 ((|#2| $) NIL)) (-2037 ((|#1| $) 29)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-3269 (($) 10 T CONST)) (-2381 (((-112) $ $) NIL)) (-2479 (($ $ $) 18)) (* (($ (-890) $) NIL) (($ (-745) $) 23)))
-(((-497 |#1| |#2|) (-13 (-23) (-498 |#1| |#2|)) (-23) (-821)) (T -497))
-NIL
-(-13 (-23) (-498 |#1| |#2|))
-((-3826 (((-112) $ $) 7)) (-2063 (($ $) 13)) (-2238 (($ |#1| |#2|) 16)) (-2790 (($ (-1 |#1| |#1|) $) 17)) (-1968 ((|#2| $) 14)) (-2037 ((|#1| $) 15)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2381 (((-112) $ $) 6)))
-(((-498 |#1| |#2|) (-138) (-1063) (-821)) (T -498))
-((-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-498 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-821)))) (-2238 (*1 *1 *2 *3) (-12 (-4 *1 (-498 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-498 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1063)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-498 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-821)))) (-2063 (*1 *1 *1) (-12 (-4 *1 (-498 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821)))))
-(-13 (-1063) (-10 -8 (-15 -2790 ($ (-1 |t#1| |t#1|) $)) (-15 -2238 ($ |t#1| |t#2|)) (-15 -2037 (|t#1| $)) (-15 -1968 (|t#2| $)) (-15 -2063 ($ $))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-1948 (($) NIL T CONST)) (-2063 (($ $) NIL)) (-2238 (($ |#1| |#2|) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-3269 (($) NIL T CONST)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 13)) (-2479 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL)))
-(((-499 |#1| |#2|) (-13 (-766) (-498 |#1| |#2|)) (-766) (-821)) (T -499))
-NIL
-(-13 (-766) (-498 |#1| |#2|))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2794 (($ $ $) 16)) (-3672 (((-3 $ "failed") $ $) 13)) (-1948 (($) NIL T CONST)) (-2063 (($ $) NIL)) (-2238 (($ |#1| |#2|) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL)) (-3269 (($) NIL T CONST)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) NIL)) (-2479 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL)))
-(((-500 |#1| |#2|) (-13 (-767) (-498 |#1| |#2|)) (-767) (-821)) (T -500))
-NIL
-(-13 (-767) (-498 |#1| |#2|))
-((-3826 (((-112) $ $) NIL)) (-2063 (($ $) 25)) (-2238 (($ |#1| |#2|) 22)) (-2790 (($ (-1 |#1| |#1|) $) 24)) (-1968 ((|#2| $) 27)) (-2037 ((|#1| $) 26)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 21)) (-2381 (((-112) $ $) 14)))
-(((-501 |#1| |#2|) (-498 |#1| |#2|) (-1063) (-821)) (T -501))
-NIL
-(-498 |#1| |#2|)
-((-2679 (($ $ (-619 |#2|) (-619 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-502 |#1| |#2| |#3|) (-10 -8 (-15 -2679 (|#1| |#1| |#2| |#3|)) (-15 -2679 (|#1| |#1| (-619 |#2|) (-619 |#3|)))) (-503 |#2| |#3|) (-1063) (-1173)) (T -502))
-NIL
-(-10 -8 (-15 -2679 (|#1| |#1| |#2| |#3|)) (-15 -2679 (|#1| |#1| (-619 |#2|) (-619 |#3|))))
-((-2679 (($ $ (-619 |#1|) (-619 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-503 |#1| |#2|) (-138) (-1063) (-1173)) (T -503))
-((-2679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *5)) (-4 *1 (-503 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1173)))) (-2679 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-503 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1173)))))
-(-13 (-10 -8 (-15 -2679 ($ $ |t#1| |t#2|)) (-15 -2679 ($ $ (-619 |t#1|) (-619 |t#2|)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 16)) (-2203 (((-619 (-2 (|:| |gen| |#1|) (|:| -2712 |#2|))) $) 18)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3608 (((-745) $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL)) (-2652 ((|#1| $) NIL)) (-1607 ((|#1| $ (-547)) 23)) (-2440 ((|#2| $ (-547)) 21)) (-3513 (($ (-1 |#1| |#1|) $) 46)) (-1353 (($ (-1 |#2| |#2|) $) 43)) (-1466 (((-1119) $) NIL)) (-2307 (($ $ $) 53 (|has| |#2| (-766)))) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 42) (($ |#1|) NIL)) (-2450 ((|#2| |#1| $) 49)) (-3269 (($) 11 T CONST)) (-2381 (((-112) $ $) 29)) (-2479 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-890) $) NIL) (($ (-745) $) 36) (($ |#2| |#1|) 31)))
-(((-504 |#1| |#2| |#3|) (-314 |#1| |#2|) (-1063) (-130) |#2|) (T -504))
-NIL
-(-314 |#1| |#2|)
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2809 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4330))) (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| |#1| (-821))))) (-3185 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-3899 (((-112) $ (-745)) NIL)) (-2416 (((-112) (-112)) 25)) (-2247 ((|#1| $ (-547) |#1|) 28 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) NIL (|has| $ (-6 -4330)))) (-4285 (($ (-1 (-112) |#1|) $) 52)) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-2968 (($ $) 56 (|has| |#1| (-1063)))) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1513 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) 44)) (-3803 (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) NIL)) (-2876 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-3248 (($ $ (-547)) 13)) (-1304 (((-745) $) 11)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-3735 (($ (-745) |#1|) 23)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) 21 (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3145 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-2777 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-547) $) 20 (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-2657 (($ $ $ (-547)) 51) (($ |#1| $ (-547)) 37)) (-2606 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3034 (($ (-619 |#1|)) 29)) (-3638 ((|#1| $) NIL (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3632 (($ $ |#1|) 19 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 40)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) 16)) (-3334 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) 33) (($ $ (-1186 (-547))) NIL)) (-2649 (($ $ (-1186 (-547))) 50) (($ $ (-547)) 45)) (-2159 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-4282 (($ $ $ (-547)) 41 (|has| $ (-6 -4330)))) (-2274 (($ $) 32)) (-2838 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) NIL)) (-3794 (($ $ $) 42) (($ $ |#1|) 39)) (-1945 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3767 (((-745) $) 17 (|has| $ (-6 -4329)))))
-(((-505 |#1| |#2|) (-13 (-19 |#1|) (-273 |#1|) (-10 -8 (-15 -3034 ($ (-619 |#1|))) (-15 -1304 ((-745) $)) (-15 -3248 ($ $ (-547))) (-15 -2416 ((-112) (-112))))) (-1173) (-547)) (T -505))
-((-3034 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-505 *3 *4)) (-14 *4 (-547)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-505 *3 *4)) (-4 *3 (-1173)) (-14 *4 (-547)))) (-3248 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-505 *3 *4)) (-4 *3 (-1173)) (-14 *4 *2))) (-2416 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-505 *3 *4)) (-4 *3 (-1173)) (-14 *4 (-547)))))
-(-13 (-19 |#1|) (-273 |#1|) (-10 -8 (-15 -3034 ($ (-619 |#1|))) (-15 -1304 ((-745) $)) (-15 -3248 ($ $ (-547))) (-15 -2416 ((-112) (-112)))))
-((-3826 (((-112) $ $) NIL)) (-3926 (((-1141) $) 11)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1586 (((-1141) $) 13)) (-1920 (((-1141) $) 9)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-506) (-13 (-1047) (-10 -8 (-15 -1920 ((-1141) $)) (-15 -3926 ((-1141) $)) (-15 -1586 ((-1141) $))))) (T -506))
-((-1920 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-506)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-506)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-506)))))
-(-13 (-1047) (-10 -8 (-15 -1920 ((-1141) $)) (-15 -3926 ((-1141) $)) (-15 -1586 ((-1141) $))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1452 (((-112) $) NIL)) (-1440 (((-745)) NIL)) (-2899 (((-561 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-561 |#1|) (-359)))) (-2797 (((-1146 (-890) (-745)) (-547)) NIL (|has| (-561 |#1|) (-359)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-3608 (((-745)) NIL (|has| (-561 |#1|) (-359)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-561 |#1|) "failed") $) NIL)) (-2652 (((-561 |#1|) $) NIL)) (-2614 (($ (-1219 (-561 |#1|))) NIL)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-561 |#1|) (-359)))) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| (-561 |#1|) (-359)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3527 (($) NIL (|has| (-561 |#1|) (-359)))) (-3078 (((-112) $) NIL (|has| (-561 |#1|) (-359)))) (-1551 (($ $ (-745)) NIL (-1530 (|has| (-561 |#1|) (-143)) (|has| (-561 |#1|) (-359)))) (($ $) NIL (-1530 (|has| (-561 |#1|) (-143)) (|has| (-561 |#1|) (-359))))) (-1791 (((-112) $) NIL)) (-3275 (((-890) $) NIL (|has| (-561 |#1|) (-359))) (((-807 (-890)) $) NIL (-1530 (|has| (-561 |#1|) (-143)) (|has| (-561 |#1|) (-359))))) (-2261 (((-112) $) NIL)) (-2460 (($) NIL (|has| (-561 |#1|) (-359)))) (-3841 (((-112) $) NIL (|has| (-561 |#1|) (-359)))) (-3160 (((-561 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-561 |#1|) (-359)))) (-3477 (((-3 $ "failed") $) NIL (|has| (-561 |#1|) (-359)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3786 (((-1132 (-561 |#1|)) $) NIL) (((-1132 $) $ (-890)) NIL (|has| (-561 |#1|) (-359)))) (-2402 (((-890) $) NIL (|has| (-561 |#1|) (-359)))) (-3168 (((-1132 (-561 |#1|)) $) NIL (|has| (-561 |#1|) (-359)))) (-1600 (((-1132 (-561 |#1|)) $) NIL (|has| (-561 |#1|) (-359))) (((-3 (-1132 (-561 |#1|)) "failed") $ $) NIL (|has| (-561 |#1|) (-359)))) (-2830 (($ $ (-1132 (-561 |#1|))) NIL (|has| (-561 |#1|) (-359)))) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| (-561 |#1|) (-359)) CONST)) (-3487 (($ (-890)) NIL (|has| (-561 |#1|) (-359)))) (-1290 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-4238 (($) NIL (|has| (-561 |#1|) (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL (|has| (-561 |#1|) (-359)))) (-2115 (((-409 $) $) NIL)) (-3327 (((-807 (-890))) NIL) (((-890)) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1422 (((-745) $) NIL (|has| (-561 |#1|) (-359))) (((-3 (-745) "failed") $ $) NIL (-1530 (|has| (-561 |#1|) (-143)) (|has| (-561 |#1|) (-359))))) (-3970 (((-133)) NIL)) (-3448 (($ $) NIL (|has| (-561 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-561 |#1|) (-359)))) (-3705 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1882 (((-1132 (-561 |#1|))) NIL)) (-3823 (($) NIL (|has| (-561 |#1|) (-359)))) (-3532 (($) NIL (|has| (-561 |#1|) (-359)))) (-3220 (((-1219 (-561 |#1|)) $) NIL) (((-663 (-561 |#1|)) (-1219 $)) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| (-561 |#1|) (-359)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-561 |#1|)) NIL)) (-2220 (($ $) NIL (|has| (-561 |#1|) (-359))) (((-3 $ "failed") $) NIL (-1530 (|has| (-561 |#1|) (-143)) (|has| (-561 |#1|) (-359))))) (-2736 (((-745)) NIL)) (-1917 (((-1219 $)) NIL) (((-1219 $) (-890)) NIL)) (-3577 (((-112) $ $) NIL)) (-2593 (((-112) $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1693 (($ $) NIL (|has| (-561 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-561 |#1|) (-359)))) (-1695 (($ $) NIL (|has| (-561 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-561 |#1|) (-359)))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL) (($ $ (-561 |#1|)) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ (-561 |#1|)) NIL) (($ (-561 |#1|) $) NIL)))
-(((-507 |#1| |#2|) (-320 (-561 |#1|)) (-890) (-890)) (T -507))
-NIL
-(-320 (-561 |#1|))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#1| $ (-547) (-547) |#1|) 35)) (-1370 (($ $ (-547) |#4|) NIL)) (-2501 (($ $ (-547) |#5|) NIL)) (-1948 (($) NIL T CONST)) (-2330 ((|#4| $ (-547)) NIL)) (-1872 ((|#1| $ (-547) (-547) |#1|) 34)) (-1802 ((|#1| $ (-547) (-547)) 32)) (-2982 (((-619 |#1|) $) NIL)) (-2135 (((-745) $) 28)) (-3735 (($ (-745) (-745) |#1|) 25)) (-2148 (((-745) $) 30)) (-2763 (((-112) $ (-745)) NIL)) (-3612 (((-547) $) 26)) (-3628 (((-547) $) 27)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3120 (((-547) $) 29)) (-1599 (((-547) $) 31)) (-1859 (($ (-1 |#1| |#1|) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) 38 (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3632 (($ $ |#1|) NIL)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 14)) (-2245 (($) 16)) (-3334 ((|#1| $ (-547) (-547)) 33) ((|#1| $ (-547) (-547) |#1|) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-1295 ((|#5| $ (-547)) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-508 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1173) (-547) (-547) (-364 |#1|) (-364 |#1|)) (T -508))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#1| $ (-549) (-549) |#1|) NIL)) (-3537 (($ $ (-549) (-487 |#1| |#3|)) NIL)) (-3815 (($ $ (-549) (-487 |#1| |#2|)) NIL)) (-1682 (($) NIL T CONST)) (-4060 (((-487 |#1| |#3|) $ (-549)) NIL)) (-1879 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1809 ((|#1| $ (-549) (-549)) NIL)) (-2989 (((-621 |#1|) $) NIL)) (-2142 (((-747) $) NIL)) (-3743 (($ (-747) (-747) |#1|) NIL)) (-2155 (((-747) $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-1761 (((-549) $) NIL)) (-2703 (((-549) $) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1661 (((-549) $) NIL)) (-1887 (((-549) $) NIL)) (-1868 (($ (-1 |#1| |#1|) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1642 (($ $ |#1|) NIL)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-2851 (((-487 |#1| |#2|) $ (-549)) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-488 |#1| |#2| |#3|) (-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) (-1180) (-549) (-549)) (T -488))
+NIL
+(-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|))
+((-2922 (((-621 (-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-747) (-747)) 27)) (-3840 (((-621 (-1139 |#1|)) |#1| (-747) (-747) (-747)) 34)) (-2264 (((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-621 |#3|) (-621 (-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-747)) 85)))
+(((-489 |#1| |#2| |#3|) (-10 -7 (-15 -3840 ((-621 (-1139 |#1|)) |#1| (-747) (-747) (-747))) (-15 -2922 ((-621 (-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-747) (-747))) (-15 -2264 ((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-621 |#3|) (-621 (-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-747)))) (-342) (-1202 |#1|) (-1202 |#2|)) (T -489))
+((-2264 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 (-2 (|:| -1949 (-665 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-665 *7))))) (-5 *5 (-747)) (-4 *8 (-1202 *7)) (-4 *7 (-1202 *6)) (-4 *6 (-342)) (-5 *2 (-2 (|:| -1949 (-665 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-665 *7)))) (-5 *1 (-489 *6 *7 *8)))) (-2922 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-747)) (-4 *5 (-342)) (-4 *6 (-1202 *5)) (-5 *2 (-621 (-2 (|:| -1949 (-665 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-665 *6))))) (-5 *1 (-489 *5 *6 *7)) (-5 *3 (-2 (|:| -1949 (-665 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-665 *6)))) (-4 *7 (-1202 *6)))) (-3840 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-747)) (-4 *3 (-342)) (-4 *5 (-1202 *3)) (-5 *2 (-621 (-1139 *3))) (-5 *1 (-489 *3 *5 *6)) (-4 *6 (-1202 *5)))))
+(-10 -7 (-15 -3840 ((-621 (-1139 |#1|)) |#1| (-747) (-747) (-747))) (-15 -2922 ((-621 (-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-747) (-747))) (-15 -2264 ((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) (-621 |#3|) (-621 (-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) (-747))))
+((-2585 (((-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))) 62)) (-3932 ((|#1| (-665 |#1|) |#1| (-747)) 25)) (-3651 (((-747) (-747) (-747)) 30)) (-3909 (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 42)) (-1367 (((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|) 50) (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 47)) (-2750 ((|#1| (-665 |#1|) (-665 |#1|) |#1| (-549)) 29)) (-3136 ((|#1| (-665 |#1|)) 18)))
+(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -3136 (|#1| (-665 |#1|))) (-15 -3932 (|#1| (-665 |#1|) |#1| (-747))) (-15 -2750 (|#1| (-665 |#1|) (-665 |#1|) |#1| (-549))) (-15 -3651 ((-747) (-747) (-747))) (-15 -1367 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -1367 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -3909 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2585 ((-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|)))))) (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $)))) (-1202 |#1|) (-402 |#1| |#2|)) (T -490))
+((-2585 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1949 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $))))) (-4 *4 (-1202 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-3909 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $))))) (-4 *4 (-1202 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-1367 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $))))) (-4 *4 (-1202 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-1367 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $))))) (-4 *4 (-1202 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-3651 (*1 *2 *2 *2) (-12 (-5 *2 (-747)) (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $))))) (-4 *4 (-1202 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))) (-2750 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-665 *2)) (-5 *4 (-549)) (-4 *2 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $))))) (-4 *5 (-1202 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5)))) (-3932 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-665 *2)) (-5 *4 (-747)) (-4 *2 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $))))) (-4 *5 (-1202 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *4 (-1202 *2)) (-4 *2 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $))))) (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-402 *2 *4)))))
+(-10 -7 (-15 -3136 (|#1| (-665 |#1|))) (-15 -3932 (|#1| (-665 |#1|) |#1| (-747))) (-15 -2750 (|#1| (-665 |#1|) (-665 |#1|) |#1| (-549))) (-15 -3651 ((-747) (-747) (-747))) (-15 -1367 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -1367 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -3909 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2585 ((-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))) (-2 (|:| -1949 (-665 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-665 |#1|))))))
+((-3834 (((-112) $ $) NIL)) (-1340 (($ $) NIL)) (-2464 (($ $ $) 35)) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) $) NIL (|has| (-112) (-823))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4311 (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| (-112) (-823)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4338)))) (-3193 (($ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-2254 (((-112) $ (-1193 (-549)) (-112)) NIL (|has| $ (-6 -4338))) (((-112) $ (-549) (-112)) 36 (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067))))) (-3812 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067))))) (-2557 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067))))) (-1879 (((-112) $ (-549) (-112)) NIL (|has| $ (-6 -4338)))) (-1809 (((-112) $ (-549)) NIL)) (-2883 (((-549) (-112) $ (-549)) NIL (|has| (-112) (-1067))) (((-549) (-112) $) NIL (|has| (-112) (-1067))) (((-549) (-1 (-112) (-112)) $) NIL)) (-2989 (((-621 (-112)) $) NIL (|has| $ (-6 -4337)))) (-4207 (($ $ $) 33)) (-4008 (($ $) NIL)) (-1396 (($ $ $) NIL)) (-3743 (($ (-747) (-112)) 23)) (-4276 (($ $ $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) 8 (|has| (-549) (-823)))) (-2863 (($ $ $) NIL)) (-3890 (($ $ $) NIL (|has| (-112) (-823))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1562 (((-621 (-112)) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL)) (-1868 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-2616 (($ $ $ (-549)) NIL) (($ (-112) $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL)) (-3646 (((-112) $) NIL (|has| (-549) (-823)))) (-3779 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1642 (($ $ (-112)) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-112)) (-621 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-287 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067)))) (($ $ (-621 (-287 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067))))) (-2696 (((-621 (-112)) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) 24)) (-3341 (($ $ (-1193 (-549))) NIL) (((-112) $ (-549)) 18) (((-112) $ (-549) (-112)) NIL)) (-2167 (($ $ (-1193 (-549))) NIL) (($ $ (-549)) NIL)) (-4000 (((-747) (-112) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-112) (-1067)))) (((-747) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) 25)) (-2845 (((-525) $) NIL (|has| (-112) (-594 (-525))))) (-3854 (($ (-621 (-112))) NIL)) (-1952 (($ (-621 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3846 (((-834) $) 22)) (-3527 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4337)))) (-1821 (($ $ $) 31)) (-3708 (($ $ $) NIL)) (-3799 (($ $ $) 39)) (-3809 (($ $) 37)) (-3789 (($ $ $) 38)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 26)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 27)) (-3695 (($ $ $) NIL)) (-3775 (((-747) $) 10 (|has| $ (-6 -4337)))))
+(((-491 |#1|) (-13 (-123) (-10 -8 (-15 -3809 ($ $)) (-15 -3799 ($ $ $)) (-15 -3789 ($ $ $)))) (-549)) (T -491))
+((-3809 (*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-549)))) (-3799 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-549)))) (-3789 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-549)))))
+(-13 (-123) (-10 -8 (-15 -3809 ($ $)) (-15 -3799 ($ $ $)) (-15 -3789 ($ $ $))))
+((-3084 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1139 |#4|)) 35)) (-2857 (((-1139 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1139 |#4|)) 22)) (-4296 (((-3 (-665 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-665 (-1139 |#4|))) 46)) (-2859 (((-1139 (-1139 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2857 (|#2| (-1 |#1| |#4|) (-1139 |#4|))) (-15 -2857 ((-1139 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3084 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1139 |#4|))) (-15 -4296 ((-3 (-665 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-665 (-1139 |#4|)))) (-15 -2859 ((-1139 (-1139 |#4|)) (-1 |#4| |#1|) |#3|))) (-1018) (-1202 |#1|) (-1202 |#2|) (-1018)) (T -492))
+((-2859 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *6 (-1202 *5)) (-5 *2 (-1139 (-1139 *7))) (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1202 *6)))) (-4296 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-665 (-1139 *8))) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-1202 *5)) (-5 *2 (-665 *6)) (-5 *1 (-492 *5 *6 *7 *8)) (-4 *7 (-1202 *6)))) (-3084 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1139 *7)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *2 (-1202 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1202 *2)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *4 (-1202 *5)) (-5 *2 (-1139 *7)) (-5 *1 (-492 *5 *4 *6 *7)) (-4 *6 (-1202 *4)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1139 *7)) (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *2 (-1202 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1202 *2)))))
+(-10 -7 (-15 -2857 (|#2| (-1 |#1| |#4|) (-1139 |#4|))) (-15 -2857 ((-1139 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3084 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1139 |#4|))) (-15 -4296 ((-3 (-665 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-665 (-1139 |#4|)))) (-15 -2859 ((-1139 (-1139 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-3834 (((-112) $ $) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2684 (((-1231) $) 19)) (-3341 (((-1125) $ (-1143)) 23)) (-2699 (((-1231) $) 15)) (-3846 (((-834) $) 21) (($ (-1125)) 20)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 9)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 8)))
+(((-493) (-13 (-823) (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 ((-1231) $)) (-15 -2684 ((-1231) $)) (-15 -3846 ($ (-1125)))))) (T -493))
+((-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1125)) (-5 *1 (-493)))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-493)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-493)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-493)))))
+(-13 (-823) (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 ((-1231) $)) (-15 -2684 ((-1231) $)) (-15 -3846 ($ (-1125)))))
+((-2050 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2836 ((|#1| |#4|) 10)) (-1308 ((|#3| |#4|) 17)))
+(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2836 (|#1| |#4|)) (-15 -1308 (|#3| |#4|)) (-15 -2050 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-541) (-963 |#1|) (-366 |#1|) (-366 |#2|)) (T -494))
+((-2050 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-963 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-494 *4 *5 *6 *3)) (-4 *6 (-366 *4)) (-4 *3 (-366 *5)))) (-1308 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-963 *4)) (-4 *2 (-366 *4)) (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-366 *5)))) (-2836 (*1 *2 *3) (-12 (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-494 *2 *4 *5 *3)) (-4 *5 (-366 *2)) (-4 *3 (-366 *4)))))
+(-10 -7 (-15 -2836 (|#1| |#4|)) (-15 -1308 (|#3| |#4|)) (-15 -2050 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-3834 (((-112) $ $) NIL)) (-2707 (((-112) $ (-621 |#3|)) 105) (((-112) $) 106)) (-1763 (((-112) $) 149)) (-3281 (($ $ |#4|) 97) (($ $ |#4| (-621 |#3|)) 101)) (-3648 (((-1132 (-621 (-923 |#1|)) (-621 (-287 (-923 |#1|)))) (-621 |#4|)) 142 (|has| |#3| (-594 (-1143))))) (-4013 (($ $ $) 91) (($ $ |#4|) 89)) (-2675 (((-112) $) 148)) (-1565 (($ $) 109)) (-3851 (((-1125) $) NIL)) (-3655 (($ $ $) 83) (($ (-621 $)) 85)) (-1988 (((-112) |#4| $) 108)) (-1818 (((-112) $ $) 72)) (-3818 (($ (-621 |#4|)) 90)) (-3990 (((-1087) $) NIL)) (-1687 (($ (-621 |#4|)) 146)) (-3115 (((-112) $) 147)) (-3989 (($ $) 74)) (-2384 (((-621 |#4|) $) 63)) (-3453 (((-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)) $ (-621 |#3|)) NIL)) (-1547 (((-112) |#4| $) 77)) (-2985 (((-549) $ (-621 |#3|)) 110) (((-549) $) 111)) (-3846 (((-834) $) 145) (($ (-621 |#4|)) 86)) (-1755 (($ (-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $))) NIL)) (-2389 (((-112) $ $) 73)) (-2486 (($ $ $) 93)) (** (($ $ (-747)) 96)) (* (($ $ $) 95)))
+(((-495 |#1| |#2| |#3| |#4|) (-13 (-1067) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 -2486 ($ $ $)) (-15 -2675 ((-112) $)) (-15 -1763 ((-112) $)) (-15 -1547 ((-112) |#4| $)) (-15 -1818 ((-112) $ $)) (-15 -1988 ((-112) |#4| $)) (-15 -2707 ((-112) $ (-621 |#3|))) (-15 -2707 ((-112) $)) (-15 -3655 ($ $ $)) (-15 -3655 ($ (-621 $))) (-15 -4013 ($ $ $)) (-15 -4013 ($ $ |#4|)) (-15 -3989 ($ $)) (-15 -3453 ((-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)) $ (-621 |#3|))) (-15 -1755 ($ (-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)))) (-15 -2985 ((-549) $ (-621 |#3|))) (-15 -2985 ((-549) $)) (-15 -1565 ($ $)) (-15 -3818 ($ (-621 |#4|))) (-15 -1687 ($ (-621 |#4|))) (-15 -3115 ((-112) $)) (-15 -2384 ((-621 |#4|) $)) (-15 -3846 ($ (-621 |#4|))) (-15 -3281 ($ $ |#4|)) (-15 -3281 ($ $ |#4| (-621 |#3|))) (IF (|has| |#3| (-594 (-1143))) (-15 -3648 ((-1132 (-621 (-923 |#1|)) (-621 (-287 (-923 |#1|)))) (-621 |#4|))) |%noBranch|))) (-356) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -495))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-2486 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (-2675 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-1763 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-1547 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))) (-1818 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-1988 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))) (-2707 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-3655 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-621 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-4013 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-920 *3 *4 *5)))) (-3989 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (-3453 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *2 (-2 (|:| |mval| (-665 *4)) (|:| |invmval| (-665 *4)) (|:| |genIdeal| (-495 *4 *5 *6 *7)))) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))) (-1755 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-665 *3)) (|:| |invmval| (-665 *3)) (|:| |genIdeal| (-495 *3 *4 *5 *6)))) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-2985 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *2 (-549)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))) (-2985 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-549)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-1565 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (-3818 (*1 *1 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) (-1687 (*1 *1 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) (-3115 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-2384 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *6)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))) (-3281 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-920 *3 *4 *5)))) (-3281 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769)) (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-920 *4 *5 *6)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *5 *6)) (-4 *6 (-594 (-1143))) (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1132 (-621 (-923 *4)) (-621 (-287 (-923 *4))))) (-5 *1 (-495 *4 *5 *6 *7)))))
+(-13 (-1067) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 -2486 ($ $ $)) (-15 -2675 ((-112) $)) (-15 -1763 ((-112) $)) (-15 -1547 ((-112) |#4| $)) (-15 -1818 ((-112) $ $)) (-15 -1988 ((-112) |#4| $)) (-15 -2707 ((-112) $ (-621 |#3|))) (-15 -2707 ((-112) $)) (-15 -3655 ($ $ $)) (-15 -3655 ($ (-621 $))) (-15 -4013 ($ $ $)) (-15 -4013 ($ $ |#4|)) (-15 -3989 ($ $)) (-15 -3453 ((-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)) $ (-621 |#3|))) (-15 -1755 ($ (-2 (|:| |mval| (-665 |#1|)) (|:| |invmval| (-665 |#1|)) (|:| |genIdeal| $)))) (-15 -2985 ((-549) $ (-621 |#3|))) (-15 -2985 ((-549) $)) (-15 -1565 ($ $)) (-15 -3818 ($ (-621 |#4|))) (-15 -1687 ($ (-621 |#4|))) (-15 -3115 ((-112) $)) (-15 -2384 ((-621 |#4|) $)) (-15 -3846 ($ (-621 |#4|))) (-15 -3281 ($ $ |#4|)) (-15 -3281 ($ $ |#4| (-621 |#3|))) (IF (|has| |#3| (-594 (-1143))) (-15 -3648 ((-1132 (-621 (-923 |#1|)) (-621 (-287 (-923 |#1|)))) (-621 |#4|))) |%noBranch|)))
+((-2380 (((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) 150)) (-2077 (((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) 151)) (-1631 (((-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) 108)) (-1420 (((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) NIL)) (-4162 (((-621 (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) 153)) (-3414 (((-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-621 (-836 |#1|))) 165)))
+(((-496 |#1| |#2|) (-10 -7 (-15 -2380 ((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -2077 ((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -1420 ((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -1631 ((-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -4162 ((-621 (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -3414 ((-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-621 (-836 |#1|))))) (-621 (-1143)) (-747)) (T -496))
+((-3414 (*1 *2 *2 *3) (-12 (-5 *2 (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4) (-241 *4 (-400 (-549))))) (-5 *3 (-621 (-836 *4))) (-14 *4 (-621 (-1143))) (-14 *5 (-747)) (-5 *1 (-496 *4 *5)))) (-4162 (*1 *2 *3) (-12 (-14 *4 (-621 (-1143))) (-14 *5 (-747)) (-5 *2 (-621 (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4) (-241 *4 (-400 (-549)))))) (-5 *1 (-496 *4 *5)) (-5 *3 (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4) (-241 *4 (-400 (-549))))))) (-1631 (*1 *2 *2) (-12 (-5 *2 (-495 (-400 (-549)) (-234 *4 (-747)) (-836 *3) (-241 *3 (-400 (-549))))) (-14 *3 (-621 (-1143))) (-14 *4 (-747)) (-5 *1 (-496 *3 *4)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4) (-241 *4 (-400 (-549))))) (-14 *4 (-621 (-1143))) (-14 *5 (-747)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4) (-241 *4 (-400 (-549))))) (-14 *4 (-621 (-1143))) (-14 *5 (-747)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4) (-241 *4 (-400 (-549))))) (-14 *4 (-621 (-1143))) (-14 *5 (-747)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))))
+(-10 -7 (-15 -2380 ((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -2077 ((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -1420 ((-112) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -1631 ((-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -4162 ((-621 (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549))))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))))) (-15 -3414 ((-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-495 (-400 (-549)) (-234 |#2| (-747)) (-836 |#1|) (-241 |#1| (-400 (-549)))) (-621 (-836 |#1|)))))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 11) (((-1148) $) NIL) (((-1143) $) 8)) (-2389 (((-112) $ $) NIL)))
+(((-497) (-13 (-1050) (-593 (-1143)))) (T -497))
+NIL
+(-13 (-1050) (-593 (-1143)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2070 (($ $) NIL)) (-2246 (($ |#1| |#2|) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1823 ((|#2| $) NIL)) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-3276 (($) 12 T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) 11) (($ $ $) 24)) (-2486 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 18)))
+(((-498 |#1| |#2|) (-13 (-21) (-500 |#1| |#2|)) (-21) (-823)) (T -498))
+NIL
+(-13 (-21) (-500 |#1| |#2|))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 12)) (-1682 (($) NIL T CONST)) (-2070 (($ $) 28)) (-2246 (($ |#1| |#2|) 25)) (-2797 (($ (-1 |#1| |#1|) $) 27)) (-1823 ((|#2| $) NIL)) (-2043 ((|#1| $) 29)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-3276 (($) 10 T CONST)) (-2389 (((-112) $ $) NIL)) (-2486 (($ $ $) 18)) (* (($ (-892) $) NIL) (($ (-747) $) 23)))
+(((-499 |#1| |#2|) (-13 (-23) (-500 |#1| |#2|)) (-23) (-823)) (T -499))
+NIL
+(-13 (-23) (-500 |#1| |#2|))
+((-3834 (((-112) $ $) 7)) (-2070 (($ $) 13)) (-2246 (($ |#1| |#2|) 16)) (-2797 (($ (-1 |#1| |#1|) $) 17)) (-1823 ((|#2| $) 14)) (-2043 ((|#1| $) 15)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2389 (((-112) $ $) 6)))
+(((-500 |#1| |#2|) (-138) (-1067) (-823)) (T -500))
+((-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-823)))) (-2246 (*1 *1 *2 *3) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-823)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1067)))) (-1823 (*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-823)))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-823)))))
+(-13 (-1067) (-10 -8 (-15 -2797 ($ (-1 |t#1| |t#1|) $)) (-15 -2246 ($ |t#1| |t#2|)) (-15 -2043 (|t#1| $)) (-15 -1823 (|t#2| $)) (-15 -2070 ($ $))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-1682 (($) NIL T CONST)) (-2070 (($ $) NIL)) (-2246 (($ |#1| |#2|) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1823 ((|#2| $) NIL)) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-3276 (($) NIL T CONST)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 13)) (-2486 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL)))
+(((-501 |#1| |#2|) (-13 (-768) (-500 |#1| |#2|)) (-768) (-823)) (T -501))
+NIL
+(-13 (-768) (-500 |#1| |#2|))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2861 (($ $ $) 16)) (-2001 (((-3 $ "failed") $ $) 13)) (-1682 (($) NIL T CONST)) (-2070 (($ $) NIL)) (-2246 (($ |#1| |#2|) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1823 ((|#2| $) NIL)) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL)) (-3276 (($) NIL T CONST)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) NIL)) (-2486 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL)))
+(((-502 |#1| |#2|) (-13 (-769) (-500 |#1| |#2|)) (-769) (-823)) (T -502))
+NIL
+(-13 (-769) (-500 |#1| |#2|))
+((-3834 (((-112) $ $) NIL)) (-2070 (($ $) 25)) (-2246 (($ |#1| |#2|) 22)) (-2797 (($ (-1 |#1| |#1|) $) 24)) (-1823 ((|#2| $) 27)) (-2043 ((|#1| $) 26)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 21)) (-2389 (((-112) $ $) 14)))
+(((-503 |#1| |#2|) (-500 |#1| |#2|) (-1067) (-823)) (T -503))
+NIL
+(-500 |#1| |#2|)
+((-2686 (($ $ (-621 |#2|) (-621 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-504 |#1| |#2| |#3|) (-10 -8 (-15 -2686 (|#1| |#1| |#2| |#3|)) (-15 -2686 (|#1| |#1| (-621 |#2|) (-621 |#3|)))) (-505 |#2| |#3|) (-1067) (-1180)) (T -504))
+NIL
+(-10 -8 (-15 -2686 (|#1| |#1| |#2| |#3|)) (-15 -2686 (|#1| |#1| (-621 |#2|) (-621 |#3|))))
+((-2686 (($ $ (-621 |#1|) (-621 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-505 |#1| |#2|) (-138) (-1067) (-1180)) (T -505))
+((-2686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 *5)) (-4 *1 (-505 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1180)))) (-2686 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1180)))))
+(-13 (-10 -8 (-15 -2686 ($ $ |t#1| |t#2|)) (-15 -2686 ($ $ (-621 |t#1|) (-621 |t#2|)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 16)) (-2212 (((-621 (-2 (|:| |gen| |#1|) (|:| -2719 |#2|))) $) 18)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3614 (((-747) $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL)) (-2659 ((|#1| $) NIL)) (-1302 ((|#1| $ (-549)) 23)) (-3472 ((|#2| $ (-549)) 21)) (-3482 (($ (-1 |#1| |#1|) $) 46)) (-3904 (($ (-1 |#2| |#2|) $) 43)) (-3851 (((-1125) $) NIL)) (-2958 (($ $ $) 53 (|has| |#2| (-768)))) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 42) (($ |#1|) NIL)) (-2152 ((|#2| |#1| $) 49)) (-3276 (($) 11 T CONST)) (-2389 (((-112) $ $) 29)) (-2486 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-892) $) NIL) (($ (-747) $) 36) (($ |#2| |#1|) 31)))
+(((-506 |#1| |#2| |#3|) (-316 |#1| |#2|) (-1067) (-130) |#2|) (T -506))
+NIL
+(-316 |#1| |#2|)
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4311 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4338))) (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1584 (((-112) $ (-747)) NIL)) (-2927 (((-112) (-112)) 25)) (-2254 ((|#1| $ (-549) |#1|) 28 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) NIL (|has| $ (-6 -4338)))) (-1717 (($ (-1 (-112) |#1|) $) 52)) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3745 (($ $) 56 (|has| |#1| (-1067)))) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2129 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) 44)) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) NIL)) (-2883 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1067))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1067)))) (-1337 (($ $ (-549)) 13)) (-2399 (((-747) $) 11)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3743 (($ (-747) |#1|) 23)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) 21 (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-1303 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3890 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-549) $) 20 (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-2751 (($ $ $ (-549)) 51) (($ |#1| $ (-549)) 37)) (-2616 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-2208 (($ (-621 |#1|)) 29)) (-3646 ((|#1| $) NIL (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1642 (($ $ |#1|) 19 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 40)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) 16)) (-3341 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 33) (($ $ (-1193 (-549))) NIL)) (-3531 (($ $ (-1193 (-549))) 50) (($ $ (-549)) 45)) (-2167 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2730 (($ $ $ (-549)) 41 (|has| $ (-6 -4338)))) (-2281 (($ $) 32)) (-2845 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) NIL)) (-3196 (($ $ $) 42) (($ $ |#1|) 39)) (-1952 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3775 (((-747) $) 17 (|has| $ (-6 -4337)))))
+(((-507 |#1| |#2|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2208 ($ (-621 |#1|))) (-15 -2399 ((-747) $)) (-15 -1337 ($ $ (-549))) (-15 -2927 ((-112) (-112))))) (-1180) (-549)) (T -507))
+((-2208 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-507 *3 *4)) (-14 *4 (-549)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1180)) (-14 *4 (-549)))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1180)) (-14 *4 *2))) (-2927 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1180)) (-14 *4 (-549)))))
+(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2208 ($ (-621 |#1|))) (-15 -2399 ((-747) $)) (-15 -1337 ($ $ (-549))) (-15 -2927 ((-112) (-112)))))
+((-3834 (((-112) $ $) NIL)) (-1423 (((-1148) $) 11)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2195 (((-1148) $) 13)) (-1927 (((-1148) $) 9)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-508) (-13 (-1050) (-10 -8 (-15 -1927 ((-1148) $)) (-15 -1423 ((-1148) $)) (-15 -2195 ((-1148) $))))) (T -508))
+((-1927 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-508)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-508)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-508)))))
+(-13 (-1050) (-10 -8 (-15 -1927 ((-1148) $)) (-15 -1423 ((-1148) $)) (-15 -2195 ((-1148) $))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2044 (((-112) $) NIL)) (-3214 (((-747)) NIL)) (-2906 (((-563 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-563 |#1|) (-361)))) (-3062 (((-1153 (-892) (-747)) (-549)) NIL (|has| (-563 |#1|) (-361)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-3614 (((-747)) NIL (|has| (-563 |#1|) (-361)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-563 |#1|) "failed") $) NIL)) (-2659 (((-563 |#1|) $) NIL)) (-3492 (($ (-1226 (-563 |#1|))) NIL)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-563 |#1|) (-361)))) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| (-563 |#1|) (-361)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2405 (($) NIL (|has| (-563 |#1|) (-361)))) (-2288 (((-112) $) NIL (|has| (-563 |#1|) (-361)))) (-3165 (($ $ (-747)) NIL (-1536 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361)))) (($ $) NIL (-1536 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-1420 (((-112) $) NIL)) (-2088 (((-892) $) NIL (|has| (-563 |#1|) (-361))) (((-809 (-892)) $) NIL (-1536 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-2675 (((-112) $) NIL)) (-1973 (($) NIL (|has| (-563 |#1|) (-361)))) (-4091 (((-112) $) NIL (|has| (-563 |#1|) (-361)))) (-3630 (((-563 |#1|) $) NIL) (($ $ (-892)) NIL (|has| (-563 |#1|) (-361)))) (-1681 (((-3 $ "failed") $) NIL (|has| (-563 |#1|) (-361)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3788 (((-1139 (-563 |#1|)) $) NIL) (((-1139 $) $ (-892)) NIL (|has| (-563 |#1|) (-361)))) (-1881 (((-892) $) NIL (|has| (-563 |#1|) (-361)))) (-3318 (((-1139 (-563 |#1|)) $) NIL (|has| (-563 |#1|) (-361)))) (-1983 (((-1139 (-563 |#1|)) $) NIL (|has| (-563 |#1|) (-361))) (((-3 (-1139 (-563 |#1|)) "failed") $ $) NIL (|has| (-563 |#1|) (-361)))) (-3719 (($ $ (-1139 (-563 |#1|))) NIL (|has| (-563 |#1|) (-361)))) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| (-563 |#1|) (-361)) CONST)) (-3493 (($ (-892)) NIL (|has| (-563 |#1|) (-361)))) (-3980 (((-112) $) NIL)) (-3990 (((-1087) $) NIL)) (-4248 (($) NIL (|has| (-563 |#1|) (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL (|has| (-563 |#1|) (-361)))) (-2121 (((-411 $) $) NIL)) (-3049 (((-809 (-892))) NIL) (((-892)) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3914 (((-747) $) NIL (|has| (-563 |#1|) (-361))) (((-3 (-747) "failed") $ $) NIL (-1536 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-2985 (((-133)) NIL)) (-3456 (($ $) NIL (|has| (-563 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-563 |#1|) (-361)))) (-3701 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2815 (((-1139 (-563 |#1|))) NIL)) (-3170 (($) NIL (|has| (-563 |#1|) (-361)))) (-1544 (($) NIL (|has| (-563 |#1|) (-361)))) (-4263 (((-1226 (-563 |#1|)) $) NIL) (((-665 (-563 |#1|)) (-1226 $)) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| (-563 |#1|) (-361)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-563 |#1|)) NIL)) (-2210 (($ $) NIL (|has| (-563 |#1|) (-361))) (((-3 $ "failed") $) NIL (-1536 (|has| (-563 |#1|) (-143)) (|has| (-563 |#1|) (-361))))) (-2082 (((-747)) NIL)) (-1949 (((-1226 $)) NIL) (((-1226 $) (-892)) NIL)) (-1498 (((-112) $ $) NIL)) (-1606 (((-112) $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1933 (($ $) NIL (|has| (-563 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-563 |#1|) (-361)))) (-1702 (($ $) NIL (|has| (-563 |#1|) (-361))) (($ $ (-747)) NIL (|has| (-563 |#1|) (-361)))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL) (($ $ (-563 |#1|)) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ $ (-563 |#1|)) NIL) (($ (-563 |#1|) $) NIL)))
+(((-509 |#1| |#2|) (-322 (-563 |#1|)) (-892) (-892)) (T -509))
+NIL
+(-322 (-563 |#1|))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#1| $ (-549) (-549) |#1|) 35)) (-3537 (($ $ (-549) |#4|) NIL)) (-3815 (($ $ (-549) |#5|) NIL)) (-1682 (($) NIL T CONST)) (-4060 ((|#4| $ (-549)) NIL)) (-1879 ((|#1| $ (-549) (-549) |#1|) 34)) (-1809 ((|#1| $ (-549) (-549)) 32)) (-2989 (((-621 |#1|) $) NIL)) (-2142 (((-747) $) 28)) (-3743 (($ (-747) (-747) |#1|) 25)) (-2155 (((-747) $) 30)) (-3194 (((-112) $ (-747)) NIL)) (-1761 (((-549) $) 26)) (-2703 (((-549) $) 27)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1661 (((-549) $) 29)) (-1887 (((-549) $) 31)) (-1868 (($ (-1 |#1| |#1|) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) 38 (|has| |#1| (-1067)))) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1642 (($ $ |#1|) NIL)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 14)) (-3742 (($) 16)) (-3341 ((|#1| $ (-549) (-549)) 33) ((|#1| $ (-549) (-549) |#1|) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-2851 ((|#5| $ (-549)) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-510 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1180) (-549) (-549) (-366 |#1|) (-366 |#1|)) (T -510))
NIL
(-56 |#1| |#4| |#5|)
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4153 ((|#1| $) NIL)) (-2832 ((|#1| $) NIL)) (-1336 (($ $) NIL)) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2165 (($ $ (-547)) 59 (|has| $ (-6 -4330)))) (-2436 (((-112) $) NIL (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2809 (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| |#1| (-821)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4330)))) (-3185 (($ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1986 ((|#1| $ |#1|) NIL (|has| $ (-6 -4330)))) (-2272 (($ $ $) 23 (|has| $ (-6 -4330)))) (-3200 ((|#1| $ |#1|) NIL (|has| $ (-6 -4330)))) (-4086 ((|#1| $ |#1|) 21 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4330))) (($ $ "rest" $) 24 (|has| $ (-6 -4330))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) NIL (|has| $ (-6 -4330)))) (-4285 (($ (-1 (-112) |#1|) $) NIL)) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2823 ((|#1| $) NIL)) (-1948 (($) NIL T CONST)) (-3044 (($ $) 28 (|has| $ (-6 -4330)))) (-3057 (($ $) 29)) (-3649 (($ $) 18) (($ $ (-745)) 32)) (-2968 (($ $) 55 (|has| |#1| (-1063)))) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1513 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3803 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1872 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) NIL)) (-2963 (((-112) $) NIL)) (-2876 (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063))) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) (-1 (-112) |#1|) $) NIL)) (-2982 (((-619 |#1|) $) 27 (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) NIL)) (-2554 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3735 (($ (-745) |#1|) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) 31 (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3145 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-2777 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3517 (($ |#1|) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-3583 (((-619 |#1|) $) NIL)) (-1489 (((-112) $) NIL)) (-1466 (((-1119) $) 51 (|has| |#1| (-1063)))) (-3820 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2657 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-2606 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3638 ((|#1| $) 13) (($ $ (-745)) NIL)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3632 (($ $ |#1|) NIL (|has| $ (-6 -4330)))) (-1884 (((-112) $) NIL)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 12)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) 17)) (-2245 (($) 16)) (-3334 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1186 (-547))) NIL) ((|#1| $ (-547)) NIL) ((|#1| $ (-547) |#1|) NIL)) (-2857 (((-547) $ $) NIL)) (-2649 (($ $ (-1186 (-547))) NIL) (($ $ (-547)) NIL)) (-2159 (($ $ (-1186 (-547))) NIL) (($ $ (-547)) NIL)) (-1850 (((-112) $) 34)) (-2005 (($ $) NIL)) (-2632 (($ $) NIL (|has| $ (-6 -4330)))) (-1749 (((-745) $) NIL)) (-2016 (($ $) 36)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) 35)) (-2838 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 26)) (-3794 (($ $ $) 54) (($ $ |#1|) NIL)) (-1945 (($ $ $) NIL) (($ |#1| $) 10) (($ (-619 $)) NIL) (($ $ |#1|) NIL)) (-3838 (((-832) $) 46 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) NIL)) (-1421 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) 48 (|has| |#1| (-1063)))) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3767 (((-745) $) 9 (|has| $ (-6 -4329)))))
-(((-509 |#1| |#2|) (-640 |#1|) (-1173) (-547)) (T -509))
-NIL
-(-640 |#1|)
-((-2648 ((|#4| |#4|) 27)) (-3116 (((-745) |#4|) 32)) (-3316 (((-745) |#4|) 33)) (-3861 (((-619 |#3|) |#4|) 40 (|has| |#3| (-6 -4330)))) (-3582 (((-3 |#4| "failed") |#4|) 51)) (-1541 ((|#4| |#4|) 44)) (-1299 ((|#1| |#4|) 43)))
-(((-510 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2648 (|#4| |#4|)) (-15 -3116 ((-745) |#4|)) (-15 -3316 ((-745) |#4|)) (IF (|has| |#3| (-6 -4330)) (-15 -3861 ((-619 |#3|) |#4|)) |%noBranch|) (-15 -1299 (|#1| |#4|)) (-15 -1541 (|#4| |#4|)) (-15 -3582 ((-3 |#4| "failed") |#4|))) (-354) (-364 |#1|) (-364 |#1|) (-661 |#1| |#2| |#3|)) (T -510))
-((-3582 (*1 *2 *2) (|partial| -12 (-4 *3 (-354)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-354)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-1299 (*1 *2 *3) (-12 (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-354)) (-5 *1 (-510 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) (-3861 (*1 *2 *3) (-12 (|has| *6 (-6 -4330)) (-4 *4 (-354)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-619 *6)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3316 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-745)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3116 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-745)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2648 (*1 *2 *2) (-12 (-4 *3 (-354)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))))
-(-10 -7 (-15 -2648 (|#4| |#4|)) (-15 -3116 ((-745) |#4|)) (-15 -3316 ((-745) |#4|)) (IF (|has| |#3| (-6 -4330)) (-15 -3861 ((-619 |#3|) |#4|)) |%noBranch|) (-15 -1299 (|#1| |#4|)) (-15 -1541 (|#4| |#4|)) (-15 -3582 ((-3 |#4| "failed") |#4|)))
-((-2648 ((|#8| |#4|) 20)) (-3861 (((-619 |#3|) |#4|) 29 (|has| |#7| (-6 -4330)))) (-3582 (((-3 |#8| "failed") |#4|) 23)))
-(((-511 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2648 (|#8| |#4|)) (-15 -3582 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4330)) (-15 -3861 ((-619 |#3|) |#4|)) |%noBranch|)) (-539) (-364 |#1|) (-364 |#1|) (-661 |#1| |#2| |#3|) (-961 |#1|) (-364 |#5|) (-364 |#5|) (-661 |#5| |#6| |#7|)) (T -511))
-((-3861 (*1 *2 *3) (-12 (|has| *9 (-6 -4330)) (-4 *4 (-539)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-4 *7 (-961 *4)) (-4 *8 (-364 *7)) (-4 *9 (-364 *7)) (-5 *2 (-619 *6)) (-5 *1 (-511 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-661 *4 *5 *6)) (-4 *10 (-661 *7 *8 *9)))) (-3582 (*1 *2 *3) (|partial| -12 (-4 *4 (-539)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) (-5 *1 (-511 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) (-4 *8 (-364 *7)) (-4 *9 (-364 *7)))) (-2648 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) (-5 *1 (-511 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) (-4 *8 (-364 *7)) (-4 *9 (-364 *7)))))
-(-10 -7 (-15 -2648 (|#8| |#4|)) (-15 -3582 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4330)) (-15 -3861 ((-619 |#3|) |#4|)) |%noBranch|))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3761 (($ (-745) (-745)) NIL)) (-3687 (($ $ $) NIL)) (-3890 (($ (-580 |#1| |#3|)) NIL) (($ $) NIL)) (-2597 (((-112) $) NIL)) (-1955 (($ $ (-547) (-547)) 12)) (-2680 (($ $ (-547) (-547)) NIL)) (-1914 (($ $ (-547) (-547) (-547) (-547)) NIL)) (-1471 (($ $) NIL)) (-1907 (((-112) $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1464 (($ $ (-547) (-547) $) NIL)) (-2247 ((|#1| $ (-547) (-547) |#1|) NIL) (($ $ (-619 (-547)) (-619 (-547)) $) NIL)) (-1370 (($ $ (-547) (-580 |#1| |#3|)) NIL)) (-2501 (($ $ (-547) (-580 |#1| |#2|)) NIL)) (-3893 (($ (-745) |#1|) NIL)) (-1948 (($) NIL T CONST)) (-2648 (($ $) 21 (|has| |#1| (-298)))) (-2330 (((-580 |#1| |#3|) $ (-547)) NIL)) (-3116 (((-745) $) 24 (|has| |#1| (-539)))) (-1872 ((|#1| $ (-547) (-547) |#1|) NIL)) (-1802 ((|#1| $ (-547) (-547)) NIL)) (-2982 (((-619 |#1|) $) NIL)) (-3316 (((-745) $) 26 (|has| |#1| (-539)))) (-3861 (((-619 (-580 |#1| |#2|)) $) 29 (|has| |#1| (-539)))) (-2135 (((-745) $) NIL)) (-3735 (($ (-745) (-745) |#1|) NIL)) (-2148 (((-745) $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-3836 ((|#1| $) 19 (|has| |#1| (-6 (-4331 "*"))))) (-3612 (((-547) $) 10)) (-3628 (((-547) $) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3120 (((-547) $) 11)) (-1599 (((-547) $) NIL)) (-3938 (($ (-619 (-619 |#1|))) NIL)) (-1859 (($ (-1 |#1| |#1|) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1580 (((-619 (-619 |#1|)) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3582 (((-3 $ "failed") $) 33 (|has| |#1| (-354)))) (-2755 (($ $ $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3632 (($ $ |#1|) NIL)) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ (-547) (-547)) NIL) ((|#1| $ (-547) (-547) |#1|) NIL) (($ $ (-619 (-547)) (-619 (-547))) NIL)) (-4123 (($ (-619 |#1|)) NIL) (($ (-619 $)) NIL)) (-3691 (((-112) $) NIL)) (-1299 ((|#1| $) 17 (|has| |#1| (-6 (-4331 "*"))))) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-1295 (((-580 |#1| |#2|) $ (-547)) NIL)) (-3838 (($ (-580 |#1| |#2|)) NIL) (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1485 (((-112) $) NIL)) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $ $) NIL) (($ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-547) $) NIL) (((-580 |#1| |#2|) $ (-580 |#1| |#2|)) NIL) (((-580 |#1| |#3|) (-580 |#1| |#3|) $) NIL)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-512 |#1| |#2| |#3|) (-661 |#1| (-580 |#1| |#3|) (-580 |#1| |#2|)) (-1016) (-547) (-547)) (T -512))
-NIL
-(-661 |#1| (-580 |#1| |#3|) (-580 |#1| |#2|))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3221 (((-619 (-1172)) $) 13)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL) (($ (-619 (-1172))) 11)) (-2381 (((-112) $ $) NIL)))
-(((-513) (-13 (-1047) (-10 -8 (-15 -3838 ($ (-619 (-1172)))) (-15 -3221 ((-619 (-1172)) $))))) (T -513))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-1172))) (-5 *1 (-513)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-619 (-1172))) (-5 *1 (-513)))))
-(-13 (-1047) (-10 -8 (-15 -3838 ($ (-619 (-1172)))) (-15 -3221 ((-619 (-1172)) $))))
-((-3826 (((-112) $ $) NIL)) (-1436 (((-1141) $) 13)) (-1466 (((-1119) $) NIL)) (-1603 (((-1136) $) 11)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-514) (-13 (-1047) (-10 -8 (-15 -1603 ((-1136) $)) (-15 -1436 ((-1141) $))))) (T -514))
-((-1603 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-514)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-514)))))
-(-13 (-1047) (-10 -8 (-15 -1603 ((-1136) $)) (-15 -1436 ((-1141) $))))
-((-1891 (((-1082) $ (-128)) 17)))
-(((-515 |#1|) (-10 -8 (-15 -1891 ((-1082) |#1| (-128)))) (-516)) (T -515))
-NIL
-(-10 -8 (-15 -1891 ((-1082) |#1| (-128))))
-((-1891 (((-1082) $ (-128)) 7)) (-3739 (((-1082) $) 8)) (-1708 (($ $) 6)))
-(((-516) (-138)) (T -516))
-((-3739 (*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-1082)))) (-1891 (*1 *2 *1 *3) (-12 (-4 *1 (-516)) (-5 *3 (-128)) (-5 *2 (-1082)))))
-(-13 (-170) (-10 -8 (-15 -3739 ((-1082) $)) (-15 -1891 ((-1082) $ (-128)))))
-(((-170) . T))
-((-1355 (((-1132 |#1|) (-745)) 76)) (-2899 (((-1219 |#1|) (-1219 |#1|) (-890)) 69)) (-1381 (((-1224) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))) |#1|) 84)) (-1562 (((-1219 |#1|) (-1219 |#1|) (-745)) 36)) (-3232 (((-1219 |#1|) (-890)) 71)) (-3337 (((-1219 |#1|) (-1219 |#1|) (-547)) 24)) (-2447 (((-1132 |#1|) (-1219 |#1|)) 77)) (-2460 (((-1219 |#1|) (-890)) 95)) (-3841 (((-112) (-1219 |#1|)) 80)) (-3160 (((-1219 |#1|) (-1219 |#1|) (-890)) 62)) (-3786 (((-1132 |#1|) (-1219 |#1|)) 89)) (-2402 (((-890) (-1219 |#1|)) 59)) (-1984 (((-1219 |#1|) (-1219 |#1|)) 30)) (-3487 (((-1219 |#1|) (-890) (-890)) 97)) (-2936 (((-1219 |#1|) (-1219 |#1|) (-1082) (-1082)) 23)) (-3013 (((-1219 |#1|) (-1219 |#1|) (-745) (-1082)) 37)) (-1917 (((-1219 (-1219 |#1|)) (-890)) 94)) (-2506 (((-1219 |#1|) (-1219 |#1|) (-1219 |#1|)) 81)) (** (((-1219 |#1|) (-1219 |#1|) (-547)) 45)) (* (((-1219 |#1|) (-1219 |#1|) (-1219 |#1|)) 25)))
-(((-517 |#1|) (-10 -7 (-15 -1381 ((-1224) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))) |#1|)) (-15 -3232 ((-1219 |#1|) (-890))) (-15 -3487 ((-1219 |#1|) (-890) (-890))) (-15 -2447 ((-1132 |#1|) (-1219 |#1|))) (-15 -1355 ((-1132 |#1|) (-745))) (-15 -3013 ((-1219 |#1|) (-1219 |#1|) (-745) (-1082))) (-15 -1562 ((-1219 |#1|) (-1219 |#1|) (-745))) (-15 -2936 ((-1219 |#1|) (-1219 |#1|) (-1082) (-1082))) (-15 -3337 ((-1219 |#1|) (-1219 |#1|) (-547))) (-15 ** ((-1219 |#1|) (-1219 |#1|) (-547))) (-15 * ((-1219 |#1|) (-1219 |#1|) (-1219 |#1|))) (-15 -2506 ((-1219 |#1|) (-1219 |#1|) (-1219 |#1|))) (-15 -3160 ((-1219 |#1|) (-1219 |#1|) (-890))) (-15 -2899 ((-1219 |#1|) (-1219 |#1|) (-890))) (-15 -1984 ((-1219 |#1|) (-1219 |#1|))) (-15 -2402 ((-890) (-1219 |#1|))) (-15 -3841 ((-112) (-1219 |#1|))) (-15 -1917 ((-1219 (-1219 |#1|)) (-890))) (-15 -2460 ((-1219 |#1|) (-890))) (-15 -3786 ((-1132 |#1|) (-1219 |#1|)))) (-340)) (T -517))
-((-3786 (*1 *2 *3) (-12 (-5 *3 (-1219 *4)) (-4 *4 (-340)) (-5 *2 (-1132 *4)) (-5 *1 (-517 *4)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1219 *4)) (-5 *1 (-517 *4)) (-4 *4 (-340)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1219 (-1219 *4))) (-5 *1 (-517 *4)) (-4 *4 (-340)))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-1219 *4)) (-4 *4 (-340)) (-5 *2 (-112)) (-5 *1 (-517 *4)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-1219 *4)) (-4 *4 (-340)) (-5 *2 (-890)) (-5 *1 (-517 *4)))) (-1984 (*1 *2 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-340)) (-5 *1 (-517 *3)))) (-2899 (*1 *2 *2 *3) (-12 (-5 *2 (-1219 *4)) (-5 *3 (-890)) (-4 *4 (-340)) (-5 *1 (-517 *4)))) (-3160 (*1 *2 *2 *3) (-12 (-5 *2 (-1219 *4)) (-5 *3 (-890)) (-4 *4 (-340)) (-5 *1 (-517 *4)))) (-2506 (*1 *2 *2 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-340)) (-5 *1 (-517 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-340)) (-5 *1 (-517 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1219 *4)) (-5 *3 (-547)) (-4 *4 (-340)) (-5 *1 (-517 *4)))) (-3337 (*1 *2 *2 *3) (-12 (-5 *2 (-1219 *4)) (-5 *3 (-547)) (-4 *4 (-340)) (-5 *1 (-517 *4)))) (-2936 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1219 *4)) (-5 *3 (-1082)) (-4 *4 (-340)) (-5 *1 (-517 *4)))) (-1562 (*1 *2 *2 *3) (-12 (-5 *2 (-1219 *4)) (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-517 *4)))) (-3013 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1219 *5)) (-5 *3 (-745)) (-5 *4 (-1082)) (-4 *5 (-340)) (-5 *1 (-517 *5)))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1132 *4)) (-5 *1 (-517 *4)) (-4 *4 (-340)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-1219 *4)) (-4 *4 (-340)) (-5 *2 (-1132 *4)) (-5 *1 (-517 *4)))) (-3487 (*1 *2 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1219 *4)) (-5 *1 (-517 *4)) (-4 *4 (-340)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1219 *4)) (-5 *1 (-517 *4)) (-4 *4 (-340)))) (-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-1219 (-619 (-2 (|:| -4153 *4) (|:| -3487 (-1082)))))) (-4 *4 (-340)) (-5 *2 (-1224)) (-5 *1 (-517 *4)))))
-(-10 -7 (-15 -1381 ((-1224) (-1219 (-619 (-2 (|:| -4153 |#1|) (|:| -3487 (-1082))))) |#1|)) (-15 -3232 ((-1219 |#1|) (-890))) (-15 -3487 ((-1219 |#1|) (-890) (-890))) (-15 -2447 ((-1132 |#1|) (-1219 |#1|))) (-15 -1355 ((-1132 |#1|) (-745))) (-15 -3013 ((-1219 |#1|) (-1219 |#1|) (-745) (-1082))) (-15 -1562 ((-1219 |#1|) (-1219 |#1|) (-745))) (-15 -2936 ((-1219 |#1|) (-1219 |#1|) (-1082) (-1082))) (-15 -3337 ((-1219 |#1|) (-1219 |#1|) (-547))) (-15 ** ((-1219 |#1|) (-1219 |#1|) (-547))) (-15 * ((-1219 |#1|) (-1219 |#1|) (-1219 |#1|))) (-15 -2506 ((-1219 |#1|) (-1219 |#1|) (-1219 |#1|))) (-15 -3160 ((-1219 |#1|) (-1219 |#1|) (-890))) (-15 -2899 ((-1219 |#1|) (-1219 |#1|) (-890))) (-15 -1984 ((-1219 |#1|) (-1219 |#1|))) (-15 -2402 ((-890) (-1219 |#1|))) (-15 -3841 ((-112) (-1219 |#1|))) (-15 -1917 ((-1219 (-1219 |#1|)) (-890))) (-15 -2460 ((-1219 |#1|) (-890))) (-15 -3786 ((-1132 |#1|) (-1219 |#1|))))
-((-1423 (((-1 |#1| |#1|) |#1|) 11)) (-2417 (((-1 |#1| |#1|)) 10)))
-(((-518 |#1|) (-10 -7 (-15 -2417 ((-1 |#1| |#1|))) (-15 -1423 ((-1 |#1| |#1|) |#1|))) (-13 (-701) (-25))) (T -518))
-((-1423 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-518 *3)) (-4 *3 (-13 (-701) (-25))))) (-2417 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-518 *3)) (-4 *3 (-13 (-701) (-25))))))
-(-10 -7 (-15 -2417 ((-1 |#1| |#1|))) (-15 -1423 ((-1 |#1| |#1|) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2794 (($ $ $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2063 (($ $) NIL)) (-2238 (($ (-745) |#1|) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2790 (($ (-1 (-745) (-745)) $) NIL)) (-1968 ((|#1| $) NIL)) (-2037 (((-745) $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 20)) (-3269 (($) NIL T CONST)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) NIL)) (-2479 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL)))
-(((-519 |#1|) (-13 (-767) (-498 (-745) |#1|)) (-821)) (T -519))
-NIL
-(-13 (-767) (-498 (-745) |#1|))
-((-2612 (((-619 |#2|) (-1132 |#1|) |#3|) 83)) (-4094 (((-619 (-2 (|:| |outval| |#2|) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 |#2|))))) (-663 |#1|) |#3| (-1 (-409 (-1132 |#1|)) (-1132 |#1|))) 100)) (-2617 (((-1132 |#1|) (-663 |#1|)) 95)))
-(((-520 |#1| |#2| |#3|) (-10 -7 (-15 -2617 ((-1132 |#1|) (-663 |#1|))) (-15 -2612 ((-619 |#2|) (-1132 |#1|) |#3|)) (-15 -4094 ((-619 (-2 (|:| |outval| |#2|) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 |#2|))))) (-663 |#1|) |#3| (-1 (-409 (-1132 |#1|)) (-1132 |#1|))))) (-354) (-354) (-13 (-354) (-819))) (T -520))
-((-4094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *6)) (-5 *5 (-1 (-409 (-1132 *6)) (-1132 *6))) (-4 *6 (-354)) (-5 *2 (-619 (-2 (|:| |outval| *7) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 *7)))))) (-5 *1 (-520 *6 *7 *4)) (-4 *7 (-354)) (-4 *4 (-13 (-354) (-819))))) (-2612 (*1 *2 *3 *4) (-12 (-5 *3 (-1132 *5)) (-4 *5 (-354)) (-5 *2 (-619 *6)) (-5 *1 (-520 *5 *6 *4)) (-4 *6 (-354)) (-4 *4 (-13 (-354) (-819))))) (-2617 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-354)) (-5 *2 (-1132 *4)) (-5 *1 (-520 *4 *5 *6)) (-4 *5 (-354)) (-4 *6 (-13 (-354) (-819))))))
-(-10 -7 (-15 -2617 ((-1132 |#1|) (-663 |#1|))) (-15 -2612 ((-619 |#2|) (-1132 |#1|) |#3|)) (-15 -4094 ((-619 (-2 (|:| |outval| |#2|) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 |#2|))))) (-663 |#1|) |#3| (-1 (-409 (-1132 |#1|)) (-1132 |#1|)))))
-((-3042 (((-814 (-547))) 12)) (-3051 (((-814 (-547))) 14)) (-1431 (((-807 (-547))) 9)))
-(((-521) (-10 -7 (-15 -1431 ((-807 (-547)))) (-15 -3042 ((-814 (-547)))) (-15 -3051 ((-814 (-547)))))) (T -521))
-((-3051 (*1 *2) (-12 (-5 *2 (-814 (-547))) (-5 *1 (-521)))) (-3042 (*1 *2) (-12 (-5 *2 (-814 (-547))) (-5 *1 (-521)))) (-1431 (*1 *2) (-12 (-5 *2 (-807 (-547))) (-5 *1 (-521)))))
-(-10 -7 (-15 -1431 ((-807 (-547)))) (-15 -3042 ((-814 (-547)))) (-15 -3051 ((-814 (-547)))))
-((-1577 (((-523) (-1136)) 15)) (-2853 ((|#1| (-523)) 20)))
-(((-522 |#1|) (-10 -7 (-15 -1577 ((-523) (-1136))) (-15 -2853 (|#1| (-523)))) (-1173)) (T -522))
-((-2853 (*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-522 *2)) (-4 *2 (-1173)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-523)) (-5 *1 (-522 *4)) (-4 *4 (-1173)))))
-(-10 -7 (-15 -1577 ((-523) (-1136))) (-15 -2853 (|#1| (-523))))
-((-3826 (((-112) $ $) NIL)) (-1382 (((-1119) $) 48)) (-1821 (((-112) $) 43)) (-3936 (((-1136) $) 44)) (-1756 (((-112) $) 41)) (-1517 (((-1119) $) 42)) (-1393 (($ (-1119)) 49)) (-3738 (((-112) $) NIL)) (-2864 (((-112) $) NIL)) (-3374 (((-112) $) NIL)) (-1466 (((-1119) $) NIL)) (-2718 (($ $ (-619 (-1136))) 20)) (-2853 (((-52) $) 22)) (-4072 (((-112) $) NIL)) (-3957 (((-547) $) NIL)) (-3979 (((-1082) $) NIL)) (-3560 (($ $ (-619 (-1136)) (-1136)) 61)) (-1642 (((-112) $) NIL)) (-1348 (((-217) $) NIL)) (-3933 (($ $) 38)) (-2970 (((-832) $) NIL)) (-2644 (((-112) $ $) NIL)) (-3334 (($ $ (-547)) NIL) (($ $ (-619 (-547))) NIL)) (-2190 (((-619 $) $) 28)) (-3535 (((-1136) (-619 $)) 50)) (-2838 (($ (-619 $)) 54) (($ (-1119)) NIL) (($ (-1136)) 18) (($ (-547)) 8) (($ (-217)) 25) (($ (-832)) NIL) (((-1067) $) 11) (($ (-1067)) 12)) (-2085 (((-1136) (-1136) (-619 $)) 53)) (-3838 (((-832) $) 46)) (-3538 (($ $) 52)) (-3528 (($ $) 51)) (-3570 (($ $ (-619 $)) 58)) (-1768 (((-112) $) 27)) (-3269 (($) 9 T CONST)) (-3281 (($) 10 T CONST)) (-2381 (((-112) $ $) 62)) (-2506 (($ $ $) 67)) (-2479 (($ $ $) 63)) (** (($ $ (-745)) 66) (($ $ (-547)) 65)) (* (($ $ $) 64)) (-3767 (((-547) $) NIL)))
-(((-523) (-13 (-1066 (-1119) (-1136) (-547) (-217) (-832)) (-592 (-1067)) (-10 -8 (-15 -2853 ((-52) $)) (-15 -2838 ($ (-1067))) (-15 -3570 ($ $ (-619 $))) (-15 -3560 ($ $ (-619 (-1136)) (-1136))) (-15 -2718 ($ $ (-619 (-1136)))) (-15 -2479 ($ $ $)) (-15 * ($ $ $)) (-15 -2506 ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ (-547))) (-15 0 ($) -2582) (-15 1 ($) -2582) (-15 -3933 ($ $)) (-15 -1382 ((-1119) $)) (-15 -1393 ($ (-1119))) (-15 -3535 ((-1136) (-619 $))) (-15 -2085 ((-1136) (-1136) (-619 $)))))) (T -523))
-((-2853 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-523)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-523)))) (-3570 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-523))) (-5 *1 (-523)))) (-3560 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-1136)) (-5 *1 (-523)))) (-2718 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-523)))) (-2479 (*1 *1 *1 *1) (-5 *1 (-523))) (* (*1 *1 *1 *1) (-5 *1 (-523))) (-2506 (*1 *1 *1 *1) (-5 *1 (-523))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-523)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-523)))) (-3269 (*1 *1) (-5 *1 (-523))) (-3281 (*1 *1) (-5 *1 (-523))) (-3933 (*1 *1 *1) (-5 *1 (-523))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-523)))) (-1393 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-523)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-619 (-523))) (-5 *2 (-1136)) (-5 *1 (-523)))) (-2085 (*1 *2 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-523))) (-5 *1 (-523)))))
-(-13 (-1066 (-1119) (-1136) (-547) (-217) (-832)) (-592 (-1067)) (-10 -8 (-15 -2853 ((-52) $)) (-15 -2838 ($ (-1067))) (-15 -3570 ($ $ (-619 $))) (-15 -3560 ($ $ (-619 (-1136)) (-1136))) (-15 -2718 ($ $ (-619 (-1136)))) (-15 -2479 ($ $ $)) (-15 * ($ $ $)) (-15 -2506 ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ (-547))) (-15 (-3269) ($) -2582) (-15 (-3281) ($) -2582) (-15 -3933 ($ $)) (-15 -1382 ((-1119) $)) (-15 -1393 ($ (-1119))) (-15 -3535 ((-1136) (-619 $))) (-15 -2085 ((-1136) (-1136) (-619 $)))))
-((-2735 ((|#2| |#2|) 17)) (-2789 ((|#2| |#2|) 13)) (-3824 ((|#2| |#2| (-547) (-547)) 20)) (-2419 ((|#2| |#2|) 15)))
-(((-524 |#1| |#2|) (-10 -7 (-15 -2789 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -3824 (|#2| |#2| (-547) (-547)))) (-13 (-539) (-145)) (-1210 |#1|)) (T -524))
-((-3824 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-547)) (-4 *4 (-13 (-539) (-145))) (-5 *1 (-524 *4 *2)) (-4 *2 (-1210 *4)))) (-2735 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-524 *3 *2)) (-4 *2 (-1210 *3)))) (-2419 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-524 *3 *2)) (-4 *2 (-1210 *3)))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-524 *3 *2)) (-4 *2 (-1210 *3)))))
-(-10 -7 (-15 -2789 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -3824 (|#2| |#2| (-547) (-547))))
-((-4204 (((-619 (-285 (-921 |#2|))) (-619 |#2|) (-619 (-1136))) 32)) (-3746 (((-619 |#2|) (-921 |#1|) |#3|) 53) (((-619 |#2|) (-1132 |#1|) |#3|) 52)) (-3255 (((-619 (-619 |#2|)) (-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1136)) |#3|) 91)))
-(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -3746 ((-619 |#2|) (-1132 |#1|) |#3|)) (-15 -3746 ((-619 |#2|) (-921 |#1|) |#3|)) (-15 -3255 ((-619 (-619 |#2|)) (-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1136)) |#3|)) (-15 -4204 ((-619 (-285 (-921 |#2|))) (-619 |#2|) (-619 (-1136))))) (-442) (-354) (-13 (-354) (-819))) (T -525))
-((-4204 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1136))) (-4 *6 (-354)) (-5 *2 (-619 (-285 (-921 *6)))) (-5 *1 (-525 *5 *6 *7)) (-4 *5 (-442)) (-4 *7 (-13 (-354) (-819))))) (-3255 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1136))) (-4 *6 (-442)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-525 *6 *7 *5)) (-4 *7 (-354)) (-4 *5 (-13 (-354) (-819))))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-4 *5 (-442)) (-5 *2 (-619 *6)) (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-354)) (-4 *4 (-13 (-354) (-819))))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-1132 *5)) (-4 *5 (-442)) (-5 *2 (-619 *6)) (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-354)) (-4 *4 (-13 (-354) (-819))))))
-(-10 -7 (-15 -3746 ((-619 |#2|) (-1132 |#1|) |#3|)) (-15 -3746 ((-619 |#2|) (-921 |#1|) |#3|)) (-15 -3255 ((-619 (-619 |#2|)) (-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1136)) |#3|)) (-15 -4204 ((-619 (-285 (-921 |#2|))) (-619 |#2|) (-619 (-1136)))))
-((-2378 ((|#2| |#2| |#1|) 17)) (-4254 ((|#2| (-619 |#2|)) 27)) (-1554 ((|#2| (-619 |#2|)) 46)))
-(((-526 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4254 (|#2| (-619 |#2|))) (-15 -1554 (|#2| (-619 |#2|))) (-15 -2378 (|#2| |#2| |#1|))) (-298) (-1195 |#1|) |#1| (-1 |#1| |#1| (-745))) (T -526))
-((-2378 (*1 *2 *2 *3) (-12 (-4 *3 (-298)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-745))) (-5 *1 (-526 *3 *2 *4 *5)) (-4 *2 (-1195 *3)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1195 *4)) (-5 *1 (-526 *4 *2 *5 *6)) (-4 *4 (-298)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745))))) (-4254 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1195 *4)) (-5 *1 (-526 *4 *2 *5 *6)) (-4 *4 (-298)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745))))))
-(-10 -7 (-15 -4254 (|#2| (-619 |#2|))) (-15 -1554 (|#2| (-619 |#2|))) (-15 -2378 (|#2| |#2| |#1|)))
-((-2115 (((-409 (-1132 |#4|)) (-1132 |#4|) (-1 (-409 (-1132 |#3|)) (-1132 |#3|))) 80) (((-409 |#4|) |#4| (-1 (-409 (-1132 |#3|)) (-1132 |#3|))) 169)))
-(((-527 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2115 ((-409 |#4|) |#4| (-1 (-409 (-1132 |#3|)) (-1132 |#3|)))) (-15 -2115 ((-409 (-1132 |#4|)) (-1132 |#4|) (-1 (-409 (-1132 |#3|)) (-1132 |#3|))))) (-821) (-767) (-13 (-298) (-145)) (-918 |#3| |#2| |#1|)) (T -527))
-((-2115 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-409 (-1132 *7)) (-1132 *7))) (-4 *7 (-13 (-298) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *8 (-918 *7 *6 *5)) (-5 *2 (-409 (-1132 *8))) (-5 *1 (-527 *5 *6 *7 *8)) (-5 *3 (-1132 *8)))) (-2115 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-409 (-1132 *7)) (-1132 *7))) (-4 *7 (-13 (-298) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) (-5 *2 (-409 *3)) (-5 *1 (-527 *5 *6 *7 *3)) (-4 *3 (-918 *7 *6 *5)))))
-(-10 -7 (-15 -2115 ((-409 |#4|) |#4| (-1 (-409 (-1132 |#3|)) (-1132 |#3|)))) (-15 -2115 ((-409 (-1132 |#4|)) (-1132 |#4|) (-1 (-409 (-1132 |#3|)) (-1132 |#3|)))))
-((-2735 ((|#4| |#4|) 74)) (-2789 ((|#4| |#4|) 70)) (-3824 ((|#4| |#4| (-547) (-547)) 76)) (-2419 ((|#4| |#4|) 72)))
-(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2789 (|#4| |#4|)) (-15 -2419 (|#4| |#4|)) (-15 -2735 (|#4| |#4|)) (-15 -3824 (|#4| |#4| (-547) (-547)))) (-13 (-354) (-359) (-592 (-547))) (-1195 |#1|) (-699 |#1| |#2|) (-1210 |#3|)) (T -528))
-((-3824 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-547)) (-4 *4 (-13 (-354) (-359) (-592 *3))) (-4 *5 (-1195 *4)) (-4 *6 (-699 *4 *5)) (-5 *1 (-528 *4 *5 *6 *2)) (-4 *2 (-1210 *6)))) (-2735 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-4 *4 (-1195 *3)) (-4 *5 (-699 *3 *4)) (-5 *1 (-528 *3 *4 *5 *2)) (-4 *2 (-1210 *5)))) (-2419 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-4 *4 (-1195 *3)) (-4 *5 (-699 *3 *4)) (-5 *1 (-528 *3 *4 *5 *2)) (-4 *2 (-1210 *5)))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-4 *4 (-1195 *3)) (-4 *5 (-699 *3 *4)) (-5 *1 (-528 *3 *4 *5 *2)) (-4 *2 (-1210 *5)))))
-(-10 -7 (-15 -2789 (|#4| |#4|)) (-15 -2419 (|#4| |#4|)) (-15 -2735 (|#4| |#4|)) (-15 -3824 (|#4| |#4| (-547) (-547))))
-((-2735 ((|#2| |#2|) 27)) (-2789 ((|#2| |#2|) 23)) (-3824 ((|#2| |#2| (-547) (-547)) 29)) (-2419 ((|#2| |#2|) 25)))
-(((-529 |#1| |#2|) (-10 -7 (-15 -2789 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -3824 (|#2| |#2| (-547) (-547)))) (-13 (-354) (-359) (-592 (-547))) (-1210 |#1|)) (T -529))
-((-3824 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-547)) (-4 *4 (-13 (-354) (-359) (-592 *3))) (-5 *1 (-529 *4 *2)) (-4 *2 (-1210 *4)))) (-2735 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1210 *3)))) (-2419 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1210 *3)))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1210 *3)))))
-(-10 -7 (-15 -2789 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -3824 (|#2| |#2| (-547) (-547))))
-((-1941 (((-3 (-547) "failed") |#2| |#1| (-1 (-3 (-547) "failed") |#1|)) 14) (((-3 (-547) "failed") |#2| |#1| (-547) (-1 (-3 (-547) "failed") |#1|)) 13) (((-3 (-547) "failed") |#2| (-547) (-1 (-3 (-547) "failed") |#1|)) 26)))
-(((-530 |#1| |#2|) (-10 -7 (-15 -1941 ((-3 (-547) "failed") |#2| (-547) (-1 (-3 (-547) "failed") |#1|))) (-15 -1941 ((-3 (-547) "failed") |#2| |#1| (-547) (-1 (-3 (-547) "failed") |#1|))) (-15 -1941 ((-3 (-547) "failed") |#2| |#1| (-1 (-3 (-547) "failed") |#1|)))) (-1016) (-1195 |#1|)) (T -530))
-((-1941 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-547) "failed") *4)) (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-530 *4 *3)) (-4 *3 (-1195 *4)))) (-1941 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-547) "failed") *4)) (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-530 *4 *3)) (-4 *3 (-1195 *4)))) (-1941 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-547) "failed") *5)) (-4 *5 (-1016)) (-5 *2 (-547)) (-5 *1 (-530 *5 *3)) (-4 *3 (-1195 *5)))))
-(-10 -7 (-15 -1941 ((-3 (-547) "failed") |#2| (-547) (-1 (-3 (-547) "failed") |#1|))) (-15 -1941 ((-3 (-547) "failed") |#2| |#1| (-547) (-1 (-3 (-547) "failed") |#1|))) (-15 -1941 ((-3 (-547) "failed") |#2| |#1| (-1 (-3 (-547) "failed") |#1|))))
-((-1933 (($ $ $) 79)) (-3299 (((-409 $) $) 47)) (-2707 (((-3 (-547) "failed") $) 59)) (-2652 (((-547) $) 37)) (-4265 (((-3 (-398 (-547)) "failed") $) 74)) (-3198 (((-112) $) 24)) (-2453 (((-398 (-547)) $) 72)) (-1791 (((-112) $) 50)) (-3459 (($ $ $ $) 86)) (-4270 (((-112) $) 16)) (-3091 (($ $ $) 57)) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 69)) (-3477 (((-3 $ "failed") $) 64)) (-2426 (($ $) 23)) (-1617 (($ $ $) 84)) (-3054 (($) 60)) (-2462 (($ $) 53)) (-2115 (((-409 $) $) 45)) (-3874 (((-112) $) 14)) (-2471 (((-745) $) 28)) (-3448 (($ $ (-745)) NIL) (($ $) 10)) (-2274 (($ $) 17)) (-2838 (((-547) $) NIL) (((-523) $) 36) (((-861 (-547)) $) 40) (((-370) $) 31) (((-217) $) 33)) (-2736 (((-745)) 8)) (-1253 (((-112) $ $) 20)) (-3658 (($ $ $) 55)))
-(((-531 |#1|) (-10 -8 (-15 -1617 (|#1| |#1| |#1|)) (-15 -3459 (|#1| |#1| |#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2274 (|#1| |#1|)) (-15 -4265 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2453 ((-398 (-547)) |#1|)) (-15 -3198 ((-112) |#1|)) (-15 -1933 (|#1| |#1| |#1|)) (-15 -1253 ((-112) |#1| |#1|)) (-15 -3874 ((-112) |#1|)) (-15 -3054 (|#1|)) (-15 -3477 ((-3 |#1| "failed") |#1|)) (-15 -2838 ((-217) |#1|)) (-15 -2838 ((-370) |#1|)) (-15 -3091 (|#1| |#1| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3521 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -2838 ((-861 (-547)) |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2838 ((-547) |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -4270 ((-112) |#1|)) (-15 -2471 ((-745) |#1|)) (-15 -2115 ((-409 |#1|) |#1|)) (-15 -3299 ((-409 |#1|) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -2736 ((-745)))) (-532)) (T -531))
-((-2736 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-531 *3)) (-4 *3 (-532)))))
-(-10 -8 (-15 -1617 (|#1| |#1| |#1|)) (-15 -3459 (|#1| |#1| |#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2274 (|#1| |#1|)) (-15 -4265 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2453 ((-398 (-547)) |#1|)) (-15 -3198 ((-112) |#1|)) (-15 -1933 (|#1| |#1| |#1|)) (-15 -1253 ((-112) |#1| |#1|)) (-15 -3874 ((-112) |#1|)) (-15 -3054 (|#1|)) (-15 -3477 ((-3 |#1| "failed") |#1|)) (-15 -2838 ((-217) |#1|)) (-15 -2838 ((-370) |#1|)) (-15 -3091 (|#1| |#1| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3521 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -2838 ((-861 (-547)) |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2838 ((-547) |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -4270 ((-112) |#1|)) (-15 -2471 ((-745) |#1|)) (-15 -2115 ((-409 |#1|) |#1|)) (-15 -3299 ((-409 |#1|) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -2736 ((-745))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-1933 (($ $ $) 82)) (-3672 (((-3 $ "failed") $ $) 19)) (-3780 (($ $ $ $) 71)) (-2555 (($ $) 49)) (-3299 (((-409 $) $) 50)) (-1547 (((-112) $ $) 122)) (-2500 (((-547) $) 111)) (-1303 (($ $ $) 85)) (-1948 (($) 17 T CONST)) (-2707 (((-3 (-547) "failed") $) 103)) (-2652 (((-547) $) 102)) (-2089 (($ $ $) 126)) (-1694 (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 101) (((-663 (-547)) (-663 $)) 100)) (-3855 (((-3 $ "failed") $) 32)) (-4265 (((-3 (-398 (-547)) "failed") $) 79)) (-3198 (((-112) $) 81)) (-2453 (((-398 (-547)) $) 80)) (-3232 (($) 78) (($ $) 77)) (-2061 (($ $ $) 125)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 120)) (-1791 (((-112) $) 51)) (-3459 (($ $ $ $) 69)) (-3125 (($ $ $) 83)) (-4270 (((-112) $) 113)) (-3091 (($ $ $) 94)) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 97)) (-2261 (((-112) $) 30)) (-2935 (((-112) $) 89)) (-3477 (((-3 $ "failed") $) 91)) (-1860 (((-112) $) 112)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 129)) (-1618 (($ $ $ $) 70)) (-2856 (($ $ $) 114)) (-3567 (($ $ $) 115)) (-2426 (($ $) 73)) (-4202 (($ $) 86)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-1617 (($ $ $) 68)) (-3054 (($) 90 T CONST)) (-3773 (($ $) 75)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-2462 (($ $) 95)) (-2115 (((-409 $) $) 48)) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 127)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 121)) (-3874 (((-112) $) 88)) (-2471 (((-745) $) 123)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 124)) (-3448 (($ $ (-745)) 108) (($ $) 106)) (-1892 (($ $) 74)) (-2274 (($ $) 76)) (-2838 (((-547) $) 105) (((-523) $) 99) (((-861 (-547)) $) 98) (((-370) $) 93) (((-217) $) 92)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-547)) 104)) (-2736 (((-745)) 28)) (-1253 (((-112) $ $) 84)) (-3658 (($ $ $) 96)) (-1856 (($) 87)) (-3577 (((-112) $ $) 37)) (-1292 (($ $ $ $) 72)) (-2255 (($ $) 110)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-745)) 109) (($ $) 107)) (-2441 (((-112) $ $) 117)) (-2418 (((-112) $ $) 118)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 116)) (-2405 (((-112) $ $) 119)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-532) (-138)) (T -532))
-((-2935 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112)))) (-3874 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112)))) (-1856 (*1 *1) (-4 *1 (-532))) (-4202 (*1 *1 *1) (-4 *1 (-532))) (-1303 (*1 *1 *1 *1) (-4 *1 (-532))) (-1253 (*1 *2 *1 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112)))) (-3125 (*1 *1 *1 *1) (-4 *1 (-532))) (-1933 (*1 *1 *1 *1) (-4 *1 (-532))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112)))) (-2453 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-398 (-547))))) (-4265 (*1 *2 *1) (|partial| -12 (-4 *1 (-532)) (-5 *2 (-398 (-547))))) (-3232 (*1 *1) (-4 *1 (-532))) (-3232 (*1 *1 *1) (-4 *1 (-532))) (-2274 (*1 *1 *1) (-4 *1 (-532))) (-3773 (*1 *1 *1) (-4 *1 (-532))) (-1892 (*1 *1 *1) (-4 *1 (-532))) (-2426 (*1 *1 *1) (-4 *1 (-532))) (-1292 (*1 *1 *1 *1 *1) (-4 *1 (-532))) (-3780 (*1 *1 *1 *1 *1) (-4 *1 (-532))) (-1618 (*1 *1 *1 *1 *1) (-4 *1 (-532))) (-3459 (*1 *1 *1 *1 *1) (-4 *1 (-532))) (-1617 (*1 *1 *1 *1) (-4 *1 (-532))))
-(-13 (-1177) (-298) (-794) (-225) (-592 (-547)) (-1007 (-547)) (-615 (-547)) (-592 (-523)) (-592 (-861 (-547))) (-855 (-547)) (-141) (-991) (-145) (-1112) (-10 -8 (-15 -2935 ((-112) $)) (-15 -3874 ((-112) $)) (-6 -4328) (-15 -1856 ($)) (-15 -4202 ($ $)) (-15 -1303 ($ $ $)) (-15 -1253 ((-112) $ $)) (-15 -3125 ($ $ $)) (-15 -1933 ($ $ $)) (-15 -3198 ((-112) $)) (-15 -2453 ((-398 (-547)) $)) (-15 -4265 ((-3 (-398 (-547)) "failed") $)) (-15 -3232 ($)) (-15 -3232 ($ $)) (-15 -2274 ($ $)) (-15 -3773 ($ $)) (-15 -1892 ($ $)) (-15 -2426 ($ $)) (-15 -1292 ($ $ $ $)) (-15 -3780 ($ $ $ $)) (-15 -1618 ($ $ $ $)) (-15 -3459 ($ $ $ $)) (-15 -1617 ($ $ $)) (-6 -4327)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-591 (-832)) . T) ((-141) . T) ((-169) . T) ((-592 (-217)) . T) ((-592 (-370)) . T) ((-592 (-523)) . T) ((-592 (-547)) . T) ((-592 (-861 (-547))) . T) ((-225) . T) ((-281) . T) ((-298) . T) ((-442) . T) ((-539) . T) ((-622 $) . T) ((-615 (-547)) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-794) . T) ((-819) . T) ((-821) . T) ((-855 (-547)) . T) ((-889) . T) ((-991) . T) ((-1007 (-547)) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1112) . T) ((-1177) . T))
-((-3826 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3726 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-1652 (((-1224) $ |#1| |#1|) NIL (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#2| $ |#1| |#2|) NIL)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-3482 (((-3 |#2| "failed") |#1| $) NIL)) (-1948 (($) NIL T CONST)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-1513 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-3 |#2| "failed") |#1| $) NIL)) (-3803 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#2| $ |#1|) NIL)) (-2982 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 ((|#1| $) NIL (|has| |#1| (-821)))) (-2284 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-1416 ((|#1| $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4330))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3441 (((-619 |#1|) $) NIL)) (-4073 (((-112) |#1| $) NIL)) (-4266 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2657 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2121 (((-619 |#1|) $) NIL)) (-2018 (((-112) |#1| $) NIL)) (-3979 (((-1082) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3638 ((|#2| $) NIL (|has| |#1| (-821)))) (-3650 (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL)) (-3632 (($ $ |#2|) NIL (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2987 (((-619 |#2|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2699 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3838 (((-832) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2300 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-533 |#1| |#2| |#3|) (-13 (-1149 |#1| |#2|) (-10 -7 (-6 -4329))) (-1063) (-1063) (-13 (-1149 |#1| |#2|) (-10 -7 (-6 -4329)))) (T -533))
-NIL
-(-13 (-1149 |#1| |#2|) (-10 -7 (-6 -4329)))
-((-1552 (((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) (-1 (-1132 |#2|) (-1132 |#2|))) 51)))
-(((-534 |#1| |#2|) (-10 -7 (-15 -1552 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) (-1 (-1132 |#2|) (-1132 |#2|))))) (-13 (-821) (-539)) (-13 (-27) (-421 |#1|))) (T -534))
-((-1552 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-590 *3)) (-5 *5 (-1 (-1132 *3) (-1132 *3))) (-4 *3 (-13 (-27) (-421 *6))) (-4 *6 (-13 (-821) (-539))) (-5 *2 (-565 *3)) (-5 *1 (-534 *6 *3)))))
-(-10 -7 (-15 -1552 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) (-1 (-1132 |#2|) (-1132 |#2|)))))
-((-3254 (((-565 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2999 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-3030 (((-565 |#5|) |#5| (-1 |#3| |#3|)) 202)))
-(((-535 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3030 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3254 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2999 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-821) (-539) (-1007 (-547))) (-13 (-27) (-421 |#1|)) (-1195 |#2|) (-1195 (-398 |#3|)) (-333 |#2| |#3| |#4|)) (T -535))
-((-2999 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-13 (-27) (-421 *4))) (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-4 *7 (-1195 (-398 *6))) (-5 *1 (-535 *4 *5 *6 *7 *2)) (-4 *2 (-333 *5 *6 *7)))) (-3254 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1195 *6)) (-4 *6 (-13 (-27) (-421 *5))) (-4 *5 (-13 (-821) (-539) (-1007 (-547)))) (-4 *8 (-1195 (-398 *7))) (-5 *2 (-565 *3)) (-5 *1 (-535 *5 *6 *7 *8 *3)) (-4 *3 (-333 *6 *7 *8)))) (-3030 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1195 *6)) (-4 *6 (-13 (-27) (-421 *5))) (-4 *5 (-13 (-821) (-539) (-1007 (-547)))) (-4 *8 (-1195 (-398 *7))) (-5 *2 (-565 *3)) (-5 *1 (-535 *5 *6 *7 *8 *3)) (-4 *3 (-333 *6 *7 *8)))))
-(-10 -7 (-15 -3030 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3254 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2999 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-3233 (((-112) (-547) (-547)) 10)) (-3849 (((-547) (-547)) 7)) (-3148 (((-547) (-547) (-547)) 8)))
-(((-536) (-10 -7 (-15 -3849 ((-547) (-547))) (-15 -3148 ((-547) (-547) (-547))) (-15 -3233 ((-112) (-547) (-547))))) (T -536))
-((-3233 (*1 *2 *3 *3) (-12 (-5 *3 (-547)) (-5 *2 (-112)) (-5 *1 (-536)))) (-3148 (*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-536)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-536)))))
-(-10 -7 (-15 -3849 ((-547) (-547))) (-15 -3148 ((-547) (-547) (-547))) (-15 -3233 ((-112) (-547) (-547))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2335 ((|#1| $) 59)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-1656 (($ $) 89)) (-1505 (($ $) 72)) (-2794 ((|#1| $) 60)) (-3672 (((-3 $ "failed") $ $) 19)) (-2127 (($ $) 71)) (-1632 (($ $) 88)) (-1479 (($ $) 73)) (-1678 (($ $) 87)) (-1532 (($ $) 74)) (-1948 (($) 17 T CONST)) (-2707 (((-3 (-547) "failed") $) 67)) (-2652 (((-547) $) 66)) (-3855 (((-3 $ "failed") $) 32)) (-2095 (($ |#1| |#1|) 64)) (-4270 (((-112) $) 58)) (-1419 (($) 99)) (-2261 (((-112) $) 30)) (-3869 (($ $ (-547)) 70)) (-1860 (((-112) $) 57)) (-2856 (($ $ $) 105)) (-3567 (($ $ $) 104)) (-3624 (($ $) 96)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-4283 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-398 (-547))) 62)) (-4273 ((|#1| $) 61)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-2032 (((-3 $ "failed") $ $) 40)) (-2712 (($ $) 97)) (-1690 (($ $) 86)) (-1545 (($ $) 75)) (-1668 (($ $) 85)) (-1519 (($ $) 76)) (-1644 (($ $) 84)) (-1493 (($ $) 77)) (-1412 (((-112) $ |#1|) 56)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-547)) 68)) (-2736 (((-745)) 28)) (-1726 (($ $) 95)) (-1579 (($ $) 83)) (-3577 (((-112) $ $) 37)) (-1703 (($ $) 94)) (-1557 (($ $) 82)) (-1751 (($ $) 93)) (-1606 (($ $) 81)) (-1927 (($ $) 92)) (-1620 (($ $) 80)) (-1738 (($ $) 91)) (-1593 (($ $) 79)) (-1714 (($ $) 90)) (-1569 (($ $) 78)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2441 (((-112) $ $) 102)) (-2418 (((-112) $ $) 101)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 103)) (-2405 (((-112) $ $) 100)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ $) 98) (($ $ (-398 (-547))) 69)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-537 |#1|) (-138) (-13 (-395) (-1158))) (T -537))
-((-4283 (*1 *1 *2 *2) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1158))))) (-2095 (*1 *1 *2 *2) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1158))))) (-4283 (*1 *1 *2) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1158))))) (-4283 (*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1158))))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1158))))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1158))))) (-2335 (*1 *2 *1) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1158))))) (-4270 (*1 *2 *1) (-12 (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1158))) (-5 *2 (-112)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1158))) (-5 *2 (-112)))) (-1412 (*1 *2 *1 *3) (-12 (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1158))) (-5 *2 (-112)))))
-(-13 (-442) (-821) (-1158) (-971) (-1007 (-547)) (-10 -8 (-6 -2654) (-15 -4283 ($ |t#1| |t#1|)) (-15 -2095 ($ |t#1| |t#1|)) (-15 -4283 ($ |t#1|)) (-15 -4283 ($ (-398 (-547)))) (-15 -4273 (|t#1| $)) (-15 -2794 (|t#1| $)) (-15 -2335 (|t#1| $)) (-15 -4270 ((-112) $)) (-15 -1860 ((-112) $)) (-15 -1412 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-275) . T) ((-281) . T) ((-442) . T) ((-482) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-821) . T) ((-971) . T) ((-1007 (-547)) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1158) . T) ((-1161) . T))
-((-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 9)) (-3571 (($ $) 11)) (-3915 (((-112) $) 18)) (-3855 (((-3 $ "failed") $) 16)) (-3577 (((-112) $ $) 20)))
-(((-538 |#1|) (-10 -8 (-15 -3915 ((-112) |#1|)) (-15 -3577 ((-112) |#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 -3049 ((-2 (|:| -3825 |#1|) (|:| -4316 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|))) (-539)) (T -538))
-NIL
-(-10 -8 (-15 -3915 ((-112) |#1|)) (-15 -3577 ((-112) |#1| |#1|)) (-15 -3571 (|#1| |#1|)) (-15 -3049 ((-2 (|:| -3825 |#1|) (|:| -4316 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2032 (((-3 $ "failed") $ $) 40)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-539) (-138)) (T -539))
-((-2032 (*1 *1 *1 *1) (|partial| -4 *1 (-539))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3825 *1) (|:| -4316 *1) (|:| |associate| *1))) (-4 *1 (-539)))) (-3571 (*1 *1 *1) (-4 *1 (-539))) (-3577 (*1 *2 *1 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))))
-(-13 (-169) (-38 $) (-281) (-10 -8 (-15 -2032 ((-3 $ "failed") $ $)) (-15 -3049 ((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $)) (-15 -3571 ($ $)) (-15 -3577 ((-112) $ $)) (-15 -3915 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3674 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1136) (-619 |#2|)) 37)) (-2333 (((-565 |#2|) |#2| (-1136)) 62)) (-2197 (((-3 |#2| "failed") |#2| (-1136)) 152)) (-2158 (((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1136) (-590 |#2|) (-619 (-590 |#2|))) 155)) (-4215 (((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1136) |#2|) 40)))
-(((-540 |#1| |#2|) (-10 -7 (-15 -4215 ((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1136) |#2|)) (-15 -3674 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1136) (-619 |#2|))) (-15 -2197 ((-3 |#2| "failed") |#2| (-1136))) (-15 -2333 ((-565 |#2|) |#2| (-1136))) (-15 -2158 ((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1136) (-590 |#2|) (-619 (-590 |#2|))))) (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1158) (-421 |#1|))) (T -540))
-((-2158 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1136)) (-5 *6 (-619 (-590 *3))) (-5 *5 (-590 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *7))) (-4 *7 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-2 (|:| -2510 *3) (|:| |coeff| *3))) (-5 *1 (-540 *7 *3)))) (-2333 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-565 *3)) (-5 *1 (-540 *5 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))))) (-2197 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1136)) (-4 *4 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-540 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4))))) (-3674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1136)) (-5 *5 (-619 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *6))) (-4 *6 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-540 *6 *3)))) (-4215 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1136)) (-4 *5 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-2 (|:| -2510 *3) (|:| |coeff| *3))) (-5 *1 (-540 *5 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))))))
-(-10 -7 (-15 -4215 ((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1136) |#2|)) (-15 -3674 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1136) (-619 |#2|))) (-15 -2197 ((-3 |#2| "failed") |#2| (-1136))) (-15 -2333 ((-565 |#2|) |#2| (-1136))) (-15 -2158 ((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1136) (-590 |#2|) (-619 (-590 |#2|)))))
-((-3299 (((-409 |#1|) |#1|) 18)) (-2115 (((-409 |#1|) |#1|) 33)) (-4134 (((-3 |#1| "failed") |#1|) 44)) (-2379 (((-409 |#1|) |#1|) 51)))
-(((-541 |#1|) (-10 -7 (-15 -2115 ((-409 |#1|) |#1|)) (-15 -3299 ((-409 |#1|) |#1|)) (-15 -2379 ((-409 |#1|) |#1|)) (-15 -4134 ((-3 |#1| "failed") |#1|))) (-532)) (T -541))
-((-4134 (*1 *2 *2) (|partial| -12 (-5 *1 (-541 *2)) (-4 *2 (-532)))) (-2379 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-541 *3)) (-4 *3 (-532)))) (-3299 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-541 *3)) (-4 *3 (-532)))) (-2115 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-541 *3)) (-4 *3 (-532)))))
-(-10 -7 (-15 -2115 ((-409 |#1|) |#1|)) (-15 -3299 ((-409 |#1|) |#1|)) (-15 -2379 ((-409 |#1|) |#1|)) (-15 -4134 ((-3 |#1| "failed") |#1|)))
-((-1997 (($) 9)) (-2757 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 35)) (-3441 (((-619 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) $) 32)) (-2657 (($ (-2 (|:| -3331 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3831 (($ (-619 (-2 (|:| -3331 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1786 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 39)) (-2987 (((-619 (-2 (|:| -3331 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3121 (((-1224)) 12)))
-(((-542) (-10 -8 (-15 -1997 ($)) (-15 -3121 ((-1224))) (-15 -3441 ((-619 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) $)) (-15 -3831 ($ (-619 (-2 (|:| -3331 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2657 ($ (-2 (|:| -3331 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2757 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2987 ((-619 (-2 (|:| -3331 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1786 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) (T -542))
-((-1786 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-542)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -3331 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-542)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-542)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3331 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-542)))) (-3831 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3331 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-542)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-5 *1 (-542)))) (-3121 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-542)))) (-1997 (*1 *1) (-5 *1 (-542))))
-(-10 -8 (-15 -1997 ($)) (-15 -3121 ((-1224))) (-15 -3441 ((-619 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) $)) (-15 -3831 ($ (-619 (-2 (|:| -3331 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2657 ($ (-2 (|:| -3331 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2757 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2987 ((-619 (-2 (|:| -3331 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1786 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1117 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4232 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))
-((-2078 (((-1132 (-398 (-1132 |#2|))) |#2| (-590 |#2|) (-590 |#2|) (-1132 |#2|)) 32)) (-3087 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|) (-590 |#2|) |#2| (-398 (-1132 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|) |#2| (-1132 |#2|)) 110)) (-2605 (((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) (-590 |#2|) |#2| (-398 (-1132 |#2|))) 80) (((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) |#2| (-1132 |#2|)) 52)) (-2099 (((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2| (-590 |#2|) |#2| (-398 (-1132 |#2|))) 87) (((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2| |#2| (-1132 |#2|)) 109)) (-1684 (((-3 |#2| "failed") |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1136)) (-590 |#2|) |#2| (-398 (-1132 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1136)) |#2| (-1132 |#2|)) 111)) (-1634 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1917 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) (-590 |#2|) |#2| (-398 (-1132 |#2|))) 128 (|has| |#3| (-630 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1917 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) |#2| (-1132 |#2|)) 127 (|has| |#3| (-630 |#2|)))) (-2254 ((|#2| (-1132 (-398 (-1132 |#2|))) (-590 |#2|) |#2|) 50)) (-2540 (((-1132 (-398 (-1132 |#2|))) (-1132 |#2|) (-590 |#2|)) 31)))
-(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -2605 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) |#2| (-1132 |#2|))) (-15 -2605 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) (-590 |#2|) |#2| (-398 (-1132 |#2|)))) (-15 -2099 ((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2| |#2| (-1132 |#2|))) (-15 -2099 ((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2| (-590 |#2|) |#2| (-398 (-1132 |#2|)))) (-15 -3087 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|) |#2| (-1132 |#2|))) (-15 -3087 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|) (-590 |#2|) |#2| (-398 (-1132 |#2|)))) (-15 -1684 ((-3 |#2| "failed") |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1136)) |#2| (-1132 |#2|))) (-15 -1684 ((-3 |#2| "failed") |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1136)) (-590 |#2|) |#2| (-398 (-1132 |#2|)))) (-15 -2078 ((-1132 (-398 (-1132 |#2|))) |#2| (-590 |#2|) (-590 |#2|) (-1132 |#2|))) (-15 -2254 (|#2| (-1132 (-398 (-1132 |#2|))) (-590 |#2|) |#2|)) (-15 -2540 ((-1132 (-398 (-1132 |#2|))) (-1132 |#2|) (-590 |#2|))) (IF (|has| |#3| (-630 |#2|)) (PROGN (-15 -1634 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1917 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) |#2| (-1132 |#2|))) (-15 -1634 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1917 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) (-590 |#2|) |#2| (-398 (-1132 |#2|))))) |%noBranch|)) (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))) (-13 (-421 |#1|) (-27) (-1158)) (-1063)) (T -543))
-((-1634 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-590 *4)) (-5 *6 (-398 (-1132 *4))) (-4 *4 (-13 (-421 *7) (-27) (-1158))) (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4)))) (-5 *1 (-543 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) (-1634 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-590 *4)) (-5 *6 (-1132 *4)) (-4 *4 (-13 (-421 *7) (-27) (-1158))) (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4)))) (-5 *1 (-543 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *4 (-590 *6)) (-4 *6 (-13 (-421 *5) (-27) (-1158))) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-1132 (-398 (-1132 *6)))) (-5 *1 (-543 *5 *6 *7)) (-5 *3 (-1132 *6)) (-4 *7 (-1063)))) (-2254 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1132 (-398 (-1132 *2)))) (-5 *4 (-590 *2)) (-4 *2 (-13 (-421 *5) (-27) (-1158))) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *1 (-543 *5 *2 *6)) (-4 *6 (-1063)))) (-2078 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-590 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1158))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-1132 (-398 (-1132 *3)))) (-5 *1 (-543 *6 *3 *7)) (-5 *5 (-1132 *3)) (-4 *7 (-1063)))) (-1684 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-590 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1136))) (-5 *5 (-398 (-1132 *2))) (-4 *2 (-13 (-421 *6) (-27) (-1158))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *1 (-543 *6 *2 *7)) (-4 *7 (-1063)))) (-1684 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-590 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1136))) (-5 *5 (-1132 *2)) (-4 *2 (-13 (-421 *6) (-27) (-1158))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *1 (-543 *6 *2 *7)) (-4 *7 (-1063)))) (-3087 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-619 *3)) (-5 *6 (-398 (-1132 *3))) (-4 *3 (-13 (-421 *7) (-27) (-1158))) (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-543 *7 *3 *8)) (-4 *8 (-1063)))) (-3087 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-619 *3)) (-5 *6 (-1132 *3)) (-4 *3 (-13 (-421 *7) (-27) (-1158))) (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-543 *7 *3 *8)) (-4 *8 (-1063)))) (-2099 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-398 (-1132 *3))) (-4 *3 (-13 (-421 *6) (-27) (-1158))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| -2510 *3) (|:| |coeff| *3))) (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063)))) (-2099 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-1132 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1158))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| -2510 *3) (|:| |coeff| *3))) (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063)))) (-2605 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-590 *3)) (-5 *5 (-398 (-1132 *3))) (-4 *3 (-13 (-421 *6) (-27) (-1158))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-565 *3)) (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063)))) (-2605 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-590 *3)) (-5 *5 (-1132 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1158))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-565 *3)) (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063)))))
-(-10 -7 (-15 -2605 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) |#2| (-1132 |#2|))) (-15 -2605 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) (-590 |#2|) |#2| (-398 (-1132 |#2|)))) (-15 -2099 ((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2| |#2| (-1132 |#2|))) (-15 -2099 ((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2| (-590 |#2|) |#2| (-398 (-1132 |#2|)))) (-15 -3087 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|) |#2| (-1132 |#2|))) (-15 -3087 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|) (-590 |#2|) |#2| (-398 (-1132 |#2|)))) (-15 -1684 ((-3 |#2| "failed") |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1136)) |#2| (-1132 |#2|))) (-15 -1684 ((-3 |#2| "failed") |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1136)) (-590 |#2|) |#2| (-398 (-1132 |#2|)))) (-15 -2078 ((-1132 (-398 (-1132 |#2|))) |#2| (-590 |#2|) (-590 |#2|) (-1132 |#2|))) (-15 -2254 (|#2| (-1132 (-398 (-1132 |#2|))) (-590 |#2|) |#2|)) (-15 -2540 ((-1132 (-398 (-1132 |#2|))) (-1132 |#2|) (-590 |#2|))) (IF (|has| |#3| (-630 |#2|)) (PROGN (-15 -1634 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1917 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) |#2| (-1132 |#2|))) (-15 -1634 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1917 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) (-590 |#2|) |#2| (-398 (-1132 |#2|))))) |%noBranch|))
-((-3621 (((-547) (-547) (-745)) 66)) (-3094 (((-547) (-547)) 65)) (-4191 (((-547) (-547)) 64)) (-2589 (((-547) (-547)) 69)) (-1861 (((-547) (-547) (-547)) 49)) (-3563 (((-547) (-547) (-547)) 46)) (-2825 (((-398 (-547)) (-547)) 20)) (-3359 (((-547) (-547)) 21)) (-2537 (((-547) (-547)) 58)) (-1328 (((-547) (-547)) 32)) (-3842 (((-619 (-547)) (-547)) 63)) (-3604 (((-547) (-547) (-547) (-547) (-547)) 44)) (-3171 (((-398 (-547)) (-547)) 41)))
-(((-544) (-10 -7 (-15 -3171 ((-398 (-547)) (-547))) (-15 -3604 ((-547) (-547) (-547) (-547) (-547))) (-15 -3842 ((-619 (-547)) (-547))) (-15 -1328 ((-547) (-547))) (-15 -2537 ((-547) (-547))) (-15 -3359 ((-547) (-547))) (-15 -2825 ((-398 (-547)) (-547))) (-15 -3563 ((-547) (-547) (-547))) (-15 -1861 ((-547) (-547) (-547))) (-15 -2589 ((-547) (-547))) (-15 -4191 ((-547) (-547))) (-15 -3094 ((-547) (-547))) (-15 -3621 ((-547) (-547) (-745))))) (T -544))
-((-3621 (*1 *2 *2 *3) (-12 (-5 *2 (-547)) (-5 *3 (-745)) (-5 *1 (-544)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-4191 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-2589 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-1861 (*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-3563 (*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-2825 (*1 *2 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-544)) (-5 *3 (-547)))) (-3359 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-1328 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-3842 (*1 *2 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-544)) (-5 *3 (-547)))) (-3604 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-3171 (*1 *2 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-544)) (-5 *3 (-547)))))
-(-10 -7 (-15 -3171 ((-398 (-547)) (-547))) (-15 -3604 ((-547) (-547) (-547) (-547) (-547))) (-15 -3842 ((-619 (-547)) (-547))) (-15 -1328 ((-547) (-547))) (-15 -2537 ((-547) (-547))) (-15 -3359 ((-547) (-547))) (-15 -2825 ((-398 (-547)) (-547))) (-15 -3563 ((-547) (-547) (-547))) (-15 -1861 ((-547) (-547) (-547))) (-15 -2589 ((-547) (-547))) (-15 -4191 ((-547) (-547))) (-15 -3094 ((-547) (-547))) (-15 -3621 ((-547) (-547) (-745))))
-((-2651 (((-2 (|:| |answer| |#4|) (|:| -3366 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2651 ((-2 (|:| |answer| |#4|) (|:| -3366 |#4|)) |#4| (-1 |#2| |#2|)))) (-354) (-1195 |#1|) (-1195 (-398 |#2|)) (-333 |#1| |#2| |#3|)) (T -545))
-((-2651 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-354)) (-4 *7 (-1195 (-398 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3366 *3))) (-5 *1 (-545 *5 *6 *7 *3)) (-4 *3 (-333 *5 *6 *7)))))
-(-10 -7 (-15 -2651 ((-2 (|:| |answer| |#4|) (|:| -3366 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2651 (((-2 (|:| |answer| (-398 |#2|)) (|:| -3366 (-398 |#2|)) (|:| |specpart| (-398 |#2|)) (|:| |polypart| |#2|)) (-398 |#2|) (-1 |#2| |#2|)) 18)))
-(((-546 |#1| |#2|) (-10 -7 (-15 -2651 ((-2 (|:| |answer| (-398 |#2|)) (|:| -3366 (-398 |#2|)) (|:| |specpart| (-398 |#2|)) (|:| |polypart| |#2|)) (-398 |#2|) (-1 |#2| |#2|)))) (-354) (-1195 |#1|)) (T -546))
-((-2651 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |answer| (-398 *6)) (|:| -3366 (-398 *6)) (|:| |specpart| (-398 *6)) (|:| |polypart| *6))) (-5 *1 (-546 *5 *6)) (-5 *3 (-398 *6)))))
-(-10 -7 (-15 -2651 ((-2 (|:| |answer| (-398 |#2|)) (|:| -3366 (-398 |#2|)) (|:| |specpart| (-398 |#2|)) (|:| |polypart| |#2|)) (-398 |#2|) (-1 |#2| |#2|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 25)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 88)) (-3571 (($ $) 89)) (-3915 (((-112) $) NIL)) (-1933 (($ $ $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3780 (($ $ $ $) 43)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL)) (-1303 (($ $ $) 82)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL)) (-2652 (((-547) $) NIL)) (-2089 (($ $ $) 81)) (-1694 (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 62) (((-663 (-547)) (-663 $)) 58)) (-3855 (((-3 $ "failed") $) 85)) (-4265 (((-3 (-398 (-547)) "failed") $) NIL)) (-3198 (((-112) $) NIL)) (-2453 (((-398 (-547)) $) NIL)) (-3232 (($) 64) (($ $) 65)) (-2061 (($ $ $) 80)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-3459 (($ $ $ $) NIL)) (-3125 (($ $ $) 55)) (-4270 (((-112) $) NIL)) (-3091 (($ $ $) NIL)) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL)) (-2261 (((-112) $) 26)) (-2935 (((-112) $) 75)) (-3477 (((-3 $ "failed") $) NIL)) (-1860 (((-112) $) 35)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1618 (($ $ $ $) 44)) (-2856 (($ $ $) 77)) (-3567 (($ $ $) 76)) (-2426 (($ $) NIL)) (-4202 (($ $) 41)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) 54)) (-1617 (($ $ $) NIL)) (-3054 (($) NIL T CONST)) (-3773 (($ $) 31)) (-3979 (((-1082) $) 34)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 119)) (-3719 (($ $ $) 86) (($ (-619 $)) NIL)) (-2462 (($ $) NIL)) (-2115 (((-409 $) $) 105)) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL)) (-2032 (((-3 $ "failed") $ $) 84)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3874 (((-112) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 79)) (-3448 (($ $ (-745)) NIL) (($ $) NIL)) (-1892 (($ $) 32)) (-2274 (($ $) 30)) (-2838 (((-547) $) 40) (((-523) $) 52) (((-861 (-547)) $) NIL) (((-370) $) 47) (((-217) $) 49) (((-1119) $) 53)) (-3838 (((-832) $) 38) (($ (-547)) 39) (($ $) NIL) (($ (-547)) 39)) (-2736 (((-745)) NIL)) (-1253 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-1856 (($) 29)) (-3577 (((-112) $ $) NIL)) (-1292 (($ $ $ $) 42)) (-2255 (($ $) 63)) (-3269 (($) 27 T CONST)) (-3281 (($) 28 T CONST)) (-2273 (((-1119) $) 20) (((-1119) $ (-112)) 22) (((-1224) (-796) $) 23) (((-1224) (-796) $ (-112)) 24)) (-1695 (($ $ (-745)) NIL) (($ $) NIL)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 66)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 67)) (-2493 (($ $) 68) (($ $ $) 70)) (-2479 (($ $ $) 69)) (** (($ $ (-890)) NIL) (($ $ (-745)) 74)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 72) (($ $ $) 71)))
-(((-547) (-13 (-532) (-592 (-1119)) (-802) (-10 -8 (-15 -3232 ($ $)) (-6 -4316) (-6 -4321) (-6 -4317) (-6 -4311)))) (T -547))
-((-3232 (*1 *1 *1) (-5 *1 (-547))))
-(-13 (-532) (-592 (-1119)) (-802) (-10 -8 (-15 -3232 ($ $)) (-6 -4316) (-6 -4321) (-6 -4317) (-6 -4311)))
-((-2526 (((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004))) (-743) (-1028)) 108) (((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004))) (-743)) 110)) (-3694 (((-3 (-1004) "failed") (-307 (-370)) (-1056 (-814 (-370))) (-1136)) 172) (((-3 (-1004) "failed") (-307 (-370)) (-1056 (-814 (-370))) (-1119)) 171) (((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370) (-370) (-1028)) 176) (((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370) (-370)) 177) (((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370)) 178) (((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370))))) 179) (((-1004) (-307 (-370)) (-1058 (-814 (-370)))) 167) (((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370)) 166) (((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370) (-370)) 162) (((-1004) (-743)) 155) (((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370) (-370) (-1028)) 161)))
-(((-548) (-10 -7 (-15 -3694 ((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370) (-370) (-1028))) (-15 -3694 ((-1004) (-743))) (-15 -3694 ((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370) (-370))) (-15 -3694 ((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370))) (-15 -3694 ((-1004) (-307 (-370)) (-1058 (-814 (-370))))) (-15 -3694 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))))) (-15 -3694 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370))) (-15 -3694 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370) (-370))) (-15 -3694 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370) (-370) (-1028))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004))) (-743))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004))) (-743) (-1028))) (-15 -3694 ((-3 (-1004) "failed") (-307 (-370)) (-1056 (-814 (-370))) (-1119))) (-15 -3694 ((-3 (-1004) "failed") (-307 (-370)) (-1056 (-814 (-370))) (-1136))))) (T -548))
-((-3694 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-307 (-370))) (-5 *4 (-1056 (-814 (-370)))) (-5 *5 (-1136)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-3694 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-307 (-370))) (-5 *4 (-1056 (-814 (-370)))) (-5 *5 (-1119)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-2526 (*1 *2 *3 *4) (-12 (-5 *3 (-743)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004)))) (-5 *1 (-548)))) (-2526 (*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004)))) (-5 *1 (-548)))) (-3694 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370))))) (-5 *5 (-370)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-3694 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370))))) (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-3694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370))))) (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370))))) (-5 *2 (-1004)) (-5 *1 (-548)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370)))) (-5 *2 (-1004)) (-5 *1 (-548)))) (-3694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370)))) (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-3694 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370)))) (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-3694 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370)))) (-5 *5 (-370)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-548)))))
-(-10 -7 (-15 -3694 ((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370) (-370) (-1028))) (-15 -3694 ((-1004) (-743))) (-15 -3694 ((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370) (-370))) (-15 -3694 ((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370))) (-15 -3694 ((-1004) (-307 (-370)) (-1058 (-814 (-370))))) (-15 -3694 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))))) (-15 -3694 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370))) (-15 -3694 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370) (-370))) (-15 -3694 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370) (-370) (-1028))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004))) (-743))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004))) (-743) (-1028))) (-15 -3694 ((-3 (-1004) "failed") (-307 (-370)) (-1056 (-814 (-370))) (-1119))) (-15 -3694 ((-3 (-1004) "failed") (-307 (-370)) (-1056 (-814 (-370))) (-1136))))
-((-3344 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|)) 184)) (-3343 (((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|)) 98)) (-2483 (((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2|) 180)) (-1743 (((-3 |#2| "failed") |#2| |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1136))) 189)) (-2986 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1917 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) (-1136)) 197 (|has| |#3| (-630 |#2|)))))
-(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -3343 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|))) (-15 -2483 ((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2|)) (-15 -3344 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|))) (-15 -1743 ((-3 |#2| "failed") |#2| |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1136)))) (IF (|has| |#3| (-630 |#2|)) (-15 -2986 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1917 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) (-1136))) |%noBranch|)) (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))) (-13 (-421 |#1|) (-27) (-1158)) (-1063)) (T -549))
-((-2986 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-590 *4)) (-5 *6 (-1136)) (-4 *4 (-13 (-421 *7) (-27) (-1158))) (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4)))) (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) (-1743 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-590 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1136))) (-4 *2 (-13 (-421 *5) (-27) (-1158))) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *1 (-549 *5 *2 *6)) (-4 *6 (-1063)))) (-3344 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-619 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1158))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1063)))) (-2483 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-590 *3)) (-4 *3 (-13 (-421 *5) (-27) (-1158))) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| -2510 *3) (|:| |coeff| *3))) (-5 *1 (-549 *5 *3 *6)) (-4 *6 (-1063)))) (-3343 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-590 *3)) (-4 *3 (-13 (-421 *5) (-27) (-1158))) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-565 *3)) (-5 *1 (-549 *5 *3 *6)) (-4 *6 (-1063)))))
-(-10 -7 (-15 -3343 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|))) (-15 -2483 ((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2|)) (-15 -3344 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|))) (-15 -1743 ((-3 |#2| "failed") |#2| |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1136)))) (IF (|has| |#3| (-630 |#2|)) (-15 -2986 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1917 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) (-1136))) |%noBranch|))
-((-2997 (((-2 (|:| -1510 |#2|) (|:| |nconst| |#2|)) |#2| (-1136)) 64)) (-3130 (((-3 |#2| "failed") |#2| (-1136) (-814 |#2|) (-814 |#2|)) 164 (-12 (|has| |#2| (-1100)) (|has| |#1| (-592 (-861 (-547)))) (|has| |#1| (-855 (-547))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1136)) 147 (-12 (|has| |#2| (-605)) (|has| |#1| (-592 (-861 (-547)))) (|has| |#1| (-855 (-547)))))) (-3109 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1136)) 148 (-12 (|has| |#2| (-605)) (|has| |#1| (-592 (-861 (-547)))) (|has| |#1| (-855 (-547)))))))
-(((-550 |#1| |#2|) (-10 -7 (-15 -2997 ((-2 (|:| -1510 |#2|) (|:| |nconst| |#2|)) |#2| (-1136))) (IF (|has| |#1| (-592 (-861 (-547)))) (IF (|has| |#1| (-855 (-547))) (PROGN (IF (|has| |#2| (-605)) (PROGN (-15 -3109 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1136))) (-15 -3130 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1136)))) |%noBranch|) (IF (|has| |#2| (-1100)) (-15 -3130 ((-3 |#2| "failed") |#2| (-1136) (-814 |#2|) (-814 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-821) (-1007 (-547)) (-442) (-615 (-547))) (-13 (-27) (-1158) (-421 |#1|))) (T -550))
-((-3130 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1136)) (-5 *4 (-814 *2)) (-4 *2 (-1100)) (-4 *2 (-13 (-27) (-1158) (-421 *5))) (-4 *5 (-592 (-861 (-547)))) (-4 *5 (-855 (-547))) (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547)))) (-5 *1 (-550 *5 *2)))) (-3130 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1136)) (-4 *5 (-592 (-861 (-547)))) (-4 *5 (-855 (-547))) (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-550 *5 *3)) (-4 *3 (-605)) (-4 *3 (-13 (-27) (-1158) (-421 *5))))) (-3109 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1136)) (-4 *5 (-592 (-861 (-547)))) (-4 *5 (-855 (-547))) (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-550 *5 *3)) (-4 *3 (-605)) (-4 *3 (-13 (-27) (-1158) (-421 *5))))) (-2997 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547)))) (-5 *2 (-2 (|:| -1510 *3) (|:| |nconst| *3))) (-5 *1 (-550 *5 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))))))
-(-10 -7 (-15 -2997 ((-2 (|:| -1510 |#2|) (|:| |nconst| |#2|)) |#2| (-1136))) (IF (|has| |#1| (-592 (-861 (-547)))) (IF (|has| |#1| (-855 (-547))) (PROGN (IF (|has| |#2| (-605)) (PROGN (-15 -3109 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1136))) (-15 -3130 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1136)))) |%noBranch|) (IF (|has| |#2| (-1100)) (-15 -3130 ((-3 |#2| "failed") |#2| (-1136) (-814 |#2|) (-814 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1980 (((-3 (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|)))))) "failed") (-398 |#2|) (-619 (-398 |#2|))) 41)) (-3694 (((-565 (-398 |#2|)) (-398 |#2|)) 28)) (-1811 (((-3 (-398 |#2|) "failed") (-398 |#2|)) 17)) (-1273 (((-3 (-2 (|:| -2510 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-398 |#2|)) 48)))
-(((-551 |#1| |#2|) (-10 -7 (-15 -3694 ((-565 (-398 |#2|)) (-398 |#2|))) (-15 -1811 ((-3 (-398 |#2|) "failed") (-398 |#2|))) (-15 -1273 ((-3 (-2 (|:| -2510 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-398 |#2|))) (-15 -1980 ((-3 (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|)))))) "failed") (-398 |#2|) (-619 (-398 |#2|))))) (-13 (-354) (-145) (-1007 (-547))) (-1195 |#1|)) (T -551))
-((-1980 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-619 (-398 *6))) (-5 *3 (-398 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-551 *5 *6)))) (-1273 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) (-4 *5 (-1195 *4)) (-5 *2 (-2 (|:| -2510 (-398 *5)) (|:| |coeff| (-398 *5)))) (-5 *1 (-551 *4 *5)) (-5 *3 (-398 *5)))) (-1811 (*1 *2 *2) (|partial| -12 (-5 *2 (-398 *4)) (-4 *4 (-1195 *3)) (-4 *3 (-13 (-354) (-145) (-1007 (-547)))) (-5 *1 (-551 *3 *4)))) (-3694 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) (-4 *5 (-1195 *4)) (-5 *2 (-565 (-398 *5))) (-5 *1 (-551 *4 *5)) (-5 *3 (-398 *5)))))
-(-10 -7 (-15 -3694 ((-565 (-398 |#2|)) (-398 |#2|))) (-15 -1811 ((-3 (-398 |#2|) "failed") (-398 |#2|))) (-15 -1273 ((-3 (-2 (|:| -2510 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-398 |#2|))) (-15 -1980 ((-3 (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|)))))) "failed") (-398 |#2|) (-619 (-398 |#2|)))))
-((-2687 (((-3 (-547) "failed") |#1|) 14)) (-4072 (((-112) |#1|) 13)) (-3957 (((-547) |#1|) 9)))
-(((-552 |#1|) (-10 -7 (-15 -3957 ((-547) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -2687 ((-3 (-547) "failed") |#1|))) (-1007 (-547))) (T -552))
-((-2687 (*1 *2 *3) (|partial| -12 (-5 *2 (-547)) (-5 *1 (-552 *3)) (-4 *3 (-1007 *2)))) (-4072 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-552 *3)) (-4 *3 (-1007 (-547))))) (-3957 (*1 *2 *3) (-12 (-5 *2 (-547)) (-5 *1 (-552 *3)) (-4 *3 (-1007 *2)))))
-(-10 -7 (-15 -3957 ((-547) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -2687 ((-3 (-547) "failed") |#1|)))
-((-3115 (((-3 (-2 (|:| |mainpart| (-398 (-921 |#1|))) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 (-921 |#1|))) (|:| |logand| (-398 (-921 |#1|))))))) "failed") (-398 (-921 |#1|)) (-1136) (-619 (-398 (-921 |#1|)))) 48)) (-2854 (((-565 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-1136)) 28)) (-3741 (((-3 (-398 (-921 |#1|)) "failed") (-398 (-921 |#1|)) (-1136)) 23)) (-3616 (((-3 (-2 (|:| -2510 (-398 (-921 |#1|))) (|:| |coeff| (-398 (-921 |#1|)))) "failed") (-398 (-921 |#1|)) (-1136) (-398 (-921 |#1|))) 35)))
-(((-553 |#1|) (-10 -7 (-15 -2854 ((-565 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-1136))) (-15 -3741 ((-3 (-398 (-921 |#1|)) "failed") (-398 (-921 |#1|)) (-1136))) (-15 -3115 ((-3 (-2 (|:| |mainpart| (-398 (-921 |#1|))) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 (-921 |#1|))) (|:| |logand| (-398 (-921 |#1|))))))) "failed") (-398 (-921 |#1|)) (-1136) (-619 (-398 (-921 |#1|))))) (-15 -3616 ((-3 (-2 (|:| -2510 (-398 (-921 |#1|))) (|:| |coeff| (-398 (-921 |#1|)))) "failed") (-398 (-921 |#1|)) (-1136) (-398 (-921 |#1|))))) (-13 (-539) (-1007 (-547)) (-145))) (T -553))
-((-3616 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1136)) (-4 *5 (-13 (-539) (-1007 (-547)) (-145))) (-5 *2 (-2 (|:| -2510 (-398 (-921 *5))) (|:| |coeff| (-398 (-921 *5))))) (-5 *1 (-553 *5)) (-5 *3 (-398 (-921 *5))))) (-3115 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1136)) (-5 *5 (-619 (-398 (-921 *6)))) (-5 *3 (-398 (-921 *6))) (-4 *6 (-13 (-539) (-1007 (-547)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-553 *6)))) (-3741 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-398 (-921 *4))) (-5 *3 (-1136)) (-4 *4 (-13 (-539) (-1007 (-547)) (-145))) (-5 *1 (-553 *4)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-539) (-1007 (-547)) (-145))) (-5 *2 (-565 (-398 (-921 *5)))) (-5 *1 (-553 *5)) (-5 *3 (-398 (-921 *5))))))
-(-10 -7 (-15 -2854 ((-565 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-1136))) (-15 -3741 ((-3 (-398 (-921 |#1|)) "failed") (-398 (-921 |#1|)) (-1136))) (-15 -3115 ((-3 (-2 (|:| |mainpart| (-398 (-921 |#1|))) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 (-921 |#1|))) (|:| |logand| (-398 (-921 |#1|))))))) "failed") (-398 (-921 |#1|)) (-1136) (-619 (-398 (-921 |#1|))))) (-15 -3616 ((-3 (-2 (|:| -2510 (-398 (-921 |#1|))) (|:| |coeff| (-398 (-921 |#1|)))) "failed") (-398 (-921 |#1|)) (-1136) (-398 (-921 |#1|)))))
-((-3826 (((-112) $ $) 58)) (-1499 (((-112) $) 36)) (-2335 ((|#1| $) 30)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) 62)) (-1656 (($ $) 122)) (-1505 (($ $) 102)) (-2794 ((|#1| $) 28)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2127 (($ $) NIL)) (-1632 (($ $) 124)) (-1479 (($ $) 98)) (-1678 (($ $) 126)) (-1532 (($ $) 106)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) 77)) (-2652 (((-547) $) 79)) (-3855 (((-3 $ "failed") $) 61)) (-2095 (($ |#1| |#1|) 26)) (-4270 (((-112) $) 33)) (-1419 (($) 88)) (-2261 (((-112) $) 43)) (-3869 (($ $ (-547)) NIL)) (-1860 (((-112) $) 34)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-3624 (($ $) 90)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-4283 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-398 (-547))) 76)) (-4273 ((|#1| $) 27)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) 64) (($ (-619 $)) NIL)) (-2032 (((-3 $ "failed") $ $) 63)) (-2712 (($ $) 92)) (-1690 (($ $) 130)) (-1545 (($ $) 104)) (-1668 (($ $) 132)) (-1519 (($ $) 108)) (-1644 (($ $) 128)) (-1493 (($ $) 100)) (-1412 (((-112) $ |#1|) 31)) (-3838 (((-832) $) 84) (($ (-547)) 66) (($ $) NIL) (($ (-547)) 66)) (-2736 (((-745)) 86)) (-1726 (($ $) 144)) (-1579 (($ $) 114)) (-3577 (((-112) $ $) NIL)) (-1703 (($ $) 142)) (-1557 (($ $) 110)) (-1751 (($ $) 140)) (-1606 (($ $) 120)) (-1927 (($ $) 138)) (-1620 (($ $) 118)) (-1738 (($ $) 136)) (-1593 (($ $) 116)) (-1714 (($ $) 134)) (-1569 (($ $) 112)) (-3269 (($) 21 T CONST)) (-3281 (($) 10 T CONST)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 37)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 35)) (-2493 (($ $) 41) (($ $ $) 42)) (-2479 (($ $ $) 40)) (** (($ $ (-890)) 54) (($ $ (-745)) NIL) (($ $ $) 94) (($ $ (-398 (-547))) 146)) (* (($ (-890) $) 51) (($ (-745) $) NIL) (($ (-547) $) 50) (($ $ $) 48)))
-(((-554 |#1|) (-537 |#1|) (-13 (-395) (-1158))) (T -554))
-NIL
-(-537 |#1|)
-((-4139 (((-3 (-619 (-1132 (-547))) "failed") (-619 (-1132 (-547))) (-1132 (-547))) 24)))
-(((-555) (-10 -7 (-15 -4139 ((-3 (-619 (-1132 (-547))) "failed") (-619 (-1132 (-547))) (-1132 (-547)))))) (T -555))
-((-4139 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1132 (-547)))) (-5 *3 (-1132 (-547))) (-5 *1 (-555)))))
-(-10 -7 (-15 -4139 ((-3 (-619 (-1132 (-547))) "failed") (-619 (-1132 (-547))) (-1132 (-547)))))
-((-4159 (((-619 (-590 |#2|)) (-619 (-590 |#2|)) (-1136)) 19)) (-3680 (((-619 (-590 |#2|)) (-619 |#2|) (-1136)) 23)) (-1435 (((-619 (-590 |#2|)) (-619 (-590 |#2|)) (-619 (-590 |#2|))) 11)) (-2438 ((|#2| |#2| (-1136)) 54 (|has| |#1| (-539)))) (-3796 ((|#2| |#2| (-1136)) 78 (-12 (|has| |#2| (-275)) (|has| |#1| (-442))))) (-1356 (((-590 |#2|) (-590 |#2|) (-619 (-590 |#2|)) (-1136)) 25)) (-3939 (((-590 |#2|) (-619 (-590 |#2|))) 24)) (-1630 (((-565 |#2|) |#2| (-1136) (-1 (-565 |#2|) |#2| (-1136)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1136))) 103 (-12 (|has| |#2| (-275)) (|has| |#2| (-605)) (|has| |#2| (-1007 (-1136))) (|has| |#1| (-592 (-861 (-547)))) (|has| |#1| (-442)) (|has| |#1| (-855 (-547)))))))
-(((-556 |#1| |#2|) (-10 -7 (-15 -4159 ((-619 (-590 |#2|)) (-619 (-590 |#2|)) (-1136))) (-15 -3939 ((-590 |#2|) (-619 (-590 |#2|)))) (-15 -1356 ((-590 |#2|) (-590 |#2|) (-619 (-590 |#2|)) (-1136))) (-15 -1435 ((-619 (-590 |#2|)) (-619 (-590 |#2|)) (-619 (-590 |#2|)))) (-15 -3680 ((-619 (-590 |#2|)) (-619 |#2|) (-1136))) (IF (|has| |#1| (-539)) (-15 -2438 (|#2| |#2| (-1136))) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-275)) (PROGN (-15 -3796 (|#2| |#2| (-1136))) (IF (|has| |#1| (-592 (-861 (-547)))) (IF (|has| |#1| (-855 (-547))) (IF (|has| |#2| (-605)) (IF (|has| |#2| (-1007 (-1136))) (-15 -1630 ((-565 |#2|) |#2| (-1136) (-1 (-565 |#2|) |#2| (-1136)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1136)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-821) (-421 |#1|)) (T -556))
-((-1630 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-565 *3) *3 (-1136))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1136))) (-4 *3 (-275)) (-4 *3 (-605)) (-4 *3 (-1007 *4)) (-4 *3 (-421 *7)) (-5 *4 (-1136)) (-4 *7 (-592 (-861 (-547)))) (-4 *7 (-442)) (-4 *7 (-855 (-547))) (-4 *7 (-821)) (-5 *2 (-565 *3)) (-5 *1 (-556 *7 *3)))) (-3796 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-442)) (-4 *4 (-821)) (-5 *1 (-556 *4 *2)) (-4 *2 (-275)) (-4 *2 (-421 *4)))) (-2438 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-539)) (-4 *4 (-821)) (-5 *1 (-556 *4 *2)) (-4 *2 (-421 *4)))) (-3680 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-1136)) (-4 *6 (-421 *5)) (-4 *5 (-821)) (-5 *2 (-619 (-590 *6))) (-5 *1 (-556 *5 *6)))) (-1435 (*1 *2 *2 *2) (-12 (-5 *2 (-619 (-590 *4))) (-4 *4 (-421 *3)) (-4 *3 (-821)) (-5 *1 (-556 *3 *4)))) (-1356 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-619 (-590 *6))) (-5 *4 (-1136)) (-5 *2 (-590 *6)) (-4 *6 (-421 *5)) (-4 *5 (-821)) (-5 *1 (-556 *5 *6)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-619 (-590 *5))) (-4 *4 (-821)) (-5 *2 (-590 *5)) (-5 *1 (-556 *4 *5)) (-4 *5 (-421 *4)))) (-4159 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-590 *5))) (-5 *3 (-1136)) (-4 *5 (-421 *4)) (-4 *4 (-821)) (-5 *1 (-556 *4 *5)))))
-(-10 -7 (-15 -4159 ((-619 (-590 |#2|)) (-619 (-590 |#2|)) (-1136))) (-15 -3939 ((-590 |#2|) (-619 (-590 |#2|)))) (-15 -1356 ((-590 |#2|) (-590 |#2|) (-619 (-590 |#2|)) (-1136))) (-15 -1435 ((-619 (-590 |#2|)) (-619 (-590 |#2|)) (-619 (-590 |#2|)))) (-15 -3680 ((-619 (-590 |#2|)) (-619 |#2|) (-1136))) (IF (|has| |#1| (-539)) (-15 -2438 (|#2| |#2| (-1136))) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-275)) (PROGN (-15 -3796 (|#2| |#2| (-1136))) (IF (|has| |#1| (-592 (-861 (-547)))) (IF (|has| |#1| (-855 (-547))) (IF (|has| |#2| (-605)) (IF (|has| |#2| (-1007 (-1136))) (-15 -1630 ((-565 |#2|) |#2| (-1136) (-1 (-565 |#2|) |#2| (-1136)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1136)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1302 (((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-619 |#1|) "failed") (-547) |#1| |#1|)) 172)) (-2353 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|))))))) (|:| |a0| |#1|)) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-619 (-398 |#2|))) 148)) (-1944 (((-3 (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|)))))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-619 (-398 |#2|))) 145)) (-1318 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-3886 (((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3706 (((-3 (-2 (|:| -2510 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-398 |#2|)) 175)) (-3133 (((-3 (-2 (|:| |answer| (-398 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2510 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-398 |#2|)) 178)) (-2515 (((-2 (|:| |ir| (-565 (-398 |#2|))) (|:| |specpart| (-398 |#2|)) (|:| |polypart| |#2|)) (-398 |#2|) (-1 |#2| |#2|)) 84)) (-3627 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-3312 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|))))))) (|:| |a0| |#1|)) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3840 |#1|) (|:| |sol?| (-112))) (-547) |#1|) (-619 (-398 |#2|))) 152)) (-3022 (((-3 (-599 |#1| |#2|) "failed") (-599 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3840 |#1|) (|:| |sol?| (-112))) (-547) |#1|)) 137)) (-2236 (((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3840 |#1|) (|:| |sol?| (-112))) (-547) |#1|)) 162)) (-1383 (((-3 (-2 (|:| |answer| (-398 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2510 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3840 |#1|) (|:| |sol?| (-112))) (-547) |#1|) (-398 |#2|)) 183)))
-(((-557 |#1| |#2|) (-10 -7 (-15 -3886 ((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2236 ((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3840 |#1|) (|:| |sol?| (-112))) (-547) |#1|))) (-15 -1302 ((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-619 |#1|) "failed") (-547) |#1| |#1|))) (-15 -3133 ((-3 (-2 (|:| |answer| (-398 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2510 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-398 |#2|))) (-15 -1383 ((-3 (-2 (|:| |answer| (-398 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2510 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3840 |#1|) (|:| |sol?| (-112))) (-547) |#1|) (-398 |#2|))) (-15 -2353 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|))))))) (|:| |a0| |#1|)) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-619 (-398 |#2|)))) (-15 -3312 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|))))))) (|:| |a0| |#1|)) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3840 |#1|) (|:| |sol?| (-112))) (-547) |#1|) (-619 (-398 |#2|)))) (-15 -3706 ((-3 (-2 (|:| -2510 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-398 |#2|))) (-15 -1944 ((-3 (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|)))))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-619 (-398 |#2|)))) (-15 -1318 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3022 ((-3 (-599 |#1| |#2|) "failed") (-599 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3840 |#1|) (|:| |sol?| (-112))) (-547) |#1|))) (-15 -2515 ((-2 (|:| |ir| (-565 (-398 |#2|))) (|:| |specpart| (-398 |#2|)) (|:| |polypart| |#2|)) (-398 |#2|) (-1 |#2| |#2|))) (-15 -3627 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-354) (-1195 |#1|)) (T -557))
-((-3627 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1195 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-557 *5 *3)))) (-2515 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |ir| (-565 (-398 *6))) (|:| |specpart| (-398 *6)) (|:| |polypart| *6))) (-5 *1 (-557 *5 *6)) (-5 *3 (-398 *6)))) (-3022 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3840 *4) (|:| |sol?| (-112))) (-547) *4)) (-4 *4 (-354)) (-4 *5 (-1195 *4)) (-5 *1 (-557 *4 *5)))) (-1318 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2510 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-354)) (-5 *1 (-557 *4 *2)) (-4 *2 (-1195 *4)))) (-1944 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-619 (-398 *7))) (-4 *7 (-1195 *6)) (-5 *3 (-398 *7)) (-4 *6 (-354)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *6 *7)))) (-3706 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| -2510 (-398 *6)) (|:| |coeff| (-398 *6)))) (-5 *1 (-557 *5 *6)) (-5 *3 (-398 *6)))) (-3312 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3840 *7) (|:| |sol?| (-112))) (-547) *7)) (-5 *6 (-619 (-398 *8))) (-4 *7 (-354)) (-4 *8 (-1195 *7)) (-5 *3 (-398 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-557 *7 *8)))) (-2353 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2510 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-619 (-398 *8))) (-4 *7 (-354)) (-4 *8 (-1195 *7)) (-5 *3 (-398 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-557 *7 *8)))) (-1383 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3840 *6) (|:| |sol?| (-112))) (-547) *6)) (-4 *6 (-354)) (-4 *7 (-1195 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-398 *7)) (|:| |a0| *6)) (-2 (|:| -2510 (-398 *7)) (|:| |coeff| (-398 *7))) "failed")) (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))) (-3133 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2510 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-354)) (-4 *7 (-1195 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-398 *7)) (|:| |a0| *6)) (-2 (|:| -2510 (-398 *7)) (|:| |coeff| (-398 *7))) "failed")) (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))) (-1302 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-619 *6) "failed") (-547) *6 *6)) (-4 *6 (-354)) (-4 *7 (-1195 *6)) (-5 *2 (-2 (|:| |answer| (-565 (-398 *7))) (|:| |a0| *6))) (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))) (-2236 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3840 *6) (|:| |sol?| (-112))) (-547) *6)) (-4 *6 (-354)) (-4 *7 (-1195 *6)) (-5 *2 (-2 (|:| |answer| (-565 (-398 *7))) (|:| |a0| *6))) (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))) (-3886 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2510 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-354)) (-4 *7 (-1195 *6)) (-5 *2 (-2 (|:| |answer| (-565 (-398 *7))) (|:| |a0| *6))) (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))))
-(-10 -7 (-15 -3886 ((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2236 ((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3840 |#1|) (|:| |sol?| (-112))) (-547) |#1|))) (-15 -1302 ((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-619 |#1|) "failed") (-547) |#1| |#1|))) (-15 -3133 ((-3 (-2 (|:| |answer| (-398 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2510 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-398 |#2|))) (-15 -1383 ((-3 (-2 (|:| |answer| (-398 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2510 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3840 |#1|) (|:| |sol?| (-112))) (-547) |#1|) (-398 |#2|))) (-15 -2353 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|))))))) (|:| |a0| |#1|)) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-619 (-398 |#2|)))) (-15 -3312 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|))))))) (|:| |a0| |#1|)) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3840 |#1|) (|:| |sol?| (-112))) (-547) |#1|) (-619 (-398 |#2|)))) (-15 -3706 ((-3 (-2 (|:| -2510 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-398 |#2|))) (-15 -1944 ((-3 (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|)))))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-619 (-398 |#2|)))) (-15 -1318 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3022 ((-3 (-599 |#1| |#2|) "failed") (-599 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3840 |#1|) (|:| |sol?| (-112))) (-547) |#1|))) (-15 -2515 ((-2 (|:| |ir| (-565 (-398 |#2|))) (|:| |specpart| (-398 |#2|)) (|:| |polypart| |#2|)) (-398 |#2|) (-1 |#2| |#2|))) (-15 -3627 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-2410 (((-3 |#2| "failed") |#2| (-1136) (-1136)) 10)))
-(((-558 |#1| |#2|) (-10 -7 (-15 -2410 ((-3 |#2| "failed") |#2| (-1136) (-1136)))) (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1158) (-928) (-1100) (-29 |#1|))) (T -558))
-((-2410 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1136)) (-4 *4 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-558 *4 *2)) (-4 *2 (-13 (-1158) (-928) (-1100) (-29 *4))))))
-(-10 -7 (-15 -2410 ((-3 |#2| "failed") |#2| (-1136) (-1136))))
-((-3484 (((-1082) $ (-128)) 12)) (-4060 (((-1082) $ (-129)) 11)) (-1891 (((-1082) $ (-128)) 7)) (-3739 (((-1082) $) 8)) (-1708 (($ $) 6)))
-(((-559) (-138)) (T -559))
-NIL
-(-13 (-516) (-831))
-(((-170) . T) ((-516) . T) ((-831) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2127 (($ $ (-547)) 66)) (-1547 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-1465 (($ (-1132 (-547)) (-547)) 72)) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) 58)) (-3833 (($ $) 34)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3275 (((-745) $) 15)) (-2261 (((-112) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2580 (((-547)) 29)) (-1904 (((-547) $) 32)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3708 (($ $ (-547)) 21)) (-2032 (((-3 $ "failed") $ $) 59)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) 16)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 61)) (-2697 (((-1117 (-547)) $) 18)) (-2804 (($ $) 23)) (-3838 (((-832) $) 87) (($ (-547)) 52) (($ $) NIL)) (-2736 (((-745)) 14)) (-3577 (((-112) $ $) NIL)) (-2654 (((-547) $ (-547)) 36)) (-3269 (($) 35 T CONST)) (-3281 (($) 19 T CONST)) (-2381 (((-112) $ $) 39)) (-2493 (($ $) 51) (($ $ $) 37)) (-2479 (($ $ $) 50)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 54) (($ $ $) 55)))
-(((-560 |#1| |#2|) (-838 |#1|) (-547) (-112)) (T -560))
-NIL
-(-838 |#1|)
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 21)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1452 (((-112) $) NIL)) (-1440 (((-745)) NIL)) (-2899 (($ $ (-890)) NIL (|has| $ (-359))) (($ $) NIL)) (-2797 (((-1146 (-890) (-745)) (-547)) 47)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-3608 (((-745)) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) 75)) (-2652 (($ $) 74)) (-2614 (($ (-1219 $)) 73)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) 32)) (-3232 (($) NIL)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3527 (($) 49)) (-3078 (((-112) $) NIL)) (-1551 (($ $) NIL) (($ $ (-745)) NIL)) (-1791 (((-112) $) NIL)) (-3275 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-2261 (((-112) $) NIL)) (-2460 (($) 37 (|has| $ (-359)))) (-3841 (((-112) $) NIL (|has| $ (-359)))) (-3160 (($ $ (-890)) NIL (|has| $ (-359))) (($ $) NIL)) (-3477 (((-3 $ "failed") $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3786 (((-1132 $) $ (-890)) NIL (|has| $ (-359))) (((-1132 $) $) 83)) (-2402 (((-890) $) 55)) (-3168 (((-1132 $) $) NIL (|has| $ (-359)))) (-1600 (((-3 (-1132 $) "failed") $ $) NIL (|has| $ (-359))) (((-1132 $) $) NIL (|has| $ (-359)))) (-2830 (($ $ (-1132 $)) NIL (|has| $ (-359)))) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL T CONST)) (-3487 (($ (-890)) 48)) (-1290 (((-112) $) 67)) (-3979 (((-1082) $) NIL)) (-4238 (($) 19 (|has| $ (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) 42)) (-2115 (((-409 $) $) NIL)) (-3327 (((-890)) 66) (((-807 (-890))) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1422 (((-3 (-745) "failed") $ $) NIL) (((-745) $) NIL)) (-3970 (((-133)) NIL)) (-3448 (($ $ (-745)) NIL) (($ $) NIL)) (-3705 (((-890) $) 65) (((-807 (-890)) $) NIL)) (-1882 (((-1132 $)) 82)) (-3823 (($) 54)) (-3532 (($) 38 (|has| $ (-359)))) (-3220 (((-663 $) (-1219 $)) NIL) (((-1219 $) $) 71)) (-2838 (((-547) $) 28)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) 30) (($ $) NIL) (($ (-398 (-547))) NIL)) (-2220 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2736 (((-745)) 39)) (-1917 (((-1219 $) (-890)) 77) (((-1219 $)) 76)) (-3577 (((-112) $ $) NIL)) (-2593 (((-112) $) NIL)) (-3269 (($) 22 T CONST)) (-3281 (($) 18 T CONST)) (-1693 (($ $ (-745)) NIL (|has| $ (-359))) (($ $) NIL (|has| $ (-359)))) (-1695 (($ $ (-745)) NIL) (($ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 26)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 61) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL)))
-(((-561 |#1|) (-13 (-340) (-320 $) (-592 (-547))) (-890)) (T -561))
-NIL
-(-13 (-340) (-320 $) (-592 (-547)))
-((-1886 (((-1224) (-1119)) 10)))
-(((-562) (-10 -7 (-15 -1886 ((-1224) (-1119))))) (T -562))
-((-1886 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-562)))))
-(-10 -7 (-15 -1886 ((-1224) (-1119))))
-((-4194 (((-565 |#2|) (-565 |#2|)) 40)) (-1442 (((-619 |#2|) (-565 |#2|)) 42)) (-3144 ((|#2| (-565 |#2|)) 48)))
-(((-563 |#1| |#2|) (-10 -7 (-15 -4194 ((-565 |#2|) (-565 |#2|))) (-15 -1442 ((-619 |#2|) (-565 |#2|))) (-15 -3144 (|#2| (-565 |#2|)))) (-13 (-442) (-1007 (-547)) (-821) (-615 (-547))) (-13 (-29 |#1|) (-1158))) (T -563))
-((-3144 (*1 *2 *3) (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-29 *4) (-1158))) (-5 *1 (-563 *4 *2)) (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-565 *5)) (-4 *5 (-13 (-29 *4) (-1158))) (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *2 (-619 *5)) (-5 *1 (-563 *4 *5)))) (-4194 (*1 *2 *2) (-12 (-5 *2 (-565 *4)) (-4 *4 (-13 (-29 *3) (-1158))) (-4 *3 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *1 (-563 *3 *4)))))
-(-10 -7 (-15 -4194 ((-565 |#2|) (-565 |#2|))) (-15 -1442 ((-619 |#2|) (-565 |#2|))) (-15 -3144 (|#2| (-565 |#2|))))
-((-2790 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-565 |#2|) (-1 |#2| |#1|) (-565 |#1|)) 30)))
-(((-564 |#1| |#2|) (-10 -7 (-15 -2790 ((-565 |#2|) (-1 |#2| |#1|) (-565 |#1|))) (-15 -2790 ((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2790 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2790 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-354) (-354)) (T -564))
-((-2790 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-354)) (-4 *6 (-354)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-564 *5 *6)))) (-2790 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-354)) (-4 *2 (-354)) (-5 *1 (-564 *5 *2)))) (-2790 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2510 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-354)) (-4 *6 (-354)) (-5 *2 (-2 (|:| -2510 *6) (|:| |coeff| *6))) (-5 *1 (-564 *5 *6)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-565 *5)) (-4 *5 (-354)) (-4 *6 (-354)) (-5 *2 (-565 *6)) (-5 *1 (-564 *5 *6)))))
-(-10 -7 (-15 -2790 ((-565 |#2|) (-1 |#2| |#1|) (-565 |#1|))) (-15 -2790 ((-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2510 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2790 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2790 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) 69)) (-2652 ((|#1| $) NIL)) (-2510 ((|#1| $) 26)) (-2400 (((-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2131 (($ |#1| (-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1132 |#1|)) (|:| |logand| (-1132 |#1|)))) (-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3366 (((-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1132 |#1|)) (|:| |logand| (-1132 |#1|)))) $) 27)) (-1466 (((-1119) $) NIL)) (-4277 (($ |#1| |#1|) 33) (($ |#1| (-1136)) 44 (|has| |#1| (-1007 (-1136))))) (-3979 (((-1082) $) NIL)) (-3889 (((-112) $) 30)) (-3448 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1136)) 82 (|has| |#1| (-869 (-1136))))) (-3838 (((-832) $) 96) (($ |#1|) 25)) (-3269 (($) 16 T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) 15) (($ $ $) NIL)) (-2479 (($ $ $) 78)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 14) (($ (-398 (-547)) $) 36) (($ $ (-398 (-547))) NIL)))
-(((-565 |#1|) (-13 (-692 (-398 (-547))) (-1007 |#1|) (-10 -8 (-15 -2131 ($ |#1| (-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1132 |#1|)) (|:| |logand| (-1132 |#1|)))) (-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2510 (|#1| $)) (-15 -3366 ((-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1132 |#1|)) (|:| |logand| (-1132 |#1|)))) $)) (-15 -2400 ((-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3889 ((-112) $)) (-15 -4277 ($ |#1| |#1|)) (-15 -3448 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-869 (-1136))) (-15 -3448 (|#1| $ (-1136))) |%noBranch|) (IF (|has| |#1| (-1007 (-1136))) (-15 -4277 ($ |#1| (-1136))) |%noBranch|))) (-354)) (T -565))
-((-2131 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1132 *2)) (|:| |logand| (-1132 *2))))) (-5 *4 (-619 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-354)) (-5 *1 (-565 *2)))) (-2510 (*1 *2 *1) (-12 (-5 *1 (-565 *2)) (-4 *2 (-354)))) (-3366 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1132 *3)) (|:| |logand| (-1132 *3))))) (-5 *1 (-565 *3)) (-4 *3 (-354)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-565 *3)) (-4 *3 (-354)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-565 *3)) (-4 *3 (-354)))) (-4277 (*1 *1 *2 *2) (-12 (-5 *1 (-565 *2)) (-4 *2 (-354)))) (-3448 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-565 *2)) (-4 *2 (-354)))) (-3448 (*1 *2 *1 *3) (-12 (-4 *2 (-354)) (-4 *2 (-869 *3)) (-5 *1 (-565 *2)) (-5 *3 (-1136)))) (-4277 (*1 *1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *1 (-565 *2)) (-4 *2 (-1007 *3)) (-4 *2 (-354)))))
-(-13 (-692 (-398 (-547))) (-1007 |#1|) (-10 -8 (-15 -2131 ($ |#1| (-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1132 |#1|)) (|:| |logand| (-1132 |#1|)))) (-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2510 (|#1| $)) (-15 -3366 ((-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1132 |#1|)) (|:| |logand| (-1132 |#1|)))) $)) (-15 -2400 ((-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3889 ((-112) $)) (-15 -4277 ($ |#1| |#1|)) (-15 -3448 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-869 (-1136))) (-15 -3448 (|#1| $ (-1136))) |%noBranch|) (IF (|has| |#1| (-1007 (-1136))) (-15 -4277 ($ |#1| (-1136))) |%noBranch|)))
-((-3389 (((-112) |#1|) 16)) (-1932 (((-3 |#1| "failed") |#1|) 14)) (-3940 (((-2 (|:| -1856 |#1|) (|:| -3322 (-745))) |#1|) 31) (((-3 |#1| "failed") |#1| (-745)) 18)) (-2620 (((-112) |#1| (-745)) 19)) (-3985 ((|#1| |#1|) 32)) (-4107 ((|#1| |#1| (-745)) 34)))
-(((-566 |#1|) (-10 -7 (-15 -2620 ((-112) |#1| (-745))) (-15 -3940 ((-3 |#1| "failed") |#1| (-745))) (-15 -3940 ((-2 (|:| -1856 |#1|) (|:| -3322 (-745))) |#1|)) (-15 -4107 (|#1| |#1| (-745))) (-15 -3389 ((-112) |#1|)) (-15 -1932 ((-3 |#1| "failed") |#1|)) (-15 -3985 (|#1| |#1|))) (-532)) (T -566))
-((-3985 (*1 *2 *2) (-12 (-5 *1 (-566 *2)) (-4 *2 (-532)))) (-1932 (*1 *2 *2) (|partial| -12 (-5 *1 (-566 *2)) (-4 *2 (-532)))) (-3389 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-532)))) (-4107 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-566 *2)) (-4 *2 (-532)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1856 *3) (|:| -3322 (-745)))) (-5 *1 (-566 *3)) (-4 *3 (-532)))) (-3940 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-745)) (-5 *1 (-566 *2)) (-4 *2 (-532)))) (-2620 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-532)))))
-(-10 -7 (-15 -2620 ((-112) |#1| (-745))) (-15 -3940 ((-3 |#1| "failed") |#1| (-745))) (-15 -3940 ((-2 (|:| -1856 |#1|) (|:| -3322 (-745))) |#1|)) (-15 -4107 (|#1| |#1| (-745))) (-15 -3389 ((-112) |#1|)) (-15 -1932 ((-3 |#1| "failed") |#1|)) (-15 -3985 (|#1| |#1|)))
-((-1573 (((-1132 |#1|) (-890)) 27)))
-(((-567 |#1|) (-10 -7 (-15 -1573 ((-1132 |#1|) (-890)))) (-340)) (T -567))
-((-1573 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-567 *4)) (-4 *4 (-340)))))
-(-10 -7 (-15 -1573 ((-1132 |#1|) (-890))))
-((-4194 (((-565 (-398 (-921 |#1|))) (-565 (-398 (-921 |#1|)))) 27)) (-3694 (((-3 (-307 |#1|) (-619 (-307 |#1|))) (-398 (-921 |#1|)) (-1136)) 34 (|has| |#1| (-145)))) (-1442 (((-619 (-307 |#1|)) (-565 (-398 (-921 |#1|)))) 19)) (-2295 (((-307 |#1|) (-398 (-921 |#1|)) (-1136)) 32 (|has| |#1| (-145)))) (-3144 (((-307 |#1|) (-565 (-398 (-921 |#1|)))) 21)))
-(((-568 |#1|) (-10 -7 (-15 -4194 ((-565 (-398 (-921 |#1|))) (-565 (-398 (-921 |#1|))))) (-15 -1442 ((-619 (-307 |#1|)) (-565 (-398 (-921 |#1|))))) (-15 -3144 ((-307 |#1|) (-565 (-398 (-921 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -3694 ((-3 (-307 |#1|) (-619 (-307 |#1|))) (-398 (-921 |#1|)) (-1136))) (-15 -2295 ((-307 |#1|) (-398 (-921 |#1|)) (-1136)))) |%noBranch|)) (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (T -568))
-((-2295 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1136)) (-4 *5 (-145)) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *2 (-307 *5)) (-5 *1 (-568 *5)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1136)) (-4 *5 (-145)) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *2 (-3 (-307 *5) (-619 (-307 *5)))) (-5 *1 (-568 *5)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-565 (-398 (-921 *4)))) (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *2 (-307 *4)) (-5 *1 (-568 *4)))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-565 (-398 (-921 *4)))) (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *2 (-619 (-307 *4))) (-5 *1 (-568 *4)))) (-4194 (*1 *2 *2) (-12 (-5 *2 (-565 (-398 (-921 *3)))) (-4 *3 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *1 (-568 *3)))))
-(-10 -7 (-15 -4194 ((-565 (-398 (-921 |#1|))) (-565 (-398 (-921 |#1|))))) (-15 -1442 ((-619 (-307 |#1|)) (-565 (-398 (-921 |#1|))))) (-15 -3144 ((-307 |#1|) (-565 (-398 (-921 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -3694 ((-3 (-307 |#1|) (-619 (-307 |#1|))) (-398 (-921 |#1|)) (-1136))) (-15 -2295 ((-307 |#1|) (-398 (-921 |#1|)) (-1136)))) |%noBranch|))
-((-3300 (((-619 (-663 (-547))) (-619 (-547)) (-619 (-874 (-547)))) 46) (((-619 (-663 (-547))) (-619 (-547))) 47) (((-663 (-547)) (-619 (-547)) (-874 (-547))) 42)) (-4275 (((-745) (-619 (-547))) 40)))
-(((-569) (-10 -7 (-15 -4275 ((-745) (-619 (-547)))) (-15 -3300 ((-663 (-547)) (-619 (-547)) (-874 (-547)))) (-15 -3300 ((-619 (-663 (-547))) (-619 (-547)))) (-15 -3300 ((-619 (-663 (-547))) (-619 (-547)) (-619 (-874 (-547))))))) (T -569))
-((-3300 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-547))) (-5 *4 (-619 (-874 (-547)))) (-5 *2 (-619 (-663 (-547)))) (-5 *1 (-569)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-619 (-663 (-547)))) (-5 *1 (-569)))) (-3300 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-547))) (-5 *4 (-874 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-569)))) (-4275 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-745)) (-5 *1 (-569)))))
-(-10 -7 (-15 -4275 ((-745) (-619 (-547)))) (-15 -3300 ((-663 (-547)) (-619 (-547)) (-874 (-547)))) (-15 -3300 ((-619 (-663 (-547))) (-619 (-547)))) (-15 -3300 ((-619 (-663 (-547))) (-619 (-547)) (-619 (-874 (-547))))))
-((-2383 (((-619 |#5|) |#5| (-112)) 73)) (-4012 (((-112) |#5| (-619 |#5|)) 30)))
-(((-570 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2383 ((-619 |#5|) |#5| (-112))) (-15 -4012 ((-112) |#5| (-619 |#5|)))) (-13 (-298) (-145)) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -570))
-((-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1072 *5 *6 *7 *8)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-570 *5 *6 *7 *8 *3)))) (-2383 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-619 *3)) (-5 *1 (-570 *5 *6 *7 *8 *3)) (-4 *3 (-1072 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2383 ((-619 |#5|) |#5| (-112))) (-15 -4012 ((-112) |#5| (-619 |#5|))))
-((-3826 (((-112) $ $) NIL)) (-2196 (((-1141) $) 11)) (-2183 (((-1141) $) 9)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-571) (-13 (-1047) (-10 -8 (-15 -2183 ((-1141) $)) (-15 -2196 ((-1141) $))))) (T -571))
-((-2183 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-571)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-571)))))
-(-13 (-1047) (-10 -8 (-15 -2183 ((-1141) $)) (-15 -2196 ((-1141) $))))
-((-3826 (((-112) $ $) NIL (|has| (-142) (-1063)))) (-1449 (($ $) 34)) (-4306 (($ $) NIL)) (-3630 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2313 (((-112) $ $) 51)) (-2287 (((-112) $ $ (-547)) 46)) (-4194 (((-619 $) $ (-142)) 60) (((-619 $) $ (-139)) 61)) (-2436 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-821)))) (-2809 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4330))) (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| (-142) (-821))))) (-3185 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-821)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 (((-142) $ (-547) (-142)) 45 (|has| $ (-6 -4330))) (((-142) $ (-1186 (-547)) (-142)) NIL (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3580 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-4118 (($ $ (-1186 (-547)) $) 44)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-3803 (($ (-142) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4329))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4329)))) (-1872 (((-142) $ (-547) (-142)) NIL (|has| $ (-6 -4330)))) (-1802 (((-142) $ (-547)) NIL)) (-2341 (((-112) $ $) 72)) (-2876 (((-547) (-1 (-112) (-142)) $) NIL) (((-547) (-142) $) NIL (|has| (-142) (-1063))) (((-547) (-142) $ (-547)) 48 (|has| (-142) (-1063))) (((-547) $ $ (-547)) 47) (((-547) (-139) $ (-547)) 50)) (-2982 (((-619 (-142)) $) NIL (|has| $ (-6 -4329)))) (-3735 (($ (-745) (-142)) 9)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) 28 (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| (-142) (-821)))) (-2777 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-821)))) (-2284 (((-619 (-142)) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-1416 (((-547) $) 42 (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| (-142) (-821)))) (-2305 (((-112) $ $ (-142)) 73)) (-2468 (((-745) $ $ (-142)) 70)) (-1859 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-1574 (($ $) 37)) (-3093 (($ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-3595 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-1466 (((-1119) $) 38 (|has| (-142) (-1063)))) (-2606 (($ (-142) $ (-547)) NIL) (($ $ $ (-547)) 23)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-547) $) 69) (((-1082) $) NIL (|has| (-142) (-1063)))) (-3638 (((-142) $) NIL (|has| (-547) (-821)))) (-3650 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-3632 (($ $ (-142)) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-142)))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-285 (-142))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-2987 (((-619 (-142)) $) NIL)) (-2884 (((-112) $) 12)) (-2245 (($) 10)) (-3334 (((-142) $ (-547) (-142)) NIL) (((-142) $ (-547)) 52) (($ $ (-1186 (-547))) 21) (($ $ $) NIL)) (-2159 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-3992 (((-745) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329))) (((-745) (-142) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-4282 (($ $ $ (-547)) 66 (|has| $ (-6 -4330)))) (-2274 (($ $) 17)) (-2838 (((-523) $) NIL (|has| (-142) (-592 (-523))))) (-3846 (($ (-619 (-142))) NIL)) (-1945 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-619 $)) 67)) (-3838 (($ (-142)) NIL) (((-832) $) 27 (|has| (-142) (-591 (-832))))) (-2693 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2418 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2381 (((-112) $ $) 14 (|has| (-142) (-1063)))) (-2430 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2405 (((-112) $ $) 15 (|has| (-142) (-821)))) (-3767 (((-745) $) 13 (|has| $ (-6 -4329)))))
-(((-572 |#1|) (-13 (-1105) (-10 -8 (-15 -3979 ((-547) $)))) (-547)) (T -572))
-((-3979 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-572 *3)) (-14 *3 *2))))
-(-13 (-1105) (-10 -8 (-15 -3979 ((-547) $))))
-((-2814 (((-2 (|:| |num| |#4|) (|:| |den| (-547))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-547))) |#4| |#2| (-1058 |#4|)) 32)))
-(((-573 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2814 ((-2 (|:| |num| |#4|) (|:| |den| (-547))) |#4| |#2| (-1058 |#4|))) (-15 -2814 ((-2 (|:| |num| |#4|) (|:| |den| (-547))) |#4| |#2|))) (-767) (-821) (-539) (-918 |#3| |#1| |#2|)) (T -573))
-((-2814 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-539)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-547)))) (-5 *1 (-573 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) (-2814 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1058 *3)) (-4 *3 (-918 *7 *6 *4)) (-4 *6 (-767)) (-4 *4 (-821)) (-4 *7 (-539)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-547)))) (-5 *1 (-573 *6 *4 *7 *3)))))
-(-10 -7 (-15 -2814 ((-2 (|:| |num| |#4|) (|:| |den| (-547))) |#4| |#2| (-1058 |#4|))) (-15 -2814 ((-2 (|:| |num| |#4|) (|:| |den| (-547))) |#4| |#2|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 63)) (-2267 (((-619 (-1045)) $) NIL)) (-3004 (((-1136) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-3931 (($ $ (-547)) 54) (($ $ (-547) (-547)) 55)) (-2203 (((-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) 60)) (-1662 (($ $) 100)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1331 (((-832) (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) (-995 (-814 (-547))) (-1136) |#1| (-398 (-547))) 224)) (-2819 (($ (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) 34)) (-1948 (($) NIL T CONST)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-1713 (((-112) $) NIL)) (-3275 (((-547) $) 58) (((-547) $ (-547)) 59)) (-2261 (((-112) $) NIL)) (-3852 (($ $ (-890)) 76)) (-3201 (($ (-1 |#1| (-547)) $) 73)) (-1759 (((-112) $) 25)) (-2238 (($ |#1| (-547)) 22) (($ $ (-1045) (-547)) NIL) (($ $ (-619 (-1045)) (-619 (-547))) NIL)) (-2790 (($ (-1 |#1| |#1|) $) 67)) (-1424 (($ (-995 (-814 (-547))) (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) 13)) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3694 (($ $) 150 (|has| |#1| (-38 (-398 (-547)))))) (-1674 (((-3 $ "failed") $ $ (-112)) 99)) (-3418 (($ $ $) 108)) (-3979 (((-1082) $) NIL)) (-2893 (((-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) 15)) (-3615 (((-995 (-814 (-547))) $) 14)) (-3708 (($ $ (-547)) 45)) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2679 (((-1117 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-547)))))) (-3334 ((|#1| $ (-547)) 57) (($ $ $) NIL (|has| (-547) (-1075)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-547) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (-3705 (((-547) $) NIL)) (-2804 (($ $) 46)) (-3838 (((-832) $) NIL) (($ (-547)) 28) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539))) (($ |#1|) 27 (|has| |#1| (-169)))) (-2450 ((|#1| $ (-547)) 56)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) 37)) (-2591 ((|#1| $) NIL)) (-2476 (($ $) 186 (|has| |#1| (-38 (-398 (-547)))))) (-2635 (($ $) 158 (|has| |#1| (-38 (-398 (-547)))))) (-3975 (($ $) 190 (|has| |#1| (-38 (-398 (-547)))))) (-3684 (($ $) 163 (|has| |#1| (-38 (-398 (-547)))))) (-1915 (($ $) 189 (|has| |#1| (-38 (-398 (-547)))))) (-4207 (($ $) 162 (|has| |#1| (-38 (-398 (-547)))))) (-1609 (($ $ (-398 (-547))) 166 (|has| |#1| (-38 (-398 (-547)))))) (-4008 (($ $ |#1|) 146 (|has| |#1| (-38 (-398 (-547)))))) (-3732 (($ $) 192 (|has| |#1| (-38 (-398 (-547)))))) (-2813 (($ $) 149 (|has| |#1| (-38 (-398 (-547)))))) (-3894 (($ $) 191 (|has| |#1| (-38 (-398 (-547)))))) (-2833 (($ $) 164 (|has| |#1| (-38 (-398 (-547)))))) (-2138 (($ $) 187 (|has| |#1| (-38 (-398 (-547)))))) (-1763 (($ $) 160 (|has| |#1| (-38 (-398 (-547)))))) (-2296 (($ $) 188 (|has| |#1| (-38 (-398 (-547)))))) (-1614 (($ $) 161 (|has| |#1| (-38 (-398 (-547)))))) (-3776 (($ $) 197 (|has| |#1| (-38 (-398 (-547)))))) (-4026 (($ $) 173 (|has| |#1| (-38 (-398 (-547)))))) (-3811 (($ $) 194 (|has| |#1| (-38 (-398 (-547)))))) (-1649 (($ $) 168 (|has| |#1| (-38 (-398 (-547)))))) (-2043 (($ $) 201 (|has| |#1| (-38 (-398 (-547)))))) (-3149 (($ $) 177 (|has| |#1| (-38 (-398 (-547)))))) (-3155 (($ $) 203 (|has| |#1| (-38 (-398 (-547)))))) (-2598 (($ $) 179 (|has| |#1| (-38 (-398 (-547)))))) (-4299 (($ $) 199 (|has| |#1| (-38 (-398 (-547)))))) (-2323 (($ $) 175 (|has| |#1| (-38 (-398 (-547)))))) (-1864 (($ $) 196 (|has| |#1| (-38 (-398 (-547)))))) (-1324 (($ $) 171 (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-2654 ((|#1| $ (-547)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-547)))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-3269 (($) 29 T CONST)) (-3281 (($) 38 T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-547) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (-2381 (((-112) $ $) 65)) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $) 84) (($ $ $) 64)) (-2479 (($ $ $) 81)) (** (($ $ (-890)) NIL) (($ $ (-745)) 103)) (* (($ (-890) $) 89) (($ (-745) $) 87) (($ (-547) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-574 |#1|) (-13 (-1197 |#1| (-547)) (-10 -8 (-15 -1424 ($ (-995 (-814 (-547))) (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))))) (-15 -3615 ((-995 (-814 (-547))) $)) (-15 -2893 ((-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $)) (-15 -2819 ($ (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))))) (-15 -1759 ((-112) $)) (-15 -3201 ($ (-1 |#1| (-547)) $)) (-15 -1674 ((-3 $ "failed") $ $ (-112))) (-15 -1662 ($ $)) (-15 -3418 ($ $ $)) (-15 -1331 ((-832) (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) (-995 (-814 (-547))) (-1136) |#1| (-398 (-547)))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -3694 ($ $)) (-15 -4008 ($ $ |#1|)) (-15 -1609 ($ $ (-398 (-547)))) (-15 -2813 ($ $)) (-15 -3732 ($ $)) (-15 -3684 ($ $)) (-15 -1614 ($ $)) (-15 -2635 ($ $)) (-15 -1763 ($ $)) (-15 -4207 ($ $)) (-15 -2833 ($ $)) (-15 -1649 ($ $)) (-15 -1324 ($ $)) (-15 -4026 ($ $)) (-15 -2323 ($ $)) (-15 -3149 ($ $)) (-15 -2598 ($ $)) (-15 -3975 ($ $)) (-15 -2296 ($ $)) (-15 -2476 ($ $)) (-15 -2138 ($ $)) (-15 -1915 ($ $)) (-15 -3894 ($ $)) (-15 -3811 ($ $)) (-15 -1864 ($ $)) (-15 -3776 ($ $)) (-15 -4299 ($ $)) (-15 -2043 ($ $)) (-15 -3155 ($ $))) |%noBranch|))) (-1016)) (T -574))
-((-1759 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1016)))) (-1424 (*1 *1 *2 *3) (-12 (-5 *2 (-995 (-814 (-547)))) (-5 *3 (-1117 (-2 (|:| |k| (-547)) (|:| |c| *4)))) (-4 *4 (-1016)) (-5 *1 (-574 *4)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-995 (-814 (-547)))) (-5 *1 (-574 *3)) (-4 *3 (-1016)))) (-2893 (*1 *2 *1) (-12 (-5 *2 (-1117 (-2 (|:| |k| (-547)) (|:| |c| *3)))) (-5 *1 (-574 *3)) (-4 *3 (-1016)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-1117 (-2 (|:| |k| (-547)) (|:| |c| *3)))) (-4 *3 (-1016)) (-5 *1 (-574 *3)))) (-3201 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-547))) (-4 *3 (-1016)) (-5 *1 (-574 *3)))) (-1674 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1016)))) (-1662 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-1016)))) (-3418 (*1 *1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-1016)))) (-1331 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1117 (-2 (|:| |k| (-547)) (|:| |c| *6)))) (-5 *4 (-995 (-814 (-547)))) (-5 *5 (-1136)) (-5 *7 (-398 (-547))) (-4 *6 (-1016)) (-5 *2 (-832)) (-5 *1 (-574 *6)))) (-3694 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-4008 (*1 *1 *1 *2) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-1609 (*1 *1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-574 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1016)))) (-2813 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3684 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-1614 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2635 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-1763 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-4207 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2833 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-1649 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-1324 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-4026 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2323 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3149 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2598 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3975 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2296 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2476 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2138 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-1915 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3894 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-1864 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3776 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-4299 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2043 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3155 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(-13 (-1197 |#1| (-547)) (-10 -8 (-15 -1424 ($ (-995 (-814 (-547))) (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))))) (-15 -3615 ((-995 (-814 (-547))) $)) (-15 -2893 ((-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $)) (-15 -2819 ($ (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))))) (-15 -1759 ((-112) $)) (-15 -3201 ($ (-1 |#1| (-547)) $)) (-15 -1674 ((-3 $ "failed") $ $ (-112))) (-15 -1662 ($ $)) (-15 -3418 ($ $ $)) (-15 -1331 ((-832) (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) (-995 (-814 (-547))) (-1136) |#1| (-398 (-547)))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -3694 ($ $)) (-15 -4008 ($ $ |#1|)) (-15 -1609 ($ $ (-398 (-547)))) (-15 -2813 ($ $)) (-15 -3732 ($ $)) (-15 -3684 ($ $)) (-15 -1614 ($ $)) (-15 -2635 ($ $)) (-15 -1763 ($ $)) (-15 -4207 ($ $)) (-15 -2833 ($ $)) (-15 -1649 ($ $)) (-15 -1324 ($ $)) (-15 -4026 ($ $)) (-15 -2323 ($ $)) (-15 -3149 ($ $)) (-15 -2598 ($ $)) (-15 -3975 ($ $)) (-15 -2296 ($ $)) (-15 -2476 ($ $)) (-15 -2138 ($ $)) (-15 -1915 ($ $)) (-15 -3894 ($ $)) (-15 -3811 ($ $)) (-15 -1864 ($ $)) (-15 -3776 ($ $)) (-15 -4299 ($ $)) (-15 -2043 ($ $)) (-15 -3155 ($ $))) |%noBranch|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2819 (($ (-1117 |#1|)) 9)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) 42)) (-1713 (((-112) $) 52)) (-3275 (((-745) $) 55) (((-745) $ (-745)) 54)) (-2261 (((-112) $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2032 (((-3 $ "failed") $ $) 44 (|has| |#1| (-539)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL (|has| |#1| (-539)))) (-1277 (((-1117 |#1|) $) 23)) (-2736 (((-745)) 51)) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3269 (($) 10 T CONST)) (-3281 (($) 14 T CONST)) (-2381 (((-112) $ $) 22)) (-2493 (($ $) 30) (($ $ $) 16)) (-2479 (($ $ $) 25)) (** (($ $ (-890)) NIL) (($ $ (-745)) 49)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-547)) 36)))
-(((-575 |#1|) (-13 (-1016) (-10 -8 (-15 -1277 ((-1117 |#1|) $)) (-15 -2819 ($ (-1117 |#1|))) (-15 -1713 ((-112) $)) (-15 -3275 ((-745) $)) (-15 -3275 ((-745) $ (-745))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-547))) (IF (|has| |#1| (-539)) (-6 (-539)) |%noBranch|))) (-1016)) (T -575))
-((-1277 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-575 *3)))) (-1713 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-3275 (*1 *2 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))))
-(-13 (-1016) (-10 -8 (-15 -1277 ((-1117 |#1|) $)) (-15 -2819 ($ (-1117 |#1|))) (-15 -1713 ((-112) $)) (-15 -3275 ((-745) $)) (-15 -3275 ((-745) $ (-745))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-547))) (IF (|has| |#1| (-539)) (-6 (-539)) |%noBranch|)))
-((-2790 (((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|)) 15)))
-(((-576 |#1| |#2|) (-10 -7 (-15 -2790 ((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|)))) (-1173) (-1173)) (T -576))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-579 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-579 *6)) (-5 *1 (-576 *5 *6)))))
-(-10 -7 (-15 -2790 ((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|))))
-((-2790 (((-1117 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-1117 |#2|)) 20) (((-1117 |#3|) (-1 |#3| |#1| |#2|) (-1117 |#1|) (-579 |#2|)) 19) (((-579 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-579 |#2|)) 18)))
-(((-577 |#1| |#2| |#3|) (-10 -7 (-15 -2790 ((-579 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-579 |#2|))) (-15 -2790 ((-1117 |#3|) (-1 |#3| |#1| |#2|) (-1117 |#1|) (-579 |#2|))) (-15 -2790 ((-1117 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-1117 |#2|)))) (-1173) (-1173) (-1173)) (T -577))
-((-2790 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-579 *6)) (-5 *5 (-1117 *7)) (-4 *6 (-1173)) (-4 *7 (-1173)) (-4 *8 (-1173)) (-5 *2 (-1117 *8)) (-5 *1 (-577 *6 *7 *8)))) (-2790 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1117 *6)) (-5 *5 (-579 *7)) (-4 *6 (-1173)) (-4 *7 (-1173)) (-4 *8 (-1173)) (-5 *2 (-1117 *8)) (-5 *1 (-577 *6 *7 *8)))) (-2790 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-579 *6)) (-5 *5 (-579 *7)) (-4 *6 (-1173)) (-4 *7 (-1173)) (-4 *8 (-1173)) (-5 *2 (-579 *8)) (-5 *1 (-577 *6 *7 *8)))))
-(-10 -7 (-15 -2790 ((-579 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-579 |#2|))) (-15 -2790 ((-1117 |#3|) (-1 |#3| |#1| |#2|) (-1117 |#1|) (-579 |#2|))) (-15 -2790 ((-1117 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-1117 |#2|))))
-((-2354 ((|#3| |#3| (-619 (-590 |#3|)) (-619 (-1136))) 55)) (-3654 (((-166 |#2|) |#3|) 117)) (-2538 ((|#3| (-166 |#2|)) 44)) (-1677 ((|#2| |#3|) 19)) (-1682 ((|#3| |#2|) 33)))
-(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -2538 (|#3| (-166 |#2|))) (-15 -1677 (|#2| |#3|)) (-15 -1682 (|#3| |#2|)) (-15 -3654 ((-166 |#2|) |#3|)) (-15 -2354 (|#3| |#3| (-619 (-590 |#3|)) (-619 (-1136))))) (-13 (-539) (-821)) (-13 (-421 |#1|) (-971) (-1158)) (-13 (-421 (-166 |#1|)) (-971) (-1158))) (T -578))
-((-2354 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-619 (-590 *2))) (-5 *4 (-619 (-1136))) (-4 *2 (-13 (-421 (-166 *5)) (-971) (-1158))) (-4 *5 (-13 (-539) (-821))) (-5 *1 (-578 *5 *6 *2)) (-4 *6 (-13 (-421 *5) (-971) (-1158))))) (-3654 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821))) (-5 *2 (-166 *5)) (-5 *1 (-578 *4 *5 *3)) (-4 *5 (-13 (-421 *4) (-971) (-1158))) (-4 *3 (-13 (-421 (-166 *4)) (-971) (-1158))))) (-1682 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821))) (-4 *2 (-13 (-421 (-166 *4)) (-971) (-1158))) (-5 *1 (-578 *4 *3 *2)) (-4 *3 (-13 (-421 *4) (-971) (-1158))))) (-1677 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821))) (-4 *2 (-13 (-421 *4) (-971) (-1158))) (-5 *1 (-578 *4 *2 *3)) (-4 *3 (-13 (-421 (-166 *4)) (-971) (-1158))))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-421 *4) (-971) (-1158))) (-4 *4 (-13 (-539) (-821))) (-4 *2 (-13 (-421 (-166 *4)) (-971) (-1158))) (-5 *1 (-578 *4 *5 *2)))))
-(-10 -7 (-15 -2538 (|#3| (-166 |#2|))) (-15 -1677 (|#2| |#3|)) (-15 -1682 (|#3| |#2|)) (-15 -3654 ((-166 |#2|) |#3|)) (-15 -2354 (|#3| |#3| (-619 (-590 |#3|)) (-619 (-1136)))))
-((-1482 (($ (-1 (-112) |#1|) $) 17)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-1405 (($ (-1 |#1| |#1|) |#1|) 9)) (-1453 (($ (-1 (-112) |#1|) $) 13)) (-1467 (($ (-1 (-112) |#1|) $) 15)) (-3846 (((-1117 |#1|) $) 18)) (-3838 (((-832) $) NIL)))
-(((-579 |#1|) (-13 (-591 (-832)) (-10 -8 (-15 -2790 ($ (-1 |#1| |#1|) $)) (-15 -1453 ($ (-1 (-112) |#1|) $)) (-15 -1467 ($ (-1 (-112) |#1|) $)) (-15 -1482 ($ (-1 (-112) |#1|) $)) (-15 -1405 ($ (-1 |#1| |#1|) |#1|)) (-15 -3846 ((-1117 |#1|) $)))) (-1173)) (T -579))
-((-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1173)) (-5 *1 (-579 *3)))) (-1453 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1173)) (-5 *1 (-579 *3)))) (-1467 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1173)) (-5 *1 (-579 *3)))) (-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1173)) (-5 *1 (-579 *3)))) (-1405 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1173)) (-5 *1 (-579 *3)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-579 *3)) (-4 *3 (-1173)))))
-(-13 (-591 (-832)) (-10 -8 (-15 -2790 ($ (-1 |#1| |#1|) $)) (-15 -1453 ($ (-1 (-112) |#1|) $)) (-15 -1467 ($ (-1 (-112) |#1|) $)) (-15 -1482 ($ (-1 (-112) |#1|) $)) (-15 -1405 ($ (-1 |#1| |#1|) |#1|)) (-15 -3846 ((-1117 |#1|) $))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3761 (($ (-745)) NIL (|has| |#1| (-23)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2809 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4330))) (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| |#1| (-821))))) (-3185 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) NIL (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3803 (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) NIL)) (-2876 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-4042 (((-663 |#1|) $ $) NIL (|has| |#1| (-1016)))) (-3735 (($ (-745) |#1|) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-2777 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2881 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-3806 (((-112) $ (-745)) NIL)) (-4202 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-2606 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3638 ((|#1| $) NIL (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3632 (($ $ |#1|) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-4117 ((|#1| $ $) NIL (|has| |#1| (-1016)))) (-2159 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-1838 (($ $ $) NIL (|has| |#1| (-1016)))) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) NIL)) (-1945 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2493 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2479 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-547) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-701))) (($ $ |#1|) NIL (|has| |#1| (-701)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-580 |#1| |#2|) (-1217 |#1|) (-1173) (-547)) (T -580))
-NIL
-(-1217 |#1|)
-((-1652 (((-1224) $ |#2| |#2|) 36)) (-2434 ((|#2| $) 23)) (-1416 ((|#2| $) 21)) (-1859 (($ (-1 |#3| |#3|) $) 32)) (-2790 (($ (-1 |#3| |#3|) $) 30)) (-3638 ((|#3| $) 26)) (-3632 (($ $ |#3|) 33)) (-2075 (((-112) |#3| $) 17)) (-2987 (((-619 |#3|) $) 15)) (-3334 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-581 |#1| |#2| |#3|) (-10 -8 (-15 -1652 ((-1224) |#1| |#2| |#2|)) (-15 -3632 (|#1| |#1| |#3|)) (-15 -3638 (|#3| |#1|)) (-15 -2434 (|#2| |#1|)) (-15 -1416 (|#2| |#1|)) (-15 -2075 ((-112) |#3| |#1|)) (-15 -2987 ((-619 |#3|) |#1|)) (-15 -3334 (|#3| |#1| |#2|)) (-15 -3334 (|#3| |#1| |#2| |#3|)) (-15 -1859 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2790 (|#1| (-1 |#3| |#3|) |#1|))) (-582 |#2| |#3|) (-1063) (-1173)) (T -581))
-NIL
-(-10 -8 (-15 -1652 ((-1224) |#1| |#2| |#2|)) (-15 -3632 (|#1| |#1| |#3|)) (-15 -3638 (|#3| |#1|)) (-15 -2434 (|#2| |#1|)) (-15 -1416 (|#2| |#1|)) (-15 -2075 ((-112) |#3| |#1|)) (-15 -2987 ((-619 |#3|) |#1|)) (-15 -3334 (|#3| |#1| |#2|)) (-15 -3334 (|#3| |#1| |#2| |#3|)) (-15 -1859 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2790 (|#1| (-1 |#3| |#3|) |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#2| (-1063)))) (-1652 (((-1224) $ |#1| |#1|) 40 (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) 8)) (-2247 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4330)))) (-1948 (($) 7 T CONST)) (-1872 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4330)))) (-1802 ((|#2| $ |#1|) 51)) (-2982 (((-619 |#2|) $) 30 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-2434 ((|#1| $) 43 (|has| |#1| (-821)))) (-2284 (((-619 |#2|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4329))))) (-1416 ((|#1| $) 44 (|has| |#1| (-821)))) (-1859 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#2| |#2|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#2| (-1063)))) (-2121 (((-619 |#1|) $) 46)) (-2018 (((-112) |#1| $) 47)) (-3979 (((-1082) $) 21 (|has| |#2| (-1063)))) (-3638 ((|#2| $) 42 (|has| |#1| (-821)))) (-3632 (($ $ |#2|) 41 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#2|))) 26 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) 25 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 23 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2987 (((-619 |#2|) $) 48)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3992 (((-745) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4329))) (((-745) |#2| $) 28 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3838 (((-832) $) 18 (|has| |#2| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#2| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-582 |#1| |#2|) (-138) (-1063) (-1173)) (T -582))
-((-2987 (*1 *2 *1) (-12 (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1173)) (-5 *2 (-619 *4)))) (-2018 (*1 *2 *3 *1) (-12 (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1173)) (-5 *2 (-112)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1173)) (-5 *2 (-619 *3)))) (-2075 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-582 *4 *3)) (-4 *4 (-1063)) (-4 *3 (-1173)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-1416 (*1 *2 *1) (-12 (-4 *1 (-582 *2 *3)) (-4 *3 (-1173)) (-4 *2 (-1063)) (-4 *2 (-821)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-582 *2 *3)) (-4 *3 (-1173)) (-4 *2 (-1063)) (-4 *2 (-821)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-582 *3 *2)) (-4 *3 (-1063)) (-4 *3 (-821)) (-4 *2 (-1173)))) (-3632 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-582 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1173)))) (-1652 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1173)) (-5 *2 (-1224)))))
-(-13 (-479 |t#2|) (-279 |t#1| |t#2|) (-10 -8 (-15 -2987 ((-619 |t#2|) $)) (-15 -2018 ((-112) |t#1| $)) (-15 -2121 ((-619 |t#1|) $)) (IF (|has| |t#2| (-1063)) (IF (|has| $ (-6 -4329)) (-15 -2075 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821)) (PROGN (-15 -1416 (|t#1| $)) (-15 -2434 (|t#1| $)) (-15 -3638 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4330)) (PROGN (-15 -3632 ($ $ |t#2|)) (-15 -1652 ((-1224) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#2| (-1063)) ((-591 (-832)) -1530 (|has| |#2| (-1063)) (|has| |#2| (-591 (-832)))) ((-277 |#1| |#2|) . T) ((-279 |#1| |#2|) . T) ((-300 |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-479 |#2|) . T) ((-503 |#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-1063) |has| |#2| (-1063)) ((-1173) . T))
-((-3838 (((-832) $) 19) (((-129) $) 14) (($ (-129)) 13)))
-(((-583) (-13 (-591 (-832)) (-591 (-129)) (-10 -8 (-15 -3838 ($ (-129)))))) (T -583))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-583)))))
-(-13 (-591 (-832)) (-591 (-129)) (-10 -8 (-15 -3838 ($ (-129)))))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL) (((-1172) $) 14) (($ (-619 (-1172))) 13)) (-3321 (((-619 (-1172)) $) 10)) (-2381 (((-112) $ $) NIL)))
-(((-584) (-13 (-1047) (-591 (-1172)) (-10 -8 (-15 -3838 ($ (-619 (-1172)))) (-15 -3321 ((-619 (-1172)) $))))) (T -584))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-1172))) (-5 *1 (-584)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-619 (-1172))) (-5 *1 (-584)))))
-(-13 (-1047) (-591 (-1172)) (-10 -8 (-15 -3838 ($ (-619 (-1172)))) (-15 -3321 ((-619 (-1172)) $))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3825 (((-3 $ "failed")) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-3620 (((-1219 (-663 |#1|))) NIL (|has| |#2| (-408 |#1|))) (((-1219 (-663 |#1|)) (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-1342 (((-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-1948 (($) NIL T CONST)) (-4106 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2169 (((-3 $ "failed")) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2877 (((-663 |#1|)) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-3652 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-1252 (((-663 |#1|) $) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) $ (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-2702 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-4036 (((-1132 (-921 |#1|))) NIL (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-354))))) (-3387 (($ $ (-890)) NIL)) (-2105 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-3685 (((-1132 |#1|) $) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-1936 ((|#1|) NIL (|has| |#2| (-408 |#1|))) ((|#1| (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-3543 (((-1132 |#1|) $) NIL (|has| |#2| (-358 |#1|)))) (-4130 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2614 (($ (-1219 |#1|)) NIL (|has| |#2| (-408 |#1|))) (($ (-1219 |#1|) (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-3855 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-3116 (((-890)) NIL (|has| |#2| (-358 |#1|)))) (-2470 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1296 (($ $ (-890)) NIL)) (-2270 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3661 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1790 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2499 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-1549 (((-3 $ "failed")) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2972 (((-663 |#1|)) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-2080 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-2574 (((-663 |#1|) $) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) $ (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-4082 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-3569 (((-1132 (-921 |#1|))) NIL (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-354))))) (-3851 (($ $ (-890)) NIL)) (-4005 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-1964 (((-1132 |#1|) $) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-4062 ((|#1|) NIL (|has| |#2| (-408 |#1|))) ((|#1| (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-2317 (((-1132 |#1|) $) NIL (|has| |#2| (-358 |#1|)))) (-3912 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1466 (((-1119) $) NIL)) (-3795 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2759 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3892 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3979 (((-1082) $) NIL)) (-1889 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3334 ((|#1| $ (-547)) NIL (|has| |#2| (-408 |#1|)))) (-3220 (((-663 |#1|) (-1219 $)) NIL (|has| |#2| (-408 |#1|))) (((-1219 |#1|) $) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) (-1219 $) (-1219 $)) NIL (|has| |#2| (-358 |#1|))) (((-1219 |#1|) $ (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-2838 (($ (-1219 |#1|)) NIL (|has| |#2| (-408 |#1|))) (((-1219 |#1|) $) NIL (|has| |#2| (-408 |#1|)))) (-3906 (((-619 (-921 |#1|))) NIL (|has| |#2| (-408 |#1|))) (((-619 (-921 |#1|)) (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-1473 (($ $ $) NIL)) (-3274 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3838 (((-832) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1917 (((-1219 $)) NIL (|has| |#2| (-408 |#1|)))) (-3778 (((-619 (-1219 |#1|))) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2781 (($ $ $ $) NIL)) (-3592 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3587 (($ (-663 |#1|) $) NIL (|has| |#2| (-408 |#1|)))) (-2031 (($ $ $) NIL)) (-3271 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-4150 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2004 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3269 (($) NIL T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) 24)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-585 |#1| |#2|) (-13 (-719 |#1|) (-591 |#2|) (-10 -8 (-15 -3838 ($ |#2|)) (IF (|has| |#2| (-408 |#1|)) (-6 (-408 |#1|)) |%noBranch|) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|))) (-169) (-719 |#1|)) (T -585))
-((-3838 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-585 *3 *2)) (-4 *2 (-719 *3)))))
-(-13 (-719 |#1|) (-591 |#2|) (-10 -8 (-15 -3838 ($ |#2|)) (IF (|has| |#2| (-408 |#1|)) (-6 (-408 |#1|)) |%noBranch|) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|)))
-((-3826 (((-112) $ $) NIL)) (-2027 (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) 33)) (-3726 (($ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) NIL) (($) NIL)) (-1652 (((-1224) $ (-1119) (-1119)) NIL (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#1| $ (-1119) |#1|) 43)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329)))) (-3482 (((-3 |#1| "failed") (-1119) $) 46)) (-1948 (($) NIL T CONST)) (-1566 (($ $ (-1119)) 24)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063))))) (-1513 (((-3 |#1| "failed") (-1119) $) 47) (($ (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329))) (($ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL (|has| $ (-6 -4329)))) (-3803 (($ (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329))) (($ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063))))) (-2552 (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063))))) (-2569 (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) 32)) (-1872 ((|#1| $ (-1119) |#1|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-1119)) NIL)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329))) (((-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329)))) (-3313 (($ $) 48)) (-1352 (($ (-379)) 22) (($ (-379) (-1119)) 21)) (-2473 (((-379) $) 34)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-1119) $) NIL (|has| (-1119) (-821)))) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329))) (((-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (((-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063))))) (-1416 (((-1119) $) NIL (|has| (-1119) (-821)))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330))) (($ (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-3441 (((-619 (-1119)) $) 39)) (-4073 (((-112) (-1119) $) NIL)) (-3818 (((-1119) $) 35)) (-4266 (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL)) (-2657 (($ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL)) (-2121 (((-619 (-1119)) $) NIL)) (-2018 (((-112) (-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3638 ((|#1| $) NIL (|has| (-1119) (-821)))) (-3650 (((-3 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) "failed") (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL)) (-3632 (($ $ |#1|) NIL (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) NIL (-12 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)))) (($ $ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) NIL (-12 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) NIL (-12 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)))) (($ $ (-619 (-285 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))))) NIL (-12 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) 37)) (-3334 ((|#1| $ (-1119) |#1|) NIL) ((|#1| $ (-1119)) 42)) (-2699 (($ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) NIL) (($) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (((-745) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)))) (((-745) (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) NIL)) (-3838 (((-832) $) 20)) (-1708 (($ $) 25)) (-2300 (($ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) NIL)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 19)) (-3767 (((-745) $) 41 (|has| $ (-6 -4329)))))
-(((-586 |#1|) (-13 (-355 (-379) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) (-1149 (-1119) |#1|) (-10 -8 (-6 -4329) (-15 -3313 ($ $)))) (-1063)) (T -586))
-((-3313 (*1 *1 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1063)))))
-(-13 (-355 (-379) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) (-1149 (-1119) |#1|) (-10 -8 (-6 -4329) (-15 -3313 ($ $))))
-((-2132 (((-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) $) 15)) (-3441 (((-619 |#2|) $) 19)) (-4073 (((-112) |#2| $) 12)))
-(((-587 |#1| |#2| |#3|) (-10 -8 (-15 -3441 ((-619 |#2|) |#1|)) (-15 -4073 ((-112) |#2| |#1|)) (-15 -2132 ((-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) |#1|))) (-588 |#2| |#3|) (-1063) (-1063)) (T -587))
-NIL
-(-10 -8 (-15 -3441 ((-619 |#2|) |#1|)) (-15 -4073 ((-112) |#2| |#1|)) (-15 -2132 ((-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) |#1|)))
-((-3826 (((-112) $ $) 19 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-3899 (((-112) $ (-745)) 8)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 45 (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 55 (|has| $ (-6 -4329)))) (-3482 (((-3 |#2| "failed") |#1| $) 61)) (-1948 (($) 7 T CONST)) (-3668 (($ $) 58 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329))))) (-1513 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 47 (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 46 (|has| $ (-6 -4329))) (((-3 |#2| "failed") |#1| $) 62)) (-3803 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 54 (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 56 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 53 (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 52 (|has| $ (-6 -4329)))) (-2982 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 30 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-3441 (((-619 |#1|) $) 63)) (-4073 (((-112) |#1| $) 64)) (-4266 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 39)) (-2657 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 40)) (-3979 (((-1082) $) 21 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-3650 (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 51)) (-2056 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 41)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))))) 26 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 25 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 24 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 23 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-2699 (($) 49) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 48)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 31 (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-2838 (((-523) $) 59 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 50)) (-3838 (((-832) $) 18 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832))))) (-2300 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 42)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-588 |#1| |#2|) (-138) (-1063) (-1063)) (T -588))
-((-4073 (*1 *2 *3 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-112)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-619 *3)))) (-1513 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3482 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))))
-(-13 (-221 (-2 (|:| -3331 |t#1|) (|:| -1786 |t#2|))) (-10 -8 (-15 -4073 ((-112) |t#1| $)) (-15 -3441 ((-619 |t#1|) $)) (-15 -1513 ((-3 |t#2| "failed") |t#1| $)) (-15 -3482 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-106 #0=(-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T) ((-101) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) ((-591 (-832)) -1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832)))) ((-149 #0#) . T) ((-592 (-523)) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))) ((-221 #0#) . T) ((-227 #0#) . T) ((-300 #0#) -12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))) ((-479 #0#) . T) ((-503 #0# #0#) -12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))) ((-1063) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) ((-1173) . T))
-((-2858 (((-590 |#2|) |#1|) 15)) (-2463 (((-3 |#1| "failed") (-590 |#2|)) 19)))
-(((-589 |#1| |#2|) (-10 -7 (-15 -2858 ((-590 |#2|) |#1|)) (-15 -2463 ((-3 |#1| "failed") (-590 |#2|)))) (-821) (-821)) (T -589))
-((-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-590 *4)) (-4 *4 (-821)) (-4 *2 (-821)) (-5 *1 (-589 *2 *4)))) (-2858 (*1 *2 *3) (-12 (-5 *2 (-590 *4)) (-5 *1 (-589 *3 *4)) (-4 *3 (-821)) (-4 *4 (-821)))))
-(-10 -7 (-15 -2858 ((-590 |#2|) |#1|)) (-15 -2463 ((-3 |#1| "failed") (-590 |#2|))))
-((-3826 (((-112) $ $) NIL)) (-3443 (((-3 (-1136) "failed") $) 37)) (-2151 (((-1224) $ (-745)) 26)) (-2876 (((-745) $) 25)) (-4185 (((-114) $) 12)) (-2473 (((-1136) $) 20)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-1469 (($ (-114) (-619 |#1|) (-745)) 30) (($ (-1136)) 31)) (-1667 (((-112) $ (-114)) 18) (((-112) $ (-1136)) 16)) (-4029 (((-745) $) 22)) (-3979 (((-1082) $) NIL)) (-2838 (((-861 (-547)) $) 77 (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) 84 (|has| |#1| (-592 (-861 (-370))))) (((-523) $) 69 (|has| |#1| (-592 (-523))))) (-3838 (((-832) $) 55)) (-3027 (((-619 |#1|) $) 24)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 41)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 42)))
-(((-590 |#1|) (-13 (-131) (-853 |#1|) (-10 -8 (-15 -2473 ((-1136) $)) (-15 -4185 ((-114) $)) (-15 -3027 ((-619 |#1|) $)) (-15 -4029 ((-745) $)) (-15 -1469 ($ (-114) (-619 |#1|) (-745))) (-15 -1469 ($ (-1136))) (-15 -3443 ((-3 (-1136) "failed") $)) (-15 -1667 ((-112) $ (-114))) (-15 -1667 ((-112) $ (-1136))) (IF (|has| |#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|))) (-821)) (T -590))
-((-2473 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) (-1469 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-821)) (-5 *1 (-590 *5)))) (-1469 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) (-3443 (*1 *2 *1) (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) (-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-590 *4)) (-4 *4 (-821)))) (-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-112)) (-5 *1 (-590 *4)) (-4 *4 (-821)))))
-(-13 (-131) (-853 |#1|) (-10 -8 (-15 -2473 ((-1136) $)) (-15 -4185 ((-114) $)) (-15 -3027 ((-619 |#1|) $)) (-15 -4029 ((-745) $)) (-15 -1469 ($ (-114) (-619 |#1|) (-745))) (-15 -1469 ($ (-1136))) (-15 -3443 ((-3 (-1136) "failed") $)) (-15 -1667 ((-112) $ (-114))) (-15 -1667 ((-112) $ (-1136))) (IF (|has| |#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|)))
-((-3838 ((|#1| $) 6)))
-(((-591 |#1|) (-138) (-1173)) (T -591))
-((-3838 (*1 *2 *1) (-12 (-4 *1 (-591 *2)) (-4 *2 (-1173)))))
-(-13 (-10 -8 (-15 -3838 (|t#1| $))))
-((-2838 ((|#1| $) 6)))
-(((-592 |#1|) (-138) (-1173)) (T -592))
-((-2838 (*1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1173)))))
-(-13 (-10 -8 (-15 -2838 (|t#1| $))))
-((-2974 (((-3 (-1132 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|) (-1 (-409 |#2|) |#2|)) 15) (((-3 (-1132 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|)) 16)))
-(((-593 |#1| |#2|) (-10 -7 (-15 -2974 ((-3 (-1132 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|))) (-15 -2974 ((-3 (-1132 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|) (-1 (-409 |#2|) |#2|)))) (-13 (-145) (-27) (-1007 (-547)) (-1007 (-398 (-547)))) (-1195 |#1|)) (T -593))
-((-2974 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1195 *5)) (-4 *5 (-13 (-145) (-27) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-1132 (-398 *6))) (-5 *1 (-593 *5 *6)) (-5 *3 (-398 *6)))) (-2974 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *5 (-1195 *4)) (-5 *2 (-1132 (-398 *5))) (-5 *1 (-593 *4 *5)) (-5 *3 (-398 *5)))))
-(-10 -7 (-15 -2974 ((-3 (-1132 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|))) (-15 -2974 ((-3 (-1132 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|) (-1 (-409 |#2|) |#2|))))
-((-3826 (((-112) $ $) NIL)) (-1744 (($) 11 T CONST)) (-1798 (($) 12 T CONST)) (-4199 (($ $ $) 24)) (-4000 (($ $) 22)) (-1466 (((-1119) $) NIL)) (-2435 (($ $ $) 25)) (-3979 (((-1082) $) NIL)) (-3729 (($) 10 T CONST)) (-4116 (($ $ $) 26)) (-3838 (((-832) $) 30)) (-3258 (((-112) $ (|[\|\|]| -3729)) 19) (((-112) $ (|[\|\|]| -1744)) 21) (((-112) $ (|[\|\|]| -1798)) 17)) (-1814 (($ $ $) 23)) (-2381 (((-112) $ $) 15)))
-(((-594) (-13 (-936) (-10 -8 (-15 -3729 ($) -2582) (-15 -1744 ($) -2582) (-15 -1798 ($) -2582) (-15 -3258 ((-112) $ (|[\|\|]| -3729))) (-15 -3258 ((-112) $ (|[\|\|]| -1744))) (-15 -3258 ((-112) $ (|[\|\|]| -1798)))))) (T -594))
-((-3729 (*1 *1) (-5 *1 (-594))) (-1744 (*1 *1) (-5 *1 (-594))) (-1798 (*1 *1) (-5 *1 (-594))) (-3258 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3729)) (-5 *2 (-112)) (-5 *1 (-594)))) (-3258 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1744)) (-5 *2 (-112)) (-5 *1 (-594)))) (-3258 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1798)) (-5 *2 (-112)) (-5 *1 (-594)))))
-(-13 (-936) (-10 -8 (-15 -3729 ($) -2582) (-15 -1744 ($) -2582) (-15 -1798 ($) -2582) (-15 -3258 ((-112) $ (|[\|\|]| -3729))) (-15 -3258 ((-112) $ (|[\|\|]| -1744))) (-15 -3258 ((-112) $ (|[\|\|]| -1798)))))
-((-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) 10)))
-(((-595 |#1| |#2|) (-10 -8 (-15 -3838 (|#1| |#2|)) (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|))) (-596 |#2|) (-1016)) (T -595))
-NIL
-(-10 -8 (-15 -3838 (|#1| |#2|)) (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 34)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ |#1| $) 35)))
-(((-596 |#1|) (-138) (-1016)) (T -596))
-((-3838 (*1 *1 *2) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1016)))))
-(-13 (-1016) (-622 |t#1|) (-10 -8 (-15 -3838 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2500 (((-547) $) NIL (|has| |#1| (-819)))) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) NIL)) (-4270 (((-112) $) NIL (|has| |#1| (-819)))) (-2261 (((-112) $) NIL)) (-1386 ((|#1| $) 13)) (-1860 (((-112) $) NIL (|has| |#1| (-819)))) (-2856 (($ $ $) NIL (|has| |#1| (-819)))) (-3567 (($ $ $) NIL (|has| |#1| (-819)))) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1396 ((|#3| $) 15)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) NIL)) (-2736 (((-745)) 20)) (-2255 (($ $) NIL (|has| |#1| (-819)))) (-3269 (($) NIL T CONST)) (-3281 (($) 12 T CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2506 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-597 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (-15 -2506 ($ $ |#3|)) (-15 -2506 ($ |#1| |#3|)) (-15 -1386 (|#1| $)) (-15 -1396 (|#3| $)))) (-38 |#2|) (-169) (|SubsetCategory| (-701) |#2|)) (T -597))
-((-2506 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-701) *4)))) (-2506 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-597 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-701) *4)))) (-1386 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-597 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-701) *3)))) (-1396 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (-15 -2506 ($ $ |#3|)) (-15 -2506 ($ |#1| |#3|)) (-15 -1386 (|#1| $)) (-15 -1396 (|#3| $))))
-((-3903 ((|#2| |#2| (-1136) (-1136)) 18)))
-(((-598 |#1| |#2|) (-10 -7 (-15 -3903 (|#2| |#2| (-1136) (-1136)))) (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1158) (-928) (-29 |#1|))) (T -598))
-((-3903 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-598 *4 *2)) (-4 *2 (-13 (-1158) (-928) (-29 *4))))))
-(-10 -7 (-15 -3903 (|#2| |#2| (-1136) (-1136))))
-((-3826 (((-112) $ $) 56)) (-1499 (((-112) $) 52)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3479 ((|#1| $) 49)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1460 (((-2 (|:| -4136 $) (|:| -3965 (-398 |#2|))) (-398 |#2|)) 97 (|has| |#1| (-354)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-2063 (($ $) 24)) (-3855 (((-3 $ "failed") $) 75)) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3275 (((-547) $) 19)) (-2261 (((-112) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-1759 (((-112) $) 36)) (-2238 (($ |#1| (-547)) 21)) (-2037 ((|#1| $) 51)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-354)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) 87 (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-2032 (((-3 $ "failed") $ $) 79)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2471 (((-745) $) 99 (|has| |#1| (-354)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 98 (|has| |#1| (-354)))) (-3448 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-3705 (((-547) $) 34)) (-2838 (((-398 |#2|) $) 42)) (-3838 (((-832) $) 62) (($ (-547)) 32) (($ $) NIL) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) 31) (($ |#2|) 22)) (-2450 ((|#1| $ (-547)) 63)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) 29)) (-3577 (((-112) $ $) NIL)) (-3269 (($) 9 T CONST)) (-3281 (($) 12 T CONST)) (-1695 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-2381 (((-112) $ $) 17)) (-2493 (($ $) 46) (($ $ $) NIL)) (-2479 (($ $ $) 76)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 26) (($ $ $) 44)))
-(((-599 |#1| |#2|) (-13 (-223 |#2|) (-539) (-592 (-398 |#2|)) (-402 |#1|) (-1007 |#2|) (-10 -8 (-15 -1759 ((-112) $)) (-15 -3705 ((-547) $)) (-15 -3275 ((-547) $)) (-15 -2063 ($ $)) (-15 -2037 (|#1| $)) (-15 -3479 (|#1| $)) (-15 -2450 (|#1| $ (-547))) (-15 -2238 ($ |#1| (-547))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-6 (-298)) (-15 -1460 ((-2 (|:| -4136 $) (|:| -3965 (-398 |#2|))) (-398 |#2|)))) |%noBranch|))) (-539) (-1195 |#1|)) (T -599))
-((-1759 (*1 *2 *1) (-12 (-4 *3 (-539)) (-5 *2 (-112)) (-5 *1 (-599 *3 *4)) (-4 *4 (-1195 *3)))) (-3705 (*1 *2 *1) (-12 (-4 *3 (-539)) (-5 *2 (-547)) (-5 *1 (-599 *3 *4)) (-4 *4 (-1195 *3)))) (-3275 (*1 *2 *1) (-12 (-4 *3 (-539)) (-5 *2 (-547)) (-5 *1 (-599 *3 *4)) (-4 *4 (-1195 *3)))) (-2063 (*1 *1 *1) (-12 (-4 *2 (-539)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1195 *2)))) (-2037 (*1 *2 *1) (-12 (-4 *2 (-539)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1195 *2)))) (-3479 (*1 *2 *1) (-12 (-4 *2 (-539)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1195 *2)))) (-2450 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *2 (-539)) (-5 *1 (-599 *2 *4)) (-4 *4 (-1195 *2)))) (-2238 (*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-4 *2 (-539)) (-5 *1 (-599 *2 *4)) (-4 *4 (-1195 *2)))) (-1460 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *4 (-539)) (-4 *5 (-1195 *4)) (-5 *2 (-2 (|:| -4136 (-599 *4 *5)) (|:| -3965 (-398 *5)))) (-5 *1 (-599 *4 *5)) (-5 *3 (-398 *5)))))
-(-13 (-223 |#2|) (-539) (-592 (-398 |#2|)) (-402 |#1|) (-1007 |#2|) (-10 -8 (-15 -1759 ((-112) $)) (-15 -3705 ((-547) $)) (-15 -3275 ((-547) $)) (-15 -2063 ($ $)) (-15 -2037 (|#1| $)) (-15 -3479 (|#1| $)) (-15 -2450 (|#1| $ (-547))) (-15 -2238 ($ |#1| (-547))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-6 (-298)) (-15 -1460 ((-2 (|:| -4136 $) (|:| -3965 (-398 |#2|))) (-398 |#2|)))) |%noBranch|)))
-((-2128 (((-619 |#6|) (-619 |#4|) (-112)) 47)) (-2251 ((|#6| |#6|) 40)))
-(((-600 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2251 (|#6| |#6|)) (-15 -2128 ((-619 |#6|) (-619 |#4|) (-112)))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|) (-1072 |#1| |#2| |#3| |#4|)) (T -600))
-((-2128 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *10)) (-5 *1 (-600 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *10 (-1072 *5 *6 *7 *8)))) (-2251 (*1 *2 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-600 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *2 (-1072 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2251 (|#6| |#6|)) (-15 -2128 ((-619 |#6|) (-619 |#4|) (-112))))
-((-2088 (((-112) |#3| (-745) (-619 |#3|)) 23)) (-3557 (((-3 (-2 (|:| |polfac| (-619 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-619 (-1132 |#3|)))) "failed") |#3| (-619 (-1132 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2534 (-619 (-2 (|:| |irr| |#4|) (|:| -3038 (-547)))))) (-619 |#3|) (-619 |#1|) (-619 |#3|)) 55)))
-(((-601 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2088 ((-112) |#3| (-745) (-619 |#3|))) (-15 -3557 ((-3 (-2 (|:| |polfac| (-619 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-619 (-1132 |#3|)))) "failed") |#3| (-619 (-1132 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2534 (-619 (-2 (|:| |irr| |#4|) (|:| -3038 (-547)))))) (-619 |#3|) (-619 |#1|) (-619 |#3|)))) (-821) (-767) (-298) (-918 |#3| |#2| |#1|)) (T -601))
-((-3557 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2534 (-619 (-2 (|:| |irr| *10) (|:| -3038 (-547))))))) (-5 *6 (-619 *3)) (-5 *7 (-619 *8)) (-4 *8 (-821)) (-4 *3 (-298)) (-4 *10 (-918 *3 *9 *8)) (-4 *9 (-767)) (-5 *2 (-2 (|:| |polfac| (-619 *10)) (|:| |correct| *3) (|:| |corrfact| (-619 (-1132 *3))))) (-5 *1 (-601 *8 *9 *3 *10)) (-5 *4 (-619 (-1132 *3))))) (-2088 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-745)) (-5 *5 (-619 *3)) (-4 *3 (-298)) (-4 *6 (-821)) (-4 *7 (-767)) (-5 *2 (-112)) (-5 *1 (-601 *6 *7 *3 *8)) (-4 *8 (-918 *3 *7 *6)))))
-(-10 -7 (-15 -2088 ((-112) |#3| (-745) (-619 |#3|))) (-15 -3557 ((-3 (-2 (|:| |polfac| (-619 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-619 (-1132 |#3|)))) "failed") |#3| (-619 (-1132 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2534 (-619 (-2 (|:| |irr| |#4|) (|:| -3038 (-547)))))) (-619 |#3|) (-619 |#1|) (-619 |#3|))))
-((-3826 (((-112) $ $) NIL)) (-2196 (((-1141) $) 11)) (-2183 (((-1141) $) 9)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-602) (-13 (-1047) (-10 -8 (-15 -2183 ((-1141) $)) (-15 -2196 ((-1141) $))))) (T -602))
-((-2183 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-602)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-602)))))
-(-13 (-1047) (-10 -8 (-15 -2183 ((-1141) $)) (-15 -2196 ((-1141) $))))
-((-3826 (((-112) $ $) NIL)) (-3297 (((-619 |#1|) $) NIL)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-2961 (($ $) 67)) (-3624 (((-638 |#1| |#2|) $) 52)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 70)) (-2622 (((-619 (-285 |#2|)) $ $) 33)) (-3979 (((-1082) $) NIL)) (-2712 (($ (-638 |#1| |#2|)) 48)) (-3404 (($ $ $) NIL)) (-1473 (($ $ $) NIL)) (-3838 (((-832) $) 58) (((-1234 |#1| |#2|) $) NIL) (((-1239 |#1| |#2|) $) 66)) (-3281 (($) 53 T CONST)) (-4083 (((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $) 31)) (-4135 (((-619 (-638 |#1| |#2|)) (-619 |#1|)) 65)) (-3721 (((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $) 37)) (-2381 (((-112) $ $) 54)) (-2506 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ $ $) 44)))
-(((-603 |#1| |#2| |#3|) (-13 (-463) (-10 -8 (-15 -2712 ($ (-638 |#1| |#2|))) (-15 -3624 ((-638 |#1| |#2|) $)) (-15 -3721 ((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $)) (-15 -3838 ((-1234 |#1| |#2|) $)) (-15 -3838 ((-1239 |#1| |#2|) $)) (-15 -2961 ($ $)) (-15 -3297 ((-619 |#1|) $)) (-15 -4135 ((-619 (-638 |#1| |#2|)) (-619 |#1|))) (-15 -4083 ((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $)) (-15 -2622 ((-619 (-285 |#2|)) $ $)))) (-821) (-13 (-169) (-692 (-398 (-547)))) (-890)) (T -603))
-((-2712 (*1 *1 *2) (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-5 *1 (-603 *3 *4 *5)) (-14 *5 (-890)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-638 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| (-862 *3)) (|:| |c| *4)))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-1234 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-1239 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) (-2961 (*1 *1 *1) (-12 (-5 *1 (-603 *2 *3 *4)) (-4 *2 (-821)) (-4 *3 (-13 (-169) (-692 (-398 (-547))))) (-14 *4 (-890)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) (-4135 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-638 *4 *5))) (-5 *1 (-603 *4 *5 *6)) (-4 *5 (-13 (-169) (-692 (-398 (-547))))) (-14 *6 (-890)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| (-646 *3)) (|:| |c| *4)))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) (-2622 (*1 *2 *1 *1) (-12 (-5 *2 (-619 (-285 *4))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))))
-(-13 (-463) (-10 -8 (-15 -2712 ($ (-638 |#1| |#2|))) (-15 -3624 ((-638 |#1| |#2|) $)) (-15 -3721 ((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $)) (-15 -3838 ((-1234 |#1| |#2|) $)) (-15 -3838 ((-1239 |#1| |#2|) $)) (-15 -2961 ($ $)) (-15 -3297 ((-619 |#1|) $)) (-15 -4135 ((-619 (-638 |#1| |#2|)) (-619 |#1|))) (-15 -4083 ((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $)) (-15 -2622 ((-619 (-285 |#2|)) $ $))))
-((-2128 (((-619 (-1107 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)) 72) (((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112)) 58)) (-3968 (((-112) (-619 (-754 |#1| (-834 |#2|)))) 23)) (-4220 (((-619 (-1107 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)) 71)) (-2355 (((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112)) 57)) (-3191 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|)))) 27)) (-2153 (((-3 (-619 (-754 |#1| (-834 |#2|))) "failed") (-619 (-754 |#1| (-834 |#2|)))) 26)))
-(((-604 |#1| |#2|) (-10 -7 (-15 -3968 ((-112) (-619 (-754 |#1| (-834 |#2|))))) (-15 -2153 ((-3 (-619 (-754 |#1| (-834 |#2|))) "failed") (-619 (-754 |#1| (-834 |#2|))))) (-15 -3191 ((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))))) (-15 -2355 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -4220 ((-619 (-1107 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -2128 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -2128 ((-619 (-1107 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)))) (-442) (-619 (-1136))) (T -604))
-((-2128 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) (-14 *6 (-619 (-1136))) (-5 *2 (-619 (-1107 *5 (-519 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) (-5 *1 (-604 *5 *6)))) (-2128 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) (-14 *6 (-619 (-1136))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-604 *5 *6)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) (-14 *6 (-619 (-1136))) (-5 *2 (-619 (-1107 *5 (-519 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) (-5 *1 (-604 *5 *6)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) (-14 *6 (-619 (-1136))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-604 *5 *6)))) (-3191 (*1 *2 *2) (-12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-442)) (-14 *4 (-619 (-1136))) (-5 *1 (-604 *3 *4)))) (-2153 (*1 *2 *2) (|partial| -12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-442)) (-14 *4 (-619 (-1136))) (-5 *1 (-604 *3 *4)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-619 (-754 *4 (-834 *5)))) (-4 *4 (-442)) (-14 *5 (-619 (-1136))) (-5 *2 (-112)) (-5 *1 (-604 *4 *5)))))
-(-10 -7 (-15 -3968 ((-112) (-619 (-754 |#1| (-834 |#2|))))) (-15 -2153 ((-3 (-619 (-754 |#1| (-834 |#2|))) "failed") (-619 (-754 |#1| (-834 |#2|))))) (-15 -3191 ((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))))) (-15 -2355 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -4220 ((-619 (-1107 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -2128 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -2128 ((-619 (-1107 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112))))
-((-1656 (($ $) 38)) (-1505 (($ $) 21)) (-1632 (($ $) 37)) (-1479 (($ $) 22)) (-1678 (($ $) 36)) (-1532 (($ $) 23)) (-1419 (($) 48)) (-3624 (($ $) 45)) (-1707 (($ $) 17)) (-4277 (($ $ (-1056 $)) 7) (($ $ (-1136)) 6)) (-2712 (($ $) 46)) (-1425 (($ $) 15)) (-1463 (($ $) 16)) (-1690 (($ $) 35)) (-1545 (($ $) 24)) (-1668 (($ $) 34)) (-1519 (($ $) 25)) (-1644 (($ $) 33)) (-1493 (($ $) 26)) (-1726 (($ $) 44)) (-1579 (($ $) 32)) (-1703 (($ $) 43)) (-1557 (($ $) 31)) (-1751 (($ $) 42)) (-1606 (($ $) 30)) (-1927 (($ $) 41)) (-1620 (($ $) 29)) (-1738 (($ $) 40)) (-1593 (($ $) 28)) (-1714 (($ $) 39)) (-1569 (($ $) 27)) (-4288 (($ $) 19)) (-3222 (($ $) 20)) (-1264 (($ $) 18)) (** (($ $ $) 47)))
-(((-605) (-138)) (T -605))
-((-3222 (*1 *1 *1) (-4 *1 (-605))) (-4288 (*1 *1 *1) (-4 *1 (-605))) (-1264 (*1 *1 *1) (-4 *1 (-605))) (-1707 (*1 *1 *1) (-4 *1 (-605))) (-1463 (*1 *1 *1) (-4 *1 (-605))) (-1425 (*1 *1 *1) (-4 *1 (-605))))
-(-13 (-928) (-1158) (-10 -8 (-15 -3222 ($ $)) (-15 -4288 ($ $)) (-15 -1264 ($ $)) (-15 -1707 ($ $)) (-15 -1463 ($ $)) (-15 -1425 ($ $))))
-(((-35) . T) ((-94) . T) ((-275) . T) ((-482) . T) ((-928) . T) ((-1158) . T) ((-1161) . T))
-((-4185 (((-114) (-114)) 83)) (-1707 ((|#2| |#2|) 30)) (-4277 ((|#2| |#2| (-1056 |#2|)) 79) ((|#2| |#2| (-1136)) 52)) (-1425 ((|#2| |#2|) 29)) (-1463 ((|#2| |#2|) 31)) (-3128 (((-112) (-114)) 34)) (-4288 ((|#2| |#2|) 26)) (-3222 ((|#2| |#2|) 28)) (-1264 ((|#2| |#2|) 27)))
-(((-606 |#1| |#2|) (-10 -7 (-15 -3128 ((-112) (-114))) (-15 -4185 ((-114) (-114))) (-15 -3222 (|#2| |#2|)) (-15 -4288 (|#2| |#2|)) (-15 -1264 (|#2| |#2|)) (-15 -1707 (|#2| |#2|)) (-15 -1425 (|#2| |#2|)) (-15 -1463 (|#2| |#2|)) (-15 -4277 (|#2| |#2| (-1136))) (-15 -4277 (|#2| |#2| (-1056 |#2|)))) (-13 (-821) (-539)) (-13 (-421 |#1|) (-971) (-1158))) (T -606))
-((-4277 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-421 *4) (-971) (-1158))) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-606 *4 *2)))) (-4277 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-606 *4 *2)) (-4 *2 (-13 (-421 *4) (-971) (-1158))))) (-1463 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-421 *3) (-971) (-1158))))) (-1425 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-421 *3) (-971) (-1158))))) (-1707 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-421 *3) (-971) (-1158))))) (-1264 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-421 *3) (-971) (-1158))))) (-4288 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-421 *3) (-971) (-1158))))) (-3222 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-421 *3) (-971) (-1158))))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *4)) (-4 *4 (-13 (-421 *3) (-971) (-1158))))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-606 *4 *5)) (-4 *5 (-13 (-421 *4) (-971) (-1158))))))
-(-10 -7 (-15 -3128 ((-112) (-114))) (-15 -4185 ((-114) (-114))) (-15 -3222 (|#2| |#2|)) (-15 -4288 (|#2| |#2|)) (-15 -1264 (|#2| |#2|)) (-15 -1707 (|#2| |#2|)) (-15 -1425 (|#2| |#2|)) (-15 -1463 (|#2| |#2|)) (-15 -4277 (|#2| |#2| (-1136))) (-15 -4277 (|#2| |#2| (-1056 |#2|))))
-((-1686 (((-471 |#1| |#2|) (-239 |#1| |#2|)) 53)) (-2308 (((-619 (-239 |#1| |#2|)) (-619 (-471 |#1| |#2|))) 68)) (-1270 (((-471 |#1| |#2|) (-619 (-471 |#1| |#2|)) (-834 |#1|)) 70) (((-471 |#1| |#2|) (-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)) (-834 |#1|)) 69)) (-3425 (((-2 (|:| |gblist| (-619 (-239 |#1| |#2|))) (|:| |gvlist| (-619 (-547)))) (-619 (-471 |#1| |#2|))) 108)) (-3504 (((-619 (-471 |#1| |#2|)) (-834 |#1|) (-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|))) 83)) (-3909 (((-2 (|:| |glbase| (-619 (-239 |#1| |#2|))) (|:| |glval| (-619 (-547)))) (-619 (-239 |#1| |#2|))) 118)) (-2233 (((-1219 |#2|) (-471 |#1| |#2|) (-619 (-471 |#1| |#2|))) 58)) (-4031 (((-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|))) 41)) (-4155 (((-239 |#1| |#2|) (-239 |#1| |#2|) (-619 (-239 |#1| |#2|))) 50)) (-4177 (((-239 |#1| |#2|) (-619 |#2|) (-239 |#1| |#2|) (-619 (-239 |#1| |#2|))) 91)))
-(((-607 |#1| |#2|) (-10 -7 (-15 -3425 ((-2 (|:| |gblist| (-619 (-239 |#1| |#2|))) (|:| |gvlist| (-619 (-547)))) (-619 (-471 |#1| |#2|)))) (-15 -3909 ((-2 (|:| |glbase| (-619 (-239 |#1| |#2|))) (|:| |glval| (-619 (-547)))) (-619 (-239 |#1| |#2|)))) (-15 -2308 ((-619 (-239 |#1| |#2|)) (-619 (-471 |#1| |#2|)))) (-15 -1270 ((-471 |#1| |#2|) (-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)) (-834 |#1|))) (-15 -1270 ((-471 |#1| |#2|) (-619 (-471 |#1| |#2|)) (-834 |#1|))) (-15 -4031 ((-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)))) (-15 -2233 ((-1219 |#2|) (-471 |#1| |#2|) (-619 (-471 |#1| |#2|)))) (-15 -4177 ((-239 |#1| |#2|) (-619 |#2|) (-239 |#1| |#2|) (-619 (-239 |#1| |#2|)))) (-15 -3504 ((-619 (-471 |#1| |#2|)) (-834 |#1|) (-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)))) (-15 -4155 ((-239 |#1| |#2|) (-239 |#1| |#2|) (-619 (-239 |#1| |#2|)))) (-15 -1686 ((-471 |#1| |#2|) (-239 |#1| |#2|)))) (-619 (-1136)) (-442)) (T -607))
-((-1686 (*1 *2 *3) (-12 (-5 *3 (-239 *4 *5)) (-14 *4 (-619 (-1136))) (-4 *5 (-442)) (-5 *2 (-471 *4 *5)) (-5 *1 (-607 *4 *5)))) (-4155 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-239 *4 *5))) (-5 *2 (-239 *4 *5)) (-14 *4 (-619 (-1136))) (-4 *5 (-442)) (-5 *1 (-607 *4 *5)))) (-3504 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-619 (-471 *4 *5))) (-5 *3 (-834 *4)) (-14 *4 (-619 (-1136))) (-4 *5 (-442)) (-5 *1 (-607 *4 *5)))) (-4177 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-239 *5 *6))) (-4 *6 (-442)) (-5 *2 (-239 *5 *6)) (-14 *5 (-619 (-1136))) (-5 *1 (-607 *5 *6)))) (-2233 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-471 *5 *6))) (-5 *3 (-471 *5 *6)) (-14 *5 (-619 (-1136))) (-4 *6 (-442)) (-5 *2 (-1219 *6)) (-5 *1 (-607 *5 *6)))) (-4031 (*1 *2 *2) (-12 (-5 *2 (-619 (-471 *3 *4))) (-14 *3 (-619 (-1136))) (-4 *4 (-442)) (-5 *1 (-607 *3 *4)))) (-1270 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-471 *5 *6))) (-5 *4 (-834 *5)) (-14 *5 (-619 (-1136))) (-5 *2 (-471 *5 *6)) (-5 *1 (-607 *5 *6)) (-4 *6 (-442)))) (-1270 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-619 (-471 *5 *6))) (-5 *4 (-834 *5)) (-14 *5 (-619 (-1136))) (-5 *2 (-471 *5 *6)) (-5 *1 (-607 *5 *6)) (-4 *6 (-442)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-619 (-471 *4 *5))) (-14 *4 (-619 (-1136))) (-4 *5 (-442)) (-5 *2 (-619 (-239 *4 *5))) (-5 *1 (-607 *4 *5)))) (-3909 (*1 *2 *3) (-12 (-14 *4 (-619 (-1136))) (-4 *5 (-442)) (-5 *2 (-2 (|:| |glbase| (-619 (-239 *4 *5))) (|:| |glval| (-619 (-547))))) (-5 *1 (-607 *4 *5)) (-5 *3 (-619 (-239 *4 *5))))) (-3425 (*1 *2 *3) (-12 (-5 *3 (-619 (-471 *4 *5))) (-14 *4 (-619 (-1136))) (-4 *5 (-442)) (-5 *2 (-2 (|:| |gblist| (-619 (-239 *4 *5))) (|:| |gvlist| (-619 (-547))))) (-5 *1 (-607 *4 *5)))))
-(-10 -7 (-15 -3425 ((-2 (|:| |gblist| (-619 (-239 |#1| |#2|))) (|:| |gvlist| (-619 (-547)))) (-619 (-471 |#1| |#2|)))) (-15 -3909 ((-2 (|:| |glbase| (-619 (-239 |#1| |#2|))) (|:| |glval| (-619 (-547)))) (-619 (-239 |#1| |#2|)))) (-15 -2308 ((-619 (-239 |#1| |#2|)) (-619 (-471 |#1| |#2|)))) (-15 -1270 ((-471 |#1| |#2|) (-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)) (-834 |#1|))) (-15 -1270 ((-471 |#1| |#2|) (-619 (-471 |#1| |#2|)) (-834 |#1|))) (-15 -4031 ((-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)))) (-15 -2233 ((-1219 |#2|) (-471 |#1| |#2|) (-619 (-471 |#1| |#2|)))) (-15 -4177 ((-239 |#1| |#2|) (-619 |#2|) (-239 |#1| |#2|) (-619 (-239 |#1| |#2|)))) (-15 -3504 ((-619 (-471 |#1| |#2|)) (-834 |#1|) (-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)))) (-15 -4155 ((-239 |#1| |#2|) (-239 |#1| |#2|) (-619 (-239 |#1| |#2|)))) (-15 -1686 ((-471 |#1| |#2|) (-239 |#1| |#2|))))
-((-3826 (((-112) $ $) NIL (-1530 (|has| (-52) (-1063)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063))))) (-3726 (($) NIL) (($ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))))) NIL)) (-1652 (((-1224) $ (-1119) (-1119)) NIL (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 (((-52) $ (-1119) (-52)) 16) (((-52) $ (-1136) (-52)) 17)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329)))) (-3482 (((-3 (-52) "failed") (-1119) $) NIL)) (-1948 (($) NIL T CONST)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063))))) (-1513 (($ (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-3 (-52) "failed") (-1119) $) NIL)) (-3803 (($ (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063)))) (($ (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $ (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063)))) (((-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $ (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329)))) (-1872 (((-52) $ (-1119) (-52)) NIL (|has| $ (-6 -4330)))) (-1802 (((-52) $ (-1119)) NIL)) (-2982 (((-619 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-619 (-52)) $) NIL (|has| $ (-6 -4329)))) (-3313 (($ $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-1119) $) NIL (|has| (-1119) (-821)))) (-2284 (((-619 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-619 (-52)) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-52) (-1063))))) (-1416 (((-1119) $) NIL (|has| (-1119) (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4330))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2746 (($ (-379)) 9)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (-1530 (|has| (-52) (-1063)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063))))) (-3441 (((-619 (-1119)) $) NIL)) (-4073 (((-112) (-1119) $) NIL)) (-4266 (((-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) $) NIL)) (-2657 (($ (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) $) NIL)) (-2121 (((-619 (-1119)) $) NIL)) (-2018 (((-112) (-1119) $) NIL)) (-3979 (((-1082) $) NIL (-1530 (|has| (-52) (-1063)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063))))) (-3638 (((-52) $) NIL (|has| (-1119) (-821)))) (-3650 (((-3 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) "failed") (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL)) (-3632 (($ $ (-52)) NIL (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) $) NIL)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))))) NIL (-12 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063)))) (($ $ (-285 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))))) NIL (-12 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063)))) (($ $ (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) NIL (-12 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063)))) (($ $ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))))) NIL (-12 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063)))) (($ $ (-619 (-52)) (-619 (-52))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-285 (-52))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-619 (-285 (-52)))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-52) (-1063))))) (-2987 (((-619 (-52)) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 (((-52) $ (-1119)) 14) (((-52) $ (-1119) (-52)) NIL) (((-52) $ (-1136)) 15)) (-2699 (($) NIL) (($ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))))) NIL)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063)))) (((-745) (-52) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-52) (-1063)))) (((-745) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))))) NIL)) (-3838 (((-832) $) NIL (-1530 (|has| (-52) (-591 (-832))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-591 (-832)))))) (-2300 (($ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))))) NIL)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (-1530 (|has| (-52) (-1063)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 (-52))) (-1063))))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-608) (-13 (-1149 (-1119) (-52)) (-10 -8 (-15 -2746 ($ (-379))) (-15 -3313 ($ $)) (-15 -3334 ((-52) $ (-1136))) (-15 -2247 ((-52) $ (-1136) (-52)))))) (T -608))
-((-2746 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-608)))) (-3313 (*1 *1 *1) (-5 *1 (-608))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-52)) (-5 *1 (-608)))) (-2247 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1136)) (-5 *1 (-608)))))
-(-13 (-1149 (-1119) (-52)) (-10 -8 (-15 -2746 ($ (-379))) (-15 -3313 ($ $)) (-15 -3334 ((-52) $ (-1136))) (-15 -2247 ((-52) $ (-1136) (-52)))))
-((-2506 (($ $ |#2|) 10)))
-(((-609 |#1| |#2|) (-10 -8 (-15 -2506 (|#1| |#1| |#2|))) (-610 |#2|) (-169)) (T -609))
-NIL
-(-10 -8 (-15 -2506 (|#1| |#1| |#2|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3846 (($ $ $) 29)) (-3838 (((-832) $) 11)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#1|) 28 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-610 |#1|) (-138) (-169)) (T -610))
-((-3846 (*1 *1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)))) (-2506 (*1 *1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)) (-4 *2 (-354)))))
-(-13 (-692 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3846 ($ $ $)) (IF (|has| |t#1| (-354)) (-15 -2506 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-1022 |#1|) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3825 (((-3 $ "failed")) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-3620 (((-1219 (-663 |#1|))) NIL (|has| |#2| (-408 |#1|))) (((-1219 (-663 |#1|)) (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-1342 (((-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-1948 (($) NIL T CONST)) (-4106 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2169 (((-3 $ "failed")) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2877 (((-663 |#1|)) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-3652 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-1252 (((-663 |#1|) $) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) $ (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-2702 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-4036 (((-1132 (-921 |#1|))) NIL (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-354))))) (-3387 (($ $ (-890)) NIL)) (-2105 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-3685 (((-1132 |#1|) $) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-1936 ((|#1|) NIL (|has| |#2| (-408 |#1|))) ((|#1| (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-3543 (((-1132 |#1|) $) NIL (|has| |#2| (-358 |#1|)))) (-4130 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2614 (($ (-1219 |#1|)) NIL (|has| |#2| (-408 |#1|))) (($ (-1219 |#1|) (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-3855 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-3116 (((-890)) NIL (|has| |#2| (-358 |#1|)))) (-2470 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1296 (($ $ (-890)) NIL)) (-2270 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3661 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1790 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2499 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-1549 (((-3 $ "failed")) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2972 (((-663 |#1|)) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-2080 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-2574 (((-663 |#1|) $) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) $ (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-4082 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-3569 (((-1132 (-921 |#1|))) NIL (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-354))))) (-3851 (($ $ (-890)) NIL)) (-4005 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-1964 (((-1132 |#1|) $) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-4062 ((|#1|) NIL (|has| |#2| (-408 |#1|))) ((|#1| (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-2317 (((-1132 |#1|) $) NIL (|has| |#2| (-358 |#1|)))) (-3912 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1466 (((-1119) $) NIL)) (-3795 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2759 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3892 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3979 (((-1082) $) NIL)) (-1889 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3334 ((|#1| $ (-547)) NIL (|has| |#2| (-408 |#1|)))) (-3220 (((-663 |#1|) (-1219 $)) NIL (|has| |#2| (-408 |#1|))) (((-1219 |#1|) $) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) (-1219 $) (-1219 $)) NIL (|has| |#2| (-358 |#1|))) (((-1219 |#1|) $ (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-2838 (($ (-1219 |#1|)) NIL (|has| |#2| (-408 |#1|))) (((-1219 |#1|) $) NIL (|has| |#2| (-408 |#1|)))) (-3906 (((-619 (-921 |#1|))) NIL (|has| |#2| (-408 |#1|))) (((-619 (-921 |#1|)) (-1219 $)) NIL (|has| |#2| (-358 |#1|)))) (-1473 (($ $ $) NIL)) (-3274 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3838 (((-832) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1917 (((-1219 $)) NIL (|has| |#2| (-408 |#1|)))) (-3778 (((-619 (-1219 |#1|))) NIL (-1530 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2781 (($ $ $ $) NIL)) (-3592 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3587 (($ (-663 |#1|) $) NIL (|has| |#2| (-408 |#1|)))) (-2031 (($ $ $) NIL)) (-3271 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-4150 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2004 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3269 (($) 15 T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) 17)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-611 |#1| |#2|) (-13 (-719 |#1|) (-591 |#2|) (-10 -8 (-15 -3838 ($ |#2|)) (IF (|has| |#2| (-408 |#1|)) (-6 (-408 |#1|)) |%noBranch|) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|))) (-169) (-719 |#1|)) (T -611))
-((-3838 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-611 *3 *2)) (-4 *2 (-719 *3)))))
-(-13 (-719 |#1|) (-591 |#2|) (-10 -8 (-15 -3838 ($ |#2|)) (IF (|has| |#2| (-408 |#1|)) (-6 (-408 |#1|)) |%noBranch|) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|)))
-((-2913 (((-3 (-814 |#2|) "failed") |#2| (-285 |#2|) (-1119)) 82) (((-3 (-814 |#2|) (-2 (|:| |leftHandLimit| (-3 (-814 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-814 |#2|) "failed"))) "failed") |#2| (-285 (-814 |#2|))) 104)) (-2091 (((-3 (-807 |#2|) "failed") |#2| (-285 (-807 |#2|))) 109)))
-(((-612 |#1| |#2|) (-10 -7 (-15 -2913 ((-3 (-814 |#2|) (-2 (|:| |leftHandLimit| (-3 (-814 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-814 |#2|) "failed"))) "failed") |#2| (-285 (-814 |#2|)))) (-15 -2091 ((-3 (-807 |#2|) "failed") |#2| (-285 (-807 |#2|)))) (-15 -2913 ((-3 (-814 |#2|) "failed") |#2| (-285 |#2|) (-1119)))) (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1158) (-421 |#1|))) (T -612))
-((-2913 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-285 *3)) (-5 *5 (-1119)) (-4 *3 (-13 (-27) (-1158) (-421 *6))) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-814 *3)) (-5 *1 (-612 *6 *3)))) (-2091 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-285 (-807 *3))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-807 *3)) (-5 *1 (-612 *5 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))))) (-2913 (*1 *2 *3 *4) (-12 (-5 *4 (-285 (-814 *3))) (-4 *3 (-13 (-27) (-1158) (-421 *5))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (-814 *3) (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) "failed")) (-5 *1 (-612 *5 *3)))))
-(-10 -7 (-15 -2913 ((-3 (-814 |#2|) (-2 (|:| |leftHandLimit| (-3 (-814 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-814 |#2|) "failed"))) "failed") |#2| (-285 (-814 |#2|)))) (-15 -2091 ((-3 (-807 |#2|) "failed") |#2| (-285 (-807 |#2|)))) (-15 -2913 ((-3 (-814 |#2|) "failed") |#2| (-285 |#2|) (-1119))))
-((-2913 (((-3 (-814 (-398 (-921 |#1|))) "failed") (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))) (-1119)) 80) (((-3 (-814 (-398 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed"))) "failed") (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|)))) 20) (((-3 (-814 (-398 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed"))) "failed") (-398 (-921 |#1|)) (-285 (-814 (-921 |#1|)))) 35)) (-2091 (((-807 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|)))) 23) (((-807 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-285 (-807 (-921 |#1|)))) 43)))
-(((-613 |#1|) (-10 -7 (-15 -2913 ((-3 (-814 (-398 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed"))) "failed") (-398 (-921 |#1|)) (-285 (-814 (-921 |#1|))))) (-15 -2913 ((-3 (-814 (-398 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed"))) "failed") (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))))) (-15 -2091 ((-807 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-285 (-807 (-921 |#1|))))) (-15 -2091 ((-807 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))))) (-15 -2913 ((-3 (-814 (-398 (-921 |#1|))) "failed") (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))) (-1119)))) (-442)) (T -613))
-((-2913 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-285 (-398 (-921 *6)))) (-5 *5 (-1119)) (-5 *3 (-398 (-921 *6))) (-4 *6 (-442)) (-5 *2 (-814 *3)) (-5 *1 (-613 *6)))) (-2091 (*1 *2 *3 *4) (-12 (-5 *4 (-285 (-398 (-921 *5)))) (-5 *3 (-398 (-921 *5))) (-4 *5 (-442)) (-5 *2 (-807 *3)) (-5 *1 (-613 *5)))) (-2091 (*1 *2 *3 *4) (-12 (-5 *4 (-285 (-807 (-921 *5)))) (-4 *5 (-442)) (-5 *2 (-807 (-398 (-921 *5)))) (-5 *1 (-613 *5)) (-5 *3 (-398 (-921 *5))))) (-2913 (*1 *2 *3 *4) (-12 (-5 *4 (-285 (-398 (-921 *5)))) (-5 *3 (-398 (-921 *5))) (-4 *5 (-442)) (-5 *2 (-3 (-814 *3) (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) "failed")) (-5 *1 (-613 *5)))) (-2913 (*1 *2 *3 *4) (-12 (-5 *4 (-285 (-814 (-921 *5)))) (-4 *5 (-442)) (-5 *2 (-3 (-814 (-398 (-921 *5))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 *5))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 *5))) "failed"))) "failed")) (-5 *1 (-613 *5)) (-5 *3 (-398 (-921 *5))))))
-(-10 -7 (-15 -2913 ((-3 (-814 (-398 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed"))) "failed") (-398 (-921 |#1|)) (-285 (-814 (-921 |#1|))))) (-15 -2913 ((-3 (-814 (-398 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed"))) "failed") (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))))) (-15 -2091 ((-807 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-285 (-807 (-921 |#1|))))) (-15 -2091 ((-807 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))))) (-15 -2913 ((-3 (-814 (-398 (-921 |#1|))) "failed") (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))) (-1119))))
-((-2848 (((-3 (-1219 (-398 |#1|)) "failed") (-1219 |#2|) |#2|) 57 (-4000 (|has| |#1| (-354)))) (((-3 (-1219 |#1|) "failed") (-1219 |#2|) |#2|) 42 (|has| |#1| (-354)))) (-2749 (((-112) (-1219 |#2|)) 30)) (-1437 (((-3 (-1219 |#1|) "failed") (-1219 |#2|)) 33)))
-(((-614 |#1| |#2|) (-10 -7 (-15 -2749 ((-112) (-1219 |#2|))) (-15 -1437 ((-3 (-1219 |#1|) "failed") (-1219 |#2|))) (IF (|has| |#1| (-354)) (-15 -2848 ((-3 (-1219 |#1|) "failed") (-1219 |#2|) |#2|)) (-15 -2848 ((-3 (-1219 (-398 |#1|)) "failed") (-1219 |#2|) |#2|)))) (-539) (-615 |#1|)) (T -614))
-((-2848 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1219 *4)) (-4 *4 (-615 *5)) (-4000 (-4 *5 (-354))) (-4 *5 (-539)) (-5 *2 (-1219 (-398 *5))) (-5 *1 (-614 *5 *4)))) (-2848 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1219 *4)) (-4 *4 (-615 *5)) (-4 *5 (-354)) (-4 *5 (-539)) (-5 *2 (-1219 *5)) (-5 *1 (-614 *5 *4)))) (-1437 (*1 *2 *3) (|partial| -12 (-5 *3 (-1219 *5)) (-4 *5 (-615 *4)) (-4 *4 (-539)) (-5 *2 (-1219 *4)) (-5 *1 (-614 *4 *5)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-1219 *5)) (-4 *5 (-615 *4)) (-4 *4 (-539)) (-5 *2 (-112)) (-5 *1 (-614 *4 *5)))))
-(-10 -7 (-15 -2749 ((-112) (-1219 |#2|))) (-15 -1437 ((-3 (-1219 |#1|) "failed") (-1219 |#2|))) (IF (|has| |#1| (-354)) (-15 -2848 ((-3 (-1219 |#1|) "failed") (-1219 |#2|) |#2|)) (-15 -2848 ((-3 (-1219 (-398 |#1|)) "failed") (-1219 |#2|) |#2|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1694 (((-663 |#1|) (-663 $)) 34) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 33)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ (-547)) 27)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-615 |#1|) (-138) (-1016)) (T -615))
-((-1694 (*1 *2 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-615 *4)) (-4 *4 (-1016)) (-5 *2 (-663 *4)))) (-1694 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *1)) (-5 *4 (-1219 *1)) (-4 *1 (-615 *5)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -1877 (-663 *5)) (|:| |vec| (-1219 *5)))))))
-(-13 (-1016) (-10 -8 (-15 -1694 ((-663 |t#1|) (-663 $))) (-15 -1694 ((-2 (|:| -1877 (-663 |t#1|)) (|:| |vec| (-1219 |t#1|))) (-663 $) (-1219 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2468 ((|#2| (-619 |#1|) (-619 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-619 |#1|) (-619 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) |#2|) 17) ((|#2| (-619 |#1|) (-619 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|)) 12)))
-(((-616 |#1| |#2|) (-10 -7 (-15 -2468 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|))) (-15 -2468 (|#2| (-619 |#1|) (-619 |#2|) |#1|)) (-15 -2468 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) |#2|)) (-15 -2468 (|#2| (-619 |#1|) (-619 |#2|) |#1| |#2|)) (-15 -2468 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) (-1 |#2| |#1|))) (-15 -2468 (|#2| (-619 |#1|) (-619 |#2|) |#1| (-1 |#2| |#1|)))) (-1063) (-1173)) (T -616))
-((-2468 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1063)) (-4 *2 (-1173)) (-5 *1 (-616 *5 *2)))) (-2468 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) (-4 *5 (-1063)) (-4 *6 (-1173)) (-5 *1 (-616 *5 *6)))) (-2468 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) (-4 *2 (-1173)) (-5 *1 (-616 *5 *2)))) (-2468 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 *5)) (-4 *6 (-1063)) (-4 *5 (-1173)) (-5 *2 (-1 *5 *6)) (-5 *1 (-616 *6 *5)))) (-2468 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) (-4 *2 (-1173)) (-5 *1 (-616 *5 *2)))) (-2468 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) (-4 *5 (-1063)) (-4 *6 (-1173)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *5 *6)))))
-(-10 -7 (-15 -2468 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|))) (-15 -2468 (|#2| (-619 |#1|) (-619 |#2|) |#1|)) (-15 -2468 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) |#2|)) (-15 -2468 (|#2| (-619 |#1|) (-619 |#2|) |#1| |#2|)) (-15 -2468 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) (-1 |#2| |#1|))) (-15 -2468 (|#2| (-619 |#1|) (-619 |#2|) |#1| (-1 |#2| |#1|))))
-((-2816 (((-619 |#2|) (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|) 16)) (-2552 ((|#2| (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|) 18)) (-2790 (((-619 |#2|) (-1 |#2| |#1|) (-619 |#1|)) 13)))
-(((-617 |#1| |#2|) (-10 -7 (-15 -2816 ((-619 |#2|) (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2552 (|#2| (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2790 ((-619 |#2|) (-1 |#2| |#1|) (-619 |#1|)))) (-1173) (-1173)) (T -617))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-619 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-619 *6)) (-5 *1 (-617 *5 *6)))) (-2552 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-619 *5)) (-4 *5 (-1173)) (-4 *2 (-1173)) (-5 *1 (-617 *5 *2)))) (-2816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-619 *6)) (-4 *6 (-1173)) (-4 *5 (-1173)) (-5 *2 (-619 *5)) (-5 *1 (-617 *6 *5)))))
-(-10 -7 (-15 -2816 ((-619 |#2|) (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2552 (|#2| (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2790 ((-619 |#2|) (-1 |#2| |#1|) (-619 |#1|))))
-((-2790 (((-619 |#3|) (-1 |#3| |#1| |#2|) (-619 |#1|) (-619 |#2|)) 13)))
-(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -2790 ((-619 |#3|) (-1 |#3| |#1| |#2|) (-619 |#1|) (-619 |#2|)))) (-1173) (-1173) (-1173)) (T -618))
-((-2790 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-619 *6)) (-5 *5 (-619 *7)) (-4 *6 (-1173)) (-4 *7 (-1173)) (-4 *8 (-1173)) (-5 *2 (-619 *8)) (-5 *1 (-618 *6 *7 *8)))))
-(-10 -7 (-15 -2790 ((-619 |#3|) (-1 |#3| |#1| |#2|) (-619 |#1|) (-619 |#2|))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4153 ((|#1| $) NIL)) (-2832 ((|#1| $) NIL)) (-1336 (($ $) NIL)) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2165 (($ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) $) NIL (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2809 (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| |#1| (-821)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-3185 (($ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1986 ((|#1| $ |#1|) NIL (|has| $ (-6 -4330)))) (-2272 (($ $ $) NIL (|has| $ (-6 -4330)))) (-3200 ((|#1| $ |#1|) NIL (|has| $ (-6 -4330)))) (-4086 ((|#1| $ |#1|) NIL (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4330))) (($ $ "rest" $) NIL (|has| $ (-6 -4330))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) NIL (|has| $ (-6 -4330)))) (-3572 (($ $ $) 32 (|has| |#1| (-1063)))) (-3564 (($ $ $) 34 (|has| |#1| (-1063)))) (-3550 (($ $ $) 37 (|has| |#1| (-1063)))) (-4285 (($ (-1 (-112) |#1|) $) NIL)) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2823 ((|#1| $) NIL)) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-3649 (($ $) NIL) (($ $ (-745)) NIL)) (-2968 (($ $) NIL (|has| |#1| (-1063)))) (-3668 (($ $) 31 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1513 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3803 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1872 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) NIL)) (-2963 (((-112) $) NIL)) (-2876 (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063))) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) (-1 (-112) |#1|) $) NIL)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-3249 (((-112) $) 9)) (-3203 (((-619 $) $) NIL)) (-2554 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2618 (($) 7)) (-3735 (($ (-745) |#1|) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3145 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2777 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3517 (($ |#1|) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-3583 (((-619 |#1|) $) NIL)) (-1489 (((-112) $) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3820 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2657 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-2606 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3638 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3632 (($ $ |#1|) NIL (|has| $ (-6 -4330)))) (-1884 (((-112) $) NIL)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1186 (-547))) NIL) ((|#1| $ (-547)) 36) ((|#1| $ (-547) |#1|) NIL)) (-2857 (((-547) $ $) NIL)) (-2649 (($ $ (-1186 (-547))) NIL) (($ $ (-547)) NIL)) (-2159 (($ $ (-1186 (-547))) NIL) (($ $ (-547)) NIL)) (-1850 (((-112) $) NIL)) (-2005 (($ $) NIL)) (-2632 (($ $) NIL (|has| $ (-6 -4330)))) (-1749 (((-745) $) NIL)) (-2016 (($ $) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) 45 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) NIL)) (-3166 (($ |#1| $) 10)) (-3794 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1945 (($ $ $) 30) (($ |#1| $) NIL) (($ (-619 $)) NIL) (($ $ |#1|) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) NIL)) (-1421 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3710 (($ $ $) 11)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2273 (((-1119) $) 26 (|has| |#1| (-802))) (((-1119) $ (-112)) 27 (|has| |#1| (-802))) (((-1224) (-796) $) 28 (|has| |#1| (-802))) (((-1224) (-796) $ (-112)) 29 (|has| |#1| (-802)))) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-619 |#1|) (-13 (-640 |#1|) (-10 -8 (-15 -2618 ($)) (-15 -3249 ((-112) $)) (-15 -3166 ($ |#1| $)) (-15 -3710 ($ $ $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -3572 ($ $ $)) (-15 -3564 ($ $ $)) (-15 -3550 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|))) (-1173)) (T -619))
-((-2618 (*1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1173)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-619 *3)) (-4 *3 (-1173)))) (-3166 (*1 *1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1173)))) (-3710 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1173)))) (-3572 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1173)))) (-3564 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1173)))) (-3550 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1173)))))
-(-13 (-640 |#1|) (-10 -8 (-15 -2618 ($)) (-15 -3249 ((-112) $)) (-15 -3166 ($ |#1| $)) (-15 -3710 ($ $ $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -3572 ($ $ $)) (-15 -3564 ($ $ $)) (-15 -3550 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|)))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 11) (((-1141) $) NIL) ((|#1| $) 8)) (-2381 (((-112) $ $) NIL)))
-(((-620 |#1|) (-13 (-1047) (-591 |#1|)) (-1063)) (T -620))
-NIL
-(-13 (-1047) (-591 |#1|))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3657 (($ |#1| |#1| $) 43)) (-3899 (((-112) $ (-745)) NIL)) (-4285 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-2968 (($ $) 45)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1513 (($ |#1| $) 52 (|has| $ (-6 -4329))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4329)))) (-3803 (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2982 (((-619 |#1|) $) 9 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1859 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 37)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-4266 ((|#1| $) 46)) (-2657 (($ |#1| $) 26) (($ |#1| $ (-745)) 42)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2056 ((|#1| $) 48)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 21)) (-2245 (($) 25)) (-2516 (((-112) $) 50)) (-3941 (((-619 (-2 (|:| -1786 |#1|) (|:| -3992 (-745)))) $) 59)) (-2699 (($) 23) (($ (-619 |#1|)) 18)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) 56 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) 19)) (-2838 (((-523) $) 34 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) NIL)) (-3838 (((-832) $) 14 (|has| |#1| (-591 (-832))))) (-2300 (($ (-619 |#1|)) 22)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 61 (|has| |#1| (-1063)))) (-3767 (((-745) $) 16 (|has| $ (-6 -4329)))))
-(((-621 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4329) (-15 -2516 ((-112) $)) (-15 -3657 ($ |#1| |#1| $)))) (-1063)) (T -621))
-((-2516 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-621 *3)) (-4 *3 (-1063)))) (-3657 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1063)))))
-(-13 (-669 |#1|) (-10 -8 (-6 -4329) (-15 -2516 ((-112) $)) (-15 -3657 ($ |#1| |#1| $))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#1| $) 23)))
-(((-622 |#1|) (-138) (-1023)) (T -622))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1023)))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4161 ((|#1| $) NIL)) (-2839 ((|#1| $) NIL)) (-1343 (($ $) NIL)) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-3174 (($ $ (-549)) 59 (|has| $ (-6 -4338)))) (-4142 (((-112) $) NIL (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4311 (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| |#1| (-823)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4338)))) (-3193 (($ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-2838 ((|#1| $ |#1|) NIL (|has| $ (-6 -4338)))) (-4179 (($ $ $) 23 (|has| $ (-6 -4338)))) (-2780 ((|#1| $ |#1|) NIL (|has| $ (-6 -4338)))) (-4135 ((|#1| $ |#1|) 21 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4338))) (($ $ "rest" $) 24 (|has| $ (-6 -4338))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) NIL (|has| $ (-6 -4338)))) (-1717 (($ (-1 (-112) |#1|) $) NIL)) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2830 ((|#1| $) NIL)) (-1682 (($) NIL T CONST)) (-1585 (($ $) 28 (|has| $ (-6 -4338)))) (-3064 (($ $) 29)) (-3657 (($ $) 18) (($ $ (-747)) 32)) (-3745 (($ $) 55 (|has| |#1| (-1067)))) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2129 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) NIL)) (-3812 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1879 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) NIL)) (-3331 (((-112) $) NIL)) (-2883 (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1067))) (((-549) |#1| $) NIL (|has| |#1| (-1067))) (((-549) (-1 (-112) |#1|) $) NIL)) (-2989 (((-621 |#1|) $) 27 (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) NIL)) (-3895 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3743 (($ (-747) |#1|) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) 31 (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-1303 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3890 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3525 (($ |#1|) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3591 (((-621 |#1|) $) NIL)) (-2076 (((-112) $) NIL)) (-3851 (((-1125) $) 51 (|has| |#1| (-1067)))) (-3829 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-2751 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2616 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3646 ((|#1| $) 13) (($ $ (-747)) NIL)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1642 (($ $ |#1|) NIL (|has| $ (-6 -4338)))) (-3016 (((-112) $) NIL)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 12)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) 17)) (-3742 (($) 16)) (-3341 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1193 (-549))) NIL) ((|#1| $ (-549)) NIL) ((|#1| $ (-549) |#1|) NIL)) (-3230 (((-549) $ $) NIL)) (-3531 (($ $ (-1193 (-549))) NIL) (($ $ (-549)) NIL)) (-2167 (($ $ (-1193 (-549))) NIL) (($ $ (-549)) NIL)) (-3497 (((-112) $) 34)) (-1999 (($ $) NIL)) (-2643 (($ $) NIL (|has| $ (-6 -4338)))) (-3798 (((-747) $) NIL)) (-3612 (($ $) 36)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) 35)) (-2845 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 26)) (-3196 (($ $ $) 54) (($ $ |#1|) NIL)) (-1952 (($ $ $) NIL) (($ |#1| $) 10) (($ (-621 $)) NIL) (($ $ |#1|) NIL)) (-3846 (((-834) $) 46 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) NIL)) (-1987 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) 48 (|has| |#1| (-1067)))) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3775 (((-747) $) 9 (|has| $ (-6 -4337)))))
+(((-511 |#1| |#2|) (-642 |#1|) (-1180) (-549)) (T -511))
+NIL
+(-642 |#1|)
+((-3460 ((|#4| |#4|) 27)) (-3123 (((-747) |#4|) 32)) (-1323 (((-747) |#4|) 33)) (-1479 (((-621 |#3|) |#4|) 40 (|has| |#3| (-6 -4338)))) (-3849 (((-3 |#4| "failed") |#4|) 51)) (-1561 ((|#4| |#4|) 44)) (-2029 ((|#1| |#4|) 43)))
+(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3460 (|#4| |#4|)) (-15 -3123 ((-747) |#4|)) (-15 -1323 ((-747) |#4|)) (IF (|has| |#3| (-6 -4338)) (-15 -1479 ((-621 |#3|) |#4|)) |%noBranch|) (-15 -2029 (|#1| |#4|)) (-15 -1561 (|#4| |#4|)) (-15 -3849 ((-3 |#4| "failed") |#4|))) (-356) (-366 |#1|) (-366 |#1|) (-663 |#1| |#2| |#3|)) (T -512))
+((-3849 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-2029 (*1 *2 *3) (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-356)) (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-663 *2 *4 *5)))) (-1479 (*1 *2 *3) (-12 (|has| *6 (-6 -4338)) (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-621 *6)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-1323 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-747)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-3123 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-747)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-3460 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
+(-10 -7 (-15 -3460 (|#4| |#4|)) (-15 -3123 ((-747) |#4|)) (-15 -1323 ((-747) |#4|)) (IF (|has| |#3| (-6 -4338)) (-15 -1479 ((-621 |#3|) |#4|)) |%noBranch|) (-15 -2029 (|#1| |#4|)) (-15 -1561 (|#4| |#4|)) (-15 -3849 ((-3 |#4| "failed") |#4|)))
+((-3460 ((|#8| |#4|) 20)) (-1479 (((-621 |#3|) |#4|) 29 (|has| |#7| (-6 -4338)))) (-3849 (((-3 |#8| "failed") |#4|) 23)))
+(((-513 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3460 (|#8| |#4|)) (-15 -3849 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4338)) (-15 -1479 ((-621 |#3|) |#4|)) |%noBranch|)) (-541) (-366 |#1|) (-366 |#1|) (-663 |#1| |#2| |#3|) (-963 |#1|) (-366 |#5|) (-366 |#5|) (-663 |#5| |#6| |#7|)) (T -513))
+((-1479 (*1 *2 *3) (-12 (|has| *9 (-6 -4338)) (-4 *4 (-541)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-4 *7 (-963 *4)) (-4 *8 (-366 *7)) (-4 *9 (-366 *7)) (-5 *2 (-621 *6)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-663 *4 *5 *6)) (-4 *10 (-663 *7 *8 *9)))) (-3849 (*1 *2 *3) (|partial| -12 (-4 *4 (-541)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-4 *7 (-963 *4)) (-4 *2 (-663 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-663 *4 *5 *6)) (-4 *8 (-366 *7)) (-4 *9 (-366 *7)))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-4 *7 (-963 *4)) (-4 *2 (-663 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-663 *4 *5 *6)) (-4 *8 (-366 *7)) (-4 *9 (-366 *7)))))
+(-10 -7 (-15 -3460 (|#8| |#4|)) (-15 -3849 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4338)) (-15 -1479 ((-621 |#3|) |#4|)) |%noBranch|))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3769 (($ (-747) (-747)) NIL)) (-1648 (($ $ $) NIL)) (-3682 (($ (-582 |#1| |#3|)) NIL) (($ $) NIL)) (-2092 (((-112) $) NIL)) (-4206 (($ $ (-549) (-549)) 12)) (-1769 (($ $ (-549) (-549)) NIL)) (-1624 (($ $ (-549) (-549) (-549) (-549)) NIL)) (-4218 (($ $) NIL)) (-2340 (((-112) $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-1756 (($ $ (-549) (-549) $) NIL)) (-2254 ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-621 (-549)) (-621 (-549)) $) NIL)) (-3537 (($ $ (-549) (-582 |#1| |#3|)) NIL)) (-3815 (($ $ (-549) (-582 |#1| |#2|)) NIL)) (-2228 (($ (-747) |#1|) NIL)) (-1682 (($) NIL T CONST)) (-3460 (($ $) 21 (|has| |#1| (-300)))) (-4060 (((-582 |#1| |#3|) $ (-549)) NIL)) (-3123 (((-747) $) 24 (|has| |#1| (-541)))) (-1879 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1809 ((|#1| $ (-549) (-549)) NIL)) (-2989 (((-621 |#1|) $) NIL)) (-1323 (((-747) $) 26 (|has| |#1| (-541)))) (-1479 (((-621 (-582 |#1| |#2|)) $) 29 (|has| |#1| (-541)))) (-2142 (((-747) $) NIL)) (-3743 (($ (-747) (-747) |#1|) NIL)) (-2155 (((-747) $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-1929 ((|#1| $) 19 (|has| |#1| (-6 (-4339 "*"))))) (-1761 (((-549) $) 10)) (-2703 (((-549) $) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1661 (((-549) $) 11)) (-1887 (((-549) $) NIL)) (-3946 (($ (-621 (-621 |#1|))) NIL)) (-1868 (($ (-1 |#1| |#1|) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2913 (((-621 (-621 |#1|)) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3849 (((-3 $ "failed") $) 33 (|has| |#1| (-356)))) (-3571 (($ $ $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1642 (($ $ |#1|) NIL)) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-621 (-549)) (-621 (-549))) NIL)) (-2133 (($ (-621 |#1|)) NIL) (($ (-621 $)) NIL)) (-1757 (((-112) $) NIL)) (-2029 ((|#1| $) 17 (|has| |#1| (-6 (-4339 "*"))))) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-2851 (((-582 |#1| |#2|) $ (-549)) NIL)) (-3846 (($ (-582 |#1| |#2|)) NIL) (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2974 (((-112) $) NIL)) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $ $) NIL) (($ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-549) $) NIL) (((-582 |#1| |#2|) $ (-582 |#1| |#2|)) NIL) (((-582 |#1| |#3|) (-582 |#1| |#3|) $) NIL)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-514 |#1| |#2| |#3|) (-663 |#1| (-582 |#1| |#3|) (-582 |#1| |#2|)) (-1018) (-549) (-549)) (T -514))
+NIL
+(-663 |#1| (-582 |#1| |#3|) (-582 |#1| |#2|))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-1294 (((-621 (-1179)) $) 13)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL) (($ (-621 (-1179))) 11)) (-2389 (((-112) $ $) NIL)))
+(((-515) (-13 (-1050) (-10 -8 (-15 -3846 ($ (-621 (-1179)))) (-15 -1294 ((-621 (-1179)) $))))) (T -515))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-1179))) (-5 *1 (-515)))) (-1294 (*1 *2 *1) (-12 (-5 *2 (-621 (-1179))) (-5 *1 (-515)))))
+(-13 (-1050) (-10 -8 (-15 -3846 ($ (-621 (-1179)))) (-15 -1294 ((-621 (-1179)) $))))
+((-3834 (((-112) $ $) NIL)) (-4058 (((-1148) $) 13)) (-3851 (((-1125) $) NIL)) (-4093 (((-1143) $) 11)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-516) (-13 (-1050) (-10 -8 (-15 -4093 ((-1143) $)) (-15 -4058 ((-1148) $))))) (T -516))
+((-4093 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-516)))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-516)))))
+(-13 (-1050) (-10 -8 (-15 -4093 ((-1143) $)) (-15 -4058 ((-1148) $))))
+((-2618 (((-1087) $ (-128)) 17)))
+(((-517 |#1|) (-10 -8 (-15 -2618 ((-1087) |#1| (-128)))) (-518)) (T -517))
+NIL
+(-10 -8 (-15 -2618 ((-1087) |#1| (-128))))
+((-2618 (((-1087) $ (-128)) 7)) (-3447 (((-1087) $) 8)) (-3578 (($ $) 6)))
+(((-518) (-138)) (T -518))
+((-3447 (*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1087)))) (-2618 (*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-128)) (-5 *2 (-1087)))))
+(-13 (-171) (-10 -8 (-15 -3447 ((-1087) $)) (-15 -2618 ((-1087) $ (-128)))))
+(((-171) . T))
+((-3407 (((-1139 |#1|) (-747)) 76)) (-2906 (((-1226 |#1|) (-1226 |#1|) (-892)) 69)) (-1719 (((-1231) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))) |#1|) 84)) (-2972 (((-1226 |#1|) (-1226 |#1|) (-747)) 36)) (-3239 (((-1226 |#1|) (-892)) 71)) (-2668 (((-1226 |#1|) (-1226 |#1|) (-549)) 24)) (-3028 (((-1139 |#1|) (-1226 |#1|)) 77)) (-1973 (((-1226 |#1|) (-892)) 95)) (-4091 (((-112) (-1226 |#1|)) 80)) (-3630 (((-1226 |#1|) (-1226 |#1|) (-892)) 62)) (-3788 (((-1139 |#1|) (-1226 |#1|)) 89)) (-1881 (((-892) (-1226 |#1|)) 59)) (-1992 (((-1226 |#1|) (-1226 |#1|)) 30)) (-3493 (((-1226 |#1|) (-892) (-892)) 97)) (-3645 (((-1226 |#1|) (-1226 |#1|) (-1087) (-1087)) 23)) (-3009 (((-1226 |#1|) (-1226 |#1|) (-747) (-1087)) 37)) (-1949 (((-1226 (-1226 |#1|)) (-892)) 94)) (-2513 (((-1226 |#1|) (-1226 |#1|) (-1226 |#1|)) 81)) (** (((-1226 |#1|) (-1226 |#1|) (-549)) 45)) (* (((-1226 |#1|) (-1226 |#1|) (-1226 |#1|)) 25)))
+(((-519 |#1|) (-10 -7 (-15 -1719 ((-1231) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))) |#1|)) (-15 -3239 ((-1226 |#1|) (-892))) (-15 -3493 ((-1226 |#1|) (-892) (-892))) (-15 -3028 ((-1139 |#1|) (-1226 |#1|))) (-15 -3407 ((-1139 |#1|) (-747))) (-15 -3009 ((-1226 |#1|) (-1226 |#1|) (-747) (-1087))) (-15 -2972 ((-1226 |#1|) (-1226 |#1|) (-747))) (-15 -3645 ((-1226 |#1|) (-1226 |#1|) (-1087) (-1087))) (-15 -2668 ((-1226 |#1|) (-1226 |#1|) (-549))) (-15 ** ((-1226 |#1|) (-1226 |#1|) (-549))) (-15 * ((-1226 |#1|) (-1226 |#1|) (-1226 |#1|))) (-15 -2513 ((-1226 |#1|) (-1226 |#1|) (-1226 |#1|))) (-15 -3630 ((-1226 |#1|) (-1226 |#1|) (-892))) (-15 -2906 ((-1226 |#1|) (-1226 |#1|) (-892))) (-15 -1992 ((-1226 |#1|) (-1226 |#1|))) (-15 -1881 ((-892) (-1226 |#1|))) (-15 -4091 ((-112) (-1226 |#1|))) (-15 -1949 ((-1226 (-1226 |#1|)) (-892))) (-15 -1973 ((-1226 |#1|) (-892))) (-15 -3788 ((-1139 |#1|) (-1226 |#1|)))) (-342)) (T -519))
+((-3788 (*1 *2 *3) (-12 (-5 *3 (-1226 *4)) (-4 *4 (-342)) (-5 *2 (-1139 *4)) (-5 *1 (-519 *4)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1226 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1226 (-1226 *4))) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-4091 (*1 *2 *3) (-12 (-5 *3 (-1226 *4)) (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-519 *4)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-1226 *4)) (-4 *4 (-342)) (-5 *2 (-892)) (-5 *1 (-519 *4)))) (-1992 (*1 *2 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) (-2906 (*1 *2 *2 *3) (-12 (-5 *2 (-1226 *4)) (-5 *3 (-892)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *2 (-1226 *4)) (-5 *3 (-892)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-2513 (*1 *2 *2 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1226 *4)) (-5 *3 (-549)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-2668 (*1 *2 *2 *3) (-12 (-5 *2 (-1226 *4)) (-5 *3 (-549)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-3645 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1226 *4)) (-5 *3 (-1087)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-2972 (*1 *2 *2 *3) (-12 (-5 *2 (-1226 *4)) (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-519 *4)))) (-3009 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1226 *5)) (-5 *3 (-747)) (-5 *4 (-1087)) (-4 *5 (-342)) (-5 *1 (-519 *5)))) (-3407 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1139 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-1226 *4)) (-4 *4 (-342)) (-5 *2 (-1139 *4)) (-5 *1 (-519 *4)))) (-3493 (*1 *2 *3 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1226 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1226 *4)) (-5 *1 (-519 *4)) (-4 *4 (-342)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *3 (-1226 (-621 (-2 (|:| -4161 *4) (|:| -3493 (-1087)))))) (-4 *4 (-342)) (-5 *2 (-1231)) (-5 *1 (-519 *4)))))
+(-10 -7 (-15 -1719 ((-1231) (-1226 (-621 (-2 (|:| -4161 |#1|) (|:| -3493 (-1087))))) |#1|)) (-15 -3239 ((-1226 |#1|) (-892))) (-15 -3493 ((-1226 |#1|) (-892) (-892))) (-15 -3028 ((-1139 |#1|) (-1226 |#1|))) (-15 -3407 ((-1139 |#1|) (-747))) (-15 -3009 ((-1226 |#1|) (-1226 |#1|) (-747) (-1087))) (-15 -2972 ((-1226 |#1|) (-1226 |#1|) (-747))) (-15 -3645 ((-1226 |#1|) (-1226 |#1|) (-1087) (-1087))) (-15 -2668 ((-1226 |#1|) (-1226 |#1|) (-549))) (-15 ** ((-1226 |#1|) (-1226 |#1|) (-549))) (-15 * ((-1226 |#1|) (-1226 |#1|) (-1226 |#1|))) (-15 -2513 ((-1226 |#1|) (-1226 |#1|) (-1226 |#1|))) (-15 -3630 ((-1226 |#1|) (-1226 |#1|) (-892))) (-15 -2906 ((-1226 |#1|) (-1226 |#1|) (-892))) (-15 -1992 ((-1226 |#1|) (-1226 |#1|))) (-15 -1881 ((-892) (-1226 |#1|))) (-15 -4091 ((-112) (-1226 |#1|))) (-15 -1949 ((-1226 (-1226 |#1|)) (-892))) (-15 -1973 ((-1226 |#1|) (-892))) (-15 -3788 ((-1139 |#1|) (-1226 |#1|))))
+((-1434 (((-1 |#1| |#1|) |#1|) 11)) (-3012 (((-1 |#1| |#1|)) 10)))
+(((-520 |#1|) (-10 -7 (-15 -3012 ((-1 |#1| |#1|))) (-15 -1434 ((-1 |#1| |#1|) |#1|))) (-13 (-703) (-25))) (T -520))
+((-1434 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))) (-3012 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))))
+(-10 -7 (-15 -3012 ((-1 |#1| |#1|))) (-15 -1434 ((-1 |#1| |#1|) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2861 (($ $ $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2070 (($ $) NIL)) (-2246 (($ (-747) |#1|) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2797 (($ (-1 (-747) (-747)) $) NIL)) (-1823 ((|#1| $) NIL)) (-2043 (((-747) $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 20)) (-3276 (($) NIL T CONST)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) NIL)) (-2486 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL)))
+(((-521 |#1|) (-13 (-769) (-500 (-747) |#1|)) (-823)) (T -521))
+NIL
+(-13 (-769) (-500 (-747) |#1|))
+((-3301 (((-621 |#2|) (-1139 |#1|) |#3|) 83)) (-3484 (((-621 (-2 (|:| |outval| |#2|) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 |#2|))))) (-665 |#1|) |#3| (-1 (-411 (-1139 |#1|)) (-1139 |#1|))) 100)) (-3777 (((-1139 |#1|) (-665 |#1|)) 95)))
+(((-522 |#1| |#2| |#3|) (-10 -7 (-15 -3777 ((-1139 |#1|) (-665 |#1|))) (-15 -3301 ((-621 |#2|) (-1139 |#1|) |#3|)) (-15 -3484 ((-621 (-2 (|:| |outval| |#2|) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 |#2|))))) (-665 |#1|) |#3| (-1 (-411 (-1139 |#1|)) (-1139 |#1|))))) (-356) (-356) (-13 (-356) (-821))) (T -522))
+((-3484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *6)) (-5 *5 (-1 (-411 (-1139 *6)) (-1139 *6))) (-4 *6 (-356)) (-5 *2 (-621 (-2 (|:| |outval| *7) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 *7)))))) (-5 *1 (-522 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-821))))) (-3301 (*1 *2 *3 *4) (-12 (-5 *3 (-1139 *5)) (-4 *5 (-356)) (-5 *2 (-621 *6)) (-5 *1 (-522 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-356)) (-5 *2 (-1139 *4)) (-5 *1 (-522 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-821))))))
+(-10 -7 (-15 -3777 ((-1139 |#1|) (-665 |#1|))) (-15 -3301 ((-621 |#2|) (-1139 |#1|) |#3|)) (-15 -3484 ((-621 (-2 (|:| |outval| |#2|) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 |#2|))))) (-665 |#1|) |#3| (-1 (-411 (-1139 |#1|)) (-1139 |#1|)))))
+((-3048 (((-816 (-549))) 12)) (-3059 (((-816 (-549))) 14)) (-1438 (((-809 (-549))) 9)))
+(((-523) (-10 -7 (-15 -1438 ((-809 (-549)))) (-15 -3048 ((-816 (-549)))) (-15 -3059 ((-816 (-549)))))) (T -523))
+((-3059 (*1 *2) (-12 (-5 *2 (-816 (-549))) (-5 *1 (-523)))) (-3048 (*1 *2) (-12 (-5 *2 (-816 (-549))) (-5 *1 (-523)))) (-1438 (*1 *2) (-12 (-5 *2 (-809 (-549))) (-5 *1 (-523)))))
+(-10 -7 (-15 -1438 ((-809 (-549)))) (-15 -3048 ((-816 (-549)))) (-15 -3059 ((-816 (-549)))))
+((-2759 (((-525) (-1143)) 15)) (-2860 ((|#1| (-525)) 20)))
+(((-524 |#1|) (-10 -7 (-15 -2759 ((-525) (-1143))) (-15 -2860 (|#1| (-525)))) (-1180)) (T -524))
+((-2860 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-524 *2)) (-4 *2 (-1180)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-525)) (-5 *1 (-524 *4)) (-4 *4 (-1180)))))
+(-10 -7 (-15 -2759 ((-525) (-1143))) (-15 -2860 (|#1| (-525))))
+((-3834 (((-112) $ $) NIL)) (-1836 (((-1125) $) 48)) (-1404 (((-112) $) 43)) (-3944 (((-1143) $) 44)) (-3128 (((-112) $) 41)) (-1525 (((-1125) $) 42)) (-3380 (($ (-1125)) 49)) (-3374 (((-112) $) NIL)) (-2671 (((-112) $) NIL)) (-3259 (((-112) $) NIL)) (-3851 (((-1125) $) NIL)) (-2725 (($ $ (-621 (-1143))) 20)) (-2860 (((-52) $) 22)) (-2528 (((-112) $) NIL)) (-3965 (((-549) $) NIL)) (-3990 (((-1087) $) NIL)) (-3568 (($ $ (-621 (-1143)) (-1143)) 61)) (-1978 (((-112) $) NIL)) (-1355 (((-219) $) NIL)) (-3941 (($ $) 38)) (-2977 (((-834) $) NIL)) (-2652 (((-112) $ $) NIL)) (-3341 (($ $ (-549)) NIL) (($ $ (-621 (-549))) NIL)) (-2197 (((-621 $) $) 28)) (-3543 (((-1143) (-621 $)) 50)) (-2845 (($ (-621 $)) 54) (($ (-1125)) NIL) (($ (-1143)) 18) (($ (-549)) 8) (($ (-219)) 25) (($ (-834)) NIL) (((-1071) $) 11) (($ (-1071)) 12)) (-2093 (((-1143) (-1143) (-621 $)) 53)) (-3846 (((-834) $) 46)) (-3546 (($ $) 52)) (-3536 (($ $) 51)) (-2144 (($ $ (-621 $)) 58)) (-1775 (((-112) $) 27)) (-3276 (($) 9 T CONST)) (-3287 (($) 10 T CONST)) (-2389 (((-112) $ $) 62)) (-2513 (($ $ $) 67)) (-2486 (($ $ $) 63)) (** (($ $ (-747)) 66) (($ $ (-549)) 65)) (* (($ $ $) 64)) (-3775 (((-549) $) NIL)))
+(((-525) (-13 (-1070 (-1125) (-1143) (-549) (-219) (-834)) (-594 (-1071)) (-10 -8 (-15 -2860 ((-52) $)) (-15 -2845 ($ (-1071))) (-15 -2144 ($ $ (-621 $))) (-15 -3568 ($ $ (-621 (-1143)) (-1143))) (-15 -2725 ($ $ (-621 (-1143)))) (-15 -2486 ($ $ $)) (-15 * ($ $ $)) (-15 -2513 ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ (-549))) (-15 0 ($) -2589) (-15 1 ($) -2589) (-15 -3941 ($ $)) (-15 -1836 ((-1125) $)) (-15 -3380 ($ (-1125))) (-15 -3543 ((-1143) (-621 $))) (-15 -2093 ((-1143) (-1143) (-621 $)))))) (T -525))
+((-2860 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-525)))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-525)))) (-2144 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-525))) (-5 *1 (-525)))) (-3568 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-1143)) (-5 *1 (-525)))) (-2725 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-525)))) (-2486 (*1 *1 *1 *1) (-5 *1 (-525))) (* (*1 *1 *1 *1) (-5 *1 (-525))) (-2513 (*1 *1 *1 *1) (-5 *1 (-525))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-525)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-525)))) (-3276 (*1 *1) (-5 *1 (-525))) (-3287 (*1 *1) (-5 *1 (-525))) (-3941 (*1 *1 *1) (-5 *1 (-525))) (-1836 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-525)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-525)))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-621 (-525))) (-5 *2 (-1143)) (-5 *1 (-525)))) (-2093 (*1 *2 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-525))) (-5 *1 (-525)))))
+(-13 (-1070 (-1125) (-1143) (-549) (-219) (-834)) (-594 (-1071)) (-10 -8 (-15 -2860 ((-52) $)) (-15 -2845 ($ (-1071))) (-15 -2144 ($ $ (-621 $))) (-15 -3568 ($ $ (-621 (-1143)) (-1143))) (-15 -2725 ($ $ (-621 (-1143)))) (-15 -2486 ($ $ $)) (-15 * ($ $ $)) (-15 -2513 ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ (-549))) (-15 (-3276) ($) -2589) (-15 (-3287) ($) -2589) (-15 -3941 ($ $)) (-15 -1836 ((-1125) $)) (-15 -3380 ($ (-1125))) (-15 -3543 ((-1143) (-621 $))) (-15 -2093 ((-1143) (-1143) (-621 $)))))
+((-1979 ((|#2| |#2|) 17)) (-3753 ((|#2| |#2|) 13)) (-2098 ((|#2| |#2| (-549) (-549)) 20)) (-3131 ((|#2| |#2|) 15)))
+(((-526 |#1| |#2|) (-10 -7 (-15 -3753 (|#2| |#2|)) (-15 -3131 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -2098 (|#2| |#2| (-549) (-549)))) (-13 (-541) (-145)) (-1217 |#1|)) (T -526))
+((-2098 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-13 (-541) (-145))) (-5 *1 (-526 *4 *2)) (-4 *2 (-1217 *4)))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3)))) (-3131 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3)))) (-3753 (*1 *2 *2) (-12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-526 *3 *2)) (-4 *2 (-1217 *3)))))
+(-10 -7 (-15 -3753 (|#2| |#2|)) (-15 -3131 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -2098 (|#2| |#2| (-549) (-549))))
+((-1408 (((-621 (-287 (-923 |#2|))) (-621 |#2|) (-621 (-1143))) 32)) (-2892 (((-621 |#2|) (-923 |#1|) |#3|) 53) (((-621 |#2|) (-1139 |#1|) |#3|) 52)) (-3875 (((-621 (-621 |#2|)) (-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1143)) |#3|) 91)))
+(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -2892 ((-621 |#2|) (-1139 |#1|) |#3|)) (-15 -2892 ((-621 |#2|) (-923 |#1|) |#3|)) (-15 -3875 ((-621 (-621 |#2|)) (-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1143)) |#3|)) (-15 -1408 ((-621 (-287 (-923 |#2|))) (-621 |#2|) (-621 (-1143))))) (-444) (-356) (-13 (-356) (-821))) (T -527))
+((-1408 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 (-1143))) (-4 *6 (-356)) (-5 *2 (-621 (-287 (-923 *6)))) (-5 *1 (-527 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-13 (-356) (-821))))) (-3875 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-621 (-923 *6))) (-5 *4 (-621 (-1143))) (-4 *6 (-444)) (-5 *2 (-621 (-621 *7))) (-5 *1 (-527 *6 *7 *5)) (-4 *7 (-356)) (-4 *5 (-13 (-356) (-821))))) (-2892 (*1 *2 *3 *4) (-12 (-5 *3 (-923 *5)) (-4 *5 (-444)) (-5 *2 (-621 *6)) (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))) (-2892 (*1 *2 *3 *4) (-12 (-5 *3 (-1139 *5)) (-4 *5 (-444)) (-5 *2 (-621 *6)) (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))))
+(-10 -7 (-15 -2892 ((-621 |#2|) (-1139 |#1|) |#3|)) (-15 -2892 ((-621 |#2|) (-923 |#1|) |#3|)) (-15 -3875 ((-621 (-621 |#2|)) (-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1143)) |#3|)) (-15 -1408 ((-621 (-287 (-923 |#2|))) (-621 |#2|) (-621 (-1143)))))
+((-3574 ((|#2| |#2| |#1|) 17)) (-1665 ((|#2| (-621 |#2|)) 27)) (-3480 ((|#2| (-621 |#2|)) 46)))
+(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1665 (|#2| (-621 |#2|))) (-15 -3480 (|#2| (-621 |#2|))) (-15 -3574 (|#2| |#2| |#1|))) (-300) (-1202 |#1|) |#1| (-1 |#1| |#1| (-747))) (T -528))
+((-3574 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-747))) (-5 *1 (-528 *3 *2 *4 *5)) (-4 *2 (-1202 *3)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-1202 *4)) (-5 *1 (-528 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-1202 *4)) (-5 *1 (-528 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))))
+(-10 -7 (-15 -1665 (|#2| (-621 |#2|))) (-15 -3480 (|#2| (-621 |#2|))) (-15 -3574 (|#2| |#2| |#1|)))
+((-2121 (((-411 (-1139 |#4|)) (-1139 |#4|) (-1 (-411 (-1139 |#3|)) (-1139 |#3|))) 80) (((-411 |#4|) |#4| (-1 (-411 (-1139 |#3|)) (-1139 |#3|))) 169)))
+(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2121 ((-411 |#4|) |#4| (-1 (-411 (-1139 |#3|)) (-1139 |#3|)))) (-15 -2121 ((-411 (-1139 |#4|)) (-1139 |#4|) (-1 (-411 (-1139 |#3|)) (-1139 |#3|))))) (-823) (-769) (-13 (-300) (-145)) (-920 |#3| |#2| |#1|)) (T -529))
+((-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 (-1139 *7)) (-1139 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *8 (-920 *7 *6 *5)) (-5 *2 (-411 (-1139 *8))) (-5 *1 (-529 *5 *6 *7 *8)) (-5 *3 (-1139 *8)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 (-1139 *7)) (-1139 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *2 (-411 *3)) (-5 *1 (-529 *5 *6 *7 *3)) (-4 *3 (-920 *7 *6 *5)))))
+(-10 -7 (-15 -2121 ((-411 |#4|) |#4| (-1 (-411 (-1139 |#3|)) (-1139 |#3|)))) (-15 -2121 ((-411 (-1139 |#4|)) (-1139 |#4|) (-1 (-411 (-1139 |#3|)) (-1139 |#3|)))))
+((-1979 ((|#4| |#4|) 74)) (-3753 ((|#4| |#4|) 70)) (-2098 ((|#4| |#4| (-549) (-549)) 76)) (-3131 ((|#4| |#4|) 72)))
+(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3753 (|#4| |#4|)) (-15 -3131 (|#4| |#4|)) (-15 -1979 (|#4| |#4|)) (-15 -2098 (|#4| |#4| (-549) (-549)))) (-13 (-356) (-361) (-594 (-549))) (-1202 |#1|) (-701 |#1| |#2|) (-1217 |#3|)) (T -530))
+((-2098 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-13 (-356) (-361) (-594 *3))) (-4 *5 (-1202 *4)) (-4 *6 (-701 *4 *5)) (-5 *1 (-530 *4 *5 *6 *2)) (-4 *2 (-1217 *6)))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-4 *4 (-1202 *3)) (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5)))) (-3131 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-4 *4 (-1202 *3)) (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5)))) (-3753 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-4 *4 (-1202 *3)) (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5)))))
+(-10 -7 (-15 -3753 (|#4| |#4|)) (-15 -3131 (|#4| |#4|)) (-15 -1979 (|#4| |#4|)) (-15 -2098 (|#4| |#4| (-549) (-549))))
+((-1979 ((|#2| |#2|) 27)) (-3753 ((|#2| |#2|) 23)) (-2098 ((|#2| |#2| (-549) (-549)) 29)) (-3131 ((|#2| |#2|) 25)))
+(((-531 |#1| |#2|) (-10 -7 (-15 -3753 (|#2| |#2|)) (-15 -3131 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -2098 (|#2| |#2| (-549) (-549)))) (-13 (-356) (-361) (-594 (-549))) (-1217 |#1|)) (T -531))
+((-2098 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-13 (-356) (-361) (-594 *3))) (-5 *1 (-531 *4 *2)) (-4 *2 (-1217 *4)))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1217 *3)))) (-3131 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1217 *3)))) (-3753 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1217 *3)))))
+(-10 -7 (-15 -3753 (|#2| |#2|)) (-15 -3131 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -2098 (|#2| |#2| (-549) (-549))))
+((-2395 (((-3 (-549) "failed") |#2| |#1| (-1 (-3 (-549) "failed") |#1|)) 14) (((-3 (-549) "failed") |#2| |#1| (-549) (-1 (-3 (-549) "failed") |#1|)) 13) (((-3 (-549) "failed") |#2| (-549) (-1 (-3 (-549) "failed") |#1|)) 26)))
+(((-532 |#1| |#2|) (-10 -7 (-15 -2395 ((-3 (-549) "failed") |#2| (-549) (-1 (-3 (-549) "failed") |#1|))) (-15 -2395 ((-3 (-549) "failed") |#2| |#1| (-549) (-1 (-3 (-549) "failed") |#1|))) (-15 -2395 ((-3 (-549) "failed") |#2| |#1| (-1 (-3 (-549) "failed") |#1|)))) (-1018) (-1202 |#1|)) (T -532))
+((-2395 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-549) "failed") *4)) (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-532 *4 *3)) (-4 *3 (-1202 *4)))) (-2395 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-549) "failed") *4)) (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-532 *4 *3)) (-4 *3 (-1202 *4)))) (-2395 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-549) "failed") *5)) (-4 *5 (-1018)) (-5 *2 (-549)) (-5 *1 (-532 *5 *3)) (-4 *3 (-1202 *5)))))
+(-10 -7 (-15 -2395 ((-3 (-549) "failed") |#2| (-549) (-1 (-3 (-549) "failed") |#1|))) (-15 -2395 ((-3 (-549) "failed") |#2| |#1| (-549) (-1 (-3 (-549) "failed") |#1|))) (-15 -2395 ((-3 (-549) "failed") |#2| |#1| (-1 (-3 (-549) "failed") |#1|))))
+((-2831 (($ $ $) 79)) (-2402 (((-411 $) $) 47)) (-2714 (((-3 (-549) "failed") $) 59)) (-2659 (((-549) $) 37)) (-3405 (((-3 (-400 (-549)) "failed") $) 74)) (-3679 (((-112) $) 24)) (-2532 (((-400 (-549)) $) 72)) (-1420 (((-112) $) 50)) (-3806 (($ $ $ $) 86)) (-2772 (((-112) $) 16)) (-1271 (($ $ $) 57)) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 69)) (-1681 (((-3 $ "failed") $) 64)) (-2433 (($ $) 23)) (-2950 (($ $ $) 84)) (-3060 (($) 60)) (-4005 (($ $) 53)) (-2121 (((-411 $) $) 45)) (-3450 (((-112) $) 14)) (-3684 (((-747) $) 28)) (-3456 (($ $ (-747)) NIL) (($ $) 10)) (-2281 (($ $) 17)) (-2845 (((-549) $) NIL) (((-525) $) 36) (((-863 (-549)) $) 40) (((-372) $) 31) (((-219) $) 33)) (-2082 (((-747)) 8)) (-3935 (((-112) $ $) 20)) (-3179 (($ $ $) 55)))
+(((-533 |#1|) (-10 -8 (-15 -2950 (|#1| |#1| |#1|)) (-15 -3806 (|#1| |#1| |#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -3405 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2532 ((-400 (-549)) |#1|)) (-15 -3679 ((-112) |#1|)) (-15 -2831 (|#1| |#1| |#1|)) (-15 -3935 ((-112) |#1| |#1|)) (-15 -3450 ((-112) |#1|)) (-15 -3060 (|#1|)) (-15 -1681 ((-3 |#1| "failed") |#1|)) (-15 -2845 ((-219) |#1|)) (-15 -2845 ((-372) |#1|)) (-15 -1271 (|#1| |#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -3179 (|#1| |#1| |#1|)) (-15 -2932 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2845 ((-863 (-549)) |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2845 ((-549) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -2772 ((-112) |#1|)) (-15 -3684 ((-747) |#1|)) (-15 -2121 ((-411 |#1|) |#1|)) (-15 -2402 ((-411 |#1|) |#1|)) (-15 -1420 ((-112) |#1|)) (-15 -2082 ((-747)))) (-534)) (T -533))
+((-2082 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-533 *3)) (-4 *3 (-534)))))
+(-10 -8 (-15 -2950 (|#1| |#1| |#1|)) (-15 -3806 (|#1| |#1| |#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -3405 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2532 ((-400 (-549)) |#1|)) (-15 -3679 ((-112) |#1|)) (-15 -2831 (|#1| |#1| |#1|)) (-15 -3935 ((-112) |#1| |#1|)) (-15 -3450 ((-112) |#1|)) (-15 -3060 (|#1|)) (-15 -1681 ((-3 |#1| "failed") |#1|)) (-15 -2845 ((-219) |#1|)) (-15 -2845 ((-372) |#1|)) (-15 -1271 (|#1| |#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -3179 (|#1| |#1| |#1|)) (-15 -2932 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2845 ((-863 (-549)) |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2845 ((-549) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -2772 ((-112) |#1|)) (-15 -3684 ((-747) |#1|)) (-15 -2121 ((-411 |#1|) |#1|)) (-15 -2402 ((-411 |#1|) |#1|)) (-15 -1420 ((-112) |#1|)) (-15 -2082 ((-747))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2831 (($ $ $) 82)) (-2001 (((-3 $ "failed") $ $) 19)) (-3332 (($ $ $ $) 71)) (-3979 (($ $) 49)) (-2402 (((-411 $) $) 50)) (-3866 (((-112) $ $) 122)) (-1872 (((-549) $) 111)) (-1310 (($ $ $) 85)) (-1682 (($) 17 T CONST)) (-2714 (((-3 (-549) "failed") $) 103)) (-2659 (((-549) $) 102)) (-2095 (($ $ $) 126)) (-3879 (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 101) (((-665 (-549)) (-665 $)) 100)) (-2114 (((-3 $ "failed") $) 32)) (-3405 (((-3 (-400 (-549)) "failed") $) 79)) (-3679 (((-112) $) 81)) (-2532 (((-400 (-549)) $) 80)) (-3239 (($) 78) (($ $) 77)) (-2067 (($ $ $) 125)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 120)) (-1420 (((-112) $) 51)) (-3806 (($ $ $ $) 69)) (-3947 (($ $ $) 83)) (-2772 (((-112) $) 113)) (-1271 (($ $ $) 94)) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 97)) (-2675 (((-112) $) 30)) (-3559 (((-112) $) 89)) (-1681 (((-3 $ "failed") $) 91)) (-2374 (((-112) $) 112)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 129)) (-3030 (($ $ $ $) 70)) (-2863 (($ $ $) 114)) (-3575 (($ $ $) 115)) (-2433 (($ $) 73)) (-4210 (($ $) 86)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-2950 (($ $ $) 68)) (-3060 (($) 90 T CONST)) (-3781 (($ $) 75)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-4005 (($ $) 95)) (-2121 (((-411 $) $) 48)) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 127)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 121)) (-3450 (((-112) $) 88)) (-3684 (((-747) $) 123)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 124)) (-3456 (($ $ (-747)) 108) (($ $) 106)) (-1900 (($ $) 74)) (-2281 (($ $) 76)) (-2845 (((-549) $) 105) (((-525) $) 99) (((-863 (-549)) $) 98) (((-372) $) 93) (((-219) $) 92)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-549)) 104)) (-2082 (((-747)) 28)) (-3935 (((-112) $ $) 84)) (-3179 (($ $ $) 96)) (-1864 (($) 87)) (-1498 (((-112) $ $) 37)) (-3610 (($ $ $ $) 72)) (-3212 (($ $) 110)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-747)) 109) (($ $) 107)) (-2448 (((-112) $ $) 117)) (-2425 (((-112) $ $) 118)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 116)) (-2412 (((-112) $ $) 119)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-534) (-138)) (T -534))
+((-3559 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-1864 (*1 *1) (-4 *1 (-534))) (-4210 (*1 *1 *1) (-4 *1 (-534))) (-1310 (*1 *1 *1 *1) (-4 *1 (-534))) (-3935 (*1 *2 *1 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-3947 (*1 *1 *1 *1) (-4 *1 (-534))) (-2831 (*1 *1 *1 *1) (-4 *1 (-534))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-400 (-549))))) (-3405 (*1 *2 *1) (|partial| -12 (-4 *1 (-534)) (-5 *2 (-400 (-549))))) (-3239 (*1 *1) (-4 *1 (-534))) (-3239 (*1 *1 *1) (-4 *1 (-534))) (-2281 (*1 *1 *1) (-4 *1 (-534))) (-3781 (*1 *1 *1) (-4 *1 (-534))) (-1900 (*1 *1 *1) (-4 *1 (-534))) (-2433 (*1 *1 *1) (-4 *1 (-534))) (-3610 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-3332 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-3030 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-3806 (*1 *1 *1 *1 *1) (-4 *1 (-534))) (-2950 (*1 *1 *1 *1) (-4 *1 (-534))))
+(-13 (-1184) (-300) (-796) (-227) (-594 (-549)) (-1009 (-549)) (-617 (-549)) (-594 (-525)) (-594 (-863 (-549))) (-857 (-549)) (-141) (-993) (-145) (-1118) (-10 -8 (-15 -3559 ((-112) $)) (-15 -3450 ((-112) $)) (-6 -4336) (-15 -1864 ($)) (-15 -4210 ($ $)) (-15 -1310 ($ $ $)) (-15 -3935 ((-112) $ $)) (-15 -3947 ($ $ $)) (-15 -2831 ($ $ $)) (-15 -3679 ((-112) $)) (-15 -2532 ((-400 (-549)) $)) (-15 -3405 ((-3 (-400 (-549)) "failed") $)) (-15 -3239 ($)) (-15 -3239 ($ $)) (-15 -2281 ($ $)) (-15 -3781 ($ $)) (-15 -1900 ($ $)) (-15 -2433 ($ $)) (-15 -3610 ($ $ $ $)) (-15 -3332 ($ $ $ $)) (-15 -3030 ($ $ $ $)) (-15 -3806 ($ $ $ $)) (-15 -2950 ($ $ $)) (-6 -4335)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-834)) . T) ((-141) . T) ((-170) . T) ((-594 (-219)) . T) ((-594 (-372)) . T) ((-594 (-525)) . T) ((-594 (-549)) . T) ((-594 (-863 (-549))) . T) ((-227) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-541) . T) ((-624 $) . T) ((-617 (-549)) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-796) . T) ((-821) . T) ((-823) . T) ((-857 (-549)) . T) ((-891) . T) ((-993) . T) ((-1009 (-549)) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1118) . T) ((-1184) . T))
+((-3834 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3733 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-1535 (((-1231) $ |#1| |#1|) NIL (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#2| $ |#1| |#2|) NIL)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-3490 (((-3 |#2| "failed") |#1| $) NIL)) (-1682 (($) NIL T CONST)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-2129 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-3 |#2| "failed") |#1| $) NIL)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#2| $ |#1|) NIL)) (-2989 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 ((|#1| $) NIL (|has| |#1| (-823)))) (-1562 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-1569 ((|#1| $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4338))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3449 (((-621 |#1|) $) NIL)) (-2427 (((-112) |#1| $) NIL)) (-3504 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-2751 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-3303 (((-621 |#1|) $) NIL)) (-3761 (((-112) |#1| $) NIL)) (-3990 (((-1087) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3646 ((|#2| $) NIL (|has| |#1| (-823)))) (-3779 (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL)) (-1642 (($ $ |#2|) NIL (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2696 (((-621 |#2|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2898 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3846 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-3624 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-535 |#1| |#2| |#3|) (-13 (-1156 |#1| |#2|) (-10 -7 (-6 -4337))) (-1067) (-1067) (-13 (-1156 |#1| |#2|) (-10 -7 (-6 -4337)))) (T -535))
+NIL
+(-13 (-1156 |#1| |#2|) (-10 -7 (-6 -4337)))
+((-3268 (((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) (-1 (-1139 |#2|) (-1139 |#2|))) 51)))
+(((-536 |#1| |#2|) (-10 -7 (-15 -3268 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) (-1 (-1139 |#2|) (-1139 |#2|))))) (-13 (-823) (-541)) (-13 (-27) (-423 |#1|))) (T -536))
+((-3268 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-592 *3)) (-5 *5 (-1 (-1139 *3) (-1139 *3))) (-4 *3 (-13 (-27) (-423 *6))) (-4 *6 (-13 (-823) (-541))) (-5 *2 (-567 *3)) (-5 *1 (-536 *6 *3)))))
+(-10 -7 (-15 -3268 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) (-1 (-1139 |#2|) (-1139 |#2|)))))
+((-3776 (((-567 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-4288 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-1924 (((-567 |#5|) |#5| (-1 |#3| |#3|)) 202)))
+(((-537 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1924 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3776 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4288 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-823) (-541) (-1009 (-549))) (-13 (-27) (-423 |#1|)) (-1202 |#2|) (-1202 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -537))
+((-4288 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-13 (-27) (-423 *4))) (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-4 *7 (-1202 (-400 *6))) (-5 *1 (-537 *4 *5 *6 *7 *2)) (-4 *2 (-335 *5 *6 *7)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1202 *6)) (-4 *6 (-13 (-27) (-423 *5))) (-4 *5 (-13 (-823) (-541) (-1009 (-549)))) (-4 *8 (-1202 (-400 *7))) (-5 *2 (-567 *3)) (-5 *1 (-537 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1202 *6)) (-4 *6 (-13 (-27) (-423 *5))) (-4 *5 (-13 (-823) (-541) (-1009 (-549)))) (-4 *8 (-1202 (-400 *7))) (-5 *2 (-567 *3)) (-5 *1 (-537 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))))
+(-10 -7 (-15 -1924 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3776 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4288 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-1373 (((-112) (-549) (-549)) 10)) (-3755 (((-549) (-549)) 7)) (-1654 (((-549) (-549) (-549)) 8)))
+(((-538) (-10 -7 (-15 -3755 ((-549) (-549))) (-15 -1654 ((-549) (-549) (-549))) (-15 -1373 ((-112) (-549) (-549))))) (T -538))
+((-1373 (*1 *2 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-538)))) (-1654 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-538)))) (-3755 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-538)))))
+(-10 -7 (-15 -3755 ((-549) (-549))) (-15 -1654 ((-549) (-549) (-549))) (-15 -1373 ((-112) (-549) (-549))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2342 ((|#1| $) 59)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-1664 (($ $) 89)) (-1512 (($ $) 72)) (-2861 ((|#1| $) 60)) (-2001 (((-3 $ "failed") $ $) 19)) (-2134 (($ $) 71)) (-1640 (($ $) 88)) (-1486 (($ $) 73)) (-1685 (($ $) 87)) (-1539 (($ $) 74)) (-1682 (($) 17 T CONST)) (-2714 (((-3 (-549) "failed") $) 67)) (-2659 (((-549) $) 66)) (-2114 (((-3 $ "failed") $) 32)) (-3551 (($ |#1| |#1|) 64)) (-2772 (((-112) $) 58)) (-1425 (($) 99)) (-2675 (((-112) $) 30)) (-4187 (($ $ (-549)) 70)) (-2374 (((-112) $) 57)) (-2863 (($ $ $) 105)) (-3575 (($ $ $) 104)) (-3632 (($ $) 96)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-1496 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-400 (-549))) 62)) (-3019 ((|#1| $) 61)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2042 (((-3 $ "failed") $ $) 40)) (-2719 (($ $) 97)) (-1698 (($ $) 86)) (-1552 (($ $) 75)) (-1675 (($ $) 85)) (-1526 (($ $) 76)) (-1651 (($ $) 84)) (-1501 (($ $) 77)) (-2608 (((-112) $ |#1|) 56)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-549)) 68)) (-2082 (((-747)) 28)) (-1733 (($ $) 95)) (-1587 (($ $) 83)) (-1498 (((-112) $ $) 37)) (-1710 (($ $) 94)) (-1564 (($ $) 82)) (-1758 (($ $) 93)) (-1612 (($ $) 81)) (-1934 (($ $) 92)) (-1627 (($ $) 80)) (-1745 (($ $) 91)) (-1600 (($ $) 79)) (-1722 (($ $) 90)) (-1576 (($ $) 78)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 102)) (-2425 (((-112) $ $) 101)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 103)) (-2412 (((-112) $ $) 100)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ $) 98) (($ $ (-400 (-549))) 69)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-539 |#1|) (-138) (-13 (-397) (-1165))) (T -539))
+((-1496 (*1 *1 *2 *2) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1165))))) (-3551 (*1 *1 *2 *2) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1165))))) (-1496 (*1 *1 *2) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1165))))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1165))))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1165))))) (-2861 (*1 *2 *1) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1165))))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1165))))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1165))) (-5 *2 (-112)))) (-2374 (*1 *2 *1) (-12 (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1165))) (-5 *2 (-112)))) (-2608 (*1 *2 *1 *3) (-12 (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1165))) (-5 *2 (-112)))))
+(-13 (-444) (-823) (-1165) (-973) (-1009 (-549)) (-10 -8 (-6 -2661) (-15 -1496 ($ |t#1| |t#1|)) (-15 -3551 ($ |t#1| |t#1|)) (-15 -1496 ($ |t#1|)) (-15 -1496 ($ (-400 (-549)))) (-15 -3019 (|t#1| $)) (-15 -2861 (|t#1| $)) (-15 -2342 (|t#1| $)) (-15 -2772 ((-112) $)) (-15 -2374 ((-112) $)) (-15 -2608 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-277) . T) ((-283) . T) ((-444) . T) ((-484) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-823) . T) ((-973) . T) ((-1009 (-549)) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1165) . T) ((-1168) . T))
+((-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 9)) (-2258 (($ $) 11)) (-2799 (((-112) $) 18)) (-2114 (((-3 $ "failed") $) 16)) (-1498 (((-112) $ $) 20)))
+(((-540 |#1|) (-10 -8 (-15 -2799 ((-112) |#1|)) (-15 -1498 ((-112) |#1| |#1|)) (-15 -2258 (|#1| |#1|)) (-15 -2297 ((-2 (|:| -2207 |#1|) (|:| -4324 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2114 ((-3 |#1| "failed") |#1|))) (-541)) (T -540))
+NIL
+(-10 -8 (-15 -2799 ((-112) |#1|)) (-15 -1498 ((-112) |#1| |#1|)) (-15 -2258 (|#1| |#1|)) (-15 -2297 ((-2 (|:| -2207 |#1|) (|:| -4324 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2114 ((-3 |#1| "failed") |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2042 (((-3 $ "failed") $ $) 40)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-541) (-138)) (T -541))
+((-2042 (*1 *1 *1 *1) (|partial| -4 *1 (-541))) (-2297 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2207 *1) (|:| -4324 *1) (|:| |associate| *1))) (-4 *1 (-541)))) (-2258 (*1 *1 *1) (-4 *1 (-541))) (-1498 (*1 *2 *1 *1) (-12 (-4 *1 (-541)) (-5 *2 (-112)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-112)))))
+(-13 (-170) (-38 $) (-283) (-10 -8 (-15 -2042 ((-3 $ "failed") $ $)) (-15 -2297 ((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $)) (-15 -2258 ($ $)) (-15 -1498 ((-112) $ $)) (-15 -2799 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-4027 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1143) (-621 |#2|)) 37)) (-1295 (((-567 |#2|) |#2| (-1143)) 62)) (-2777 (((-3 |#2| "failed") |#2| (-1143)) 152)) (-2343 (((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1143) (-592 |#2|) (-621 (-592 |#2|))) 155)) (-3234 (((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1143) |#2|) 40)))
+(((-542 |#1| |#2|) (-10 -7 (-15 -3234 ((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1143) |#2|)) (-15 -4027 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1143) (-621 |#2|))) (-15 -2777 ((-3 |#2| "failed") |#2| (-1143))) (-15 -1295 ((-567 |#2|) |#2| (-1143))) (-15 -2343 ((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1143) (-592 |#2|) (-621 (-592 |#2|))))) (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1165) (-423 |#1|))) (T -542))
+((-2343 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1143)) (-5 *6 (-621 (-592 *3))) (-5 *5 (-592 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *7))) (-4 *7 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-2 (|:| -3440 *3) (|:| |coeff| *3))) (-5 *1 (-542 *7 *3)))) (-1295 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-567 *3)) (-5 *1 (-542 *5 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))))) (-2777 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1143)) (-4 *4 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-542 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4))))) (-4027 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1143)) (-5 *5 (-621 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *6))) (-4 *6 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-542 *6 *3)))) (-3234 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1143)) (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-2 (|:| -3440 *3) (|:| |coeff| *3))) (-5 *1 (-542 *5 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))))))
+(-10 -7 (-15 -3234 ((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1143) |#2|)) (-15 -4027 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1143) (-621 |#2|))) (-15 -2777 ((-3 |#2| "failed") |#2| (-1143))) (-15 -1295 ((-567 |#2|) |#2| (-1143))) (-15 -2343 ((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1143) (-592 |#2|) (-621 (-592 |#2|)))))
+((-2402 (((-411 |#1|) |#1|) 18)) (-2121 (((-411 |#1|) |#1|) 33)) (-1813 (((-3 |#1| "failed") |#1|) 44)) (-3659 (((-411 |#1|) |#1|) 51)))
+(((-543 |#1|) (-10 -7 (-15 -2121 ((-411 |#1|) |#1|)) (-15 -2402 ((-411 |#1|) |#1|)) (-15 -3659 ((-411 |#1|) |#1|)) (-15 -1813 ((-3 |#1| "failed") |#1|))) (-534)) (T -543))
+((-1813 (*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-534)))) (-3659 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-543 *3)) (-4 *3 (-534)))) (-2402 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-543 *3)) (-4 *3 (-534)))) (-2121 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-543 *3)) (-4 *3 (-534)))))
+(-10 -7 (-15 -2121 ((-411 |#1|) |#1|)) (-15 -2402 ((-411 |#1|) |#1|)) (-15 -3659 ((-411 |#1|) |#1|)) (-15 -1813 ((-3 |#1| "failed") |#1|)))
+((-2518 (($) 9)) (-2764 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 35)) (-3449 (((-621 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 32)) (-2751 (($ (-2 (|:| -3337 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2637 (($ (-621 (-2 (|:| -3337 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1793 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-2696 (((-621 (-2 (|:| -3337 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1766 (((-1231)) 12)))
+(((-544) (-10 -8 (-15 -2518 ($)) (-15 -1766 ((-1231))) (-15 -3449 ((-621 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2637 ($ (-621 (-2 (|:| -3337 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2751 ($ (-2 (|:| -3337 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2764 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2696 ((-621 (-2 (|:| -3337 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1793 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -544))
+((-1793 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-544)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| -3337 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-544)))) (-2764 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-544)))) (-2751 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3337 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-544)))) (-2637 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -3337 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-544)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-544)))) (-1766 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-544)))) (-2518 (*1 *1) (-5 *1 (-544))))
+(-10 -8 (-15 -2518 ($)) (-15 -1766 ((-1231))) (-15 -3449 ((-621 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2637 ($ (-621 (-2 (|:| -3337 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2751 ($ (-2 (|:| -3337 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2764 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2696 ((-621 (-2 (|:| -3337 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1793 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1123 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1372 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
+((-2084 (((-1139 (-400 (-1139 |#2|))) |#2| (-592 |#2|) (-592 |#2|) (-1139 |#2|)) 32)) (-3897 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|) (-592 |#2|) |#2| (-400 (-1139 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|) |#2| (-1139 |#2|)) 110)) (-3883 (((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) (-592 |#2|) |#2| (-400 (-1139 |#2|))) 80) (((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) |#2| (-1139 |#2|)) 52)) (-2784 (((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2| (-592 |#2|) |#2| (-400 (-1139 |#2|))) 87) (((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2| |#2| (-1139 |#2|)) 109)) (-2455 (((-3 |#2| "failed") |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1143)) (-592 |#2|) |#2| (-400 (-1139 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1143)) |#2| (-1139 |#2|)) 111)) (-1729 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1949 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) (-592 |#2|) |#2| (-400 (-1139 |#2|))) 128 (|has| |#3| (-632 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1949 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) |#2| (-1139 |#2|)) 127 (|has| |#3| (-632 |#2|)))) (-2261 ((|#2| (-1139 (-400 (-1139 |#2|))) (-592 |#2|) |#2|) 50)) (-2548 (((-1139 (-400 (-1139 |#2|))) (-1139 |#2|) (-592 |#2|)) 31)))
+(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -3883 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) |#2| (-1139 |#2|))) (-15 -3883 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) (-592 |#2|) |#2| (-400 (-1139 |#2|)))) (-15 -2784 ((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2| |#2| (-1139 |#2|))) (-15 -2784 ((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2| (-592 |#2|) |#2| (-400 (-1139 |#2|)))) (-15 -3897 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|) |#2| (-1139 |#2|))) (-15 -3897 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|) (-592 |#2|) |#2| (-400 (-1139 |#2|)))) (-15 -2455 ((-3 |#2| "failed") |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1143)) |#2| (-1139 |#2|))) (-15 -2455 ((-3 |#2| "failed") |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1143)) (-592 |#2|) |#2| (-400 (-1139 |#2|)))) (-15 -2084 ((-1139 (-400 (-1139 |#2|))) |#2| (-592 |#2|) (-592 |#2|) (-1139 |#2|))) (-15 -2261 (|#2| (-1139 (-400 (-1139 |#2|))) (-592 |#2|) |#2|)) (-15 -2548 ((-1139 (-400 (-1139 |#2|))) (-1139 |#2|) (-592 |#2|))) (IF (|has| |#3| (-632 |#2|)) (PROGN (-15 -1729 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1949 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) |#2| (-1139 |#2|))) (-15 -1729 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1949 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) (-592 |#2|) |#2| (-400 (-1139 |#2|))))) |%noBranch|)) (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))) (-13 (-423 |#1|) (-27) (-1165)) (-1067)) (T -545))
+((-1729 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-592 *4)) (-5 *6 (-400 (-1139 *4))) (-4 *4 (-13 (-423 *7) (-27) (-1165))) (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4)))) (-5 *1 (-545 *7 *4 *3)) (-4 *3 (-632 *4)) (-4 *3 (-1067)))) (-1729 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-592 *4)) (-5 *6 (-1139 *4)) (-4 *4 (-13 (-423 *7) (-27) (-1165))) (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4)))) (-5 *1 (-545 *7 *4 *3)) (-4 *3 (-632 *4)) (-4 *3 (-1067)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *6)) (-4 *6 (-13 (-423 *5) (-27) (-1165))) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-1139 (-400 (-1139 *6)))) (-5 *1 (-545 *5 *6 *7)) (-5 *3 (-1139 *6)) (-4 *7 (-1067)))) (-2261 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1139 (-400 (-1139 *2)))) (-5 *4 (-592 *2)) (-4 *2 (-13 (-423 *5) (-27) (-1165))) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *1 (-545 *5 *2 *6)) (-4 *6 (-1067)))) (-2084 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1165))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-1139 (-400 (-1139 *3)))) (-5 *1 (-545 *6 *3 *7)) (-5 *5 (-1139 *3)) (-4 *7 (-1067)))) (-2455 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1143))) (-5 *5 (-400 (-1139 *2))) (-4 *2 (-13 (-423 *6) (-27) (-1165))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *1 (-545 *6 *2 *7)) (-4 *7 (-1067)))) (-2455 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1143))) (-5 *5 (-1139 *2)) (-4 *2 (-13 (-423 *6) (-27) (-1165))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *1 (-545 *6 *2 *7)) (-4 *7 (-1067)))) (-3897 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-621 *3)) (-5 *6 (-400 (-1139 *3))) (-4 *3 (-13 (-423 *7) (-27) (-1165))) (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-545 *7 *3 *8)) (-4 *8 (-1067)))) (-3897 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-621 *3)) (-5 *6 (-1139 *3)) (-4 *3 (-13 (-423 *7) (-27) (-1165))) (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-545 *7 *3 *8)) (-4 *8 (-1067)))) (-2784 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-400 (-1139 *3))) (-4 *3 (-13 (-423 *6) (-27) (-1165))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| -3440 *3) (|:| |coeff| *3))) (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1067)))) (-2784 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-1139 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1165))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| -3440 *3) (|:| |coeff| *3))) (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1067)))) (-3883 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-592 *3)) (-5 *5 (-400 (-1139 *3))) (-4 *3 (-13 (-423 *6) (-27) (-1165))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-567 *3)) (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1067)))) (-3883 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-592 *3)) (-5 *5 (-1139 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1165))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-567 *3)) (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1067)))))
+(-10 -7 (-15 -3883 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) |#2| (-1139 |#2|))) (-15 -3883 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|) (-592 |#2|) |#2| (-400 (-1139 |#2|)))) (-15 -2784 ((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2| |#2| (-1139 |#2|))) (-15 -2784 ((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2| (-592 |#2|) |#2| (-400 (-1139 |#2|)))) (-15 -3897 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|) |#2| (-1139 |#2|))) (-15 -3897 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|) (-592 |#2|) |#2| (-400 (-1139 |#2|)))) (-15 -2455 ((-3 |#2| "failed") |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1143)) |#2| (-1139 |#2|))) (-15 -2455 ((-3 |#2| "failed") |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1143)) (-592 |#2|) |#2| (-400 (-1139 |#2|)))) (-15 -2084 ((-1139 (-400 (-1139 |#2|))) |#2| (-592 |#2|) (-592 |#2|) (-1139 |#2|))) (-15 -2261 (|#2| (-1139 (-400 (-1139 |#2|))) (-592 |#2|) |#2|)) (-15 -2548 ((-1139 (-400 (-1139 |#2|))) (-1139 |#2|) (-592 |#2|))) (IF (|has| |#3| (-632 |#2|)) (PROGN (-15 -1729 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1949 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) |#2| (-1139 |#2|))) (-15 -1729 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1949 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) (-592 |#2|) |#2| (-400 (-1139 |#2|))))) |%noBranch|))
+((-3385 (((-549) (-549) (-747)) 66)) (-3500 (((-549) (-549)) 65)) (-3232 (((-549) (-549)) 64)) (-4227 (((-549) (-549)) 69)) (-2497 (((-549) (-549) (-549)) 49)) (-3406 (((-549) (-549) (-549)) 46)) (-3191 (((-400 (-549)) (-549)) 20)) (-1443 (((-549) (-549)) 21)) (-4307 (((-549) (-549)) 58)) (-4012 (((-549) (-549)) 32)) (-4246 (((-621 (-549)) (-549)) 63)) (-2264 (((-549) (-549) (-549) (-549) (-549)) 44)) (-3650 (((-400 (-549)) (-549)) 41)))
+(((-546) (-10 -7 (-15 -3650 ((-400 (-549)) (-549))) (-15 -2264 ((-549) (-549) (-549) (-549) (-549))) (-15 -4246 ((-621 (-549)) (-549))) (-15 -4012 ((-549) (-549))) (-15 -4307 ((-549) (-549))) (-15 -1443 ((-549) (-549))) (-15 -3191 ((-400 (-549)) (-549))) (-15 -3406 ((-549) (-549) (-549))) (-15 -2497 ((-549) (-549) (-549))) (-15 -4227 ((-549) (-549))) (-15 -3232 ((-549) (-549))) (-15 -3500 ((-549) (-549))) (-15 -3385 ((-549) (-549) (-747))))) (T -546))
+((-3385 (*1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-747)) (-5 *1 (-546)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-3232 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-4227 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-2497 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-3406 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-3191 (*1 *2 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-546)) (-5 *3 (-549)))) (-1443 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-4307 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-4012 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-4246 (*1 *2 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-546)) (-5 *3 (-549)))) (-2264 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))) (-3650 (*1 *2 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-546)) (-5 *3 (-549)))))
+(-10 -7 (-15 -3650 ((-400 (-549)) (-549))) (-15 -2264 ((-549) (-549) (-549) (-549) (-549))) (-15 -4246 ((-621 (-549)) (-549))) (-15 -4012 ((-549) (-549))) (-15 -4307 ((-549) (-549))) (-15 -1443 ((-549) (-549))) (-15 -3191 ((-400 (-549)) (-549))) (-15 -3406 ((-549) (-549) (-549))) (-15 -2497 ((-549) (-549) (-549))) (-15 -4227 ((-549) (-549))) (-15 -3232 ((-549) (-549))) (-15 -3500 ((-549) (-549))) (-15 -3385 ((-549) (-549) (-747))))
+((-3707 (((-2 (|:| |answer| |#4|) (|:| -3910 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-547 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3707 ((-2 (|:| |answer| |#4|) (|:| -3910 |#4|)) |#4| (-1 |#2| |#2|)))) (-356) (-1202 |#1|) (-1202 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -547))
+((-3707 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-356)) (-4 *7 (-1202 (-400 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3910 *3))) (-5 *1 (-547 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7)))))
+(-10 -7 (-15 -3707 ((-2 (|:| |answer| |#4|) (|:| -3910 |#4|)) |#4| (-1 |#2| |#2|))))
+((-3707 (((-2 (|:| |answer| (-400 |#2|)) (|:| -3910 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 18)))
+(((-548 |#1| |#2|) (-10 -7 (-15 -3707 ((-2 (|:| |answer| (-400 |#2|)) (|:| -3910 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1202 |#1|)) (T -548))
+((-3707 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| (-400 *6)) (|:| -3910 (-400 *6)) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-548 *5 *6)) (-5 *3 (-400 *6)))))
+(-10 -7 (-15 -3707 ((-2 (|:| |answer| (-400 |#2|)) (|:| -3910 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 25)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 88)) (-2258 (($ $) 89)) (-2799 (((-112) $) NIL)) (-2831 (($ $ $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3332 (($ $ $ $) 43)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL)) (-1310 (($ $ $) 82)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL)) (-2659 (((-549) $) NIL)) (-2095 (($ $ $) 81)) (-3879 (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 62) (((-665 (-549)) (-665 $)) 58)) (-2114 (((-3 $ "failed") $) 85)) (-3405 (((-3 (-400 (-549)) "failed") $) NIL)) (-3679 (((-112) $) NIL)) (-2532 (((-400 (-549)) $) NIL)) (-3239 (($) 64) (($ $) 65)) (-2067 (($ $ $) 80)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-3806 (($ $ $ $) NIL)) (-3947 (($ $ $) 55)) (-2772 (((-112) $) NIL)) (-1271 (($ $ $) NIL)) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL)) (-2675 (((-112) $) 26)) (-3559 (((-112) $) 75)) (-1681 (((-3 $ "failed") $) NIL)) (-2374 (((-112) $) 35)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3030 (($ $ $ $) 44)) (-2863 (($ $ $) 77)) (-3575 (($ $ $) 76)) (-2433 (($ $) NIL)) (-4210 (($ $) 41)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) 54)) (-2950 (($ $ $) NIL)) (-3060 (($) NIL T CONST)) (-3781 (($ $) 31)) (-3990 (((-1087) $) 34)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 119)) (-3727 (($ $ $) 86) (($ (-621 $)) NIL)) (-4005 (($ $) NIL)) (-2121 (((-411 $) $) 105)) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL)) (-2042 (((-3 $ "failed") $ $) 84)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3450 (((-112) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 79)) (-3456 (($ $ (-747)) NIL) (($ $) NIL)) (-1900 (($ $) 32)) (-2281 (($ $) 30)) (-2845 (((-549) $) 40) (((-525) $) 52) (((-863 (-549)) $) NIL) (((-372) $) 47) (((-219) $) 49) (((-1125) $) 53)) (-3846 (((-834) $) 38) (($ (-549)) 39) (($ $) NIL) (($ (-549)) 39)) (-2082 (((-747)) NIL)) (-3935 (((-112) $ $) NIL)) (-3179 (($ $ $) NIL)) (-1864 (($) 29)) (-1498 (((-112) $ $) NIL)) (-3610 (($ $ $ $) 42)) (-3212 (($ $) 63)) (-3276 (($) 27 T CONST)) (-3287 (($) 28 T CONST)) (-4245 (((-1125) $) 20) (((-1125) $ (-112)) 22) (((-1231) (-798) $) 23) (((-1231) (-798) $ (-112)) 24)) (-1702 (($ $ (-747)) NIL) (($ $) NIL)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 66)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 67)) (-2500 (($ $) 68) (($ $ $) 70)) (-2486 (($ $ $) 69)) (** (($ $ (-892)) NIL) (($ $ (-747)) 74)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 72) (($ $ $) 71)))
+(((-549) (-13 (-534) (-594 (-1125)) (-804) (-10 -8 (-15 -3239 ($ $)) (-6 -4324) (-6 -4329) (-6 -4325) (-6 -4319)))) (T -549))
+((-3239 (*1 *1 *1) (-5 *1 (-549))))
+(-13 (-534) (-594 (-1125)) (-804) (-10 -8 (-15 -3239 ($ $)) (-6 -4324) (-6 -4329) (-6 -4325) (-6 -4319)))
+((-1391 (((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006))) (-745) (-1030)) 108) (((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006))) (-745)) 110)) (-3893 (((-3 (-1006) "failed") (-309 (-372)) (-1059 (-816 (-372))) (-1143)) 172) (((-3 (-1006) "failed") (-309 (-372)) (-1059 (-816 (-372))) (-1125)) 171) (((-1006) (-309 (-372)) (-621 (-1061 (-816 (-372)))) (-372) (-372) (-1030)) 176) (((-1006) (-309 (-372)) (-621 (-1061 (-816 (-372)))) (-372) (-372)) 177) (((-1006) (-309 (-372)) (-621 (-1061 (-816 (-372)))) (-372)) 178) (((-1006) (-309 (-372)) (-621 (-1061 (-816 (-372))))) 179) (((-1006) (-309 (-372)) (-1061 (-816 (-372)))) 167) (((-1006) (-309 (-372)) (-1061 (-816 (-372))) (-372)) 166) (((-1006) (-309 (-372)) (-1061 (-816 (-372))) (-372) (-372)) 162) (((-1006) (-745)) 155) (((-1006) (-309 (-372)) (-1061 (-816 (-372))) (-372) (-372) (-1030)) 161)))
+(((-550) (-10 -7 (-15 -3893 ((-1006) (-309 (-372)) (-1061 (-816 (-372))) (-372) (-372) (-1030))) (-15 -3893 ((-1006) (-745))) (-15 -3893 ((-1006) (-309 (-372)) (-1061 (-816 (-372))) (-372) (-372))) (-15 -3893 ((-1006) (-309 (-372)) (-1061 (-816 (-372))) (-372))) (-15 -3893 ((-1006) (-309 (-372)) (-1061 (-816 (-372))))) (-15 -3893 ((-1006) (-309 (-372)) (-621 (-1061 (-816 (-372)))))) (-15 -3893 ((-1006) (-309 (-372)) (-621 (-1061 (-816 (-372)))) (-372))) (-15 -3893 ((-1006) (-309 (-372)) (-621 (-1061 (-816 (-372)))) (-372) (-372))) (-15 -3893 ((-1006) (-309 (-372)) (-621 (-1061 (-816 (-372)))) (-372) (-372) (-1030))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006))) (-745))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006))) (-745) (-1030))) (-15 -3893 ((-3 (-1006) "failed") (-309 (-372)) (-1059 (-816 (-372))) (-1125))) (-15 -3893 ((-3 (-1006) "failed") (-309 (-372)) (-1059 (-816 (-372))) (-1143))))) (T -550))
+((-3893 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1059 (-816 (-372)))) (-5 *5 (-1143)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-3893 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1059 (-816 (-372)))) (-5 *5 (-1125)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006)))) (-5 *1 (-550)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006)))) (-5 *1 (-550)))) (-3893 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1061 (-816 (-372))))) (-5 *5 (-372)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-3893 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1061 (-816 (-372))))) (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-3893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1061 (-816 (-372))))) (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-3893 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1061 (-816 (-372))))) (-5 *2 (-1006)) (-5 *1 (-550)))) (-3893 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1061 (-816 (-372)))) (-5 *2 (-1006)) (-5 *1 (-550)))) (-3893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1061 (-816 (-372)))) (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-3893 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1061 (-816 (-372)))) (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1006)) (-5 *1 (-550)))) (-3893 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1061 (-816 (-372)))) (-5 *5 (-372)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550)))))
+(-10 -7 (-15 -3893 ((-1006) (-309 (-372)) (-1061 (-816 (-372))) (-372) (-372) (-1030))) (-15 -3893 ((-1006) (-745))) (-15 -3893 ((-1006) (-309 (-372)) (-1061 (-816 (-372))) (-372) (-372))) (-15 -3893 ((-1006) (-309 (-372)) (-1061 (-816 (-372))) (-372))) (-15 -3893 ((-1006) (-309 (-372)) (-1061 (-816 (-372))))) (-15 -3893 ((-1006) (-309 (-372)) (-621 (-1061 (-816 (-372)))))) (-15 -3893 ((-1006) (-309 (-372)) (-621 (-1061 (-816 (-372)))) (-372))) (-15 -3893 ((-1006) (-309 (-372)) (-621 (-1061 (-816 (-372)))) (-372) (-372))) (-15 -3893 ((-1006) (-309 (-372)) (-621 (-1061 (-816 (-372)))) (-372) (-372) (-1030))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006))) (-745))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006))) (-745) (-1030))) (-15 -3893 ((-3 (-1006) "failed") (-309 (-372)) (-1059 (-816 (-372))) (-1125))) (-15 -3893 ((-3 (-1006) "failed") (-309 (-372)) (-1059 (-816 (-372))) (-1143))))
+((-2065 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|)) 184)) (-1935 (((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|)) 98)) (-3425 (((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2|) 180)) (-3358 (((-3 |#2| "failed") |#2| |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1143))) 189)) (-2612 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1949 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) (-1143)) 197 (|has| |#3| (-632 |#2|)))))
+(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -1935 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|))) (-15 -3425 ((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2|)) (-15 -2065 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|))) (-15 -3358 ((-3 |#2| "failed") |#2| |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1143)))) (IF (|has| |#3| (-632 |#2|)) (-15 -2612 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1949 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) (-1143))) |%noBranch|)) (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))) (-13 (-423 |#1|) (-27) (-1165)) (-1067)) (T -551))
+((-2612 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-592 *4)) (-5 *6 (-1143)) (-4 *4 (-13 (-423 *7) (-27) (-1165))) (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4)))) (-5 *1 (-551 *7 *4 *3)) (-4 *3 (-632 *4)) (-4 *3 (-1067)))) (-3358 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1143))) (-4 *2 (-13 (-423 *5) (-27) (-1165))) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *1 (-551 *5 *2 *6)) (-4 *6 (-1067)))) (-2065 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-621 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1165))) (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-551 *6 *3 *7)) (-4 *7 (-1067)))) (-3425 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-423 *5) (-27) (-1165))) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-2 (|:| -3440 *3) (|:| |coeff| *3))) (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1067)))) (-1935 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-423 *5) (-27) (-1165))) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549)))) (-5 *2 (-567 *3)) (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1067)))))
+(-10 -7 (-15 -1935 ((-567 |#2|) |#2| (-592 |#2|) (-592 |#2|))) (-15 -3425 ((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-592 |#2|) (-592 |#2|) |#2|)) (-15 -2065 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|) (-592 |#2|) (-621 |#2|))) (-15 -3358 ((-3 |#2| "failed") |#2| |#2| |#2| (-592 |#2|) (-592 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1143)))) (IF (|has| |#3| (-632 |#2|)) (-15 -2612 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1949 (-621 |#2|))) |#3| |#2| (-592 |#2|) (-592 |#2|) (-1143))) |%noBranch|))
+((-4125 (((-2 (|:| -1759 |#2|) (|:| |nconst| |#2|)) |#2| (-1143)) 64)) (-3345 (((-3 |#2| "failed") |#2| (-1143) (-816 |#2|) (-816 |#2|)) 164 (-12 (|has| |#2| (-1106)) (|has| |#1| (-594 (-863 (-549)))) (|has| |#1| (-857 (-549))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1143)) 147 (-12 (|has| |#2| (-607)) (|has| |#1| (-594 (-863 (-549)))) (|has| |#1| (-857 (-549)))))) (-3619 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1143)) 148 (-12 (|has| |#2| (-607)) (|has| |#1| (-594 (-863 (-549)))) (|has| |#1| (-857 (-549)))))))
+(((-552 |#1| |#2|) (-10 -7 (-15 -4125 ((-2 (|:| -1759 |#2|) (|:| |nconst| |#2|)) |#2| (-1143))) (IF (|has| |#1| (-594 (-863 (-549)))) (IF (|has| |#1| (-857 (-549))) (PROGN (IF (|has| |#2| (-607)) (PROGN (-15 -3619 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1143))) (-15 -3345 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1143)))) |%noBranch|) (IF (|has| |#2| (-1106)) (-15 -3345 ((-3 |#2| "failed") |#2| (-1143) (-816 |#2|) (-816 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-823) (-1009 (-549)) (-444) (-617 (-549))) (-13 (-27) (-1165) (-423 |#1|))) (T -552))
+((-3345 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1143)) (-5 *4 (-816 *2)) (-4 *2 (-1106)) (-4 *2 (-13 (-27) (-1165) (-423 *5))) (-4 *5 (-594 (-863 (-549)))) (-4 *5 (-857 (-549))) (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549)))) (-5 *1 (-552 *5 *2)))) (-3345 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1143)) (-4 *5 (-594 (-863 (-549)))) (-4 *5 (-857 (-549))) (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-552 *5 *3)) (-4 *3 (-607)) (-4 *3 (-13 (-27) (-1165) (-423 *5))))) (-3619 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1143)) (-4 *5 (-594 (-863 (-549)))) (-4 *5 (-857 (-549))) (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-552 *5 *3)) (-4 *3 (-607)) (-4 *3 (-13 (-27) (-1165) (-423 *5))))) (-4125 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549)))) (-5 *2 (-2 (|:| -1759 *3) (|:| |nconst| *3))) (-5 *1 (-552 *5 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))))))
+(-10 -7 (-15 -4125 ((-2 (|:| -1759 |#2|) (|:| |nconst| |#2|)) |#2| (-1143))) (IF (|has| |#1| (-594 (-863 (-549)))) (IF (|has| |#1| (-857 (-549))) (PROGN (IF (|has| |#2| (-607)) (PROGN (-15 -3619 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1143))) (-15 -3345 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1143)))) |%noBranch|) (IF (|has| |#2| (-1106)) (-15 -3345 ((-3 |#2| "failed") |#2| (-1143) (-816 |#2|) (-816 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-3481 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-621 (-400 |#2|))) 41)) (-3893 (((-567 (-400 |#2|)) (-400 |#2|)) 28)) (-3007 (((-3 (-400 |#2|) "failed") (-400 |#2|)) 17)) (-4225 (((-3 (-2 (|:| -3440 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|)) 48)))
+(((-553 |#1| |#2|) (-10 -7 (-15 -3893 ((-567 (-400 |#2|)) (-400 |#2|))) (-15 -3007 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -4225 ((-3 (-2 (|:| -3440 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -3481 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-621 (-400 |#2|))))) (-13 (-356) (-145) (-1009 (-549))) (-1202 |#1|)) (T -553))
+((-3481 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-621 (-400 *6))) (-5 *3 (-400 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-553 *5 *6)))) (-4225 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-549)))) (-4 *5 (-1202 *4)) (-5 *2 (-2 (|:| -3440 (-400 *5)) (|:| |coeff| (-400 *5)))) (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5)))) (-3007 (*1 *2 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1202 *3)) (-4 *3 (-13 (-356) (-145) (-1009 (-549)))) (-5 *1 (-553 *3 *4)))) (-3893 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-549)))) (-4 *5 (-1202 *4)) (-5 *2 (-567 (-400 *5))) (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5)))))
+(-10 -7 (-15 -3893 ((-567 (-400 |#2|)) (-400 |#2|))) (-15 -3007 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -4225 ((-3 (-2 (|:| -3440 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -3481 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-621 (-400 |#2|)))))
+((-4241 (((-3 (-549) "failed") |#1|) 14)) (-2528 (((-112) |#1|) 13)) (-3965 (((-549) |#1|) 9)))
+(((-554 |#1|) (-10 -7 (-15 -3965 ((-549) |#1|)) (-15 -2528 ((-112) |#1|)) (-15 -4241 ((-3 (-549) "failed") |#1|))) (-1009 (-549))) (T -554))
+((-4241 (*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2)))) (-2528 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-554 *3)) (-4 *3 (-1009 (-549))))) (-3965 (*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2)))))
+(-10 -7 (-15 -3965 ((-549) |#1|)) (-15 -2528 ((-112) |#1|)) (-15 -4241 ((-3 (-549) "failed") |#1|)))
+((-2538 (((-3 (-2 (|:| |mainpart| (-400 (-923 |#1|))) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 (-923 |#1|))) (|:| |logand| (-400 (-923 |#1|))))))) "failed") (-400 (-923 |#1|)) (-1143) (-621 (-400 (-923 |#1|)))) 48)) (-4176 (((-567 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-1143)) 28)) (-3631 (((-3 (-400 (-923 |#1|)) "failed") (-400 (-923 |#1|)) (-1143)) 23)) (-4015 (((-3 (-2 (|:| -3440 (-400 (-923 |#1|))) (|:| |coeff| (-400 (-923 |#1|)))) "failed") (-400 (-923 |#1|)) (-1143) (-400 (-923 |#1|))) 35)))
+(((-555 |#1|) (-10 -7 (-15 -4176 ((-567 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-1143))) (-15 -3631 ((-3 (-400 (-923 |#1|)) "failed") (-400 (-923 |#1|)) (-1143))) (-15 -2538 ((-3 (-2 (|:| |mainpart| (-400 (-923 |#1|))) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 (-923 |#1|))) (|:| |logand| (-400 (-923 |#1|))))))) "failed") (-400 (-923 |#1|)) (-1143) (-621 (-400 (-923 |#1|))))) (-15 -4015 ((-3 (-2 (|:| -3440 (-400 (-923 |#1|))) (|:| |coeff| (-400 (-923 |#1|)))) "failed") (-400 (-923 |#1|)) (-1143) (-400 (-923 |#1|))))) (-13 (-541) (-1009 (-549)) (-145))) (T -555))
+((-4015 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1143)) (-4 *5 (-13 (-541) (-1009 (-549)) (-145))) (-5 *2 (-2 (|:| -3440 (-400 (-923 *5))) (|:| |coeff| (-400 (-923 *5))))) (-5 *1 (-555 *5)) (-5 *3 (-400 (-923 *5))))) (-2538 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1143)) (-5 *5 (-621 (-400 (-923 *6)))) (-5 *3 (-400 (-923 *6))) (-4 *6 (-13 (-541) (-1009 (-549)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-555 *6)))) (-3631 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-400 (-923 *4))) (-5 *3 (-1143)) (-4 *4 (-13 (-541) (-1009 (-549)) (-145))) (-5 *1 (-555 *4)))) (-4176 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-541) (-1009 (-549)) (-145))) (-5 *2 (-567 (-400 (-923 *5)))) (-5 *1 (-555 *5)) (-5 *3 (-400 (-923 *5))))))
+(-10 -7 (-15 -4176 ((-567 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-1143))) (-15 -3631 ((-3 (-400 (-923 |#1|)) "failed") (-400 (-923 |#1|)) (-1143))) (-15 -2538 ((-3 (-2 (|:| |mainpart| (-400 (-923 |#1|))) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 (-923 |#1|))) (|:| |logand| (-400 (-923 |#1|))))))) "failed") (-400 (-923 |#1|)) (-1143) (-621 (-400 (-923 |#1|))))) (-15 -4015 ((-3 (-2 (|:| -3440 (-400 (-923 |#1|))) (|:| |coeff| (-400 (-923 |#1|)))) "failed") (-400 (-923 |#1|)) (-1143) (-400 (-923 |#1|)))))
+((-3834 (((-112) $ $) 58)) (-1763 (((-112) $) 36)) (-2342 ((|#1| $) 30)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) 62)) (-1664 (($ $) 122)) (-1512 (($ $) 102)) (-2861 ((|#1| $) 28)) (-2001 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $) NIL)) (-1640 (($ $) 124)) (-1486 (($ $) 98)) (-1685 (($ $) 126)) (-1539 (($ $) 106)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) 77)) (-2659 (((-549) $) 79)) (-2114 (((-3 $ "failed") $) 61)) (-3551 (($ |#1| |#1|) 26)) (-2772 (((-112) $) 33)) (-1425 (($) 88)) (-2675 (((-112) $) 43)) (-4187 (($ $ (-549)) NIL)) (-2374 (((-112) $) 34)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3632 (($ $) 90)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1496 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-400 (-549))) 76)) (-3019 ((|#1| $) 27)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) 64) (($ (-621 $)) NIL)) (-2042 (((-3 $ "failed") $ $) 63)) (-2719 (($ $) 92)) (-1698 (($ $) 130)) (-1552 (($ $) 104)) (-1675 (($ $) 132)) (-1526 (($ $) 108)) (-1651 (($ $) 128)) (-1501 (($ $) 100)) (-2608 (((-112) $ |#1|) 31)) (-3846 (((-834) $) 84) (($ (-549)) 66) (($ $) NIL) (($ (-549)) 66)) (-2082 (((-747)) 86)) (-1733 (($ $) 144)) (-1587 (($ $) 114)) (-1498 (((-112) $ $) NIL)) (-1710 (($ $) 142)) (-1564 (($ $) 110)) (-1758 (($ $) 140)) (-1612 (($ $) 120)) (-1934 (($ $) 138)) (-1627 (($ $) 118)) (-1745 (($ $) 136)) (-1600 (($ $) 116)) (-1722 (($ $) 134)) (-1576 (($ $) 112)) (-3276 (($) 21 T CONST)) (-3287 (($) 10 T CONST)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 37)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 35)) (-2500 (($ $) 41) (($ $ $) 42)) (-2486 (($ $ $) 40)) (** (($ $ (-892)) 54) (($ $ (-747)) NIL) (($ $ $) 94) (($ $ (-400 (-549))) 146)) (* (($ (-892) $) 51) (($ (-747) $) NIL) (($ (-549) $) 50) (($ $ $) 48)))
+(((-556 |#1|) (-539 |#1|) (-13 (-397) (-1165))) (T -556))
+NIL
+(-539 |#1|)
+((-1348 (((-3 (-621 (-1139 (-549))) "failed") (-621 (-1139 (-549))) (-1139 (-549))) 24)))
+(((-557) (-10 -7 (-15 -1348 ((-3 (-621 (-1139 (-549))) "failed") (-621 (-1139 (-549))) (-1139 (-549)))))) (T -557))
+((-1348 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-1139 (-549)))) (-5 *3 (-1139 (-549))) (-5 *1 (-557)))))
+(-10 -7 (-15 -1348 ((-3 (-621 (-1139 (-549))) "failed") (-621 (-1139 (-549))) (-1139 (-549)))))
+((-2940 (((-621 (-592 |#2|)) (-621 (-592 |#2|)) (-1143)) 19)) (-3285 (((-621 (-592 |#2|)) (-621 |#2|) (-1143)) 23)) (-1442 (((-621 (-592 |#2|)) (-621 (-592 |#2|)) (-621 (-592 |#2|))) 11)) (-3235 ((|#2| |#2| (-1143)) 54 (|has| |#1| (-541)))) (-2175 ((|#2| |#2| (-1143)) 78 (-12 (|has| |#2| (-277)) (|has| |#1| (-444))))) (-3948 (((-592 |#2|) (-592 |#2|) (-621 (-592 |#2|)) (-1143)) 25)) (-3220 (((-592 |#2|) (-621 (-592 |#2|))) 24)) (-2736 (((-567 |#2|) |#2| (-1143) (-1 (-567 |#2|) |#2| (-1143)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1143))) 103 (-12 (|has| |#2| (-277)) (|has| |#2| (-607)) (|has| |#2| (-1009 (-1143))) (|has| |#1| (-594 (-863 (-549)))) (|has| |#1| (-444)) (|has| |#1| (-857 (-549)))))))
+(((-558 |#1| |#2|) (-10 -7 (-15 -2940 ((-621 (-592 |#2|)) (-621 (-592 |#2|)) (-1143))) (-15 -3220 ((-592 |#2|) (-621 (-592 |#2|)))) (-15 -3948 ((-592 |#2|) (-592 |#2|) (-621 (-592 |#2|)) (-1143))) (-15 -1442 ((-621 (-592 |#2|)) (-621 (-592 |#2|)) (-621 (-592 |#2|)))) (-15 -3285 ((-621 (-592 |#2|)) (-621 |#2|) (-1143))) (IF (|has| |#1| (-541)) (-15 -3235 (|#2| |#2| (-1143))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -2175 (|#2| |#2| (-1143))) (IF (|has| |#1| (-594 (-863 (-549)))) (IF (|has| |#1| (-857 (-549))) (IF (|has| |#2| (-607)) (IF (|has| |#2| (-1009 (-1143))) (-15 -2736 ((-567 |#2|) |#2| (-1143) (-1 (-567 |#2|) |#2| (-1143)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1143)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-823) (-423 |#1|)) (T -558))
+((-2736 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-567 *3) *3 (-1143))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1143))) (-4 *3 (-277)) (-4 *3 (-607)) (-4 *3 (-1009 *4)) (-4 *3 (-423 *7)) (-5 *4 (-1143)) (-4 *7 (-594 (-863 (-549)))) (-4 *7 (-444)) (-4 *7 (-857 (-549))) (-4 *7 (-823)) (-5 *2 (-567 *3)) (-5 *1 (-558 *7 *3)))) (-2175 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-444)) (-4 *4 (-823)) (-5 *1 (-558 *4 *2)) (-4 *2 (-277)) (-4 *2 (-423 *4)))) (-3235 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-541)) (-4 *4 (-823)) (-5 *1 (-558 *4 *2)) (-4 *2 (-423 *4)))) (-3285 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6)) (-5 *4 (-1143)) (-4 *6 (-423 *5)) (-4 *5 (-823)) (-5 *2 (-621 (-592 *6))) (-5 *1 (-558 *5 *6)))) (-1442 (*1 *2 *2 *2) (-12 (-5 *2 (-621 (-592 *4))) (-4 *4 (-423 *3)) (-4 *3 (-823)) (-5 *1 (-558 *3 *4)))) (-3948 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-621 (-592 *6))) (-5 *4 (-1143)) (-5 *2 (-592 *6)) (-4 *6 (-423 *5)) (-4 *5 (-823)) (-5 *1 (-558 *5 *6)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-621 (-592 *5))) (-4 *4 (-823)) (-5 *2 (-592 *5)) (-5 *1 (-558 *4 *5)) (-4 *5 (-423 *4)))) (-2940 (*1 *2 *2 *3) (-12 (-5 *2 (-621 (-592 *5))) (-5 *3 (-1143)) (-4 *5 (-423 *4)) (-4 *4 (-823)) (-5 *1 (-558 *4 *5)))))
+(-10 -7 (-15 -2940 ((-621 (-592 |#2|)) (-621 (-592 |#2|)) (-1143))) (-15 -3220 ((-592 |#2|) (-621 (-592 |#2|)))) (-15 -3948 ((-592 |#2|) (-592 |#2|) (-621 (-592 |#2|)) (-1143))) (-15 -1442 ((-621 (-592 |#2|)) (-621 (-592 |#2|)) (-621 (-592 |#2|)))) (-15 -3285 ((-621 (-592 |#2|)) (-621 |#2|) (-1143))) (IF (|has| |#1| (-541)) (-15 -3235 (|#2| |#2| (-1143))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -2175 (|#2| |#2| (-1143))) (IF (|has| |#1| (-594 (-863 (-549)))) (IF (|has| |#1| (-857 (-549))) (IF (|has| |#2| (-607)) (IF (|has| |#2| (-1009 (-1143))) (-15 -2736 ((-567 |#2|) |#2| (-1143) (-1 (-567 |#2|) |#2| (-1143)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1143)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2310 (((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-621 |#1|) "failed") (-549) |#1| |#1|)) 172)) (-3207 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-621 (-400 |#2|))) 148)) (-2700 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-621 (-400 |#2|))) 145)) (-3258 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-3275 (((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3786 (((-3 (-2 (|:| -3440 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|)) 175)) (-3666 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3440 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-400 |#2|)) 178)) (-2827 (((-2 (|:| |ir| (-567 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 84)) (-2615 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-4022 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3848 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-621 (-400 |#2|))) 152)) (-2445 (((-3 (-601 |#1| |#2|) "failed") (-601 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3848 |#1|) (|:| |sol?| (-112))) (-549) |#1|)) 137)) (-4104 (((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3848 |#1|) (|:| |sol?| (-112))) (-549) |#1|)) 162)) (-1917 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3440 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3848 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-400 |#2|)) 183)))
+(((-559 |#1| |#2|) (-10 -7 (-15 -3275 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4104 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3848 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2310 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-621 |#1|) "failed") (-549) |#1| |#1|))) (-15 -3666 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3440 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-400 |#2|))) (-15 -1917 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3440 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3848 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-400 |#2|))) (-15 -3207 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-621 (-400 |#2|)))) (-15 -4022 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3848 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-621 (-400 |#2|)))) (-15 -3786 ((-3 (-2 (|:| -3440 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -2700 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-621 (-400 |#2|)))) (-15 -3258 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2445 ((-3 (-601 |#1| |#2|) "failed") (-601 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3848 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2827 ((-2 (|:| |ir| (-567 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2615 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-356) (-1202 |#1|)) (T -559))
+((-2615 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1202 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-559 *5 *3)))) (-2827 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |ir| (-567 (-400 *6))) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))) (-2445 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-601 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3848 *4) (|:| |sol?| (-112))) (-549) *4)) (-4 *4 (-356)) (-4 *5 (-1202 *4)) (-5 *1 (-559 *4 *5)))) (-3258 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3440 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-356)) (-5 *1 (-559 *4 *2)) (-4 *2 (-1202 *4)))) (-2700 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-621 (-400 *7))) (-4 *7 (-1202 *6)) (-5 *3 (-400 *7)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *6 *7)))) (-3786 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3440 (-400 *6)) (|:| |coeff| (-400 *6)))) (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))) (-4022 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3848 *7) (|:| |sol?| (-112))) (-549) *7)) (-5 *6 (-621 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1202 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-559 *7 *8)))) (-3207 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3440 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-621 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1202 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-559 *7 *8)))) (-1917 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3848 *6) (|:| |sol?| (-112))) (-549) *6)) (-4 *6 (-356)) (-4 *7 (-1202 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -3440 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-3666 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3440 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-356)) (-4 *7 (-1202 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -3440 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-2310 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-621 *6) "failed") (-549) *6 *6)) (-4 *6 (-356)) (-4 *7 (-1202 *6)) (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-4104 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3848 *6) (|:| |sol?| (-112))) (-549) *6)) (-4 *6 (-356)) (-4 *7 (-1202 *6)) (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))) (-3275 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3440 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-356)) (-4 *7 (-1202 *6)) (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
+(-10 -7 (-15 -3275 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4104 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3848 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2310 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-621 |#1|) "failed") (-549) |#1| |#1|))) (-15 -3666 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3440 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-400 |#2|))) (-15 -1917 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3440 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3848 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-400 |#2|))) (-15 -3207 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-621 (-400 |#2|)))) (-15 -4022 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3848 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-621 (-400 |#2|)))) (-15 -3786 ((-3 (-2 (|:| -3440 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -2700 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-621 (-400 |#2|)))) (-15 -3258 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2445 ((-3 (-601 |#1| |#2|) "failed") (-601 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3848 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2827 ((-2 (|:| |ir| (-567 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2615 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-2388 (((-3 |#2| "failed") |#2| (-1143) (-1143)) 10)))
+(((-560 |#1| |#2|) (-10 -7 (-15 -2388 ((-3 |#2| "failed") |#2| (-1143) (-1143)))) (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1165) (-930) (-1106) (-29 |#1|))) (T -560))
+((-2388 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1143)) (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-1165) (-930) (-1106) (-29 *4))))))
+(-10 -7 (-15 -2388 ((-3 |#2| "failed") |#2| (-1143) (-1143))))
+((-2183 (((-1087) $ (-128)) 12)) (-2796 (((-1087) $ (-129)) 11)) (-2618 (((-1087) $ (-128)) 7)) (-3447 (((-1087) $) 8)) (-3578 (($ $) 6)))
+(((-561) (-138)) (T -561))
+NIL
+(-13 (-518) (-833))
+(((-171) . T) ((-518) . T) ((-833) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $ (-549)) 66)) (-3866 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-1885 (($ (-1139 (-549)) (-549)) 72)) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) 58)) (-1538 (($ $) 34)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2088 (((-747) $) 15)) (-2675 (((-112) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-1591 (((-549)) 29)) (-3246 (((-549) $) 32)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2763 (($ $ (-549)) 21)) (-2042 (((-3 $ "failed") $ $) 59)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) 16)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 61)) (-3862 (((-1123 (-549)) $) 18)) (-1977 (($ $) 23)) (-3846 (((-834) $) 87) (($ (-549)) 52) (($ $) NIL)) (-2082 (((-747)) 14)) (-1498 (((-112) $ $) NIL)) (-2661 (((-549) $ (-549)) 36)) (-3276 (($) 35 T CONST)) (-3287 (($) 19 T CONST)) (-2389 (((-112) $ $) 39)) (-2500 (($ $) 51) (($ $ $) 37)) (-2486 (($ $ $) 50)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 54) (($ $ $) 55)))
+(((-562 |#1| |#2|) (-840 |#1|) (-549) (-112)) (T -562))
+NIL
+(-840 |#1|)
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 21)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2044 (((-112) $) NIL)) (-3214 (((-747)) NIL)) (-2906 (($ $ (-892)) NIL (|has| $ (-361))) (($ $) NIL)) (-3062 (((-1153 (-892) (-747)) (-549)) 47)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-3614 (((-747)) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 $ "failed") $) 75)) (-2659 (($ $) 74)) (-3492 (($ (-1226 $)) 73)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) 32)) (-3239 (($) NIL)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2405 (($) 49)) (-2288 (((-112) $) NIL)) (-3165 (($ $) NIL) (($ $ (-747)) NIL)) (-1420 (((-112) $) NIL)) (-2088 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2675 (((-112) $) NIL)) (-1973 (($) 37 (|has| $ (-361)))) (-4091 (((-112) $) NIL (|has| $ (-361)))) (-3630 (($ $ (-892)) NIL (|has| $ (-361))) (($ $) NIL)) (-1681 (((-3 $ "failed") $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3788 (((-1139 $) $ (-892)) NIL (|has| $ (-361))) (((-1139 $) $) 83)) (-1881 (((-892) $) 55)) (-3318 (((-1139 $) $) NIL (|has| $ (-361)))) (-1983 (((-3 (-1139 $) "failed") $ $) NIL (|has| $ (-361))) (((-1139 $) $) NIL (|has| $ (-361)))) (-3719 (($ $ (-1139 $)) NIL (|has| $ (-361)))) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL T CONST)) (-3493 (($ (-892)) 48)) (-3980 (((-112) $) 67)) (-3990 (((-1087) $) NIL)) (-4248 (($) 19 (|has| $ (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) 42)) (-2121 (((-411 $) $) NIL)) (-3049 (((-892)) 66) (((-809 (-892))) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3914 (((-3 (-747) "failed") $ $) NIL) (((-747) $) NIL)) (-2985 (((-133)) NIL)) (-3456 (($ $ (-747)) NIL) (($ $) NIL)) (-3701 (((-892) $) 65) (((-809 (-892)) $) NIL)) (-2815 (((-1139 $)) 82)) (-3170 (($) 54)) (-1544 (($) 38 (|has| $ (-361)))) (-4263 (((-665 $) (-1226 $)) NIL) (((-1226 $) $) 71)) (-2845 (((-549) $) 28)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) 30) (($ $) NIL) (($ (-400 (-549))) NIL)) (-2210 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2082 (((-747)) 39)) (-1949 (((-1226 $) (-892)) 77) (((-1226 $)) 76)) (-1498 (((-112) $ $) NIL)) (-1606 (((-112) $) NIL)) (-3276 (($) 22 T CONST)) (-3287 (($) 18 T CONST)) (-1933 (($ $ (-747)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-1702 (($ $ (-747)) NIL) (($ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 26)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 61) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
+(((-563 |#1|) (-13 (-342) (-322 $) (-594 (-549))) (-892)) (T -563))
+NIL
+(-13 (-342) (-322 $) (-594 (-549)))
+((-1996 (((-1231) (-1125)) 10)))
+(((-564) (-10 -7 (-15 -1996 ((-1231) (-1125))))) (T -564))
+((-1996 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-564)))))
+(-10 -7 (-15 -1996 ((-1231) (-1125))))
+((-3628 (((-567 |#2|) (-567 |#2|)) 40)) (-1449 (((-621 |#2|) (-567 |#2|)) 42)) (-2544 ((|#2| (-567 |#2|)) 48)))
+(((-565 |#1| |#2|) (-10 -7 (-15 -3628 ((-567 |#2|) (-567 |#2|))) (-15 -1449 ((-621 |#2|) (-567 |#2|))) (-15 -2544 (|#2| (-567 |#2|)))) (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))) (-13 (-29 |#1|) (-1165))) (T -565))
+((-2544 (*1 *2 *3) (-12 (-5 *3 (-567 *2)) (-4 *2 (-13 (-29 *4) (-1165))) (-5 *1 (-565 *4 *2)) (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-567 *5)) (-4 *5 (-13 (-29 *4) (-1165))) (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *2 (-621 *5)) (-5 *1 (-565 *4 *5)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-567 *4)) (-4 *4 (-13 (-29 *3) (-1165))) (-4 *3 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *1 (-565 *3 *4)))))
+(-10 -7 (-15 -3628 ((-567 |#2|) (-567 |#2|))) (-15 -1449 ((-621 |#2|) (-567 |#2|))) (-15 -2544 (|#2| (-567 |#2|))))
+((-2797 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|)) 30)))
+(((-566 |#1| |#2|) (-10 -7 (-15 -2797 ((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|))) (-15 -2797 ((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2797 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2797 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-356) (-356)) (T -566))
+((-2797 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-566 *5 *6)))) (-2797 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-356)) (-4 *2 (-356)) (-5 *1 (-566 *5 *2)))) (-2797 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3440 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| -3440 *6) (|:| |coeff| *6))) (-5 *1 (-566 *5 *6)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-567 *5)) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-567 *6)) (-5 *1 (-566 *5 *6)))))
+(-10 -7 (-15 -2797 ((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|))) (-15 -2797 ((-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3440 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2797 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2797 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) 69)) (-2659 ((|#1| $) NIL)) (-3440 ((|#1| $) 26)) (-1635 (((-621 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-3176 (($ |#1| (-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1139 |#1|)) (|:| |logand| (-1139 |#1|)))) (-621 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3910 (((-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1139 |#1|)) (|:| |logand| (-1139 |#1|)))) $) 27)) (-3851 (((-1125) $) NIL)) (-2204 (($ |#1| |#1|) 33) (($ |#1| (-1143)) 44 (|has| |#1| (-1009 (-1143))))) (-3990 (((-1087) $) NIL)) (-3562 (((-112) $) 30)) (-3456 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1143)) 82 (|has| |#1| (-871 (-1143))))) (-3846 (((-834) $) 96) (($ |#1|) 25)) (-3276 (($) 16 T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) 15) (($ $ $) NIL)) (-2486 (($ $ $) 78)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 14) (($ (-400 (-549)) $) 36) (($ $ (-400 (-549))) NIL)))
+(((-567 |#1|) (-13 (-694 (-400 (-549))) (-1009 |#1|) (-10 -8 (-15 -3176 ($ |#1| (-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1139 |#1|)) (|:| |logand| (-1139 |#1|)))) (-621 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3440 (|#1| $)) (-15 -3910 ((-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1139 |#1|)) (|:| |logand| (-1139 |#1|)))) $)) (-15 -1635 ((-621 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3562 ((-112) $)) (-15 -2204 ($ |#1| |#1|)) (-15 -3456 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-871 (-1143))) (-15 -3456 (|#1| $ (-1143))) |%noBranch|) (IF (|has| |#1| (-1009 (-1143))) (-15 -2204 ($ |#1| (-1143))) |%noBranch|))) (-356)) (T -567))
+((-3176 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1139 *2)) (|:| |logand| (-1139 *2))))) (-5 *4 (-621 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-356)) (-5 *1 (-567 *2)))) (-3440 (*1 *2 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1139 *3)) (|:| |logand| (-1139 *3))))) (-5 *1 (-567 *3)) (-4 *3 (-356)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-567 *3)) (-4 *3 (-356)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-356)))) (-2204 (*1 *1 *2 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356)))) (-3456 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-567 *2)) (-4 *2 (-356)))) (-3456 (*1 *2 *1 *3) (-12 (-4 *2 (-356)) (-4 *2 (-871 *3)) (-5 *1 (-567 *2)) (-5 *3 (-1143)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *1 (-567 *2)) (-4 *2 (-1009 *3)) (-4 *2 (-356)))))
+(-13 (-694 (-400 (-549))) (-1009 |#1|) (-10 -8 (-15 -3176 ($ |#1| (-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1139 |#1|)) (|:| |logand| (-1139 |#1|)))) (-621 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3440 (|#1| $)) (-15 -3910 ((-621 (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1139 |#1|)) (|:| |logand| (-1139 |#1|)))) $)) (-15 -1635 ((-621 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3562 ((-112) $)) (-15 -2204 ($ |#1| |#1|)) (-15 -3456 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-871 (-1143))) (-15 -3456 (|#1| $ (-1143))) |%noBranch|) (IF (|has| |#1| (-1009 (-1143))) (-15 -2204 ($ |#1| (-1143))) |%noBranch|)))
+((-2113 (((-112) |#1|) 16)) (-3853 (((-3 |#1| "failed") |#1|) 14)) (-3340 (((-2 (|:| -1864 |#1|) (|:| -3731 (-747))) |#1|) 31) (((-3 |#1| "failed") |#1| (-747)) 18)) (-2828 (((-112) |#1| (-747)) 19)) (-1657 ((|#1| |#1|) 32)) (-2149 ((|#1| |#1| (-747)) 34)))
+(((-568 |#1|) (-10 -7 (-15 -2828 ((-112) |#1| (-747))) (-15 -3340 ((-3 |#1| "failed") |#1| (-747))) (-15 -3340 ((-2 (|:| -1864 |#1|) (|:| -3731 (-747))) |#1|)) (-15 -2149 (|#1| |#1| (-747))) (-15 -2113 ((-112) |#1|)) (-15 -3853 ((-3 |#1| "failed") |#1|)) (-15 -1657 (|#1| |#1|))) (-534)) (T -568))
+((-1657 (*1 *2 *2) (-12 (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-3853 (*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-2113 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))) (-2149 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-3340 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1864 *3) (|:| -3731 (-747)))) (-5 *1 (-568 *3)) (-4 *3 (-534)))) (-3340 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534)))) (-2828 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))))
+(-10 -7 (-15 -2828 ((-112) |#1| (-747))) (-15 -3340 ((-3 |#1| "failed") |#1| (-747))) (-15 -3340 ((-2 (|:| -1864 |#1|) (|:| -3731 (-747))) |#1|)) (-15 -2149 (|#1| |#1| (-747))) (-15 -2113 ((-112) |#1|)) (-15 -3853 ((-3 |#1| "failed") |#1|)) (-15 -1657 (|#1| |#1|)))
+((-1437 (((-1139 |#1|) (-892)) 27)))
+(((-569 |#1|) (-10 -7 (-15 -1437 ((-1139 |#1|) (-892)))) (-342)) (T -569))
+((-1437 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-569 *4)) (-4 *4 (-342)))))
+(-10 -7 (-15 -1437 ((-1139 |#1|) (-892))))
+((-3628 (((-567 (-400 (-923 |#1|))) (-567 (-400 (-923 |#1|)))) 27)) (-3893 (((-3 (-309 |#1|) (-621 (-309 |#1|))) (-400 (-923 |#1|)) (-1143)) 34 (|has| |#1| (-145)))) (-1449 (((-621 (-309 |#1|)) (-567 (-400 (-923 |#1|)))) 19)) (-4294 (((-309 |#1|) (-400 (-923 |#1|)) (-1143)) 32 (|has| |#1| (-145)))) (-2544 (((-309 |#1|) (-567 (-400 (-923 |#1|)))) 21)))
+(((-570 |#1|) (-10 -7 (-15 -3628 ((-567 (-400 (-923 |#1|))) (-567 (-400 (-923 |#1|))))) (-15 -1449 ((-621 (-309 |#1|)) (-567 (-400 (-923 |#1|))))) (-15 -2544 ((-309 |#1|) (-567 (-400 (-923 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -3893 ((-3 (-309 |#1|) (-621 (-309 |#1|))) (-400 (-923 |#1|)) (-1143))) (-15 -4294 ((-309 |#1|) (-400 (-923 |#1|)) (-1143)))) |%noBranch|)) (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (T -570))
+((-4294 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1143)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *2 (-309 *5)) (-5 *1 (-570 *5)))) (-3893 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1143)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *2 (-3 (-309 *5) (-621 (-309 *5)))) (-5 *1 (-570 *5)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-567 (-400 (-923 *4)))) (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *2 (-309 *4)) (-5 *1 (-570 *4)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-567 (-400 (-923 *4)))) (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *2 (-621 (-309 *4))) (-5 *1 (-570 *4)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-567 (-400 (-923 *3)))) (-4 *3 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549)))) (-5 *1 (-570 *3)))))
+(-10 -7 (-15 -3628 ((-567 (-400 (-923 |#1|))) (-567 (-400 (-923 |#1|))))) (-15 -1449 ((-621 (-309 |#1|)) (-567 (-400 (-923 |#1|))))) (-15 -2544 ((-309 |#1|) (-567 (-400 (-923 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -3893 ((-3 (-309 |#1|) (-621 (-309 |#1|))) (-400 (-923 |#1|)) (-1143))) (-15 -4294 ((-309 |#1|) (-400 (-923 |#1|)) (-1143)))) |%noBranch|))
+((-2485 (((-621 (-665 (-549))) (-621 (-549)) (-621 (-876 (-549)))) 46) (((-621 (-665 (-549))) (-621 (-549))) 47) (((-665 (-549)) (-621 (-549)) (-876 (-549))) 42)) (-3188 (((-747) (-621 (-549))) 40)))
+(((-571) (-10 -7 (-15 -3188 ((-747) (-621 (-549)))) (-15 -2485 ((-665 (-549)) (-621 (-549)) (-876 (-549)))) (-15 -2485 ((-621 (-665 (-549))) (-621 (-549)))) (-15 -2485 ((-621 (-665 (-549))) (-621 (-549)) (-621 (-876 (-549))))))) (T -571))
+((-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-549))) (-5 *4 (-621 (-876 (-549)))) (-5 *2 (-621 (-665 (-549)))) (-5 *1 (-571)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-621 (-665 (-549)))) (-5 *1 (-571)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-549))) (-5 *4 (-876 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-571)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-747)) (-5 *1 (-571)))))
+(-10 -7 (-15 -3188 ((-747) (-621 (-549)))) (-15 -2485 ((-665 (-549)) (-621 (-549)) (-876 (-549)))) (-15 -2485 ((-621 (-665 (-549))) (-621 (-549)))) (-15 -2485 ((-621 (-665 (-549))) (-621 (-549)) (-621 (-876 (-549))))))
+((-2782 (((-621 |#5|) |#5| (-112)) 73)) (-3918 (((-112) |#5| (-621 |#5|)) 30)))
+(((-572 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2782 ((-621 |#5|) |#5| (-112))) (-15 -3918 ((-112) |#5| (-621 |#5|)))) (-13 (-300) (-145)) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1076 |#1| |#2| |#3| |#4|)) (T -572))
+((-3918 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-1076 *5 *6 *7 *8)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-572 *5 *6 *7 *8 *3)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-621 *3)) (-5 *1 (-572 *5 *6 *7 *8 *3)) (-4 *3 (-1076 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2782 ((-621 |#5|) |#5| (-112))) (-15 -3918 ((-112) |#5| (-621 |#5|))))
+((-3834 (((-112) $ $) NIL)) (-2203 (((-1148) $) 11)) (-2190 (((-1148) $) 9)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-573) (-13 (-1050) (-10 -8 (-15 -2190 ((-1148) $)) (-15 -2203 ((-1148) $))))) (T -573))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-573)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-573)))))
+(-13 (-1050) (-10 -8 (-15 -2190 ((-1148) $)) (-15 -2203 ((-1148) $))))
+((-3834 (((-112) $ $) NIL (|has| (-142) (-1067)))) (-2969 (($ $) 34)) (-2946 (($ $) NIL)) (-1445 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-2319 (((-112) $ $) 51)) (-2293 (((-112) $ $ (-549)) 46)) (-3628 (((-621 $) $ (-142)) 60) (((-621 $) $ (-139)) 61)) (-4142 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-823)))) (-4311 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4338))) (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| (-142) (-823))))) (-3193 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-823)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 (((-142) $ (-549) (-142)) 45 (|has| $ (-6 -4338))) (((-142) $ (-1193 (-549)) (-142)) NIL (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-3590 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-4126 (($ $ (-1193 (-549)) $) 44)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-3812 (($ (-142) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4337))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4337)))) (-1879 (((-142) $ (-549) (-142)) NIL (|has| $ (-6 -4338)))) (-1809 (((-142) $ (-549)) NIL)) (-2349 (((-112) $ $) 72)) (-2883 (((-549) (-1 (-112) (-142)) $) NIL) (((-549) (-142) $) NIL (|has| (-142) (-1067))) (((-549) (-142) $ (-549)) 48 (|has| (-142) (-1067))) (((-549) $ $ (-549)) 47) (((-549) (-139) $ (-549)) 50)) (-2989 (((-621 (-142)) $) NIL (|has| $ (-6 -4337)))) (-3743 (($ (-747) (-142)) 9)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) 28 (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| (-142) (-823)))) (-3890 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-823)))) (-1562 (((-621 (-142)) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-1569 (((-549) $) 42 (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| (-142) (-823)))) (-2312 (((-112) $ $ (-142)) 73)) (-2475 (((-747) $ $ (-142)) 70)) (-1868 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-1555 (($ $) 37)) (-3408 (($ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3603 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-3851 (((-1125) $) 38 (|has| (-142) (-1067)))) (-2616 (($ (-142) $ (-549)) NIL) (($ $ $ (-549)) 23)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-549) $) 69) (((-1087) $) NIL (|has| (-142) (-1067)))) (-3646 (((-142) $) NIL (|has| (-549) (-823)))) (-3779 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-1642 (($ $ (-142)) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-287 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-621 (-142)) (-621 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-2696 (((-621 (-142)) $) NIL)) (-3670 (((-112) $) 12)) (-3742 (($) 10)) (-3341 (((-142) $ (-549) (-142)) NIL) (((-142) $ (-549)) 52) (($ $ (-1193 (-549))) 21) (($ $ $) NIL)) (-2167 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-4000 (((-747) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337))) (((-747) (-142) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-2730 (($ $ $ (-549)) 66 (|has| $ (-6 -4338)))) (-2281 (($ $) 17)) (-2845 (((-525) $) NIL (|has| (-142) (-594 (-525))))) (-3854 (($ (-621 (-142))) NIL)) (-1952 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-621 $)) 67)) (-3846 (($ (-142)) NIL) (((-834) $) 27 (|has| (-142) (-593 (-834))))) (-3527 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2425 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2389 (((-112) $ $) 14 (|has| (-142) (-1067)))) (-2438 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2412 (((-112) $ $) 15 (|has| (-142) (-823)))) (-3775 (((-747) $) 13 (|has| $ (-6 -4337)))))
+(((-574 |#1|) (-13 (-1111) (-10 -8 (-15 -3990 ((-549) $)))) (-549)) (T -574))
+((-3990 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-574 *3)) (-14 *3 *2))))
+(-13 (-1111) (-10 -8 (-15 -3990 ((-549) $))))
+((-2821 (((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2| (-1061 |#4|)) 32)))
+(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2821 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2| (-1061 |#4|))) (-15 -2821 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2|))) (-769) (-823) (-541) (-920 |#3| |#1| |#2|)) (T -575))
+((-2821 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-541)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549)))) (-5 *1 (-575 *5 *4 *6 *3)) (-4 *3 (-920 *6 *5 *4)))) (-2821 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1061 *3)) (-4 *3 (-920 *7 *6 *4)) (-4 *6 (-769)) (-4 *4 (-823)) (-4 *7 (-541)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549)))) (-5 *1 (-575 *6 *4 *7 *3)))))
+(-10 -7 (-15 -2821 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2| (-1061 |#4|))) (-15 -2821 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 63)) (-2272 (((-621 (-1048)) $) NIL)) (-3011 (((-1143) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3896 (($ $ (-549)) 54) (($ $ (-549) (-549)) 55)) (-2212 (((-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 60)) (-4092 (($ $) 100)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3469 (((-834) (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) (-997 (-816 (-549))) (-1143) |#1| (-400 (-549))) 224)) (-2826 (($ (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 34)) (-1682 (($) NIL T CONST)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2871 (((-112) $) NIL)) (-2088 (((-549) $) 58) (((-549) $ (-549)) 59)) (-2675 (((-112) $) NIL)) (-2992 (($ $ (-892)) 76)) (-2876 (($ (-1 |#1| (-549)) $) 73)) (-2205 (((-112) $) 25)) (-2246 (($ |#1| (-549)) 22) (($ $ (-1048) (-549)) NIL) (($ $ (-621 (-1048)) (-621 (-549))) NIL)) (-2797 (($ (-1 |#1| |#1|) $) 67)) (-4006 (($ (-997 (-816 (-549))) (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 13)) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3893 (($ $) 150 (|has| |#1| (-38 (-400 (-549)))))) (-2865 (((-3 $ "failed") $ $ (-112)) 99)) (-2776 (($ $ $) 108)) (-3990 (((-1087) $) NIL)) (-2138 (((-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 15)) (-3922 (((-997 (-816 (-549))) $) 14)) (-2763 (($ $ (-549)) 45)) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2686 (((-1123 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-549)))))) (-3341 ((|#1| $ (-549)) 57) (($ $ $) NIL (|has| (-549) (-1079)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-3701 (((-549) $) NIL)) (-1977 (($ $) 46)) (-3846 (((-834) $) NIL) (($ (-549)) 28) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541))) (($ |#1|) 27 (|has| |#1| (-170)))) (-2152 ((|#1| $ (-549)) 56)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) 37)) (-2597 ((|#1| $) NIL)) (-2880 (($ $) 186 (|has| |#1| (-38 (-400 (-549)))))) (-1580 (($ $) 158 (|has| |#1| (-38 (-400 (-549)))))) (-2249 (($ $) 190 (|has| |#1| (-38 (-400 (-549)))))) (-2189 (($ $) 163 (|has| |#1| (-38 (-400 (-549)))))) (-1734 (($ $) 189 (|has| |#1| (-38 (-400 (-549)))))) (-1777 (($ $) 162 (|has| |#1| (-38 (-400 (-549)))))) (-3415 (($ $ (-400 (-549))) 166 (|has| |#1| (-38 (-400 (-549)))))) (-4264 (($ $ |#1|) 146 (|has| |#1| (-38 (-400 (-549)))))) (-4025 (($ $) 192 (|has| |#1| (-38 (-400 (-549)))))) (-1673 (($ $) 149 (|has| |#1| (-38 (-400 (-549)))))) (-2323 (($ $) 191 (|has| |#1| (-38 (-400 (-549)))))) (-2807 (($ $) 164 (|has| |#1| (-38 (-400 (-549)))))) (-1364 (($ $) 187 (|has| |#1| (-38 (-400 (-549)))))) (-2601 (($ $) 160 (|has| |#1| (-38 (-400 (-549)))))) (-3247 (($ $) 188 (|has| |#1| (-38 (-400 (-549)))))) (-3808 (($ $) 161 (|has| |#1| (-38 (-400 (-549)))))) (-4165 (($ $) 197 (|has| |#1| (-38 (-400 (-549)))))) (-2896 (($ $) 173 (|has| |#1| (-38 (-400 (-549)))))) (-2066 (($ $) 194 (|has| |#1| (-38 (-400 (-549)))))) (-2571 (($ $) 168 (|has| |#1| (-38 (-400 (-549)))))) (-1666 (($ $) 201 (|has| |#1| (-38 (-400 (-549)))))) (-1771 (($ $) 177 (|has| |#1| (-38 (-400 (-549)))))) (-4242 (($ $) 203 (|has| |#1| (-38 (-400 (-549)))))) (-2179 (($ $) 179 (|has| |#1| (-38 (-400 (-549)))))) (-2115 (($ $) 199 (|has| |#1| (-38 (-400 (-549)))))) (-1515 (($ $) 175 (|has| |#1| (-38 (-400 (-549)))))) (-1483 (($ $) 196 (|has| |#1| (-38 (-400 (-549)))))) (-2800 (($ $) 171 (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2661 ((|#1| $ (-549)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-3276 (($) 29 T CONST)) (-3287 (($) 38 T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-2389 (((-112) $ $) 65)) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $) 84) (($ $ $) 64)) (-2486 (($ $ $) 81)) (** (($ $ (-892)) NIL) (($ $ (-747)) 103)) (* (($ (-892) $) 89) (($ (-747) $) 87) (($ (-549) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-576 |#1|) (-13 (-1204 |#1| (-549)) (-10 -8 (-15 -4006 ($ (-997 (-816 (-549))) (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -3922 ((-997 (-816 (-549))) $)) (-15 -2138 ((-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $)) (-15 -2826 ($ (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -2205 ((-112) $)) (-15 -2876 ($ (-1 |#1| (-549)) $)) (-15 -2865 ((-3 $ "failed") $ $ (-112))) (-15 -4092 ($ $)) (-15 -2776 ($ $ $)) (-15 -3469 ((-834) (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) (-997 (-816 (-549))) (-1143) |#1| (-400 (-549)))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -3893 ($ $)) (-15 -4264 ($ $ |#1|)) (-15 -3415 ($ $ (-400 (-549)))) (-15 -1673 ($ $)) (-15 -4025 ($ $)) (-15 -2189 ($ $)) (-15 -3808 ($ $)) (-15 -1580 ($ $)) (-15 -2601 ($ $)) (-15 -1777 ($ $)) (-15 -2807 ($ $)) (-15 -2571 ($ $)) (-15 -2800 ($ $)) (-15 -2896 ($ $)) (-15 -1515 ($ $)) (-15 -1771 ($ $)) (-15 -2179 ($ $)) (-15 -2249 ($ $)) (-15 -3247 ($ $)) (-15 -2880 ($ $)) (-15 -1364 ($ $)) (-15 -1734 ($ $)) (-15 -2323 ($ $)) (-15 -2066 ($ $)) (-15 -1483 ($ $)) (-15 -4165 ($ $)) (-15 -2115 ($ $)) (-15 -1666 ($ $)) (-15 -4242 ($ $))) |%noBranch|))) (-1018)) (T -576))
+((-2205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-4006 (*1 *1 *2 *3) (-12 (-5 *2 (-997 (-816 (-549)))) (-5 *3 (-1123 (-2 (|:| |k| (-549)) (|:| |c| *4)))) (-4 *4 (-1018)) (-5 *1 (-576 *4)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-997 (-816 (-549)))) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-1123 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-2826 (*1 *1 *2) (-12 (-5 *2 (-1123 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-4 *3 (-1018)) (-5 *1 (-576 *3)))) (-2876 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *3 (-1018)) (-5 *1 (-576 *3)))) (-2865 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018)))) (-4092 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))) (-2776 (*1 *1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))) (-3469 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1123 (-2 (|:| |k| (-549)) (|:| |c| *6)))) (-5 *4 (-997 (-816 (-549)))) (-5 *5 (-1143)) (-5 *7 (-400 (-549))) (-4 *6 (-1018)) (-5 *2 (-834)) (-5 *1 (-576 *6)))) (-3893 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-4264 (*1 *1 *1 *2) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-3415 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-576 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1018)))) (-1673 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-4025 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2189 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-1580 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2601 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-1777 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2807 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2571 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2800 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2896 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-1515 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-1771 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2249 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-3247 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2880 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-1364 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-1734 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2323 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2066 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-1483 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-4165 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-2115 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-1666 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))) (-4242 (*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(-13 (-1204 |#1| (-549)) (-10 -8 (-15 -4006 ($ (-997 (-816 (-549))) (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -3922 ((-997 (-816 (-549))) $)) (-15 -2138 ((-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $)) (-15 -2826 ($ (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -2205 ((-112) $)) (-15 -2876 ($ (-1 |#1| (-549)) $)) (-15 -2865 ((-3 $ "failed") $ $ (-112))) (-15 -4092 ($ $)) (-15 -2776 ($ $ $)) (-15 -3469 ((-834) (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) (-997 (-816 (-549))) (-1143) |#1| (-400 (-549)))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -3893 ($ $)) (-15 -4264 ($ $ |#1|)) (-15 -3415 ($ $ (-400 (-549)))) (-15 -1673 ($ $)) (-15 -4025 ($ $)) (-15 -2189 ($ $)) (-15 -3808 ($ $)) (-15 -1580 ($ $)) (-15 -2601 ($ $)) (-15 -1777 ($ $)) (-15 -2807 ($ $)) (-15 -2571 ($ $)) (-15 -2800 ($ $)) (-15 -2896 ($ $)) (-15 -1515 ($ $)) (-15 -1771 ($ $)) (-15 -2179 ($ $)) (-15 -2249 ($ $)) (-15 -3247 ($ $)) (-15 -2880 ($ $)) (-15 -1364 ($ $)) (-15 -1734 ($ $)) (-15 -2323 ($ $)) (-15 -2066 ($ $)) (-15 -1483 ($ $)) (-15 -4165 ($ $)) (-15 -2115 ($ $)) (-15 -1666 ($ $)) (-15 -4242 ($ $))) |%noBranch|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-2826 (($ (-1123 |#1|)) 9)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) 42)) (-2871 (((-112) $) 52)) (-2088 (((-747) $) 55) (((-747) $ (-747)) 54)) (-2675 (((-112) $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2042 (((-3 $ "failed") $ $) 44 (|has| |#1| (-541)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL (|has| |#1| (-541)))) (-4141 (((-1123 |#1|) $) 23)) (-2082 (((-747)) 51)) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3276 (($) 10 T CONST)) (-3287 (($) 14 T CONST)) (-2389 (((-112) $ $) 22)) (-2500 (($ $) 30) (($ $ $) 16)) (-2486 (($ $ $) 25)) (** (($ $ (-892)) NIL) (($ $ (-747)) 49)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-549)) 36)))
+(((-577 |#1|) (-13 (-1018) (-10 -8 (-15 -4141 ((-1123 |#1|) $)) (-15 -2826 ($ (-1123 |#1|))) (-15 -2871 ((-112) $)) (-15 -2088 ((-747) $)) (-15 -2088 ((-747) $ (-747))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-549))) (IF (|has| |#1| (-541)) (-6 (-541)) |%noBranch|))) (-1018)) (T -577))
+((-4141 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (-2826 (*1 *1 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-577 *3)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (-2088 (*1 *2 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-577 *3)) (-4 *3 (-1018)))))
+(-13 (-1018) (-10 -8 (-15 -4141 ((-1123 |#1|) $)) (-15 -2826 ($ (-1123 |#1|))) (-15 -2871 ((-112) $)) (-15 -2088 ((-747) $)) (-15 -2088 ((-747) $ (-747))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-549))) (IF (|has| |#1| (-541)) (-6 (-541)) |%noBranch|)))
+((-2797 (((-581 |#2|) (-1 |#2| |#1|) (-581 |#1|)) 15)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -2797 ((-581 |#2|) (-1 |#2| |#1|) (-581 |#1|)))) (-1180) (-1180)) (T -578))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-581 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-581 *6)) (-5 *1 (-578 *5 *6)))))
+(-10 -7 (-15 -2797 ((-581 |#2|) (-1 |#2| |#1|) (-581 |#1|))))
+((-2797 (((-1123 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-1123 |#2|)) 20) (((-1123 |#3|) (-1 |#3| |#1| |#2|) (-1123 |#1|) (-581 |#2|)) 19) (((-581 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-581 |#2|)) 18)))
+(((-579 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-581 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-581 |#2|))) (-15 -2797 ((-1123 |#3|) (-1 |#3| |#1| |#2|) (-1123 |#1|) (-581 |#2|))) (-15 -2797 ((-1123 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-1123 |#2|)))) (-1180) (-1180) (-1180)) (T -579))
+((-2797 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-1123 *7)) (-4 *6 (-1180)) (-4 *7 (-1180)) (-4 *8 (-1180)) (-5 *2 (-1123 *8)) (-5 *1 (-579 *6 *7 *8)))) (-2797 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1123 *6)) (-5 *5 (-581 *7)) (-4 *6 (-1180)) (-4 *7 (-1180)) (-4 *8 (-1180)) (-5 *2 (-1123 *8)) (-5 *1 (-579 *6 *7 *8)))) (-2797 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-581 *7)) (-4 *6 (-1180)) (-4 *7 (-1180)) (-4 *8 (-1180)) (-5 *2 (-581 *8)) (-5 *1 (-579 *6 *7 *8)))))
+(-10 -7 (-15 -2797 ((-581 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-581 |#2|))) (-15 -2797 ((-1123 |#3|) (-1 |#3| |#1| |#2|) (-1123 |#1|) (-581 |#2|))) (-15 -2797 ((-1123 |#3|) (-1 |#3| |#1| |#2|) (-581 |#1|) (-1123 |#2|))))
+((-2110 ((|#3| |#3| (-621 (-592 |#3|)) (-621 (-1143))) 55)) (-3010 (((-167 |#2|) |#3|) 117)) (-3255 ((|#3| (-167 |#2|)) 44)) (-3108 ((|#2| |#3|) 19)) (-2331 ((|#3| |#2|) 33)))
+(((-580 |#1| |#2| |#3|) (-10 -7 (-15 -3255 (|#3| (-167 |#2|))) (-15 -3108 (|#2| |#3|)) (-15 -2331 (|#3| |#2|)) (-15 -3010 ((-167 |#2|) |#3|)) (-15 -2110 (|#3| |#3| (-621 (-592 |#3|)) (-621 (-1143))))) (-13 (-541) (-823)) (-13 (-423 |#1|) (-973) (-1165)) (-13 (-423 (-167 |#1|)) (-973) (-1165))) (T -580))
+((-2110 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-621 (-592 *2))) (-5 *4 (-621 (-1143))) (-4 *2 (-13 (-423 (-167 *5)) (-973) (-1165))) (-4 *5 (-13 (-541) (-823))) (-5 *1 (-580 *5 *6 *2)) (-4 *6 (-13 (-423 *5) (-973) (-1165))))) (-3010 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823))) (-5 *2 (-167 *5)) (-5 *1 (-580 *4 *5 *3)) (-4 *5 (-13 (-423 *4) (-973) (-1165))) (-4 *3 (-13 (-423 (-167 *4)) (-973) (-1165))))) (-2331 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823))) (-4 *2 (-13 (-423 (-167 *4)) (-973) (-1165))) (-5 *1 (-580 *4 *3 *2)) (-4 *3 (-13 (-423 *4) (-973) (-1165))))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-823))) (-4 *2 (-13 (-423 *4) (-973) (-1165))) (-5 *1 (-580 *4 *2 *3)) (-4 *3 (-13 (-423 (-167 *4)) (-973) (-1165))))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-423 *4) (-973) (-1165))) (-4 *4 (-13 (-541) (-823))) (-4 *2 (-13 (-423 (-167 *4)) (-973) (-1165))) (-5 *1 (-580 *4 *5 *2)))))
+(-10 -7 (-15 -3255 (|#3| (-167 |#2|))) (-15 -3108 (|#2| |#3|)) (-15 -2331 (|#3| |#2|)) (-15 -3010 ((-167 |#2|) |#3|)) (-15 -2110 (|#3| |#3| (-621 (-592 |#3|)) (-621 (-1143)))))
+((-1489 (($ (-1 (-112) |#1|) $) 17)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1412 (($ (-1 |#1| |#1|) |#1|) 9)) (-1460 (($ (-1 (-112) |#1|) $) 13)) (-1474 (($ (-1 (-112) |#1|) $) 15)) (-3854 (((-1123 |#1|) $) 18)) (-3846 (((-834) $) NIL)))
+(((-581 |#1|) (-13 (-593 (-834)) (-10 -8 (-15 -2797 ($ (-1 |#1| |#1|) $)) (-15 -1460 ($ (-1 (-112) |#1|) $)) (-15 -1474 ($ (-1 (-112) |#1|) $)) (-15 -1489 ($ (-1 (-112) |#1|) $)) (-15 -1412 ($ (-1 |#1| |#1|) |#1|)) (-15 -3854 ((-1123 |#1|) $)))) (-1180)) (T -581))
+((-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1180)) (-5 *1 (-581 *3)))) (-1460 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1180)) (-5 *1 (-581 *3)))) (-1474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1180)) (-5 *1 (-581 *3)))) (-1489 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1180)) (-5 *1 (-581 *3)))) (-1412 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1180)) (-5 *1 (-581 *3)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1180)))))
+(-13 (-593 (-834)) (-10 -8 (-15 -2797 ($ (-1 |#1| |#1|) $)) (-15 -1460 ($ (-1 (-112) |#1|) $)) (-15 -1474 ($ (-1 (-112) |#1|) $)) (-15 -1489 ($ (-1 (-112) |#1|) $)) (-15 -1412 ($ (-1 |#1| |#1|) |#1|)) (-15 -3854 ((-1123 |#1|) $))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3769 (($ (-747)) NIL (|has| |#1| (-23)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4311 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4338))) (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) NIL (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) NIL)) (-2883 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1067))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1067)))) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-4050 (((-665 |#1|) $ $) NIL (|has| |#1| (-1018)))) (-3743 (($ (-747) |#1|) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3890 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3359 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-1508 (((-112) $ (-747)) NIL)) (-4210 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-2616 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3646 ((|#1| $) NIL (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1642 (($ $ |#1|) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-1706 ((|#1| $ $) NIL (|has| |#1| (-1018)))) (-2167 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-2168 (($ $ $) NIL (|has| |#1| (-1018)))) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) NIL)) (-1952 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2500 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2486 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-549) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-703))) (($ $ |#1|) NIL (|has| |#1| (-703)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-582 |#1| |#2|) (-1224 |#1|) (-1180) (-549)) (T -582))
+NIL
+(-1224 |#1|)
+((-1535 (((-1231) $ |#2| |#2|) 36)) (-4031 ((|#2| $) 23)) (-1569 ((|#2| $) 21)) (-1868 (($ (-1 |#3| |#3|) $) 32)) (-2797 (($ (-1 |#3| |#3|) $) 30)) (-3646 ((|#3| $) 26)) (-1642 (($ $ |#3|) 33)) (-2265 (((-112) |#3| $) 17)) (-2696 (((-621 |#3|) $) 15)) (-3341 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-583 |#1| |#2| |#3|) (-10 -8 (-15 -1535 ((-1231) |#1| |#2| |#2|)) (-15 -1642 (|#1| |#1| |#3|)) (-15 -3646 (|#3| |#1|)) (-15 -4031 (|#2| |#1|)) (-15 -1569 (|#2| |#1|)) (-15 -2265 ((-112) |#3| |#1|)) (-15 -2696 ((-621 |#3|) |#1|)) (-15 -3341 (|#3| |#1| |#2|)) (-15 -3341 (|#3| |#1| |#2| |#3|)) (-15 -1868 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2797 (|#1| (-1 |#3| |#3|) |#1|))) (-584 |#2| |#3|) (-1067) (-1180)) (T -583))
+NIL
+(-10 -8 (-15 -1535 ((-1231) |#1| |#2| |#2|)) (-15 -1642 (|#1| |#1| |#3|)) (-15 -3646 (|#3| |#1|)) (-15 -4031 (|#2| |#1|)) (-15 -1569 (|#2| |#1|)) (-15 -2265 ((-112) |#3| |#1|)) (-15 -2696 ((-621 |#3|) |#1|)) (-15 -3341 (|#3| |#1| |#2|)) (-15 -3341 (|#3| |#1| |#2| |#3|)) (-15 -1868 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2797 (|#1| (-1 |#3| |#3|) |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#2| (-1067)))) (-1535 (((-1231) $ |#1| |#1|) 40 (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) 8)) (-2254 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4338)))) (-1682 (($) 7 T CONST)) (-1879 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4338)))) (-1809 ((|#2| $ |#1|) 51)) (-2989 (((-621 |#2|) $) 30 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-4031 ((|#1| $) 43 (|has| |#1| (-823)))) (-1562 (((-621 |#2|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4337))))) (-1569 ((|#1| $) 44 (|has| |#1| (-823)))) (-1868 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#2| |#2|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#2| (-1067)))) (-3303 (((-621 |#1|) $) 46)) (-3761 (((-112) |#1| $) 47)) (-3990 (((-1087) $) 21 (|has| |#2| (-1067)))) (-3646 ((|#2| $) 42 (|has| |#1| (-823)))) (-1642 (($ $ |#2|) 41 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2696 (((-621 |#2|) $) 48)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-4000 (((-747) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4337))) (((-747) |#2| $) 28 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3846 (((-834) $) 18 (|has| |#2| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#2| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-584 |#1| |#2|) (-138) (-1067) (-1180)) (T -584))
+((-2696 (*1 *2 *1) (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1180)) (-5 *2 (-621 *4)))) (-3761 (*1 *2 *3 *1) (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1180)) (-5 *2 (-112)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1180)) (-5 *2 (-621 *3)))) (-2265 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *4 *3)) (-4 *4 (-1067)) (-4 *3 (-1180)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-1569 (*1 *2 *1) (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1180)) (-4 *2 (-1067)) (-4 *2 (-823)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1180)) (-4 *2 (-1067)) (-4 *2 (-823)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-584 *3 *2)) (-4 *3 (-1067)) (-4 *3 (-823)) (-4 *2 (-1180)))) (-1642 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-584 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1180)))) (-1535 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1180)) (-5 *2 (-1231)))))
+(-13 (-481 |t#2|) (-281 |t#1| |t#2|) (-10 -8 (-15 -2696 ((-621 |t#2|) $)) (-15 -3761 ((-112) |t#1| $)) (-15 -3303 ((-621 |t#1|) $)) (IF (|has| |t#2| (-1067)) (IF (|has| $ (-6 -4337)) (-15 -2265 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-823)) (PROGN (-15 -1569 (|t#1| $)) (-15 -4031 (|t#1| $)) (-15 -3646 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4338)) (PROGN (-15 -1642 ($ $ |t#2|)) (-15 -1535 ((-1231) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#2| (-1067)) ((-593 (-834)) -1536 (|has| |#2| (-1067)) (|has| |#2| (-593 (-834)))) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-1067) |has| |#2| (-1067)) ((-1180) . T))
+((-3846 (((-834) $) 19) (((-129) $) 14) (($ (-129)) 13)))
+(((-585) (-13 (-593 (-834)) (-593 (-129)) (-10 -8 (-15 -3846 ($ (-129)))))) (T -585))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-585)))))
+(-13 (-593 (-834)) (-593 (-129)) (-10 -8 (-15 -3846 ($ (-129)))))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL) (((-1179) $) 14) (($ (-621 (-1179))) 13)) (-3328 (((-621 (-1179)) $) 10)) (-2389 (((-112) $ $) NIL)))
+(((-586) (-13 (-1050) (-593 (-1179)) (-10 -8 (-15 -3846 ($ (-621 (-1179)))) (-15 -3328 ((-621 (-1179)) $))))) (T -586))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-1179))) (-5 *1 (-586)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-621 (-1179))) (-5 *1 (-586)))))
+(-13 (-1050) (-593 (-1179)) (-10 -8 (-15 -3846 ($ (-621 (-1179)))) (-15 -3328 ((-621 (-1179)) $))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2207 (((-3 $ "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3277 (((-1226 (-665 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-1226 (-665 |#1|)) (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-3945 (((-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-1682 (($) NIL T CONST)) (-3219 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-3550 (((-3 $ "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-4212 (((-665 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-2840 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-3841 (((-665 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) $ (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-3038 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2478 (((-1139 (-923 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-3117 (($ $ (-892)) NIL)) (-2182 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2289 (((-1139 |#1|) $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-3076 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-3266 (((-1139 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1368 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3492 (($ (-1226 |#1|)) NIL (|has| |#2| (-410 |#1|))) (($ (-1226 |#1|) (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-2114 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-3123 (((-892)) NIL (|has| |#2| (-360 |#1|)))) (-3601 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2943 (($ $ (-892)) NIL)) (-3975 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2291 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2647 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1742 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-4101 (((-3 $ "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2870 (((-665 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-2654 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2303 (((-665 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) $ (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-1919 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2014 (((-1139 (-923 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-2884 (($ $ (-892)) NIL)) (-2248 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1378 (((-1139 |#1|) $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2920 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-2443 (((-1139 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-3623 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3851 (((-1125) $) NIL)) (-3260 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2754 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2055 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3990 (((-1087) $) NIL)) (-2392 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3341 ((|#1| $ (-549)) NIL (|has| |#2| (-410 |#1|)))) (-4263 (((-665 |#1|) (-1226 $)) NIL (|has| |#2| (-410 |#1|))) (((-1226 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) (-1226 $) (-1226 $)) NIL (|has| |#2| (-360 |#1|))) (((-1226 |#1|) $ (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-2845 (($ (-1226 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-1226 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-4111 (((-621 (-923 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-621 (-923 |#1|)) (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-3293 (($ $ $) NIL)) (-1942 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3846 (((-834) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1949 (((-1226 $)) NIL (|has| |#2| (-410 |#1|)))) (-4315 (((-621 (-1226 |#1|))) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-4272 (($ $ $ $) NIL)) (-3430 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3596 (($ (-665 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-2174 (($ $ $) NIL)) (-2864 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4257 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1898 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3276 (($) NIL T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) 24)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-587 |#1| |#2|) (-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -3846 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-721 |#1|)) (T -587))
+((-3846 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-587 *3 *2)) (-4 *2 (-721 *3)))))
+(-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -3846 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|)))
+((-3834 (((-112) $ $) NIL)) (-3113 (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) 33)) (-3733 (($ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) NIL) (($) NIL)) (-1535 (((-1231) $ (-1125) (-1125)) NIL (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#1| $ (-1125) |#1|) 43)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-3490 (((-3 |#1| "failed") (-1125) $) 46)) (-1682 (($) NIL T CONST)) (-2060 (($ $ (-1125)) 24)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067))))) (-2129 (((-3 |#1| "failed") (-1125) $) 47) (($ (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337))) (($ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL (|has| $ (-6 -4337)))) (-3812 (($ (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337))) (($ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067))))) (-2557 (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067))))) (-3001 (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) 32)) (-1879 ((|#1| $ (-1125) |#1|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-1125)) NIL)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337))) (((-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-4114 (($ $) 48)) (-1359 (($ (-381)) 22) (($ (-381) (-1125)) 21)) (-2481 (((-381) $) 34)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-1125) $) NIL (|has| (-1125) (-823)))) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337))) (((-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (((-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067))))) (-1569 (((-1125) $) NIL (|has| (-1125) (-823)))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338))) (($ (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-3449 (((-621 (-1125)) $) 39)) (-2427 (((-112) (-1125) $) NIL)) (-2646 (((-1125) $) 35)) (-3504 (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL)) (-2751 (($ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL)) (-3303 (((-621 (-1125)) $) NIL)) (-3761 (((-112) (-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3646 ((|#1| $) NIL (|has| (-1125) (-823)))) (-3779 (((-3 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) "failed") (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL)) (-1642 (($ $ |#1|) NIL (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) NIL (-12 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)))) (($ $ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) NIL (-12 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) NIL (-12 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)))) (($ $ (-621 (-287 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))))) NIL (-12 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) 37)) (-3341 ((|#1| $ (-1125) |#1|) NIL) ((|#1| $ (-1125)) 42)) (-2898 (($ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) NIL) (($) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (((-747) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)))) (((-747) (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) NIL)) (-3846 (((-834) $) 20)) (-3578 (($ $) 25)) (-3624 (($ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) NIL)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 19)) (-3775 (((-747) $) 41 (|has| $ (-6 -4337)))))
+(((-588 |#1|) (-13 (-357 (-381) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) (-1156 (-1125) |#1|) (-10 -8 (-6 -4337) (-15 -4114 ($ $)))) (-1067)) (T -588))
+((-4114 (*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1067)))))
+(-13 (-357 (-381) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) (-1156 (-1125) |#1|) (-10 -8 (-6 -4337) (-15 -4114 ($ $))))
+((-2090 (((-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) $) 15)) (-3449 (((-621 |#2|) $) 19)) (-2427 (((-112) |#2| $) 12)))
+(((-589 |#1| |#2| |#3|) (-10 -8 (-15 -3449 ((-621 |#2|) |#1|)) (-15 -2427 ((-112) |#2| |#1|)) (-15 -2090 ((-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) |#1|))) (-590 |#2| |#3|) (-1067) (-1067)) (T -589))
+NIL
+(-10 -8 (-15 -3449 ((-621 |#2|) |#1|)) (-15 -2427 ((-112) |#2| |#1|)) (-15 -2090 ((-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) |#1|)))
+((-3834 (((-112) $ $) 19 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-1584 (((-112) $ (-747)) 8)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 45 (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 55 (|has| $ (-6 -4337)))) (-3490 (((-3 |#2| "failed") |#1| $) 61)) (-1682 (($) 7 T CONST)) (-3676 (($ $) 58 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337))))) (-2129 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 47 (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 46 (|has| $ (-6 -4337))) (((-3 |#2| "failed") |#1| $) 62)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 54 (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 56 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 53 (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 52 (|has| $ (-6 -4337)))) (-2989 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 30 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-3449 (((-621 |#1|) $) 63)) (-2427 (((-112) |#1| $) 64)) (-3504 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 39)) (-2751 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 40)) (-3990 (((-1087) $) 21 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-3779 (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 51)) (-3325 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 41)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))))) 26 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 25 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 24 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 23 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-2898 (($) 49) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 48)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 31 (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2845 (((-525) $) 59 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 50)) (-3846 (((-834) $) 18 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834))))) (-3624 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 42)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-590 |#1| |#2|) (-138) (-1067) (-1067)) (T -590))
+((-2427 (*1 *2 *3 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-112)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-5 *2 (-621 *3)))) (-2129 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-3490 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))))
+(-13 (-223 (-2 (|:| -3337 |t#1|) (|:| -1793 |t#2|))) (-10 -8 (-15 -2427 ((-112) |t#1| $)) (-15 -3449 ((-621 |t#1|) $)) (-15 -2129 ((-3 |t#2| "failed") |t#1| $)) (-15 -3490 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-106 #0=(-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T) ((-101) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) ((-593 (-834)) -1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834)))) ((-149 #0#) . T) ((-594 (-525)) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))) ((-223 #0#) . T) ((-229 #0#) . T) ((-302 #0#) -12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))) ((-481 #0#) . T) ((-505 #0# #0#) -12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))) ((-1067) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) ((-1180) . T))
+((-3351 (((-592 |#2|) |#1|) 15)) (-4108 (((-3 |#1| "failed") (-592 |#2|)) 19)))
+(((-591 |#1| |#2|) (-10 -7 (-15 -3351 ((-592 |#2|) |#1|)) (-15 -4108 ((-3 |#1| "failed") (-592 |#2|)))) (-823) (-823)) (T -591))
+((-4108 (*1 *2 *3) (|partial| -12 (-5 *3 (-592 *4)) (-4 *4 (-823)) (-4 *2 (-823)) (-5 *1 (-591 *2 *4)))) (-3351 (*1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *1 (-591 *3 *4)) (-4 *3 (-823)) (-4 *4 (-823)))))
+(-10 -7 (-15 -3351 ((-592 |#2|) |#1|)) (-15 -4108 ((-3 |#1| "failed") (-592 |#2|))))
+((-3834 (((-112) $ $) NIL)) (-1896 (((-3 (-1143) "failed") $) 37)) (-3309 (((-1231) $ (-747)) 26)) (-2883 (((-747) $) 25)) (-2834 (((-114) $) 12)) (-2481 (((-1143) $) 20)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-1476 (($ (-114) (-621 |#1|) (-747)) 30) (($ (-1143)) 31)) (-3421 (((-112) $ (-114)) 18) (((-112) $ (-1143)) 16)) (-4036 (((-747) $) 22)) (-3990 (((-1087) $) NIL)) (-2845 (((-863 (-549)) $) 77 (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) 84 (|has| |#1| (-594 (-863 (-372))))) (((-525) $) 69 (|has| |#1| (-594 (-525))))) (-3846 (((-834) $) 55)) (-1572 (((-621 |#1|) $) 24)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 41)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 42)))
+(((-592 |#1|) (-13 (-131) (-855 |#1|) (-10 -8 (-15 -2481 ((-1143) $)) (-15 -2834 ((-114) $)) (-15 -1572 ((-621 |#1|) $)) (-15 -4036 ((-747) $)) (-15 -1476 ($ (-114) (-621 |#1|) (-747))) (-15 -1476 ($ (-1143))) (-15 -1896 ((-3 (-1143) "failed") $)) (-15 -3421 ((-112) $ (-114))) (-15 -3421 ((-112) $ (-1143))) (IF (|has| |#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|))) (-823)) (T -592))
+((-2481 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-592 *3)) (-4 *3 (-823)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-592 *3)) (-4 *3 (-823)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-592 *3)) (-4 *3 (-823)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-592 *3)) (-4 *3 (-823)))) (-1476 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-621 *5)) (-5 *4 (-747)) (-4 *5 (-823)) (-5 *1 (-592 *5)))) (-1476 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-592 *3)) (-4 *3 (-823)))) (-1896 (*1 *2 *1) (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-592 *3)) (-4 *3 (-823)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-592 *4)) (-4 *4 (-823)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-112)) (-5 *1 (-592 *4)) (-4 *4 (-823)))))
+(-13 (-131) (-855 |#1|) (-10 -8 (-15 -2481 ((-1143) $)) (-15 -2834 ((-114) $)) (-15 -1572 ((-621 |#1|) $)) (-15 -4036 ((-747) $)) (-15 -1476 ($ (-114) (-621 |#1|) (-747))) (-15 -1476 ($ (-1143))) (-15 -1896 ((-3 (-1143) "failed") $)) (-15 -3421 ((-112) $ (-114))) (-15 -3421 ((-112) $ (-1143))) (IF (|has| |#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|)))
+((-3846 ((|#1| $) 6)))
+(((-593 |#1|) (-138) (-1180)) (T -593))
+((-3846 (*1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1180)))))
+(-13 (-10 -8 (-15 -3846 (|t#1| $))))
+((-2845 ((|#1| $) 6)))
+(((-594 |#1|) (-138) (-1180)) (T -594))
+((-2845 (*1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1180)))))
+(-13 (-10 -8 (-15 -2845 (|t#1| $))))
+((-3005 (((-3 (-1139 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-411 |#2|) |#2|)) 15) (((-3 (-1139 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 16)))
+(((-595 |#1| |#2|) (-10 -7 (-15 -3005 ((-3 (-1139 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -3005 ((-3 (-1139 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-411 |#2|) |#2|)))) (-13 (-145) (-27) (-1009 (-549)) (-1009 (-400 (-549)))) (-1202 |#1|)) (T -595))
+((-3005 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1202 *5)) (-4 *5 (-13 (-145) (-27) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-1139 (-400 *6))) (-5 *1 (-595 *5 *6)) (-5 *3 (-400 *6)))) (-3005 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *5 (-1202 *4)) (-5 *2 (-1139 (-400 *5))) (-5 *1 (-595 *4 *5)) (-5 *3 (-400 *5)))))
+(-10 -7 (-15 -3005 ((-3 (-1139 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -3005 ((-3 (-1139 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-411 |#2|) |#2|))))
+((-3834 (((-112) $ $) NIL)) (-1750 (($) 11 T CONST)) (-1805 (($) 12 T CONST)) (-4207 (($ $ $) 24)) (-4008 (($ $) 22)) (-3851 (((-1125) $) NIL)) (-2442 (($ $ $) 25)) (-3990 (((-1087) $) NIL)) (-3737 (($) 10 T CONST)) (-1583 (($ $ $) 26)) (-3846 (((-834) $) 30)) (-3264 (((-112) $ (|[\|\|]| -3737)) 19) (((-112) $ (|[\|\|]| -1750)) 21) (((-112) $ (|[\|\|]| -1805)) 17)) (-1821 (($ $ $) 23)) (-2389 (((-112) $ $) 15)))
+(((-596) (-13 (-938) (-10 -8 (-15 -3737 ($) -2589) (-15 -1750 ($) -2589) (-15 -1805 ($) -2589) (-15 -3264 ((-112) $ (|[\|\|]| -3737))) (-15 -3264 ((-112) $ (|[\|\|]| -1750))) (-15 -3264 ((-112) $ (|[\|\|]| -1805)))))) (T -596))
+((-3737 (*1 *1) (-5 *1 (-596))) (-1750 (*1 *1) (-5 *1 (-596))) (-1805 (*1 *1) (-5 *1 (-596))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3737)) (-5 *2 (-112)) (-5 *1 (-596)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1750)) (-5 *2 (-112)) (-5 *1 (-596)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1805)) (-5 *2 (-112)) (-5 *1 (-596)))))
+(-13 (-938) (-10 -8 (-15 -3737 ($) -2589) (-15 -1750 ($) -2589) (-15 -1805 ($) -2589) (-15 -3264 ((-112) $ (|[\|\|]| -3737))) (-15 -3264 ((-112) $ (|[\|\|]| -1750))) (-15 -3264 ((-112) $ (|[\|\|]| -1805)))))
+((-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) 10)))
+(((-597 |#1| |#2|) (-10 -8 (-15 -3846 (|#1| |#2|)) (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|))) (-598 |#2|) (-1018)) (T -597))
+NIL
+(-10 -8 (-15 -3846 (|#1| |#2|)) (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 34)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ |#1| $) 35)))
+(((-598 |#1|) (-138) (-1018)) (T -598))
+((-3846 (*1 *1 *2) (-12 (-4 *1 (-598 *2)) (-4 *2 (-1018)))))
+(-13 (-1018) (-624 |t#1|) (-10 -8 (-15 -3846 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1872 (((-549) $) NIL (|has| |#1| (-821)))) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) NIL)) (-2772 (((-112) $) NIL (|has| |#1| (-821)))) (-2675 (((-112) $) NIL)) (-1394 ((|#1| $) 13)) (-2374 (((-112) $) NIL (|has| |#1| (-821)))) (-2863 (($ $ $) NIL (|has| |#1| (-821)))) (-3575 (($ $ $) NIL (|has| |#1| (-821)))) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-1403 ((|#3| $) 15)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL)) (-2082 (((-747)) 20)) (-3212 (($ $) NIL (|has| |#1| (-821)))) (-3276 (($) NIL T CONST)) (-3287 (($) 12 T CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2513 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-599 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (-15 -2513 ($ $ |#3|)) (-15 -2513 ($ |#1| |#3|)) (-15 -1394 (|#1| $)) (-15 -1403 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-703) |#2|)) (T -599))
+((-2513 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-703) *4)))) (-2513 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-703) *4)))) (-1394 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-703) *3)))) (-1403 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (-15 -2513 ($ $ |#3|)) (-15 -2513 ($ |#1| |#3|)) (-15 -1394 (|#1| $)) (-15 -1403 (|#3| $))))
+((-3794 ((|#2| |#2| (-1143) (-1143)) 18)))
+(((-600 |#1| |#2|) (-10 -7 (-15 -3794 (|#2| |#2| (-1143) (-1143)))) (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1165) (-930) (-29 |#1|))) (T -600))
+((-3794 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-600 *4 *2)) (-4 *2 (-13 (-1165) (-930) (-29 *4))))))
+(-10 -7 (-15 -3794 (|#2| |#2| (-1143) (-1143))))
+((-3834 (((-112) $ $) 56)) (-1763 (((-112) $) 52)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-1892 ((|#1| $) 49)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1358 (((-2 (|:| -2285 $) (|:| -3658 (-400 |#2|))) (-400 |#2|)) 97 (|has| |#1| (-356)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-2070 (($ $) 24)) (-2114 (((-3 $ "failed") $) 75)) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-2088 (((-549) $) 19)) (-2675 (((-112) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2205 (((-112) $) 36)) (-2246 (($ |#1| (-549)) 21)) (-2043 ((|#1| $) 51)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-356)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) 87 (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2042 (((-3 $ "failed") $ $) 79)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-3684 (((-747) $) 99 (|has| |#1| (-356)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 98 (|has| |#1| (-356)))) (-3456 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3701 (((-549) $) 34)) (-2845 (((-400 |#2|) $) 42)) (-3846 (((-834) $) 62) (($ (-549)) 32) (($ $) NIL) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) 31) (($ |#2|) 22)) (-2152 ((|#1| $ (-549)) 63)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) 29)) (-1498 (((-112) $ $) NIL)) (-3276 (($) 9 T CONST)) (-3287 (($) 12 T CONST)) (-1702 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2389 (((-112) $ $) 17)) (-2500 (($ $) 46) (($ $ $) NIL)) (-2486 (($ $ $) 76)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 26) (($ $ $) 44)))
+(((-601 |#1| |#2|) (-13 (-225 |#2|) (-541) (-594 (-400 |#2|)) (-404 |#1|) (-1009 |#2|) (-10 -8 (-15 -2205 ((-112) $)) (-15 -3701 ((-549) $)) (-15 -2088 ((-549) $)) (-15 -2070 ($ $)) (-15 -2043 (|#1| $)) (-15 -1892 (|#1| $)) (-15 -2152 (|#1| $ (-549))) (-15 -2246 ($ |#1| (-549))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -1358 ((-2 (|:| -2285 $) (|:| -3658 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) (-541) (-1202 |#1|)) (T -601))
+((-2205 (*1 *2 *1) (-12 (-4 *3 (-541)) (-5 *2 (-112)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1202 *3)))) (-3701 (*1 *2 *1) (-12 (-4 *3 (-541)) (-5 *2 (-549)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1202 *3)))) (-2088 (*1 *2 *1) (-12 (-4 *3 (-541)) (-5 *2 (-549)) (-5 *1 (-601 *3 *4)) (-4 *4 (-1202 *3)))) (-2070 (*1 *1 *1) (-12 (-4 *2 (-541)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1202 *2)))) (-2043 (*1 *2 *1) (-12 (-4 *2 (-541)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1202 *2)))) (-1892 (*1 *2 *1) (-12 (-4 *2 (-541)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1202 *2)))) (-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-541)) (-5 *1 (-601 *2 *4)) (-4 *4 (-1202 *2)))) (-2246 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-4 *2 (-541)) (-5 *1 (-601 *2 *4)) (-4 *4 (-1202 *2)))) (-1358 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-541)) (-4 *5 (-1202 *4)) (-5 *2 (-2 (|:| -2285 (-601 *4 *5)) (|:| -3658 (-400 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-400 *5)))))
+(-13 (-225 |#2|) (-541) (-594 (-400 |#2|)) (-404 |#1|) (-1009 |#2|) (-10 -8 (-15 -2205 ((-112) $)) (-15 -3701 ((-549) $)) (-15 -2088 ((-549) $)) (-15 -2070 ($ $)) (-15 -2043 (|#1| $)) (-15 -1892 (|#1| $)) (-15 -2152 (|#1| $ (-549))) (-15 -2246 ($ |#1| (-549))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -1358 ((-2 (|:| -2285 $) (|:| -3658 (-400 |#2|))) (-400 |#2|)))) |%noBranch|)))
+((-2866 (((-621 |#6|) (-621 |#4|) (-112)) 47)) (-2967 ((|#6| |#6|) 40)))
+(((-602 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2967 (|#6| |#6|)) (-15 -2866 ((-621 |#6|) (-621 |#4|) (-112)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|) (-1076 |#1| |#2| |#3| |#4|)) (T -602))
+((-2866 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 *10)) (-5 *1 (-602 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *10 (-1076 *5 *6 *7 *8)))) (-2967 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-602 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *2 (-1076 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2967 (|#6| |#6|)) (-15 -2866 ((-621 |#6|) (-621 |#4|) (-112))))
+((-1936 (((-112) |#3| (-747) (-621 |#3|)) 23)) (-2256 (((-3 (-2 (|:| |polfac| (-621 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-621 (-1139 |#3|)))) "failed") |#3| (-621 (-1139 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4024 (-621 (-2 (|:| |irr| |#4|) (|:| -2495 (-549)))))) (-621 |#3|) (-621 |#1|) (-621 |#3|)) 55)))
+(((-603 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1936 ((-112) |#3| (-747) (-621 |#3|))) (-15 -2256 ((-3 (-2 (|:| |polfac| (-621 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-621 (-1139 |#3|)))) "failed") |#3| (-621 (-1139 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4024 (-621 (-2 (|:| |irr| |#4|) (|:| -2495 (-549)))))) (-621 |#3|) (-621 |#1|) (-621 |#3|)))) (-823) (-769) (-300) (-920 |#3| |#2| |#1|)) (T -603))
+((-2256 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4024 (-621 (-2 (|:| |irr| *10) (|:| -2495 (-549))))))) (-5 *6 (-621 *3)) (-5 *7 (-621 *8)) (-4 *8 (-823)) (-4 *3 (-300)) (-4 *10 (-920 *3 *9 *8)) (-4 *9 (-769)) (-5 *2 (-2 (|:| |polfac| (-621 *10)) (|:| |correct| *3) (|:| |corrfact| (-621 (-1139 *3))))) (-5 *1 (-603 *8 *9 *3 *10)) (-5 *4 (-621 (-1139 *3))))) (-1936 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-747)) (-5 *5 (-621 *3)) (-4 *3 (-300)) (-4 *6 (-823)) (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-603 *6 *7 *3 *8)) (-4 *8 (-920 *3 *7 *6)))))
+(-10 -7 (-15 -1936 ((-112) |#3| (-747) (-621 |#3|))) (-15 -2256 ((-3 (-2 (|:| |polfac| (-621 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-621 (-1139 |#3|)))) "failed") |#3| (-621 (-1139 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4024 (-621 (-2 (|:| |irr| |#4|) (|:| -2495 (-549)))))) (-621 |#3|) (-621 |#1|) (-621 |#3|))))
+((-3834 (((-112) $ $) NIL)) (-2203 (((-1148) $) 11)) (-2190 (((-1148) $) 9)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-604) (-13 (-1050) (-10 -8 (-15 -2190 ((-1148) $)) (-15 -2203 ((-1148) $))))) (T -604))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-604)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-604)))))
+(-13 (-1050) (-10 -8 (-15 -2190 ((-1148) $)) (-15 -2203 ((-1148) $))))
+((-3834 (((-112) $ $) NIL)) (-3304 (((-621 |#1|) $) NIL)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) NIL)) (-2675 (((-112) $) NIL)) (-4273 (($ $) 67)) (-3632 (((-640 |#1| |#2|) $) 52)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 70)) (-3008 (((-621 (-287 |#2|)) $ $) 33)) (-3990 (((-1087) $) NIL)) (-2719 (($ (-640 |#1| |#2|)) 48)) (-1955 (($ $ $) NIL)) (-3293 (($ $ $) NIL)) (-3846 (((-834) $) 58) (((-1241 |#1| |#2|) $) NIL) (((-1246 |#1| |#2|) $) 66)) (-3287 (($) 53 T CONST)) (-2018 (((-621 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $) 31)) (-2130 (((-621 (-640 |#1| |#2|)) (-621 |#1|)) 65)) (-2631 (((-621 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $) 37)) (-2389 (((-112) $ $) 54)) (-2513 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ $ $) 44)))
+(((-605 |#1| |#2| |#3|) (-13 (-465) (-10 -8 (-15 -2719 ($ (-640 |#1| |#2|))) (-15 -3632 ((-640 |#1| |#2|) $)) (-15 -2631 ((-621 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $)) (-15 -3846 ((-1241 |#1| |#2|) $)) (-15 -3846 ((-1246 |#1| |#2|) $)) (-15 -4273 ($ $)) (-15 -3304 ((-621 |#1|) $)) (-15 -2130 ((-621 (-640 |#1| |#2|)) (-621 |#1|))) (-15 -2018 ((-621 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $)) (-15 -3008 ((-621 (-287 |#2|)) $ $)))) (-823) (-13 (-170) (-694 (-400 (-549)))) (-892)) (T -605))
+((-2719 (*1 *1 *2) (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-5 *1 (-605 *3 *4 *5)) (-14 *5 (-892)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-640 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |k| (-864 *3)) (|:| |c| *4)))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1241 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1246 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))) (-4273 (*1 *1 *1) (-12 (-5 *1 (-605 *2 *3 *4)) (-4 *2 (-823)) (-4 *3 (-13 (-170) (-694 (-400 (-549))))) (-14 *4 (-892)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-823)) (-5 *2 (-621 (-640 *4 *5))) (-5 *1 (-605 *4 *5 *6)) (-4 *5 (-13 (-170) (-694 (-400 (-549))))) (-14 *6 (-892)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |k| (-648 *3)) (|:| |c| *4)))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))) (-3008 (*1 *2 *1 *1) (-12 (-5 *2 (-621 (-287 *4))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))))
+(-13 (-465) (-10 -8 (-15 -2719 ($ (-640 |#1| |#2|))) (-15 -3632 ((-640 |#1| |#2|) $)) (-15 -2631 ((-621 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $)) (-15 -3846 ((-1241 |#1| |#2|) $)) (-15 -3846 ((-1246 |#1| |#2|) $)) (-15 -4273 ($ $)) (-15 -3304 ((-621 |#1|) $)) (-15 -2130 ((-621 (-640 |#1| |#2|)) (-621 |#1|))) (-15 -2018 ((-621 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $)) (-15 -3008 ((-621 (-287 |#2|)) $ $))))
+((-2866 (((-621 (-1113 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-621 (-756 |#1| (-836 |#2|))) (-112)) 72) (((-621 (-1015 |#1| |#2|)) (-621 (-756 |#1| (-836 |#2|))) (-112)) 58)) (-2819 (((-112) (-621 (-756 |#1| (-836 |#2|)))) 23)) (-2672 (((-621 (-1113 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-621 (-756 |#1| (-836 |#2|))) (-112)) 71)) (-2220 (((-621 (-1015 |#1| |#2|)) (-621 (-756 |#1| (-836 |#2|))) (-112)) 57)) (-3989 (((-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|)))) 27)) (-3532 (((-3 (-621 (-756 |#1| (-836 |#2|))) "failed") (-621 (-756 |#1| (-836 |#2|)))) 26)))
+(((-606 |#1| |#2|) (-10 -7 (-15 -2819 ((-112) (-621 (-756 |#1| (-836 |#2|))))) (-15 -3532 ((-3 (-621 (-756 |#1| (-836 |#2|))) "failed") (-621 (-756 |#1| (-836 |#2|))))) (-15 -3989 ((-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|))))) (-15 -2220 ((-621 (-1015 |#1| |#2|)) (-621 (-756 |#1| (-836 |#2|))) (-112))) (-15 -2672 ((-621 (-1113 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-621 (-756 |#1| (-836 |#2|))) (-112))) (-15 -2866 ((-621 (-1015 |#1| |#2|)) (-621 (-756 |#1| (-836 |#2|))) (-112))) (-15 -2866 ((-621 (-1113 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-621 (-756 |#1| (-836 |#2|))) (-112)))) (-444) (-621 (-1143))) (T -606))
+((-2866 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-621 (-1143))) (-5 *2 (-621 (-1113 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6))))) (-5 *1 (-606 *5 *6)))) (-2866 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-621 (-1143))) (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-606 *5 *6)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-621 (-1143))) (-5 *2 (-621 (-1113 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6))))) (-5 *1 (-606 *5 *6)))) (-2220 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-621 (-1143))) (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-606 *5 *6)))) (-3989 (*1 *2 *2) (-12 (-5 *2 (-621 (-756 *3 (-836 *4)))) (-4 *3 (-444)) (-14 *4 (-621 (-1143))) (-5 *1 (-606 *3 *4)))) (-3532 (*1 *2 *2) (|partial| -12 (-5 *2 (-621 (-756 *3 (-836 *4)))) (-4 *3 (-444)) (-14 *4 (-621 (-1143))) (-5 *1 (-606 *3 *4)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-621 (-756 *4 (-836 *5)))) (-4 *4 (-444)) (-14 *5 (-621 (-1143))) (-5 *2 (-112)) (-5 *1 (-606 *4 *5)))))
+(-10 -7 (-15 -2819 ((-112) (-621 (-756 |#1| (-836 |#2|))))) (-15 -3532 ((-3 (-621 (-756 |#1| (-836 |#2|))) "failed") (-621 (-756 |#1| (-836 |#2|))))) (-15 -3989 ((-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|))))) (-15 -2220 ((-621 (-1015 |#1| |#2|)) (-621 (-756 |#1| (-836 |#2|))) (-112))) (-15 -2672 ((-621 (-1113 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-621 (-756 |#1| (-836 |#2|))) (-112))) (-15 -2866 ((-621 (-1015 |#1| |#2|)) (-621 (-756 |#1| (-836 |#2|))) (-112))) (-15 -2866 ((-621 (-1113 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|)))) (-621 (-756 |#1| (-836 |#2|))) (-112))))
+((-1664 (($ $) 38)) (-1512 (($ $) 21)) (-1640 (($ $) 37)) (-1486 (($ $) 22)) (-1685 (($ $) 36)) (-1539 (($ $) 23)) (-1425 (($) 48)) (-3632 (($ $) 45)) (-1714 (($ $) 17)) (-2204 (($ $ (-1059 $)) 7) (($ $ (-1143)) 6)) (-2719 (($ $) 46)) (-1430 (($ $) 15)) (-1469 (($ $) 16)) (-1698 (($ $) 35)) (-1552 (($ $) 24)) (-1675 (($ $) 34)) (-1526 (($ $) 25)) (-1651 (($ $) 33)) (-1501 (($ $) 26)) (-1733 (($ $) 44)) (-1587 (($ $) 32)) (-1710 (($ $) 43)) (-1564 (($ $) 31)) (-1758 (($ $) 42)) (-1612 (($ $) 30)) (-1934 (($ $) 41)) (-1627 (($ $) 29)) (-1745 (($ $) 40)) (-1600 (($ $) 28)) (-1722 (($ $) 39)) (-1576 (($ $) 27)) (-2024 (($ $) 19)) (-3320 (($ $) 20)) (-1846 (($ $) 18)) (** (($ $ $) 47)))
+(((-607) (-138)) (T -607))
+((-3320 (*1 *1 *1) (-4 *1 (-607))) (-2024 (*1 *1 *1) (-4 *1 (-607))) (-1846 (*1 *1 *1) (-4 *1 (-607))) (-1714 (*1 *1 *1) (-4 *1 (-607))) (-1469 (*1 *1 *1) (-4 *1 (-607))) (-1430 (*1 *1 *1) (-4 *1 (-607))))
+(-13 (-930) (-1165) (-10 -8 (-15 -3320 ($ $)) (-15 -2024 ($ $)) (-15 -1846 ($ $)) (-15 -1714 ($ $)) (-15 -1469 ($ $)) (-15 -1430 ($ $))))
+(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-930) . T) ((-1165) . T) ((-1168) . T))
+((-2834 (((-114) (-114)) 83)) (-1714 ((|#2| |#2|) 30)) (-2204 ((|#2| |#2| (-1059 |#2|)) 79) ((|#2| |#2| (-1143)) 52)) (-1430 ((|#2| |#2|) 29)) (-1469 ((|#2| |#2|) 31)) (-4285 (((-112) (-114)) 34)) (-2024 ((|#2| |#2|) 26)) (-3320 ((|#2| |#2|) 28)) (-1846 ((|#2| |#2|) 27)))
+(((-608 |#1| |#2|) (-10 -7 (-15 -4285 ((-112) (-114))) (-15 -2834 ((-114) (-114))) (-15 -3320 (|#2| |#2|)) (-15 -2024 (|#2| |#2|)) (-15 -1846 (|#2| |#2|)) (-15 -1714 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -1469 (|#2| |#2|)) (-15 -2204 (|#2| |#2| (-1143))) (-15 -2204 (|#2| |#2| (-1059 |#2|)))) (-13 (-823) (-541)) (-13 (-423 |#1|) (-973) (-1165))) (T -608))
+((-2204 (*1 *2 *2 *3) (-12 (-5 *3 (-1059 *2)) (-4 *2 (-13 (-423 *4) (-973) (-1165))) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-608 *4 *2)))) (-2204 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-608 *4 *2)) (-4 *2 (-13 (-423 *4) (-973) (-1165))))) (-1469 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2)) (-4 *2 (-13 (-423 *3) (-973) (-1165))))) (-1430 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2)) (-4 *2 (-13 (-423 *3) (-973) (-1165))))) (-1714 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2)) (-4 *2 (-13 (-423 *3) (-973) (-1165))))) (-1846 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2)) (-4 *2 (-13 (-423 *3) (-973) (-1165))))) (-2024 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2)) (-4 *2 (-13 (-423 *3) (-973) (-1165))))) (-3320 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2)) (-4 *2 (-13 (-423 *3) (-973) (-1165))))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *4)) (-4 *4 (-13 (-423 *3) (-973) (-1165))))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-608 *4 *5)) (-4 *5 (-13 (-423 *4) (-973) (-1165))))))
+(-10 -7 (-15 -4285 ((-112) (-114))) (-15 -2834 ((-114) (-114))) (-15 -3320 (|#2| |#2|)) (-15 -2024 (|#2| |#2|)) (-15 -1846 (|#2| |#2|)) (-15 -1714 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -1469 (|#2| |#2|)) (-15 -2204 (|#2| |#2| (-1143))) (-15 -2204 (|#2| |#2| (-1059 |#2|))))
+((-2651 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 53)) (-3035 (((-621 (-241 |#1| |#2|)) (-621 (-473 |#1| |#2|))) 68)) (-1646 (((-473 |#1| |#2|) (-621 (-473 |#1| |#2|)) (-836 |#1|)) 70) (((-473 |#1| |#2|) (-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)) (-836 |#1|)) 69)) (-3089 (((-2 (|:| |gblist| (-621 (-241 |#1| |#2|))) (|:| |gvlist| (-621 (-549)))) (-621 (-473 |#1| |#2|))) 108)) (-1814 (((-621 (-473 |#1| |#2|)) (-836 |#1|) (-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|))) 83)) (-3291 (((-2 (|:| |glbase| (-621 (-241 |#1| |#2|))) (|:| |glval| (-621 (-549)))) (-621 (-241 |#1| |#2|))) 118)) (-1994 (((-1226 |#2|) (-473 |#1| |#2|) (-621 (-473 |#1| |#2|))) 58)) (-3209 (((-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|))) 41)) (-3625 (((-241 |#1| |#2|) (-241 |#1| |#2|) (-621 (-241 |#1| |#2|))) 50)) (-1283 (((-241 |#1| |#2|) (-621 |#2|) (-241 |#1| |#2|) (-621 (-241 |#1| |#2|))) 91)))
+(((-609 |#1| |#2|) (-10 -7 (-15 -3089 ((-2 (|:| |gblist| (-621 (-241 |#1| |#2|))) (|:| |gvlist| (-621 (-549)))) (-621 (-473 |#1| |#2|)))) (-15 -3291 ((-2 (|:| |glbase| (-621 (-241 |#1| |#2|))) (|:| |glval| (-621 (-549)))) (-621 (-241 |#1| |#2|)))) (-15 -3035 ((-621 (-241 |#1| |#2|)) (-621 (-473 |#1| |#2|)))) (-15 -1646 ((-473 |#1| |#2|) (-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -1646 ((-473 |#1| |#2|) (-621 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -3209 ((-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)))) (-15 -1994 ((-1226 |#2|) (-473 |#1| |#2|) (-621 (-473 |#1| |#2|)))) (-15 -1283 ((-241 |#1| |#2|) (-621 |#2|) (-241 |#1| |#2|) (-621 (-241 |#1| |#2|)))) (-15 -1814 ((-621 (-473 |#1| |#2|)) (-836 |#1|) (-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)))) (-15 -3625 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-621 (-241 |#1| |#2|)))) (-15 -2651 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) (-621 (-1143)) (-444)) (T -609))
+((-2651 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-621 (-1143))) (-4 *5 (-444)) (-5 *2 (-473 *4 *5)) (-5 *1 (-609 *4 *5)))) (-3625 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) (-14 *4 (-621 (-1143))) (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))) (-1814 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-621 (-473 *4 *5))) (-5 *3 (-836 *4)) (-14 *4 (-621 (-1143))) (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))) (-1283 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 (-241 *5 *6))) (-4 *6 (-444)) (-5 *2 (-241 *5 *6)) (-14 *5 (-621 (-1143))) (-5 *1 (-609 *5 *6)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) (-14 *5 (-621 (-1143))) (-4 *6 (-444)) (-5 *2 (-1226 *6)) (-5 *1 (-609 *5 *6)))) (-3209 (*1 *2 *2) (-12 (-5 *2 (-621 (-473 *3 *4))) (-14 *3 (-621 (-1143))) (-4 *4 (-444)) (-5 *1 (-609 *3 *4)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-473 *5 *6))) (-5 *4 (-836 *5)) (-14 *5 (-621 (-1143))) (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6)) (-4 *6 (-444)))) (-1646 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-621 (-473 *5 *6))) (-5 *4 (-836 *5)) (-14 *5 (-621 (-1143))) (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6)) (-4 *6 (-444)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-621 (-473 *4 *5))) (-14 *4 (-621 (-1143))) (-4 *5 (-444)) (-5 *2 (-621 (-241 *4 *5))) (-5 *1 (-609 *4 *5)))) (-3291 (*1 *2 *3) (-12 (-14 *4 (-621 (-1143))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |glbase| (-621 (-241 *4 *5))) (|:| |glval| (-621 (-549))))) (-5 *1 (-609 *4 *5)) (-5 *3 (-621 (-241 *4 *5))))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-621 (-473 *4 *5))) (-14 *4 (-621 (-1143))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |gblist| (-621 (-241 *4 *5))) (|:| |gvlist| (-621 (-549))))) (-5 *1 (-609 *4 *5)))))
+(-10 -7 (-15 -3089 ((-2 (|:| |gblist| (-621 (-241 |#1| |#2|))) (|:| |gvlist| (-621 (-549)))) (-621 (-473 |#1| |#2|)))) (-15 -3291 ((-2 (|:| |glbase| (-621 (-241 |#1| |#2|))) (|:| |glval| (-621 (-549)))) (-621 (-241 |#1| |#2|)))) (-15 -3035 ((-621 (-241 |#1| |#2|)) (-621 (-473 |#1| |#2|)))) (-15 -1646 ((-473 |#1| |#2|) (-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -1646 ((-473 |#1| |#2|) (-621 (-473 |#1| |#2|)) (-836 |#1|))) (-15 -3209 ((-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)))) (-15 -1994 ((-1226 |#2|) (-473 |#1| |#2|) (-621 (-473 |#1| |#2|)))) (-15 -1283 ((-241 |#1| |#2|) (-621 |#2|) (-241 |#1| |#2|) (-621 (-241 |#1| |#2|)))) (-15 -1814 ((-621 (-473 |#1| |#2|)) (-836 |#1|) (-621 (-473 |#1| |#2|)) (-621 (-473 |#1| |#2|)))) (-15 -3625 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-621 (-241 |#1| |#2|)))) (-15 -2651 ((-473 |#1| |#2|) (-241 |#1| |#2|))))
+((-3834 (((-112) $ $) NIL (-1536 (|has| (-52) (-1067)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067))))) (-3733 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))))) NIL)) (-1535 (((-1231) $ (-1125) (-1125)) NIL (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 (((-52) $ (-1125) (-52)) 16) (((-52) $ (-1143) (-52)) 17)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337)))) (-3490 (((-3 (-52) "failed") (-1125) $) NIL)) (-1682 (($) NIL T CONST)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067))))) (-2129 (($ (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-3 (-52) "failed") (-1125) $) NIL)) (-3812 (($ (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067)))) (($ (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $ (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067)))) (((-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $ (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337)))) (-1879 (((-52) $ (-1125) (-52)) NIL (|has| $ (-6 -4338)))) (-1809 (((-52) $ (-1125)) NIL)) (-2989 (((-621 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-621 (-52)) $) NIL (|has| $ (-6 -4337)))) (-4114 (($ $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-1125) $) NIL (|has| (-1125) (-823)))) (-1562 (((-621 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-621 (-52)) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-52) (-1067))))) (-1569 (((-1125) $) NIL (|has| (-1125) (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4338))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2753 (($ (-381)) 9)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (-1536 (|has| (-52) (-1067)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067))))) (-3449 (((-621 (-1125)) $) NIL)) (-2427 (((-112) (-1125) $) NIL)) (-3504 (((-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) $) NIL)) (-2751 (($ (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) $) NIL)) (-3303 (((-621 (-1125)) $) NIL)) (-3761 (((-112) (-1125) $) NIL)) (-3990 (((-1087) $) NIL (-1536 (|has| (-52) (-1067)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067))))) (-3646 (((-52) $) NIL (|has| (-1125) (-823)))) (-3779 (((-3 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) "failed") (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL)) (-1642 (($ $ (-52)) NIL (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) $) NIL)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))))) NIL (-12 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067)))) (($ $ (-287 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))))) NIL (-12 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067)))) (($ $ (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) NIL (-12 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067)))) (($ $ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))))) NIL (-12 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067)))) (($ $ (-621 (-52)) (-621 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1067)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1067)))) (($ $ (-287 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1067)))) (($ $ (-621 (-287 (-52)))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-52) (-1067))))) (-2696 (((-621 (-52)) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 (((-52) $ (-1125)) 14) (((-52) $ (-1125) (-52)) NIL) (((-52) $ (-1143)) 15)) (-2898 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))))) NIL)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067)))) (((-747) (-52) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-52) (-1067)))) (((-747) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))))) NIL)) (-3846 (((-834) $) NIL (-1536 (|has| (-52) (-593 (-834))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-593 (-834)))))) (-3624 (($ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))))) NIL)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (-1536 (|has| (-52) (-1067)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 (-52))) (-1067))))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-610) (-13 (-1156 (-1125) (-52)) (-10 -8 (-15 -2753 ($ (-381))) (-15 -4114 ($ $)) (-15 -3341 ((-52) $ (-1143))) (-15 -2254 ((-52) $ (-1143) (-52)))))) (T -610))
+((-2753 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-610)))) (-4114 (*1 *1 *1) (-5 *1 (-610))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-52)) (-5 *1 (-610)))) (-2254 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1143)) (-5 *1 (-610)))))
+(-13 (-1156 (-1125) (-52)) (-10 -8 (-15 -2753 ($ (-381))) (-15 -4114 ($ $)) (-15 -3341 ((-52) $ (-1143))) (-15 -2254 ((-52) $ (-1143) (-52)))))
+((-2513 (($ $ |#2|) 10)))
+(((-611 |#1| |#2|) (-10 -8 (-15 -2513 (|#1| |#1| |#2|))) (-612 |#2|) (-170)) (T -611))
+NIL
+(-10 -8 (-15 -2513 (|#1| |#1| |#2|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3854 (($ $ $) 29)) (-3846 (((-834) $) 11)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#1|) 28 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-612 |#1|) (-138) (-170)) (T -612))
+((-3854 (*1 *1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-170)))) (-2513 (*1 *1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-170)) (-4 *2 (-356)))))
+(-13 (-694 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3854 ($ $ $)) (IF (|has| |t#1| (-356)) (-15 -2513 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2207 (((-3 $ "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3277 (((-1226 (-665 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-1226 (-665 |#1|)) (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-3945 (((-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-1682 (($) NIL T CONST)) (-3219 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-3550 (((-3 $ "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-4212 (((-665 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-2840 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-3841 (((-665 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) $ (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-3038 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2478 (((-1139 (-923 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-3117 (($ $ (-892)) NIL)) (-2182 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2289 (((-1139 |#1|) $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-3076 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-3266 (((-1139 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1368 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3492 (($ (-1226 |#1|)) NIL (|has| |#2| (-410 |#1|))) (($ (-1226 |#1|) (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-2114 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-3123 (((-892)) NIL (|has| |#2| (-360 |#1|)))) (-3601 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2943 (($ $ (-892)) NIL)) (-3975 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2291 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2647 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1742 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-4101 (((-3 $ "failed")) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2870 (((-665 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-2654 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-2303 (((-665 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) $ (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-1919 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2014 (((-1139 (-923 |#1|))) NIL (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-356))))) (-2884 (($ $ (-892)) NIL)) (-2248 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1378 (((-1139 |#1|) $) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-2920 ((|#1|) NIL (|has| |#2| (-410 |#1|))) ((|#1| (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-2443 (((-1139 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-3623 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3851 (((-1125) $) NIL)) (-3260 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2754 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2055 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3990 (((-1087) $) NIL)) (-2392 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3341 ((|#1| $ (-549)) NIL (|has| |#2| (-410 |#1|)))) (-4263 (((-665 |#1|) (-1226 $)) NIL (|has| |#2| (-410 |#1|))) (((-1226 |#1|) $) NIL (|has| |#2| (-410 |#1|))) (((-665 |#1|) (-1226 $) (-1226 $)) NIL (|has| |#2| (-360 |#1|))) (((-1226 |#1|) $ (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-2845 (($ (-1226 |#1|)) NIL (|has| |#2| (-410 |#1|))) (((-1226 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-4111 (((-621 (-923 |#1|))) NIL (|has| |#2| (-410 |#1|))) (((-621 (-923 |#1|)) (-1226 $)) NIL (|has| |#2| (-360 |#1|)))) (-3293 (($ $ $) NIL)) (-1942 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3846 (((-834) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1949 (((-1226 $)) NIL (|has| |#2| (-410 |#1|)))) (-4315 (((-621 (-1226 |#1|))) NIL (-1536 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-541))) (-12 (|has| |#2| (-410 |#1|)) (|has| |#1| (-541)))))) (-4272 (($ $ $ $) NIL)) (-3430 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3596 (($ (-665 |#1|) $) NIL (|has| |#2| (-410 |#1|)))) (-2174 (($ $ $) NIL)) (-2864 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4257 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1898 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3276 (($) 15 T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) 17)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-613 |#1| |#2|) (-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -3846 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-721 |#1|)) (T -613))
+((-3846 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-613 *3 *2)) (-4 *2 (-721 *3)))))
+(-13 (-721 |#1|) (-593 |#2|) (-10 -8 (-15 -3846 ($ |#2|)) (IF (|has| |#2| (-410 |#1|)) (-6 (-410 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|)))
+((-1297 (((-3 (-816 |#2|) "failed") |#2| (-287 |#2|) (-1125)) 82) (((-3 (-816 |#2|) (-2 (|:| |leftHandLimit| (-3 (-816 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-816 |#2|) "failed"))) "failed") |#2| (-287 (-816 |#2|))) 104)) (-2041 (((-3 (-809 |#2|) "failed") |#2| (-287 (-809 |#2|))) 109)))
+(((-614 |#1| |#2|) (-10 -7 (-15 -1297 ((-3 (-816 |#2|) (-2 (|:| |leftHandLimit| (-3 (-816 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-816 |#2|) "failed"))) "failed") |#2| (-287 (-816 |#2|)))) (-15 -2041 ((-3 (-809 |#2|) "failed") |#2| (-287 (-809 |#2|)))) (-15 -1297 ((-3 (-816 |#2|) "failed") |#2| (-287 |#2|) (-1125)))) (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1165) (-423 |#1|))) (T -614))
+((-1297 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-287 *3)) (-5 *5 (-1125)) (-4 *3 (-13 (-27) (-1165) (-423 *6))) (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-816 *3)) (-5 *1 (-614 *6 *3)))) (-2041 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-287 (-809 *3))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-809 *3)) (-5 *1 (-614 *5 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))))) (-1297 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-816 *3))) (-4 *3 (-13 (-27) (-1165) (-423 *5))) (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-3 (-816 *3) (-2 (|:| |leftHandLimit| (-3 (-816 *3) "failed")) (|:| |rightHandLimit| (-3 (-816 *3) "failed"))) "failed")) (-5 *1 (-614 *5 *3)))))
+(-10 -7 (-15 -1297 ((-3 (-816 |#2|) (-2 (|:| |leftHandLimit| (-3 (-816 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-816 |#2|) "failed"))) "failed") |#2| (-287 (-816 |#2|)))) (-15 -2041 ((-3 (-809 |#2|) "failed") |#2| (-287 (-809 |#2|)))) (-15 -1297 ((-3 (-816 |#2|) "failed") |#2| (-287 |#2|) (-1125))))
+((-1297 (((-3 (-816 (-400 (-923 |#1|))) "failed") (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))) (-1125)) 80) (((-3 (-816 (-400 (-923 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed"))) "failed") (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|)))) 20) (((-3 (-816 (-400 (-923 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed"))) "failed") (-400 (-923 |#1|)) (-287 (-816 (-923 |#1|)))) 35)) (-2041 (((-809 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|)))) 23) (((-809 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-287 (-809 (-923 |#1|)))) 43)))
+(((-615 |#1|) (-10 -7 (-15 -1297 ((-3 (-816 (-400 (-923 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed"))) "failed") (-400 (-923 |#1|)) (-287 (-816 (-923 |#1|))))) (-15 -1297 ((-3 (-816 (-400 (-923 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed"))) "failed") (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))))) (-15 -2041 ((-809 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-287 (-809 (-923 |#1|))))) (-15 -2041 ((-809 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))))) (-15 -1297 ((-3 (-816 (-400 (-923 |#1|))) "failed") (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))) (-1125)))) (-444)) (T -615))
+((-1297 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-287 (-400 (-923 *6)))) (-5 *5 (-1125)) (-5 *3 (-400 (-923 *6))) (-4 *6 (-444)) (-5 *2 (-816 *3)) (-5 *1 (-615 *6)))) (-2041 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-400 (-923 *5)))) (-5 *3 (-400 (-923 *5))) (-4 *5 (-444)) (-5 *2 (-809 *3)) (-5 *1 (-615 *5)))) (-2041 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-809 (-923 *5)))) (-4 *5 (-444)) (-5 *2 (-809 (-400 (-923 *5)))) (-5 *1 (-615 *5)) (-5 *3 (-400 (-923 *5))))) (-1297 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-400 (-923 *5)))) (-5 *3 (-400 (-923 *5))) (-4 *5 (-444)) (-5 *2 (-3 (-816 *3) (-2 (|:| |leftHandLimit| (-3 (-816 *3) "failed")) (|:| |rightHandLimit| (-3 (-816 *3) "failed"))) "failed")) (-5 *1 (-615 *5)))) (-1297 (*1 *2 *3 *4) (-12 (-5 *4 (-287 (-816 (-923 *5)))) (-4 *5 (-444)) (-5 *2 (-3 (-816 (-400 (-923 *5))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 *5))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 *5))) "failed"))) "failed")) (-5 *1 (-615 *5)) (-5 *3 (-400 (-923 *5))))))
+(-10 -7 (-15 -1297 ((-3 (-816 (-400 (-923 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed"))) "failed") (-400 (-923 |#1|)) (-287 (-816 (-923 |#1|))))) (-15 -1297 ((-3 (-816 (-400 (-923 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-816 (-400 (-923 |#1|))) "failed"))) "failed") (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))))) (-15 -2041 ((-809 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-287 (-809 (-923 |#1|))))) (-15 -2041 ((-809 (-400 (-923 |#1|))) (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))))) (-15 -1297 ((-3 (-816 (-400 (-923 |#1|))) "failed") (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))) (-1125))))
+((-1830 (((-3 (-1226 (-400 |#1|)) "failed") (-1226 |#2|) |#2|) 57 (-4008 (|has| |#1| (-356)))) (((-3 (-1226 |#1|) "failed") (-1226 |#2|) |#2|) 42 (|has| |#1| (-356)))) (-4001 (((-112) (-1226 |#2|)) 30)) (-4157 (((-3 (-1226 |#1|) "failed") (-1226 |#2|)) 33)))
+(((-616 |#1| |#2|) (-10 -7 (-15 -4001 ((-112) (-1226 |#2|))) (-15 -4157 ((-3 (-1226 |#1|) "failed") (-1226 |#2|))) (IF (|has| |#1| (-356)) (-15 -1830 ((-3 (-1226 |#1|) "failed") (-1226 |#2|) |#2|)) (-15 -1830 ((-3 (-1226 (-400 |#1|)) "failed") (-1226 |#2|) |#2|)))) (-541) (-617 |#1|)) (T -616))
+((-1830 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1226 *4)) (-4 *4 (-617 *5)) (-4008 (-4 *5 (-356))) (-4 *5 (-541)) (-5 *2 (-1226 (-400 *5))) (-5 *1 (-616 *5 *4)))) (-1830 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1226 *4)) (-4 *4 (-617 *5)) (-4 *5 (-356)) (-4 *5 (-541)) (-5 *2 (-1226 *5)) (-5 *1 (-616 *5 *4)))) (-4157 (*1 *2 *3) (|partial| -12 (-5 *3 (-1226 *5)) (-4 *5 (-617 *4)) (-4 *4 (-541)) (-5 *2 (-1226 *4)) (-5 *1 (-616 *4 *5)))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-1226 *5)) (-4 *5 (-617 *4)) (-4 *4 (-541)) (-5 *2 (-112)) (-5 *1 (-616 *4 *5)))))
+(-10 -7 (-15 -4001 ((-112) (-1226 |#2|))) (-15 -4157 ((-3 (-1226 |#1|) "failed") (-1226 |#2|))) (IF (|has| |#1| (-356)) (-15 -1830 ((-3 (-1226 |#1|) "failed") (-1226 |#2|) |#2|)) (-15 -1830 ((-3 (-1226 (-400 |#1|)) "failed") (-1226 |#2|) |#2|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3879 (((-665 |#1|) (-665 $)) 34) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 33)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ (-549)) 27)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-617 |#1|) (-138) (-1018)) (T -617))
+((-3879 (*1 *2 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-617 *4)) (-4 *4 (-1018)) (-5 *2 (-665 *4)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *1)) (-5 *4 (-1226 *1)) (-4 *1 (-617 *5)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -3521 (-665 *5)) (|:| |vec| (-1226 *5)))))))
+(-13 (-1018) (-10 -8 (-15 -3879 ((-665 |t#1|) (-665 $))) (-15 -3879 ((-2 (|:| -3521 (-665 |t#1|)) (|:| |vec| (-1226 |t#1|))) (-665 $) (-1226 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-2475 ((|#2| (-621 |#1|) (-621 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-621 |#1|) (-621 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|) |#2|) 17) ((|#2| (-621 |#1|) (-621 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|)) 12)))
+(((-618 |#1| |#2|) (-10 -7 (-15 -2475 ((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|))) (-15 -2475 (|#2| (-621 |#1|) (-621 |#2|) |#1|)) (-15 -2475 ((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|) |#2|)) (-15 -2475 (|#2| (-621 |#1|) (-621 |#2|) |#1| |#2|)) (-15 -2475 ((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|) (-1 |#2| |#1|))) (-15 -2475 (|#2| (-621 |#1|) (-621 |#2|) |#1| (-1 |#2| |#1|)))) (-1067) (-1180)) (T -618))
+((-2475 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1067)) (-4 *2 (-1180)) (-5 *1 (-618 *5 *2)))) (-2475 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-621 *5)) (-5 *4 (-621 *6)) (-4 *5 (-1067)) (-4 *6 (-1180)) (-5 *1 (-618 *5 *6)))) (-2475 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *2)) (-4 *5 (-1067)) (-4 *2 (-1180)) (-5 *1 (-618 *5 *2)))) (-2475 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 *5)) (-4 *6 (-1067)) (-4 *5 (-1180)) (-5 *2 (-1 *5 *6)) (-5 *1 (-618 *6 *5)))) (-2475 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *2)) (-4 *5 (-1067)) (-4 *2 (-1180)) (-5 *1 (-618 *5 *2)))) (-2475 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *6)) (-4 *5 (-1067)) (-4 *6 (-1180)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *6)))))
+(-10 -7 (-15 -2475 ((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|))) (-15 -2475 (|#2| (-621 |#1|) (-621 |#2|) |#1|)) (-15 -2475 ((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|) |#2|)) (-15 -2475 (|#2| (-621 |#1|) (-621 |#2|) |#1| |#2|)) (-15 -2475 ((-1 |#2| |#1|) (-621 |#1|) (-621 |#2|) (-1 |#2| |#1|))) (-15 -2475 (|#2| (-621 |#1|) (-621 |#2|) |#1| (-1 |#2| |#1|))))
+((-3804 (((-621 |#2|) (-1 |#2| |#1| |#2|) (-621 |#1|) |#2|) 16)) (-2557 ((|#2| (-1 |#2| |#1| |#2|) (-621 |#1|) |#2|) 18)) (-2797 (((-621 |#2|) (-1 |#2| |#1|) (-621 |#1|)) 13)))
+(((-619 |#1| |#2|) (-10 -7 (-15 -3804 ((-621 |#2|) (-1 |#2| |#1| |#2|) (-621 |#1|) |#2|)) (-15 -2557 (|#2| (-1 |#2| |#1| |#2|) (-621 |#1|) |#2|)) (-15 -2797 ((-621 |#2|) (-1 |#2| |#1|) (-621 |#1|)))) (-1180) (-1180)) (T -619))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-621 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-621 *6)) (-5 *1 (-619 *5 *6)))) (-2557 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-621 *5)) (-4 *5 (-1180)) (-4 *2 (-1180)) (-5 *1 (-619 *5 *2)))) (-3804 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-621 *6)) (-4 *6 (-1180)) (-4 *5 (-1180)) (-5 *2 (-621 *5)) (-5 *1 (-619 *6 *5)))))
+(-10 -7 (-15 -3804 ((-621 |#2|) (-1 |#2| |#1| |#2|) (-621 |#1|) |#2|)) (-15 -2557 (|#2| (-1 |#2| |#1| |#2|) (-621 |#1|) |#2|)) (-15 -2797 ((-621 |#2|) (-1 |#2| |#1|) (-621 |#1|))))
+((-2797 (((-621 |#3|) (-1 |#3| |#1| |#2|) (-621 |#1|) (-621 |#2|)) 13)))
+(((-620 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-621 |#3|) (-1 |#3| |#1| |#2|) (-621 |#1|) (-621 |#2|)))) (-1180) (-1180) (-1180)) (T -620))
+((-2797 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-621 *6)) (-5 *5 (-621 *7)) (-4 *6 (-1180)) (-4 *7 (-1180)) (-4 *8 (-1180)) (-5 *2 (-621 *8)) (-5 *1 (-620 *6 *7 *8)))))
+(-10 -7 (-15 -2797 ((-621 |#3|) (-1 |#3| |#1| |#2|) (-621 |#1|) (-621 |#2|))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4161 ((|#1| $) NIL)) (-2839 ((|#1| $) NIL)) (-1343 (($ $) NIL)) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-3174 (($ $ (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) $) NIL (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4311 (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| |#1| (-823)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-3193 (($ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-2838 ((|#1| $ |#1|) NIL (|has| $ (-6 -4338)))) (-4179 (($ $ $) NIL (|has| $ (-6 -4338)))) (-2780 ((|#1| $ |#1|) NIL (|has| $ (-6 -4338)))) (-4135 ((|#1| $ |#1|) NIL (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4338))) (($ $ "rest" $) NIL (|has| $ (-6 -4338))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) NIL (|has| $ (-6 -4338)))) (-3582 (($ $ $) 32 (|has| |#1| (-1067)))) (-3570 (($ $ $) 34 (|has| |#1| (-1067)))) (-3557 (($ $ $) 37 (|has| |#1| (-1067)))) (-1717 (($ (-1 (-112) |#1|) $) NIL)) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2830 ((|#1| $) NIL)) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3657 (($ $) NIL) (($ $ (-747)) NIL)) (-3745 (($ $) NIL (|has| |#1| (-1067)))) (-3676 (($ $) 31 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2129 (($ |#1| $) NIL (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) NIL)) (-3812 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1879 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) NIL)) (-3331 (((-112) $) NIL)) (-2883 (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1067))) (((-549) |#1| $) NIL (|has| |#1| (-1067))) (((-549) (-1 (-112) |#1|) $) NIL)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3256 (((-112) $) 9)) (-3075 (((-621 $) $) NIL)) (-3895 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2624 (($) 7)) (-3743 (($ (-747) |#1|) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-1303 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3890 (($ $ $) NIL (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3525 (($ |#1|) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3591 (((-621 |#1|) $) NIL)) (-2076 (((-112) $) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3829 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-2751 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2616 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3646 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1642 (($ $ |#1|) NIL (|has| $ (-6 -4338)))) (-3016 (((-112) $) NIL)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1193 (-549))) NIL) ((|#1| $ (-549)) 36) ((|#1| $ (-549) |#1|) NIL)) (-3230 (((-549) $ $) NIL)) (-3531 (($ $ (-1193 (-549))) NIL) (($ $ (-549)) NIL)) (-2167 (($ $ (-1193 (-549))) NIL) (($ $ (-549)) NIL)) (-3497 (((-112) $) NIL)) (-1999 (($ $) NIL)) (-2643 (($ $) NIL (|has| $ (-6 -4338)))) (-3798 (((-747) $) NIL)) (-3612 (($ $) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) 45 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) NIL)) (-3173 (($ |#1| $) 10)) (-3196 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1952 (($ $ $) 30) (($ |#1| $) NIL) (($ (-621 $)) NIL) (($ $ |#1|) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) NIL)) (-1987 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3718 (($ $ $) 11)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-4245 (((-1125) $) 26 (|has| |#1| (-804))) (((-1125) $ (-112)) 27 (|has| |#1| (-804))) (((-1231) (-798) $) 28 (|has| |#1| (-804))) (((-1231) (-798) $ (-112)) 29 (|has| |#1| (-804)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-621 |#1|) (-13 (-642 |#1|) (-10 -8 (-15 -2624 ($)) (-15 -3256 ((-112) $)) (-15 -3173 ($ |#1| $)) (-15 -3718 ($ $ $)) (IF (|has| |#1| (-1067)) (PROGN (-15 -3582 ($ $ $)) (-15 -3570 ($ $ $)) (-15 -3557 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|))) (-1180)) (T -621))
+((-2624 (*1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1180)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-621 *3)) (-4 *3 (-1180)))) (-3173 (*1 *1 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1180)))) (-3718 (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1180)))) (-3582 (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1067)) (-4 *2 (-1180)))) (-3570 (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1067)) (-4 *2 (-1180)))) (-3557 (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1067)) (-4 *2 (-1180)))))
+(-13 (-642 |#1|) (-10 -8 (-15 -2624 ($)) (-15 -3256 ((-112) $)) (-15 -3173 ($ |#1| $)) (-15 -3718 ($ $ $)) (IF (|has| |#1| (-1067)) (PROGN (-15 -3582 ($ $ $)) (-15 -3570 ($ $ $)) (-15 -3557 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|)))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 11) (((-1148) $) NIL) ((|#1| $) 8)) (-2389 (((-112) $ $) NIL)))
+(((-622 |#1|) (-13 (-1050) (-593 |#1|)) (-1067)) (T -622))
+NIL
+(-13 (-1050) (-593 |#1|))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3667 (($ |#1| |#1| $) 43)) (-1584 (((-112) $ (-747)) NIL)) (-1717 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-3745 (($ $) 45)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2129 (($ |#1| $) 52 (|has| $ (-6 -4337))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4337)))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2989 (((-621 |#1|) $) 9 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1868 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 37)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3504 ((|#1| $) 46)) (-2751 (($ |#1| $) 26) (($ |#1| $ (-747)) 42)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3325 ((|#1| $) 48)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 21)) (-3742 (($) 25)) (-2930 (((-112) $) 50)) (-3458 (((-621 (-2 (|:| -1793 |#1|) (|:| -4000 (-747)))) $) 59)) (-2898 (($) 23) (($ (-621 |#1|)) 18)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) 56 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) 19)) (-2845 (((-525) $) 34 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) NIL)) (-3846 (((-834) $) 14 (|has| |#1| (-593 (-834))))) (-3624 (($ (-621 |#1|)) 22)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 61 (|has| |#1| (-1067)))) (-3775 (((-747) $) 16 (|has| $ (-6 -4337)))))
+(((-623 |#1|) (-13 (-671 |#1|) (-10 -8 (-6 -4337) (-15 -2930 ((-112) $)) (-15 -3667 ($ |#1| |#1| $)))) (-1067)) (T -623))
+((-2930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3)) (-4 *3 (-1067)))) (-3667 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1067)))))
+(-13 (-671 |#1|) (-10 -8 (-6 -4337) (-15 -2930 ((-112) $)) (-15 -3667 ($ |#1| |#1| $))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#1| $) 23)))
+(((-624 |#1|) (-138) (-1025)) (T -624))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1025)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-3608 (((-745) $) 15)) (-2549 (($ $ |#1|) 56)) (-3044 (($ $) 32)) (-3057 (($ $) 31)) (-2707 (((-3 |#1| "failed") $) 48)) (-2652 ((|#1| $) NIL)) (-3432 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-1591 (((-832) $ (-1 (-832) (-832) (-832)) (-1 (-832) (-832) (-832)) (-547)) 46)) (-1607 ((|#1| $ (-547)) 30)) (-3602 ((|#2| $ (-547)) 29)) (-3513 (($ (-1 |#1| |#1|) $) 34)) (-4022 (($ (-1 |#2| |#2|) $) 38)) (-1256 (($) 10)) (-4162 (($ |#1| |#2|) 22)) (-3408 (($ (-619 (-2 (|:| |gen| |#1|) (|:| -2712 |#2|)))) 23)) (-2694 (((-619 (-2 (|:| |gen| |#1|) (|:| -2712 |#2|))) $) 13)) (-2195 (($ |#1| $) 57)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1366 (((-112) $ $) 60)) (-3838 (((-832) $) 19) (($ |#1|) 16)) (-2381 (((-112) $ $) 25)))
-(((-623 |#1| |#2| |#3|) (-13 (-1063) (-1007 |#1|) (-10 -8 (-15 -1591 ((-832) $ (-1 (-832) (-832) (-832)) (-1 (-832) (-832) (-832)) (-547))) (-15 -2694 ((-619 (-2 (|:| |gen| |#1|) (|:| -2712 |#2|))) $)) (-15 -4162 ($ |#1| |#2|)) (-15 -3408 ($ (-619 (-2 (|:| |gen| |#1|) (|:| -2712 |#2|))))) (-15 -3602 (|#2| $ (-547))) (-15 -1607 (|#1| $ (-547))) (-15 -3057 ($ $)) (-15 -3044 ($ $)) (-15 -3608 ((-745) $)) (-15 -1256 ($)) (-15 -2549 ($ $ |#1|)) (-15 -2195 ($ |#1| $)) (-15 -3432 ($ |#1| |#2| $)) (-15 -3432 ($ $ $)) (-15 -1366 ((-112) $ $)) (-15 -4022 ($ (-1 |#2| |#2|) $)) (-15 -3513 ($ (-1 |#1| |#1|) $)))) (-1063) (-23) |#2|) (T -623))
-((-1591 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-832) (-832) (-832))) (-5 *4 (-547)) (-5 *2 (-832)) (-5 *1 (-623 *5 *6 *7)) (-4 *5 (-1063)) (-4 *6 (-23)) (-14 *7 *6))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2712 *4)))) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) (-4162 (*1 *1 *2 *3) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3408 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2712 *4)))) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-623 *3 *4 *5)))) (-3602 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *2 (-23)) (-5 *1 (-623 *4 *2 *5)) (-4 *4 (-1063)) (-14 *5 *2))) (-1607 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *2 (-1063)) (-5 *1 (-623 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3057 (*1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3044 (*1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) (-1256 (*1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-2549 (*1 *1 *1 *2) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-2195 (*1 *1 *2 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3432 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3432 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-1366 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) (-4022 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-623 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1063) (-1007 |#1|) (-10 -8 (-15 -1591 ((-832) $ (-1 (-832) (-832) (-832)) (-1 (-832) (-832) (-832)) (-547))) (-15 -2694 ((-619 (-2 (|:| |gen| |#1|) (|:| -2712 |#2|))) $)) (-15 -4162 ($ |#1| |#2|)) (-15 -3408 ($ (-619 (-2 (|:| |gen| |#1|) (|:| -2712 |#2|))))) (-15 -3602 (|#2| $ (-547))) (-15 -1607 (|#1| $ (-547))) (-15 -3057 ($ $)) (-15 -3044 ($ $)) (-15 -3608 ((-745) $)) (-15 -1256 ($)) (-15 -2549 ($ $ |#1|)) (-15 -2195 ($ |#1| $)) (-15 -3432 ($ |#1| |#2| $)) (-15 -3432 ($ $ $)) (-15 -1366 ((-112) $ $)) (-15 -4022 ($ (-1 |#2| |#2|) $)) (-15 -3513 ($ (-1 |#1| |#1|) $))))
-((-1416 (((-547) $) 24)) (-2606 (($ |#2| $ (-547)) 22) (($ $ $ (-547)) NIL)) (-2121 (((-619 (-547)) $) 12)) (-2018 (((-112) (-547) $) 15)) (-1945 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-619 $)) NIL)))
-(((-624 |#1| |#2|) (-10 -8 (-15 -2606 (|#1| |#1| |#1| (-547))) (-15 -2606 (|#1| |#2| |#1| (-547))) (-15 -1945 (|#1| (-619 |#1|))) (-15 -1945 (|#1| |#1| |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -1945 (|#1| |#1| |#2|)) (-15 -1416 ((-547) |#1|)) (-15 -2121 ((-619 (-547)) |#1|)) (-15 -2018 ((-112) (-547) |#1|))) (-625 |#2|) (-1173)) (T -624))
-NIL
-(-10 -8 (-15 -2606 (|#1| |#1| |#1| (-547))) (-15 -2606 (|#1| |#2| |#1| (-547))) (-15 -1945 (|#1| (-619 |#1|))) (-15 -1945 (|#1| |#1| |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -1945 (|#1| |#1| |#2|)) (-15 -1416 ((-547) |#1|)) (-15 -2121 ((-619 (-547)) |#1|)) (-15 -2018 ((-112) (-547) |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-1652 (((-1224) $ (-547) (-547)) 40 (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) 8)) (-2247 ((|#1| $ (-547) |#1|) 52 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) 58 (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-3668 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) 53 (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) 51)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-3735 (($ (-745) |#1|) 69)) (-2763 (((-112) $ (-745)) 9)) (-2434 (((-547) $) 43 (|has| (-547) (-821)))) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 44 (|has| (-547) (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-2606 (($ |#1| $ (-547)) 60) (($ $ $ (-547)) 59)) (-2121 (((-619 (-547)) $) 46)) (-2018 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3638 ((|#1| $) 42 (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3632 (($ $ |#1|) 41 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) 48)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ (-547) |#1|) 50) ((|#1| $ (-547)) 49) (($ $ (-1186 (-547))) 63)) (-2159 (($ $ (-547)) 62) (($ $ (-1186 (-547))) 61)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-2838 (((-523) $) 79 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 70)) (-1945 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-625 |#1|) (-138) (-1173)) (T -625))
-((-3735 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-4 *1 (-625 *3)) (-4 *3 (-1173)))) (-1945 (*1 *1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1173)))) (-1945 (*1 *1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1173)))) (-1945 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1173)))) (-1945 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-625 *3)) (-4 *3 (-1173)))) (-2790 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-625 *3)) (-4 *3 (-1173)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-1186 (-547))) (-4 *1 (-625 *3)) (-4 *3 (-1173)))) (-2159 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-625 *3)) (-4 *3 (-1173)))) (-2159 (*1 *1 *1 *2) (-12 (-5 *2 (-1186 (-547))) (-4 *1 (-625 *3)) (-4 *3 (-1173)))) (-2606 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-625 *2)) (-4 *2 (-1173)))) (-2606 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-625 *3)) (-4 *3 (-1173)))) (-2247 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1186 (-547))) (|has| *1 (-6 -4330)) (-4 *1 (-625 *2)) (-4 *2 (-1173)))))
-(-13 (-582 (-547) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3735 ($ (-745) |t#1|)) (-15 -1945 ($ $ |t#1|)) (-15 -1945 ($ |t#1| $)) (-15 -1945 ($ $ $)) (-15 -1945 ($ (-619 $))) (-15 -2790 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3334 ($ $ (-1186 (-547)))) (-15 -2159 ($ $ (-547))) (-15 -2159 ($ $ (-1186 (-547)))) (-15 -2606 ($ |t#1| $ (-547))) (-15 -2606 ($ $ $ (-547))) (IF (|has| $ (-6 -4330)) (-15 -2247 (|t#1| $ (-1186 (-547)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-3468 (((-3 |#2| "failed") |#3| |#2| (-1136) |#2| (-619 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -1917 (-619 |#2|))) "failed") |#3| |#2| (-1136)) 44)))
-(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -3468 ((-3 (-2 (|:| |particular| |#2|) (|:| -1917 (-619 |#2|))) "failed") |#3| |#2| (-1136))) (-15 -3468 ((-3 |#2| "failed") |#3| |#2| (-1136) |#2| (-619 |#2|)))) (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)) (-13 (-29 |#1|) (-1158) (-928)) (-630 |#2|)) (T -626))
-((-3468 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1136)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1158) (-928))) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-626 *6 *2 *3)) (-4 *3 (-630 *2)))) (-3468 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1136)) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-4 *4 (-13 (-29 *6) (-1158) (-928))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1917 (-619 *4)))) (-5 *1 (-626 *6 *4 *3)) (-4 *3 (-630 *4)))))
-(-10 -7 (-15 -3468 ((-3 (-2 (|:| |particular| |#2|) (|:| -1917 (-619 |#2|))) "failed") |#3| |#2| (-1136))) (-15 -3468 ((-3 |#2| "failed") |#3| |#2| (-1136) |#2| (-619 |#2|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2558 (($ $) NIL (|has| |#1| (-354)))) (-3910 (($ $ $) NIL (|has| |#1| (-354)))) (-1990 (($ $ (-745)) NIL (|has| |#1| (-354)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-1761 (($ $ $) NIL (|has| |#1| (-354)))) (-2683 (($ $ $) NIL (|has| |#1| (-354)))) (-1613 (($ $ $) NIL (|has| |#1| (-354)))) (-2246 (($ $ $) NIL (|has| |#1| (-354)))) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-3056 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-3427 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#1| (-442)))) (-2261 (((-112) $) NIL)) (-2238 (($ |#1| (-745)) NIL)) (-3812 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-539)))) (-1446 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-539)))) (-3095 (((-745) $) NIL)) (-2835 (($ $ $) NIL (|has| |#1| (-354)))) (-1805 (($ $ $) NIL (|has| |#1| (-354)))) (-2404 (($ $ $) NIL (|has| |#1| (-354)))) (-2775 (($ $ $) NIL (|has| |#1| (-354)))) (-2020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-4301 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-1526 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-3334 ((|#1| $ |#1|) NIL)) (-1928 (($ $ $) NIL (|has| |#1| (-354)))) (-3705 (((-745) $) NIL)) (-2392 ((|#1| $) NIL (|has| |#1| (-442)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) NIL)) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-745)) NIL)) (-2736 (((-745)) NIL)) (-3587 ((|#1| $ |#1| |#1|) NIL)) (-3045 (($ $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($) NIL)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-627 |#1|) (-630 |#1|) (-225)) (T -627))
-NIL
-(-630 |#1|)
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2558 (($ $) NIL (|has| |#1| (-354)))) (-3910 (($ $ $) NIL (|has| |#1| (-354)))) (-1990 (($ $ (-745)) NIL (|has| |#1| (-354)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-1761 (($ $ $) NIL (|has| |#1| (-354)))) (-2683 (($ $ $) NIL (|has| |#1| (-354)))) (-1613 (($ $ $) NIL (|has| |#1| (-354)))) (-2246 (($ $ $) NIL (|has| |#1| (-354)))) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-3056 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-3427 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#1| (-442)))) (-2261 (((-112) $) NIL)) (-2238 (($ |#1| (-745)) NIL)) (-3812 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-539)))) (-1446 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-539)))) (-3095 (((-745) $) NIL)) (-2835 (($ $ $) NIL (|has| |#1| (-354)))) (-1805 (($ $ $) NIL (|has| |#1| (-354)))) (-2404 (($ $ $) NIL (|has| |#1| (-354)))) (-2775 (($ $ $) NIL (|has| |#1| (-354)))) (-2020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-4301 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-1526 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-3334 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1928 (($ $ $) NIL (|has| |#1| (-354)))) (-3705 (((-745) $) NIL)) (-2392 ((|#1| $) NIL (|has| |#1| (-442)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) NIL)) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-745)) NIL)) (-2736 (((-745)) NIL)) (-3587 ((|#1| $ |#1| |#1|) NIL)) (-3045 (($ $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($) NIL)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-628 |#1| |#2|) (-13 (-630 |#1|) (-277 |#2| |#2|)) (-225) (-13 (-622 |#1|) (-10 -8 (-15 -3448 ($ $))))) (T -628))
-NIL
-(-13 (-630 |#1|) (-277 |#2| |#2|))
-((-2558 (($ $) 26)) (-3045 (($ $) 24)) (-1695 (($) 12)))
-(((-629 |#1| |#2|) (-10 -8 (-15 -2558 (|#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -1695 (|#1|))) (-630 |#2|) (-1016)) (T -629))
-NIL
-(-10 -8 (-15 -2558 (|#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -1695 (|#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2558 (($ $) 80 (|has| |#1| (-354)))) (-3910 (($ $ $) 82 (|has| |#1| (-354)))) (-1990 (($ $ (-745)) 81 (|has| |#1| (-354)))) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1761 (($ $ $) 43 (|has| |#1| (-354)))) (-2683 (($ $ $) 44 (|has| |#1| (-354)))) (-1613 (($ $ $) 46 (|has| |#1| (-354)))) (-2246 (($ $ $) 41 (|has| |#1| (-354)))) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 40 (|has| |#1| (-354)))) (-3056 (((-3 $ "failed") $ $) 42 (|has| |#1| (-354)))) (-3427 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 45 (|has| |#1| (-354)))) (-2707 (((-3 (-547) "failed") $) 72 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 70 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 67)) (-2652 (((-547) $) 73 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 71 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 66)) (-2063 (($ $) 62)) (-3855 (((-3 $ "failed") $) 32)) (-3350 (($ $) 53 (|has| |#1| (-442)))) (-2261 (((-112) $) 30)) (-2238 (($ |#1| (-745)) 60)) (-3812 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55 (|has| |#1| (-539)))) (-1446 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 56 (|has| |#1| (-539)))) (-3095 (((-745) $) 64)) (-2835 (($ $ $) 50 (|has| |#1| (-354)))) (-1805 (($ $ $) 51 (|has| |#1| (-354)))) (-2404 (($ $ $) 39 (|has| |#1| (-354)))) (-2775 (($ $ $) 48 (|has| |#1| (-354)))) (-2020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 47 (|has| |#1| (-354)))) (-4301 (((-3 $ "failed") $ $) 49 (|has| |#1| (-354)))) (-1526 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 52 (|has| |#1| (-354)))) (-2037 ((|#1| $) 63)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2032 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-539)))) (-3334 ((|#1| $ |#1|) 85)) (-1928 (($ $ $) 79 (|has| |#1| (-354)))) (-3705 (((-745) $) 65)) (-2392 ((|#1| $) 54 (|has| |#1| (-442)))) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 69 (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) 68)) (-1277 (((-619 |#1|) $) 59)) (-2450 ((|#1| $ (-745)) 61)) (-2736 (((-745)) 28)) (-3587 ((|#1| $ |#1| |#1|) 58)) (-3045 (($ $) 83)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($) 84)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
-(((-630 |#1|) (-138) (-1016)) (T -630))
-((-1695 (*1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) (-3045 (*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) (-3910 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-1990 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-630 *3)) (-4 *3 (-1016)) (-4 *3 (-354)))) (-2558 (*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-1928 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
-(-13 (-823 |t#1|) (-277 |t#1| |t#1|) (-10 -8 (-15 -1695 ($)) (-15 -3045 ($ $)) (IF (|has| |t#1| (-354)) (PROGN (-15 -3910 ($ $ $)) (-15 -1990 ($ $ (-745))) (-15 -2558 ($ $)) (-15 -1928 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-277 |#1| |#1|) . T) ((-402 |#1|) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-823 |#1|) . T))
-((-2579 (((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|))) 74 (|has| |#1| (-27)))) (-2115 (((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|))) 73 (|has| |#1| (-27))) (((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|)) 17)))
-(((-631 |#1| |#2|) (-10 -7 (-15 -2115 ((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2115 ((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|)))) (-15 -2579 ((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|))))) |%noBranch|)) (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))) (-1195 |#1|)) (T -631))
-((-2579 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *5 (-1195 *4)) (-5 *2 (-619 (-627 (-398 *5)))) (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-398 *5))))) (-2115 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *5 (-1195 *4)) (-5 *2 (-619 (-627 (-398 *5)))) (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-398 *5))))) (-2115 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *6 (-1195 *5)) (-5 *2 (-619 (-627 (-398 *6)))) (-5 *1 (-631 *5 *6)) (-5 *3 (-627 (-398 *6))))))
-(-10 -7 (-15 -2115 ((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2115 ((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|)))) (-15 -2579 ((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|))))) |%noBranch|))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2558 (($ $) NIL (|has| |#1| (-354)))) (-3910 (($ $ $) 28 (|has| |#1| (-354)))) (-1990 (($ $ (-745)) 31 (|has| |#1| (-354)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-1761 (($ $ $) NIL (|has| |#1| (-354)))) (-2683 (($ $ $) NIL (|has| |#1| (-354)))) (-1613 (($ $ $) NIL (|has| |#1| (-354)))) (-2246 (($ $ $) NIL (|has| |#1| (-354)))) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-3056 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-3427 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#1| (-442)))) (-2261 (((-112) $) NIL)) (-2238 (($ |#1| (-745)) NIL)) (-3812 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-539)))) (-1446 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-539)))) (-3095 (((-745) $) NIL)) (-2835 (($ $ $) NIL (|has| |#1| (-354)))) (-1805 (($ $ $) NIL (|has| |#1| (-354)))) (-2404 (($ $ $) NIL (|has| |#1| (-354)))) (-2775 (($ $ $) NIL (|has| |#1| (-354)))) (-2020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-4301 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-1526 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-3334 ((|#1| $ |#1|) 24)) (-1928 (($ $ $) 33 (|has| |#1| (-354)))) (-3705 (((-745) $) NIL)) (-2392 ((|#1| $) NIL (|has| |#1| (-442)))) (-3838 (((-832) $) 20) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) NIL)) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-745)) NIL)) (-2736 (((-745)) NIL)) (-3587 ((|#1| $ |#1| |#1|) 23)) (-3045 (($ $) NIL)) (-3269 (($) 21 T CONST)) (-3281 (($) 8 T CONST)) (-1695 (($) NIL)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-632 |#1| |#2|) (-630 |#1|) (-1016) (-1 |#1| |#1|)) (T -632))
-NIL
-(-630 |#1|)
-((-3910 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1990 ((|#2| |#2| (-745) (-1 |#1| |#1|)) 40)) (-1928 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
-(((-633 |#1| |#2|) (-10 -7 (-15 -3910 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1990 (|#2| |#2| (-745) (-1 |#1| |#1|))) (-15 -1928 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-354) (-630 |#1|)) (T -633))
-((-1928 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-354)) (-5 *1 (-633 *4 *2)) (-4 *2 (-630 *4)))) (-1990 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-1 *5 *5)) (-4 *5 (-354)) (-5 *1 (-633 *5 *2)) (-4 *2 (-630 *5)))) (-3910 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-354)) (-5 *1 (-633 *4 *2)) (-4 *2 (-630 *4)))))
-(-10 -7 (-15 -3910 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1990 (|#2| |#2| (-745) (-1 |#1| |#1|))) (-15 -1928 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-3700 (($ $ $) 9)))
-(((-634 |#1|) (-10 -8 (-15 -3700 (|#1| |#1| |#1|))) (-635)) (T -634))
-NIL
-(-10 -8 (-15 -3700 (|#1| |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1333 (($ $) 10)) (-3700 (($ $ $) 8)) (-2381 (((-112) $ $) 6)) (-3688 (($ $ $) 9)))
-(((-635) (-138)) (T -635))
-((-1333 (*1 *1 *1) (-4 *1 (-635))) (-3688 (*1 *1 *1 *1) (-4 *1 (-635))) (-3700 (*1 *1 *1 *1) (-4 *1 (-635))))
-(-13 (-101) (-10 -8 (-15 -1333 ($ $)) (-15 -3688 ($ $ $)) (-15 -3700 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-3614 (((-747) $) 15)) (-1652 (($ $ |#1|) 56)) (-1585 (($ $) 32)) (-3064 (($ $) 31)) (-2714 (((-3 |#1| "failed") $) 48)) (-2659 ((|#1| $) NIL)) (-3441 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-2573 (((-834) $ (-1 (-834) (-834) (-834)) (-1 (-834) (-834) (-834)) (-549)) 46)) (-1302 ((|#1| $ (-549)) 30)) (-2009 ((|#2| $ (-549)) 29)) (-3482 (($ (-1 |#1| |#1|) $) 34)) (-3653 (($ (-1 |#2| |#2|) $) 38)) (-2436 (($) 10)) (-2021 (($ |#1| |#2|) 22)) (-4147 (($ (-621 (-2 (|:| |gen| |#1|) (|:| -2719 |#2|)))) 23)) (-3617 (((-621 (-2 (|:| |gen| |#1|) (|:| -2719 |#2|))) $) 13)) (-2698 (($ |#1| $) 57)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2806 (((-112) $ $) 60)) (-3846 (((-834) $) 19) (($ |#1|) 16)) (-2389 (((-112) $ $) 25)))
+(((-625 |#1| |#2| |#3|) (-13 (-1067) (-1009 |#1|) (-10 -8 (-15 -2573 ((-834) $ (-1 (-834) (-834) (-834)) (-1 (-834) (-834) (-834)) (-549))) (-15 -3617 ((-621 (-2 (|:| |gen| |#1|) (|:| -2719 |#2|))) $)) (-15 -2021 ($ |#1| |#2|)) (-15 -4147 ($ (-621 (-2 (|:| |gen| |#1|) (|:| -2719 |#2|))))) (-15 -2009 (|#2| $ (-549))) (-15 -1302 (|#1| $ (-549))) (-15 -3064 ($ $)) (-15 -1585 ($ $)) (-15 -3614 ((-747) $)) (-15 -2436 ($)) (-15 -1652 ($ $ |#1|)) (-15 -2698 ($ |#1| $)) (-15 -3441 ($ |#1| |#2| $)) (-15 -3441 ($ $ $)) (-15 -2806 ((-112) $ $)) (-15 -3653 ($ (-1 |#2| |#2|) $)) (-15 -3482 ($ (-1 |#1| |#1|) $)))) (-1067) (-23) |#2|) (T -625))
+((-2573 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-834) (-834) (-834))) (-5 *4 (-549)) (-5 *2 (-834)) (-5 *1 (-625 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-23)) (-14 *7 *6))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2719 *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4))) (-2021 (*1 *1 *2 *3) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2719 *4)))) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5)))) (-2009 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-23)) (-5 *1 (-625 *4 *2 *5)) (-4 *4 (-1067)) (-14 *5 *2))) (-1302 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-1067)) (-5 *1 (-625 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3064 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-1585 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4))) (-2436 (*1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-1652 (*1 *1 *1 *2) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2698 (*1 *1 *2 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-3441 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-3441 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23)) (-14 *4 *3))) (-2806 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4))) (-3653 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)))) (-3482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-625 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1067) (-1009 |#1|) (-10 -8 (-15 -2573 ((-834) $ (-1 (-834) (-834) (-834)) (-1 (-834) (-834) (-834)) (-549))) (-15 -3617 ((-621 (-2 (|:| |gen| |#1|) (|:| -2719 |#2|))) $)) (-15 -2021 ($ |#1| |#2|)) (-15 -4147 ($ (-621 (-2 (|:| |gen| |#1|) (|:| -2719 |#2|))))) (-15 -2009 (|#2| $ (-549))) (-15 -1302 (|#1| $ (-549))) (-15 -3064 ($ $)) (-15 -1585 ($ $)) (-15 -3614 ((-747) $)) (-15 -2436 ($)) (-15 -1652 ($ $ |#1|)) (-15 -2698 ($ |#1| $)) (-15 -3441 ($ |#1| |#2| $)) (-15 -3441 ($ $ $)) (-15 -2806 ((-112) $ $)) (-15 -3653 ($ (-1 |#2| |#2|) $)) (-15 -3482 ($ (-1 |#1| |#1|) $))))
+((-1569 (((-549) $) 24)) (-2616 (($ |#2| $ (-549)) 22) (($ $ $ (-549)) NIL)) (-3303 (((-621 (-549)) $) 12)) (-3761 (((-112) (-549) $) 15)) (-1952 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-621 $)) NIL)))
+(((-626 |#1| |#2|) (-10 -8 (-15 -2616 (|#1| |#1| |#1| (-549))) (-15 -2616 (|#1| |#2| |#1| (-549))) (-15 -1952 (|#1| (-621 |#1|))) (-15 -1952 (|#1| |#1| |#1|)) (-15 -1952 (|#1| |#2| |#1|)) (-15 -1952 (|#1| |#1| |#2|)) (-15 -1569 ((-549) |#1|)) (-15 -3303 ((-621 (-549)) |#1|)) (-15 -3761 ((-112) (-549) |#1|))) (-627 |#2|) (-1180)) (T -626))
+NIL
+(-10 -8 (-15 -2616 (|#1| |#1| |#1| (-549))) (-15 -2616 (|#1| |#2| |#1| (-549))) (-15 -1952 (|#1| (-621 |#1|))) (-15 -1952 (|#1| |#1| |#1|)) (-15 -1952 (|#1| |#2| |#1|)) (-15 -1952 (|#1| |#1| |#2|)) (-15 -1569 ((-549) |#1|)) (-15 -3303 ((-621 (-549)) |#1|)) (-15 -3761 ((-112) (-549) |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1535 (((-1231) $ (-549) (-549)) 40 (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) 8)) (-2254 ((|#1| $ (-549) |#1|) 52 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) 58 (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-3676 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) 51)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3743 (($ (-747) |#1|) 69)) (-3194 (((-112) $ (-747)) 9)) (-4031 (((-549) $) 43 (|has| (-549) (-823)))) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 44 (|has| (-549) (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-2616 (($ |#1| $ (-549)) 60) (($ $ $ (-549)) 59)) (-3303 (((-621 (-549)) $) 46)) (-3761 (((-112) (-549) $) 47)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3646 ((|#1| $) 42 (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-1642 (($ $ |#1|) 41 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) 48)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ (-549) |#1|) 50) ((|#1| $ (-549)) 49) (($ $ (-1193 (-549))) 63)) (-2167 (($ $ (-549)) 62) (($ $ (-1193 (-549))) 61)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2845 (((-525) $) 79 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 70)) (-1952 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-627 |#1|) (-138) (-1180)) (T -627))
+((-3743 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-4 *1 (-627 *3)) (-4 *3 (-1180)))) (-1952 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1180)))) (-1952 (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1180)))) (-1952 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1180)))) (-1952 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-627 *3)) (-4 *3 (-1180)))) (-2797 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-627 *3)) (-4 *3 (-1180)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 (-1193 (-549))) (-4 *1 (-627 *3)) (-4 *3 (-1180)))) (-2167 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-627 *3)) (-4 *3 (-1180)))) (-2167 (*1 *1 *1 *2) (-12 (-5 *2 (-1193 (-549))) (-4 *1 (-627 *3)) (-4 *3 (-1180)))) (-2616 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-627 *2)) (-4 *2 (-1180)))) (-2616 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-627 *3)) (-4 *3 (-1180)))) (-2254 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1193 (-549))) (|has| *1 (-6 -4338)) (-4 *1 (-627 *2)) (-4 *2 (-1180)))))
+(-13 (-584 (-549) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3743 ($ (-747) |t#1|)) (-15 -1952 ($ $ |t#1|)) (-15 -1952 ($ |t#1| $)) (-15 -1952 ($ $ $)) (-15 -1952 ($ (-621 $))) (-15 -2797 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3341 ($ $ (-1193 (-549)))) (-15 -2167 ($ $ (-549))) (-15 -2167 ($ $ (-1193 (-549)))) (-15 -2616 ($ |t#1| $ (-549))) (-15 -2616 ($ $ $ (-549))) (IF (|has| $ (-6 -4338)) (-15 -2254 (|t#1| $ (-1193 (-549)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-2227 (((-3 |#2| "failed") |#3| |#2| (-1143) |#2| (-621 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -1949 (-621 |#2|))) "failed") |#3| |#2| (-1143)) 44)))
+(((-628 |#1| |#2| |#3|) (-10 -7 (-15 -2227 ((-3 (-2 (|:| |particular| |#2|) (|:| -1949 (-621 |#2|))) "failed") |#3| |#2| (-1143))) (-15 -2227 ((-3 |#2| "failed") |#3| |#2| (-1143) |#2| (-621 |#2|)))) (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)) (-13 (-29 |#1|) (-1165) (-930)) (-632 |#2|)) (T -628))
+((-2227 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1143)) (-5 *5 (-621 *2)) (-4 *2 (-13 (-29 *6) (-1165) (-930))) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *1 (-628 *6 *2 *3)) (-4 *3 (-632 *2)))) (-2227 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1143)) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-4 *4 (-13 (-29 *6) (-1165) (-930))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1949 (-621 *4)))) (-5 *1 (-628 *6 *4 *3)) (-4 *3 (-632 *4)))))
+(-10 -7 (-15 -2227 ((-3 (-2 (|:| |particular| |#2|) (|:| -1949 (-621 |#2|))) "failed") |#3| |#2| (-1143))) (-15 -2227 ((-3 |#2| "failed") |#3| |#2| (-1143) |#2| (-621 |#2|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-4250 (($ $) NIL (|has| |#1| (-356)))) (-3411 (($ $ $) NIL (|has| |#1| (-356)))) (-3167 (($ $ (-747)) NIL (|has| |#1| (-356)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2408 (($ $ $) NIL (|has| |#1| (-356)))) (-2047 (($ $ $) NIL (|has| |#1| (-356)))) (-3723 (($ $ $) NIL (|has| |#1| (-356)))) (-3816 (($ $ $) NIL (|has| |#1| (-356)))) (-2367 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-1599 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3216 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#1| (-444)))) (-2675 (((-112) $) NIL)) (-2246 (($ |#1| (-747)) NIL)) (-2057 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-541)))) (-3771 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-541)))) (-3611 (((-747) $) NIL)) (-2990 (($ $ $) NIL (|has| |#1| (-356)))) (-3494 (($ $ $) NIL (|has| |#1| (-356)))) (-1993 (($ $ $) NIL (|has| |#1| (-356)))) (-1944 (($ $ $) NIL (|has| |#1| (-356)))) (-2739 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2322 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3350 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-3341 ((|#1| $ |#1|) NIL)) (-3485 (($ $ $) NIL (|has| |#1| (-356)))) (-3701 (((-747) $) NIL)) (-2216 ((|#1| $) NIL (|has| |#1| (-444)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) NIL)) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-747)) NIL)) (-2082 (((-747)) NIL)) (-3596 ((|#1| $ |#1| |#1|) NIL)) (-1709 (($ $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($) NIL)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-629 |#1|) (-632 |#1|) (-227)) (T -629))
+NIL
+(-632 |#1|)
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-4250 (($ $) NIL (|has| |#1| (-356)))) (-3411 (($ $ $) NIL (|has| |#1| (-356)))) (-3167 (($ $ (-747)) NIL (|has| |#1| (-356)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2408 (($ $ $) NIL (|has| |#1| (-356)))) (-2047 (($ $ $) NIL (|has| |#1| (-356)))) (-3723 (($ $ $) NIL (|has| |#1| (-356)))) (-3816 (($ $ $) NIL (|has| |#1| (-356)))) (-2367 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-1599 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3216 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#1| (-444)))) (-2675 (((-112) $) NIL)) (-2246 (($ |#1| (-747)) NIL)) (-2057 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-541)))) (-3771 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-541)))) (-3611 (((-747) $) NIL)) (-2990 (($ $ $) NIL (|has| |#1| (-356)))) (-3494 (($ $ $) NIL (|has| |#1| (-356)))) (-1993 (($ $ $) NIL (|has| |#1| (-356)))) (-1944 (($ $ $) NIL (|has| |#1| (-356)))) (-2739 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2322 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3350 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-3341 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3485 (($ $ $) NIL (|has| |#1| (-356)))) (-3701 (((-747) $) NIL)) (-2216 ((|#1| $) NIL (|has| |#1| (-444)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) NIL)) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-747)) NIL)) (-2082 (((-747)) NIL)) (-3596 ((|#1| $ |#1| |#1|) NIL)) (-1709 (($ $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($) NIL)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-630 |#1| |#2|) (-13 (-632 |#1|) (-279 |#2| |#2|)) (-227) (-13 (-624 |#1|) (-10 -8 (-15 -3456 ($ $))))) (T -630))
+NIL
+(-13 (-632 |#1|) (-279 |#2| |#2|))
+((-4250 (($ $) 26)) (-1709 (($ $) 24)) (-1702 (($) 12)))
+(((-631 |#1| |#2|) (-10 -8 (-15 -4250 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1702 (|#1|))) (-632 |#2|) (-1018)) (T -631))
+NIL
+(-10 -8 (-15 -4250 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1702 (|#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-4250 (($ $) 80 (|has| |#1| (-356)))) (-3411 (($ $ $) 82 (|has| |#1| (-356)))) (-3167 (($ $ (-747)) 81 (|has| |#1| (-356)))) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2408 (($ $ $) 43 (|has| |#1| (-356)))) (-2047 (($ $ $) 44 (|has| |#1| (-356)))) (-3723 (($ $ $) 46 (|has| |#1| (-356)))) (-3816 (($ $ $) 41 (|has| |#1| (-356)))) (-2367 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 40 (|has| |#1| (-356)))) (-1599 (((-3 $ "failed") $ $) 42 (|has| |#1| (-356)))) (-3216 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 45 (|has| |#1| (-356)))) (-2714 (((-3 (-549) "failed") $) 72 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 70 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 67)) (-2659 (((-549) $) 73 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 71 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 66)) (-2070 (($ $) 62)) (-2114 (((-3 $ "failed") $) 32)) (-1285 (($ $) 53 (|has| |#1| (-444)))) (-2675 (((-112) $) 30)) (-2246 (($ |#1| (-747)) 60)) (-2057 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55 (|has| |#1| (-541)))) (-3771 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 56 (|has| |#1| (-541)))) (-3611 (((-747) $) 64)) (-2990 (($ $ $) 50 (|has| |#1| (-356)))) (-3494 (($ $ $) 51 (|has| |#1| (-356)))) (-1993 (($ $ $) 39 (|has| |#1| (-356)))) (-1944 (($ $ $) 48 (|has| |#1| (-356)))) (-2739 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 47 (|has| |#1| (-356)))) (-2322 (((-3 $ "failed") $ $) 49 (|has| |#1| (-356)))) (-3350 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 52 (|has| |#1| (-356)))) (-2043 ((|#1| $) 63)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2042 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-541)))) (-3341 ((|#1| $ |#1|) 85)) (-3485 (($ $ $) 79 (|has| |#1| (-356)))) (-3701 (((-747) $) 65)) (-2216 ((|#1| $) 54 (|has| |#1| (-444)))) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 69 (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) 68)) (-4141 (((-621 |#1|) $) 59)) (-2152 ((|#1| $ (-747)) 61)) (-2082 (((-747)) 28)) (-3596 ((|#1| $ |#1| |#1|) 58)) (-1709 (($ $) 83)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($) 84)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
+(((-632 |#1|) (-138) (-1018)) (T -632))
+((-1702 (*1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)))) (-1709 (*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)))) (-3411 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-3167 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-632 *3)) (-4 *3 (-1018)) (-4 *3 (-356)))) (-4250 (*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-3485 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(-13 (-825 |t#1|) (-279 |t#1| |t#1|) (-10 -8 (-15 -1702 ($)) (-15 -1709 ($ $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -3411 ($ $ $)) (-15 -3167 ($ $ (-747))) (-15 -4250 ($ $)) (-15 -3485 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-279 |#1| |#1|) . T) ((-404 |#1|) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-825 |#1|) . T))
+((-1466 (((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|))) 74 (|has| |#1| (-27)))) (-2121 (((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|))) 73 (|has| |#1| (-27))) (((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|)) 17)))
+(((-633 |#1| |#2|) (-10 -7 (-15 -2121 ((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2121 ((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|)))) (-15 -1466 ((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|))))) |%noBranch|)) (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))) (-1202 |#1|)) (T -633))
+((-1466 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *5 (-1202 *4)) (-5 *2 (-621 (-629 (-400 *5)))) (-5 *1 (-633 *4 *5)) (-5 *3 (-629 (-400 *5))))) (-2121 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *5 (-1202 *4)) (-5 *2 (-621 (-629 (-400 *5)))) (-5 *1 (-633 *4 *5)) (-5 *3 (-629 (-400 *5))))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-621 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *6 (-1202 *5)) (-5 *2 (-621 (-629 (-400 *6)))) (-5 *1 (-633 *5 *6)) (-5 *3 (-629 (-400 *6))))))
+(-10 -7 (-15 -2121 ((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2121 ((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|)))) (-15 -1466 ((-621 (-629 (-400 |#2|))) (-629 (-400 |#2|))))) |%noBranch|))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-4250 (($ $) NIL (|has| |#1| (-356)))) (-3411 (($ $ $) 28 (|has| |#1| (-356)))) (-3167 (($ $ (-747)) 31 (|has| |#1| (-356)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2408 (($ $ $) NIL (|has| |#1| (-356)))) (-2047 (($ $ $) NIL (|has| |#1| (-356)))) (-3723 (($ $ $) NIL (|has| |#1| (-356)))) (-3816 (($ $ $) NIL (|has| |#1| (-356)))) (-2367 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-1599 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3216 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#1| (-444)))) (-2675 (((-112) $) NIL)) (-2246 (($ |#1| (-747)) NIL)) (-2057 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-541)))) (-3771 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-541)))) (-3611 (((-747) $) NIL)) (-2990 (($ $ $) NIL (|has| |#1| (-356)))) (-3494 (($ $ $) NIL (|has| |#1| (-356)))) (-1993 (($ $ $) NIL (|has| |#1| (-356)))) (-1944 (($ $ $) NIL (|has| |#1| (-356)))) (-2739 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2322 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3350 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-3341 ((|#1| $ |#1|) 24)) (-3485 (($ $ $) 33 (|has| |#1| (-356)))) (-3701 (((-747) $) NIL)) (-2216 ((|#1| $) NIL (|has| |#1| (-444)))) (-3846 (((-834) $) 20) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) NIL)) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-747)) NIL)) (-2082 (((-747)) NIL)) (-3596 ((|#1| $ |#1| |#1|) 23)) (-1709 (($ $) NIL)) (-3276 (($) 21 T CONST)) (-3287 (($) 8 T CONST)) (-1702 (($) NIL)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-634 |#1| |#2|) (-632 |#1|) (-1018) (-1 |#1| |#1|)) (T -634))
+NIL
+(-632 |#1|)
+((-3411 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-3167 ((|#2| |#2| (-747) (-1 |#1| |#1|)) 40)) (-3485 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
+(((-635 |#1| |#2|) (-10 -7 (-15 -3411 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3167 (|#2| |#2| (-747) (-1 |#1| |#1|))) (-15 -3485 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-356) (-632 |#1|)) (T -635))
+((-3485 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-635 *4 *2)) (-4 *2 (-632 *4)))) (-3167 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-635 *5 *2)) (-4 *2 (-632 *5)))) (-3411 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-635 *4 *2)) (-4 *2 (-632 *4)))))
+(-10 -7 (-15 -3411 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3167 (|#2| |#2| (-747) (-1 |#1| |#1|))) (-15 -3485 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-3708 (($ $ $) 9)))
+(((-636 |#1|) (-10 -8 (-15 -3708 (|#1| |#1| |#1|))) (-637)) (T -636))
+NIL
+(-10 -8 (-15 -3708 (|#1| |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1340 (($ $) 10)) (-3708 (($ $ $) 8)) (-2389 (((-112) $ $) 6)) (-3695 (($ $ $) 9)))
+(((-637) (-138)) (T -637))
+((-1340 (*1 *1 *1) (-4 *1 (-637))) (-3695 (*1 *1 *1 *1) (-4 *1 (-637))) (-3708 (*1 *1 *1 *1) (-4 *1 (-637))))
+(-13 (-101) (-10 -8 (-15 -1340 ($ $)) (-15 -3695 ($ $ $)) (-15 -3708 ($ $ $))))
(((-101) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 15)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-1386 ((|#1| $) 21)) (-2856 (($ $ $) NIL (|has| |#1| (-765)))) (-3567 (($ $ $) NIL (|has| |#1| (-765)))) (-1466 (((-1119) $) 46)) (-3979 (((-1082) $) NIL)) (-1396 ((|#3| $) 22)) (-3838 (((-832) $) 42)) (-3269 (($) 10 T CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-765)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-765)))) (-2381 (((-112) $ $) 20)) (-2430 (((-112) $ $) NIL (|has| |#1| (-765)))) (-2405 (((-112) $ $) 24 (|has| |#1| (-765)))) (-2506 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2493 (($ $) 17) (($ $ $) NIL)) (-2479 (($ $ $) 27)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-636 |#1| |#2| |#3|) (-13 (-692 |#2|) (-10 -8 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) (-15 -2506 ($ $ |#3|)) (-15 -2506 ($ |#1| |#3|)) (-15 -1386 (|#1| $)) (-15 -1396 (|#3| $)))) (-692 |#2|) (-169) (|SubsetCategory| (-701) |#2|)) (T -636))
-((-2506 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4)) (-4 *2 (|SubsetCategory| (-701) *4)))) (-2506 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-636 *2 *4 *3)) (-4 *2 (-692 *4)) (-4 *3 (|SubsetCategory| (-701) *4)))) (-1386 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-692 *3)) (-5 *1 (-636 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-701) *3)))) (-1396 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4)))))
-(-13 (-692 |#2|) (-10 -8 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) (-15 -2506 ($ $ |#3|)) (-15 -2506 ($ |#1| |#3|)) (-15 -1386 (|#1| $)) (-15 -1396 (|#3| $))))
-((-2842 (((-3 (-619 (-1132 |#1|)) "failed") (-619 (-1132 |#1|)) (-1132 |#1|)) 33)))
-(((-637 |#1|) (-10 -7 (-15 -2842 ((-3 (-619 (-1132 |#1|)) "failed") (-619 (-1132 |#1|)) (-1132 |#1|)))) (-878)) (T -637))
-((-2842 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1132 *4))) (-5 *3 (-1132 *4)) (-4 *4 (-878)) (-5 *1 (-637 *4)))))
-(-10 -7 (-15 -2842 ((-3 (-619 (-1132 |#1|)) "failed") (-619 (-1132 |#1|)) (-1132 |#1|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3297 (((-619 |#1|) $) 82)) (-1813 (($ $ (-745)) 90)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-3085 (((-1243 |#1| |#2|) (-1243 |#1| |#2|) $) 48)) (-2707 (((-3 (-646 |#1|) "failed") $) NIL)) (-2652 (((-646 |#1|) $) NIL)) (-2063 (($ $) 89)) (-3376 (((-745) $) NIL)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-3518 (($ (-646 |#1|) |#2|) 68)) (-2961 (($ $) 86)) (-2790 (($ (-1 |#2| |#2|) $) NIL)) (-3982 (((-1243 |#1| |#2|) (-1243 |#1| |#2|) $) 47)) (-3456 (((-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2019 (((-646 |#1|) $) NIL)) (-2037 ((|#2| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2679 (($ $ |#1| $) 30) (($ $ (-619 |#1|) (-619 $)) 32)) (-3705 (((-745) $) 88)) (-3846 (($ $ $) 20) (($ (-646 |#1|) (-646 |#1|)) 77) (($ (-646 |#1|) $) 75) (($ $ (-646 |#1|)) 76)) (-3838 (((-832) $) NIL) (($ |#1|) 74) (((-1234 |#1| |#2|) $) 58) (((-1243 |#1| |#2|) $) 41) (($ (-646 |#1|)) 25)) (-1277 (((-619 |#2|) $) NIL)) (-2450 ((|#2| $ (-646 |#1|)) NIL)) (-1563 ((|#2| (-1243 |#1| |#2|) $) 43)) (-3269 (($) 23 T CONST)) (-3721 (((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4115 (((-3 $ "failed") (-1234 |#1| |#2|)) 60)) (-2252 (($ (-646 |#1|)) 14)) (-2381 (((-112) $ $) 44)) (-2506 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2493 (($ $) 66) (($ $ $) NIL)) (-2479 (($ $ $) 29)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-646 |#1|)) NIL)))
-(((-638 |#1| |#2|) (-13 (-365 |#1| |#2|) (-373 |#2| (-646 |#1|)) (-10 -8 (-15 -4115 ((-3 $ "failed") (-1234 |#1| |#2|))) (-15 -3846 ($ (-646 |#1|) (-646 |#1|))) (-15 -3846 ($ (-646 |#1|) $)) (-15 -3846 ($ $ (-646 |#1|))))) (-821) (-169)) (T -638))
-((-4115 (*1 *1 *2) (|partial| -12 (-5 *2 (-1234 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *1 (-638 *3 *4)))) (-3846 (*1 *1 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) (-4 *4 (-169)))) (-3846 (*1 *1 *2 *1) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) (-4 *4 (-169)))) (-3846 (*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) (-4 *4 (-169)))))
-(-13 (-365 |#1| |#2|) (-373 |#2| (-646 |#1|)) (-10 -8 (-15 -4115 ((-3 $ "failed") (-1234 |#1| |#2|))) (-15 -3846 ($ (-646 |#1|) (-646 |#1|))) (-15 -3846 ($ (-646 |#1|) $)) (-15 -3846 ($ $ (-646 |#1|)))))
-((-2436 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-2809 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-4285 (($ (-1 (-112) |#2|) $) 28)) (-3044 (($ $) 56)) (-2968 (($ $) 64)) (-1513 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-2552 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2876 (((-547) |#2| $ (-547)) 61) (((-547) |#2| $) NIL) (((-547) (-1 (-112) |#2|) $) 47)) (-3735 (($ (-745) |#2|) 54)) (-3145 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-2777 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2790 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3517 (($ |#2|) 15)) (-2657 (($ $ $ (-547)) 36) (($ |#2| $ (-547)) 34)) (-3650 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-2649 (($ $ (-1186 (-547))) 44) (($ $ (-547)) 38)) (-4282 (($ $ $ (-547)) 60)) (-2274 (($ $) 58)) (-2405 (((-112) $ $) 66)))
-(((-639 |#1| |#2|) (-10 -8 (-15 -3517 (|#1| |#2|)) (-15 -2649 (|#1| |#1| (-547))) (-15 -2649 (|#1| |#1| (-1186 (-547)))) (-15 -1513 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2657 (|#1| |#2| |#1| (-547))) (-15 -2657 (|#1| |#1| |#1| (-547))) (-15 -3145 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4285 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -2968 (|#1| |#1|)) (-15 -3145 (|#1| |#1| |#1|)) (-15 -2777 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2436 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2876 ((-547) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-547) |#2| |#1|)) (-15 -2876 ((-547) |#2| |#1| (-547))) (-15 -2777 (|#1| |#1| |#1|)) (-15 -2436 ((-112) |#1|)) (-15 -4282 (|#1| |#1| |#1| (-547))) (-15 -3044 (|#1| |#1|)) (-15 -2809 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2809 (|#1| |#1|)) (-15 -2405 ((-112) |#1| |#1|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3650 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3735 (|#1| (-745) |#2|)) (-15 -2790 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2274 (|#1| |#1|))) (-640 |#2|) (-1173)) (T -639))
-NIL
-(-10 -8 (-15 -3517 (|#1| |#2|)) (-15 -2649 (|#1| |#1| (-547))) (-15 -2649 (|#1| |#1| (-1186 (-547)))) (-15 -1513 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2657 (|#1| |#2| |#1| (-547))) (-15 -2657 (|#1| |#1| |#1| (-547))) (-15 -3145 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4285 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -2968 (|#1| |#1|)) (-15 -3145 (|#1| |#1| |#1|)) (-15 -2777 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2436 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2876 ((-547) (-1 (-112) |#2|) |#1|)) (-15 -2876 ((-547) |#2| |#1|)) (-15 -2876 ((-547) |#2| |#1| (-547))) (-15 -2777 (|#1| |#1| |#1|)) (-15 -2436 ((-112) |#1|)) (-15 -4282 (|#1| |#1| |#1| (-547))) (-15 -3044 (|#1| |#1|)) (-15 -2809 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2809 (|#1| |#1|)) (-15 -2405 ((-112) |#1| |#1|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2552 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3650 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3735 (|#1| (-745) |#2|)) (-15 -2790 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2274 (|#1| |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4153 ((|#1| $) 48)) (-2832 ((|#1| $) 65)) (-1336 (($ $) 67)) (-1652 (((-1224) $ (-547) (-547)) 97 (|has| $ (-6 -4330)))) (-2165 (($ $ (-547)) 52 (|has| $ (-6 -4330)))) (-2436 (((-112) $) 142 (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2809 (($ $) 146 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4330)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4330)))) (-3185 (($ $) 141 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-3899 (((-112) $ (-745)) 8)) (-1986 ((|#1| $ |#1|) 39 (|has| $ (-6 -4330)))) (-2272 (($ $ $) 56 (|has| $ (-6 -4330)))) (-3200 ((|#1| $ |#1|) 54 (|has| $ (-6 -4330)))) (-4086 ((|#1| $ |#1|) 58 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4330))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4330))) (($ $ "rest" $) 55 (|has| $ (-6 -4330))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) 117 (|has| $ (-6 -4330))) ((|#1| $ (-547) |#1|) 86 (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) 41 (|has| $ (-6 -4330)))) (-4285 (($ (-1 (-112) |#1|) $) 129)) (-1482 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4329)))) (-2823 ((|#1| $) 66)) (-1948 (($) 7 T CONST)) (-3044 (($ $) 144 (|has| $ (-6 -4330)))) (-3057 (($ $) 134)) (-3649 (($ $) 73) (($ $ (-745)) 71)) (-2968 (($ $) 131 (|has| |#1| (-1063)))) (-3668 (($ $) 99 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1513 (($ |#1| $) 130 (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) 125)) (-3803 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4329))) (($ |#1| $) 100 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1872 ((|#1| $ (-547) |#1|) 85 (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) 87)) (-2963 (((-112) $) 83)) (-2876 (((-547) |#1| $ (-547)) 139 (|has| |#1| (-1063))) (((-547) |#1| $) 138 (|has| |#1| (-1063))) (((-547) (-1 (-112) |#1|) $) 137)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) 50)) (-2554 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3735 (($ (-745) |#1|) 108)) (-2763 (((-112) $ (-745)) 9)) (-2434 (((-547) $) 95 (|has| (-547) (-821)))) (-2856 (($ $ $) 147 (|has| |#1| (-821)))) (-3145 (($ $ $) 132 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-2777 (($ $ $) 140 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 94 (|has| (-547) (-821)))) (-3567 (($ $ $) 148 (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3517 (($ |#1|) 122)) (-3806 (((-112) $ (-745)) 10)) (-3583 (((-619 |#1|) $) 45)) (-1489 (((-112) $) 49)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-3820 ((|#1| $) 70) (($ $ (-745)) 68)) (-2657 (($ $ $ (-547)) 127) (($ |#1| $ (-547)) 126)) (-2606 (($ $ $ (-547)) 116) (($ |#1| $ (-547)) 115)) (-2121 (((-619 (-547)) $) 92)) (-2018 (((-112) (-547) $) 91)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3638 ((|#1| $) 76) (($ $ (-745)) 74)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3632 (($ $ |#1|) 96 (|has| $ (-6 -4330)))) (-1884 (((-112) $) 84)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) 90)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1186 (-547))) 112) ((|#1| $ (-547)) 89) ((|#1| $ (-547) |#1|) 88)) (-2857 (((-547) $ $) 44)) (-2649 (($ $ (-1186 (-547))) 124) (($ $ (-547)) 123)) (-2159 (($ $ (-1186 (-547))) 114) (($ $ (-547)) 113)) (-1850 (((-112) $) 46)) (-2005 (($ $) 62)) (-2632 (($ $) 59 (|has| $ (-6 -4330)))) (-1749 (((-745) $) 63)) (-2016 (($ $) 64)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-4282 (($ $ $ (-547)) 143 (|has| $ (-6 -4330)))) (-2274 (($ $) 13)) (-2838 (((-523) $) 98 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 107)) (-3794 (($ $ $) 61) (($ $ |#1|) 60)) (-1945 (($ $ $) 78) (($ |#1| $) 77) (($ (-619 $)) 110) (($ $ |#1|) 109)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) 51)) (-1421 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) 150 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 151 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2430 (((-112) $ $) 149 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 152 (|has| |#1| (-821)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-640 |#1|) (-138) (-1173)) (T -640))
-((-3517 (*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1173)))))
-(-13 (-1110 |t#1|) (-364 |t#1|) (-273 |t#1|) (-10 -8 (-15 -3517 ($ |t#1|))))
-(((-34) . T) ((-101) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-273 |#1|) . T) ((-364 |#1|) . T) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-821) |has| |#1| (-821)) ((-979 |#1|) . T) ((-1063) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1110 |#1|) . T) ((-1173) . T) ((-1207 |#1|) . T))
-((-3468 (((-619 (-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|))))) (-619 (-619 |#1|)) (-619 (-1219 |#1|))) 22) (((-619 (-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|))))) (-663 |#1|) (-619 (-1219 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|)))) (-619 (-619 |#1|)) (-1219 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|)))) (-663 |#1|) (-1219 |#1|)) 14)) (-3116 (((-745) (-663 |#1|) (-1219 |#1|)) 30)) (-2723 (((-3 (-1219 |#1|) "failed") (-663 |#1|) (-1219 |#1|)) 24)) (-3858 (((-112) (-663 |#1|) (-1219 |#1|)) 27)))
-(((-641 |#1|) (-10 -7 (-15 -3468 ((-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|)))) (-663 |#1|) (-1219 |#1|))) (-15 -3468 ((-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|)))) (-619 (-619 |#1|)) (-1219 |#1|))) (-15 -3468 ((-619 (-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|))))) (-663 |#1|) (-619 (-1219 |#1|)))) (-15 -3468 ((-619 (-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|))))) (-619 (-619 |#1|)) (-619 (-1219 |#1|)))) (-15 -2723 ((-3 (-1219 |#1|) "failed") (-663 |#1|) (-1219 |#1|))) (-15 -3858 ((-112) (-663 |#1|) (-1219 |#1|))) (-15 -3116 ((-745) (-663 |#1|) (-1219 |#1|)))) (-354)) (T -641))
-((-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-1219 *5)) (-4 *5 (-354)) (-5 *2 (-745)) (-5 *1 (-641 *5)))) (-3858 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-1219 *5)) (-4 *5 (-354)) (-5 *2 (-112)) (-5 *1 (-641 *5)))) (-2723 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1219 *4)) (-5 *3 (-663 *4)) (-4 *4 (-354)) (-5 *1 (-641 *4)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-354)) (-5 *2 (-619 (-2 (|:| |particular| (-3 (-1219 *5) "failed")) (|:| -1917 (-619 (-1219 *5)))))) (-5 *1 (-641 *5)) (-5 *4 (-619 (-1219 *5))))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-4 *5 (-354)) (-5 *2 (-619 (-2 (|:| |particular| (-3 (-1219 *5) "failed")) (|:| -1917 (-619 (-1219 *5)))))) (-5 *1 (-641 *5)) (-5 *4 (-619 (-1219 *5))))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-354)) (-5 *2 (-2 (|:| |particular| (-3 (-1219 *5) "failed")) (|:| -1917 (-619 (-1219 *5))))) (-5 *1 (-641 *5)) (-5 *4 (-1219 *5)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |particular| (-3 (-1219 *5) "failed")) (|:| -1917 (-619 (-1219 *5))))) (-5 *1 (-641 *5)) (-5 *4 (-1219 *5)))))
-(-10 -7 (-15 -3468 ((-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|)))) (-663 |#1|) (-1219 |#1|))) (-15 -3468 ((-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|)))) (-619 (-619 |#1|)) (-1219 |#1|))) (-15 -3468 ((-619 (-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|))))) (-663 |#1|) (-619 (-1219 |#1|)))) (-15 -3468 ((-619 (-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|))))) (-619 (-619 |#1|)) (-619 (-1219 |#1|)))) (-15 -2723 ((-3 (-1219 |#1|) "failed") (-663 |#1|) (-1219 |#1|))) (-15 -3858 ((-112) (-663 |#1|) (-1219 |#1|))) (-15 -3116 ((-745) (-663 |#1|) (-1219 |#1|))))
-((-3468 (((-619 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1917 (-619 |#3|)))) |#4| (-619 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1917 (-619 |#3|))) |#4| |#3|) 45)) (-3116 (((-745) |#4| |#3|) 17)) (-2723 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3858 (((-112) |#4| |#3|) 13)))
-(((-642 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3468 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1917 (-619 |#3|))) |#4| |#3|)) (-15 -3468 ((-619 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1917 (-619 |#3|)))) |#4| (-619 |#3|))) (-15 -2723 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3858 ((-112) |#4| |#3|)) (-15 -3116 ((-745) |#4| |#3|))) (-354) (-13 (-364 |#1|) (-10 -7 (-6 -4330))) (-13 (-364 |#1|) (-10 -7 (-6 -4330))) (-661 |#1| |#2| |#3|)) (T -642))
-((-3116 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4330)))) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4330)))) (-5 *2 (-745)) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) (-3858 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4330)))) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4330)))) (-5 *2 (-112)) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) (-2723 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-354)) (-4 *5 (-13 (-364 *4) (-10 -7 (-6 -4330)))) (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4330)))) (-5 *1 (-642 *4 *5 *2 *3)) (-4 *3 (-661 *4 *5 *2)))) (-3468 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4330)))) (-4 *7 (-13 (-364 *5) (-10 -7 (-6 -4330)))) (-5 *2 (-619 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1917 (-619 *7))))) (-5 *1 (-642 *5 *6 *7 *3)) (-5 *4 (-619 *7)) (-4 *3 (-661 *5 *6 *7)))) (-3468 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4330)))) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4330)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4)))) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))))
-(-10 -7 (-15 -3468 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1917 (-619 |#3|))) |#4| |#3|)) (-15 -3468 ((-619 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1917 (-619 |#3|)))) |#4| (-619 |#3|))) (-15 -2723 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3858 ((-112) |#4| |#3|)) (-15 -3116 ((-745) |#4| |#3|)))
-((-4296 (((-2 (|:| |particular| (-3 (-1219 (-398 |#4|)) "failed")) (|:| -1917 (-619 (-1219 (-398 |#4|))))) (-619 |#4|) (-619 |#3|)) 45)))
-(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4296 ((-2 (|:| |particular| (-3 (-1219 (-398 |#4|)) "failed")) (|:| -1917 (-619 (-1219 (-398 |#4|))))) (-619 |#4|) (-619 |#3|)))) (-539) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -643))
-((-4296 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *7)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-5 *2 (-2 (|:| |particular| (-3 (-1219 (-398 *8)) "failed")) (|:| -1917 (-619 (-1219 (-398 *8)))))) (-5 *1 (-643 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4296 ((-2 (|:| |particular| (-3 (-1219 (-398 |#4|)) "failed")) (|:| -1917 (-619 (-1219 (-398 |#4|))))) (-619 |#4|) (-619 |#3|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3825 (((-3 $ "failed")) NIL (|has| |#2| (-539)))) (-2899 ((|#2| $) NIL)) (-2597 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3620 (((-1219 (-663 |#2|))) NIL) (((-1219 (-663 |#2|)) (-1219 $)) NIL)) (-1907 (((-112) $) NIL)) (-1342 (((-1219 $)) 37)) (-3899 (((-112) $ (-745)) NIL)) (-3893 (($ |#2|) NIL)) (-1948 (($) NIL T CONST)) (-2648 (($ $) NIL (|has| |#2| (-298)))) (-2330 (((-232 |#1| |#2|) $ (-547)) NIL)) (-4106 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) NIL (|has| |#2| (-539)))) (-2169 (((-3 $ "failed")) NIL (|has| |#2| (-539)))) (-2877 (((-663 |#2|)) NIL) (((-663 |#2|) (-1219 $)) NIL)) (-3652 ((|#2| $) NIL)) (-1252 (((-663 |#2|) $) NIL) (((-663 |#2|) $ (-1219 $)) NIL)) (-2702 (((-3 $ "failed") $) NIL (|has| |#2| (-539)))) (-4036 (((-1132 (-921 |#2|))) NIL (|has| |#2| (-354)))) (-3387 (($ $ (-890)) NIL)) (-2105 ((|#2| $) NIL)) (-3685 (((-1132 |#2|) $) NIL (|has| |#2| (-539)))) (-1936 ((|#2|) NIL) ((|#2| (-1219 $)) NIL)) (-3543 (((-1132 |#2|) $) NIL)) (-4130 (((-112)) NIL)) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 |#2| "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) ((|#2| $) NIL)) (-2614 (($ (-1219 |#2|)) NIL) (($ (-1219 |#2|) (-1219 $)) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3116 (((-745) $) NIL (|has| |#2| (-539))) (((-890)) 38)) (-1802 ((|#2| $ (-547) (-547)) NIL)) (-2470 (((-112)) NIL)) (-1296 (($ $ (-890)) NIL)) (-2982 (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2261 (((-112) $) NIL)) (-3316 (((-745) $) NIL (|has| |#2| (-539)))) (-3861 (((-619 (-232 |#1| |#2|)) $) NIL (|has| |#2| (-539)))) (-2135 (((-745) $) NIL)) (-2270 (((-112)) NIL)) (-2148 (((-745) $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-3836 ((|#2| $) NIL (|has| |#2| (-6 (-4331 "*"))))) (-3612 (((-547) $) NIL)) (-3628 (((-547) $) NIL)) (-2284 (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-3120 (((-547) $) NIL)) (-1599 (((-547) $) NIL)) (-3938 (($ (-619 (-619 |#2|))) NIL)) (-1859 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1580 (((-619 (-619 |#2|)) $) NIL)) (-3661 (((-112)) NIL)) (-1790 (((-112)) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-2499 (((-3 (-2 (|:| |particular| $) (|:| -1917 (-619 $))) "failed")) NIL (|has| |#2| (-539)))) (-1549 (((-3 $ "failed")) NIL (|has| |#2| (-539)))) (-2972 (((-663 |#2|)) NIL) (((-663 |#2|) (-1219 $)) NIL)) (-2080 ((|#2| $) NIL)) (-2574 (((-663 |#2|) $) NIL) (((-663 |#2|) $ (-1219 $)) NIL)) (-4082 (((-3 $ "failed") $) NIL (|has| |#2| (-539)))) (-3569 (((-1132 (-921 |#2|))) NIL (|has| |#2| (-354)))) (-3851 (($ $ (-890)) NIL)) (-4005 ((|#2| $) NIL)) (-1964 (((-1132 |#2|) $) NIL (|has| |#2| (-539)))) (-4062 ((|#2|) NIL) ((|#2| (-1219 $)) NIL)) (-2317 (((-1132 |#2|) $) NIL)) (-3912 (((-112)) NIL)) (-1466 (((-1119) $) NIL)) (-3795 (((-112)) NIL)) (-2759 (((-112)) NIL)) (-3892 (((-112)) NIL)) (-3582 (((-3 $ "failed") $) NIL (|has| |#2| (-354)))) (-3979 (((-1082) $) NIL)) (-1889 (((-112)) NIL)) (-2032 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539)))) (-1598 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#2| $ (-547) (-547) |#2|) NIL) ((|#2| $ (-547) (-547)) 22) ((|#2| $ (-547)) NIL)) (-3448 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-2278 ((|#2| $) NIL)) (-4123 (($ (-619 |#2|)) NIL)) (-3691 (((-112) $) NIL)) (-2172 (((-232 |#1| |#2|) $) NIL)) (-1299 ((|#2| $) NIL (|has| |#2| (-6 (-4331 "*"))))) (-3992 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2274 (($ $) NIL)) (-3220 (((-663 |#2|) (-1219 $)) NIL) (((-1219 |#2|) $) NIL) (((-663 |#2|) (-1219 $) (-1219 $)) NIL) (((-1219 |#2|) $ (-1219 $)) 25)) (-2838 (($ (-1219 |#2|)) NIL) (((-1219 |#2|) $) NIL)) (-3906 (((-619 (-921 |#2|))) NIL) (((-619 (-921 |#2|)) (-1219 $)) NIL)) (-1473 (($ $ $) NIL)) (-3274 (((-112)) NIL)) (-1295 (((-232 |#1| |#2|) $ (-547)) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#2| (-1007 (-398 (-547))))) (($ |#2|) NIL) (((-663 |#2|) $) NIL)) (-2736 (((-745)) NIL)) (-1917 (((-1219 $)) 36)) (-3778 (((-619 (-1219 |#2|))) NIL (|has| |#2| (-539)))) (-2781 (($ $ $ $) NIL)) (-3592 (((-112)) NIL)) (-3587 (($ (-663 |#2|) $) NIL)) (-2693 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-1485 (((-112) $) NIL)) (-2031 (($ $ $) NIL)) (-3271 (((-112)) NIL)) (-4150 (((-112)) NIL)) (-2004 (((-112)) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#2| (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-232 |#1| |#2|) $ (-232 |#1| |#2|)) NIL) (((-232 |#1| |#2|) (-232 |#1| |#2|) $) NIL)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-644 |#1| |#2|) (-13 (-1085 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-591 (-663 |#2|)) (-408 |#2|)) (-890) (-169)) (T -644))
-NIL
-(-13 (-1085 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-591 (-663 |#2|)) (-408 |#2|))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2266 (((-619 (-1141)) $) 10)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-645) (-13 (-1047) (-10 -8 (-15 -2266 ((-619 (-1141)) $))))) (T -645))
-((-2266 (*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-645)))))
-(-13 (-1047) (-10 -8 (-15 -2266 ((-619 (-1141)) $))))
-((-3826 (((-112) $ $) NIL)) (-3297 (((-619 |#1|) $) NIL)) (-3840 (($ $) 52)) (-1317 (((-112) $) NIL)) (-2707 (((-3 |#1| "failed") $) NIL)) (-2652 ((|#1| $) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-3740 (((-3 $ "failed") (-793 |#1|)) 23)) (-1350 (((-112) (-793 |#1|)) 15)) (-4037 (($ (-793 |#1|)) 24)) (-3449 (((-112) $ $) 30)) (-4202 (((-890) $) 37)) (-3830 (($ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2115 (((-619 $) (-793 |#1|)) 17)) (-3838 (((-832) $) 43) (($ |#1|) 34) (((-793 |#1|) $) 39) (((-651 |#1|) $) 44)) (-3856 (((-58 (-619 $)) (-619 |#1|) (-890)) 57)) (-2523 (((-619 $) (-619 |#1|) (-890)) 60)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 53)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 38)))
-(((-646 |#1|) (-13 (-821) (-1007 |#1|) (-10 -8 (-15 -1317 ((-112) $)) (-15 -3830 ($ $)) (-15 -3840 ($ $)) (-15 -4202 ((-890) $)) (-15 -3449 ((-112) $ $)) (-15 -3838 ((-793 |#1|) $)) (-15 -3838 ((-651 |#1|) $)) (-15 -2115 ((-619 $) (-793 |#1|))) (-15 -1350 ((-112) (-793 |#1|))) (-15 -4037 ($ (-793 |#1|))) (-15 -3740 ((-3 $ "failed") (-793 |#1|))) (-15 -3297 ((-619 |#1|) $)) (-15 -3856 ((-58 (-619 $)) (-619 |#1|) (-890))) (-15 -2523 ((-619 $) (-619 |#1|) (-890))))) (-821)) (T -646))
-((-1317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3830 (*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) (-3840 (*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3449 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-651 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-646 *4))) (-5 *1 (-646 *4)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-112)) (-5 *1 (-646 *4)))) (-4037 (*1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3)))) (-3740 (*1 *1 *2) (|partial| -12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) (-5 *2 (-58 (-619 (-646 *5)))) (-5 *1 (-646 *5)))) (-2523 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) (-5 *2 (-619 (-646 *5))) (-5 *1 (-646 *5)))))
-(-13 (-821) (-1007 |#1|) (-10 -8 (-15 -1317 ((-112) $)) (-15 -3830 ($ $)) (-15 -3840 ($ $)) (-15 -4202 ((-890) $)) (-15 -3449 ((-112) $ $)) (-15 -3838 ((-793 |#1|) $)) (-15 -3838 ((-651 |#1|) $)) (-15 -2115 ((-619 $) (-793 |#1|))) (-15 -1350 ((-112) (-793 |#1|))) (-15 -4037 ($ (-793 |#1|))) (-15 -3740 ((-3 $ "failed") (-793 |#1|))) (-15 -3297 ((-619 |#1|) $)) (-15 -3856 ((-58 (-619 $)) (-619 |#1|) (-890))) (-15 -2523 ((-619 $) (-619 |#1|) (-890)))))
-((-4153 ((|#2| $) 76)) (-1336 (($ $) 96)) (-3899 (((-112) $ (-745)) 26)) (-3649 (($ $) 85) (($ $ (-745)) 88)) (-2963 (((-112) $) 97)) (-3203 (((-619 $) $) 72)) (-2554 (((-112) $ $) 71)) (-2763 (((-112) $ (-745)) 24)) (-2434 (((-547) $) 46)) (-1416 (((-547) $) 45)) (-3806 (((-112) $ (-745)) 22)) (-1489 (((-112) $) 74)) (-3820 ((|#2| $) 89) (($ $ (-745)) 92)) (-2606 (($ $ $ (-547)) 62) (($ |#2| $ (-547)) 61)) (-2121 (((-619 (-547)) $) 44)) (-2018 (((-112) (-547) $) 42)) (-3638 ((|#2| $) NIL) (($ $ (-745)) 84)) (-3708 (($ $ (-547)) 100)) (-1884 (((-112) $) 99)) (-1598 (((-112) (-1 (-112) |#2|) $) 32)) (-2987 (((-619 |#2|) $) 33)) (-3334 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1186 (-547))) 58) ((|#2| $ (-547)) 40) ((|#2| $ (-547) |#2|) 41)) (-2857 (((-547) $ $) 70)) (-2159 (($ $ (-1186 (-547))) 57) (($ $ (-547)) 51)) (-1850 (((-112) $) 66)) (-2005 (($ $) 81)) (-1749 (((-745) $) 80)) (-2016 (($ $) 79)) (-3846 (($ (-619 |#2|)) 37)) (-2804 (($ $) 101)) (-2514 (((-619 $) $) 69)) (-1421 (((-112) $ $) 68)) (-2693 (((-112) (-1 (-112) |#2|) $) 31)) (-2381 (((-112) $ $) 18)) (-3767 (((-745) $) 29)))
-(((-647 |#1| |#2|) (-10 -8 (-15 -2804 (|#1| |#1|)) (-15 -3708 (|#1| |#1| (-547))) (-15 -2963 ((-112) |#1|)) (-15 -1884 ((-112) |#1|)) (-15 -3334 (|#2| |#1| (-547) |#2|)) (-15 -3334 (|#2| |#1| (-547))) (-15 -2987 ((-619 |#2|) |#1|)) (-15 -2018 ((-112) (-547) |#1|)) (-15 -2121 ((-619 (-547)) |#1|)) (-15 -1416 ((-547) |#1|)) (-15 -2434 ((-547) |#1|)) (-15 -3846 (|#1| (-619 |#2|))) (-15 -3334 (|#1| |#1| (-1186 (-547)))) (-15 -2159 (|#1| |#1| (-547))) (-15 -2159 (|#1| |#1| (-1186 (-547)))) (-15 -2606 (|#1| |#2| |#1| (-547))) (-15 -2606 (|#1| |#1| |#1| (-547))) (-15 -2005 (|#1| |#1|)) (-15 -1749 ((-745) |#1|)) (-15 -2016 (|#1| |#1|)) (-15 -1336 (|#1| |#1|)) (-15 -3820 (|#1| |#1| (-745))) (-15 -3334 (|#2| |#1| "last")) (-15 -3820 (|#2| |#1|)) (-15 -3649 (|#1| |#1| (-745))) (-15 -3334 (|#1| |#1| "rest")) (-15 -3649 (|#1| |#1|)) (-15 -3638 (|#1| |#1| (-745))) (-15 -3334 (|#2| |#1| "first")) (-15 -3638 (|#2| |#1|)) (-15 -2554 ((-112) |#1| |#1|)) (-15 -1421 ((-112) |#1| |#1|)) (-15 -2857 ((-547) |#1| |#1|)) (-15 -1850 ((-112) |#1|)) (-15 -3334 (|#2| |#1| "value")) (-15 -4153 (|#2| |#1|)) (-15 -1489 ((-112) |#1|)) (-15 -3203 ((-619 |#1|) |#1|)) (-15 -2514 ((-619 |#1|) |#1|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -1598 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2693 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3767 ((-745) |#1|)) (-15 -3899 ((-112) |#1| (-745))) (-15 -2763 ((-112) |#1| (-745))) (-15 -3806 ((-112) |#1| (-745)))) (-648 |#2|) (-1173)) (T -647))
-NIL
-(-10 -8 (-15 -2804 (|#1| |#1|)) (-15 -3708 (|#1| |#1| (-547))) (-15 -2963 ((-112) |#1|)) (-15 -1884 ((-112) |#1|)) (-15 -3334 (|#2| |#1| (-547) |#2|)) (-15 -3334 (|#2| |#1| (-547))) (-15 -2987 ((-619 |#2|) |#1|)) (-15 -2018 ((-112) (-547) |#1|)) (-15 -2121 ((-619 (-547)) |#1|)) (-15 -1416 ((-547) |#1|)) (-15 -2434 ((-547) |#1|)) (-15 -3846 (|#1| (-619 |#2|))) (-15 -3334 (|#1| |#1| (-1186 (-547)))) (-15 -2159 (|#1| |#1| (-547))) (-15 -2159 (|#1| |#1| (-1186 (-547)))) (-15 -2606 (|#1| |#2| |#1| (-547))) (-15 -2606 (|#1| |#1| |#1| (-547))) (-15 -2005 (|#1| |#1|)) (-15 -1749 ((-745) |#1|)) (-15 -2016 (|#1| |#1|)) (-15 -1336 (|#1| |#1|)) (-15 -3820 (|#1| |#1| (-745))) (-15 -3334 (|#2| |#1| "last")) (-15 -3820 (|#2| |#1|)) (-15 -3649 (|#1| |#1| (-745))) (-15 -3334 (|#1| |#1| "rest")) (-15 -3649 (|#1| |#1|)) (-15 -3638 (|#1| |#1| (-745))) (-15 -3334 (|#2| |#1| "first")) (-15 -3638 (|#2| |#1|)) (-15 -2554 ((-112) |#1| |#1|)) (-15 -1421 ((-112) |#1| |#1|)) (-15 -2857 ((-547) |#1| |#1|)) (-15 -1850 ((-112) |#1|)) (-15 -3334 (|#2| |#1| "value")) (-15 -4153 (|#2| |#1|)) (-15 -1489 ((-112) |#1|)) (-15 -3203 ((-619 |#1|) |#1|)) (-15 -2514 ((-619 |#1|) |#1|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -1598 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2693 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3767 ((-745) |#1|)) (-15 -3899 ((-112) |#1| (-745))) (-15 -2763 ((-112) |#1| (-745))) (-15 -3806 ((-112) |#1| (-745))))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4153 ((|#1| $) 48)) (-2832 ((|#1| $) 65)) (-1336 (($ $) 67)) (-1652 (((-1224) $ (-547) (-547)) 97 (|has| $ (-6 -4330)))) (-2165 (($ $ (-547)) 52 (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) 8)) (-1986 ((|#1| $ |#1|) 39 (|has| $ (-6 -4330)))) (-2272 (($ $ $) 56 (|has| $ (-6 -4330)))) (-3200 ((|#1| $ |#1|) 54 (|has| $ (-6 -4330)))) (-4086 ((|#1| $ |#1|) 58 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4330))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4330))) (($ $ "rest" $) 55 (|has| $ (-6 -4330))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) 117 (|has| $ (-6 -4330))) ((|#1| $ (-547) |#1|) 86 (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) 41 (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) 102)) (-2823 ((|#1| $) 66)) (-1948 (($) 7 T CONST)) (-1727 (($ $) 124)) (-3649 (($ $) 73) (($ $ (-745)) 71)) (-3668 (($ $) 99 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#1| $) 100 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 103)) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1872 ((|#1| $ (-547) |#1|) 85 (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) 87)) (-2963 (((-112) $) 83)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2952 (((-745) $) 123)) (-3203 (((-619 $) $) 50)) (-2554 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3735 (($ (-745) |#1|) 108)) (-2763 (((-112) $ (-745)) 9)) (-2434 (((-547) $) 95 (|has| (-547) (-821)))) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 94 (|has| (-547) (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3806 (((-112) $ (-745)) 10)) (-3583 (((-619 |#1|) $) 45)) (-1489 (((-112) $) 49)) (-1675 (($ $) 126)) (-3984 (((-112) $) 127)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-3820 ((|#1| $) 70) (($ $ (-745)) 68)) (-2606 (($ $ $ (-547)) 116) (($ |#1| $ (-547)) 115)) (-2121 (((-619 (-547)) $) 92)) (-2018 (((-112) (-547) $) 91)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2507 ((|#1| $) 125)) (-3638 ((|#1| $) 76) (($ $ (-745)) 74)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3632 (($ $ |#1|) 96 (|has| $ (-6 -4330)))) (-3708 (($ $ (-547)) 122)) (-1884 (((-112) $) 84)) (-3360 (((-112) $) 128)) (-3828 (((-112) $) 129)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) 90)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1186 (-547))) 112) ((|#1| $ (-547)) 89) ((|#1| $ (-547) |#1|) 88)) (-2857 (((-547) $ $) 44)) (-2159 (($ $ (-1186 (-547))) 114) (($ $ (-547)) 113)) (-1850 (((-112) $) 46)) (-2005 (($ $) 62)) (-2632 (($ $) 59 (|has| $ (-6 -4330)))) (-1749 (((-745) $) 63)) (-2016 (($ $) 64)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-2838 (((-523) $) 98 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 107)) (-3794 (($ $ $) 61 (|has| $ (-6 -4330))) (($ $ |#1|) 60 (|has| $ (-6 -4330)))) (-1945 (($ $ $) 78) (($ |#1| $) 77) (($ (-619 $)) 110) (($ $ |#1|) 109)) (-2804 (($ $) 121)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) 51)) (-1421 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-648 |#1|) (-138) (-1173)) (T -648))
-((-3803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1173)))) (-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1173)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1173)) (-5 *2 (-112)))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1173)) (-5 *2 (-112)))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1173)) (-5 *2 (-112)))) (-1675 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1173)))) (-2507 (*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1173)))) (-1727 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1173)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1173)) (-5 *2 (-745)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-648 *3)) (-4 *3 (-1173)))) (-2804 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1173)))))
-(-13 (-1110 |t#1|) (-10 -8 (-15 -3803 ($ (-1 (-112) |t#1|) $)) (-15 -1482 ($ (-1 (-112) |t#1|) $)) (-15 -3828 ((-112) $)) (-15 -3360 ((-112) $)) (-15 -3984 ((-112) $)) (-15 -1675 ($ $)) (-15 -2507 (|t#1| $)) (-15 -1727 ($ $)) (-15 -2952 ((-745) $)) (-15 -3708 ($ $ (-547))) (-15 -2804 ($ $))))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1110 |#1|) . T) ((-1173) . T) ((-1207 |#1|) . T))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3345 (($ (-745) (-745) (-745)) 33 (|has| |#1| (-1016)))) (-3899 (((-112) $ (-745)) NIL)) (-1828 ((|#1| $ (-745) (-745) (-745) |#1|) 27)) (-1948 (($) NIL T CONST)) (-3432 (($ $ $) 37 (|has| |#1| (-1016)))) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3092 (((-1219 (-745)) $) 9)) (-1732 (($ (-1136) $ $) 22)) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-4090 (($ (-745)) 35 (|has| |#1| (-1016)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ (-745) (-745) (-745)) 25)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-3846 (($ (-619 (-619 (-619 |#1|)))) 44)) (-3838 (($ (-927 (-927 (-927 |#1|)))) 15) (((-927 (-927 (-927 |#1|))) $) 12) (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-649 |#1|) (-13 (-479 |#1|) (-10 -8 (IF (|has| |#1| (-1016)) (PROGN (-15 -3345 ($ (-745) (-745) (-745))) (-15 -4090 ($ (-745))) (-15 -3432 ($ $ $))) |%noBranch|) (-15 -3846 ($ (-619 (-619 (-619 |#1|))))) (-15 -3334 (|#1| $ (-745) (-745) (-745))) (-15 -1828 (|#1| $ (-745) (-745) (-745) |#1|)) (-15 -3838 ($ (-927 (-927 (-927 |#1|))))) (-15 -3838 ((-927 (-927 (-927 |#1|))) $)) (-15 -1732 ($ (-1136) $ $)) (-15 -3092 ((-1219 (-745)) $)))) (-1063)) (T -649))
-((-3345 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) (-4 *3 (-1063)))) (-4090 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) (-4 *3 (-1063)))) (-3432 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1016)) (-4 *2 (-1063)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-619 *3)))) (-4 *3 (-1063)) (-5 *1 (-649 *3)))) (-3334 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063)))) (-1828 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-927 (-927 (-927 *3)))) (-4 *3 (-1063)) (-5 *1 (-649 *3)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-927 (-927 (-927 *3)))) (-5 *1 (-649 *3)) (-4 *3 (-1063)))) (-1732 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-649 *3)) (-4 *3 (-1063)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-1219 (-745))) (-5 *1 (-649 *3)) (-4 *3 (-1063)))))
-(-13 (-479 |#1|) (-10 -8 (IF (|has| |#1| (-1016)) (PROGN (-15 -3345 ($ (-745) (-745) (-745))) (-15 -4090 ($ (-745))) (-15 -3432 ($ $ $))) |%noBranch|) (-15 -3846 ($ (-619 (-619 (-619 |#1|))))) (-15 -3334 (|#1| $ (-745) (-745) (-745))) (-15 -1828 (|#1| $ (-745) (-745) (-745) |#1|)) (-15 -3838 ($ (-927 (-927 (-927 |#1|))))) (-15 -3838 ((-927 (-927 (-927 |#1|))) $)) (-15 -1732 ($ (-1136) $ $)) (-15 -3092 ((-1219 (-745)) $))))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-1775 (((-619 (-495)) $) 11)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2487 (((-1141) $) 13)) (-2381 (((-112) $ $) NIL)))
-(((-650) (-13 (-1047) (-10 -8 (-15 -1775 ((-619 (-495)) $)) (-15 -2487 ((-1141) $))))) (T -650))
-((-1775 (*1 *2 *1) (-12 (-5 *2 (-619 (-495))) (-5 *1 (-650)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-650)))))
-(-13 (-1047) (-10 -8 (-15 -1775 ((-619 (-495)) $)) (-15 -2487 ((-1141) $))))
-((-3826 (((-112) $ $) NIL)) (-3297 (((-619 |#1|) $) 14)) (-3840 (($ $) 18)) (-1317 (((-112) $) 19)) (-2707 (((-3 |#1| "failed") $) 22)) (-2652 ((|#1| $) 20)) (-3649 (($ $) 36)) (-2961 (($ $) 24)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-3449 (((-112) $ $) 42)) (-4202 (((-890) $) 38)) (-3830 (($ $) 17)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3638 ((|#1| $) 35)) (-3838 (((-832) $) 31) (($ |#1|) 23) (((-793 |#1|) $) 27)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 12)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 40)) (* (($ $ $) 34)))
-(((-651 |#1|) (-13 (-821) (-1007 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3838 ((-793 |#1|) $)) (-15 -3638 (|#1| $)) (-15 -3830 ($ $)) (-15 -4202 ((-890) $)) (-15 -3449 ((-112) $ $)) (-15 -2961 ($ $)) (-15 -3649 ($ $)) (-15 -1317 ((-112) $)) (-15 -3840 ($ $)) (-15 -3297 ((-619 |#1|) $)))) (-821)) (T -651))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-3638 (*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3830 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-3449 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-2961 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3649 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-3840 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821)))))
-(-13 (-821) (-1007 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3838 ((-793 |#1|) $)) (-15 -3638 (|#1| $)) (-15 -3830 ($ $)) (-15 -4202 ((-890) $)) (-15 -3449 ((-112) $ $)) (-15 -2961 ($ $)) (-15 -3649 ($ $)) (-15 -1317 ((-112) $)) (-15 -3840 ($ $)) (-15 -3297 ((-619 |#1|) $))))
-((-2845 ((|#1| (-1 |#1| (-745) |#1|) (-745) |#1|) 11)) (-2658 ((|#1| (-1 |#1| |#1|) (-745) |#1|) 9)))
-(((-652 |#1|) (-10 -7 (-15 -2658 (|#1| (-1 |#1| |#1|) (-745) |#1|)) (-15 -2845 (|#1| (-1 |#1| (-745) |#1|) (-745) |#1|))) (-1063)) (T -652))
-((-2845 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-745) *2)) (-5 *4 (-745)) (-4 *2 (-1063)) (-5 *1 (-652 *2)))) (-2658 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-745)) (-4 *2 (-1063)) (-5 *1 (-652 *2)))))
-(-10 -7 (-15 -2658 (|#1| (-1 |#1| |#1|) (-745) |#1|)) (-15 -2845 (|#1| (-1 |#1| (-745) |#1|) (-745) |#1|)))
-((-3559 ((|#2| |#1| |#2|) 9)) (-3546 ((|#1| |#1| |#2|) 8)))
-(((-653 |#1| |#2|) (-10 -7 (-15 -3546 (|#1| |#1| |#2|)) (-15 -3559 (|#2| |#1| |#2|))) (-1063) (-1063)) (T -653))
-((-3559 (*1 *2 *3 *2) (-12 (-5 *1 (-653 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3546 (*1 *2 *2 *3) (-12 (-5 *1 (-653 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))))
-(-10 -7 (-15 -3546 (|#1| |#1| |#2|)) (-15 -3559 (|#2| |#1| |#2|)))
-((-3764 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-654 |#1| |#2| |#3|) (-10 -7 (-15 -3764 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1063) (-1063) (-1063)) (T -654))
-((-3764 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)) (-5 *1 (-654 *5 *6 *2)))))
-(-10 -7 (-15 -3764 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-2093 (((-1172) $) 20)) (-3215 (((-619 (-1172)) $) 18)) (-1760 (($ (-619 (-1172)) (-1172)) 13)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL) (((-1172) $) 21) (($ (-1080)) 10)) (-2381 (((-112) $ $) NIL)))
-(((-655) (-13 (-1047) (-591 (-1172)) (-10 -8 (-15 -3838 ($ (-1080))) (-15 -1760 ($ (-619 (-1172)) (-1172))) (-15 -3215 ((-619 (-1172)) $)) (-15 -2093 ((-1172) $))))) (T -655))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-655)))) (-1760 (*1 *1 *2 *3) (-12 (-5 *2 (-619 (-1172))) (-5 *3 (-1172)) (-5 *1 (-655)))) (-3215 (*1 *2 *1) (-12 (-5 *2 (-619 (-1172))) (-5 *1 (-655)))) (-2093 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-655)))))
-(-13 (-1047) (-591 (-1172)) (-10 -8 (-15 -3838 ($ (-1080))) (-15 -1760 ($ (-619 (-1172)) (-1172))) (-15 -3215 ((-619 (-1172)) $)) (-15 -2093 ((-1172) $))))
-((-2845 (((-1 |#1| (-745) |#1|) (-1 |#1| (-745) |#1|)) 23)) (-1748 (((-1 |#1|) |#1|) 8)) (-3707 ((|#1| |#1|) 16)) (-2010 (((-619 |#1|) (-1 (-619 |#1|) (-619 |#1|)) (-547)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3838 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-745)) 20)))
-(((-656 |#1|) (-10 -7 (-15 -1748 ((-1 |#1|) |#1|)) (-15 -3838 ((-1 |#1|) |#1|)) (-15 -2010 (|#1| (-1 |#1| |#1|))) (-15 -2010 ((-619 |#1|) (-1 (-619 |#1|) (-619 |#1|)) (-547))) (-15 -3707 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-745))) (-15 -2845 ((-1 |#1| (-745) |#1|) (-1 |#1| (-745) |#1|)))) (-1063)) (T -656))
-((-2845 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-745) *3)) (-4 *3 (-1063)) (-5 *1 (-656 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *4 (-1063)) (-5 *1 (-656 *4)))) (-3707 (*1 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1063)))) (-2010 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-619 *5) (-619 *5))) (-5 *4 (-547)) (-5 *2 (-619 *5)) (-5 *1 (-656 *5)) (-4 *5 (-1063)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-656 *2)) (-4 *2 (-1063)))) (-3838 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063)))) (-1748 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063)))))
-(-10 -7 (-15 -1748 ((-1 |#1|) |#1|)) (-15 -3838 ((-1 |#1|) |#1|)) (-15 -2010 (|#1| (-1 |#1| |#1|))) (-15 -2010 ((-619 |#1|) (-1 (-619 |#1|) (-619 |#1|)) (-547))) (-15 -3707 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-745))) (-15 -2845 ((-1 |#1| (-745) |#1|) (-1 |#1| (-745) |#1|))))
-((-3296 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1865 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2582 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1510 (((-1 |#2| |#1|) |#2|) 11)))
-(((-657 |#1| |#2|) (-10 -7 (-15 -1510 ((-1 |#2| |#1|) |#2|)) (-15 -1865 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2582 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3296 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1063) (-1063)) (T -657))
-((-3296 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1063)) (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5)) (-4 *4 (-1063)))) (-1865 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-5 *2 (-1 *5)) (-5 *1 (-657 *4 *5)))) (-1510 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-657 *4 *3)) (-4 *4 (-1063)) (-4 *3 (-1063)))))
-(-10 -7 (-15 -1510 ((-1 |#2| |#1|) |#2|)) (-15 -1865 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2582 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3296 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-3378 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3043 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3847 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1298 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3716 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-658 |#1| |#2| |#3|) (-10 -7 (-15 -3043 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3847 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1298 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3716 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3378 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1063) (-1063) (-1063)) (T -658))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-1 *7 *5)) (-5 *1 (-658 *5 *6 *7)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-658 *4 *5 *6)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *4 (-1063)))) (-1298 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *5 (-1063)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *4 *5 *6)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1063)) (-4 *4 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *5 *4 *6)))))
-(-10 -7 (-15 -3043 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3847 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1298 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3716 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3378 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-2552 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2790 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-659 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2790 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2790 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2552 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1016) (-364 |#1|) (-364 |#1|) (-661 |#1| |#2| |#3|) (-1016) (-364 |#5|) (-364 |#5|) (-661 |#5| |#6| |#7|)) (T -659))
-((-2552 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) (-4 *6 (-364 *5)) (-4 *7 (-364 *5)) (-4 *8 (-364 *2)) (-4 *9 (-364 *2)) (-5 *1 (-659 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-661 *5 *6 *7)) (-4 *10 (-661 *2 *8 *9)))) (-2790 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1016)) (-4 *8 (-1016)) (-4 *6 (-364 *5)) (-4 *7 (-364 *5)) (-4 *2 (-661 *8 *9 *10)) (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-661 *5 *6 *7)) (-4 *9 (-364 *8)) (-4 *10 (-364 *8)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1016)) (-4 *8 (-1016)) (-4 *6 (-364 *5)) (-4 *7 (-364 *5)) (-4 *2 (-661 *8 *9 *10)) (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-661 *5 *6 *7)) (-4 *9 (-364 *8)) (-4 *10 (-364 *8)))))
-(-10 -7 (-15 -2790 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2790 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2552 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3761 (($ (-745) (-745)) 33)) (-3687 (($ $ $) 56)) (-3890 (($ |#3|) 52) (($ $) 53)) (-2597 (((-112) $) 28)) (-1955 (($ $ (-547) (-547)) 58)) (-2680 (($ $ (-547) (-547)) 59)) (-1914 (($ $ (-547) (-547) (-547) (-547)) 63)) (-1471 (($ $) 54)) (-1907 (((-112) $) 14)) (-1464 (($ $ (-547) (-547) $) 64)) (-2247 ((|#2| $ (-547) (-547) |#2|) NIL) (($ $ (-619 (-547)) (-619 (-547)) $) 62)) (-3893 (($ (-745) |#2|) 39)) (-3938 (($ (-619 (-619 |#2|))) 37)) (-1580 (((-619 (-619 |#2|)) $) 57)) (-2755 (($ $ $) 55)) (-2032 (((-3 $ "failed") $ |#2|) 91)) (-3334 ((|#2| $ (-547) (-547)) NIL) ((|#2| $ (-547) (-547) |#2|) NIL) (($ $ (-619 (-547)) (-619 (-547))) 61)) (-4123 (($ (-619 |#2|)) 40) (($ (-619 $)) 42)) (-3691 (((-112) $) 24)) (-3838 (($ |#4|) 47) (((-832) $) NIL)) (-1485 (((-112) $) 30)) (-2506 (($ $ |#2|) 93)) (-2493 (($ $ $) 68) (($ $) 71)) (-2479 (($ $ $) 66)) (** (($ $ (-745)) 80) (($ $ (-547)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-547) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
-(((-660 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3838 ((-832) |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 -2506 (|#1| |#1| |#2|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2479 (|#1| |#1| |#1|)) (-15 -1464 (|#1| |#1| (-547) (-547) |#1|)) (-15 -1914 (|#1| |#1| (-547) (-547) (-547) (-547))) (-15 -2680 (|#1| |#1| (-547) (-547))) (-15 -1955 (|#1| |#1| (-547) (-547))) (-15 -2247 (|#1| |#1| (-619 (-547)) (-619 (-547)) |#1|)) (-15 -3334 (|#1| |#1| (-619 (-547)) (-619 (-547)))) (-15 -1580 ((-619 (-619 |#2|)) |#1|)) (-15 -3687 (|#1| |#1| |#1|)) (-15 -2755 (|#1| |#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3890 (|#1| |#3|)) (-15 -3838 (|#1| |#4|)) (-15 -4123 (|#1| (-619 |#1|))) (-15 -4123 (|#1| (-619 |#2|))) (-15 -3893 (|#1| (-745) |#2|)) (-15 -3938 (|#1| (-619 (-619 |#2|)))) (-15 -3761 (|#1| (-745) (-745))) (-15 -1485 ((-112) |#1|)) (-15 -2597 ((-112) |#1|)) (-15 -3691 ((-112) |#1|)) (-15 -1907 ((-112) |#1|)) (-15 -2247 (|#2| |#1| (-547) (-547) |#2|)) (-15 -3334 (|#2| |#1| (-547) (-547) |#2|)) (-15 -3334 (|#2| |#1| (-547) (-547)))) (-661 |#2| |#3| |#4|) (-1016) (-364 |#2|) (-364 |#2|)) (T -660))
-NIL
-(-10 -8 (-15 -3838 ((-832) |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 -2506 (|#1| |#1| |#2|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2479 (|#1| |#1| |#1|)) (-15 -1464 (|#1| |#1| (-547) (-547) |#1|)) (-15 -1914 (|#1| |#1| (-547) (-547) (-547) (-547))) (-15 -2680 (|#1| |#1| (-547) (-547))) (-15 -1955 (|#1| |#1| (-547) (-547))) (-15 -2247 (|#1| |#1| (-619 (-547)) (-619 (-547)) |#1|)) (-15 -3334 (|#1| |#1| (-619 (-547)) (-619 (-547)))) (-15 -1580 ((-619 (-619 |#2|)) |#1|)) (-15 -3687 (|#1| |#1| |#1|)) (-15 -2755 (|#1| |#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3890 (|#1| |#3|)) (-15 -3838 (|#1| |#4|)) (-15 -4123 (|#1| (-619 |#1|))) (-15 -4123 (|#1| (-619 |#2|))) (-15 -3893 (|#1| (-745) |#2|)) (-15 -3938 (|#1| (-619 (-619 |#2|)))) (-15 -3761 (|#1| (-745) (-745))) (-15 -1485 ((-112) |#1|)) (-15 -2597 ((-112) |#1|)) (-15 -3691 ((-112) |#1|)) (-15 -1907 ((-112) |#1|)) (-15 -2247 (|#2| |#1| (-547) (-547) |#2|)) (-15 -3334 (|#2| |#1| (-547) (-547) |#2|)) (-15 -3334 (|#2| |#1| (-547) (-547))))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3761 (($ (-745) (-745)) 97)) (-3687 (($ $ $) 87)) (-3890 (($ |#2|) 91) (($ $) 90)) (-2597 (((-112) $) 99)) (-1955 (($ $ (-547) (-547)) 83)) (-2680 (($ $ (-547) (-547)) 82)) (-1914 (($ $ (-547) (-547) (-547) (-547)) 81)) (-1471 (($ $) 89)) (-1907 (((-112) $) 101)) (-3899 (((-112) $ (-745)) 8)) (-1464 (($ $ (-547) (-547) $) 80)) (-2247 ((|#1| $ (-547) (-547) |#1|) 44) (($ $ (-619 (-547)) (-619 (-547)) $) 84)) (-1370 (($ $ (-547) |#2|) 42)) (-2501 (($ $ (-547) |#3|) 41)) (-3893 (($ (-745) |#1|) 95)) (-1948 (($) 7 T CONST)) (-2648 (($ $) 67 (|has| |#1| (-298)))) (-2330 ((|#2| $ (-547)) 46)) (-3116 (((-745) $) 66 (|has| |#1| (-539)))) (-1872 ((|#1| $ (-547) (-547) |#1|) 43)) (-1802 ((|#1| $ (-547) (-547)) 48)) (-2982 (((-619 |#1|) $) 30)) (-3316 (((-745) $) 65 (|has| |#1| (-539)))) (-3861 (((-619 |#3|) $) 64 (|has| |#1| (-539)))) (-2135 (((-745) $) 51)) (-3735 (($ (-745) (-745) |#1|) 57)) (-2148 (((-745) $) 50)) (-2763 (((-112) $ (-745)) 9)) (-3836 ((|#1| $) 62 (|has| |#1| (-6 (-4331 "*"))))) (-3612 (((-547) $) 55)) (-3628 (((-547) $) 53)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3120 (((-547) $) 54)) (-1599 (((-547) $) 52)) (-3938 (($ (-619 (-619 |#1|))) 96)) (-1859 (($ (-1 |#1| |#1|) $) 34)) (-2790 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1580 (((-619 (-619 |#1|)) $) 86)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-3582 (((-3 $ "failed") $) 61 (|has| |#1| (-354)))) (-2755 (($ $ $) 88)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3632 (($ $ |#1|) 56)) (-2032 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-539)))) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ (-547) (-547)) 49) ((|#1| $ (-547) (-547) |#1|) 47) (($ $ (-619 (-547)) (-619 (-547))) 85)) (-4123 (($ (-619 |#1|)) 94) (($ (-619 $)) 93)) (-3691 (((-112) $) 100)) (-1299 ((|#1| $) 63 (|has| |#1| (-6 (-4331 "*"))))) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-1295 ((|#3| $ (-547)) 45)) (-3838 (($ |#3|) 92) (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-1485 (((-112) $) 98)) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2506 (($ $ |#1|) 68 (|has| |#1| (-354)))) (-2493 (($ $ $) 78) (($ $) 77)) (-2479 (($ $ $) 79)) (** (($ $ (-745)) 70) (($ $ (-547)) 60 (|has| |#1| (-354)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-547) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-661 |#1| |#2| |#3|) (-138) (-1016) (-364 |t#1|) (-364 |t#1|)) (T -661))
-((-1907 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-112)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-112)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-112)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-112)))) (-3761 (*1 *1 *2 *2) (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-3893 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-4123 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-4123 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-3838 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *2)) (-4 *4 (-364 *3)) (-4 *2 (-364 *3)))) (-3890 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *2 *4)) (-4 *2 (-364 *3)) (-4 *4 (-364 *3)))) (-3890 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-1471 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-2755 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-3687 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-1580 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-619 (-619 *3))))) (-3334 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-619 (-547))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2247 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-619 (-547))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-1955 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2680 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-1914 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-1464 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2479 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-2493 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-2493 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-661 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *2 (-364 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-661 *3 *2 *4)) (-4 *3 (-1016)) (-4 *2 (-364 *3)) (-4 *4 (-364 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2032 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (-4 *2 (-539)))) (-2506 (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (-4 *2 (-354)))) (-2648 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (-4 *2 (-298)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-4 *3 (-539)) (-5 *2 (-745)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-4 *3 (-539)) (-5 *2 (-745)))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-4 *3 (-539)) (-5 *2 (-619 *5)))) (-1299 (*1 *2 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (|has| *2 (-6 (-4331 "*"))) (-4 *2 (-1016)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (|has| *2 (-6 (-4331 "*"))) (-4 *2 (-1016)))) (-3582 (*1 *1 *1) (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (-4 *2 (-354)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-4 *3 (-354)))))
-(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4330) (-6 -4329) (-15 -1907 ((-112) $)) (-15 -3691 ((-112) $)) (-15 -2597 ((-112) $)) (-15 -1485 ((-112) $)) (-15 -3761 ($ (-745) (-745))) (-15 -3938 ($ (-619 (-619 |t#1|)))) (-15 -3893 ($ (-745) |t#1|)) (-15 -4123 ($ (-619 |t#1|))) (-15 -4123 ($ (-619 $))) (-15 -3838 ($ |t#3|)) (-15 -3890 ($ |t#2|)) (-15 -3890 ($ $)) (-15 -1471 ($ $)) (-15 -2755 ($ $ $)) (-15 -3687 ($ $ $)) (-15 -1580 ((-619 (-619 |t#1|)) $)) (-15 -3334 ($ $ (-619 (-547)) (-619 (-547)))) (-15 -2247 ($ $ (-619 (-547)) (-619 (-547)) $)) (-15 -1955 ($ $ (-547) (-547))) (-15 -2680 ($ $ (-547) (-547))) (-15 -1914 ($ $ (-547) (-547) (-547) (-547))) (-15 -1464 ($ $ (-547) (-547) $)) (-15 -2479 ($ $ $)) (-15 -2493 ($ $ $)) (-15 -2493 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-547) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-745))) (IF (|has| |t#1| (-539)) (-15 -2032 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-354)) (-15 -2506 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-298)) (-15 -2648 ($ $)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -3116 ((-745) $)) (-15 -3316 ((-745) $)) (-15 -3861 ((-619 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4331 "*"))) (PROGN (-15 -1299 (|t#1| $)) (-15 -3836 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-354)) (PROGN (-15 -3582 ((-3 $ "failed") $)) (-15 ** ($ $ (-547)))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-56 |#1| |#2| |#3|) . T) ((-1173) . T))
-((-2648 ((|#4| |#4|) 72 (|has| |#1| (-298)))) (-3116 (((-745) |#4|) 99 (|has| |#1| (-539)))) (-3316 (((-745) |#4|) 76 (|has| |#1| (-539)))) (-3861 (((-619 |#3|) |#4|) 83 (|has| |#1| (-539)))) (-3960 (((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|) 111 (|has| |#1| (-298)))) (-3836 ((|#1| |#4|) 35)) (-2780 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-539)))) (-3582 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-354)))) (-1887 ((|#4| |#4|) 68 (|has| |#1| (-539)))) (-1639 ((|#4| |#4| |#1| (-547) (-547)) 43)) (-3131 ((|#4| |#4| (-547) (-547)) 38)) (-3665 ((|#4| |#4| |#1| (-547) (-547)) 48)) (-1299 ((|#1| |#4|) 78)) (-3045 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-539)))))
-(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1299 (|#1| |#4|)) (-15 -3836 (|#1| |#4|)) (-15 -3131 (|#4| |#4| (-547) (-547))) (-15 -1639 (|#4| |#4| |#1| (-547) (-547))) (-15 -3665 (|#4| |#4| |#1| (-547) (-547))) (IF (|has| |#1| (-539)) (PROGN (-15 -3116 ((-745) |#4|)) (-15 -3316 ((-745) |#4|)) (-15 -3861 ((-619 |#3|) |#4|)) (-15 -1887 (|#4| |#4|)) (-15 -2780 ((-3 |#4| "failed") |#4|)) (-15 -3045 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-298)) (PROGN (-15 -2648 (|#4| |#4|)) (-15 -3960 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-354)) (-15 -3582 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-169) (-364 |#1|) (-364 |#1|) (-661 |#1| |#2| |#3|)) (T -662))
-((-3582 (*1 *2 *2) (|partial| -12 (-4 *3 (-354)) (-4 *3 (-169)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-3960 (*1 *2 *3 *3) (-12 (-4 *3 (-298)) (-4 *3 (-169)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-662 *3 *4 *5 *6)) (-4 *6 (-661 *3 *4 *5)))) (-2648 (*1 *2 *2) (-12 (-4 *3 (-298)) (-4 *3 (-169)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-3045 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2780 (*1 *2 *2) (|partial| -12 (-4 *3 (-539)) (-4 *3 (-169)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-539)) (-4 *3 (-169)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-3861 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-619 *6)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3316 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3116 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3665 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-547)) (-4 *3 (-169)) (-4 *5 (-364 *3)) (-4 *6 (-364 *3)) (-5 *1 (-662 *3 *5 *6 *2)) (-4 *2 (-661 *3 *5 *6)))) (-1639 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-547)) (-4 *3 (-169)) (-4 *5 (-364 *3)) (-4 *6 (-364 *3)) (-5 *1 (-662 *3 *5 *6 *2)) (-4 *2 (-661 *3 *5 *6)))) (-3131 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-547)) (-4 *4 (-169)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *1 (-662 *4 *5 *6 *2)) (-4 *2 (-661 *4 *5 *6)))) (-3836 (*1 *2 *3) (-12 (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-169)) (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) (-1299 (*1 *2 *3) (-12 (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-169)) (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))))
-(-10 -7 (-15 -1299 (|#1| |#4|)) (-15 -3836 (|#1| |#4|)) (-15 -3131 (|#4| |#4| (-547) (-547))) (-15 -1639 (|#4| |#4| |#1| (-547) (-547))) (-15 -3665 (|#4| |#4| |#1| (-547) (-547))) (IF (|has| |#1| (-539)) (PROGN (-15 -3116 ((-745) |#4|)) (-15 -3316 ((-745) |#4|)) (-15 -3861 ((-619 |#3|) |#4|)) (-15 -1887 (|#4| |#4|)) (-15 -2780 ((-3 |#4| "failed") |#4|)) (-15 -3045 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-298)) (PROGN (-15 -2648 (|#4| |#4|)) (-15 -3960 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-354)) (-15 -3582 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3761 (($ (-745) (-745)) 47)) (-3687 (($ $ $) NIL)) (-3890 (($ (-1219 |#1|)) NIL) (($ $) NIL)) (-2597 (((-112) $) NIL)) (-1955 (($ $ (-547) (-547)) 12)) (-2680 (($ $ (-547) (-547)) NIL)) (-1914 (($ $ (-547) (-547) (-547) (-547)) NIL)) (-1471 (($ $) NIL)) (-1907 (((-112) $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1464 (($ $ (-547) (-547) $) NIL)) (-2247 ((|#1| $ (-547) (-547) |#1|) NIL) (($ $ (-619 (-547)) (-619 (-547)) $) NIL)) (-1370 (($ $ (-547) (-1219 |#1|)) NIL)) (-2501 (($ $ (-547) (-1219 |#1|)) NIL)) (-3893 (($ (-745) |#1|) 22)) (-1948 (($) NIL T CONST)) (-2648 (($ $) 31 (|has| |#1| (-298)))) (-2330 (((-1219 |#1|) $ (-547)) NIL)) (-3116 (((-745) $) 33 (|has| |#1| (-539)))) (-1872 ((|#1| $ (-547) (-547) |#1|) 51)) (-1802 ((|#1| $ (-547) (-547)) NIL)) (-2982 (((-619 |#1|) $) NIL)) (-3316 (((-745) $) 35 (|has| |#1| (-539)))) (-3861 (((-619 (-1219 |#1|)) $) 38 (|has| |#1| (-539)))) (-2135 (((-745) $) 20)) (-3735 (($ (-745) (-745) |#1|) 16)) (-2148 (((-745) $) 21)) (-2763 (((-112) $ (-745)) NIL)) (-3836 ((|#1| $) 29 (|has| |#1| (-6 (-4331 "*"))))) (-3612 (((-547) $) 9)) (-3628 (((-547) $) 10)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3120 (((-547) $) 11)) (-1599 (((-547) $) 48)) (-3938 (($ (-619 (-619 |#1|))) NIL)) (-1859 (($ (-1 |#1| |#1|) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1580 (((-619 (-619 |#1|)) $) 60)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3582 (((-3 $ "failed") $) 45 (|has| |#1| (-354)))) (-2755 (($ $ $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3632 (($ $ |#1|) NIL)) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ (-547) (-547)) NIL) ((|#1| $ (-547) (-547) |#1|) NIL) (($ $ (-619 (-547)) (-619 (-547))) NIL)) (-4123 (($ (-619 |#1|)) NIL) (($ (-619 $)) NIL) (($ (-1219 |#1|)) 52)) (-3691 (((-112) $) NIL)) (-1299 ((|#1| $) 27 (|has| |#1| (-6 (-4331 "*"))))) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-2838 (((-523) $) 64 (|has| |#1| (-592 (-523))))) (-1295 (((-1219 |#1|) $ (-547)) NIL)) (-3838 (($ (-1219 |#1|)) NIL) (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1485 (((-112) $) NIL)) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $ $) NIL) (($ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-745)) 23) (($ $ (-547)) 46 (|has| |#1| (-354)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-547) $) NIL) (((-1219 |#1|) $ (-1219 |#1|)) NIL) (((-1219 |#1|) (-1219 |#1|) $) NIL)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-663 |#1|) (-13 (-661 |#1| (-1219 |#1|) (-1219 |#1|)) (-10 -8 (-15 -4123 ($ (-1219 |#1|))) (IF (|has| |#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |#1| (-354)) (-15 -3582 ((-3 $ "failed") $)) |%noBranch|))) (-1016)) (T -663))
-((-3582 (*1 *1 *1) (|partial| -12 (-5 *1 (-663 *2)) (-4 *2 (-354)) (-4 *2 (-1016)))) (-4123 (*1 *1 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-1016)) (-5 *1 (-663 *3)))))
-(-13 (-661 |#1| (-1219 |#1|) (-1219 |#1|)) (-10 -8 (-15 -4123 ($ (-1219 |#1|))) (IF (|has| |#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |#1| (-354)) (-15 -3582 ((-3 $ "failed") $)) |%noBranch|)))
-((-2768 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|)) 25)) (-3662 (((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|) 21)) (-1868 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-745)) 26)) (-1750 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|)) 14)) (-3723 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|)) 18) (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 16)) (-2257 (((-663 |#1|) (-663 |#1|) |#1| (-663 |#1|)) 20)) (-3026 (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 12)) (** (((-663 |#1|) (-663 |#1|) (-745)) 30)))
-(((-664 |#1|) (-10 -7 (-15 -3026 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1750 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3723 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3723 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2257 ((-663 |#1|) (-663 |#1|) |#1| (-663 |#1|))) (-15 -3662 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -2768 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1868 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-745))) (-15 ** ((-663 |#1|) (-663 |#1|) (-745)))) (-1016)) (T -664))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-664 *4)))) (-1868 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-664 *4)))) (-2768 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-3662 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2257 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-3723 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-3723 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-1750 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-3026 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))))
-(-10 -7 (-15 -3026 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1750 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3723 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3723 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2257 ((-663 |#1|) (-663 |#1|) |#1| (-663 |#1|))) (-15 -3662 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -2768 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1868 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-745))) (-15 ** ((-663 |#1|) (-663 |#1|) (-745))))
-((-4088 (($) 8 T CONST)) (-3838 (((-832) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3258 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -4088)) 16)) (-2315 ((|#1| $) 11)))
-(((-665 |#1|) (-13 (-1214) (-591 (-832)) (-10 -8 (-15 -3258 ((-112) $ (|[\|\|]| |#1|))) (-15 -3258 ((-112) $ (|[\|\|]| -4088))) (-15 -3838 ($ |#1|)) (-15 -3838 (|#1| $)) (-15 -2315 (|#1| $)) (-15 -4088 ($) -2582))) (-591 (-832))) (T -665))
-((-3258 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-591 (-832))) (-5 *2 (-112)) (-5 *1 (-665 *4)))) (-3258 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4088)) (-5 *2 (-112)) (-5 *1 (-665 *4)) (-4 *4 (-591 (-832))))) (-3838 (*1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832))))) (-3838 (*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832))))) (-2315 (*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832))))) (-4088 (*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832))))))
-(-13 (-1214) (-591 (-832)) (-10 -8 (-15 -3258 ((-112) $ (|[\|\|]| |#1|))) (-15 -3258 ((-112) $ (|[\|\|]| -4088))) (-15 -3838 ($ |#1|)) (-15 -3838 (|#1| $)) (-15 -2315 (|#1| $)) (-15 -4088 ($) -2582)))
-((-1924 ((|#2| |#2| |#4|) 25)) (-3734 (((-663 |#2|) |#3| |#4|) 31)) (-3951 (((-663 |#2|) |#2| |#4|) 30)) (-2894 (((-1219 |#2|) |#2| |#4|) 16)) (-3169 ((|#2| |#3| |#4|) 24)) (-1567 (((-663 |#2|) |#3| |#4| (-745) (-745)) 38)) (-1722 (((-663 |#2|) |#2| |#4| (-745)) 37)))
-(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2894 ((-1219 |#2|) |#2| |#4|)) (-15 -3169 (|#2| |#3| |#4|)) (-15 -1924 (|#2| |#2| |#4|)) (-15 -3951 ((-663 |#2|) |#2| |#4|)) (-15 -1722 ((-663 |#2|) |#2| |#4| (-745))) (-15 -3734 ((-663 |#2|) |#3| |#4|)) (-15 -1567 ((-663 |#2|) |#3| |#4| (-745) (-745)))) (-1063) (-869 |#1|) (-364 |#2|) (-13 (-364 |#1|) (-10 -7 (-6 -4329)))) (T -666))
-((-1567 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *7 (-869 *6)) (-5 *2 (-663 *7)) (-5 *1 (-666 *6 *7 *3 *4)) (-4 *3 (-364 *7)) (-4 *4 (-13 (-364 *6) (-10 -7 (-6 -4329)))))) (-3734 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *6 (-869 *5)) (-5 *2 (-663 *6)) (-5 *1 (-666 *5 *6 *3 *4)) (-4 *3 (-364 *6)) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))))) (-1722 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *3 (-869 *6)) (-5 *2 (-663 *3)) (-5 *1 (-666 *6 *3 *7 *4)) (-4 *7 (-364 *3)) (-4 *4 (-13 (-364 *6) (-10 -7 (-6 -4329)))))) (-3951 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-663 *3)) (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-364 *3)) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))))) (-1924 (*1 *2 *2 *3) (-12 (-4 *4 (-1063)) (-4 *2 (-869 *4)) (-5 *1 (-666 *4 *2 *5 *3)) (-4 *5 (-364 *2)) (-4 *3 (-13 (-364 *4) (-10 -7 (-6 -4329)))))) (-3169 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *2 (-869 *5)) (-5 *1 (-666 *5 *2 *3 *4)) (-4 *3 (-364 *2)) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))))) (-2894 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-1219 *3)) (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-364 *3)) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))))))
-(-10 -7 (-15 -2894 ((-1219 |#2|) |#2| |#4|)) (-15 -3169 (|#2| |#3| |#4|)) (-15 -1924 (|#2| |#2| |#4|)) (-15 -3951 ((-663 |#2|) |#2| |#4|)) (-15 -1722 ((-663 |#2|) |#2| |#4| (-745))) (-15 -3734 ((-663 |#2|) |#3| |#4|)) (-15 -1567 ((-663 |#2|) |#3| |#4| (-745) (-745))))
-((-3076 (((-2 (|:| |num| (-663 |#1|)) (|:| |den| |#1|)) (-663 |#2|)) 20)) (-3598 ((|#1| (-663 |#2|)) 9)) (-3996 (((-663 |#1|) (-663 |#2|)) 18)))
-(((-667 |#1| |#2|) (-10 -7 (-15 -3598 (|#1| (-663 |#2|))) (-15 -3996 ((-663 |#1|) (-663 |#2|))) (-15 -3076 ((-2 (|:| |num| (-663 |#1|)) (|:| |den| |#1|)) (-663 |#2|)))) (-539) (-961 |#1|)) (T -667))
-((-3076 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-539)) (-5 *2 (-2 (|:| |num| (-663 *4)) (|:| |den| *4))) (-5 *1 (-667 *4 *5)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-539)) (-5 *2 (-663 *4)) (-5 *1 (-667 *4 *5)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-667 *2 *4)))))
-(-10 -7 (-15 -3598 (|#1| (-663 |#2|))) (-15 -3996 ((-663 |#1|) (-663 |#2|))) (-15 -3076 ((-2 (|:| |num| (-663 |#1|)) (|:| |den| |#1|)) (-663 |#2|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3401 (((-663 (-673))) NIL) (((-663 (-673)) (-1219 $)) NIL)) (-2899 (((-673) $) NIL)) (-1656 (($ $) NIL (|has| (-673) (-1158)))) (-1505 (($ $) NIL (|has| (-673) (-1158)))) (-2797 (((-1146 (-890) (-745)) (-547)) NIL (|has| (-673) (-340)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| (-673) (-298)) (|has| (-673) (-878))))) (-2555 (($ $) NIL (-1530 (-12 (|has| (-673) (-298)) (|has| (-673) (-878))) (|has| (-673) (-354))))) (-3299 (((-409 $) $) NIL (-1530 (-12 (|has| (-673) (-298)) (|has| (-673) (-878))) (|has| (-673) (-354))))) (-2127 (($ $) NIL (-12 (|has| (-673) (-971)) (|has| (-673) (-1158))))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (-12 (|has| (-673) (-298)) (|has| (-673) (-878))))) (-1547 (((-112) $ $) NIL (|has| (-673) (-298)))) (-3608 (((-745)) NIL (|has| (-673) (-359)))) (-1632 (($ $) NIL (|has| (-673) (-1158)))) (-1479 (($ $) NIL (|has| (-673) (-1158)))) (-1678 (($ $) NIL (|has| (-673) (-1158)))) (-1532 (($ $) NIL (|has| (-673) (-1158)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL) (((-3 (-673) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-673) (-1007 (-398 (-547)))))) (-2652 (((-547) $) NIL) (((-673) $) NIL) (((-398 (-547)) $) NIL (|has| (-673) (-1007 (-398 (-547)))))) (-2614 (($ (-1219 (-673))) NIL) (($ (-1219 (-673)) (-1219 $)) NIL)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-673) (-340)))) (-2089 (($ $ $) NIL (|has| (-673) (-298)))) (-3565 (((-663 (-673)) $) NIL) (((-663 (-673)) $ (-1219 $)) NIL)) (-1694 (((-663 (-673)) (-663 $)) NIL) (((-2 (|:| -1877 (-663 (-673))) (|:| |vec| (-1219 (-673)))) (-663 $) (-1219 $)) NIL) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| (-673) (-615 (-547)))) (((-663 (-547)) (-663 $)) NIL (|has| (-673) (-615 (-547))))) (-2552 (((-3 $ "failed") (-398 (-1132 (-673)))) NIL (|has| (-673) (-354))) (($ (-1132 (-673))) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2139 (((-673) $) 29)) (-4265 (((-3 (-398 (-547)) "failed") $) NIL (|has| (-673) (-532)))) (-3198 (((-112) $) NIL (|has| (-673) (-532)))) (-2453 (((-398 (-547)) $) NIL (|has| (-673) (-532)))) (-3116 (((-890)) NIL)) (-3232 (($) NIL (|has| (-673) (-359)))) (-2061 (($ $ $) NIL (|has| (-673) (-298)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| (-673) (-298)))) (-3527 (($) NIL (|has| (-673) (-340)))) (-3078 (((-112) $) NIL (|has| (-673) (-340)))) (-1551 (($ $) NIL (|has| (-673) (-340))) (($ $ (-745)) NIL (|has| (-673) (-340)))) (-1791 (((-112) $) NIL (-1530 (-12 (|has| (-673) (-298)) (|has| (-673) (-878))) (|has| (-673) (-354))))) (-2077 (((-2 (|:| |r| (-673)) (|:| |phi| (-673))) $) NIL (-12 (|has| (-673) (-1025)) (|has| (-673) (-1158))))) (-1419 (($) NIL (|has| (-673) (-1158)))) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-673) (-855 (-370)))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-673) (-855 (-547))))) (-3275 (((-807 (-890)) $) NIL (|has| (-673) (-340))) (((-890) $) NIL (|has| (-673) (-340)))) (-2261 (((-112) $) NIL)) (-3869 (($ $ (-547)) NIL (-12 (|has| (-673) (-971)) (|has| (-673) (-1158))))) (-3160 (((-673) $) NIL)) (-3477 (((-3 $ "failed") $) NIL (|has| (-673) (-340)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-673) (-298)))) (-3786 (((-1132 (-673)) $) NIL (|has| (-673) (-354)))) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2790 (($ (-1 (-673) (-673)) $) NIL)) (-2402 (((-890) $) NIL (|has| (-673) (-359)))) (-3624 (($ $) NIL (|has| (-673) (-1158)))) (-2540 (((-1132 (-673)) $) NIL)) (-3689 (($ (-619 $)) NIL (|has| (-673) (-298))) (($ $ $) NIL (|has| (-673) (-298)))) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL (|has| (-673) (-354)))) (-3054 (($) NIL (|has| (-673) (-340)) CONST)) (-3487 (($ (-890)) NIL (|has| (-673) (-359)))) (-2547 (($) NIL)) (-2154 (((-673) $) 31)) (-3979 (((-1082) $) NIL)) (-4238 (($) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| (-673) (-298)))) (-3719 (($ (-619 $)) NIL (|has| (-673) (-298))) (($ $ $) NIL (|has| (-673) (-298)))) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL (|has| (-673) (-340)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| (-673) (-298)) (|has| (-673) (-878))))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| (-673) (-298)) (|has| (-673) (-878))))) (-2115 (((-409 $) $) NIL (-1530 (-12 (|has| (-673) (-298)) (|has| (-673) (-878))) (|has| (-673) (-354))))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-673) (-298))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| (-673) (-298)))) (-2032 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-673)) NIL (|has| (-673) (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-673) (-298)))) (-2712 (($ $) NIL (|has| (-673) (-1158)))) (-2679 (($ $ (-1136) (-673)) NIL (|has| (-673) (-503 (-1136) (-673)))) (($ $ (-619 (-1136)) (-619 (-673))) NIL (|has| (-673) (-503 (-1136) (-673)))) (($ $ (-619 (-285 (-673)))) NIL (|has| (-673) (-300 (-673)))) (($ $ (-285 (-673))) NIL (|has| (-673) (-300 (-673)))) (($ $ (-673) (-673)) NIL (|has| (-673) (-300 (-673)))) (($ $ (-619 (-673)) (-619 (-673))) NIL (|has| (-673) (-300 (-673))))) (-2471 (((-745) $) NIL (|has| (-673) (-298)))) (-3334 (($ $ (-673)) NIL (|has| (-673) (-277 (-673) (-673))))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| (-673) (-298)))) (-4056 (((-673)) NIL) (((-673) (-1219 $)) NIL)) (-1422 (((-3 (-745) "failed") $ $) NIL (|has| (-673) (-340))) (((-745) $) NIL (|has| (-673) (-340)))) (-3448 (($ $ (-1 (-673) (-673))) NIL) (($ $ (-1 (-673) (-673)) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-673) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-673) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-673) (-869 (-1136)))) (($ $ (-1136)) NIL (|has| (-673) (-869 (-1136)))) (($ $ (-745)) NIL (|has| (-673) (-225))) (($ $) NIL (|has| (-673) (-225)))) (-3101 (((-663 (-673)) (-1219 $) (-1 (-673) (-673))) NIL (|has| (-673) (-354)))) (-1882 (((-1132 (-673))) NIL)) (-1690 (($ $) NIL (|has| (-673) (-1158)))) (-1545 (($ $) NIL (|has| (-673) (-1158)))) (-3823 (($) NIL (|has| (-673) (-340)))) (-1668 (($ $) NIL (|has| (-673) (-1158)))) (-1519 (($ $) NIL (|has| (-673) (-1158)))) (-1644 (($ $) NIL (|has| (-673) (-1158)))) (-1493 (($ $) NIL (|has| (-673) (-1158)))) (-3220 (((-663 (-673)) (-1219 $)) NIL) (((-1219 (-673)) $) NIL) (((-663 (-673)) (-1219 $) (-1219 $)) NIL) (((-1219 (-673)) $ (-1219 $)) NIL)) (-2838 (((-523) $) NIL (|has| (-673) (-592 (-523)))) (((-166 (-217)) $) NIL (|has| (-673) (-991))) (((-166 (-370)) $) NIL (|has| (-673) (-991))) (((-861 (-370)) $) NIL (|has| (-673) (-592 (-861 (-370))))) (((-861 (-547)) $) NIL (|has| (-673) (-592 (-861 (-547))))) (($ (-1132 (-673))) NIL) (((-1132 (-673)) $) NIL) (($ (-1219 (-673))) NIL) (((-1219 (-673)) $) NIL)) (-3404 (($ $) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-1530 (-12 (|has| (-673) (-298)) (|has| $ (-143)) (|has| (-673) (-878))) (|has| (-673) (-340))))) (-3402 (($ (-673) (-673)) 12)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-547)) NIL) (($ (-673)) NIL) (($ (-166 (-370))) 13) (($ (-166 (-547))) 19) (($ (-166 (-673))) 28) (($ (-166 (-675))) 25) (((-166 (-370)) $) 33) (($ (-398 (-547))) NIL (-1530 (|has| (-673) (-1007 (-398 (-547)))) (|has| (-673) (-354))))) (-2220 (($ $) NIL (|has| (-673) (-340))) (((-3 $ "failed") $) NIL (-1530 (-12 (|has| (-673) (-298)) (|has| $ (-143)) (|has| (-673) (-878))) (|has| (-673) (-143))))) (-1316 (((-1132 (-673)) $) NIL)) (-2736 (((-745)) NIL)) (-1917 (((-1219 $)) NIL)) (-1726 (($ $) NIL (|has| (-673) (-1158)))) (-1579 (($ $) NIL (|has| (-673) (-1158)))) (-3577 (((-112) $ $) NIL)) (-1703 (($ $) NIL (|has| (-673) (-1158)))) (-1557 (($ $) NIL (|has| (-673) (-1158)))) (-1751 (($ $) NIL (|has| (-673) (-1158)))) (-1606 (($ $) NIL (|has| (-673) (-1158)))) (-3027 (((-673) $) NIL (|has| (-673) (-1158)))) (-1927 (($ $) NIL (|has| (-673) (-1158)))) (-1620 (($ $) NIL (|has| (-673) (-1158)))) (-1738 (($ $) NIL (|has| (-673) (-1158)))) (-1593 (($ $) NIL (|has| (-673) (-1158)))) (-1714 (($ $) NIL (|has| (-673) (-1158)))) (-1569 (($ $) NIL (|has| (-673) (-1158)))) (-2255 (($ $) NIL (|has| (-673) (-1025)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-1 (-673) (-673))) NIL) (($ $ (-1 (-673) (-673)) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-673) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-673) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-673) (-869 (-1136)))) (($ $ (-1136)) NIL (|has| (-673) (-869 (-1136)))) (($ $ (-745)) NIL (|has| (-673) (-225))) (($ $) NIL (|has| (-673) (-225)))) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL (|has| (-673) (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ $) NIL (|has| (-673) (-1158))) (($ $ (-398 (-547))) NIL (-12 (|has| (-673) (-971)) (|has| (-673) (-1158)))) (($ $ (-547)) NIL (|has| (-673) (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ (-673) $) NIL) (($ $ (-673)) NIL) (($ (-398 (-547)) $) NIL (|has| (-673) (-354))) (($ $ (-398 (-547))) NIL (|has| (-673) (-354)))))
-(((-668) (-13 (-378) (-163 (-673)) (-10 -8 (-15 -3838 ($ (-166 (-370)))) (-15 -3838 ($ (-166 (-547)))) (-15 -3838 ($ (-166 (-673)))) (-15 -3838 ($ (-166 (-675)))) (-15 -3838 ((-166 (-370)) $))))) (T -668))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-166 (-370))) (-5 *1 (-668)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-166 (-547))) (-5 *1 (-668)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-166 (-673))) (-5 *1 (-668)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-166 (-675))) (-5 *1 (-668)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-166 (-370))) (-5 *1 (-668)))))
-(-13 (-378) (-163 (-673)) (-10 -8 (-15 -3838 ($ (-166 (-370)))) (-15 -3838 ($ (-166 (-547)))) (-15 -3838 ($ (-166 (-673)))) (-15 -3838 ($ (-166 (-675)))) (-15 -3838 ((-166 (-370)) $))))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) 8)) (-4285 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-2968 (($ $) 62)) (-3668 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1513 (($ |#1| $) 47 (|has| $ (-6 -4329))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4329)))) (-3803 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4329)))) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-4266 ((|#1| $) 39)) (-2657 (($ |#1| $) 40) (($ |#1| $ (-745)) 63)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2056 ((|#1| $) 41)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3941 (((-619 (-2 (|:| -1786 |#1|) (|:| -3992 (-745)))) $) 61)) (-2699 (($) 49) (($ (-619 |#1|)) 48)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-2838 (((-523) $) 59 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 50)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2300 (($ (-619 |#1|)) 42)) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-669 |#1|) (-138) (-1063)) (T -669))
-((-2657 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-669 *2)) (-4 *2 (-1063)))) (-2968 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1063)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1063)) (-5 *2 (-619 (-2 (|:| -1786 *3) (|:| -3992 (-745))))))))
-(-13 (-227 |t#1|) (-10 -8 (-15 -2657 ($ |t#1| $ (-745))) (-15 -2968 ($ $)) (-15 -3941 ((-619 (-2 (|:| -1786 |t#1|) (|:| -3992 (-745)))) $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-227 |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-1926 (((-619 |#1|) (-619 (-2 (|:| -2115 |#1|) (|:| -3705 (-547)))) (-547)) 47)) (-2602 ((|#1| |#1| (-547)) 46)) (-3719 ((|#1| |#1| |#1| (-547)) 36)) (-2115 (((-619 |#1|) |#1| (-547)) 39)) (-1782 ((|#1| |#1| (-547) |#1| (-547)) 32)) (-1658 (((-619 (-2 (|:| -2115 |#1|) (|:| -3705 (-547)))) |#1| (-547)) 45)))
-(((-670 |#1|) (-10 -7 (-15 -3719 (|#1| |#1| |#1| (-547))) (-15 -2602 (|#1| |#1| (-547))) (-15 -2115 ((-619 |#1|) |#1| (-547))) (-15 -1658 ((-619 (-2 (|:| -2115 |#1|) (|:| -3705 (-547)))) |#1| (-547))) (-15 -1926 ((-619 |#1|) (-619 (-2 (|:| -2115 |#1|) (|:| -3705 (-547)))) (-547))) (-15 -1782 (|#1| |#1| (-547) |#1| (-547)))) (-1195 (-547))) (T -670))
-((-1782 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-670 *2)) (-4 *2 (-1195 *3)))) (-1926 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| -2115 *5) (|:| -3705 (-547))))) (-5 *4 (-547)) (-4 *5 (-1195 *4)) (-5 *2 (-619 *5)) (-5 *1 (-670 *5)))) (-1658 (*1 *2 *3 *4) (-12 (-5 *4 (-547)) (-5 *2 (-619 (-2 (|:| -2115 *3) (|:| -3705 *4)))) (-5 *1 (-670 *3)) (-4 *3 (-1195 *4)))) (-2115 (*1 *2 *3 *4) (-12 (-5 *4 (-547)) (-5 *2 (-619 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1195 *4)))) (-2602 (*1 *2 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-670 *2)) (-4 *2 (-1195 *3)))) (-3719 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-670 *2)) (-4 *2 (-1195 *3)))))
-(-10 -7 (-15 -3719 (|#1| |#1| |#1| (-547))) (-15 -2602 (|#1| |#1| (-547))) (-15 -2115 ((-619 |#1|) |#1| (-547))) (-15 -1658 ((-619 (-2 (|:| -2115 |#1|) (|:| -3705 (-547)))) |#1| (-547))) (-15 -1926 ((-619 |#1|) (-619 (-2 (|:| -2115 |#1|) (|:| -3705 (-547)))) (-547))) (-15 -1782 (|#1| |#1| (-547) |#1| (-547))))
-((-4164 (((-1 (-912 (-217)) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217) (-217))) 17)) (-1946 (((-1095 (-217)) (-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-619 (-254))) 40) (((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-619 (-254))) 42) (((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-3 (-1 (-217) (-217) (-217) (-217)) "undefined") (-1058 (-217)) (-1058 (-217)) (-619 (-254))) 44)) (-3498 (((-1095 (-217)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-619 (-254))) NIL)) (-3417 (((-1095 (-217)) (-1 (-217) (-217) (-217)) (-3 (-1 (-217) (-217) (-217) (-217)) "undefined") (-1058 (-217)) (-1058 (-217)) (-619 (-254))) 45)))
-(((-671) (-10 -7 (-15 -1946 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-3 (-1 (-217) (-217) (-217) (-217)) "undefined") (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -1946 ((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -1946 ((-1095 (-217)) (-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -3417 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-3 (-1 (-217) (-217) (-217) (-217)) "undefined") (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -3498 ((-1095 (-217)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -4164 ((-1 (-912 (-217)) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217) (-217)))))) (T -671))
-((-4164 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1 (-217) (-217) (-217) (-217))) (-5 *2 (-1 (-912 (-217)) (-217) (-217))) (-5 *1 (-671)))) (-3498 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) (-5 *5 (-1058 (-217))) (-5 *6 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-671)))) (-3417 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-3 (-1 (-217) (-217) (-217) (-217)) "undefined")) (-5 *5 (-1058 (-217))) (-5 *6 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-671)))) (-1946 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1095 (-217))) (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-217))) (-5 *5 (-619 (-254))) (-5 *1 (-671)))) (-1946 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-217))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-671)))) (-1946 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-3 (-1 (-217) (-217) (-217) (-217)) "undefined")) (-5 *5 (-1058 (-217))) (-5 *6 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-671)))))
-(-10 -7 (-15 -1946 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-3 (-1 (-217) (-217) (-217) (-217)) "undefined") (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -1946 ((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -1946 ((-1095 (-217)) (-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -3417 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-3 (-1 (-217) (-217) (-217) (-217)) "undefined") (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -3498 ((-1095 (-217)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -4164 ((-1 (-912 (-217)) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217) (-217)))))
-((-2115 (((-409 (-1132 |#4|)) (-1132 |#4|)) 73) (((-409 |#4|) |#4|) 221)))
-(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2115 ((-409 |#4|) |#4|)) (-15 -2115 ((-409 (-1132 |#4|)) (-1132 |#4|)))) (-821) (-767) (-340) (-918 |#3| |#2| |#1|)) (T -672))
-((-2115 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-340)) (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-409 (-1132 *7))) (-5 *1 (-672 *4 *5 *6 *7)) (-5 *3 (-1132 *7)))) (-2115 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-340)) (-5 *2 (-409 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4)))))
-(-10 -7 (-15 -2115 ((-409 |#4|) |#4|)) (-15 -2115 ((-409 (-1132 |#4|)) (-1132 |#4|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 84)) (-2092 (((-547) $) 30)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3931 (($ $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-2127 (($ $) NIL)) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL)) (-1948 (($) NIL T CONST)) (-3659 (($ $) NIL)) (-2707 (((-3 (-547) "failed") $) 73) (((-3 (-398 (-547)) "failed") $) 26) (((-3 (-370) "failed") $) 70)) (-2652 (((-547) $) 75) (((-398 (-547)) $) 67) (((-370) $) 68)) (-2089 (($ $ $) 96)) (-3855 (((-3 $ "failed") $) 87)) (-2061 (($ $ $) 95)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-3228 (((-890)) 77) (((-890) (-890)) 76)) (-4270 (((-112) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL)) (-3275 (((-547) $) NIL)) (-2261 (((-112) $) NIL)) (-3869 (($ $ (-547)) NIL)) (-3160 (($ $) NIL)) (-1860 (((-112) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2331 (((-547) (-547)) 81) (((-547)) 82)) (-2856 (($ $ $) NIL) (($) NIL (-12 (-4000 (|has| $ (-6 -4312))) (-4000 (|has| $ (-6 -4320)))))) (-1495 (((-547) (-547)) 79) (((-547)) 80)) (-3567 (($ $ $) NIL) (($) NIL (-12 (-4000 (|has| $ (-6 -4312))) (-4000 (|has| $ (-6 -4320)))))) (-1454 (((-547) $) 16)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 91)) (-3470 (((-890) (-547)) NIL (|has| $ (-6 -4320)))) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3682 (($ $) NIL)) (-1276 (($ $) NIL)) (-1348 (($ (-547) (-547)) NIL) (($ (-547) (-547) (-890)) NIL)) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) 92)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3322 (((-547) $) 22)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 94)) (-2697 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4320)))) (-2738 (((-890) (-547)) NIL (|has| $ (-6 -4320)))) (-2838 (((-370) $) NIL) (((-217) $) NIL) (((-861 (-370)) $) NIL)) (-3838 (((-832) $) 52) (($ (-547)) 63) (($ $) NIL) (($ (-398 (-547))) 66) (($ (-547)) 63) (($ (-398 (-547))) 66) (($ (-370)) 60) (((-370) $) 50) (($ (-675)) 55)) (-2736 (((-745)) 103)) (-1830 (($ (-547) (-547) (-890)) 44)) (-3720 (($ $) NIL)) (-1729 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4320)))) (-1856 (((-890)) 35) (((-890) (-890)) 78)) (-3577 (((-112) $ $) NIL)) (-2255 (($ $) NIL)) (-3269 (($) 32 T CONST)) (-3281 (($) 17 T CONST)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 83)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 101)) (-2506 (($ $ $) 65)) (-2493 (($ $) 99) (($ $ $) 100)) (-2479 (($ $ $) 98)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL) (($ $ (-398 (-547))) 90)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 97) (($ $ $) 88) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL)))
-(((-673) (-13 (-395) (-378) (-354) (-1007 (-370)) (-1007 (-398 (-547))) (-145) (-10 -8 (-15 -3228 ((-890) (-890))) (-15 -3228 ((-890))) (-15 -1856 ((-890) (-890))) (-15 -1856 ((-890))) (-15 -1495 ((-547) (-547))) (-15 -1495 ((-547))) (-15 -2331 ((-547) (-547))) (-15 -2331 ((-547))) (-15 -3838 ((-370) $)) (-15 -3838 ($ (-675))) (-15 -1454 ((-547) $)) (-15 -3322 ((-547) $)) (-15 -1830 ($ (-547) (-547) (-890)))))) (T -673))
-((-1856 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) (-3228 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-3228 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-1495 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) (-1495 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) (-2331 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) (-2331 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-370)) (-5 *1 (-673)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-675)) (-5 *1 (-673)))) (-1830 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-547)) (-5 *3 (-890)) (-5 *1 (-673)))))
-(-13 (-395) (-378) (-354) (-1007 (-370)) (-1007 (-398 (-547))) (-145) (-10 -8 (-15 -3228 ((-890) (-890))) (-15 -3228 ((-890))) (-15 -1856 ((-890) (-890))) (-15 -1856 ((-890))) (-15 -1495 ((-547) (-547))) (-15 -1495 ((-547))) (-15 -2331 ((-547) (-547))) (-15 -2331 ((-547))) (-15 -3838 ((-370) $)) (-15 -3838 ($ (-675))) (-15 -1454 ((-547) $)) (-15 -3322 ((-547) $)) (-15 -1830 ($ (-547) (-547) (-890)))))
-((-1378 (((-663 |#1|) (-663 |#1|) |#1| |#1|) 65)) (-2648 (((-663 |#1|) (-663 |#1|) |#1|) 48)) (-2217 (((-663 |#1|) (-663 |#1|) |#1|) 66)) (-3655 (((-663 |#1|) (-663 |#1|)) 49)) (-3960 (((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|) 64)))
-(((-674 |#1|) (-10 -7 (-15 -3655 ((-663 |#1|) (-663 |#1|))) (-15 -2648 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -2217 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -1378 ((-663 |#1|) (-663 |#1|) |#1| |#1|)) (-15 -3960 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|))) (-298)) (T -674))
-((-3960 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-674 *3)) (-4 *3 (-298)))) (-1378 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3)))) (-2217 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3)))) (-2648 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3)))) (-3655 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3)))))
-(-10 -7 (-15 -3655 ((-663 |#1|) (-663 |#1|))) (-15 -2648 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -2217 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -1378 ((-663 |#1|) (-663 |#1|) |#1| |#1|)) (-15 -3960 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1933 (($ $ $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3780 (($ $ $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL)) (-1303 (($ $ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) 27)) (-2652 (((-547) $) 25)) (-2089 (($ $ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-4265 (((-3 (-398 (-547)) "failed") $) NIL)) (-3198 (((-112) $) NIL)) (-2453 (((-398 (-547)) $) NIL)) (-3232 (($ $) NIL) (($) NIL)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-3459 (($ $ $ $) NIL)) (-3125 (($ $ $) NIL)) (-4270 (((-112) $) NIL)) (-3091 (($ $ $) NIL)) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL)) (-2261 (((-112) $) NIL)) (-2935 (((-112) $) NIL)) (-3477 (((-3 $ "failed") $) NIL)) (-1860 (((-112) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1618 (($ $ $ $) NIL)) (-2856 (($ $ $) NIL)) (-3510 (((-890) (-890)) 10) (((-890)) 9)) (-3567 (($ $ $) NIL)) (-2426 (($ $) NIL)) (-4202 (($ $) NIL)) (-3689 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-1617 (($ $ $) NIL)) (-3054 (($) NIL T CONST)) (-3773 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2462 (($ $) NIL)) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3874 (((-112) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3448 (($ $) NIL) (($ $ (-745)) NIL)) (-1892 (($ $) NIL)) (-2274 (($ $) NIL)) (-2838 (((-217) $) NIL) (((-370) $) NIL) (((-861 (-547)) $) NIL) (((-523) $) NIL) (((-547) $) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) 24) (($ $) NIL) (($ (-547)) 24) (((-307 $) (-307 (-547))) 18)) (-2736 (((-745)) NIL)) (-1253 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-1856 (($) NIL)) (-3577 (((-112) $ $) NIL)) (-1292 (($ $ $ $) NIL)) (-2255 (($ $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $) NIL) (($ $ (-745)) NIL)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL)))
-(((-675) (-13 (-378) (-532) (-10 -8 (-15 -3510 ((-890) (-890))) (-15 -3510 ((-890))) (-15 -3838 ((-307 $) (-307 (-547))))))) (T -675))
-((-3510 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-3510 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-3838 (*1 *2 *3) (-12 (-5 *3 (-307 (-547))) (-5 *2 (-307 (-675))) (-5 *1 (-675)))))
-(-13 (-378) (-532) (-10 -8 (-15 -3510 ((-890) (-890))) (-15 -3510 ((-890))) (-15 -3838 ((-307 $) (-307 (-547))))))
-((-2524 (((-1 |#4| |#2| |#3|) |#1| (-1136) (-1136)) 19)) (-2548 (((-1 |#4| |#2| |#3|) (-1136)) 12)))
-(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 ((-1 |#4| |#2| |#3|) (-1136))) (-15 -2524 ((-1 |#4| |#2| |#3|) |#1| (-1136) (-1136)))) (-592 (-523)) (-1173) (-1173) (-1173)) (T -676))
-((-2524 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1136)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *3 *5 *6 *7)) (-4 *3 (-592 (-523))) (-4 *5 (-1173)) (-4 *6 (-1173)) (-4 *7 (-1173)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *4 *5 *6 *7)) (-4 *4 (-592 (-523))) (-4 *5 (-1173)) (-4 *6 (-1173)) (-4 *7 (-1173)))))
-(-10 -7 (-15 -2548 ((-1 |#4| |#2| |#3|) (-1136))) (-15 -2524 ((-1 |#4| |#2| |#3|) |#1| (-1136) (-1136))))
-((-3826 (((-112) $ $) NIL)) (-2151 (((-1224) $ (-745)) 14)) (-2876 (((-745) $) 12)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 25)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 24)))
-(((-677 |#1|) (-13 (-131) (-591 |#1|) (-10 -8 (-15 -3838 ($ |#1|)))) (-1063)) (T -677))
-((-3838 (*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1063)))))
-(-13 (-131) (-591 |#1|) (-10 -8 (-15 -3838 ($ |#1|))))
-((-1847 (((-1 (-217) (-217) (-217)) |#1| (-1136) (-1136)) 34) (((-1 (-217) (-217)) |#1| (-1136)) 39)))
-(((-678 |#1|) (-10 -7 (-15 -1847 ((-1 (-217) (-217)) |#1| (-1136))) (-15 -1847 ((-1 (-217) (-217) (-217)) |#1| (-1136) (-1136)))) (-592 (-523))) (T -678))
-((-1847 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1136)) (-5 *2 (-1 (-217) (-217) (-217))) (-5 *1 (-678 *3)) (-4 *3 (-592 (-523))))) (-1847 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-5 *2 (-1 (-217) (-217))) (-5 *1 (-678 *3)) (-4 *3 (-592 (-523))))))
-(-10 -7 (-15 -1847 ((-1 (-217) (-217)) |#1| (-1136))) (-15 -1847 ((-1 (-217) (-217) (-217)) |#1| (-1136) (-1136))))
-((-3560 (((-1136) |#1| (-1136) (-619 (-1136))) 9) (((-1136) |#1| (-1136) (-1136) (-1136)) 12) (((-1136) |#1| (-1136) (-1136)) 11) (((-1136) |#1| (-1136)) 10)))
-(((-679 |#1|) (-10 -7 (-15 -3560 ((-1136) |#1| (-1136))) (-15 -3560 ((-1136) |#1| (-1136) (-1136))) (-15 -3560 ((-1136) |#1| (-1136) (-1136) (-1136))) (-15 -3560 ((-1136) |#1| (-1136) (-619 (-1136))))) (-592 (-523))) (T -679))
-((-3560 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-619 (-1136))) (-5 *2 (-1136)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523))))) (-3560 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523))))) (-3560 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523))))) (-3560 (*1 *2 *3 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523))))))
-(-10 -7 (-15 -3560 ((-1136) |#1| (-1136))) (-15 -3560 ((-1136) |#1| (-1136) (-1136))) (-15 -3560 ((-1136) |#1| (-1136) (-1136) (-1136))) (-15 -3560 ((-1136) |#1| (-1136) (-619 (-1136)))))
-((-1558 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-680 |#1| |#2|) (-10 -7 (-15 -1558 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1173) (-1173)) (T -680))
-((-1558 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-680 *3 *4)) (-4 *3 (-1173)) (-4 *4 (-1173)))))
-(-10 -7 (-15 -1558 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-3966 (((-1 |#3| |#2|) (-1136)) 11)) (-2524 (((-1 |#3| |#2|) |#1| (-1136)) 21)))
-(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -3966 ((-1 |#3| |#2|) (-1136))) (-15 -2524 ((-1 |#3| |#2|) |#1| (-1136)))) (-592 (-523)) (-1173) (-1173)) (T -681))
-((-2524 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *3 *5 *6)) (-4 *3 (-592 (-523))) (-4 *5 (-1173)) (-4 *6 (-1173)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *4 *5 *6)) (-4 *4 (-592 (-523))) (-4 *5 (-1173)) (-4 *6 (-1173)))))
-(-10 -7 (-15 -3966 ((-1 |#3| |#2|) (-1136))) (-15 -2524 ((-1 |#3| |#2|) |#1| (-1136))))
-((-3048 (((-3 (-619 (-1132 |#4|)) "failed") (-1132 |#4|) (-619 |#2|) (-619 (-1132 |#4|)) (-619 |#3|) (-619 |#4|) (-619 (-619 (-2 (|:| -1720 (-745)) (|:| |pcoef| |#4|)))) (-619 (-745)) (-1219 (-619 (-1132 |#3|))) |#3|) 62)) (-3234 (((-3 (-619 (-1132 |#4|)) "failed") (-1132 |#4|) (-619 |#2|) (-619 (-1132 |#3|)) (-619 |#3|) (-619 |#4|) (-619 (-745)) |#3|) 75)) (-1601 (((-3 (-619 (-1132 |#4|)) "failed") (-1132 |#4|) (-619 |#2|) (-619 |#3|) (-619 (-745)) (-619 (-1132 |#4|)) (-1219 (-619 (-1132 |#3|))) |#3|) 34)))
-(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1601 ((-3 (-619 (-1132 |#4|)) "failed") (-1132 |#4|) (-619 |#2|) (-619 |#3|) (-619 (-745)) (-619 (-1132 |#4|)) (-1219 (-619 (-1132 |#3|))) |#3|)) (-15 -3234 ((-3 (-619 (-1132 |#4|)) "failed") (-1132 |#4|) (-619 |#2|) (-619 (-1132 |#3|)) (-619 |#3|) (-619 |#4|) (-619 (-745)) |#3|)) (-15 -3048 ((-3 (-619 (-1132 |#4|)) "failed") (-1132 |#4|) (-619 |#2|) (-619 (-1132 |#4|)) (-619 |#3|) (-619 |#4|) (-619 (-619 (-2 (|:| -1720 (-745)) (|:| |pcoef| |#4|)))) (-619 (-745)) (-1219 (-619 (-1132 |#3|))) |#3|))) (-767) (-821) (-298) (-918 |#3| |#1| |#2|)) (T -682))
-((-3048 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-619 (-1132 *13))) (-5 *3 (-1132 *13)) (-5 *4 (-619 *12)) (-5 *5 (-619 *10)) (-5 *6 (-619 *13)) (-5 *7 (-619 (-619 (-2 (|:| -1720 (-745)) (|:| |pcoef| *13))))) (-5 *8 (-619 (-745))) (-5 *9 (-1219 (-619 (-1132 *10)))) (-4 *12 (-821)) (-4 *10 (-298)) (-4 *13 (-918 *10 *11 *12)) (-4 *11 (-767)) (-5 *1 (-682 *11 *12 *10 *13)))) (-3234 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-619 *11)) (-5 *5 (-619 (-1132 *9))) (-5 *6 (-619 *9)) (-5 *7 (-619 *12)) (-5 *8 (-619 (-745))) (-4 *11 (-821)) (-4 *9 (-298)) (-4 *12 (-918 *9 *10 *11)) (-4 *10 (-767)) (-5 *2 (-619 (-1132 *12))) (-5 *1 (-682 *10 *11 *9 *12)) (-5 *3 (-1132 *12)))) (-1601 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-619 (-1132 *11))) (-5 *3 (-1132 *11)) (-5 *4 (-619 *10)) (-5 *5 (-619 *8)) (-5 *6 (-619 (-745))) (-5 *7 (-1219 (-619 (-1132 *8)))) (-4 *10 (-821)) (-4 *8 (-298)) (-4 *11 (-918 *8 *9 *10)) (-4 *9 (-767)) (-5 *1 (-682 *9 *10 *8 *11)))))
-(-10 -7 (-15 -1601 ((-3 (-619 (-1132 |#4|)) "failed") (-1132 |#4|) (-619 |#2|) (-619 |#3|) (-619 (-745)) (-619 (-1132 |#4|)) (-1219 (-619 (-1132 |#3|))) |#3|)) (-15 -3234 ((-3 (-619 (-1132 |#4|)) "failed") (-1132 |#4|) (-619 |#2|) (-619 (-1132 |#3|)) (-619 |#3|) (-619 |#4|) (-619 (-745)) |#3|)) (-15 -3048 ((-3 (-619 (-1132 |#4|)) "failed") (-1132 |#4|) (-619 |#2|) (-619 (-1132 |#4|)) (-619 |#3|) (-619 |#4|) (-619 (-619 (-2 (|:| -1720 (-745)) (|:| |pcoef| |#4|)))) (-619 (-745)) (-1219 (-619 (-1132 |#3|))) |#3|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-2063 (($ $) 39)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-2238 (($ |#1| (-745)) 37)) (-3095 (((-745) $) 41)) (-2037 ((|#1| $) 40)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3705 (((-745) $) 42)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 36 (|has| |#1| (-169)))) (-2450 ((|#1| $ (-745)) 38)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43)))
-(((-683 |#1|) (-138) (-1016)) (T -683))
-((-3705 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) (-2063 (*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) (-2450 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016)))) (-2238 (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016)))))
-(-13 (-1016) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3705 ((-745) $)) (-15 -3095 ((-745) $)) (-15 -2037 (|t#1| $)) (-15 -2063 ($ $)) (-15 -2450 (|t#1| $ (-745))) (-15 -2238 ($ |t#1| (-745)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2790 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-684 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2790 (|#6| (-1 |#4| |#1|) |#3|))) (-539) (-1195 |#1|) (-1195 (-398 |#2|)) (-539) (-1195 |#4|) (-1195 (-398 |#5|))) (T -684))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-539)) (-4 *7 (-539)) (-4 *6 (-1195 *5)) (-4 *2 (-1195 (-398 *8))) (-5 *1 (-684 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1195 (-398 *6))) (-4 *8 (-1195 *7)))))
-(-10 -7 (-15 -2790 (|#6| (-1 |#4| |#1|) |#3|)))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2144 (((-1119) (-832)) 31)) (-2692 (((-1224) (-1119)) 28)) (-4302 (((-1119) (-832)) 24)) (-1702 (((-1119) (-832)) 25)) (-3838 (((-832) $) NIL) (((-1119) (-832)) 23)) (-2381 (((-112) $ $) NIL)))
-(((-685) (-13 (-1063) (-10 -7 (-15 -3838 ((-1119) (-832))) (-15 -4302 ((-1119) (-832))) (-15 -1702 ((-1119) (-832))) (-15 -2144 ((-1119) (-832))) (-15 -2692 ((-1224) (-1119)))))) (T -685))
-((-3838 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1119)) (-5 *1 (-685)))) (-4302 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1119)) (-5 *1 (-685)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1119)) (-5 *1 (-685)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1119)) (-5 *1 (-685)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-685)))))
-(-13 (-1063) (-10 -7 (-15 -3838 ((-1119) (-832))) (-15 -4302 ((-1119) (-832))) (-15 -1702 ((-1119) (-832))) (-15 -2144 ((-1119) (-832))) (-15 -2692 ((-1224) (-1119)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-2089 (($ $ $) NIL)) (-2552 (($ |#1| |#2|) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-2261 (((-112) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2580 ((|#2| $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1327 (((-3 $ "failed") $ $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) ((|#1| $) NIL)) (-2736 (((-745)) NIL)) (-3577 (((-112) $ $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL)))
-(((-686 |#1| |#2| |#3| |#4| |#5|) (-13 (-354) (-10 -8 (-15 -2580 (|#2| $)) (-15 -3838 (|#1| $)) (-15 -2552 ($ |#1| |#2|)) (-15 -1327 ((-3 $ "failed") $ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -686))
-((-2580 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-686 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3838 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2552 (*1 *1 *2 *3) (-12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1327 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-354) (-10 -8 (-15 -2580 (|#2| $)) (-15 -3838 (|#1| $)) (-15 -2552 ($ |#1| |#2|)) (-15 -1327 ((-3 $ "failed") $ $))))
-((-3826 (((-112) $ $) 78)) (-1499 (((-112) $) 30)) (-3079 (((-1219 |#1|) $ (-745)) NIL)) (-2267 (((-619 (-1045)) $) NIL)) (-2167 (($ (-1132 |#1|)) NIL)) (-2078 (((-1132 $) $ (-1045)) NIL) (((-1132 |#1|) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3286 (($ $ $) NIL (|has| |#1| (-539)))) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2555 (($ $) NIL (|has| |#1| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-3608 (((-745)) 47 (|has| |#1| (-359)))) (-2160 (($ $ (-745)) NIL)) (-4279 (($ $ (-745)) NIL)) (-1372 ((|#2| |#2|) 44)) (-1460 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-442)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-1045) "failed") $) NIL)) (-2652 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-1045) $) NIL)) (-1496 (($ $ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $ $) NIL (|has| |#1| (-169)))) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-2063 (($ $) 34)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2552 (($ |#2|) 42)) (-3855 (((-3 $ "failed") $) 86)) (-3232 (($) 51 (|has| |#1| (-359)))) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-3315 (($ $ $) NIL)) (-2522 (($ $ $) NIL (|has| |#1| (-539)))) (-3445 (((-2 (|:| -1563 |#1|) (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-539)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3350 (($ $) NIL (|has| |#1| (-442))) (($ $ (-1045)) NIL (|has| |#1| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#1| (-878)))) (-3038 (((-927 $)) 80)) (-3210 (($ $ |#1| (-745) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1045) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1045) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3275 (((-745) $ $) NIL (|has| |#1| (-539)))) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-3477 (((-3 $ "failed") $) NIL (|has| |#1| (-1112)))) (-2254 (($ (-1132 |#1|) (-1045)) NIL) (($ (-1132 $) (-1045)) NIL)) (-3852 (($ $ (-745)) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-745)) 77) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ (-1045)) NIL) (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-2580 ((|#2|) 45)) (-3095 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-4182 (($ (-1 (-745) (-745)) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-4095 (((-1132 |#1|) $) NIL)) (-1631 (((-3 (-1045) "failed") $) NIL)) (-2402 (((-890) $) NIL (|has| |#1| (-359)))) (-2540 ((|#2| $) 41)) (-2019 (($ $) NIL)) (-2037 ((|#1| $) 28)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1466 (((-1119) $) NIL)) (-2836 (((-2 (|:| -2235 $) (|:| -2916 $)) $ (-745)) NIL)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-1045)) (|:| -3322 (-745))) "failed") $) NIL)) (-3694 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3054 (($) NIL (|has| |#1| (-1112)) CONST)) (-3487 (($ (-890)) NIL (|has| |#1| (-359)))) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) NIL)) (-2009 ((|#1| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1902 (($ $) 79 (|has| |#1| (-340)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-878)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#1|) NIL) (($ $ (-619 (-1045)) (-619 |#1|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-2471 (((-745) $) NIL (|has| |#1| (-354)))) (-3334 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-398 $) (-398 $) (-398 $)) NIL (|has| |#1| (-539))) ((|#1| (-398 $) |#1|) NIL (|has| |#1| (-354))) (((-398 $) $ (-398 $)) NIL (|has| |#1| (-539)))) (-1397 (((-3 $ "failed") $ (-745)) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 87 (|has| |#1| (-354)))) (-4056 (($ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-3448 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3705 (((-745) $) 32) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-1045) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-2392 ((|#1| $) NIL (|has| |#1| (-442))) (($ $ (-1045)) NIL (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-4027 (((-927 $)) 36)) (-4188 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539))) (((-3 (-398 $) "failed") (-398 $) $) NIL (|has| |#1| (-539)))) (-3838 (((-832) $) 61) (($ (-547)) NIL) (($ |#1|) 58) (($ (-1045)) NIL) (($ |#2|) 68) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-745)) 63) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3269 (($) 20 T CONST)) (-3020 (((-1219 |#1|) $) 75)) (-2002 (($ (-1219 |#1|)) 50)) (-3281 (($) 8 T CONST)) (-1695 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1426 (((-1219 |#1|) $) NIL)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) 69)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $) 72) (($ $ $) NIL)) (-2479 (($ $ $) 33)) (** (($ $ (-890)) NIL) (($ $ (-745)) 81)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 57) (($ $ $) 74) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
-(((-687 |#1| |#2|) (-13 (-1195 |#1|) (-10 -8 (-15 -1372 (|#2| |#2|)) (-15 -2580 (|#2|)) (-15 -2552 ($ |#2|)) (-15 -2540 (|#2| $)) (-15 -3838 ($ |#2|)) (-15 -3020 ((-1219 |#1|) $)) (-15 -2002 ($ (-1219 |#1|))) (-15 -1426 ((-1219 |#1|) $)) (-15 -3038 ((-927 $))) (-15 -4027 ((-927 $))) (IF (|has| |#1| (-340)) (-15 -1902 ($ $)) |%noBranch|) (IF (|has| |#1| (-359)) (-6 (-359)) |%noBranch|))) (-1016) (-1195 |#1|)) (T -687))
-((-1372 (*1 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1195 *3)))) (-2580 (*1 *2) (-12 (-4 *2 (-1195 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) (-2552 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1195 *3)))) (-2540 (*1 *2 *1) (-12 (-4 *2 (-1195 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) (-3838 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1195 *3)))) (-3020 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-1219 *3)) (-5 *1 (-687 *3 *4)) (-4 *4 (-1195 *3)))) (-2002 (*1 *1 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-1016)) (-5 *1 (-687 *3 *4)) (-4 *4 (-1195 *3)))) (-1426 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-1219 *3)) (-5 *1 (-687 *3 *4)) (-4 *4 (-1195 *3)))) (-3038 (*1 *2) (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) (-4 *4 (-1195 *3)))) (-4027 (*1 *2) (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) (-4 *4 (-1195 *3)))) (-1902 (*1 *1 *1) (-12 (-4 *2 (-340)) (-4 *2 (-1016)) (-5 *1 (-687 *2 *3)) (-4 *3 (-1195 *2)))))
-(-13 (-1195 |#1|) (-10 -8 (-15 -1372 (|#2| |#2|)) (-15 -2580 (|#2|)) (-15 -2552 ($ |#2|)) (-15 -2540 (|#2| $)) (-15 -3838 ($ |#2|)) (-15 -3020 ((-1219 |#1|) $)) (-15 -2002 ($ (-1219 |#1|))) (-15 -1426 ((-1219 |#1|) $)) (-15 -3038 ((-927 $))) (-15 -4027 ((-927 $))) (IF (|has| |#1| (-340)) (-15 -1902 ($ $)) |%noBranch|) (IF (|has| |#1| (-359)) (-6 (-359)) |%noBranch|)))
-((-3826 (((-112) $ $) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3487 ((|#1| $) 13)) (-3979 (((-1082) $) NIL)) (-3322 ((|#2| $) 12)) (-3846 (($ |#1| |#2|) 16)) (-3838 (((-832) $) NIL) (($ (-2 (|:| -3487 |#1|) (|:| -3322 |#2|))) 15) (((-2 (|:| -3487 |#1|) (|:| -3322 |#2|)) $) 14)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 11)))
-(((-688 |#1| |#2| |#3|) (-13 (-821) (-10 -8 (-15 -3322 (|#2| $)) (-15 -3487 (|#1| $)) (-15 -3838 ($ (-2 (|:| -3487 |#1|) (|:| -3322 |#2|)))) (-15 -3838 ((-2 (|:| -3487 |#1|) (|:| -3322 |#2|)) $)) (-15 -3846 ($ |#1| |#2|)))) (-821) (-1063) (-1 (-112) (-2 (|:| -3487 |#1|) (|:| -3322 |#2|)) (-2 (|:| -3487 |#1|) (|:| -3322 |#2|)))) (T -688))
-((-3322 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-688 *3 *2 *4)) (-4 *3 (-821)) (-14 *4 (-1 (-112) (-2 (|:| -3487 *3) (|:| -3322 *2)) (-2 (|:| -3487 *3) (|:| -3322 *2)))))) (-3487 (*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-688 *2 *3 *4)) (-4 *3 (-1063)) (-14 *4 (-1 (-112) (-2 (|:| -3487 *2) (|:| -3322 *3)) (-2 (|:| -3487 *2) (|:| -3322 *3)))))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3487 *3) (|:| -3322 *4))) (-4 *3 (-821)) (-4 *4 (-1063)) (-5 *1 (-688 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3487 *3) (|:| -3322 *4))) (-5 *1 (-688 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-1063)) (-14 *5 (-1 (-112) *2 *2)))) (-3846 (*1 *1 *2 *3) (-12 (-5 *1 (-688 *2 *3 *4)) (-4 *2 (-821)) (-4 *3 (-1063)) (-14 *4 (-1 (-112) (-2 (|:| -3487 *2) (|:| -3322 *3)) (-2 (|:| -3487 *2) (|:| -3322 *3)))))))
-(-13 (-821) (-10 -8 (-15 -3322 (|#2| $)) (-15 -3487 (|#1| $)) (-15 -3838 ($ (-2 (|:| -3487 |#1|) (|:| -3322 |#2|)))) (-15 -3838 ((-2 (|:| -3487 |#1|) (|:| -3322 |#2|)) $)) (-15 -3846 ($ |#1| |#2|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 59)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-2652 ((|#1| $) NIL) (((-114) $) 39)) (-3855 (((-3 $ "failed") $) 90)) (-2594 ((|#2| (-114) |#2|) 82)) (-2261 (((-112) $) NIL)) (-2339 (($ |#1| (-352 (-114))) 14)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2454 (($ $ (-1 |#2| |#2|)) 58)) (-1834 (($ $ (-1 |#2| |#2|)) 44)) (-3334 ((|#2| $ |#2|) 33)) (-3519 ((|#1| |#1|) 105 (|has| |#1| (-169)))) (-3838 (((-832) $) 66) (($ (-547)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) 37)) (-3045 (($ $) 99 (|has| |#1| (-169))) (($ $ $) 103 (|has| |#1| (-169)))) (-3269 (($) 21 T CONST)) (-3281 (($) 9 T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) 48) (($ $ $) NIL)) (-2479 (($ $ $) 73)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ (-114) (-547)) NIL) (($ $ (-547)) 57)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-169))) (($ $ |#1|) 97 (|has| |#1| (-169)))))
-(((-689 |#1| |#2|) (-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-277 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -3045 ($ $)) (-15 -3045 ($ $ $)) (-15 -3519 (|#1| |#1|))) |%noBranch|) (-15 -1834 ($ $ (-1 |#2| |#2|))) (-15 -2454 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-547))) (-15 ** ($ $ (-547))) (-15 -2594 (|#2| (-114) |#2|)) (-15 -2339 ($ |#1| (-352 (-114)))))) (-1016) (-622 |#1|)) (T -689))
-((-3045 (*1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) (-4 *3 (-622 *2)))) (-3045 (*1 *1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) (-4 *3 (-622 *2)))) (-3519 (*1 *2 *2) (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) (-4 *3 (-622 *2)))) (-1834 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)))) (-2454 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-547)) (-4 *4 (-1016)) (-5 *1 (-689 *4 *5)) (-4 *5 (-622 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)) (-4 *4 (-622 *3)))) (-2594 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1016)) (-5 *1 (-689 *4 *2)) (-4 *2 (-622 *4)))) (-2339 (*1 *1 *2 *3) (-12 (-5 *3 (-352 (-114))) (-4 *2 (-1016)) (-5 *1 (-689 *2 *4)) (-4 *4 (-622 *2)))))
-(-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-277 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -3045 ($ $)) (-15 -3045 ($ $ $)) (-15 -3519 (|#1| |#1|))) |%noBranch|) (-15 -1834 ($ $ (-1 |#2| |#2|))) (-15 -2454 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-547))) (-15 ** ($ $ (-547))) (-15 -2594 (|#2| (-114) |#2|)) (-15 -2339 ($ |#1| (-352 (-114))))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 33)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2552 (($ |#1| |#2|) 25)) (-3855 (((-3 $ "failed") $) 48)) (-2261 (((-112) $) 35)) (-2580 ((|#2| $) 12)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 49)) (-3979 (((-1082) $) NIL)) (-1327 (((-3 $ "failed") $ $) 47)) (-3838 (((-832) $) 24) (($ (-547)) 19) ((|#1| $) 13)) (-2736 (((-745)) 28)) (-3269 (($) 16 T CONST)) (-3281 (($) 30 T CONST)) (-2381 (((-112) $ $) 38)) (-2493 (($ $) 43) (($ $ $) 37)) (-2479 (($ $ $) 40)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 21) (($ $ $) 20)))
-(((-690 |#1| |#2| |#3| |#4| |#5|) (-13 (-1016) (-10 -8 (-15 -2580 (|#2| $)) (-15 -3838 (|#1| $)) (-15 -2552 ($ |#1| |#2|)) (-15 -1327 ((-3 $ "failed") $ $)) (-15 -3855 ((-3 $ "failed") $)) (-15 -1984 ($ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -690))
-((-3855 (*1 *1 *1) (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2580 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3838 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2552 (*1 *1 *2 *3) (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1327 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1984 (*1 *1 *1) (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1016) (-10 -8 (-15 -2580 (|#2| $)) (-15 -3838 (|#1| $)) (-15 -2552 ($ |#1| |#2|)) (-15 -1327 ((-3 $ "failed") $ $)) (-15 -3855 ((-3 $ "failed") $)) (-15 -1984 ($ $))))
-((* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-691 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-692 |#2|) (-169)) (T -691))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-692 |#1|) (-138) (-169)) (T -692))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 15)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-1394 ((|#1| $) 21)) (-2863 (($ $ $) NIL (|has| |#1| (-767)))) (-3575 (($ $ $) NIL (|has| |#1| (-767)))) (-3851 (((-1125) $) 46)) (-3990 (((-1087) $) NIL)) (-1403 ((|#3| $) 22)) (-3846 (((-834) $) 42)) (-3276 (($) 10 T CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-767)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-767)))) (-2389 (((-112) $ $) 20)) (-2438 (((-112) $ $) NIL (|has| |#1| (-767)))) (-2412 (((-112) $ $) 24 (|has| |#1| (-767)))) (-2513 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2500 (($ $) 17) (($ $ $) NIL)) (-2486 (($ $ $) 27)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-638 |#1| |#2| |#3|) (-13 (-694 |#2|) (-10 -8 (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) (-15 -2513 ($ $ |#3|)) (-15 -2513 ($ |#1| |#3|)) (-15 -1394 (|#1| $)) (-15 -1403 (|#3| $)))) (-694 |#2|) (-170) (|SubsetCategory| (-703) |#2|)) (T -638))
+((-2513 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-694 *4)) (-4 *2 (|SubsetCategory| (-703) *4)))) (-2513 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-638 *2 *4 *3)) (-4 *2 (-694 *4)) (-4 *3 (|SubsetCategory| (-703) *4)))) (-1394 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-694 *3)) (-5 *1 (-638 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-703) *3)))) (-1403 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-694 *4)))))
+(-13 (-694 |#2|) (-10 -8 (IF (|has| |#1| (-767)) (-6 (-767)) |%noBranch|) (-15 -2513 ($ $ |#3|)) (-15 -2513 ($ |#1| |#3|)) (-15 -1394 (|#1| $)) (-15 -1403 (|#3| $))))
+((-2477 (((-3 (-621 (-1139 |#1|)) "failed") (-621 (-1139 |#1|)) (-1139 |#1|)) 33)))
+(((-639 |#1|) (-10 -7 (-15 -2477 ((-3 (-621 (-1139 |#1|)) "failed") (-621 (-1139 |#1|)) (-1139 |#1|)))) (-880)) (T -639))
+((-2477 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-1139 *4))) (-5 *3 (-1139 *4)) (-4 *4 (-880)) (-5 *1 (-639 *4)))))
+(-10 -7 (-15 -2477 ((-3 (-621 (-1139 |#1|)) "failed") (-621 (-1139 |#1|)) (-1139 |#1|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3304 (((-621 |#1|) $) 82)) (-3210 (($ $ (-747)) 90)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-1869 (((-1250 |#1| |#2|) (-1250 |#1| |#2|) $) 48)) (-2714 (((-3 (-648 |#1|) "failed") $) NIL)) (-2659 (((-648 |#1|) $) NIL)) (-2070 (($ $) 89)) (-3347 (((-747) $) NIL)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-3526 (($ (-648 |#1|) |#2|) 68)) (-4273 (($ $) 86)) (-2797 (($ (-1 |#2| |#2|) $) NIL)) (-2694 (((-1250 |#1| |#2|) (-1250 |#1| |#2|) $) 47)) (-3647 (((-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2028 (((-648 |#1|) $) NIL)) (-2043 ((|#2| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2686 (($ $ |#1| $) 30) (($ $ (-621 |#1|) (-621 $)) 32)) (-3701 (((-747) $) 88)) (-3854 (($ $ $) 20) (($ (-648 |#1|) (-648 |#1|)) 77) (($ (-648 |#1|) $) 75) (($ $ (-648 |#1|)) 76)) (-3846 (((-834) $) NIL) (($ |#1|) 74) (((-1241 |#1| |#2|) $) 58) (((-1250 |#1| |#2|) $) 41) (($ (-648 |#1|)) 25)) (-4141 (((-621 |#2|) $) NIL)) (-2152 ((|#2| $ (-648 |#1|)) NIL)) (-1570 ((|#2| (-1250 |#1| |#2|) $) 43)) (-3276 (($) 23 T CONST)) (-2631 (((-621 (-2 (|:| |k| (-648 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1467 (((-3 $ "failed") (-1241 |#1| |#2|)) 60)) (-3037 (($ (-648 |#1|)) 14)) (-2389 (((-112) $ $) 44)) (-2513 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2500 (($ $) 66) (($ $ $) NIL)) (-2486 (($ $ $) 29)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-648 |#1|)) NIL)))
+(((-640 |#1| |#2|) (-13 (-367 |#1| |#2|) (-375 |#2| (-648 |#1|)) (-10 -8 (-15 -1467 ((-3 $ "failed") (-1241 |#1| |#2|))) (-15 -3854 ($ (-648 |#1|) (-648 |#1|))) (-15 -3854 ($ (-648 |#1|) $)) (-15 -3854 ($ $ (-648 |#1|))))) (-823) (-170)) (T -640))
+((-1467 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *1 (-640 *3 *4)))) (-3854 (*1 *1 *2 *2) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))) (-3854 (*1 *1 *2 *1) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))) (-3854 (*1 *1 *1 *2) (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4)) (-4 *4 (-170)))))
+(-13 (-367 |#1| |#2|) (-375 |#2| (-648 |#1|)) (-10 -8 (-15 -1467 ((-3 $ "failed") (-1241 |#1| |#2|))) (-15 -3854 ($ (-648 |#1|) (-648 |#1|))) (-15 -3854 ($ (-648 |#1|) $)) (-15 -3854 ($ $ (-648 |#1|)))))
+((-4142 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-4311 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1717 (($ (-1 (-112) |#2|) $) 28)) (-1585 (($ $) 56)) (-3745 (($ $) 64)) (-2129 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-2557 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2883 (((-549) |#2| $ (-549)) 61) (((-549) |#2| $) NIL) (((-549) (-1 (-112) |#2|) $) 47)) (-3743 (($ (-747) |#2|) 54)) (-1303 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3890 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2797 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3525 (($ |#2|) 15)) (-2751 (($ $ $ (-549)) 36) (($ |#2| $ (-549)) 34)) (-3779 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-3531 (($ $ (-1193 (-549))) 44) (($ $ (-549)) 38)) (-2730 (($ $ $ (-549)) 60)) (-2281 (($ $) 58)) (-2412 (((-112) $ $) 66)))
+(((-641 |#1| |#2|) (-10 -8 (-15 -3525 (|#1| |#2|)) (-15 -3531 (|#1| |#1| (-549))) (-15 -3531 (|#1| |#1| (-1193 (-549)))) (-15 -2129 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2751 (|#1| |#2| |#1| (-549))) (-15 -2751 (|#1| |#1| |#1| (-549))) (-15 -1303 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1717 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2129 (|#1| |#2| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -1303 (|#1| |#1| |#1|)) (-15 -3890 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4142 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2883 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -2883 ((-549) |#2| |#1|)) (-15 -2883 ((-549) |#2| |#1| (-549))) (-15 -3890 (|#1| |#1| |#1|)) (-15 -4142 ((-112) |#1|)) (-15 -2730 (|#1| |#1| |#1| (-549))) (-15 -1585 (|#1| |#1|)) (-15 -4311 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4311 (|#1| |#1|)) (-15 -2412 ((-112) |#1| |#1|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3779 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3743 (|#1| (-747) |#2|)) (-15 -2797 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2281 (|#1| |#1|))) (-642 |#2|) (-1180)) (T -641))
+NIL
+(-10 -8 (-15 -3525 (|#1| |#2|)) (-15 -3531 (|#1| |#1| (-549))) (-15 -3531 (|#1| |#1| (-1193 (-549)))) (-15 -2129 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2751 (|#1| |#2| |#1| (-549))) (-15 -2751 (|#1| |#1| |#1| (-549))) (-15 -1303 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1717 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2129 (|#1| |#2| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -1303 (|#1| |#1| |#1|)) (-15 -3890 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4142 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2883 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -2883 ((-549) |#2| |#1|)) (-15 -2883 ((-549) |#2| |#1| (-549))) (-15 -3890 (|#1| |#1| |#1|)) (-15 -4142 ((-112) |#1|)) (-15 -2730 (|#1| |#1| |#1| (-549))) (-15 -1585 (|#1| |#1|)) (-15 -4311 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4311 (|#1| |#1|)) (-15 -2412 ((-112) |#1| |#1|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2557 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3779 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3743 (|#1| (-747) |#2|)) (-15 -2797 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2281 (|#1| |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4161 ((|#1| $) 48)) (-2839 ((|#1| $) 65)) (-1343 (($ $) 67)) (-1535 (((-1231) $ (-549) (-549)) 97 (|has| $ (-6 -4338)))) (-3174 (($ $ (-549)) 52 (|has| $ (-6 -4338)))) (-4142 (((-112) $) 142 (|has| |#1| (-823))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-4311 (($ $) 146 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4338)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4338)))) (-3193 (($ $) 141 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-1584 (((-112) $ (-747)) 8)) (-2838 ((|#1| $ |#1|) 39 (|has| $ (-6 -4338)))) (-4179 (($ $ $) 56 (|has| $ (-6 -4338)))) (-2780 ((|#1| $ |#1|) 54 (|has| $ (-6 -4338)))) (-4135 ((|#1| $ |#1|) 58 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4338))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4338))) (($ $ "rest" $) 55 (|has| $ (-6 -4338))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) 117 (|has| $ (-6 -4338))) ((|#1| $ (-549) |#1|) 86 (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) 41 (|has| $ (-6 -4338)))) (-1717 (($ (-1 (-112) |#1|) $) 129)) (-1489 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4337)))) (-2830 ((|#1| $) 66)) (-1682 (($) 7 T CONST)) (-1585 (($ $) 144 (|has| $ (-6 -4338)))) (-3064 (($ $) 134)) (-3657 (($ $) 73) (($ $ (-747)) 71)) (-3745 (($ $) 131 (|has| |#1| (-1067)))) (-3676 (($ $) 99 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2129 (($ |#1| $) 130 (|has| |#1| (-1067))) (($ (-1 (-112) |#1|) $) 125)) (-3812 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4337))) (($ |#1| $) 100 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1879 ((|#1| $ (-549) |#1|) 85 (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) 87)) (-3331 (((-112) $) 83)) (-2883 (((-549) |#1| $ (-549)) 139 (|has| |#1| (-1067))) (((-549) |#1| $) 138 (|has| |#1| (-1067))) (((-549) (-1 (-112) |#1|) $) 137)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) 50)) (-3895 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3743 (($ (-747) |#1|) 108)) (-3194 (((-112) $ (-747)) 9)) (-4031 (((-549) $) 95 (|has| (-549) (-823)))) (-2863 (($ $ $) 147 (|has| |#1| (-823)))) (-1303 (($ $ $) 132 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3890 (($ $ $) 140 (|has| |#1| (-823))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 94 (|has| (-549) (-823)))) (-3575 (($ $ $) 148 (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3525 (($ |#1|) 122)) (-1508 (((-112) $ (-747)) 10)) (-3591 (((-621 |#1|) $) 45)) (-2076 (((-112) $) 49)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3829 ((|#1| $) 70) (($ $ (-747)) 68)) (-2751 (($ $ $ (-549)) 127) (($ |#1| $ (-549)) 126)) (-2616 (($ $ $ (-549)) 116) (($ |#1| $ (-549)) 115)) (-3303 (((-621 (-549)) $) 92)) (-3761 (((-112) (-549) $) 91)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3646 ((|#1| $) 76) (($ $ (-747)) 74)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-1642 (($ $ |#1|) 96 (|has| $ (-6 -4338)))) (-3016 (((-112) $) 84)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) 90)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1193 (-549))) 112) ((|#1| $ (-549)) 89) ((|#1| $ (-549) |#1|) 88)) (-3230 (((-549) $ $) 44)) (-3531 (($ $ (-1193 (-549))) 124) (($ $ (-549)) 123)) (-2167 (($ $ (-1193 (-549))) 114) (($ $ (-549)) 113)) (-3497 (((-112) $) 46)) (-1999 (($ $) 62)) (-2643 (($ $) 59 (|has| $ (-6 -4338)))) (-3798 (((-747) $) 63)) (-3612 (($ $) 64)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2730 (($ $ $ (-549)) 143 (|has| $ (-6 -4338)))) (-2281 (($ $) 13)) (-2845 (((-525) $) 98 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 107)) (-3196 (($ $ $) 61) (($ $ |#1|) 60)) (-1952 (($ $ $) 78) (($ |#1| $) 77) (($ (-621 $)) 110) (($ $ |#1|) 109)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) 51)) (-1987 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) 150 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 151 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-2438 (((-112) $ $) 149 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 152 (|has| |#1| (-823)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-642 |#1|) (-138) (-1180)) (T -642))
+((-3525 (*1 *1 *2) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1180)))))
+(-13 (-1116 |t#1|) (-366 |t#1|) (-275 |t#1|) (-10 -8 (-15 -3525 ($ |t#1|))))
+(((-34) . T) ((-101) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-275 |#1|) . T) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-823) |has| |#1| (-823)) ((-981 |#1|) . T) ((-1067) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1116 |#1|) . T) ((-1180) . T) ((-1214 |#1|) . T))
+((-2227 (((-621 (-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|))))) (-621 (-621 |#1|)) (-621 (-1226 |#1|))) 22) (((-621 (-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|))))) (-665 |#1|) (-621 (-1226 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|)))) (-621 (-621 |#1|)) (-1226 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|)))) (-665 |#1|) (-1226 |#1|)) 14)) (-3123 (((-747) (-665 |#1|) (-1226 |#1|)) 30)) (-2079 (((-3 (-1226 |#1|) "failed") (-665 |#1|) (-1226 |#1|)) 24)) (-2479 (((-112) (-665 |#1|) (-1226 |#1|)) 27)))
+(((-643 |#1|) (-10 -7 (-15 -2227 ((-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|)))) (-665 |#1|) (-1226 |#1|))) (-15 -2227 ((-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|)))) (-621 (-621 |#1|)) (-1226 |#1|))) (-15 -2227 ((-621 (-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|))))) (-665 |#1|) (-621 (-1226 |#1|)))) (-15 -2227 ((-621 (-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|))))) (-621 (-621 |#1|)) (-621 (-1226 |#1|)))) (-15 -2079 ((-3 (-1226 |#1|) "failed") (-665 |#1|) (-1226 |#1|))) (-15 -2479 ((-112) (-665 |#1|) (-1226 |#1|))) (-15 -3123 ((-747) (-665 |#1|) (-1226 |#1|)))) (-356)) (T -643))
+((-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-356)) (-5 *2 (-747)) (-5 *1 (-643 *5)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-356)) (-5 *2 (-112)) (-5 *1 (-643 *5)))) (-2079 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1226 *4)) (-5 *3 (-665 *4)) (-4 *4 (-356)) (-5 *1 (-643 *4)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-621 *5))) (-4 *5 (-356)) (-5 *2 (-621 (-2 (|:| |particular| (-3 (-1226 *5) "failed")) (|:| -1949 (-621 (-1226 *5)))))) (-5 *1 (-643 *5)) (-5 *4 (-621 (-1226 *5))))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-4 *5 (-356)) (-5 *2 (-621 (-2 (|:| |particular| (-3 (-1226 *5) "failed")) (|:| -1949 (-621 (-1226 *5)))))) (-5 *1 (-643 *5)) (-5 *4 (-621 (-1226 *5))))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-621 *5))) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1226 *5) "failed")) (|:| -1949 (-621 (-1226 *5))))) (-5 *1 (-643 *5)) (-5 *4 (-1226 *5)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1226 *5) "failed")) (|:| -1949 (-621 (-1226 *5))))) (-5 *1 (-643 *5)) (-5 *4 (-1226 *5)))))
+(-10 -7 (-15 -2227 ((-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|)))) (-665 |#1|) (-1226 |#1|))) (-15 -2227 ((-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|)))) (-621 (-621 |#1|)) (-1226 |#1|))) (-15 -2227 ((-621 (-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|))))) (-665 |#1|) (-621 (-1226 |#1|)))) (-15 -2227 ((-621 (-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|))))) (-621 (-621 |#1|)) (-621 (-1226 |#1|)))) (-15 -2079 ((-3 (-1226 |#1|) "failed") (-665 |#1|) (-1226 |#1|))) (-15 -2479 ((-112) (-665 |#1|) (-1226 |#1|))) (-15 -3123 ((-747) (-665 |#1|) (-1226 |#1|))))
+((-2227 (((-621 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1949 (-621 |#3|)))) |#4| (-621 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1949 (-621 |#3|))) |#4| |#3|) 45)) (-3123 (((-747) |#4| |#3|) 17)) (-2079 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2479 (((-112) |#4| |#3|) 13)))
+(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2227 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1949 (-621 |#3|))) |#4| |#3|)) (-15 -2227 ((-621 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1949 (-621 |#3|)))) |#4| (-621 |#3|))) (-15 -2079 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2479 ((-112) |#4| |#3|)) (-15 -3123 ((-747) |#4| |#3|))) (-356) (-13 (-366 |#1|) (-10 -7 (-6 -4338))) (-13 (-366 |#1|) (-10 -7 (-6 -4338))) (-663 |#1| |#2| |#3|)) (T -644))
+((-3123 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4338)))) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4338)))) (-5 *2 (-747)) (-5 *1 (-644 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4)))) (-2479 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4338)))) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4338)))) (-5 *2 (-112)) (-5 *1 (-644 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4)))) (-2079 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-356)) (-4 *5 (-13 (-366 *4) (-10 -7 (-6 -4338)))) (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4338)))) (-5 *1 (-644 *4 *5 *2 *3)) (-4 *3 (-663 *4 *5 *2)))) (-2227 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4338)))) (-4 *7 (-13 (-366 *5) (-10 -7 (-6 -4338)))) (-5 *2 (-621 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1949 (-621 *7))))) (-5 *1 (-644 *5 *6 *7 *3)) (-5 *4 (-621 *7)) (-4 *3 (-663 *5 *6 *7)))) (-2227 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4338)))) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4338)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4)))) (-5 *1 (-644 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4)))))
+(-10 -7 (-15 -2227 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1949 (-621 |#3|))) |#4| |#3|)) (-15 -2227 ((-621 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1949 (-621 |#3|)))) |#4| (-621 |#3|))) (-15 -2079 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2479 ((-112) |#4| |#3|)) (-15 -3123 ((-747) |#4| |#3|)))
+((-4312 (((-2 (|:| |particular| (-3 (-1226 (-400 |#4|)) "failed")) (|:| -1949 (-621 (-1226 (-400 |#4|))))) (-621 |#4|) (-621 |#3|)) 45)))
+(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4312 ((-2 (|:| |particular| (-3 (-1226 (-400 |#4|)) "failed")) (|:| -1949 (-621 (-1226 (-400 |#4|))))) (-621 |#4|) (-621 |#3|)))) (-541) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -645))
+((-4312 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *7)) (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-5 *2 (-2 (|:| |particular| (-3 (-1226 (-400 *8)) "failed")) (|:| -1949 (-621 (-1226 (-400 *8)))))) (-5 *1 (-645 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4312 ((-2 (|:| |particular| (-3 (-1226 (-400 |#4|)) "failed")) (|:| -1949 (-621 (-1226 (-400 |#4|))))) (-621 |#4|) (-621 |#3|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2207 (((-3 $ "failed")) NIL (|has| |#2| (-541)))) (-2906 ((|#2| $) NIL)) (-2092 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3277 (((-1226 (-665 |#2|))) NIL) (((-1226 (-665 |#2|)) (-1226 $)) NIL)) (-2340 (((-112) $) NIL)) (-3945 (((-1226 $)) 37)) (-1584 (((-112) $ (-747)) NIL)) (-2228 (($ |#2|) NIL)) (-1682 (($) NIL T CONST)) (-3460 (($ $) NIL (|has| |#2| (-300)))) (-4060 (((-234 |#1| |#2|) $ (-549)) NIL)) (-3219 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) NIL (|has| |#2| (-541)))) (-3550 (((-3 $ "failed")) NIL (|has| |#2| (-541)))) (-4212 (((-665 |#2|)) NIL) (((-665 |#2|) (-1226 $)) NIL)) (-2840 ((|#2| $) NIL)) (-3841 (((-665 |#2|) $) NIL) (((-665 |#2|) $ (-1226 $)) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| |#2| (-541)))) (-2478 (((-1139 (-923 |#2|))) NIL (|has| |#2| (-356)))) (-3117 (($ $ (-892)) NIL)) (-2182 ((|#2| $) NIL)) (-2289 (((-1139 |#2|) $) NIL (|has| |#2| (-541)))) (-3076 ((|#2|) NIL) ((|#2| (-1226 $)) NIL)) (-3266 (((-1139 |#2|) $) NIL)) (-1368 (((-112)) NIL)) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 |#2| "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) ((|#2| $) NIL)) (-3492 (($ (-1226 |#2|)) NIL) (($ (-1226 |#2|) (-1226 $)) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3123 (((-747) $) NIL (|has| |#2| (-541))) (((-892)) 38)) (-1809 ((|#2| $ (-549) (-549)) NIL)) (-3601 (((-112)) NIL)) (-2943 (($ $ (-892)) NIL)) (-2989 (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2675 (((-112) $) NIL)) (-1323 (((-747) $) NIL (|has| |#2| (-541)))) (-1479 (((-621 (-234 |#1| |#2|)) $) NIL (|has| |#2| (-541)))) (-2142 (((-747) $) NIL)) (-3975 (((-112)) NIL)) (-2155 (((-747) $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-1929 ((|#2| $) NIL (|has| |#2| (-6 (-4339 "*"))))) (-1761 (((-549) $) NIL)) (-2703 (((-549) $) NIL)) (-1562 (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-1661 (((-549) $) NIL)) (-1887 (((-549) $) NIL)) (-3946 (($ (-621 (-621 |#2|))) NIL)) (-1868 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2913 (((-621 (-621 |#2|)) $) NIL)) (-2291 (((-112)) NIL)) (-2647 (((-112)) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-1742 (((-3 (-2 (|:| |particular| $) (|:| -1949 (-621 $))) "failed")) NIL (|has| |#2| (-541)))) (-4101 (((-3 $ "failed")) NIL (|has| |#2| (-541)))) (-2870 (((-665 |#2|)) NIL) (((-665 |#2|) (-1226 $)) NIL)) (-2654 ((|#2| $) NIL)) (-2303 (((-665 |#2|) $) NIL) (((-665 |#2|) $ (-1226 $)) NIL)) (-1919 (((-3 $ "failed") $) NIL (|has| |#2| (-541)))) (-2014 (((-1139 (-923 |#2|))) NIL (|has| |#2| (-356)))) (-2884 (($ $ (-892)) NIL)) (-2248 ((|#2| $) NIL)) (-1378 (((-1139 |#2|) $) NIL (|has| |#2| (-541)))) (-2920 ((|#2|) NIL) ((|#2| (-1226 $)) NIL)) (-2443 (((-1139 |#2|) $) NIL)) (-3623 (((-112)) NIL)) (-3851 (((-1125) $) NIL)) (-3260 (((-112)) NIL)) (-2754 (((-112)) NIL)) (-2055 (((-112)) NIL)) (-3849 (((-3 $ "failed") $) NIL (|has| |#2| (-356)))) (-3990 (((-1087) $) NIL)) (-2392 (((-112)) NIL)) (-2042 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541)))) (-1780 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#2| $ (-549) (-549) |#2|) NIL) ((|#2| $ (-549) (-549)) 22) ((|#2| $ (-549)) NIL)) (-3456 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3136 ((|#2| $) NIL)) (-2133 (($ (-621 |#2|)) NIL)) (-1757 (((-112) $) NIL)) (-2081 (((-234 |#1| |#2|) $) NIL)) (-2029 ((|#2| $) NIL (|has| |#2| (-6 (-4339 "*"))))) (-4000 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2281 (($ $) NIL)) (-4263 (((-665 |#2|) (-1226 $)) NIL) (((-1226 |#2|) $) NIL) (((-665 |#2|) (-1226 $) (-1226 $)) NIL) (((-1226 |#2|) $ (-1226 $)) 25)) (-2845 (($ (-1226 |#2|)) NIL) (((-1226 |#2|) $) NIL)) (-4111 (((-621 (-923 |#2|))) NIL) (((-621 (-923 |#2|)) (-1226 $)) NIL)) (-3293 (($ $ $) NIL)) (-1942 (((-112)) NIL)) (-2851 (((-234 |#1| |#2|) $ (-549)) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#2| (-1009 (-400 (-549))))) (($ |#2|) NIL) (((-665 |#2|) $) NIL)) (-2082 (((-747)) NIL)) (-1949 (((-1226 $)) 36)) (-4315 (((-621 (-1226 |#2|))) NIL (|has| |#2| (-541)))) (-4272 (($ $ $ $) NIL)) (-3430 (((-112)) NIL)) (-3596 (($ (-665 |#2|) $) NIL)) (-3527 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2974 (((-112) $) NIL)) (-2174 (($ $ $) NIL)) (-2864 (((-112)) NIL)) (-4257 (((-112)) NIL)) (-1898 (((-112)) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#2| (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-234 |#1| |#2|) $ (-234 |#1| |#2|)) NIL) (((-234 |#1| |#2|) (-234 |#1| |#2|) $) NIL)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-646 |#1| |#2|) (-13 (-1090 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-593 (-665 |#2|)) (-410 |#2|)) (-892) (-170)) (T -646))
+NIL
+(-13 (-1090 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-593 (-665 |#2|)) (-410 |#2|))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-1845 (((-621 (-1148)) $) 10)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-647) (-13 (-1050) (-10 -8 (-15 -1845 ((-621 (-1148)) $))))) (T -647))
+((-1845 (*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-647)))))
+(-13 (-1050) (-10 -8 (-15 -1845 ((-621 (-1148)) $))))
+((-3834 (((-112) $ $) NIL)) (-3304 (((-621 |#1|) $) NIL)) (-3848 (($ $) 52)) (-4304 (((-112) $) NIL)) (-2714 (((-3 |#1| "failed") $) NIL)) (-2659 ((|#1| $) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3541 (((-3 $ "failed") (-795 |#1|)) 23)) (-3772 (((-112) (-795 |#1|)) 15)) (-2599 (($ (-795 |#1|)) 24)) (-4192 (((-112) $ $) 30)) (-4210 (((-892) $) 37)) (-3838 (($ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2121 (((-621 $) (-795 |#1|)) 17)) (-3846 (((-834) $) 43) (($ |#1|) 34) (((-795 |#1|) $) 39) (((-653 |#1|) $) 44)) (-2224 (((-58 (-621 $)) (-621 |#1|) (-892)) 57)) (-2404 (((-621 $) (-621 |#1|) (-892)) 60)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 53)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 38)))
+(((-648 |#1|) (-13 (-823) (-1009 |#1|) (-10 -8 (-15 -4304 ((-112) $)) (-15 -3838 ($ $)) (-15 -3848 ($ $)) (-15 -4210 ((-892) $)) (-15 -4192 ((-112) $ $)) (-15 -3846 ((-795 |#1|) $)) (-15 -3846 ((-653 |#1|) $)) (-15 -2121 ((-621 $) (-795 |#1|))) (-15 -3772 ((-112) (-795 |#1|))) (-15 -2599 ($ (-795 |#1|))) (-15 -3541 ((-3 $ "failed") (-795 |#1|))) (-15 -3304 ((-621 |#1|) $)) (-15 -2224 ((-58 (-621 $)) (-621 |#1|) (-892))) (-15 -2404 ((-621 $) (-621 |#1|) (-892))))) (-823)) (T -648))
+((-4304 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823)))) (-3848 (*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-892)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-4192 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-621 (-648 *4))) (-5 *1 (-648 *4)))) (-3772 (*1 *2 *3) (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-112)) (-5 *1 (-648 *4)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))) (-3541 (*1 *1 *2) (|partial| -12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823)))) (-2224 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-892)) (-4 *5 (-823)) (-5 *2 (-58 (-621 (-648 *5)))) (-5 *1 (-648 *5)))) (-2404 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-892)) (-4 *5 (-823)) (-5 *2 (-621 (-648 *5))) (-5 *1 (-648 *5)))))
+(-13 (-823) (-1009 |#1|) (-10 -8 (-15 -4304 ((-112) $)) (-15 -3838 ($ $)) (-15 -3848 ($ $)) (-15 -4210 ((-892) $)) (-15 -4192 ((-112) $ $)) (-15 -3846 ((-795 |#1|) $)) (-15 -3846 ((-653 |#1|) $)) (-15 -2121 ((-621 $) (-795 |#1|))) (-15 -3772 ((-112) (-795 |#1|))) (-15 -2599 ($ (-795 |#1|))) (-15 -3541 ((-3 $ "failed") (-795 |#1|))) (-15 -3304 ((-621 |#1|) $)) (-15 -2224 ((-58 (-621 $)) (-621 |#1|) (-892))) (-15 -2404 ((-621 $) (-621 |#1|) (-892)))))
+((-4161 ((|#2| $) 76)) (-1343 (($ $) 96)) (-1584 (((-112) $ (-747)) 26)) (-3657 (($ $) 85) (($ $ (-747)) 88)) (-3331 (((-112) $) 97)) (-3075 (((-621 $) $) 72)) (-3895 (((-112) $ $) 71)) (-3194 (((-112) $ (-747)) 24)) (-4031 (((-549) $) 46)) (-1569 (((-549) $) 45)) (-1508 (((-112) $ (-747)) 22)) (-2076 (((-112) $) 74)) (-3829 ((|#2| $) 89) (($ $ (-747)) 92)) (-2616 (($ $ $ (-549)) 62) (($ |#2| $ (-549)) 61)) (-3303 (((-621 (-549)) $) 44)) (-3761 (((-112) (-549) $) 42)) (-3646 ((|#2| $) NIL) (($ $ (-747)) 84)) (-2763 (($ $ (-549)) 100)) (-3016 (((-112) $) 99)) (-1780 (((-112) (-1 (-112) |#2|) $) 32)) (-2696 (((-621 |#2|) $) 33)) (-3341 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1193 (-549))) 58) ((|#2| $ (-549)) 40) ((|#2| $ (-549) |#2|) 41)) (-3230 (((-549) $ $) 70)) (-2167 (($ $ (-1193 (-549))) 57) (($ $ (-549)) 51)) (-3497 (((-112) $) 66)) (-1999 (($ $) 81)) (-3798 (((-747) $) 80)) (-3612 (($ $) 79)) (-3854 (($ (-621 |#2|)) 37)) (-1977 (($ $) 101)) (-2742 (((-621 $) $) 69)) (-1987 (((-112) $ $) 68)) (-3527 (((-112) (-1 (-112) |#2|) $) 31)) (-2389 (((-112) $ $) 18)) (-3775 (((-747) $) 29)))
+(((-649 |#1| |#2|) (-10 -8 (-15 -1977 (|#1| |#1|)) (-15 -2763 (|#1| |#1| (-549))) (-15 -3331 ((-112) |#1|)) (-15 -3016 ((-112) |#1|)) (-15 -3341 (|#2| |#1| (-549) |#2|)) (-15 -3341 (|#2| |#1| (-549))) (-15 -2696 ((-621 |#2|) |#1|)) (-15 -3761 ((-112) (-549) |#1|)) (-15 -3303 ((-621 (-549)) |#1|)) (-15 -1569 ((-549) |#1|)) (-15 -4031 ((-549) |#1|)) (-15 -3854 (|#1| (-621 |#2|))) (-15 -3341 (|#1| |#1| (-1193 (-549)))) (-15 -2167 (|#1| |#1| (-549))) (-15 -2167 (|#1| |#1| (-1193 (-549)))) (-15 -2616 (|#1| |#2| |#1| (-549))) (-15 -2616 (|#1| |#1| |#1| (-549))) (-15 -1999 (|#1| |#1|)) (-15 -3798 ((-747) |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -1343 (|#1| |#1|)) (-15 -3829 (|#1| |#1| (-747))) (-15 -3341 (|#2| |#1| "last")) (-15 -3829 (|#2| |#1|)) (-15 -3657 (|#1| |#1| (-747))) (-15 -3341 (|#1| |#1| "rest")) (-15 -3657 (|#1| |#1|)) (-15 -3646 (|#1| |#1| (-747))) (-15 -3341 (|#2| |#1| "first")) (-15 -3646 (|#2| |#1|)) (-15 -3895 ((-112) |#1| |#1|)) (-15 -1987 ((-112) |#1| |#1|)) (-15 -3230 ((-549) |#1| |#1|)) (-15 -3497 ((-112) |#1|)) (-15 -3341 (|#2| |#1| "value")) (-15 -4161 (|#2| |#1|)) (-15 -2076 ((-112) |#1|)) (-15 -3075 ((-621 |#1|) |#1|)) (-15 -2742 ((-621 |#1|) |#1|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -1780 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3527 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3775 ((-747) |#1|)) (-15 -1584 ((-112) |#1| (-747))) (-15 -3194 ((-112) |#1| (-747))) (-15 -1508 ((-112) |#1| (-747)))) (-650 |#2|) (-1180)) (T -649))
+NIL
+(-10 -8 (-15 -1977 (|#1| |#1|)) (-15 -2763 (|#1| |#1| (-549))) (-15 -3331 ((-112) |#1|)) (-15 -3016 ((-112) |#1|)) (-15 -3341 (|#2| |#1| (-549) |#2|)) (-15 -3341 (|#2| |#1| (-549))) (-15 -2696 ((-621 |#2|) |#1|)) (-15 -3761 ((-112) (-549) |#1|)) (-15 -3303 ((-621 (-549)) |#1|)) (-15 -1569 ((-549) |#1|)) (-15 -4031 ((-549) |#1|)) (-15 -3854 (|#1| (-621 |#2|))) (-15 -3341 (|#1| |#1| (-1193 (-549)))) (-15 -2167 (|#1| |#1| (-549))) (-15 -2167 (|#1| |#1| (-1193 (-549)))) (-15 -2616 (|#1| |#2| |#1| (-549))) (-15 -2616 (|#1| |#1| |#1| (-549))) (-15 -1999 (|#1| |#1|)) (-15 -3798 ((-747) |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -1343 (|#1| |#1|)) (-15 -3829 (|#1| |#1| (-747))) (-15 -3341 (|#2| |#1| "last")) (-15 -3829 (|#2| |#1|)) (-15 -3657 (|#1| |#1| (-747))) (-15 -3341 (|#1| |#1| "rest")) (-15 -3657 (|#1| |#1|)) (-15 -3646 (|#1| |#1| (-747))) (-15 -3341 (|#2| |#1| "first")) (-15 -3646 (|#2| |#1|)) (-15 -3895 ((-112) |#1| |#1|)) (-15 -1987 ((-112) |#1| |#1|)) (-15 -3230 ((-549) |#1| |#1|)) (-15 -3497 ((-112) |#1|)) (-15 -3341 (|#2| |#1| "value")) (-15 -4161 (|#2| |#1|)) (-15 -2076 ((-112) |#1|)) (-15 -3075 ((-621 |#1|) |#1|)) (-15 -2742 ((-621 |#1|) |#1|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -1780 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3527 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3775 ((-747) |#1|)) (-15 -1584 ((-112) |#1| (-747))) (-15 -3194 ((-112) |#1| (-747))) (-15 -1508 ((-112) |#1| (-747))))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4161 ((|#1| $) 48)) (-2839 ((|#1| $) 65)) (-1343 (($ $) 67)) (-1535 (((-1231) $ (-549) (-549)) 97 (|has| $ (-6 -4338)))) (-3174 (($ $ (-549)) 52 (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) 8)) (-2838 ((|#1| $ |#1|) 39 (|has| $ (-6 -4338)))) (-4179 (($ $ $) 56 (|has| $ (-6 -4338)))) (-2780 ((|#1| $ |#1|) 54 (|has| $ (-6 -4338)))) (-4135 ((|#1| $ |#1|) 58 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4338))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4338))) (($ $ "rest" $) 55 (|has| $ (-6 -4338))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) 117 (|has| $ (-6 -4338))) ((|#1| $ (-549) |#1|) 86 (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) 41 (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) 102)) (-2830 ((|#1| $) 66)) (-1682 (($) 7 T CONST)) (-2670 (($ $) 124)) (-3657 (($ $) 73) (($ $ (-747)) 71)) (-3676 (($ $) 99 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#1| $) 100 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 103)) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1879 ((|#1| $ (-549) |#1|) 85 (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) 87)) (-3331 (((-112) $) 83)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-1545 (((-747) $) 123)) (-3075 (((-621 $) $) 50)) (-3895 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3743 (($ (-747) |#1|) 108)) (-3194 (((-112) $ (-747)) 9)) (-4031 (((-549) $) 95 (|has| (-549) (-823)))) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 94 (|has| (-549) (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1508 (((-112) $ (-747)) 10)) (-3591 (((-621 |#1|) $) 45)) (-2076 (((-112) $) 49)) (-2948 (($ $) 126)) (-1558 (((-112) $) 127)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3829 ((|#1| $) 70) (($ $ (-747)) 68)) (-2616 (($ $ $ (-549)) 116) (($ |#1| $ (-549)) 115)) (-3303 (((-621 (-549)) $) 92)) (-3761 (((-112) (-549) $) 91)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3217 ((|#1| $) 125)) (-3646 ((|#1| $) 76) (($ $ (-747)) 74)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-1642 (($ $ |#1|) 96 (|has| $ (-6 -4338)))) (-2763 (($ $ (-549)) 122)) (-3016 (((-112) $) 84)) (-1551 (((-112) $) 128)) (-2510 (((-112) $) 129)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) 90)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1193 (-549))) 112) ((|#1| $ (-549)) 89) ((|#1| $ (-549) |#1|) 88)) (-3230 (((-549) $ $) 44)) (-2167 (($ $ (-1193 (-549))) 114) (($ $ (-549)) 113)) (-3497 (((-112) $) 46)) (-1999 (($ $) 62)) (-2643 (($ $) 59 (|has| $ (-6 -4338)))) (-3798 (((-747) $) 63)) (-3612 (($ $) 64)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2845 (((-525) $) 98 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 107)) (-3196 (($ $ $) 61 (|has| $ (-6 -4338))) (($ $ |#1|) 60 (|has| $ (-6 -4338)))) (-1952 (($ $ $) 78) (($ |#1| $) 77) (($ (-621 $)) 110) (($ $ |#1|) 109)) (-1977 (($ $) 121)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) 51)) (-1987 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-650 |#1|) (-138) (-1180)) (T -650))
+((-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1180)))) (-1489 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1180)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1180)) (-5 *2 (-112)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1180)) (-5 *2 (-112)))) (-1558 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1180)) (-5 *2 (-112)))) (-2948 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1180)))) (-3217 (*1 *2 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1180)))) (-2670 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1180)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1180)) (-5 *2 (-747)))) (-2763 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-650 *3)) (-4 *3 (-1180)))) (-1977 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1180)))))
+(-13 (-1116 |t#1|) (-10 -8 (-15 -3812 ($ (-1 (-112) |t#1|) $)) (-15 -1489 ($ (-1 (-112) |t#1|) $)) (-15 -2510 ((-112) $)) (-15 -1551 ((-112) $)) (-15 -1558 ((-112) $)) (-15 -2948 ($ $)) (-15 -3217 (|t#1| $)) (-15 -2670 ($ $)) (-15 -1545 ((-747) $)) (-15 -2763 ($ $ (-549))) (-15 -1977 ($ $))))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1116 |#1|) . T) ((-1180) . T) ((-1214 |#1|) . T))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3985 (($ (-747) (-747) (-747)) 33 (|has| |#1| (-1018)))) (-1584 (((-112) $ (-747)) NIL)) (-3994 ((|#1| $ (-747) (-747) (-747) |#1|) 27)) (-1682 (($) NIL T CONST)) (-3441 (($ $ $) 37 (|has| |#1| (-1018)))) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-3290 (((-1226 (-747)) $) 9)) (-1791 (($ (-1143) $ $) 22)) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-1301 (($ (-747)) 35 (|has| |#1| (-1018)))) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ (-747) (-747) (-747)) 25)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-3854 (($ (-621 (-621 (-621 |#1|)))) 44)) (-3846 (($ (-929 (-929 (-929 |#1|)))) 15) (((-929 (-929 (-929 |#1|))) $) 12) (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-651 |#1|) (-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1018)) (PROGN (-15 -3985 ($ (-747) (-747) (-747))) (-15 -1301 ($ (-747))) (-15 -3441 ($ $ $))) |%noBranch|) (-15 -3854 ($ (-621 (-621 (-621 |#1|))))) (-15 -3341 (|#1| $ (-747) (-747) (-747))) (-15 -3994 (|#1| $ (-747) (-747) (-747) |#1|)) (-15 -3846 ($ (-929 (-929 (-929 |#1|))))) (-15 -3846 ((-929 (-929 (-929 |#1|))) $)) (-15 -1791 ($ (-1143) $ $)) (-15 -3290 ((-1226 (-747)) $)))) (-1067)) (T -651))
+((-3985 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018)) (-4 *3 (-1067)))) (-1301 (*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018)) (-4 *3 (-1067)))) (-3441 (*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-1018)) (-4 *2 (-1067)))) (-3854 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-621 *3)))) (-4 *3 (-1067)) (-5 *1 (-651 *3)))) (-3341 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1067)))) (-3994 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1067)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-4 *3 (-1067)) (-5 *1 (-651 *3)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-5 *1 (-651 *3)) (-4 *3 (-1067)))) (-1791 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-651 *3)) (-4 *3 (-1067)))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-1226 (-747))) (-5 *1 (-651 *3)) (-4 *3 (-1067)))))
+(-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1018)) (PROGN (-15 -3985 ($ (-747) (-747) (-747))) (-15 -1301 ($ (-747))) (-15 -3441 ($ $ $))) |%noBranch|) (-15 -3854 ($ (-621 (-621 (-621 |#1|))))) (-15 -3341 (|#1| $ (-747) (-747) (-747))) (-15 -3994 (|#1| $ (-747) (-747) (-747) |#1|)) (-15 -3846 ($ (-929 (-929 (-929 |#1|))))) (-15 -3846 ((-929 (-929 (-929 |#1|))) $)) (-15 -1791 ($ (-1143) $ $)) (-15 -3290 ((-1226 (-747)) $))))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3477 (((-621 (-497)) $) 11)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2492 (((-1148) $) 13)) (-2389 (((-112) $ $) NIL)))
+(((-652) (-13 (-1050) (-10 -8 (-15 -3477 ((-621 (-497)) $)) (-15 -2492 ((-1148) $))))) (T -652))
+((-3477 (*1 *2 *1) (-12 (-5 *2 (-621 (-497))) (-5 *1 (-652)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-652)))))
+(-13 (-1050) (-10 -8 (-15 -3477 ((-621 (-497)) $)) (-15 -2492 ((-1148) $))))
+((-3834 (((-112) $ $) NIL)) (-3304 (((-621 |#1|) $) 14)) (-3848 (($ $) 18)) (-4304 (((-112) $) 19)) (-2714 (((-3 |#1| "failed") $) 22)) (-2659 ((|#1| $) 20)) (-3657 (($ $) 36)) (-4273 (($ $) 24)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-4192 (((-112) $ $) 42)) (-4210 (((-892) $) 38)) (-3838 (($ $) 17)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3646 ((|#1| $) 35)) (-3846 (((-834) $) 31) (($ |#1|) 23) (((-795 |#1|) $) 27)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 12)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 40)) (* (($ $ $) 34)))
+(((-653 |#1|) (-13 (-823) (-1009 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3846 ((-795 |#1|) $)) (-15 -3646 (|#1| $)) (-15 -3838 ($ $)) (-15 -4210 ((-892) $)) (-15 -4192 ((-112) $ $)) (-15 -4273 ($ $)) (-15 -3657 ($ $)) (-15 -4304 ((-112) $)) (-15 -3848 ($ $)) (-15 -3304 ((-621 |#1|) $)))) (-823)) (T -653))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-3646 (*1 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-892)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-4192 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-4273 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-3657 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823)))) (-3848 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823)))))
+(-13 (-823) (-1009 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3846 ((-795 |#1|) $)) (-15 -3646 (|#1| $)) (-15 -3838 ($ $)) (-15 -4210 ((-892) $)) (-15 -4192 ((-112) $ $)) (-15 -4273 ($ $)) (-15 -3657 ($ $)) (-15 -4304 ((-112) $)) (-15 -3848 ($ $)) (-15 -3304 ((-621 |#1|) $))))
+((-1477 ((|#1| (-1 |#1| (-747) |#1|) (-747) |#1|) 11)) (-2665 ((|#1| (-1 |#1| |#1|) (-747) |#1|) 9)))
+(((-654 |#1|) (-10 -7 (-15 -2665 (|#1| (-1 |#1| |#1|) (-747) |#1|)) (-15 -1477 (|#1| (-1 |#1| (-747) |#1|) (-747) |#1|))) (-1067)) (T -654))
+((-1477 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-747) *2)) (-5 *4 (-747)) (-4 *2 (-1067)) (-5 *1 (-654 *2)))) (-2665 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-747)) (-4 *2 (-1067)) (-5 *1 (-654 *2)))))
+(-10 -7 (-15 -2665 (|#1| (-1 |#1| |#1|) (-747) |#1|)) (-15 -1477 (|#1| (-1 |#1| (-747) |#1|) (-747) |#1|)))
+((-3567 ((|#2| |#1| |#2|) 9)) (-3554 ((|#1| |#1| |#2|) 8)))
+(((-655 |#1| |#2|) (-10 -7 (-15 -3554 (|#1| |#1| |#2|)) (-15 -3567 (|#2| |#1| |#2|))) (-1067) (-1067)) (T -655))
+((-3567 (*1 *2 *3 *2) (-12 (-5 *1 (-655 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-3554 (*1 *2 *2 *3) (-12 (-5 *1 (-655 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(-10 -7 (-15 -3554 (|#1| |#1| |#2|)) (-15 -3567 (|#2| |#1| |#2|)))
+((-3774 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-656 |#1| |#2| |#3|) (-10 -7 (-15 -3774 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1067) (-1067) (-1067)) (T -656))
+((-3774 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)) (-5 *1 (-656 *5 *6 *2)))))
+(-10 -7 (-15 -3774 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-2100 (((-1179) $) 20)) (-3224 (((-621 (-1179)) $) 18)) (-2305 (($ (-621 (-1179)) (-1179)) 13)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL) (((-1179) $) 21) (($ (-1085)) 10)) (-2389 (((-112) $ $) NIL)))
+(((-657) (-13 (-1050) (-593 (-1179)) (-10 -8 (-15 -3846 ($ (-1085))) (-15 -2305 ($ (-621 (-1179)) (-1179))) (-15 -3224 ((-621 (-1179)) $)) (-15 -2100 ((-1179) $))))) (T -657))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-657)))) (-2305 (*1 *1 *2 *3) (-12 (-5 *2 (-621 (-1179))) (-5 *3 (-1179)) (-5 *1 (-657)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-621 (-1179))) (-5 *1 (-657)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-657)))))
+(-13 (-1050) (-593 (-1179)) (-10 -8 (-15 -3846 ($ (-1085))) (-15 -2305 ($ (-621 (-1179)) (-1179))) (-15 -3224 ((-621 (-1179)) $)) (-15 -2100 ((-1179) $))))
+((-1477 (((-1 |#1| (-747) |#1|) (-1 |#1| (-747) |#1|)) 23)) (-3722 (((-1 |#1|) |#1|) 8)) (-3715 ((|#1| |#1|) 16)) (-4196 (((-621 |#1|) (-1 (-621 |#1|) (-621 |#1|)) (-549)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3846 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-747)) 20)))
+(((-658 |#1|) (-10 -7 (-15 -3722 ((-1 |#1|) |#1|)) (-15 -3846 ((-1 |#1|) |#1|)) (-15 -4196 (|#1| (-1 |#1| |#1|))) (-15 -4196 ((-621 |#1|) (-1 (-621 |#1|) (-621 |#1|)) (-549))) (-15 -3715 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-747))) (-15 -1477 ((-1 |#1| (-747) |#1|) (-1 |#1| (-747) |#1|)))) (-1067)) (T -658))
+((-1477 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-747) *3)) (-4 *3 (-1067)) (-5 *1 (-658 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *4 (-1067)) (-5 *1 (-658 *4)))) (-3715 (*1 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1067)))) (-4196 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-621 *5) (-621 *5))) (-5 *4 (-549)) (-5 *2 (-621 *5)) (-5 *1 (-658 *5)) (-4 *5 (-1067)))) (-4196 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-658 *2)) (-4 *2 (-1067)))) (-3846 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1067)))) (-3722 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1067)))))
+(-10 -7 (-15 -3722 ((-1 |#1|) |#1|)) (-15 -3846 ((-1 |#1|) |#1|)) (-15 -4196 (|#1| (-1 |#1| |#1|))) (-15 -4196 ((-621 |#1|) (-1 (-621 |#1|) (-621 |#1|)) (-549))) (-15 -3715 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-747))) (-15 -1477 ((-1 |#1| (-747) |#1|) (-1 |#1| (-747) |#1|))))
+((-2287 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1609 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2589 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1759 (((-1 |#2| |#1|) |#2|) 11)))
+(((-659 |#1| |#2|) (-10 -7 (-15 -1759 ((-1 |#2| |#1|) |#2|)) (-15 -1609 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2589 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2287 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1067) (-1067)) (T -659))
+((-2287 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-5 *2 (-1 *5 *4)) (-5 *1 (-659 *4 *5)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1067)) (-5 *2 (-1 *5 *4)) (-5 *1 (-659 *4 *5)) (-4 *4 (-1067)))) (-1609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-5 *2 (-1 *5)) (-5 *1 (-659 *4 *5)))) (-1759 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-659 *4 *3)) (-4 *4 (-1067)) (-4 *3 (-1067)))))
+(-10 -7 (-15 -1759 ((-1 |#2| |#1|) |#2|)) (-15 -1609 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2589 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2287 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-3513 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1471 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3558 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3141 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2201 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -1471 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3558 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3141 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2201 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3513 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1067) (-1067) (-1067)) (T -660))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-1 *7 *5)) (-5 *1 (-660 *5 *6 *7)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-660 *4 *5 *6)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-660 *4 *5 *6)) (-4 *4 (-1067)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-660 *4 *5 *6)) (-4 *5 (-1067)))) (-3558 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *4 *5 *6)))) (-1471 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1067)) (-4 *4 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *5 *4 *6)))))
+(-10 -7 (-15 -1471 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3558 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3141 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2201 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3513 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-2557 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2797 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2797 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2797 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2557 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1018) (-366 |#1|) (-366 |#1|) (-663 |#1| |#2| |#3|) (-1018) (-366 |#5|) (-366 |#5|) (-663 |#5| |#6| |#7|)) (T -661))
+((-2557 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1018)) (-4 *2 (-1018)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *8 (-366 *2)) (-4 *9 (-366 *2)) (-5 *1 (-661 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-663 *5 *6 *7)) (-4 *10 (-663 *2 *8 *9)))) (-2797 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *2 (-663 *8 *9 *10)) (-5 *1 (-661 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-663 *5 *6 *7)) (-4 *9 (-366 *8)) (-4 *10 (-366 *8)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1018)) (-4 *8 (-1018)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *2 (-663 *8 *9 *10)) (-5 *1 (-661 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-663 *5 *6 *7)) (-4 *9 (-366 *8)) (-4 *10 (-366 *8)))))
+(-10 -7 (-15 -2797 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2797 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2557 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3769 (($ (-747) (-747)) 33)) (-1648 (($ $ $) 56)) (-3682 (($ |#3|) 52) (($ $) 53)) (-2092 (((-112) $) 28)) (-4206 (($ $ (-549) (-549)) 58)) (-1769 (($ $ (-549) (-549)) 59)) (-1624 (($ $ (-549) (-549) (-549) (-549)) 63)) (-4218 (($ $) 54)) (-2340 (((-112) $) 14)) (-1756 (($ $ (-549) (-549) $) 64)) (-2254 ((|#2| $ (-549) (-549) |#2|) NIL) (($ $ (-621 (-549)) (-621 (-549)) $) 62)) (-2228 (($ (-747) |#2|) 39)) (-3946 (($ (-621 (-621 |#2|))) 37)) (-2913 (((-621 (-621 |#2|)) $) 57)) (-3571 (($ $ $) 55)) (-2042 (((-3 $ "failed") $ |#2|) 91)) (-3341 ((|#2| $ (-549) (-549)) NIL) ((|#2| $ (-549) (-549) |#2|) NIL) (($ $ (-621 (-549)) (-621 (-549))) 61)) (-2133 (($ (-621 |#2|)) 40) (($ (-621 $)) 42)) (-1757 (((-112) $) 24)) (-3846 (($ |#4|) 47) (((-834) $) NIL)) (-2974 (((-112) $) 30)) (-2513 (($ $ |#2|) 93)) (-2500 (($ $ $) 68) (($ $) 71)) (-2486 (($ $ $) 66)) (** (($ $ (-747)) 80) (($ $ (-549)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-549) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
+(((-662 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3846 ((-834) |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -2513 (|#1| |#1| |#2|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2486 (|#1| |#1| |#1|)) (-15 -1756 (|#1| |#1| (-549) (-549) |#1|)) (-15 -1624 (|#1| |#1| (-549) (-549) (-549) (-549))) (-15 -1769 (|#1| |#1| (-549) (-549))) (-15 -4206 (|#1| |#1| (-549) (-549))) (-15 -2254 (|#1| |#1| (-621 (-549)) (-621 (-549)) |#1|)) (-15 -3341 (|#1| |#1| (-621 (-549)) (-621 (-549)))) (-15 -2913 ((-621 (-621 |#2|)) |#1|)) (-15 -1648 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -3682 (|#1| |#3|)) (-15 -3846 (|#1| |#4|)) (-15 -2133 (|#1| (-621 |#1|))) (-15 -2133 (|#1| (-621 |#2|))) (-15 -2228 (|#1| (-747) |#2|)) (-15 -3946 (|#1| (-621 (-621 |#2|)))) (-15 -3769 (|#1| (-747) (-747))) (-15 -2974 ((-112) |#1|)) (-15 -2092 ((-112) |#1|)) (-15 -1757 ((-112) |#1|)) (-15 -2340 ((-112) |#1|)) (-15 -2254 (|#2| |#1| (-549) (-549) |#2|)) (-15 -3341 (|#2| |#1| (-549) (-549) |#2|)) (-15 -3341 (|#2| |#1| (-549) (-549)))) (-663 |#2| |#3| |#4|) (-1018) (-366 |#2|) (-366 |#2|)) (T -662))
+NIL
+(-10 -8 (-15 -3846 ((-834) |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -2513 (|#1| |#1| |#2|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-747))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2486 (|#1| |#1| |#1|)) (-15 -1756 (|#1| |#1| (-549) (-549) |#1|)) (-15 -1624 (|#1| |#1| (-549) (-549) (-549) (-549))) (-15 -1769 (|#1| |#1| (-549) (-549))) (-15 -4206 (|#1| |#1| (-549) (-549))) (-15 -2254 (|#1| |#1| (-621 (-549)) (-621 (-549)) |#1|)) (-15 -3341 (|#1| |#1| (-621 (-549)) (-621 (-549)))) (-15 -2913 ((-621 (-621 |#2|)) |#1|)) (-15 -1648 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -3682 (|#1| |#3|)) (-15 -3846 (|#1| |#4|)) (-15 -2133 (|#1| (-621 |#1|))) (-15 -2133 (|#1| (-621 |#2|))) (-15 -2228 (|#1| (-747) |#2|)) (-15 -3946 (|#1| (-621 (-621 |#2|)))) (-15 -3769 (|#1| (-747) (-747))) (-15 -2974 ((-112) |#1|)) (-15 -2092 ((-112) |#1|)) (-15 -1757 ((-112) |#1|)) (-15 -2340 ((-112) |#1|)) (-15 -2254 (|#2| |#1| (-549) (-549) |#2|)) (-15 -3341 (|#2| |#1| (-549) (-549) |#2|)) (-15 -3341 (|#2| |#1| (-549) (-549))))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3769 (($ (-747) (-747)) 97)) (-1648 (($ $ $) 87)) (-3682 (($ |#2|) 91) (($ $) 90)) (-2092 (((-112) $) 99)) (-4206 (($ $ (-549) (-549)) 83)) (-1769 (($ $ (-549) (-549)) 82)) (-1624 (($ $ (-549) (-549) (-549) (-549)) 81)) (-4218 (($ $) 89)) (-2340 (((-112) $) 101)) (-1584 (((-112) $ (-747)) 8)) (-1756 (($ $ (-549) (-549) $) 80)) (-2254 ((|#1| $ (-549) (-549) |#1|) 44) (($ $ (-621 (-549)) (-621 (-549)) $) 84)) (-3537 (($ $ (-549) |#2|) 42)) (-3815 (($ $ (-549) |#3|) 41)) (-2228 (($ (-747) |#1|) 95)) (-1682 (($) 7 T CONST)) (-3460 (($ $) 67 (|has| |#1| (-300)))) (-4060 ((|#2| $ (-549)) 46)) (-3123 (((-747) $) 66 (|has| |#1| (-541)))) (-1879 ((|#1| $ (-549) (-549) |#1|) 43)) (-1809 ((|#1| $ (-549) (-549)) 48)) (-2989 (((-621 |#1|) $) 30)) (-1323 (((-747) $) 65 (|has| |#1| (-541)))) (-1479 (((-621 |#3|) $) 64 (|has| |#1| (-541)))) (-2142 (((-747) $) 51)) (-3743 (($ (-747) (-747) |#1|) 57)) (-2155 (((-747) $) 50)) (-3194 (((-112) $ (-747)) 9)) (-1929 ((|#1| $) 62 (|has| |#1| (-6 (-4339 "*"))))) (-1761 (((-549) $) 55)) (-2703 (((-549) $) 53)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1661 (((-549) $) 54)) (-1887 (((-549) $) 52)) (-3946 (($ (-621 (-621 |#1|))) 96)) (-1868 (($ (-1 |#1| |#1|) $) 34)) (-2797 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2913 (((-621 (-621 |#1|)) $) 86)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3849 (((-3 $ "failed") $) 61 (|has| |#1| (-356)))) (-3571 (($ $ $) 88)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-1642 (($ $ |#1|) 56)) (-2042 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-541)))) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ (-549) (-549)) 49) ((|#1| $ (-549) (-549) |#1|) 47) (($ $ (-621 (-549)) (-621 (-549))) 85)) (-2133 (($ (-621 |#1|)) 94) (($ (-621 $)) 93)) (-1757 (((-112) $) 100)) (-2029 ((|#1| $) 63 (|has| |#1| (-6 (-4339 "*"))))) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2851 ((|#3| $ (-549)) 45)) (-3846 (($ |#3|) 92) (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2974 (((-112) $) 98)) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-2513 (($ $ |#1|) 68 (|has| |#1| (-356)))) (-2500 (($ $ $) 78) (($ $) 77)) (-2486 (($ $ $) 79)) (** (($ $ (-747)) 70) (($ $ (-549)) 60 (|has| |#1| (-356)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-549) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-663 |#1| |#2| |#3|) (-138) (-1018) (-366 |t#1|) (-366 |t#1|)) (T -663))
+((-2340 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-112)))) (-3769 (*1 *1 *2 *2) (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2228 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-3846 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *2)) (-4 *4 (-366 *3)) (-4 *2 (-366 *3)))) (-3682 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-663 *3 *2 *4)) (-4 *2 (-366 *3)) (-4 *4 (-366 *3)))) (-3682 (*1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-4218 (*1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-3571 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-1648 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-621 (-621 *3))))) (-3341 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-621 (-549))) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2254 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-621 (-549))) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-4206 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1769 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1624 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-1756 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2486 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2500 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-663 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *2 (-366 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-663 *3 *2 *4)) (-4 *3 (-1018)) (-4 *2 (-366 *3)) (-4 *4 (-366 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))) (-2042 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-541)))) (-2513 (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-356)))) (-3460 (*1 *1 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-300)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-541)) (-5 *2 (-747)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-541)) (-5 *2 (-747)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-541)) (-5 *2 (-621 *5)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (|has| *2 (-6 (-4339 "*"))) (-4 *2 (-1018)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (|has| *2 (-6 (-4339 "*"))) (-4 *2 (-1018)))) (-3849 (*1 *1 *1) (|partial| -12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-356)))))
+(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4338) (-6 -4337) (-15 -2340 ((-112) $)) (-15 -1757 ((-112) $)) (-15 -2092 ((-112) $)) (-15 -2974 ((-112) $)) (-15 -3769 ($ (-747) (-747))) (-15 -3946 ($ (-621 (-621 |t#1|)))) (-15 -2228 ($ (-747) |t#1|)) (-15 -2133 ($ (-621 |t#1|))) (-15 -2133 ($ (-621 $))) (-15 -3846 ($ |t#3|)) (-15 -3682 ($ |t#2|)) (-15 -3682 ($ $)) (-15 -4218 ($ $)) (-15 -3571 ($ $ $)) (-15 -1648 ($ $ $)) (-15 -2913 ((-621 (-621 |t#1|)) $)) (-15 -3341 ($ $ (-621 (-549)) (-621 (-549)))) (-15 -2254 ($ $ (-621 (-549)) (-621 (-549)) $)) (-15 -4206 ($ $ (-549) (-549))) (-15 -1769 ($ $ (-549) (-549))) (-15 -1624 ($ $ (-549) (-549) (-549) (-549))) (-15 -1756 ($ $ (-549) (-549) $)) (-15 -2486 ($ $ $)) (-15 -2500 ($ $ $)) (-15 -2500 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-549) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-747))) (IF (|has| |t#1| (-541)) (-15 -2042 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -2513 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-300)) (-15 -3460 ($ $)) |%noBranch|) (IF (|has| |t#1| (-541)) (PROGN (-15 -3123 ((-747) $)) (-15 -1323 ((-747) $)) (-15 -1479 ((-621 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4339 "*"))) (PROGN (-15 -2029 (|t#1| $)) (-15 -1929 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -3849 ((-3 $ "failed") $)) (-15 ** ($ $ (-549)))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-56 |#1| |#2| |#3|) . T) ((-1180) . T))
+((-3460 ((|#4| |#4|) 72 (|has| |#1| (-300)))) (-3123 (((-747) |#4|) 99 (|has| |#1| (-541)))) (-1323 (((-747) |#4|) 76 (|has| |#1| (-541)))) (-1479 (((-621 |#3|) |#4|) 83 (|has| |#1| (-541)))) (-4297 (((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|) 111 (|has| |#1| (-300)))) (-1929 ((|#1| |#4|) 35)) (-4177 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-541)))) (-3849 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-356)))) (-2125 ((|#4| |#4|) 68 (|has| |#1| (-541)))) (-4070 ((|#4| |#4| |#1| (-549) (-549)) 43)) (-3462 ((|#4| |#4| (-549) (-549)) 38)) (-2720 ((|#4| |#4| |#1| (-549) (-549)) 48)) (-2029 ((|#1| |#4|) 78)) (-1709 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-541)))))
+(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2029 (|#1| |#4|)) (-15 -1929 (|#1| |#4|)) (-15 -3462 (|#4| |#4| (-549) (-549))) (-15 -4070 (|#4| |#4| |#1| (-549) (-549))) (-15 -2720 (|#4| |#4| |#1| (-549) (-549))) (IF (|has| |#1| (-541)) (PROGN (-15 -3123 ((-747) |#4|)) (-15 -1323 ((-747) |#4|)) (-15 -1479 ((-621 |#3|) |#4|)) (-15 -2125 (|#4| |#4|)) (-15 -4177 ((-3 |#4| "failed") |#4|)) (-15 -1709 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -3460 (|#4| |#4|)) (-15 -4297 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3849 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-366 |#1|) (-366 |#1|) (-663 |#1| |#2| |#3|)) (T -664))
+((-3849 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-4297 (*1 *2 *3 *3) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-664 *3 *4 *5 *6)) (-4 *6 (-663 *3 *4 *5)))) (-3460 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-1709 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-4177 (*1 *2 *2) (|partial| -12 (-4 *3 (-541)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-541)) (-4 *3 (-170)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-1479 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-621 *6)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-1323 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-3123 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-2720 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-549)) (-4 *3 (-170)) (-4 *5 (-366 *3)) (-4 *6 (-366 *3)) (-5 *1 (-664 *3 *5 *6 *2)) (-4 *2 (-663 *3 *5 *6)))) (-4070 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-549)) (-4 *3 (-170)) (-4 *5 (-366 *3)) (-4 *6 (-366 *3)) (-5 *1 (-664 *3 *5 *6 *2)) (-4 *2 (-663 *3 *5 *6)))) (-3462 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-170)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *1 (-664 *4 *5 *6 *2)) (-4 *2 (-663 *4 *5 *6)))) (-1929 (*1 *2 *3) (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170)) (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-663 *2 *4 *5)))) (-2029 (*1 *2 *3) (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170)) (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-663 *2 *4 *5)))))
+(-10 -7 (-15 -2029 (|#1| |#4|)) (-15 -1929 (|#1| |#4|)) (-15 -3462 (|#4| |#4| (-549) (-549))) (-15 -4070 (|#4| |#4| |#1| (-549) (-549))) (-15 -2720 (|#4| |#4| |#1| (-549) (-549))) (IF (|has| |#1| (-541)) (PROGN (-15 -3123 ((-747) |#4|)) (-15 -1323 ((-747) |#4|)) (-15 -1479 ((-621 |#3|) |#4|)) (-15 -2125 (|#4| |#4|)) (-15 -4177 ((-3 |#4| "failed") |#4|)) (-15 -1709 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -3460 (|#4| |#4|)) (-15 -4297 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3849 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3769 (($ (-747) (-747)) 47)) (-1648 (($ $ $) NIL)) (-3682 (($ (-1226 |#1|)) NIL) (($ $) NIL)) (-2092 (((-112) $) NIL)) (-4206 (($ $ (-549) (-549)) 12)) (-1769 (($ $ (-549) (-549)) NIL)) (-1624 (($ $ (-549) (-549) (-549) (-549)) NIL)) (-4218 (($ $) NIL)) (-2340 (((-112) $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-1756 (($ $ (-549) (-549) $) NIL)) (-2254 ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-621 (-549)) (-621 (-549)) $) NIL)) (-3537 (($ $ (-549) (-1226 |#1|)) NIL)) (-3815 (($ $ (-549) (-1226 |#1|)) NIL)) (-2228 (($ (-747) |#1|) 22)) (-1682 (($) NIL T CONST)) (-3460 (($ $) 31 (|has| |#1| (-300)))) (-4060 (((-1226 |#1|) $ (-549)) NIL)) (-3123 (((-747) $) 33 (|has| |#1| (-541)))) (-1879 ((|#1| $ (-549) (-549) |#1|) 51)) (-1809 ((|#1| $ (-549) (-549)) NIL)) (-2989 (((-621 |#1|) $) NIL)) (-1323 (((-747) $) 35 (|has| |#1| (-541)))) (-1479 (((-621 (-1226 |#1|)) $) 38 (|has| |#1| (-541)))) (-2142 (((-747) $) 20)) (-3743 (($ (-747) (-747) |#1|) 16)) (-2155 (((-747) $) 21)) (-3194 (((-112) $ (-747)) NIL)) (-1929 ((|#1| $) 29 (|has| |#1| (-6 (-4339 "*"))))) (-1761 (((-549) $) 9)) (-2703 (((-549) $) 10)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1661 (((-549) $) 11)) (-1887 (((-549) $) 48)) (-3946 (($ (-621 (-621 |#1|))) NIL)) (-1868 (($ (-1 |#1| |#1|) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2913 (((-621 (-621 |#1|)) $) 60)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3849 (((-3 $ "failed") $) 45 (|has| |#1| (-356)))) (-3571 (($ $ $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1642 (($ $ |#1|) NIL)) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-621 (-549)) (-621 (-549))) NIL)) (-2133 (($ (-621 |#1|)) NIL) (($ (-621 $)) NIL) (($ (-1226 |#1|)) 52)) (-1757 (((-112) $) NIL)) (-2029 ((|#1| $) 27 (|has| |#1| (-6 (-4339 "*"))))) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-2845 (((-525) $) 64 (|has| |#1| (-594 (-525))))) (-2851 (((-1226 |#1|) $ (-549)) NIL)) (-3846 (($ (-1226 |#1|)) NIL) (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2974 (((-112) $) NIL)) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $ $) NIL) (($ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-747)) 23) (($ $ (-549)) 46 (|has| |#1| (-356)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-549) $) NIL) (((-1226 |#1|) $ (-1226 |#1|)) NIL) (((-1226 |#1|) (-1226 |#1|) $) NIL)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-665 |#1|) (-13 (-663 |#1| (-1226 |#1|) (-1226 |#1|)) (-10 -8 (-15 -2133 ($ (-1226 |#1|))) (IF (|has| |#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3849 ((-3 $ "failed") $)) |%noBranch|))) (-1018)) (T -665))
+((-3849 (*1 *1 *1) (|partial| -12 (-5 *1 (-665 *2)) (-4 *2 (-356)) (-4 *2 (-1018)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-1018)) (-5 *1 (-665 *3)))))
+(-13 (-663 |#1| (-1226 |#1|) (-1226 |#1|)) (-10 -8 (-15 -2133 ($ (-1226 |#1|))) (IF (|has| |#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3849 ((-3 $ "failed") $)) |%noBranch|)))
+((-2489 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|)) 25)) (-2407 (((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|) 21)) (-3830 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-747)) 26)) (-2771 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|)) 14)) (-1478 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|)) 18) (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 16)) (-2226 (((-665 |#1|) (-665 |#1|) |#1| (-665 |#1|)) 20)) (-1453 (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 12)) (** (((-665 |#1|) (-665 |#1|) (-747)) 30)))
+(((-666 |#1|) (-10 -7 (-15 -1453 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2771 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -1478 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -1478 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2226 ((-665 |#1|) (-665 |#1|) |#1| (-665 |#1|))) (-15 -2407 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2489 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3830 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-747))) (-15 ** ((-665 |#1|) (-665 |#1|) (-747)))) (-1018)) (T -666))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-666 *4)))) (-3830 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-666 *4)))) (-2489 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2407 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2226 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-1478 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-1478 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-2771 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))) (-1453 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(-10 -7 (-15 -1453 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2771 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -1478 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -1478 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -2226 ((-665 |#1|) (-665 |#1|) |#1| (-665 |#1|))) (-15 -2407 ((-665 |#1|) (-665 |#1|) (-665 |#1|) |#1|)) (-15 -2489 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3830 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-665 |#1|) (-747))) (-15 ** ((-665 |#1|) (-665 |#1|) (-747))))
+((-4095 (($) 8 T CONST)) (-3846 (((-834) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3264 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -4095)) 16)) (-2321 ((|#1| $) 11)))
+(((-667 |#1|) (-13 (-1221) (-593 (-834)) (-10 -8 (-15 -3264 ((-112) $ (|[\|\|]| |#1|))) (-15 -3264 ((-112) $ (|[\|\|]| -4095))) (-15 -3846 ($ |#1|)) (-15 -3846 (|#1| $)) (-15 -2321 (|#1| $)) (-15 -4095 ($) -2589))) (-593 (-834))) (T -667))
+((-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-593 (-834))) (-5 *2 (-112)) (-5 *1 (-667 *4)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4095)) (-5 *2 (-112)) (-5 *1 (-667 *4)) (-4 *4 (-593 (-834))))) (-3846 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834))))) (-3846 (*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834))))) (-2321 (*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834))))) (-4095 (*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834))))))
+(-13 (-1221) (-593 (-834)) (-10 -8 (-15 -3264 ((-112) $ (|[\|\|]| |#1|))) (-15 -3264 ((-112) $ (|[\|\|]| -4095))) (-15 -3846 ($ |#1|)) (-15 -3846 (|#1| $)) (-15 -2321 (|#1| $)) (-15 -4095 ($) -2589)))
+((-4316 ((|#2| |#2| |#4|) 25)) (-4204 (((-665 |#2|) |#3| |#4|) 31)) (-1711 (((-665 |#2|) |#2| |#4|) 30)) (-2268 (((-1226 |#2|) |#2| |#4|) 16)) (-3448 ((|#2| |#3| |#4|) 24)) (-2188 (((-665 |#2|) |#3| |#4| (-747) (-747)) 38)) (-2311 (((-665 |#2|) |#2| |#4| (-747)) 37)))
+(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2268 ((-1226 |#2|) |#2| |#4|)) (-15 -3448 (|#2| |#3| |#4|)) (-15 -4316 (|#2| |#2| |#4|)) (-15 -1711 ((-665 |#2|) |#2| |#4|)) (-15 -2311 ((-665 |#2|) |#2| |#4| (-747))) (-15 -4204 ((-665 |#2|) |#3| |#4|)) (-15 -2188 ((-665 |#2|) |#3| |#4| (-747) (-747)))) (-1067) (-871 |#1|) (-366 |#2|) (-13 (-366 |#1|) (-10 -7 (-6 -4337)))) (T -668))
+((-2188 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-747)) (-4 *6 (-1067)) (-4 *7 (-871 *6)) (-5 *2 (-665 *7)) (-5 *1 (-668 *6 *7 *3 *4)) (-4 *3 (-366 *7)) (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4337)))))) (-4204 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *6 (-871 *5)) (-5 *2 (-665 *6)) (-5 *1 (-668 *5 *6 *3 *4)) (-4 *3 (-366 *6)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))))) (-2311 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-1067)) (-4 *3 (-871 *6)) (-5 *2 (-665 *3)) (-5 *1 (-668 *6 *3 *7 *4)) (-4 *7 (-366 *3)) (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4337)))))) (-1711 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *3 (-871 *5)) (-5 *2 (-665 *3)) (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-366 *3)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))))) (-4316 (*1 *2 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-871 *4)) (-5 *1 (-668 *4 *2 *5 *3)) (-4 *5 (-366 *2)) (-4 *3 (-13 (-366 *4) (-10 -7 (-6 -4337)))))) (-3448 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *2 (-871 *5)) (-5 *1 (-668 *5 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))))) (-2268 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *3 (-871 *5)) (-5 *2 (-1226 *3)) (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-366 *3)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))))))
+(-10 -7 (-15 -2268 ((-1226 |#2|) |#2| |#4|)) (-15 -3448 (|#2| |#3| |#4|)) (-15 -4316 (|#2| |#2| |#4|)) (-15 -1711 ((-665 |#2|) |#2| |#4|)) (-15 -2311 ((-665 |#2|) |#2| |#4| (-747))) (-15 -4204 ((-665 |#2|) |#3| |#4|)) (-15 -2188 ((-665 |#2|) |#3| |#4| (-747) (-747))))
+((-2050 (((-2 (|:| |num| (-665 |#1|)) (|:| |den| |#1|)) (-665 |#2|)) 20)) (-2836 ((|#1| (-665 |#2|)) 9)) (-1308 (((-665 |#1|) (-665 |#2|)) 18)))
+(((-669 |#1| |#2|) (-10 -7 (-15 -2836 (|#1| (-665 |#2|))) (-15 -1308 ((-665 |#1|) (-665 |#2|))) (-15 -2050 ((-2 (|:| |num| (-665 |#1|)) (|:| |den| |#1|)) (-665 |#2|)))) (-541) (-963 |#1|)) (T -669))
+((-2050 (*1 *2 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-963 *4)) (-4 *4 (-541)) (-5 *2 (-2 (|:| |num| (-665 *4)) (|:| |den| *4))) (-5 *1 (-669 *4 *5)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-963 *4)) (-4 *4 (-541)) (-5 *2 (-665 *4)) (-5 *1 (-669 *4 *5)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-669 *2 *4)))))
+(-10 -7 (-15 -2836 (|#1| (-665 |#2|))) (-15 -1308 ((-665 |#1|) (-665 |#2|))) (-15 -2050 ((-2 (|:| |num| (-665 |#1|)) (|:| |den| |#1|)) (-665 |#2|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-1738 (((-665 (-675))) NIL) (((-665 (-675)) (-1226 $)) NIL)) (-2906 (((-675) $) NIL)) (-1664 (($ $) NIL (|has| (-675) (-1165)))) (-1512 (($ $) NIL (|has| (-675) (-1165)))) (-3062 (((-1153 (-892) (-747)) (-549)) NIL (|has| (-675) (-342)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-880))))) (-3979 (($ $) NIL (-1536 (-12 (|has| (-675) (-300)) (|has| (-675) (-880))) (|has| (-675) (-356))))) (-2402 (((-411 $) $) NIL (-1536 (-12 (|has| (-675) (-300)) (|has| (-675) (-880))) (|has| (-675) (-356))))) (-2134 (($ $) NIL (-12 (|has| (-675) (-973)) (|has| (-675) (-1165))))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-880))))) (-3866 (((-112) $ $) NIL (|has| (-675) (-300)))) (-3614 (((-747)) NIL (|has| (-675) (-361)))) (-1640 (($ $) NIL (|has| (-675) (-1165)))) (-1486 (($ $) NIL (|has| (-675) (-1165)))) (-1685 (($ $) NIL (|has| (-675) (-1165)))) (-1539 (($ $) NIL (|has| (-675) (-1165)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL) (((-3 (-675) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-675) (-1009 (-400 (-549)))))) (-2659 (((-549) $) NIL) (((-675) $) NIL) (((-400 (-549)) $) NIL (|has| (-675) (-1009 (-400 (-549)))))) (-3492 (($ (-1226 (-675))) NIL) (($ (-1226 (-675)) (-1226 $)) NIL)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-675) (-342)))) (-2095 (($ $ $) NIL (|has| (-675) (-300)))) (-3506 (((-665 (-675)) $) NIL) (((-665 (-675)) $ (-1226 $)) NIL)) (-3879 (((-665 (-675)) (-665 $)) NIL) (((-2 (|:| -3521 (-665 (-675))) (|:| |vec| (-1226 (-675)))) (-665 $) (-1226 $)) NIL) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| (-675) (-617 (-549)))) (((-665 (-549)) (-665 $)) NIL (|has| (-675) (-617 (-549))))) (-2557 (((-3 $ "failed") (-400 (-1139 (-675)))) NIL (|has| (-675) (-356))) (($ (-1139 (-675))) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2145 (((-675) $) 29)) (-3405 (((-3 (-400 (-549)) "failed") $) NIL (|has| (-675) (-534)))) (-3679 (((-112) $) NIL (|has| (-675) (-534)))) (-2532 (((-400 (-549)) $) NIL (|has| (-675) (-534)))) (-3123 (((-892)) NIL)) (-3239 (($) NIL (|has| (-675) (-361)))) (-2067 (($ $ $) NIL (|has| (-675) (-300)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| (-675) (-300)))) (-2405 (($) NIL (|has| (-675) (-342)))) (-2288 (((-112) $) NIL (|has| (-675) (-342)))) (-3165 (($ $) NIL (|has| (-675) (-342))) (($ $ (-747)) NIL (|has| (-675) (-342)))) (-1420 (((-112) $) NIL (-1536 (-12 (|has| (-675) (-300)) (|has| (-675) (-880))) (|has| (-675) (-356))))) (-2467 (((-2 (|:| |r| (-675)) (|:| |phi| (-675))) $) NIL (-12 (|has| (-675) (-1027)) (|has| (-675) (-1165))))) (-1425 (($) NIL (|has| (-675) (-1165)))) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-675) (-857 (-372)))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-675) (-857 (-549))))) (-2088 (((-809 (-892)) $) NIL (|has| (-675) (-342))) (((-892) $) NIL (|has| (-675) (-342)))) (-2675 (((-112) $) NIL)) (-4187 (($ $ (-549)) NIL (-12 (|has| (-675) (-973)) (|has| (-675) (-1165))))) (-3630 (((-675) $) NIL)) (-1681 (((-3 $ "failed") $) NIL (|has| (-675) (-342)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| (-675) (-300)))) (-3788 (((-1139 (-675)) $) NIL (|has| (-675) (-356)))) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2797 (($ (-1 (-675) (-675)) $) NIL)) (-1881 (((-892) $) NIL (|has| (-675) (-361)))) (-3632 (($ $) NIL (|has| (-675) (-1165)))) (-2548 (((-1139 (-675)) $) NIL)) (-3697 (($ (-621 $)) NIL (|has| (-675) (-300))) (($ $ $) NIL (|has| (-675) (-300)))) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL (|has| (-675) (-356)))) (-3060 (($) NIL (|has| (-675) (-342)) CONST)) (-3493 (($ (-892)) NIL (|has| (-675) (-361)))) (-1429 (($) NIL)) (-2160 (((-675) $) 31)) (-3990 (((-1087) $) NIL)) (-4248 (($) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| (-675) (-300)))) (-3727 (($ (-621 $)) NIL (|has| (-675) (-300))) (($ $ $) NIL (|has| (-675) (-300)))) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL (|has| (-675) (-342)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-880))))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| (-675) (-300)) (|has| (-675) (-880))))) (-2121 (((-411 $) $) NIL (-1536 (-12 (|has| (-675) (-300)) (|has| (-675) (-880))) (|has| (-675) (-356))))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-675) (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| (-675) (-300)))) (-2042 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-675)) NIL (|has| (-675) (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| (-675) (-300)))) (-2719 (($ $) NIL (|has| (-675) (-1165)))) (-2686 (($ $ (-1143) (-675)) NIL (|has| (-675) (-505 (-1143) (-675)))) (($ $ (-621 (-1143)) (-621 (-675))) NIL (|has| (-675) (-505 (-1143) (-675)))) (($ $ (-621 (-287 (-675)))) NIL (|has| (-675) (-302 (-675)))) (($ $ (-287 (-675))) NIL (|has| (-675) (-302 (-675)))) (($ $ (-675) (-675)) NIL (|has| (-675) (-302 (-675)))) (($ $ (-621 (-675)) (-621 (-675))) NIL (|has| (-675) (-302 (-675))))) (-3684 (((-747) $) NIL (|has| (-675) (-300)))) (-3341 (($ $ (-675)) NIL (|has| (-675) (-279 (-675) (-675))))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| (-675) (-300)))) (-3602 (((-675)) NIL) (((-675) (-1226 $)) NIL)) (-3914 (((-3 (-747) "failed") $ $) NIL (|has| (-675) (-342))) (((-747) $) NIL (|has| (-675) (-342)))) (-3456 (($ $ (-1 (-675) (-675))) NIL) (($ $ (-1 (-675) (-675)) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-675) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-675) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-675) (-871 (-1143)))) (($ $ (-1143)) NIL (|has| (-675) (-871 (-1143)))) (($ $ (-747)) NIL (|has| (-675) (-227))) (($ $) NIL (|has| (-675) (-227)))) (-2901 (((-665 (-675)) (-1226 $) (-1 (-675) (-675))) NIL (|has| (-675) (-356)))) (-2815 (((-1139 (-675))) NIL)) (-1698 (($ $) NIL (|has| (-675) (-1165)))) (-1552 (($ $) NIL (|has| (-675) (-1165)))) (-3170 (($) NIL (|has| (-675) (-342)))) (-1675 (($ $) NIL (|has| (-675) (-1165)))) (-1526 (($ $) NIL (|has| (-675) (-1165)))) (-1651 (($ $) NIL (|has| (-675) (-1165)))) (-1501 (($ $) NIL (|has| (-675) (-1165)))) (-4263 (((-665 (-675)) (-1226 $)) NIL) (((-1226 (-675)) $) NIL) (((-665 (-675)) (-1226 $) (-1226 $)) NIL) (((-1226 (-675)) $ (-1226 $)) NIL)) (-2845 (((-525) $) NIL (|has| (-675) (-594 (-525)))) (((-167 (-219)) $) NIL (|has| (-675) (-993))) (((-167 (-372)) $) NIL (|has| (-675) (-993))) (((-863 (-372)) $) NIL (|has| (-675) (-594 (-863 (-372))))) (((-863 (-549)) $) NIL (|has| (-675) (-594 (-863 (-549))))) (($ (-1139 (-675))) NIL) (((-1139 (-675)) $) NIL) (($ (-1226 (-675))) NIL) (((-1226 (-675)) $) NIL)) (-1955 (($ $) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-1536 (-12 (|has| (-675) (-300)) (|has| $ (-143)) (|has| (-675) (-880))) (|has| (-675) (-342))))) (-3410 (($ (-675) (-675)) 12)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-549)) NIL) (($ (-675)) NIL) (($ (-167 (-372))) 13) (($ (-167 (-549))) 19) (($ (-167 (-675))) 28) (($ (-167 (-677))) 25) (((-167 (-372)) $) 33) (($ (-400 (-549))) NIL (-1536 (|has| (-675) (-1009 (-400 (-549)))) (|has| (-675) (-356))))) (-2210 (($ $) NIL (|has| (-675) (-342))) (((-3 $ "failed") $) NIL (-1536 (-12 (|has| (-675) (-300)) (|has| $ (-143)) (|has| (-675) (-880))) (|has| (-675) (-143))))) (-4154 (((-1139 (-675)) $) NIL)) (-2082 (((-747)) NIL)) (-1949 (((-1226 $)) NIL)) (-1733 (($ $) NIL (|has| (-675) (-1165)))) (-1587 (($ $) NIL (|has| (-675) (-1165)))) (-1498 (((-112) $ $) NIL)) (-1710 (($ $) NIL (|has| (-675) (-1165)))) (-1564 (($ $) NIL (|has| (-675) (-1165)))) (-1758 (($ $) NIL (|has| (-675) (-1165)))) (-1612 (($ $) NIL (|has| (-675) (-1165)))) (-1572 (((-675) $) NIL (|has| (-675) (-1165)))) (-1934 (($ $) NIL (|has| (-675) (-1165)))) (-1627 (($ $) NIL (|has| (-675) (-1165)))) (-1745 (($ $) NIL (|has| (-675) (-1165)))) (-1600 (($ $) NIL (|has| (-675) (-1165)))) (-1722 (($ $) NIL (|has| (-675) (-1165)))) (-1576 (($ $) NIL (|has| (-675) (-1165)))) (-3212 (($ $) NIL (|has| (-675) (-1027)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-1 (-675) (-675))) NIL) (($ $ (-1 (-675) (-675)) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-675) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-675) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-675) (-871 (-1143)))) (($ $ (-1143)) NIL (|has| (-675) (-871 (-1143)))) (($ $ (-747)) NIL (|has| (-675) (-227))) (($ $) NIL (|has| (-675) (-227)))) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL (|has| (-675) (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ $) NIL (|has| (-675) (-1165))) (($ $ (-400 (-549))) NIL (-12 (|has| (-675) (-973)) (|has| (-675) (-1165)))) (($ $ (-549)) NIL (|has| (-675) (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ (-675) $) NIL) (($ $ (-675)) NIL) (($ (-400 (-549)) $) NIL (|has| (-675) (-356))) (($ $ (-400 (-549))) NIL (|has| (-675) (-356)))))
+(((-670) (-13 (-380) (-164 (-675)) (-10 -8 (-15 -3846 ($ (-167 (-372)))) (-15 -3846 ($ (-167 (-549)))) (-15 -3846 ($ (-167 (-675)))) (-15 -3846 ($ (-167 (-677)))) (-15 -3846 ((-167 (-372)) $))))) (T -670))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-670)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-167 (-549))) (-5 *1 (-670)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-167 (-675))) (-5 *1 (-670)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-167 (-677))) (-5 *1 (-670)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-670)))))
+(-13 (-380) (-164 (-675)) (-10 -8 (-15 -3846 ($ (-167 (-372)))) (-15 -3846 ($ (-167 (-549)))) (-15 -3846 ($ (-167 (-675)))) (-15 -3846 ($ (-167 (-677)))) (-15 -3846 ((-167 (-372)) $))))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) 8)) (-1717 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-3745 (($ $) 62)) (-3676 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2129 (($ |#1| $) 47 (|has| $ (-6 -4337))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4337)))) (-3812 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4337)))) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3504 ((|#1| $) 39)) (-2751 (($ |#1| $) 40) (($ |#1| $ (-747)) 63)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3325 ((|#1| $) 41)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3458 (((-621 (-2 (|:| -1793 |#1|) (|:| -4000 (-747)))) $) 61)) (-2898 (($) 49) (($ (-621 |#1|)) 48)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2845 (((-525) $) 59 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 50)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3624 (($ (-621 |#1|)) 42)) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-671 |#1|) (-138) (-1067)) (T -671))
+((-2751 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-671 *2)) (-4 *2 (-1067)))) (-3745 (*1 *1 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1067)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-671 *3)) (-4 *3 (-1067)) (-5 *2 (-621 (-2 (|:| -1793 *3) (|:| -4000 (-747))))))))
+(-13 (-229 |t#1|) (-10 -8 (-15 -2751 ($ |t#1| $ (-747))) (-15 -3745 ($ $)) (-15 -3458 ((-621 (-2 (|:| -1793 |t#1|) (|:| -4000 (-747)))) $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-3369 (((-621 |#1|) (-621 (-2 (|:| -2121 |#1|) (|:| -3701 (-549)))) (-549)) 47)) (-1743 ((|#1| |#1| (-549)) 46)) (-3727 ((|#1| |#1| |#1| (-549)) 36)) (-2121 (((-621 |#1|) |#1| (-549)) 39)) (-3003 ((|#1| |#1| (-549) |#1| (-549)) 32)) (-1884 (((-621 (-2 (|:| -2121 |#1|) (|:| -3701 (-549)))) |#1| (-549)) 45)))
+(((-672 |#1|) (-10 -7 (-15 -3727 (|#1| |#1| |#1| (-549))) (-15 -1743 (|#1| |#1| (-549))) (-15 -2121 ((-621 |#1|) |#1| (-549))) (-15 -1884 ((-621 (-2 (|:| -2121 |#1|) (|:| -3701 (-549)))) |#1| (-549))) (-15 -3369 ((-621 |#1|) (-621 (-2 (|:| -2121 |#1|) (|:| -3701 (-549)))) (-549))) (-15 -3003 (|#1| |#1| (-549) |#1| (-549)))) (-1202 (-549))) (T -672))
+((-3003 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-672 *2)) (-4 *2 (-1202 *3)))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-2 (|:| -2121 *5) (|:| -3701 (-549))))) (-5 *4 (-549)) (-4 *5 (-1202 *4)) (-5 *2 (-621 *5)) (-5 *1 (-672 *5)))) (-1884 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-5 *2 (-621 (-2 (|:| -2121 *3) (|:| -3701 *4)))) (-5 *1 (-672 *3)) (-4 *3 (-1202 *4)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-5 *2 (-621 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1202 *4)))) (-1743 (*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-672 *2)) (-4 *2 (-1202 *3)))) (-3727 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-672 *2)) (-4 *2 (-1202 *3)))))
+(-10 -7 (-15 -3727 (|#1| |#1| |#1| (-549))) (-15 -1743 (|#1| |#1| (-549))) (-15 -2121 ((-621 |#1|) |#1| (-549))) (-15 -1884 ((-621 (-2 (|:| -2121 |#1|) (|:| -3701 (-549)))) |#1| (-549))) (-15 -3369 ((-621 |#1|) (-621 (-2 (|:| -2121 |#1|) (|:| -3701 (-549)))) (-549))) (-15 -3003 (|#1| |#1| (-549) |#1| (-549))))
+((-2304 (((-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 17)) (-1454 (((-1100 (-219)) (-1100 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-219)) (-1061 (-219)) (-621 (-256))) 40) (((-1100 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-219)) (-1061 (-219)) (-621 (-256))) 42) (((-1100 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1061 (-219)) (-1061 (-219)) (-621 (-256))) 44)) (-2551 (((-1100 (-219)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-621 (-256))) NIL)) (-3801 (((-1100 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1061 (-219)) (-1061 (-219)) (-621 (-256))) 45)))
+(((-673) (-10 -7 (-15 -1454 ((-1100 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1061 (-219)) (-1061 (-219)) (-621 (-256)))) (-15 -1454 ((-1100 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-219)) (-1061 (-219)) (-621 (-256)))) (-15 -1454 ((-1100 (-219)) (-1100 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-219)) (-1061 (-219)) (-621 (-256)))) (-15 -3801 ((-1100 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1061 (-219)) (-1061 (-219)) (-621 (-256)))) (-15 -2551 ((-1100 (-219)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-621 (-256)))) (-15 -2304 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -673))
+((-2304 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1 (-219) (-219) (-219) (-219))) (-5 *2 (-1 (-914 (-219)) (-219) (-219))) (-5 *1 (-673)))) (-2551 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1061 (-219))) (-5 *6 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-673)))) (-3801 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) (-5 *5 (-1061 (-219))) (-5 *6 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-673)))) (-1454 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1100 (-219))) (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1061 (-219))) (-5 *5 (-621 (-256))) (-5 *1 (-673)))) (-1454 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1061 (-219))) (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-673)))) (-1454 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) (-5 *5 (-1061 (-219))) (-5 *6 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-673)))))
+(-10 -7 (-15 -1454 ((-1100 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1061 (-219)) (-1061 (-219)) (-621 (-256)))) (-15 -1454 ((-1100 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-219)) (-1061 (-219)) (-621 (-256)))) (-15 -1454 ((-1100 (-219)) (-1100 (-219)) (-1 (-914 (-219)) (-219) (-219)) (-1061 (-219)) (-1061 (-219)) (-621 (-256)))) (-15 -3801 ((-1100 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) "undefined") (-1061 (-219)) (-1061 (-219)) (-621 (-256)))) (-15 -2551 ((-1100 (-219)) (-309 (-549)) (-309 (-549)) (-309 (-549)) (-1 (-219) (-219)) (-1061 (-219)) (-621 (-256)))) (-15 -2304 ((-1 (-914 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))
+((-2121 (((-411 (-1139 |#4|)) (-1139 |#4|)) 73) (((-411 |#4|) |#4|) 221)))
+(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2121 ((-411 |#4|) |#4|)) (-15 -2121 ((-411 (-1139 |#4|)) (-1139 |#4|)))) (-823) (-769) (-342) (-920 |#3| |#2| |#1|)) (T -674))
+((-2121 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-342)) (-4 *7 (-920 *6 *5 *4)) (-5 *2 (-411 (-1139 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1139 *7)))) (-2121 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-920 *6 *5 *4)))))
+(-10 -7 (-15 -2121 ((-411 |#4|) |#4|)) (-15 -2121 ((-411 (-1139 |#4|)) (-1139 |#4|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 84)) (-3329 (((-549) $) 30)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-3896 (($ $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-2134 (($ $) NIL)) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL)) (-1682 (($) NIL T CONST)) (-3252 (($ $) NIL)) (-2714 (((-3 (-549) "failed") $) 73) (((-3 (-400 (-549)) "failed") $) 26) (((-3 (-372) "failed") $) 70)) (-2659 (((-549) $) 75) (((-400 (-549)) $) 67) (((-372) $) 68)) (-2095 (($ $ $) 96)) (-2114 (((-3 $ "failed") $) 87)) (-2067 (($ $ $) 95)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-3236 (((-892)) 77) (((-892) (-892)) 76)) (-2772 (((-112) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL)) (-2088 (((-549) $) NIL)) (-2675 (((-112) $) NIL)) (-4187 (($ $ (-549)) NIL)) (-3630 (($ $) NIL)) (-2374 (((-112) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-4158 (((-549) (-549)) 81) (((-549)) 82)) (-2863 (($ $ $) NIL) (($) NIL (-12 (-4008 (|has| $ (-6 -4320))) (-4008 (|has| $ (-6 -4328)))))) (-2586 (((-549) (-549)) 79) (((-549)) 80)) (-3575 (($ $ $) NIL) (($) NIL (-12 (-4008 (|has| $ (-6 -4320))) (-4008 (|has| $ (-6 -4328)))))) (-1461 (((-549) $) 16)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 91)) (-2429 (((-892) (-549)) NIL (|has| $ (-6 -4328)))) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2873 (($ $) NIL)) (-3967 (($ $) NIL)) (-1355 (($ (-549) (-549)) NIL) (($ (-549) (-549) (-892)) NIL)) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) 92)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3731 (((-549) $) 22)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 94)) (-3862 (((-892)) NIL) (((-892) (-892)) NIL (|has| $ (-6 -4328)))) (-2324 (((-892) (-549)) NIL (|has| $ (-6 -4328)))) (-2845 (((-372) $) NIL) (((-219) $) NIL) (((-863 (-372)) $) NIL)) (-3846 (((-834) $) 52) (($ (-549)) 63) (($ $) NIL) (($ (-400 (-549))) 66) (($ (-549)) 63) (($ (-400 (-549))) 66) (($ (-372)) 60) (((-372) $) 50) (($ (-677)) 55)) (-2082 (((-747)) 103)) (-4216 (($ (-549) (-549) (-892)) 44)) (-2546 (($ $) NIL)) (-1502 (((-892)) NIL) (((-892) (-892)) NIL (|has| $ (-6 -4328)))) (-1864 (((-892)) 35) (((-892) (-892)) 78)) (-1498 (((-112) $ $) NIL)) (-3212 (($ $) NIL)) (-3276 (($) 32 T CONST)) (-3287 (($) 17 T CONST)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 83)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 101)) (-2513 (($ $ $) 65)) (-2500 (($ $) 99) (($ $ $) 100)) (-2486 (($ $ $) 98)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL) (($ $ (-400 (-549))) 90)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 97) (($ $ $) 88) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
+(((-675) (-13 (-397) (-380) (-356) (-1009 (-372)) (-1009 (-400 (-549))) (-145) (-10 -8 (-15 -3236 ((-892) (-892))) (-15 -3236 ((-892))) (-15 -1864 ((-892) (-892))) (-15 -1864 ((-892))) (-15 -2586 ((-549) (-549))) (-15 -2586 ((-549))) (-15 -4158 ((-549) (-549))) (-15 -4158 ((-549))) (-15 -3846 ((-372) $)) (-15 -3846 ($ (-677))) (-15 -1461 ((-549) $)) (-15 -3731 ((-549) $)) (-15 -4216 ($ (-549) (-549) (-892)))))) (T -675))
+((-1864 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-675)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-675)))) (-3236 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675)))) (-3236 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675)))) (-2586 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675)))) (-2586 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675)))) (-4158 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675)))) (-4158 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-372)) (-5 *1 (-675)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-677)) (-5 *1 (-675)))) (-4216 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-892)) (-5 *1 (-675)))))
+(-13 (-397) (-380) (-356) (-1009 (-372)) (-1009 (-400 (-549))) (-145) (-10 -8 (-15 -3236 ((-892) (-892))) (-15 -3236 ((-892))) (-15 -1864 ((-892) (-892))) (-15 -1864 ((-892))) (-15 -2586 ((-549) (-549))) (-15 -2586 ((-549))) (-15 -4158 ((-549) (-549))) (-15 -4158 ((-549))) (-15 -3846 ((-372) $)) (-15 -3846 ($ (-677))) (-15 -1461 ((-549) $)) (-15 -3731 ((-549) $)) (-15 -4216 ($ (-549) (-549) (-892)))))
+((-1902 (((-665 |#1|) (-665 |#1|) |#1| |#1|) 65)) (-3460 (((-665 |#1|) (-665 |#1|) |#1|) 48)) (-4271 (((-665 |#1|) (-665 |#1|) |#1|) 66)) (-3085 (((-665 |#1|) (-665 |#1|)) 49)) (-4297 (((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|) 64)))
+(((-676 |#1|) (-10 -7 (-15 -3085 ((-665 |#1|) (-665 |#1|))) (-15 -3460 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -4271 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -1902 ((-665 |#1|) (-665 |#1|) |#1| |#1|)) (-15 -4297 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|))) (-300)) (T -676))
+((-4297 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-676 *3)) (-4 *3 (-300)))) (-1902 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) (-4271 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) (-3460 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))) (-3085 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))))
+(-10 -7 (-15 -3085 ((-665 |#1|) (-665 |#1|))) (-15 -3460 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -4271 ((-665 |#1|) (-665 |#1|) |#1|)) (-15 -1902 ((-665 |#1|) (-665 |#1|) |#1| |#1|)) (-15 -4297 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2831 (($ $ $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3332 (($ $ $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL)) (-1310 (($ $ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) 27)) (-2659 (((-549) $) 25)) (-2095 (($ $ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3405 (((-3 (-400 (-549)) "failed") $) NIL)) (-3679 (((-112) $) NIL)) (-2532 (((-400 (-549)) $) NIL)) (-3239 (($ $) NIL) (($) NIL)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-3806 (($ $ $ $) NIL)) (-3947 (($ $ $) NIL)) (-2772 (((-112) $) NIL)) (-1271 (($ $ $) NIL)) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL)) (-2675 (((-112) $) NIL)) (-3559 (((-112) $) NIL)) (-1681 (((-3 $ "failed") $) NIL)) (-2374 (((-112) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3030 (($ $ $ $) NIL)) (-2863 (($ $ $) NIL)) (-4267 (((-892) (-892)) 10) (((-892)) 9)) (-3575 (($ $ $) NIL)) (-2433 (($ $) NIL)) (-4210 (($ $) NIL)) (-3697 (($ (-621 $)) NIL) (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-2950 (($ $ $) NIL)) (-3060 (($) NIL T CONST)) (-3781 (($ $) NIL)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ (-621 $)) NIL) (($ $ $) NIL)) (-4005 (($ $) NIL)) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3450 (((-112) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3456 (($ $) NIL) (($ $ (-747)) NIL)) (-1900 (($ $) NIL)) (-2281 (($ $) NIL)) (-2845 (((-219) $) NIL) (((-372) $) NIL) (((-863 (-549)) $) NIL) (((-525) $) NIL) (((-549) $) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) 24) (($ $) NIL) (($ (-549)) 24) (((-309 $) (-309 (-549))) 18)) (-2082 (((-747)) NIL)) (-3935 (((-112) $ $) NIL)) (-3179 (($ $ $) NIL)) (-1864 (($) NIL)) (-1498 (((-112) $ $) NIL)) (-3610 (($ $ $ $) NIL)) (-3212 (($ $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $) NIL) (($ $ (-747)) NIL)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL)))
+(((-677) (-13 (-380) (-534) (-10 -8 (-15 -4267 ((-892) (-892))) (-15 -4267 ((-892))) (-15 -3846 ((-309 $) (-309 (-549))))))) (T -677))
+((-4267 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-677)))) (-4267 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-677)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-309 (-549))) (-5 *2 (-309 (-677))) (-5 *1 (-677)))))
+(-13 (-380) (-534) (-10 -8 (-15 -4267 ((-892) (-892))) (-15 -4267 ((-892))) (-15 -3846 ((-309 $) (-309 (-549))))))
+((-2530 (((-1 |#4| |#2| |#3|) |#1| (-1143) (-1143)) 19)) (-1541 (((-1 |#4| |#2| |#3|) (-1143)) 12)))
+(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1541 ((-1 |#4| |#2| |#3|) (-1143))) (-15 -2530 ((-1 |#4| |#2| |#3|) |#1| (-1143) (-1143)))) (-594 (-525)) (-1180) (-1180) (-1180)) (T -678))
+((-2530 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1143)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *3 *5 *6 *7)) (-4 *3 (-594 (-525))) (-4 *5 (-1180)) (-4 *6 (-1180)) (-4 *7 (-1180)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *4 *5 *6 *7)) (-4 *4 (-594 (-525))) (-4 *5 (-1180)) (-4 *6 (-1180)) (-4 *7 (-1180)))))
+(-10 -7 (-15 -1541 ((-1 |#4| |#2| |#3|) (-1143))) (-15 -2530 ((-1 |#4| |#2| |#3|) |#1| (-1143) (-1143))))
+((-3834 (((-112) $ $) NIL)) (-3309 (((-1231) $ (-747)) 14)) (-2883 (((-747) $) 12)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 25)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 24)))
+(((-679 |#1|) (-13 (-131) (-593 |#1|) (-10 -8 (-15 -3846 ($ |#1|)))) (-1067)) (T -679))
+((-3846 (*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1067)))))
+(-13 (-131) (-593 |#1|) (-10 -8 (-15 -3846 ($ |#1|))))
+((-3307 (((-1 (-219) (-219) (-219)) |#1| (-1143) (-1143)) 34) (((-1 (-219) (-219)) |#1| (-1143)) 39)))
+(((-680 |#1|) (-10 -7 (-15 -3307 ((-1 (-219) (-219)) |#1| (-1143))) (-15 -3307 ((-1 (-219) (-219) (-219)) |#1| (-1143) (-1143)))) (-594 (-525))) (T -680))
+((-3307 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1143)) (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-680 *3)) (-4 *3 (-594 (-525))))) (-3307 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-680 *3)) (-4 *3 (-594 (-525))))))
+(-10 -7 (-15 -3307 ((-1 (-219) (-219)) |#1| (-1143))) (-15 -3307 ((-1 (-219) (-219) (-219)) |#1| (-1143) (-1143))))
+((-3568 (((-1143) |#1| (-1143) (-621 (-1143))) 9) (((-1143) |#1| (-1143) (-1143) (-1143)) 12) (((-1143) |#1| (-1143) (-1143)) 11) (((-1143) |#1| (-1143)) 10)))
+(((-681 |#1|) (-10 -7 (-15 -3568 ((-1143) |#1| (-1143))) (-15 -3568 ((-1143) |#1| (-1143) (-1143))) (-15 -3568 ((-1143) |#1| (-1143) (-1143) (-1143))) (-15 -3568 ((-1143) |#1| (-1143) (-621 (-1143))))) (-594 (-525))) (T -681))
+((-3568 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-621 (-1143))) (-5 *2 (-1143)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525))))) (-3568 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525))))) (-3568 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525))))) (-3568 (*1 *2 *3 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525))))))
+(-10 -7 (-15 -3568 ((-1143) |#1| (-1143))) (-15 -3568 ((-1143) |#1| (-1143) (-1143))) (-15 -3568 ((-1143) |#1| (-1143) (-1143) (-1143))) (-15 -3568 ((-1143) |#1| (-1143) (-621 (-1143)))))
+((-1566 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-682 |#1| |#2|) (-10 -7 (-15 -1566 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1180) (-1180)) (T -682))
+((-1566 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-682 *3 *4)) (-4 *3 (-1180)) (-4 *4 (-1180)))))
+(-10 -7 (-15 -1566 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-3757 (((-1 |#3| |#2|) (-1143)) 11)) (-2530 (((-1 |#3| |#2|) |#1| (-1143)) 21)))
+(((-683 |#1| |#2| |#3|) (-10 -7 (-15 -3757 ((-1 |#3| |#2|) (-1143))) (-15 -2530 ((-1 |#3| |#2|) |#1| (-1143)))) (-594 (-525)) (-1180) (-1180)) (T -683))
+((-2530 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *3 *5 *6)) (-4 *3 (-594 (-525))) (-4 *5 (-1180)) (-4 *6 (-1180)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *4 *5 *6)) (-4 *4 (-594 (-525))) (-4 *5 (-1180)) (-4 *6 (-1180)))))
+(-10 -7 (-15 -3757 ((-1 |#3| |#2|) (-1143))) (-15 -2530 ((-1 |#3| |#2|) |#1| (-1143))))
+((-2159 (((-3 (-621 (-1139 |#4|)) "failed") (-1139 |#4|) (-621 |#2|) (-621 (-1139 |#4|)) (-621 |#3|) (-621 |#4|) (-621 (-621 (-2 (|:| -2099 (-747)) (|:| |pcoef| |#4|)))) (-621 (-747)) (-1226 (-621 (-1139 |#3|))) |#3|) 62)) (-2030 (((-3 (-621 (-1139 |#4|)) "failed") (-1139 |#4|) (-621 |#2|) (-621 (-1139 |#3|)) (-621 |#3|) (-621 |#4|) (-621 (-747)) |#3|) 75)) (-3911 (((-3 (-621 (-1139 |#4|)) "failed") (-1139 |#4|) (-621 |#2|) (-621 |#3|) (-621 (-747)) (-621 (-1139 |#4|)) (-1226 (-621 (-1139 |#3|))) |#3|) 34)))
+(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3911 ((-3 (-621 (-1139 |#4|)) "failed") (-1139 |#4|) (-621 |#2|) (-621 |#3|) (-621 (-747)) (-621 (-1139 |#4|)) (-1226 (-621 (-1139 |#3|))) |#3|)) (-15 -2030 ((-3 (-621 (-1139 |#4|)) "failed") (-1139 |#4|) (-621 |#2|) (-621 (-1139 |#3|)) (-621 |#3|) (-621 |#4|) (-621 (-747)) |#3|)) (-15 -2159 ((-3 (-621 (-1139 |#4|)) "failed") (-1139 |#4|) (-621 |#2|) (-621 (-1139 |#4|)) (-621 |#3|) (-621 |#4|) (-621 (-621 (-2 (|:| -2099 (-747)) (|:| |pcoef| |#4|)))) (-621 (-747)) (-1226 (-621 (-1139 |#3|))) |#3|))) (-769) (-823) (-300) (-920 |#3| |#1| |#2|)) (T -684))
+((-2159 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-621 (-1139 *13))) (-5 *3 (-1139 *13)) (-5 *4 (-621 *12)) (-5 *5 (-621 *10)) (-5 *6 (-621 *13)) (-5 *7 (-621 (-621 (-2 (|:| -2099 (-747)) (|:| |pcoef| *13))))) (-5 *8 (-621 (-747))) (-5 *9 (-1226 (-621 (-1139 *10)))) (-4 *12 (-823)) (-4 *10 (-300)) (-4 *13 (-920 *10 *11 *12)) (-4 *11 (-769)) (-5 *1 (-684 *11 *12 *10 *13)))) (-2030 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-621 *11)) (-5 *5 (-621 (-1139 *9))) (-5 *6 (-621 *9)) (-5 *7 (-621 *12)) (-5 *8 (-621 (-747))) (-4 *11 (-823)) (-4 *9 (-300)) (-4 *12 (-920 *9 *10 *11)) (-4 *10 (-769)) (-5 *2 (-621 (-1139 *12))) (-5 *1 (-684 *10 *11 *9 *12)) (-5 *3 (-1139 *12)))) (-3911 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-621 (-1139 *11))) (-5 *3 (-1139 *11)) (-5 *4 (-621 *10)) (-5 *5 (-621 *8)) (-5 *6 (-621 (-747))) (-5 *7 (-1226 (-621 (-1139 *8)))) (-4 *10 (-823)) (-4 *8 (-300)) (-4 *11 (-920 *8 *9 *10)) (-4 *9 (-769)) (-5 *1 (-684 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3911 ((-3 (-621 (-1139 |#4|)) "failed") (-1139 |#4|) (-621 |#2|) (-621 |#3|) (-621 (-747)) (-621 (-1139 |#4|)) (-1226 (-621 (-1139 |#3|))) |#3|)) (-15 -2030 ((-3 (-621 (-1139 |#4|)) "failed") (-1139 |#4|) (-621 |#2|) (-621 (-1139 |#3|)) (-621 |#3|) (-621 |#4|) (-621 (-747)) |#3|)) (-15 -2159 ((-3 (-621 (-1139 |#4|)) "failed") (-1139 |#4|) (-621 |#2|) (-621 (-1139 |#4|)) (-621 |#3|) (-621 |#4|) (-621 (-621 (-2 (|:| -2099 (-747)) (|:| |pcoef| |#4|)))) (-621 (-747)) (-1226 (-621 (-1139 |#3|))) |#3|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2070 (($ $) 39)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-2246 (($ |#1| (-747)) 37)) (-3611 (((-747) $) 41)) (-2043 ((|#1| $) 40)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3701 (((-747) $) 42)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 36 (|has| |#1| (-170)))) (-2152 ((|#1| $ (-747)) 38)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43)))
+(((-685 |#1|) (-138) (-1018)) (T -685))
+((-3701 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018)))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018)))) (-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018)))) (-2246 (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018)))))
+(-13 (-1018) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3701 ((-747) $)) (-15 -3611 ((-747) $)) (-15 -2043 (|t#1| $)) (-15 -2070 ($ $)) (-15 -2152 (|t#1| $ (-747))) (-15 -2246 ($ |t#1| (-747)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-2797 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-686 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2797 (|#6| (-1 |#4| |#1|) |#3|))) (-541) (-1202 |#1|) (-1202 (-400 |#2|)) (-541) (-1202 |#4|) (-1202 (-400 |#5|))) (T -686))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-541)) (-4 *7 (-541)) (-4 *6 (-1202 *5)) (-4 *2 (-1202 (-400 *8))) (-5 *1 (-686 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1202 (-400 *6))) (-4 *8 (-1202 *7)))))
+(-10 -7 (-15 -2797 (|#6| (-1 |#4| |#1|) |#3|)))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3864 (((-1125) (-834)) 31)) (-2699 (((-1231) (-1125)) 28)) (-3333 (((-1125) (-834)) 24)) (-3386 (((-1125) (-834)) 25)) (-3846 (((-834) $) NIL) (((-1125) (-834)) 23)) (-2389 (((-112) $ $) NIL)))
+(((-687) (-13 (-1067) (-10 -7 (-15 -3846 ((-1125) (-834))) (-15 -3333 ((-1125) (-834))) (-15 -3386 ((-1125) (-834))) (-15 -3864 ((-1125) (-834))) (-15 -2699 ((-1231) (-1125)))))) (T -687))
+((-3846 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1125)) (-5 *1 (-687)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1125)) (-5 *1 (-687)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1125)) (-5 *1 (-687)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1125)) (-5 *1 (-687)))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-687)))))
+(-13 (-1067) (-10 -7 (-15 -3846 ((-1125) (-834))) (-15 -3333 ((-1125) (-834))) (-15 -3386 ((-1125) (-834))) (-15 -3864 ((-1125) (-834))) (-15 -2699 ((-1231) (-1125)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-2095 (($ $ $) NIL)) (-2557 (($ |#1| |#2|) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-2675 (((-112) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-1591 ((|#2| $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3147 (((-3 $ "failed") $ $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) ((|#1| $) NIL)) (-2082 (((-747)) NIL)) (-1498 (((-112) $ $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
+(((-688 |#1| |#2| |#3| |#4| |#5|) (-13 (-356) (-10 -8 (-15 -1591 (|#2| $)) (-15 -3846 (|#1| $)) (-15 -2557 ($ |#1| |#2|)) (-15 -3147 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -688))
+((-1591 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-688 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3846 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2557 (*1 *1 *2 *3) (-12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3147 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-356) (-10 -8 (-15 -1591 (|#2| $)) (-15 -3846 (|#1| $)) (-15 -2557 ($ |#1| |#2|)) (-15 -3147 ((-3 $ "failed") $ $))))
+((-3834 (((-112) $ $) 78)) (-1763 (((-112) $) 30)) (-2432 (((-1226 |#1|) $ (-747)) NIL)) (-2272 (((-621 (-1048)) $) NIL)) (-3371 (($ (-1139 |#1|)) NIL)) (-2084 (((-1139 $) $ (-1048)) NIL) (((-1139 |#1|) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 (-1048))) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1910 (($ $ $) NIL (|has| |#1| (-541)))) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3979 (($ $) NIL (|has| |#1| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3614 (((-747)) 47 (|has| |#1| (-361)))) (-3154 (($ $ (-747)) NIL)) (-2434 (($ $ (-747)) NIL)) (-2094 ((|#2| |#2|) 44)) (-1358 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-1048) "failed") $) NIL)) (-2659 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-1048) $) NIL)) (-1353 (($ $ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-2070 (($ $) 34)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2557 (($ |#2|) 42)) (-2114 (((-3 $ "failed") $) 86)) (-3239 (($) 51 (|has| |#1| (-361)))) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-4289 (($ $ $) NIL)) (-2290 (($ $ $) NIL (|has| |#1| (-541)))) (-3921 (((-2 (|:| -1570 |#1|) (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-541)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-1285 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-880)))) (-2495 (((-929 $)) 80)) (-2691 (($ $ |#1| (-747) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1048) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1048) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2088 (((-747) $ $) NIL (|has| |#1| (-541)))) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-1681 (((-3 $ "failed") $) NIL (|has| |#1| (-1118)))) (-2261 (($ (-1139 |#1|) (-1048)) NIL) (($ (-1139 $) (-1048)) NIL)) (-2992 (($ $ (-747)) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-747)) 77) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ (-1048)) NIL) (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-1591 ((|#2|) 45)) (-3611 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-3705 (($ (-1 (-747) (-747)) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3598 (((-1139 |#1|) $) NIL)) (-1520 (((-3 (-1048) "failed") $) NIL)) (-1881 (((-892) $) NIL (|has| |#1| (-361)))) (-2548 ((|#2| $) 41)) (-2028 (($ $) NIL)) (-2043 ((|#1| $) 28)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3851 (((-1125) $) NIL)) (-3098 (((-2 (|:| -4013 $) (|:| -3675 $)) $ (-747)) NIL)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| (-1048)) (|:| -3731 (-747))) "failed") $) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3060 (($) NIL (|has| |#1| (-1118)) CONST)) (-3493 (($ (-892)) NIL (|has| |#1| (-361)))) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) NIL)) (-2016 ((|#1| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3114 (($ $) 79 (|has| |#1| (-342)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-880)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1048) |#1|) NIL) (($ $ (-621 (-1048)) (-621 |#1|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-621 (-1048)) (-621 $)) NIL)) (-3684 (((-747) $) NIL (|has| |#1| (-356)))) (-3341 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-541))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-541)))) (-3668 (((-3 $ "failed") $ (-747)) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 87 (|has| |#1| (-356)))) (-3602 (($ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-3456 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3701 (((-747) $) 32) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-1048) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-2216 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-2982 (((-929 $)) 36)) (-3033 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#1| (-541)))) (-3846 (((-834) $) 61) (($ (-549)) NIL) (($ |#1|) 58) (($ (-1048)) NIL) (($ |#2|) 68) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-747)) 63) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3276 (($) 20 T CONST)) (-2233 (((-1226 |#1|) $) 75)) (-1692 (($ (-1226 |#1|)) 50)) (-3287 (($) 8 T CONST)) (-1702 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4098 (((-1226 |#1|) $) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) 69)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $) 72) (($ $ $) NIL)) (-2486 (($ $ $) 33)) (** (($ $ (-892)) NIL) (($ $ (-747)) 81)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 57) (($ $ $) 74) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
+(((-689 |#1| |#2|) (-13 (-1202 |#1|) (-10 -8 (-15 -2094 (|#2| |#2|)) (-15 -1591 (|#2|)) (-15 -2557 ($ |#2|)) (-15 -2548 (|#2| $)) (-15 -3846 ($ |#2|)) (-15 -2233 ((-1226 |#1|) $)) (-15 -1692 ($ (-1226 |#1|))) (-15 -4098 ((-1226 |#1|) $)) (-15 -2495 ((-929 $))) (-15 -2982 ((-929 $))) (IF (|has| |#1| (-342)) (-15 -3114 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) (-1018) (-1202 |#1|)) (T -689))
+((-2094 (*1 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1202 *3)))) (-1591 (*1 *2) (-12 (-4 *2 (-1202 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018)))) (-2557 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1202 *3)))) (-2548 (*1 *2 *1) (-12 (-4 *2 (-1202 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018)))) (-3846 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1202 *3)))) (-2233 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-1226 *3)) (-5 *1 (-689 *3 *4)) (-4 *4 (-1202 *3)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-1018)) (-5 *1 (-689 *3 *4)) (-4 *4 (-1202 *3)))) (-4098 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-1226 *3)) (-5 *1 (-689 *3 *4)) (-4 *4 (-1202 *3)))) (-2495 (*1 *2) (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4)) (-4 *4 (-1202 *3)))) (-2982 (*1 *2) (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4)) (-4 *4 (-1202 *3)))) (-3114 (*1 *1 *1) (-12 (-4 *2 (-342)) (-4 *2 (-1018)) (-5 *1 (-689 *2 *3)) (-4 *3 (-1202 *2)))))
+(-13 (-1202 |#1|) (-10 -8 (-15 -2094 (|#2| |#2|)) (-15 -1591 (|#2|)) (-15 -2557 ($ |#2|)) (-15 -2548 (|#2| $)) (-15 -3846 ($ |#2|)) (-15 -2233 ((-1226 |#1|) $)) (-15 -1692 ($ (-1226 |#1|))) (-15 -4098 ((-1226 |#1|) $)) (-15 -2495 ((-929 $))) (-15 -2982 ((-929 $))) (IF (|has| |#1| (-342)) (-15 -3114 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|)))
+((-3834 (((-112) $ $) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3493 ((|#1| $) 13)) (-3990 (((-1087) $) NIL)) (-3731 ((|#2| $) 12)) (-3854 (($ |#1| |#2|) 16)) (-3846 (((-834) $) NIL) (($ (-2 (|:| -3493 |#1|) (|:| -3731 |#2|))) 15) (((-2 (|:| -3493 |#1|) (|:| -3731 |#2|)) $) 14)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 11)))
+(((-690 |#1| |#2| |#3|) (-13 (-823) (-10 -8 (-15 -3731 (|#2| $)) (-15 -3493 (|#1| $)) (-15 -3846 ($ (-2 (|:| -3493 |#1|) (|:| -3731 |#2|)))) (-15 -3846 ((-2 (|:| -3493 |#1|) (|:| -3731 |#2|)) $)) (-15 -3854 ($ |#1| |#2|)))) (-823) (-1067) (-1 (-112) (-2 (|:| -3493 |#1|) (|:| -3731 |#2|)) (-2 (|:| -3493 |#1|) (|:| -3731 |#2|)))) (T -690))
+((-3731 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-690 *3 *2 *4)) (-4 *3 (-823)) (-14 *4 (-1 (-112) (-2 (|:| -3493 *3) (|:| -3731 *2)) (-2 (|:| -3493 *3) (|:| -3731 *2)))))) (-3493 (*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-690 *2 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-1 (-112) (-2 (|:| -3493 *2) (|:| -3731 *3)) (-2 (|:| -3493 *2) (|:| -3731 *3)))))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3493 *3) (|:| -3731 *4))) (-4 *3 (-823)) (-4 *4 (-1067)) (-5 *1 (-690 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3493 *3) (|:| -3731 *4))) (-5 *1 (-690 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-1067)) (-14 *5 (-1 (-112) *2 *2)))) (-3854 (*1 *1 *2 *3) (-12 (-5 *1 (-690 *2 *3 *4)) (-4 *2 (-823)) (-4 *3 (-1067)) (-14 *4 (-1 (-112) (-2 (|:| -3493 *2) (|:| -3731 *3)) (-2 (|:| -3493 *2) (|:| -3731 *3)))))))
+(-13 (-823) (-10 -8 (-15 -3731 (|#2| $)) (-15 -3493 (|#1| $)) (-15 -3846 ($ (-2 (|:| -3493 |#1|) (|:| -3731 |#2|)))) (-15 -3846 ((-2 (|:| -3493 |#1|) (|:| -3731 |#2|)) $)) (-15 -3854 ($ |#1| |#2|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 59)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-2659 ((|#1| $) NIL) (((-114) $) 39)) (-2114 (((-3 $ "failed") $) 90)) (-3297 ((|#2| (-114) |#2|) 82)) (-2675 (((-112) $) NIL)) (-3566 (($ |#1| (-354 (-114))) 14)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2630 (($ $ (-1 |#2| |#2|)) 58)) (-3686 (($ $ (-1 |#2| |#2|)) 44)) (-3341 ((|#2| $ |#2|) 33)) (-2817 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-3846 (((-834) $) 66) (($ (-549)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) 37)) (-1709 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-3276 (($) 21 T CONST)) (-3287 (($) 9 T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) 48) (($ $ $) NIL)) (-2486 (($ $ $) 73)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ (-114) (-549)) NIL) (($ $ (-549)) 57)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170)))))
+(((-691 |#1| |#2|) (-13 (-1018) (-1009 |#1|) (-1009 (-114)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -1709 ($ $)) (-15 -1709 ($ $ $)) (-15 -2817 (|#1| |#1|))) |%noBranch|) (-15 -3686 ($ $ (-1 |#2| |#2|))) (-15 -2630 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-549))) (-15 ** ($ $ (-549))) (-15 -3297 (|#2| (-114) |#2|)) (-15 -3566 ($ |#1| (-354 (-114)))))) (-1018) (-624 |#1|)) (T -691))
+((-1709 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) (-1709 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) (-2817 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3)) (-4 *3 (-624 *2)))) (-3686 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)))) (-2630 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-549)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *5)) (-4 *5 (-624 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4)) (-4 *4 (-624 *3)))) (-3297 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *2)) (-4 *2 (-624 *4)))) (-3566 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-114))) (-4 *2 (-1018)) (-5 *1 (-691 *2 *4)) (-4 *4 (-624 *2)))))
+(-13 (-1018) (-1009 |#1|) (-1009 (-114)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -1709 ($ $)) (-15 -1709 ($ $ $)) (-15 -2817 (|#1| |#1|))) |%noBranch|) (-15 -3686 ($ $ (-1 |#2| |#2|))) (-15 -2630 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-549))) (-15 ** ($ $ (-549))) (-15 -3297 (|#2| (-114) |#2|)) (-15 -3566 ($ |#1| (-354 (-114))))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 33)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2557 (($ |#1| |#2|) 25)) (-2114 (((-3 $ "failed") $) 48)) (-2675 (((-112) $) 35)) (-1591 ((|#2| $) 12)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 49)) (-3990 (((-1087) $) NIL)) (-3147 (((-3 $ "failed") $ $) 47)) (-3846 (((-834) $) 24) (($ (-549)) 19) ((|#1| $) 13)) (-2082 (((-747)) 28)) (-3276 (($) 16 T CONST)) (-3287 (($) 30 T CONST)) (-2389 (((-112) $ $) 38)) (-2500 (($ $) 43) (($ $ $) 37)) (-2486 (($ $ $) 40)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 21) (($ $ $) 20)))
+(((-692 |#1| |#2| |#3| |#4| |#5|) (-13 (-1018) (-10 -8 (-15 -1591 (|#2| $)) (-15 -3846 (|#1| $)) (-15 -2557 ($ |#1| |#2|)) (-15 -3147 ((-3 $ "failed") $ $)) (-15 -2114 ((-3 $ "failed") $)) (-15 -1992 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -692))
+((-2114 (*1 *1 *1) (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1591 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3846 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2557 (*1 *1 *2 *3) (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3147 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1992 (*1 *1 *1) (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1018) (-10 -8 (-15 -1591 (|#2| $)) (-15 -3846 (|#1| $)) (-15 -2557 ($ |#1| |#2|)) (-15 -3147 ((-3 $ "failed") $ $)) (-15 -2114 ((-3 $ "failed") $)) (-15 -1992 ($ $))))
+((* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-693 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|))) (-694 |#2|) (-170)) (T -693))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-694 |#1|) (-138) (-170)) (T -694))
NIL
(-13 (-111 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-1022 |#1|) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1303 (($ |#1|) 17) (($ $ |#1|) 20)) (-1715 (($ |#1|) 18) (($ $ |#1|) 21)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2261 (((-112) $) NIL)) (-4173 (($ |#1| |#1| |#1| |#1|) 8)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 16)) (-3979 (((-1082) $) NIL)) (-2679 ((|#1| $ |#1|) 24) (((-807 |#1|) $ (-807 |#1|)) 32)) (-3404 (($ $ $) NIL)) (-1473 (($ $ $) NIL)) (-3838 (((-832) $) 39)) (-3281 (($) 9 T CONST)) (-2381 (((-112) $ $) 44)) (-2506 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ $ $) 14)))
-(((-693 |#1|) (-13 (-463) (-10 -8 (-15 -4173 ($ |#1| |#1| |#1| |#1|)) (-15 -1303 ($ |#1|)) (-15 -1715 ($ |#1|)) (-15 -3855 ($)) (-15 -1303 ($ $ |#1|)) (-15 -1715 ($ $ |#1|)) (-15 -3855 ($ $)) (-15 -2679 (|#1| $ |#1|)) (-15 -2679 ((-807 |#1|) $ (-807 |#1|))))) (-354)) (T -693))
-((-4173 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-1303 (*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-1715 (*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-3855 (*1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-1303 (*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-1715 (*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-3855 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-2679 (*1 *2 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-2679 (*1 *2 *1 *2) (-12 (-5 *2 (-807 *3)) (-4 *3 (-354)) (-5 *1 (-693 *3)))))
-(-13 (-463) (-10 -8 (-15 -4173 ($ |#1| |#1| |#1| |#1|)) (-15 -1303 ($ |#1|)) (-15 -1715 ($ |#1|)) (-15 -3855 ($)) (-15 -1303 ($ $ |#1|)) (-15 -1715 ($ $ |#1|)) (-15 -3855 ($ $)) (-15 -2679 (|#1| $ |#1|)) (-15 -2679 ((-807 |#1|) $ (-807 |#1|)))))
-((-3387 (($ $ (-890)) 12)) (-3851 (($ $ (-890)) 13)) (** (($ $ (-890)) 10)))
-(((-694 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-890))) (-15 -3851 (|#1| |#1| (-890))) (-15 -3387 (|#1| |#1| (-890)))) (-695)) (T -694))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-890))) (-15 -3851 (|#1| |#1| (-890))) (-15 -3387 (|#1| |#1| (-890))))
-((-3826 (((-112) $ $) 7)) (-3387 (($ $ (-890)) 15)) (-3851 (($ $ (-890)) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2381 (((-112) $ $) 6)) (** (($ $ (-890)) 13)) (* (($ $ $) 16)))
-(((-695) (-138)) (T -695))
-((* (*1 *1 *1 *1) (-4 *1 (-695))) (-3387 (*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) (-3851 (*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))))
-(-13 (-1063) (-10 -8 (-15 * ($ $ $)) (-15 -3387 ($ $ (-890))) (-15 -3851 ($ $ (-890))) (-15 ** ($ $ (-890)))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3387 (($ $ (-890)) NIL) (($ $ (-745)) 17)) (-2261 (((-112) $) 10)) (-3851 (($ $ (-890)) NIL) (($ $ (-745)) 18)) (** (($ $ (-890)) NIL) (($ $ (-745)) 15)))
-(((-696 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-745))) (-15 -3851 (|#1| |#1| (-745))) (-15 -3387 (|#1| |#1| (-745))) (-15 -2261 ((-112) |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 -3851 (|#1| |#1| (-890))) (-15 -3387 (|#1| |#1| (-890)))) (-697)) (T -696))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-745))) (-15 -3851 (|#1| |#1| (-745))) (-15 -3387 (|#1| |#1| (-745))) (-15 -2261 ((-112) |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 -3851 (|#1| |#1| (-890))) (-15 -3387 (|#1| |#1| (-890))))
-((-3826 (((-112) $ $) 7)) (-2702 (((-3 $ "failed") $) 17)) (-3387 (($ $ (-890)) 15) (($ $ (-745)) 22)) (-3855 (((-3 $ "failed") $) 19)) (-2261 (((-112) $) 23)) (-4082 (((-3 $ "failed") $) 18)) (-3851 (($ $ (-890)) 14) (($ $ (-745)) 21)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3281 (($) 24 T CONST)) (-2381 (((-112) $ $) 6)) (** (($ $ (-890)) 13) (($ $ (-745)) 20)) (* (($ $ $) 16)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1310 (($ |#1|) 17) (($ $ |#1|) 20)) (-2945 (($ |#1|) 18) (($ $ |#1|) 21)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2675 (((-112) $) NIL)) (-3933 (($ |#1| |#1| |#1| |#1|) 8)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 16)) (-3990 (((-1087) $) NIL)) (-2686 ((|#1| $ |#1|) 24) (((-809 |#1|) $ (-809 |#1|)) 32)) (-1955 (($ $ $) NIL)) (-3293 (($ $ $) NIL)) (-3846 (((-834) $) 39)) (-3287 (($) 9 T CONST)) (-2389 (((-112) $ $) 44)) (-2513 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ $ $) 14)))
+(((-695 |#1|) (-13 (-465) (-10 -8 (-15 -3933 ($ |#1| |#1| |#1| |#1|)) (-15 -1310 ($ |#1|)) (-15 -2945 ($ |#1|)) (-15 -2114 ($)) (-15 -1310 ($ $ |#1|)) (-15 -2945 ($ $ |#1|)) (-15 -2114 ($ $)) (-15 -2686 (|#1| $ |#1|)) (-15 -2686 ((-809 |#1|) $ (-809 |#1|))))) (-356)) (T -695))
+((-3933 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-1310 (*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-2945 (*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-2114 (*1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-1310 (*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-2945 (*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-2686 (*1 *2 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))) (-2686 (*1 *2 *1 *2) (-12 (-5 *2 (-809 *3)) (-4 *3 (-356)) (-5 *1 (-695 *3)))))
+(-13 (-465) (-10 -8 (-15 -3933 ($ |#1| |#1| |#1| |#1|)) (-15 -1310 ($ |#1|)) (-15 -2945 ($ |#1|)) (-15 -2114 ($)) (-15 -1310 ($ $ |#1|)) (-15 -2945 ($ $ |#1|)) (-15 -2114 ($ $)) (-15 -2686 (|#1| $ |#1|)) (-15 -2686 ((-809 |#1|) $ (-809 |#1|)))))
+((-3117 (($ $ (-892)) 12)) (-2884 (($ $ (-892)) 13)) (** (($ $ (-892)) 10)))
+(((-696 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-892))) (-15 -2884 (|#1| |#1| (-892))) (-15 -3117 (|#1| |#1| (-892)))) (-697)) (T -696))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-892))) (-15 -2884 (|#1| |#1| (-892))) (-15 -3117 (|#1| |#1| (-892))))
+((-3834 (((-112) $ $) 7)) (-3117 (($ $ (-892)) 15)) (-2884 (($ $ (-892)) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2389 (((-112) $ $) 6)) (** (($ $ (-892)) 13)) (* (($ $ $) 16)))
(((-697) (-138)) (T -697))
-((-3281 (*1 *1) (-4 *1 (-697))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-697)) (-5 *2 (-112)))) (-3387 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) (-3851 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) (-3855 (*1 *1 *1) (|partial| -4 *1 (-697))) (-4082 (*1 *1 *1) (|partial| -4 *1 (-697))) (-2702 (*1 *1 *1) (|partial| -4 *1 (-697))))
-(-13 (-695) (-10 -8 (-15 (-3281) ($) -2582) (-15 -2261 ((-112) $)) (-15 -3387 ($ $ (-745))) (-15 -3851 ($ $ (-745))) (-15 ** ($ $ (-745))) (-15 -3855 ((-3 $ "failed") $)) (-15 -4082 ((-3 $ "failed") $)) (-15 -2702 ((-3 $ "failed") $))))
-(((-101) . T) ((-591 (-832)) . T) ((-695) . T) ((-1063) . T))
-((-3608 (((-745)) 34)) (-2707 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2652 (((-547) $) NIL) (((-398 (-547)) $) NIL) ((|#2| $) 22)) (-2552 (($ |#3|) NIL) (((-3 $ "failed") (-398 |#3|)) 44)) (-3855 (((-3 $ "failed") $) 64)) (-3232 (($) 38)) (-3160 ((|#2| $) 20)) (-4238 (($) 17)) (-3448 (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-3101 (((-663 |#2|) (-1219 $) (-1 |#2| |#2|)) 59)) (-2838 (((-1219 |#2|) $) NIL) (($ (-1219 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1316 ((|#3| $) 32)) (-1917 (((-1219 $)) 29)))
-(((-698 |#1| |#2| |#3|) (-10 -8 (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -3232 (|#1|)) (-15 -3608 ((-745))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3101 ((-663 |#2|) (-1219 |#1|) (-1 |#2| |#2|))) (-15 -2552 ((-3 |#1| "failed") (-398 |#3|))) (-15 -2838 (|#1| |#3|)) (-15 -2552 (|#1| |#3|)) (-15 -4238 (|#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -2838 (|#3| |#1|)) (-15 -2838 (|#1| (-1219 |#2|))) (-15 -2838 ((-1219 |#2|) |#1|)) (-15 -1917 ((-1219 |#1|))) (-15 -1316 (|#3| |#1|)) (-15 -3160 (|#2| |#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|))) (-699 |#2| |#3|) (-169) (-1195 |#2|)) (T -698))
-((-3608 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1195 *4)) (-5 *2 (-745)) (-5 *1 (-698 *3 *4 *5)) (-4 *3 (-699 *4 *5)))))
-(-10 -8 (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -3232 (|#1|)) (-15 -3608 ((-745))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3101 ((-663 |#2|) (-1219 |#1|) (-1 |#2| |#2|))) (-15 -2552 ((-3 |#1| "failed") (-398 |#3|))) (-15 -2838 (|#1| |#3|)) (-15 -2552 (|#1| |#3|)) (-15 -4238 (|#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -2838 (|#3| |#1|)) (-15 -2838 (|#1| (-1219 |#2|))) (-15 -2838 ((-1219 |#2|) |#1|)) (-15 -1917 ((-1219 |#1|))) (-15 -1316 (|#3| |#1|)) (-15 -3160 (|#2| |#1|)) (-15 -3855 ((-3 |#1| "failed") |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 91 (|has| |#1| (-354)))) (-3571 (($ $) 92 (|has| |#1| (-354)))) (-3915 (((-112) $) 94 (|has| |#1| (-354)))) (-3401 (((-663 |#1|) (-1219 $)) 44) (((-663 |#1|)) 59)) (-2899 ((|#1| $) 50)) (-2797 (((-1146 (-890) (-745)) (-547)) 144 (|has| |#1| (-340)))) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 111 (|has| |#1| (-354)))) (-3299 (((-409 $) $) 112 (|has| |#1| (-354)))) (-1547 (((-112) $ $) 102 (|has| |#1| (-354)))) (-3608 (((-745)) 85 (|has| |#1| (-359)))) (-1948 (($) 17 T CONST)) (-2707 (((-3 (-547) "failed") $) 166 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 164 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 163)) (-2652 (((-547) $) 167 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 165 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 162)) (-2614 (($ (-1219 |#1|) (-1219 $)) 46) (($ (-1219 |#1|)) 62)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-340)))) (-2089 (($ $ $) 106 (|has| |#1| (-354)))) (-3565 (((-663 |#1|) $ (-1219 $)) 51) (((-663 |#1|) $) 57)) (-1694 (((-663 (-547)) (-663 $)) 161 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 160 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 159) (((-663 |#1|) (-663 $)) 158)) (-2552 (($ |#2|) 155) (((-3 $ "failed") (-398 |#2|)) 152 (|has| |#1| (-354)))) (-3855 (((-3 $ "failed") $) 32)) (-3116 (((-890)) 52)) (-3232 (($) 88 (|has| |#1| (-359)))) (-2061 (($ $ $) 105 (|has| |#1| (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 100 (|has| |#1| (-354)))) (-3527 (($) 146 (|has| |#1| (-340)))) (-3078 (((-112) $) 147 (|has| |#1| (-340)))) (-1551 (($ $ (-745)) 138 (|has| |#1| (-340))) (($ $) 137 (|has| |#1| (-340)))) (-1791 (((-112) $) 113 (|has| |#1| (-354)))) (-3275 (((-890) $) 149 (|has| |#1| (-340))) (((-807 (-890)) $) 135 (|has| |#1| (-340)))) (-2261 (((-112) $) 30)) (-3160 ((|#1| $) 49)) (-3477 (((-3 $ "failed") $) 139 (|has| |#1| (-340)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 109 (|has| |#1| (-354)))) (-3786 ((|#2| $) 42 (|has| |#1| (-354)))) (-2402 (((-890) $) 87 (|has| |#1| (-359)))) (-2540 ((|#2| $) 153)) (-3689 (($ (-619 $)) 98 (|has| |#1| (-354))) (($ $ $) 97 (|has| |#1| (-354)))) (-1466 (((-1119) $) 9)) (-1984 (($ $) 114 (|has| |#1| (-354)))) (-3054 (($) 140 (|has| |#1| (-340)) CONST)) (-3487 (($ (-890)) 86 (|has| |#1| (-359)))) (-3979 (((-1082) $) 10)) (-4238 (($) 157)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 99 (|has| |#1| (-354)))) (-3719 (($ (-619 $)) 96 (|has| |#1| (-354))) (($ $ $) 95 (|has| |#1| (-354)))) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) 143 (|has| |#1| (-340)))) (-2115 (((-409 $) $) 110 (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 107 (|has| |#1| (-354)))) (-2032 (((-3 $ "failed") $ $) 90 (|has| |#1| (-354)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 101 (|has| |#1| (-354)))) (-2471 (((-745) $) 103 (|has| |#1| (-354)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 104 (|has| |#1| (-354)))) (-4056 ((|#1| (-1219 $)) 45) ((|#1|) 58)) (-1422 (((-745) $) 148 (|has| |#1| (-340))) (((-3 (-745) "failed") $ $) 136 (|has| |#1| (-340)))) (-3448 (($ $) 134 (-1530 (-1814 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-745)) 132 (-1530 (-1814 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-1136)) 130 (-1814 (|has| |#1| (-869 (-1136))) (|has| |#1| (-354)))) (($ $ (-619 (-1136))) 129 (-1814 (|has| |#1| (-869 (-1136))) (|has| |#1| (-354)))) (($ $ (-1136) (-745)) 128 (-1814 (|has| |#1| (-869 (-1136))) (|has| |#1| (-354)))) (($ $ (-619 (-1136)) (-619 (-745))) 127 (-1814 (|has| |#1| (-869 (-1136))) (|has| |#1| (-354)))) (($ $ (-1 |#1| |#1|) (-745)) 120 (|has| |#1| (-354))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-354)))) (-3101 (((-663 |#1|) (-1219 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-354)))) (-1882 ((|#2|) 156)) (-3823 (($) 145 (|has| |#1| (-340)))) (-3220 (((-1219 |#1|) $ (-1219 $)) 48) (((-663 |#1|) (-1219 $) (-1219 $)) 47) (((-1219 |#1|) $) 64) (((-663 |#1|) (-1219 $)) 63)) (-2838 (((-1219 |#1|) $) 61) (($ (-1219 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 142 (|has| |#1| (-340)))) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-354))) (($ (-398 (-547))) 84 (-1530 (|has| |#1| (-354)) (|has| |#1| (-1007 (-398 (-547))))))) (-2220 (($ $) 141 (|has| |#1| (-340))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-1316 ((|#2| $) 43)) (-2736 (((-745)) 28)) (-1917 (((-1219 $)) 65)) (-3577 (((-112) $ $) 93 (|has| |#1| (-354)))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $) 133 (-1530 (-1814 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-745)) 131 (-1530 (-1814 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-1136)) 126 (-1814 (|has| |#1| (-869 (-1136))) (|has| |#1| (-354)))) (($ $ (-619 (-1136))) 125 (-1814 (|has| |#1| (-869 (-1136))) (|has| |#1| (-354)))) (($ $ (-1136) (-745)) 124 (-1814 (|has| |#1| (-869 (-1136))) (|has| |#1| (-354)))) (($ $ (-619 (-1136)) (-619 (-745))) 123 (-1814 (|has| |#1| (-869 (-1136))) (|has| |#1| (-354)))) (($ $ (-1 |#1| |#1|) (-745)) 122 (|has| |#1| (-354))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-354)))) (-2381 (((-112) $ $) 6)) (-2506 (($ $ $) 118 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 115 (|has| |#1| (-354)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-398 (-547)) $) 117 (|has| |#1| (-354))) (($ $ (-398 (-547))) 116 (|has| |#1| (-354)))))
-(((-699 |#1| |#2|) (-138) (-169) (-1195 |t#1|)) (T -699))
-((-4238 (*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-699 *2 *3)) (-4 *3 (-1195 *2)))) (-1882 (*1 *2) (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1195 *3)))) (-2552 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1195 *3)))) (-2838 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1195 *3)))) (-2540 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1195 *3)))) (-2552 (*1 *1 *2) (|partial| -12 (-5 *2 (-398 *4)) (-4 *4 (-1195 *3)) (-4 *3 (-354)) (-4 *3 (-169)) (-4 *1 (-699 *3 *4)))) (-3101 (*1 *2 *3 *4) (-12 (-5 *3 (-1219 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-354)) (-4 *1 (-699 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1195 *5)) (-5 *2 (-663 *5)))))
-(-13 (-400 |t#1| |t#2|) (-169) (-592 |t#2|) (-402 |t#1|) (-368 |t#1|) (-10 -8 (-15 -4238 ($)) (-15 -1882 (|t#2|)) (-15 -2552 ($ |t#2|)) (-15 -2838 ($ |t#2|)) (-15 -2540 (|t#2| $)) (IF (|has| |t#1| (-359)) (-6 (-359)) |%noBranch|) (IF (|has| |t#1| (-354)) (PROGN (-6 (-354)) (-6 (-223 |t#1|)) (-15 -2552 ((-3 $ "failed") (-398 |t#2|))) (-15 -3101 ((-663 |t#1|) (-1219 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-340)) (-6 (-340)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-38 |#1|) . T) ((-38 $) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-101) . T) ((-111 #0# #0#) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1530 (|has| |#1| (-340)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) . T) ((-592 |#2|) . T) ((-223 |#1|) |has| |#1| (-354)) ((-225) -1530 (|has| |#1| (-340)) (-12 (|has| |#1| (-225)) (|has| |#1| (-354)))) ((-235) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-281) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-298) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-354) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-393) |has| |#1| (-340)) ((-359) -1530 (|has| |#1| (-359)) (|has| |#1| (-340))) ((-340) |has| |#1| (-340)) ((-361 |#1| |#2|) . T) ((-400 |#1| |#2|) . T) ((-368 |#1|) . T) ((-402 |#1|) . T) ((-442) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-539) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-622 #0#) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-692 |#1|) . T) ((-692 $) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-701) . T) ((-869 (-1136)) -12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1136)))) ((-889) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 #0#) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1112) |has| |#1| (-340)) ((-1177) -1530 (|has| |#1| (-340)) (|has| |#1| (-354))))
-((-1948 (($) 11)) (-3855 (((-3 $ "failed") $) 13)) (-2261 (((-112) $) 10)) (** (($ $ (-890)) NIL) (($ $ (-745)) 18)))
-(((-700 |#1|) (-10 -8 (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 -2261 ((-112) |#1|)) (-15 -1948 (|#1|)) (-15 ** (|#1| |#1| (-890)))) (-701)) (T -700))
-NIL
-(-10 -8 (-15 -3855 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 -2261 ((-112) |#1|)) (-15 -1948 (|#1|)) (-15 ** (|#1| |#1| (-890))))
-((-3826 (((-112) $ $) 7)) (-1948 (($) 18 T CONST)) (-3855 (((-3 $ "failed") $) 15)) (-2261 (((-112) $) 17)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3281 (($) 19 T CONST)) (-2381 (((-112) $ $) 6)) (** (($ $ (-890)) 13) (($ $ (-745)) 16)) (* (($ $ $) 14)))
-(((-701) (-138)) (T -701))
-((-3281 (*1 *1) (-4 *1 (-701))) (-1948 (*1 *1) (-4 *1 (-701))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-745)))) (-3855 (*1 *1 *1) (|partial| -4 *1 (-701))))
-(-13 (-1075) (-10 -8 (-15 (-3281) ($) -2582) (-15 -1948 ($) -2582) (-15 -2261 ((-112) $)) (-15 ** ($ $ (-745))) (-15 -3855 ((-3 $ "failed") $))))
-(((-101) . T) ((-591 (-832)) . T) ((-1075) . T) ((-1063) . T))
-((-1472 (((-2 (|:| -4032 (-409 |#2|)) (|:| |special| (-409 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-4194 (((-2 (|:| -4032 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3440 ((|#2| (-398 |#2|) (-1 |#2| |#2|)) 13)) (-2773 (((-2 (|:| |poly| |#2|) (|:| -4032 (-398 |#2|)) (|:| |special| (-398 |#2|))) (-398 |#2|) (-1 |#2| |#2|)) 47)))
-(((-702 |#1| |#2|) (-10 -7 (-15 -4194 ((-2 (|:| -4032 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1472 ((-2 (|:| -4032 (-409 |#2|)) (|:| |special| (-409 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3440 (|#2| (-398 |#2|) (-1 |#2| |#2|))) (-15 -2773 ((-2 (|:| |poly| |#2|) (|:| -4032 (-398 |#2|)) (|:| |special| (-398 |#2|))) (-398 |#2|) (-1 |#2| |#2|)))) (-354) (-1195 |#1|)) (T -702))
-((-2773 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4032 (-398 *6)) (|:| |special| (-398 *6)))) (-5 *1 (-702 *5 *6)) (-5 *3 (-398 *6)))) (-3440 (*1 *2 *3 *4) (-12 (-5 *3 (-398 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1195 *5)) (-5 *1 (-702 *5 *2)) (-4 *5 (-354)))) (-1472 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1195 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| -4032 (-409 *3)) (|:| |special| (-409 *3)))) (-5 *1 (-702 *5 *3)))) (-4194 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1195 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| -4032 *3) (|:| |special| *3))) (-5 *1 (-702 *5 *3)))))
-(-10 -7 (-15 -4194 ((-2 (|:| -4032 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1472 ((-2 (|:| -4032 (-409 |#2|)) (|:| |special| (-409 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3440 (|#2| (-398 |#2|) (-1 |#2| |#2|))) (-15 -2773 ((-2 (|:| |poly| |#2|) (|:| -4032 (-398 |#2|)) (|:| |special| (-398 |#2|))) (-398 |#2|) (-1 |#2| |#2|))))
-((-3873 ((|#7| (-619 |#5|) |#6|) NIL)) (-2790 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-703 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2790 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3873 (|#7| (-619 |#5|) |#6|))) (-821) (-767) (-767) (-1016) (-1016) (-918 |#4| |#2| |#1|) (-918 |#5| |#3| |#1|)) (T -703))
-((-3873 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *9)) (-4 *9 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *8 (-1016)) (-4 *2 (-918 *9 *7 *5)) (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767)) (-4 *4 (-918 *8 *6 *5)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1016)) (-4 *9 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *2 (-918 *9 *7 *5)) (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767)) (-4 *4 (-918 *8 *6 *5)))))
-(-10 -7 (-15 -2790 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3873 (|#7| (-619 |#5|) |#6|)))
-((-2790 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-704 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2790 (|#7| (-1 |#2| |#1|) |#6|))) (-821) (-821) (-767) (-767) (-1016) (-918 |#5| |#3| |#1|) (-918 |#5| |#4| |#2|)) (T -704))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-821)) (-4 *6 (-821)) (-4 *7 (-767)) (-4 *9 (-1016)) (-4 *2 (-918 *9 *8 *6)) (-5 *1 (-704 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-767)) (-4 *4 (-918 *9 *7 *5)))))
-(-10 -7 (-15 -2790 (|#7| (-1 |#2| |#1|) |#6|)))
-((-2115 (((-409 |#4|) |#4|) 41)))
-(((-705 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2115 ((-409 |#4|) |#4|))) (-767) (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $)) (-15 -3004 ((-3 $ "failed") (-1136))))) (-298) (-918 (-921 |#3|) |#1| |#2|)) (T -705))
-((-2115 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $)) (-15 -3004 ((-3 $ "failed") (-1136)))))) (-4 *6 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-705 *4 *5 *6 *3)) (-4 *3 (-918 (-921 *6) *4 *5)))))
-(-10 -7 (-15 -2115 ((-409 |#4|) |#4|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2267 (((-619 (-834 |#1|)) $) NIL)) (-2078 (((-1132 $) $ (-834 |#1|)) NIL) (((-1132 |#2|) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#2| (-539)))) (-3571 (($ $) NIL (|has| |#2| (-539)))) (-3915 (((-112) $) NIL (|has| |#2| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 (-834 |#1|))) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-2555 (($ $) NIL (|has| |#2| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#2| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2652 ((|#2| $) NIL) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-834 |#1|) $) NIL)) (-1496 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-2063 (($ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#2| (-878)))) (-3210 (($ $ |#2| (-519 (-834 |#1|)) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-2254 (($ (-1132 |#2|) (-834 |#1|)) NIL) (($ (-1132 $) (-834 |#1|)) NIL)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#2| (-519 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ (-834 |#1|)) NIL)) (-3095 (((-519 (-834 |#1|)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2856 (($ $ $) NIL (|has| |#2| (-821)))) (-3567 (($ $ $) NIL (|has| |#2| (-821)))) (-4182 (($ (-1 (-519 (-834 |#1|)) (-519 (-834 |#1|))) $) NIL)) (-2790 (($ (-1 |#2| |#2|) $) NIL)) (-1631 (((-3 (-834 |#1|) "failed") $) NIL)) (-2019 (($ $) NIL)) (-2037 ((|#2| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-1466 (((-1119) $) NIL)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -3322 (-745))) "failed") $) NIL)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) NIL)) (-2009 ((|#2| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#2| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#2| (-878)))) (-2032 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-539)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) NIL) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) NIL) (($ $ (-834 |#1|) $) NIL) (($ $ (-619 (-834 |#1|)) (-619 $)) NIL)) (-4056 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3448 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-3705 (((-519 (-834 |#1|)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-834 |#1|) (-592 (-523))) (|has| |#2| (-592 (-523)))))) (-2392 ((|#2| $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) NIL) (($ (-834 |#1|)) NIL) (($ $) NIL (|has| |#2| (-539))) (($ (-398 (-547))) NIL (-1530 (|has| |#2| (-38 (-398 (-547)))) (|has| |#2| (-1007 (-398 (-547))))))) (-1277 (((-619 |#2|) $) NIL)) (-2450 ((|#2| $ (-519 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#2| (-539)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2441 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2506 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#2| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#2| (-38 (-398 (-547))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-706 |#1| |#2|) (-918 |#2| (-519 (-834 |#1|)) (-834 |#1|)) (-619 (-1136)) (-1016)) (T -706))
-NIL
-(-918 |#2| (-519 (-834 |#1|)) (-834 |#1|))
-((-2465 (((-2 (|:| -2794 (-921 |#3|)) (|:| -4273 (-921 |#3|))) |#4|) 14)) (-1794 ((|#4| |#4| |#2|) 33)) (-3151 ((|#4| (-398 (-921 |#3|)) |#2|) 64)) (-1665 ((|#4| (-1132 (-921 |#3|)) |#2|) 77)) (-3711 ((|#4| (-1132 |#4|) |#2|) 51)) (-3452 ((|#4| |#4| |#2|) 54)) (-2115 (((-409 |#4|) |#4|) 40)))
-(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2465 ((-2 (|:| -2794 (-921 |#3|)) (|:| -4273 (-921 |#3|))) |#4|)) (-15 -3452 (|#4| |#4| |#2|)) (-15 -3711 (|#4| (-1132 |#4|) |#2|)) (-15 -1794 (|#4| |#4| |#2|)) (-15 -1665 (|#4| (-1132 (-921 |#3|)) |#2|)) (-15 -3151 (|#4| (-398 (-921 |#3|)) |#2|)) (-15 -2115 ((-409 |#4|) |#4|))) (-767) (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $)))) (-539) (-918 (-398 (-921 |#3|)) |#1| |#2|)) (T -707))
-((-2115 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))) (-4 *6 (-539)) (-5 *2 (-409 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-918 (-398 (-921 *6)) *4 *5)))) (-3151 (*1 *2 *3 *4) (-12 (-4 *6 (-539)) (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) (-5 *3 (-398 (-921 *6))) (-4 *5 (-767)) (-4 *4 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))))) (-1665 (*1 *2 *3 *4) (-12 (-5 *3 (-1132 (-921 *6))) (-4 *6 (-539)) (-4 *2 (-918 (-398 (-921 *6)) *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) (-4 *5 (-767)) (-4 *4 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))))) (-1794 (*1 *2 *2 *3) (-12 (-4 *4 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))) (-4 *5 (-539)) (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-398 (-921 *5)) *4 *3)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-1132 *2)) (-4 *2 (-918 (-398 (-921 *6)) *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) (-4 *5 (-767)) (-4 *4 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))) (-4 *6 (-539)))) (-3452 (*1 *2 *2 *3) (-12 (-4 *4 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))) (-4 *5 (-539)) (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-398 (-921 *5)) *4 *3)))) (-2465 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))) (-4 *6 (-539)) (-5 *2 (-2 (|:| -2794 (-921 *6)) (|:| -4273 (-921 *6)))) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-918 (-398 (-921 *6)) *4 *5)))))
-(-10 -7 (-15 -2465 ((-2 (|:| -2794 (-921 |#3|)) (|:| -4273 (-921 |#3|))) |#4|)) (-15 -3452 (|#4| |#4| |#2|)) (-15 -3711 (|#4| (-1132 |#4|) |#2|)) (-15 -1794 (|#4| |#4| |#2|)) (-15 -1665 (|#4| (-1132 (-921 |#3|)) |#2|)) (-15 -3151 (|#4| (-398 (-921 |#3|)) |#2|)) (-15 -2115 ((-409 |#4|) |#4|)))
-((-2115 (((-409 |#4|) |#4|) 52)))
-(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2115 ((-409 |#4|) |#4|))) (-767) (-821) (-13 (-298) (-145)) (-918 (-398 |#3|) |#1| |#2|)) (T -708))
-((-2115 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-13 (-298) (-145))) (-5 *2 (-409 *3)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-918 (-398 *6) *4 *5)))))
-(-10 -7 (-15 -2115 ((-409 |#4|) |#4|)))
-((-2790 (((-710 |#2| |#3|) (-1 |#2| |#1|) (-710 |#1| |#3|)) 18)))
-(((-709 |#1| |#2| |#3|) (-10 -7 (-15 -2790 ((-710 |#2| |#3|) (-1 |#2| |#1|) (-710 |#1| |#3|)))) (-1016) (-1016) (-701)) (T -709))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-710 *5 *7)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-701)) (-5 *2 (-710 *6 *7)) (-5 *1 (-709 *5 *6 *7)))))
-(-10 -7 (-15 -2790 ((-710 |#2| |#3|) (-1 |#2| |#1|) (-710 |#1| |#3|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 28)) (-2203 (((-619 (-2 (|:| -1563 |#1|) (|:| -3518 |#2|))) $) 29)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3608 (((-745)) 20 (-12 (|has| |#2| (-359)) (|has| |#1| (-359))))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2652 ((|#2| $) NIL) ((|#1| $) NIL)) (-2063 (($ $) 79 (|has| |#2| (-821)))) (-3855 (((-3 $ "failed") $) 65)) (-3232 (($) 35 (-12 (|has| |#2| (-359)) (|has| |#1| (-359))))) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) 55)) (-4097 (((-619 $) $) 39)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| |#2|) 16)) (-2790 (($ (-1 |#1| |#1|) $) 54)) (-2402 (((-890) $) 32 (-12 (|has| |#2| (-359)) (|has| |#1| (-359))))) (-2019 ((|#2| $) 78 (|has| |#2| (-821)))) (-2037 ((|#1| $) 77 (|has| |#2| (-821)))) (-1466 (((-1119) $) NIL)) (-3487 (($ (-890)) 27 (-12 (|has| |#2| (-359)) (|has| |#1| (-359))))) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 76) (($ (-547)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-619 (-2 (|:| -1563 |#1|) (|:| -3518 |#2|)))) 11)) (-1277 (((-619 |#1|) $) 41)) (-2450 ((|#1| $ |#2|) 88)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-3269 (($) 12 T CONST)) (-3281 (($) 33 T CONST)) (-2381 (((-112) $ $) 80)) (-2493 (($ $) 47) (($ $ $) NIL)) (-2479 (($ $ $) 26)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169)))))
-(((-710 |#1| |#2|) (-13 (-1016) (-1007 |#2|) (-1007 |#1|) (-10 -8 (-15 -2238 ($ |#1| |#2|)) (-15 -2450 (|#1| $ |#2|)) (-15 -3838 ($ (-619 (-2 (|:| -1563 |#1|) (|:| -3518 |#2|))))) (-15 -2203 ((-619 (-2 (|:| -1563 |#1|) (|:| -3518 |#2|))) $)) (-15 -2790 ($ (-1 |#1| |#1|) $)) (-15 -1759 ((-112) $)) (-15 -1277 ((-619 |#1|) $)) (-15 -4097 ((-619 $) $)) (-15 -3376 ((-745) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-359)) (IF (|has| |#2| (-359)) (-6 (-359)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-821)) (PROGN (-15 -2019 (|#2| $)) (-15 -2037 (|#1| $)) (-15 -2063 ($ $))) |%noBranch|))) (-1016) (-701)) (T -710))
-((-2238 (*1 *1 *2 *3) (-12 (-5 *1 (-710 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-701)))) (-2450 (*1 *2 *1 *3) (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-701)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -1563 *3) (|:| -3518 *4)))) (-4 *3 (-1016)) (-4 *4 (-701)) (-5 *1 (-710 *3 *4)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -1563 *3) (|:| -3518 *4)))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-710 *3 *4)) (-4 *4 (-701)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-1277 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-619 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-2019 (*1 *2 *1) (-12 (-4 *2 (-701)) (-4 *2 (-821)) (-5 *1 (-710 *3 *2)) (-4 *3 (-1016)))) (-2037 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) (-4 *3 (-701)))) (-2063 (*1 *1 *1) (-12 (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1016)) (-4 *3 (-701)))))
-(-13 (-1016) (-1007 |#2|) (-1007 |#1|) (-10 -8 (-15 -2238 ($ |#1| |#2|)) (-15 -2450 (|#1| $ |#2|)) (-15 -3838 ($ (-619 (-2 (|:| -1563 |#1|) (|:| -3518 |#2|))))) (-15 -2203 ((-619 (-2 (|:| -1563 |#1|) (|:| -3518 |#2|))) $)) (-15 -2790 ($ (-1 |#1| |#1|) $)) (-15 -1759 ((-112) $)) (-15 -1277 ((-619 |#1|) $)) (-15 -4097 ((-619 $) $)) (-15 -3376 ((-745) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-359)) (IF (|has| |#2| (-359)) (-6 (-359)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-821)) (PROGN (-15 -2019 (|#2| $)) (-15 -2037 (|#1| $)) (-15 -2063 ($ $))) |%noBranch|)))
-((-3826 (((-112) $ $) 19)) (-1435 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2984 (($ $ $) 72)) (-1361 (((-112) $ $) 73)) (-3899 (((-112) $ (-745)) 8)) (-2782 (($ (-619 |#1|)) 68) (($) 67)) (-4285 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-2968 (($ $) 62)) (-3668 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1513 (($ |#1| $) 47 (|has| $ (-6 -4329))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4329)))) (-3803 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4329)))) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2841 (((-112) $ $) 64)) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22)) (-3594 (($ $ $) 69)) (-4266 ((|#1| $) 39)) (-2657 (($ |#1| $) 40) (($ |#1| $ (-745)) 63)) (-3979 (((-1082) $) 21)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2056 ((|#1| $) 41)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3941 (((-619 (-2 (|:| -1786 |#1|) (|:| -3992 (-745)))) $) 61)) (-1832 (($ $ |#1|) 71) (($ $ $) 70)) (-2699 (($) 49) (($ (-619 |#1|)) 48)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-2838 (((-523) $) 59 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 50)) (-3838 (((-832) $) 18)) (-4112 (($ (-619 |#1|)) 66) (($) 65)) (-2300 (($ (-619 |#1|)) 42)) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20)) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-711 |#1|) (-138) (-1063)) (T -711))
-NIL
-(-13 (-669 |t#1|) (-1061 |t#1|))
-(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-591 (-832)) . T) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-227 |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-669 |#1|) . T) ((-1061 |#1|) . T) ((-1063) . T) ((-1173) . T))
-((-3826 (((-112) $ $) NIL)) (-1435 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2984 (($ $ $) 79)) (-1361 (((-112) $ $) 83)) (-3899 (((-112) $ (-745)) NIL)) (-2782 (($ (-619 |#1|)) 24) (($) 16)) (-4285 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-2968 (($ $) 71)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1513 (($ |#1| $) 61 (|has| $ (-6 -4329))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4329))) (($ |#1| $ (-547)) 62) (($ (-1 (-112) |#1|) $ (-547)) 65)) (-3803 (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (($ |#1| $ (-547)) 67) (($ (-1 (-112) |#1|) $ (-547)) 68)) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2982 (((-619 |#1|) $) 32 (|has| $ (-6 -4329)))) (-2841 (((-112) $ $) 82)) (-3006 (($) 14) (($ |#1|) 26) (($ (-619 |#1|)) 21)) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#1|) $) 38)) (-2132 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1859 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 75)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-3594 (($ $ $) 77)) (-4266 ((|#1| $) 55)) (-2657 (($ |#1| $) 56) (($ |#1| $ (-745)) 72)) (-3979 (((-1082) $) NIL)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2056 ((|#1| $) 54)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 50)) (-2245 (($) 13)) (-3941 (((-619 (-2 (|:| -1786 |#1|) (|:| -3992 (-745)))) $) 48)) (-1832 (($ $ |#1|) NIL) (($ $ $) 78)) (-2699 (($) 15) (($ (-619 |#1|)) 23)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) 60 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) 66)) (-2838 (((-523) $) 36 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 20)) (-3838 (((-832) $) 44)) (-4112 (($ (-619 |#1|)) 25) (($) 17)) (-2300 (($ (-619 |#1|)) 22)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 81)) (-3767 (((-745) $) 59 (|has| $ (-6 -4329)))))
-(((-712 |#1|) (-13 (-711 |#1|) (-10 -8 (-6 -4329) (-6 -4330) (-15 -3006 ($)) (-15 -3006 ($ |#1|)) (-15 -3006 ($ (-619 |#1|))) (-15 -2284 ((-619 |#1|) $)) (-15 -3803 ($ |#1| $ (-547))) (-15 -3803 ($ (-1 (-112) |#1|) $ (-547))) (-15 -1513 ($ |#1| $ (-547))) (-15 -1513 ($ (-1 (-112) |#1|) $ (-547))))) (-1063)) (T -712))
-((-3006 (*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-3006 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-3006 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-712 *3)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-712 *3)) (-4 *3 (-1063)))) (-3803 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-3803 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-547)) (-4 *4 (-1063)) (-5 *1 (-712 *4)))) (-1513 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-1513 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-547)) (-4 *4 (-1063)) (-5 *1 (-712 *4)))))
-(-13 (-711 |#1|) (-10 -8 (-6 -4329) (-6 -4330) (-15 -3006 ($)) (-15 -3006 ($ |#1|)) (-15 -3006 ($ (-619 |#1|))) (-15 -2284 ((-619 |#1|) $)) (-15 -3803 ($ |#1| $ (-547))) (-15 -3803 ($ (-1 (-112) |#1|) $ (-547))) (-15 -1513 ($ |#1| $ (-547))) (-15 -1513 ($ (-1 (-112) |#1|) $ (-547)))))
-((-4001 (((-1224) (-1119)) 8)))
-(((-713) (-10 -7 (-15 -4001 ((-1224) (-1119))))) (T -713))
-((-4001 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-713)))))
-(-10 -7 (-15 -4001 ((-1224) (-1119))))
-((-1981 (((-619 |#1|) (-619 |#1|) (-619 |#1|)) 10)))
-(((-714 |#1|) (-10 -7 (-15 -1981 ((-619 |#1|) (-619 |#1|) (-619 |#1|)))) (-821)) (T -714))
-((-1981 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-714 *3)))))
-(-10 -7 (-15 -1981 ((-619 |#1|) (-619 |#1|) (-619 |#1|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2267 (((-619 |#2|) $) 134)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 127 (|has| |#1| (-539)))) (-3571 (($ $) 126 (|has| |#1| (-539)))) (-3915 (((-112) $) 124 (|has| |#1| (-539)))) (-1656 (($ $) 83 (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) 66 (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) 19)) (-2127 (($ $) 65 (|has| |#1| (-38 (-398 (-547)))))) (-1632 (($ $) 82 (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) 67 (|has| |#1| (-38 (-398 (-547)))))) (-1678 (($ $) 81 (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) 68 (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) 17 T CONST)) (-2063 (($ $) 118)) (-3855 (((-3 $ "failed") $) 32)) (-1407 (((-921 |#1|) $ (-745)) 96) (((-921 |#1|) $ (-745) (-745)) 95)) (-1713 (((-112) $) 135)) (-1419 (($) 93 (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-745) $ |#2|) 98) (((-745) $ |#2| (-745)) 97)) (-2261 (((-112) $) 30)) (-3869 (($ $ (-547)) 64 (|has| |#1| (-38 (-398 (-547)))))) (-1759 (((-112) $) 116)) (-2238 (($ $ (-619 |#2|) (-619 (-519 |#2|))) 133) (($ $ |#2| (-519 |#2|)) 132) (($ |#1| (-519 |#2|)) 117) (($ $ |#2| (-745)) 100) (($ $ (-619 |#2|) (-619 (-745))) 99)) (-2790 (($ (-1 |#1| |#1|) $) 115)) (-3624 (($ $) 90 (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) 113)) (-2037 ((|#1| $) 112)) (-1466 (((-1119) $) 9)) (-3694 (($ $ |#2|) 94 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) 10)) (-3708 (($ $ (-745)) 101)) (-2032 (((-3 $ "failed") $ $) 128 (|has| |#1| (-539)))) (-2712 (($ $) 91 (|has| |#1| (-38 (-398 (-547)))))) (-2679 (($ $ |#2| $) 109) (($ $ (-619 |#2|) (-619 $)) 108) (($ $ (-619 (-285 $))) 107) (($ $ (-285 $)) 106) (($ $ $ $) 105) (($ $ (-619 $) (-619 $)) 104)) (-3448 (($ $ |#2|) 40) (($ $ (-619 |#2|)) 39) (($ $ |#2| (-745)) 38) (($ $ (-619 |#2|) (-619 (-745))) 37)) (-3705 (((-519 |#2|) $) 114)) (-1690 (($ $) 80 (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) 69 (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) 79 (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) 70 (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) 78 (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) 71 (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) 136)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 131 (|has| |#1| (-169))) (($ $) 129 (|has| |#1| (-539))) (($ (-398 (-547))) 121 (|has| |#1| (-38 (-398 (-547)))))) (-2450 ((|#1| $ (-519 |#2|)) 119) (($ $ |#2| (-745)) 103) (($ $ (-619 |#2|) (-619 (-745))) 102)) (-2220 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-2736 (((-745)) 28)) (-1726 (($ $) 89 (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) 77 (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) 125 (|has| |#1| (-539)))) (-1703 (($ $) 88 (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) 76 (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) 87 (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) 75 (|has| |#1| (-38 (-398 (-547)))))) (-1927 (($ $) 86 (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) 74 (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) 85 (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) 73 (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) 84 (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) 72 (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ |#2|) 36) (($ $ (-619 |#2|)) 35) (($ $ |#2| (-745)) 34) (($ $ (-619 |#2|) (-619 (-745))) 33)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#1|) 120 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ $) 92 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 63 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 123 (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) 122 (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 111) (($ $ |#1|) 110)))
-(((-715 |#1| |#2|) (-138) (-1016) (-821)) (T -715))
-((-2450 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016)) (-4 *2 (-821)))) (-2450 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-715 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-821)))) (-2238 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016)) (-4 *2 (-821)))) (-2238 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)))) (-3275 (*1 *2 *1 *3) (-12 (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-821)) (-5 *2 (-745)))) (-3275 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-745)) (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-821)))) (-1407 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)) (-5 *2 (-921 *4)))) (-1407 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)) (-5 *2 (-921 *4)))) (-3694 (*1 *1 *1 *2) (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821)) (-4 *3 (-38 (-398 (-547)))))))
-(-13 (-869 |t#2|) (-942 |t#1| (-519 |t#2|) |t#2|) (-503 |t#2| $) (-300 $) (-10 -8 (-15 -2450 ($ $ |t#2| (-745))) (-15 -2450 ($ $ (-619 |t#2|) (-619 (-745)))) (-15 -3708 ($ $ (-745))) (-15 -2238 ($ $ |t#2| (-745))) (-15 -2238 ($ $ (-619 |t#2|) (-619 (-745)))) (-15 -3275 ((-745) $ |t#2|)) (-15 -3275 ((-745) $ |t#2| (-745))) (-15 -1407 ((-921 |t#1|) $ (-745))) (-15 -1407 ((-921 |t#1|) $ (-745) (-745))) (IF (|has| |t#1| (-38 (-398 (-547)))) (PROGN (-15 -3694 ($ $ |t#2|)) (-6 (-971)) (-6 (-1158))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-519 |#2|)) . T) ((-25) . T) ((-38 #1=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-35) |has| |#1| (-38 (-398 (-547)))) ((-94) |has| |#1| (-38 (-398 (-547)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-275) |has| |#1| (-38 (-398 (-547)))) ((-281) |has| |#1| (-539)) ((-300 $) . T) ((-482) |has| |#1| (-38 (-398 (-547)))) ((-503 |#2| $) . T) ((-503 $ $) . T) ((-539) |has| |#1| (-539)) ((-622 #1#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) . T) ((-869 |#2|) . T) ((-942 |#1| #0# |#2|) . T) ((-971) |has| |#1| (-38 (-398 (-547)))) ((-1022 #1#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1158) |has| |#1| (-38 (-398 (-547)))) ((-1161) |has| |#1| (-38 (-398 (-547)))))
-((-2115 (((-409 (-1132 |#4|)) (-1132 |#4|)) 30) (((-409 |#4|) |#4|) 26)))
-(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2115 ((-409 |#4|) |#4|)) (-15 -2115 ((-409 (-1132 |#4|)) (-1132 |#4|)))) (-821) (-767) (-13 (-298) (-145)) (-918 |#3| |#2| |#1|)) (T -716))
-((-2115 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-298) (-145))) (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-409 (-1132 *7))) (-5 *1 (-716 *4 *5 *6 *7)) (-5 *3 (-1132 *7)))) (-2115 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-298) (-145))) (-5 *2 (-409 *3)) (-5 *1 (-716 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4)))))
-(-10 -7 (-15 -2115 ((-409 |#4|) |#4|)) (-15 -2115 ((-409 (-1132 |#4|)) (-1132 |#4|))))
-((-2752 (((-409 |#4|) |#4| |#2|) 120)) (-2046 (((-409 |#4|) |#4|) NIL)) (-3299 (((-409 (-1132 |#4|)) (-1132 |#4|)) 111) (((-409 |#4|) |#4|) 41)) (-1429 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-619 (-2 (|:| -2115 (-1132 |#4|)) (|:| -3322 (-547)))))) (-1132 |#4|) (-619 |#2|) (-619 (-619 |#3|))) 69)) (-2223 (((-1132 |#3|) (-1132 |#3|) (-547)) 139)) (-1438 (((-619 (-745)) (-1132 |#4|) (-619 |#2|) (-745)) 61)) (-2540 (((-3 (-619 (-1132 |#4|)) "failed") (-1132 |#4|) (-1132 |#3|) (-1132 |#3|) |#4| (-619 |#2|) (-619 (-745)) (-619 |#3|)) 65)) (-2556 (((-2 (|:| |upol| (-1132 |#3|)) (|:| |Lval| (-619 |#3|)) (|:| |Lfact| (-619 (-2 (|:| -2115 (-1132 |#3|)) (|:| -3322 (-547))))) (|:| |ctpol| |#3|)) (-1132 |#4|) (-619 |#2|) (-619 (-619 |#3|))) 26)) (-4192 (((-2 (|:| -2447 (-1132 |#4|)) (|:| |polval| (-1132 |#3|))) (-1132 |#4|) (-1132 |#3|) (-547)) 57)) (-2229 (((-547) (-619 (-2 (|:| -2115 (-1132 |#3|)) (|:| -3322 (-547))))) 136)) (-2208 ((|#4| (-547) (-409 |#4|)) 58)) (-3104 (((-112) (-619 (-2 (|:| -2115 (-1132 |#3|)) (|:| -3322 (-547)))) (-619 (-2 (|:| -2115 (-1132 |#3|)) (|:| -3322 (-547))))) NIL)))
-(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3299 ((-409 |#4|) |#4|)) (-15 -3299 ((-409 (-1132 |#4|)) (-1132 |#4|))) (-15 -2046 ((-409 |#4|) |#4|)) (-15 -2229 ((-547) (-619 (-2 (|:| -2115 (-1132 |#3|)) (|:| -3322 (-547)))))) (-15 -2752 ((-409 |#4|) |#4| |#2|)) (-15 -4192 ((-2 (|:| -2447 (-1132 |#4|)) (|:| |polval| (-1132 |#3|))) (-1132 |#4|) (-1132 |#3|) (-547))) (-15 -1429 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-619 (-2 (|:| -2115 (-1132 |#4|)) (|:| -3322 (-547)))))) (-1132 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2556 ((-2 (|:| |upol| (-1132 |#3|)) (|:| |Lval| (-619 |#3|)) (|:| |Lfact| (-619 (-2 (|:| -2115 (-1132 |#3|)) (|:| -3322 (-547))))) (|:| |ctpol| |#3|)) (-1132 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2208 (|#4| (-547) (-409 |#4|))) (-15 -3104 ((-112) (-619 (-2 (|:| -2115 (-1132 |#3|)) (|:| -3322 (-547)))) (-619 (-2 (|:| -2115 (-1132 |#3|)) (|:| -3322 (-547)))))) (-15 -2540 ((-3 (-619 (-1132 |#4|)) "failed") (-1132 |#4|) (-1132 |#3|) (-1132 |#3|) |#4| (-619 |#2|) (-619 (-745)) (-619 |#3|))) (-15 -1438 ((-619 (-745)) (-1132 |#4|) (-619 |#2|) (-745))) (-15 -2223 ((-1132 |#3|) (-1132 |#3|) (-547)))) (-767) (-821) (-298) (-918 |#3| |#1| |#2|)) (T -717))
-((-2223 (*1 *2 *2 *3) (-12 (-5 *2 (-1132 *6)) (-5 *3 (-547)) (-4 *6 (-298)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1132 *9)) (-5 *4 (-619 *7)) (-4 *7 (-821)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-4 *8 (-298)) (-5 *2 (-619 (-745))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *5 (-745)))) (-2540 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1132 *11)) (-5 *6 (-619 *10)) (-5 *7 (-619 (-745))) (-5 *8 (-619 *11)) (-4 *10 (-821)) (-4 *11 (-298)) (-4 *9 (-767)) (-4 *5 (-918 *11 *9 *10)) (-5 *2 (-619 (-1132 *5))) (-5 *1 (-717 *9 *10 *11 *5)) (-5 *3 (-1132 *5)))) (-3104 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-2 (|:| -2115 (-1132 *6)) (|:| -3322 (-547))))) (-4 *6 (-298)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-2208 (*1 *2 *3 *4) (-12 (-5 *3 (-547)) (-5 *4 (-409 *2)) (-4 *2 (-918 *7 *5 *6)) (-5 *1 (-717 *5 *6 *7 *2)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-298)))) (-2556 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1132 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) (-4 *7 (-821)) (-4 *8 (-298)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-5 *2 (-2 (|:| |upol| (-1132 *8)) (|:| |Lval| (-619 *8)) (|:| |Lfact| (-619 (-2 (|:| -2115 (-1132 *8)) (|:| -3322 (-547))))) (|:| |ctpol| *8))) (-5 *1 (-717 *6 *7 *8 *9)))) (-1429 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) (-4 *7 (-821)) (-4 *8 (-298)) (-4 *6 (-767)) (-4 *9 (-918 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-619 (-2 (|:| -2115 (-1132 *9)) (|:| -3322 (-547))))))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1132 *9)))) (-4192 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-547)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-298)) (-4 *9 (-918 *8 *6 *7)) (-5 *2 (-2 (|:| -2447 (-1132 *9)) (|:| |polval| (-1132 *8)))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1132 *9)) (-5 *4 (-1132 *8)))) (-2752 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-717 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -2115 (-1132 *6)) (|:| -3322 (-547))))) (-4 *6 (-298)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-547)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-2046 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5)))) (-3299 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-409 (-1132 *7))) (-5 *1 (-717 *4 *5 *6 *7)) (-5 *3 (-1132 *7)))) (-3299 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5)))))
-(-10 -7 (-15 -3299 ((-409 |#4|) |#4|)) (-15 -3299 ((-409 (-1132 |#4|)) (-1132 |#4|))) (-15 -2046 ((-409 |#4|) |#4|)) (-15 -2229 ((-547) (-619 (-2 (|:| -2115 (-1132 |#3|)) (|:| -3322 (-547)))))) (-15 -2752 ((-409 |#4|) |#4| |#2|)) (-15 -4192 ((-2 (|:| -2447 (-1132 |#4|)) (|:| |polval| (-1132 |#3|))) (-1132 |#4|) (-1132 |#3|) (-547))) (-15 -1429 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-619 (-2 (|:| -2115 (-1132 |#4|)) (|:| -3322 (-547)))))) (-1132 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2556 ((-2 (|:| |upol| (-1132 |#3|)) (|:| |Lval| (-619 |#3|)) (|:| |Lfact| (-619 (-2 (|:| -2115 (-1132 |#3|)) (|:| -3322 (-547))))) (|:| |ctpol| |#3|)) (-1132 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2208 (|#4| (-547) (-409 |#4|))) (-15 -3104 ((-112) (-619 (-2 (|:| -2115 (-1132 |#3|)) (|:| -3322 (-547)))) (-619 (-2 (|:| -2115 (-1132 |#3|)) (|:| -3322 (-547)))))) (-15 -2540 ((-3 (-619 (-1132 |#4|)) "failed") (-1132 |#4|) (-1132 |#3|) (-1132 |#3|) |#4| (-619 |#2|) (-619 (-745)) (-619 |#3|))) (-15 -1438 ((-619 (-745)) (-1132 |#4|) (-619 |#2|) (-745))) (-15 -2223 ((-1132 |#3|) (-1132 |#3|) (-547))))
-((-1296 (($ $ (-890)) 12)))
-(((-718 |#1| |#2|) (-10 -8 (-15 -1296 (|#1| |#1| (-890)))) (-719 |#2|) (-169)) (T -718))
-NIL
-(-10 -8 (-15 -1296 (|#1| |#1| (-890))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3387 (($ $ (-890)) 28)) (-1296 (($ $ (-890)) 33)) (-3851 (($ $ (-890)) 29)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-1473 (($ $ $) 25)) (-3838 (((-832) $) 11)) (-2781 (($ $ $ $) 26)) (-2031 (($ $ $) 24)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-719 |#1|) (-138) (-169)) (T -719))
-((-1296 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-719 *3)) (-4 *3 (-169)))))
-(-13 (-736) (-692 |t#1|) (-10 -8 (-15 -1296 ($ $ (-890)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-695) . T) ((-736) . T) ((-1022 |#1|) . T) ((-1063) . T))
-((-1994 (((-1004) (-663 (-217)) (-547) (-112) (-547)) 25)) (-2966 (((-1004) (-663 (-217)) (-547) (-112) (-547)) 24)))
-(((-720) (-10 -7 (-15 -2966 ((-1004) (-663 (-217)) (-547) (-112) (-547))) (-15 -1994 ((-1004) (-663 (-217)) (-547) (-112) (-547))))) (T -720))
-((-1994 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-720)))) (-2966 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-720)))))
-(-10 -7 (-15 -2966 ((-1004) (-663 (-217)) (-547) (-112) (-547))) (-15 -1994 ((-1004) (-663 (-217)) (-547) (-112) (-547))))
-((-1992 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-73 FCN)))) 43)) (-3226 (((-1004) (-547) (-547) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-80 FCN)))) 39)) (-4145 (((-1004) (-217) (-217) (-217) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415)))) 32)))
-(((-721) (-10 -7 (-15 -4145 ((-1004) (-217) (-217) (-217) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))) (-15 -3226 ((-1004) (-547) (-547) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-80 FCN))))) (-15 -1992 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-73 FCN))))))) (T -721))
-((-1992 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1004)) (-5 *1 (-721)))) (-3226 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1004)) (-5 *1 (-721)))) (-4145 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415)))) (-5 *2 (-1004)) (-5 *1 (-721)))))
-(-10 -7 (-15 -4145 ((-1004) (-217) (-217) (-217) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))) (-15 -3226 ((-1004) (-547) (-547) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-80 FCN))))) (-15 -1992 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-73 FCN))))))
-((-3159 (((-1004) (-547) (-547) (-663 (-217)) (-547)) 34)) (-2319 (((-1004) (-547) (-547) (-663 (-217)) (-547)) 33)) (-2551 (((-1004) (-547) (-663 (-217)) (-547)) 32)) (-3029 (((-1004) (-547) (-663 (-217)) (-547)) 31)) (-1906 (((-1004) (-547) (-547) (-1119) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 30)) (-1349 (((-1004) (-547) (-547) (-1119) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 29)) (-2713 (((-1004) (-547) (-547) (-1119) (-663 (-217)) (-663 (-217)) (-547)) 28)) (-3702 (((-1004) (-547) (-547) (-1119) (-663 (-217)) (-663 (-217)) (-547)) 27)) (-1384 (((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 24)) (-3607 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547)) 23)) (-2990 (((-1004) (-547) (-663 (-217)) (-547)) 22)) (-4084 (((-1004) (-547) (-663 (-217)) (-547)) 21)))
-(((-722) (-10 -7 (-15 -4084 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -2990 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -3607 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1384 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3702 ((-1004) (-547) (-547) (-1119) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2713 ((-1004) (-547) (-547) (-1119) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1349 ((-1004) (-547) (-547) (-1119) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1906 ((-1004) (-547) (-547) (-1119) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3029 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -2551 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -2319 ((-1004) (-547) (-547) (-663 (-217)) (-547))) (-15 -3159 ((-1004) (-547) (-547) (-663 (-217)) (-547))))) (T -722))
-((-3159 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2319 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2551 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-3029 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-1906 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-1119)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-1349 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-1119)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2713 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-1119)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-3702 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-1119)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-1384 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-3607 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2990 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-4084 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))))
-(-10 -7 (-15 -4084 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -2990 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -3607 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1384 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3702 ((-1004) (-547) (-547) (-1119) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2713 ((-1004) (-547) (-547) (-1119) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1349 ((-1004) (-547) (-547) (-1119) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1906 ((-1004) (-547) (-547) (-1119) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3029 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -2551 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -2319 ((-1004) (-547) (-547) (-663 (-217)) (-547))) (-15 -3159 ((-1004) (-547) (-547) (-663 (-217)) (-547))))
-((-3802 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-217) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN)))) 52)) (-1402 (((-1004) (-663 (-217)) (-663 (-217)) (-547) (-547)) 51)) (-2613 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN)))) 50)) (-2205 (((-1004) (-217) (-217) (-547) (-547) (-547) (-547)) 46)) (-3646 (((-1004) (-217) (-217) (-547) (-217) (-547) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) 45)) (-1831 (((-1004) (-217) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) 44)) (-3506 (((-1004) (-217) (-217) (-217) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) 43)) (-3490 (((-1004) (-217) (-217) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) 42)) (-4300 (((-1004) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415)))) 38)) (-2912 (((-1004) (-217) (-217) (-547) (-663 (-217)) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415)))) 37)) (-4255 (((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415)))) 33)) (-1796 (((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415)))) 32)))
-(((-723) (-10 -7 (-15 -1796 ((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))) (-15 -4255 ((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))) (-15 -2912 ((-1004) (-217) (-217) (-547) (-663 (-217)) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))) (-15 -4300 ((-1004) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))) (-15 -3490 ((-1004) (-217) (-217) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -3506 ((-1004) (-217) (-217) (-217) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -1831 ((-1004) (-217) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -3646 ((-1004) (-217) (-217) (-547) (-217) (-547) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -2205 ((-1004) (-217) (-217) (-547) (-547) (-547) (-547))) (-15 -2613 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN))))) (-15 -1402 ((-1004) (-663 (-217)) (-663 (-217)) (-547) (-547))) (-15 -3802 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-217) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN))))))) (T -723))
-((-3802 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-1402 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2613 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2205 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-723)))) (-3646 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-1831 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-3506 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-3490 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-4300 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2912 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415)))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-723)))) (-4255 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-1796 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415)))) (-5 *2 (-1004)) (-5 *1 (-723)))))
-(-10 -7 (-15 -1796 ((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))) (-15 -4255 ((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))) (-15 -2912 ((-1004) (-217) (-217) (-547) (-663 (-217)) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))) (-15 -4300 ((-1004) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))) (-15 -3490 ((-1004) (-217) (-217) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -3506 ((-1004) (-217) (-217) (-217) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -1831 ((-1004) (-217) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -3646 ((-1004) (-217) (-217) (-547) (-217) (-547) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -2205 ((-1004) (-217) (-217) (-547) (-547) (-547) (-547))) (-15 -2613 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN))))) (-15 -1402 ((-1004) (-663 (-217)) (-663 (-217)) (-547) (-547))) (-15 -3802 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-217) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN))))))
-((-1542 (((-1004) (-547) (-547) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-379)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-3681 (((-1004) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL))) (-379) (-379)) 69) (((-1004) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL)))) 68)) (-3994 (((-1004) (-217) (-217) (-547) (-217) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-379)) (|:| |fp| (-84 FCNG)))) 57)) (-2485 (((-1004) (-663 (-217)) (-663 (-217)) (-547) (-217) (-217) (-217) (-547) (-547) (-547) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) 50)) (-1982 (((-1004) (-217) (-547) (-547) (-1119) (-547) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2464 (((-1004) (-217) (-547) (-547) (-217) (-1119) (-217) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) 45)) (-2218 (((-1004) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) 42)) (-2497 (((-1004) (-217) (-547) (-547) (-547) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) 38)))
-(((-724) (-10 -7 (-15 -2497 ((-1004) (-217) (-547) (-547) (-547) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))) (-15 -2218 ((-1004) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))))) (-15 -2464 ((-1004) (-217) (-547) (-547) (-217) (-1119) (-217) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))) (-15 -1982 ((-1004) (-217) (-547) (-547) (-1119) (-547) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))) (-15 -2485 ((-1004) (-663 (-217)) (-663 (-217)) (-547) (-217) (-217) (-217) (-547) (-547) (-547) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))))) (-15 -3994 ((-1004) (-217) (-217) (-547) (-217) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-379)) (|:| |fp| (-84 FCNG))))) (-15 -3681 ((-1004) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL))))) (-15 -3681 ((-1004) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL))) (-379) (-379))) (-15 -1542 ((-1004) (-547) (-547) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-379)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -724))
-((-1542 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-3681 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-379)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-3681 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1004)) (-5 *1 (-724)))) (-3994 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2485 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1004)) (-5 *1 (-724)))) (-1982 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-547)) (-5 *5 (-1119)) (-5 *6 (-663 (-217))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-379)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2464 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-547)) (-5 *5 (-1119)) (-5 *6 (-663 (-217))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2218 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2497 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))))
-(-10 -7 (-15 -2497 ((-1004) (-217) (-547) (-547) (-547) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))) (-15 -2218 ((-1004) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))))) (-15 -2464 ((-1004) (-217) (-547) (-547) (-217) (-1119) (-217) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))) (-15 -1982 ((-1004) (-217) (-547) (-547) (-1119) (-547) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))) (-15 -2485 ((-1004) (-663 (-217)) (-663 (-217)) (-547) (-217) (-217) (-217) (-547) (-547) (-547) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))))) (-15 -3994 ((-1004) (-217) (-217) (-547) (-217) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-379)) (|:| |fp| (-84 FCNG))))) (-15 -3681 ((-1004) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL))))) (-15 -3681 ((-1004) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL))) (-379) (-379))) (-15 -1542 ((-1004) (-547) (-547) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-379)) (|:| |fp| (-75 G JACOBG JACGEP))))))
-((-2047 (((-1004) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-649 (-217)) (-547)) 45)) (-4227 (((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-1119) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-379)) (|:| |fp| (-82 BNDY)))) 41)) (-3205 (((-1004) (-547) (-547) (-547) (-547) (-217) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 23)))
-(((-725) (-10 -7 (-15 -3205 ((-1004) (-547) (-547) (-547) (-547) (-217) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4227 ((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-1119) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-379)) (|:| |fp| (-82 BNDY))))) (-15 -2047 ((-1004) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-649 (-217)) (-547))))) (T -725))
-((-2047 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-649 (-217))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-725)))) (-4227 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-1119)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1004)) (-5 *1 (-725)))) (-3205 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-725)))))
-(-10 -7 (-15 -3205 ((-1004) (-547) (-547) (-547) (-547) (-217) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4227 ((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-1119) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-379)) (|:| |fp| (-82 BNDY))))) (-15 -2047 ((-1004) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-649 (-217)) (-547))))
-((-3194 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-663 (-217)) (-217) (-217) (-547)) 35)) (-2967 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-217) (-217) (-547)) 34)) (-2603 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-663 (-217)) (-217) (-217) (-547)) 33)) (-2743 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 29)) (-2785 (((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 28)) (-1332 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547)) 27)) (-1491 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-547)) 24)) (-2472 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-547)) 23)) (-4210 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547)) 22)) (-3097 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547)) 21)))
-(((-726) (-10 -7 (-15 -3097 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547))) (-15 -4210 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2472 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -1491 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -1332 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547))) (-15 -2785 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2743 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2603 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-663 (-217)) (-217) (-217) (-547))) (-15 -2967 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-217) (-217) (-547))) (-15 -3194 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-663 (-217)) (-217) (-217) (-547))))) (T -726))
-((-3194 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-2967 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-2603 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *6 (-217)) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-2743 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-2785 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1332 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1491 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-2472 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-4210 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-3097 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-726)))))
-(-10 -7 (-15 -3097 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547))) (-15 -4210 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2472 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -1491 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -1332 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547))) (-15 -2785 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2743 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2603 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-663 (-217)) (-217) (-217) (-547))) (-15 -2967 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-217) (-217) (-547))) (-15 -3194 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-663 (-217)) (-217) (-217) (-547))))
-((-4146 (((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547)) 45)) (-1903 (((-1004) (-547) (-547) (-547) (-217) (-663 (-217)) (-663 (-217)) (-547)) 44)) (-3050 (((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547)) 43)) (-1635 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 42)) (-2480 (((-1004) (-1119) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547)) 41)) (-3009 (((-1004) (-1119) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547)) 40)) (-1806 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547) (-547) (-547) (-217) (-663 (-217)) (-547)) 39)) (-2695 (((-1004) (-1119) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-547))) 38)) (-3864 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547)) 35)) (-3407 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547)) 34)) (-3885 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547)) 33)) (-1286 (((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 32)) (-3202 (((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-217) (-547)) 31)) (-3433 (((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-547)) 30)) (-3282 (((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-547) (-547) (-547)) 29)) (-4175 (((-1004) (-547) (-547) (-547) (-217) (-217) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547) (-663 (-547)) (-547) (-547) (-547)) 28)) (-2100 (((-1004) (-547) (-663 (-217)) (-217) (-547)) 24)) (-2380 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 21)))
-(((-727) (-10 -7 (-15 -2380 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2100 ((-1004) (-547) (-663 (-217)) (-217) (-547))) (-15 -4175 ((-1004) (-547) (-547) (-547) (-217) (-217) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547) (-663 (-547)) (-547) (-547) (-547))) (-15 -3282 ((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-547) (-547) (-547))) (-15 -3433 ((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-547))) (-15 -3202 ((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-217) (-547))) (-15 -1286 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3885 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547))) (-15 -3407 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547))) (-15 -3864 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2695 ((-1004) (-1119) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-547)))) (-15 -1806 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547) (-547) (-547) (-217) (-663 (-217)) (-547))) (-15 -3009 ((-1004) (-1119) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547))) (-15 -2480 ((-1004) (-1119) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1635 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3050 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547))) (-15 -1903 ((-1004) (-547) (-547) (-547) (-217) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4146 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547))))) (T -727))
-((-4146 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1903 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3050 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1635 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-2480 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3009 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1119)) (-5 *5 (-663 (-217))) (-5 *6 (-217)) (-5 *7 (-663 (-547))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1806 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *6 (-217)) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-2695 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1119)) (-5 *5 (-663 (-217))) (-5 *6 (-217)) (-5 *7 (-663 (-547))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3864 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3407 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3885 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1286 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3202 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3433 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3282 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-4175 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-663 (-217))) (-5 *6 (-663 (-547))) (-5 *3 (-547)) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-2100 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-2380 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-727)))))
-(-10 -7 (-15 -2380 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2100 ((-1004) (-547) (-663 (-217)) (-217) (-547))) (-15 -4175 ((-1004) (-547) (-547) (-547) (-217) (-217) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547) (-663 (-547)) (-547) (-547) (-547))) (-15 -3282 ((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-547) (-547) (-547))) (-15 -3433 ((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-547))) (-15 -3202 ((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-217) (-547))) (-15 -1286 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3885 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547))) (-15 -3407 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547))) (-15 -3864 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2695 ((-1004) (-1119) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-547)))) (-15 -1806 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547) (-547) (-547) (-217) (-663 (-217)) (-547))) (-15 -3009 ((-1004) (-1119) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547))) (-15 -2480 ((-1004) (-1119) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1635 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3050 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547))) (-15 -1903 ((-1004) (-547) (-547) (-547) (-217) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4146 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547))))
-((-3514 (((-1004) (-547) (-547) (-547) (-217) (-663 (-217)) (-547) (-663 (-217)) (-547)) 63)) (-3664 (((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-112) (-217) (-547) (-217) (-217) (-112) (-217) (-217) (-217) (-217) (-112) (-547) (-547) (-547) (-547) (-547) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-547)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN)))) 62)) (-1626 (((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-217) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-112) (-112) (-112) (-547) (-547) (-663 (-217)) (-663 (-547)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-64 QPHESS)))) 58)) (-4280 (((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-112) (-547) (-547) (-663 (-217)) (-547)) 51)) (-1969 (((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2258 (((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-62 LSFUN2)))) 46)) (-3251 (((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2663 (((-1004) (-547) (-217) (-217) (-547) (-217) (-112) (-217) (-217) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN)))) 38)))
-(((-728) (-10 -7 (-15 -2663 ((-1004) (-547) (-217) (-217) (-547) (-217) (-112) (-217) (-217) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN))))) (-15 -3251 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-78 LSFUN1))))) (-15 -2258 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-62 LSFUN2))))) (-15 -1969 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-65 FUNCT1))))) (-15 -4280 ((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-112) (-547) (-547) (-663 (-217)) (-547))) (-15 -1626 ((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-217) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-112) (-112) (-112) (-547) (-547) (-663 (-217)) (-663 (-547)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-64 QPHESS))))) (-15 -3664 ((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-112) (-217) (-547) (-217) (-217) (-112) (-217) (-217) (-217) (-217) (-112) (-547) (-547) (-547) (-547) (-547) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-547)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN))))) (-15 -3514 ((-1004) (-547) (-547) (-547) (-217) (-663 (-217)) (-547) (-663 (-217)) (-547))))) (T -728))
-((-3514 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-3664 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-112)) (-5 *6 (-217)) (-5 *7 (-663 (-547))) (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-1626 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-663 (-217))) (-5 *6 (-112)) (-5 *7 (-663 (-547))) (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-547)) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-4280 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-1969 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2258 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1004)) (-5 *1 (-728)))) (-3251 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2663 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-547)) (-5 *5 (-112)) (-5 *6 (-663 (-217))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-728)))))
-(-10 -7 (-15 -2663 ((-1004) (-547) (-217) (-217) (-547) (-217) (-112) (-217) (-217) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN))))) (-15 -3251 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-78 LSFUN1))))) (-15 -2258 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-62 LSFUN2))))) (-15 -1969 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-65 FUNCT1))))) (-15 -4280 ((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-112) (-547) (-547) (-663 (-217)) (-547))) (-15 -1626 ((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-217) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-112) (-112) (-112) (-547) (-547) (-663 (-217)) (-663 (-547)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-64 QPHESS))))) (-15 -3664 ((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-112) (-217) (-547) (-217) (-217) (-112) (-217) (-217) (-217) (-217) (-112) (-547) (-547) (-547) (-547) (-547) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-547)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN))))) (-15 -3514 ((-1004) (-547) (-547) (-547) (-217) (-663 (-217)) (-547) (-663 (-217)) (-547))))
-((-3751 (((-1004) (-1119) (-547) (-547) (-547) (-547) (-663 (-166 (-217))) (-663 (-166 (-217))) (-547)) 47)) (-2934 (((-1004) (-1119) (-1119) (-547) (-547) (-663 (-166 (-217))) (-547) (-663 (-166 (-217))) (-547) (-547) (-663 (-166 (-217))) (-547)) 46)) (-2327 (((-1004) (-547) (-547) (-547) (-663 (-166 (-217))) (-547)) 45)) (-2659 (((-1004) (-1119) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 40)) (-1388 (((-1004) (-1119) (-1119) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-663 (-217)) (-547)) 39)) (-3290 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-547)) 36)) (-2210 (((-1004) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547)) 35)) (-2122 (((-1004) (-547) (-547) (-547) (-547) (-619 (-112)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-217) (-217) (-547)) 34)) (-1369 (((-1004) (-547) (-547) (-547) (-663 (-547)) (-663 (-547)) (-663 (-547)) (-663 (-547)) (-112) (-217) (-112) (-663 (-547)) (-663 (-217)) (-547)) 33)) (-2264 (((-1004) (-547) (-547) (-547) (-547) (-217) (-112) (-112) (-619 (-112)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-547)) 32)))
-(((-729) (-10 -7 (-15 -2264 ((-1004) (-547) (-547) (-547) (-547) (-217) (-112) (-112) (-619 (-112)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-547))) (-15 -1369 ((-1004) (-547) (-547) (-547) (-663 (-547)) (-663 (-547)) (-663 (-547)) (-663 (-547)) (-112) (-217) (-112) (-663 (-547)) (-663 (-217)) (-547))) (-15 -2122 ((-1004) (-547) (-547) (-547) (-547) (-619 (-112)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-217) (-217) (-547))) (-15 -2210 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547))) (-15 -3290 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-547))) (-15 -1388 ((-1004) (-1119) (-1119) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-663 (-217)) (-547))) (-15 -2659 ((-1004) (-1119) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2327 ((-1004) (-547) (-547) (-547) (-663 (-166 (-217))) (-547))) (-15 -2934 ((-1004) (-1119) (-1119) (-547) (-547) (-663 (-166 (-217))) (-547) (-663 (-166 (-217))) (-547) (-547) (-663 (-166 (-217))) (-547))) (-15 -3751 ((-1004) (-1119) (-547) (-547) (-547) (-547) (-663 (-166 (-217))) (-663 (-166 (-217))) (-547))))) (T -729))
-((-3751 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-166 (-217)))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2934 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-166 (-217)))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2327 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-166 (-217)))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2659 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-1388 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-3290 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2210 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2122 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-619 (-112))) (-5 *5 (-663 (-217))) (-5 *6 (-663 (-547))) (-5 *7 (-217)) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-729)))) (-1369 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-663 (-547))) (-5 *5 (-112)) (-5 *7 (-663 (-217))) (-5 *3 (-547)) (-5 *6 (-217)) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2264 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-619 (-112))) (-5 *7 (-663 (-217))) (-5 *8 (-663 (-547))) (-5 *3 (-547)) (-5 *4 (-217)) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-729)))))
-(-10 -7 (-15 -2264 ((-1004) (-547) (-547) (-547) (-547) (-217) (-112) (-112) (-619 (-112)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-547))) (-15 -1369 ((-1004) (-547) (-547) (-547) (-663 (-547)) (-663 (-547)) (-663 (-547)) (-663 (-547)) (-112) (-217) (-112) (-663 (-547)) (-663 (-217)) (-547))) (-15 -2122 ((-1004) (-547) (-547) (-547) (-547) (-619 (-112)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-217) (-217) (-547))) (-15 -2210 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547))) (-15 -3290 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-547))) (-15 -1388 ((-1004) (-1119) (-1119) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-663 (-217)) (-547))) (-15 -2659 ((-1004) (-1119) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2327 ((-1004) (-547) (-547) (-547) (-663 (-166 (-217))) (-547))) (-15 -2934 ((-1004) (-1119) (-1119) (-547) (-547) (-663 (-166 (-217))) (-547) (-663 (-166 (-217))) (-547) (-547) (-663 (-166 (-217))) (-547))) (-15 -3751 ((-1004) (-1119) (-547) (-547) (-547) (-547) (-663 (-166 (-217))) (-663 (-166 (-217))) (-547))))
-((-1325 (((-1004) (-547) (-547) (-547) (-547) (-547) (-112) (-547) (-112) (-547) (-663 (-166 (-217))) (-663 (-166 (-217))) (-547)) 65)) (-3143 (((-1004) (-547) (-547) (-547) (-547) (-547) (-112) (-547) (-112) (-547) (-663 (-217)) (-663 (-217)) (-547)) 60)) (-1730 (((-1004) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE))) (-379)) 56) (((-1004) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE)))) 55)) (-3593 (((-1004) (-547) (-547) (-547) (-217) (-112) (-547) (-663 (-217)) (-663 (-217)) (-547)) 37)) (-2320 (((-1004) (-547) (-547) (-217) (-217) (-547) (-547) (-663 (-217)) (-547)) 33)) (-1544 (((-1004) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-547) (-547) (-547)) 30)) (-1262 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 29)) (-1310 (((-1004) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 28)) (-3697 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 27)) (-1284 (((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547)) 26)) (-3415 (((-1004) (-547) (-547) (-663 (-217)) (-547)) 25)) (-3901 (((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 24)) (-2188 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 23)) (-3229 (((-1004) (-663 (-217)) (-547) (-547) (-547) (-547)) 22)) (-2742 (((-1004) (-547) (-547) (-663 (-217)) (-547)) 21)))
-(((-730) (-10 -7 (-15 -2742 ((-1004) (-547) (-547) (-663 (-217)) (-547))) (-15 -3229 ((-1004) (-663 (-217)) (-547) (-547) (-547) (-547))) (-15 -2188 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3901 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3415 ((-1004) (-547) (-547) (-663 (-217)) (-547))) (-15 -1284 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547))) (-15 -3697 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1310 ((-1004) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1262 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1544 ((-1004) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-547) (-547) (-547))) (-15 -2320 ((-1004) (-547) (-547) (-217) (-217) (-547) (-547) (-663 (-217)) (-547))) (-15 -3593 ((-1004) (-547) (-547) (-547) (-217) (-112) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1730 ((-1004) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE))))) (-15 -1730 ((-1004) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE))) (-379))) (-15 -3143 ((-1004) (-547) (-547) (-547) (-547) (-547) (-112) (-547) (-112) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1325 ((-1004) (-547) (-547) (-547) (-547) (-547) (-112) (-547) (-112) (-547) (-663 (-166 (-217))) (-663 (-166 (-217))) (-547))))) (T -730))
-((-1325 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-112)) (-5 *5 (-663 (-166 (-217)))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-3143 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-112)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1730 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-379)) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1730 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-3593 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-547)) (-5 *5 (-112)) (-5 *6 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2320 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1544 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1262 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1310 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-3697 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1284 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-3415 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-3901 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2188 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-3229 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2742 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))))
-(-10 -7 (-15 -2742 ((-1004) (-547) (-547) (-663 (-217)) (-547))) (-15 -3229 ((-1004) (-663 (-217)) (-547) (-547) (-547) (-547))) (-15 -2188 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3901 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3415 ((-1004) (-547) (-547) (-663 (-217)) (-547))) (-15 -1284 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547))) (-15 -3697 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1310 ((-1004) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1262 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1544 ((-1004) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-547) (-547) (-547))) (-15 -2320 ((-1004) (-547) (-547) (-217) (-217) (-547) (-547) (-663 (-217)) (-547))) (-15 -3593 ((-1004) (-547) (-547) (-547) (-217) (-112) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1730 ((-1004) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE))))) (-15 -1730 ((-1004) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE))) (-379))) (-15 -3143 ((-1004) (-547) (-547) (-547) (-547) (-547) (-112) (-547) (-112) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1325 ((-1004) (-547) (-547) (-547) (-547) (-547) (-112) (-547) (-112) (-547) (-663 (-166 (-217))) (-663 (-166 (-217))) (-547))))
-((-2927 (((-1004) (-547) (-547) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-69 APROD)))) 61)) (-3800 (((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-547)) (-547) (-663 (-217)) (-547) (-547) (-547) (-547)) 57)) (-2533 (((-1004) (-547) (-663 (-217)) (-112) (-217) (-547) (-547) (-547) (-547) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-379)) (|:| |fp| (-72 MSOLVE)))) 56)) (-3725 (((-1004) (-547) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547) (-663 (-547)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547)) 37)) (-4014 (((-1004) (-547) (-547) (-547) (-217) (-547) (-663 (-217)) (-663 (-217)) (-547)) 36)) (-2309 (((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 33)) (-2796 (((-1004) (-547) (-663 (-217)) (-547) (-663 (-547)) (-663 (-547)) (-547) (-663 (-547)) (-663 (-217))) 32)) (-3937 (((-1004) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-547)) 28)) (-2753 (((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547)) 27)) (-4049 (((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547)) 26)) (-2571 (((-1004) (-547) (-663 (-166 (-217))) (-547) (-547) (-547) (-547) (-663 (-166 (-217))) (-547)) 22)))
-(((-731) (-10 -7 (-15 -2571 ((-1004) (-547) (-663 (-166 (-217))) (-547) (-547) (-547) (-547) (-663 (-166 (-217))) (-547))) (-15 -4049 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -2753 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -3937 ((-1004) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-547))) (-15 -2796 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-547)) (-663 (-547)) (-547) (-663 (-547)) (-663 (-217)))) (-15 -2309 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4014 ((-1004) (-547) (-547) (-547) (-217) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3725 ((-1004) (-547) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547) (-663 (-547)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547))) (-15 -2533 ((-1004) (-547) (-663 (-217)) (-112) (-217) (-547) (-547) (-547) (-547) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-379)) (|:| |fp| (-72 MSOLVE))))) (-15 -3800 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-547)) (-547) (-663 (-217)) (-547) (-547) (-547) (-547))) (-15 -2927 ((-1004) (-547) (-547) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-69 APROD))))))) (T -731))
-((-2927 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-69 APROD)))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-3800 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-2533 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-112)) (-5 *6 (-217)) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-3725 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4014 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-2309 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-2796 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-3937 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-2753 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4049 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-2571 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-166 (-217)))) (-5 *2 (-1004)) (-5 *1 (-731)))))
-(-10 -7 (-15 -2571 ((-1004) (-547) (-663 (-166 (-217))) (-547) (-547) (-547) (-547) (-663 (-166 (-217))) (-547))) (-15 -4049 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -2753 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -3937 ((-1004) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-547))) (-15 -2796 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-547)) (-663 (-547)) (-547) (-663 (-547)) (-663 (-217)))) (-15 -2309 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4014 ((-1004) (-547) (-547) (-547) (-217) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3725 ((-1004) (-547) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547) (-663 (-547)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547))) (-15 -2533 ((-1004) (-547) (-663 (-217)) (-112) (-217) (-547) (-547) (-547) (-547) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-379)) (|:| |fp| (-72 MSOLVE))))) (-15 -3800 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-547)) (-547) (-663 (-217)) (-547) (-547) (-547) (-547))) (-15 -2927 ((-1004) (-547) (-547) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-69 APROD))))))
-((-4069 (((-1004) (-1119) (-547) (-547) (-663 (-217)) (-547) (-547) (-663 (-217))) 29)) (-3379 (((-1004) (-1119) (-547) (-547) (-663 (-217))) 28)) (-1395 (((-1004) (-1119) (-547) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547) (-663 (-217))) 27)) (-3354 (((-1004) (-547) (-547) (-547) (-663 (-217))) 21)))
-(((-732) (-10 -7 (-15 -3354 ((-1004) (-547) (-547) (-547) (-663 (-217)))) (-15 -1395 ((-1004) (-1119) (-547) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547) (-663 (-217)))) (-15 -3379 ((-1004) (-1119) (-547) (-547) (-663 (-217)))) (-15 -4069 ((-1004) (-1119) (-547) (-547) (-663 (-217)) (-547) (-547) (-663 (-217)))))) (T -732))
-((-4069 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-732)))) (-3379 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-732)))) (-1395 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1119)) (-5 *5 (-663 (-217))) (-5 *6 (-663 (-547))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-732)))) (-3354 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-732)))))
-(-10 -7 (-15 -3354 ((-1004) (-547) (-547) (-547) (-663 (-217)))) (-15 -1395 ((-1004) (-1119) (-547) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547) (-663 (-217)))) (-15 -3379 ((-1004) (-1119) (-547) (-547) (-663 (-217)))) (-15 -4069 ((-1004) (-1119) (-547) (-547) (-663 (-217)) (-547) (-547) (-663 (-217)))))
-((-4240 (((-1004) (-217) (-217) (-217) (-217) (-547)) 62)) (-2938 (((-1004) (-217) (-217) (-217) (-547)) 61)) (-2298 (((-1004) (-217) (-217) (-217) (-547)) 60)) (-3288 (((-1004) (-217) (-217) (-547)) 59)) (-2682 (((-1004) (-217) (-547)) 58)) (-1534 (((-1004) (-217) (-547)) 57)) (-2992 (((-1004) (-217) (-547)) 56)) (-1413 (((-1004) (-217) (-547)) 55)) (-4169 (((-1004) (-217) (-547)) 54)) (-2563 (((-1004) (-217) (-547)) 53)) (-2125 (((-1004) (-217) (-166 (-217)) (-547) (-1119) (-547)) 52)) (-1893 (((-1004) (-217) (-166 (-217)) (-547) (-1119) (-547)) 51)) (-3031 (((-1004) (-217) (-547)) 50)) (-2024 (((-1004) (-217) (-547)) 49)) (-1306 (((-1004) (-217) (-547)) 48)) (-1983 (((-1004) (-217) (-547)) 47)) (-2585 (((-1004) (-547) (-217) (-166 (-217)) (-547) (-1119) (-547)) 46)) (-4121 (((-1004) (-1119) (-166 (-217)) (-1119) (-547)) 45)) (-3257 (((-1004) (-1119) (-166 (-217)) (-1119) (-547)) 44)) (-2388 (((-1004) (-217) (-166 (-217)) (-547) (-1119) (-547)) 43)) (-3789 (((-1004) (-217) (-166 (-217)) (-547) (-1119) (-547)) 42)) (-1993 (((-1004) (-217) (-547)) 39)) (-2214 (((-1004) (-217) (-547)) 38)) (-2638 (((-1004) (-217) (-547)) 37)) (-2610 (((-1004) (-217) (-547)) 36)) (-2783 (((-1004) (-217) (-547)) 35)) (-3536 (((-1004) (-217) (-547)) 34)) (-3301 (((-1004) (-217) (-547)) 33)) (-1576 (((-1004) (-217) (-547)) 32)) (-1266 (((-1004) (-217) (-547)) 31)) (-4178 (((-1004) (-217) (-547)) 30)) (-3644 (((-1004) (-217) (-217) (-217) (-547)) 29)) (-2279 (((-1004) (-217) (-547)) 28)) (-1671 (((-1004) (-217) (-547)) 27)) (-4212 (((-1004) (-217) (-547)) 26)) (-2733 (((-1004) (-217) (-547)) 25)) (-3808 (((-1004) (-217) (-547)) 24)) (-2219 (((-1004) (-166 (-217)) (-547)) 21)))
-(((-733) (-10 -7 (-15 -2219 ((-1004) (-166 (-217)) (-547))) (-15 -3808 ((-1004) (-217) (-547))) (-15 -2733 ((-1004) (-217) (-547))) (-15 -4212 ((-1004) (-217) (-547))) (-15 -1671 ((-1004) (-217) (-547))) (-15 -2279 ((-1004) (-217) (-547))) (-15 -3644 ((-1004) (-217) (-217) (-217) (-547))) (-15 -4178 ((-1004) (-217) (-547))) (-15 -1266 ((-1004) (-217) (-547))) (-15 -1576 ((-1004) (-217) (-547))) (-15 -3301 ((-1004) (-217) (-547))) (-15 -3536 ((-1004) (-217) (-547))) (-15 -2783 ((-1004) (-217) (-547))) (-15 -2610 ((-1004) (-217) (-547))) (-15 -2638 ((-1004) (-217) (-547))) (-15 -2214 ((-1004) (-217) (-547))) (-15 -1993 ((-1004) (-217) (-547))) (-15 -3789 ((-1004) (-217) (-166 (-217)) (-547) (-1119) (-547))) (-15 -2388 ((-1004) (-217) (-166 (-217)) (-547) (-1119) (-547))) (-15 -3257 ((-1004) (-1119) (-166 (-217)) (-1119) (-547))) (-15 -4121 ((-1004) (-1119) (-166 (-217)) (-1119) (-547))) (-15 -2585 ((-1004) (-547) (-217) (-166 (-217)) (-547) (-1119) (-547))) (-15 -1983 ((-1004) (-217) (-547))) (-15 -1306 ((-1004) (-217) (-547))) (-15 -2024 ((-1004) (-217) (-547))) (-15 -3031 ((-1004) (-217) (-547))) (-15 -1893 ((-1004) (-217) (-166 (-217)) (-547) (-1119) (-547))) (-15 -2125 ((-1004) (-217) (-166 (-217)) (-547) (-1119) (-547))) (-15 -2563 ((-1004) (-217) (-547))) (-15 -4169 ((-1004) (-217) (-547))) (-15 -1413 ((-1004) (-217) (-547))) (-15 -2992 ((-1004) (-217) (-547))) (-15 -1534 ((-1004) (-217) (-547))) (-15 -2682 ((-1004) (-217) (-547))) (-15 -3288 ((-1004) (-217) (-217) (-547))) (-15 -2298 ((-1004) (-217) (-217) (-217) (-547))) (-15 -2938 ((-1004) (-217) (-217) (-217) (-547))) (-15 -4240 ((-1004) (-217) (-217) (-217) (-217) (-547))))) (T -733))
-((-4240 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2938 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2298 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3288 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2992 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1413 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2125 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1119)) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1893 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1119)) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3031 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2024 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1306 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2585 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-547)) (-5 *5 (-166 (-217))) (-5 *6 (-1119)) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-4121 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1119)) (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3257 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1119)) (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2388 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1119)) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3789 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1119)) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2214 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3301 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1266 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3644 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-4212 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2733 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3808 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2219 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(-10 -7 (-15 -2219 ((-1004) (-166 (-217)) (-547))) (-15 -3808 ((-1004) (-217) (-547))) (-15 -2733 ((-1004) (-217) (-547))) (-15 -4212 ((-1004) (-217) (-547))) (-15 -1671 ((-1004) (-217) (-547))) (-15 -2279 ((-1004) (-217) (-547))) (-15 -3644 ((-1004) (-217) (-217) (-217) (-547))) (-15 -4178 ((-1004) (-217) (-547))) (-15 -1266 ((-1004) (-217) (-547))) (-15 -1576 ((-1004) (-217) (-547))) (-15 -3301 ((-1004) (-217) (-547))) (-15 -3536 ((-1004) (-217) (-547))) (-15 -2783 ((-1004) (-217) (-547))) (-15 -2610 ((-1004) (-217) (-547))) (-15 -2638 ((-1004) (-217) (-547))) (-15 -2214 ((-1004) (-217) (-547))) (-15 -1993 ((-1004) (-217) (-547))) (-15 -3789 ((-1004) (-217) (-166 (-217)) (-547) (-1119) (-547))) (-15 -2388 ((-1004) (-217) (-166 (-217)) (-547) (-1119) (-547))) (-15 -3257 ((-1004) (-1119) (-166 (-217)) (-1119) (-547))) (-15 -4121 ((-1004) (-1119) (-166 (-217)) (-1119) (-547))) (-15 -2585 ((-1004) (-547) (-217) (-166 (-217)) (-547) (-1119) (-547))) (-15 -1983 ((-1004) (-217) (-547))) (-15 -1306 ((-1004) (-217) (-547))) (-15 -2024 ((-1004) (-217) (-547))) (-15 -3031 ((-1004) (-217) (-547))) (-15 -1893 ((-1004) (-217) (-166 (-217)) (-547) (-1119) (-547))) (-15 -2125 ((-1004) (-217) (-166 (-217)) (-547) (-1119) (-547))) (-15 -2563 ((-1004) (-217) (-547))) (-15 -4169 ((-1004) (-217) (-547))) (-15 -1413 ((-1004) (-217) (-547))) (-15 -2992 ((-1004) (-217) (-547))) (-15 -1534 ((-1004) (-217) (-547))) (-15 -2682 ((-1004) (-217) (-547))) (-15 -3288 ((-1004) (-217) (-217) (-547))) (-15 -2298 ((-1004) (-217) (-217) (-217) (-547))) (-15 -2938 ((-1004) (-217) (-217) (-217) (-547))) (-15 -4240 ((-1004) (-217) (-217) (-217) (-217) (-547))))
-((-1312 (((-1224)) 18)) (-2998 (((-1119)) 22)) (-1728 (((-1119)) 21)) (-1430 (((-1067) (-1136) (-663 (-547))) 37) (((-1067) (-1136) (-663 (-217))) 32)) (-3554 (((-112)) 16)) (-3678 (((-1119) (-1119)) 25)))
-(((-734) (-10 -7 (-15 -1728 ((-1119))) (-15 -2998 ((-1119))) (-15 -3678 ((-1119) (-1119))) (-15 -1430 ((-1067) (-1136) (-663 (-217)))) (-15 -1430 ((-1067) (-1136) (-663 (-547)))) (-15 -3554 ((-112))) (-15 -1312 ((-1224))))) (T -734))
-((-1312 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-734)))) (-3554 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-734)))) (-1430 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-663 (-547))) (-5 *2 (-1067)) (-5 *1 (-734)))) (-1430 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-663 (-217))) (-5 *2 (-1067)) (-5 *1 (-734)))) (-3678 (*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-734)))) (-2998 (*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-734)))) (-1728 (*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-734)))))
-(-10 -7 (-15 -1728 ((-1119))) (-15 -2998 ((-1119))) (-15 -3678 ((-1119) (-1119))) (-15 -1430 ((-1067) (-1136) (-663 (-217)))) (-15 -1430 ((-1067) (-1136) (-663 (-547)))) (-15 -3554 ((-112))) (-15 -1312 ((-1224))))
-((-1473 (($ $ $) 10)) (-2781 (($ $ $ $) 9)) (-2031 (($ $ $) 12)))
-(((-735 |#1|) (-10 -8 (-15 -2031 (|#1| |#1| |#1|)) (-15 -1473 (|#1| |#1| |#1|)) (-15 -2781 (|#1| |#1| |#1| |#1|))) (-736)) (T -735))
-NIL
-(-10 -8 (-15 -2031 (|#1| |#1| |#1|)) (-15 -1473 (|#1| |#1| |#1|)) (-15 -2781 (|#1| |#1| |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3387 (($ $ (-890)) 28)) (-3851 (($ $ (-890)) 29)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-1473 (($ $ $) 25)) (-3838 (((-832) $) 11)) (-2781 (($ $ $ $) 26)) (-2031 (($ $ $) 24)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 27)))
-(((-736) (-138)) (T -736))
-((-2781 (*1 *1 *1 *1 *1) (-4 *1 (-736))) (-1473 (*1 *1 *1 *1) (-4 *1 (-736))) (-2031 (*1 *1 *1 *1) (-4 *1 (-736))))
-(-13 (-21) (-695) (-10 -8 (-15 -2781 ($ $ $ $)) (-15 -1473 ($ $ $)) (-15 -2031 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-695) . T) ((-1063) . T))
-((-3838 (((-832) $) NIL) (($ (-547)) 10)))
-(((-737 |#1|) (-10 -8 (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|))) (-738)) (T -737))
-NIL
-(-10 -8 (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-2702 (((-3 $ "failed") $) 40)) (-3387 (($ $ (-890)) 28) (($ $ (-745)) 35)) (-3855 (((-3 $ "failed") $) 38)) (-2261 (((-112) $) 34)) (-4082 (((-3 $ "failed") $) 39)) (-3851 (($ $ (-890)) 29) (($ $ (-745)) 36)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-1473 (($ $ $) 25)) (-3838 (((-832) $) 11) (($ (-547)) 31)) (-2736 (((-745)) 32)) (-2781 (($ $ $ $) 26)) (-2031 (($ $ $) 24)) (-3269 (($) 18 T CONST)) (-3281 (($) 33 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 30) (($ $ (-745)) 37)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 27)))
+((* (*1 *1 *1 *1) (-4 *1 (-697))) (-3117 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-892)))) (-2884 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-892)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-892)))))
+(-13 (-1067) (-10 -8 (-15 * ($ $ $)) (-15 -3117 ($ $ (-892))) (-15 -2884 ($ $ (-892))) (-15 ** ($ $ (-892)))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3117 (($ $ (-892)) NIL) (($ $ (-747)) 17)) (-2675 (((-112) $) 10)) (-2884 (($ $ (-892)) NIL) (($ $ (-747)) 18)) (** (($ $ (-892)) NIL) (($ $ (-747)) 15)))
+(((-698 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-747))) (-15 -2884 (|#1| |#1| (-747))) (-15 -3117 (|#1| |#1| (-747))) (-15 -2675 ((-112) |#1|)) (-15 ** (|#1| |#1| (-892))) (-15 -2884 (|#1| |#1| (-892))) (-15 -3117 (|#1| |#1| (-892)))) (-699)) (T -698))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-747))) (-15 -2884 (|#1| |#1| (-747))) (-15 -3117 (|#1| |#1| (-747))) (-15 -2675 ((-112) |#1|)) (-15 ** (|#1| |#1| (-892))) (-15 -2884 (|#1| |#1| (-892))) (-15 -3117 (|#1| |#1| (-892))))
+((-3834 (((-112) $ $) 7)) (-3038 (((-3 $ "failed") $) 17)) (-3117 (($ $ (-892)) 15) (($ $ (-747)) 22)) (-2114 (((-3 $ "failed") $) 19)) (-2675 (((-112) $) 23)) (-1919 (((-3 $ "failed") $) 18)) (-2884 (($ $ (-892)) 14) (($ $ (-747)) 21)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3287 (($) 24 T CONST)) (-2389 (((-112) $ $) 6)) (** (($ $ (-892)) 13) (($ $ (-747)) 20)) (* (($ $ $) 16)))
+(((-699) (-138)) (T -699))
+((-3287 (*1 *1) (-4 *1 (-699))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-699)) (-5 *2 (-112)))) (-3117 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) (-2884 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))) (-2114 (*1 *1 *1) (|partial| -4 *1 (-699))) (-1919 (*1 *1 *1) (|partial| -4 *1 (-699))) (-3038 (*1 *1 *1) (|partial| -4 *1 (-699))))
+(-13 (-697) (-10 -8 (-15 (-3287) ($) -2589) (-15 -2675 ((-112) $)) (-15 -3117 ($ $ (-747))) (-15 -2884 ($ $ (-747))) (-15 ** ($ $ (-747))) (-15 -2114 ((-3 $ "failed") $)) (-15 -1919 ((-3 $ "failed") $)) (-15 -3038 ((-3 $ "failed") $))))
+(((-101) . T) ((-593 (-834)) . T) ((-697) . T) ((-1067) . T))
+((-3614 (((-747)) 34)) (-2714 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2659 (((-549) $) NIL) (((-400 (-549)) $) NIL) ((|#2| $) 22)) (-2557 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) 44)) (-2114 (((-3 $ "failed") $) 64)) (-3239 (($) 38)) (-3630 ((|#2| $) 20)) (-4248 (($) 17)) (-3456 (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-2901 (((-665 |#2|) (-1226 $) (-1 |#2| |#2|)) 59)) (-2845 (((-1226 |#2|) $) NIL) (($ (-1226 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-4154 ((|#3| $) 32)) (-1949 (((-1226 $)) 29)))
+(((-700 |#1| |#2| |#3|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3239 (|#1|)) (-15 -3614 ((-747))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2901 ((-665 |#2|) (-1226 |#1|) (-1 |#2| |#2|))) (-15 -2557 ((-3 |#1| "failed") (-400 |#3|))) (-15 -2845 (|#1| |#3|)) (-15 -2557 (|#1| |#3|)) (-15 -4248 (|#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -2845 (|#3| |#1|)) (-15 -2845 (|#1| (-1226 |#2|))) (-15 -2845 ((-1226 |#2|) |#1|)) (-15 -1949 ((-1226 |#1|))) (-15 -4154 (|#3| |#1|)) (-15 -3630 (|#2| |#1|)) (-15 -2114 ((-3 |#1| "failed") |#1|))) (-701 |#2| |#3|) (-170) (-1202 |#2|)) (T -700))
+((-3614 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1202 *4)) (-5 *2 (-747)) (-5 *1 (-700 *3 *4 *5)) (-4 *3 (-701 *4 *5)))))
+(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3239 (|#1|)) (-15 -3614 ((-747))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -2901 ((-665 |#2|) (-1226 |#1|) (-1 |#2| |#2|))) (-15 -2557 ((-3 |#1| "failed") (-400 |#3|))) (-15 -2845 (|#1| |#3|)) (-15 -2557 (|#1| |#3|)) (-15 -4248 (|#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -2845 (|#3| |#1|)) (-15 -2845 (|#1| (-1226 |#2|))) (-15 -2845 ((-1226 |#2|) |#1|)) (-15 -1949 ((-1226 |#1|))) (-15 -4154 (|#3| |#1|)) (-15 -3630 (|#2| |#1|)) (-15 -2114 ((-3 |#1| "failed") |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 91 (|has| |#1| (-356)))) (-2258 (($ $) 92 (|has| |#1| (-356)))) (-2799 (((-112) $) 94 (|has| |#1| (-356)))) (-1738 (((-665 |#1|) (-1226 $)) 44) (((-665 |#1|)) 59)) (-2906 ((|#1| $) 50)) (-3062 (((-1153 (-892) (-747)) (-549)) 144 (|has| |#1| (-342)))) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 111 (|has| |#1| (-356)))) (-2402 (((-411 $) $) 112 (|has| |#1| (-356)))) (-3866 (((-112) $ $) 102 (|has| |#1| (-356)))) (-3614 (((-747)) 85 (|has| |#1| (-361)))) (-1682 (($) 17 T CONST)) (-2714 (((-3 (-549) "failed") $) 166 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 164 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 163)) (-2659 (((-549) $) 167 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 165 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 162)) (-3492 (($ (-1226 |#1|) (-1226 $)) 46) (($ (-1226 |#1|)) 62)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-342)))) (-2095 (($ $ $) 106 (|has| |#1| (-356)))) (-3506 (((-665 |#1|) $ (-1226 $)) 51) (((-665 |#1|) $) 57)) (-3879 (((-665 (-549)) (-665 $)) 161 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 160 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 159) (((-665 |#1|) (-665 $)) 158)) (-2557 (($ |#2|) 155) (((-3 $ "failed") (-400 |#2|)) 152 (|has| |#1| (-356)))) (-2114 (((-3 $ "failed") $) 32)) (-3123 (((-892)) 52)) (-3239 (($) 88 (|has| |#1| (-361)))) (-2067 (($ $ $) 105 (|has| |#1| (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 100 (|has| |#1| (-356)))) (-2405 (($) 146 (|has| |#1| (-342)))) (-2288 (((-112) $) 147 (|has| |#1| (-342)))) (-3165 (($ $ (-747)) 138 (|has| |#1| (-342))) (($ $) 137 (|has| |#1| (-342)))) (-1420 (((-112) $) 113 (|has| |#1| (-356)))) (-2088 (((-892) $) 149 (|has| |#1| (-342))) (((-809 (-892)) $) 135 (|has| |#1| (-342)))) (-2675 (((-112) $) 30)) (-3630 ((|#1| $) 49)) (-1681 (((-3 $ "failed") $) 139 (|has| |#1| (-342)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 109 (|has| |#1| (-356)))) (-3788 ((|#2| $) 42 (|has| |#1| (-356)))) (-1881 (((-892) $) 87 (|has| |#1| (-361)))) (-2548 ((|#2| $) 153)) (-3697 (($ (-621 $)) 98 (|has| |#1| (-356))) (($ $ $) 97 (|has| |#1| (-356)))) (-3851 (((-1125) $) 9)) (-1992 (($ $) 114 (|has| |#1| (-356)))) (-3060 (($) 140 (|has| |#1| (-342)) CONST)) (-3493 (($ (-892)) 86 (|has| |#1| (-361)))) (-3990 (((-1087) $) 10)) (-4248 (($) 157)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 99 (|has| |#1| (-356)))) (-3727 (($ (-621 $)) 96 (|has| |#1| (-356))) (($ $ $) 95 (|has| |#1| (-356)))) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) 143 (|has| |#1| (-342)))) (-2121 (((-411 $) $) 110 (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 107 (|has| |#1| (-356)))) (-2042 (((-3 $ "failed") $ $) 90 (|has| |#1| (-356)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 101 (|has| |#1| (-356)))) (-3684 (((-747) $) 103 (|has| |#1| (-356)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 104 (|has| |#1| (-356)))) (-3602 ((|#1| (-1226 $)) 45) ((|#1|) 58)) (-3914 (((-747) $) 148 (|has| |#1| (-342))) (((-3 (-747) "failed") $ $) 136 (|has| |#1| (-342)))) (-3456 (($ $) 134 (-1536 (-1821 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-747)) 132 (-1536 (-1821 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1143)) 130 (-1821 (|has| |#1| (-871 (-1143))) (|has| |#1| (-356)))) (($ $ (-621 (-1143))) 129 (-1821 (|has| |#1| (-871 (-1143))) (|has| |#1| (-356)))) (($ $ (-1143) (-747)) 128 (-1821 (|has| |#1| (-871 (-1143))) (|has| |#1| (-356)))) (($ $ (-621 (-1143)) (-621 (-747))) 127 (-1821 (|has| |#1| (-871 (-1143))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-747)) 120 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-356)))) (-2901 (((-665 |#1|) (-1226 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-2815 ((|#2|) 156)) (-3170 (($) 145 (|has| |#1| (-342)))) (-4263 (((-1226 |#1|) $ (-1226 $)) 48) (((-665 |#1|) (-1226 $) (-1226 $)) 47) (((-1226 |#1|) $) 64) (((-665 |#1|) (-1226 $)) 63)) (-2845 (((-1226 |#1|) $) 61) (($ (-1226 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 142 (|has| |#1| (-342)))) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-356))) (($ (-400 (-549))) 84 (-1536 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-549))))))) (-2210 (($ $) 141 (|has| |#1| (-342))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-4154 ((|#2| $) 43)) (-2082 (((-747)) 28)) (-1949 (((-1226 $)) 65)) (-1498 (((-112) $ $) 93 (|has| |#1| (-356)))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $) 133 (-1536 (-1821 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-747)) 131 (-1536 (-1821 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1143)) 126 (-1821 (|has| |#1| (-871 (-1143))) (|has| |#1| (-356)))) (($ $ (-621 (-1143))) 125 (-1821 (|has| |#1| (-871 (-1143))) (|has| |#1| (-356)))) (($ $ (-1143) (-747)) 124 (-1821 (|has| |#1| (-871 (-1143))) (|has| |#1| (-356)))) (($ $ (-621 (-1143)) (-621 (-747))) 123 (-1821 (|has| |#1| (-871 (-1143))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-747)) 122 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-356)))) (-2389 (((-112) $ $) 6)) (-2513 (($ $ $) 118 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 115 (|has| |#1| (-356)))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-549)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-549))) 116 (|has| |#1| (-356)))))
+(((-701 |#1| |#2|) (-138) (-170) (-1202 |t#1|)) (T -701))
+((-4248 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-701 *2 *3)) (-4 *3 (-1202 *2)))) (-2815 (*1 *2) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1202 *3)))) (-2557 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1202 *3)))) (-2845 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1202 *3)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1202 *3)))) (-2557 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1202 *3)) (-4 *3 (-356)) (-4 *3 (-170)) (-4 *1 (-701 *3 *4)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-1226 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-4 *1 (-701 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1202 *5)) (-5 *2 (-665 *5)))))
+(-13 (-402 |t#1| |t#2|) (-170) (-594 |t#2|) (-404 |t#1|) (-370 |t#1|) (-10 -8 (-15 -4248 ($)) (-15 -2815 (|t#2|)) (-15 -2557 ($ |t#2|)) (-15 -2845 ($ |t#2|)) (-15 -2548 (|t#2| $)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-356)) (-6 (-225 |t#1|)) (-15 -2557 ((-3 $ "failed") (-400 |t#2|))) (-15 -2901 ((-665 |t#1|) (-1226 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-342)) (-6 (-342)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-101) . T) ((-111 #0# #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1536 (|has| |#1| (-342)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) . T) ((-594 |#2|) . T) ((-225 |#1|) |has| |#1| (-356)) ((-227) -1536 (|has| |#1| (-342)) (-12 (|has| |#1| (-227)) (|has| |#1| (-356)))) ((-237) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-283) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-300) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-356) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-395) |has| |#1| (-342)) ((-361) -1536 (|has| |#1| (-361)) (|has| |#1| (-342))) ((-342) |has| |#1| (-342)) ((-363 |#1| |#2|) . T) ((-402 |#1| |#2|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-541) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-624 #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-694 |#1|) . T) ((-694 $) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1143)) -12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1143)))) ((-891) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 #0#) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1118) |has| |#1| (-342)) ((-1184) -1536 (|has| |#1| (-342)) (|has| |#1| (-356))))
+((-1682 (($) 11)) (-2114 (((-3 $ "failed") $) 13)) (-2675 (((-112) $) 10)) (** (($ $ (-892)) NIL) (($ $ (-747)) 18)))
+(((-702 |#1|) (-10 -8 (-15 -2114 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 -2675 ((-112) |#1|)) (-15 -1682 (|#1|)) (-15 ** (|#1| |#1| (-892)))) (-703)) (T -702))
+NIL
+(-10 -8 (-15 -2114 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-747))) (-15 -2675 ((-112) |#1|)) (-15 -1682 (|#1|)) (-15 ** (|#1| |#1| (-892))))
+((-3834 (((-112) $ $) 7)) (-1682 (($) 18 T CONST)) (-2114 (((-3 $ "failed") $) 15)) (-2675 (((-112) $) 17)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3287 (($) 19 T CONST)) (-2389 (((-112) $ $) 6)) (** (($ $ (-892)) 13) (($ $ (-747)) 16)) (* (($ $ $) 14)))
+(((-703) (-138)) (T -703))
+((-3287 (*1 *1) (-4 *1 (-703))) (-1682 (*1 *1) (-4 *1 (-703))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-747)))) (-2114 (*1 *1 *1) (|partial| -4 *1 (-703))))
+(-13 (-1079) (-10 -8 (-15 (-3287) ($) -2589) (-15 -1682 ($) -2589) (-15 -2675 ((-112) $)) (-15 ** ($ $ (-747))) (-15 -2114 ((-3 $ "failed") $))))
+(((-101) . T) ((-593 (-834)) . T) ((-1079) . T) ((-1067) . T))
+((-4313 (((-2 (|:| -4041 (-411 |#2|)) (|:| |special| (-411 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3628 (((-2 (|:| -4041 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1699 ((|#2| (-400 |#2|) (-1 |#2| |#2|)) 13)) (-1655 (((-2 (|:| |poly| |#2|) (|:| -4041 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)) 47)))
+(((-704 |#1| |#2|) (-10 -7 (-15 -3628 ((-2 (|:| -4041 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4313 ((-2 (|:| -4041 (-411 |#2|)) (|:| |special| (-411 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1699 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -1655 ((-2 (|:| |poly| |#2|) (|:| -4041 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1202 |#1|)) (T -704))
+((-1655 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4041 (-400 *6)) (|:| |special| (-400 *6)))) (-5 *1 (-704 *5 *6)) (-5 *3 (-400 *6)))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1202 *5)) (-5 *1 (-704 *5 *2)) (-4 *5 (-356)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1202 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -4041 (-411 *3)) (|:| |special| (-411 *3)))) (-5 *1 (-704 *5 *3)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1202 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -4041 *3) (|:| |special| *3))) (-5 *1 (-704 *5 *3)))))
+(-10 -7 (-15 -3628 ((-2 (|:| -4041 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4313 ((-2 (|:| -4041 (-411 |#2|)) (|:| |special| (-411 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1699 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -1655 ((-2 (|:| |poly| |#2|) (|:| -4041 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|))))
+((-3881 ((|#7| (-621 |#5|) |#6|) NIL)) (-2797 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-705 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2797 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3881 (|#7| (-621 |#5|) |#6|))) (-823) (-769) (-769) (-1018) (-1018) (-920 |#4| |#2| |#1|) (-920 |#5| |#3| |#1|)) (T -705))
+((-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *9)) (-4 *9 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *8 (-1018)) (-4 *2 (-920 *9 *7 *5)) (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-769)) (-4 *4 (-920 *8 *6 *5)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1018)) (-4 *9 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) (-4 *2 (-920 *9 *7 *5)) (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-769)) (-4 *4 (-920 *8 *6 *5)))))
+(-10 -7 (-15 -2797 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3881 (|#7| (-621 |#5|) |#6|)))
+((-2797 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-706 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2797 (|#7| (-1 |#2| |#1|) |#6|))) (-823) (-823) (-769) (-769) (-1018) (-920 |#5| |#3| |#1|) (-920 |#5| |#4| |#2|)) (T -706))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-823)) (-4 *6 (-823)) (-4 *7 (-769)) (-4 *9 (-1018)) (-4 *2 (-920 *9 *8 *6)) (-5 *1 (-706 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-769)) (-4 *4 (-920 *9 *7 *5)))))
+(-10 -7 (-15 -2797 (|#7| (-1 |#2| |#1|) |#6|)))
+((-2121 (((-411 |#4|) |#4|) 41)))
+(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2121 ((-411 |#4|) |#4|))) (-769) (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $)) (-15 -3011 ((-3 $ "failed") (-1143))))) (-300) (-920 (-923 |#3|) |#1| |#2|)) (T -707))
+((-2121 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $)) (-15 -3011 ((-3 $ "failed") (-1143)))))) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-920 (-923 *6) *4 *5)))))
+(-10 -7 (-15 -2121 ((-411 |#4|) |#4|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2272 (((-621 (-836 |#1|)) $) NIL)) (-2084 (((-1139 $) $ (-836 |#1|)) NIL) (((-1139 |#2|) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#2| (-541)))) (-2258 (($ $) NIL (|has| |#2| (-541)))) (-2799 (((-112) $) NIL (|has| |#2| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 (-836 |#1|))) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-3979 (($ $) NIL (|has| |#2| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-836 |#1|) "failed") $) NIL)) (-2659 ((|#2| $) NIL) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-836 |#1|) $) NIL)) (-1353 (($ $ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-2070 (($ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#2| (-880)))) (-2691 (($ $ |#2| (-521 (-836 |#1|)) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-836 |#1|) (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-2261 (($ (-1139 |#2|) (-836 |#1|)) NIL) (($ (-1139 $) (-836 |#1|)) NIL)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#2| (-521 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ (-836 |#1|)) NIL)) (-3611 (((-521 (-836 |#1|)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-621 (-747)) $ (-621 (-836 |#1|))) NIL)) (-2863 (($ $ $) NIL (|has| |#2| (-823)))) (-3575 (($ $ $) NIL (|has| |#2| (-823)))) (-3705 (($ (-1 (-521 (-836 |#1|)) (-521 (-836 |#1|))) $) NIL)) (-2797 (($ (-1 |#2| |#2|) $) NIL)) (-1520 (((-3 (-836 |#1|) "failed") $) NIL)) (-2028 (($ $) NIL)) (-2043 ((|#2| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3851 (((-1125) $) NIL)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| (-836 |#1|)) (|:| -3731 (-747))) "failed") $) NIL)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) NIL)) (-2016 ((|#2| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#2| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#2| (-880)))) (-2042 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-541)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-836 |#1|) |#2|) NIL) (($ $ (-621 (-836 |#1|)) (-621 |#2|)) NIL) (($ $ (-836 |#1|) $) NIL) (($ $ (-621 (-836 |#1|)) (-621 $)) NIL)) (-3602 (($ $ (-836 |#1|)) NIL (|has| |#2| (-170)))) (-3456 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-3701 (((-521 (-836 |#1|)) $) NIL) (((-747) $ (-836 |#1|)) NIL) (((-621 (-747)) $ (-621 (-836 |#1|))) NIL)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-836 |#1|) (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-836 |#1|) (-594 (-525))) (|has| |#2| (-594 (-525)))))) (-2216 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-836 |#1|)) NIL (|has| |#2| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-836 |#1|)) NIL) (($ $) NIL (|has| |#2| (-541))) (($ (-400 (-549))) NIL (-1536 (|has| |#2| (-38 (-400 (-549)))) (|has| |#2| (-1009 (-400 (-549))))))) (-4141 (((-621 |#2|) $) NIL)) (-2152 ((|#2| $ (-521 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#2| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#2| (-541)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-836 |#1|)) NIL) (($ $ (-621 (-836 |#1|))) NIL) (($ $ (-836 |#1|) (-747)) NIL) (($ $ (-621 (-836 |#1|)) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2513 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#2| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#2| (-38 (-400 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-708 |#1| |#2|) (-920 |#2| (-521 (-836 |#1|)) (-836 |#1|)) (-621 (-1143)) (-1018)) (T -708))
+NIL
+(-920 |#2| (-521 (-836 |#1|)) (-836 |#1|))
+((-4291 (((-2 (|:| -2861 (-923 |#3|)) (|:| -3019 (-923 |#3|))) |#4|) 14)) (-1825 ((|#4| |#4| |#2|) 33)) (-3826 ((|#4| (-400 (-923 |#3|)) |#2|) 64)) (-3237 ((|#4| (-1139 (-923 |#3|)) |#2|) 77)) (-2924 ((|#4| (-1139 |#4|) |#2|) 51)) (-1361 ((|#4| |#4| |#2|) 54)) (-2121 (((-411 |#4|) |#4|) 40)))
+(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4291 ((-2 (|:| -2861 (-923 |#3|)) (|:| -3019 (-923 |#3|))) |#4|)) (-15 -1361 (|#4| |#4| |#2|)) (-15 -2924 (|#4| (-1139 |#4|) |#2|)) (-15 -1825 (|#4| |#4| |#2|)) (-15 -3237 (|#4| (-1139 (-923 |#3|)) |#2|)) (-15 -3826 (|#4| (-400 (-923 |#3|)) |#2|)) (-15 -2121 ((-411 |#4|) |#4|))) (-769) (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $)))) (-541) (-920 (-400 (-923 |#3|)) |#1| |#2|)) (T -709))
+((-2121 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))) (-4 *6 (-541)) (-5 *2 (-411 *3)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-920 (-400 (-923 *6)) *4 *5)))) (-3826 (*1 *2 *3 *4) (-12 (-4 *6 (-541)) (-4 *2 (-920 *3 *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) (-5 *3 (-400 (-923 *6))) (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))))) (-3237 (*1 *2 *3 *4) (-12 (-5 *3 (-1139 (-923 *6))) (-4 *6 (-541)) (-4 *2 (-920 (-400 (-923 *6)) *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))))) (-1825 (*1 *2 *2 *3) (-12 (-4 *4 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))) (-4 *5 (-541)) (-5 *1 (-709 *4 *3 *5 *2)) (-4 *2 (-920 (-400 (-923 *5)) *4 *3)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-1139 *2)) (-4 *2 (-920 (-400 (-923 *6)) *5 *4)) (-5 *1 (-709 *5 *4 *6 *2)) (-4 *5 (-769)) (-4 *4 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))) (-4 *6 (-541)))) (-1361 (*1 *2 *2 *3) (-12 (-4 *4 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))) (-4 *5 (-541)) (-5 *1 (-709 *4 *3 *5 *2)) (-4 *2 (-920 (-400 (-923 *5)) *4 *3)))) (-4291 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))) (-4 *6 (-541)) (-5 *2 (-2 (|:| -2861 (-923 *6)) (|:| -3019 (-923 *6)))) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-920 (-400 (-923 *6)) *4 *5)))))
+(-10 -7 (-15 -4291 ((-2 (|:| -2861 (-923 |#3|)) (|:| -3019 (-923 |#3|))) |#4|)) (-15 -1361 (|#4| |#4| |#2|)) (-15 -2924 (|#4| (-1139 |#4|) |#2|)) (-15 -1825 (|#4| |#4| |#2|)) (-15 -3237 (|#4| (-1139 (-923 |#3|)) |#2|)) (-15 -3826 (|#4| (-400 (-923 |#3|)) |#2|)) (-15 -2121 ((-411 |#4|) |#4|)))
+((-2121 (((-411 |#4|) |#4|) 52)))
+(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2121 ((-411 |#4|) |#4|))) (-769) (-823) (-13 (-300) (-145)) (-920 (-400 |#3|) |#1| |#2|)) (T -710))
+((-2121 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-920 (-400 *6) *4 *5)))))
+(-10 -7 (-15 -2121 ((-411 |#4|) |#4|)))
+((-2797 (((-712 |#2| |#3|) (-1 |#2| |#1|) (-712 |#1| |#3|)) 18)))
+(((-711 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-712 |#2| |#3|) (-1 |#2| |#1|) (-712 |#1| |#3|)))) (-1018) (-1018) (-703)) (T -711))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-712 *5 *7)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-703)) (-5 *2 (-712 *6 *7)) (-5 *1 (-711 *5 *6 *7)))))
+(-10 -7 (-15 -2797 ((-712 |#2| |#3|) (-1 |#2| |#1|) (-712 |#1| |#3|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 28)) (-2212 (((-621 (-2 (|:| -1570 |#1|) (|:| -3526 |#2|))) $) 29)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3614 (((-747)) 20 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2659 ((|#2| $) NIL) ((|#1| $) NIL)) (-2070 (($ $) 79 (|has| |#2| (-823)))) (-2114 (((-3 $ "failed") $) 65)) (-3239 (($) 35 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) 55)) (-3750 (((-621 $) $) 39)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| |#2|) 16)) (-2797 (($ (-1 |#1| |#1|) $) 54)) (-1881 (((-892) $) 32 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-2028 ((|#2| $) 78 (|has| |#2| (-823)))) (-2043 ((|#1| $) 77 (|has| |#2| (-823)))) (-3851 (((-1125) $) NIL)) (-3493 (($ (-892)) 27 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 76) (($ (-549)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-621 (-2 (|:| -1570 |#1|) (|:| -3526 |#2|)))) 11)) (-4141 (((-621 |#1|) $) 41)) (-2152 ((|#1| $ |#2|) 88)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-3276 (($) 12 T CONST)) (-3287 (($) 33 T CONST)) (-2389 (((-112) $ $) 80)) (-2500 (($ $) 47) (($ $ $) NIL)) (-2486 (($ $ $) 26)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
+(((-712 |#1| |#2|) (-13 (-1018) (-1009 |#2|) (-1009 |#1|) (-10 -8 (-15 -2246 ($ |#1| |#2|)) (-15 -2152 (|#1| $ |#2|)) (-15 -3846 ($ (-621 (-2 (|:| -1570 |#1|) (|:| -3526 |#2|))))) (-15 -2212 ((-621 (-2 (|:| -1570 |#1|) (|:| -3526 |#2|))) $)) (-15 -2797 ($ (-1 |#1| |#1|) $)) (-15 -2205 ((-112) $)) (-15 -4141 ((-621 |#1|) $)) (-15 -3750 ((-621 $) $)) (-15 -3347 ((-747) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-823)) (PROGN (-15 -2028 (|#2| $)) (-15 -2043 (|#1| $)) (-15 -2070 ($ $))) |%noBranch|))) (-1018) (-703)) (T -712))
+((-2246 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-703)))) (-2152 (*1 *2 *1 *3) (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-703)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -1570 *3) (|:| -3526 *4)))) (-4 *3 (-1018)) (-4 *4 (-703)) (-5 *1 (-712 *3 *4)))) (-2212 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| -1570 *3) (|:| -3526 *4)))) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-712 *3 *4)) (-4 *4 (-703)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-621 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703)))) (-2028 (*1 *2 *1) (-12 (-4 *2 (-703)) (-4 *2 (-823)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1018)))) (-2043 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *3 (-703)))) (-2070 (*1 *1 *1) (-12 (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1018)) (-4 *3 (-703)))))
+(-13 (-1018) (-1009 |#2|) (-1009 |#1|) (-10 -8 (-15 -2246 ($ |#1| |#2|)) (-15 -2152 (|#1| $ |#2|)) (-15 -3846 ($ (-621 (-2 (|:| -1570 |#1|) (|:| -3526 |#2|))))) (-15 -2212 ((-621 (-2 (|:| -1570 |#1|) (|:| -3526 |#2|))) $)) (-15 -2797 ($ (-1 |#1| |#1|) $)) (-15 -2205 ((-112) $)) (-15 -4141 ((-621 |#1|) $)) (-15 -3750 ((-621 $) $)) (-15 -3347 ((-747) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-823)) (PROGN (-15 -2028 (|#2| $)) (-15 -2043 (|#1| $)) (-15 -2070 ($ $))) |%noBranch|)))
+((-3834 (((-112) $ $) 19)) (-1442 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2440 (($ $ $) 72)) (-2695 (((-112) $ $) 73)) (-1584 (((-112) $ (-747)) 8)) (-2787 (($ (-621 |#1|)) 68) (($) 67)) (-1717 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-3745 (($ $) 62)) (-3676 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2129 (($ |#1| $) 47 (|has| $ (-6 -4337))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4337)))) (-3812 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4337)))) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-2369 (((-112) $ $) 64)) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22)) (-3655 (($ $ $) 69)) (-3504 ((|#1| $) 39)) (-2751 (($ |#1| $) 40) (($ |#1| $ (-747)) 63)) (-3990 (((-1087) $) 21)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3325 ((|#1| $) 41)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3458 (((-621 (-2 (|:| -1793 |#1|) (|:| -4000 (-747)))) $) 61)) (-1334 (($ $ |#1|) 71) (($ $ $) 70)) (-2898 (($) 49) (($ (-621 |#1|)) 48)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2845 (((-525) $) 59 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 50)) (-3846 (((-834) $) 18)) (-4120 (($ (-621 |#1|)) 66) (($) 65)) (-3624 (($ (-621 |#1|)) 42)) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20)) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-713 |#1|) (-138) (-1067)) (T -713))
+NIL
+(-13 (-671 |t#1|) (-1065 |t#1|))
+(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-593 (-834)) . T) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-671 |#1|) . T) ((-1065 |#1|) . T) ((-1067) . T) ((-1180) . T))
+((-3834 (((-112) $ $) NIL)) (-1442 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2440 (($ $ $) 79)) (-2695 (((-112) $ $) 83)) (-1584 (((-112) $ (-747)) NIL)) (-2787 (($ (-621 |#1|)) 24) (($) 16)) (-1717 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-3745 (($ $) 71)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2129 (($ |#1| $) 61 (|has| $ (-6 -4337))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4337))) (($ |#1| $ (-549)) 62) (($ (-1 (-112) |#1|) $ (-549)) 65)) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (($ |#1| $ (-549)) 67) (($ (-1 (-112) |#1|) $ (-549)) 68)) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-2989 (((-621 |#1|) $) 32 (|has| $ (-6 -4337)))) (-2369 (((-112) $ $) 82)) (-3680 (($) 14) (($ |#1|) 26) (($ (-621 |#1|)) 21)) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#1|) $) 38)) (-2090 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1868 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 75)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-3655 (($ $ $) 77)) (-3504 ((|#1| $) 55)) (-2751 (($ |#1| $) 56) (($ |#1| $ (-747)) 72)) (-3990 (((-1087) $) NIL)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3325 ((|#1| $) 54)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 50)) (-3742 (($) 13)) (-3458 (((-621 (-2 (|:| -1793 |#1|) (|:| -4000 (-747)))) $) 48)) (-1334 (($ $ |#1|) NIL) (($ $ $) 78)) (-2898 (($) 15) (($ (-621 |#1|)) 23)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) 60 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) 66)) (-2845 (((-525) $) 36 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 20)) (-3846 (((-834) $) 44)) (-4120 (($ (-621 |#1|)) 25) (($) 17)) (-3624 (($ (-621 |#1|)) 22)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 81)) (-3775 (((-747) $) 59 (|has| $ (-6 -4337)))))
+(((-714 |#1|) (-13 (-713 |#1|) (-10 -8 (-6 -4337) (-6 -4338) (-15 -3680 ($)) (-15 -3680 ($ |#1|)) (-15 -3680 ($ (-621 |#1|))) (-15 -1562 ((-621 |#1|) $)) (-15 -3812 ($ |#1| $ (-549))) (-15 -3812 ($ (-1 (-112) |#1|) $ (-549))) (-15 -2129 ($ |#1| $ (-549))) (-15 -2129 ($ (-1 (-112) |#1|) $ (-549))))) (-1067)) (T -714))
+((-3680 (*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-1067)))) (-3680 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-1067)))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-714 *3)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-714 *3)) (-4 *3 (-1067)))) (-3812 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-714 *2)) (-4 *2 (-1067)))) (-3812 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1067)) (-5 *1 (-714 *4)))) (-2129 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-714 *2)) (-4 *2 (-1067)))) (-2129 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1067)) (-5 *1 (-714 *4)))))
+(-13 (-713 |#1|) (-10 -8 (-6 -4337) (-6 -4338) (-15 -3680 ($)) (-15 -3680 ($ |#1|)) (-15 -3680 ($ (-621 |#1|))) (-15 -1562 ((-621 |#1|) $)) (-15 -3812 ($ |#1| $ (-549))) (-15 -3812 ($ (-1 (-112) |#1|) $ (-549))) (-15 -2129 ($ |#1| $ (-549))) (-15 -2129 ($ (-1 (-112) |#1|) $ (-549)))))
+((-4009 (((-1231) (-1125)) 8)))
+(((-715) (-10 -7 (-15 -4009 ((-1231) (-1125))))) (T -715))
+((-4009 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-715)))))
+(-10 -7 (-15 -4009 ((-1231) (-1125))))
+((-3583 (((-621 |#1|) (-621 |#1|) (-621 |#1|)) 10)))
+(((-716 |#1|) (-10 -7 (-15 -3583 ((-621 |#1|) (-621 |#1|) (-621 |#1|)))) (-823)) (T -716))
+((-3583 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-716 *3)))))
+(-10 -7 (-15 -3583 ((-621 |#1|) (-621 |#1|) (-621 |#1|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2272 (((-621 |#2|) $) 134)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 127 (|has| |#1| (-541)))) (-2258 (($ $) 126 (|has| |#1| (-541)))) (-2799 (((-112) $) 124 (|has| |#1| (-541)))) (-1664 (($ $) 83 (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) 66 (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) 19)) (-2134 (($ $) 65 (|has| |#1| (-38 (-400 (-549)))))) (-1640 (($ $) 82 (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) 67 (|has| |#1| (-38 (-400 (-549)))))) (-1685 (($ $) 81 (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) 68 (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) 17 T CONST)) (-2070 (($ $) 118)) (-2114 (((-3 $ "failed") $) 32)) (-1414 (((-923 |#1|) $ (-747)) 96) (((-923 |#1|) $ (-747) (-747)) 95)) (-2871 (((-112) $) 135)) (-1425 (($) 93 (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-747) $ |#2|) 98) (((-747) $ |#2| (-747)) 97)) (-2675 (((-112) $) 30)) (-4187 (($ $ (-549)) 64 (|has| |#1| (-38 (-400 (-549)))))) (-2205 (((-112) $) 116)) (-2246 (($ $ (-621 |#2|) (-621 (-521 |#2|))) 133) (($ $ |#2| (-521 |#2|)) 132) (($ |#1| (-521 |#2|)) 117) (($ $ |#2| (-747)) 100) (($ $ (-621 |#2|) (-621 (-747))) 99)) (-2797 (($ (-1 |#1| |#1|) $) 115)) (-3632 (($ $) 90 (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) 113)) (-2043 ((|#1| $) 112)) (-3851 (((-1125) $) 9)) (-3893 (($ $ |#2|) 94 (|has| |#1| (-38 (-400 (-549)))))) (-3990 (((-1087) $) 10)) (-2763 (($ $ (-747)) 101)) (-2042 (((-3 $ "failed") $ $) 128 (|has| |#1| (-541)))) (-2719 (($ $) 91 (|has| |#1| (-38 (-400 (-549)))))) (-2686 (($ $ |#2| $) 109) (($ $ (-621 |#2|) (-621 $)) 108) (($ $ (-621 (-287 $))) 107) (($ $ (-287 $)) 106) (($ $ $ $) 105) (($ $ (-621 $) (-621 $)) 104)) (-3456 (($ $ |#2|) 40) (($ $ (-621 |#2|)) 39) (($ $ |#2| (-747)) 38) (($ $ (-621 |#2|) (-621 (-747))) 37)) (-3701 (((-521 |#2|) $) 114)) (-1698 (($ $) 80 (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) 69 (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) 79 (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) 70 (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) 78 (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) 71 (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) 136)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-541))) (($ (-400 (-549))) 121 (|has| |#1| (-38 (-400 (-549)))))) (-2152 ((|#1| $ (-521 |#2|)) 119) (($ $ |#2| (-747)) 103) (($ $ (-621 |#2|) (-621 (-747))) 102)) (-2210 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-2082 (((-747)) 28)) (-1733 (($ $) 89 (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) 77 (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) 125 (|has| |#1| (-541)))) (-1710 (($ $) 88 (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) 76 (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) 87 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 75 (|has| |#1| (-38 (-400 (-549)))))) (-1934 (($ $) 86 (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) 74 (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) 85 (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) 73 (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) 84 (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) 72 (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ |#2|) 36) (($ $ (-621 |#2|)) 35) (($ $ |#2| (-747)) 34) (($ $ (-621 |#2|) (-621 (-747))) 33)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#1|) 120 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ $) 92 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 63 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 123 (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) 122 (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 111) (($ $ |#1|) 110)))
+(((-717 |#1| |#2|) (-138) (-1018) (-823)) (T -717))
+((-2152 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-823)))) (-2152 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *5)) (-5 *3 (-621 (-747))) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)))) (-2763 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-717 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-823)))) (-2246 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-823)))) (-2246 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *5)) (-5 *3 (-621 (-747))) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)))) (-2088 (*1 *2 *1 *3) (-12 (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *2 (-747)))) (-2088 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-747)) (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823)))) (-1414 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)) (-5 *2 (-923 *4)))) (-1414 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-823)) (-5 *2 (-923 *4)))) (-3893 (*1 *1 *1 *2) (-12 (-4 *1 (-717 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823)) (-4 *3 (-38 (-400 (-549)))))))
+(-13 (-871 |t#2|) (-944 |t#1| (-521 |t#2|) |t#2|) (-505 |t#2| $) (-302 $) (-10 -8 (-15 -2152 ($ $ |t#2| (-747))) (-15 -2152 ($ $ (-621 |t#2|) (-621 (-747)))) (-15 -2763 ($ $ (-747))) (-15 -2246 ($ $ |t#2| (-747))) (-15 -2246 ($ $ (-621 |t#2|) (-621 (-747)))) (-15 -2088 ((-747) $ |t#2|)) (-15 -2088 ((-747) $ |t#2| (-747))) (-15 -1414 ((-923 |t#1|) $ (-747))) (-15 -1414 ((-923 |t#1|) $ (-747) (-747))) (IF (|has| |t#1| (-38 (-400 (-549)))) (PROGN (-15 -3893 ($ $ |t#2|)) (-6 (-973)) (-6 (-1165))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-521 |#2|)) . T) ((-25) . T) ((-38 #1=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-35) |has| |#1| (-38 (-400 (-549)))) ((-94) |has| |#1| (-38 (-400 (-549)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-277) |has| |#1| (-38 (-400 (-549)))) ((-283) |has| |#1| (-541)) ((-302 $) . T) ((-484) |has| |#1| (-38 (-400 (-549)))) ((-505 |#2| $) . T) ((-505 $ $) . T) ((-541) |has| |#1| (-541)) ((-624 #1#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) . T) ((-871 |#2|) . T) ((-944 |#1| #0# |#2|) . T) ((-973) |has| |#1| (-38 (-400 (-549)))) ((-1024 #1#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1165) |has| |#1| (-38 (-400 (-549)))) ((-1168) |has| |#1| (-38 (-400 (-549)))))
+((-2121 (((-411 (-1139 |#4|)) (-1139 |#4|)) 30) (((-411 |#4|) |#4|) 26)))
+(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2121 ((-411 |#4|) |#4|)) (-15 -2121 ((-411 (-1139 |#4|)) (-1139 |#4|)))) (-823) (-769) (-13 (-300) (-145)) (-920 |#3| |#2| |#1|)) (T -718))
+((-2121 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-920 *6 *5 *4)) (-5 *2 (-411 (-1139 *7))) (-5 *1 (-718 *4 *5 *6 *7)) (-5 *3 (-1139 *7)))) (-2121 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-411 *3)) (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-920 *6 *5 *4)))))
+(-10 -7 (-15 -2121 ((-411 |#4|) |#4|)) (-15 -2121 ((-411 (-1139 |#4|)) (-1139 |#4|))))
+((-1287 (((-411 |#4|) |#4| |#2|) 120)) (-1951 (((-411 |#4|) |#4|) NIL)) (-2402 (((-411 (-1139 |#4|)) (-1139 |#4|)) 111) (((-411 |#4|) |#4|) 41)) (-1325 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-621 (-2 (|:| -2121 (-1139 |#4|)) (|:| -3731 (-549)))))) (-1139 |#4|) (-621 |#2|) (-621 (-621 |#3|))) 69)) (-2496 (((-1139 |#3|) (-1139 |#3|) (-549)) 139)) (-4252 (((-621 (-747)) (-1139 |#4|) (-621 |#2|) (-747)) 61)) (-2548 (((-3 (-621 (-1139 |#4|)) "failed") (-1139 |#4|) (-1139 |#3|) (-1139 |#3|) |#4| (-621 |#2|) (-621 (-747)) (-621 |#3|)) 65)) (-4075 (((-2 (|:| |upol| (-1139 |#3|)) (|:| |Lval| (-621 |#3|)) (|:| |Lfact| (-621 (-2 (|:| -2121 (-1139 |#3|)) (|:| -3731 (-549))))) (|:| |ctpol| |#3|)) (-1139 |#4|) (-621 |#2|) (-621 (-621 |#3|))) 26)) (-2132 (((-2 (|:| -3028 (-1139 |#4|)) (|:| |polval| (-1139 |#3|))) (-1139 |#4|) (-1139 |#3|) (-549)) 57)) (-1688 (((-549) (-621 (-2 (|:| -2121 (-1139 |#3|)) (|:| -3731 (-549))))) 136)) (-1450 ((|#4| (-549) (-411 |#4|)) 58)) (-3097 (((-112) (-621 (-2 (|:| -2121 (-1139 |#3|)) (|:| -3731 (-549)))) (-621 (-2 (|:| -2121 (-1139 |#3|)) (|:| -3731 (-549))))) NIL)))
+(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2402 ((-411 |#4|) |#4|)) (-15 -2402 ((-411 (-1139 |#4|)) (-1139 |#4|))) (-15 -1951 ((-411 |#4|) |#4|)) (-15 -1688 ((-549) (-621 (-2 (|:| -2121 (-1139 |#3|)) (|:| -3731 (-549)))))) (-15 -1287 ((-411 |#4|) |#4| |#2|)) (-15 -2132 ((-2 (|:| -3028 (-1139 |#4|)) (|:| |polval| (-1139 |#3|))) (-1139 |#4|) (-1139 |#3|) (-549))) (-15 -1325 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-621 (-2 (|:| -2121 (-1139 |#4|)) (|:| -3731 (-549)))))) (-1139 |#4|) (-621 |#2|) (-621 (-621 |#3|)))) (-15 -4075 ((-2 (|:| |upol| (-1139 |#3|)) (|:| |Lval| (-621 |#3|)) (|:| |Lfact| (-621 (-2 (|:| -2121 (-1139 |#3|)) (|:| -3731 (-549))))) (|:| |ctpol| |#3|)) (-1139 |#4|) (-621 |#2|) (-621 (-621 |#3|)))) (-15 -1450 (|#4| (-549) (-411 |#4|))) (-15 -3097 ((-112) (-621 (-2 (|:| -2121 (-1139 |#3|)) (|:| -3731 (-549)))) (-621 (-2 (|:| -2121 (-1139 |#3|)) (|:| -3731 (-549)))))) (-15 -2548 ((-3 (-621 (-1139 |#4|)) "failed") (-1139 |#4|) (-1139 |#3|) (-1139 |#3|) |#4| (-621 |#2|) (-621 (-747)) (-621 |#3|))) (-15 -4252 ((-621 (-747)) (-1139 |#4|) (-621 |#2|) (-747))) (-15 -2496 ((-1139 |#3|) (-1139 |#3|) (-549)))) (-769) (-823) (-300) (-920 |#3| |#1| |#2|)) (T -719))
+((-2496 (*1 *2 *2 *3) (-12 (-5 *2 (-1139 *6)) (-5 *3 (-549)) (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))) (-4252 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1139 *9)) (-5 *4 (-621 *7)) (-4 *7 (-823)) (-4 *9 (-920 *8 *6 *7)) (-4 *6 (-769)) (-4 *8 (-300)) (-5 *2 (-621 (-747))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *5 (-747)))) (-2548 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1139 *11)) (-5 *6 (-621 *10)) (-5 *7 (-621 (-747))) (-5 *8 (-621 *11)) (-4 *10 (-823)) (-4 *11 (-300)) (-4 *9 (-769)) (-4 *5 (-920 *11 *9 *10)) (-5 *2 (-621 (-1139 *5))) (-5 *1 (-719 *9 *10 *11 *5)) (-5 *3 (-1139 *5)))) (-3097 (*1 *2 *3 *3) (-12 (-5 *3 (-621 (-2 (|:| -2121 (-1139 *6)) (|:| -3731 (-549))))) (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))) (-1450 (*1 *2 *3 *4) (-12 (-5 *3 (-549)) (-5 *4 (-411 *2)) (-4 *2 (-920 *7 *5 *6)) (-5 *1 (-719 *5 *6 *7 *2)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-300)))) (-4075 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1139 *9)) (-5 *4 (-621 *7)) (-5 *5 (-621 (-621 *8))) (-4 *7 (-823)) (-4 *8 (-300)) (-4 *9 (-920 *8 *6 *7)) (-4 *6 (-769)) (-5 *2 (-2 (|:| |upol| (-1139 *8)) (|:| |Lval| (-621 *8)) (|:| |Lfact| (-621 (-2 (|:| -2121 (-1139 *8)) (|:| -3731 (-549))))) (|:| |ctpol| *8))) (-5 *1 (-719 *6 *7 *8 *9)))) (-1325 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-621 *7)) (-5 *5 (-621 (-621 *8))) (-4 *7 (-823)) (-4 *8 (-300)) (-4 *6 (-769)) (-4 *9 (-920 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-621 (-2 (|:| -2121 (-1139 *9)) (|:| -3731 (-549))))))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1139 *9)))) (-2132 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-549)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-300)) (-4 *9 (-920 *8 *6 *7)) (-5 *2 (-2 (|:| -3028 (-1139 *9)) (|:| |polval| (-1139 *8)))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1139 *9)) (-5 *4 (-1139 *8)))) (-1287 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-719 *5 *4 *6 *3)) (-4 *3 (-920 *6 *5 *4)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -2121 (-1139 *6)) (|:| -3731 (-549))))) (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-549)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))) (-1951 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-920 *6 *4 *5)))) (-2402 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-411 (-1139 *7))) (-5 *1 (-719 *4 *5 *6 *7)) (-5 *3 (-1139 *7)))) (-2402 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-920 *6 *4 *5)))))
+(-10 -7 (-15 -2402 ((-411 |#4|) |#4|)) (-15 -2402 ((-411 (-1139 |#4|)) (-1139 |#4|))) (-15 -1951 ((-411 |#4|) |#4|)) (-15 -1688 ((-549) (-621 (-2 (|:| -2121 (-1139 |#3|)) (|:| -3731 (-549)))))) (-15 -1287 ((-411 |#4|) |#4| |#2|)) (-15 -2132 ((-2 (|:| -3028 (-1139 |#4|)) (|:| |polval| (-1139 |#3|))) (-1139 |#4|) (-1139 |#3|) (-549))) (-15 -1325 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-621 (-2 (|:| -2121 (-1139 |#4|)) (|:| -3731 (-549)))))) (-1139 |#4|) (-621 |#2|) (-621 (-621 |#3|)))) (-15 -4075 ((-2 (|:| |upol| (-1139 |#3|)) (|:| |Lval| (-621 |#3|)) (|:| |Lfact| (-621 (-2 (|:| -2121 (-1139 |#3|)) (|:| -3731 (-549))))) (|:| |ctpol| |#3|)) (-1139 |#4|) (-621 |#2|) (-621 (-621 |#3|)))) (-15 -1450 (|#4| (-549) (-411 |#4|))) (-15 -3097 ((-112) (-621 (-2 (|:| -2121 (-1139 |#3|)) (|:| -3731 (-549)))) (-621 (-2 (|:| -2121 (-1139 |#3|)) (|:| -3731 (-549)))))) (-15 -2548 ((-3 (-621 (-1139 |#4|)) "failed") (-1139 |#4|) (-1139 |#3|) (-1139 |#3|) |#4| (-621 |#2|) (-621 (-747)) (-621 |#3|))) (-15 -4252 ((-621 (-747)) (-1139 |#4|) (-621 |#2|) (-747))) (-15 -2496 ((-1139 |#3|) (-1139 |#3|) (-549))))
+((-2943 (($ $ (-892)) 12)))
+(((-720 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| |#1| (-892)))) (-721 |#2|) (-170)) (T -720))
+NIL
+(-10 -8 (-15 -2943 (|#1| |#1| (-892))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3117 (($ $ (-892)) 28)) (-2943 (($ $ (-892)) 33)) (-2884 (($ $ (-892)) 29)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3293 (($ $ $) 25)) (-3846 (((-834) $) 11)) (-4272 (($ $ $ $) 26)) (-2174 (($ $ $) 24)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 30)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-721 |#1|) (-138) (-170)) (T -721))
+((-2943 (*1 *1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-721 *3)) (-4 *3 (-170)))))
+(-13 (-738) (-694 |t#1|) (-10 -8 (-15 -2943 ($ $ (-892)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-697) . T) ((-738) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-2292 (((-1006) (-665 (-219)) (-549) (-112) (-549)) 25)) (-3589 (((-1006) (-665 (-219)) (-549) (-112) (-549)) 24)))
+(((-722) (-10 -7 (-15 -3589 ((-1006) (-665 (-219)) (-549) (-112) (-549))) (-15 -2292 ((-1006) (-665 (-219)) (-549) (-112) (-549))))) (T -722))
+((-2292 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-722)))) (-3589 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-722)))))
+(-10 -7 (-15 -3589 ((-1006) (-665 (-219)) (-549) (-112) (-549))) (-15 -2292 ((-1006) (-665 (-219)) (-549) (-112) (-549))))
+((-2061 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) 43)) (-3746 (((-1006) (-549) (-549) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) 39)) (-1837 (((-1006) (-219) (-219) (-219) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422)))) 32)))
+(((-723) (-10 -7 (-15 -1837 ((-1006) (-219) (-219) (-219) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))) (-15 -3746 ((-1006) (-549) (-549) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -2061 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN))))))) (T -723))
+((-2061 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1006)) (-5 *1 (-723)))) (-3746 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1006)) (-5 *1 (-723)))) (-1837 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422)))) (-5 *2 (-1006)) (-5 *1 (-723)))))
+(-10 -7 (-15 -1837 ((-1006) (-219) (-219) (-219) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))) (-15 -3746 ((-1006) (-549) (-549) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -2061 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN))))))
+((-3518 (((-1006) (-549) (-549) (-665 (-219)) (-549)) 34)) (-2666 (((-1006) (-549) (-549) (-665 (-219)) (-549)) 33)) (-1848 (((-1006) (-549) (-665 (-219)) (-549)) 32)) (-1810 (((-1006) (-549) (-665 (-219)) (-549)) 31)) (-2260 (((-1006) (-549) (-549) (-1125) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 30)) (-1989 (((-1006) (-549) (-549) (-1125) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 29)) (-2669 (((-1006) (-549) (-549) (-1125) (-665 (-219)) (-665 (-219)) (-549)) 28)) (-3400 (((-1006) (-549) (-549) (-1125) (-665 (-219)) (-665 (-219)) (-549)) 27)) (-3867 (((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 24)) (-1281 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549)) 23)) (-1653 (((-1006) (-549) (-665 (-219)) (-549)) 22)) (-3929 (((-1006) (-549) (-665 (-219)) (-549)) 21)))
+(((-724) (-10 -7 (-15 -3929 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -1653 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -1281 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3867 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3400 ((-1006) (-549) (-549) (-1125) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2669 ((-1006) (-549) (-549) (-1125) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1989 ((-1006) (-549) (-549) (-1125) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2260 ((-1006) (-549) (-549) (-1125) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1810 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -1848 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -2666 ((-1006) (-549) (-549) (-665 (-219)) (-549))) (-15 -3518 ((-1006) (-549) (-549) (-665 (-219)) (-549))))) (T -724))
+((-3518 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2666 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-1848 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-1810 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2260 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1125)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-1989 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1125)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-2669 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1125)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-3400 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1125)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-3867 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-1281 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-1653 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))) (-3929 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-724)))))
+(-10 -7 (-15 -3929 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -1653 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -1281 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3867 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3400 ((-1006) (-549) (-549) (-1125) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2669 ((-1006) (-549) (-549) (-1125) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1989 ((-1006) (-549) (-549) (-1125) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2260 ((-1006) (-549) (-549) (-1125) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1810 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -1848 ((-1006) (-549) (-665 (-219)) (-549))) (-15 -2666 ((-1006) (-549) (-549) (-665 (-219)) (-549))) (-15 -3518 ((-1006) (-549) (-549) (-665 (-219)) (-549))))
+((-2676 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-219) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) 52)) (-2991 (((-1006) (-665 (-219)) (-665 (-219)) (-549) (-549)) 51)) (-3413 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) 50)) (-2463 (((-1006) (-219) (-219) (-549) (-549) (-549) (-549)) 46)) (-3584 (((-1006) (-219) (-219) (-549) (-219) (-549) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 45)) (-4299 (((-1006) (-219) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 44)) (-3823 (((-1006) (-219) (-219) (-219) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 43)) (-2833 (((-1006) (-219) (-219) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) 42)) (-2215 (((-1006) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422)))) 38)) (-4265 (((-1006) (-219) (-219) (-549) (-665 (-219)) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422)))) 37)) (-1770 (((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422)))) 33)) (-3901 (((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422)))) 32)))
+(((-725) (-10 -7 (-15 -3901 ((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))) (-15 -1770 ((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))) (-15 -4265 ((-1006) (-219) (-219) (-549) (-665 (-219)) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))) (-15 -2215 ((-1006) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))) (-15 -2833 ((-1006) (-219) (-219) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -3823 ((-1006) (-219) (-219) (-219) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -4299 ((-1006) (-219) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -3584 ((-1006) (-219) (-219) (-549) (-219) (-549) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2463 ((-1006) (-219) (-219) (-549) (-549) (-549) (-549))) (-15 -3413 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))) (-15 -2991 ((-1006) (-665 (-219)) (-665 (-219)) (-549) (-549))) (-15 -2676 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-219) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))))) (T -725))
+((-2676 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2991 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-725)))) (-3413 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2463 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-725)))) (-3584 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-4299 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-3823 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2833 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-2215 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-4265 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-725)))) (-1770 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422)))) (-5 *2 (-1006)) (-5 *1 (-725)))) (-3901 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422)))) (-5 *2 (-1006)) (-5 *1 (-725)))))
+(-10 -7 (-15 -3901 ((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))) (-15 -1770 ((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))) (-15 -4265 ((-1006) (-219) (-219) (-549) (-665 (-219)) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))) (-15 -2215 ((-1006) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))) (-15 -2833 ((-1006) (-219) (-219) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -3823 ((-1006) (-219) (-219) (-219) (-219) (-549) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -4299 ((-1006) (-219) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -3584 ((-1006) (-219) (-219) (-549) (-219) (-549) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G))))) (-15 -2463 ((-1006) (-219) (-219) (-549) (-549) (-549) (-549))) (-15 -3413 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-219) (-549) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))) (-15 -2991 ((-1006) (-665 (-219)) (-665 (-219)) (-549) (-549))) (-15 -2676 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-219) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))))
+((-1684 (((-1006) (-549) (-549) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-1610 (((-1006) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))) (-381) (-381)) 69) (((-1006) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) 68)) (-4188 (((-1006) (-219) (-219) (-549) (-219) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG)))) 57)) (-3609 (((-1006) (-665 (-219)) (-665 (-219)) (-549) (-219) (-219) (-219) (-549) (-549) (-549) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) 50)) (-3678 (((-1006) (-219) (-549) (-549) (-1125) (-549) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) 49)) (-4205 (((-1006) (-219) (-549) (-549) (-219) (-1125) (-219) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) 45)) (-3215 (((-1006) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) 42)) (-1510 (((-1006) (-219) (-549) (-549) (-549) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) 38)))
+(((-726) (-10 -7 (-15 -1510 ((-1006) (-219) (-549) (-549) (-549) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -3215 ((-1006) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -4205 ((-1006) (-219) (-549) (-549) (-219) (-1125) (-219) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -3678 ((-1006) (-219) (-549) (-549) (-1125) (-549) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -3609 ((-1006) (-665 (-219)) (-665 (-219)) (-549) (-219) (-219) (-219) (-549) (-549) (-549) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -4188 ((-1006) (-219) (-219) (-549) (-219) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG))))) (-15 -1610 ((-1006) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))))) (-15 -1610 ((-1006) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))) (-381) (-381))) (-15 -1684 ((-1006) (-549) (-549) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -726))
+((-1684 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-1610 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-381)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-1610 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1006)) (-5 *1 (-726)))) (-4188 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-3609 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1006)) (-5 *1 (-726)))) (-3678 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-549)) (-5 *5 (-1125)) (-5 *6 (-665 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-4205 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-549)) (-5 *5 (-1125)) (-5 *6 (-665 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-3215 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))) (-1510 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))))
+(-10 -7 (-15 -1510 ((-1006) (-219) (-549) (-549) (-549) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -3215 ((-1006) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -4205 ((-1006) (-219) (-549) (-549) (-219) (-1125) (-219) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -3678 ((-1006) (-219) (-549) (-549) (-1125) (-549) (-219) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))) (-15 -3609 ((-1006) (-665 (-219)) (-665 (-219)) (-549) (-219) (-219) (-219) (-549) (-549) (-549) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))) (-15 -4188 ((-1006) (-219) (-219) (-549) (-219) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG))))) (-15 -1610 ((-1006) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))))) (-15 -1610 ((-1006) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))) (-381) (-381))) (-15 -1684 ((-1006) (-549) (-549) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP))))))
+((-2031 (((-1006) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-651 (-219)) (-549)) 45)) (-2164 (((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-1125) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY)))) 41)) (-2062 (((-1006) (-549) (-549) (-549) (-549) (-219) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 23)))
+(((-727) (-10 -7 (-15 -2062 ((-1006) (-549) (-549) (-549) (-549) (-219) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2164 ((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-1125) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY))))) (-15 -2031 ((-1006) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-651 (-219)) (-549))))) (T -727))
+((-2031 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-651 (-219))) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-727)))) (-2164 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-1125)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1006)) (-5 *1 (-727)))) (-2062 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-727)))))
+(-10 -7 (-15 -2062 ((-1006) (-549) (-549) (-549) (-549) (-219) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2164 ((-1006) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-1125) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY))))) (-15 -2031 ((-1006) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-651 (-219)) (-549))))
+((-1265 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-665 (-219)) (-219) (-219) (-549)) 35)) (-3685 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-219) (-219) (-549)) 34)) (-1860 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-665 (-219)) (-219) (-219) (-549)) 33)) (-1523 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 29)) (-3330 (((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 28)) (-1870 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549)) 27)) (-2315 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-549)) 24)) (-3773 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-549)) 23)) (-3957 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549)) 22)) (-3802 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549)) 21)))
+(((-728) (-10 -7 (-15 -3802 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549))) (-15 -3957 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3773 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -2315 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -1870 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549))) (-15 -3330 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1523 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1860 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-665 (-219)) (-219) (-219) (-549))) (-15 -3685 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-219) (-219) (-549))) (-15 -1265 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-665 (-219)) (-219) (-219) (-549))))) (T -728))
+((-1265 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-3685 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-1860 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *6 (-219)) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-1523 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-3330 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-1870 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-728)))) (-2315 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-3773 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-3957 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))) (-3802 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-728)))))
+(-10 -7 (-15 -3802 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549))) (-15 -3957 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3773 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -2315 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -1870 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-219) (-549))) (-15 -3330 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1523 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1860 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-665 (-219)) (-219) (-219) (-549))) (-15 -3685 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-219) (-219) (-549))) (-15 -1265 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-665 (-219)) (-219) (-219) (-549))))
+((-3832 (((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549)) 45)) (-3171 (((-1006) (-549) (-549) (-549) (-219) (-665 (-219)) (-665 (-219)) (-549)) 44)) (-2437 (((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549)) 43)) (-1833 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 42)) (-3793 (((-1006) (-1125) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549)) 41)) (-3824 (((-1006) (-1125) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549)) 40)) (-3593 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549) (-549) (-549) (-219) (-665 (-219)) (-549)) 39)) (-3713 (((-1006) (-1125) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-549))) 38)) (-1932 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549)) 35)) (-4047 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549)) 34)) (-3132 (((-1006) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549)) 33)) (-1901 (((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 32)) (-2983 (((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-219) (-549)) 31)) (-2487 (((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-549)) 30)) (-1462 (((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-549) (-549) (-549)) 29)) (-4128 (((-1006) (-549) (-549) (-549) (-219) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549) (-665 (-549)) (-549) (-549) (-549)) 28)) (-2879 (((-1006) (-549) (-665 (-219)) (-219) (-549)) 24)) (-3732 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 21)))
+(((-729) (-10 -7 (-15 -3732 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2879 ((-1006) (-549) (-665 (-219)) (-219) (-549))) (-15 -4128 ((-1006) (-549) (-549) (-549) (-219) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549) (-665 (-549)) (-549) (-549) (-549))) (-15 -1462 ((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-549) (-549) (-549))) (-15 -2487 ((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-549))) (-15 -2983 ((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-219) (-549))) (-15 -1901 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3132 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549))) (-15 -4047 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549))) (-15 -1932 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3713 ((-1006) (-1125) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-549)))) (-15 -3593 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549) (-549) (-549) (-219) (-665 (-219)) (-549))) (-15 -3824 ((-1006) (-1125) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549))) (-15 -3793 ((-1006) (-1125) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1833 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2437 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549))) (-15 -3171 ((-1006) (-549) (-549) (-549) (-219) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3832 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549))))) (T -729))
+((-3832 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3171 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2437 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-1833 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3793 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3824 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1125)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) (-5 *7 (-665 (-549))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3593 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *6 (-219)) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3713 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1125)) (-5 *5 (-665 (-219))) (-5 *6 (-219)) (-5 *7 (-665 (-549))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-1932 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-4047 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3132 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-1901 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2983 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2487 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-1462 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-4128 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-665 (-219))) (-5 *6 (-665 (-549))) (-5 *3 (-549)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-2879 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))) (-3732 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(-10 -7 (-15 -3732 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2879 ((-1006) (-549) (-665 (-219)) (-219) (-549))) (-15 -4128 ((-1006) (-549) (-549) (-549) (-219) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549) (-665 (-549)) (-549) (-549) (-549))) (-15 -1462 ((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-549) (-549) (-549))) (-15 -2487 ((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-219) (-549) (-549) (-549))) (-15 -2983 ((-1006) (-549) (-219) (-219) (-665 (-219)) (-549) (-549) (-219) (-549))) (-15 -1901 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3132 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549))) (-15 -4047 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549))) (-15 -1932 ((-1006) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3713 ((-1006) (-1125) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-549)))) (-15 -3593 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549) (-549) (-549) (-219) (-665 (-219)) (-549))) (-15 -3824 ((-1006) (-1125) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549))) (-15 -3793 ((-1006) (-1125) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1833 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2437 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549))) (-15 -3171 ((-1006) (-549) (-549) (-549) (-219) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3832 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549) (-665 (-219)) (-665 (-219)) (-549) (-549) (-549))))
+((-3605 (((-1006) (-549) (-549) (-549) (-219) (-665 (-219)) (-549) (-665 (-219)) (-549)) 63)) (-2622 (((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-112) (-219) (-549) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-549) (-549) (-549) (-549) (-549) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-549)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) 62)) (-2332 (((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-112) (-112) (-549) (-549) (-665 (-219)) (-665 (-549)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) 58)) (-2547 (((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-549) (-549) (-665 (-219)) (-549)) 51)) (-1928 (((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2344 (((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2)))) 46)) (-1574 (((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) 42)) (-3122 (((-1006) (-549) (-219) (-219) (-549) (-219) (-112) (-219) (-219) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) 38)))
+(((-730) (-10 -7 (-15 -3122 ((-1006) (-549) (-219) (-219) (-549) (-219) (-112) (-219) (-219) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -1574 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -2344 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2))))) (-15 -1928 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -2547 ((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-549) (-549) (-665 (-219)) (-549))) (-15 -2332 ((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-112) (-112) (-549) (-549) (-665 (-219)) (-665 (-549)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -2622 ((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-112) (-219) (-549) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-549) (-549) (-549) (-549) (-549) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-549)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -3605 ((-1006) (-549) (-549) (-549) (-219) (-665 (-219)) (-549) (-665 (-219)) (-549))))) (T -730))
+((-3605 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2622 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-665 (-549))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2332 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-665 (-219))) (-5 *6 (-112)) (-5 *7 (-665 (-549))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-549)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2547 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-730)))) (-1928 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1006)) (-5 *1 (-730)))) (-2344 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1006)) (-5 *1 (-730)))) (-1574 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1006)) (-5 *1 (-730)))) (-3122 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-665 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))))
+(-10 -7 (-15 -3122 ((-1006) (-549) (-219) (-219) (-549) (-219) (-112) (-219) (-219) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -1574 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -2344 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2))))) (-15 -1928 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -2547 ((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-549) (-549) (-665 (-219)) (-549))) (-15 -2332 ((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-219) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-112) (-112) (-112) (-549) (-549) (-665 (-219)) (-665 (-549)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -2622 ((-1006) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-549) (-112) (-219) (-549) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-549) (-549) (-549) (-549) (-549) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-549) (-665 (-549)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))) (-15 -3605 ((-1006) (-549) (-549) (-549) (-219) (-665 (-219)) (-549) (-665 (-219)) (-549))))
+((-2080 (((-1006) (-1125) (-549) (-549) (-549) (-549) (-665 (-167 (-219))) (-665 (-167 (-219))) (-549)) 47)) (-3454 (((-1006) (-1125) (-1125) (-549) (-549) (-665 (-167 (-219))) (-549) (-665 (-167 (-219))) (-549) (-549) (-665 (-167 (-219))) (-549)) 46)) (-1943 (((-1006) (-549) (-549) (-549) (-665 (-167 (-219))) (-549)) 45)) (-2822 (((-1006) (-1125) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 40)) (-4054 (((-1006) (-1125) (-1125) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-665 (-219)) (-549)) 39)) (-4077 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-549)) 36)) (-1701 (((-1006) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549)) 35)) (-3432 (((-1006) (-549) (-549) (-549) (-549) (-621 (-112)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-219) (-219) (-549)) 34)) (-3444 (((-1006) (-549) (-549) (-549) (-665 (-549)) (-665 (-549)) (-665 (-549)) (-665 (-549)) (-112) (-219) (-112) (-665 (-549)) (-665 (-219)) (-549)) 33)) (-1647 (((-1006) (-549) (-549) (-549) (-549) (-219) (-112) (-112) (-621 (-112)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-549)) 32)))
+(((-731) (-10 -7 (-15 -1647 ((-1006) (-549) (-549) (-549) (-549) (-219) (-112) (-112) (-621 (-112)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-549))) (-15 -3444 ((-1006) (-549) (-549) (-549) (-665 (-549)) (-665 (-549)) (-665 (-549)) (-665 (-549)) (-112) (-219) (-112) (-665 (-549)) (-665 (-219)) (-549))) (-15 -3432 ((-1006) (-549) (-549) (-549) (-549) (-621 (-112)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-219) (-219) (-549))) (-15 -1701 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549))) (-15 -4077 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-549))) (-15 -4054 ((-1006) (-1125) (-1125) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-665 (-219)) (-549))) (-15 -2822 ((-1006) (-1125) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1943 ((-1006) (-549) (-549) (-549) (-665 (-167 (-219))) (-549))) (-15 -3454 ((-1006) (-1125) (-1125) (-549) (-549) (-665 (-167 (-219))) (-549) (-665 (-167 (-219))) (-549) (-549) (-665 (-167 (-219))) (-549))) (-15 -2080 ((-1006) (-1125) (-549) (-549) (-549) (-549) (-665 (-167 (-219))) (-665 (-167 (-219))) (-549))))) (T -731))
+((-2080 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-167 (-219)))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-3454 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-167 (-219)))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-1943 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-167 (-219)))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-2822 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-4054 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-4077 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-731)))) (-1701 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-731)))) (-3432 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-621 (-112))) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-549))) (-5 *7 (-219)) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-731)))) (-3444 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-665 (-549))) (-5 *5 (-112)) (-5 *7 (-665 (-219))) (-5 *3 (-549)) (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-731)))) (-1647 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-621 (-112))) (-5 *7 (-665 (-219))) (-5 *8 (-665 (-549))) (-5 *3 (-549)) (-5 *4 (-219)) (-5 *5 (-112)) (-5 *2 (-1006)) (-5 *1 (-731)))))
+(-10 -7 (-15 -1647 ((-1006) (-549) (-549) (-549) (-549) (-219) (-112) (-112) (-621 (-112)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-549))) (-15 -3444 ((-1006) (-549) (-549) (-549) (-665 (-549)) (-665 (-549)) (-665 (-549)) (-665 (-549)) (-112) (-219) (-112) (-665 (-549)) (-665 (-219)) (-549))) (-15 -3432 ((-1006) (-549) (-549) (-549) (-549) (-621 (-112)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-219) (-219) (-549))) (-15 -1701 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549))) (-15 -4077 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-549))) (-15 -4054 ((-1006) (-1125) (-1125) (-549) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-665 (-219)) (-549))) (-15 -2822 ((-1006) (-1125) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1943 ((-1006) (-549) (-549) (-549) (-665 (-167 (-219))) (-549))) (-15 -3454 ((-1006) (-1125) (-1125) (-549) (-549) (-665 (-167 (-219))) (-549) (-665 (-167 (-219))) (-549) (-549) (-665 (-167 (-219))) (-549))) (-15 -2080 ((-1006) (-1125) (-549) (-549) (-549) (-549) (-665 (-167 (-219))) (-665 (-167 (-219))) (-549))))
+((-2949 (((-1006) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-665 (-167 (-219))) (-665 (-167 (-219))) (-549)) 65)) (-2417 (((-1006) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-665 (-219)) (-665 (-219)) (-549)) 60)) (-1614 (((-1006) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381)) 56) (((-1006) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) 55)) (-3544 (((-1006) (-549) (-549) (-549) (-219) (-112) (-549) (-665 (-219)) (-665 (-219)) (-549)) 37)) (-1415 (((-1006) (-549) (-549) (-219) (-219) (-549) (-549) (-665 (-219)) (-549)) 33)) (-1799 (((-1006) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-549) (-549) (-549)) 30)) (-1597 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 29)) (-1862 (((-1006) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 28)) (-4172 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 27)) (-1603 (((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549)) 26)) (-3652 (((-1006) (-549) (-549) (-665 (-219)) (-549)) 25)) (-1720 (((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 24)) (-3175 (((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549)) 23)) (-2358 (((-1006) (-665 (-219)) (-549) (-549) (-549) (-549)) 22)) (-1386 (((-1006) (-549) (-549) (-665 (-219)) (-549)) 21)))
+(((-732) (-10 -7 (-15 -1386 ((-1006) (-549) (-549) (-665 (-219)) (-549))) (-15 -2358 ((-1006) (-665 (-219)) (-549) (-549) (-549) (-549))) (-15 -3175 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1720 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3652 ((-1006) (-549) (-549) (-665 (-219)) (-549))) (-15 -1603 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549))) (-15 -4172 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1862 ((-1006) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1597 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1799 ((-1006) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-549) (-549) (-549))) (-15 -1415 ((-1006) (-549) (-549) (-219) (-219) (-549) (-549) (-665 (-219)) (-549))) (-15 -3544 ((-1006) (-549) (-549) (-549) (-219) (-112) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1614 ((-1006) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -1614 ((-1006) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2417 ((-1006) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2949 ((-1006) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-665 (-167 (-219))) (-665 (-167 (-219))) (-549))))) (T -732))
+((-2949 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-665 (-167 (-219)))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2417 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-1614 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-1614 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-3544 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-1415 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-1799 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-1597 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-1862 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-4172 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-1603 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-3652 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-1720 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-3175 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))) (-2358 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-732)))) (-1386 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(-10 -7 (-15 -1386 ((-1006) (-549) (-549) (-665 (-219)) (-549))) (-15 -2358 ((-1006) (-665 (-219)) (-549) (-549) (-549) (-549))) (-15 -3175 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1720 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -3652 ((-1006) (-549) (-549) (-665 (-219)) (-549))) (-15 -1603 ((-1006) (-549) (-549) (-549) (-549) (-665 (-219)) (-549))) (-15 -4172 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1862 ((-1006) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1597 ((-1006) (-549) (-549) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1799 ((-1006) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-549) (-549) (-549))) (-15 -1415 ((-1006) (-549) (-549) (-219) (-219) (-549) (-549) (-665 (-219)) (-549))) (-15 -3544 ((-1006) (-549) (-549) (-549) (-219) (-112) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1614 ((-1006) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -1614 ((-1006) (-549) (-549) (-219) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2417 ((-1006) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -2949 ((-1006) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-665 (-167 (-219))) (-665 (-167 (-219))) (-549))))
+((-3936 (((-1006) (-549) (-549) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) 61)) (-2591 (((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-549)) (-549) (-665 (-219)) (-549) (-549) (-549) (-549)) 57)) (-3931 (((-1006) (-549) (-665 (-219)) (-112) (-219) (-549) (-549) (-549) (-549) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) 56)) (-1704 (((-1006) (-549) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549) (-665 (-549)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549)) 37)) (-4102 (((-1006) (-549) (-549) (-549) (-219) (-549) (-665 (-219)) (-665 (-219)) (-549)) 36)) (-3124 (((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549)) 33)) (-2988 (((-1006) (-549) (-665 (-219)) (-549) (-665 (-549)) (-665 (-549)) (-549) (-665 (-549)) (-665 (-219))) 32)) (-4281 (((-1006) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-549)) 28)) (-3335 (((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549)) 27)) (-4079 (((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549)) 26)) (-3168 (((-1006) (-549) (-665 (-167 (-219))) (-549) (-549) (-549) (-549) (-665 (-167 (-219))) (-549)) 22)))
+(((-733) (-10 -7 (-15 -3168 ((-1006) (-549) (-665 (-167 (-219))) (-549) (-549) (-549) (-549) (-665 (-167 (-219))) (-549))) (-15 -4079 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -3335 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -4281 ((-1006) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-549))) (-15 -2988 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-549)) (-665 (-549)) (-549) (-665 (-549)) (-665 (-219)))) (-15 -3124 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -4102 ((-1006) (-549) (-549) (-549) (-219) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1704 ((-1006) (-549) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549) (-665 (-549)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549))) (-15 -3931 ((-1006) (-549) (-665 (-219)) (-112) (-219) (-549) (-549) (-549) (-549) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -2591 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-549)) (-549) (-665 (-219)) (-549) (-549) (-549) (-549))) (-15 -3936 ((-1006) (-549) (-549) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD))))))) (T -733))
+((-3936 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2591 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-3931 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-1704 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-4102 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-3124 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-2988 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-4281 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-733)))) (-3335 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-4079 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-733)))) (-3168 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-167 (-219)))) (-5 *2 (-1006)) (-5 *1 (-733)))))
+(-10 -7 (-15 -3168 ((-1006) (-549) (-665 (-167 (-219))) (-549) (-549) (-549) (-549) (-665 (-167 (-219))) (-549))) (-15 -4079 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -3335 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-549))) (-15 -4281 ((-1006) (-665 (-219)) (-549) (-665 (-219)) (-549) (-549) (-549))) (-15 -2988 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-549)) (-665 (-549)) (-549) (-665 (-549)) (-665 (-219)))) (-15 -3124 ((-1006) (-549) (-549) (-665 (-219)) (-665 (-219)) (-665 (-219)) (-549))) (-15 -4102 ((-1006) (-549) (-549) (-549) (-219) (-549) (-665 (-219)) (-665 (-219)) (-549))) (-15 -1704 ((-1006) (-549) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549) (-665 (-549)) (-665 (-219)) (-665 (-549)) (-665 (-549)) (-665 (-219)) (-665 (-219)) (-665 (-549)) (-549))) (-15 -3931 ((-1006) (-549) (-665 (-219)) (-112) (-219) (-549) (-549) (-549) (-549) (-219) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -2591 ((-1006) (-549) (-665 (-219)) (-549) (-665 (-219)) (-665 (-549)) (-549) (-665 (-219)) (-549) (-549) (-549) (-549))) (-15 -3936 ((-1006) (-549) (-549) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-665 (-219)) (-549) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD))))))
+((-2245 (((-1006) (-1125) (-549) (-549) (-665 (-219)) (-549) (-549) (-665 (-219))) 29)) (-3635 (((-1006) (-1125) (-549) (-549) (-665 (-219))) 28)) (-3572 (((-1006) (-1125) (-549) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549) (-665 (-219))) 27)) (-2488 (((-1006) (-549) (-549) (-549) (-665 (-219))) 21)))
+(((-734) (-10 -7 (-15 -2488 ((-1006) (-549) (-549) (-549) (-665 (-219)))) (-15 -3572 ((-1006) (-1125) (-549) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549) (-665 (-219)))) (-15 -3635 ((-1006) (-1125) (-549) (-549) (-665 (-219)))) (-15 -2245 ((-1006) (-1125) (-549) (-549) (-665 (-219)) (-549) (-549) (-665 (-219)))))) (T -734))
+((-2245 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734)))) (-3635 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734)))) (-3572 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1125)) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-549))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-734)))) (-2488 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006)) (-5 *1 (-734)))))
+(-10 -7 (-15 -2488 ((-1006) (-549) (-549) (-549) (-665 (-219)))) (-15 -3572 ((-1006) (-1125) (-549) (-549) (-665 (-219)) (-549) (-665 (-549)) (-549) (-665 (-219)))) (-15 -3635 ((-1006) (-1125) (-549) (-549) (-665 (-219)))) (-15 -2245 ((-1006) (-1125) (-549) (-549) (-665 (-219)) (-549) (-549) (-665 (-219)))))
+((-4035 (((-1006) (-219) (-219) (-219) (-219) (-549)) 62)) (-2726 (((-1006) (-219) (-219) (-219) (-549)) 61)) (-3442 (((-1006) (-219) (-219) (-219) (-549)) 60)) (-3878 (((-1006) (-219) (-219) (-549)) 59)) (-1961 (((-1006) (-219) (-549)) 58)) (-2181 (((-1006) (-219) (-549)) 57)) (-1828 (((-1006) (-219) (-549)) 56)) (-1352 (((-1006) (-219) (-549)) 55)) (-1581 (((-1006) (-219) (-549)) 54)) (-3607 (((-1006) (-219) (-549)) 53)) (-3778 (((-1006) (-219) (-167 (-219)) (-549) (-1125) (-549)) 52)) (-1380 (((-1006) (-219) (-167 (-219)) (-549) (-1125) (-549)) 51)) (-2039 (((-1006) (-219) (-549)) 50)) (-2921 (((-1006) (-219) (-549)) 49)) (-2657 (((-1006) (-219) (-549)) 48)) (-3766 (((-1006) (-219) (-549)) 47)) (-2011 (((-1006) (-549) (-219) (-167 (-219)) (-549) (-1125) (-549)) 46)) (-2025 (((-1006) (-1125) (-167 (-219)) (-1125) (-549)) 45)) (-4121 (((-1006) (-1125) (-167 (-219)) (-1125) (-549)) 44)) (-3068 (((-1006) (-219) (-167 (-219)) (-549) (-1125) (-549)) 43)) (-2909 (((-1006) (-219) (-167 (-219)) (-549) (-1125) (-549)) 42)) (-2177 (((-1006) (-219) (-549)) 39)) (-3982 (((-1006) (-219) (-549)) 38)) (-1911 (((-1006) (-219) (-549)) 37)) (-4258 (((-1006) (-219) (-549)) 36)) (-1315 (((-1006) (-219) (-549)) 35)) (-1986 (((-1006) (-219) (-549)) 34)) (-2594 (((-1006) (-219) (-549)) 33)) (-3792 (((-1006) (-219) (-549)) 32)) (-1366 (((-1006) (-219) (-549)) 31)) (-3298 (((-1006) (-219) (-549)) 30)) (-3382 (((-1006) (-219) (-219) (-219) (-549)) 29)) (-2501 (((-1006) (-219) (-549)) 28)) (-3711 (((-1006) (-219) (-549)) 27)) (-4189 (((-1006) (-219) (-549)) 26)) (-3050 (((-1006) (-219) (-549)) 25)) (-1740 (((-1006) (-219) (-549)) 24)) (-2119 (((-1006) (-167 (-219)) (-549)) 21)))
+(((-735) (-10 -7 (-15 -2119 ((-1006) (-167 (-219)) (-549))) (-15 -1740 ((-1006) (-219) (-549))) (-15 -3050 ((-1006) (-219) (-549))) (-15 -4189 ((-1006) (-219) (-549))) (-15 -3711 ((-1006) (-219) (-549))) (-15 -2501 ((-1006) (-219) (-549))) (-15 -3382 ((-1006) (-219) (-219) (-219) (-549))) (-15 -3298 ((-1006) (-219) (-549))) (-15 -1366 ((-1006) (-219) (-549))) (-15 -3792 ((-1006) (-219) (-549))) (-15 -2594 ((-1006) (-219) (-549))) (-15 -1986 ((-1006) (-219) (-549))) (-15 -1315 ((-1006) (-219) (-549))) (-15 -4258 ((-1006) (-219) (-549))) (-15 -1911 ((-1006) (-219) (-549))) (-15 -3982 ((-1006) (-219) (-549))) (-15 -2177 ((-1006) (-219) (-549))) (-15 -2909 ((-1006) (-219) (-167 (-219)) (-549) (-1125) (-549))) (-15 -3068 ((-1006) (-219) (-167 (-219)) (-549) (-1125) (-549))) (-15 -4121 ((-1006) (-1125) (-167 (-219)) (-1125) (-549))) (-15 -2025 ((-1006) (-1125) (-167 (-219)) (-1125) (-549))) (-15 -2011 ((-1006) (-549) (-219) (-167 (-219)) (-549) (-1125) (-549))) (-15 -3766 ((-1006) (-219) (-549))) (-15 -2657 ((-1006) (-219) (-549))) (-15 -2921 ((-1006) (-219) (-549))) (-15 -2039 ((-1006) (-219) (-549))) (-15 -1380 ((-1006) (-219) (-167 (-219)) (-549) (-1125) (-549))) (-15 -3778 ((-1006) (-219) (-167 (-219)) (-549) (-1125) (-549))) (-15 -3607 ((-1006) (-219) (-549))) (-15 -1581 ((-1006) (-219) (-549))) (-15 -1352 ((-1006) (-219) (-549))) (-15 -1828 ((-1006) (-219) (-549))) (-15 -2181 ((-1006) (-219) (-549))) (-15 -1961 ((-1006) (-219) (-549))) (-15 -3878 ((-1006) (-219) (-219) (-549))) (-15 -3442 ((-1006) (-219) (-219) (-219) (-549))) (-15 -2726 ((-1006) (-219) (-219) (-219) (-549))) (-15 -4035 ((-1006) (-219) (-219) (-219) (-219) (-549))))) (T -735))
+((-4035 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2726 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3442 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3878 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2181 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1828 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1352 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1581 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3607 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3778 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1125)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1380 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1125)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2039 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2011 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-549)) (-5 *5 (-167 (-219))) (-5 *6 (-1125)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2025 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1125)) (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-4121 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1125)) (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3068 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1125)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2909 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1125)) (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2177 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3982 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1911 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1986 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2594 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3792 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1366 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3298 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3382 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-4189 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *3 (-167 (-219))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(-10 -7 (-15 -2119 ((-1006) (-167 (-219)) (-549))) (-15 -1740 ((-1006) (-219) (-549))) (-15 -3050 ((-1006) (-219) (-549))) (-15 -4189 ((-1006) (-219) (-549))) (-15 -3711 ((-1006) (-219) (-549))) (-15 -2501 ((-1006) (-219) (-549))) (-15 -3382 ((-1006) (-219) (-219) (-219) (-549))) (-15 -3298 ((-1006) (-219) (-549))) (-15 -1366 ((-1006) (-219) (-549))) (-15 -3792 ((-1006) (-219) (-549))) (-15 -2594 ((-1006) (-219) (-549))) (-15 -1986 ((-1006) (-219) (-549))) (-15 -1315 ((-1006) (-219) (-549))) (-15 -4258 ((-1006) (-219) (-549))) (-15 -1911 ((-1006) (-219) (-549))) (-15 -3982 ((-1006) (-219) (-549))) (-15 -2177 ((-1006) (-219) (-549))) (-15 -2909 ((-1006) (-219) (-167 (-219)) (-549) (-1125) (-549))) (-15 -3068 ((-1006) (-219) (-167 (-219)) (-549) (-1125) (-549))) (-15 -4121 ((-1006) (-1125) (-167 (-219)) (-1125) (-549))) (-15 -2025 ((-1006) (-1125) (-167 (-219)) (-1125) (-549))) (-15 -2011 ((-1006) (-549) (-219) (-167 (-219)) (-549) (-1125) (-549))) (-15 -3766 ((-1006) (-219) (-549))) (-15 -2657 ((-1006) (-219) (-549))) (-15 -2921 ((-1006) (-219) (-549))) (-15 -2039 ((-1006) (-219) (-549))) (-15 -1380 ((-1006) (-219) (-167 (-219)) (-549) (-1125) (-549))) (-15 -3778 ((-1006) (-219) (-167 (-219)) (-549) (-1125) (-549))) (-15 -3607 ((-1006) (-219) (-549))) (-15 -1581 ((-1006) (-219) (-549))) (-15 -1352 ((-1006) (-219) (-549))) (-15 -1828 ((-1006) (-219) (-549))) (-15 -2181 ((-1006) (-219) (-549))) (-15 -1961 ((-1006) (-219) (-549))) (-15 -3878 ((-1006) (-219) (-219) (-549))) (-15 -3442 ((-1006) (-219) (-219) (-219) (-549))) (-15 -2726 ((-1006) (-219) (-219) (-219) (-549))) (-15 -4035 ((-1006) (-219) (-219) (-219) (-219) (-549))))
+((-3927 (((-1231)) 18)) (-4213 (((-1125)) 22)) (-1400 (((-1125)) 21)) (-3342 (((-1071) (-1143) (-665 (-549))) 37) (((-1071) (-1143) (-665 (-219))) 32)) (-3563 (((-112)) 16)) (-1327 (((-1125) (-1125)) 25)))
+(((-736) (-10 -7 (-15 -1400 ((-1125))) (-15 -4213 ((-1125))) (-15 -1327 ((-1125) (-1125))) (-15 -3342 ((-1071) (-1143) (-665 (-219)))) (-15 -3342 ((-1071) (-1143) (-665 (-549)))) (-15 -3563 ((-112))) (-15 -3927 ((-1231))))) (T -736))
+((-3927 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-736)))) (-3563 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-736)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-665 (-549))) (-5 *2 (-1071)) (-5 *1 (-736)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-665 (-219))) (-5 *2 (-1071)) (-5 *1 (-736)))) (-1327 (*1 *2 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-736)))) (-4213 (*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-736)))) (-1400 (*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-736)))))
+(-10 -7 (-15 -1400 ((-1125))) (-15 -4213 ((-1125))) (-15 -1327 ((-1125) (-1125))) (-15 -3342 ((-1071) (-1143) (-665 (-219)))) (-15 -3342 ((-1071) (-1143) (-665 (-549)))) (-15 -3563 ((-112))) (-15 -3927 ((-1231))))
+((-3293 (($ $ $) 10)) (-4272 (($ $ $ $) 9)) (-2174 (($ $ $) 12)))
+(((-737 |#1|) (-10 -8 (-15 -2174 (|#1| |#1| |#1|)) (-15 -3293 (|#1| |#1| |#1|)) (-15 -4272 (|#1| |#1| |#1| |#1|))) (-738)) (T -737))
+NIL
+(-10 -8 (-15 -2174 (|#1| |#1| |#1|)) (-15 -3293 (|#1| |#1| |#1|)) (-15 -4272 (|#1| |#1| |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3117 (($ $ (-892)) 28)) (-2884 (($ $ (-892)) 29)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3293 (($ $ $) 25)) (-3846 (((-834) $) 11)) (-4272 (($ $ $ $) 26)) (-2174 (($ $ $) 24)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 30)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 27)))
(((-738) (-138)) (T -738))
-((-2736 (*1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-745)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-738)))))
-(-13 (-736) (-697) (-10 -8 (-15 -2736 ((-745))) (-15 -3838 ($ (-547)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-695) . T) ((-697) . T) ((-736) . T) ((-1063) . T))
-((-4186 (((-619 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 (-166 |#1|)))))) (-663 (-166 (-398 (-547)))) |#1|) 33)) (-4021 (((-619 (-166 |#1|)) (-663 (-166 (-398 (-547)))) |#1|) 23)) (-1316 (((-921 (-166 (-398 (-547)))) (-663 (-166 (-398 (-547)))) (-1136)) 20) (((-921 (-166 (-398 (-547)))) (-663 (-166 (-398 (-547))))) 19)))
-(((-739 |#1|) (-10 -7 (-15 -1316 ((-921 (-166 (-398 (-547)))) (-663 (-166 (-398 (-547)))))) (-15 -1316 ((-921 (-166 (-398 (-547)))) (-663 (-166 (-398 (-547)))) (-1136))) (-15 -4021 ((-619 (-166 |#1|)) (-663 (-166 (-398 (-547)))) |#1|)) (-15 -4186 ((-619 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 (-166 |#1|)))))) (-663 (-166 (-398 (-547)))) |#1|))) (-13 (-354) (-819))) (T -739))
-((-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-166 (-398 (-547))))) (-5 *2 (-619 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 (-166 *4))))))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-354) (-819))))) (-4021 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-166 (-398 (-547))))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-354) (-819))))) (-1316 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-166 (-398 (-547))))) (-5 *4 (-1136)) (-5 *2 (-921 (-166 (-398 (-547))))) (-5 *1 (-739 *5)) (-4 *5 (-13 (-354) (-819))))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-663 (-166 (-398 (-547))))) (-5 *2 (-921 (-166 (-398 (-547))))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-354) (-819))))))
-(-10 -7 (-15 -1316 ((-921 (-166 (-398 (-547)))) (-663 (-166 (-398 (-547)))))) (-15 -1316 ((-921 (-166 (-398 (-547)))) (-663 (-166 (-398 (-547)))) (-1136))) (-15 -4021 ((-619 (-166 |#1|)) (-663 (-166 (-398 (-547)))) |#1|)) (-15 -4186 ((-619 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 (-166 |#1|)))))) (-663 (-166 (-398 (-547)))) |#1|)))
-((-3617 (((-171 (-547)) |#1|) 25)))
-(((-740 |#1|) (-10 -7 (-15 -3617 ((-171 (-547)) |#1|))) (-395)) (T -740))
-((-3617 (*1 *2 *3) (-12 (-5 *2 (-171 (-547))) (-5 *1 (-740 *3)) (-4 *3 (-395)))))
-(-10 -7 (-15 -3617 ((-171 (-547)) |#1|)))
-((-2835 ((|#1| |#1| |#1|) 24)) (-1805 ((|#1| |#1| |#1|) 23)) (-2404 ((|#1| |#1| |#1|) 32)) (-2775 ((|#1| |#1| |#1|) 28)) (-4301 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1526 (((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|) 22)))
-(((-741 |#1| |#2|) (-10 -7 (-15 -1526 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -1805 (|#1| |#1| |#1|)) (-15 -2835 (|#1| |#1| |#1|)) (-15 -4301 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2775 (|#1| |#1| |#1|)) (-15 -2404 (|#1| |#1| |#1|))) (-683 |#2|) (-354)) (T -741))
-((-2404 (*1 *2 *2 *2) (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-2775 (*1 *2 *2 *2) (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-4301 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-2835 (*1 *2 *2 *2) (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-1805 (*1 *2 *2 *2) (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-1526 (*1 *2 *3 *3) (-12 (-4 *4 (-354)) (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-741 *3 *4)) (-4 *3 (-683 *4)))))
-(-10 -7 (-15 -1526 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -1805 (|#1| |#1| |#1|)) (-15 -2835 (|#1| |#1| |#1|)) (-15 -4301 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2775 (|#1| |#1| |#1|)) (-15 -2404 (|#1| |#1| |#1|)))
-((-3213 (((-2 (|:| -1917 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547)))) (-547)) 59)) (-1380 (((-2 (|:| -1917 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547))))) 57)) (-4056 (((-547)) 71)))
-(((-742 |#1| |#2|) (-10 -7 (-15 -4056 ((-547))) (-15 -1380 ((-2 (|:| -1917 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547)))))) (-15 -3213 ((-2 (|:| -1917 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547)))) (-547)))) (-1195 (-547)) (-400 (-547) |#1|)) (T -742))
-((-3213 (*1 *2 *3) (-12 (-5 *3 (-547)) (-4 *4 (-1195 *3)) (-5 *2 (-2 (|:| -1917 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-742 *4 *5)) (-4 *5 (-400 *3 *4)))) (-1380 (*1 *2) (-12 (-4 *3 (-1195 (-547))) (-5 *2 (-2 (|:| -1917 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547))))) (-5 *1 (-742 *3 *4)) (-4 *4 (-400 (-547) *3)))) (-4056 (*1 *2) (-12 (-4 *3 (-1195 *2)) (-5 *2 (-547)) (-5 *1 (-742 *3 *4)) (-4 *4 (-400 *2 *3)))))
-(-10 -7 (-15 -4056 ((-547))) (-15 -1380 ((-2 (|:| -1917 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547)))))) (-15 -3213 ((-2 (|:| -1917 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547)))) (-547))))
-((-3826 (((-112) $ $) NIL)) (-2652 (((-3 (|:| |nia| (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) $) 21)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 20) (($ (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 13) (($ (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) 18)) (-2381 (((-112) $ $) NIL)))
-(((-743) (-13 (-1063) (-10 -8 (-15 -3838 ($ (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3838 ($ (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3838 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) (-15 -3838 ((-832) $)) (-15 -2652 ((-3 (|:| |nia| (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) $))))) (T -743))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-743)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *1 (-743)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *1 (-743)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) (-5 *1 (-743)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) (-5 *1 (-743)))))
-(-13 (-1063) (-10 -8 (-15 -3838 ($ (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3838 ($ (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3838 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) (-15 -3838 ((-832) $)) (-15 -2652 ((-3 (|:| |nia| (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) $))))
-((-2904 (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|))) 18) (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1136))) 17)) (-3468 (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|))) 20) (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1136))) 19)))
-(((-744 |#1|) (-10 -7 (-15 -2904 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1136)))) (-15 -2904 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3468 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1136)))) (-15 -3468 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|))))) (-539)) (T -744))
-((-3468 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-744 *4)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1136))) (-4 *5 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-744 *5)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-744 *4)))) (-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1136))) (-4 *5 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-744 *5)))))
-(-10 -7 (-15 -2904 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1136)))) (-15 -2904 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3468 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1136)))) (-15 -3468 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2794 (($ $ $) 6)) (-3672 (((-3 $ "failed") $ $) 9)) (-1303 (($ $ (-547)) 7)) (-1948 (($) NIL T CONST)) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($ $) NIL)) (-2061 (($ $ $) NIL)) (-2261 (((-112) $) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3719 (($ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3838 (((-832) $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ $ $) NIL)))
-(((-745) (-13 (-767) (-701) (-10 -8 (-15 -2061 ($ $ $)) (-15 -2089 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -4030 ((-2 (|:| -2235 $) (|:| -2916 $)) $ $)) (-15 -2032 ((-3 $ "failed") $ $)) (-15 -1303 ($ $ (-547))) (-15 -3232 ($ $)) (-6 (-4331 "*"))))) (T -745))
-((-2061 (*1 *1 *1 *1) (-5 *1 (-745))) (-2089 (*1 *1 *1 *1) (-5 *1 (-745))) (-3719 (*1 *1 *1 *1) (-5 *1 (-745))) (-4030 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2235 (-745)) (|:| -2916 (-745)))) (-5 *1 (-745)))) (-2032 (*1 *1 *1 *1) (|partial| -5 *1 (-745))) (-1303 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-745)))) (-3232 (*1 *1 *1) (-5 *1 (-745))))
-(-13 (-767) (-701) (-10 -8 (-15 -2061 ($ $ $)) (-15 -2089 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -4030 ((-2 (|:| -2235 $) (|:| -2916 $)) $ $)) (-15 -2032 ((-3 $ "failed") $ $)) (-15 -1303 ($ $ (-547))) (-15 -3232 ($ $)) (-6 (-4331 "*"))))
-((-3468 (((-3 |#2| "failed") |#2| |#2| (-114) (-1136)) 35)))
-(((-746 |#1| |#2|) (-10 -7 (-15 -3468 ((-3 |#2| "failed") |#2| |#2| (-114) (-1136)))) (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)) (-13 (-29 |#1|) (-1158) (-928))) (T -746))
-((-3468 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1136)) (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-746 *5 *2)) (-4 *2 (-13 (-29 *5) (-1158) (-928))))))
-(-10 -7 (-15 -3468 ((-3 |#2| "failed") |#2| |#2| (-114) (-1136))))
-((-3838 (((-748) |#1|) 8)))
-(((-747 |#1|) (-10 -7 (-15 -3838 ((-748) |#1|))) (-1173)) (T -747))
-((-3838 (*1 *2 *3) (-12 (-5 *2 (-748)) (-5 *1 (-747 *3)) (-4 *3 (-1173)))))
-(-10 -7 (-15 -3838 ((-748) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 7)) (-2381 (((-112) $ $) 9)))
-(((-748) (-1063)) (T -748))
-NIL
-(-1063)
-((-3160 ((|#2| |#4|) 35)))
-(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3160 (|#2| |#4|))) (-442) (-1195 |#1|) (-699 |#1| |#2|) (-1195 |#3|)) (T -749))
-((-3160 (*1 *2 *3) (-12 (-4 *4 (-442)) (-4 *5 (-699 *4 *2)) (-4 *2 (-1195 *4)) (-5 *1 (-749 *4 *2 *5 *3)) (-4 *3 (-1195 *5)))))
-(-10 -7 (-15 -3160 (|#2| |#4|)))
-((-3855 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2406 (((-1224) (-1119) (-1119) |#4| |#5|) 33)) (-1685 ((|#4| |#4| |#5|) 73)) (-2055 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|) 77)) (-1308 (((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|) 16)))
-(((-750 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3855 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1685 (|#4| |#4| |#5|)) (-15 -2055 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -2406 ((-1224) (-1119) (-1119) |#4| |#5|)) (-15 -1308 ((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -750))
-((-1308 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1974 *4)))) (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2406 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1119)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *4 (-1030 *6 *7 *8)) (-5 *2 (-1224)) (-5 *1 (-750 *6 *7 *8 *4 *5)) (-4 *5 (-1036 *6 *7 *8 *4)))) (-2055 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1685 (*1 *2 *2 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *2 (-1030 *4 *5 *6)) (-5 *1 (-750 *4 *5 *6 *2 *3)) (-4 *3 (-1036 *4 *5 *6 *2)))) (-3855 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3855 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1685 (|#4| |#4| |#5|)) (-15 -2055 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -2406 ((-1224) (-1119) (-1119) |#4| |#5|)) (-15 -1308 ((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|)))
-((-2707 (((-3 (-1132 (-1132 |#1|)) "failed") |#4|) 43)) (-2630 (((-619 |#4|) |#4|) 15)) (-1693 ((|#4| |#4|) 11)))
-(((-751 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2630 ((-619 |#4|) |#4|)) (-15 -2707 ((-3 (-1132 (-1132 |#1|)) "failed") |#4|)) (-15 -1693 (|#4| |#4|))) (-340) (-320 |#1|) (-1195 |#2|) (-1195 |#3|) (-890)) (T -751))
-((-1693 (*1 *2 *2) (-12 (-4 *3 (-340)) (-4 *4 (-320 *3)) (-4 *5 (-1195 *4)) (-5 *1 (-751 *3 *4 *5 *2 *6)) (-4 *2 (-1195 *5)) (-14 *6 (-890)))) (-2707 (*1 *2 *3) (|partial| -12 (-4 *4 (-340)) (-4 *5 (-320 *4)) (-4 *6 (-1195 *5)) (-5 *2 (-1132 (-1132 *4))) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1195 *6)) (-14 *7 (-890)))) (-2630 (*1 *2 *3) (-12 (-4 *4 (-340)) (-4 *5 (-320 *4)) (-4 *6 (-1195 *5)) (-5 *2 (-619 *3)) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1195 *6)) (-14 *7 (-890)))))
-(-10 -7 (-15 -2630 ((-619 |#4|) |#4|)) (-15 -2707 ((-3 (-1132 (-1132 |#1|)) "failed") |#4|)) (-15 -1693 (|#4| |#4|)))
-((-4054 (((-2 (|:| |deter| (-619 (-1132 |#5|))) (|:| |dterm| (-619 (-619 (-2 (|:| -1720 (-745)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-619 |#1|)) (|:| |nlead| (-619 |#5|))) (-1132 |#5|) (-619 |#1|) (-619 |#5|)) 54)) (-2519 (((-619 (-745)) |#1|) 13)))
-(((-752 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4054 ((-2 (|:| |deter| (-619 (-1132 |#5|))) (|:| |dterm| (-619 (-619 (-2 (|:| -1720 (-745)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-619 |#1|)) (|:| |nlead| (-619 |#5|))) (-1132 |#5|) (-619 |#1|) (-619 |#5|))) (-15 -2519 ((-619 (-745)) |#1|))) (-1195 |#4|) (-767) (-821) (-298) (-918 |#4| |#2| |#3|)) (T -752))
-((-2519 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-5 *2 (-619 (-745))) (-5 *1 (-752 *3 *4 *5 *6 *7)) (-4 *3 (-1195 *6)) (-4 *7 (-918 *6 *4 *5)))) (-4054 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1195 *9)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-298)) (-4 *10 (-918 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-619 (-1132 *10))) (|:| |dterm| (-619 (-619 (-2 (|:| -1720 (-745)) (|:| |pcoef| *10))))) (|:| |nfacts| (-619 *6)) (|:| |nlead| (-619 *10)))) (-5 *1 (-752 *6 *7 *8 *9 *10)) (-5 *3 (-1132 *10)) (-5 *4 (-619 *6)) (-5 *5 (-619 *10)))))
-(-10 -7 (-15 -4054 ((-2 (|:| |deter| (-619 (-1132 |#5|))) (|:| |dterm| (-619 (-619 (-2 (|:| -1720 (-745)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-619 |#1|)) (|:| |nlead| (-619 |#5|))) (-1132 |#5|) (-619 |#1|) (-619 |#5|))) (-15 -2519 ((-619 (-745)) |#1|)))
-((-3911 (((-619 (-2 (|:| |outval| |#1|) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 |#1|))))) (-663 (-398 (-547))) |#1|) 31)) (-3429 (((-619 |#1|) (-663 (-398 (-547))) |#1|) 21)) (-1316 (((-921 (-398 (-547))) (-663 (-398 (-547))) (-1136)) 18) (((-921 (-398 (-547))) (-663 (-398 (-547)))) 17)))
-(((-753 |#1|) (-10 -7 (-15 -1316 ((-921 (-398 (-547))) (-663 (-398 (-547))))) (-15 -1316 ((-921 (-398 (-547))) (-663 (-398 (-547))) (-1136))) (-15 -3429 ((-619 |#1|) (-663 (-398 (-547))) |#1|)) (-15 -3911 ((-619 (-2 (|:| |outval| |#1|) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 |#1|))))) (-663 (-398 (-547))) |#1|))) (-13 (-354) (-819))) (T -753))
-((-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *2 (-619 (-2 (|:| |outval| *4) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 *4)))))) (-5 *1 (-753 *4)) (-4 *4 (-13 (-354) (-819))))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *2 (-619 *4)) (-5 *1 (-753 *4)) (-4 *4 (-13 (-354) (-819))))) (-1316 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *4 (-1136)) (-5 *2 (-921 (-398 (-547)))) (-5 *1 (-753 *5)) (-4 *5 (-13 (-354) (-819))))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *2 (-921 (-398 (-547)))) (-5 *1 (-753 *4)) (-4 *4 (-13 (-354) (-819))))))
-(-10 -7 (-15 -1316 ((-921 (-398 (-547))) (-663 (-398 (-547))))) (-15 -1316 ((-921 (-398 (-547))) (-663 (-398 (-547))) (-1136))) (-15 -3429 ((-619 |#1|) (-663 (-398 (-547))) |#1|)) (-15 -3911 ((-619 (-2 (|:| |outval| |#1|) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 |#1|))))) (-663 (-398 (-547))) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 34)) (-2267 (((-619 |#2|) $) NIL)) (-2078 (((-1132 $) $ |#2|) NIL) (((-1132 |#1|) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 |#2|)) NIL)) (-1336 (($ $) 28)) (-2577 (((-112) $ $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3286 (($ $ $) 93 (|has| |#1| (-539)))) (-2772 (((-619 $) $ $) 106 (|has| |#1| (-539)))) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2555 (($ $) NIL (|has| |#1| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-921 (-398 (-547)))) NIL (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1136))))) (((-3 $ "failed") (-921 (-547))) NIL (-1530 (-12 (|has| |#1| (-38 (-547))) (|has| |#2| (-592 (-1136))) (-4000 (|has| |#1| (-38 (-398 (-547)))))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1136)))))) (((-3 $ "failed") (-921 |#1|)) NIL (-1530 (-12 (|has| |#2| (-592 (-1136))) (-4000 (|has| |#1| (-38 (-398 (-547))))) (-4000 (|has| |#1| (-38 (-547))))) (-12 (|has| |#1| (-38 (-547))) (|has| |#2| (-592 (-1136))) (-4000 (|has| |#1| (-38 (-398 (-547))))) (-4000 (|has| |#1| (-532)))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1136))) (-4000 (|has| |#1| (-961 (-547))))))) (((-3 (-1087 |#1| |#2|) "failed") $) 18)) (-2652 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) ((|#2| $) NIL) (($ (-921 (-398 (-547)))) NIL (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1136))))) (($ (-921 (-547))) NIL (-1530 (-12 (|has| |#1| (-38 (-547))) (|has| |#2| (-592 (-1136))) (-4000 (|has| |#1| (-38 (-398 (-547)))))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1136)))))) (($ (-921 |#1|)) NIL (-1530 (-12 (|has| |#2| (-592 (-1136))) (-4000 (|has| |#1| (-38 (-398 (-547))))) (-4000 (|has| |#1| (-38 (-547))))) (-12 (|has| |#1| (-38 (-547))) (|has| |#2| (-592 (-1136))) (-4000 (|has| |#1| (-38 (-398 (-547))))) (-4000 (|has| |#1| (-532)))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1136))) (-4000 (|has| |#1| (-961 (-547))))))) (((-1087 |#1| |#2|) $) NIL)) (-1496 (($ $ $ |#2|) NIL (|has| |#1| (-169))) (($ $ $) 104 (|has| |#1| (-539)))) (-2063 (($ $) NIL) (($ $ |#2|) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2173 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3717 (((-112) $) NIL)) (-3445 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 70)) (-3530 (($ $) 119 (|has| |#1| (-442)))) (-3350 (($ $) NIL (|has| |#1| (-442))) (($ $ |#2|) NIL (|has| |#1| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#1| (-878)))) (-4109 (($ $) NIL (|has| |#1| (-539)))) (-1305 (($ $) NIL (|has| |#1| (-539)))) (-4298 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-4222 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-3210 (($ $ |#1| (-519 |#2|) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| |#1| (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| |#1| (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-1779 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-2347 (($ $ $ $ $) 90 (|has| |#1| (-539)))) (-3338 ((|#2| $) 19)) (-2254 (($ (-1132 |#1|) |#2|) NIL) (($ (-1132 $) |#2|) NIL)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-519 |#2|)) NIL) (($ $ |#2| (-745)) 36) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-1643 (($ $ $) 60)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ |#2|) NIL)) (-2769 (((-112) $) NIL)) (-3095 (((-519 |#2|) $) NIL) (((-745) $ |#2|) NIL) (((-619 (-745)) $ (-619 |#2|)) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-1873 (((-745) $) 20)) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-4182 (($ (-1 (-519 |#2|) (-519 |#2|)) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-1631 (((-3 |#2| "failed") $) NIL)) (-1940 (($ $) NIL (|has| |#1| (-442)))) (-2486 (($ $) NIL (|has| |#1| (-442)))) (-3193 (((-619 $) $) NIL)) (-2102 (($ $) 37)) (-4100 (($ $) NIL (|has| |#1| (-442)))) (-3770 (((-619 $) $) 41)) (-2303 (($ $) 39)) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-3462 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1368 (-745))) $ $) 82)) (-1800 (((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2235 $) (|:| -2916 $)) $ $) 67) (((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2235 $) (|:| -2916 $)) $ $ |#2|) NIL)) (-1291 (((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2916 $)) $ $) NIL) (((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2916 $)) $ $ |#2|) NIL)) (-3170 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-1876 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1466 (((-1119) $) NIL)) (-1717 (($ $ $) 108 (|has| |#1| (-539)))) (-3236 (((-619 $) $) 30)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| |#2|) (|:| -3322 (-745))) "failed") $) NIL)) (-3112 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-3065 (($ $ $) NIL)) (-3054 (($ $) 21)) (-1458 (((-112) $ $) NIL)) (-2012 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-1772 (($ $ $) NIL)) (-1775 (($ $) 23)) (-3979 (((-1082) $) NIL)) (-3224 (((-2 (|:| -3719 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-539)))) (-2133 (((-2 (|:| -3719 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-539)))) (-1996 (((-112) $) 52)) (-2009 ((|#1| $) 55)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-442)))) (-3719 ((|#1| |#1| $) 116 (|has| |#1| (-442))) (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-878)))) (-3250 (((-2 (|:| -3719 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-539)))) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-539)))) (-3660 (($ $ |#1|) 112 (|has| |#1| (-539))) (($ $ $) NIL (|has| |#1| (-539)))) (-2299 (($ $ |#1|) 111 (|has| |#1| (-539))) (($ $ $) NIL (|has| |#1| (-539)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-619 |#2|) (-619 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-619 |#2|) (-619 $)) NIL)) (-4056 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-3448 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-3705 (((-519 |#2|) $) NIL) (((-745) $ |#2|) 43) (((-619 (-745)) $ (-619 |#2|)) NIL)) (-1711 (($ $) NIL)) (-4284 (($ $) 33)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| |#1| (-592 (-523))) (|has| |#2| (-592 (-523))))) (($ (-921 (-398 (-547)))) NIL (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1136))))) (($ (-921 (-547))) NIL (-1530 (-12 (|has| |#1| (-38 (-547))) (|has| |#2| (-592 (-1136))) (-4000 (|has| |#1| (-38 (-398 (-547)))))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1136)))))) (($ (-921 |#1|)) NIL (|has| |#2| (-592 (-1136)))) (((-1119) $) NIL (-12 (|has| |#1| (-1007 (-547))) (|has| |#2| (-592 (-1136))))) (((-921 |#1|) $) NIL (|has| |#2| (-592 (-1136))))) (-2392 ((|#1| $) 115 (|has| |#1| (-442))) (($ $ |#2|) NIL (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-921 |#1|) $) NIL (|has| |#2| (-592 (-1136)))) (((-1087 |#1| |#2|) $) 15) (($ (-1087 |#1| |#2|)) 16) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-519 |#2|)) NIL) (($ $ |#2| (-745)) 44) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3269 (($) 13 T CONST)) (-1731 (((-3 (-112) "failed") $ $) NIL)) (-3281 (($) 35 T CONST)) (-1777 (($ $ $ $ (-745)) 88 (|has| |#1| (-539)))) (-3599 (($ $ $ (-745)) 87 (|has| |#1| (-539)))) (-1695 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) 54)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) 64)) (-2479 (($ $ $) 74)) (** (($ $ (-890)) NIL) (($ $ (-745)) 61)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 59) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
-(((-754 |#1| |#2|) (-13 (-1030 |#1| (-519 |#2|) |#2|) (-591 (-1087 |#1| |#2|)) (-1007 (-1087 |#1| |#2|))) (-1016) (-821)) (T -754))
-NIL
-(-13 (-1030 |#1| (-519 |#2|) |#2|) (-591 (-1087 |#1| |#2|)) (-1007 (-1087 |#1| |#2|)))
-((-2790 (((-756 |#2|) (-1 |#2| |#1|) (-756 |#1|)) 13)))
-(((-755 |#1| |#2|) (-10 -7 (-15 -2790 ((-756 |#2|) (-1 |#2| |#1|) (-756 |#1|)))) (-1016) (-1016)) (T -755))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-756 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-756 *6)) (-5 *1 (-755 *5 *6)))))
-(-10 -7 (-15 -2790 ((-756 |#2|) (-1 |#2| |#1|) (-756 |#1|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 12)) (-3079 (((-1219 |#1|) $ (-745)) NIL)) (-2267 (((-619 (-1045)) $) NIL)) (-2167 (($ (-1132 |#1|)) NIL)) (-2078 (((-1132 $) $ (-1045)) NIL) (((-1132 |#1|) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-4093 (((-619 $) $ $) 39 (|has| |#1| (-539)))) (-3286 (($ $ $) 35 (|has| |#1| (-539)))) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2555 (($ $) NIL (|has| |#1| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-2160 (($ $ (-745)) NIL)) (-4279 (($ $ (-745)) NIL)) (-1460 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-442)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-1045) "failed") $) NIL) (((-3 (-1132 |#1|) "failed") $) 10)) (-2652 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-1045) $) NIL) (((-1132 |#1|) $) NIL)) (-1496 (($ $ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $ $) 43 (|has| |#1| (-169)))) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-2063 (($ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-3315 (($ $ $) NIL)) (-2522 (($ $ $) 71 (|has| |#1| (-539)))) (-3445 (((-2 (|:| -1563 |#1|) (|:| -2235 $) (|:| -2916 $)) $ $) 70 (|has| |#1| (-539)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3350 (($ $) NIL (|has| |#1| (-442))) (($ $ (-1045)) NIL (|has| |#1| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#1| (-878)))) (-3210 (($ $ |#1| (-745) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1045) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1045) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3275 (((-745) $ $) NIL (|has| |#1| (-539)))) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-3477 (((-3 $ "failed") $) NIL (|has| |#1| (-1112)))) (-2254 (($ (-1132 |#1|) (-1045)) NIL) (($ (-1132 $) (-1045)) NIL)) (-3852 (($ $ (-745)) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-1643 (($ $ $) 20)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ (-1045)) NIL) (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3095 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-4182 (($ (-1 (-745) (-745)) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-4095 (((-1132 |#1|) $) NIL)) (-1631 (((-3 (-1045) "failed") $) NIL)) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-3462 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1368 (-745))) $ $) 26)) (-3834 (($ $ $) 29)) (-2259 (($ $ $) 32)) (-1800 (((-2 (|:| -1563 |#1|) (|:| |gap| (-745)) (|:| -2235 $) (|:| -2916 $)) $ $) 31)) (-1466 (((-1119) $) NIL)) (-1717 (($ $ $) 41 (|has| |#1| (-539)))) (-2836 (((-2 (|:| -2235 $) (|:| -2916 $)) $ (-745)) NIL)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-1045)) (|:| -3322 (-745))) "failed") $) NIL)) (-3694 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3054 (($) NIL (|has| |#1| (-1112)) CONST)) (-3979 (((-1082) $) NIL)) (-3224 (((-2 (|:| -3719 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-539)))) (-2133 (((-2 (|:| -3719 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-539)))) (-2996 (((-2 (|:| -1496 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-539)))) (-3188 (((-2 (|:| -1496 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-539)))) (-1996 (((-112) $) 13)) (-2009 ((|#1| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-3902 (($ $ (-745) |#1| $) 19)) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-878)))) (-3250 (((-2 (|:| -3719 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-539)))) (-2337 (((-2 (|:| -1496 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-539)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#1|) NIL) (($ $ (-619 (-1045)) (-619 |#1|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-2471 (((-745) $) NIL (|has| |#1| (-354)))) (-3334 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-398 $) (-398 $) (-398 $)) NIL (|has| |#1| (-539))) ((|#1| (-398 $) |#1|) NIL (|has| |#1| (-354))) (((-398 $) $ (-398 $)) NIL (|has| |#1| (-539)))) (-1397 (((-3 $ "failed") $ (-745)) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-4056 (($ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-3448 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3705 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-1045) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-2392 ((|#1| $) NIL (|has| |#1| (-442))) (($ $ (-1045)) NIL (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-4188 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539))) (((-3 (-398 $) "failed") (-398 $) $) NIL (|has| |#1| (-539)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-1045)) NIL) (((-1132 |#1|) $) 7) (($ (-1132 |#1|)) 8) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3269 (($) 21 T CONST)) (-3281 (($) 24 T CONST)) (-1695 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $) 28) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-756 |#1|) (-13 (-1195 |#1|) (-591 (-1132 |#1|)) (-1007 (-1132 |#1|)) (-10 -8 (-15 -3902 ($ $ (-745) |#1| $)) (-15 -1643 ($ $ $)) (-15 -3462 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1368 (-745))) $ $)) (-15 -3834 ($ $ $)) (-15 -1800 ((-2 (|:| -1563 |#1|) (|:| |gap| (-745)) (|:| -2235 $) (|:| -2916 $)) $ $)) (-15 -2259 ($ $ $)) (IF (|has| |#1| (-539)) (PROGN (-15 -4093 ((-619 $) $ $)) (-15 -1717 ($ $ $)) (-15 -3250 ((-2 (|:| -3719 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2133 ((-2 (|:| -3719 $) (|:| |coef1| $)) $ $)) (-15 -3224 ((-2 (|:| -3719 $) (|:| |coef2| $)) $ $)) (-15 -2337 ((-2 (|:| -1496 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3188 ((-2 (|:| -1496 |#1|) (|:| |coef1| $)) $ $)) (-15 -2996 ((-2 (|:| -1496 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1016)) (T -756))
-((-3902 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-745)) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) (-1643 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) (-3462 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-756 *3)) (|:| |polden| *3) (|:| -1368 (-745)))) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) (-3834 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) (-1800 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1563 *3) (|:| |gap| (-745)) (|:| -2235 (-756 *3)) (|:| -2916 (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) (-2259 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) (-4093 (*1 *2 *1 *1) (-12 (-5 *2 (-619 (-756 *3))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) (-1717 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-539)) (-4 *2 (-1016)))) (-3250 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3719 (-756 *3)) (|:| |coef1| (-756 *3)) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) (-2133 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3719 (-756 *3)) (|:| |coef1| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) (-3224 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3719 (-756 *3)) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) (-2337 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1496 *3) (|:| |coef1| (-756 *3)) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) (-3188 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1496 *3) (|:| |coef1| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) (-2996 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1496 *3) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))))
-(-13 (-1195 |#1|) (-591 (-1132 |#1|)) (-1007 (-1132 |#1|)) (-10 -8 (-15 -3902 ($ $ (-745) |#1| $)) (-15 -1643 ($ $ $)) (-15 -3462 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1368 (-745))) $ $)) (-15 -3834 ($ $ $)) (-15 -1800 ((-2 (|:| -1563 |#1|) (|:| |gap| (-745)) (|:| -2235 $) (|:| -2916 $)) $ $)) (-15 -2259 ($ $ $)) (IF (|has| |#1| (-539)) (PROGN (-15 -4093 ((-619 $) $ $)) (-15 -1717 ($ $ $)) (-15 -3250 ((-2 (|:| -3719 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2133 ((-2 (|:| -3719 $) (|:| |coef1| $)) $ $)) (-15 -3224 ((-2 (|:| -3719 $) (|:| |coef2| $)) $ $)) (-15 -2337 ((-2 (|:| -1496 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3188 ((-2 (|:| -1496 |#1|) (|:| |coef1| $)) $ $)) (-15 -2996 ((-2 (|:| -1496 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-1501 ((|#1| (-745) |#1|) 32 (|has| |#1| (-38 (-398 (-547)))))) (-1484 ((|#1| (-745) |#1|) 22)) (-3206 ((|#1| (-745) |#1|) 34 (|has| |#1| (-38 (-398 (-547)))))))
-(((-757 |#1|) (-10 -7 (-15 -1484 (|#1| (-745) |#1|)) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -3206 (|#1| (-745) |#1|)) (-15 -1501 (|#1| (-745) |#1|))) |%noBranch|)) (-169)) (T -757))
-((-1501 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-169)))) (-3206 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-169)))) (-1484 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-169)))))
-(-10 -7 (-15 -1484 (|#1| (-745) |#1|)) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -3206 (|#1| (-745) |#1|)) (-15 -1501 (|#1| (-745) |#1|))) |%noBranch|))
-((-3826 (((-112) $ $) 7)) (-1320 (((-619 (-2 (|:| -2674 $) (|:| -1352 (-619 |#4|)))) (-619 |#4|)) 85)) (-2128 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2267 (((-619 |#3|) $) 33)) (-1474 (((-112) $) 26)) (-1843 (((-112) $) 17 (|has| |#1| (-539)))) (-4151 (((-112) |#4| $) 101) (((-112) $) 97)) (-2081 ((|#4| |#4| $) 92)) (-2555 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| $) 126)) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |#3|) 27)) (-3899 (((-112) $ (-745)) 44)) (-1482 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4329))) (((-3 |#4| "failed") $ |#3|) 79)) (-1948 (($) 45 T CONST)) (-1651 (((-112) $) 22 (|has| |#1| (-539)))) (-4230 (((-112) $ $) 24 (|has| |#1| (-539)))) (-2360 (((-112) $ $) 23 (|has| |#1| (-539)))) (-1840 (((-112) $) 25 (|has| |#1| (-539)))) (-3805 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-4017 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-539)))) (-1900 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-539)))) (-2707 (((-3 $ "failed") (-619 |#4|)) 36)) (-2652 (($ (-619 |#4|)) 35)) (-3649 (((-3 $ "failed") $) 82)) (-2584 ((|#4| |#4| $) 89)) (-3668 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4329)))) (-2916 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-539)))) (-2173 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2442 ((|#4| |#4| $) 87)) (-2552 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4329))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4329))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2951 (((-2 (|:| -2674 (-619 |#4|)) (|:| -1352 (-619 |#4|))) $) 105)) (-1611 (((-112) |#4| $) 136)) (-3465 (((-112) |#4| $) 133)) (-1837 (((-112) |#4| $) 137) (((-112) $) 134)) (-2982 (((-619 |#4|) $) 52 (|has| $ (-6 -4329)))) (-1779 (((-112) |#4| $) 104) (((-112) $) 103)) (-3338 ((|#3| $) 34)) (-2763 (((-112) $ (-745)) 43)) (-2284 (((-619 |#4|) $) 53 (|has| $ (-6 -4329)))) (-2132 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#4| |#4|) $) 47)) (-4138 (((-619 |#3|) $) 32)) (-3758 (((-112) |#3| $) 31)) (-3806 (((-112) $ (-745)) 42)) (-1466 (((-1119) $) 9)) (-3150 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-1717 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| |#4| $) 127)) (-3820 (((-3 |#4| "failed") $) 83)) (-2756 (((-619 $) |#4| $) 129)) (-2867 (((-3 (-112) (-619 $)) |#4| $) 132)) (-2237 (((-619 (-2 (|:| |val| (-112)) (|:| -1974 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3594 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-1428 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-2498 (((-619 |#4|) $) 107)) (-3112 (((-112) |#4| $) 99) (((-112) $) 95)) (-3065 ((|#4| |#4| $) 90)) (-1458 (((-112) $ $) 110)) (-1770 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-539)))) (-2012 (((-112) |#4| $) 100) (((-112) $) 96)) (-1772 ((|#4| |#4| $) 91)) (-3979 (((-1082) $) 10)) (-3638 (((-3 |#4| "failed") $) 84)) (-3650 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1362 (((-3 $ "failed") $ |#4|) 78)) (-3708 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-1598 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) 57 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) 56 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2052 (((-112) $ $) 38)) (-2884 (((-112) $) 41)) (-2245 (($) 40)) (-3705 (((-745) $) 106)) (-3992 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4329)))) (-2274 (($ $) 39)) (-2838 (((-523) $) 69 (|has| |#4| (-592 (-523))))) (-3846 (($ (-619 |#4|)) 60)) (-3461 (($ $ |#3|) 28)) (-3007 (($ $ |#3|) 30)) (-2553 (($ $) 88)) (-3619 (($ $ |#3|) 29)) (-3838 (((-832) $) 11) (((-619 |#4|) $) 37)) (-2815 (((-745) $) 76 (|has| |#3| (-359)))) (-2672 (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2636 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-1283 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-2693 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4329)))) (-3463 (((-619 |#3|) $) 81)) (-1669 (((-112) |#4| $) 135)) (-2593 (((-112) |#3| $) 80)) (-2381 (((-112) $ $) 6)) (-3767 (((-745) $) 46 (|has| $ (-6 -4329)))))
-(((-758 |#1| |#2| |#3| |#4|) (-138) (-442) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -758))
-NIL
-(-13 (-1036 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-101) . T) ((-591 (-619 |#4|)) . T) ((-591 (-832)) . T) ((-149 |#4|) . T) ((-592 (-523)) |has| |#4| (-592 (-523))) ((-300 |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-479 |#4|) . T) ((-503 |#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1166 |#1| |#2| |#3| |#4|) . T) ((-1173) . T))
-((-3809 (((-3 (-370) "failed") (-307 |#1|) (-890)) 62 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-3 (-370) "failed") (-307 |#1|)) 54 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-3 (-370) "failed") (-398 (-921 |#1|)) (-890)) 41 (|has| |#1| (-539))) (((-3 (-370) "failed") (-398 (-921 |#1|))) 40 (|has| |#1| (-539))) (((-3 (-370) "failed") (-921 |#1|) (-890)) 31 (|has| |#1| (-1016))) (((-3 (-370) "failed") (-921 |#1|)) 30 (|has| |#1| (-1016)))) (-1610 (((-370) (-307 |#1|) (-890)) 99 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-370) (-307 |#1|)) 94 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-370) (-398 (-921 |#1|)) (-890)) 91 (|has| |#1| (-539))) (((-370) (-398 (-921 |#1|))) 90 (|has| |#1| (-539))) (((-370) (-921 |#1|) (-890)) 86 (|has| |#1| (-1016))) (((-370) (-921 |#1|)) 85 (|has| |#1| (-1016))) (((-370) |#1| (-890)) 76) (((-370) |#1|) 22)) (-1792 (((-3 (-166 (-370)) "failed") (-307 (-166 |#1|)) (-890)) 71 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-3 (-166 (-370)) "failed") (-307 (-166 |#1|))) 70 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-3 (-166 (-370)) "failed") (-307 |#1|) (-890)) 63 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-3 (-166 (-370)) "failed") (-307 |#1|)) 61 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-3 (-166 (-370)) "failed") (-398 (-921 (-166 |#1|))) (-890)) 46 (|has| |#1| (-539))) (((-3 (-166 (-370)) "failed") (-398 (-921 (-166 |#1|)))) 45 (|has| |#1| (-539))) (((-3 (-166 (-370)) "failed") (-398 (-921 |#1|)) (-890)) 39 (|has| |#1| (-539))) (((-3 (-166 (-370)) "failed") (-398 (-921 |#1|))) 38 (|has| |#1| (-539))) (((-3 (-166 (-370)) "failed") (-921 |#1|) (-890)) 28 (|has| |#1| (-1016))) (((-3 (-166 (-370)) "failed") (-921 |#1|)) 26 (|has| |#1| (-1016))) (((-3 (-166 (-370)) "failed") (-921 (-166 |#1|)) (-890)) 18 (|has| |#1| (-169))) (((-3 (-166 (-370)) "failed") (-921 (-166 |#1|))) 15 (|has| |#1| (-169)))) (-2038 (((-166 (-370)) (-307 (-166 |#1|)) (-890)) 102 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-166 (-370)) (-307 (-166 |#1|))) 101 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-166 (-370)) (-307 |#1|) (-890)) 100 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-166 (-370)) (-307 |#1|)) 98 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-166 (-370)) (-398 (-921 (-166 |#1|))) (-890)) 93 (|has| |#1| (-539))) (((-166 (-370)) (-398 (-921 (-166 |#1|)))) 92 (|has| |#1| (-539))) (((-166 (-370)) (-398 (-921 |#1|)) (-890)) 89 (|has| |#1| (-539))) (((-166 (-370)) (-398 (-921 |#1|))) 88 (|has| |#1| (-539))) (((-166 (-370)) (-921 |#1|) (-890)) 84 (|has| |#1| (-1016))) (((-166 (-370)) (-921 |#1|)) 83 (|has| |#1| (-1016))) (((-166 (-370)) (-921 (-166 |#1|)) (-890)) 78 (|has| |#1| (-169))) (((-166 (-370)) (-921 (-166 |#1|))) 77 (|has| |#1| (-169))) (((-166 (-370)) (-166 |#1|) (-890)) 80 (|has| |#1| (-169))) (((-166 (-370)) (-166 |#1|)) 79 (|has| |#1| (-169))) (((-166 (-370)) |#1| (-890)) 27) (((-166 (-370)) |#1|) 25)))
-(((-759 |#1|) (-10 -7 (-15 -1610 ((-370) |#1|)) (-15 -1610 ((-370) |#1| (-890))) (-15 -2038 ((-166 (-370)) |#1|)) (-15 -2038 ((-166 (-370)) |#1| (-890))) (IF (|has| |#1| (-169)) (PROGN (-15 -2038 ((-166 (-370)) (-166 |#1|))) (-15 -2038 ((-166 (-370)) (-166 |#1|) (-890))) (-15 -2038 ((-166 (-370)) (-921 (-166 |#1|)))) (-15 -2038 ((-166 (-370)) (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -1610 ((-370) (-921 |#1|))) (-15 -1610 ((-370) (-921 |#1|) (-890))) (-15 -2038 ((-166 (-370)) (-921 |#1|))) (-15 -2038 ((-166 (-370)) (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -1610 ((-370) (-398 (-921 |#1|)))) (-15 -1610 ((-370) (-398 (-921 |#1|)) (-890))) (-15 -2038 ((-166 (-370)) (-398 (-921 |#1|)))) (-15 -2038 ((-166 (-370)) (-398 (-921 |#1|)) (-890))) (-15 -2038 ((-166 (-370)) (-398 (-921 (-166 |#1|))))) (-15 -2038 ((-166 (-370)) (-398 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -1610 ((-370) (-307 |#1|))) (-15 -1610 ((-370) (-307 |#1|) (-890))) (-15 -2038 ((-166 (-370)) (-307 |#1|))) (-15 -2038 ((-166 (-370)) (-307 |#1|) (-890))) (-15 -2038 ((-166 (-370)) (-307 (-166 |#1|)))) (-15 -2038 ((-166 (-370)) (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -1792 ((-3 (-166 (-370)) "failed") (-921 (-166 |#1|)))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -3809 ((-3 (-370) "failed") (-921 |#1|))) (-15 -3809 ((-3 (-370) "failed") (-921 |#1|) (-890))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-921 |#1|))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -3809 ((-3 (-370) "failed") (-398 (-921 |#1|)))) (-15 -3809 ((-3 (-370) "failed") (-398 (-921 |#1|)) (-890))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-398 (-921 |#1|)))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-398 (-921 |#1|)) (-890))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-398 (-921 (-166 |#1|))))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-398 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -3809 ((-3 (-370) "failed") (-307 |#1|))) (-15 -3809 ((-3 (-370) "failed") (-307 |#1|) (-890))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-307 |#1|))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-307 |#1|) (-890))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-307 (-166 |#1|)))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|)) (-592 (-370))) (T -759))
-((-1792 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-1792 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-539)) (-4 *4 (-821)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1792 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-1792 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-3809 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) (-3809 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821)) (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) (-1792 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-398 (-921 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-1792 (*1 *2 *3) (|partial| -12 (-5 *3 (-398 (-921 (-166 *4)))) (-4 *4 (-539)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1792 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-1792 (*1 *2 *3) (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-3809 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) (-3809 (*1 *2 *3) (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) (-1792 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-1792 (*1 *2 *3) (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-3809 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) (-3809 (*1 *2 *3) (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) (-1792 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-1792 (*1 *2 *3) (|partial| -12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-539)) (-4 *4 (-821)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821)) (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 (-166 *4)))) (-4 *4 (-539)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-890)) (-4 *5 (-169)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-166 (-370))) (-5 *1 (-759 *3)) (-4 *3 (-592 (-370))))) (-2038 (*1 *2 *3) (-12 (-5 *2 (-166 (-370))) (-5 *1 (-759 *3)) (-4 *3 (-592 (-370))))) (-1610 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-370)) (-5 *1 (-759 *3)) (-4 *3 (-592 *2)))) (-1610 (*1 *2 *3) (-12 (-5 *2 (-370)) (-5 *1 (-759 *3)) (-4 *3 (-592 *2)))))
-(-10 -7 (-15 -1610 ((-370) |#1|)) (-15 -1610 ((-370) |#1| (-890))) (-15 -2038 ((-166 (-370)) |#1|)) (-15 -2038 ((-166 (-370)) |#1| (-890))) (IF (|has| |#1| (-169)) (PROGN (-15 -2038 ((-166 (-370)) (-166 |#1|))) (-15 -2038 ((-166 (-370)) (-166 |#1|) (-890))) (-15 -2038 ((-166 (-370)) (-921 (-166 |#1|)))) (-15 -2038 ((-166 (-370)) (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -1610 ((-370) (-921 |#1|))) (-15 -1610 ((-370) (-921 |#1|) (-890))) (-15 -2038 ((-166 (-370)) (-921 |#1|))) (-15 -2038 ((-166 (-370)) (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -1610 ((-370) (-398 (-921 |#1|)))) (-15 -1610 ((-370) (-398 (-921 |#1|)) (-890))) (-15 -2038 ((-166 (-370)) (-398 (-921 |#1|)))) (-15 -2038 ((-166 (-370)) (-398 (-921 |#1|)) (-890))) (-15 -2038 ((-166 (-370)) (-398 (-921 (-166 |#1|))))) (-15 -2038 ((-166 (-370)) (-398 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -1610 ((-370) (-307 |#1|))) (-15 -1610 ((-370) (-307 |#1|) (-890))) (-15 -2038 ((-166 (-370)) (-307 |#1|))) (-15 -2038 ((-166 (-370)) (-307 |#1|) (-890))) (-15 -2038 ((-166 (-370)) (-307 (-166 |#1|)))) (-15 -2038 ((-166 (-370)) (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -1792 ((-3 (-166 (-370)) "failed") (-921 (-166 |#1|)))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -3809 ((-3 (-370) "failed") (-921 |#1|))) (-15 -3809 ((-3 (-370) "failed") (-921 |#1|) (-890))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-921 |#1|))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -3809 ((-3 (-370) "failed") (-398 (-921 |#1|)))) (-15 -3809 ((-3 (-370) "failed") (-398 (-921 |#1|)) (-890))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-398 (-921 |#1|)))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-398 (-921 |#1|)) (-890))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-398 (-921 (-166 |#1|))))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-398 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -3809 ((-3 (-370) "failed") (-307 |#1|))) (-15 -3809 ((-3 (-370) "failed") (-307 |#1|) (-890))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-307 |#1|))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-307 |#1|) (-890))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-307 (-166 |#1|)))) (-15 -1792 ((-3 (-166 (-370)) "failed") (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|))
-((-2561 (((-890) (-1119)) 66)) (-2889 (((-3 (-370) "failed") (-1119)) 33)) (-3891 (((-370) (-1119)) 31)) (-3647 (((-890) (-1119)) 54)) (-3423 (((-1119) (-890)) 56)) (-4023 (((-1119) (-890)) 53)))
-(((-760) (-10 -7 (-15 -4023 ((-1119) (-890))) (-15 -3647 ((-890) (-1119))) (-15 -3423 ((-1119) (-890))) (-15 -2561 ((-890) (-1119))) (-15 -3891 ((-370) (-1119))) (-15 -2889 ((-3 (-370) "failed") (-1119))))) (T -760))
-((-2889 (*1 *2 *3) (|partial| -12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-760)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-760)))) (-2561 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-890)) (-5 *1 (-760)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1119)) (-5 *1 (-760)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-890)) (-5 *1 (-760)))) (-4023 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1119)) (-5 *1 (-760)))))
-(-10 -7 (-15 -4023 ((-1119) (-890))) (-15 -3647 ((-890) (-1119))) (-15 -3423 ((-1119) (-890))) (-15 -2561 ((-890) (-1119))) (-15 -3891 ((-370) (-1119))) (-15 -2889 ((-3 (-370) "failed") (-1119))))
-((-3826 (((-112) $ $) 7)) (-3190 (((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 15) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 13)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 16) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2381 (((-112) $ $) 6)))
-(((-761) (-138)) (T -761))
-((-2526 (*1 *2 *3 *4) (-12 (-4 *1 (-761)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004)))))) (-3190 (*1 *2 *3 *2) (-12 (-4 *1 (-761)) (-5 *2 (-1004)) (-5 *3 (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) (-2526 (*1 *2 *3 *4) (-12 (-4 *1 (-761)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004)))))) (-3190 (*1 *2 *3 *2) (-12 (-4 *1 (-761)) (-5 *2 (-1004)) (-5 *3 (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))))
-(-13 (-1063) (-10 -7 (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3190 ((-1004) (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217))) (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3190 ((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-2965 (((-1224) (-1219 (-370)) (-547) (-370) (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3039 (-370))) (-370) (-1219 (-370)) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370))) 44) (((-1224) (-1219 (-370)) (-547) (-370) (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3039 (-370))) (-370) (-1219 (-370)) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370))) 43)) (-2185 (((-1224) (-1219 (-370)) (-547) (-370) (-370) (-547) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370))) 50)) (-3642 (((-1224) (-1219 (-370)) (-547) (-370) (-370) (-370) (-370) (-547) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370))) 41)) (-2993 (((-1224) (-1219 (-370)) (-547) (-370) (-370) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370))) 52) (((-1224) (-1219 (-370)) (-547) (-370) (-370) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370))) 51)))
-(((-762) (-10 -7 (-15 -2993 ((-1224) (-1219 (-370)) (-547) (-370) (-370) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)))) (-15 -2993 ((-1224) (-1219 (-370)) (-547) (-370) (-370) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)))) (-15 -3642 ((-1224) (-1219 (-370)) (-547) (-370) (-370) (-370) (-370) (-547) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)))) (-15 -2965 ((-1224) (-1219 (-370)) (-547) (-370) (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3039 (-370))) (-370) (-1219 (-370)) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)))) (-15 -2965 ((-1224) (-1219 (-370)) (-547) (-370) (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3039 (-370))) (-370) (-1219 (-370)) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)))) (-15 -2185 ((-1224) (-1219 (-370)) (-547) (-370) (-370) (-547) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)))))) (T -762))
-((-2185 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1224) (-1219 *5) (-1219 *5) (-370))) (-5 *3 (-1219 (-370))) (-5 *5 (-370)) (-5 *2 (-1224)) (-5 *1 (-762)))) (-2965 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-547)) (-5 *6 (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3039 (-370)))) (-5 *7 (-1 (-1224) (-1219 *5) (-1219 *5) (-370))) (-5 *3 (-1219 (-370))) (-5 *5 (-370)) (-5 *2 (-1224)) (-5 *1 (-762)))) (-2965 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-547)) (-5 *6 (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3039 (-370)))) (-5 *7 (-1 (-1224) (-1219 *5) (-1219 *5) (-370))) (-5 *3 (-1219 (-370))) (-5 *5 (-370)) (-5 *2 (-1224)) (-5 *1 (-762)))) (-3642 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1224) (-1219 *5) (-1219 *5) (-370))) (-5 *3 (-1219 (-370))) (-5 *5 (-370)) (-5 *2 (-1224)) (-5 *1 (-762)))) (-2993 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1224) (-1219 *5) (-1219 *5) (-370))) (-5 *3 (-1219 (-370))) (-5 *5 (-370)) (-5 *2 (-1224)) (-5 *1 (-762)))) (-2993 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1224) (-1219 *5) (-1219 *5) (-370))) (-5 *3 (-1219 (-370))) (-5 *5 (-370)) (-5 *2 (-1224)) (-5 *1 (-762)))))
-(-10 -7 (-15 -2993 ((-1224) (-1219 (-370)) (-547) (-370) (-370) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)))) (-15 -2993 ((-1224) (-1219 (-370)) (-547) (-370) (-370) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)))) (-15 -3642 ((-1224) (-1219 (-370)) (-547) (-370) (-370) (-370) (-370) (-547) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)))) (-15 -2965 ((-1224) (-1219 (-370)) (-547) (-370) (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3039 (-370))) (-370) (-1219 (-370)) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)))) (-15 -2965 ((-1224) (-1219 (-370)) (-547) (-370) (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3039 (-370))) (-370) (-1219 (-370)) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)) (-1219 (-370)))) (-15 -2185 ((-1224) (-1219 (-370)) (-547) (-370) (-370) (-547) (-1 (-1224) (-1219 (-370)) (-1219 (-370)) (-370)))))
-((-2914 (((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)) 53)) (-1475 (((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)) 31)) (-3515 (((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)) 52)) (-3161 (((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)) 29)) (-2874 (((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)) 51)) (-3156 (((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)) 19)) (-1497 (((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547)) 32)) (-4174 (((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547)) 30)) (-1773 (((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547)) 28)))
-(((-763) (-10 -7 (-15 -1773 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547))) (-15 -4174 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547))) (-15 -1497 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547))) (-15 -3156 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -3161 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -1475 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -2874 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -3515 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -2914 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))))) (T -763))
-((-2914 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-3515 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-2874 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-1475 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-3161 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-3156 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-1497 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-4174 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-1773 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))))
-(-10 -7 (-15 -1773 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547))) (-15 -4174 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547))) (-15 -1497 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547))) (-15 -3156 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -3161 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -1475 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -2874 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -3515 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -2914 ((-2 (|:| -4153 (-370)) (|:| -3035 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))))
-((-4267 (((-1168 |#1|) |#1| (-217) (-547)) 46)))
-(((-764 |#1|) (-10 -7 (-15 -4267 ((-1168 |#1|) |#1| (-217) (-547)))) (-943)) (T -764))
-((-4267 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-217)) (-5 *5 (-547)) (-5 *2 (-1168 *3)) (-5 *1 (-764 *3)) (-4 *3 (-943)))))
-(-10 -7 (-15 -4267 ((-1168 |#1|) |#1| (-217) (-547))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 24)) (-3672 (((-3 $ "failed") $ $) 26)) (-1948 (($) 23 T CONST)) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3269 (($) 22 T CONST)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)) (-2493 (($ $ $) 28) (($ $) 27)) (-2479 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25) (($ (-547) $) 29)))
-(((-765) (-138)) (T -765))
-NIL
-(-13 (-769) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-821) . T) ((-1063) . T))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 24)) (-1948 (($) 23 T CONST)) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3269 (($) 22 T CONST)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)) (-2479 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25)))
-(((-766) (-138)) (T -766))
-NIL
-(-13 (-768) (-23))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-591 (-832)) . T) ((-768) . T) ((-821) . T) ((-1063) . T))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 24)) (-2794 (($ $ $) 27)) (-3672 (((-3 $ "failed") $ $) 26)) (-1948 (($) 23 T CONST)) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3269 (($) 22 T CONST)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)) (-2479 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25)))
+((-4272 (*1 *1 *1 *1 *1) (-4 *1 (-738))) (-3293 (*1 *1 *1 *1) (-4 *1 (-738))) (-2174 (*1 *1 *1 *1) (-4 *1 (-738))))
+(-13 (-21) (-697) (-10 -8 (-15 -4272 ($ $ $ $)) (-15 -3293 ($ $ $)) (-15 -2174 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-697) . T) ((-1067) . T))
+((-3846 (((-834) $) NIL) (($ (-549)) 10)))
+(((-739 |#1|) (-10 -8 (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|))) (-740)) (T -739))
+NIL
+(-10 -8 (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3038 (((-3 $ "failed") $) 40)) (-3117 (($ $ (-892)) 28) (($ $ (-747)) 35)) (-2114 (((-3 $ "failed") $) 38)) (-2675 (((-112) $) 34)) (-1919 (((-3 $ "failed") $) 39)) (-2884 (($ $ (-892)) 29) (($ $ (-747)) 36)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3293 (($ $ $) 25)) (-3846 (((-834) $) 11) (($ (-549)) 31)) (-2082 (((-747)) 32)) (-4272 (($ $ $ $) 26)) (-2174 (($ $ $) 24)) (-3276 (($) 18 T CONST)) (-3287 (($) 33 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 30) (($ $ (-747)) 37)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 27)))
+(((-740) (-138)) (T -740))
+((-2082 (*1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-747)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-740)))))
+(-13 (-738) (-699) (-10 -8 (-15 -2082 ((-747))) (-15 -3846 ($ (-549)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-697) . T) ((-699) . T) ((-738) . T) ((-1067) . T))
+((-2912 (((-621 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 (-167 |#1|)))))) (-665 (-167 (-400 (-549)))) |#1|) 33)) (-3545 (((-621 (-167 |#1|)) (-665 (-167 (-400 (-549)))) |#1|) 23)) (-4154 (((-923 (-167 (-400 (-549)))) (-665 (-167 (-400 (-549)))) (-1143)) 20) (((-923 (-167 (-400 (-549)))) (-665 (-167 (-400 (-549))))) 19)))
+(((-741 |#1|) (-10 -7 (-15 -4154 ((-923 (-167 (-400 (-549)))) (-665 (-167 (-400 (-549)))))) (-15 -4154 ((-923 (-167 (-400 (-549)))) (-665 (-167 (-400 (-549)))) (-1143))) (-15 -3545 ((-621 (-167 |#1|)) (-665 (-167 (-400 (-549)))) |#1|)) (-15 -2912 ((-621 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 (-167 |#1|)))))) (-665 (-167 (-400 (-549)))) |#1|))) (-13 (-356) (-821))) (T -741))
+((-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-167 (-400 (-549))))) (-5 *2 (-621 (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 (-167 *4))))))) (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))) (-3545 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-167 (-400 (-549))))) (-5 *2 (-621 (-167 *4))) (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))) (-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-167 (-400 (-549))))) (-5 *4 (-1143)) (-5 *2 (-923 (-167 (-400 (-549))))) (-5 *1 (-741 *5)) (-4 *5 (-13 (-356) (-821))))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-665 (-167 (-400 (-549))))) (-5 *2 (-923 (-167 (-400 (-549))))) (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))))
+(-10 -7 (-15 -4154 ((-923 (-167 (-400 (-549)))) (-665 (-167 (-400 (-549)))))) (-15 -4154 ((-923 (-167 (-400 (-549)))) (-665 (-167 (-400 (-549)))) (-1143))) (-15 -3545 ((-621 (-167 |#1|)) (-665 (-167 (-400 (-549)))) |#1|)) (-15 -2912 ((-621 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 (-167 |#1|)))))) (-665 (-167 (-400 (-549)))) |#1|)))
+((-4116 (((-172 (-549)) |#1|) 25)))
+(((-742 |#1|) (-10 -7 (-15 -4116 ((-172 (-549)) |#1|))) (-397)) (T -742))
+((-4116 (*1 *2 *3) (-12 (-5 *2 (-172 (-549))) (-5 *1 (-742 *3)) (-4 *3 (-397)))))
+(-10 -7 (-15 -4116 ((-172 (-549)) |#1|)))
+((-2990 ((|#1| |#1| |#1|) 24)) (-3494 ((|#1| |#1| |#1|) 23)) (-1993 ((|#1| |#1| |#1|) 32)) (-1944 ((|#1| |#1| |#1|) 28)) (-2322 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3350 (((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|) 22)))
+(((-743 |#1| |#2|) (-10 -7 (-15 -3350 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -2990 (|#1| |#1| |#1|)) (-15 -2322 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1944 (|#1| |#1| |#1|)) (-15 -1993 (|#1| |#1| |#1|))) (-685 |#2|) (-356)) (T -743))
+((-1993 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-1944 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2322 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-2990 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-3494 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3)))) (-3350 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-743 *3 *4)) (-4 *3 (-685 *4)))))
+(-10 -7 (-15 -3350 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -2990 (|#1| |#1| |#1|)) (-15 -2322 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1944 (|#1| |#1| |#1|)) (-15 -1993 (|#1| |#1| |#1|)))
+((-1784 (((-2 (|:| -1949 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549)))) (-549)) 59)) (-1613 (((-2 (|:| -1949 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549))))) 57)) (-3602 (((-549)) 71)))
+(((-744 |#1| |#2|) (-10 -7 (-15 -3602 ((-549))) (-15 -1613 ((-2 (|:| -1949 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549)))))) (-15 -1784 ((-2 (|:| -1949 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549)))) (-549)))) (-1202 (-549)) (-402 (-549) |#1|)) (T -744))
+((-1784 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-1202 *3)) (-5 *2 (-2 (|:| -1949 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-744 *4 *5)) (-4 *5 (-402 *3 *4)))) (-1613 (*1 *2) (-12 (-4 *3 (-1202 (-549))) (-5 *2 (-2 (|:| -1949 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549))))) (-5 *1 (-744 *3 *4)) (-4 *4 (-402 (-549) *3)))) (-3602 (*1 *2) (-12 (-4 *3 (-1202 *2)) (-5 *2 (-549)) (-5 *1 (-744 *3 *4)) (-4 *4 (-402 *2 *3)))))
+(-10 -7 (-15 -3602 ((-549))) (-15 -1613 ((-2 (|:| -1949 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549)))))) (-15 -1784 ((-2 (|:| -1949 (-665 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-665 (-549)))) (-549))))
+((-3834 (((-112) $ $) NIL)) (-2659 (((-3 (|:| |nia| (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $) 21)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 20) (($ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13) (($ (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) 18)) (-2389 (((-112) $ $) NIL)))
+(((-745) (-13 (-1067) (-10 -8 (-15 -3846 ($ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3846 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3846 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -3846 ((-834) $)) (-15 -2659 ((-3 (|:| |nia| (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $))))) (T -745))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-745)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-745)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-745)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-745)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-745)))))
+(-13 (-1067) (-10 -8 (-15 -3846 ($ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3846 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3846 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -3846 ((-834) $)) (-15 -2659 ((-3 (|:| |nia| (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $))))
+((-1670 (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|))) 18) (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)) (-621 (-1143))) 17)) (-2227 (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|))) 20) (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)) (-621 (-1143))) 19)))
+(((-746 |#1|) (-10 -7 (-15 -1670 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)) (-621 (-1143)))) (-15 -1670 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)))) (-15 -2227 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)) (-621 (-1143)))) (-15 -2227 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|))))) (-541)) (T -746))
+((-2227 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-746 *4)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-621 (-1143))) (-4 *5 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-746 *5)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-746 *4)))) (-1670 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-621 (-1143))) (-4 *5 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-746 *5)))))
+(-10 -7 (-15 -1670 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)) (-621 (-1143)))) (-15 -1670 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)))) (-15 -2227 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)) (-621 (-1143)))) (-15 -2227 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-923 |#1|)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2861 (($ $ $) 6)) (-2001 (((-3 $ "failed") $ $) 9)) (-1310 (($ $ (-549)) 7)) (-1682 (($) NIL T CONST)) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($ $) NIL)) (-2067 (($ $ $) NIL)) (-2675 (((-112) $) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3727 (($ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3846 (((-834) $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-892)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ $ $) NIL)))
+(((-747) (-13 (-769) (-703) (-10 -8 (-15 -2067 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3148 ((-2 (|:| -4013 $) (|:| -3675 $)) $ $)) (-15 -2042 ((-3 $ "failed") $ $)) (-15 -1310 ($ $ (-549))) (-15 -3239 ($ $)) (-6 (-4339 "*"))))) (T -747))
+((-2067 (*1 *1 *1 *1) (-5 *1 (-747))) (-2095 (*1 *1 *1 *1) (-5 *1 (-747))) (-3727 (*1 *1 *1 *1) (-5 *1 (-747))) (-3148 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4013 (-747)) (|:| -3675 (-747)))) (-5 *1 (-747)))) (-2042 (*1 *1 *1 *1) (|partial| -5 *1 (-747))) (-1310 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-747)))) (-3239 (*1 *1 *1) (-5 *1 (-747))))
+(-13 (-769) (-703) (-10 -8 (-15 -2067 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3148 ((-2 (|:| -4013 $) (|:| -3675 $)) $ $)) (-15 -2042 ((-3 $ "failed") $ $)) (-15 -1310 ($ $ (-549))) (-15 -3239 ($ $)) (-6 (-4339 "*"))))
+((-2227 (((-3 |#2| "failed") |#2| |#2| (-114) (-1143)) 35)))
+(((-748 |#1| |#2|) (-10 -7 (-15 -2227 ((-3 |#2| "failed") |#2| |#2| (-114) (-1143)))) (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)) (-13 (-29 |#1|) (-1165) (-930))) (T -748))
+((-2227 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1143)) (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *1 (-748 *5 *2)) (-4 *2 (-13 (-29 *5) (-1165) (-930))))))
+(-10 -7 (-15 -2227 ((-3 |#2| "failed") |#2| |#2| (-114) (-1143))))
+((-3846 (((-750) |#1|) 8)))
+(((-749 |#1|) (-10 -7 (-15 -3846 ((-750) |#1|))) (-1180)) (T -749))
+((-3846 (*1 *2 *3) (-12 (-5 *2 (-750)) (-5 *1 (-749 *3)) (-4 *3 (-1180)))))
+(-10 -7 (-15 -3846 ((-750) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 7)) (-2389 (((-112) $ $) 9)))
+(((-750) (-1067)) (T -750))
+NIL
+(-1067)
+((-3630 ((|#2| |#4|) 35)))
+(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3630 (|#2| |#4|))) (-444) (-1202 |#1|) (-701 |#1| |#2|) (-1202 |#3|)) (T -751))
+((-3630 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-701 *4 *2)) (-4 *2 (-1202 *4)) (-5 *1 (-751 *4 *2 *5 *3)) (-4 *3 (-1202 *5)))))
+(-10 -7 (-15 -3630 (|#2| |#4|)))
+((-2114 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2108 (((-1231) (-1125) (-1125) |#4| |#5|) 33)) (-2577 ((|#4| |#4| |#5|) 73)) (-1322 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#5|) 77)) (-1563 (((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|) 16)))
+(((-752 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2114 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2577 (|#4| |#4| |#5|)) (-15 -1322 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#5|)) (-15 -2108 ((-1231) (-1125) (-1125) |#4| |#5|)) (-15 -1563 ((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -752))
+((-1563 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1981 *4)))) (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2108 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1125)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *4 (-1032 *6 *7 *8)) (-5 *2 (-1231)) (-5 *1 (-752 *6 *7 *8 *4 *5)) (-4 *5 (-1038 *6 *7 *8 *4)))) (-1322 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4)))) (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2577 (*1 *2 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *2 (-1032 *4 *5 *6)) (-5 *1 (-752 *4 *5 *6 *2 *3)) (-4 *3 (-1038 *4 *5 *6 *2)))) (-2114 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(-10 -7 (-15 -2114 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2577 (|#4| |#4| |#5|)) (-15 -1322 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#5|)) (-15 -2108 ((-1231) (-1125) (-1125) |#4| |#5|)) (-15 -1563 ((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|)))
+((-2714 (((-3 (-1139 (-1139 |#1|)) "failed") |#4|) 43)) (-2418 (((-621 |#4|) |#4|) 15)) (-1933 ((|#4| |#4|) 11)))
+(((-753 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2418 ((-621 |#4|) |#4|)) (-15 -2714 ((-3 (-1139 (-1139 |#1|)) "failed") |#4|)) (-15 -1933 (|#4| |#4|))) (-342) (-322 |#1|) (-1202 |#2|) (-1202 |#3|) (-892)) (T -753))
+((-1933 (*1 *2 *2) (-12 (-4 *3 (-342)) (-4 *4 (-322 *3)) (-4 *5 (-1202 *4)) (-5 *1 (-753 *3 *4 *5 *2 *6)) (-4 *2 (-1202 *5)) (-14 *6 (-892)))) (-2714 (*1 *2 *3) (|partial| -12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1202 *5)) (-5 *2 (-1139 (-1139 *4))) (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1202 *6)) (-14 *7 (-892)))) (-2418 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1202 *5)) (-5 *2 (-621 *3)) (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1202 *6)) (-14 *7 (-892)))))
+(-10 -7 (-15 -2418 ((-621 |#4|) |#4|)) (-15 -2714 ((-3 (-1139 (-1139 |#1|)) "failed") |#4|)) (-15 -1933 (|#4| |#4|)))
+((-3419 (((-2 (|:| |deter| (-621 (-1139 |#5|))) (|:| |dterm| (-621 (-621 (-2 (|:| -2099 (-747)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-621 |#1|)) (|:| |nlead| (-621 |#5|))) (-1139 |#5|) (-621 |#1|) (-621 |#5|)) 54)) (-3125 (((-621 (-747)) |#1|) 13)))
+(((-754 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3419 ((-2 (|:| |deter| (-621 (-1139 |#5|))) (|:| |dterm| (-621 (-621 (-2 (|:| -2099 (-747)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-621 |#1|)) (|:| |nlead| (-621 |#5|))) (-1139 |#5|) (-621 |#1|) (-621 |#5|))) (-15 -3125 ((-621 (-747)) |#1|))) (-1202 |#4|) (-769) (-823) (-300) (-920 |#4| |#2| |#3|)) (T -754))
+((-3125 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-621 (-747))) (-5 *1 (-754 *3 *4 *5 *6 *7)) (-4 *3 (-1202 *6)) (-4 *7 (-920 *6 *4 *5)))) (-3419 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1202 *9)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-300)) (-4 *10 (-920 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-621 (-1139 *10))) (|:| |dterm| (-621 (-621 (-2 (|:| -2099 (-747)) (|:| |pcoef| *10))))) (|:| |nfacts| (-621 *6)) (|:| |nlead| (-621 *10)))) (-5 *1 (-754 *6 *7 *8 *9 *10)) (-5 *3 (-1139 *10)) (-5 *4 (-621 *6)) (-5 *5 (-621 *10)))))
+(-10 -7 (-15 -3419 ((-2 (|:| |deter| (-621 (-1139 |#5|))) (|:| |dterm| (-621 (-621 (-2 (|:| -2099 (-747)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-621 |#1|)) (|:| |nlead| (-621 |#5|))) (-1139 |#5|) (-621 |#1|) (-621 |#5|))) (-15 -3125 ((-621 (-747)) |#1|)))
+((-3501 (((-621 (-2 (|:| |outval| |#1|) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 |#1|))))) (-665 (-400 (-549))) |#1|) 31)) (-2232 (((-621 |#1|) (-665 (-400 (-549))) |#1|) 21)) (-4154 (((-923 (-400 (-549))) (-665 (-400 (-549))) (-1143)) 18) (((-923 (-400 (-549))) (-665 (-400 (-549)))) 17)))
+(((-755 |#1|) (-10 -7 (-15 -4154 ((-923 (-400 (-549))) (-665 (-400 (-549))))) (-15 -4154 ((-923 (-400 (-549))) (-665 (-400 (-549))) (-1143))) (-15 -2232 ((-621 |#1|) (-665 (-400 (-549))) |#1|)) (-15 -3501 ((-621 (-2 (|:| |outval| |#1|) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 |#1|))))) (-665 (-400 (-549))) |#1|))) (-13 (-356) (-821))) (T -755))
+((-3501 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *2 (-621 (-2 (|:| |outval| *4) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 *4)))))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))) (-2232 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *2 (-621 *4)) (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))) (-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *4 (-1143)) (-5 *2 (-923 (-400 (-549)))) (-5 *1 (-755 *5)) (-4 *5 (-13 (-356) (-821))))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *2 (-923 (-400 (-549)))) (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))))
+(-10 -7 (-15 -4154 ((-923 (-400 (-549))) (-665 (-400 (-549))))) (-15 -4154 ((-923 (-400 (-549))) (-665 (-400 (-549))) (-1143))) (-15 -2232 ((-621 |#1|) (-665 (-400 (-549))) |#1|)) (-15 -3501 ((-621 (-2 (|:| |outval| |#1|) (|:| |outmult| (-549)) (|:| |outvect| (-621 (-665 |#1|))))) (-665 (-400 (-549))) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 34)) (-2272 (((-621 |#2|) $) NIL)) (-2084 (((-1139 $) $ |#2|) NIL) (((-1139 |#1|) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 |#2|)) NIL)) (-1343 (($ $) 28)) (-2635 (((-112) $ $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1910 (($ $ $) 93 (|has| |#1| (-541)))) (-1506 (((-621 $) $ $) 106 (|has| |#1| (-541)))) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3979 (($ $) NIL (|has| |#1| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-923 (-400 (-549)))) NIL (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1143))))) (((-3 $ "failed") (-923 (-549))) NIL (-1536 (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-594 (-1143))) (-4008 (|has| |#1| (-38 (-400 (-549)))))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1143)))))) (((-3 $ "failed") (-923 |#1|)) NIL (-1536 (-12 (|has| |#2| (-594 (-1143))) (-4008 (|has| |#1| (-38 (-400 (-549))))) (-4008 (|has| |#1| (-38 (-549))))) (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-594 (-1143))) (-4008 (|has| |#1| (-38 (-400 (-549))))) (-4008 (|has| |#1| (-534)))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1143))) (-4008 (|has| |#1| (-963 (-549))))))) (((-3 (-1092 |#1| |#2|) "failed") $) 18)) (-2659 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) ((|#2| $) NIL) (($ (-923 (-400 (-549)))) NIL (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1143))))) (($ (-923 (-549))) NIL (-1536 (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-594 (-1143))) (-4008 (|has| |#1| (-38 (-400 (-549)))))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1143)))))) (($ (-923 |#1|)) NIL (-1536 (-12 (|has| |#2| (-594 (-1143))) (-4008 (|has| |#1| (-38 (-400 (-549))))) (-4008 (|has| |#1| (-38 (-549))))) (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-594 (-1143))) (-4008 (|has| |#1| (-38 (-400 (-549))))) (-4008 (|has| |#1| (-534)))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1143))) (-4008 (|has| |#1| (-963 (-549))))))) (((-1092 |#1| |#2|) $) NIL)) (-1353 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-541)))) (-2070 (($ $) NIL) (($ $ |#2|) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2217 (((-112) $ $) NIL) (((-112) $ (-621 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2316 (((-112) $) NIL)) (-3921 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 70)) (-2653 (($ $) 119 (|has| |#1| (-444)))) (-1285 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-880)))) (-2348 (($ $) NIL (|has| |#1| (-541)))) (-2582 (($ $) NIL (|has| |#1| (-541)))) (-2882 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-2854 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2691 (($ $ |#1| (-521 |#2|) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| |#1| (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| |#1| (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-2812 (((-112) $ $) NIL) (((-112) $ (-621 $)) NIL)) (-2937 (($ $ $ $ $) 90 (|has| |#1| (-541)))) (-2745 ((|#2| $) 19)) (-2261 (($ (-1139 |#1|) |#2|) NIL) (($ (-1139 $) |#2|) NIL)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-521 |#2|)) NIL) (($ $ |#2| (-747)) 36) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-2083 (($ $ $) 60)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ |#2|) NIL)) (-2600 (((-112) $) NIL)) (-3611 (((-521 |#2|) $) NIL) (((-747) $ |#2|) NIL) (((-621 (-747)) $ (-621 |#2|)) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-4247 (((-747) $) 20)) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-3705 (($ (-1 (-521 |#2|) (-521 |#2|)) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1520 (((-3 |#2| "failed") $) NIL)) (-2280 (($ $) NIL (|has| |#1| (-444)))) (-1915 (($ $) NIL (|has| |#1| (-444)))) (-4239 (((-621 $) $) NIL)) (-3070 (($ $) 37)) (-2878 (($ $) NIL (|has| |#1| (-444)))) (-1876 (((-621 $) $) 41)) (-2801 (($ $) 39)) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2926 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3063 (-747))) $ $) 82)) (-4163 (((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -4013 $) (|:| -3675 $)) $ $) 67) (((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -4013 $) (|:| -3675 $)) $ $ |#2|) NIL)) (-3507 (((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -3675 $)) $ $) NIL) (((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -3675 $)) $ $ |#2|) NIL)) (-3564 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3420 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3851 (((-1125) $) NIL)) (-3072 (($ $ $) 108 (|has| |#1| (-541)))) (-3263 (((-621 $) $) 30)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| |#2|) (|:| -3731 (-747))) "failed") $) NIL)) (-2170 (((-112) $ $) NIL) (((-112) $ (-621 $)) NIL)) (-3270 (($ $ $) NIL)) (-3060 (($ $) 21)) (-2473 (((-112) $ $) NIL)) (-1335 (((-112) $ $) NIL) (((-112) $ (-621 $)) NIL)) (-4298 (($ $ $) NIL)) (-3477 (($ $) 23)) (-3990 (((-1087) $) NIL)) (-3542 (((-2 (|:| -3727 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-541)))) (-2214 (((-2 (|:| -3727 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-541)))) (-2004 (((-112) $) 52)) (-2016 ((|#1| $) 55)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-444)))) (-3727 ((|#1| |#1| $) 116 (|has| |#1| (-444))) (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-880)))) (-1444 (((-2 (|:| -3727 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-541)))) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-541)))) (-2191 (($ $ |#1|) 112 (|has| |#1| (-541))) (($ $ $) NIL (|has| |#1| (-541)))) (-3535 (($ $ |#1|) 111 (|has| |#1| (-541))) (($ $ $) NIL (|has| |#1| (-541)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-621 |#2|) (-621 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-621 |#2|) (-621 $)) NIL)) (-3602 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-3456 (($ $ |#2|) NIL) (($ $ (-621 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-3701 (((-521 |#2|) $) NIL) (((-747) $ |#2|) 43) (((-621 (-747)) $ (-621 |#2|)) NIL)) (-3828 (($ $) NIL)) (-1608 (($ $) 33)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| |#1| (-594 (-525))) (|has| |#2| (-594 (-525))))) (($ (-923 (-400 (-549)))) NIL (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1143))))) (($ (-923 (-549))) NIL (-1536 (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-594 (-1143))) (-4008 (|has| |#1| (-38 (-400 (-549)))))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#2| (-594 (-1143)))))) (($ (-923 |#1|)) NIL (|has| |#2| (-594 (-1143)))) (((-1125) $) NIL (-12 (|has| |#1| (-1009 (-549))) (|has| |#2| (-594 (-1143))))) (((-923 |#1|) $) NIL (|has| |#2| (-594 (-1143))))) (-2216 ((|#1| $) 115 (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-923 |#1|) $) NIL (|has| |#2| (-594 (-1143)))) (((-1092 |#1| |#2|) $) 15) (($ (-1092 |#1| |#2|)) 16) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-521 |#2|)) NIL) (($ $ |#2| (-747)) 44) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3276 (($) 13 T CONST)) (-1712 (((-3 (-112) "failed") $ $) NIL)) (-3287 (($) 35 T CONST)) (-3706 (($ $ $ $ (-747)) 88 (|has| |#1| (-541)))) (-2938 (($ $ $ (-747)) 87 (|has| |#1| (-541)))) (-1702 (($ $ |#2|) NIL) (($ $ (-621 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) 54)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) 64)) (-2486 (($ $ $) 74)) (** (($ $ (-892)) NIL) (($ $ (-747)) 61)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 59) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+(((-756 |#1| |#2|) (-13 (-1032 |#1| (-521 |#2|) |#2|) (-593 (-1092 |#1| |#2|)) (-1009 (-1092 |#1| |#2|))) (-1018) (-823)) (T -756))
+NIL
+(-13 (-1032 |#1| (-521 |#2|) |#2|) (-593 (-1092 |#1| |#2|)) (-1009 (-1092 |#1| |#2|)))
+((-2797 (((-758 |#2|) (-1 |#2| |#1|) (-758 |#1|)) 13)))
+(((-757 |#1| |#2|) (-10 -7 (-15 -2797 ((-758 |#2|) (-1 |#2| |#1|) (-758 |#1|)))) (-1018) (-1018)) (T -757))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-758 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-758 *6)) (-5 *1 (-757 *5 *6)))))
+(-10 -7 (-15 -2797 ((-758 |#2|) (-1 |#2| |#1|) (-758 |#1|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 12)) (-2432 (((-1226 |#1|) $ (-747)) NIL)) (-2272 (((-621 (-1048)) $) NIL)) (-3371 (($ (-1139 |#1|)) NIL)) (-2084 (((-1139 $) $ (-1048)) NIL) (((-1139 |#1|) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 (-1048))) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3404 (((-621 $) $ $) 39 (|has| |#1| (-541)))) (-1910 (($ $ $) 35 (|has| |#1| (-541)))) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3979 (($ $) NIL (|has| |#1| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3154 (($ $ (-747)) NIL)) (-2434 (($ $ (-747)) NIL)) (-1358 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-1048) "failed") $) NIL) (((-3 (-1139 |#1|) "failed") $) 10)) (-2659 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-1048) $) NIL) (((-1139 |#1|) $) NIL)) (-1353 (($ $ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-2070 (($ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-4289 (($ $ $) NIL)) (-2290 (($ $ $) 71 (|has| |#1| (-541)))) (-3921 (((-2 (|:| -1570 |#1|) (|:| -4013 $) (|:| -3675 $)) $ $) 70 (|has| |#1| (-541)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-1285 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-880)))) (-2691 (($ $ |#1| (-747) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1048) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1048) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2088 (((-747) $ $) NIL (|has| |#1| (-541)))) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-1681 (((-3 $ "failed") $) NIL (|has| |#1| (-1118)))) (-2261 (($ (-1139 |#1|) (-1048)) NIL) (($ (-1139 $) (-1048)) NIL)) (-2992 (($ $ (-747)) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-2083 (($ $ $) 20)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ (-1048)) NIL) (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3611 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-3705 (($ (-1 (-747) (-747)) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3598 (((-1139 |#1|) $) NIL)) (-1520 (((-3 (-1048) "failed") $) NIL)) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2926 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3063 (-747))) $ $) 26)) (-1639 (($ $ $) 29)) (-2468 (($ $ $) 32)) (-4163 (((-2 (|:| -1570 |#1|) (|:| |gap| (-747)) (|:| -4013 $) (|:| -3675 $)) $ $) 31)) (-3851 (((-1125) $) NIL)) (-3072 (($ $ $) 41 (|has| |#1| (-541)))) (-3098 (((-2 (|:| -4013 $) (|:| -3675 $)) $ (-747)) NIL)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| (-1048)) (|:| -3731 (-747))) "failed") $) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3060 (($) NIL (|has| |#1| (-1118)) CONST)) (-3990 (((-1087) $) NIL)) (-3542 (((-2 (|:| -3727 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-541)))) (-2214 (((-2 (|:| -3727 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-541)))) (-4032 (((-2 (|:| -1353 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-541)))) (-1778 (((-2 (|:| -1353 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-541)))) (-2004 (((-112) $) 13)) (-2016 ((|#1| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-1835 (($ $ (-747) |#1| $) 19)) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-880)))) (-1444 (((-2 (|:| -3727 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-541)))) (-3396 (((-2 (|:| -1353 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-541)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1048) |#1|) NIL) (($ $ (-621 (-1048)) (-621 |#1|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-621 (-1048)) (-621 $)) NIL)) (-3684 (((-747) $) NIL (|has| |#1| (-356)))) (-3341 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-541))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-541)))) (-3668 (((-3 $ "failed") $ (-747)) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-3602 (($ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-3456 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3701 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-1048) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-2216 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3033 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#1| (-541)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-1048)) NIL) (((-1139 |#1|) $) 7) (($ (-1139 |#1|)) 8) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3276 (($) 21 T CONST)) (-3287 (($) 24 T CONST)) (-1702 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $) 28) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-758 |#1|) (-13 (-1202 |#1|) (-593 (-1139 |#1|)) (-1009 (-1139 |#1|)) (-10 -8 (-15 -1835 ($ $ (-747) |#1| $)) (-15 -2083 ($ $ $)) (-15 -2926 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3063 (-747))) $ $)) (-15 -1639 ($ $ $)) (-15 -4163 ((-2 (|:| -1570 |#1|) (|:| |gap| (-747)) (|:| -4013 $) (|:| -3675 $)) $ $)) (-15 -2468 ($ $ $)) (IF (|has| |#1| (-541)) (PROGN (-15 -3404 ((-621 $) $ $)) (-15 -3072 ($ $ $)) (-15 -1444 ((-2 (|:| -3727 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2214 ((-2 (|:| -3727 $) (|:| |coef1| $)) $ $)) (-15 -3542 ((-2 (|:| -3727 $) (|:| |coef2| $)) $ $)) (-15 -3396 ((-2 (|:| -1353 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1778 ((-2 (|:| -1353 |#1|) (|:| |coef1| $)) $ $)) (-15 -4032 ((-2 (|:| -1353 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1018)) (T -758))
+((-1835 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-758 *3)) (-4 *3 (-1018)))) (-2083 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1018)))) (-2926 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-758 *3)) (|:| |polden| *3) (|:| -3063 (-747)))) (-5 *1 (-758 *3)) (-4 *3 (-1018)))) (-1639 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1018)))) (-4163 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1570 *3) (|:| |gap| (-747)) (|:| -4013 (-758 *3)) (|:| -3675 (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-1018)))) (-2468 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1018)))) (-3404 (*1 *2 *1 *1) (-12 (-5 *2 (-621 (-758 *3))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))) (-3072 (*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-541)) (-4 *2 (-1018)))) (-1444 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3727 (-758 *3)) (|:| |coef1| (-758 *3)) (|:| |coef2| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))) (-2214 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3727 (-758 *3)) (|:| |coef1| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))) (-3542 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3727 (-758 *3)) (|:| |coef2| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))) (-3396 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1353 *3) (|:| |coef1| (-758 *3)) (|:| |coef2| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))) (-1778 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1353 *3) (|:| |coef1| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))) (-4032 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1353 *3) (|:| |coef2| (-758 *3)))) (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))))
+(-13 (-1202 |#1|) (-593 (-1139 |#1|)) (-1009 (-1139 |#1|)) (-10 -8 (-15 -1835 ($ $ (-747) |#1| $)) (-15 -2083 ($ $ $)) (-15 -2926 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3063 (-747))) $ $)) (-15 -1639 ($ $ $)) (-15 -4163 ((-2 (|:| -1570 |#1|) (|:| |gap| (-747)) (|:| -4013 $) (|:| -3675 $)) $ $)) (-15 -2468 ($ $ $)) (IF (|has| |#1| (-541)) (PROGN (-15 -3404 ((-621 $) $ $)) (-15 -3072 ($ $ $)) (-15 -1444 ((-2 (|:| -3727 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2214 ((-2 (|:| -3727 $) (|:| |coef1| $)) $ $)) (-15 -3542 ((-2 (|:| -3727 $) (|:| |coef2| $)) $ $)) (-15 -3396 ((-2 (|:| -1353 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1778 ((-2 (|:| -1353 |#1|) (|:| |coef1| $)) $ $)) (-15 -4032 ((-2 (|:| -1353 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-3856 ((|#1| (-747) |#1|) 32 (|has| |#1| (-38 (-400 (-549)))))) (-2856 ((|#1| (-747) |#1|) 22)) (-2202 ((|#1| (-747) |#1|) 34 (|has| |#1| (-38 (-400 (-549)))))))
+(((-759 |#1|) (-10 -7 (-15 -2856 (|#1| (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -2202 (|#1| (-747) |#1|)) (-15 -3856 (|#1| (-747) |#1|))) |%noBranch|)) (-170)) (T -759))
+((-3856 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-170)))) (-2202 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-170)))) (-2856 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-170)))))
+(-10 -7 (-15 -2856 (|#1| (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -2202 (|#1| (-747) |#1|)) (-15 -3856 (|#1| (-747) |#1|))) |%noBranch|))
+((-3834 (((-112) $ $) 7)) (-3514 (((-621 (-2 (|:| -2681 $) (|:| -1359 (-621 |#4|)))) (-621 |#4|)) 85)) (-2866 (((-621 $) (-621 |#4|)) 86) (((-621 $) (-621 |#4|) (-112)) 111)) (-2272 (((-621 |#3|) $) 33)) (-3422 (((-112) $) 26)) (-2527 (((-112) $) 17 (|has| |#1| (-541)))) (-3282 (((-112) |#4| $) 101) (((-112) $) 97)) (-2731 ((|#4| |#4| $) 92)) (-3979 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 $))) |#4| $) 126)) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |#3|) 27)) (-1584 (((-112) $ (-747)) 44)) (-1489 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4337))) (((-3 |#4| "failed") $ |#3|) 79)) (-1682 (($) 45 T CONST)) (-1433 (((-112) $) 22 (|has| |#1| (-541)))) (-2555 (((-112) $ $) 24 (|has| |#1| (-541)))) (-2595 (((-112) $ $) 23 (|has| |#1| (-541)))) (-2397 (((-112) $) 25 (|has| |#1| (-541)))) (-2737 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3269 (((-621 |#4|) (-621 |#4|) $) 18 (|has| |#1| (-541)))) (-2953 (((-621 |#4|) (-621 |#4|) $) 19 (|has| |#1| (-541)))) (-2714 (((-3 $ "failed") (-621 |#4|)) 36)) (-2659 (($ (-621 |#4|)) 35)) (-3657 (((-3 $ "failed") $) 82)) (-1903 ((|#4| |#4| $) 89)) (-3676 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4337)))) (-3675 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-541)))) (-2217 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3615 ((|#4| |#4| $) 87)) (-2557 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4337))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4337))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1439 (((-2 (|:| -2681 (-621 |#4|)) (|:| -1359 (-621 |#4|))) $) 105)) (-3516 (((-112) |#4| $) 136)) (-3150 (((-112) |#4| $) 133)) (-2064 (((-112) |#4| $) 137) (((-112) $) 134)) (-2989 (((-621 |#4|) $) 52 (|has| $ (-6 -4337)))) (-2812 (((-112) |#4| $) 104) (((-112) $) 103)) (-2745 ((|#3| $) 34)) (-3194 (((-112) $ (-747)) 43)) (-1562 (((-621 |#4|) $) 53 (|has| $ (-6 -4337)))) (-2090 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#4| |#4|) $) 47)) (-2561 (((-621 |#3|) $) 32)) (-2378 (((-112) |#3| $) 31)) (-1508 (((-112) $ (-747)) 42)) (-3851 (((-1125) $) 9)) (-1878 (((-3 |#4| (-621 $)) |#4| |#4| $) 128)) (-3072 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 $))) |#4| |#4| $) 127)) (-3829 (((-3 |#4| "failed") $) 83)) (-3689 (((-621 $) |#4| $) 129)) (-1514 (((-3 (-112) (-621 $)) |#4| $) 132)) (-4184 (((-621 (-2 (|:| |val| (-112)) (|:| -1981 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3655 (((-621 $) |#4| $) 125) (((-621 $) (-621 |#4|) $) 124) (((-621 $) (-621 |#4|) (-621 $)) 123) (((-621 $) |#4| (-621 $)) 122)) (-4283 (($ |#4| $) 117) (($ (-621 |#4|) $) 116)) (-1638 (((-621 |#4|) $) 107)) (-2170 (((-112) |#4| $) 99) (((-112) $) 95)) (-3270 ((|#4| |#4| $) 90)) (-2473 (((-112) $ $) 110)) (-4203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-541)))) (-1335 (((-112) |#4| $) 100) (((-112) $) 96)) (-4298 ((|#4| |#4| $) 91)) (-3990 (((-1087) $) 10)) (-3646 (((-3 |#4| "failed") $) 84)) (-3779 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2640 (((-3 $ "failed") $ |#4|) 78)) (-2763 (($ $ |#4|) 77) (((-621 $) |#4| $) 115) (((-621 $) |#4| (-621 $)) 114) (((-621 $) (-621 |#4|) $) 113) (((-621 $) (-621 |#4|) (-621 $)) 112)) (-1780 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#4|) (-621 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-621 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-4144 (((-112) $ $) 38)) (-3670 (((-112) $) 41)) (-3742 (($) 40)) (-3701 (((-747) $) 106)) (-4000 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4337)))) (-2281 (($ $) 39)) (-2845 (((-525) $) 69 (|has| |#4| (-594 (-525))))) (-3854 (($ (-621 |#4|)) 60)) (-2858 (($ $ |#3|) 28)) (-3758 (($ $ |#3|) 30)) (-1962 (($ $) 88)) (-4317 (($ $ |#3|) 29)) (-3846 (((-834) $) 11) (((-621 |#4|) $) 37)) (-1824 (((-747) $) 76 (|has| |#3| (-361)))) (-2574 (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1716 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) 98)) (-1518 (((-621 $) |#4| $) 121) (((-621 $) |#4| (-621 $)) 120) (((-621 $) (-621 |#4|) $) 119) (((-621 $) (-621 |#4|) (-621 $)) 118)) (-3527 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4337)))) (-3002 (((-621 |#3|) $) 81)) (-3524 (((-112) |#4| $) 135)) (-1606 (((-112) |#3| $) 80)) (-2389 (((-112) $ $) 6)) (-3775 (((-747) $) 46 (|has| $ (-6 -4337)))))
+(((-760 |#1| |#2| |#3| |#4|) (-138) (-444) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -760))
+NIL
+(-13 (-1038 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-101) . T) ((-593 (-621 |#4|)) . T) ((-593 (-834)) . T) ((-149 |#4|) . T) ((-594 (-525)) |has| |#4| (-594 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1038 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1173 |#1| |#2| |#3| |#4|) . T) ((-1180) . T))
+((-1844 (((-3 (-372) "failed") (-309 |#1|) (-892)) 62 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-3 (-372) "failed") (-309 |#1|)) 54 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-3 (-372) "failed") (-400 (-923 |#1|)) (-892)) 41 (|has| |#1| (-541))) (((-3 (-372) "failed") (-400 (-923 |#1|))) 40 (|has| |#1| (-541))) (((-3 (-372) "failed") (-923 |#1|) (-892)) 31 (|has| |#1| (-1018))) (((-3 (-372) "failed") (-923 |#1|)) 30 (|has| |#1| (-1018)))) (-1618 (((-372) (-309 |#1|) (-892)) 99 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-372) (-309 |#1|)) 94 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-372) (-400 (-923 |#1|)) (-892)) 91 (|has| |#1| (-541))) (((-372) (-400 (-923 |#1|))) 90 (|has| |#1| (-541))) (((-372) (-923 |#1|) (-892)) 86 (|has| |#1| (-1018))) (((-372) (-923 |#1|)) 85 (|has| |#1| (-1018))) (((-372) |#1| (-892)) 76) (((-372) |#1|) 22)) (-1575 (((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)) (-892)) 71 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-3 (-167 (-372)) "failed") (-309 (-167 |#1|))) 70 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-3 (-167 (-372)) "failed") (-309 |#1|) (-892)) 63 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-3 (-167 (-372)) "failed") (-309 |#1|)) 61 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-3 (-167 (-372)) "failed") (-400 (-923 (-167 |#1|))) (-892)) 46 (|has| |#1| (-541))) (((-3 (-167 (-372)) "failed") (-400 (-923 (-167 |#1|)))) 45 (|has| |#1| (-541))) (((-3 (-167 (-372)) "failed") (-400 (-923 |#1|)) (-892)) 39 (|has| |#1| (-541))) (((-3 (-167 (-372)) "failed") (-400 (-923 |#1|))) 38 (|has| |#1| (-541))) (((-3 (-167 (-372)) "failed") (-923 |#1|) (-892)) 28 (|has| |#1| (-1018))) (((-3 (-167 (-372)) "failed") (-923 |#1|)) 26 (|has| |#1| (-1018))) (((-3 (-167 (-372)) "failed") (-923 (-167 |#1|)) (-892)) 18 (|has| |#1| (-170))) (((-3 (-167 (-372)) "failed") (-923 (-167 |#1|))) 15 (|has| |#1| (-170)))) (-2045 (((-167 (-372)) (-309 (-167 |#1|)) (-892)) 102 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-167 (-372)) (-309 (-167 |#1|))) 101 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-167 (-372)) (-309 |#1|) (-892)) 100 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-167 (-372)) (-309 |#1|)) 98 (-12 (|has| |#1| (-541)) (|has| |#1| (-823)))) (((-167 (-372)) (-400 (-923 (-167 |#1|))) (-892)) 93 (|has| |#1| (-541))) (((-167 (-372)) (-400 (-923 (-167 |#1|)))) 92 (|has| |#1| (-541))) (((-167 (-372)) (-400 (-923 |#1|)) (-892)) 89 (|has| |#1| (-541))) (((-167 (-372)) (-400 (-923 |#1|))) 88 (|has| |#1| (-541))) (((-167 (-372)) (-923 |#1|) (-892)) 84 (|has| |#1| (-1018))) (((-167 (-372)) (-923 |#1|)) 83 (|has| |#1| (-1018))) (((-167 (-372)) (-923 (-167 |#1|)) (-892)) 78 (|has| |#1| (-170))) (((-167 (-372)) (-923 (-167 |#1|))) 77 (|has| |#1| (-170))) (((-167 (-372)) (-167 |#1|) (-892)) 80 (|has| |#1| (-170))) (((-167 (-372)) (-167 |#1|)) 79 (|has| |#1| (-170))) (((-167 (-372)) |#1| (-892)) 27) (((-167 (-372)) |#1|) 25)))
+(((-761 |#1|) (-10 -7 (-15 -1618 ((-372) |#1|)) (-15 -1618 ((-372) |#1| (-892))) (-15 -2045 ((-167 (-372)) |#1|)) (-15 -2045 ((-167 (-372)) |#1| (-892))) (IF (|has| |#1| (-170)) (PROGN (-15 -2045 ((-167 (-372)) (-167 |#1|))) (-15 -2045 ((-167 (-372)) (-167 |#1|) (-892))) (-15 -2045 ((-167 (-372)) (-923 (-167 |#1|)))) (-15 -2045 ((-167 (-372)) (-923 (-167 |#1|)) (-892)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -1618 ((-372) (-923 |#1|))) (-15 -1618 ((-372) (-923 |#1|) (-892))) (-15 -2045 ((-167 (-372)) (-923 |#1|))) (-15 -2045 ((-167 (-372)) (-923 |#1|) (-892)))) |%noBranch|) (IF (|has| |#1| (-541)) (PROGN (-15 -1618 ((-372) (-400 (-923 |#1|)))) (-15 -1618 ((-372) (-400 (-923 |#1|)) (-892))) (-15 -2045 ((-167 (-372)) (-400 (-923 |#1|)))) (-15 -2045 ((-167 (-372)) (-400 (-923 |#1|)) (-892))) (-15 -2045 ((-167 (-372)) (-400 (-923 (-167 |#1|))))) (-15 -2045 ((-167 (-372)) (-400 (-923 (-167 |#1|))) (-892))) (IF (|has| |#1| (-823)) (PROGN (-15 -1618 ((-372) (-309 |#1|))) (-15 -1618 ((-372) (-309 |#1|) (-892))) (-15 -2045 ((-167 (-372)) (-309 |#1|))) (-15 -2045 ((-167 (-372)) (-309 |#1|) (-892))) (-15 -2045 ((-167 (-372)) (-309 (-167 |#1|)))) (-15 -2045 ((-167 (-372)) (-309 (-167 |#1|)) (-892)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -1575 ((-3 (-167 (-372)) "failed") (-923 (-167 |#1|)))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-923 (-167 |#1|)) (-892)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -1844 ((-3 (-372) "failed") (-923 |#1|))) (-15 -1844 ((-3 (-372) "failed") (-923 |#1|) (-892))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-923 |#1|))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-923 |#1|) (-892)))) |%noBranch|) (IF (|has| |#1| (-541)) (PROGN (-15 -1844 ((-3 (-372) "failed") (-400 (-923 |#1|)))) (-15 -1844 ((-3 (-372) "failed") (-400 (-923 |#1|)) (-892))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-400 (-923 |#1|)))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-400 (-923 |#1|)) (-892))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-400 (-923 (-167 |#1|))))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-400 (-923 (-167 |#1|))) (-892))) (IF (|has| |#1| (-823)) (PROGN (-15 -1844 ((-3 (-372) "failed") (-309 |#1|))) (-15 -1844 ((-3 (-372) "failed") (-309 |#1|) (-892))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-309 |#1|))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-309 |#1|) (-892))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)) (-892)))) |%noBranch|)) |%noBranch|)) (-594 (-372))) (T -761))
+((-1575 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-1575 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-541)) (-4 *4 (-823)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1575 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-1575 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1844 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823)) (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))) (-1844 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823)) (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4)))) (-1575 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-923 (-167 *5)))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-1575 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-923 (-167 *4)))) (-4 *4 (-541)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1575 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-1575 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1844 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))) (-1844 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4)))) (-1575 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-1575 (*1 *2 *3) (|partial| -12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1844 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018)) (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))) (-1844 (*1 *2 *3) (|partial| -12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4)))) (-1575 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-923 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-170)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-1575 (*1 *2 *3) (|partial| -12 (-5 *3 (-923 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-541)) (-4 *4 (-823)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1618 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823)) (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823)) (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 (-167 *5)))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 (-167 *4)))) (-4 *4 (-541)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1618 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-1618 (*1 *2 *3 *4) (-12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018)) (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *3 (-923 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-170)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-923 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *3 (-167 *5)) (-5 *4 (-892)) (-4 *5 (-170)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-5 *2 (-167 (-372))) (-5 *1 (-761 *3)) (-4 *3 (-594 (-372))))) (-2045 (*1 *2 *3) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-761 *3)) (-4 *3 (-594 (-372))))) (-1618 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-5 *2 (-372)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2)))) (-1618 (*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2)))))
+(-10 -7 (-15 -1618 ((-372) |#1|)) (-15 -1618 ((-372) |#1| (-892))) (-15 -2045 ((-167 (-372)) |#1|)) (-15 -2045 ((-167 (-372)) |#1| (-892))) (IF (|has| |#1| (-170)) (PROGN (-15 -2045 ((-167 (-372)) (-167 |#1|))) (-15 -2045 ((-167 (-372)) (-167 |#1|) (-892))) (-15 -2045 ((-167 (-372)) (-923 (-167 |#1|)))) (-15 -2045 ((-167 (-372)) (-923 (-167 |#1|)) (-892)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -1618 ((-372) (-923 |#1|))) (-15 -1618 ((-372) (-923 |#1|) (-892))) (-15 -2045 ((-167 (-372)) (-923 |#1|))) (-15 -2045 ((-167 (-372)) (-923 |#1|) (-892)))) |%noBranch|) (IF (|has| |#1| (-541)) (PROGN (-15 -1618 ((-372) (-400 (-923 |#1|)))) (-15 -1618 ((-372) (-400 (-923 |#1|)) (-892))) (-15 -2045 ((-167 (-372)) (-400 (-923 |#1|)))) (-15 -2045 ((-167 (-372)) (-400 (-923 |#1|)) (-892))) (-15 -2045 ((-167 (-372)) (-400 (-923 (-167 |#1|))))) (-15 -2045 ((-167 (-372)) (-400 (-923 (-167 |#1|))) (-892))) (IF (|has| |#1| (-823)) (PROGN (-15 -1618 ((-372) (-309 |#1|))) (-15 -1618 ((-372) (-309 |#1|) (-892))) (-15 -2045 ((-167 (-372)) (-309 |#1|))) (-15 -2045 ((-167 (-372)) (-309 |#1|) (-892))) (-15 -2045 ((-167 (-372)) (-309 (-167 |#1|)))) (-15 -2045 ((-167 (-372)) (-309 (-167 |#1|)) (-892)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -1575 ((-3 (-167 (-372)) "failed") (-923 (-167 |#1|)))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-923 (-167 |#1|)) (-892)))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-15 -1844 ((-3 (-372) "failed") (-923 |#1|))) (-15 -1844 ((-3 (-372) "failed") (-923 |#1|) (-892))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-923 |#1|))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-923 |#1|) (-892)))) |%noBranch|) (IF (|has| |#1| (-541)) (PROGN (-15 -1844 ((-3 (-372) "failed") (-400 (-923 |#1|)))) (-15 -1844 ((-3 (-372) "failed") (-400 (-923 |#1|)) (-892))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-400 (-923 |#1|)))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-400 (-923 |#1|)) (-892))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-400 (-923 (-167 |#1|))))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-400 (-923 (-167 |#1|))) (-892))) (IF (|has| |#1| (-823)) (PROGN (-15 -1844 ((-3 (-372) "failed") (-309 |#1|))) (-15 -1844 ((-3 (-372) "failed") (-309 |#1|) (-892))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-309 |#1|))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-309 |#1|) (-892))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)))) (-15 -1575 ((-3 (-167 (-372)) "failed") (-309 (-167 |#1|)) (-892)))) |%noBranch|)) |%noBranch|))
+((-3393 (((-892) (-1125)) 66)) (-2975 (((-3 (-372) "failed") (-1125)) 33)) (-1958 (((-372) (-1125)) 31)) (-3703 (((-892) (-1125)) 54)) (-3096 (((-1125) (-892)) 56)) (-3747 (((-1125) (-892)) 53)))
+(((-762) (-10 -7 (-15 -3747 ((-1125) (-892))) (-15 -3703 ((-892) (-1125))) (-15 -3096 ((-1125) (-892))) (-15 -3393 ((-892) (-1125))) (-15 -1958 ((-372) (-1125))) (-15 -2975 ((-3 (-372) "failed") (-1125))))) (T -762))
+((-2975 (*1 *2 *3) (|partial| -12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-762)))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-762)))) (-3393 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-892)) (-5 *1 (-762)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1125)) (-5 *1 (-762)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-892)) (-5 *1 (-762)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1125)) (-5 *1 (-762)))))
+(-10 -7 (-15 -3747 ((-1125) (-892))) (-15 -3703 ((-892) (-1125))) (-15 -3096 ((-1125) (-892))) (-15 -3393 ((-892) (-1125))) (-15 -1958 ((-372) (-1125))) (-15 -2975 ((-3 (-372) "failed") (-1125))))
+((-3834 (((-112) $ $) 7)) (-3868 (((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 15) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)) 13)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2389 (((-112) $ $) 6)))
+(((-763) (-138)) (T -763))
+((-1391 (*1 *2 *3 *4) (-12 (-4 *1 (-763)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006)))))) (-3868 (*1 *2 *3 *2) (-12 (-4 *1 (-763)) (-5 *2 (-1006)) (-5 *3 (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-1391 (*1 *2 *3 *4) (-12 (-4 *1 (-763)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006)))))) (-3868 (*1 *2 *3 *2) (-12 (-4 *1 (-763)) (-5 *2 (-1006)) (-5 *3 (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))))
+(-13 (-1067) (-10 -7 (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3868 ((-1006) (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219))) (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)) (|:| |extra| (-1006))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3868 ((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1006)))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3508 (((-1231) (-1226 (-372)) (-549) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3043 (-372))) (-372) (-1226 (-372)) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372))) 44) (((-1231) (-1226 (-372)) (-549) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3043 (-372))) (-372) (-1226 (-372)) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372))) 43)) (-3988 (((-1231) (-1226 (-372)) (-549) (-372) (-372) (-549) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372))) 50)) (-1280 (((-1231) (-1226 (-372)) (-549) (-372) (-372) (-372) (-372) (-549) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372))) 41)) (-1931 (((-1231) (-1226 (-372)) (-549) (-372) (-372) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372))) 52) (((-1231) (-1226 (-372)) (-549) (-372) (-372) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372))) 51)))
+(((-764) (-10 -7 (-15 -1931 ((-1231) (-1226 (-372)) (-549) (-372) (-372) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)))) (-15 -1931 ((-1231) (-1226 (-372)) (-549) (-372) (-372) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)))) (-15 -1280 ((-1231) (-1226 (-372)) (-549) (-372) (-372) (-372) (-372) (-549) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)))) (-15 -3508 ((-1231) (-1226 (-372)) (-549) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3043 (-372))) (-372) (-1226 (-372)) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)))) (-15 -3508 ((-1231) (-1226 (-372)) (-549) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3043 (-372))) (-372) (-1226 (-372)) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)))) (-15 -3988 ((-1231) (-1226 (-372)) (-549) (-372) (-372) (-549) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)))))) (T -764))
+((-3988 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1231) (-1226 *5) (-1226 *5) (-372))) (-5 *3 (-1226 (-372))) (-5 *5 (-372)) (-5 *2 (-1231)) (-5 *1 (-764)))) (-3508 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-549)) (-5 *6 (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3043 (-372)))) (-5 *7 (-1 (-1231) (-1226 *5) (-1226 *5) (-372))) (-5 *3 (-1226 (-372))) (-5 *5 (-372)) (-5 *2 (-1231)) (-5 *1 (-764)))) (-3508 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-549)) (-5 *6 (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3043 (-372)))) (-5 *7 (-1 (-1231) (-1226 *5) (-1226 *5) (-372))) (-5 *3 (-1226 (-372))) (-5 *5 (-372)) (-5 *2 (-1231)) (-5 *1 (-764)))) (-1280 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1231) (-1226 *5) (-1226 *5) (-372))) (-5 *3 (-1226 (-372))) (-5 *5 (-372)) (-5 *2 (-1231)) (-5 *1 (-764)))) (-1931 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1231) (-1226 *5) (-1226 *5) (-372))) (-5 *3 (-1226 (-372))) (-5 *5 (-372)) (-5 *2 (-1231)) (-5 *1 (-764)))) (-1931 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1231) (-1226 *5) (-1226 *5) (-372))) (-5 *3 (-1226 (-372))) (-5 *5 (-372)) (-5 *2 (-1231)) (-5 *1 (-764)))))
+(-10 -7 (-15 -1931 ((-1231) (-1226 (-372)) (-549) (-372) (-372) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)))) (-15 -1931 ((-1231) (-1226 (-372)) (-549) (-372) (-372) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)))) (-15 -1280 ((-1231) (-1226 (-372)) (-549) (-372) (-372) (-372) (-372) (-549) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)))) (-15 -3508 ((-1231) (-1226 (-372)) (-549) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3043 (-372))) (-372) (-1226 (-372)) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)))) (-15 -3508 ((-1231) (-1226 (-372)) (-549) (-372) (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3043 (-372))) (-372) (-1226 (-372)) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)) (-1226 (-372)))) (-15 -3988 ((-1231) (-1226 (-372)) (-549) (-372) (-372) (-549) (-1 (-1231) (-1226 (-372)) (-1226 (-372)) (-372)))))
+((-1406 (((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549)) 53)) (-3523 (((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549)) 31)) (-3729 (((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549)) 52)) (-3744 (((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549)) 29)) (-4033 (((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549)) 51)) (-3197 (((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549)) 19)) (-1463 (((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549)) 32)) (-4026 (((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549)) 30)) (-3242 (((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549)) 28)))
+(((-765) (-10 -7 (-15 -3242 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549))) (-15 -4026 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549))) (-15 -1463 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549))) (-15 -3197 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -3744 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -3523 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -4033 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -3729 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -1406 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))))) (T -765))
+((-1406 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-3729 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-4033 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-3523 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-3744 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-3197 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-1463 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-4026 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))) (-3242 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372)) (-5 *2 (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-765)) (-5 *5 (-549)))))
+(-10 -7 (-15 -3242 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549))) (-15 -4026 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549))) (-15 -1463 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549) (-549))) (-15 -3197 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -3744 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -3523 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -4033 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -3729 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))) (-15 -1406 ((-2 (|:| -4161 (-372)) (|:| -3042 (-372)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-372) (-372)) (-372) (-372) (-372) (-372) (-549) (-549))))
+((-3618 (((-1175 |#1|) |#1| (-219) (-549)) 46)))
+(((-766 |#1|) (-10 -7 (-15 -3618 ((-1175 |#1|) |#1| (-219) (-549)))) (-945)) (T -766))
+((-3618 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-219)) (-5 *5 (-549)) (-5 *2 (-1175 *3)) (-5 *1 (-766 *3)) (-4 *3 (-945)))))
+(-10 -7 (-15 -3618 ((-1175 |#1|) |#1| (-219) (-549))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 24)) (-2001 (((-3 $ "failed") $ $) 26)) (-1682 (($) 23 T CONST)) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3276 (($) 22 T CONST)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)) (-2500 (($ $ $) 28) (($ $) 27)) (-2486 (($ $ $) 20)) (* (($ (-892) $) 21) (($ (-747) $) 25) (($ (-549) $) 29)))
(((-767) (-138)) (T -767))
-((-2794 (*1 *1 *1 *1) (-4 *1 (-767))))
-(-13 (-769) (-10 -8 (-15 -2794 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-821) . T) ((-1063) . T))
-((-3826 (((-112) $ $) 7)) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)) (-2479 (($ $ $) 20)) (* (($ (-890) $) 21)))
+NIL
+(-13 (-771) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-823) . T) ((-1067) . T))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 24)) (-1682 (($) 23 T CONST)) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3276 (($) 22 T CONST)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)) (-2486 (($ $ $) 20)) (* (($ (-892) $) 21) (($ (-747) $) 25)))
(((-768) (-138)) (T -768))
NIL
-(-13 (-821) (-25))
-(((-25) . T) ((-101) . T) ((-591 (-832)) . T) ((-821) . T) ((-1063) . T))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 24)) (-3672 (((-3 $ "failed") $ $) 26)) (-1948 (($) 23 T CONST)) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3269 (($) 22 T CONST)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)) (-2479 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25)))
+(-13 (-770) (-23))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-593 (-834)) . T) ((-770) . T) ((-823) . T) ((-1067) . T))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 24)) (-2861 (($ $ $) 27)) (-2001 (((-3 $ "failed") $ $) 26)) (-1682 (($) 23 T CONST)) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3276 (($) 22 T CONST)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)) (-2486 (($ $ $) 20)) (* (($ (-892) $) 21) (($ (-747) $) 25)))
(((-769) (-138)) (T -769))
-NIL
-(-13 (-766) (-130))
-(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-766) . T) ((-768) . T) ((-821) . T) ((-1063) . T))
-((-1499 (((-112) $) 41)) (-2707 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2652 (((-547) $) NIL) (((-398 (-547)) $) NIL) ((|#2| $) 42)) (-4265 (((-3 (-398 (-547)) "failed") $) 78)) (-3198 (((-112) $) 72)) (-2453 (((-398 (-547)) $) 76)) (-3160 ((|#2| $) 26)) (-2790 (($ (-1 |#2| |#2|) $) 23)) (-1984 (($ $) 61)) (-2838 (((-523) $) 67)) (-3404 (($ $) 21)) (-3838 (((-832) $) 56) (($ (-547)) 39) (($ |#2|) 37) (($ (-398 (-547))) NIL)) (-2736 (((-745)) 10)) (-2255 ((|#2| $) 71)) (-2381 (((-112) $ $) 29)) (-2405 (((-112) $ $) 69)) (-2493 (($ $) 31) (($ $ $) NIL)) (-2479 (($ $ $) 30)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-770 |#1| |#2|) (-10 -8 (-15 -2405 ((-112) |#1| |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -1984 (|#1| |#1|)) (-15 -4265 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2453 ((-398 (-547)) |#1|)) (-15 -3198 ((-112) |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -3160 (|#2| |#1|)) (-15 -3404 (|#1| |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -3838 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3838 (|#1| (-547))) (-15 -2736 ((-745))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -1499 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2479 (|#1| |#1| |#1|)) (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|))) (-771 |#2|) (-169)) (T -770))
-((-2736 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-770 *3 *4)) (-4 *3 (-771 *4)))))
-(-10 -8 (-15 -2405 ((-112) |#1| |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -1984 (|#1| |#1|)) (-15 -4265 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2453 ((-398 (-547)) |#1|)) (-15 -3198 ((-112) |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -3160 (|#2| |#1|)) (-15 -3404 (|#1| |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -3838 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3838 (|#1| (-547))) (-15 -2736 ((-745))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -1499 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2479 (|#1| |#1| |#1|)) (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-3608 (((-745)) 51 (|has| |#1| (-359)))) (-1948 (($) 17 T CONST)) (-2707 (((-3 (-547) "failed") $) 92 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 90 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 88)) (-2652 (((-547) $) 93 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 91 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 87)) (-3855 (((-3 $ "failed") $) 32)) (-2139 ((|#1| $) 77)) (-4265 (((-3 (-398 (-547)) "failed") $) 64 (|has| |#1| (-532)))) (-3198 (((-112) $) 66 (|has| |#1| (-532)))) (-2453 (((-398 (-547)) $) 65 (|has| |#1| (-532)))) (-3232 (($) 54 (|has| |#1| (-359)))) (-2261 (((-112) $) 30)) (-1719 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3160 ((|#1| $) 69)) (-2856 (($ $ $) 60 (|has| |#1| (-821)))) (-3567 (($ $ $) 59 (|has| |#1| (-821)))) (-2790 (($ (-1 |#1| |#1|) $) 79)) (-2402 (((-890) $) 53 (|has| |#1| (-359)))) (-1466 (((-1119) $) 9)) (-1984 (($ $) 63 (|has| |#1| (-354)))) (-3487 (($ (-890)) 52 (|has| |#1| (-359)))) (-3179 ((|#1| $) 74)) (-1689 ((|#1| $) 75)) (-2311 ((|#1| $) 76)) (-1568 ((|#1| $) 70)) (-2546 ((|#1| $) 71)) (-2806 ((|#1| $) 72)) (-2634 ((|#1| $) 73)) (-3979 (((-1082) $) 10)) (-2679 (($ $ (-619 |#1|) (-619 |#1|)) 85 (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) 83 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) 82 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1136)) (-619 |#1|)) 81 (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-1136) |#1|) 80 (|has| |#1| (-503 (-1136) |#1|)))) (-3334 (($ $ |#1|) 86 (|has| |#1| (-277 |#1| |#1|)))) (-2838 (((-523) $) 61 (|has| |#1| (-592 (-523))))) (-3404 (($ $) 78)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35) (($ (-398 (-547))) 89 (|has| |#1| (-1007 (-398 (-547)))))) (-2220 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-2736 (((-745)) 28)) (-2255 ((|#1| $) 67 (|has| |#1| (-1025)))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2441 (((-112) $ $) 57 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 56 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 58 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 55 (|has| |#1| (-821)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-771 |#1|) (-138) (-169)) (T -771))
-((-3404 (*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2634 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2806 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-1719 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-112)))) (-2453 (*1 *2 *1) (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-398 (-547))))) (-4265 (*1 *2 *1) (|partial| -12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-398 (-547))))) (-1984 (*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-354)))))
-(-13 (-38 |t#1|) (-402 |t#1|) (-329 |t#1|) (-10 -8 (-15 -3404 ($ $)) (-15 -2139 (|t#1| $)) (-15 -2311 (|t#1| $)) (-15 -1689 (|t#1| $)) (-15 -3179 (|t#1| $)) (-15 -2634 (|t#1| $)) (-15 -2806 (|t#1| $)) (-15 -2546 (|t#1| $)) (-15 -1568 (|t#1| $)) (-15 -3160 (|t#1| $)) (-15 -1719 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-359)) (-6 (-359)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -2255 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-532)) (PROGN (-15 -3198 ((-112) $)) (-15 -2453 ((-398 (-547)) $)) (-15 -4265 ((-3 (-398 (-547)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-354)) (-15 -1984 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 |#1| $) |has| |#1| (-277 |#1| |#1|)) ((-300 |#1|) |has| |#1| (-300 |#1|)) ((-359) |has| |#1| (-359)) ((-329 |#1|) . T) ((-402 |#1|) . T) ((-503 (-1136) |#1|) |has| |#1| (-503 (-1136) |#1|)) ((-503 |#1| |#1|) |has| |#1| (-300 |#1|)) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-821) |has| |#1| (-821)) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2790 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-772 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2790 (|#3| (-1 |#4| |#2|) |#1|))) (-771 |#2|) (-169) (-771 |#4|) (-169)) (T -772))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-771 *6)) (-5 *1 (-772 *4 *5 *2 *6)) (-4 *4 (-771 *5)))))
-(-10 -7 (-15 -2790 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3608 (((-745)) NIL (|has| |#1| (-359)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL) (((-3 (-968 |#1|) "failed") $) 35) (((-3 (-547) "failed") $) NIL (-1530 (|has| (-968 |#1|) (-1007 (-547))) (|has| |#1| (-1007 (-547))))) (((-3 (-398 (-547)) "failed") $) NIL (-1530 (|has| (-968 |#1|) (-1007 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-2652 ((|#1| $) NIL) (((-968 |#1|) $) 33) (((-547) $) NIL (-1530 (|has| (-968 |#1|) (-1007 (-547))) (|has| |#1| (-1007 (-547))))) (((-398 (-547)) $) NIL (-1530 (|has| (-968 |#1|) (-1007 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-3855 (((-3 $ "failed") $) NIL)) (-2139 ((|#1| $) 16)) (-4265 (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-532)))) (-3198 (((-112) $) NIL (|has| |#1| (-532)))) (-2453 (((-398 (-547)) $) NIL (|has| |#1| (-532)))) (-3232 (($) NIL (|has| |#1| (-359)))) (-2261 (((-112) $) NIL)) (-1719 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-968 |#1|) (-968 |#1|)) 29)) (-3160 ((|#1| $) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-2402 (((-890) $) NIL (|has| |#1| (-359)))) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-354)))) (-3487 (($ (-890)) NIL (|has| |#1| (-359)))) (-3179 ((|#1| $) 22)) (-1689 ((|#1| $) 20)) (-2311 ((|#1| $) 18)) (-1568 ((|#1| $) 26)) (-2546 ((|#1| $) 25)) (-2806 ((|#1| $) 24)) (-2634 ((|#1| $) 23)) (-3979 (((-1082) $) NIL)) (-2679 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1136)) (-619 |#1|)) NIL (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-1136) |#1|) NIL (|has| |#1| (-503 (-1136) |#1|)))) (-3334 (($ $ |#1|) NIL (|has| |#1| (-277 |#1| |#1|)))) (-2838 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3404 (($ $) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-968 |#1|)) 30) (($ (-398 (-547))) NIL (-1530 (|has| (-968 |#1|) (-1007 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-2255 ((|#1| $) NIL (|has| |#1| (-1025)))) (-3269 (($) 8 T CONST)) (-3281 (($) 12 T CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-773 |#1|) (-13 (-771 |#1|) (-402 (-968 |#1|)) (-10 -8 (-15 -1719 ($ (-968 |#1|) (-968 |#1|))))) (-169)) (T -773))
-((-1719 (*1 *1 *2 *2) (-12 (-5 *2 (-968 *3)) (-4 *3 (-169)) (-5 *1 (-773 *3)))))
-(-13 (-771 |#1|) (-402 (-968 |#1|)) (-10 -8 (-15 -1719 ($ (-968 |#1|) (-968 |#1|)))))
-((-3826 (((-112) $ $) 7)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2433 (((-1004) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 13)) (-2381 (((-112) $ $) 6)))
-(((-774) (-138)) (T -774))
-((-2526 (*1 *2 *3 *4) (-12 (-4 *1 (-774)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)))))) (-2433 (*1 *2 *3) (-12 (-4 *1 (-774)) (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-1004)))))
-(-13 (-1063) (-10 -7 (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2433 ((-1004) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3753 (((-2 (|:| |particular| |#2|) (|:| -1917 (-619 |#2|))) |#3| |#2| (-1136)) 19)))
-(((-775 |#1| |#2| |#3|) (-10 -7 (-15 -3753 ((-2 (|:| |particular| |#2|) (|:| -1917 (-619 |#2|))) |#3| |#2| (-1136)))) (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)) (-13 (-29 |#1|) (-1158) (-928)) (-630 |#2|)) (T -775))
-((-3753 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1136)) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-4 *4 (-13 (-29 *6) (-1158) (-928))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1917 (-619 *4)))) (-5 *1 (-775 *6 *4 *3)) (-4 *3 (-630 *4)))))
-(-10 -7 (-15 -3753 ((-2 (|:| |particular| |#2|) (|:| -1917 (-619 |#2|))) |#3| |#2| (-1136))))
-((-3468 (((-3 |#2| "failed") |#2| (-114) (-285 |#2|) (-619 |#2|)) 28) (((-3 |#2| "failed") (-285 |#2|) (-114) (-285 |#2|) (-619 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1917 (-619 |#2|))) |#2| "failed") |#2| (-114) (-1136)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1917 (-619 |#2|))) |#2| "failed") (-285 |#2|) (-114) (-1136)) 18) (((-3 (-2 (|:| |particular| (-1219 |#2|)) (|:| -1917 (-619 (-1219 |#2|)))) "failed") (-619 |#2|) (-619 (-114)) (-1136)) 24) (((-3 (-2 (|:| |particular| (-1219 |#2|)) (|:| -1917 (-619 (-1219 |#2|)))) "failed") (-619 (-285 |#2|)) (-619 (-114)) (-1136)) 26) (((-3 (-619 (-1219 |#2|)) "failed") (-663 |#2|) (-1136)) 37) (((-3 (-2 (|:| |particular| (-1219 |#2|)) (|:| -1917 (-619 (-1219 |#2|)))) "failed") (-663 |#2|) (-1219 |#2|) (-1136)) 35)))
-(((-776 |#1| |#2|) (-10 -7 (-15 -3468 ((-3 (-2 (|:| |particular| (-1219 |#2|)) (|:| -1917 (-619 (-1219 |#2|)))) "failed") (-663 |#2|) (-1219 |#2|) (-1136))) (-15 -3468 ((-3 (-619 (-1219 |#2|)) "failed") (-663 |#2|) (-1136))) (-15 -3468 ((-3 (-2 (|:| |particular| (-1219 |#2|)) (|:| -1917 (-619 (-1219 |#2|)))) "failed") (-619 (-285 |#2|)) (-619 (-114)) (-1136))) (-15 -3468 ((-3 (-2 (|:| |particular| (-1219 |#2|)) (|:| -1917 (-619 (-1219 |#2|)))) "failed") (-619 |#2|) (-619 (-114)) (-1136))) (-15 -3468 ((-3 (-2 (|:| |particular| |#2|) (|:| -1917 (-619 |#2|))) |#2| "failed") (-285 |#2|) (-114) (-1136))) (-15 -3468 ((-3 (-2 (|:| |particular| |#2|) (|:| -1917 (-619 |#2|))) |#2| "failed") |#2| (-114) (-1136))) (-15 -3468 ((-3 |#2| "failed") (-285 |#2|) (-114) (-285 |#2|) (-619 |#2|))) (-15 -3468 ((-3 |#2| "failed") |#2| (-114) (-285 |#2|) (-619 |#2|)))) (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)) (-13 (-29 |#1|) (-1158) (-928))) (T -776))
-((-3468 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-285 *2)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1158) (-928))) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-776 *6 *2)))) (-3468 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-285 *2)) (-5 *4 (-114)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1158) (-928))) (-5 *1 (-776 *6 *2)) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))))) (-3468 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1136)) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1917 (-619 *3))) *3 "failed")) (-5 *1 (-776 *6 *3)) (-4 *3 (-13 (-29 *6) (-1158) (-928))))) (-3468 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-285 *7)) (-5 *4 (-114)) (-5 *5 (-1136)) (-4 *7 (-13 (-29 *6) (-1158) (-928))) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1917 (-619 *7))) *7 "failed")) (-5 *1 (-776 *6 *7)))) (-3468 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-1136)) (-4 *7 (-13 (-29 *6) (-1158) (-928))) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-2 (|:| |particular| (-1219 *7)) (|:| -1917 (-619 (-1219 *7))))) (-5 *1 (-776 *6 *7)))) (-3468 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-619 (-285 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-1136)) (-4 *7 (-13 (-29 *6) (-1158) (-928))) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-2 (|:| |particular| (-1219 *7)) (|:| -1917 (-619 (-1219 *7))))) (-5 *1 (-776 *6 *7)))) (-3468 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-663 *6)) (-5 *4 (-1136)) (-4 *6 (-13 (-29 *5) (-1158) (-928))) (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-1219 *6))) (-5 *1 (-776 *5 *6)))) (-3468 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-663 *7)) (-5 *5 (-1136)) (-4 *7 (-13 (-29 *6) (-1158) (-928))) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-2 (|:| |particular| (-1219 *7)) (|:| -1917 (-619 (-1219 *7))))) (-5 *1 (-776 *6 *7)) (-5 *4 (-1219 *7)))))
-(-10 -7 (-15 -3468 ((-3 (-2 (|:| |particular| (-1219 |#2|)) (|:| -1917 (-619 (-1219 |#2|)))) "failed") (-663 |#2|) (-1219 |#2|) (-1136))) (-15 -3468 ((-3 (-619 (-1219 |#2|)) "failed") (-663 |#2|) (-1136))) (-15 -3468 ((-3 (-2 (|:| |particular| (-1219 |#2|)) (|:| -1917 (-619 (-1219 |#2|)))) "failed") (-619 (-285 |#2|)) (-619 (-114)) (-1136))) (-15 -3468 ((-3 (-2 (|:| |particular| (-1219 |#2|)) (|:| -1917 (-619 (-1219 |#2|)))) "failed") (-619 |#2|) (-619 (-114)) (-1136))) (-15 -3468 ((-3 (-2 (|:| |particular| |#2|) (|:| -1917 (-619 |#2|))) |#2| "failed") (-285 |#2|) (-114) (-1136))) (-15 -3468 ((-3 (-2 (|:| |particular| |#2|) (|:| -1917 (-619 |#2|))) |#2| "failed") |#2| (-114) (-1136))) (-15 -3468 ((-3 |#2| "failed") (-285 |#2|) (-114) (-285 |#2|) (-619 |#2|))) (-15 -3468 ((-3 |#2| "failed") |#2| (-114) (-285 |#2|) (-619 |#2|))))
-((-2570 (($) 9)) (-3370 (((-3 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))) "failed") (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 31)) (-3441 (((-619 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) $) 28)) (-2657 (($ (-2 (|:| -3331 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))))) 25)) (-2566 (($ (-619 (-2 (|:| -3331 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))))))) 23)) (-3854 (((-1224)) 12)))
-(((-777) (-10 -8 (-15 -2570 ($)) (-15 -3854 ((-1224))) (-15 -3441 ((-619 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) $)) (-15 -2566 ($ (-619 (-2 (|:| -3331 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))))))) (-15 -2657 ($ (-2 (|:| -3331 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))))))) (-15 -3370 ((-3 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))) "failed") (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) (T -777))
-((-3370 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))) (-5 *1 (-777)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3331 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))))) (-5 *1 (-777)))) (-2566 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3331 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))))))) (-5 *1 (-777)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-5 *1 (-777)))) (-3854 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-777)))) (-2570 (*1 *1) (-5 *1 (-777))))
-(-10 -8 (-15 -2570 ($)) (-15 -3854 ((-1224))) (-15 -3441 ((-619 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) $)) (-15 -2566 ($ (-619 (-2 (|:| -3331 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))))))) (-15 -2657 ($ (-2 (|:| -3331 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1786 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))))))) (-15 -3370 ((-3 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))) "failed") (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))
-((-2011 ((|#2| |#2| (-1136)) 16)) (-2013 ((|#2| |#2| (-1136)) 51)) (-4256 (((-1 |#2| |#2|) (-1136)) 11)))
-(((-778 |#1| |#2|) (-10 -7 (-15 -2011 (|#2| |#2| (-1136))) (-15 -2013 (|#2| |#2| (-1136))) (-15 -4256 ((-1 |#2| |#2|) (-1136)))) (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)) (-13 (-29 |#1|) (-1158) (-928))) (T -778))
-((-4256 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-778 *4 *5)) (-4 *5 (-13 (-29 *4) (-1158) (-928))))) (-2013 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1158) (-928))))) (-2011 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1158) (-928))))))
-(-10 -7 (-15 -2011 (|#2| |#2| (-1136))) (-15 -2013 (|#2| |#2| (-1136))) (-15 -4256 ((-1 |#2| |#2|) (-1136))))
-((-3468 (((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-619 (-370)) (-370) (-370)) 116) (((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-619 (-370)) (-370)) 117) (((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-619 (-370)) (-370)) 119) (((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-370)) 120) (((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-370)) 121) (((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370))) 122) (((-1004) (-782) (-1028)) 108) (((-1004) (-782)) 109)) (-2526 (((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-782) (-1028)) 75) (((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-782)) 77)))
-(((-779) (-10 -7 (-15 -3468 ((-1004) (-782))) (-15 -3468 ((-1004) (-782) (-1028))) (-15 -3468 ((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)))) (-15 -3468 ((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-370))) (-15 -3468 ((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-370))) (-15 -3468 ((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-619 (-370)) (-370))) (-15 -3468 ((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-619 (-370)) (-370))) (-15 -3468 ((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-619 (-370)) (-370) (-370))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-782))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-782) (-1028))))) (T -779))
-((-2526 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))))) (-5 *1 (-779)))) (-2526 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))))) (-5 *1 (-779)))) (-3468 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1219 (-307 *4))) (-5 *5 (-619 (-370))) (-5 *6 (-307 (-370))) (-5 *4 (-370)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3468 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1219 (-307 *4))) (-5 *5 (-619 (-370))) (-5 *6 (-307 (-370))) (-5 *4 (-370)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3468 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1219 (-307 (-370)))) (-5 *4 (-370)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3468 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1219 (-307 *4))) (-5 *5 (-619 (-370))) (-5 *6 (-307 (-370))) (-5 *4 (-370)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3468 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1219 (-307 (-370)))) (-5 *4 (-370)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3468 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1219 (-307 (-370)))) (-5 *4 (-370)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1004)) (-5 *1 (-779)))))
-(-10 -7 (-15 -3468 ((-1004) (-782))) (-15 -3468 ((-1004) (-782) (-1028))) (-15 -3468 ((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)))) (-15 -3468 ((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-370))) (-15 -3468 ((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-370))) (-15 -3468 ((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-619 (-370)) (-370))) (-15 -3468 ((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-619 (-370)) (-370))) (-15 -3468 ((-1004) (-1219 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-619 (-370)) (-370) (-370))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-782))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-782) (-1028))))
-((-3244 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1917 (-619 |#4|))) (-627 |#4|) |#4|) 35)))
-(((-780 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3244 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1917 (-619 |#4|))) (-627 |#4|) |#4|))) (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))) (-1195 |#1|) (-1195 (-398 |#2|)) (-333 |#1| |#2| |#3|)) (T -780))
-((-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *4)) (-4 *4 (-333 *5 *6 *7)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *6 (-1195 *5)) (-4 *7 (-1195 (-398 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4)))) (-5 *1 (-780 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3244 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1917 (-619 |#4|))) (-627 |#4|) |#4|)))
-((-3076 (((-2 (|:| -2644 |#3|) (|:| |rh| (-619 (-398 |#2|)))) |#4| (-619 (-398 |#2|))) 52)) (-3186 (((-619 (-2 (|:| -2591 |#2|) (|:| -2384 |#2|))) |#4| |#2|) 60) (((-619 (-2 (|:| -2591 |#2|) (|:| -2384 |#2|))) |#4|) 59) (((-619 (-2 (|:| -2591 |#2|) (|:| -2384 |#2|))) |#3| |#2|) 20) (((-619 (-2 (|:| -2591 |#2|) (|:| -2384 |#2|))) |#3|) 21)) (-4249 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3568 ((|#2| |#3| (-619 (-398 |#2|))) 93) (((-3 |#2| "failed") |#3| (-398 |#2|)) 90)))
-(((-781 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3568 ((-3 |#2| "failed") |#3| (-398 |#2|))) (-15 -3568 (|#2| |#3| (-619 (-398 |#2|)))) (-15 -3186 ((-619 (-2 (|:| -2591 |#2|) (|:| -2384 |#2|))) |#3|)) (-15 -3186 ((-619 (-2 (|:| -2591 |#2|) (|:| -2384 |#2|))) |#3| |#2|)) (-15 -4249 (|#2| |#3| |#1|)) (-15 -3186 ((-619 (-2 (|:| -2591 |#2|) (|:| -2384 |#2|))) |#4|)) (-15 -3186 ((-619 (-2 (|:| -2591 |#2|) (|:| -2384 |#2|))) |#4| |#2|)) (-15 -4249 (|#2| |#4| |#1|)) (-15 -3076 ((-2 (|:| -2644 |#3|) (|:| |rh| (-619 (-398 |#2|)))) |#4| (-619 (-398 |#2|))))) (-13 (-354) (-145) (-1007 (-398 (-547)))) (-1195 |#1|) (-630 |#2|) (-630 (-398 |#2|))) (T -781))
-((-3076 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *6 (-1195 *5)) (-5 *2 (-2 (|:| -2644 *7) (|:| |rh| (-619 (-398 *6))))) (-5 *1 (-781 *5 *6 *7 *3)) (-5 *4 (-619 (-398 *6))) (-4 *7 (-630 *6)) (-4 *3 (-630 (-398 *6))))) (-4249 (*1 *2 *3 *4) (-12 (-4 *2 (-1195 *4)) (-5 *1 (-781 *4 *2 *5 *3)) (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-630 *2)) (-4 *3 (-630 (-398 *2))))) (-3186 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *4 (-1195 *5)) (-5 *2 (-619 (-2 (|:| -2591 *4) (|:| -2384 *4)))) (-5 *1 (-781 *5 *4 *6 *3)) (-4 *6 (-630 *4)) (-4 *3 (-630 (-398 *4))))) (-3186 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-1195 *4)) (-5 *2 (-619 (-2 (|:| -2591 *5) (|:| -2384 *5)))) (-5 *1 (-781 *4 *5 *6 *3)) (-4 *6 (-630 *5)) (-4 *3 (-630 (-398 *5))))) (-4249 (*1 *2 *3 *4) (-12 (-4 *2 (-1195 *4)) (-5 *1 (-781 *4 *2 *3 *5)) (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2)) (-4 *5 (-630 (-398 *2))))) (-3186 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *4 (-1195 *5)) (-5 *2 (-619 (-2 (|:| -2591 *4) (|:| -2384 *4)))) (-5 *1 (-781 *5 *4 *3 *6)) (-4 *3 (-630 *4)) (-4 *6 (-630 (-398 *4))))) (-3186 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-1195 *4)) (-5 *2 (-619 (-2 (|:| -2591 *5) (|:| -2384 *5)))) (-5 *1 (-781 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-630 (-398 *5))))) (-3568 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-398 *2))) (-4 *2 (-1195 *5)) (-5 *1 (-781 *5 *2 *3 *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2)) (-4 *6 (-630 (-398 *2))))) (-3568 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-398 *2)) (-4 *2 (-1195 *5)) (-5 *1 (-781 *5 *2 *3 *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2)) (-4 *6 (-630 *4)))))
-(-10 -7 (-15 -3568 ((-3 |#2| "failed") |#3| (-398 |#2|))) (-15 -3568 (|#2| |#3| (-619 (-398 |#2|)))) (-15 -3186 ((-619 (-2 (|:| -2591 |#2|) (|:| -2384 |#2|))) |#3|)) (-15 -3186 ((-619 (-2 (|:| -2591 |#2|) (|:| -2384 |#2|))) |#3| |#2|)) (-15 -4249 (|#2| |#3| |#1|)) (-15 -3186 ((-619 (-2 (|:| -2591 |#2|) (|:| -2384 |#2|))) |#4|)) (-15 -3186 ((-619 (-2 (|:| -2591 |#2|) (|:| -2384 |#2|))) |#4| |#2|)) (-15 -4249 (|#2| |#4| |#1|)) (-15 -3076 ((-2 (|:| -2644 |#3|) (|:| |rh| (-619 (-398 |#2|)))) |#4| (-619 (-398 |#2|)))))
-((-3826 (((-112) $ $) NIL)) (-2652 (((-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) $) 13)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 15) (($ (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 12)) (-2381 (((-112) $ $) NIL)))
-(((-782) (-13 (-1063) (-10 -8 (-15 -3838 ($ (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3838 ((-832) $)) (-15 -2652 ((-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) $))))) (T -782))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-782)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *1 (-782)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *1 (-782)))))
-(-13 (-1063) (-10 -8 (-15 -3838 ($ (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3838 ((-832) $)) (-15 -2652 ((-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) $))))
-((-3373 (((-619 (-2 (|:| |frac| (-398 |#2|)) (|:| -2644 |#3|))) |#3| (-1 (-619 |#2|) |#2| (-1132 |#2|)) (-1 (-409 |#2|) |#2|)) 118)) (-2573 (((-619 (-2 (|:| |poly| |#2|) (|:| -2644 |#3|))) |#3| (-1 (-619 |#1|) |#2|)) 46)) (-3003 (((-619 (-2 (|:| |deg| (-745)) (|:| -2644 |#2|))) |#3|) 95)) (-2439 ((|#2| |#3|) 37)) (-2673 (((-619 (-2 (|:| -2582 |#1|) (|:| -2644 |#3|))) |#3| (-1 (-619 |#1|) |#2|)) 82)) (-3140 ((|#3| |#3| (-398 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
-(((-783 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2439 (|#2| |#3|)) (-15 -3003 ((-619 (-2 (|:| |deg| (-745)) (|:| -2644 |#2|))) |#3|)) (-15 -2673 ((-619 (-2 (|:| -2582 |#1|) (|:| -2644 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -2573 ((-619 (-2 (|:| |poly| |#2|) (|:| -2644 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -3373 ((-619 (-2 (|:| |frac| (-398 |#2|)) (|:| -2644 |#3|))) |#3| (-1 (-619 |#2|) |#2| (-1132 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -3140 (|#3| |#3| |#2|)) (-15 -3140 (|#3| |#3| (-398 |#2|)))) (-13 (-354) (-145) (-1007 (-398 (-547)))) (-1195 |#1|) (-630 |#2|) (-630 (-398 |#2|))) (T -783))
-((-3140 (*1 *2 *2 *3) (-12 (-5 *3 (-398 *5)) (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-1195 *4)) (-5 *1 (-783 *4 *5 *2 *6)) (-4 *2 (-630 *5)) (-4 *6 (-630 *3)))) (-3140 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-1195 *4)) (-5 *1 (-783 *4 *3 *2 *5)) (-4 *2 (-630 *3)) (-4 *5 (-630 (-398 *3))))) (-3373 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-619 *7) *7 (-1132 *7))) (-5 *5 (-1 (-409 *7) *7)) (-4 *7 (-1195 *6)) (-4 *6 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-5 *2 (-619 (-2 (|:| |frac| (-398 *7)) (|:| -2644 *3)))) (-5 *1 (-783 *6 *7 *3 *8)) (-4 *3 (-630 *7)) (-4 *8 (-630 (-398 *7))))) (-2573 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *6 (-1195 *5)) (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2644 *3)))) (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) (-4 *7 (-630 (-398 *6))))) (-2673 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *6 (-1195 *5)) (-5 *2 (-619 (-2 (|:| -2582 *5) (|:| -2644 *3)))) (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) (-4 *7 (-630 (-398 *6))))) (-3003 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-1195 *4)) (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -2644 *5)))) (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-630 (-398 *5))))) (-2439 (*1 *2 *3) (-12 (-4 *2 (-1195 *4)) (-5 *1 (-783 *4 *2 *3 *5)) (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2)) (-4 *5 (-630 (-398 *2))))))
-(-10 -7 (-15 -2439 (|#2| |#3|)) (-15 -3003 ((-619 (-2 (|:| |deg| (-745)) (|:| -2644 |#2|))) |#3|)) (-15 -2673 ((-619 (-2 (|:| -2582 |#1|) (|:| -2644 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -2573 ((-619 (-2 (|:| |poly| |#2|) (|:| -2644 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -3373 ((-619 (-2 (|:| |frac| (-398 |#2|)) (|:| -2644 |#3|))) |#3| (-1 (-619 |#2|) |#2| (-1132 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -3140 (|#3| |#3| |#2|)) (-15 -3140 (|#3| |#3| (-398 |#2|))))
-((-2750 (((-2 (|:| -1917 (-619 (-398 |#2|))) (|:| -1877 (-663 |#1|))) (-628 |#2| (-398 |#2|)) (-619 (-398 |#2|))) 121) (((-2 (|:| |particular| (-3 (-398 |#2|) "failed")) (|:| -1917 (-619 (-398 |#2|)))) (-628 |#2| (-398 |#2|)) (-398 |#2|)) 120) (((-2 (|:| -1917 (-619 (-398 |#2|))) (|:| -1877 (-663 |#1|))) (-627 (-398 |#2|)) (-619 (-398 |#2|))) 115) (((-2 (|:| |particular| (-3 (-398 |#2|) "failed")) (|:| -1917 (-619 (-398 |#2|)))) (-627 (-398 |#2|)) (-398 |#2|)) 113)) (-3871 ((|#2| (-628 |#2| (-398 |#2|))) 80) ((|#2| (-627 (-398 |#2|))) 83)))
-(((-784 |#1| |#2|) (-10 -7 (-15 -2750 ((-2 (|:| |particular| (-3 (-398 |#2|) "failed")) (|:| -1917 (-619 (-398 |#2|)))) (-627 (-398 |#2|)) (-398 |#2|))) (-15 -2750 ((-2 (|:| -1917 (-619 (-398 |#2|))) (|:| -1877 (-663 |#1|))) (-627 (-398 |#2|)) (-619 (-398 |#2|)))) (-15 -2750 ((-2 (|:| |particular| (-3 (-398 |#2|) "failed")) (|:| -1917 (-619 (-398 |#2|)))) (-628 |#2| (-398 |#2|)) (-398 |#2|))) (-15 -2750 ((-2 (|:| -1917 (-619 (-398 |#2|))) (|:| -1877 (-663 |#1|))) (-628 |#2| (-398 |#2|)) (-619 (-398 |#2|)))) (-15 -3871 (|#2| (-627 (-398 |#2|)))) (-15 -3871 (|#2| (-628 |#2| (-398 |#2|))))) (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))) (-1195 |#1|)) (T -784))
-((-3871 (*1 *2 *3) (-12 (-5 *3 (-628 *2 (-398 *2))) (-4 *2 (-1195 *4)) (-5 *1 (-784 *4 *2)) (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-627 (-398 *2))) (-4 *2 (-1195 *4)) (-5 *1 (-784 *4 *2)) (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-398 *6))) (-4 *6 (-1195 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-2 (|:| -1917 (-619 (-398 *6))) (|:| -1877 (-663 *5)))) (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-398 *6))))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-398 *6))) (-5 *4 (-398 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4)))) (-5 *1 (-784 *5 *6)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-398 *6))) (-4 *6 (-1195 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-2 (|:| -1917 (-619 (-398 *6))) (|:| -1877 (-663 *5)))) (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-398 *6))))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-398 *6))) (-5 *4 (-398 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4)))) (-5 *1 (-784 *5 *6)))))
-(-10 -7 (-15 -2750 ((-2 (|:| |particular| (-3 (-398 |#2|) "failed")) (|:| -1917 (-619 (-398 |#2|)))) (-627 (-398 |#2|)) (-398 |#2|))) (-15 -2750 ((-2 (|:| -1917 (-619 (-398 |#2|))) (|:| -1877 (-663 |#1|))) (-627 (-398 |#2|)) (-619 (-398 |#2|)))) (-15 -2750 ((-2 (|:| |particular| (-3 (-398 |#2|) "failed")) (|:| -1917 (-619 (-398 |#2|)))) (-628 |#2| (-398 |#2|)) (-398 |#2|))) (-15 -2750 ((-2 (|:| -1917 (-619 (-398 |#2|))) (|:| -1877 (-663 |#1|))) (-628 |#2| (-398 |#2|)) (-619 (-398 |#2|)))) (-15 -3871 (|#2| (-627 (-398 |#2|)))) (-15 -3871 (|#2| (-628 |#2| (-398 |#2|)))))
-((-2427 (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#1|))) |#5| |#4|) 48)))
-(((-785 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2427 ((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#1|))) |#5| |#4|))) (-354) (-630 |#1|) (-1195 |#1|) (-699 |#1| |#3|) (-630 |#4|)) (T -785))
-((-2427 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *7 (-1195 *5)) (-4 *4 (-699 *5 *7)) (-5 *2 (-2 (|:| -1877 (-663 *6)) (|:| |vec| (-1219 *5)))) (-5 *1 (-785 *5 *6 *7 *4 *3)) (-4 *6 (-630 *5)) (-4 *3 (-630 *4)))))
-(-10 -7 (-15 -2427 ((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#1|))) |#5| |#4|)))
-((-3373 (((-619 (-2 (|:| |frac| (-398 |#2|)) (|:| -2644 (-628 |#2| (-398 |#2|))))) (-628 |#2| (-398 |#2|)) (-1 (-409 |#2|) |#2|)) 47)) (-1816 (((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-409 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|))) 138 (|has| |#1| (-27))) (((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-409 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-619 (-398 |#2|)) (-627 (-398 |#2|))) 140 (|has| |#1| (-27))) (((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-409 |#2|) |#2|)) 38) (((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|)) 39) (((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-409 |#2|) |#2|)) 36) (((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|)) 37)) (-2573 (((-619 (-2 (|:| |poly| |#2|) (|:| -2644 (-628 |#2| (-398 |#2|))))) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|)) 83)))
-(((-786 |#1| |#2|) (-10 -7 (-15 -1816 ((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -1816 ((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-409 |#2|) |#2|))) (-15 -1816 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -1816 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-409 |#2|) |#2|))) (-15 -3373 ((-619 (-2 (|:| |frac| (-398 |#2|)) (|:| -2644 (-628 |#2| (-398 |#2|))))) (-628 |#2| (-398 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -2573 ((-619 (-2 (|:| |poly| |#2|) (|:| -2644 (-628 |#2| (-398 |#2|))))) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1816 ((-619 (-398 |#2|)) (-627 (-398 |#2|)))) (-15 -1816 ((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -1816 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)))) (-15 -1816 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-409 |#2|) |#2|)))) |%noBranch|)) (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))) (-1195 |#1|)) (T -786))
-((-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-398 *6))) (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1195 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-628 *5 (-398 *5))) (-4 *5 (-1195 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-619 (-398 *5))) (-5 *1 (-786 *4 *5)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-398 *6))) (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1195 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-627 (-398 *5))) (-4 *5 (-1195 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-619 (-398 *5))) (-5 *1 (-786 *4 *5)))) (-2573 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *6 (-1195 *5)) (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2644 (-628 *6 (-398 *6)))))) (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-398 *6))))) (-3373 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1195 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-619 (-2 (|:| |frac| (-398 *6)) (|:| -2644 (-628 *6 (-398 *6)))))) (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-398 *6))))) (-1816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *7 (-398 *7))) (-5 *4 (-1 (-619 *6) *7)) (-5 *5 (-1 (-409 *7) *7)) (-4 *6 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *7 (-1195 *6)) (-5 *2 (-619 (-398 *7))) (-5 *1 (-786 *6 *7)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-398 *6))) (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *6 (-1195 *5)) (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6)))) (-1816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-398 *7))) (-5 *4 (-1 (-619 *6) *7)) (-5 *5 (-1 (-409 *7) *7)) (-4 *6 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *7 (-1195 *6)) (-5 *2 (-619 (-398 *7))) (-5 *1 (-786 *6 *7)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-398 *6))) (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *6 (-1195 *5)) (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6)))))
-(-10 -7 (-15 -1816 ((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -1816 ((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-409 |#2|) |#2|))) (-15 -1816 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -1816 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-409 |#2|) |#2|))) (-15 -3373 ((-619 (-2 (|:| |frac| (-398 |#2|)) (|:| -2644 (-628 |#2| (-398 |#2|))))) (-628 |#2| (-398 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -2573 ((-619 (-2 (|:| |poly| |#2|) (|:| -2644 (-628 |#2| (-398 |#2|))))) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1816 ((-619 (-398 |#2|)) (-627 (-398 |#2|)))) (-15 -1816 ((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -1816 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)))) (-15 -1816 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-409 |#2|) |#2|)))) |%noBranch|))
-((-3919 (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#1|))) (-663 |#2|) (-1219 |#1|)) 85) (((-2 (|:| A (-663 |#1|)) (|:| |eqs| (-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1219 |#1|)) (|:| -2644 |#2|) (|:| |rh| |#1|))))) (-663 |#1|) (-1219 |#1|)) 15)) (-2904 (((-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|)))) (-663 |#2|) (-1219 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1917 (-619 |#1|))) |#2| |#1|)) 92)) (-3468 (((-3 (-2 (|:| |particular| (-1219 |#1|)) (|:| -1917 (-663 |#1|))) "failed") (-663 |#1|) (-1219 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1917 (-619 |#1|))) "failed") |#2| |#1|)) 43)))
-(((-787 |#1| |#2|) (-10 -7 (-15 -3919 ((-2 (|:| A (-663 |#1|)) (|:| |eqs| (-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1219 |#1|)) (|:| -2644 |#2|) (|:| |rh| |#1|))))) (-663 |#1|) (-1219 |#1|))) (-15 -3919 ((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#1|))) (-663 |#2|) (-1219 |#1|))) (-15 -3468 ((-3 (-2 (|:| |particular| (-1219 |#1|)) (|:| -1917 (-663 |#1|))) "failed") (-663 |#1|) (-1219 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1917 (-619 |#1|))) "failed") |#2| |#1|))) (-15 -2904 ((-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|)))) (-663 |#2|) (-1219 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1917 (-619 |#1|))) |#2| |#1|)))) (-354) (-630 |#1|)) (T -787))
-((-2904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1917 (-619 *6))) *7 *6)) (-4 *6 (-354)) (-4 *7 (-630 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1219 *6) "failed")) (|:| -1917 (-619 (-1219 *6))))) (-5 *1 (-787 *6 *7)) (-5 *4 (-1219 *6)))) (-3468 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1917 (-619 *6))) "failed") *7 *6)) (-4 *6 (-354)) (-4 *7 (-630 *6)) (-5 *2 (-2 (|:| |particular| (-1219 *6)) (|:| -1917 (-663 *6)))) (-5 *1 (-787 *6 *7)) (-5 *3 (-663 *6)) (-5 *4 (-1219 *6)))) (-3919 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *6 (-630 *5)) (-5 *2 (-2 (|:| -1877 (-663 *6)) (|:| |vec| (-1219 *5)))) (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *6)) (-5 *4 (-1219 *5)))) (-3919 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-5 *2 (-2 (|:| A (-663 *5)) (|:| |eqs| (-619 (-2 (|:| C (-663 *5)) (|:| |g| (-1219 *5)) (|:| -2644 *6) (|:| |rh| *5)))))) (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *5)) (-5 *4 (-1219 *5)) (-4 *6 (-630 *5)))))
-(-10 -7 (-15 -3919 ((-2 (|:| A (-663 |#1|)) (|:| |eqs| (-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1219 |#1|)) (|:| -2644 |#2|) (|:| |rh| |#1|))))) (-663 |#1|) (-1219 |#1|))) (-15 -3919 ((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#1|))) (-663 |#2|) (-1219 |#1|))) (-15 -3468 ((-3 (-2 (|:| |particular| (-1219 |#1|)) (|:| -1917 (-663 |#1|))) "failed") (-663 |#1|) (-1219 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1917 (-619 |#1|))) "failed") |#2| |#1|))) (-15 -2904 ((-2 (|:| |particular| (-3 (-1219 |#1|) "failed")) (|:| -1917 (-619 (-1219 |#1|)))) (-663 |#2|) (-1219 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1917 (-619 |#1|))) |#2| |#1|))))
-((-2444 (((-663 |#1|) (-619 |#1|) (-745)) 13) (((-663 |#1|) (-619 |#1|)) 14)) (-2140 (((-3 (-1219 |#1|) "failed") |#2| |#1| (-619 |#1|)) 34)) (-2723 (((-3 |#1| "failed") |#2| |#1| (-619 |#1|) (-1 |#1| |#1|)) 42)))
-(((-788 |#1| |#2|) (-10 -7 (-15 -2444 ((-663 |#1|) (-619 |#1|))) (-15 -2444 ((-663 |#1|) (-619 |#1|) (-745))) (-15 -2140 ((-3 (-1219 |#1|) "failed") |#2| |#1| (-619 |#1|))) (-15 -2723 ((-3 |#1| "failed") |#2| |#1| (-619 |#1|) (-1 |#1| |#1|)))) (-354) (-630 |#1|)) (T -788))
-((-2723 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-619 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-354)) (-5 *1 (-788 *2 *3)) (-4 *3 (-630 *2)))) (-2140 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-619 *4)) (-4 *4 (-354)) (-5 *2 (-1219 *4)) (-5 *1 (-788 *4 *3)) (-4 *3 (-630 *4)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-354)) (-5 *2 (-663 *5)) (-5 *1 (-788 *5 *6)) (-4 *6 (-630 *5)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-354)) (-5 *2 (-663 *4)) (-5 *1 (-788 *4 *5)) (-4 *5 (-630 *4)))))
-(-10 -7 (-15 -2444 ((-663 |#1|) (-619 |#1|))) (-15 -2444 ((-663 |#1|) (-619 |#1|) (-745))) (-15 -2140 ((-3 (-1219 |#1|) "failed") |#2| |#1| (-619 |#1|))) (-15 -2723 ((-3 |#1| "failed") |#2| |#1| (-619 |#1|) (-1 |#1| |#1|))))
-((-3826 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-1499 (((-112) $) NIL (|has| |#2| (-130)))) (-4289 (($ (-890)) NIL (|has| |#2| (-1016)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2794 (($ $ $) NIL (|has| |#2| (-767)))) (-3672 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3899 (((-112) $ (-745)) NIL)) (-3608 (((-745)) NIL (|has| |#2| (-359)))) (-2500 (((-547) $) NIL (|has| |#2| (-819)))) (-2247 ((|#2| $ (-547) |#2|) NIL (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1063)))) (-2652 (((-547) $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-398 (-547)) $) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) ((|#2| $) NIL (|has| |#2| (-1063)))) (-1694 (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) NIL (|has| |#2| (-1016)))) (-3855 (((-3 $ "failed") $) NIL (|has| |#2| (-701)))) (-3232 (($) NIL (|has| |#2| (-359)))) (-1872 ((|#2| $ (-547) |#2|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#2| $ (-547)) NIL)) (-4270 (((-112) $) NIL (|has| |#2| (-819)))) (-2982 (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2261 (((-112) $) NIL (|has| |#2| (-701)))) (-1860 (((-112) $) NIL (|has| |#2| (-819)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2284 (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-1859 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#2| |#2|) $) NIL)) (-2402 (((-890) $) NIL (|has| |#2| (-359)))) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#2| (-1063)))) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3487 (($ (-890)) NIL (|has| |#2| (-359)))) (-3979 (((-1082) $) NIL (|has| |#2| (-1063)))) (-3638 ((|#2| $) NIL (|has| (-547) (-821)))) (-3632 (($ $ |#2|) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2987 (((-619 |#2|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#2| $ (-547) |#2|) NIL) ((|#2| $ (-547)) NIL)) (-4117 ((|#2| $ $) NIL (|has| |#2| (-1016)))) (-2162 (($ (-1219 |#2|)) NIL)) (-3970 (((-133)) NIL (|has| |#2| (-354)))) (-3448 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1136)) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-3992 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-1219 |#2|) $) NIL) (($ (-547)) NIL (-1530 (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-398 (-547))) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (($ |#2|) NIL (|has| |#2| (-1063))) (((-832) $) NIL (|has| |#2| (-591 (-832))))) (-2736 (((-745)) NIL (|has| |#2| (-1016)))) (-2693 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2255 (($ $) NIL (|has| |#2| (-819)))) (-3269 (($) NIL (|has| |#2| (-130)) CONST)) (-3281 (($) NIL (|has| |#2| (-701)) CONST)) (-1695 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1136)) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1136))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-2441 (((-112) $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2418 (((-112) $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2381 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-2430 (((-112) $ $) NIL (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2405 (((-112) $ $) 11 (-1530 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2506 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2493 (($ $ $) NIL (|has| |#2| (-1016))) (($ $) NIL (|has| |#2| (-1016)))) (-2479 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-745)) NIL (|has| |#2| (-701))) (($ $ (-890)) NIL (|has| |#2| (-701)))) (* (($ (-547) $) NIL (|has| |#2| (-1016))) (($ $ $) NIL (|has| |#2| (-701))) (($ $ |#2|) NIL (|has| |#2| (-701))) (($ |#2| $) NIL (|has| |#2| (-701))) (($ (-745) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-789 |#1| |#2| |#3|) (-230 |#1| |#2|) (-745) (-767) (-1 (-112) (-1219 |#2|) (-1219 |#2|))) (T -789))
-NIL
-(-230 |#1| |#2|)
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3839 (((-619 (-745)) $) NIL) (((-619 (-745)) $ (-1136)) NIL)) (-2601 (((-745) $) NIL) (((-745) $ (-1136)) NIL)) (-2267 (((-619 (-792 (-1136))) $) NIL)) (-2078 (((-1132 $) $ (-792 (-1136))) NIL) (((-1132 |#1|) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 (-792 (-1136)))) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2555 (($ $) NIL (|has| |#1| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2234 (($ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-792 (-1136)) "failed") $) NIL) (((-3 (-1136) "failed") $) NIL) (((-3 (-1087 |#1| (-1136)) "failed") $) NIL)) (-2652 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-792 (-1136)) $) NIL) (((-1136) $) NIL) (((-1087 |#1| (-1136)) $) NIL)) (-1496 (($ $ $ (-792 (-1136))) NIL (|has| |#1| (-169)))) (-2063 (($ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#1| (-442))) (($ $ (-792 (-1136))) NIL (|has| |#1| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#1| (-878)))) (-3210 (($ $ |#1| (-519 (-792 (-1136))) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-792 (-1136)) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-792 (-1136)) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3275 (((-745) $ (-1136)) NIL) (((-745) $) NIL)) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-2254 (($ (-1132 |#1|) (-792 (-1136))) NIL) (($ (-1132 $) (-792 (-1136))) NIL)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-519 (-792 (-1136)))) NIL) (($ $ (-792 (-1136)) (-745)) NIL) (($ $ (-619 (-792 (-1136))) (-619 (-745))) NIL)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ (-792 (-1136))) NIL)) (-3095 (((-519 (-792 (-1136))) $) NIL) (((-745) $ (-792 (-1136))) NIL) (((-619 (-745)) $ (-619 (-792 (-1136)))) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-4182 (($ (-1 (-519 (-792 (-1136))) (-519 (-792 (-1136)))) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-1 $ (-745)) (-1136)) NIL) (((-1 $ (-745)) $) NIL (|has| |#1| (-225)))) (-1631 (((-3 (-792 (-1136)) "failed") $) NIL)) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-4044 (((-792 (-1136)) $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1466 (((-1119) $) NIL)) (-2578 (((-112) $) NIL)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-792 (-1136))) (|:| -3322 (-745))) "failed") $) NIL)) (-2250 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) NIL)) (-2009 ((|#1| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-878)))) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-792 (-1136)) |#1|) NIL) (($ $ (-619 (-792 (-1136))) (-619 |#1|)) NIL) (($ $ (-792 (-1136)) $) NIL) (($ $ (-619 (-792 (-1136))) (-619 $)) NIL) (($ $ (-1136) $) NIL (|has| |#1| (-225))) (($ $ (-619 (-1136)) (-619 $)) NIL (|has| |#1| (-225))) (($ $ (-1136) |#1|) NIL (|has| |#1| (-225))) (($ $ (-619 (-1136)) (-619 |#1|)) NIL (|has| |#1| (-225)))) (-4056 (($ $ (-792 (-1136))) NIL (|has| |#1| (-169)))) (-3448 (($ $ (-792 (-1136))) NIL) (($ $ (-619 (-792 (-1136)))) NIL) (($ $ (-792 (-1136)) (-745)) NIL) (($ $ (-619 (-792 (-1136))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2924 (((-619 (-1136)) $) NIL)) (-3705 (((-519 (-792 (-1136))) $) NIL) (((-745) $ (-792 (-1136))) NIL) (((-619 (-745)) $ (-619 (-792 (-1136)))) NIL) (((-745) $ (-1136)) NIL)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| (-792 (-1136)) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-792 (-1136)) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-792 (-1136)) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-2392 ((|#1| $) NIL (|has| |#1| (-442))) (($ $ (-792 (-1136))) NIL (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-792 (-1136))) NIL) (($ (-1136)) NIL) (($ (-1087 |#1| (-1136))) NIL) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-519 (-792 (-1136)))) NIL) (($ $ (-792 (-1136)) (-745)) NIL) (($ $ (-619 (-792 (-1136))) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-792 (-1136))) NIL) (($ $ (-619 (-792 (-1136)))) NIL) (($ $ (-792 (-1136)) (-745)) NIL) (($ $ (-619 (-792 (-1136))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-790 |#1|) (-13 (-244 |#1| (-1136) (-792 (-1136)) (-519 (-792 (-1136)))) (-1007 (-1087 |#1| (-1136)))) (-1016)) (T -790))
-NIL
-(-13 (-244 |#1| (-1136) (-792 (-1136)) (-519 (-792 (-1136)))) (-1007 (-1087 |#1| (-1136))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#2| (-354)))) (-3571 (($ $) NIL (|has| |#2| (-354)))) (-3915 (((-112) $) NIL (|has| |#2| (-354)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL (|has| |#2| (-354)))) (-3299 (((-409 $) $) NIL (|has| |#2| (-354)))) (-1547 (((-112) $ $) NIL (|has| |#2| (-354)))) (-1948 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#2| (-354)))) (-3855 (((-3 $ "failed") $) NIL)) (-2061 (($ $ $) NIL (|has| |#2| (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#2| (-354)))) (-1791 (((-112) $) NIL (|has| |#2| (-354)))) (-2261 (((-112) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-354)))) (-3689 (($ (-619 $)) NIL (|has| |#2| (-354))) (($ $ $) NIL (|has| |#2| (-354)))) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 20 (|has| |#2| (-354)))) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#2| (-354)))) (-3719 (($ (-619 $)) NIL (|has| |#2| (-354))) (($ $ $) NIL (|has| |#2| (-354)))) (-2115 (((-409 $) $) NIL (|has| |#2| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#2| (-354)))) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#2| (-354)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-354)))) (-2471 (((-745) $) NIL (|has| |#2| (-354)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#2| (-354)))) (-3448 (($ $ (-745)) NIL) (($ $) 13)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-398 (-547))) NIL (|has| |#2| (-354))) (($ $) NIL (|has| |#2| (-354)))) (-2736 (((-745)) NIL)) (-3577 (((-112) $ $) NIL (|has| |#2| (-354)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-745)) NIL) (($ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) 15 (|has| |#2| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL) (($ $ (-547)) 18 (|has| |#2| (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-398 (-547)) $) NIL (|has| |#2| (-354))) (($ $ (-398 (-547))) NIL (|has| |#2| (-354)))))
-(((-791 |#1| |#2| |#3|) (-13 (-111 $ $) (-225) (-10 -8 (IF (|has| |#2| (-354)) (-6 (-354)) |%noBranch|) (-15 -3838 ($ |#2|)) (-15 -3838 (|#2| $)))) (-1063) (-869 |#1|) |#1|) (T -791))
-((-3838 (*1 *1 *2) (-12 (-4 *3 (-1063)) (-14 *4 *3) (-5 *1 (-791 *3 *2 *4)) (-4 *2 (-869 *3)))) (-3838 (*1 *2 *1) (-12 (-4 *2 (-869 *3)) (-5 *1 (-791 *3 *2 *4)) (-4 *3 (-1063)) (-14 *4 *3))))
-(-13 (-111 $ $) (-225) (-10 -8 (IF (|has| |#2| (-354)) (-6 (-354)) |%noBranch|) (-15 -3838 ($ |#2|)) (-15 -3838 (|#2| $))))
-((-3826 (((-112) $ $) NIL)) (-2601 (((-745) $) NIL)) (-3004 ((|#1| $) 10)) (-2707 (((-3 |#1| "failed") $) NIL)) (-2652 ((|#1| $) NIL)) (-3275 (((-745) $) 11)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2026 (($ |#1| (-745)) 9)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3448 (($ $) NIL) (($ $ (-745)) NIL)) (-3838 (((-832) $) NIL) (($ |#1|) NIL)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) NIL)))
-(((-792 |#1|) (-257 |#1|) (-821)) (T -792))
-NIL
-(-257 |#1|)
-((-3826 (((-112) $ $) NIL)) (-3297 (((-619 |#1|) $) 29)) (-3608 (((-745) $) NIL)) (-1948 (($) NIL T CONST)) (-3085 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2707 (((-3 |#1| "failed") $) NIL)) (-2652 ((|#1| $) NIL)) (-3649 (($ $) 31)) (-3855 (((-3 $ "failed") $) NIL)) (-1793 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2261 (((-112) $) NIL)) (-1607 ((|#1| $ (-547)) NIL)) (-3602 (((-745) $ (-547)) NIL)) (-2961 (($ $) 36)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-3982 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3449 (((-112) $ $) 34)) (-4202 (((-745) $) 25)) (-1466 (((-1119) $) NIL)) (-2587 (($ $ $) NIL)) (-2292 (($ $ $) NIL)) (-3979 (((-1082) $) NIL)) (-3638 ((|#1| $) 30)) (-2534 (((-619 (-2 (|:| |gen| |#1|) (|:| -2712 (-745)))) $) NIL)) (-2048 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3838 (((-832) $) NIL) (($ |#1|) NIL)) (-3281 (($) 15 T CONST)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 35)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ |#1| (-745)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-793 |#1|) (-13 (-817) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -3638 (|#1| $)) (-15 -3649 ($ $)) (-15 -2961 ($ $)) (-15 -3449 ((-112) $ $)) (-15 -2292 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -3982 ((-3 $ "failed") $ $)) (-15 -3085 ((-3 $ "failed") $ $)) (-15 -3982 ((-3 $ "failed") $ |#1|)) (-15 -3085 ((-3 $ "failed") $ |#1|)) (-15 -2048 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1793 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3608 ((-745) $)) (-15 -3602 ((-745) $ (-547))) (-15 -1607 (|#1| $ (-547))) (-15 -2534 ((-619 (-2 (|:| |gen| |#1|) (|:| -2712 (-745)))) $)) (-15 -4202 ((-745) $)) (-15 -3297 ((-619 |#1|) $)))) (-821)) (T -793))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3638 (*1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3649 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2961 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3449 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-2292 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2587 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3982 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3085 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3982 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3085 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2048 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-793 *3)) (|:| |rm| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-1793 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-793 *3)) (|:| |mm| (-793 *3)) (|:| |rm| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3602 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-745)) (-5 *1 (-793 *4)) (-4 *4 (-821)))) (-1607 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2712 (-745))))) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-793 *3)) (-4 *3 (-821)))))
-(-13 (-817) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -3638 (|#1| $)) (-15 -3649 ($ $)) (-15 -2961 ($ $)) (-15 -3449 ((-112) $ $)) (-15 -2292 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -3982 ((-3 $ "failed") $ $)) (-15 -3085 ((-3 $ "failed") $ $)) (-15 -3982 ((-3 $ "failed") $ |#1|)) (-15 -3085 ((-3 $ "failed") $ |#1|)) (-15 -2048 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1793 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3608 ((-745) $)) (-15 -3602 ((-745) $ (-547))) (-15 -1607 (|#1| $ (-547))) (-15 -2534 ((-619 (-2 (|:| |gen| |#1|) (|:| -2712 (-745)))) $)) (-15 -4202 ((-745) $)) (-15 -3297 ((-619 |#1|) $))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-2500 (((-547) $) 51)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-4270 (((-112) $) 49)) (-2261 (((-112) $) 30)) (-1860 (((-112) $) 50)) (-2856 (($ $ $) 48)) (-3567 (($ $ $) 47)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2032 (((-3 $ "failed") $ $) 40)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-2255 (($ $) 52)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2441 (((-112) $ $) 45)) (-2418 (((-112) $ $) 44)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 46)) (-2405 (((-112) $ $) 43)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-794) (-138)) (T -794))
-NIL
-(-13 (-539) (-819))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-1512 (($ (-1082)) 7)) (-3371 (((-112) $ (-1119) (-1082)) 15)) (-2364 (((-796) $) 12)) (-4247 (((-796) $) 11)) (-2150 (((-1224) $) 9)) (-1565 (((-112) $ (-1082)) 16)))
-(((-795) (-10 -8 (-15 -1512 ($ (-1082))) (-15 -2150 ((-1224) $)) (-15 -4247 ((-796) $)) (-15 -2364 ((-796) $)) (-15 -3371 ((-112) $ (-1119) (-1082))) (-15 -1565 ((-112) $ (-1082))))) (T -795))
-((-1565 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-112)) (-5 *1 (-795)))) (-3371 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1119)) (-5 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-795)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795)))) (-4247 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-795)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-795)))))
-(-10 -8 (-15 -1512 ($ (-1082))) (-15 -2150 ((-1224) $)) (-15 -4247 ((-796) $)) (-15 -2364 ((-796) $)) (-15 -3371 ((-112) $ (-1119) (-1082))) (-15 -1565 ((-112) $ (-1082))))
-((-2389 (((-1224) $ (-797)) 12)) (-2034 (((-1224) $ (-1136)) 32)) (-1525 (((-1224) $ (-1119) (-1119)) 34)) (-1360 (((-1224) $ (-1119)) 33)) (-2948 (((-1224) $) 19)) (-2621 (((-1224) $ (-547)) 28)) (-2325 (((-1224) $ (-217)) 30)) (-4219 (((-1224) $) 18)) (-1966 (((-1224) $) 26)) (-3704 (((-1224) $) 25)) (-2653 (((-1224) $) 23)) (-2590 (((-1224) $) 24)) (-2425 (((-1224) $) 22)) (-2689 (((-1224) $) 21)) (-3103 (((-1224) $) 20)) (-4257 (((-1224) $) 16)) (-3473 (((-1224) $) 17)) (-1654 (((-1224) $) 15)) (-1985 (((-1224) $) 14)) (-2280 (((-1224) $) 13)) (-2599 (($ (-1119) (-797)) 9)) (-3508 (($ (-1119) (-1119) (-797)) 8)) (-4127 (((-1136) $) 51)) (-1776 (((-1136) $) 55)) (-3174 (((-2 (|:| |cd| (-1119)) (|:| -2473 (-1119))) $) 54)) (-3153 (((-1119) $) 52)) (-3792 (((-1224) $) 41)) (-3963 (((-547) $) 49)) (-2326 (((-217) $) 50)) (-3921 (((-1224) $) 40)) (-2071 (((-1224) $) 48)) (-1401 (((-1224) $) 47)) (-3959 (((-1224) $) 45)) (-1605 (((-1224) $) 46)) (-2513 (((-1224) $) 44)) (-1942 (((-1224) $) 43)) (-4133 (((-1224) $) 42)) (-3386 (((-1224) $) 38)) (-4122 (((-1224) $) 39)) (-1414 (((-1224) $) 37)) (-1739 (((-1224) $) 36)) (-4034 (((-1224) $) 35)) (-3774 (((-1224) $) 11)))
-(((-796) (-10 -8 (-15 -3508 ($ (-1119) (-1119) (-797))) (-15 -2599 ($ (-1119) (-797))) (-15 -3774 ((-1224) $)) (-15 -2389 ((-1224) $ (-797))) (-15 -2280 ((-1224) $)) (-15 -1985 ((-1224) $)) (-15 -1654 ((-1224) $)) (-15 -4257 ((-1224) $)) (-15 -3473 ((-1224) $)) (-15 -4219 ((-1224) $)) (-15 -2948 ((-1224) $)) (-15 -3103 ((-1224) $)) (-15 -2689 ((-1224) $)) (-15 -2425 ((-1224) $)) (-15 -2653 ((-1224) $)) (-15 -2590 ((-1224) $)) (-15 -3704 ((-1224) $)) (-15 -1966 ((-1224) $)) (-15 -2621 ((-1224) $ (-547))) (-15 -2325 ((-1224) $ (-217))) (-15 -2034 ((-1224) $ (-1136))) (-15 -1360 ((-1224) $ (-1119))) (-15 -1525 ((-1224) $ (-1119) (-1119))) (-15 -4034 ((-1224) $)) (-15 -1739 ((-1224) $)) (-15 -1414 ((-1224) $)) (-15 -3386 ((-1224) $)) (-15 -4122 ((-1224) $)) (-15 -3921 ((-1224) $)) (-15 -3792 ((-1224) $)) (-15 -4133 ((-1224) $)) (-15 -1942 ((-1224) $)) (-15 -2513 ((-1224) $)) (-15 -3959 ((-1224) $)) (-15 -1605 ((-1224) $)) (-15 -1401 ((-1224) $)) (-15 -2071 ((-1224) $)) (-15 -3963 ((-547) $)) (-15 -2326 ((-217) $)) (-15 -4127 ((-1136) $)) (-15 -3153 ((-1119) $)) (-15 -3174 ((-2 (|:| |cd| (-1119)) (|:| -2473 (-1119))) $)) (-15 -1776 ((-1136) $)))) (T -796))
-((-1776 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-796)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1119)) (|:| -2473 (-1119)))) (-5 *1 (-796)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-796)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-796)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-796)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-796)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-3792 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-1525 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-796)))) (-1360 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-796)))) (-2034 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-796)))) (-2325 (*1 *2 *1 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1224)) (-5 *1 (-796)))) (-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-796)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-2425 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-1985 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-2389 (*1 *2 *1 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1224)) (-5 *1 (-796)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))) (-2599 (*1 *1 *2 *3) (-12 (-5 *2 (-1119)) (-5 *3 (-797)) (-5 *1 (-796)))) (-3508 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1119)) (-5 *3 (-797)) (-5 *1 (-796)))))
-(-10 -8 (-15 -3508 ($ (-1119) (-1119) (-797))) (-15 -2599 ($ (-1119) (-797))) (-15 -3774 ((-1224) $)) (-15 -2389 ((-1224) $ (-797))) (-15 -2280 ((-1224) $)) (-15 -1985 ((-1224) $)) (-15 -1654 ((-1224) $)) (-15 -4257 ((-1224) $)) (-15 -3473 ((-1224) $)) (-15 -4219 ((-1224) $)) (-15 -2948 ((-1224) $)) (-15 -3103 ((-1224) $)) (-15 -2689 ((-1224) $)) (-15 -2425 ((-1224) $)) (-15 -2653 ((-1224) $)) (-15 -2590 ((-1224) $)) (-15 -3704 ((-1224) $)) (-15 -1966 ((-1224) $)) (-15 -2621 ((-1224) $ (-547))) (-15 -2325 ((-1224) $ (-217))) (-15 -2034 ((-1224) $ (-1136))) (-15 -1360 ((-1224) $ (-1119))) (-15 -1525 ((-1224) $ (-1119) (-1119))) (-15 -4034 ((-1224) $)) (-15 -1739 ((-1224) $)) (-15 -1414 ((-1224) $)) (-15 -3386 ((-1224) $)) (-15 -4122 ((-1224) $)) (-15 -3921 ((-1224) $)) (-15 -3792 ((-1224) $)) (-15 -4133 ((-1224) $)) (-15 -1942 ((-1224) $)) (-15 -2513 ((-1224) $)) (-15 -3959 ((-1224) $)) (-15 -1605 ((-1224) $)) (-15 -1401 ((-1224) $)) (-15 -2071 ((-1224) $)) (-15 -3963 ((-547) $)) (-15 -2326 ((-217) $)) (-15 -4127 ((-1136) $)) (-15 -3153 ((-1119) $)) (-15 -3174 ((-2 (|:| |cd| (-1119)) (|:| -2473 (-1119))) $)) (-15 -1776 ((-1136) $)))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 12)) (-2801 (($) 15)) (-3122 (($) 13)) (-2324 (($) 16)) (-3053 (($) 14)) (-2381 (((-112) $ $) 8)))
-(((-797) (-13 (-1063) (-10 -8 (-15 -3122 ($)) (-15 -2801 ($)) (-15 -2324 ($)) (-15 -3053 ($))))) (T -797))
-((-3122 (*1 *1) (-5 *1 (-797))) (-2801 (*1 *1) (-5 *1 (-797))) (-2324 (*1 *1) (-5 *1 (-797))) (-3053 (*1 *1) (-5 *1 (-797))))
-(-13 (-1063) (-10 -8 (-15 -3122 ($)) (-15 -2801 ($)) (-15 -2324 ($)) (-15 -3053 ($))))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 21) (($ (-1136)) 17)) (-2477 (((-112) $) 10)) (-2111 (((-112) $) 9)) (-3623 (((-112) $) 11)) (-4046 (((-112) $) 8)) (-2381 (((-112) $ $) 19)))
-(((-798) (-13 (-1063) (-10 -8 (-15 -3838 ($ (-1136))) (-15 -4046 ((-112) $)) (-15 -2111 ((-112) $)) (-15 -2477 ((-112) $)) (-15 -3623 ((-112) $))))) (T -798))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-798)))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))) (-2111 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))) (-2477 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))))
-(-13 (-1063) (-10 -8 (-15 -3838 ($ (-1136))) (-15 -4046 ((-112) $)) (-15 -2111 ((-112) $)) (-15 -2477 ((-112) $)) (-15 -3623 ((-112) $))))
-((-3826 (((-112) $ $) NIL)) (-3486 (($ (-798) (-619 (-1136))) 24)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3978 (((-798) $) 25)) (-2643 (((-619 (-1136)) $) 26)) (-3838 (((-832) $) 23)) (-2381 (((-112) $ $) NIL)))
-(((-799) (-13 (-1063) (-10 -8 (-15 -3978 ((-798) $)) (-15 -2643 ((-619 (-1136)) $)) (-15 -3486 ($ (-798) (-619 (-1136))))))) (T -799))
-((-3978 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-799)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-799)))) (-3486 (*1 *1 *2 *3) (-12 (-5 *2 (-798)) (-5 *3 (-619 (-1136))) (-5 *1 (-799)))))
-(-13 (-1063) (-10 -8 (-15 -3978 ((-798) $)) (-15 -2643 ((-619 (-1136)) $)) (-15 -3486 ($ (-798) (-619 (-1136))))))
-((-2273 (((-1224) (-796) (-307 |#1|) (-112)) 23) (((-1224) (-796) (-307 |#1|)) 79) (((-1119) (-307 |#1|) (-112)) 78) (((-1119) (-307 |#1|)) 77)))
-(((-800 |#1|) (-10 -7 (-15 -2273 ((-1119) (-307 |#1|))) (-15 -2273 ((-1119) (-307 |#1|) (-112))) (-15 -2273 ((-1224) (-796) (-307 |#1|))) (-15 -2273 ((-1224) (-796) (-307 |#1|) (-112)))) (-13 (-802) (-821) (-1016))) (T -800))
-((-2273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-796)) (-5 *4 (-307 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-802) (-821) (-1016))) (-5 *2 (-1224)) (-5 *1 (-800 *6)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *3 (-796)) (-5 *4 (-307 *5)) (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1224)) (-5 *1 (-800 *5)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1119)) (-5 *1 (-800 *5)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-13 (-802) (-821) (-1016))) (-5 *2 (-1119)) (-5 *1 (-800 *4)))))
-(-10 -7 (-15 -2273 ((-1119) (-307 |#1|))) (-15 -2273 ((-1119) (-307 |#1|) (-112))) (-15 -2273 ((-1224) (-796) (-307 |#1|))) (-15 -2273 ((-1224) (-796) (-307 |#1|) (-112))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2531 ((|#1| $) 10)) (-2714 (($ |#1|) 9)) (-2261 (((-112) $) NIL)) (-2238 (($ |#2| (-745)) NIL)) (-3095 (((-745) $) NIL)) (-2037 ((|#2| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3448 (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $) NIL (|has| |#1| (-225)))) (-3705 (((-745) $) NIL)) (-3838 (((-832) $) 17) (($ (-547)) NIL) (($ |#2|) NIL (|has| |#2| (-169)))) (-2450 ((|#2| $ (-745)) NIL)) (-2736 (((-745)) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $) NIL (|has| |#1| (-225)))) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-801 |#1| |#2|) (-13 (-683 |#2|) (-10 -8 (IF (|has| |#1| (-225)) (-6 (-225)) |%noBranch|) (-15 -2714 ($ |#1|)) (-15 -2531 (|#1| $)))) (-683 |#2|) (-1016)) (T -801))
-((-2714 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-801 *2 *3)) (-4 *2 (-683 *3)))) (-2531 (*1 *2 *1) (-12 (-4 *2 (-683 *3)) (-5 *1 (-801 *2 *3)) (-4 *3 (-1016)))))
-(-13 (-683 |#2|) (-10 -8 (IF (|has| |#1| (-225)) (-6 (-225)) |%noBranch|) (-15 -2714 ($ |#1|)) (-15 -2531 (|#1| $))))
-((-2273 (((-1224) (-796) $ (-112)) 9) (((-1224) (-796) $) 8) (((-1119) $ (-112)) 7) (((-1119) $) 6)))
-(((-802) (-138)) (T -802))
-((-2273 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *4 (-112)) (-5 *2 (-1224)))) (-2273 (*1 *2 *3 *1) (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *2 (-1224)))) (-2273 (*1 *2 *1 *3) (-12 (-4 *1 (-802)) (-5 *3 (-112)) (-5 *2 (-1119)))) (-2273 (*1 *2 *1) (-12 (-4 *1 (-802)) (-5 *2 (-1119)))))
-(-13 (-10 -8 (-15 -2273 ((-1119) $)) (-15 -2273 ((-1119) $ (-112))) (-15 -2273 ((-1224) (-796) $)) (-15 -2273 ((-1224) (-796) $ (-112)))))
-((-3918 (((-303) (-1119) (-1119)) 12)) (-3223 (((-112) (-1119) (-1119)) 34)) (-3446 (((-112) (-1119)) 33)) (-2066 (((-52) (-1119)) 25)) (-2421 (((-52) (-1119)) 23)) (-2495 (((-52) (-796)) 17)) (-1766 (((-619 (-1119)) (-1119)) 28)) (-3922 (((-619 (-1119))) 27)))
-(((-803) (-10 -7 (-15 -2495 ((-52) (-796))) (-15 -2421 ((-52) (-1119))) (-15 -2066 ((-52) (-1119))) (-15 -3922 ((-619 (-1119)))) (-15 -1766 ((-619 (-1119)) (-1119))) (-15 -3446 ((-112) (-1119))) (-15 -3223 ((-112) (-1119) (-1119))) (-15 -3918 ((-303) (-1119) (-1119))))) (T -803))
-((-3918 (*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-303)) (-5 *1 (-803)))) (-3223 (*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-803)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-803)))) (-1766 (*1 *2 *3) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-803)) (-5 *3 (-1119)))) (-3922 (*1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-803)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-52)) (-5 *1 (-803)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-52)) (-5 *1 (-803)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-52)) (-5 *1 (-803)))))
-(-10 -7 (-15 -2495 ((-52) (-796))) (-15 -2421 ((-52) (-1119))) (-15 -2066 ((-52) (-1119))) (-15 -3922 ((-619 (-1119)))) (-15 -1766 ((-619 (-1119)) (-1119))) (-15 -3446 ((-112) (-1119))) (-15 -3223 ((-112) (-1119) (-1119))) (-15 -3918 ((-303) (-1119) (-1119))))
-((-3826 (((-112) $ $) 19)) (-1435 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2984 (($ $ $) 72)) (-1361 (((-112) $ $) 73)) (-3899 (((-112) $ (-745)) 8)) (-2782 (($ (-619 |#1|)) 68) (($) 67)) (-4285 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-2968 (($ $) 62)) (-3668 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1513 (($ |#1| $) 47 (|has| $ (-6 -4329))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4329)))) (-3803 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4329)))) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2841 (((-112) $ $) 64)) (-2763 (((-112) $ (-745)) 9)) (-2856 ((|#1| $) 78)) (-3145 (($ $ $) 81)) (-2777 (($ $ $) 80)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3567 ((|#1| $) 79)) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22)) (-3594 (($ $ $) 69)) (-4266 ((|#1| $) 39)) (-2657 (($ |#1| $) 40) (($ |#1| $ (-745)) 63)) (-3979 (((-1082) $) 21)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2056 ((|#1| $) 41)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3941 (((-619 (-2 (|:| -1786 |#1|) (|:| -3992 (-745)))) $) 61)) (-1832 (($ $ |#1|) 71) (($ $ $) 70)) (-2699 (($) 49) (($ (-619 |#1|)) 48)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-2838 (((-523) $) 59 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 50)) (-3838 (((-832) $) 18)) (-4112 (($ (-619 |#1|)) 66) (($) 65)) (-2300 (($ (-619 |#1|)) 42)) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20)) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-804 |#1|) (-138) (-821)) (T -804))
-((-2856 (*1 *2 *1) (-12 (-4 *1 (-804 *2)) (-4 *2 (-821)))))
-(-13 (-711 |t#1|) (-937 |t#1|) (-10 -8 (-15 -2856 (|t#1| $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-591 (-832)) . T) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-227 |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-669 |#1|) . T) ((-711 |#1|) . T) ((-937 |#1|) . T) ((-1061 |#1|) . T) ((-1063) . T) ((-1173) . T))
-((-3416 (((-1224) (-1082) (-1082)) 47)) (-3712 (((-1224) (-795) (-52)) 44)) (-2731 (((-52) (-795)) 16)))
-(((-805) (-10 -7 (-15 -2731 ((-52) (-795))) (-15 -3712 ((-1224) (-795) (-52))) (-15 -3416 ((-1224) (-1082) (-1082))))) (T -805))
-((-3416 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1224)) (-5 *1 (-805)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *3 (-795)) (-5 *4 (-52)) (-5 *2 (-1224)) (-5 *1 (-805)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-52)) (-5 *1 (-805)))))
-(-10 -7 (-15 -2731 ((-52) (-795))) (-15 -3712 ((-1224) (-795) (-52))) (-15 -3416 ((-1224) (-1082) (-1082))))
-((-2790 (((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|) (-807 |#2|)) 12) (((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|)) 13)))
-(((-806 |#1| |#2|) (-10 -7 (-15 -2790 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|))) (-15 -2790 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|) (-807 |#2|)))) (-1063) (-1063)) (T -806))
-((-2790 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *1 (-806 *5 *6)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-807 *6)) (-5 *1 (-806 *5 *6)))))
-(-10 -7 (-15 -2790 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|))) (-15 -2790 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|) (-807 |#2|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL (|has| |#1| (-21)))) (-3672 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2500 (((-547) $) NIL (|has| |#1| (-819)))) (-1948 (($) NIL (|has| |#1| (-21)) CONST)) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 15)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 9)) (-3855 (((-3 $ "failed") $) 40 (|has| |#1| (-819)))) (-4265 (((-3 (-398 (-547)) "failed") $) 49 (|has| |#1| (-532)))) (-3198 (((-112) $) 43 (|has| |#1| (-532)))) (-2453 (((-398 (-547)) $) 46 (|has| |#1| (-532)))) (-4270 (((-112) $) NIL (|has| |#1| (-819)))) (-2261 (((-112) $) NIL (|has| |#1| (-819)))) (-1860 (((-112) $) NIL (|has| |#1| (-819)))) (-2856 (($ $ $) NIL (|has| |#1| (-819)))) (-3567 (($ $ $) NIL (|has| |#1| (-819)))) (-1466 (((-1119) $) NIL)) (-1431 (($) 13)) (-1672 (((-112) $) 12)) (-3979 (((-1082) $) NIL)) (-1621 (((-112) $) 11)) (-3838 (((-832) $) 18) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) 8) (($ (-547)) NIL (-1530 (|has| |#1| (-819)) (|has| |#1| (-1007 (-547)))))) (-2736 (((-745)) 34 (|has| |#1| (-819)))) (-2255 (($ $) NIL (|has| |#1| (-819)))) (-3269 (($) 22 (|has| |#1| (-21)) CONST)) (-3281 (($) 31 (|has| |#1| (-819)) CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2381 (((-112) $ $) 20)) (-2430 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2405 (((-112) $ $) 42 (|has| |#1| (-819)))) (-2493 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2479 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-890)) NIL (|has| |#1| (-819))) (($ $ (-745)) NIL (|has| |#1| (-819)))) (* (($ $ $) 37 (|has| |#1| (-819))) (($ (-547) $) 25 (|has| |#1| (-21))) (($ (-745) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-21)))))
-(((-807 |#1|) (-13 (-1063) (-402 |#1|) (-10 -8 (-15 -1431 ($)) (-15 -1621 ((-112) $)) (-15 -1672 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-532)) (PROGN (-15 -3198 ((-112) $)) (-15 -2453 ((-398 (-547)) $)) (-15 -4265 ((-3 (-398 (-547)) "failed") $))) |%noBranch|))) (-1063)) (T -807))
-((-1431 (*1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1063)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-532)) (-4 *3 (-1063)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-807 *3)) (-4 *3 (-532)) (-4 *3 (-1063)))) (-4265 (*1 *2 *1) (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-807 *3)) (-4 *3 (-532)) (-4 *3 (-1063)))))
-(-13 (-1063) (-402 |#1|) (-10 -8 (-15 -1431 ($)) (-15 -1621 ((-112) $)) (-15 -1672 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-532)) (PROGN (-15 -3198 ((-112) $)) (-15 -2453 ((-398 (-547)) $)) (-15 -4265 ((-3 (-398 (-547)) "failed") $))) |%noBranch|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2652 ((|#1| $) NIL) (((-114) $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2594 ((|#1| (-114) |#1|) NIL)) (-2261 (((-112) $) NIL)) (-2339 (($ |#1| (-352 (-114))) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2454 (($ $ (-1 |#1| |#1|)) NIL)) (-1834 (($ $ (-1 |#1| |#1|)) NIL)) (-3334 ((|#1| $ |#1|) NIL)) (-3519 ((|#1| |#1|) NIL (|has| |#1| (-169)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-3045 (($ $) NIL (|has| |#1| (-169))) (($ $ $) NIL (|has| |#1| (-169)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ (-114) (-547)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169)))))
-(((-808 |#1|) (-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-277 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -3045 ($ $)) (-15 -3045 ($ $ $)) (-15 -3519 (|#1| |#1|))) |%noBranch|) (-15 -1834 ($ $ (-1 |#1| |#1|))) (-15 -2454 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-547))) (-15 ** ($ $ (-547))) (-15 -2594 (|#1| (-114) |#1|)) (-15 -2339 ($ |#1| (-352 (-114)))))) (-1016)) (T -808))
-((-3045 (*1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) (-3045 (*1 *1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) (-3519 (*1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) (-1834 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3)))) (-2454 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-547)) (-5 *1 (-808 *4)) (-4 *4 (-1016)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-808 *3)) (-4 *3 (-1016)))) (-2594 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-808 *2)) (-4 *2 (-1016)))) (-2339 (*1 *1 *2 *3) (-12 (-5 *3 (-352 (-114))) (-5 *1 (-808 *2)) (-4 *2 (-1016)))))
-(-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-277 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -3045 ($ $)) (-15 -3045 ($ $ $)) (-15 -3519 (|#1| |#1|))) |%noBranch|) (-15 -1834 ($ $ (-1 |#1| |#1|))) (-15 -2454 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-547))) (-15 ** ($ $ (-547))) (-15 -2594 (|#1| (-114) |#1|)) (-15 -2339 ($ |#1| (-352 (-114))))))
-((-3747 (((-206 (-491)) (-1119)) 9)))
-(((-809) (-10 -7 (-15 -3747 ((-206 (-491)) (-1119))))) (T -809))
-((-3747 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-206 (-491))) (-5 *1 (-809)))))
-(-10 -7 (-15 -3747 ((-206 (-491)) (-1119))))
-((-3826 (((-112) $ $) 7)) (-2567 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) 14) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 13)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 16) (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) 15)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2381 (((-112) $ $) 6)))
-(((-810) (-138)) (T -810))
-((-2526 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (-5 *2 (-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)))))) (-2526 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) (-5 *2 (-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)))))) (-2567 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) (-5 *2 (-1004)))) (-2567 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (-5 *2 (-1004)))))
-(-13 (-1063) (-10 -7 (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))) (-15 -2567 ((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))) (-15 -2567 ((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-1511 (((-1004) (-619 (-307 (-370))) (-619 (-370))) 147) (((-1004) (-307 (-370)) (-619 (-370))) 145) (((-1004) (-307 (-370)) (-619 (-370)) (-619 (-814 (-370))) (-619 (-814 (-370)))) 144) (((-1004) (-307 (-370)) (-619 (-370)) (-619 (-814 (-370))) (-619 (-307 (-370))) (-619 (-814 (-370)))) 143) (((-1004) (-812)) 117) (((-1004) (-812) (-1028)) 116)) (-2526 (((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-812) (-1028)) 82) (((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-812)) 84)) (-2862 (((-1004) (-619 (-307 (-370))) (-619 (-370))) 148) (((-1004) (-812)) 133)))
-(((-811) (-10 -7 (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-812))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-812) (-1028))) (-15 -1511 ((-1004) (-812) (-1028))) (-15 -1511 ((-1004) (-812))) (-15 -2862 ((-1004) (-812))) (-15 -1511 ((-1004) (-307 (-370)) (-619 (-370)) (-619 (-814 (-370))) (-619 (-307 (-370))) (-619 (-814 (-370))))) (-15 -1511 ((-1004) (-307 (-370)) (-619 (-370)) (-619 (-814 (-370))) (-619 (-814 (-370))))) (-15 -1511 ((-1004) (-307 (-370)) (-619 (-370)))) (-15 -1511 ((-1004) (-619 (-307 (-370))) (-619 (-370)))) (-15 -2862 ((-1004) (-619 (-307 (-370))) (-619 (-370)))))) (T -811))
-((-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-307 (-370)))) (-5 *4 (-619 (-370))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1511 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-307 (-370)))) (-5 *4 (-619 (-370))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1511 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-370))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1511 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-370))) (-5 *5 (-619 (-814 (-370)))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1511 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-619 (-370))) (-5 *5 (-619 (-814 (-370)))) (-5 *6 (-619 (-307 (-370)))) (-5 *3 (-307 (-370))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1511 (*1 *2 *3 *4) (-12 (-5 *3 (-812)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-811)))) (-2526 (*1 *2 *3 *4) (-12 (-5 *3 (-812)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))))) (-5 *1 (-811)))) (-2526 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))))) (-5 *1 (-811)))))
-(-10 -7 (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-812))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-812) (-1028))) (-15 -1511 ((-1004) (-812) (-1028))) (-15 -1511 ((-1004) (-812))) (-15 -2862 ((-1004) (-812))) (-15 -1511 ((-1004) (-307 (-370)) (-619 (-370)) (-619 (-814 (-370))) (-619 (-307 (-370))) (-619 (-814 (-370))))) (-15 -1511 ((-1004) (-307 (-370)) (-619 (-370)) (-619 (-814 (-370))) (-619 (-814 (-370))))) (-15 -1511 ((-1004) (-307 (-370)) (-619 (-370)))) (-15 -1511 ((-1004) (-619 (-307 (-370))) (-619 (-370)))) (-15 -2862 ((-1004) (-619 (-307 (-370))) (-619 (-370)))))
-((-3826 (((-112) $ $) NIL)) (-2652 (((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))) $) 21)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 20) (($ (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 14) (($ (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))))) 18)) (-2381 (((-112) $ $) NIL)))
-(((-812) (-13 (-1063) (-10 -8 (-15 -3838 ($ (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))))) (-15 -3838 ($ (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))) (-15 -3838 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))))) (-15 -3838 ((-832) $)) (-15 -2652 ((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))) $))))) (T -812))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-812)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (-5 *1 (-812)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))) (-5 *1 (-812)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))))) (-5 *1 (-812)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217))))))) (-5 *1 (-812)))))
-(-13 (-1063) (-10 -8 (-15 -3838 ($ (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))))) (-15 -3838 ($ (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))) (-15 -3838 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))))) (-15 -3838 ((-832) $)) (-15 -2652 ((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))) $))))
-((-2790 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|) (-814 |#2|) (-814 |#2|)) 13) (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 14)))
-(((-813 |#1| |#2|) (-10 -7 (-15 -2790 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))) (-15 -2790 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|) (-814 |#2|) (-814 |#2|)))) (-1063) (-1063)) (T -813))
-((-2790 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-814 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *1 (-813 *5 *6)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))))
-(-10 -7 (-15 -2790 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))) (-15 -2790 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|) (-814 |#2|) (-814 |#2|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL (|has| |#1| (-21)))) (-2607 (((-1082) $) 24)) (-3672 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2500 (((-547) $) NIL (|has| |#1| (-819)))) (-1948 (($) NIL (|has| |#1| (-21)) CONST)) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 16)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 9)) (-3855 (((-3 $ "failed") $) 47 (|has| |#1| (-819)))) (-4265 (((-3 (-398 (-547)) "failed") $) 54 (|has| |#1| (-532)))) (-3198 (((-112) $) 49 (|has| |#1| (-532)))) (-2453 (((-398 (-547)) $) 52 (|has| |#1| (-532)))) (-4270 (((-112) $) NIL (|has| |#1| (-819)))) (-3042 (($) 13)) (-2261 (((-112) $) NIL (|has| |#1| (-819)))) (-1860 (((-112) $) NIL (|has| |#1| (-819)))) (-3051 (($) 14)) (-2856 (($ $ $) NIL (|has| |#1| (-819)))) (-3567 (($ $ $) NIL (|has| |#1| (-819)))) (-1466 (((-1119) $) NIL)) (-1672 (((-112) $) 12)) (-3979 (((-1082) $) NIL)) (-1621 (((-112) $) 11)) (-3838 (((-832) $) 22) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) 8) (($ (-547)) NIL (-1530 (|has| |#1| (-819)) (|has| |#1| (-1007 (-547)))))) (-2736 (((-745)) 41 (|has| |#1| (-819)))) (-2255 (($ $) NIL (|has| |#1| (-819)))) (-3269 (($) 29 (|has| |#1| (-21)) CONST)) (-3281 (($) 38 (|has| |#1| (-819)) CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2381 (((-112) $ $) 27)) (-2430 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2405 (((-112) $ $) 48 (|has| |#1| (-819)))) (-2493 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2479 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-890)) NIL (|has| |#1| (-819))) (($ $ (-745)) NIL (|has| |#1| (-819)))) (* (($ $ $) 44 (|has| |#1| (-819))) (($ (-547) $) 32 (|has| |#1| (-21))) (($ (-745) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-21)))))
-(((-814 |#1|) (-13 (-1063) (-402 |#1|) (-10 -8 (-15 -3042 ($)) (-15 -3051 ($)) (-15 -1621 ((-112) $)) (-15 -1672 ((-112) $)) (-15 -2607 ((-1082) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-532)) (PROGN (-15 -3198 ((-112) $)) (-15 -2453 ((-398 (-547)) $)) (-15 -4265 ((-3 (-398 (-547)) "failed") $))) |%noBranch|))) (-1063)) (T -814))
-((-3042 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063)))) (-3051 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-532)) (-4 *3 (-1063)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-814 *3)) (-4 *3 (-532)) (-4 *3 (-1063)))) (-4265 (*1 *2 *1) (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-814 *3)) (-4 *3 (-532)) (-4 *3 (-1063)))))
-(-13 (-1063) (-402 |#1|) (-10 -8 (-15 -3042 ($)) (-15 -3051 ($)) (-15 -1621 ((-112) $)) (-15 -1672 ((-112) $)) (-15 -2607 ((-1082) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-532)) (PROGN (-15 -3198 ((-112) $)) (-15 -2453 ((-398 (-547)) $)) (-15 -4265 ((-3 (-398 (-547)) "failed") $))) |%noBranch|)))
-((-3826 (((-112) $ $) 7)) (-3608 (((-745)) 20)) (-3232 (($) 23)) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-2402 (((-890) $) 22)) (-1466 (((-1119) $) 9)) (-3487 (($ (-890)) 21)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)))
-(((-815) (-138)) (T -815))
-NIL
-(-13 (-821) (-359))
-(((-101) . T) ((-591 (-832)) . T) ((-359) . T) ((-821) . T) ((-1063) . T))
-((-3835 (((-112) (-1219 |#2|) (-1219 |#2|)) 17)) (-2423 (((-112) (-1219 |#2|) (-1219 |#2|)) 18)) (-3420 (((-112) (-1219 |#2|) (-1219 |#2|)) 14)))
-(((-816 |#1| |#2|) (-10 -7 (-15 -3420 ((-112) (-1219 |#2|) (-1219 |#2|))) (-15 -3835 ((-112) (-1219 |#2|) (-1219 |#2|))) (-15 -2423 ((-112) (-1219 |#2|) (-1219 |#2|)))) (-745) (-766)) (T -816))
-((-2423 (*1 *2 *3 *3) (-12 (-5 *3 (-1219 *5)) (-4 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-816 *4 *5)) (-14 *4 (-745)))) (-3835 (*1 *2 *3 *3) (-12 (-5 *3 (-1219 *5)) (-4 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-816 *4 *5)) (-14 *4 (-745)))) (-3420 (*1 *2 *3 *3) (-12 (-5 *3 (-1219 *5)) (-4 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-816 *4 *5)) (-14 *4 (-745)))))
-(-10 -7 (-15 -3420 ((-112) (-1219 |#2|) (-1219 |#2|))) (-15 -3835 ((-112) (-1219 |#2|) (-1219 |#2|))) (-15 -2423 ((-112) (-1219 |#2|) (-1219 |#2|))))
-((-3826 (((-112) $ $) 7)) (-1948 (($) 23 T CONST)) (-3855 (((-3 $ "failed") $) 26)) (-2261 (((-112) $) 24)) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3281 (($) 22 T CONST)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)) (** (($ $ (-890)) 21) (($ $ (-745)) 25)) (* (($ $ $) 20)))
+((-2861 (*1 *1 *1 *1) (-4 *1 (-769))))
+(-13 (-771) (-10 -8 (-15 -2861 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-823) . T) ((-1067) . T))
+((-3834 (((-112) $ $) 7)) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)) (-2486 (($ $ $) 20)) (* (($ (-892) $) 21)))
+(((-770) (-138)) (T -770))
+NIL
+(-13 (-823) (-25))
+(((-25) . T) ((-101) . T) ((-593 (-834)) . T) ((-823) . T) ((-1067) . T))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 24)) (-2001 (((-3 $ "failed") $ $) 26)) (-1682 (($) 23 T CONST)) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3276 (($) 22 T CONST)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)) (-2486 (($ $ $) 20)) (* (($ (-892) $) 21) (($ (-747) $) 25)))
+(((-771) (-138)) (T -771))
+NIL
+(-13 (-768) (-130))
+(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-768) . T) ((-770) . T) ((-823) . T) ((-1067) . T))
+((-1763 (((-112) $) 41)) (-2714 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2659 (((-549) $) NIL) (((-400 (-549)) $) NIL) ((|#2| $) 42)) (-3405 (((-3 (-400 (-549)) "failed") $) 78)) (-3679 (((-112) $) 72)) (-2532 (((-400 (-549)) $) 76)) (-3630 ((|#2| $) 26)) (-2797 (($ (-1 |#2| |#2|) $) 23)) (-1992 (($ $) 61)) (-2845 (((-525) $) 67)) (-1955 (($ $) 21)) (-3846 (((-834) $) 56) (($ (-549)) 39) (($ |#2|) 37) (($ (-400 (-549))) NIL)) (-2082 (((-747)) 10)) (-3212 ((|#2| $) 71)) (-2389 (((-112) $ $) 29)) (-2412 (((-112) $ $) 69)) (-2500 (($ $) 31) (($ $ $) NIL)) (-2486 (($ $ $) 30)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-772 |#1| |#2|) (-10 -8 (-15 -2412 ((-112) |#1| |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -3405 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2532 ((-400 (-549)) |#1|)) (-15 -3679 ((-112) |#1|)) (-15 -3212 (|#2| |#1|)) (-15 -3630 (|#2| |#1|)) (-15 -1955 (|#1| |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -3846 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3846 (|#1| (-549))) (-15 -2082 ((-747))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -1763 ((-112) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -2486 (|#1| |#1| |#1|)) (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|))) (-773 |#2|) (-170)) (T -772))
+((-2082 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-772 *3 *4)) (-4 *3 (-773 *4)))))
+(-10 -8 (-15 -2412 ((-112) |#1| |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -3405 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2532 ((-400 (-549)) |#1|)) (-15 -3679 ((-112) |#1|)) (-15 -3212 (|#2| |#1|)) (-15 -3630 (|#2| |#1|)) (-15 -1955 (|#1| |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -3846 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3846 (|#1| (-549))) (-15 -2082 ((-747))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -1763 ((-112) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -2486 (|#1| |#1| |#1|)) (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-3614 (((-747)) 51 (|has| |#1| (-361)))) (-1682 (($) 17 T CONST)) (-2714 (((-3 (-549) "failed") $) 92 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 90 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 88)) (-2659 (((-549) $) 93 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 91 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 87)) (-2114 (((-3 $ "failed") $) 32)) (-2145 ((|#1| $) 77)) (-3405 (((-3 (-400 (-549)) "failed") $) 64 (|has| |#1| (-534)))) (-3679 (((-112) $) 66 (|has| |#1| (-534)))) (-2532 (((-400 (-549)) $) 65 (|has| |#1| (-534)))) (-3239 (($) 54 (|has| |#1| (-361)))) (-2675 (((-112) $) 30)) (-3199 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3630 ((|#1| $) 69)) (-2863 (($ $ $) 60 (|has| |#1| (-823)))) (-3575 (($ $ $) 59 (|has| |#1| (-823)))) (-2797 (($ (-1 |#1| |#1|) $) 79)) (-1881 (((-892) $) 53 (|has| |#1| (-361)))) (-3851 (((-1125) $) 9)) (-1992 (($ $) 63 (|has| |#1| (-356)))) (-3493 (($ (-892)) 52 (|has| |#1| (-361)))) (-2068 ((|#1| $) 74)) (-1633 ((|#1| $) 75)) (-2127 ((|#1| $) 76)) (-2318 ((|#1| $) 70)) (-2697 ((|#1| $) 71)) (-2194 ((|#1| $) 72)) (-1492 ((|#1| $) 73)) (-3990 (((-1087) $) 10)) (-2686 (($ $ (-621 |#1|) (-621 |#1|)) 85 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 83 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) 82 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1143)) (-621 |#1|)) 81 (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-1143) |#1|) 80 (|has| |#1| (-505 (-1143) |#1|)))) (-3341 (($ $ |#1|) 86 (|has| |#1| (-279 |#1| |#1|)))) (-2845 (((-525) $) 61 (|has| |#1| (-594 (-525))))) (-1955 (($ $) 78)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35) (($ (-400 (-549))) 89 (|has| |#1| (-1009 (-400 (-549)))))) (-2210 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-2082 (((-747)) 28)) (-3212 ((|#1| $) 67 (|has| |#1| (-1027)))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 57 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 56 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 58 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 55 (|has| |#1| (-823)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-773 |#1|) (-138) (-170)) (T -773))
+((-1955 (*1 *1 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-2145 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-1633 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-3199 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-549))))) (-3405 (*1 *2 *1) (|partial| -12 (-4 *1 (-773 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-549))))) (-1992 (*1 *1 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)) (-4 *2 (-356)))))
+(-13 (-38 |t#1|) (-404 |t#1|) (-331 |t#1|) (-10 -8 (-15 -1955 ($ $)) (-15 -2145 (|t#1| $)) (-15 -2127 (|t#1| $)) (-15 -1633 (|t#1| $)) (-15 -2068 (|t#1| $)) (-15 -1492 (|t#1| $)) (-15 -2194 (|t#1| $)) (-15 -2697 (|t#1| $)) (-15 -2318 (|t#1| $)) (-15 -3630 (|t#1| $)) (-15 -3199 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3212 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3679 ((-112) $)) (-15 -2532 ((-400 (-549)) $)) (-15 -3405 ((-3 (-400 (-549)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -1992 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-361) |has| |#1| (-361)) ((-331 |#1|) . T) ((-404 |#1|) . T) ((-505 (-1143) |#1|) |has| |#1| (-505 (-1143) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) . T) ((-703) . T) ((-823) |has| |#1| (-823)) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-2797 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-774 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2797 (|#3| (-1 |#4| |#2|) |#1|))) (-773 |#2|) (-170) (-773 |#4|) (-170)) (T -774))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-773 *6)) (-5 *1 (-774 *4 *5 *2 *6)) (-4 *4 (-773 *5)))))
+(-10 -7 (-15 -2797 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3614 (((-747)) NIL (|has| |#1| (-361)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL) (((-3 (-970 |#1|) "failed") $) 35) (((-3 (-549) "failed") $) NIL (-1536 (|has| (-970 |#1|) (-1009 (-549))) (|has| |#1| (-1009 (-549))))) (((-3 (-400 (-549)) "failed") $) NIL (-1536 (|has| (-970 |#1|) (-1009 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-2659 ((|#1| $) NIL) (((-970 |#1|) $) 33) (((-549) $) NIL (-1536 (|has| (-970 |#1|) (-1009 (-549))) (|has| |#1| (-1009 (-549))))) (((-400 (-549)) $) NIL (-1536 (|has| (-970 |#1|) (-1009 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-2114 (((-3 $ "failed") $) NIL)) (-2145 ((|#1| $) 16)) (-3405 (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-534)))) (-3679 (((-112) $) NIL (|has| |#1| (-534)))) (-2532 (((-400 (-549)) $) NIL (|has| |#1| (-534)))) (-3239 (($) NIL (|has| |#1| (-361)))) (-2675 (((-112) $) NIL)) (-3199 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-970 |#1|) (-970 |#1|)) 29)) (-3630 ((|#1| $) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1881 (((-892) $) NIL (|has| |#1| (-361)))) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL (|has| |#1| (-356)))) (-3493 (($ (-892)) NIL (|has| |#1| (-361)))) (-2068 ((|#1| $) 22)) (-1633 ((|#1| $) 20)) (-2127 ((|#1| $) 18)) (-2318 ((|#1| $) 26)) (-2697 ((|#1| $) 25)) (-2194 ((|#1| $) 24)) (-1492 ((|#1| $) 23)) (-3990 (((-1087) $) NIL)) (-2686 (($ $ (-621 |#1|) (-621 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1143)) (-621 |#1|)) NIL (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-1143) |#1|) NIL (|has| |#1| (-505 (-1143) |#1|)))) (-3341 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-2845 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-1955 (($ $) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-970 |#1|)) 30) (($ (-400 (-549))) NIL (-1536 (|has| (-970 |#1|) (-1009 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-3212 ((|#1| $) NIL (|has| |#1| (-1027)))) (-3276 (($) 8 T CONST)) (-3287 (($) 12 T CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-775 |#1|) (-13 (-773 |#1|) (-404 (-970 |#1|)) (-10 -8 (-15 -3199 ($ (-970 |#1|) (-970 |#1|))))) (-170)) (T -775))
+((-3199 (*1 *1 *2 *2) (-12 (-5 *2 (-970 *3)) (-4 *3 (-170)) (-5 *1 (-775 *3)))))
+(-13 (-773 |#1|) (-404 (-970 |#1|)) (-10 -8 (-15 -3199 ($ (-970 |#1|) (-970 |#1|)))))
+((-3834 (((-112) $ $) 7)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3919 (((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13)) (-2389 (((-112) $ $) 6)))
+(((-776) (-138)) (T -776))
+((-1391 (*1 *2 *3 *4) (-12 (-4 *1 (-776)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)))))) (-3919 (*1 *2 *3) (-12 (-4 *1 (-776)) (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1006)))))
+(-13 (-1067) (-10 -7 (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3919 ((-1006) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-2072 (((-2 (|:| |particular| |#2|) (|:| -1949 (-621 |#2|))) |#3| |#2| (-1143)) 19)))
+(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2072 ((-2 (|:| |particular| |#2|) (|:| -1949 (-621 |#2|))) |#3| |#2| (-1143)))) (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)) (-13 (-29 |#1|) (-1165) (-930)) (-632 |#2|)) (T -777))
+((-2072 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1143)) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-4 *4 (-13 (-29 *6) (-1165) (-930))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1949 (-621 *4)))) (-5 *1 (-777 *6 *4 *3)) (-4 *3 (-632 *4)))))
+(-10 -7 (-15 -2072 ((-2 (|:| |particular| |#2|) (|:| -1949 (-621 |#2|))) |#3| |#2| (-1143))))
+((-2227 (((-3 |#2| "failed") |#2| (-114) (-287 |#2|) (-621 |#2|)) 28) (((-3 |#2| "failed") (-287 |#2|) (-114) (-287 |#2|) (-621 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1949 (-621 |#2|))) |#2| "failed") |#2| (-114) (-1143)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1949 (-621 |#2|))) |#2| "failed") (-287 |#2|) (-114) (-1143)) 18) (((-3 (-2 (|:| |particular| (-1226 |#2|)) (|:| -1949 (-621 (-1226 |#2|)))) "failed") (-621 |#2|) (-621 (-114)) (-1143)) 24) (((-3 (-2 (|:| |particular| (-1226 |#2|)) (|:| -1949 (-621 (-1226 |#2|)))) "failed") (-621 (-287 |#2|)) (-621 (-114)) (-1143)) 26) (((-3 (-621 (-1226 |#2|)) "failed") (-665 |#2|) (-1143)) 37) (((-3 (-2 (|:| |particular| (-1226 |#2|)) (|:| -1949 (-621 (-1226 |#2|)))) "failed") (-665 |#2|) (-1226 |#2|) (-1143)) 35)))
+(((-778 |#1| |#2|) (-10 -7 (-15 -2227 ((-3 (-2 (|:| |particular| (-1226 |#2|)) (|:| -1949 (-621 (-1226 |#2|)))) "failed") (-665 |#2|) (-1226 |#2|) (-1143))) (-15 -2227 ((-3 (-621 (-1226 |#2|)) "failed") (-665 |#2|) (-1143))) (-15 -2227 ((-3 (-2 (|:| |particular| (-1226 |#2|)) (|:| -1949 (-621 (-1226 |#2|)))) "failed") (-621 (-287 |#2|)) (-621 (-114)) (-1143))) (-15 -2227 ((-3 (-2 (|:| |particular| (-1226 |#2|)) (|:| -1949 (-621 (-1226 |#2|)))) "failed") (-621 |#2|) (-621 (-114)) (-1143))) (-15 -2227 ((-3 (-2 (|:| |particular| |#2|) (|:| -1949 (-621 |#2|))) |#2| "failed") (-287 |#2|) (-114) (-1143))) (-15 -2227 ((-3 (-2 (|:| |particular| |#2|) (|:| -1949 (-621 |#2|))) |#2| "failed") |#2| (-114) (-1143))) (-15 -2227 ((-3 |#2| "failed") (-287 |#2|) (-114) (-287 |#2|) (-621 |#2|))) (-15 -2227 ((-3 |#2| "failed") |#2| (-114) (-287 |#2|) (-621 |#2|)))) (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)) (-13 (-29 |#1|) (-1165) (-930))) (T -778))
+((-2227 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-287 *2)) (-5 *5 (-621 *2)) (-4 *2 (-13 (-29 *6) (-1165) (-930))) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *1 (-778 *6 *2)))) (-2227 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-287 *2)) (-5 *4 (-114)) (-5 *5 (-621 *2)) (-4 *2 (-13 (-29 *6) (-1165) (-930))) (-5 *1 (-778 *6 *2)) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))))) (-2227 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1143)) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1949 (-621 *3))) *3 "failed")) (-5 *1 (-778 *6 *3)) (-4 *3 (-13 (-29 *6) (-1165) (-930))))) (-2227 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-1143)) (-4 *7 (-13 (-29 *6) (-1165) (-930))) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1949 (-621 *7))) *7 "failed")) (-5 *1 (-778 *6 *7)))) (-2227 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-621 *7)) (-5 *4 (-621 (-114))) (-5 *5 (-1143)) (-4 *7 (-13 (-29 *6) (-1165) (-930))) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-2 (|:| |particular| (-1226 *7)) (|:| -1949 (-621 (-1226 *7))))) (-5 *1 (-778 *6 *7)))) (-2227 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-621 (-287 *7))) (-5 *4 (-621 (-114))) (-5 *5 (-1143)) (-4 *7 (-13 (-29 *6) (-1165) (-930))) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-2 (|:| |particular| (-1226 *7)) (|:| -1949 (-621 (-1226 *7))))) (-5 *1 (-778 *6 *7)))) (-2227 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-665 *6)) (-5 *4 (-1143)) (-4 *6 (-13 (-29 *5) (-1165) (-930))) (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-621 (-1226 *6))) (-5 *1 (-778 *5 *6)))) (-2227 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-665 *7)) (-5 *5 (-1143)) (-4 *7 (-13 (-29 *6) (-1165) (-930))) (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-2 (|:| |particular| (-1226 *7)) (|:| -1949 (-621 (-1226 *7))))) (-5 *1 (-778 *6 *7)) (-5 *4 (-1226 *7)))))
+(-10 -7 (-15 -2227 ((-3 (-2 (|:| |particular| (-1226 |#2|)) (|:| -1949 (-621 (-1226 |#2|)))) "failed") (-665 |#2|) (-1226 |#2|) (-1143))) (-15 -2227 ((-3 (-621 (-1226 |#2|)) "failed") (-665 |#2|) (-1143))) (-15 -2227 ((-3 (-2 (|:| |particular| (-1226 |#2|)) (|:| -1949 (-621 (-1226 |#2|)))) "failed") (-621 (-287 |#2|)) (-621 (-114)) (-1143))) (-15 -2227 ((-3 (-2 (|:| |particular| (-1226 |#2|)) (|:| -1949 (-621 (-1226 |#2|)))) "failed") (-621 |#2|) (-621 (-114)) (-1143))) (-15 -2227 ((-3 (-2 (|:| |particular| |#2|) (|:| -1949 (-621 |#2|))) |#2| "failed") (-287 |#2|) (-114) (-1143))) (-15 -2227 ((-3 (-2 (|:| |particular| |#2|) (|:| -1949 (-621 |#2|))) |#2| "failed") |#2| (-114) (-1143))) (-15 -2227 ((-3 |#2| "failed") (-287 |#2|) (-114) (-287 |#2|) (-621 |#2|))) (-15 -2227 ((-3 |#2| "failed") |#2| (-114) (-287 |#2|) (-621 |#2|))))
+((-3093 (($) 9)) (-4021 (((-3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 31)) (-3449 (((-621 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 28)) (-2751 (($ (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))) 25)) (-3870 (($ (-621 (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) 23)) (-3185 (((-1231)) 12)))
+(((-779) (-10 -8 (-15 -3093 ($)) (-15 -3185 ((-1231))) (-15 -3449 ((-621 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -3870 ($ (-621 (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))))) (-15 -2751 ($ (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) (-15 -4021 ((-3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -779))
+((-4021 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))) (-5 *1 (-779)))) (-2751 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))) (-5 *1 (-779)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) (-5 *1 (-779)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-779)))) (-3185 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-779)))) (-3093 (*1 *1) (-5 *1 (-779))))
+(-10 -8 (-15 -3093 ($)) (-15 -3185 ((-1231))) (-15 -3449 ((-621 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -3870 ($ (-621 (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372)))))))) (-15 -2751 ($ (-2 (|:| -3337 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -1793 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))))))) (-15 -4021 ((-3 (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372)) (|:| |expense| (-372)) (|:| |accuracy| (-372)) (|:| |intermediateResults| (-372))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
+((-4292 ((|#2| |#2| (-1143)) 16)) (-3362 ((|#2| |#2| (-1143)) 51)) (-1875 (((-1 |#2| |#2|) (-1143)) 11)))
+(((-780 |#1| |#2|) (-10 -7 (-15 -4292 (|#2| |#2| (-1143))) (-15 -3362 (|#2| |#2| (-1143))) (-15 -1875 ((-1 |#2| |#2|) (-1143)))) (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)) (-13 (-29 |#1|) (-1165) (-930))) (T -780))
+((-1875 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-780 *4 *5)) (-4 *5 (-13 (-29 *4) (-1165) (-930))))) (-3362 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1165) (-930))))) (-4292 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1165) (-930))))))
+(-10 -7 (-15 -4292 (|#2| |#2| (-1143))) (-15 -3362 (|#2| |#2| (-1143))) (-15 -1875 ((-1 |#2| |#2|) (-1143))))
+((-2227 (((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-621 (-372)) (-372) (-372)) 116) (((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-621 (-372)) (-372)) 117) (((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-621 (-372)) (-372)) 119) (((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-372)) 120) (((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-372)) 121) (((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372))) 122) (((-1006) (-784) (-1030)) 108) (((-1006) (-784)) 109)) (-1391 (((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-784) (-1030)) 75) (((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-784)) 77)))
+(((-781) (-10 -7 (-15 -2227 ((-1006) (-784))) (-15 -2227 ((-1006) (-784) (-1030))) (-15 -2227 ((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)))) (-15 -2227 ((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-372))) (-15 -2227 ((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-372))) (-15 -2227 ((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-621 (-372)) (-372))) (-15 -2227 ((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-621 (-372)) (-372))) (-15 -2227 ((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-621 (-372)) (-372) (-372))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-784))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-784) (-1030))))) (T -781))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))))) (-5 *1 (-781)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))))) (-5 *1 (-781)))) (-2227 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1226 (-309 *4))) (-5 *5 (-621 (-372))) (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2227 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1226 (-309 *4))) (-5 *5 (-621 (-372))) (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2227 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1226 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-621 *4)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2227 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1226 (-309 *4))) (-5 *5 (-621 (-372))) (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2227 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1226 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-621 *4)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2227 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1226 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-621 *4)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-781)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1006)) (-5 *1 (-781)))))
+(-10 -7 (-15 -2227 ((-1006) (-784))) (-15 -2227 ((-1006) (-784) (-1030))) (-15 -2227 ((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)))) (-15 -2227 ((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-372))) (-15 -2227 ((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-372))) (-15 -2227 ((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-621 (-372)) (-372))) (-15 -2227 ((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-621 (-372)) (-372))) (-15 -2227 ((-1006) (-1226 (-309 (-372))) (-372) (-372) (-621 (-372)) (-309 (-372)) (-621 (-372)) (-372) (-372))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-784))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-784) (-1030))))
+((-2206 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1949 (-621 |#4|))) (-629 |#4|) |#4|) 35)))
+(((-782 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2206 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1949 (-621 |#4|))) (-629 |#4|) |#4|))) (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))) (-1202 |#1|) (-1202 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -782))
+((-2206 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *4)) (-4 *4 (-335 *5 *6 *7)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *6 (-1202 *5)) (-4 *7 (-1202 (-400 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4)))) (-5 *1 (-782 *5 *6 *7 *4)))))
+(-10 -7 (-15 -2206 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1949 (-621 |#4|))) (-629 |#4|) |#4|)))
+((-2050 (((-2 (|:| -2652 |#3|) (|:| |rh| (-621 (-400 |#2|)))) |#4| (-621 (-400 |#2|))) 52)) (-1511 (((-621 (-2 (|:| -2597 |#2|) (|:| -2391 |#2|))) |#4| |#2|) 60) (((-621 (-2 (|:| -2597 |#2|) (|:| -2391 |#2|))) |#4|) 59) (((-621 (-2 (|:| -2597 |#2|) (|:| -2391 |#2|))) |#3| |#2|) 20) (((-621 (-2 (|:| -2597 |#2|) (|:| -2391 |#2|))) |#3|) 21)) (-2758 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-1904 ((|#2| |#3| (-621 (-400 |#2|))) 93) (((-3 |#2| "failed") |#3| (-400 |#2|)) 90)))
+(((-783 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1904 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -1904 (|#2| |#3| (-621 (-400 |#2|)))) (-15 -1511 ((-621 (-2 (|:| -2597 |#2|) (|:| -2391 |#2|))) |#3|)) (-15 -1511 ((-621 (-2 (|:| -2597 |#2|) (|:| -2391 |#2|))) |#3| |#2|)) (-15 -2758 (|#2| |#3| |#1|)) (-15 -1511 ((-621 (-2 (|:| -2597 |#2|) (|:| -2391 |#2|))) |#4|)) (-15 -1511 ((-621 (-2 (|:| -2597 |#2|) (|:| -2391 |#2|))) |#4| |#2|)) (-15 -2758 (|#2| |#4| |#1|)) (-15 -2050 ((-2 (|:| -2652 |#3|) (|:| |rh| (-621 (-400 |#2|)))) |#4| (-621 (-400 |#2|))))) (-13 (-356) (-145) (-1009 (-400 (-549)))) (-1202 |#1|) (-632 |#2|) (-632 (-400 |#2|))) (T -783))
+((-2050 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *6 (-1202 *5)) (-5 *2 (-2 (|:| -2652 *7) (|:| |rh| (-621 (-400 *6))))) (-5 *1 (-783 *5 *6 *7 *3)) (-5 *4 (-621 (-400 *6))) (-4 *7 (-632 *6)) (-4 *3 (-632 (-400 *6))))) (-2758 (*1 *2 *3 *4) (-12 (-4 *2 (-1202 *4)) (-5 *1 (-783 *4 *2 *5 *3)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-632 *2)) (-4 *3 (-632 (-400 *2))))) (-1511 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *4 (-1202 *5)) (-5 *2 (-621 (-2 (|:| -2597 *4) (|:| -2391 *4)))) (-5 *1 (-783 *5 *4 *6 *3)) (-4 *6 (-632 *4)) (-4 *3 (-632 (-400 *4))))) (-1511 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-1202 *4)) (-5 *2 (-621 (-2 (|:| -2597 *5) (|:| -2391 *5)))) (-5 *1 (-783 *4 *5 *6 *3)) (-4 *6 (-632 *5)) (-4 *3 (-632 (-400 *5))))) (-2758 (*1 *2 *3 *4) (-12 (-4 *2 (-1202 *4)) (-5 *1 (-783 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2)) (-4 *5 (-632 (-400 *2))))) (-1511 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *4 (-1202 *5)) (-5 *2 (-621 (-2 (|:| -2597 *4) (|:| -2391 *4)))) (-5 *1 (-783 *5 *4 *3 *6)) (-4 *3 (-632 *4)) (-4 *6 (-632 (-400 *4))))) (-1511 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-1202 *4)) (-5 *2 (-621 (-2 (|:| -2597 *5) (|:| -2391 *5)))) (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-632 *5)) (-4 *6 (-632 (-400 *5))))) (-1904 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-400 *2))) (-4 *2 (-1202 *5)) (-5 *1 (-783 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2)) (-4 *6 (-632 (-400 *2))))) (-1904 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1202 *5)) (-5 *1 (-783 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2)) (-4 *6 (-632 *4)))))
+(-10 -7 (-15 -1904 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -1904 (|#2| |#3| (-621 (-400 |#2|)))) (-15 -1511 ((-621 (-2 (|:| -2597 |#2|) (|:| -2391 |#2|))) |#3|)) (-15 -1511 ((-621 (-2 (|:| -2597 |#2|) (|:| -2391 |#2|))) |#3| |#2|)) (-15 -2758 (|#2| |#3| |#1|)) (-15 -1511 ((-621 (-2 (|:| -2597 |#2|) (|:| -2391 |#2|))) |#4|)) (-15 -1511 ((-621 (-2 (|:| -2597 |#2|) (|:| -2391 |#2|))) |#4| |#2|)) (-15 -2758 (|#2| |#4| |#1|)) (-15 -2050 ((-2 (|:| -2652 |#3|) (|:| |rh| (-621 (-400 |#2|)))) |#4| (-621 (-400 |#2|)))))
+((-3834 (((-112) $ $) NIL)) (-2659 (((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $) 13)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 15) (($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 12)) (-2389 (((-112) $ $) NIL)))
+(((-784) (-13 (-1067) (-10 -8 (-15 -3846 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3846 ((-834) $)) (-15 -2659 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $))))) (T -784))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-784)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-784)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-784)))))
+(-13 (-1067) (-10 -8 (-15 -3846 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -3846 ((-834) $)) (-15 -2659 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $))))
+((-4303 (((-621 (-2 (|:| |frac| (-400 |#2|)) (|:| -2652 |#3|))) |#3| (-1 (-621 |#2|) |#2| (-1139 |#2|)) (-1 (-411 |#2|) |#2|)) 118)) (-2180 (((-621 (-2 (|:| |poly| |#2|) (|:| -2652 |#3|))) |#3| (-1 (-621 |#1|) |#2|)) 46)) (-3495 (((-621 (-2 (|:| |deg| (-747)) (|:| -2652 |#2|))) |#3|) 95)) (-3381 ((|#2| |#3|) 37)) (-2658 (((-621 (-2 (|:| -2589 |#1|) (|:| -2652 |#3|))) |#3| (-1 (-621 |#1|) |#2|)) 82)) (-2048 ((|#3| |#3| (-400 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
+(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3381 (|#2| |#3|)) (-15 -3495 ((-621 (-2 (|:| |deg| (-747)) (|:| -2652 |#2|))) |#3|)) (-15 -2658 ((-621 (-2 (|:| -2589 |#1|) (|:| -2652 |#3|))) |#3| (-1 (-621 |#1|) |#2|))) (-15 -2180 ((-621 (-2 (|:| |poly| |#2|) (|:| -2652 |#3|))) |#3| (-1 (-621 |#1|) |#2|))) (-15 -4303 ((-621 (-2 (|:| |frac| (-400 |#2|)) (|:| -2652 |#3|))) |#3| (-1 (-621 |#2|) |#2| (-1139 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2048 (|#3| |#3| |#2|)) (-15 -2048 (|#3| |#3| (-400 |#2|)))) (-13 (-356) (-145) (-1009 (-400 (-549)))) (-1202 |#1|) (-632 |#2|) (-632 (-400 |#2|))) (T -785))
+((-2048 (*1 *2 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-1202 *4)) (-5 *1 (-785 *4 *5 *2 *6)) (-4 *2 (-632 *5)) (-4 *6 (-632 *3)))) (-2048 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-1202 *4)) (-5 *1 (-785 *4 *3 *2 *5)) (-4 *2 (-632 *3)) (-4 *5 (-632 (-400 *3))))) (-4303 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-621 *7) *7 (-1139 *7))) (-5 *5 (-1 (-411 *7) *7)) (-4 *7 (-1202 *6)) (-4 *6 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-5 *2 (-621 (-2 (|:| |frac| (-400 *7)) (|:| -2652 *3)))) (-5 *1 (-785 *6 *7 *3 *8)) (-4 *3 (-632 *7)) (-4 *8 (-632 (-400 *7))))) (-2180 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-621 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *6 (-1202 *5)) (-5 *2 (-621 (-2 (|:| |poly| *6) (|:| -2652 *3)))) (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-632 *6)) (-4 *7 (-632 (-400 *6))))) (-2658 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-621 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *6 (-1202 *5)) (-5 *2 (-621 (-2 (|:| -2589 *5) (|:| -2652 *3)))) (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-632 *6)) (-4 *7 (-632 (-400 *6))))) (-3495 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-1202 *4)) (-5 *2 (-621 (-2 (|:| |deg| (-747)) (|:| -2652 *5)))) (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-632 *5)) (-4 *6 (-632 (-400 *5))))) (-3381 (*1 *2 *3) (-12 (-4 *2 (-1202 *4)) (-5 *1 (-785 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2)) (-4 *5 (-632 (-400 *2))))))
+(-10 -7 (-15 -3381 (|#2| |#3|)) (-15 -3495 ((-621 (-2 (|:| |deg| (-747)) (|:| -2652 |#2|))) |#3|)) (-15 -2658 ((-621 (-2 (|:| -2589 |#1|) (|:| -2652 |#3|))) |#3| (-1 (-621 |#1|) |#2|))) (-15 -2180 ((-621 (-2 (|:| |poly| |#2|) (|:| -2652 |#3|))) |#3| (-1 (-621 |#1|) |#2|))) (-15 -4303 ((-621 (-2 (|:| |frac| (-400 |#2|)) (|:| -2652 |#3|))) |#3| (-1 (-621 |#2|) |#2| (-1139 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2048 (|#3| |#3| |#2|)) (-15 -2048 (|#3| |#3| (-400 |#2|))))
+((-4132 (((-2 (|:| -1949 (-621 (-400 |#2|))) (|:| -3521 (-665 |#1|))) (-630 |#2| (-400 |#2|)) (-621 (-400 |#2|))) 121) (((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -1949 (-621 (-400 |#2|)))) (-630 |#2| (-400 |#2|)) (-400 |#2|)) 120) (((-2 (|:| -1949 (-621 (-400 |#2|))) (|:| -3521 (-665 |#1|))) (-629 (-400 |#2|)) (-621 (-400 |#2|))) 115) (((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -1949 (-621 (-400 |#2|)))) (-629 (-400 |#2|)) (-400 |#2|)) 113)) (-1326 ((|#2| (-630 |#2| (-400 |#2|))) 80) ((|#2| (-629 (-400 |#2|))) 83)))
+(((-786 |#1| |#2|) (-10 -7 (-15 -4132 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -1949 (-621 (-400 |#2|)))) (-629 (-400 |#2|)) (-400 |#2|))) (-15 -4132 ((-2 (|:| -1949 (-621 (-400 |#2|))) (|:| -3521 (-665 |#1|))) (-629 (-400 |#2|)) (-621 (-400 |#2|)))) (-15 -4132 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -1949 (-621 (-400 |#2|)))) (-630 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -4132 ((-2 (|:| -1949 (-621 (-400 |#2|))) (|:| -3521 (-665 |#1|))) (-630 |#2| (-400 |#2|)) (-621 (-400 |#2|)))) (-15 -1326 (|#2| (-629 (-400 |#2|)))) (-15 -1326 (|#2| (-630 |#2| (-400 |#2|))))) (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))) (-1202 |#1|)) (T -786))
+((-1326 (*1 *2 *3) (-12 (-5 *3 (-630 *2 (-400 *2))) (-4 *2 (-1202 *4)) (-5 *1 (-786 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))))) (-1326 (*1 *2 *3) (-12 (-5 *3 (-629 (-400 *2))) (-4 *2 (-1202 *4)) (-5 *1 (-786 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))))) (-4132 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6 (-400 *6))) (-4 *6 (-1202 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-2 (|:| -1949 (-621 (-400 *6))) (|:| -3521 (-665 *5)))) (-5 *1 (-786 *5 *6)) (-5 *4 (-621 (-400 *6))))) (-4132 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4)))) (-5 *1 (-786 *5 *6)))) (-4132 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-400 *6))) (-4 *6 (-1202 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-2 (|:| -1949 (-621 (-400 *6))) (|:| -3521 (-665 *5)))) (-5 *1 (-786 *5 *6)) (-5 *4 (-621 (-400 *6))))) (-4132 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4)))) (-5 *1 (-786 *5 *6)))))
+(-10 -7 (-15 -4132 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -1949 (-621 (-400 |#2|)))) (-629 (-400 |#2|)) (-400 |#2|))) (-15 -4132 ((-2 (|:| -1949 (-621 (-400 |#2|))) (|:| -3521 (-665 |#1|))) (-629 (-400 |#2|)) (-621 (-400 |#2|)))) (-15 -4132 ((-2 (|:| |particular| (-3 (-400 |#2|) "failed")) (|:| -1949 (-621 (-400 |#2|)))) (-630 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -4132 ((-2 (|:| -1949 (-621 (-400 |#2|))) (|:| -3521 (-665 |#1|))) (-630 |#2| (-400 |#2|)) (-621 (-400 |#2|)))) (-15 -1326 (|#2| (-629 (-400 |#2|)))) (-15 -1326 (|#2| (-630 |#2| (-400 |#2|)))))
+((-1432 (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#1|))) |#5| |#4|) 48)))
+(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1432 ((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#1|))) |#5| |#4|))) (-356) (-632 |#1|) (-1202 |#1|) (-701 |#1| |#3|) (-632 |#4|)) (T -787))
+((-1432 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *7 (-1202 *5)) (-4 *4 (-701 *5 *7)) (-5 *2 (-2 (|:| -3521 (-665 *6)) (|:| |vec| (-1226 *5)))) (-5 *1 (-787 *5 *6 *7 *4 *3)) (-4 *6 (-632 *5)) (-4 *3 (-632 *4)))))
+(-10 -7 (-15 -1432 ((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#1|))) |#5| |#4|)))
+((-4303 (((-621 (-2 (|:| |frac| (-400 |#2|)) (|:| -2652 (-630 |#2| (-400 |#2|))))) (-630 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)) 47)) (-2250 (((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|))) 138 (|has| |#1| (-27))) (((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-411 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-621 (-400 |#2|)) (-629 (-400 |#2|))) 140 (|has| |#1| (-27))) (((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|) (-1 (-411 |#2|) |#2|)) 38) (((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|)) 39) (((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|) (-1 (-411 |#2|) |#2|)) 36) (((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|)) 37)) (-2180 (((-621 (-2 (|:| |poly| |#2|) (|:| -2652 (-630 |#2| (-400 |#2|))))) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|)) 83)))
+(((-788 |#1| |#2|) (-10 -7 (-15 -2250 ((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (-15 -2250 ((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -2250 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (-15 -2250 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -4303 ((-621 (-2 (|:| |frac| (-400 |#2|)) (|:| -2652 (-630 |#2| (-400 |#2|))))) (-630 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2180 ((-621 (-2 (|:| |poly| |#2|) (|:| -2652 (-630 |#2| (-400 |#2|))))) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2250 ((-621 (-400 |#2|)) (-629 (-400 |#2|)))) (-15 -2250 ((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2250 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)))) (-15 -2250 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)))) |%noBranch|)) (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))) (-1202 |#1|)) (T -788))
+((-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6 (-400 *6))) (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1202 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-630 *5 (-400 *5))) (-4 *5 (-1202 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-621 (-400 *5))) (-5 *1 (-788 *4 *5)))) (-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-400 *6))) (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1202 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-629 (-400 *5))) (-4 *5 (-1202 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-621 (-400 *5))) (-5 *1 (-788 *4 *5)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-621 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *6 (-1202 *5)) (-5 *2 (-621 (-2 (|:| |poly| *6) (|:| -2652 (-630 *6 (-400 *6)))))) (-5 *1 (-788 *5 *6)) (-5 *3 (-630 *6 (-400 *6))))) (-4303 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1202 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-5 *2 (-621 (-2 (|:| |frac| (-400 *6)) (|:| -2652 (-630 *6 (-400 *6)))))) (-5 *1 (-788 *5 *6)) (-5 *3 (-630 *6 (-400 *6))))) (-2250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *7 (-400 *7))) (-5 *4 (-1 (-621 *6) *7)) (-5 *5 (-1 (-411 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *7 (-1202 *6)) (-5 *2 (-621 (-400 *7))) (-5 *1 (-788 *6 *7)))) (-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6 (-400 *6))) (-5 *4 (-1 (-621 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *6 (-1202 *5)) (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6)))) (-2250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 (-400 *7))) (-5 *4 (-1 (-621 *6) *7)) (-5 *5 (-1 (-411 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *7 (-1202 *6)) (-5 *2 (-621 (-400 *7))) (-5 *1 (-788 *6 *7)))) (-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-400 *6))) (-5 *4 (-1 (-621 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))) (-4 *6 (-1202 *5)) (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6)))))
+(-10 -7 (-15 -2250 ((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (-15 -2250 ((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-621 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -2250 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (-15 -2250 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|) (-1 (-411 |#2|) |#2|))) (-15 -4303 ((-621 (-2 (|:| |frac| (-400 |#2|)) (|:| -2652 (-630 |#2| (-400 |#2|))))) (-630 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2180 ((-621 (-2 (|:| |poly| |#2|) (|:| -2652 (-630 |#2| (-400 |#2|))))) (-630 |#2| (-400 |#2|)) (-1 (-621 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2250 ((-621 (-400 |#2|)) (-629 (-400 |#2|)))) (-15 -2250 ((-621 (-400 |#2|)) (-629 (-400 |#2|)) (-1 (-411 |#2|) |#2|))) (-15 -2250 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)))) (-15 -2250 ((-621 (-400 |#2|)) (-630 |#2| (-400 |#2|)) (-1 (-411 |#2|) |#2|)))) |%noBranch|))
+((-1971 (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#1|))) (-665 |#2|) (-1226 |#1|)) 85) (((-2 (|:| A (-665 |#1|)) (|:| |eqs| (-621 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1226 |#1|)) (|:| -2652 |#2|) (|:| |rh| |#1|))))) (-665 |#1|) (-1226 |#1|)) 15)) (-1670 (((-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|)))) (-665 |#2|) (-1226 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1949 (-621 |#1|))) |#2| |#1|)) 92)) (-2227 (((-3 (-2 (|:| |particular| (-1226 |#1|)) (|:| -1949 (-665 |#1|))) "failed") (-665 |#1|) (-1226 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1949 (-621 |#1|))) "failed") |#2| |#1|)) 43)))
+(((-789 |#1| |#2|) (-10 -7 (-15 -1971 ((-2 (|:| A (-665 |#1|)) (|:| |eqs| (-621 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1226 |#1|)) (|:| -2652 |#2|) (|:| |rh| |#1|))))) (-665 |#1|) (-1226 |#1|))) (-15 -1971 ((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#1|))) (-665 |#2|) (-1226 |#1|))) (-15 -2227 ((-3 (-2 (|:| |particular| (-1226 |#1|)) (|:| -1949 (-665 |#1|))) "failed") (-665 |#1|) (-1226 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1949 (-621 |#1|))) "failed") |#2| |#1|))) (-15 -1670 ((-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|)))) (-665 |#2|) (-1226 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1949 (-621 |#1|))) |#2| |#1|)))) (-356) (-632 |#1|)) (T -789))
+((-1670 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1949 (-621 *6))) *7 *6)) (-4 *6 (-356)) (-4 *7 (-632 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1226 *6) "failed")) (|:| -1949 (-621 (-1226 *6))))) (-5 *1 (-789 *6 *7)) (-5 *4 (-1226 *6)))) (-2227 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1949 (-621 *6))) "failed") *7 *6)) (-4 *6 (-356)) (-4 *7 (-632 *6)) (-5 *2 (-2 (|:| |particular| (-1226 *6)) (|:| -1949 (-665 *6)))) (-5 *1 (-789 *6 *7)) (-5 *3 (-665 *6)) (-5 *4 (-1226 *6)))) (-1971 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-632 *5)) (-5 *2 (-2 (|:| -3521 (-665 *6)) (|:| |vec| (-1226 *5)))) (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *6)) (-5 *4 (-1226 *5)))) (-1971 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| A (-665 *5)) (|:| |eqs| (-621 (-2 (|:| C (-665 *5)) (|:| |g| (-1226 *5)) (|:| -2652 *6) (|:| |rh| *5)))))) (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *5)) (-5 *4 (-1226 *5)) (-4 *6 (-632 *5)))))
+(-10 -7 (-15 -1971 ((-2 (|:| A (-665 |#1|)) (|:| |eqs| (-621 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1226 |#1|)) (|:| -2652 |#2|) (|:| |rh| |#1|))))) (-665 |#1|) (-1226 |#1|))) (-15 -1971 ((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#1|))) (-665 |#2|) (-1226 |#1|))) (-15 -2227 ((-3 (-2 (|:| |particular| (-1226 |#1|)) (|:| -1949 (-665 |#1|))) "failed") (-665 |#1|) (-1226 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1949 (-621 |#1|))) "failed") |#2| |#1|))) (-15 -1670 ((-2 (|:| |particular| (-3 (-1226 |#1|) "failed")) (|:| -1949 (-621 (-1226 |#1|)))) (-665 |#2|) (-1226 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1949 (-621 |#1|))) |#2| |#1|))))
+((-2717 (((-665 |#1|) (-621 |#1|) (-747)) 13) (((-665 |#1|) (-621 |#1|)) 14)) (-1493 (((-3 (-1226 |#1|) "failed") |#2| |#1| (-621 |#1|)) 34)) (-2079 (((-3 |#1| "failed") |#2| |#1| (-621 |#1|) (-1 |#1| |#1|)) 42)))
+(((-790 |#1| |#2|) (-10 -7 (-15 -2717 ((-665 |#1|) (-621 |#1|))) (-15 -2717 ((-665 |#1|) (-621 |#1|) (-747))) (-15 -1493 ((-3 (-1226 |#1|) "failed") |#2| |#1| (-621 |#1|))) (-15 -2079 ((-3 |#1| "failed") |#2| |#1| (-621 |#1|) (-1 |#1| |#1|)))) (-356) (-632 |#1|)) (T -790))
+((-2079 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-621 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) (-5 *1 (-790 *2 *3)) (-4 *3 (-632 *2)))) (-1493 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-621 *4)) (-4 *4 (-356)) (-5 *2 (-1226 *4)) (-5 *1 (-790 *4 *3)) (-4 *3 (-632 *4)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-747)) (-4 *5 (-356)) (-5 *2 (-665 *5)) (-5 *1 (-790 *5 *6)) (-4 *6 (-632 *5)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4)) (-5 *1 (-790 *4 *5)) (-4 *5 (-632 *4)))))
+(-10 -7 (-15 -2717 ((-665 |#1|) (-621 |#1|))) (-15 -2717 ((-665 |#1|) (-621 |#1|) (-747))) (-15 -1493 ((-3 (-1226 |#1|) "failed") |#2| |#1| (-621 |#1|))) (-15 -2079 ((-3 |#1| "failed") |#2| |#1| (-621 |#1|) (-1 |#1| |#1|))))
+((-3834 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-1763 (((-112) $) NIL (|has| |#2| (-130)))) (-3956 (($ (-892)) NIL (|has| |#2| (-1018)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-2861 (($ $ $) NIL (|has| |#2| (-769)))) (-2001 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1584 (((-112) $ (-747)) NIL)) (-3614 (((-747)) NIL (|has| |#2| (-361)))) (-1872 (((-549) $) NIL (|has| |#2| (-821)))) (-2254 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1067)))) (-2659 (((-549) $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067)))) (((-400 (-549)) $) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067)))) ((|#2| $) NIL (|has| |#2| (-1067)))) (-3879 (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#2| (-1018)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL (|has| |#2| (-1018))) (((-665 |#2|) (-665 $)) NIL (|has| |#2| (-1018)))) (-2114 (((-3 $ "failed") $) NIL (|has| |#2| (-703)))) (-3239 (($) NIL (|has| |#2| (-361)))) (-1879 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#2| $ (-549)) NIL)) (-2772 (((-112) $) NIL (|has| |#2| (-821)))) (-2989 (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2675 (((-112) $) NIL (|has| |#2| (-703)))) (-2374 (((-112) $) NIL (|has| |#2| (-821)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-1562 (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-1868 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#2| |#2|) $) NIL)) (-1881 (((-892) $) NIL (|has| |#2| (-361)))) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#2| (-1067)))) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3493 (($ (-892)) NIL (|has| |#2| (-361)))) (-3990 (((-1087) $) NIL (|has| |#2| (-1067)))) (-3646 ((|#2| $) NIL (|has| (-549) (-823)))) (-1642 (($ $ |#2|) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2696 (((-621 |#2|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) NIL)) (-1706 ((|#2| $ $) NIL (|has| |#2| (-1018)))) (-2169 (($ (-1226 |#2|)) NIL)) (-2985 (((-133)) NIL (|has| |#2| (-356)))) (-3456 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1143)) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-4000 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-1226 |#2|) $) NIL) (($ (-549)) NIL (-1536 (-12 (|has| |#2| (-1009 (-549))) (|has| |#2| (-1067))) (|has| |#2| (-1018)))) (($ (-400 (-549))) NIL (-12 (|has| |#2| (-1009 (-400 (-549)))) (|has| |#2| (-1067)))) (($ |#2|) NIL (|has| |#2| (-1067))) (((-834) $) NIL (|has| |#2| (-593 (-834))))) (-2082 (((-747)) NIL (|has| |#2| (-1018)))) (-3527 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-3212 (($ $) NIL (|has| |#2| (-821)))) (-3276 (($) NIL (|has| |#2| (-130)) CONST)) (-3287 (($) NIL (|has| |#2| (-703)) CONST)) (-1702 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1018)))) (($ $ (-1143)) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#2| (-871 (-1143))) (|has| |#2| (-1018)))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#2| (-1018))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1018)))) (-2448 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2425 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2389 (((-112) $ $) NIL (|has| |#2| (-1067)))) (-2438 (((-112) $ $) NIL (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2412 (((-112) $ $) 11 (-1536 (|has| |#2| (-769)) (|has| |#2| (-821))))) (-2513 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2500 (($ $ $) NIL (|has| |#2| (-1018))) (($ $) NIL (|has| |#2| (-1018)))) (-2486 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-747)) NIL (|has| |#2| (-703))) (($ $ (-892)) NIL (|has| |#2| (-703)))) (* (($ (-549) $) NIL (|has| |#2| (-1018))) (($ $ $) NIL (|has| |#2| (-703))) (($ $ |#2|) NIL (|has| |#2| (-703))) (($ |#2| $) NIL (|has| |#2| (-703))) (($ (-747) $) NIL (|has| |#2| (-130))) (($ (-892) $) NIL (|has| |#2| (-25)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-791 |#1| |#2| |#3|) (-232 |#1| |#2|) (-747) (-769) (-1 (-112) (-1226 |#2|) (-1226 |#2|))) (T -791))
+NIL
+(-232 |#1| |#2|)
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3977 (((-621 (-747)) $) NIL) (((-621 (-747)) $ (-1143)) NIL)) (-1637 (((-747) $) NIL) (((-747) $ (-1143)) NIL)) (-2272 (((-621 (-794 (-1143))) $) NIL)) (-2084 (((-1139 $) $ (-794 (-1143))) NIL) (((-1139 |#1|) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 (-794 (-1143)))) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3979 (($ $) NIL (|has| |#1| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3920 (($ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-794 (-1143)) "failed") $) NIL) (((-3 (-1143) "failed") $) NIL) (((-3 (-1092 |#1| (-1143)) "failed") $) NIL)) (-2659 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-794 (-1143)) $) NIL) (((-1143) $) NIL) (((-1092 |#1| (-1143)) $) NIL)) (-1353 (($ $ $ (-794 (-1143))) NIL (|has| |#1| (-170)))) (-2070 (($ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#1| (-444))) (($ $ (-794 (-1143))) NIL (|has| |#1| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-880)))) (-2691 (($ $ |#1| (-521 (-794 (-1143))) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-794 (-1143)) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-794 (-1143)) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2088 (((-747) $ (-1143)) NIL) (((-747) $) NIL)) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-2261 (($ (-1139 |#1|) (-794 (-1143))) NIL) (($ (-1139 $) (-794 (-1143))) NIL)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-521 (-794 (-1143)))) NIL) (($ $ (-794 (-1143)) (-747)) NIL) (($ $ (-621 (-794 (-1143))) (-621 (-747))) NIL)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ (-794 (-1143))) NIL)) (-3611 (((-521 (-794 (-1143))) $) NIL) (((-747) $ (-794 (-1143))) NIL) (((-621 (-747)) $ (-621 (-794 (-1143)))) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-3705 (($ (-1 (-521 (-794 (-1143))) (-521 (-794 (-1143)))) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3040 (((-1 $ (-747)) (-1143)) NIL) (((-1 $ (-747)) $) NIL (|has| |#1| (-227)))) (-1520 (((-3 (-794 (-1143)) "failed") $) NIL)) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-4052 (((-794 (-1143)) $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3851 (((-1125) $) NIL)) (-2709 (((-112) $) NIL)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| (-794 (-1143))) (|:| -3731 (-747))) "failed") $) NIL)) (-2255 (($ $) NIL)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) NIL)) (-2016 ((|#1| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-880)))) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-794 (-1143)) |#1|) NIL) (($ $ (-621 (-794 (-1143))) (-621 |#1|)) NIL) (($ $ (-794 (-1143)) $) NIL) (($ $ (-621 (-794 (-1143))) (-621 $)) NIL) (($ $ (-1143) $) NIL (|has| |#1| (-227))) (($ $ (-621 (-1143)) (-621 $)) NIL (|has| |#1| (-227))) (($ $ (-1143) |#1|) NIL (|has| |#1| (-227))) (($ $ (-621 (-1143)) (-621 |#1|)) NIL (|has| |#1| (-227)))) (-3602 (($ $ (-794 (-1143))) NIL (|has| |#1| (-170)))) (-3456 (($ $ (-794 (-1143))) NIL) (($ $ (-621 (-794 (-1143)))) NIL) (($ $ (-794 (-1143)) (-747)) NIL) (($ $ (-621 (-794 (-1143))) (-621 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1920 (((-621 (-1143)) $) NIL)) (-3701 (((-521 (-794 (-1143))) $) NIL) (((-747) $ (-794 (-1143))) NIL) (((-621 (-747)) $ (-621 (-794 (-1143)))) NIL) (((-747) $ (-1143)) NIL)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| (-794 (-1143)) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-794 (-1143)) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-794 (-1143)) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-2216 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-794 (-1143))) NIL (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-794 (-1143))) NIL) (($ (-1143)) NIL) (($ (-1092 |#1| (-1143))) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-521 (-794 (-1143)))) NIL) (($ $ (-794 (-1143)) (-747)) NIL) (($ $ (-621 (-794 (-1143))) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-794 (-1143))) NIL) (($ $ (-621 (-794 (-1143)))) NIL) (($ $ (-794 (-1143)) (-747)) NIL) (($ $ (-621 (-794 (-1143))) (-621 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-792 |#1|) (-13 (-246 |#1| (-1143) (-794 (-1143)) (-521 (-794 (-1143)))) (-1009 (-1092 |#1| (-1143)))) (-1018)) (T -792))
+NIL
+(-13 (-246 |#1| (-1143) (-794 (-1143)) (-521 (-794 (-1143)))) (-1009 (-1092 |#1| (-1143))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#2| (-356)))) (-2258 (($ $) NIL (|has| |#2| (-356)))) (-2799 (((-112) $) NIL (|has| |#2| (-356)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL (|has| |#2| (-356)))) (-2402 (((-411 $) $) NIL (|has| |#2| (-356)))) (-3866 (((-112) $ $) NIL (|has| |#2| (-356)))) (-1682 (($) NIL T CONST)) (-2095 (($ $ $) NIL (|has| |#2| (-356)))) (-2114 (((-3 $ "failed") $) NIL)) (-2067 (($ $ $) NIL (|has| |#2| (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#2| (-356)))) (-1420 (((-112) $) NIL (|has| |#2| (-356)))) (-2675 (((-112) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#2| (-356)))) (-3697 (($ (-621 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 20 (|has| |#2| (-356)))) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#2| (-356)))) (-3727 (($ (-621 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-2121 (((-411 $) $) NIL (|has| |#2| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#2| (-356)))) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#2| (-356)))) (-3684 (((-747) $) NIL (|has| |#2| (-356)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#2| (-356)))) (-3456 (($ $ (-747)) NIL) (($ $) 13)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-400 (-549))) NIL (|has| |#2| (-356))) (($ $) NIL (|has| |#2| (-356)))) (-2082 (((-747)) NIL)) (-1498 (((-112) $ $) NIL (|has| |#2| (-356)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-747)) NIL) (($ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) 15 (|has| |#2| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-892)) NIL) (($ $ (-549)) 18 (|has| |#2| (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-400 (-549)) $) NIL (|has| |#2| (-356))) (($ $ (-400 (-549))) NIL (|has| |#2| (-356)))))
+(((-793 |#1| |#2| |#3|) (-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -3846 ($ |#2|)) (-15 -3846 (|#2| $)))) (-1067) (-871 |#1|) |#1|) (T -793))
+((-3846 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-14 *4 *3) (-5 *1 (-793 *3 *2 *4)) (-4 *2 (-871 *3)))) (-3846 (*1 *2 *1) (-12 (-4 *2 (-871 *3)) (-5 *1 (-793 *3 *2 *4)) (-4 *3 (-1067)) (-14 *4 *3))))
+(-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -3846 ($ |#2|)) (-15 -3846 (|#2| $))))
+((-3834 (((-112) $ $) NIL)) (-1637 (((-747) $) NIL)) (-3011 ((|#1| $) 10)) (-2714 (((-3 |#1| "failed") $) NIL)) (-2659 ((|#1| $) NIL)) (-2088 (((-747) $) 11)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3040 (($ |#1| (-747)) 9)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3456 (($ $) NIL) (($ $ (-747)) NIL)) (-3846 (((-834) $) NIL) (($ |#1|) NIL)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) NIL)))
+(((-794 |#1|) (-259 |#1|) (-823)) (T -794))
+NIL
+(-259 |#1|)
+((-3834 (((-112) $ $) NIL)) (-3304 (((-621 |#1|) $) 29)) (-3614 (((-747) $) NIL)) (-1682 (($) NIL T CONST)) (-1869 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2714 (((-3 |#1| "failed") $) NIL)) (-2659 ((|#1| $) NIL)) (-3657 (($ $) 31)) (-2114 (((-3 $ "failed") $) NIL)) (-1707 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2675 (((-112) $) NIL)) (-1302 ((|#1| $ (-549)) NIL)) (-2009 (((-747) $ (-549)) NIL)) (-4273 (($ $) 36)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2694 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-4192 (((-112) $ $) 34)) (-4210 (((-747) $) 25)) (-3851 (((-1125) $) NIL)) (-4039 (($ $ $) NIL)) (-4122 (($ $ $) NIL)) (-3990 (((-1087) $) NIL)) (-3646 ((|#1| $) 30)) (-4024 (((-621 (-2 (|:| |gen| |#1|) (|:| -2719 (-747)))) $) NIL)) (-2056 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3846 (((-834) $) NIL) (($ |#1|) NIL)) (-3287 (($) 15 T CONST)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 35)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ |#1| (-747)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-795 |#1|) (-13 (-819) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -3646 (|#1| $)) (-15 -3657 ($ $)) (-15 -4273 ($ $)) (-15 -4192 ((-112) $ $)) (-15 -4122 ($ $ $)) (-15 -4039 ($ $ $)) (-15 -2694 ((-3 $ "failed") $ $)) (-15 -1869 ((-3 $ "failed") $ $)) (-15 -2694 ((-3 $ "failed") $ |#1|)) (-15 -1869 ((-3 $ "failed") $ |#1|)) (-15 -2056 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1707 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3614 ((-747) $)) (-15 -2009 ((-747) $ (-549))) (-15 -1302 (|#1| $ (-549))) (-15 -4024 ((-621 (-2 (|:| |gen| |#1|) (|:| -2719 (-747)))) $)) (-15 -4210 ((-747) $)) (-15 -3304 ((-621 |#1|) $)))) (-823)) (T -795))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-3646 (*1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-3657 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4273 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4192 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-4122 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4039 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2694 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-1869 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2694 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-1869 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-2056 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |rm| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-1707 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |mm| (-795 *3)) (|:| |rm| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-2009 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-747)) (-5 *1 (-795 *4)) (-4 *4 (-823)))) (-1302 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-795 *2)) (-4 *2 (-823)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2719 (-747))))) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-795 *3)) (-4 *3 (-823)))))
+(-13 (-819) (-1009 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-747))) (-15 -3646 (|#1| $)) (-15 -3657 ($ $)) (-15 -4273 ($ $)) (-15 -4192 ((-112) $ $)) (-15 -4122 ($ $ $)) (-15 -4039 ($ $ $)) (-15 -2694 ((-3 $ "failed") $ $)) (-15 -1869 ((-3 $ "failed") $ $)) (-15 -2694 ((-3 $ "failed") $ |#1|)) (-15 -1869 ((-3 $ "failed") $ |#1|)) (-15 -2056 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1707 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3614 ((-747) $)) (-15 -2009 ((-747) $ (-549))) (-15 -1302 (|#1| $ (-549))) (-15 -4024 ((-621 (-2 (|:| |gen| |#1|) (|:| -2719 (-747)))) $)) (-15 -4210 ((-747) $)) (-15 -3304 ((-621 |#1|) $))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-1872 (((-549) $) 51)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2772 (((-112) $) 49)) (-2675 (((-112) $) 30)) (-2374 (((-112) $) 50)) (-2863 (($ $ $) 48)) (-3575 (($ $ $) 47)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2042 (((-3 $ "failed") $ $) 40)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-3212 (($ $) 52)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 45)) (-2425 (((-112) $ $) 44)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 46)) (-2412 (((-112) $ $) 43)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-796) (-138)) (T -796))
+NIL
+(-13 (-541) (-821))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-821) . T) ((-823) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-2000 (($ (-1087)) 7)) (-4133 (((-112) $ (-1125) (-1087)) 15)) (-1628 (((-798) $) 12)) (-3620 (((-798) $) 11)) (-1306 (((-1231) $) 9)) (-1953 (((-112) $ (-1087)) 16)))
+(((-797) (-10 -8 (-15 -2000 ($ (-1087))) (-15 -1306 ((-1231) $)) (-15 -3620 ((-798) $)) (-15 -1628 ((-798) $)) (-15 -4133 ((-112) $ (-1125) (-1087))) (-15 -1953 ((-112) $ (-1087))))) (T -797))
+((-1953 (*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-112)) (-5 *1 (-797)))) (-4133 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1125)) (-5 *4 (-1087)) (-5 *2 (-112)) (-5 *1 (-797)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-797)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-797)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-797)))) (-2000 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-797)))))
+(-10 -8 (-15 -2000 ($ (-1087))) (-15 -1306 ((-1231) $)) (-15 -3620 ((-798) $)) (-15 -1628 ((-798) $)) (-15 -4133 ((-112) $ (-1125) (-1087))) (-15 -1953 ((-112) $ (-1087))))
+((-3139 (((-1231) $ (-799)) 12)) (-2354 (((-1231) $ (-1143)) 32)) (-3157 (((-1231) $ (-1125) (-1125)) 34)) (-3683 (((-1231) $ (-1125)) 33)) (-2491 (((-1231) $) 19)) (-2931 (((-1231) $ (-549)) 28)) (-1751 (((-1231) $ (-219)) 30)) (-3677 (((-1231) $) 18)) (-1626 (((-1231) $) 26)) (-3595 (((-1231) $) 25)) (-3782 (((-1231) $) 23)) (-4293 (((-1231) $) 24)) (-1319 (((-1231) $) 22)) (-1331 (((-1231) $) 21)) (-3024 (((-1231) $) 20)) (-1970 (((-1231) $) 16)) (-2693 (((-1231) $) 17)) (-1659 (((-1231) $) 15)) (-2743 (((-1231) $) 14)) (-2010 (((-1231) $) 13)) (-2306 (($ (-1125) (-799)) 9)) (-4042 (($ (-1125) (-1125) (-799)) 8)) (-2512 (((-1143) $) 51)) (-3600 (((-1143) $) 55)) (-2891 (((-2 (|:| |cd| (-1125)) (|:| -2481 (-1125))) $) 54)) (-4048 (((-1125) $) 52)) (-3045 (((-1231) $) 41)) (-3455 (((-549) $) 49)) (-1841 (((-219) $) 50)) (-2234 (((-1231) $) 40)) (-3102 (((-1231) $) 48)) (-2908 (((-1231) $) 47)) (-4222 (((-1231) $) 45)) (-4269 (((-1231) $) 46)) (-2641 (((-1231) $) 44)) (-2507 (((-1231) $) 43)) (-1697 (((-1231) $) 42)) (-3046 (((-1231) $) 38)) (-2027 (((-1231) $) 39)) (-1452 (((-1231) $) 37)) (-4175 (((-1231) $) 36)) (-2251 (((-1231) $) 35)) (-3970 (((-1231) $) 11)))
+(((-798) (-10 -8 (-15 -4042 ($ (-1125) (-1125) (-799))) (-15 -2306 ($ (-1125) (-799))) (-15 -3970 ((-1231) $)) (-15 -3139 ((-1231) $ (-799))) (-15 -2010 ((-1231) $)) (-15 -2743 ((-1231) $)) (-15 -1659 ((-1231) $)) (-15 -1970 ((-1231) $)) (-15 -2693 ((-1231) $)) (-15 -3677 ((-1231) $)) (-15 -2491 ((-1231) $)) (-15 -3024 ((-1231) $)) (-15 -1331 ((-1231) $)) (-15 -1319 ((-1231) $)) (-15 -3782 ((-1231) $)) (-15 -4293 ((-1231) $)) (-15 -3595 ((-1231) $)) (-15 -1626 ((-1231) $)) (-15 -2931 ((-1231) $ (-549))) (-15 -1751 ((-1231) $ (-219))) (-15 -2354 ((-1231) $ (-1143))) (-15 -3683 ((-1231) $ (-1125))) (-15 -3157 ((-1231) $ (-1125) (-1125))) (-15 -2251 ((-1231) $)) (-15 -4175 ((-1231) $)) (-15 -1452 ((-1231) $)) (-15 -3046 ((-1231) $)) (-15 -2027 ((-1231) $)) (-15 -2234 ((-1231) $)) (-15 -3045 ((-1231) $)) (-15 -1697 ((-1231) $)) (-15 -2507 ((-1231) $)) (-15 -2641 ((-1231) $)) (-15 -4222 ((-1231) $)) (-15 -4269 ((-1231) $)) (-15 -2908 ((-1231) $)) (-15 -3102 ((-1231) $)) (-15 -3455 ((-549) $)) (-15 -1841 ((-219) $)) (-15 -2512 ((-1143) $)) (-15 -4048 ((-1125) $)) (-15 -2891 ((-2 (|:| |cd| (-1125)) (|:| -2481 (-1125))) $)) (-15 -3600 ((-1143) $)))) (T -798))
+((-3600 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-798)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1125)) (|:| -2481 (-1125)))) (-5 *1 (-798)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-798)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-798)))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-798)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-798)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-4222 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-1697 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-4175 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-3157 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-798)))) (-3683 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-798)))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-798)))) (-1751 (*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1231)) (-5 *1 (-798)))) (-2931 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-798)))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-2010 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-3139 (*1 *2 *1 *3) (-12 (-5 *3 (-799)) (-5 *2 (-1231)) (-5 *1 (-798)))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))) (-2306 (*1 *1 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-799)) (-5 *1 (-798)))) (-4042 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-799)) (-5 *1 (-798)))))
+(-10 -8 (-15 -4042 ($ (-1125) (-1125) (-799))) (-15 -2306 ($ (-1125) (-799))) (-15 -3970 ((-1231) $)) (-15 -3139 ((-1231) $ (-799))) (-15 -2010 ((-1231) $)) (-15 -2743 ((-1231) $)) (-15 -1659 ((-1231) $)) (-15 -1970 ((-1231) $)) (-15 -2693 ((-1231) $)) (-15 -3677 ((-1231) $)) (-15 -2491 ((-1231) $)) (-15 -3024 ((-1231) $)) (-15 -1331 ((-1231) $)) (-15 -1319 ((-1231) $)) (-15 -3782 ((-1231) $)) (-15 -4293 ((-1231) $)) (-15 -3595 ((-1231) $)) (-15 -1626 ((-1231) $)) (-15 -2931 ((-1231) $ (-549))) (-15 -1751 ((-1231) $ (-219))) (-15 -2354 ((-1231) $ (-1143))) (-15 -3683 ((-1231) $ (-1125))) (-15 -3157 ((-1231) $ (-1125) (-1125))) (-15 -2251 ((-1231) $)) (-15 -4175 ((-1231) $)) (-15 -1452 ((-1231) $)) (-15 -3046 ((-1231) $)) (-15 -2027 ((-1231) $)) (-15 -2234 ((-1231) $)) (-15 -3045 ((-1231) $)) (-15 -1697 ((-1231) $)) (-15 -2507 ((-1231) $)) (-15 -2641 ((-1231) $)) (-15 -4222 ((-1231) $)) (-15 -4269 ((-1231) $)) (-15 -2908 ((-1231) $)) (-15 -3102 ((-1231) $)) (-15 -3455 ((-549) $)) (-15 -1841 ((-219) $)) (-15 -2512 ((-1143) $)) (-15 -4048 ((-1125) $)) (-15 -2891 ((-2 (|:| |cd| (-1125)) (|:| -2481 (-1125))) $)) (-15 -3600 ((-1143) $)))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 12)) (-3486 (($) 15)) (-1883 (($) 13)) (-1644 (($) 16)) (-1338 (($) 14)) (-2389 (((-112) $ $) 8)))
+(((-799) (-13 (-1067) (-10 -8 (-15 -1883 ($)) (-15 -3486 ($)) (-15 -1644 ($)) (-15 -1338 ($))))) (T -799))
+((-1883 (*1 *1) (-5 *1 (-799))) (-3486 (*1 *1) (-5 *1 (-799))) (-1644 (*1 *1) (-5 *1 (-799))) (-1338 (*1 *1) (-5 *1 (-799))))
+(-13 (-1067) (-10 -8 (-15 -1883 ($)) (-15 -3486 ($)) (-15 -1644 ($)) (-15 -1338 ($))))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 21) (($ (-1143)) 17)) (-2887 (((-112) $) 10)) (-1650 (((-112) $) 9)) (-2355 (((-112) $) 11)) (-1974 (((-112) $) 8)) (-2389 (((-112) $ $) 19)))
+(((-800) (-13 (-1067) (-10 -8 (-15 -3846 ($ (-1143))) (-15 -1974 ((-112) $)) (-15 -1650 ((-112) $)) (-15 -2887 ((-112) $)) (-15 -2355 ((-112) $))))) (T -800))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-800)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))) (-2355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))))
+(-13 (-1067) (-10 -8 (-15 -3846 ($ (-1143))) (-15 -1974 ((-112) $)) (-15 -1650 ((-112) $)) (-15 -2887 ((-112) $)) (-15 -2355 ((-112) $))))
+((-3834 (((-112) $ $) NIL)) (-2400 (($ (-800) (-621 (-1143))) 24)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2372 (((-800) $) 25)) (-4215 (((-621 (-1143)) $) 26)) (-3846 (((-834) $) 23)) (-2389 (((-112) $ $) NIL)))
+(((-801) (-13 (-1067) (-10 -8 (-15 -2372 ((-800) $)) (-15 -4215 ((-621 (-1143)) $)) (-15 -2400 ($ (-800) (-621 (-1143))))))) (T -801))
+((-2372 (*1 *2 *1) (-12 (-5 *2 (-800)) (-5 *1 (-801)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-801)))) (-2400 (*1 *1 *2 *3) (-12 (-5 *2 (-800)) (-5 *3 (-621 (-1143))) (-5 *1 (-801)))))
+(-13 (-1067) (-10 -8 (-15 -2372 ((-800) $)) (-15 -4215 ((-621 (-1143)) $)) (-15 -2400 ($ (-800) (-621 (-1143))))))
+((-4245 (((-1231) (-798) (-309 |#1|) (-112)) 23) (((-1231) (-798) (-309 |#1|)) 79) (((-1125) (-309 |#1|) (-112)) 78) (((-1125) (-309 |#1|)) 77)))
+(((-802 |#1|) (-10 -7 (-15 -4245 ((-1125) (-309 |#1|))) (-15 -4245 ((-1125) (-309 |#1|) (-112))) (-15 -4245 ((-1231) (-798) (-309 |#1|))) (-15 -4245 ((-1231) (-798) (-309 |#1|) (-112)))) (-13 (-804) (-823) (-1018))) (T -802))
+((-4245 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-798)) (-5 *4 (-309 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-804) (-823) (-1018))) (-5 *2 (-1231)) (-5 *1 (-802 *6)))) (-4245 (*1 *2 *3 *4) (-12 (-5 *3 (-798)) (-5 *4 (-309 *5)) (-4 *5 (-13 (-804) (-823) (-1018))) (-5 *2 (-1231)) (-5 *1 (-802 *5)))) (-4245 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-804) (-823) (-1018))) (-5 *2 (-1125)) (-5 *1 (-802 *5)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-13 (-804) (-823) (-1018))) (-5 *2 (-1125)) (-5 *1 (-802 *4)))))
+(-10 -7 (-15 -4245 ((-1125) (-309 |#1|))) (-15 -4245 ((-1125) (-309 |#1|) (-112))) (-15 -4245 ((-1231) (-798) (-309 |#1|))) (-15 -4245 ((-1231) (-798) (-309 |#1|) (-112))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1853 ((|#1| $) 10)) (-2721 (($ |#1|) 9)) (-2675 (((-112) $) NIL)) (-2246 (($ |#2| (-747)) NIL)) (-3611 (((-747) $) NIL)) (-2043 ((|#2| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3456 (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-3701 (((-747) $) NIL)) (-3846 (((-834) $) 17) (($ (-549)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-2152 ((|#2| $ (-747)) NIL)) (-2082 (((-747)) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-803 |#1| |#2|) (-13 (-685 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -2721 ($ |#1|)) (-15 -1853 (|#1| $)))) (-685 |#2|) (-1018)) (T -803))
+((-2721 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-803 *2 *3)) (-4 *2 (-685 *3)))) (-1853 (*1 *2 *1) (-12 (-4 *2 (-685 *3)) (-5 *1 (-803 *2 *3)) (-4 *3 (-1018)))))
+(-13 (-685 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -2721 ($ |#1|)) (-15 -1853 (|#1| $))))
+((-4245 (((-1231) (-798) $ (-112)) 9) (((-1231) (-798) $) 8) (((-1125) $ (-112)) 7) (((-1125) $) 6)))
+(((-804) (-138)) (T -804))
+((-4245 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-804)) (-5 *3 (-798)) (-5 *4 (-112)) (-5 *2 (-1231)))) (-4245 (*1 *2 *3 *1) (-12 (-4 *1 (-804)) (-5 *3 (-798)) (-5 *2 (-1231)))) (-4245 (*1 *2 *1 *3) (-12 (-4 *1 (-804)) (-5 *3 (-112)) (-5 *2 (-1125)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-804)) (-5 *2 (-1125)))))
+(-13 (-10 -8 (-15 -4245 ((-1125) $)) (-15 -4245 ((-1125) $ (-112))) (-15 -4245 ((-1231) (-798) $)) (-15 -4245 ((-1231) (-798) $ (-112)))))
+((-3090 (((-305) (-1125) (-1125)) 12)) (-3427 (((-112) (-1125) (-1125)) 34)) (-4003 (((-112) (-1125)) 33)) (-2811 (((-52) (-1125)) 25)) (-2146 (((-52) (-1125)) 23)) (-1274 (((-52) (-798)) 17)) (-1533 (((-621 (-1125)) (-1125)) 28)) (-2357 (((-621 (-1125))) 27)))
+(((-805) (-10 -7 (-15 -1274 ((-52) (-798))) (-15 -2146 ((-52) (-1125))) (-15 -2811 ((-52) (-1125))) (-15 -2357 ((-621 (-1125)))) (-15 -1533 ((-621 (-1125)) (-1125))) (-15 -4003 ((-112) (-1125))) (-15 -3427 ((-112) (-1125) (-1125))) (-15 -3090 ((-305) (-1125) (-1125))))) (T -805))
+((-3090 (*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-305)) (-5 *1 (-805)))) (-3427 (*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-112)) (-5 *1 (-805)))) (-4003 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-112)) (-5 *1 (-805)))) (-1533 (*1 *2 *3) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-805)) (-5 *3 (-1125)))) (-2357 (*1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-805)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-52)) (-5 *1 (-805)))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-52)) (-5 *1 (-805)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-52)) (-5 *1 (-805)))))
+(-10 -7 (-15 -1274 ((-52) (-798))) (-15 -2146 ((-52) (-1125))) (-15 -2811 ((-52) (-1125))) (-15 -2357 ((-621 (-1125)))) (-15 -1533 ((-621 (-1125)) (-1125))) (-15 -4003 ((-112) (-1125))) (-15 -3427 ((-112) (-1125) (-1125))) (-15 -3090 ((-305) (-1125) (-1125))))
+((-3834 (((-112) $ $) 19)) (-1442 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2440 (($ $ $) 72)) (-2695 (((-112) $ $) 73)) (-1584 (((-112) $ (-747)) 8)) (-2787 (($ (-621 |#1|)) 68) (($) 67)) (-1717 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-3745 (($ $) 62)) (-3676 (($ $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2129 (($ |#1| $) 47 (|has| $ (-6 -4337))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4337)))) (-3812 (($ |#1| $) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4337)))) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-2369 (((-112) $ $) 64)) (-3194 (((-112) $ (-747)) 9)) (-2863 ((|#1| $) 78)) (-1303 (($ $ $) 81)) (-3890 (($ $ $) 80)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-3575 ((|#1| $) 79)) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22)) (-3655 (($ $ $) 69)) (-3504 ((|#1| $) 39)) (-2751 (($ |#1| $) 40) (($ |#1| $ (-747)) 63)) (-3990 (((-1087) $) 21)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3325 ((|#1| $) 41)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3458 (((-621 (-2 (|:| -1793 |#1|) (|:| -4000 (-747)))) $) 61)) (-1334 (($ $ |#1|) 71) (($ $ $) 70)) (-2898 (($) 49) (($ (-621 |#1|)) 48)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2845 (((-525) $) 59 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 50)) (-3846 (((-834) $) 18)) (-4120 (($ (-621 |#1|)) 66) (($) 65)) (-3624 (($ (-621 |#1|)) 42)) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20)) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-806 |#1|) (-138) (-823)) (T -806))
+((-2863 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-823)))))
+(-13 (-713 |t#1|) (-939 |t#1|) (-10 -8 (-15 -2863 (|t#1| $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-593 (-834)) . T) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-671 |#1|) . T) ((-713 |#1|) . T) ((-939 |#1|) . T) ((-1065 |#1|) . T) ((-1067) . T) ((-1180) . T))
+((-3726 (((-1231) (-1087) (-1087)) 47)) (-3018 (((-1231) (-797) (-52)) 44)) (-1398 (((-52) (-797)) 16)))
+(((-807) (-10 -7 (-15 -1398 ((-52) (-797))) (-15 -3018 ((-1231) (-797) (-52))) (-15 -3726 ((-1231) (-1087) (-1087))))) (T -807))
+((-3726 (*1 *2 *3 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1231)) (-5 *1 (-807)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-797)) (-5 *4 (-52)) (-5 *2 (-1231)) (-5 *1 (-807)))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-52)) (-5 *1 (-807)))))
+(-10 -7 (-15 -1398 ((-52) (-797))) (-15 -3018 ((-1231) (-797) (-52))) (-15 -3726 ((-1231) (-1087) (-1087))))
+((-2797 (((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|) (-809 |#2|)) 12) (((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|)) 13)))
+(((-808 |#1| |#2|) (-10 -7 (-15 -2797 ((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|))) (-15 -2797 ((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|) (-809 |#2|)))) (-1067) (-1067)) (T -808))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-809 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-809 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *1 (-808 *5 *6)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-809 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-809 *6)) (-5 *1 (-808 *5 *6)))))
+(-10 -7 (-15 -2797 ((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|))) (-15 -2797 ((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|) (-809 |#2|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL (|has| |#1| (-21)))) (-2001 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1872 (((-549) $) NIL (|has| |#1| (-821)))) (-1682 (($) NIL (|has| |#1| (-21)) CONST)) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 15)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 9)) (-2114 (((-3 $ "failed") $) 40 (|has| |#1| (-821)))) (-3405 (((-3 (-400 (-549)) "failed") $) 49 (|has| |#1| (-534)))) (-3679 (((-112) $) 43 (|has| |#1| (-534)))) (-2532 (((-400 (-549)) $) 46 (|has| |#1| (-534)))) (-2772 (((-112) $) NIL (|has| |#1| (-821)))) (-2675 (((-112) $) NIL (|has| |#1| (-821)))) (-2374 (((-112) $) NIL (|has| |#1| (-821)))) (-2863 (($ $ $) NIL (|has| |#1| (-821)))) (-3575 (($ $ $) NIL (|has| |#1| (-821)))) (-3851 (((-1125) $) NIL)) (-1438 (($) 13)) (-3807 (((-112) $) 12)) (-3990 (((-1087) $) NIL)) (-3195 (((-112) $) 11)) (-3846 (((-834) $) 18) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) 8) (($ (-549)) NIL (-1536 (|has| |#1| (-821)) (|has| |#1| (-1009 (-549)))))) (-2082 (((-747)) 34 (|has| |#1| (-821)))) (-3212 (($ $) NIL (|has| |#1| (-821)))) (-3276 (($) 22 (|has| |#1| (-21)) CONST)) (-3287 (($) 31 (|has| |#1| (-821)) CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2389 (((-112) $ $) 20)) (-2438 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2412 (((-112) $ $) 42 (|has| |#1| (-821)))) (-2500 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2486 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-892)) NIL (|has| |#1| (-821))) (($ $ (-747)) NIL (|has| |#1| (-821)))) (* (($ $ $) 37 (|has| |#1| (-821))) (($ (-549) $) 25 (|has| |#1| (-21))) (($ (-747) $) NIL (|has| |#1| (-21))) (($ (-892) $) NIL (|has| |#1| (-21)))))
+(((-809 |#1|) (-13 (-1067) (-404 |#1|) (-10 -8 (-15 -1438 ($)) (-15 -3195 ((-112) $)) (-15 -3807 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3679 ((-112) $)) (-15 -2532 ((-400 (-549)) $)) (-15 -3405 ((-3 (-400 (-549)) "failed") $))) |%noBranch|))) (-1067)) (T -809))
+((-1438 (*1 *1) (-12 (-5 *1 (-809 *2)) (-4 *2 (-1067)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-809 *3)) (-4 *3 (-1067)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-809 *3)) (-4 *3 (-1067)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-809 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-809 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) (-3405 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-809 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))))
+(-13 (-1067) (-404 |#1|) (-10 -8 (-15 -1438 ($)) (-15 -3195 ((-112) $)) (-15 -3807 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3679 ((-112) $)) (-15 -2532 ((-400 (-549)) $)) (-15 -3405 ((-3 (-400 (-549)) "failed") $))) |%noBranch|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2659 ((|#1| $) NIL) (((-114) $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3297 ((|#1| (-114) |#1|) NIL)) (-2675 (((-112) $) NIL)) (-3566 (($ |#1| (-354 (-114))) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2630 (($ $ (-1 |#1| |#1|)) NIL)) (-3686 (($ $ (-1 |#1| |#1|)) NIL)) (-3341 ((|#1| $ |#1|) NIL)) (-2817 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-1709 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ (-114) (-549)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
+(((-810 |#1|) (-13 (-1018) (-1009 |#1|) (-1009 (-114)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -1709 ($ $)) (-15 -1709 ($ $ $)) (-15 -2817 (|#1| |#1|))) |%noBranch|) (-15 -3686 ($ $ (-1 |#1| |#1|))) (-15 -2630 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-549))) (-15 ** ($ $ (-549))) (-15 -3297 (|#1| (-114) |#1|)) (-15 -3566 ($ |#1| (-354 (-114)))))) (-1018)) (T -810))
+((-1709 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) (-1709 (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) (-2817 (*1 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))) (-3686 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))) (-2630 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-549)) (-5 *1 (-810 *4)) (-4 *4 (-1018)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-810 *3)) (-4 *3 (-1018)))) (-3297 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-810 *2)) (-4 *2 (-1018)))) (-3566 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-114))) (-5 *1 (-810 *2)) (-4 *2 (-1018)))))
+(-13 (-1018) (-1009 |#1|) (-1009 (-114)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -1709 ($ $)) (-15 -1709 ($ $ $)) (-15 -2817 (|#1| |#1|))) |%noBranch|) (-15 -3686 ($ $ (-1 |#1| |#1|))) (-15 -2630 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-549))) (-15 ** ($ $ (-549))) (-15 -3297 (|#1| (-114) |#1|)) (-15 -3566 ($ |#1| (-354 (-114))))))
+((-2970 (((-208 (-493)) (-1125)) 9)))
+(((-811) (-10 -7 (-15 -2970 ((-208 (-493)) (-1125))))) (T -811))
+((-2970 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-208 (-493))) (-5 *1 (-811)))))
+(-10 -7 (-15 -2970 ((-208 (-493)) (-1125))))
+((-3834 (((-112) $ $) 7)) (-2850 (((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 14) (((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 13)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 16) (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 15)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2389 (((-112) $ $) 6)))
+(((-812) (-138)) (T -812))
+((-1391 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (-5 *2 (-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)))))) (-1391 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) (-5 *2 (-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)))))) (-2850 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) (-5 *2 (-1006)))) (-2850 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (-5 *2 (-1006)))))
+(-13 (-1067) (-10 -7 (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -2850 ((-1006) (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -2850 ((-1006) (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-1517 (((-1006) (-621 (-309 (-372))) (-621 (-372))) 147) (((-1006) (-309 (-372)) (-621 (-372))) 145) (((-1006) (-309 (-372)) (-621 (-372)) (-621 (-816 (-372))) (-621 (-816 (-372)))) 144) (((-1006) (-309 (-372)) (-621 (-372)) (-621 (-816 (-372))) (-621 (-309 (-372))) (-621 (-816 (-372)))) 143) (((-1006) (-814)) 117) (((-1006) (-814) (-1030)) 116)) (-1391 (((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-814) (-1030)) 82) (((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-814)) 84)) (-2702 (((-1006) (-621 (-309 (-372))) (-621 (-372))) 148) (((-1006) (-814)) 133)))
+(((-813) (-10 -7 (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-814))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-814) (-1030))) (-15 -1517 ((-1006) (-814) (-1030))) (-15 -1517 ((-1006) (-814))) (-15 -2702 ((-1006) (-814))) (-15 -1517 ((-1006) (-309 (-372)) (-621 (-372)) (-621 (-816 (-372))) (-621 (-309 (-372))) (-621 (-816 (-372))))) (-15 -1517 ((-1006) (-309 (-372)) (-621 (-372)) (-621 (-816 (-372))) (-621 (-816 (-372))))) (-15 -1517 ((-1006) (-309 (-372)) (-621 (-372)))) (-15 -1517 ((-1006) (-621 (-309 (-372))) (-621 (-372)))) (-15 -2702 ((-1006) (-621 (-309 (-372))) (-621 (-372)))))) (T -813))
+((-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-309 (-372)))) (-5 *4 (-621 (-372))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1517 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-309 (-372)))) (-5 *4 (-621 (-372))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1517 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-372))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1517 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-372))) (-5 *5 (-621 (-816 (-372)))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1517 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-621 (-372))) (-5 *5 (-621 (-816 (-372)))) (-5 *6 (-621 (-309 (-372)))) (-5 *3 (-309 (-372))) (-5 *2 (-1006)) (-5 *1 (-813)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1517 (*1 *2 *3 *4) (-12 (-5 *3 (-814)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-813)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-814)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))))) (-5 *1 (-813)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))))) (-5 *1 (-813)))))
+(-10 -7 (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-814))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-814) (-1030))) (-15 -1517 ((-1006) (-814) (-1030))) (-15 -1517 ((-1006) (-814))) (-15 -2702 ((-1006) (-814))) (-15 -1517 ((-1006) (-309 (-372)) (-621 (-372)) (-621 (-816 (-372))) (-621 (-309 (-372))) (-621 (-816 (-372))))) (-15 -1517 ((-1006) (-309 (-372)) (-621 (-372)) (-621 (-816 (-372))) (-621 (-816 (-372))))) (-15 -1517 ((-1006) (-309 (-372)) (-621 (-372)))) (-15 -1517 ((-1006) (-621 (-309 (-372))) (-621 (-372)))) (-15 -2702 ((-1006) (-621 (-309 (-372))) (-621 (-372)))))
+((-3834 (((-112) $ $) NIL)) (-2659 (((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) $) 21)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 20) (($ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) 14) (($ (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))))) 18)) (-2389 (((-112) $ $) NIL)))
+(((-814) (-13 (-1067) (-10 -8 (-15 -3846 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))))) (-15 -3846 ($ (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -3846 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))))) (-15 -3846 ((-834) $)) (-15 -2659 ((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) $))))) (T -814))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-814)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (-5 *1 (-814)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))) (-5 *1 (-814)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))))) (-5 *1 (-814)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219))))))) (-5 *1 (-814)))))
+(-13 (-1067) (-10 -8 (-15 -3846 ($ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219))))))) (-15 -3846 ($ (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) (-15 -3846 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))))) (-15 -3846 ((-834) $)) (-15 -2659 ((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219))) (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219)))) (|:| |ub| (-621 (-816 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))) $))))
+((-2797 (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|) (-816 |#2|) (-816 |#2|)) 13) (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)) 14)))
+(((-815 |#1| |#2|) (-10 -7 (-15 -2797 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|))) (-15 -2797 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|) (-816 |#2|) (-816 |#2|)))) (-1067) (-1067)) (T -815))
+((-2797 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-816 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *1 (-815 *5 *6)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6)))))
+(-10 -7 (-15 -2797 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|))) (-15 -2797 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|) (-816 |#2|) (-816 |#2|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL (|has| |#1| (-21)))) (-3969 (((-1087) $) 24)) (-2001 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1872 (((-549) $) NIL (|has| |#1| (-821)))) (-1682 (($) NIL (|has| |#1| (-21)) CONST)) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 16)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 9)) (-2114 (((-3 $ "failed") $) 47 (|has| |#1| (-821)))) (-3405 (((-3 (-400 (-549)) "failed") $) 54 (|has| |#1| (-534)))) (-3679 (((-112) $) 49 (|has| |#1| (-534)))) (-2532 (((-400 (-549)) $) 52 (|has| |#1| (-534)))) (-2772 (((-112) $) NIL (|has| |#1| (-821)))) (-3048 (($) 13)) (-2675 (((-112) $) NIL (|has| |#1| (-821)))) (-2374 (((-112) $) NIL (|has| |#1| (-821)))) (-3059 (($) 14)) (-2863 (($ $ $) NIL (|has| |#1| (-821)))) (-3575 (($ $ $) NIL (|has| |#1| (-821)))) (-3851 (((-1125) $) NIL)) (-3807 (((-112) $) 12)) (-3990 (((-1087) $) NIL)) (-3195 (((-112) $) 11)) (-3846 (((-834) $) 22) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) 8) (($ (-549)) NIL (-1536 (|has| |#1| (-821)) (|has| |#1| (-1009 (-549)))))) (-2082 (((-747)) 41 (|has| |#1| (-821)))) (-3212 (($ $) NIL (|has| |#1| (-821)))) (-3276 (($) 29 (|has| |#1| (-21)) CONST)) (-3287 (($) 38 (|has| |#1| (-821)) CONST)) (-2448 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2389 (((-112) $ $) 27)) (-2438 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2412 (((-112) $ $) 48 (|has| |#1| (-821)))) (-2500 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2486 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-892)) NIL (|has| |#1| (-821))) (($ $ (-747)) NIL (|has| |#1| (-821)))) (* (($ $ $) 44 (|has| |#1| (-821))) (($ (-549) $) 32 (|has| |#1| (-21))) (($ (-747) $) NIL (|has| |#1| (-21))) (($ (-892) $) NIL (|has| |#1| (-21)))))
+(((-816 |#1|) (-13 (-1067) (-404 |#1|) (-10 -8 (-15 -3048 ($)) (-15 -3059 ($)) (-15 -3195 ((-112) $)) (-15 -3807 ((-112) $)) (-15 -3969 ((-1087) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3679 ((-112) $)) (-15 -2532 ((-400 (-549)) $)) (-15 -3405 ((-3 (-400 (-549)) "failed") $))) |%noBranch|))) (-1067)) (T -816))
+((-3048 (*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1067)))) (-3059 (*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1067)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-1067)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-1067)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-816 *3)) (-4 *3 (-1067)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-816 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))) (-3405 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-816 *3)) (-4 *3 (-534)) (-4 *3 (-1067)))))
+(-13 (-1067) (-404 |#1|) (-10 -8 (-15 -3048 ($)) (-15 -3059 ($)) (-15 -3195 ((-112) $)) (-15 -3807 ((-112) $)) (-15 -3969 ((-1087) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |#1| (-534)) (PROGN (-15 -3679 ((-112) $)) (-15 -2532 ((-400 (-549)) $)) (-15 -3405 ((-3 (-400 (-549)) "failed") $))) |%noBranch|)))
+((-3834 (((-112) $ $) 7)) (-3614 (((-747)) 20)) (-3239 (($) 23)) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-1881 (((-892) $) 22)) (-3851 (((-1125) $) 9)) (-3493 (($ (-892)) 21)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)))
(((-817) (-138)) (T -817))
NIL
-(-13 (-828) (-701))
-(((-101) . T) ((-591 (-832)) . T) ((-701) . T) ((-828) . T) ((-821) . T) ((-1075) . T) ((-1063) . T))
-((-2500 (((-547) $) 17)) (-4270 (((-112) $) 10)) (-1860 (((-112) $) 11)) (-2255 (($ $) 19)))
-(((-818 |#1|) (-10 -8 (-15 -2255 (|#1| |#1|)) (-15 -2500 ((-547) |#1|)) (-15 -1860 ((-112) |#1|)) (-15 -4270 ((-112) |#1|))) (-819)) (T -818))
-NIL
-(-10 -8 (-15 -2255 (|#1| |#1|)) (-15 -2500 ((-547) |#1|)) (-15 -1860 ((-112) |#1|)) (-15 -4270 ((-112) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 24)) (-3672 (((-3 $ "failed") $ $) 26)) (-2500 (((-547) $) 33)) (-1948 (($) 23 T CONST)) (-3855 (((-3 $ "failed") $) 38)) (-4270 (((-112) $) 35)) (-2261 (((-112) $) 40)) (-1860 (((-112) $) 34)) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ (-547)) 43)) (-2736 (((-745)) 42)) (-2255 (($ $) 32)) (-3269 (($) 22 T CONST)) (-3281 (($) 41 T CONST)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)) (-2493 (($ $ $) 28) (($ $) 27)) (-2479 (($ $ $) 20)) (** (($ $ (-745)) 39) (($ $ (-890)) 36)) (* (($ (-890) $) 21) (($ (-745) $) 25) (($ (-547) $) 29) (($ $ $) 37)))
+(-13 (-823) (-361))
+(((-101) . T) ((-593 (-834)) . T) ((-361) . T) ((-823) . T) ((-1067) . T))
+((-1801 (((-112) (-1226 |#2|) (-1226 |#2|)) 17)) (-2411 (((-112) (-1226 |#2|) (-1226 |#2|)) 18)) (-2929 (((-112) (-1226 |#2|) (-1226 |#2|)) 14)))
+(((-818 |#1| |#2|) (-10 -7 (-15 -2929 ((-112) (-1226 |#2|) (-1226 |#2|))) (-15 -1801 ((-112) (-1226 |#2|) (-1226 |#2|))) (-15 -2411 ((-112) (-1226 |#2|) (-1226 |#2|)))) (-747) (-768)) (T -818))
+((-2411 (*1 *2 *3 *3) (-12 (-5 *3 (-1226 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))) (-1801 (*1 *2 *3 *3) (-12 (-5 *3 (-1226 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))) (-2929 (*1 *2 *3 *3) (-12 (-5 *3 (-1226 *5)) (-4 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))))
+(-10 -7 (-15 -2929 ((-112) (-1226 |#2|) (-1226 |#2|))) (-15 -1801 ((-112) (-1226 |#2|) (-1226 |#2|))) (-15 -2411 ((-112) (-1226 |#2|) (-1226 |#2|))))
+((-3834 (((-112) $ $) 7)) (-1682 (($) 23 T CONST)) (-2114 (((-3 $ "failed") $) 26)) (-2675 (((-112) $) 24)) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3287 (($) 22 T CONST)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)) (** (($ $ (-892)) 21) (($ $ (-747)) 25)) (* (($ $ $) 20)))
(((-819) (-138)) (T -819))
-((-4270 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-547)))) (-2255 (*1 *1 *1) (-4 *1 (-819))))
-(-13 (-765) (-1016) (-701) (-10 -8 (-15 -4270 ((-112) $)) (-15 -1860 ((-112) $)) (-15 -2500 ((-547) $)) (-15 -2255 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-821) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2856 (($ $ $) 10)) (-3567 (($ $ $) 9)) (-2441 (((-112) $ $) 13)) (-2418 (((-112) $ $) 11)) (-2430 (((-112) $ $) 14)))
-(((-820 |#1|) (-10 -8 (-15 -2856 (|#1| |#1| |#1|)) (-15 -3567 (|#1| |#1| |#1|)) (-15 -2430 ((-112) |#1| |#1|)) (-15 -2441 ((-112) |#1| |#1|)) (-15 -2418 ((-112) |#1| |#1|))) (-821)) (T -820))
-NIL
-(-10 -8 (-15 -2856 (|#1| |#1| |#1|)) (-15 -3567 (|#1| |#1| |#1|)) (-15 -2430 ((-112) |#1| |#1|)) (-15 -2441 ((-112) |#1| |#1|)) (-15 -2418 ((-112) |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)))
+NIL
+(-13 (-830) (-703))
+(((-101) . T) ((-593 (-834)) . T) ((-703) . T) ((-830) . T) ((-823) . T) ((-1079) . T) ((-1067) . T))
+((-1872 (((-549) $) 17)) (-2772 (((-112) $) 10)) (-2374 (((-112) $) 11)) (-3212 (($ $) 19)))
+(((-820 |#1|) (-10 -8 (-15 -3212 (|#1| |#1|)) (-15 -1872 ((-549) |#1|)) (-15 -2374 ((-112) |#1|)) (-15 -2772 ((-112) |#1|))) (-821)) (T -820))
+NIL
+(-10 -8 (-15 -3212 (|#1| |#1|)) (-15 -1872 ((-549) |#1|)) (-15 -2374 ((-112) |#1|)) (-15 -2772 ((-112) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 24)) (-2001 (((-3 $ "failed") $ $) 26)) (-1872 (((-549) $) 33)) (-1682 (($) 23 T CONST)) (-2114 (((-3 $ "failed") $) 38)) (-2772 (((-112) $) 35)) (-2675 (((-112) $) 40)) (-2374 (((-112) $) 34)) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ (-549)) 43)) (-2082 (((-747)) 42)) (-3212 (($ $) 32)) (-3276 (($) 22 T CONST)) (-3287 (($) 41 T CONST)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)) (-2500 (($ $ $) 28) (($ $) 27)) (-2486 (($ $ $) 20)) (** (($ $ (-747)) 39) (($ $ (-892)) 36)) (* (($ (-892) $) 21) (($ (-747) $) 25) (($ (-549) $) 29) (($ $ $) 37)))
(((-821) (-138)) (T -821))
-((-2405 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2418 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2441 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2430 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-3567 (*1 *1 *1 *1) (-4 *1 (-821))) (-2856 (*1 *1 *1 *1) (-4 *1 (-821))))
-(-13 (-1063) (-10 -8 (-15 -2405 ((-112) $ $)) (-15 -2418 ((-112) $ $)) (-15 -2441 ((-112) $ $)) (-15 -2430 ((-112) $ $)) (-15 -3567 ($ $ $)) (-15 -2856 ($ $ $))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-1761 (($ $ $) 45)) (-2683 (($ $ $) 44)) (-1613 (($ $ $) 42)) (-2246 (($ $ $) 51)) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 46)) (-3056 (((-3 $ "failed") $ $) 49)) (-2707 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3350 (($ $) 35)) (-2835 (($ $ $) 39)) (-1805 (($ $ $) 38)) (-2404 (($ $ $) 47)) (-2775 (($ $ $) 53)) (-2020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 41)) (-4301 (((-3 $ "failed") $ $) 48)) (-2032 (((-3 $ "failed") $ |#2|) 28)) (-2392 ((|#2| $) 32)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL) (($ |#2|) 12)) (-1277 (((-619 |#2|) $) 18)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-822 |#1| |#2|) (-10 -8 (-15 -2404 (|#1| |#1| |#1|)) (-15 -2542 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4238 |#1|)) |#1| |#1|)) (-15 -2246 (|#1| |#1| |#1|)) (-15 -3056 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1761 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#1| |#1|)) (-15 -1613 (|#1| |#1| |#1|)) (-15 -2020 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4238 |#1|)) |#1| |#1|)) (-15 -2775 (|#1| |#1| |#1|)) (-15 -4301 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2835 (|#1| |#1| |#1|)) (-15 -1805 (|#1| |#1| |#1|)) (-15 -3350 (|#1| |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1277 ((-619 |#2|) |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3838 (|#1| (-547))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -3838 ((-832) |#1|))) (-823 |#2|) (-1016)) (T -822))
-NIL
-(-10 -8 (-15 -2404 (|#1| |#1| |#1|)) (-15 -2542 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4238 |#1|)) |#1| |#1|)) (-15 -2246 (|#1| |#1| |#1|)) (-15 -3056 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1761 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#1| |#1|)) (-15 -1613 (|#1| |#1| |#1|)) (-15 -2020 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4238 |#1|)) |#1| |#1|)) (-15 -2775 (|#1| |#1| |#1|)) (-15 -4301 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2835 (|#1| |#1| |#1|)) (-15 -1805 (|#1| |#1| |#1|)) (-15 -3350 (|#1| |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -2032 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1277 ((-619 |#2|) |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3838 (|#1| (-547))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1761 (($ $ $) 43 (|has| |#1| (-354)))) (-2683 (($ $ $) 44 (|has| |#1| (-354)))) (-1613 (($ $ $) 46 (|has| |#1| (-354)))) (-2246 (($ $ $) 41 (|has| |#1| (-354)))) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 40 (|has| |#1| (-354)))) (-3056 (((-3 $ "failed") $ $) 42 (|has| |#1| (-354)))) (-3427 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 45 (|has| |#1| (-354)))) (-2707 (((-3 (-547) "failed") $) 72 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 70 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 67)) (-2652 (((-547) $) 73 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 71 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 66)) (-2063 (($ $) 62)) (-3855 (((-3 $ "failed") $) 32)) (-3350 (($ $) 53 (|has| |#1| (-442)))) (-2261 (((-112) $) 30)) (-2238 (($ |#1| (-745)) 60)) (-3812 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55 (|has| |#1| (-539)))) (-1446 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 56 (|has| |#1| (-539)))) (-3095 (((-745) $) 64)) (-2835 (($ $ $) 50 (|has| |#1| (-354)))) (-1805 (($ $ $) 51 (|has| |#1| (-354)))) (-2404 (($ $ $) 39 (|has| |#1| (-354)))) (-2775 (($ $ $) 48 (|has| |#1| (-354)))) (-2020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 47 (|has| |#1| (-354)))) (-4301 (((-3 $ "failed") $ $) 49 (|has| |#1| (-354)))) (-1526 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 52 (|has| |#1| (-354)))) (-2037 ((|#1| $) 63)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2032 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-539)))) (-3705 (((-745) $) 65)) (-2392 ((|#1| $) 54 (|has| |#1| (-442)))) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 69 (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) 68)) (-1277 (((-619 |#1|) $) 59)) (-2450 ((|#1| $ (-745)) 61)) (-2736 (((-745)) 28)) (-3587 ((|#1| $ |#1| |#1|) 58)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
-(((-823 |#1|) (-138) (-1016)) (T -823))
-((-3705 (*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-2063 (*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-2450 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-2238 (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-619 *3)))) (-3587 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-2032 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-539)))) (-1446 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-823 *3)))) (-3812 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-823 *3)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-442)))) (-3350 (*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-442)))) (-1526 (*1 *2 *1 *1) (-12 (-4 *3 (-354)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-823 *3)))) (-1805 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-2835 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-4301 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-2775 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-2020 (*1 *2 *1 *1) (-12 (-4 *3 (-354)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4238 *1))) (-4 *1 (-823 *3)))) (-1613 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-3427 (*1 *2 *1 *1) (-12 (-4 *3 (-354)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-823 *3)))) (-2683 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-1761 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-3056 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-2246 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-2542 (*1 *2 *1 *1) (-12 (-4 *3 (-354)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4238 *1))) (-4 *1 (-823 *3)))) (-2404 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
-(-13 (-1016) (-111 |t#1| |t#1|) (-402 |t#1|) (-10 -8 (-15 -3705 ((-745) $)) (-15 -3095 ((-745) $)) (-15 -2037 (|t#1| $)) (-15 -2063 ($ $)) (-15 -2450 (|t#1| $ (-745))) (-15 -2238 ($ |t#1| (-745))) (-15 -1277 ((-619 |t#1|) $)) (-15 -3587 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -2032 ((-3 $ "failed") $ |t#1|)) (-15 -1446 ((-2 (|:| -2235 $) (|:| -2916 $)) $ $)) (-15 -3812 ((-2 (|:| -2235 $) (|:| -2916 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-442)) (PROGN (-15 -2392 (|t#1| $)) (-15 -3350 ($ $))) |%noBranch|) (IF (|has| |t#1| (-354)) (PROGN (-15 -1526 ((-2 (|:| -2235 $) (|:| -2916 $)) $ $)) (-15 -1805 ($ $ $)) (-15 -2835 ($ $ $)) (-15 -4301 ((-3 $ "failed") $ $)) (-15 -2775 ($ $ $)) (-15 -2020 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $)) (-15 -1613 ($ $ $)) (-15 -3427 ((-2 (|:| -2235 $) (|:| -2916 $)) $ $)) (-15 -2683 ($ $ $)) (-15 -1761 ($ $ $)) (-15 -3056 ((-3 $ "failed") $ $)) (-15 -2246 ($ $ $)) (-15 -2542 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $)) (-15 -2404 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-402 |#1|) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3475 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-3427 (((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-354)))) (-3812 (((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-539)))) (-1446 (((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-539)))) (-1526 (((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-354)))) (-3587 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31)))
-(((-824 |#1| |#2|) (-10 -7 (-15 -3475 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3587 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-539)) (PROGN (-15 -1446 ((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3812 ((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-15 -1526 ((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3427 ((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1016) (-823 |#1|)) (T -824))
-((-3427 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-354)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-1526 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-354)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-3812 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-539)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-1446 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-539)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-3587 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-824 *2 *3)) (-4 *3 (-823 *2)))) (-3475 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1016)) (-5 *1 (-824 *5 *2)) (-4 *2 (-823 *5)))))
-(-10 -7 (-15 -3475 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3587 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-539)) (PROGN (-15 -1446 ((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3812 ((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-15 -1526 ((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3427 ((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-1761 (($ $ $) NIL (|has| |#1| (-354)))) (-2683 (($ $ $) NIL (|has| |#1| (-354)))) (-1613 (($ $ $) NIL (|has| |#1| (-354)))) (-2246 (($ $ $) NIL (|has| |#1| (-354)))) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-3056 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-3427 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 32 (|has| |#1| (-354)))) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#1| (-442)))) (-1591 (((-832) $ (-832)) NIL)) (-2261 (((-112) $) NIL)) (-2238 (($ |#1| (-745)) NIL)) (-3812 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 28 (|has| |#1| (-539)))) (-1446 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 26 (|has| |#1| (-539)))) (-3095 (((-745) $) NIL)) (-2835 (($ $ $) NIL (|has| |#1| (-354)))) (-1805 (($ $ $) NIL (|has| |#1| (-354)))) (-2404 (($ $ $) NIL (|has| |#1| (-354)))) (-2775 (($ $ $) NIL (|has| |#1| (-354)))) (-2020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-4301 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-1526 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 30 (|has| |#1| (-354)))) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-3705 (((-745) $) NIL)) (-2392 ((|#1| $) NIL (|has| |#1| (-442)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) NIL)) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-745)) NIL)) (-2736 (((-745)) NIL)) (-3587 ((|#1| $ |#1| |#1|) 15)) (-3269 (($) NIL T CONST)) (-3281 (($) 20 T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) 19) (($ $ (-745)) 22)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-825 |#1| |#2| |#3|) (-13 (-823 |#1|) (-10 -8 (-15 -1591 ((-832) $ (-832))))) (-1016) (-98 |#1|) (-1 |#1| |#1|)) (T -825))
-((-1591 (*1 *2 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-825 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-823 |#1|) (-10 -8 (-15 -1591 ((-832) $ (-832)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-1761 (($ $ $) NIL (|has| |#2| (-354)))) (-2683 (($ $ $) NIL (|has| |#2| (-354)))) (-1613 (($ $ $) NIL (|has| |#2| (-354)))) (-2246 (($ $ $) NIL (|has| |#2| (-354)))) (-2542 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#2| (-354)))) (-3056 (((-3 $ "failed") $ $) NIL (|has| |#2| (-354)))) (-3427 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#2| (-354)))) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 |#2| "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) ((|#2| $) NIL)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#2| (-442)))) (-2261 (((-112) $) NIL)) (-2238 (($ |#2| (-745)) 16)) (-3812 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#2| (-539)))) (-1446 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#2| (-539)))) (-3095 (((-745) $) NIL)) (-2835 (($ $ $) NIL (|has| |#2| (-354)))) (-1805 (($ $ $) NIL (|has| |#2| (-354)))) (-2404 (($ $ $) NIL (|has| |#2| (-354)))) (-2775 (($ $ $) NIL (|has| |#2| (-354)))) (-2020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#2| (-354)))) (-4301 (((-3 $ "failed") $ $) NIL (|has| |#2| (-354)))) (-1526 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#2| (-354)))) (-2037 ((|#2| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2032 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539)))) (-3705 (((-745) $) NIL)) (-2392 ((|#2| $) NIL (|has| |#2| (-442)))) (-3838 (((-832) $) 23) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#2| (-1007 (-398 (-547))))) (($ |#2|) NIL) (($ (-1215 |#1|)) 18)) (-1277 (((-619 |#2|) $) NIL)) (-2450 ((|#2| $ (-745)) NIL)) (-2736 (((-745)) NIL)) (-3587 ((|#2| $ |#2| |#2|) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) 13 T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-826 |#1| |#2| |#3| |#4|) (-13 (-823 |#2|) (-10 -8 (-15 -3838 ($ (-1215 |#1|))))) (-1136) (-1016) (-98 |#2|) (-1 |#2| |#2|)) (T -826))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1215 *3)) (-14 *3 (-1136)) (-5 *1 (-826 *3 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-823 |#2|) (-10 -8 (-15 -3838 ($ (-1215 |#1|)))))
-((-2062 ((|#1| (-745) |#1|) 35 (|has| |#1| (-38 (-398 (-547)))))) (-3545 ((|#1| (-745) (-745) |#1|) 27) ((|#1| (-745) |#1|) 20)) (-2969 ((|#1| (-745) |#1|) 31)) (-1516 ((|#1| (-745) |#1|) 29)) (-4103 ((|#1| (-745) |#1|) 28)))
-(((-827 |#1|) (-10 -7 (-15 -4103 (|#1| (-745) |#1|)) (-15 -1516 (|#1| (-745) |#1|)) (-15 -2969 (|#1| (-745) |#1|)) (-15 -3545 (|#1| (-745) |#1|)) (-15 -3545 (|#1| (-745) (-745) |#1|)) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2062 (|#1| (-745) |#1|)) |%noBranch|)) (-169)) (T -827))
-((-2062 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-169)))) (-3545 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-3545 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-2969 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-4103 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))))
-(-10 -7 (-15 -4103 (|#1| (-745) |#1|)) (-15 -1516 (|#1| (-745) |#1|)) (-15 -2969 (|#1| (-745) |#1|)) (-15 -3545 (|#1| (-745) |#1|)) (-15 -3545 (|#1| (-745) (-745) |#1|)) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2062 (|#1| (-745) |#1|)) |%noBranch|))
-((-3826 (((-112) $ $) 7)) (-2856 (($ $ $) 13)) (-3567 (($ $ $) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2441 (((-112) $ $) 16)) (-2418 (((-112) $ $) 17)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 15)) (-2405 (((-112) $ $) 18)) (** (($ $ (-890)) 21)) (* (($ $ $) 20)))
-(((-828) (-138)) (T -828))
-NIL
-(-13 (-821) (-1075))
-(((-101) . T) ((-591 (-832)) . T) ((-821) . T) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-4153 (((-547) $) 12)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 18) (($ (-547)) 11)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 8)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 9)))
-(((-829) (-13 (-821) (-10 -8 (-15 -3838 ($ (-547))) (-15 -4153 ((-547) $))))) (T -829))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-829)))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-829)))))
-(-13 (-821) (-10 -8 (-15 -3838 ($ (-547))) (-15 -4153 ((-547) $))))
-((-3484 (((-1082) $ (-128)) 17)))
-(((-830 |#1|) (-10 -8 (-15 -3484 ((-1082) |#1| (-128)))) (-831)) (T -830))
-NIL
-(-10 -8 (-15 -3484 ((-1082) |#1| (-128))))
-((-3484 (((-1082) $ (-128)) 7)) (-4060 (((-1082) $ (-129)) 8)) (-1708 (($ $) 6)))
-(((-831) (-138)) (T -831))
-((-4060 (*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-129)) (-5 *2 (-1082)))) (-3484 (*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-128)) (-5 *2 (-1082)))))
-(-13 (-170) (-10 -8 (-15 -4060 ((-1082) $ (-129))) (-15 -3484 ((-1082) $ (-128)))))
-(((-170) . T))
-((-3826 (((-112) $ $) NIL) (($ $ $) 77)) (-1503 (($ $ $) 115)) (-2335 (((-547) $) 30) (((-547)) 35)) (-4028 (($ (-547)) 44)) (-1523 (($ $ $) 45) (($ (-619 $)) 76)) (-2161 (($ $ (-619 $)) 74)) (-4253 (((-547) $) 33)) (-3526 (($ $ $) 63)) (-2814 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-1783 (((-547) $) 32)) (-1278 (($ $ $) 62)) (-1517 (($ $) 105)) (-3727 (($ $ $) 119)) (-4147 (($ (-619 $)) 52)) (-4213 (($ $ (-619 $)) 69)) (-4290 (($ (-547) (-547)) 46)) (-1465 (($ $) 116) (($ $ $) 117)) (-3840 (($ $ (-547)) 40) (($ $) 43)) (-2089 (($ $ $) 89)) (-1659 (($ $ $) 122)) (-3640 (($ $) 106)) (-2061 (($ $ $) 90)) (-3242 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1799 (((-1224) $) 8)) (-2831 (($ $) 109) (($ $ (-745)) 112)) (-3749 (($ $ $) 65)) (-2539 (($ $ $) 64)) (-1881 (($ $ (-619 $)) 100)) (-4075 (($ $ $) 104)) (-2437 (($ (-619 $)) 50)) (-3590 (($ $) 60) (($ (-619 $)) 61)) (-3574 (($ $ $) 113)) (-2863 (($ $) 107)) (-2340 (($ $ $) 118)) (-1591 (($ (-547)) 20) (($ (-1136)) 22) (($ (-1119)) 29) (($ (-217)) 24)) (-4199 (($ $ $) 93)) (-4000 (($ $) 94)) (-1943 (((-1224) (-1119)) 14)) (-3690 (($ (-1119)) 13)) (-3938 (($ (-619 (-619 $))) 49)) (-3830 (($ $ (-547)) 39) (($ $) 42)) (-1466 (((-1119) $) NIL)) (-3392 (($ $ $) 121)) (-2011 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2414 (((-112) $) 98)) (-3622 (($ $ (-619 $)) 102) (($ $ $ $) 103)) (-3993 (($ (-547)) 36)) (-4029 (((-547) $) 31) (((-547)) 34)) (-1958 (($ $ $) 37) (($ (-619 $)) 75)) (-3979 (((-1082) $) NIL)) (-2032 (($ $ $) 91)) (-2245 (($) 12)) (-3334 (($ $ (-619 $)) 99)) (-4117 (($ $) 108) (($ $ (-745)) 111)) (-2048 (($ $ $) 88)) (-3448 (($ $ (-745)) 127)) (-2239 (($ (-619 $)) 51)) (-3838 (((-832) $) 18)) (-2591 (($ $ (-547)) 38) (($ $) 41)) (-3670 (($ $) 58) (($ (-619 $)) 59)) (-4112 (($ $) 56) (($ (-619 $)) 57)) (-4129 (($ $) 114)) (-3588 (($ (-619 $)) 55)) (-3658 (($ $ $) 97)) (-1594 (($ $ $) 120)) (-1814 (($ $ $) 92)) (-1851 (($ $ $) 95) (($ $) 96)) (-2441 (($ $ $) 81)) (-2418 (($ $ $) 79)) (-2381 (((-112) $ $) 15) (($ $ $) 16)) (-2430 (($ $ $) 80)) (-2405 (($ $ $) 78)) (-2506 (($ $ $) 86)) (-2493 (($ $ $) 83) (($ $) 84)) (-2479 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-832) (-13 (-1063) (-10 -8 (-15 -1799 ((-1224) $)) (-15 -3690 ($ (-1119))) (-15 -1943 ((-1224) (-1119))) (-15 -1591 ($ (-547))) (-15 -1591 ($ (-1136))) (-15 -1591 ($ (-1119))) (-15 -1591 ($ (-217))) (-15 -2245 ($)) (-15 -2335 ((-547) $)) (-15 -4029 ((-547) $)) (-15 -2335 ((-547))) (-15 -4029 ((-547))) (-15 -1783 ((-547) $)) (-15 -4253 ((-547) $)) (-15 -3993 ($ (-547))) (-15 -4028 ($ (-547))) (-15 -4290 ($ (-547) (-547))) (-15 -3830 ($ $ (-547))) (-15 -3840 ($ $ (-547))) (-15 -2591 ($ $ (-547))) (-15 -3830 ($ $)) (-15 -3840 ($ $)) (-15 -2591 ($ $)) (-15 -1958 ($ $ $)) (-15 -1523 ($ $ $)) (-15 -1958 ($ (-619 $))) (-15 -1523 ($ (-619 $))) (-15 -1881 ($ $ (-619 $))) (-15 -3622 ($ $ (-619 $))) (-15 -3622 ($ $ $ $)) (-15 -4075 ($ $ $)) (-15 -2414 ((-112) $)) (-15 -3334 ($ $ (-619 $))) (-15 -1517 ($ $)) (-15 -3392 ($ $ $)) (-15 -4129 ($ $)) (-15 -3938 ($ (-619 (-619 $)))) (-15 -1503 ($ $ $)) (-15 -1465 ($ $)) (-15 -1465 ($ $ $)) (-15 -2340 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -1594 ($ $ $)) (-15 -1659 ($ $ $)) (-15 -3448 ($ $ (-745))) (-15 -3658 ($ $ $)) (-15 -1278 ($ $ $)) (-15 -3526 ($ $ $)) (-15 -2539 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -4213 ($ $ (-619 $))) (-15 -2161 ($ $ (-619 $))) (-15 -3640 ($ $)) (-15 -4117 ($ $)) (-15 -4117 ($ $ (-745))) (-15 -2831 ($ $)) (-15 -2831 ($ $ (-745))) (-15 -2863 ($ $)) (-15 -3574 ($ $ $)) (-15 -2814 ($ $)) (-15 -2814 ($ $ $)) (-15 -2814 ($ $ $ $)) (-15 -3242 ($ $)) (-15 -3242 ($ $ $)) (-15 -3242 ($ $ $ $)) (-15 -2011 ($ $)) (-15 -2011 ($ $ $)) (-15 -2011 ($ $ $ $)) (-15 -4112 ($ $)) (-15 -4112 ($ (-619 $))) (-15 -3670 ($ $)) (-15 -3670 ($ (-619 $))) (-15 -3590 ($ $)) (-15 -3590 ($ (-619 $))) (-15 -2437 ($ (-619 $))) (-15 -2239 ($ (-619 $))) (-15 -4147 ($ (-619 $))) (-15 -3588 ($ (-619 $))) (-15 -2381 ($ $ $)) (-15 -3826 ($ $ $)) (-15 -2405 ($ $ $)) (-15 -2418 ($ $ $)) (-15 -2430 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -2479 ($ $ $)) (-15 -2493 ($ $ $)) (-15 -2493 ($ $)) (-15 * ($ $ $)) (-15 -2506 ($ $ $)) (-15 ** ($ $ $)) (-15 -2048 ($ $ $)) (-15 -2089 ($ $ $)) (-15 -2061 ($ $ $)) (-15 -2032 ($ $ $)) (-15 -1814 ($ $ $)) (-15 -4199 ($ $ $)) (-15 -4000 ($ $)) (-15 -1851 ($ $ $)) (-15 -1851 ($ $))))) (T -832))
-((-1799 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-832)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-832)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-832)))) (-1591 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-1591 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-832)))) (-1591 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-832)))) (-1591 (*1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-832)))) (-2245 (*1 *1) (-5 *1 (-832))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-2335 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-4029 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-4253 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-3993 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-4290 (*1 *1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-3830 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-2591 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-3830 (*1 *1 *1) (-5 *1 (-832))) (-3840 (*1 *1 *1) (-5 *1 (-832))) (-2591 (*1 *1 *1) (-5 *1 (-832))) (-1958 (*1 *1 *1 *1) (-5 *1 (-832))) (-1523 (*1 *1 *1 *1) (-5 *1 (-832))) (-1958 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-3622 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-3622 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-4075 (*1 *1 *1 *1) (-5 *1 (-832))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1517 (*1 *1 *1) (-5 *1 (-832))) (-3392 (*1 *1 *1 *1) (-5 *1 (-832))) (-4129 (*1 *1 *1) (-5 *1 (-832))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-832)))) (-1503 (*1 *1 *1 *1) (-5 *1 (-832))) (-1465 (*1 *1 *1) (-5 *1 (-832))) (-1465 (*1 *1 *1 *1) (-5 *1 (-832))) (-2340 (*1 *1 *1 *1) (-5 *1 (-832))) (-3727 (*1 *1 *1 *1) (-5 *1 (-832))) (-1594 (*1 *1 *1 *1) (-5 *1 (-832))) (-1659 (*1 *1 *1 *1) (-5 *1 (-832))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) (-3658 (*1 *1 *1 *1) (-5 *1 (-832))) (-1278 (*1 *1 *1 *1) (-5 *1 (-832))) (-3526 (*1 *1 *1 *1) (-5 *1 (-832))) (-2539 (*1 *1 *1 *1) (-5 *1 (-832))) (-3749 (*1 *1 *1 *1) (-5 *1 (-832))) (-4213 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2161 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-3640 (*1 *1 *1) (-5 *1 (-832))) (-4117 (*1 *1 *1) (-5 *1 (-832))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) (-2831 (*1 *1 *1) (-5 *1 (-832))) (-2831 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) (-2863 (*1 *1 *1) (-5 *1 (-832))) (-3574 (*1 *1 *1 *1) (-5 *1 (-832))) (-2814 (*1 *1 *1) (-5 *1 (-832))) (-2814 (*1 *1 *1 *1) (-5 *1 (-832))) (-2814 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-3242 (*1 *1 *1) (-5 *1 (-832))) (-3242 (*1 *1 *1 *1) (-5 *1 (-832))) (-3242 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-2011 (*1 *1 *1) (-5 *1 (-832))) (-2011 (*1 *1 *1 *1) (-5 *1 (-832))) (-2011 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-4112 (*1 *1 *1) (-5 *1 (-832))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-3670 (*1 *1 *1) (-5 *1 (-832))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-3590 (*1 *1 *1) (-5 *1 (-832))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2437 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-3588 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2381 (*1 *1 *1 *1) (-5 *1 (-832))) (-3826 (*1 *1 *1 *1) (-5 *1 (-832))) (-2405 (*1 *1 *1 *1) (-5 *1 (-832))) (-2418 (*1 *1 *1 *1) (-5 *1 (-832))) (-2430 (*1 *1 *1 *1) (-5 *1 (-832))) (-2441 (*1 *1 *1 *1) (-5 *1 (-832))) (-2479 (*1 *1 *1 *1) (-5 *1 (-832))) (-2493 (*1 *1 *1 *1) (-5 *1 (-832))) (-2493 (*1 *1 *1) (-5 *1 (-832))) (* (*1 *1 *1 *1) (-5 *1 (-832))) (-2506 (*1 *1 *1 *1) (-5 *1 (-832))) (** (*1 *1 *1 *1) (-5 *1 (-832))) (-2048 (*1 *1 *1 *1) (-5 *1 (-832))) (-2089 (*1 *1 *1 *1) (-5 *1 (-832))) (-2061 (*1 *1 *1 *1) (-5 *1 (-832))) (-2032 (*1 *1 *1 *1) (-5 *1 (-832))) (-1814 (*1 *1 *1 *1) (-5 *1 (-832))) (-4199 (*1 *1 *1 *1) (-5 *1 (-832))) (-4000 (*1 *1 *1) (-5 *1 (-832))) (-1851 (*1 *1 *1 *1) (-5 *1 (-832))) (-1851 (*1 *1 *1) (-5 *1 (-832))))
-(-13 (-1063) (-10 -8 (-15 -1799 ((-1224) $)) (-15 -3690 ($ (-1119))) (-15 -1943 ((-1224) (-1119))) (-15 -1591 ($ (-547))) (-15 -1591 ($ (-1136))) (-15 -1591 ($ (-1119))) (-15 -1591 ($ (-217))) (-15 -2245 ($)) (-15 -2335 ((-547) $)) (-15 -4029 ((-547) $)) (-15 -2335 ((-547))) (-15 -4029 ((-547))) (-15 -1783 ((-547) $)) (-15 -4253 ((-547) $)) (-15 -3993 ($ (-547))) (-15 -4028 ($ (-547))) (-15 -4290 ($ (-547) (-547))) (-15 -3830 ($ $ (-547))) (-15 -3840 ($ $ (-547))) (-15 -2591 ($ $ (-547))) (-15 -3830 ($ $)) (-15 -3840 ($ $)) (-15 -2591 ($ $)) (-15 -1958 ($ $ $)) (-15 -1523 ($ $ $)) (-15 -1958 ($ (-619 $))) (-15 -1523 ($ (-619 $))) (-15 -1881 ($ $ (-619 $))) (-15 -3622 ($ $ (-619 $))) (-15 -3622 ($ $ $ $)) (-15 -4075 ($ $ $)) (-15 -2414 ((-112) $)) (-15 -3334 ($ $ (-619 $))) (-15 -1517 ($ $)) (-15 -3392 ($ $ $)) (-15 -4129 ($ $)) (-15 -3938 ($ (-619 (-619 $)))) (-15 -1503 ($ $ $)) (-15 -1465 ($ $)) (-15 -1465 ($ $ $)) (-15 -2340 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -1594 ($ $ $)) (-15 -1659 ($ $ $)) (-15 -3448 ($ $ (-745))) (-15 -3658 ($ $ $)) (-15 -1278 ($ $ $)) (-15 -3526 ($ $ $)) (-15 -2539 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -4213 ($ $ (-619 $))) (-15 -2161 ($ $ (-619 $))) (-15 -3640 ($ $)) (-15 -4117 ($ $)) (-15 -4117 ($ $ (-745))) (-15 -2831 ($ $)) (-15 -2831 ($ $ (-745))) (-15 -2863 ($ $)) (-15 -3574 ($ $ $)) (-15 -2814 ($ $)) (-15 -2814 ($ $ $)) (-15 -2814 ($ $ $ $)) (-15 -3242 ($ $)) (-15 -3242 ($ $ $)) (-15 -3242 ($ $ $ $)) (-15 -2011 ($ $)) (-15 -2011 ($ $ $)) (-15 -2011 ($ $ $ $)) (-15 -4112 ($ $)) (-15 -4112 ($ (-619 $))) (-15 -3670 ($ $)) (-15 -3670 ($ (-619 $))) (-15 -3590 ($ $)) (-15 -3590 ($ (-619 $))) (-15 -2437 ($ (-619 $))) (-15 -2239 ($ (-619 $))) (-15 -4147 ($ (-619 $))) (-15 -3588 ($ (-619 $))) (-15 -2381 ($ $ $)) (-15 -3826 ($ $ $)) (-15 -2405 ($ $ $)) (-15 -2418 ($ $ $)) (-15 -2430 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -2479 ($ $ $)) (-15 -2493 ($ $ $)) (-15 -2493 ($ $)) (-15 * ($ $ $)) (-15 -2506 ($ $ $)) (-15 ** ($ $ $)) (-15 -2048 ($ $ $)) (-15 -2089 ($ $ $)) (-15 -2061 ($ $ $)) (-15 -2032 ($ $ $)) (-15 -1814 ($ $ $)) (-15 -4199 ($ $ $)) (-15 -4000 ($ $)) (-15 -1851 ($ $ $)) (-15 -1851 ($ $))))
-((-3393 (((-1224) (-619 (-52))) 24)) (-2069 (((-1224) (-1119) (-832)) 14) (((-1224) (-832)) 9) (((-1224) (-1119)) 11)))
-(((-833) (-10 -7 (-15 -2069 ((-1224) (-1119))) (-15 -2069 ((-1224) (-832))) (-15 -2069 ((-1224) (-1119) (-832))) (-15 -3393 ((-1224) (-619 (-52)))))) (T -833))
-((-3393 (*1 *2 *3) (-12 (-5 *3 (-619 (-52))) (-5 *2 (-1224)) (-5 *1 (-833)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-1119)) (-5 *4 (-832)) (-5 *2 (-1224)) (-5 *1 (-833)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1224)) (-5 *1 (-833)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-833)))))
-(-10 -7 (-15 -2069 ((-1224) (-1119))) (-15 -2069 ((-1224) (-832))) (-15 -2069 ((-1224) (-1119) (-832))) (-15 -3393 ((-1224) (-619 (-52)))))
-((-3826 (((-112) $ $) NIL)) (-3004 (((-3 $ "failed") (-1136)) 33)) (-3608 (((-745)) 31)) (-3232 (($) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2402 (((-890) $) 29)) (-1466 (((-1119) $) 39)) (-3487 (($ (-890)) 28)) (-3979 (((-1082) $) NIL)) (-2838 (((-1136) $) 13) (((-523) $) 19) (((-861 (-370)) $) 26) (((-861 (-547)) $) 22)) (-3838 (((-832) $) 16)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 36)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 35)))
-(((-834 |#1|) (-13 (-815) (-592 (-1136)) (-592 (-523)) (-592 (-861 (-370))) (-592 (-861 (-547))) (-10 -8 (-15 -3004 ((-3 $ "failed") (-1136))))) (-619 (-1136))) (T -834))
-((-3004 (*1 *1 *2) (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-834 *3)) (-14 *3 (-619 *2)))))
-(-13 (-815) (-592 (-1136)) (-592 (-523)) (-592 (-861 (-370))) (-592 (-861 (-547))) (-10 -8 (-15 -3004 ((-3 $ "failed") (-1136)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (((-921 |#1|) $) NIL) (($ (-921 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-169)))) (-2736 (((-745)) NIL)) (-2572 (((-1224) (-745)) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-2381 (((-112) $ $) NIL)) (-2506 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169)))))
-(((-835 |#1| |#2| |#3| |#4|) (-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3838 ((-921 |#1|) $)) (-15 -3838 ($ (-921 |#1|))) (IF (|has| |#1| (-354)) (-15 -2506 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2572 ((-1224) (-745))))) (-1016) (-619 (-1136)) (-619 (-745)) (-745)) (T -835))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-921 *3)) (-5 *1 (-835 *3 *4 *5 *6)) (-4 *3 (-1016)) (-14 *4 (-619 (-1136))) (-14 *5 (-619 (-745))) (-14 *6 (-745)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-835 *3 *4 *5 *6)) (-14 *4 (-619 (-1136))) (-14 *5 (-619 (-745))) (-14 *6 (-745)))) (-2506 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-835 *2 *3 *4 *5)) (-4 *2 (-354)) (-4 *2 (-1016)) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-745))) (-14 *5 (-745)))) (-2572 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *4 (-1016)) (-14 *5 (-619 (-1136))) (-14 *6 (-619 *3)) (-14 *7 *3))))
-(-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3838 ((-921 |#1|) $)) (-15 -3838 ($ (-921 |#1|))) (IF (|has| |#1| (-354)) (-15 -2506 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2572 ((-1224) (-745)))))
-((-3245 (((-3 (-171 |#3|) "failed") (-745) (-745) |#2| |#2|) 31)) (-2194 (((-3 (-398 |#3|) "failed") (-745) (-745) |#2| |#2|) 24)))
-(((-836 |#1| |#2| |#3|) (-10 -7 (-15 -2194 ((-3 (-398 |#3|) "failed") (-745) (-745) |#2| |#2|)) (-15 -3245 ((-3 (-171 |#3|) "failed") (-745) (-745) |#2| |#2|))) (-354) (-1210 |#1|) (-1195 |#1|)) (T -836))
-((-3245 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-745)) (-4 *5 (-354)) (-5 *2 (-171 *6)) (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1210 *5)) (-4 *6 (-1195 *5)))) (-2194 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-745)) (-4 *5 (-354)) (-5 *2 (-398 *6)) (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1210 *5)) (-4 *6 (-1195 *5)))))
-(-10 -7 (-15 -2194 ((-3 (-398 |#3|) "failed") (-745) (-745) |#2| |#2|)) (-15 -3245 ((-3 (-171 |#3|) "failed") (-745) (-745) |#2| |#2|)))
-((-2194 (((-3 (-398 (-1192 |#2| |#1|)) "failed") (-745) (-745) (-1211 |#1| |#2| |#3|)) 28) (((-3 (-398 (-1192 |#2| |#1|)) "failed") (-745) (-745) (-1211 |#1| |#2| |#3|) (-1211 |#1| |#2| |#3|)) 26)))
-(((-837 |#1| |#2| |#3|) (-10 -7 (-15 -2194 ((-3 (-398 (-1192 |#2| |#1|)) "failed") (-745) (-745) (-1211 |#1| |#2| |#3|) (-1211 |#1| |#2| |#3|))) (-15 -2194 ((-3 (-398 (-1192 |#2| |#1|)) "failed") (-745) (-745) (-1211 |#1| |#2| |#3|)))) (-354) (-1136) |#1|) (T -837))
-((-2194 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1211 *5 *6 *7)) (-4 *5 (-354)) (-14 *6 (-1136)) (-14 *7 *5) (-5 *2 (-398 (-1192 *6 *5))) (-5 *1 (-837 *5 *6 *7)))) (-2194 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1211 *5 *6 *7)) (-4 *5 (-354)) (-14 *6 (-1136)) (-14 *7 *5) (-5 *2 (-398 (-1192 *6 *5))) (-5 *1 (-837 *5 *6 *7)))))
-(-10 -7 (-15 -2194 ((-3 (-398 (-1192 |#2| |#1|)) "failed") (-745) (-745) (-1211 |#1| |#2| |#3|) (-1211 |#1| |#2| |#3|))) (-15 -2194 ((-3 (-398 (-1192 |#2| |#1|)) "failed") (-745) (-745) (-1211 |#1| |#2| |#3|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-2127 (($ $ (-547)) 60)) (-1547 (((-112) $ $) 57)) (-1948 (($) 17 T CONST)) (-1465 (($ (-1132 (-547)) (-547)) 59)) (-2089 (($ $ $) 53)) (-3855 (((-3 $ "failed") $) 32)) (-3833 (($ $) 62)) (-2061 (($ $ $) 54)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-3275 (((-745) $) 67)) (-2261 (((-112) $) 30)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2580 (((-547)) 64)) (-1904 (((-547) $) 63)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3708 (($ $ (-547)) 66)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2471 (((-745) $) 56)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55)) (-2697 (((-1117 (-547)) $) 68)) (-2804 (($ $) 65)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-2654 (((-547) $ (-547)) 61)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-838 |#1|) (-138) (-547)) (T -838))
-((-2697 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-1117 (-547))))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-745)))) (-3708 (*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) (-2804 (*1 *1 *1) (-4 *1 (-838 *2))) (-2580 (*1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) (-3833 (*1 *1 *1) (-4 *1 (-838 *2))) (-2654 (*1 *2 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) (-2127 (*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) (-1465 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 (-547))) (-5 *3 (-547)) (-4 *1 (-838 *4)))))
-(-13 (-298) (-145) (-10 -8 (-15 -2697 ((-1117 (-547)) $)) (-15 -3275 ((-745) $)) (-15 -3708 ($ $ (-547))) (-15 -2804 ($ $)) (-15 -2580 ((-547))) (-15 -1904 ((-547) $)) (-15 -3833 ($ $)) (-15 -2654 ((-547) $ (-547))) (-15 -2127 ($ $ (-547))) (-15 -1465 ($ (-1132 (-547)) (-547)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-298) . T) ((-442) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2127 (($ $ (-547)) NIL)) (-1547 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-1465 (($ (-1132 (-547)) (-547)) NIL)) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3833 (($ $) NIL)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3275 (((-745) $) NIL)) (-2261 (((-112) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2580 (((-547)) NIL)) (-1904 (((-547) $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3708 (($ $ (-547)) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-2697 (((-1117 (-547)) $) NIL)) (-2804 (($ $) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL)) (-2736 (((-745)) NIL)) (-3577 (((-112) $ $) NIL)) (-2654 (((-547) $ (-547)) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL)))
-(((-839 |#1|) (-838 |#1|) (-547)) (T -839))
-NIL
-(-838 |#1|)
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2092 (((-839 |#1|) $) NIL (|has| (-839 |#1|) (-298)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-839 |#1|) (-878)))) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| (-839 |#1|) (-878)))) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL (|has| (-839 |#1|) (-794)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-839 |#1|) "failed") $) NIL) (((-3 (-1136) "failed") $) NIL (|has| (-839 |#1|) (-1007 (-1136)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-839 |#1|) (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| (-839 |#1|) (-1007 (-547))))) (-2652 (((-839 |#1|) $) NIL) (((-1136) $) NIL (|has| (-839 |#1|) (-1007 (-1136)))) (((-398 (-547)) $) NIL (|has| (-839 |#1|) (-1007 (-547)))) (((-547) $) NIL (|has| (-839 |#1|) (-1007 (-547))))) (-2708 (($ $) NIL) (($ (-547) $) NIL)) (-2089 (($ $ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| (-839 |#1|) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| (-839 |#1|) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-839 |#1|))) (|:| |vec| (-1219 (-839 |#1|)))) (-663 $) (-1219 $)) NIL) (((-663 (-839 |#1|)) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| (-839 |#1|) (-532)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-4270 (((-112) $) NIL (|has| (-839 |#1|) (-794)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-839 |#1|) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-839 |#1|) (-855 (-370))))) (-2261 (((-112) $) NIL)) (-4170 (($ $) NIL)) (-1386 (((-839 |#1|) $) NIL)) (-3477 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-1112)))) (-1860 (((-112) $) NIL (|has| (-839 |#1|) (-794)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2856 (($ $ $) NIL (|has| (-839 |#1|) (-821)))) (-3567 (($ $ $) NIL (|has| (-839 |#1|) (-821)))) (-2790 (($ (-1 (-839 |#1|) (-839 |#1|)) $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| (-839 |#1|) (-1112)) CONST)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3682 (($ $) NIL (|has| (-839 |#1|) (-298)))) (-1276 (((-839 |#1|) $) NIL (|has| (-839 |#1|) (-532)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-839 |#1|) (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-839 |#1|) (-878)))) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2679 (($ $ (-619 (-839 |#1|)) (-619 (-839 |#1|))) NIL (|has| (-839 |#1|) (-300 (-839 |#1|)))) (($ $ (-839 |#1|) (-839 |#1|)) NIL (|has| (-839 |#1|) (-300 (-839 |#1|)))) (($ $ (-285 (-839 |#1|))) NIL (|has| (-839 |#1|) (-300 (-839 |#1|)))) (($ $ (-619 (-285 (-839 |#1|)))) NIL (|has| (-839 |#1|) (-300 (-839 |#1|)))) (($ $ (-619 (-1136)) (-619 (-839 |#1|))) NIL (|has| (-839 |#1|) (-503 (-1136) (-839 |#1|)))) (($ $ (-1136) (-839 |#1|)) NIL (|has| (-839 |#1|) (-503 (-1136) (-839 |#1|))))) (-2471 (((-745) $) NIL)) (-3334 (($ $ (-839 |#1|)) NIL (|has| (-839 |#1|) (-277 (-839 |#1|) (-839 |#1|))))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3448 (($ $) NIL (|has| (-839 |#1|) (-225))) (($ $ (-745)) NIL (|has| (-839 |#1|) (-225))) (($ $ (-1136)) NIL (|has| (-839 |#1|) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-839 |#1|) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-839 |#1|) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-839 |#1|) (-869 (-1136)))) (($ $ (-1 (-839 |#1|) (-839 |#1|)) (-745)) NIL) (($ $ (-1 (-839 |#1|) (-839 |#1|))) NIL)) (-2995 (($ $) NIL)) (-1396 (((-839 |#1|) $) NIL)) (-2838 (((-861 (-547)) $) NIL (|has| (-839 |#1|) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-839 |#1|) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-839 |#1|) (-592 (-523)))) (((-370) $) NIL (|has| (-839 |#1|) (-991))) (((-217) $) NIL (|has| (-839 |#1|) (-991)))) (-3617 (((-171 (-398 (-547))) $) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-839 |#1|) (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-839 |#1|)) NIL) (($ (-1136)) NIL (|has| (-839 |#1|) (-1007 (-1136))))) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| (-839 |#1|) (-878))) (|has| (-839 |#1|) (-143))))) (-2736 (((-745)) NIL)) (-3720 (((-839 |#1|) $) NIL (|has| (-839 |#1|) (-532)))) (-3577 (((-112) $ $) NIL)) (-2654 (((-398 (-547)) $ (-547)) NIL)) (-2255 (($ $) NIL (|has| (-839 |#1|) (-794)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| (-839 |#1|) (-225))) (($ $ (-745)) NIL (|has| (-839 |#1|) (-225))) (($ $ (-1136)) NIL (|has| (-839 |#1|) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-839 |#1|) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-839 |#1|) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-839 |#1|) (-869 (-1136)))) (($ $ (-1 (-839 |#1|) (-839 |#1|)) (-745)) NIL) (($ $ (-1 (-839 |#1|) (-839 |#1|))) NIL)) (-2441 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2418 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2405 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2506 (($ $ $) NIL) (($ (-839 |#1|) (-839 |#1|)) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-839 |#1|) $) NIL) (($ $ (-839 |#1|)) NIL)))
-(((-840 |#1|) (-13 (-961 (-839 |#1|)) (-10 -8 (-15 -2654 ((-398 (-547)) $ (-547))) (-15 -3617 ((-171 (-398 (-547))) $)) (-15 -2708 ($ $)) (-15 -2708 ($ (-547) $)))) (-547)) (T -840))
-((-2654 (*1 *2 *1 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-840 *4)) (-14 *4 *3) (-5 *3 (-547)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-171 (-398 (-547)))) (-5 *1 (-840 *3)) (-14 *3 (-547)))) (-2708 (*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-14 *2 (-547)))) (-2708 (*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-840 *3)) (-14 *3 *2))))
-(-13 (-961 (-839 |#1|)) (-10 -8 (-15 -2654 ((-398 (-547)) $ (-547))) (-15 -3617 ((-171 (-398 (-547))) $)) (-15 -2708 ($ $)) (-15 -2708 ($ (-547) $))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2092 ((|#2| $) NIL (|has| |#2| (-298)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL (|has| |#2| (-794)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#2| "failed") $) NIL) (((-3 (-1136) "failed") $) NIL (|has| |#2| (-1007 (-1136)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547))))) (-2652 ((|#2| $) NIL) (((-1136) $) NIL (|has| |#2| (-1007 (-1136)))) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-547)))) (((-547) $) NIL (|has| |#2| (-1007 (-547))))) (-2708 (($ $) 31) (($ (-547) $) 32)) (-2089 (($ $ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) 53)) (-3232 (($) NIL (|has| |#2| (-532)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-4270 (((-112) $) NIL (|has| |#2| (-794)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| |#2| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| |#2| (-855 (-370))))) (-2261 (((-112) $) NIL)) (-4170 (($ $) NIL)) (-1386 ((|#2| $) NIL)) (-3477 (((-3 $ "failed") $) NIL (|has| |#2| (-1112)))) (-1860 (((-112) $) NIL (|has| |#2| (-794)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2856 (($ $ $) NIL (|has| |#2| (-821)))) (-3567 (($ $ $) NIL (|has| |#2| (-821)))) (-2790 (($ (-1 |#2| |#2|) $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 49)) (-3054 (($) NIL (|has| |#2| (-1112)) CONST)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3682 (($ $) NIL (|has| |#2| (-298)))) (-1276 ((|#2| $) NIL (|has| |#2| (-532)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2679 (($ $ (-619 |#2|) (-619 |#2|)) NIL (|has| |#2| (-300 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-300 |#2|))) (($ $ (-285 |#2|)) NIL (|has| |#2| (-300 |#2|))) (($ $ (-619 (-285 |#2|))) NIL (|has| |#2| (-300 |#2|))) (($ $ (-619 (-1136)) (-619 |#2|)) NIL (|has| |#2| (-503 (-1136) |#2|))) (($ $ (-1136) |#2|) NIL (|has| |#2| (-503 (-1136) |#2|)))) (-2471 (((-745) $) NIL)) (-3334 (($ $ |#2|) NIL (|has| |#2| (-277 |#2| |#2|)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3448 (($ $) NIL (|has| |#2| (-225))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $ (-1136)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2995 (($ $) NIL)) (-1396 ((|#2| $) NIL)) (-2838 (((-861 (-547)) $) NIL (|has| |#2| (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| |#2| (-592 (-861 (-370))))) (((-523) $) NIL (|has| |#2| (-592 (-523)))) (((-370) $) NIL (|has| |#2| (-991))) (((-217) $) NIL (|has| |#2| (-991)))) (-3617 (((-171 (-398 (-547))) $) 68)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3838 (((-832) $) 87) (($ (-547)) 19) (($ $) NIL) (($ (-398 (-547))) 24) (($ |#2|) 18) (($ (-1136)) NIL (|has| |#2| (-1007 (-1136))))) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-2736 (((-745)) NIL)) (-3720 ((|#2| $) NIL (|has| |#2| (-532)))) (-3577 (((-112) $ $) NIL)) (-2654 (((-398 (-547)) $ (-547)) 60)) (-2255 (($ $) NIL (|has| |#2| (-794)))) (-3269 (($) 14 T CONST)) (-3281 (($) 16 T CONST)) (-1695 (($ $) NIL (|has| |#2| (-225))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $ (-1136)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2441 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2381 (((-112) $ $) 35)) (-2430 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2506 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2493 (($ $) 39) (($ $ $) 41)) (-2479 (($ $ $) 37)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 50)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 42) (($ $ $) 44) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-841 |#1| |#2|) (-13 (-961 |#2|) (-10 -8 (-15 -2654 ((-398 (-547)) $ (-547))) (-15 -3617 ((-171 (-398 (-547))) $)) (-15 -2708 ($ $)) (-15 -2708 ($ (-547) $)))) (-547) (-838 |#1|)) (T -841))
-((-2654 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-398 (-547))) (-5 *1 (-841 *4 *5)) (-5 *3 (-547)) (-4 *5 (-838 *4)))) (-3617 (*1 *2 *1) (-12 (-14 *3 (-547)) (-5 *2 (-171 (-398 (-547)))) (-5 *1 (-841 *3 *4)) (-4 *4 (-838 *3)))) (-2708 (*1 *1 *1) (-12 (-14 *2 (-547)) (-5 *1 (-841 *2 *3)) (-4 *3 (-838 *2)))) (-2708 (*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-14 *3 *2) (-5 *1 (-841 *3 *4)) (-4 *4 (-838 *3)))))
-(-13 (-961 |#2|) (-10 -8 (-15 -2654 ((-398 (-547)) $ (-547))) (-15 -3617 ((-171 (-398 (-547))) $)) (-15 -2708 ($ $)) (-15 -2708 ($ (-547) $))))
-((-3826 (((-112) $ $) NIL (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) (-2823 ((|#2| $) 12)) (-3520 (($ |#1| |#2|) 9)) (-1466 (((-1119) $) NIL (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) (-3979 (((-1082) $) NIL (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) (-3638 ((|#1| $) 11)) (-3846 (($ |#1| |#2|) 10)) (-3838 (((-832) $) 18 (-1530 (-12 (|has| |#1| (-591 (-832))) (|has| |#2| (-591 (-832)))) (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063)))))) (-2381 (((-112) $ $) 22 (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))))
-(((-842 |#1| |#2|) (-13 (-1173) (-10 -8 (IF (|has| |#1| (-591 (-832))) (IF (|has| |#2| (-591 (-832))) (-6 (-591 (-832))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1063)) (IF (|has| |#2| (-1063)) (-6 (-1063)) |%noBranch|) |%noBranch|) (-15 -3520 ($ |#1| |#2|)) (-15 -3846 ($ |#1| |#2|)) (-15 -3638 (|#1| $)) (-15 -2823 (|#2| $)))) (-1173) (-1173)) (T -842))
-((-3520 (*1 *1 *2 *3) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1173)) (-4 *3 (-1173)))) (-3846 (*1 *1 *2 *3) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1173)) (-4 *3 (-1173)))) (-3638 (*1 *2 *1) (-12 (-4 *2 (-1173)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1173)))) (-2823 (*1 *2 *1) (-12 (-4 *2 (-1173)) (-5 *1 (-842 *3 *2)) (-4 *3 (-1173)))))
-(-13 (-1173) (-10 -8 (IF (|has| |#1| (-591 (-832))) (IF (|has| |#2| (-591 (-832))) (-6 (-591 (-832))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1063)) (IF (|has| |#2| (-1063)) (-6 (-1063)) |%noBranch|) |%noBranch|) (-15 -3520 ($ |#1| |#2|)) (-15 -3846 ($ |#1| |#2|)) (-15 -3638 (|#1| $)) (-15 -2823 (|#2| $))))
-((-3826 (((-112) $ $) NIL)) (-1901 (((-547) $) 15)) (-2983 (($ (-154)) 11)) (-3714 (($ (-154)) 12)) (-1466 (((-1119) $) NIL)) (-1733 (((-154) $) 13)) (-3979 (((-1082) $) NIL)) (-2721 (($ (-154)) 9)) (-2496 (($ (-154)) 8)) (-3838 (((-832) $) 23) (($ (-154)) 16)) (-3267 (($ (-154)) 10)) (-2381 (((-112) $ $) NIL)))
-(((-843) (-13 (-1063) (-10 -8 (-15 -2496 ($ (-154))) (-15 -2721 ($ (-154))) (-15 -3267 ($ (-154))) (-15 -2983 ($ (-154))) (-15 -3714 ($ (-154))) (-15 -1733 ((-154) $)) (-15 -1901 ((-547) $)) (-15 -3838 ($ (-154)))))) (T -843))
-((-2496 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-2721 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-3267 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-2983 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-843)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))))
-(-13 (-1063) (-10 -8 (-15 -2496 ($ (-154))) (-15 -2721 ($ (-154))) (-15 -3267 ($ (-154))) (-15 -2983 ($ (-154))) (-15 -3714 ($ (-154))) (-15 -1733 ((-154) $)) (-15 -1901 ((-547) $)) (-15 -3838 ($ (-154)))))
-((-3838 (((-307 (-547)) (-398 (-921 (-48)))) 23) (((-307 (-547)) (-921 (-48))) 18)))
-(((-844) (-10 -7 (-15 -3838 ((-307 (-547)) (-921 (-48)))) (-15 -3838 ((-307 (-547)) (-398 (-921 (-48))))))) (T -844))
-((-3838 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 (-48)))) (-5 *2 (-307 (-547))) (-5 *1 (-844)))) (-3838 (*1 *2 *3) (-12 (-5 *3 (-921 (-48))) (-5 *2 (-307 (-547))) (-5 *1 (-844)))))
-(-10 -7 (-15 -3838 ((-307 (-547)) (-921 (-48)))) (-15 -3838 ((-307 (-547)) (-398 (-921 (-48))))))
-((-2790 (((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)) 14)))
-(((-845 |#1| |#2|) (-10 -7 (-15 -2790 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)))) (-1173) (-1173)) (T -845))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-846 *6)) (-5 *1 (-845 *5 *6)))))
-(-10 -7 (-15 -2790 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|))))
-((-3332 (($ |#1| |#1|) 8)) (-1961 ((|#1| $ (-745)) 10)))
-(((-846 |#1|) (-10 -8 (-15 -3332 ($ |#1| |#1|)) (-15 -1961 (|#1| $ (-745)))) (-1173)) (T -846))
-((-1961 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-846 *2)) (-4 *2 (-1173)))) (-3332 (*1 *1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-1173)))))
-(-10 -8 (-15 -3332 ($ |#1| |#1|)) (-15 -1961 (|#1| $ (-745))))
-((-2790 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 14)))
-(((-847 |#1| |#2|) (-10 -7 (-15 -2790 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) (-1173) (-1173)) (T -847))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6)))))
-(-10 -7 (-15 -2790 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|))))
-((-3332 (($ |#1| |#1| |#1|) 8)) (-1961 ((|#1| $ (-745)) 10)))
-(((-848 |#1|) (-10 -8 (-15 -3332 ($ |#1| |#1| |#1|)) (-15 -1961 (|#1| $ (-745)))) (-1173)) (T -848))
-((-1961 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-848 *2)) (-4 *2 (-1173)))) (-3332 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1173)))))
-(-10 -8 (-15 -3332 ($ |#1| |#1| |#1|)) (-15 -1961 (|#1| $ (-745))))
-((-3394 (((-619 (-1141)) (-1119)) 9)))
-(((-849) (-10 -7 (-15 -3394 ((-619 (-1141)) (-1119))))) (T -849))
-((-3394 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-619 (-1141))) (-5 *1 (-849)))))
-(-10 -7 (-15 -3394 ((-619 (-1141)) (-1119))))
-((-2790 (((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)) 14)))
-(((-850 |#1| |#2|) (-10 -7 (-15 -2790 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) (-1173) (-1173)) (T -850))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6)))))
-(-10 -7 (-15 -2790 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|))))
-((-2230 (($ |#1| |#1| |#1|) 8)) (-1961 ((|#1| $ (-745)) 10)))
-(((-851 |#1|) (-10 -8 (-15 -2230 ($ |#1| |#1| |#1|)) (-15 -1961 (|#1| $ (-745)))) (-1173)) (T -851))
-((-1961 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-851 *2)) (-4 *2 (-1173)))) (-2230 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1173)))))
-(-10 -8 (-15 -2230 ($ |#1| |#1| |#1|)) (-15 -1961 (|#1| $ (-745))))
-((-1470 (((-1117 (-619 (-547))) (-619 (-547)) (-1117 (-619 (-547)))) 32)) (-2730 (((-1117 (-619 (-547))) (-619 (-547)) (-619 (-547))) 28)) (-3765 (((-1117 (-619 (-547))) (-619 (-547))) 41) (((-1117 (-619 (-547))) (-619 (-547)) (-619 (-547))) 40)) (-3924 (((-1117 (-619 (-547))) (-547)) 42)) (-2703 (((-1117 (-619 (-547))) (-547) (-547)) 22) (((-1117 (-619 (-547))) (-547)) 16) (((-1117 (-619 (-547))) (-547) (-547) (-547)) 12)) (-1399 (((-1117 (-619 (-547))) (-1117 (-619 (-547)))) 26)) (-3404 (((-619 (-547)) (-619 (-547))) 25)))
-(((-852) (-10 -7 (-15 -2703 ((-1117 (-619 (-547))) (-547) (-547) (-547))) (-15 -2703 ((-1117 (-619 (-547))) (-547))) (-15 -2703 ((-1117 (-619 (-547))) (-547) (-547))) (-15 -3404 ((-619 (-547)) (-619 (-547)))) (-15 -1399 ((-1117 (-619 (-547))) (-1117 (-619 (-547))))) (-15 -2730 ((-1117 (-619 (-547))) (-619 (-547)) (-619 (-547)))) (-15 -1470 ((-1117 (-619 (-547))) (-619 (-547)) (-1117 (-619 (-547))))) (-15 -3765 ((-1117 (-619 (-547))) (-619 (-547)) (-619 (-547)))) (-15 -3765 ((-1117 (-619 (-547))) (-619 (-547)))) (-15 -3924 ((-1117 (-619 (-547))) (-547))))) (T -852))
-((-3924 (*1 *2 *3) (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547)))) (-3765 (*1 *2 *3) (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-619 (-547))))) (-3765 (*1 *2 *3 *3) (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-619 (-547))))) (-1470 (*1 *2 *3 *2) (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *3 (-619 (-547))) (-5 *1 (-852)))) (-2730 (*1 *2 *3 *3) (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-619 (-547))))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)))) (-3404 (*1 *2 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-852)))) (-2703 (*1 *2 *3 *3) (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547)))) (-2703 (*1 *2 *3) (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547)))) (-2703 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547)))))
-(-10 -7 (-15 -2703 ((-1117 (-619 (-547))) (-547) (-547) (-547))) (-15 -2703 ((-1117 (-619 (-547))) (-547))) (-15 -2703 ((-1117 (-619 (-547))) (-547) (-547))) (-15 -3404 ((-619 (-547)) (-619 (-547)))) (-15 -1399 ((-1117 (-619 (-547))) (-1117 (-619 (-547))))) (-15 -2730 ((-1117 (-619 (-547))) (-619 (-547)) (-619 (-547)))) (-15 -1470 ((-1117 (-619 (-547))) (-619 (-547)) (-1117 (-619 (-547))))) (-15 -3765 ((-1117 (-619 (-547))) (-619 (-547)) (-619 (-547)))) (-15 -3765 ((-1117 (-619 (-547))) (-619 (-547)))) (-15 -3924 ((-1117 (-619 (-547))) (-547))))
-((-2838 (((-861 (-370)) $) 9 (|has| |#1| (-592 (-861 (-370))))) (((-861 (-547)) $) 8 (|has| |#1| (-592 (-861 (-547)))))))
-(((-853 |#1|) (-138) (-1173)) (T -853))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-592 (-861 (-547)))) (-6 (-592 (-861 (-547)))) |%noBranch|) (IF (|has| |t#1| (-592 (-861 (-370)))) (-6 (-592 (-861 (-370)))) |%noBranch|)))
-(((-592 (-861 (-370))) |has| |#1| (-592 (-861 (-370)))) ((-592 (-861 (-547))) |has| |#1| (-592 (-861 (-547)))))
-((-3826 (((-112) $ $) NIL)) (-3735 (($) 14)) (-3017 (($ (-858 |#1| |#2|) (-858 |#1| |#3|)) 27)) (-3176 (((-858 |#1| |#3|) $) 16)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1666 (((-112) $) 22)) (-4143 (($) 19)) (-3838 (((-832) $) 30)) (-2072 (((-858 |#1| |#2|) $) 15)) (-2381 (((-112) $ $) 25)))
-(((-854 |#1| |#2| |#3|) (-13 (-1063) (-10 -8 (-15 -1666 ((-112) $)) (-15 -4143 ($)) (-15 -3735 ($)) (-15 -3017 ($ (-858 |#1| |#2|) (-858 |#1| |#3|))) (-15 -2072 ((-858 |#1| |#2|) $)) (-15 -3176 ((-858 |#1| |#3|) $)))) (-1063) (-1063) (-640 |#2|)) (T -854))
-((-1666 (*1 *2 *1) (-12 (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1063)) (-4 *5 (-640 *4)))) (-4143 (*1 *1) (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) (-4 *4 (-640 *3)))) (-3735 (*1 *1) (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) (-4 *4 (-640 *3)))) (-3017 (*1 *1 *2 *3) (-12 (-5 *2 (-858 *4 *5)) (-5 *3 (-858 *4 *6)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-640 *5)) (-5 *1 (-854 *4 *5 *6)))) (-2072 (*1 *2 *1) (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *4)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1063)) (-4 *5 (-640 *4)))) (-3176 (*1 *2 *1) (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *5)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1063)) (-4 *5 (-640 *4)))))
-(-13 (-1063) (-10 -8 (-15 -1666 ((-112) $)) (-15 -4143 ($)) (-15 -3735 ($)) (-15 -3017 ($ (-858 |#1| |#2|) (-858 |#1| |#3|))) (-15 -2072 ((-858 |#1| |#2|) $)) (-15 -3176 ((-858 |#1| |#3|) $))))
-((-3826 (((-112) $ $) 7)) (-3521 (((-858 |#1| $) $ (-861 |#1|) (-858 |#1| $)) 13)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2381 (((-112) $ $) 6)))
-(((-855 |#1|) (-138) (-1063)) (T -855))
-((-3521 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-858 *4 *1)) (-5 *3 (-861 *4)) (-4 *1 (-855 *4)) (-4 *4 (-1063)))))
-(-13 (-1063) (-10 -8 (-15 -3521 ((-858 |t#1| $) $ (-861 |t#1|) (-858 |t#1| $)))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-1667 (((-112) (-619 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2799 (((-858 |#1| |#2|) |#2| |#3|) 43 (-12 (-4000 (|has| |#2| (-1007 (-1136)))) (-4000 (|has| |#2| (-1016))))) (((-619 (-285 (-921 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1016)) (-4000 (|has| |#2| (-1007 (-1136)))))) (((-619 (-285 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1007 (-1136)))) (((-854 |#1| |#2| (-619 |#2|)) (-619 |#2|) |#3|) 21)))
-(((-856 |#1| |#2| |#3|) (-10 -7 (-15 -1667 ((-112) |#2| |#3|)) (-15 -1667 ((-112) (-619 |#2|) |#3|)) (-15 -2799 ((-854 |#1| |#2| (-619 |#2|)) (-619 |#2|) |#3|)) (IF (|has| |#2| (-1007 (-1136))) (-15 -2799 ((-619 (-285 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1016)) (-15 -2799 ((-619 (-285 (-921 |#2|))) |#2| |#3|)) (-15 -2799 ((-858 |#1| |#2|) |#2| |#3|))))) (-1063) (-855 |#1|) (-592 (-861 |#1|))) (T -856))
-((-2799 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-858 *5 *3)) (-5 *1 (-856 *5 *3 *4)) (-4000 (-4 *3 (-1007 (-1136)))) (-4000 (-4 *3 (-1016))) (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5))))) (-2799 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-285 (-921 *3)))) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-1016)) (-4000 (-4 *3 (-1007 (-1136)))) (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5))))) (-2799 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-285 *3))) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-1007 (-1136))) (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5))))) (-2799 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *6 (-855 *5)) (-5 *2 (-854 *5 *6 (-619 *6))) (-5 *1 (-856 *5 *6 *4)) (-5 *3 (-619 *6)) (-4 *4 (-592 (-861 *5))))) (-1667 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-4 *6 (-855 *5)) (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-856 *5 *6 *4)) (-4 *4 (-592 (-861 *5))))) (-1667 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5))))))
-(-10 -7 (-15 -1667 ((-112) |#2| |#3|)) (-15 -1667 ((-112) (-619 |#2|) |#3|)) (-15 -2799 ((-854 |#1| |#2| (-619 |#2|)) (-619 |#2|) |#3|)) (IF (|has| |#2| (-1007 (-1136))) (-15 -2799 ((-619 (-285 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1016)) (-15 -2799 ((-619 (-285 (-921 |#2|))) |#2| |#3|)) (-15 -2799 ((-858 |#1| |#2|) |#2| |#3|)))))
-((-2790 (((-858 |#1| |#3|) (-1 |#3| |#2|) (-858 |#1| |#2|)) 22)))
-(((-857 |#1| |#2| |#3|) (-10 -7 (-15 -2790 ((-858 |#1| |#3|) (-1 |#3| |#2|) (-858 |#1| |#2|)))) (-1063) (-1063) (-1063)) (T -857))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-858 *5 *6)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-858 *5 *7)) (-5 *1 (-857 *5 *6 *7)))))
-(-10 -7 (-15 -2790 ((-858 |#1| |#3|) (-1 |#3| |#2|) (-858 |#1| |#2|))))
-((-3826 (((-112) $ $) NIL)) (-1435 (($ $ $) 39)) (-2517 (((-3 (-112) "failed") $ (-861 |#1|)) 36)) (-3735 (($) 12)) (-1466 (((-1119) $) NIL)) (-2586 (($ (-861 |#1|) |#2| $) 20)) (-3979 (((-1082) $) NIL)) (-2543 (((-3 |#2| "failed") (-861 |#1|) $) 50)) (-1666 (((-112) $) 15)) (-4143 (($) 13)) (-2190 (((-619 (-2 (|:| -3331 (-1136)) (|:| -1786 |#2|))) $) 25)) (-3846 (($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 |#2|)))) 23)) (-3838 (((-832) $) 44)) (-1357 (($ (-861 |#1|) |#2| $ |#2|) 48)) (-2191 (($ (-861 |#1|) |#2| $) 47)) (-2381 (((-112) $ $) 41)))
-(((-858 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -1666 ((-112) $)) (-15 -4143 ($)) (-15 -3735 ($)) (-15 -1435 ($ $ $)) (-15 -2543 ((-3 |#2| "failed") (-861 |#1|) $)) (-15 -2191 ($ (-861 |#1|) |#2| $)) (-15 -2586 ($ (-861 |#1|) |#2| $)) (-15 -1357 ($ (-861 |#1|) |#2| $ |#2|)) (-15 -2190 ((-619 (-2 (|:| -3331 (-1136)) (|:| -1786 |#2|))) $)) (-15 -3846 ($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 |#2|))))) (-15 -2517 ((-3 (-112) "failed") $ (-861 |#1|))))) (-1063) (-1063)) (T -858))
-((-1666 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-4143 (*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-3735 (*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1435 (*1 *1 *1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-2543 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-4 *2 (-1063)) (-5 *1 (-858 *4 *2)))) (-2191 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1063)))) (-2586 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1063)))) (-1357 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1063)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 *4)))) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 *4)))) (-4 *4 (-1063)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)))) (-2517 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-858 *4 *5)) (-4 *5 (-1063)))))
-(-13 (-1063) (-10 -8 (-15 -1666 ((-112) $)) (-15 -4143 ($)) (-15 -3735 ($)) (-15 -1435 ($ $ $)) (-15 -2543 ((-3 |#2| "failed") (-861 |#1|) $)) (-15 -2191 ($ (-861 |#1|) |#2| $)) (-15 -2586 ($ (-861 |#1|) |#2| $)) (-15 -1357 ($ (-861 |#1|) |#2| $ |#2|)) (-15 -2190 ((-619 (-2 (|:| -3331 (-1136)) (|:| -1786 |#2|))) $)) (-15 -3846 ($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 |#2|))))) (-15 -2517 ((-3 (-112) "failed") $ (-861 |#1|)))))
-((-1854 (((-861 |#1|) (-861 |#1|) (-619 (-1136)) (-1 (-112) (-619 |#2|))) 32) (((-861 |#1|) (-861 |#1|) (-619 (-1 (-112) |#2|))) 43) (((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|)) 35)) (-2517 (((-112) (-619 |#2|) (-861 |#1|)) 40) (((-112) |#2| (-861 |#1|)) 36)) (-2817 (((-1 (-112) |#2|) (-861 |#1|)) 16)) (-3280 (((-619 |#2|) (-861 |#1|)) 24)) (-3876 (((-861 |#1|) (-861 |#1|) |#2|) 20)))
-(((-859 |#1| |#2|) (-10 -7 (-15 -1854 ((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|))) (-15 -1854 ((-861 |#1|) (-861 |#1|) (-619 (-1 (-112) |#2|)))) (-15 -1854 ((-861 |#1|) (-861 |#1|) (-619 (-1136)) (-1 (-112) (-619 |#2|)))) (-15 -2817 ((-1 (-112) |#2|) (-861 |#1|))) (-15 -2517 ((-112) |#2| (-861 |#1|))) (-15 -2517 ((-112) (-619 |#2|) (-861 |#1|))) (-15 -3876 ((-861 |#1|) (-861 |#1|) |#2|)) (-15 -3280 ((-619 |#2|) (-861 |#1|)))) (-1063) (-1173)) (T -859))
-((-3280 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-619 *5)) (-5 *1 (-859 *4 *5)) (-4 *5 (-1173)))) (-3876 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1173)))) (-2517 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-1173)) (-5 *2 (-112)) (-5 *1 (-859 *5 *6)))) (-2517 (*1 *2 *3 *4) (-12 (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-859 *5 *3)) (-4 *3 (-1173)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-859 *4 *5)) (-4 *5 (-1173)))) (-1854 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-861 *5)) (-5 *3 (-619 (-1136))) (-5 *4 (-1 (-112) (-619 *6))) (-4 *5 (-1063)) (-4 *6 (-1173)) (-5 *1 (-859 *5 *6)))) (-1854 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-5 *3 (-619 (-1 (-112) *5))) (-4 *4 (-1063)) (-4 *5 (-1173)) (-5 *1 (-859 *4 *5)))) (-1854 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1063)) (-4 *5 (-1173)) (-5 *1 (-859 *4 *5)))))
-(-10 -7 (-15 -1854 ((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|))) (-15 -1854 ((-861 |#1|) (-861 |#1|) (-619 (-1 (-112) |#2|)))) (-15 -1854 ((-861 |#1|) (-861 |#1|) (-619 (-1136)) (-1 (-112) (-619 |#2|)))) (-15 -2817 ((-1 (-112) |#2|) (-861 |#1|))) (-15 -2517 ((-112) |#2| (-861 |#1|))) (-15 -2517 ((-112) (-619 |#2|) (-861 |#1|))) (-15 -3876 ((-861 |#1|) (-861 |#1|) |#2|)) (-15 -3280 ((-619 |#2|) (-861 |#1|))))
-((-2790 (((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)) 19)))
-(((-860 |#1| |#2|) (-10 -7 (-15 -2790 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) (-1063) (-1063)) (T -860))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-861 *6)) (-5 *1 (-860 *5 *6)))))
-(-10 -7 (-15 -2790 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|))))
-((-3826 (((-112) $ $) NIL)) (-3397 (($ $ (-619 (-52))) 64)) (-2267 (((-619 $) $) 118)) (-3000 (((-2 (|:| |var| (-619 (-1136))) (|:| |pred| (-52))) $) 24)) (-1821 (((-112) $) 30)) (-1833 (($ $ (-619 (-1136)) (-52)) 25)) (-3857 (($ $ (-619 (-52))) 63)) (-2707 (((-3 |#1| "failed") $) 61) (((-3 (-1136) "failed") $) 140)) (-2652 ((|#1| $) 58) (((-1136) $) NIL)) (-4264 (($ $) 108)) (-2036 (((-112) $) 47)) (-2576 (((-619 (-52)) $) 45)) (-1451 (($ (-1136) (-112) (-112) (-112)) 65)) (-2366 (((-3 (-619 $) "failed") (-619 $)) 72)) (-2929 (((-112) $) 50)) (-1403 (((-112) $) 49)) (-1466 (((-1119) $) NIL)) (-2505 (((-3 (-619 $) "failed") $) 36)) (-3976 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1376 (((-3 (-2 (|:| |val| $) (|:| -3322 $)) "failed") $) 83)) (-3663 (((-3 (-619 $) "failed") $) 33)) (-2106 (((-3 (-619 $) "failed") $ (-114)) 107) (((-3 (-2 (|:| -2714 (-114)) (|:| |arg| (-619 $))) "failed") $) 95)) (-3581 (((-3 (-619 $) "failed") $) 37)) (-3949 (((-3 (-2 (|:| |val| $) (|:| -3322 (-745))) "failed") $) 40)) (-2664 (((-112) $) 29)) (-3979 (((-1082) $) NIL)) (-1608 (((-112) $) 21)) (-1839 (((-112) $) 46)) (-3750 (((-619 (-52)) $) 111)) (-4250 (((-112) $) 48)) (-3334 (($ (-114) (-619 $)) 92)) (-1314 (((-745) $) 28)) (-2274 (($ $) 62)) (-2838 (($ (-619 $)) 59)) (-4281 (((-112) $) 26)) (-3838 (((-832) $) 53) (($ |#1|) 18) (($ (-1136)) 66)) (-3876 (($ $ (-52)) 110)) (-3269 (($) 91 T CONST)) (-3281 (($) 73 T CONST)) (-2381 (((-112) $ $) 79)) (-2506 (($ $ $) 100)) (-2479 (($ $ $) 104)) (** (($ $ (-745)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
-(((-861 |#1|) (-13 (-1063) (-1007 |#1|) (-1007 (-1136)) (-10 -8 (-15 0 ($) -2582) (-15 1 ($) -2582) (-15 -3663 ((-3 (-619 $) "failed") $)) (-15 -2505 ((-3 (-619 $) "failed") $)) (-15 -2106 ((-3 (-619 $) "failed") $ (-114))) (-15 -2106 ((-3 (-2 (|:| -2714 (-114)) (|:| |arg| (-619 $))) "failed") $)) (-15 -3949 ((-3 (-2 (|:| |val| $) (|:| -3322 (-745))) "failed") $)) (-15 -3976 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3581 ((-3 (-619 $) "failed") $)) (-15 -1376 ((-3 (-2 (|:| |val| $) (|:| -3322 $)) "failed") $)) (-15 -3334 ($ (-114) (-619 $))) (-15 -2479 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ $)) (-15 -2506 ($ $ $)) (-15 -1314 ((-745) $)) (-15 -2838 ($ (-619 $))) (-15 -2274 ($ $)) (-15 -2664 ((-112) $)) (-15 -2036 ((-112) $)) (-15 -1821 ((-112) $)) (-15 -4281 ((-112) $)) (-15 -4250 ((-112) $)) (-15 -1403 ((-112) $)) (-15 -2929 ((-112) $)) (-15 -1839 ((-112) $)) (-15 -2576 ((-619 (-52)) $)) (-15 -3857 ($ $ (-619 (-52)))) (-15 -3397 ($ $ (-619 (-52)))) (-15 -1451 ($ (-1136) (-112) (-112) (-112))) (-15 -1833 ($ $ (-619 (-1136)) (-52))) (-15 -3000 ((-2 (|:| |var| (-619 (-1136))) (|:| |pred| (-52))) $)) (-15 -1608 ((-112) $)) (-15 -4264 ($ $)) (-15 -3876 ($ $ (-52))) (-15 -3750 ((-619 (-52)) $)) (-15 -2267 ((-619 $) $)) (-15 -2366 ((-3 (-619 $) "failed") (-619 $))))) (-1063)) (T -861))
-((-3269 (*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3281 (*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3663 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2505 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2106 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-861 *4))) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-2106 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2714 (-114)) (|:| |arg| (-619 (-861 *3))))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3949 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -3322 (-745)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3976 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-861 *3)) (|:| |den| (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3581 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1376 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -3322 (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3334 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 (-861 *4))) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-2479 (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-2506 (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1821 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3857 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3397 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1451 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-112)) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-1833 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-52)) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-619 (-1136))) (|:| |pred| (-52)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-4264 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3876 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2366 (*1 *2 *2) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
-(-13 (-1063) (-1007 |#1|) (-1007 (-1136)) (-10 -8 (-15 (-3269) ($) -2582) (-15 (-3281) ($) -2582) (-15 -3663 ((-3 (-619 $) "failed") $)) (-15 -2505 ((-3 (-619 $) "failed") $)) (-15 -2106 ((-3 (-619 $) "failed") $ (-114))) (-15 -2106 ((-3 (-2 (|:| -2714 (-114)) (|:| |arg| (-619 $))) "failed") $)) (-15 -3949 ((-3 (-2 (|:| |val| $) (|:| -3322 (-745))) "failed") $)) (-15 -3976 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3581 ((-3 (-619 $) "failed") $)) (-15 -1376 ((-3 (-2 (|:| |val| $) (|:| -3322 $)) "failed") $)) (-15 -3334 ($ (-114) (-619 $))) (-15 -2479 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ $)) (-15 -2506 ($ $ $)) (-15 -1314 ((-745) $)) (-15 -2838 ($ (-619 $))) (-15 -2274 ($ $)) (-15 -2664 ((-112) $)) (-15 -2036 ((-112) $)) (-15 -1821 ((-112) $)) (-15 -4281 ((-112) $)) (-15 -4250 ((-112) $)) (-15 -1403 ((-112) $)) (-15 -2929 ((-112) $)) (-15 -1839 ((-112) $)) (-15 -2576 ((-619 (-52)) $)) (-15 -3857 ($ $ (-619 (-52)))) (-15 -3397 ($ $ (-619 (-52)))) (-15 -1451 ($ (-1136) (-112) (-112) (-112))) (-15 -1833 ($ $ (-619 (-1136)) (-52))) (-15 -3000 ((-2 (|:| |var| (-619 (-1136))) (|:| |pred| (-52))) $)) (-15 -1608 ((-112) $)) (-15 -4264 ($ $)) (-15 -3876 ($ $ (-52))) (-15 -3750 ((-619 (-52)) $)) (-15 -2267 ((-619 $) $)) (-15 -2366 ((-3 (-619 $) "failed") (-619 $)))))
-((-3826 (((-112) $ $) NIL)) (-3297 (((-619 |#1|) $) 16)) (-1317 (((-112) $) 38)) (-2707 (((-3 (-646 |#1|) "failed") $) 43)) (-2652 (((-646 |#1|) $) 41)) (-3649 (($ $) 18)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-4202 (((-745) $) 46)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3638 (((-646 |#1|) $) 17)) (-3838 (((-832) $) 37) (($ (-646 |#1|)) 21) (((-793 |#1|) $) 27) (($ |#1|) 20)) (-3281 (($) 8 T CONST)) (-3721 (((-619 (-646 |#1|)) $) 23)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 11)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 49)))
-(((-862 |#1|) (-13 (-821) (-1007 (-646 |#1|)) (-10 -8 (-15 1 ($) -2582) (-15 -3838 ((-793 |#1|) $)) (-15 -3838 ($ |#1|)) (-15 -3638 ((-646 |#1|) $)) (-15 -4202 ((-745) $)) (-15 -3721 ((-619 (-646 |#1|)) $)) (-15 -3649 ($ $)) (-15 -1317 ((-112) $)) (-15 -3297 ((-619 |#1|) $)))) (-821)) (T -862))
-((-3281 (*1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3838 (*1 *1 *2) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) (-3638 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-619 (-646 *3))) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3649 (*1 *1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))))
-(-13 (-821) (-1007 (-646 |#1|)) (-10 -8 (-15 (-3281) ($) -2582) (-15 -3838 ((-793 |#1|) $)) (-15 -3838 ($ |#1|)) (-15 -3638 ((-646 |#1|) $)) (-15 -4202 ((-745) $)) (-15 -3721 ((-619 (-646 |#1|)) $)) (-15 -3649 ($ $)) (-15 -1317 ((-112) $)) (-15 -3297 ((-619 |#1|) $))))
-((-2880 ((|#1| |#1| |#1|) 19)))
-(((-863 |#1| |#2|) (-10 -7 (-15 -2880 (|#1| |#1| |#1|))) (-1195 |#2|) (-1016)) (T -863))
-((-2880 (*1 *2 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-863 *2 *3)) (-4 *2 (-1195 *3)))))
-(-10 -7 (-15 -2880 (|#1| |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-2526 (((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) 14)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2631 (((-1004) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) 13)) (-2381 (((-112) $ $) 6)))
-(((-864) (-138)) (T -864))
-((-2526 (*1 *2 *3 *4) (-12 (-4 *1 (-864)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) (-5 *2 (-2 (|:| -2526 (-370)) (|:| |explanations| (-1119)))))) (-2631 (*1 *2 *3) (-12 (-4 *1 (-864)) (-5 *3 (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) (-5 *2 (-1004)))))
-(-13 (-1063) (-10 -7 (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))) (-1028) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217))))) (-15 -2631 ((-1004) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3945 ((|#1| |#1| (-745)) 24)) (-3183 (((-3 |#1| "failed") |#1| |#1|) 22)) (-2773 (((-3 (-2 (|:| -3830 |#1|) (|:| -3840 |#1|)) "failed") |#1| (-745) (-745)) 27) (((-619 |#1|) |#1|) 29)))
-(((-865 |#1| |#2|) (-10 -7 (-15 -2773 ((-619 |#1|) |#1|)) (-15 -2773 ((-3 (-2 (|:| -3830 |#1|) (|:| -3840 |#1|)) "failed") |#1| (-745) (-745))) (-15 -3183 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3945 (|#1| |#1| (-745)))) (-1195 |#2|) (-354)) (T -865))
-((-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-354)) (-5 *1 (-865 *2 *4)) (-4 *2 (-1195 *4)))) (-3183 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-354)) (-5 *1 (-865 *2 *3)) (-4 *2 (-1195 *3)))) (-2773 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-745)) (-4 *5 (-354)) (-5 *2 (-2 (|:| -3830 *3) (|:| -3840 *3))) (-5 *1 (-865 *3 *5)) (-4 *3 (-1195 *5)))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-619 *3)) (-5 *1 (-865 *3 *4)) (-4 *3 (-1195 *4)))))
-(-10 -7 (-15 -2773 ((-619 |#1|) |#1|)) (-15 -2773 ((-3 (-2 (|:| -3830 |#1|) (|:| -3840 |#1|)) "failed") |#1| (-745) (-745))) (-15 -3183 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3945 (|#1| |#1| (-745))))
-((-3468 (((-1004) (-370) (-370) (-370) (-370) (-745) (-745) (-619 (-307 (-370))) (-619 (-619 (-307 (-370)))) (-1119)) 96) (((-1004) (-370) (-370) (-370) (-370) (-745) (-745) (-619 (-307 (-370))) (-619 (-619 (-307 (-370)))) (-1119) (-217)) 91) (((-1004) (-867) (-1028)) 83) (((-1004) (-867)) 84)) (-2526 (((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-867) (-1028)) 59) (((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-867)) 61)))
-(((-866) (-10 -7 (-15 -3468 ((-1004) (-867))) (-15 -3468 ((-1004) (-867) (-1028))) (-15 -3468 ((-1004) (-370) (-370) (-370) (-370) (-745) (-745) (-619 (-307 (-370))) (-619 (-619 (-307 (-370)))) (-1119) (-217))) (-15 -3468 ((-1004) (-370) (-370) (-370) (-370) (-745) (-745) (-619 (-307 (-370))) (-619 (-619 (-307 (-370)))) (-1119))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-867))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-867) (-1028))))) (T -866))
-((-2526 (*1 *2 *3 *4) (-12 (-5 *3 (-867)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))))) (-5 *1 (-866)))) (-2526 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119))))) (-5 *1 (-866)))) (-3468 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-307 *3)))) (-5 *7 (-1119)) (-5 *5 (-619 (-307 (-370)))) (-5 *3 (-370)) (-5 *2 (-1004)) (-5 *1 (-866)))) (-3468 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-307 *3)))) (-5 *7 (-1119)) (-5 *8 (-217)) (-5 *5 (-619 (-307 (-370)))) (-5 *3 (-370)) (-5 *2 (-1004)) (-5 *1 (-866)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-867)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-866)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1004)) (-5 *1 (-866)))))
-(-10 -7 (-15 -3468 ((-1004) (-867))) (-15 -3468 ((-1004) (-867) (-1028))) (-15 -3468 ((-1004) (-370) (-370) (-370) (-370) (-745) (-745) (-619 (-307 (-370))) (-619 (-619 (-307 (-370)))) (-1119) (-217))) (-15 -3468 ((-1004) (-370) (-370) (-370) (-370) (-745) (-745) (-619 (-307 (-370))) (-619 (-619 (-307 (-370)))) (-1119))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-867))) (-15 -2526 ((-2 (|:| -2526 (-370)) (|:| -2473 (-1119)) (|:| |explanations| (-619 (-1119)))) (-867) (-1028))))
-((-3826 (((-112) $ $) NIL)) (-2652 (((-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217))) $) 19)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 21) (($ (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) 18)) (-2381 (((-112) $ $) NIL)))
-(((-867) (-13 (-1063) (-10 -8 (-15 -3838 ($ (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217))))) (-15 -3838 ((-832) $)) (-15 -2652 ((-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217))) $))))) (T -867))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-867)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) (-5 *1 (-867)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217)))) (-5 *1 (-867)))))
-(-13 (-1063) (-10 -8 (-15 -3838 ($ (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217))))) (-15 -3838 ((-832) $)) (-15 -2652 ((-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119)) (|:| |tol| (-217))) $))))
-((-3448 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) 10) (($ $ |#2| (-745)) 12) (($ $ (-619 |#2|) (-619 (-745))) 15)) (-1695 (($ $ |#2|) 16) (($ $ (-619 |#2|)) 18) (($ $ |#2| (-745)) 19) (($ $ (-619 |#2|) (-619 (-745))) 21)))
-(((-868 |#1| |#2|) (-10 -8 (-15 -1695 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -1695 (|#1| |#1| |#2| (-745))) (-15 -1695 (|#1| |#1| (-619 |#2|))) (-15 -1695 (|#1| |#1| |#2|)) (-15 -3448 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -3448 (|#1| |#1| |#2| (-745))) (-15 -3448 (|#1| |#1| (-619 |#2|))) (-15 -3448 (|#1| |#1| |#2|))) (-869 |#2|) (-1063)) (T -868))
-NIL
-(-10 -8 (-15 -1695 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -1695 (|#1| |#1| |#2| (-745))) (-15 -1695 (|#1| |#1| (-619 |#2|))) (-15 -1695 (|#1| |#1| |#2|)) (-15 -3448 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -3448 (|#1| |#1| |#2| (-745))) (-15 -3448 (|#1| |#1| (-619 |#2|))) (-15 -3448 (|#1| |#1| |#2|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3448 (($ $ |#1|) 40) (($ $ (-619 |#1|)) 39) (($ $ |#1| (-745)) 38) (($ $ (-619 |#1|) (-619 (-745))) 37)) (-3838 (((-832) $) 11) (($ (-547)) 27)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ |#1|) 36) (($ $ (-619 |#1|)) 35) (($ $ |#1| (-745)) 34) (($ $ (-619 |#1|) (-619 (-745))) 33)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-869 |#1|) (-138) (-1063)) (T -869))
-((-3448 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) (-3448 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-3448 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) (-4 *4 (-1063)))) (-1695 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-1695 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) (-1695 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-1695 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) (-4 *4 (-1063)))))
-(-13 (-1016) (-10 -8 (-15 -3448 ($ $ |t#1|)) (-15 -3448 ($ $ (-619 |t#1|))) (-15 -3448 ($ $ |t#1| (-745))) (-15 -3448 ($ $ (-619 |t#1|) (-619 (-745)))) (-15 -1695 ($ $ |t#1|)) (-15 -1695 ($ $ (-619 |t#1|))) (-15 -1695 ($ $ |t#1| (-745))) (-15 -1695 ($ $ (-619 |t#1|) (-619 (-745))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4153 ((|#1| $) 26)) (-3899 (((-112) $ (-745)) NIL)) (-1986 ((|#1| $ |#1|) NIL (|has| $ (-6 -4330)))) (-3460 (($ $ $) NIL (|has| $ (-6 -4330)))) (-2792 (($ $ $) NIL (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4330))) (($ $ "left" $) NIL (|has| $ (-6 -4330))) (($ $ "right" $) NIL (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) NIL (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-3840 (($ $) 25)) (-2771 (($ |#1|) 12) (($ $ $) 17)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) NIL)) (-2554 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-3830 (($ $) 23)) (-3583 (((-619 |#1|) $) NIL)) (-1489 (((-112) $) 20)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2857 (((-547) $ $) NIL)) (-1850 (((-112) $) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-1159 |#1|) $) 9) (((-832) $) 29 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) NIL)) (-1421 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 21 (|has| |#1| (-1063)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-870 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -2771 ($ |#1|)) (-15 -2771 ($ $ $)) (-15 -3838 ((-1159 |#1|) $)))) (-1063)) (T -870))
-((-2771 (*1 *1 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063)))) (-2771 (*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-870 *3)) (-4 *3 (-1063)))))
-(-13 (-119 |#1|) (-10 -8 (-15 -2771 ($ |#1|)) (-15 -2771 ($ $ $)) (-15 -3838 ((-1159 |#1|) $))))
-((-2200 ((|#2| (-1103 |#1| |#2|)) 40)))
-(((-871 |#1| |#2|) (-10 -7 (-15 -2200 (|#2| (-1103 |#1| |#2|)))) (-890) (-13 (-1016) (-10 -7 (-6 (-4331 "*"))))) (T -871))
-((-2200 (*1 *2 *3) (-12 (-5 *3 (-1103 *4 *2)) (-14 *4 (-890)) (-4 *2 (-13 (-1016) (-10 -7 (-6 (-4331 "*"))))) (-5 *1 (-871 *4 *2)))))
-(-10 -7 (-15 -2200 (|#2| (-1103 |#1| |#2|))))
-((-3826 (((-112) $ $) 7)) (-1948 (($) 18 T CONST)) (-3855 (((-3 $ "failed") $) 15)) (-3353 (((-1065 |#1|) $ |#1|) 32)) (-2261 (((-112) $) 17)) (-2856 (($ $ $) 30 (-1530 (|has| |#1| (-821)) (|has| |#1| (-359))))) (-3567 (($ $ $) 29 (-1530 (|has| |#1| (-821)) (|has| |#1| (-359))))) (-1466 (((-1119) $) 9)) (-1984 (($ $) 24)) (-3979 (((-1082) $) 10)) (-2679 ((|#1| $ |#1|) 34)) (-3334 ((|#1| $ |#1|) 33)) (-2338 (($ (-619 (-619 |#1|))) 35)) (-3878 (($ (-619 |#1|)) 36)) (-3404 (($ $ $) 21)) (-1473 (($ $ $) 20)) (-3838 (((-832) $) 11)) (-3281 (($) 19 T CONST)) (-2441 (((-112) $ $) 27 (-1530 (|has| |#1| (-821)) (|has| |#1| (-359))))) (-2418 (((-112) $ $) 26 (-1530 (|has| |#1| (-821)) (|has| |#1| (-359))))) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 28 (-1530 (|has| |#1| (-821)) (|has| |#1| (-359))))) (-2405 (((-112) $ $) 31)) (-2506 (($ $ $) 23)) (** (($ $ (-890)) 13) (($ $ (-745)) 16) (($ $ (-547)) 22)) (* (($ $ $) 14)))
-(((-872 |#1|) (-138) (-1063)) (T -872))
-((-3878 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-872 *3)))) (-2338 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-4 *1 (-872 *3)))) (-2679 (*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063)))) (-3334 (*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063)))) (-3353 (*1 *2 *1 *3) (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-1065 *3)))) (-2405 (*1 *2 *1 *1) (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))))
-(-13 (-463) (-10 -8 (-15 -3878 ($ (-619 |t#1|))) (-15 -2338 ($ (-619 (-619 |t#1|)))) (-15 -2679 (|t#1| $ |t#1|)) (-15 -3334 (|t#1| $ |t#1|)) (-15 -3353 ((-1065 |t#1|) $ |t#1|)) (-15 -2405 ((-112) $ $)) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-359)) (-6 (-821)) |%noBranch|)))
-(((-101) . T) ((-591 (-832)) . T) ((-463) . T) ((-701) . T) ((-821) -1530 (|has| |#1| (-821)) (|has| |#1| (-359))) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1673 (((-619 (-619 (-745))) $) 108)) (-2401 (((-619 (-745)) (-874 |#1|) $) 130)) (-2297 (((-619 (-745)) (-874 |#1|) $) 131)) (-3637 (((-619 (-874 |#1|)) $) 98)) (-3232 (((-874 |#1|) $ (-547)) 103) (((-874 |#1|) $) 104)) (-2600 (($ (-619 (-874 |#1|))) 110)) (-3275 (((-745) $) 105)) (-1481 (((-1065 (-1065 |#1|)) $) 128)) (-3353 (((-1065 |#1|) $ |#1|) 121) (((-1065 (-1065 |#1|)) $ (-1065 |#1|)) 139) (((-1065 (-619 |#1|)) $ (-619 |#1|)) 142)) (-2623 (((-1065 |#1|) $) 101)) (-2132 (((-112) (-874 |#1|) $) 92)) (-1466 (((-1119) $) NIL)) (-1279 (((-1224) $) 95) (((-1224) $ (-547) (-547)) 143)) (-3979 (((-1082) $) NIL)) (-4006 (((-619 (-874 |#1|)) $) 96)) (-3334 (((-874 |#1|) $ (-745)) 99)) (-3705 (((-745) $) 106)) (-3838 (((-832) $) 119) (((-619 (-874 |#1|)) $) 23) (($ (-619 (-874 |#1|))) 109)) (-1856 (((-619 |#1|) $) 107)) (-2381 (((-112) $ $) 136)) (-2430 (((-112) $ $) 134)) (-2405 (((-112) $ $) 133)))
-(((-873 |#1|) (-13 (-1063) (-10 -8 (-15 -3838 ((-619 (-874 |#1|)) $)) (-15 -4006 ((-619 (-874 |#1|)) $)) (-15 -3334 ((-874 |#1|) $ (-745))) (-15 -3232 ((-874 |#1|) $ (-547))) (-15 -3232 ((-874 |#1|) $)) (-15 -3275 ((-745) $)) (-15 -3705 ((-745) $)) (-15 -1856 ((-619 |#1|) $)) (-15 -3637 ((-619 (-874 |#1|)) $)) (-15 -1673 ((-619 (-619 (-745))) $)) (-15 -3838 ($ (-619 (-874 |#1|)))) (-15 -2600 ($ (-619 (-874 |#1|)))) (-15 -3353 ((-1065 |#1|) $ |#1|)) (-15 -1481 ((-1065 (-1065 |#1|)) $)) (-15 -3353 ((-1065 (-1065 |#1|)) $ (-1065 |#1|))) (-15 -3353 ((-1065 (-619 |#1|)) $ (-619 |#1|))) (-15 -2132 ((-112) (-874 |#1|) $)) (-15 -2401 ((-619 (-745)) (-874 |#1|) $)) (-15 -2297 ((-619 (-745)) (-874 |#1|) $)) (-15 -2623 ((-1065 |#1|) $)) (-15 -2405 ((-112) $ $)) (-15 -2430 ((-112) $ $)) (-15 -1279 ((-1224) $)) (-15 -1279 ((-1224) $ (-547) (-547))))) (-1063)) (T -873))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-4006 (*1 *2 *1) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) (-4 *4 (-1063)))) (-3232 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) (-4 *4 (-1063)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3637 (*1 *2 *1) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-745)))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3)))) (-2600 (*1 *1 *2) (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3)))) (-3353 (*1 *2 *1 *3) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-1065 (-1065 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3353 (*1 *2 *1 *3) (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-1065 *4))) (-5 *1 (-873 *4)) (-5 *3 (-1065 *4)))) (-3353 (*1 *2 *1 *3) (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-619 *4))) (-5 *1 (-873 *4)) (-5 *3 (-619 *4)))) (-2132 (*1 *2 *3 *1) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-873 *4)))) (-2401 (*1 *2 *3 *1) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) (-5 *1 (-873 *4)))) (-2297 (*1 *2 *3 *1) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) (-5 *1 (-873 *4)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2405 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2430 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1279 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1279 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-873 *4)) (-4 *4 (-1063)))))
-(-13 (-1063) (-10 -8 (-15 -3838 ((-619 (-874 |#1|)) $)) (-15 -4006 ((-619 (-874 |#1|)) $)) (-15 -3334 ((-874 |#1|) $ (-745))) (-15 -3232 ((-874 |#1|) $ (-547))) (-15 -3232 ((-874 |#1|) $)) (-15 -3275 ((-745) $)) (-15 -3705 ((-745) $)) (-15 -1856 ((-619 |#1|) $)) (-15 -3637 ((-619 (-874 |#1|)) $)) (-15 -1673 ((-619 (-619 (-745))) $)) (-15 -3838 ($ (-619 (-874 |#1|)))) (-15 -2600 ($ (-619 (-874 |#1|)))) (-15 -3353 ((-1065 |#1|) $ |#1|)) (-15 -1481 ((-1065 (-1065 |#1|)) $)) (-15 -3353 ((-1065 (-1065 |#1|)) $ (-1065 |#1|))) (-15 -3353 ((-1065 (-619 |#1|)) $ (-619 |#1|))) (-15 -2132 ((-112) (-874 |#1|) $)) (-15 -2401 ((-619 (-745)) (-874 |#1|) $)) (-15 -2297 ((-619 (-745)) (-874 |#1|) $)) (-15 -2623 ((-1065 |#1|) $)) (-15 -2405 ((-112) $ $)) (-15 -2430 ((-112) $ $)) (-15 -1279 ((-1224) $)) (-15 -1279 ((-1224) $ (-547) (-547)))))
-((-3826 (((-112) $ $) NIL)) (-3185 (((-619 $) (-619 $)) 77)) (-2500 (((-547) $) 60)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) NIL)) (-3275 (((-745) $) 58)) (-3353 (((-1065 |#1|) $ |#1|) 49)) (-2261 (((-112) $) NIL)) (-2935 (((-112) $) 63)) (-1725 (((-745) $) 61)) (-2623 (((-1065 |#1|) $) 42)) (-2856 (($ $ $) NIL (-1530 (|has| |#1| (-359)) (|has| |#1| (-821))))) (-3567 (($ $ $) NIL (-1530 (|has| |#1| (-359)) (|has| |#1| (-821))))) (-4039 (((-2 (|:| |preimage| (-619 |#1|)) (|:| |image| (-619 |#1|))) $) 37)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 93)) (-3979 (((-1082) $) NIL)) (-3967 (((-1065 |#1|) $) 100 (|has| |#1| (-359)))) (-3874 (((-112) $) 59)) (-2679 ((|#1| $ |#1|) 47)) (-3334 ((|#1| $ |#1|) 94)) (-3705 (((-745) $) 44)) (-2338 (($ (-619 (-619 |#1|))) 85)) (-3189 (((-940) $) 53)) (-3878 (($ (-619 |#1|)) 21)) (-3404 (($ $ $) NIL)) (-1473 (($ $ $) NIL)) (-1879 (($ (-619 (-619 |#1|))) 39)) (-1696 (($ (-619 (-619 |#1|))) 88)) (-3969 (($ (-619 |#1|)) 96)) (-3838 (((-832) $) 84) (($ (-619 (-619 |#1|))) 66) (($ (-619 |#1|)) 67)) (-3281 (($) 16 T CONST)) (-2441 (((-112) $ $) NIL (-1530 (|has| |#1| (-359)) (|has| |#1| (-821))))) (-2418 (((-112) $ $) NIL (-1530 (|has| |#1| (-359)) (|has| |#1| (-821))))) (-2381 (((-112) $ $) 45)) (-2430 (((-112) $ $) NIL (-1530 (|has| |#1| (-359)) (|has| |#1| (-821))))) (-2405 (((-112) $ $) 65)) (-2506 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ $ $) 22)))
-(((-874 |#1|) (-13 (-872 |#1|) (-10 -8 (-15 -4039 ((-2 (|:| |preimage| (-619 |#1|)) (|:| |image| (-619 |#1|))) $)) (-15 -1879 ($ (-619 (-619 |#1|)))) (-15 -3838 ($ (-619 (-619 |#1|)))) (-15 -3838 ($ (-619 |#1|))) (-15 -1696 ($ (-619 (-619 |#1|)))) (-15 -3705 ((-745) $)) (-15 -2623 ((-1065 |#1|) $)) (-15 -3189 ((-940) $)) (-15 -3275 ((-745) $)) (-15 -1725 ((-745) $)) (-15 -2500 ((-547) $)) (-15 -3874 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -3185 ((-619 $) (-619 $))) (IF (|has| |#1| (-359)) (-15 -3967 ((-1065 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-532)) (-15 -3969 ($ (-619 |#1|))) (IF (|has| |#1| (-359)) (-15 -3969 ($ (-619 |#1|))) |%noBranch|)))) (-1063)) (T -874))
-((-4039 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-619 *3)) (|:| |image| (-619 *3)))) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-1696 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3185 (*1 *2 *2) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-359)) (-4 *3 (-1063)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3)))))
-(-13 (-872 |#1|) (-10 -8 (-15 -4039 ((-2 (|:| |preimage| (-619 |#1|)) (|:| |image| (-619 |#1|))) $)) (-15 -1879 ($ (-619 (-619 |#1|)))) (-15 -3838 ($ (-619 (-619 |#1|)))) (-15 -3838 ($ (-619 |#1|))) (-15 -1696 ($ (-619 (-619 |#1|)))) (-15 -3705 ((-745) $)) (-15 -2623 ((-1065 |#1|) $)) (-15 -3189 ((-940) $)) (-15 -3275 ((-745) $)) (-15 -1725 ((-745) $)) (-15 -2500 ((-547) $)) (-15 -3874 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -3185 ((-619 $) (-619 $))) (IF (|has| |#1| (-359)) (-15 -3967 ((-1065 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-532)) (-15 -3969 ($ (-619 |#1|))) (IF (|has| |#1| (-359)) (-15 -3969 ($ (-619 |#1|))) |%noBranch|))))
-((-3426 (((-3 (-619 (-1132 |#4|)) "failed") (-619 (-1132 |#4|)) (-1132 |#4|)) 128)) (-2025 ((|#1|) 77)) (-2082 (((-409 (-1132 |#4|)) (-1132 |#4|)) 137)) (-4124 (((-409 (-1132 |#4|)) (-619 |#3|) (-1132 |#4|)) 69)) (-2455 (((-409 (-1132 |#4|)) (-1132 |#4|)) 147)) (-4009 (((-3 (-619 (-1132 |#4|)) "failed") (-619 (-1132 |#4|)) (-1132 |#4|) |#3|) 92)))
-(((-875 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3426 ((-3 (-619 (-1132 |#4|)) "failed") (-619 (-1132 |#4|)) (-1132 |#4|))) (-15 -2455 ((-409 (-1132 |#4|)) (-1132 |#4|))) (-15 -2082 ((-409 (-1132 |#4|)) (-1132 |#4|))) (-15 -2025 (|#1|)) (-15 -4009 ((-3 (-619 (-1132 |#4|)) "failed") (-619 (-1132 |#4|)) (-1132 |#4|) |#3|)) (-15 -4124 ((-409 (-1132 |#4|)) (-619 |#3|) (-1132 |#4|)))) (-878) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -875))
-((-4124 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *7)) (-4 *7 (-821)) (-4 *5 (-878)) (-4 *6 (-767)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-409 (-1132 *8))) (-5 *1 (-875 *5 *6 *7 *8)) (-5 *4 (-1132 *8)))) (-4009 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-619 (-1132 *7))) (-5 *3 (-1132 *7)) (-4 *7 (-918 *5 *6 *4)) (-4 *5 (-878)) (-4 *6 (-767)) (-4 *4 (-821)) (-5 *1 (-875 *5 *6 *4 *7)))) (-2025 (*1 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) (-5 *1 (-875 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2082 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-409 (-1132 *7))) (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1132 *7)))) (-2455 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-409 (-1132 *7))) (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1132 *7)))) (-3426 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1132 *7))) (-5 *3 (-1132 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-875 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3426 ((-3 (-619 (-1132 |#4|)) "failed") (-619 (-1132 |#4|)) (-1132 |#4|))) (-15 -2455 ((-409 (-1132 |#4|)) (-1132 |#4|))) (-15 -2082 ((-409 (-1132 |#4|)) (-1132 |#4|))) (-15 -2025 (|#1|)) (-15 -4009 ((-3 (-619 (-1132 |#4|)) "failed") (-619 (-1132 |#4|)) (-1132 |#4|) |#3|)) (-15 -4124 ((-409 (-1132 |#4|)) (-619 |#3|) (-1132 |#4|))))
-((-3426 (((-3 (-619 (-1132 |#2|)) "failed") (-619 (-1132 |#2|)) (-1132 |#2|)) 36)) (-2025 ((|#1|) 54)) (-2082 (((-409 (-1132 |#2|)) (-1132 |#2|)) 102)) (-4124 (((-409 (-1132 |#2|)) (-1132 |#2|)) 90)) (-2455 (((-409 (-1132 |#2|)) (-1132 |#2|)) 113)))
-(((-876 |#1| |#2|) (-10 -7 (-15 -3426 ((-3 (-619 (-1132 |#2|)) "failed") (-619 (-1132 |#2|)) (-1132 |#2|))) (-15 -2455 ((-409 (-1132 |#2|)) (-1132 |#2|))) (-15 -2082 ((-409 (-1132 |#2|)) (-1132 |#2|))) (-15 -2025 (|#1|)) (-15 -4124 ((-409 (-1132 |#2|)) (-1132 |#2|)))) (-878) (-1195 |#1|)) (T -876))
-((-4124 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-1195 *4)) (-5 *2 (-409 (-1132 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1132 *5)))) (-2025 (*1 *2) (-12 (-4 *2 (-878)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1195 *2)))) (-2082 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-1195 *4)) (-5 *2 (-409 (-1132 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1132 *5)))) (-2455 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-1195 *4)) (-5 *2 (-409 (-1132 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1132 *5)))) (-3426 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1132 *5))) (-5 *3 (-1132 *5)) (-4 *5 (-1195 *4)) (-4 *4 (-878)) (-5 *1 (-876 *4 *5)))))
-(-10 -7 (-15 -3426 ((-3 (-619 (-1132 |#2|)) "failed") (-619 (-1132 |#2|)) (-1132 |#2|))) (-15 -2455 ((-409 (-1132 |#2|)) (-1132 |#2|))) (-15 -2082 ((-409 (-1132 |#2|)) (-1132 |#2|))) (-15 -2025 (|#1|)) (-15 -4124 ((-409 (-1132 |#2|)) (-1132 |#2|))))
-((-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 41)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 18)) (-2220 (((-3 $ "failed") $) 35)))
-(((-877 |#1|) (-10 -8 (-15 -2220 ((-3 |#1| "failed") |#1|)) (-15 -4139 ((-3 (-619 (-1132 |#1|)) "failed") (-619 (-1132 |#1|)) (-1132 |#1|))) (-15 -2429 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)))) (-878)) (T -877))
-NIL
-(-10 -8 (-15 -2220 ((-3 |#1| "failed") |#1|)) (-15 -4139 ((-3 (-619 (-1132 |#1|)) "failed") (-619 (-1132 |#1|)) (-1132 |#1|))) (-15 -2429 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-2277 (((-409 (-1132 $)) (-1132 $)) 58)) (-2555 (($ $) 49)) (-3299 (((-409 $) $) 50)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 55)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-1791 (((-112) $) 51)) (-2261 (((-112) $) 30)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-2834 (((-409 (-1132 $)) (-1132 $)) 56)) (-4071 (((-409 (-1132 $)) (-1132 $)) 57)) (-2115 (((-409 $) $) 48)) (-2032 (((-3 $ "failed") $ $) 40)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 54 (|has| $ (-143)))) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2220 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-878) (-138)) (T -878))
-((-2429 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *1)) (-4 *1 (-878)))) (-2277 (*1 *2 *3) (-12 (-4 *1 (-878)) (-5 *2 (-409 (-1132 *1))) (-5 *3 (-1132 *1)))) (-4071 (*1 *2 *3) (-12 (-4 *1 (-878)) (-5 *2 (-409 (-1132 *1))) (-5 *3 (-1132 *1)))) (-2834 (*1 *2 *3) (-12 (-4 *1 (-878)) (-5 *2 (-409 (-1132 *1))) (-5 *3 (-1132 *1)))) (-4139 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1132 *1))) (-5 *3 (-1132 *1)) (-4 *1 (-878)))) (-1427 (*1 *2 *3) (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-143)) (-4 *1 (-878)) (-5 *2 (-1219 *1)))) (-2220 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-878)))))
-(-13 (-1177) (-10 -8 (-15 -2277 ((-409 (-1132 $)) (-1132 $))) (-15 -4071 ((-409 (-1132 $)) (-1132 $))) (-15 -2834 ((-409 (-1132 $)) (-1132 $))) (-15 -2429 ((-1132 $) (-1132 $) (-1132 $))) (-15 -4139 ((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $))) (IF (|has| $ (-143)) (PROGN (-15 -1427 ((-3 (-1219 $) "failed") (-663 $))) (-15 -2220 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-442) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1177) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1452 (((-112) $) NIL)) (-1440 (((-745)) NIL)) (-2899 (($ $ (-890)) NIL (|has| $ (-359))) (($ $) NIL)) (-2797 (((-1146 (-890) (-745)) (-547)) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-3608 (((-745)) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2652 (($ $) NIL)) (-2614 (($ (-1219 $)) NIL)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-3527 (($) NIL)) (-3078 (((-112) $) NIL)) (-1551 (($ $) NIL) (($ $ (-745)) NIL)) (-1791 (((-112) $) NIL)) (-3275 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-2261 (((-112) $) NIL)) (-2460 (($) NIL (|has| $ (-359)))) (-3841 (((-112) $) NIL (|has| $ (-359)))) (-3160 (($ $ (-890)) NIL (|has| $ (-359))) (($ $) NIL)) (-3477 (((-3 $ "failed") $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3786 (((-1132 $) $ (-890)) NIL (|has| $ (-359))) (((-1132 $) $) NIL)) (-2402 (((-890) $) NIL)) (-3168 (((-1132 $) $) NIL (|has| $ (-359)))) (-1600 (((-3 (-1132 $) "failed") $ $) NIL (|has| $ (-359))) (((-1132 $) $) NIL (|has| $ (-359)))) (-2830 (($ $ (-1132 $)) NIL (|has| $ (-359)))) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL T CONST)) (-3487 (($ (-890)) NIL)) (-1290 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-4238 (($) NIL (|has| $ (-359)))) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL)) (-2115 (((-409 $) $) NIL)) (-3327 (((-890)) NIL) (((-807 (-890))) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1422 (((-3 (-745) "failed") $ $) NIL) (((-745) $) NIL)) (-3970 (((-133)) NIL)) (-3448 (($ $ (-745)) NIL) (($ $) NIL)) (-3705 (((-890) $) NIL) (((-807 (-890)) $) NIL)) (-1882 (((-1132 $)) NIL)) (-3823 (($) NIL)) (-3532 (($) NIL (|has| $ (-359)))) (-3220 (((-663 $) (-1219 $)) NIL) (((-1219 $) $) NIL)) (-2838 (((-547) $) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL)) (-2220 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2736 (((-745)) NIL)) (-1917 (((-1219 $) (-890)) NIL) (((-1219 $)) NIL)) (-3577 (((-112) $ $) NIL)) (-2593 (((-112) $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1693 (($ $ (-745)) NIL (|has| $ (-359))) (($ $) NIL (|has| $ (-359)))) (-1695 (($ $ (-745)) NIL) (($ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL)))
-(((-879 |#1|) (-13 (-340) (-320 $) (-592 (-547))) (-890)) (T -879))
-NIL
-(-13 (-340) (-320 $) (-592 (-547)))
-((-2905 (((-3 (-2 (|:| -3275 (-745)) (|:| -3560 |#5|)) "failed") (-327 |#2| |#3| |#4| |#5|)) 79)) (-2803 (((-112) (-327 |#2| |#3| |#4| |#5|)) 17)) (-3275 (((-3 (-745) "failed") (-327 |#2| |#3| |#4| |#5|)) 15)))
-(((-880 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3275 ((-3 (-745) "failed") (-327 |#2| |#3| |#4| |#5|))) (-15 -2803 ((-112) (-327 |#2| |#3| |#4| |#5|))) (-15 -2905 ((-3 (-2 (|:| -3275 (-745)) (|:| -3560 |#5|)) "failed") (-327 |#2| |#3| |#4| |#5|)))) (-13 (-821) (-539) (-1007 (-547))) (-421 |#1|) (-1195 |#2|) (-1195 (-398 |#3|)) (-333 |#2| |#3| |#4|)) (T -880))
-((-2905 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 *5 *6 *7 *8)) (-4 *5 (-421 *4)) (-4 *6 (-1195 *5)) (-4 *7 (-1195 (-398 *6))) (-4 *8 (-333 *5 *6 *7)) (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-2 (|:| -3275 (-745)) (|:| -3560 *8))) (-5 *1 (-880 *4 *5 *6 *7 *8)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-327 *5 *6 *7 *8)) (-4 *5 (-421 *4)) (-4 *6 (-1195 *5)) (-4 *7 (-1195 (-398 *6))) (-4 *8 (-333 *5 *6 *7)) (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-112)) (-5 *1 (-880 *4 *5 *6 *7 *8)))) (-3275 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 *5 *6 *7 *8)) (-4 *5 (-421 *4)) (-4 *6 (-1195 *5)) (-4 *7 (-1195 (-398 *6))) (-4 *8 (-333 *5 *6 *7)) (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-745)) (-5 *1 (-880 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3275 ((-3 (-745) "failed") (-327 |#2| |#3| |#4| |#5|))) (-15 -2803 ((-112) (-327 |#2| |#3| |#4| |#5|))) (-15 -2905 ((-3 (-2 (|:| -3275 (-745)) (|:| -3560 |#5|)) "failed") (-327 |#2| |#3| |#4| |#5|))))
-((-2905 (((-3 (-2 (|:| -3275 (-745)) (|:| -3560 |#3|)) "failed") (-327 (-398 (-547)) |#1| |#2| |#3|)) 56)) (-2803 (((-112) (-327 (-398 (-547)) |#1| |#2| |#3|)) 16)) (-3275 (((-3 (-745) "failed") (-327 (-398 (-547)) |#1| |#2| |#3|)) 14)))
-(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -3275 ((-3 (-745) "failed") (-327 (-398 (-547)) |#1| |#2| |#3|))) (-15 -2803 ((-112) (-327 (-398 (-547)) |#1| |#2| |#3|))) (-15 -2905 ((-3 (-2 (|:| -3275 (-745)) (|:| -3560 |#3|)) "failed") (-327 (-398 (-547)) |#1| |#2| |#3|)))) (-1195 (-398 (-547))) (-1195 (-398 |#1|)) (-333 (-398 (-547)) |#1| |#2|)) (T -881))
-((-2905 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 (-398 (-547)) *4 *5 *6)) (-4 *4 (-1195 (-398 (-547)))) (-4 *5 (-1195 (-398 *4))) (-4 *6 (-333 (-398 (-547)) *4 *5)) (-5 *2 (-2 (|:| -3275 (-745)) (|:| -3560 *6))) (-5 *1 (-881 *4 *5 *6)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-327 (-398 (-547)) *4 *5 *6)) (-4 *4 (-1195 (-398 (-547)))) (-4 *5 (-1195 (-398 *4))) (-4 *6 (-333 (-398 (-547)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-881 *4 *5 *6)))) (-3275 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 (-398 (-547)) *4 *5 *6)) (-4 *4 (-1195 (-398 (-547)))) (-4 *5 (-1195 (-398 *4))) (-4 *6 (-333 (-398 (-547)) *4 *5)) (-5 *2 (-745)) (-5 *1 (-881 *4 *5 *6)))))
-(-10 -7 (-15 -3275 ((-3 (-745) "failed") (-327 (-398 (-547)) |#1| |#2| |#3|))) (-15 -2803 ((-112) (-327 (-398 (-547)) |#1| |#2| |#3|))) (-15 -2905 ((-3 (-2 (|:| -3275 (-745)) (|:| -3560 |#3|)) "failed") (-327 (-398 (-547)) |#1| |#2| |#3|))))
-((-1697 ((|#2| |#2|) 26)) (-4045 (((-547) (-619 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547))))) 15)) (-2975 (((-890) (-547)) 35)) (-3626 (((-547) |#2|) 42)) (-3105 (((-547) |#2|) 21) (((-2 (|:| |den| (-547)) (|:| |gcdnum| (-547))) |#1|) 20)))
-(((-882 |#1| |#2|) (-10 -7 (-15 -2975 ((-890) (-547))) (-15 -3105 ((-2 (|:| |den| (-547)) (|:| |gcdnum| (-547))) |#1|)) (-15 -3105 ((-547) |#2|)) (-15 -4045 ((-547) (-619 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547)))))) (-15 -3626 ((-547) |#2|)) (-15 -1697 (|#2| |#2|))) (-1195 (-398 (-547))) (-1195 (-398 |#1|))) (T -882))
-((-1697 (*1 *2 *2) (-12 (-4 *3 (-1195 (-398 (-547)))) (-5 *1 (-882 *3 *2)) (-4 *2 (-1195 (-398 *3))))) (-3626 (*1 *2 *3) (-12 (-4 *4 (-1195 (-398 *2))) (-5 *2 (-547)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1195 (-398 *4))))) (-4045 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547))))) (-4 *4 (-1195 (-398 *2))) (-5 *2 (-547)) (-5 *1 (-882 *4 *5)) (-4 *5 (-1195 (-398 *4))))) (-3105 (*1 *2 *3) (-12 (-4 *4 (-1195 (-398 *2))) (-5 *2 (-547)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1195 (-398 *4))))) (-3105 (*1 *2 *3) (-12 (-4 *3 (-1195 (-398 (-547)))) (-5 *2 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547)))) (-5 *1 (-882 *3 *4)) (-4 *4 (-1195 (-398 *3))))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-547)) (-4 *4 (-1195 (-398 *3))) (-5 *2 (-890)) (-5 *1 (-882 *4 *5)) (-4 *5 (-1195 (-398 *4))))))
-(-10 -7 (-15 -2975 ((-890) (-547))) (-15 -3105 ((-2 (|:| |den| (-547)) (|:| |gcdnum| (-547))) |#1|)) (-15 -3105 ((-547) |#2|)) (-15 -4045 ((-547) (-619 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547)))))) (-15 -3626 ((-547) |#2|)) (-15 -1697 (|#2| |#2|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2092 ((|#1| $) 81)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-2089 (($ $ $) NIL)) (-3855 (((-3 $ "failed") $) 75)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-1588 (($ |#1| (-409 |#1|)) 73)) (-3212 (((-1132 |#1|) |#1| |#1|) 41)) (-3677 (($ $) 49)) (-2261 (((-112) $) NIL)) (-1752 (((-547) $) 78)) (-3534 (($ $ (-547)) 80)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2184 ((|#1| $) 77)) (-3961 (((-409 |#1|) $) 76)) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) 74)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-1769 (($ $) 39)) (-3838 (((-832) $) 99) (($ (-547)) 54) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) 31) (((-398 |#1|) $) 59) (($ (-398 (-409 |#1|))) 67)) (-2736 (((-745)) 52)) (-3577 (((-112) $ $) NIL)) (-3269 (($) 23 T CONST)) (-3281 (($) 12 T CONST)) (-2381 (((-112) $ $) 68)) (-2506 (($ $ $) NIL)) (-2493 (($ $) 88) (($ $ $) NIL)) (-2479 (($ $ $) 38)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 90) (($ $ $) 37) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-883 |#1|) (-13 (-354) (-38 |#1|) (-10 -8 (-15 -3838 ((-398 |#1|) $)) (-15 -3838 ($ (-398 (-409 |#1|)))) (-15 -1769 ($ $)) (-15 -3961 ((-409 |#1|) $)) (-15 -2184 (|#1| $)) (-15 -3534 ($ $ (-547))) (-15 -1752 ((-547) $)) (-15 -3212 ((-1132 |#1|) |#1| |#1|)) (-15 -3677 ($ $)) (-15 -1588 ($ |#1| (-409 |#1|))) (-15 -2092 (|#1| $)))) (-298)) (T -883))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-883 *3)) (-4 *3 (-298)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-398 (-409 *3))) (-4 *3 (-298)) (-5 *1 (-883 *3)))) (-1769 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-883 *3)) (-4 *3 (-298)))) (-2184 (*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-883 *3)) (-4 *3 (-298)))) (-1752 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-883 *3)) (-4 *3 (-298)))) (-3212 (*1 *2 *3 *3) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-883 *3)) (-4 *3 (-298)))) (-3677 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298)))) (-1588 (*1 *1 *2 *3) (-12 (-5 *3 (-409 *2)) (-4 *2 (-298)) (-5 *1 (-883 *2)))) (-2092 (*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298)))))
-(-13 (-354) (-38 |#1|) (-10 -8 (-15 -3838 ((-398 |#1|) $)) (-15 -3838 ($ (-398 (-409 |#1|)))) (-15 -1769 ($ $)) (-15 -3961 ((-409 |#1|) $)) (-15 -2184 (|#1| $)) (-15 -3534 ($ $ (-547))) (-15 -1752 ((-547) $)) (-15 -3212 ((-1132 |#1|) |#1| |#1|)) (-15 -3677 ($ $)) (-15 -1588 ($ |#1| (-409 |#1|))) (-15 -2092 (|#1| $))))
-((-1588 (((-52) (-921 |#1|) (-409 (-921 |#1|)) (-1136)) 17) (((-52) (-398 (-921 |#1|)) (-1136)) 18)))
-(((-884 |#1|) (-10 -7 (-15 -1588 ((-52) (-398 (-921 |#1|)) (-1136))) (-15 -1588 ((-52) (-921 |#1|) (-409 (-921 |#1|)) (-1136)))) (-13 (-298) (-145))) (T -884))
-((-1588 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-409 (-921 *6))) (-5 *5 (-1136)) (-5 *3 (-921 *6)) (-4 *6 (-13 (-298) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *6)))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1136)) (-4 *5 (-13 (-298) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *5)))))
-(-10 -7 (-15 -1588 ((-52) (-398 (-921 |#1|)) (-1136))) (-15 -1588 ((-52) (-921 |#1|) (-409 (-921 |#1|)) (-1136))))
-((-3058 ((|#4| (-619 |#4|)) 121) (((-1132 |#4|) (-1132 |#4|) (-1132 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3719 (((-1132 |#4|) (-619 (-1132 |#4|))) 114) (((-1132 |#4|) (-1132 |#4|) (-1132 |#4|)) 50) ((|#4| (-619 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
-(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3719 (|#4| |#4| |#4|)) (-15 -3719 (|#4| (-619 |#4|))) (-15 -3719 ((-1132 |#4|) (-1132 |#4|) (-1132 |#4|))) (-15 -3719 ((-1132 |#4|) (-619 (-1132 |#4|)))) (-15 -3058 (|#4| |#4| |#4|)) (-15 -3058 ((-1132 |#4|) (-1132 |#4|) (-1132 |#4|))) (-15 -3058 (|#4| (-619 |#4|)))) (-767) (-821) (-298) (-918 |#3| |#1| |#2|)) (T -885))
-((-3058 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)))) (-3058 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *6)))) (-3058 (*1 *2 *2 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-619 (-1132 *7))) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-5 *2 (-1132 *7)) (-5 *1 (-885 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-3719 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *6)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)))) (-3719 (*1 *2 *2 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4)))))
-(-10 -7 (-15 -3719 (|#4| |#4| |#4|)) (-15 -3719 (|#4| (-619 |#4|))) (-15 -3719 ((-1132 |#4|) (-1132 |#4|) (-1132 |#4|))) (-15 -3719 ((-1132 |#4|) (-619 (-1132 |#4|)))) (-15 -3058 (|#4| |#4| |#4|)) (-15 -3058 ((-1132 |#4|) (-1132 |#4|) (-1132 |#4|))) (-15 -3058 (|#4| (-619 |#4|))))
-((-3136 (((-873 (-547)) (-940)) 23) (((-873 (-547)) (-619 (-547))) 20)) (-2028 (((-873 (-547)) (-619 (-547))) 48) (((-873 (-547)) (-890)) 49)) (-3152 (((-873 (-547))) 24)) (-1801 (((-873 (-547))) 38) (((-873 (-547)) (-619 (-547))) 37)) (-3730 (((-873 (-547))) 36) (((-873 (-547)) (-619 (-547))) 35)) (-4144 (((-873 (-547))) 34) (((-873 (-547)) (-619 (-547))) 33)) (-3333 (((-873 (-547))) 32) (((-873 (-547)) (-619 (-547))) 31)) (-3306 (((-873 (-547))) 30) (((-873 (-547)) (-619 (-547))) 29)) (-3059 (((-873 (-547))) 40) (((-873 (-547)) (-619 (-547))) 39)) (-2973 (((-873 (-547)) (-619 (-547))) 52) (((-873 (-547)) (-890)) 53)) (-2891 (((-873 (-547)) (-619 (-547))) 50) (((-873 (-547)) (-890)) 51)) (-1757 (((-873 (-547)) (-619 (-547))) 46) (((-873 (-547)) (-890)) 47)) (-3737 (((-873 (-547)) (-619 (-890))) 43)))
-(((-886) (-10 -7 (-15 -2028 ((-873 (-547)) (-890))) (-15 -2028 ((-873 (-547)) (-619 (-547)))) (-15 -1757 ((-873 (-547)) (-890))) (-15 -1757 ((-873 (-547)) (-619 (-547)))) (-15 -3737 ((-873 (-547)) (-619 (-890)))) (-15 -2891 ((-873 (-547)) (-890))) (-15 -2891 ((-873 (-547)) (-619 (-547)))) (-15 -2973 ((-873 (-547)) (-890))) (-15 -2973 ((-873 (-547)) (-619 (-547)))) (-15 -3306 ((-873 (-547)) (-619 (-547)))) (-15 -3306 ((-873 (-547)))) (-15 -3333 ((-873 (-547)) (-619 (-547)))) (-15 -3333 ((-873 (-547)))) (-15 -4144 ((-873 (-547)) (-619 (-547)))) (-15 -4144 ((-873 (-547)))) (-15 -3730 ((-873 (-547)) (-619 (-547)))) (-15 -3730 ((-873 (-547)))) (-15 -1801 ((-873 (-547)) (-619 (-547)))) (-15 -1801 ((-873 (-547)))) (-15 -3059 ((-873 (-547)) (-619 (-547)))) (-15 -3059 ((-873 (-547)))) (-15 -3152 ((-873 (-547)))) (-15 -3136 ((-873 (-547)) (-619 (-547)))) (-15 -3136 ((-873 (-547)) (-940))))) (T -886))
-((-3136 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3152 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3059 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-1801 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3730 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-4144 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3333 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3306 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-619 (-890))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
-(-10 -7 (-15 -2028 ((-873 (-547)) (-890))) (-15 -2028 ((-873 (-547)) (-619 (-547)))) (-15 -1757 ((-873 (-547)) (-890))) (-15 -1757 ((-873 (-547)) (-619 (-547)))) (-15 -3737 ((-873 (-547)) (-619 (-890)))) (-15 -2891 ((-873 (-547)) (-890))) (-15 -2891 ((-873 (-547)) (-619 (-547)))) (-15 -2973 ((-873 (-547)) (-890))) (-15 -2973 ((-873 (-547)) (-619 (-547)))) (-15 -3306 ((-873 (-547)) (-619 (-547)))) (-15 -3306 ((-873 (-547)))) (-15 -3333 ((-873 (-547)) (-619 (-547)))) (-15 -3333 ((-873 (-547)))) (-15 -4144 ((-873 (-547)) (-619 (-547)))) (-15 -4144 ((-873 (-547)))) (-15 -3730 ((-873 (-547)) (-619 (-547)))) (-15 -3730 ((-873 (-547)))) (-15 -1801 ((-873 (-547)) (-619 (-547)))) (-15 -1801 ((-873 (-547)))) (-15 -3059 ((-873 (-547)) (-619 (-547)))) (-15 -3059 ((-873 (-547)))) (-15 -3152 ((-873 (-547)))) (-15 -3136 ((-873 (-547)) (-619 (-547)))) (-15 -3136 ((-873 (-547)) (-940))))
-((-1977 (((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1136))) 12)) (-3974 (((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1136))) 11)))
-(((-887 |#1|) (-10 -7 (-15 -3974 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1136)))) (-15 -1977 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1136))))) (-442)) (T -887))
-((-1977 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1136))) (-4 *4 (-442)) (-5 *1 (-887 *4)))) (-3974 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1136))) (-4 *4 (-442)) (-5 *1 (-887 *4)))))
-(-10 -7 (-15 -3974 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1136)))) (-15 -1977 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1136)))))
-((-3838 (((-307 |#1|) (-467)) 16)))
-(((-888 |#1|) (-10 -7 (-15 -3838 ((-307 |#1|) (-467)))) (-13 (-821) (-539))) (T -888))
-((-3838 (*1 *2 *3) (-12 (-5 *3 (-467)) (-5 *2 (-307 *4)) (-5 *1 (-888 *4)) (-4 *4 (-13 (-821) (-539))))))
-(-10 -7 (-15 -3838 ((-307 |#1|) (-467))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-2261 (((-112) $) 30)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-889) (-138)) (T -889))
-((-4203 (*1 *2 *3) (-12 (-4 *1 (-889)) (-5 *2 (-2 (|:| -1563 (-619 *1)) (|:| -4238 *1))) (-5 *3 (-619 *1)))) (-2512 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-889)))))
-(-13 (-442) (-10 -8 (-15 -4203 ((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $))) (-15 -2512 ((-3 (-619 $) "failed") (-619 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-442) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3719 (($ $ $) NIL)) (-3838 (((-832) $) NIL)) (-3281 (($) NIL T CONST)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ $ $) NIL)))
-(((-890) (-13 (-768) (-701) (-10 -8 (-15 -3719 ($ $ $)) (-6 (-4331 "*"))))) (T -890))
-((-3719 (*1 *1 *1 *1) (-5 *1 (-890))))
-(-13 (-768) (-701) (-10 -8 (-15 -3719 ($ $ $)) (-6 (-4331 "*"))))
-((-1681 ((|#2| (-619 |#1|) (-619 |#1|)) 24)))
-(((-891 |#1| |#2|) (-10 -7 (-15 -1681 (|#2| (-619 |#1|) (-619 |#1|)))) (-354) (-1195 |#1|)) (T -891))
-((-1681 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-354)) (-4 *2 (-1195 *4)) (-5 *1 (-891 *4 *2)))))
-(-10 -7 (-15 -1681 (|#2| (-619 |#1|) (-619 |#1|))))
-((-2459 (((-1132 |#2|) (-619 |#2|) (-619 |#2|)) 17) (((-1192 |#1| |#2|) (-1192 |#1| |#2|) (-619 |#2|) (-619 |#2|)) 13)))
-(((-892 |#1| |#2|) (-10 -7 (-15 -2459 ((-1192 |#1| |#2|) (-1192 |#1| |#2|) (-619 |#2|) (-619 |#2|))) (-15 -2459 ((-1132 |#2|) (-619 |#2|) (-619 |#2|)))) (-1136) (-354)) (T -892))
-((-2459 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *5)) (-4 *5 (-354)) (-5 *2 (-1132 *5)) (-5 *1 (-892 *4 *5)) (-14 *4 (-1136)))) (-2459 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1192 *4 *5)) (-5 *3 (-619 *5)) (-14 *4 (-1136)) (-4 *5 (-354)) (-5 *1 (-892 *4 *5)))))
-(-10 -7 (-15 -2459 ((-1192 |#1| |#2|) (-1192 |#1| |#2|) (-619 |#2|) (-619 |#2|))) (-15 -2459 ((-1132 |#2|) (-619 |#2|) (-619 |#2|))))
-((-2359 (((-547) (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-1119)) 139)) (-1326 ((|#4| |#4|) 155)) (-2304 (((-619 (-398 (-921 |#1|))) (-619 (-1136))) 118)) (-2175 (((-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))) (-663 |#4|) (-619 (-398 (-921 |#1|))) (-619 (-619 |#4|)) (-745) (-745) (-547)) 75)) (-4241 (((-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))) (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))) (-619 |#4|)) 59)) (-2525 (((-663 |#4|) (-663 |#4|) (-619 |#4|)) 55)) (-1289 (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-1119)) 151)) (-2178 (((-547) (-663 |#4|) (-890) (-1119)) 132) (((-547) (-663 |#4|) (-619 (-1136)) (-890) (-1119)) 131) (((-547) (-663 |#4|) (-619 |#4|) (-890) (-1119)) 130) (((-547) (-663 |#4|) (-1119)) 127) (((-547) (-663 |#4|) (-619 (-1136)) (-1119)) 126) (((-547) (-663 |#4|) (-619 |#4|) (-1119)) 125) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-890)) 124) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1136)) (-890)) 123) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|) (-890)) 122) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|)) 120) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1136))) 119) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|)) 115)) (-1910 ((|#4| (-921 |#1|)) 68)) (-3488 (((-112) (-619 |#4|) (-619 (-619 |#4|))) 152)) (-3068 (((-619 (-619 (-547))) (-547) (-547)) 129)) (-1265 (((-619 (-619 |#4|)) (-619 (-619 |#4|))) 88)) (-3499 (((-745) (-619 (-2 (|:| -3116 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|))))) 86)) (-2822 (((-745) (-619 (-2 (|:| -3116 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|))))) 85)) (-2976 (((-112) (-619 (-921 |#1|))) 17) (((-112) (-619 |#4|)) 13)) (-2868 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-619 |#4|)) (|:| |n0| (-619 |#4|))) (-619 |#4|) (-619 |#4|)) 71)) (-2481 (((-619 |#4|) |#4|) 49)) (-2844 (((-619 (-398 (-921 |#1|))) (-619 |#4|)) 114) (((-663 (-398 (-921 |#1|))) (-663 |#4|)) 56) (((-398 (-921 |#1|)) |#4|) 111)) (-1953 (((-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))))))) (|:| |rgsz| (-547))) (-663 |#4|) (-619 (-398 (-921 |#1|))) (-745) (-1119) (-547)) 93)) (-1897 (((-619 (-2 (|:| -3116 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))) (-663 |#4|) (-745)) 84)) (-2288 (((-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) (-663 |#4|) (-745)) 101)) (-1341 (((-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))) (-2 (|:| -1877 (-663 (-398 (-921 |#1|)))) (|:| |vec| (-619 (-398 (-921 |#1|)))) (|:| -3116 (-745)) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) 48)))
-(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2178 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|))) (-15 -2178 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1136)))) (-15 -2178 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|))) (-15 -2178 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|) (-890))) (-15 -2178 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1136)) (-890))) (-15 -2178 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-890))) (-15 -2178 ((-547) (-663 |#4|) (-619 |#4|) (-1119))) (-15 -2178 ((-547) (-663 |#4|) (-619 (-1136)) (-1119))) (-15 -2178 ((-547) (-663 |#4|) (-1119))) (-15 -2178 ((-547) (-663 |#4|) (-619 |#4|) (-890) (-1119))) (-15 -2178 ((-547) (-663 |#4|) (-619 (-1136)) (-890) (-1119))) (-15 -2178 ((-547) (-663 |#4|) (-890) (-1119))) (-15 -2359 ((-547) (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-1119))) (-15 -1289 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-1119))) (-15 -1953 ((-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))))))) (|:| |rgsz| (-547))) (-663 |#4|) (-619 (-398 (-921 |#1|))) (-745) (-1119) (-547))) (-15 -2844 ((-398 (-921 |#1|)) |#4|)) (-15 -2844 ((-663 (-398 (-921 |#1|))) (-663 |#4|))) (-15 -2844 ((-619 (-398 (-921 |#1|))) (-619 |#4|))) (-15 -2304 ((-619 (-398 (-921 |#1|))) (-619 (-1136)))) (-15 -1910 (|#4| (-921 |#1|))) (-15 -2868 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-619 |#4|)) (|:| |n0| (-619 |#4|))) (-619 |#4|) (-619 |#4|))) (-15 -1897 ((-619 (-2 (|:| -3116 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))) (-663 |#4|) (-745))) (-15 -4241 ((-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))) (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))) (-619 |#4|))) (-15 -1341 ((-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))) (-2 (|:| -1877 (-663 (-398 (-921 |#1|)))) (|:| |vec| (-619 (-398 (-921 |#1|)))) (|:| -3116 (-745)) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (-15 -2481 ((-619 |#4|) |#4|)) (-15 -2822 ((-745) (-619 (-2 (|:| -3116 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -3499 ((-745) (-619 (-2 (|:| -3116 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -1265 ((-619 (-619 |#4|)) (-619 (-619 |#4|)))) (-15 -3068 ((-619 (-619 (-547))) (-547) (-547))) (-15 -3488 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -2288 ((-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) (-663 |#4|) (-745))) (-15 -2525 ((-663 |#4|) (-663 |#4|) (-619 |#4|))) (-15 -2175 ((-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))) (-663 |#4|) (-619 (-398 (-921 |#1|))) (-619 (-619 |#4|)) (-745) (-745) (-547))) (-15 -1326 (|#4| |#4|)) (-15 -2976 ((-112) (-619 |#4|))) (-15 -2976 ((-112) (-619 (-921 |#1|))))) (-13 (-298) (-145)) (-13 (-821) (-592 (-1136))) (-767) (-918 |#1| |#3| |#2|)) (T -893))
-((-2976 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-2976 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *4 *5 *6 *7)))) (-1326 (*1 *2 *2) (-12 (-4 *3 (-13 (-298) (-145))) (-4 *4 (-13 (-821) (-592 (-1136)))) (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *2)) (-4 *2 (-918 *3 *5 *4)))) (-2175 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) (-5 *4 (-663 *12)) (-5 *5 (-619 (-398 (-921 *9)))) (-5 *6 (-619 (-619 *12))) (-5 *7 (-745)) (-5 *8 (-547)) (-4 *9 (-13 (-298) (-145))) (-4 *12 (-918 *9 *11 *10)) (-4 *10 (-13 (-821) (-592 (-1136)))) (-4 *11 (-767)) (-5 *2 (-2 (|:| |eqzro| (-619 *12)) (|:| |neqzro| (-619 *12)) (|:| |wcond| (-619 (-921 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 *9)))) (|:| -1917 (-619 (-1219 (-398 (-921 *9))))))))) (-5 *1 (-893 *9 *10 *11 *12)))) (-2525 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7)))) (-2288 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-745)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |det| *8) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (-5 *1 (-893 *5 *6 *7 *8)))) (-3488 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136)))) (-4 *7 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *7 *8)))) (-3068 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-619 (-619 (-547)))) (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-547)) (-4 *7 (-918 *4 *6 *5)))) (-1265 (*1 *2 *2) (-12 (-5 *2 (-619 (-619 *6))) (-4 *6 (-918 *3 *5 *4)) (-4 *3 (-13 (-298) (-145))) (-4 *4 (-13 (-821) (-592 (-1136)))) (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *6)))) (-3499 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -3116 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| *7) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 *7))))) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-745)) (-5 *1 (-893 *4 *5 *6 *7)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -3116 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| *7) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 *7))))) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-745)) (-5 *1 (-893 *4 *5 *6 *7)))) (-2481 (*1 *2 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-619 *3)) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-918 *4 *6 *5)))) (-1341 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1877 (-663 (-398 (-921 *4)))) (|:| |vec| (-619 (-398 (-921 *4)))) (|:| -3116 (-745)) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-2 (|:| |partsol| (-1219 (-398 (-921 *4)))) (|:| -1917 (-619 (-1219 (-398 (-921 *4))))))) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-4241 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1219 (-398 (-921 *4)))) (|:| -1917 (-619 (-1219 (-398 (-921 *4))))))) (-5 *3 (-619 *7)) (-4 *4 (-13 (-298) (-145))) (-4 *7 (-918 *4 *6 *5)) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7)))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| -3116 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| *8) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 *8))))) (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-745)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-4 *7 (-918 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-619 *7)) (|:| |n0| (-619 *7)))) (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-298) (-145))) (-4 *2 (-918 *4 *6 *5)) (-5 *1 (-893 *4 *5 *6 *2)) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-619 (-1136))) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-619 (-398 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-619 (-398 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-663 (-398 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)))) (-2844 (*1 *2 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-398 (-921 *4))) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-918 *4 *6 *5)))) (-1953 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-663 *11)) (-5 *4 (-619 (-398 (-921 *8)))) (-5 *5 (-745)) (-5 *6 (-1119)) (-4 *8 (-13 (-298) (-145))) (-4 *11 (-918 *8 *10 *9)) (-4 *9 (-13 (-821) (-592 (-1136)))) (-4 *10 (-767)) (-5 *2 (-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 *11)) (|:| |neqzro| (-619 *11)) (|:| |wcond| (-619 (-921 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 *8)))) (|:| -1917 (-619 (-1219 (-398 (-921 *8)))))))))) (|:| |rgsz| (-547)))) (-5 *1 (-893 *8 *9 *10 *11)) (-5 *7 (-547)))) (-1289 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) (|:| |wcond| (-619 (-921 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 *4)))) (|:| -1917 (-619 (-1219 (-398 (-921 *4)))))))))) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-2359 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 *5)))) (|:| -1917 (-619 (-1219 (-398 (-921 *5)))))))))) (-5 *4 (-1119)) (-4 *5 (-13 (-298) (-145))) (-4 *8 (-918 *5 *7 *6)) (-4 *6 (-13 (-821) (-592 (-1136)))) (-4 *7 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *5 *6 *7 *8)))) (-2178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-890)) (-5 *5 (-1119)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) (-4 *7 (-13 (-821) (-592 (-1136)))) (-4 *8 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *6 *7 *8 *9)))) (-2178 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 (-1136))) (-5 *5 (-890)) (-5 *6 (-1119)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-298) (-145))) (-4 *8 (-13 (-821) (-592 (-1136)))) (-4 *9 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *7 *8 *9 *10)))) (-2178 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 *10)) (-5 *5 (-890)) (-5 *6 (-1119)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-298) (-145))) (-4 *8 (-13 (-821) (-592 (-1136)))) (-4 *9 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *7 *8 *9 *10)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-1119)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136)))) (-4 *7 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *5 *6 *7 *8)))) (-2178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1136))) (-5 *5 (-1119)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) (-4 *7 (-13 (-821) (-592 (-1136)))) (-4 *8 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *6 *7 *8 *9)))) (-2178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 *9)) (-5 *5 (-1119)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) (-4 *7 (-13 (-821) (-592 (-1136)))) (-4 *8 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *6 *7 *8 *9)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-890)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 *5)))) (|:| -1917 (-619 (-1219 (-398 (-921 *5)))))))))) (-5 *1 (-893 *5 *6 *7 *8)))) (-2178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1136))) (-5 *5 (-890)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) (-4 *7 (-13 (-821) (-592 (-1136)))) (-4 *8 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) (|:| |wcond| (-619 (-921 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 *6)))) (|:| -1917 (-619 (-1219 (-398 (-921 *6)))))))))) (-5 *1 (-893 *6 *7 *8 *9)))) (-2178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *5 (-890)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) (-4 *7 (-13 (-821) (-592 (-1136)))) (-4 *8 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) (|:| |wcond| (-619 (-921 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 *6)))) (|:| -1917 (-619 (-1219 (-398 (-921 *6)))))))))) (-5 *1 (-893 *6 *7 *8 *9)) (-5 *4 (-619 *9)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) (|:| |wcond| (-619 (-921 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 *4)))) (|:| -1917 (-619 (-1219 (-398 (-921 *4)))))))))) (-5 *1 (-893 *4 *5 *6 *7)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-619 (-1136))) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 *5)))) (|:| -1917 (-619 (-1219 (-398 (-921 *5)))))))))) (-5 *1 (-893 *5 *6 *7 *8)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 *5)))) (|:| -1917 (-619 (-1219 (-398 (-921 *5)))))))))) (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-619 *8)))))
-(-10 -7 (-15 -2178 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|))) (-15 -2178 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1136)))) (-15 -2178 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|))) (-15 -2178 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|) (-890))) (-15 -2178 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1136)) (-890))) (-15 -2178 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-663 |#4|) (-890))) (-15 -2178 ((-547) (-663 |#4|) (-619 |#4|) (-1119))) (-15 -2178 ((-547) (-663 |#4|) (-619 (-1136)) (-1119))) (-15 -2178 ((-547) (-663 |#4|) (-1119))) (-15 -2178 ((-547) (-663 |#4|) (-619 |#4|) (-890) (-1119))) (-15 -2178 ((-547) (-663 |#4|) (-619 (-1136)) (-890) (-1119))) (-15 -2178 ((-547) (-663 |#4|) (-890) (-1119))) (-15 -2359 ((-547) (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-1119))) (-15 -1289 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|))))))))) (-1119))) (-15 -1953 ((-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))))))) (|:| |rgsz| (-547))) (-663 |#4|) (-619 (-398 (-921 |#1|))) (-745) (-1119) (-547))) (-15 -2844 ((-398 (-921 |#1|)) |#4|)) (-15 -2844 ((-663 (-398 (-921 |#1|))) (-663 |#4|))) (-15 -2844 ((-619 (-398 (-921 |#1|))) (-619 |#4|))) (-15 -2304 ((-619 (-398 (-921 |#1|))) (-619 (-1136)))) (-15 -1910 (|#4| (-921 |#1|))) (-15 -2868 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-619 |#4|)) (|:| |n0| (-619 |#4|))) (-619 |#4|) (-619 |#4|))) (-15 -1897 ((-619 (-2 (|:| -3116 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))) (-663 |#4|) (-745))) (-15 -4241 ((-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))) (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))) (-619 |#4|))) (-15 -1341 ((-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))) (-2 (|:| -1877 (-663 (-398 (-921 |#1|)))) (|:| |vec| (-619 (-398 (-921 |#1|)))) (|:| -3116 (-745)) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (-15 -2481 ((-619 |#4|) |#4|)) (-15 -2822 ((-745) (-619 (-2 (|:| -3116 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -3499 ((-745) (-619 (-2 (|:| -3116 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -1265 ((-619 (-619 |#4|)) (-619 (-619 |#4|)))) (-15 -3068 ((-619 (-619 (-547))) (-547) (-547))) (-15 -3488 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -2288 ((-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) (-663 |#4|) (-745))) (-15 -2525 ((-663 |#4|) (-663 |#4|) (-619 |#4|))) (-15 -2175 ((-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1219 (-398 (-921 |#1|)))) (|:| -1917 (-619 (-1219 (-398 (-921 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))) (-663 |#4|) (-619 (-398 (-921 |#1|))) (-619 (-619 |#4|)) (-745) (-745) (-547))) (-15 -1326 (|#4| |#4|)) (-15 -2976 ((-112) (-619 |#4|))) (-15 -2976 ((-112) (-619 (-921 |#1|)))))
-((-2583 (((-896) |#1| (-1136)) 17) (((-896) |#1| (-1136) (-1058 (-217))) 21)) (-2141 (((-896) |#1| |#1| (-1136) (-1058 (-217))) 19) (((-896) |#1| (-1136) (-1058 (-217))) 15)))
-(((-894 |#1|) (-10 -7 (-15 -2141 ((-896) |#1| (-1136) (-1058 (-217)))) (-15 -2141 ((-896) |#1| |#1| (-1136) (-1058 (-217)))) (-15 -2583 ((-896) |#1| (-1136) (-1058 (-217)))) (-15 -2583 ((-896) |#1| (-1136)))) (-592 (-523))) (T -894))
-((-2583 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-592 (-523))))) (-2583 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1136)) (-5 *5 (-1058 (-217))) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-592 (-523))))) (-2141 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1136)) (-5 *5 (-1058 (-217))) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-592 (-523))))) (-2141 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1136)) (-5 *5 (-1058 (-217))) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-592 (-523))))))
-(-10 -7 (-15 -2141 ((-896) |#1| (-1136) (-1058 (-217)))) (-15 -2141 ((-896) |#1| |#1| (-1136) (-1058 (-217)))) (-15 -2583 ((-896) |#1| (-1136) (-1058 (-217)))) (-15 -2583 ((-896) |#1| (-1136))))
-((-2474 (($ $ (-1058 (-217)) (-1058 (-217)) (-1058 (-217))) 70)) (-1849 (((-1058 (-217)) $) 40)) (-1836 (((-1058 (-217)) $) 39)) (-1825 (((-1058 (-217)) $) 38)) (-4003 (((-619 (-619 (-217))) $) 43)) (-2639 (((-1058 (-217)) $) 41)) (-4259 (((-547) (-547)) 32)) (-3500 (((-547) (-547)) 28)) (-4098 (((-547) (-547)) 30)) (-4058 (((-112) (-112)) 35)) (-4156 (((-547)) 31)) (-2557 (($ $ (-1058 (-217))) 73) (($ $) 74)) (-3501 (($ (-1 (-912 (-217)) (-217)) (-1058 (-217))) 78) (($ (-1 (-912 (-217)) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217))) 79)) (-2141 (($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217))) 81) (($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217))) 82) (($ $ (-1058 (-217))) 76)) (-1640 (((-547)) 36)) (-4198 (((-547)) 27)) (-2946 (((-547)) 29)) (-2290 (((-619 (-619 (-912 (-217)))) $) 95)) (-2174 (((-112) (-112)) 37)) (-3838 (((-832) $) 94)) (-2448 (((-112)) 34)))
-(((-895) (-13 (-943) (-10 -8 (-15 -3501 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)))) (-15 -3501 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -2141 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)))) (-15 -2141 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -2141 ($ $ (-1058 (-217)))) (-15 -2474 ($ $ (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -2557 ($ $ (-1058 (-217)))) (-15 -2557 ($ $)) (-15 -2639 ((-1058 (-217)) $)) (-15 -4003 ((-619 (-619 (-217))) $)) (-15 -4198 ((-547))) (-15 -3500 ((-547) (-547))) (-15 -2946 ((-547))) (-15 -4098 ((-547) (-547))) (-15 -4156 ((-547))) (-15 -4259 ((-547) (-547))) (-15 -2448 ((-112))) (-15 -4058 ((-112) (-112))) (-15 -1640 ((-547))) (-15 -2174 ((-112) (-112)))))) (T -895))
-((-3501 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-895)))) (-3501 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-895)))) (-2141 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-895)))) (-2141 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-895)))) (-2141 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895)))) (-2474 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895)))) (-2557 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895)))) (-2557 (*1 *1 *1) (-5 *1 (-895))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-217)))) (-5 *1 (-895)))) (-4198 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-2946 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-4098 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-4156 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-4259 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-2448 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895)))) (-1640 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-2174 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895)))))
-(-13 (-943) (-10 -8 (-15 -3501 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)))) (-15 -3501 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -2141 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)))) (-15 -2141 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -2141 ($ $ (-1058 (-217)))) (-15 -2474 ($ $ (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -2557 ($ $ (-1058 (-217)))) (-15 -2557 ($ $)) (-15 -2639 ((-1058 (-217)) $)) (-15 -4003 ((-619 (-619 (-217))) $)) (-15 -4198 ((-547))) (-15 -3500 ((-547) (-547))) (-15 -2946 ((-547))) (-15 -4098 ((-547) (-547))) (-15 -4156 ((-547))) (-15 -4259 ((-547) (-547))) (-15 -2448 ((-112))) (-15 -4058 ((-112) (-112))) (-15 -1640 ((-547))) (-15 -2174 ((-112) (-112)))))
-((-2474 (($ $ (-1058 (-217))) 70) (($ $ (-1058 (-217)) (-1058 (-217))) 71)) (-1836 (((-1058 (-217)) $) 44)) (-1825 (((-1058 (-217)) $) 43)) (-2639 (((-1058 (-217)) $) 45)) (-3283 (((-547) (-547)) 37)) (-3934 (((-547) (-547)) 33)) (-1572 (((-547) (-547)) 35)) (-2260 (((-112) (-112)) 39)) (-1476 (((-547)) 36)) (-2557 (($ $ (-1058 (-217))) 74) (($ $) 75)) (-3501 (($ (-1 (-912 (-217)) (-217)) (-1058 (-217))) 84) (($ (-1 (-912 (-217)) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217))) 85)) (-2583 (($ (-1 (-217) (-217)) (-1058 (-217))) 92) (($ (-1 (-217) (-217))) 95)) (-2141 (($ (-1 (-217) (-217)) (-1058 (-217))) 79) (($ (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217))) 80) (($ (-619 (-1 (-217) (-217))) (-1058 (-217))) 87) (($ (-619 (-1 (-217) (-217))) (-1058 (-217)) (-1058 (-217))) 88) (($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217))) 81) (($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217))) 82) (($ $ (-1058 (-217))) 76)) (-3081 (((-112) $) 40)) (-2911 (((-547)) 41)) (-3759 (((-547)) 32)) (-2892 (((-547)) 34)) (-2290 (((-619 (-619 (-912 (-217)))) $) 23)) (-1683 (((-112) (-112)) 42)) (-3838 (((-832) $) 106)) (-1441 (((-112)) 38)))
-(((-896) (-13 (-924) (-10 -8 (-15 -2141 ($ (-1 (-217) (-217)) (-1058 (-217)))) (-15 -2141 ($ (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -2141 ($ (-619 (-1 (-217) (-217))) (-1058 (-217)))) (-15 -2141 ($ (-619 (-1 (-217) (-217))) (-1058 (-217)) (-1058 (-217)))) (-15 -2141 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)))) (-15 -2141 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -3501 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)))) (-15 -3501 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -2583 ($ (-1 (-217) (-217)) (-1058 (-217)))) (-15 -2583 ($ (-1 (-217) (-217)))) (-15 -2141 ($ $ (-1058 (-217)))) (-15 -3081 ((-112) $)) (-15 -2474 ($ $ (-1058 (-217)))) (-15 -2474 ($ $ (-1058 (-217)) (-1058 (-217)))) (-15 -2557 ($ $ (-1058 (-217)))) (-15 -2557 ($ $)) (-15 -2639 ((-1058 (-217)) $)) (-15 -3759 ((-547))) (-15 -3934 ((-547) (-547))) (-15 -2892 ((-547))) (-15 -1572 ((-547) (-547))) (-15 -1476 ((-547))) (-15 -3283 ((-547) (-547))) (-15 -1441 ((-112))) (-15 -2260 ((-112) (-112))) (-15 -2911 ((-547))) (-15 -1683 ((-112) (-112)))))) (T -896))
-((-2141 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-2141 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-2141 (*1 *1 *2 *3) (-12 (-5 *2 (-619 (-1 (-217) (-217)))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-2141 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-1 (-217) (-217)))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-2141 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-2141 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-3501 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-3501 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-2583 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-2583 (*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *1 (-896)))) (-2141 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-2474 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) (-2474 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) (-2557 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) (-2557 (*1 *1 *1) (-5 *1 (-896))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) (-3759 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-3934 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-2892 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-1572 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-1476 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-3283 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-1441 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-2260 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-2911 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))))
-(-13 (-924) (-10 -8 (-15 -2141 ($ (-1 (-217) (-217)) (-1058 (-217)))) (-15 -2141 ($ (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -2141 ($ (-619 (-1 (-217) (-217))) (-1058 (-217)))) (-15 -2141 ($ (-619 (-1 (-217) (-217))) (-1058 (-217)) (-1058 (-217)))) (-15 -2141 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)))) (-15 -2141 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -3501 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)))) (-15 -3501 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -2583 ($ (-1 (-217) (-217)) (-1058 (-217)))) (-15 -2583 ($ (-1 (-217) (-217)))) (-15 -2141 ($ $ (-1058 (-217)))) (-15 -3081 ((-112) $)) (-15 -2474 ($ $ (-1058 (-217)))) (-15 -2474 ($ $ (-1058 (-217)) (-1058 (-217)))) (-15 -2557 ($ $ (-1058 (-217)))) (-15 -2557 ($ $)) (-15 -2639 ((-1058 (-217)) $)) (-15 -3759 ((-547))) (-15 -3934 ((-547) (-547))) (-15 -2892 ((-547))) (-15 -1572 ((-547) (-547))) (-15 -1476 ((-547))) (-15 -3283 ((-547) (-547))) (-15 -1441 ((-112))) (-15 -2260 ((-112) (-112))) (-15 -2911 ((-547))) (-15 -1683 ((-112) (-112)))))
-((-2676 (((-619 (-1058 (-217))) (-619 (-619 (-912 (-217))))) 24)))
-(((-897) (-10 -7 (-15 -2676 ((-619 (-1058 (-217))) (-619 (-619 (-912 (-217)))))))) (T -897))
-((-2676 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *2 (-619 (-1058 (-217)))) (-5 *1 (-897)))))
-(-10 -7 (-15 -2676 ((-619 (-1058 (-217))) (-619 (-619 (-912 (-217)))))))
-((-2408 ((|#2| |#2|) 26)) (-1771 ((|#2| |#2|) 27)) (-2582 ((|#2| |#2|) 25)) (-3046 ((|#2| |#2| (-1119)) 24)))
-(((-898 |#1| |#2|) (-10 -7 (-15 -3046 (|#2| |#2| (-1119))) (-15 -2582 (|#2| |#2|)) (-15 -2408 (|#2| |#2|)) (-15 -1771 (|#2| |#2|))) (-821) (-421 |#1|)) (T -898))
-((-1771 (*1 *2 *2) (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-421 *3)))) (-2408 (*1 *2 *2) (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-421 *3)))) (-2582 (*1 *2 *2) (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-421 *3)))) (-3046 (*1 *2 *2 *3) (-12 (-5 *3 (-1119)) (-4 *4 (-821)) (-5 *1 (-898 *4 *2)) (-4 *2 (-421 *4)))))
-(-10 -7 (-15 -3046 (|#2| |#2| (-1119))) (-15 -2582 (|#2| |#2|)) (-15 -2408 (|#2| |#2|)) (-15 -1771 (|#2| |#2|)))
-((-2408 (((-307 (-547)) (-1136)) 16)) (-1771 (((-307 (-547)) (-1136)) 14)) (-2582 (((-307 (-547)) (-1136)) 12)) (-3046 (((-307 (-547)) (-1136) (-1119)) 19)))
-(((-899) (-10 -7 (-15 -3046 ((-307 (-547)) (-1136) (-1119))) (-15 -2582 ((-307 (-547)) (-1136))) (-15 -2408 ((-307 (-547)) (-1136))) (-15 -1771 ((-307 (-547)) (-1136))))) (T -899))
-((-1771 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-307 (-547))) (-5 *1 (-899)))) (-2408 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-307 (-547))) (-5 *1 (-899)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-307 (-547))) (-5 *1 (-899)))) (-3046 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-1119)) (-5 *2 (-307 (-547))) (-5 *1 (-899)))))
-(-10 -7 (-15 -3046 ((-307 (-547)) (-1136) (-1119))) (-15 -2582 ((-307 (-547)) (-1136))) (-15 -2408 ((-307 (-547)) (-1136))) (-15 -1771 ((-307 (-547)) (-1136))))
-((-3521 (((-858 |#1| |#3|) |#2| (-861 |#1|) (-858 |#1| |#3|)) 25)) (-2977 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -2977 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3521 ((-858 |#1| |#3|) |#2| (-861 |#1|) (-858 |#1| |#3|)))) (-1063) (-855 |#1|) (-13 (-1063) (-1007 |#2|))) (T -900))
-((-3521 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-13 (-1063) (-1007 *3))) (-4 *3 (-855 *5)) (-5 *1 (-900 *5 *3 *6)))) (-2977 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1063) (-1007 *5))) (-4 *5 (-855 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-900 *4 *5 *6)))))
-(-10 -7 (-15 -2977 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3521 ((-858 |#1| |#3|) |#2| (-861 |#1|) (-858 |#1| |#3|))))
-((-3521 (((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)) 30)))
-(((-901 |#1| |#2| |#3|) (-10 -7 (-15 -3521 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-1063) (-13 (-539) (-821) (-855 |#1|)) (-13 (-421 |#2|) (-592 (-861 |#1|)) (-855 |#1|) (-1007 (-590 $)))) (T -901))
-((-3521 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-13 (-421 *6) (-592 *4) (-855 *5) (-1007 (-590 $)))) (-5 *4 (-861 *5)) (-4 *6 (-13 (-539) (-821) (-855 *5))) (-5 *1 (-901 *5 *6 *3)))))
-(-10 -7 (-15 -3521 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))))
-((-3521 (((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|)) 13)))
-(((-902 |#1|) (-10 -7 (-15 -3521 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|)))) (-532)) (T -902))
-((-3521 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 (-547) *3)) (-5 *4 (-861 (-547))) (-4 *3 (-532)) (-5 *1 (-902 *3)))))
-(-10 -7 (-15 -3521 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))))
-((-3521 (((-858 |#1| |#2|) (-590 |#2|) (-861 |#1|) (-858 |#1| |#2|)) 54)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -3521 ((-858 |#1| |#2|) (-590 |#2|) (-861 |#1|) (-858 |#1| |#2|)))) (-1063) (-13 (-821) (-1007 (-590 $)) (-592 (-861 |#1|)) (-855 |#1|))) (T -903))
-((-3521 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *6)) (-5 *3 (-590 *6)) (-4 *5 (-1063)) (-4 *6 (-13 (-821) (-1007 (-590 $)) (-592 *4) (-855 *5))) (-5 *4 (-861 *5)) (-5 *1 (-903 *5 *6)))))
-(-10 -7 (-15 -3521 ((-858 |#1| |#2|) (-590 |#2|) (-861 |#1|) (-858 |#1| |#2|))))
-((-3521 (((-854 |#1| |#2| |#3|) |#3| (-861 |#1|) (-854 |#1| |#2| |#3|)) 15)))
-(((-904 |#1| |#2| |#3|) (-10 -7 (-15 -3521 ((-854 |#1| |#2| |#3|) |#3| (-861 |#1|) (-854 |#1| |#2| |#3|)))) (-1063) (-855 |#1|) (-640 |#2|)) (T -904))
-((-3521 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-854 *5 *6 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-855 *5)) (-4 *3 (-640 *6)) (-5 *1 (-904 *5 *6 *3)))))
-(-10 -7 (-15 -3521 ((-854 |#1| |#2| |#3|) |#3| (-861 |#1|) (-854 |#1| |#2| |#3|))))
-((-3521 (((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|)) 17 (|has| |#3| (-855 |#1|))) (((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|) (-1 (-858 |#1| |#5|) |#3| (-861 |#1|) (-858 |#1| |#5|))) 16)))
-(((-905 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3521 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|) (-1 (-858 |#1| |#5|) |#3| (-861 |#1|) (-858 |#1| |#5|)))) (IF (|has| |#3| (-855 |#1|)) (-15 -3521 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|))) |%noBranch|)) (-1063) (-767) (-821) (-13 (-1016) (-821) (-855 |#1|)) (-13 (-918 |#4| |#2| |#3|) (-592 (-861 |#1|)))) (T -905))
-((-3521 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-13 (-918 *8 *6 *7) (-592 *4))) (-5 *4 (-861 *5)) (-4 *7 (-855 *5)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-13 (-1016) (-821) (-855 *5))) (-5 *1 (-905 *5 *6 *7 *8 *3)))) (-3521 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-858 *6 *3) *8 (-861 *6) (-858 *6 *3))) (-4 *8 (-821)) (-5 *2 (-858 *6 *3)) (-5 *4 (-861 *6)) (-4 *6 (-1063)) (-4 *3 (-13 (-918 *9 *7 *8) (-592 *4))) (-4 *7 (-767)) (-4 *9 (-13 (-1016) (-821) (-855 *6))) (-5 *1 (-905 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -3521 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|) (-1 (-858 |#1| |#5|) |#3| (-861 |#1|) (-858 |#1| |#5|)))) (IF (|has| |#3| (-855 |#1|)) (-15 -3521 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|))) |%noBranch|))
-((-1854 ((|#2| |#2| (-619 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -1854 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1854 (|#2| |#2| (-619 (-1 (-112) |#3|))))) (-821) (-421 |#1|) (-1173)) (T -906))
-((-1854 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-1 (-112) *5))) (-4 *5 (-1173)) (-4 *4 (-821)) (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-421 *4)))) (-1854 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1173)) (-4 *4 (-821)) (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-421 *4)))))
-(-10 -7 (-15 -1854 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1854 (|#2| |#2| (-619 (-1 (-112) |#3|)))))
-((-1854 (((-307 (-547)) (-1136) (-619 (-1 (-112) |#1|))) 18) (((-307 (-547)) (-1136) (-1 (-112) |#1|)) 15)))
-(((-907 |#1|) (-10 -7 (-15 -1854 ((-307 (-547)) (-1136) (-1 (-112) |#1|))) (-15 -1854 ((-307 (-547)) (-1136) (-619 (-1 (-112) |#1|))))) (-1173)) (T -907))
-((-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-619 (-1 (-112) *5))) (-4 *5 (-1173)) (-5 *2 (-307 (-547))) (-5 *1 (-907 *5)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1173)) (-5 *2 (-307 (-547))) (-5 *1 (-907 *5)))))
-(-10 -7 (-15 -1854 ((-307 (-547)) (-1136) (-1 (-112) |#1|))) (-15 -1854 ((-307 (-547)) (-1136) (-619 (-1 (-112) |#1|)))))
-((-3521 (((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)) 25)))
-(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -3521 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-1063) (-13 (-539) (-855 |#1|) (-592 (-861 |#1|))) (-961 |#2|)) (T -908))
-((-3521 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-961 *6)) (-4 *6 (-13 (-539) (-855 *5) (-592 *4))) (-5 *4 (-861 *5)) (-5 *1 (-908 *5 *6 *3)))))
-(-10 -7 (-15 -3521 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))))
-((-3521 (((-858 |#1| (-1136)) (-1136) (-861 |#1|) (-858 |#1| (-1136))) 17)))
-(((-909 |#1|) (-10 -7 (-15 -3521 ((-858 |#1| (-1136)) (-1136) (-861 |#1|) (-858 |#1| (-1136))))) (-1063)) (T -909))
-((-3521 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 (-1136))) (-5 *3 (-1136)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-5 *1 (-909 *5)))))
-(-10 -7 (-15 -3521 ((-858 |#1| (-1136)) (-1136) (-861 |#1|) (-858 |#1| (-1136)))))
-((-4104 (((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) 33)) (-3521 (((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-1 |#3| (-619 |#3|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) 32)))
-(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -3521 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-1 |#3| (-619 |#3|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-15 -4104 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))))) (-1063) (-13 (-1016) (-821)) (-13 (-1016) (-592 (-861 |#1|)) (-1007 |#2|))) (T -910))
-((-4104 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-861 *6))) (-5 *5 (-1 (-858 *6 *8) *8 (-861 *6) (-858 *6 *8))) (-4 *6 (-1063)) (-4 *8 (-13 (-1016) (-592 (-861 *6)) (-1007 *7))) (-5 *2 (-858 *6 *8)) (-4 *7 (-13 (-1016) (-821))) (-5 *1 (-910 *6 *7 *8)))) (-3521 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-619 (-861 *7))) (-5 *5 (-1 *9 (-619 *9))) (-5 *6 (-1 (-858 *7 *9) *9 (-861 *7) (-858 *7 *9))) (-4 *7 (-1063)) (-4 *9 (-13 (-1016) (-592 (-861 *7)) (-1007 *8))) (-5 *2 (-858 *7 *9)) (-5 *3 (-619 *9)) (-4 *8 (-13 (-1016) (-821))) (-5 *1 (-910 *7 *8 *9)))))
-(-10 -7 (-15 -3521 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-1 |#3| (-619 |#3|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-15 -4104 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))))
-((-1861 (((-1132 (-398 (-547))) (-547)) 63)) (-1890 (((-1132 (-547)) (-547)) 66)) (-1804 (((-1132 (-547)) (-547)) 60)) (-3395 (((-547) (-1132 (-547))) 55)) (-1328 (((-1132 (-398 (-547))) (-547)) 49)) (-1484 (((-1132 (-547)) (-547)) 38)) (-1516 (((-1132 (-547)) (-547)) 68)) (-4103 (((-1132 (-547)) (-547)) 67)) (-3171 (((-1132 (-398 (-547))) (-547)) 51)))
-(((-911) (-10 -7 (-15 -3171 ((-1132 (-398 (-547))) (-547))) (-15 -4103 ((-1132 (-547)) (-547))) (-15 -1516 ((-1132 (-547)) (-547))) (-15 -1484 ((-1132 (-547)) (-547))) (-15 -1328 ((-1132 (-398 (-547))) (-547))) (-15 -3395 ((-547) (-1132 (-547)))) (-15 -1804 ((-1132 (-547)) (-547))) (-15 -1890 ((-1132 (-547)) (-547))) (-15 -1861 ((-1132 (-398 (-547))) (-547))))) (T -911))
-((-1861 (*1 *2 *3) (-12 (-5 *2 (-1132 (-398 (-547)))) (-5 *1 (-911)) (-5 *3 (-547)))) (-1890 (*1 *2 *3) (-12 (-5 *2 (-1132 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))) (-1804 (*1 *2 *3) (-12 (-5 *2 (-1132 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-1132 (-547))) (-5 *2 (-547)) (-5 *1 (-911)))) (-1328 (*1 *2 *3) (-12 (-5 *2 (-1132 (-398 (-547)))) (-5 *1 (-911)) (-5 *3 (-547)))) (-1484 (*1 *2 *3) (-12 (-5 *2 (-1132 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))) (-1516 (*1 *2 *3) (-12 (-5 *2 (-1132 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))) (-4103 (*1 *2 *3) (-12 (-5 *2 (-1132 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))) (-3171 (*1 *2 *3) (-12 (-5 *2 (-1132 (-398 (-547)))) (-5 *1 (-911)) (-5 *3 (-547)))))
-(-10 -7 (-15 -3171 ((-1132 (-398 (-547))) (-547))) (-15 -4103 ((-1132 (-547)) (-547))) (-15 -1516 ((-1132 (-547)) (-547))) (-15 -1484 ((-1132 (-547)) (-547))) (-15 -1328 ((-1132 (-398 (-547))) (-547))) (-15 -3395 ((-547) (-1132 (-547)))) (-15 -1804 ((-1132 (-547)) (-547))) (-15 -1890 ((-1132 (-547)) (-547))) (-15 -1861 ((-1132 (-398 (-547))) (-547))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3761 (($ (-745)) NIL (|has| |#1| (-23)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2809 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4330))) (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| |#1| (-821))))) (-3185 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#1| $ (-547) |#1|) 11 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) NIL (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3803 (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) NIL)) (-2876 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-2791 (($ (-619 |#1|)) 13)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-4042 (((-663 |#1|) $ $) NIL (|has| |#1| (-1016)))) (-3735 (($ (-745) |#1|) 8)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) 10 (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-2777 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2881 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-3806 (((-112) $ (-745)) NIL)) (-4202 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-2606 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3638 ((|#1| $) NIL (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3632 (($ $ |#1|) NIL (|has| $ (-6 -4330)))) (-3708 (($ $ (-619 |#1|)) 26)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) 20) (($ $ (-1186 (-547))) NIL)) (-4117 ((|#1| $ $) NIL (|has| |#1| (-1016)))) (-3970 (((-890) $) 16)) (-2159 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-1838 (($ $ $) 24)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| |#1| (-592 (-523)))) (($ (-619 |#1|)) 17)) (-3846 (($ (-619 |#1|)) NIL)) (-1945 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-619 $)) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2493 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2479 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-547) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-701))) (($ $ |#1|) NIL (|has| |#1| (-701)))) (-3767 (((-745) $) 14 (|has| $ (-6 -4329)))))
-(((-912 |#1|) (-949 |#1|) (-1016)) (T -912))
-NIL
-(-949 |#1|)
-((-4081 (((-471 |#1| |#2|) (-921 |#2|)) 20)) (-2253 (((-239 |#1| |#2|) (-921 |#2|)) 33)) (-1934 (((-921 |#2|) (-471 |#1| |#2|)) 25)) (-1411 (((-239 |#1| |#2|) (-471 |#1| |#2|)) 55)) (-1905 (((-921 |#2|) (-239 |#1| |#2|)) 30)) (-1650 (((-471 |#1| |#2|) (-239 |#1| |#2|)) 46)))
-(((-913 |#1| |#2|) (-10 -7 (-15 -1650 ((-471 |#1| |#2|) (-239 |#1| |#2|))) (-15 -1411 ((-239 |#1| |#2|) (-471 |#1| |#2|))) (-15 -4081 ((-471 |#1| |#2|) (-921 |#2|))) (-15 -1934 ((-921 |#2|) (-471 |#1| |#2|))) (-15 -1905 ((-921 |#2|) (-239 |#1| |#2|))) (-15 -2253 ((-239 |#1| |#2|) (-921 |#2|)))) (-619 (-1136)) (-1016)) (T -913))
-((-2253 (*1 *2 *3) (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-239 *4 *5)) (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1136))))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-239 *4 *5)) (-14 *4 (-619 (-1136))) (-4 *5 (-1016)) (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5)))) (-1934 (*1 *2 *3) (-12 (-5 *3 (-471 *4 *5)) (-14 *4 (-619 (-1136))) (-4 *5 (-1016)) (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5)))) (-4081 (*1 *2 *3) (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-471 *4 *5)) (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1136))))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-471 *4 *5)) (-14 *4 (-619 (-1136))) (-4 *5 (-1016)) (-5 *2 (-239 *4 *5)) (-5 *1 (-913 *4 *5)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-239 *4 *5)) (-14 *4 (-619 (-1136))) (-4 *5 (-1016)) (-5 *2 (-471 *4 *5)) (-5 *1 (-913 *4 *5)))))
-(-10 -7 (-15 -1650 ((-471 |#1| |#2|) (-239 |#1| |#2|))) (-15 -1411 ((-239 |#1| |#2|) (-471 |#1| |#2|))) (-15 -4081 ((-471 |#1| |#2|) (-921 |#2|))) (-15 -1934 ((-921 |#2|) (-471 |#1| |#2|))) (-15 -1905 ((-921 |#2|) (-239 |#1| |#2|))) (-15 -2253 ((-239 |#1| |#2|) (-921 |#2|))))
-((-1818 (((-619 |#2|) |#2| |#2|) 10)) (-1935 (((-745) (-619 |#1|)) 37 (|has| |#1| (-819)))) (-1285 (((-619 |#2|) |#2|) 11)) (-2728 (((-745) (-619 |#1|) (-547) (-547)) 39 (|has| |#1| (-819)))) (-3742 ((|#1| |#2|) 32 (|has| |#1| (-819)))))
-(((-914 |#1| |#2|) (-10 -7 (-15 -1818 ((-619 |#2|) |#2| |#2|)) (-15 -1285 ((-619 |#2|) |#2|)) (IF (|has| |#1| (-819)) (PROGN (-15 -3742 (|#1| |#2|)) (-15 -1935 ((-745) (-619 |#1|))) (-15 -2728 ((-745) (-619 |#1|) (-547) (-547)))) |%noBranch|)) (-354) (-1195 |#1|)) (T -914))
-((-2728 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-547)) (-4 *5 (-819)) (-4 *5 (-354)) (-5 *2 (-745)) (-5 *1 (-914 *5 *6)) (-4 *6 (-1195 *5)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-819)) (-4 *4 (-354)) (-5 *2 (-745)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1195 *4)))) (-3742 (*1 *2 *3) (-12 (-4 *2 (-354)) (-4 *2 (-819)) (-5 *1 (-914 *2 *3)) (-4 *3 (-1195 *2)))) (-1285 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1195 *4)))) (-1818 (*1 *2 *3 *3) (-12 (-4 *4 (-354)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1195 *4)))))
-(-10 -7 (-15 -1818 ((-619 |#2|) |#2| |#2|)) (-15 -1285 ((-619 |#2|) |#2|)) (IF (|has| |#1| (-819)) (PROGN (-15 -3742 (|#1| |#2|)) (-15 -1935 ((-745) (-619 |#1|))) (-15 -2728 ((-745) (-619 |#1|) (-547) (-547)))) |%noBranch|))
-((-2790 (((-921 |#2|) (-1 |#2| |#1|) (-921 |#1|)) 19)))
-(((-915 |#1| |#2|) (-10 -7 (-15 -2790 ((-921 |#2|) (-1 |#2| |#1|) (-921 |#1|)))) (-1016) (-1016)) (T -915))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-921 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-921 *6)) (-5 *1 (-915 *5 *6)))))
-(-10 -7 (-15 -2790 ((-921 |#2|) (-1 |#2| |#1|) (-921 |#1|))))
-((-2078 (((-1192 |#1| (-921 |#2|)) (-921 |#2|) (-1215 |#1|)) 18)))
-(((-916 |#1| |#2|) (-10 -7 (-15 -2078 ((-1192 |#1| (-921 |#2|)) (-921 |#2|) (-1215 |#1|)))) (-1136) (-1016)) (T -916))
-((-2078 (*1 *2 *3 *4) (-12 (-5 *4 (-1215 *5)) (-14 *5 (-1136)) (-4 *6 (-1016)) (-5 *2 (-1192 *5 (-921 *6))) (-5 *1 (-916 *5 *6)) (-5 *3 (-921 *6)))))
-(-10 -7 (-15 -2078 ((-1192 |#1| (-921 |#2|)) (-921 |#2|) (-1215 |#1|))))
-((-2624 (((-745) $) 71) (((-745) $ (-619 |#4|)) 74)) (-2555 (($ $) 173)) (-3299 (((-409 $) $) 165)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 116)) (-2707 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 (-547) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2652 ((|#2| $) NIL) (((-398 (-547)) $) NIL) (((-547) $) NIL) ((|#4| $) 59)) (-1496 (($ $ $ |#4|) 76)) (-1694 (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) 106) (((-663 |#2|) (-663 $)) 99)) (-3350 (($ $) 180) (($ $ |#4|) 183)) (-2049 (((-619 $) $) 63)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 199) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 192)) (-4097 (((-619 $) $) 28)) (-2238 (($ |#2| |#3|) NIL) (($ $ |#4| (-745)) NIL) (($ $ (-619 |#4|) (-619 (-745))) 57)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ |#4|) 162)) (-2505 (((-3 (-619 $) "failed") $) 42)) (-3663 (((-3 (-619 $) "failed") $) 31)) (-3949 (((-3 (-2 (|:| |var| |#4|) (|:| -3322 (-745))) "failed") $) 47)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 109)) (-2834 (((-409 (-1132 $)) (-1132 $)) 122)) (-4071 (((-409 (-1132 $)) (-1132 $)) 120)) (-2115 (((-409 $) $) 140)) (-2679 (($ $ (-619 (-285 $))) 21) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-619 |#4|) (-619 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-619 |#4|) (-619 $)) NIL)) (-4056 (($ $ |#4|) 78)) (-2838 (((-861 (-370)) $) 213) (((-861 (-547)) $) 206) (((-523) $) 221)) (-2392 ((|#2| $) NIL) (($ $ |#4|) 175)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 154)) (-2450 ((|#2| $ |#3|) NIL) (($ $ |#4| (-745)) 52) (($ $ (-619 |#4|) (-619 (-745))) 55)) (-2220 (((-3 $ "failed") $) 156)) (-2405 (((-112) $ $) 186)))
-(((-917 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2429 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3299 ((-409 |#1|) |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -2220 ((-3 |#1| "failed") |#1|)) (-15 -2405 ((-112) |#1| |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -2838 ((-861 (-547)) |#1|)) (-15 -2838 ((-861 (-370)) |#1|)) (-15 -3521 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -3521 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -2115 ((-409 |#1|) |#1|)) (-15 -4071 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -2834 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -4139 ((-3 (-619 (-1132 |#1|)) "failed") (-619 (-1132 |#1|)) (-1132 |#1|))) (-15 -1427 ((-3 (-1219 |#1|) "failed") (-663 |#1|))) (-15 -3350 (|#1| |#1| |#4|)) (-15 -2392 (|#1| |#1| |#4|)) (-15 -4056 (|#1| |#1| |#4|)) (-15 -1496 (|#1| |#1| |#1| |#4|)) (-15 -2049 ((-619 |#1|) |#1|)) (-15 -2624 ((-745) |#1| (-619 |#4|))) (-15 -2624 ((-745) |#1|)) (-15 -3949 ((-3 (-2 (|:| |var| |#4|) (|:| -3322 (-745))) "failed") |#1|)) (-15 -2505 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3663 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2238 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -2238 (|#1| |#1| |#4| (-745))) (-15 -1354 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1| |#4|)) (-15 -4097 ((-619 |#1|) |#1|)) (-15 -2450 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -2450 (|#1| |#1| |#4| (-745))) (-15 -1694 ((-663 |#2|) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-663 (-547)) (-663 |#1|))) (-15 -2652 (|#4| |#1|)) (-15 -2707 ((-3 |#4| "failed") |#1|)) (-15 -2679 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#4| |#1|)) (-15 -2679 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2679 (|#1| |#1| |#4| |#2|)) (-15 -2679 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-285 |#1|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2238 (|#1| |#2| |#3|)) (-15 -2450 (|#2| |#1| |#3|)) (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -3350 (|#1| |#1|))) (-918 |#2| |#3| |#4|) (-1016) (-767) (-821)) (T -917))
-NIL
-(-10 -8 (-15 -2429 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3299 ((-409 |#1|) |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -2220 ((-3 |#1| "failed") |#1|)) (-15 -2405 ((-112) |#1| |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -2838 ((-861 (-547)) |#1|)) (-15 -2838 ((-861 (-370)) |#1|)) (-15 -3521 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -3521 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -2115 ((-409 |#1|) |#1|)) (-15 -4071 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -2834 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -4139 ((-3 (-619 (-1132 |#1|)) "failed") (-619 (-1132 |#1|)) (-1132 |#1|))) (-15 -1427 ((-3 (-1219 |#1|) "failed") (-663 |#1|))) (-15 -3350 (|#1| |#1| |#4|)) (-15 -2392 (|#1| |#1| |#4|)) (-15 -4056 (|#1| |#1| |#4|)) (-15 -1496 (|#1| |#1| |#1| |#4|)) (-15 -2049 ((-619 |#1|) |#1|)) (-15 -2624 ((-745) |#1| (-619 |#4|))) (-15 -2624 ((-745) |#1|)) (-15 -3949 ((-3 (-2 (|:| |var| |#4|) (|:| -3322 (-745))) "failed") |#1|)) (-15 -2505 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3663 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2238 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -2238 (|#1| |#1| |#4| (-745))) (-15 -1354 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1| |#4|)) (-15 -4097 ((-619 |#1|) |#1|)) (-15 -2450 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -2450 (|#1| |#1| |#4| (-745))) (-15 -1694 ((-663 |#2|) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-663 (-547)) (-663 |#1|))) (-15 -2652 (|#4| |#1|)) (-15 -2707 ((-3 |#4| "failed") |#1|)) (-15 -2679 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#4| |#1|)) (-15 -2679 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2679 (|#1| |#1| |#4| |#2|)) (-15 -2679 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-285 |#1|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2238 (|#1| |#2| |#3|)) (-15 -2450 (|#2| |#1| |#3|)) (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -3350 (|#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2267 (((-619 |#3|) $) 108)) (-2078 (((-1132 $) $ |#3|) 123) (((-1132 |#1|) $) 122)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 85 (|has| |#1| (-539)))) (-3571 (($ $) 86 (|has| |#1| (-539)))) (-3915 (((-112) $) 88 (|has| |#1| (-539)))) (-2624 (((-745) $) 110) (((-745) $ (-619 |#3|)) 109)) (-3672 (((-3 $ "failed") $ $) 19)) (-2277 (((-409 (-1132 $)) (-1132 $)) 98 (|has| |#1| (-878)))) (-2555 (($ $) 96 (|has| |#1| (-442)))) (-3299 (((-409 $) $) 95 (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 101 (|has| |#1| (-878)))) (-1948 (($) 17 T CONST)) (-2707 (((-3 |#1| "failed") $) 162) (((-3 (-398 (-547)) "failed") $) 160 (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) 158 (|has| |#1| (-1007 (-547)))) (((-3 |#3| "failed") $) 134)) (-2652 ((|#1| $) 163) (((-398 (-547)) $) 159 (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) 157 (|has| |#1| (-1007 (-547)))) ((|#3| $) 133)) (-1496 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-2063 (($ $) 152)) (-1694 (((-663 (-547)) (-663 $)) 132 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 131 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-3855 (((-3 $ "failed") $) 32)) (-3350 (($ $) 174 (|has| |#1| (-442))) (($ $ |#3|) 103 (|has| |#1| (-442)))) (-2049 (((-619 $) $) 107)) (-1791 (((-112) $) 94 (|has| |#1| (-878)))) (-3210 (($ $ |#1| |#2| $) 170)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 82 (-12 (|has| |#3| (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 81 (-12 (|has| |#3| (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-2261 (((-112) $) 30)) (-3376 (((-745) $) 167)) (-2254 (($ (-1132 |#1|) |#3|) 115) (($ (-1132 $) |#3|) 114)) (-4097 (((-619 $) $) 124)) (-1759 (((-112) $) 150)) (-2238 (($ |#1| |#2|) 151) (($ $ |#3| (-745)) 117) (($ $ (-619 |#3|) (-619 (-745))) 116)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ |#3|) 118)) (-3095 ((|#2| $) 168) (((-745) $ |#3|) 120) (((-619 (-745)) $ (-619 |#3|)) 119)) (-2856 (($ $ $) 77 (|has| |#1| (-821)))) (-3567 (($ $ $) 76 (|has| |#1| (-821)))) (-4182 (($ (-1 |#2| |#2|) $) 169)) (-2790 (($ (-1 |#1| |#1|) $) 149)) (-1631 (((-3 |#3| "failed") $) 121)) (-2019 (($ $) 147)) (-2037 ((|#1| $) 146)) (-3689 (($ (-619 $)) 92 (|has| |#1| (-442))) (($ $ $) 91 (|has| |#1| (-442)))) (-1466 (((-1119) $) 9)) (-2505 (((-3 (-619 $) "failed") $) 112)) (-3663 (((-3 (-619 $) "failed") $) 113)) (-3949 (((-3 (-2 (|:| |var| |#3|) (|:| -3322 (-745))) "failed") $) 111)) (-3979 (((-1082) $) 10)) (-1996 (((-112) $) 164)) (-2009 ((|#1| $) 165)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 93 (|has| |#1| (-442)))) (-3719 (($ (-619 $)) 90 (|has| |#1| (-442))) (($ $ $) 89 (|has| |#1| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) 100 (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) 99 (|has| |#1| (-878)))) (-2115 (((-409 $) $) 97 (|has| |#1| (-878)))) (-2032 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-539)))) (-2679 (($ $ (-619 (-285 $))) 143) (($ $ (-285 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-619 |#3|) (-619 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-619 |#3|) (-619 $)) 136)) (-4056 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-3448 (($ $ |#3|) 40) (($ $ (-619 |#3|)) 39) (($ $ |#3| (-745)) 38) (($ $ (-619 |#3|) (-619 (-745))) 37)) (-3705 ((|#2| $) 148) (((-745) $ |#3|) 128) (((-619 (-745)) $ (-619 |#3|)) 127)) (-2838 (((-861 (-370)) $) 80 (-12 (|has| |#3| (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) 79 (-12 (|has| |#3| (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) 78 (-12 (|has| |#3| (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-2392 ((|#1| $) 173 (|has| |#1| (-442))) (($ $ |#3|) 104 (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 102 (-1814 (|has| $ (-143)) (|has| |#1| (-878))))) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-539))) (($ (-398 (-547))) 70 (-1530 (|has| |#1| (-1007 (-398 (-547)))) (|has| |#1| (-38 (-398 (-547))))))) (-1277 (((-619 |#1|) $) 166)) (-2450 ((|#1| $ |#2|) 153) (($ $ |#3| (-745)) 126) (($ $ (-619 |#3|) (-619 (-745))) 125)) (-2220 (((-3 $ "failed") $) 71 (-1530 (-1814 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) 28)) (-1379 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-3577 (((-112) $ $) 87 (|has| |#1| (-539)))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ |#3|) 36) (($ $ (-619 |#3|)) 35) (($ $ |#3| (-745)) 34) (($ $ (-619 |#3|) (-619 (-745))) 33)) (-2441 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2506 (($ $ |#1|) 154 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 156 (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) 155 (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
-(((-918 |#1| |#2| |#3|) (-138) (-1016) (-767) (-821)) (T -918))
-((-3350 (*1 *1 *1) (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))) (-3705 (*1 *2 *1 *3) (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-745)))) (-3705 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) (-2450 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *2 (-821)))) (-2450 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)))) (-4097 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-2078 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-1132 *1)) (-4 *1 (-918 *4 *5 *3)))) (-2078 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-1132 *3)))) (-1631 (*1 *2 *1) (|partial| -12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3095 (*1 *2 *1 *3) (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-745)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) (-1354 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-918 *4 *5 *3)))) (-2238 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *2 (-821)))) (-2238 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)))) (-2254 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 *4)) (-4 *4 (-1016)) (-4 *1 (-918 *4 *5 *3)) (-4 *5 (-767)) (-4 *3 (-821)))) (-2254 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 *1)) (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)))) (-3663 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-2505 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-3949 (*1 *2 *1) (|partial| -12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| |var| *5) (|:| -3322 (-745)))))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-745)))) (-2624 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *5)))) (-2049 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-1496 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-169)))) (-4056 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-169)))) (-2392 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-442)))) (-3350 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-442)))) (-2555 (*1 *1 *1) (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))) (-3299 (*1 *2 *1) (-12 (-4 *3 (-442)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-409 *1)) (-4 *1 (-918 *3 *4 *5)))))
-(-13 (-869 |t#3|) (-317 |t#1| |t#2|) (-300 $) (-503 |t#3| |t#1|) (-503 |t#3| $) (-1007 |t#3|) (-368 |t#1|) (-10 -8 (-15 -3705 ((-745) $ |t#3|)) (-15 -3705 ((-619 (-745)) $ (-619 |t#3|))) (-15 -2450 ($ $ |t#3| (-745))) (-15 -2450 ($ $ (-619 |t#3|) (-619 (-745)))) (-15 -4097 ((-619 $) $)) (-15 -2078 ((-1132 $) $ |t#3|)) (-15 -2078 ((-1132 |t#1|) $)) (-15 -1631 ((-3 |t#3| "failed") $)) (-15 -3095 ((-745) $ |t#3|)) (-15 -3095 ((-619 (-745)) $ (-619 |t#3|))) (-15 -1354 ((-2 (|:| -2235 $) (|:| -2916 $)) $ $ |t#3|)) (-15 -2238 ($ $ |t#3| (-745))) (-15 -2238 ($ $ (-619 |t#3|) (-619 (-745)))) (-15 -2254 ($ (-1132 |t#1|) |t#3|)) (-15 -2254 ($ (-1132 $) |t#3|)) (-15 -3663 ((-3 (-619 $) "failed") $)) (-15 -2505 ((-3 (-619 $) "failed") $)) (-15 -3949 ((-3 (-2 (|:| |var| |t#3|) (|:| -3322 (-745))) "failed") $)) (-15 -2624 ((-745) $)) (-15 -2624 ((-745) $ (-619 |t#3|))) (-15 -2267 ((-619 |t#3|) $)) (-15 -2049 ((-619 $) $)) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-592 (-523))) (IF (|has| |t#3| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-592 (-861 (-547)))) (IF (|has| |t#3| (-592 (-861 (-547)))) (-6 (-592 (-861 (-547)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-592 (-861 (-370)))) (IF (|has| |t#3| (-592 (-861 (-370)))) (-6 (-592 (-861 (-370)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855 (-547))) (IF (|has| |t#3| (-855 (-547))) (-6 (-855 (-547))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855 (-370))) (IF (|has| |t#3| (-855 (-370))) (-6 (-855 (-370))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -1496 ($ $ $ |t#3|)) (-15 -4056 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-442)) (PROGN (-6 (-442)) (-15 -2392 ($ $ |t#3|)) (-15 -3350 ($ $)) (-15 -3350 ($ $ |t#3|)) (-15 -3299 ((-409 $) $)) (-15 -2555 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4327)) (-6 -4327) |%noBranch|) (IF (|has| |t#1| (-878)) (-6 (-878)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-592 (-523)) -12 (|has| |#1| (-592 (-523))) (|has| |#3| (-592 (-523)))) ((-592 (-861 (-370))) -12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#3| (-592 (-861 (-370))))) ((-592 (-861 (-547))) -12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#3| (-592 (-861 (-547))))) ((-281) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-300 $) . T) ((-317 |#1| |#2|) . T) ((-368 |#1|) . T) ((-402 |#1|) . T) ((-442) -1530 (|has| |#1| (-878)) (|has| |#1| (-442))) ((-503 |#3| |#1|) . T) ((-503 |#3| $) . T) ((-503 $ $) . T) ((-539) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 |#3|) . T) ((-855 (-370)) -12 (|has| |#1| (-855 (-370))) (|has| |#3| (-855 (-370)))) ((-855 (-547)) -12 (|has| |#1| (-855 (-547))) (|has| |#3| (-855 (-547)))) ((-878) |has| |#1| (-878)) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1007 |#3|) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1177) |has| |#1| (-878)))
-((-2267 (((-619 |#2|) |#5|) 36)) (-2078 (((-1132 |#5|) |#5| |#2| (-1132 |#5|)) 23) (((-398 (-1132 |#5|)) |#5| |#2|) 16)) (-2254 ((|#5| (-398 (-1132 |#5|)) |#2|) 30)) (-1631 (((-3 |#2| "failed") |#5|) 65)) (-2505 (((-3 (-619 |#5|) "failed") |#5|) 59)) (-1376 (((-3 (-2 (|:| |val| |#5|) (|:| -3322 (-547))) "failed") |#5|) 47)) (-3663 (((-3 (-619 |#5|) "failed") |#5|) 61)) (-3949 (((-3 (-2 (|:| |var| |#2|) (|:| -3322 (-547))) "failed") |#5|) 51)))
-(((-919 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2267 ((-619 |#2|) |#5|)) (-15 -1631 ((-3 |#2| "failed") |#5|)) (-15 -2078 ((-398 (-1132 |#5|)) |#5| |#2|)) (-15 -2254 (|#5| (-398 (-1132 |#5|)) |#2|)) (-15 -2078 ((-1132 |#5|) |#5| |#2| (-1132 |#5|))) (-15 -3663 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -2505 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -3949 ((-3 (-2 (|:| |var| |#2|) (|:| -3322 (-547))) "failed") |#5|)) (-15 -1376 ((-3 (-2 (|:| |val| |#5|) (|:| -3322 (-547))) "failed") |#5|))) (-767) (-821) (-1016) (-918 |#3| |#1| |#2|) (-13 (-354) (-10 -8 (-15 -3838 ($ |#4|)) (-15 -1386 (|#4| $)) (-15 -1396 (|#4| $))))) (T -919))
-((-1376 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3322 (-547)))) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $))))))) (-3949 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3322 (-547)))) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $))))))) (-2505 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $))))))) (-3663 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $))))))) (-2078 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $))))) (-4 *7 (-918 *6 *5 *4)) (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-5 *1 (-919 *5 *4 *6 *7 *3)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-1132 *2))) (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-4 *2 (-13 (-354) (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $))))) (-5 *1 (-919 *5 *4 *6 *7 *2)) (-4 *7 (-918 *6 *5 *4)))) (-2078 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-398 (-1132 *3))) (-5 *1 (-919 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $))))))) (-1631 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-1016)) (-4 *6 (-918 *5 *4 *2)) (-4 *2 (-821)) (-5 *1 (-919 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3838 ($ *6)) (-15 -1386 (*6 $)) (-15 -1396 (*6 $))))))) (-2267 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *5)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $))))))))
-(-10 -7 (-15 -2267 ((-619 |#2|) |#5|)) (-15 -1631 ((-3 |#2| "failed") |#5|)) (-15 -2078 ((-398 (-1132 |#5|)) |#5| |#2|)) (-15 -2254 (|#5| (-398 (-1132 |#5|)) |#2|)) (-15 -2078 ((-1132 |#5|) |#5| |#2| (-1132 |#5|))) (-15 -3663 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -2505 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -3949 ((-3 (-2 (|:| |var| |#2|) (|:| -3322 (-547))) "failed") |#5|)) (-15 -1376 ((-3 (-2 (|:| |val| |#5|) (|:| -3322 (-547))) "failed") |#5|)))
-((-2790 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-920 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2790 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-767) (-821) (-1016) (-918 |#3| |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -2479 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745)))))) (T -920))
-((-2790 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-821)) (-4 *8 (-1016)) (-4 *6 (-767)) (-4 *2 (-13 (-1063) (-10 -8 (-15 -2479 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745)))))) (-5 *1 (-920 *6 *7 *8 *5 *2)) (-4 *5 (-918 *8 *6 *7)))))
-(-10 -7 (-15 -2790 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2267 (((-619 (-1136)) $) 16)) (-2078 (((-1132 $) $ (-1136)) 21) (((-1132 |#1|) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 (-1136))) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2555 (($ $) NIL (|has| |#1| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) 8) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-1136) "failed") $) NIL)) (-2652 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-1136) $) NIL)) (-1496 (($ $ $ (-1136)) NIL (|has| |#1| (-169)))) (-2063 (($ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#1| (-442))) (($ $ (-1136)) NIL (|has| |#1| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#1| (-878)))) (-3210 (($ $ |#1| (-519 (-1136)) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1136) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1136) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-2254 (($ (-1132 |#1|) (-1136)) NIL) (($ (-1132 $) (-1136)) NIL)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-519 (-1136))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ (-1136)) NIL)) (-3095 (((-519 (-1136)) $) NIL) (((-745) $ (-1136)) NIL) (((-619 (-745)) $ (-619 (-1136))) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-4182 (($ (-1 (-519 (-1136)) (-519 (-1136))) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-1631 (((-3 (-1136) "failed") $) 19)) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1466 (((-1119) $) NIL)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-1136)) (|:| -3322 (-745))) "failed") $) NIL)) (-3694 (($ $ (-1136)) 29 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) NIL)) (-2009 ((|#1| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-878)))) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1136) |#1|) NIL) (($ $ (-619 (-1136)) (-619 |#1|)) NIL) (($ $ (-1136) $) NIL) (($ $ (-619 (-1136)) (-619 $)) NIL)) (-4056 (($ $ (-1136)) NIL (|has| |#1| (-169)))) (-3448 (($ $ (-1136)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL)) (-3705 (((-519 (-1136)) $) NIL) (((-745) $ (-1136)) NIL) (((-619 (-745)) $ (-619 (-1136))) NIL)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| (-1136) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-1136) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-1136) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-2392 ((|#1| $) NIL (|has| |#1| (-442))) (($ $ (-1136)) NIL (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3838 (((-832) $) 25) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-1136)) 27) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-519 (-1136))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-1136)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-921 |#1|) (-13 (-918 |#1| (-519 (-1136)) (-1136)) (-10 -8 (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1136))) |%noBranch|))) (-1016)) (T -921))
-((-3694 (*1 *1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-921 *3)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)))))
-(-13 (-918 |#1| (-519 (-1136)) (-1136)) (-10 -8 (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1136))) |%noBranch|)))
-((-2944 (((-2 (|:| -3322 (-745)) (|:| -1563 |#5|) (|:| |radicand| |#5|)) |#3| (-745)) 38)) (-2367 (((-2 (|:| -3322 (-745)) (|:| -1563 |#5|) (|:| |radicand| |#5|)) (-398 (-547)) (-745)) 34)) (-2098 (((-2 (|:| -3322 (-745)) (|:| -1563 |#4|) (|:| |radicand| (-619 |#4|))) |#4| (-745)) 54)) (-1329 (((-2 (|:| -3322 (-745)) (|:| -1563 |#5|) (|:| |radicand| |#5|)) |#5| (-745)) 64 (|has| |#3| (-442)))))
-(((-922 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2944 ((-2 (|:| -3322 (-745)) (|:| -1563 |#5|) (|:| |radicand| |#5|)) |#3| (-745))) (-15 -2367 ((-2 (|:| -3322 (-745)) (|:| -1563 |#5|) (|:| |radicand| |#5|)) (-398 (-547)) (-745))) (IF (|has| |#3| (-442)) (-15 -1329 ((-2 (|:| -3322 (-745)) (|:| -1563 |#5|) (|:| |radicand| |#5|)) |#5| (-745))) |%noBranch|) (-15 -2098 ((-2 (|:| -3322 (-745)) (|:| -1563 |#4|) (|:| |radicand| (-619 |#4|))) |#4| (-745)))) (-767) (-821) (-539) (-918 |#3| |#1| |#2|) (-13 (-354) (-10 -8 (-15 -1386 (|#4| $)) (-15 -1396 (|#4| $)) (-15 -3838 ($ |#4|))))) (T -922))
-((-2098 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-539)) (-4 *3 (-918 *7 *5 *6)) (-5 *2 (-2 (|:| -3322 (-745)) (|:| -1563 *3) (|:| |radicand| (-619 *3)))) (-5 *1 (-922 *5 *6 *7 *3 *8)) (-5 *4 (-745)) (-4 *8 (-13 (-354) (-10 -8 (-15 -1386 (*3 $)) (-15 -1396 (*3 $)) (-15 -3838 ($ *3))))))) (-1329 (*1 *2 *3 *4) (-12 (-4 *7 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-539)) (-4 *8 (-918 *7 *5 *6)) (-5 *2 (-2 (|:| -3322 (-745)) (|:| -1563 *3) (|:| |radicand| *3))) (-5 *1 (-922 *5 *6 *7 *8 *3)) (-5 *4 (-745)) (-4 *3 (-13 (-354) (-10 -8 (-15 -1386 (*8 $)) (-15 -1396 (*8 $)) (-15 -3838 ($ *8))))))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-547))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-539)) (-4 *8 (-918 *7 *5 *6)) (-5 *2 (-2 (|:| -3322 (-745)) (|:| -1563 *9) (|:| |radicand| *9))) (-5 *1 (-922 *5 *6 *7 *8 *9)) (-5 *4 (-745)) (-4 *9 (-13 (-354) (-10 -8 (-15 -1386 (*8 $)) (-15 -1396 (*8 $)) (-15 -3838 ($ *8))))))) (-2944 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-539)) (-4 *7 (-918 *3 *5 *6)) (-5 *2 (-2 (|:| -3322 (-745)) (|:| -1563 *8) (|:| |radicand| *8))) (-5 *1 (-922 *5 *6 *3 *7 *8)) (-5 *4 (-745)) (-4 *8 (-13 (-354) (-10 -8 (-15 -1386 (*7 $)) (-15 -1396 (*7 $)) (-15 -3838 ($ *7))))))))
-(-10 -7 (-15 -2944 ((-2 (|:| -3322 (-745)) (|:| -1563 |#5|) (|:| |radicand| |#5|)) |#3| (-745))) (-15 -2367 ((-2 (|:| -3322 (-745)) (|:| -1563 |#5|) (|:| |radicand| |#5|)) (-398 (-547)) (-745))) (IF (|has| |#3| (-442)) (-15 -1329 ((-2 (|:| -3322 (-745)) (|:| -1563 |#5|) (|:| |radicand| |#5|)) |#5| (-745))) |%noBranch|) (-15 -2098 ((-2 (|:| -3322 (-745)) (|:| -1563 |#4|) (|:| |radicand| (-619 |#4|))) |#4| (-745))))
-((-3826 (((-112) $ $) NIL)) (-1293 (($ (-1082)) 8)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 14) (((-1082) $) 11)) (-2381 (((-112) $ $) 10)))
-(((-923) (-13 (-1063) (-591 (-1082)) (-10 -8 (-15 -1293 ($ (-1082)))))) (T -923))
-((-1293 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-923)))))
-(-13 (-1063) (-591 (-1082)) (-10 -8 (-15 -1293 ($ (-1082)))))
-((-1836 (((-1058 (-217)) $) 8)) (-1825 (((-1058 (-217)) $) 9)) (-2290 (((-619 (-619 (-912 (-217)))) $) 10)) (-3838 (((-832) $) 6)))
-(((-924) (-138)) (T -924))
-((-2290 (*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-619 (-619 (-912 (-217))))))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-217))))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-217))))))
-(-13 (-591 (-832)) (-10 -8 (-15 -2290 ((-619 (-619 (-912 (-217)))) $)) (-15 -1825 ((-1058 (-217)) $)) (-15 -1836 ((-1058 (-217)) $))))
-(((-591 (-832)) . T))
-((-1698 (((-3 (-663 |#1|) "failed") |#2| (-890)) 15)))
-(((-925 |#1| |#2|) (-10 -7 (-15 -1698 ((-3 (-663 |#1|) "failed") |#2| (-890)))) (-539) (-630 |#1|)) (T -925))
-((-1698 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-890)) (-4 *5 (-539)) (-5 *2 (-663 *5)) (-5 *1 (-925 *5 *3)) (-4 *3 (-630 *5)))))
-(-10 -7 (-15 -1698 ((-3 (-663 |#1|) "failed") |#2| (-890))))
-((-2816 (((-927 |#2|) (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|) 16)) (-2552 ((|#2| (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|) 18)) (-2790 (((-927 |#2|) (-1 |#2| |#1|) (-927 |#1|)) 13)))
-(((-926 |#1| |#2|) (-10 -7 (-15 -2816 ((-927 |#2|) (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2552 (|#2| (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2790 ((-927 |#2|) (-1 |#2| |#1|) (-927 |#1|)))) (-1173) (-1173)) (T -926))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-927 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-927 *6)) (-5 *1 (-926 *5 *6)))) (-2552 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-927 *5)) (-4 *5 (-1173)) (-4 *2 (-1173)) (-5 *1 (-926 *5 *2)))) (-2816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-927 *6)) (-4 *6 (-1173)) (-4 *5 (-1173)) (-5 *2 (-927 *5)) (-5 *1 (-926 *6 *5)))))
-(-10 -7 (-15 -2816 ((-927 |#2|) (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2552 (|#2| (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2790 ((-927 |#2|) (-1 |#2| |#1|) (-927 |#1|))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2809 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4330))) (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| |#1| (-821))))) (-3185 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#1| $ (-547) |#1|) 16 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) NIL (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3803 (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) 15 (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) 13)) (-2876 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-3735 (($ (-745) |#1|) 12)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) 10 (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-2777 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-2606 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3638 ((|#1| $) NIL (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3632 (($ $ |#1|) 17 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) 11)) (-3334 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) 14) (($ $ (-1186 (-547))) NIL)) (-2159 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) NIL)) (-1945 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3767 (((-745) $) 8 (|has| $ (-6 -4329)))))
-(((-927 |#1|) (-19 |#1|) (-1173)) (T -927))
+((-2772 (*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2374 (*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-1872 (*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-549)))) (-3212 (*1 *1 *1) (-4 *1 (-821))))
+(-13 (-767) (-1018) (-703) (-10 -8 (-15 -2772 ((-112) $)) (-15 -2374 ((-112) $)) (-15 -1872 ((-549) $)) (-15 -3212 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-823) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-2863 (($ $ $) 10)) (-3575 (($ $ $) 9)) (-2448 (((-112) $ $) 13)) (-2425 (((-112) $ $) 11)) (-2438 (((-112) $ $) 14)))
+(((-822 |#1|) (-10 -8 (-15 -2863 (|#1| |#1| |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -2438 ((-112) |#1| |#1|)) (-15 -2448 ((-112) |#1| |#1|)) (-15 -2425 ((-112) |#1| |#1|))) (-823)) (T -822))
+NIL
+(-10 -8 (-15 -2863 (|#1| |#1| |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -2438 ((-112) |#1| |#1|)) (-15 -2448 ((-112) |#1| |#1|)) (-15 -2425 ((-112) |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)))
+(((-823) (-138)) (T -823))
+((-2412 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-2425 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-2448 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-2438 (*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-3575 (*1 *1 *1 *1) (-4 *1 (-823))) (-2863 (*1 *1 *1 *1) (-4 *1 (-823))))
+(-13 (-1067) (-10 -8 (-15 -2412 ((-112) $ $)) (-15 -2425 ((-112) $ $)) (-15 -2448 ((-112) $ $)) (-15 -2438 ((-112) $ $)) (-15 -3575 ($ $ $)) (-15 -2863 ($ $ $))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-2408 (($ $ $) 45)) (-2047 (($ $ $) 44)) (-3723 (($ $ $) 42)) (-3816 (($ $ $) 51)) (-2367 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 46)) (-1599 (((-3 $ "failed") $ $) 49)) (-2714 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1285 (($ $) 35)) (-2990 (($ $ $) 39)) (-3494 (($ $ $) 38)) (-1993 (($ $ $) 47)) (-1944 (($ $ $) 53)) (-2739 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 41)) (-2322 (((-3 $ "failed") $ $) 48)) (-2042 (((-3 $ "failed") $ |#2|) 28)) (-2216 ((|#2| $) 32)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL) (($ |#2|) 12)) (-4141 (((-621 |#2|) $) 18)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-824 |#1| |#2|) (-10 -8 (-15 -1993 (|#1| |#1| |#1|)) (-15 -2367 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4248 |#1|)) |#1| |#1|)) (-15 -3816 (|#1| |#1| |#1|)) (-15 -1599 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2408 (|#1| |#1| |#1|)) (-15 -2047 (|#1| |#1| |#1|)) (-15 -3723 (|#1| |#1| |#1|)) (-15 -2739 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4248 |#1|)) |#1| |#1|)) (-15 -1944 (|#1| |#1| |#1|)) (-15 -2322 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2990 (|#1| |#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4141 ((-621 |#2|) |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3846 (|#1| (-549))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -3846 ((-834) |#1|))) (-825 |#2|) (-1018)) (T -824))
+NIL
+(-10 -8 (-15 -1993 (|#1| |#1| |#1|)) (-15 -2367 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4248 |#1|)) |#1| |#1|)) (-15 -3816 (|#1| |#1| |#1|)) (-15 -1599 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2408 (|#1| |#1| |#1|)) (-15 -2047 (|#1| |#1| |#1|)) (-15 -3723 (|#1| |#1| |#1|)) (-15 -2739 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4248 |#1|)) |#1| |#1|)) (-15 -1944 (|#1| |#1| |#1|)) (-15 -2322 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2990 (|#1| |#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2042 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4141 ((-621 |#2|) |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3846 (|#1| (-549))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2408 (($ $ $) 43 (|has| |#1| (-356)))) (-2047 (($ $ $) 44 (|has| |#1| (-356)))) (-3723 (($ $ $) 46 (|has| |#1| (-356)))) (-3816 (($ $ $) 41 (|has| |#1| (-356)))) (-2367 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 40 (|has| |#1| (-356)))) (-1599 (((-3 $ "failed") $ $) 42 (|has| |#1| (-356)))) (-3216 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 45 (|has| |#1| (-356)))) (-2714 (((-3 (-549) "failed") $) 72 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 70 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 67)) (-2659 (((-549) $) 73 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 71 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 66)) (-2070 (($ $) 62)) (-2114 (((-3 $ "failed") $) 32)) (-1285 (($ $) 53 (|has| |#1| (-444)))) (-2675 (((-112) $) 30)) (-2246 (($ |#1| (-747)) 60)) (-2057 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55 (|has| |#1| (-541)))) (-3771 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 56 (|has| |#1| (-541)))) (-3611 (((-747) $) 64)) (-2990 (($ $ $) 50 (|has| |#1| (-356)))) (-3494 (($ $ $) 51 (|has| |#1| (-356)))) (-1993 (($ $ $) 39 (|has| |#1| (-356)))) (-1944 (($ $ $) 48 (|has| |#1| (-356)))) (-2739 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 47 (|has| |#1| (-356)))) (-2322 (((-3 $ "failed") $ $) 49 (|has| |#1| (-356)))) (-3350 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 52 (|has| |#1| (-356)))) (-2043 ((|#1| $) 63)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2042 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-541)))) (-3701 (((-747) $) 65)) (-2216 ((|#1| $) 54 (|has| |#1| (-444)))) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 69 (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) 68)) (-4141 (((-621 |#1|) $) 59)) (-2152 ((|#1| $ (-747)) 61)) (-2082 (((-747)) 28)) (-3596 ((|#1| $ |#1| |#1|) 58)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
+(((-825 |#1|) (-138) (-1018)) (T -825))
+((-3701 (*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-2246 (*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-621 *3)))) (-3596 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)))) (-2042 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))) (-3771 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-825 *3)))) (-2057 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-825 *3)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444)))) (-1285 (*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444)))) (-3350 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-825 *3)))) (-3494 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2990 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2322 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-1944 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2739 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4248 *1))) (-4 *1 (-825 *3)))) (-3723 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-3216 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-825 *3)))) (-2047 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2408 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-1599 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-3816 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-2367 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4248 *1))) (-4 *1 (-825 *3)))) (-1993 (*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(-13 (-1018) (-111 |t#1| |t#1|) (-404 |t#1|) (-10 -8 (-15 -3701 ((-747) $)) (-15 -3611 ((-747) $)) (-15 -2043 (|t#1| $)) (-15 -2070 ($ $)) (-15 -2152 (|t#1| $ (-747))) (-15 -2246 ($ |t#1| (-747))) (-15 -4141 ((-621 |t#1|) $)) (-15 -3596 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-541)) (PROGN (-15 -2042 ((-3 $ "failed") $ |t#1|)) (-15 -3771 ((-2 (|:| -4013 $) (|:| -3675 $)) $ $)) (-15 -2057 ((-2 (|:| -4013 $) (|:| -3675 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -2216 (|t#1| $)) (-15 -1285 ($ $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -3350 ((-2 (|:| -4013 $) (|:| -3675 $)) $ $)) (-15 -3494 ($ $ $)) (-15 -2990 ($ $ $)) (-15 -2322 ((-3 $ "failed") $ $)) (-15 -1944 ($ $ $)) (-15 -2739 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $)) (-15 -3723 ($ $ $)) (-15 -3216 ((-2 (|:| -4013 $) (|:| -3675 $)) $ $)) (-15 -2047 ($ $ $)) (-15 -2408 ($ $ $)) (-15 -1599 ((-3 $ "failed") $ $)) (-15 -3816 ($ $ $)) (-15 -2367 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $)) (-15 -1993 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-404 |#1|) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3483 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-3216 (((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-356)))) (-2057 (((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-541)))) (-3771 (((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-541)))) (-3350 (((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-356)))) (-3596 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31)))
+(((-826 |#1| |#2|) (-10 -7 (-15 -3483 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3596 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-541)) (PROGN (-15 -3771 ((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2057 ((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3350 ((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3216 ((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1018) (-825 |#1|)) (T -826))
+((-3216 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-3350 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-2057 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-541)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-3771 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-541)) (-4 *5 (-1018)) (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-826 *5 *3)) (-4 *3 (-825 *5)))) (-3596 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1018)) (-5 *1 (-826 *2 *3)) (-4 *3 (-825 *2)))) (-3483 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1018)) (-5 *1 (-826 *5 *2)) (-4 *2 (-825 *5)))))
+(-10 -7 (-15 -3483 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3596 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-541)) (PROGN (-15 -3771 ((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2057 ((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3350 ((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3216 ((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2408 (($ $ $) NIL (|has| |#1| (-356)))) (-2047 (($ $ $) NIL (|has| |#1| (-356)))) (-3723 (($ $ $) NIL (|has| |#1| (-356)))) (-3816 (($ $ $) NIL (|has| |#1| (-356)))) (-2367 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-1599 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3216 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 32 (|has| |#1| (-356)))) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#1| (-444)))) (-2573 (((-834) $ (-834)) NIL)) (-2675 (((-112) $) NIL)) (-2246 (($ |#1| (-747)) NIL)) (-2057 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 28 (|has| |#1| (-541)))) (-3771 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 26 (|has| |#1| (-541)))) (-3611 (((-747) $) NIL)) (-2990 (($ $ $) NIL (|has| |#1| (-356)))) (-3494 (($ $ $) NIL (|has| |#1| (-356)))) (-1993 (($ $ $) NIL (|has| |#1| (-356)))) (-1944 (($ $ $) NIL (|has| |#1| (-356)))) (-2739 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2322 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3350 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 30 (|has| |#1| (-356)))) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-3701 (((-747) $) NIL)) (-2216 ((|#1| $) NIL (|has| |#1| (-444)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#1| (-1009 (-400 (-549))))) (($ |#1|) NIL)) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-747)) NIL)) (-2082 (((-747)) NIL)) (-3596 ((|#1| $ |#1| |#1|) 15)) (-3276 (($) NIL T CONST)) (-3287 (($) 20 T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) 19) (($ $ (-747)) 22)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-827 |#1| |#2| |#3|) (-13 (-825 |#1|) (-10 -8 (-15 -2573 ((-834) $ (-834))))) (-1018) (-98 |#1|) (-1 |#1| |#1|)) (T -827))
+((-2573 (*1 *2 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-827 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-825 |#1|) (-10 -8 (-15 -2573 ((-834) $ (-834)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2408 (($ $ $) NIL (|has| |#2| (-356)))) (-2047 (($ $ $) NIL (|has| |#2| (-356)))) (-3723 (($ $ $) NIL (|has| |#2| (-356)))) (-3816 (($ $ $) NIL (|has| |#2| (-356)))) (-2367 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#2| (-356)))) (-1599 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-3216 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#2| (-356)))) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 |#2| "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) ((|#2| $) NIL)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#2| (-444)))) (-2675 (((-112) $) NIL)) (-2246 (($ |#2| (-747)) 16)) (-2057 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#2| (-541)))) (-3771 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#2| (-541)))) (-3611 (((-747) $) NIL)) (-2990 (($ $ $) NIL (|has| |#2| (-356)))) (-3494 (($ $ $) NIL (|has| |#2| (-356)))) (-1993 (($ $ $) NIL (|has| |#2| (-356)))) (-1944 (($ $ $) NIL (|has| |#2| (-356)))) (-2739 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#2| (-356)))) (-2322 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-3350 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#2| (-356)))) (-2043 ((|#2| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2042 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541)))) (-3701 (((-747) $) NIL)) (-2216 ((|#2| $) NIL (|has| |#2| (-444)))) (-3846 (((-834) $) 23) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#2| (-1009 (-400 (-549))))) (($ |#2|) NIL) (($ (-1222 |#1|)) 18)) (-4141 (((-621 |#2|) $) NIL)) (-2152 ((|#2| $ (-747)) NIL)) (-2082 (((-747)) NIL)) (-3596 ((|#2| $ |#2| |#2|) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) 13 T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-828 |#1| |#2| |#3| |#4|) (-13 (-825 |#2|) (-10 -8 (-15 -3846 ($ (-1222 |#1|))))) (-1143) (-1018) (-98 |#2|) (-1 |#2| |#2|)) (T -828))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1222 *3)) (-14 *3 (-1143)) (-5 *1 (-828 *3 *4 *5 *6)) (-4 *4 (-1018)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-825 |#2|) (-10 -8 (-15 -3846 ($ (-1222 |#1|)))))
+((-3768 ((|#1| (-747) |#1|) 35 (|has| |#1| (-38 (-400 (-549)))))) (-3488 ((|#1| (-747) (-747) |#1|) 27) ((|#1| (-747) |#1|) 20)) (-3827 ((|#1| (-747) |#1|) 31)) (-2335 ((|#1| (-747) |#1|) 29)) (-3020 ((|#1| (-747) |#1|) 28)))
+(((-829 |#1|) (-10 -7 (-15 -3020 (|#1| (-747) |#1|)) (-15 -2335 (|#1| (-747) |#1|)) (-15 -3827 (|#1| (-747) |#1|)) (-15 -3488 (|#1| (-747) |#1|)) (-15 -3488 (|#1| (-747) (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3768 (|#1| (-747) |#1|)) |%noBranch|)) (-170)) (T -829))
+((-3768 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-170)))) (-3488 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-3488 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-3827 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-2335 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))) (-3020 (*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))))
+(-10 -7 (-15 -3020 (|#1| (-747) |#1|)) (-15 -2335 (|#1| (-747) |#1|)) (-15 -3827 (|#1| (-747) |#1|)) (-15 -3488 (|#1| (-747) |#1|)) (-15 -3488 (|#1| (-747) (-747) |#1|)) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3768 (|#1| (-747) |#1|)) |%noBranch|))
+((-3834 (((-112) $ $) 7)) (-2863 (($ $ $) 13)) (-3575 (($ $ $) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2448 (((-112) $ $) 16)) (-2425 (((-112) $ $) 17)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 15)) (-2412 (((-112) $ $) 18)) (** (($ $ (-892)) 21)) (* (($ $ $) 20)))
+(((-830) (-138)) (T -830))
+NIL
+(-13 (-823) (-1079))
+(((-101) . T) ((-593 (-834)) . T) ((-823) . T) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-4161 (((-549) $) 12)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 18) (($ (-549)) 11)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 8)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 9)))
+(((-831) (-13 (-823) (-10 -8 (-15 -3846 ($ (-549))) (-15 -4161 ((-549) $))))) (T -831))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-831)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-831)))))
+(-13 (-823) (-10 -8 (-15 -3846 ($ (-549))) (-15 -4161 ((-549) $))))
+((-2183 (((-1087) $ (-128)) 17)))
+(((-832 |#1|) (-10 -8 (-15 -2183 ((-1087) |#1| (-128)))) (-833)) (T -832))
+NIL
+(-10 -8 (-15 -2183 ((-1087) |#1| (-128))))
+((-2183 (((-1087) $ (-128)) 7)) (-2796 (((-1087) $ (-129)) 8)) (-3578 (($ $) 6)))
+(((-833) (-138)) (T -833))
+((-2796 (*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-129)) (-5 *2 (-1087)))) (-2183 (*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-128)) (-5 *2 (-1087)))))
+(-13 (-171) (-10 -8 (-15 -2796 ((-1087) $ (-129))) (-15 -2183 ((-1087) $ (-128)))))
+(((-171) . T))
+((-3834 (((-112) $ $) NIL) (($ $ $) 77)) (-4049 (($ $ $) 115)) (-2342 (((-549) $) 30) (((-549)) 35)) (-3056 (($ (-549)) 44)) (-2019 (($ $ $) 45) (($ (-621 $)) 76)) (-3238 (($ $ (-621 $)) 74)) (-3151 (((-549) $) 33)) (-2277 (($ $ $) 63)) (-2821 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3112 (((-549) $) 32)) (-2895 (($ $ $) 62)) (-1525 (($ $) 105)) (-1819 (($ $ $) 119)) (-3937 (($ (-621 $)) 52)) (-4220 (($ $ (-621 $)) 69)) (-4051 (($ (-549) (-549)) 46)) (-1885 (($ $) 116) (($ $ $) 117)) (-3848 (($ $ (-549)) 40) (($ $) 43)) (-2095 (($ $ $) 89)) (-3842 (($ $ $) 122)) (-4145 (($ $) 106)) (-2067 (($ $ $) 90)) (-1968 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1806 (((-1231) $) 8)) (-2715 (($ $) 109) (($ $ (-747)) 112)) (-3133 (($ $ $) 65)) (-3395 (($ $ $) 64)) (-1888 (($ $ (-621 $)) 100)) (-2627 (($ $ $) 104)) (-4286 (($ (-621 $)) 50)) (-3225 (($ $) 60) (($ (-621 $)) 61)) (-2524 (($ $ $) 113)) (-2794 (($ $) 107)) (-3663 (($ $ $) 118)) (-2573 (($ (-549)) 20) (($ (-1143)) 22) (($ (-1125)) 29) (($ (-219)) 24)) (-4207 (($ $ $) 93)) (-4008 (($ $) 94)) (-2611 (((-1231) (-1125)) 14)) (-3700 (($ (-1125)) 13)) (-3946 (($ (-621 (-621 $))) 49)) (-3838 (($ $ (-549)) 39) (($ $) 42)) (-3851 (((-1125) $) NIL)) (-3402 (($ $ $) 121)) (-4292 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2420 (((-112) $) 98)) (-3487 (($ $ (-621 $)) 102) (($ $ $ $) 103)) (-4110 (($ (-549)) 36)) (-4036 (((-549) $) 31) (((-549)) 34)) (-3344 (($ $ $) 37) (($ (-621 $)) 75)) (-3990 (((-1087) $) NIL)) (-2042 (($ $ $) 91)) (-3742 (($) 12)) (-3341 (($ $ (-621 $)) 99)) (-1706 (($ $) 108) (($ $ (-747)) 111)) (-2056 (($ $ $) 88)) (-3456 (($ $ (-747)) 127)) (-4280 (($ (-621 $)) 51)) (-3846 (((-834) $) 18)) (-2597 (($ $ (-549)) 38) (($ $) 41)) (-1797 (($ $) 58) (($ (-621 $)) 59)) (-4120 (($ $) 56) (($ (-621 $)) 57)) (-4137 (($ $) 114)) (-4171 (($ (-621 $)) 55)) (-3179 (($ $ $) 97)) (-2712 (($ $ $) 120)) (-1821 (($ $ $) 92)) (-1854 (($ $ $) 95) (($ $) 96)) (-2448 (($ $ $) 81)) (-2425 (($ $ $) 79)) (-2389 (((-112) $ $) 15) (($ $ $) 16)) (-2438 (($ $ $) 80)) (-2412 (($ $ $) 78)) (-2513 (($ $ $) 86)) (-2500 (($ $ $) 83) (($ $) 84)) (-2486 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-834) (-13 (-1067) (-10 -8 (-15 -1806 ((-1231) $)) (-15 -3700 ($ (-1125))) (-15 -2611 ((-1231) (-1125))) (-15 -2573 ($ (-549))) (-15 -2573 ($ (-1143))) (-15 -2573 ($ (-1125))) (-15 -2573 ($ (-219))) (-15 -3742 ($)) (-15 -2342 ((-549) $)) (-15 -4036 ((-549) $)) (-15 -2342 ((-549))) (-15 -4036 ((-549))) (-15 -3112 ((-549) $)) (-15 -3151 ((-549) $)) (-15 -4110 ($ (-549))) (-15 -3056 ($ (-549))) (-15 -4051 ($ (-549) (-549))) (-15 -3838 ($ $ (-549))) (-15 -3848 ($ $ (-549))) (-15 -2597 ($ $ (-549))) (-15 -3838 ($ $)) (-15 -3848 ($ $)) (-15 -2597 ($ $)) (-15 -3344 ($ $ $)) (-15 -2019 ($ $ $)) (-15 -3344 ($ (-621 $))) (-15 -2019 ($ (-621 $))) (-15 -1888 ($ $ (-621 $))) (-15 -3487 ($ $ (-621 $))) (-15 -3487 ($ $ $ $)) (-15 -2627 ($ $ $)) (-15 -2420 ((-112) $)) (-15 -3341 ($ $ (-621 $))) (-15 -1525 ($ $)) (-15 -3402 ($ $ $)) (-15 -4137 ($ $)) (-15 -3946 ($ (-621 (-621 $)))) (-15 -4049 ($ $ $)) (-15 -1885 ($ $)) (-15 -1885 ($ $ $)) (-15 -3663 ($ $ $)) (-15 -1819 ($ $ $)) (-15 -2712 ($ $ $)) (-15 -3842 ($ $ $)) (-15 -3456 ($ $ (-747))) (-15 -3179 ($ $ $)) (-15 -2895 ($ $ $)) (-15 -2277 ($ $ $)) (-15 -3395 ($ $ $)) (-15 -3133 ($ $ $)) (-15 -4220 ($ $ (-621 $))) (-15 -3238 ($ $ (-621 $))) (-15 -4145 ($ $)) (-15 -1706 ($ $)) (-15 -1706 ($ $ (-747))) (-15 -2715 ($ $)) (-15 -2715 ($ $ (-747))) (-15 -2794 ($ $)) (-15 -2524 ($ $ $)) (-15 -2821 ($ $)) (-15 -2821 ($ $ $)) (-15 -2821 ($ $ $ $)) (-15 -1968 ($ $)) (-15 -1968 ($ $ $)) (-15 -1968 ($ $ $ $)) (-15 -4292 ($ $)) (-15 -4292 ($ $ $)) (-15 -4292 ($ $ $ $)) (-15 -4120 ($ $)) (-15 -4120 ($ (-621 $))) (-15 -1797 ($ $)) (-15 -1797 ($ (-621 $))) (-15 -3225 ($ $)) (-15 -3225 ($ (-621 $))) (-15 -4286 ($ (-621 $))) (-15 -4280 ($ (-621 $))) (-15 -3937 ($ (-621 $))) (-15 -4171 ($ (-621 $))) (-15 -2389 ($ $ $)) (-15 -3834 ($ $ $)) (-15 -2412 ($ $ $)) (-15 -2425 ($ $ $)) (-15 -2438 ($ $ $)) (-15 -2448 ($ $ $)) (-15 -2486 ($ $ $)) (-15 -2500 ($ $ $)) (-15 -2500 ($ $)) (-15 * ($ $ $)) (-15 -2513 ($ $ $)) (-15 ** ($ $ $)) (-15 -2056 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -2067 ($ $ $)) (-15 -2042 ($ $ $)) (-15 -1821 ($ $ $)) (-15 -4207 ($ $ $)) (-15 -4008 ($ $)) (-15 -1854 ($ $ $)) (-15 -1854 ($ $))))) (T -834))
+((-1806 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-834)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-834)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-834)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-834)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-834)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-834)))) (-3742 (*1 *1) (-5 *1 (-834))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-2342 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-4036 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-3056 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-4051 (*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-3838 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-2597 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))) (-3838 (*1 *1 *1) (-5 *1 (-834))) (-3848 (*1 *1 *1) (-5 *1 (-834))) (-2597 (*1 *1 *1) (-5 *1 (-834))) (-3344 (*1 *1 *1 *1) (-5 *1 (-834))) (-2019 (*1 *1 *1 *1) (-5 *1 (-834))) (-3344 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-2019 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-1888 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-3487 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-3487 (*1 *1 *1 *1 *1) (-5 *1 (-834))) (-2627 (*1 *1 *1 *1) (-5 *1 (-834))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-1525 (*1 *1 *1) (-5 *1 (-834))) (-3402 (*1 *1 *1 *1) (-5 *1 (-834))) (-4137 (*1 *1 *1) (-5 *1 (-834))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-834)))) (-5 *1 (-834)))) (-4049 (*1 *1 *1 *1) (-5 *1 (-834))) (-1885 (*1 *1 *1) (-5 *1 (-834))) (-1885 (*1 *1 *1 *1) (-5 *1 (-834))) (-3663 (*1 *1 *1 *1) (-5 *1 (-834))) (-1819 (*1 *1 *1 *1) (-5 *1 (-834))) (-2712 (*1 *1 *1 *1) (-5 *1 (-834))) (-3842 (*1 *1 *1 *1) (-5 *1 (-834))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-834)))) (-3179 (*1 *1 *1 *1) (-5 *1 (-834))) (-2895 (*1 *1 *1 *1) (-5 *1 (-834))) (-2277 (*1 *1 *1 *1) (-5 *1 (-834))) (-3395 (*1 *1 *1 *1) (-5 *1 (-834))) (-3133 (*1 *1 *1 *1) (-5 *1 (-834))) (-4220 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-4145 (*1 *1 *1) (-5 *1 (-834))) (-1706 (*1 *1 *1) (-5 *1 (-834))) (-1706 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-834)))) (-2715 (*1 *1 *1) (-5 *1 (-834))) (-2715 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-834)))) (-2794 (*1 *1 *1) (-5 *1 (-834))) (-2524 (*1 *1 *1 *1) (-5 *1 (-834))) (-2821 (*1 *1 *1) (-5 *1 (-834))) (-2821 (*1 *1 *1 *1) (-5 *1 (-834))) (-2821 (*1 *1 *1 *1 *1) (-5 *1 (-834))) (-1968 (*1 *1 *1) (-5 *1 (-834))) (-1968 (*1 *1 *1 *1) (-5 *1 (-834))) (-1968 (*1 *1 *1 *1 *1) (-5 *1 (-834))) (-4292 (*1 *1 *1) (-5 *1 (-834))) (-4292 (*1 *1 *1 *1) (-5 *1 (-834))) (-4292 (*1 *1 *1 *1 *1) (-5 *1 (-834))) (-4120 (*1 *1 *1) (-5 *1 (-834))) (-4120 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-1797 (*1 *1 *1) (-5 *1 (-834))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-3225 (*1 *1 *1) (-5 *1 (-834))) (-3225 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-4286 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-4280 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))) (-2389 (*1 *1 *1 *1) (-5 *1 (-834))) (-3834 (*1 *1 *1 *1) (-5 *1 (-834))) (-2412 (*1 *1 *1 *1) (-5 *1 (-834))) (-2425 (*1 *1 *1 *1) (-5 *1 (-834))) (-2438 (*1 *1 *1 *1) (-5 *1 (-834))) (-2448 (*1 *1 *1 *1) (-5 *1 (-834))) (-2486 (*1 *1 *1 *1) (-5 *1 (-834))) (-2500 (*1 *1 *1 *1) (-5 *1 (-834))) (-2500 (*1 *1 *1) (-5 *1 (-834))) (* (*1 *1 *1 *1) (-5 *1 (-834))) (-2513 (*1 *1 *1 *1) (-5 *1 (-834))) (** (*1 *1 *1 *1) (-5 *1 (-834))) (-2056 (*1 *1 *1 *1) (-5 *1 (-834))) (-2095 (*1 *1 *1 *1) (-5 *1 (-834))) (-2067 (*1 *1 *1 *1) (-5 *1 (-834))) (-2042 (*1 *1 *1 *1) (-5 *1 (-834))) (-1821 (*1 *1 *1 *1) (-5 *1 (-834))) (-4207 (*1 *1 *1 *1) (-5 *1 (-834))) (-4008 (*1 *1 *1) (-5 *1 (-834))) (-1854 (*1 *1 *1 *1) (-5 *1 (-834))) (-1854 (*1 *1 *1) (-5 *1 (-834))))
+(-13 (-1067) (-10 -8 (-15 -1806 ((-1231) $)) (-15 -3700 ($ (-1125))) (-15 -2611 ((-1231) (-1125))) (-15 -2573 ($ (-549))) (-15 -2573 ($ (-1143))) (-15 -2573 ($ (-1125))) (-15 -2573 ($ (-219))) (-15 -3742 ($)) (-15 -2342 ((-549) $)) (-15 -4036 ((-549) $)) (-15 -2342 ((-549))) (-15 -4036 ((-549))) (-15 -3112 ((-549) $)) (-15 -3151 ((-549) $)) (-15 -4110 ($ (-549))) (-15 -3056 ($ (-549))) (-15 -4051 ($ (-549) (-549))) (-15 -3838 ($ $ (-549))) (-15 -3848 ($ $ (-549))) (-15 -2597 ($ $ (-549))) (-15 -3838 ($ $)) (-15 -3848 ($ $)) (-15 -2597 ($ $)) (-15 -3344 ($ $ $)) (-15 -2019 ($ $ $)) (-15 -3344 ($ (-621 $))) (-15 -2019 ($ (-621 $))) (-15 -1888 ($ $ (-621 $))) (-15 -3487 ($ $ (-621 $))) (-15 -3487 ($ $ $ $)) (-15 -2627 ($ $ $)) (-15 -2420 ((-112) $)) (-15 -3341 ($ $ (-621 $))) (-15 -1525 ($ $)) (-15 -3402 ($ $ $)) (-15 -4137 ($ $)) (-15 -3946 ($ (-621 (-621 $)))) (-15 -4049 ($ $ $)) (-15 -1885 ($ $)) (-15 -1885 ($ $ $)) (-15 -3663 ($ $ $)) (-15 -1819 ($ $ $)) (-15 -2712 ($ $ $)) (-15 -3842 ($ $ $)) (-15 -3456 ($ $ (-747))) (-15 -3179 ($ $ $)) (-15 -2895 ($ $ $)) (-15 -2277 ($ $ $)) (-15 -3395 ($ $ $)) (-15 -3133 ($ $ $)) (-15 -4220 ($ $ (-621 $))) (-15 -3238 ($ $ (-621 $))) (-15 -4145 ($ $)) (-15 -1706 ($ $)) (-15 -1706 ($ $ (-747))) (-15 -2715 ($ $)) (-15 -2715 ($ $ (-747))) (-15 -2794 ($ $)) (-15 -2524 ($ $ $)) (-15 -2821 ($ $)) (-15 -2821 ($ $ $)) (-15 -2821 ($ $ $ $)) (-15 -1968 ($ $)) (-15 -1968 ($ $ $)) (-15 -1968 ($ $ $ $)) (-15 -4292 ($ $)) (-15 -4292 ($ $ $)) (-15 -4292 ($ $ $ $)) (-15 -4120 ($ $)) (-15 -4120 ($ (-621 $))) (-15 -1797 ($ $)) (-15 -1797 ($ (-621 $))) (-15 -3225 ($ $)) (-15 -3225 ($ (-621 $))) (-15 -4286 ($ (-621 $))) (-15 -4280 ($ (-621 $))) (-15 -3937 ($ (-621 $))) (-15 -4171 ($ (-621 $))) (-15 -2389 ($ $ $)) (-15 -3834 ($ $ $)) (-15 -2412 ($ $ $)) (-15 -2425 ($ $ $)) (-15 -2438 ($ $ $)) (-15 -2448 ($ $ $)) (-15 -2486 ($ $ $)) (-15 -2500 ($ $ $)) (-15 -2500 ($ $)) (-15 * ($ $ $)) (-15 -2513 ($ $ $)) (-15 ** ($ $ $)) (-15 -2056 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -2067 ($ $ $)) (-15 -2042 ($ $ $)) (-15 -1821 ($ $ $)) (-15 -4207 ($ $ $)) (-15 -4008 ($ $)) (-15 -1854 ($ $ $)) (-15 -1854 ($ $))))
+((-3401 (((-1231) (-621 (-52))) 24)) (-2075 (((-1231) (-1125) (-834)) 14) (((-1231) (-834)) 9) (((-1231) (-1125)) 11)))
+(((-835) (-10 -7 (-15 -2075 ((-1231) (-1125))) (-15 -2075 ((-1231) (-834))) (-15 -2075 ((-1231) (-1125) (-834))) (-15 -3401 ((-1231) (-621 (-52)))))) (T -835))
+((-3401 (*1 *2 *3) (-12 (-5 *3 (-621 (-52))) (-5 *2 (-1231)) (-5 *1 (-835)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-1125)) (-5 *4 (-834)) (-5 *2 (-1231)) (-5 *1 (-835)))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1231)) (-5 *1 (-835)))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-835)))))
+(-10 -7 (-15 -2075 ((-1231) (-1125))) (-15 -2075 ((-1231) (-834))) (-15 -2075 ((-1231) (-1125) (-834))) (-15 -3401 ((-1231) (-621 (-52)))))
+((-3834 (((-112) $ $) NIL)) (-3011 (((-3 $ "failed") (-1143)) 33)) (-3614 (((-747)) 31)) (-3239 (($) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-1881 (((-892) $) 29)) (-3851 (((-1125) $) 39)) (-3493 (($ (-892)) 28)) (-3990 (((-1087) $) NIL)) (-2845 (((-1143) $) 13) (((-525) $) 19) (((-863 (-372)) $) 26) (((-863 (-549)) $) 22)) (-3846 (((-834) $) 16)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 36)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 35)))
+(((-836 |#1|) (-13 (-817) (-594 (-1143)) (-594 (-525)) (-594 (-863 (-372))) (-594 (-863 (-549))) (-10 -8 (-15 -3011 ((-3 $ "failed") (-1143))))) (-621 (-1143))) (T -836))
+((-3011 (*1 *1 *2) (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-836 *3)) (-14 *3 (-621 *2)))))
+(-13 (-817) (-594 (-1143)) (-594 (-525)) (-594 (-863 (-372))) (-594 (-863 (-549))) (-10 -8 (-15 -3011 ((-3 $ "failed") (-1143)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) NIL)) (-2675 (((-112) $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (((-923 |#1|) $) NIL) (($ (-923 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-2082 (((-747)) NIL)) (-3261 (((-1231) (-747)) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2389 (((-112) $ $) NIL)) (-2513 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
+(((-837 |#1| |#2| |#3| |#4|) (-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3846 ((-923 |#1|) $)) (-15 -3846 ($ (-923 |#1|))) (IF (|has| |#1| (-356)) (-15 -2513 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3261 ((-1231) (-747))))) (-1018) (-621 (-1143)) (-621 (-747)) (-747)) (T -837))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-923 *3)) (-5 *1 (-837 *3 *4 *5 *6)) (-4 *3 (-1018)) (-14 *4 (-621 (-1143))) (-14 *5 (-621 (-747))) (-14 *6 (-747)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-923 *3)) (-4 *3 (-1018)) (-5 *1 (-837 *3 *4 *5 *6)) (-14 *4 (-621 (-1143))) (-14 *5 (-621 (-747))) (-14 *6 (-747)))) (-2513 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-837 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *2 (-1018)) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-747))) (-14 *5 (-747)))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *4 (-1018)) (-14 *5 (-621 (-1143))) (-14 *6 (-621 *3)) (-14 *7 *3))))
+(-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3846 ((-923 |#1|) $)) (-15 -3846 ($ (-923 |#1|))) (IF (|has| |#1| (-356)) (-15 -2513 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3261 ((-1231) (-747)))))
+((-2337 (((-3 (-172 |#3|) "failed") (-747) (-747) |#2| |#2|) 31)) (-3709 (((-3 (-400 |#3|) "failed") (-747) (-747) |#2| |#2|) 24)))
+(((-838 |#1| |#2| |#3|) (-10 -7 (-15 -3709 ((-3 (-400 |#3|) "failed") (-747) (-747) |#2| |#2|)) (-15 -2337 ((-3 (-172 |#3|) "failed") (-747) (-747) |#2| |#2|))) (-356) (-1217 |#1|) (-1202 |#1|)) (T -838))
+((-2337 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-172 *6)) (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1217 *5)) (-4 *6 (-1202 *5)))) (-3709 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-400 *6)) (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1217 *5)) (-4 *6 (-1202 *5)))))
+(-10 -7 (-15 -3709 ((-3 (-400 |#3|) "failed") (-747) (-747) |#2| |#2|)) (-15 -2337 ((-3 (-172 |#3|) "failed") (-747) (-747) |#2| |#2|)))
+((-3709 (((-3 (-400 (-1199 |#2| |#1|)) "failed") (-747) (-747) (-1218 |#1| |#2| |#3|)) 28) (((-3 (-400 (-1199 |#2| |#1|)) "failed") (-747) (-747) (-1218 |#1| |#2| |#3|) (-1218 |#1| |#2| |#3|)) 26)))
+(((-839 |#1| |#2| |#3|) (-10 -7 (-15 -3709 ((-3 (-400 (-1199 |#2| |#1|)) "failed") (-747) (-747) (-1218 |#1| |#2| |#3|) (-1218 |#1| |#2| |#3|))) (-15 -3709 ((-3 (-400 (-1199 |#2| |#1|)) "failed") (-747) (-747) (-1218 |#1| |#2| |#3|)))) (-356) (-1143) |#1|) (T -839))
+((-3709 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1218 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1143)) (-14 *7 *5) (-5 *2 (-400 (-1199 *6 *5))) (-5 *1 (-839 *5 *6 *7)))) (-3709 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1218 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1143)) (-14 *7 *5) (-5 *2 (-400 (-1199 *6 *5))) (-5 *1 (-839 *5 *6 *7)))))
+(-10 -7 (-15 -3709 ((-3 (-400 (-1199 |#2| |#1|)) "failed") (-747) (-747) (-1218 |#1| |#2| |#3|) (-1218 |#1| |#2| |#3|))) (-15 -3709 ((-3 (-400 (-1199 |#2| |#1|)) "failed") (-747) (-747) (-1218 |#1| |#2| |#3|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-2134 (($ $ (-549)) 60)) (-3866 (((-112) $ $) 57)) (-1682 (($) 17 T CONST)) (-1885 (($ (-1139 (-549)) (-549)) 59)) (-2095 (($ $ $) 53)) (-2114 (((-3 $ "failed") $) 32)) (-1538 (($ $) 62)) (-2067 (($ $ $) 54)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-2088 (((-747) $) 67)) (-2675 (((-112) $) 30)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-1591 (((-549)) 64)) (-3246 (((-549) $) 63)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2763 (($ $ (-549)) 66)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3684 (((-747) $) 56)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55)) (-3862 (((-1123 (-549)) $) 68)) (-1977 (($ $) 65)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-2661 (((-549) $ (-549)) 61)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-840 |#1|) (-138) (-549)) (T -840))
+((-3862 (*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-5 *2 (-1123 (-549))))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-5 *2 (-747)))) (-2763 (*1 *1 *1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))) (-1977 (*1 *1 *1) (-4 *1 (-840 *2))) (-1591 (*1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))) (-3246 (*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))) (-1538 (*1 *1 *1) (-4 *1 (-840 *2))) (-2661 (*1 *2 *1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))) (-2134 (*1 *1 *1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))) (-1885 (*1 *1 *2 *3) (-12 (-5 *2 (-1139 (-549))) (-5 *3 (-549)) (-4 *1 (-840 *4)))))
+(-13 (-300) (-145) (-10 -8 (-15 -3862 ((-1123 (-549)) $)) (-15 -2088 ((-747) $)) (-15 -2763 ($ $ (-549))) (-15 -1977 ($ $)) (-15 -1591 ((-549))) (-15 -3246 ((-549) $)) (-15 -1538 ($ $)) (-15 -2661 ((-549) $ (-549))) (-15 -2134 ($ $ (-549))) (-15 -1885 ($ (-1139 (-549)) (-549)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $ (-549)) NIL)) (-3866 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-1885 (($ (-1139 (-549)) (-549)) NIL)) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1538 (($ $) NIL)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2088 (((-747) $) NIL)) (-2675 (((-112) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-1591 (((-549)) NIL)) (-3246 (((-549) $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2763 (($ $ (-549)) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3862 (((-1123 (-549)) $) NIL)) (-1977 (($ $) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL)) (-2082 (((-747)) NIL)) (-1498 (((-112) $ $) NIL)) (-2661 (((-549) $ (-549)) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL)))
+(((-841 |#1|) (-840 |#1|) (-549)) (T -841))
+NIL
+(-840 |#1|)
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3329 (((-841 |#1|) $) NIL (|has| (-841 |#1|) (-300)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-841 |#1|) (-880)))) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| (-841 |#1|) (-880)))) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL (|has| (-841 |#1|) (-796)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-841 |#1|) "failed") $) NIL) (((-3 (-1143) "failed") $) NIL (|has| (-841 |#1|) (-1009 (-1143)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-841 |#1|) (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| (-841 |#1|) (-1009 (-549))))) (-2659 (((-841 |#1|) $) NIL) (((-1143) $) NIL (|has| (-841 |#1|) (-1009 (-1143)))) (((-400 (-549)) $) NIL (|has| (-841 |#1|) (-1009 (-549)))) (((-549) $) NIL (|has| (-841 |#1|) (-1009 (-549))))) (-2294 (($ $) NIL) (($ (-549) $) NIL)) (-2095 (($ $ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| (-841 |#1|) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| (-841 |#1|) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-841 |#1|))) (|:| |vec| (-1226 (-841 |#1|)))) (-665 $) (-1226 $)) NIL) (((-665 (-841 |#1|)) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| (-841 |#1|) (-534)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-2772 (((-112) $) NIL (|has| (-841 |#1|) (-796)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-841 |#1|) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-841 |#1|) (-857 (-372))))) (-2675 (((-112) $) NIL)) (-1726 (($ $) NIL)) (-1394 (((-841 |#1|) $) NIL)) (-1681 (((-3 $ "failed") $) NIL (|has| (-841 |#1|) (-1118)))) (-2374 (((-112) $) NIL (|has| (-841 |#1|) (-796)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2863 (($ $ $) NIL (|has| (-841 |#1|) (-823)))) (-3575 (($ $ $) NIL (|has| (-841 |#1|) (-823)))) (-2797 (($ (-1 (-841 |#1|) (-841 |#1|)) $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| (-841 |#1|) (-1118)) CONST)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2873 (($ $) NIL (|has| (-841 |#1|) (-300)))) (-3967 (((-841 |#1|) $) NIL (|has| (-841 |#1|) (-534)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-841 |#1|) (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-841 |#1|) (-880)))) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2686 (($ $ (-621 (-841 |#1|)) (-621 (-841 |#1|))) NIL (|has| (-841 |#1|) (-302 (-841 |#1|)))) (($ $ (-841 |#1|) (-841 |#1|)) NIL (|has| (-841 |#1|) (-302 (-841 |#1|)))) (($ $ (-287 (-841 |#1|))) NIL (|has| (-841 |#1|) (-302 (-841 |#1|)))) (($ $ (-621 (-287 (-841 |#1|)))) NIL (|has| (-841 |#1|) (-302 (-841 |#1|)))) (($ $ (-621 (-1143)) (-621 (-841 |#1|))) NIL (|has| (-841 |#1|) (-505 (-1143) (-841 |#1|)))) (($ $ (-1143) (-841 |#1|)) NIL (|has| (-841 |#1|) (-505 (-1143) (-841 |#1|))))) (-3684 (((-747) $) NIL)) (-3341 (($ $ (-841 |#1|)) NIL (|has| (-841 |#1|) (-279 (-841 |#1|) (-841 |#1|))))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-841 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-841 |#1|) (-227))) (($ $ (-1143)) NIL (|has| (-841 |#1|) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-841 |#1|) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-841 |#1|) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-841 |#1|) (-871 (-1143)))) (($ $ (-1 (-841 |#1|) (-841 |#1|)) (-747)) NIL) (($ $ (-1 (-841 |#1|) (-841 |#1|))) NIL)) (-3939 (($ $) NIL)) (-1403 (((-841 |#1|) $) NIL)) (-2845 (((-863 (-549)) $) NIL (|has| (-841 |#1|) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-841 |#1|) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-841 |#1|) (-594 (-525)))) (((-372) $) NIL (|has| (-841 |#1|) (-993))) (((-219) $) NIL (|has| (-841 |#1|) (-993)))) (-4116 (((-172 (-400 (-549))) $) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-841 |#1|) (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL) (($ (-841 |#1|)) NIL) (($ (-1143)) NIL (|has| (-841 |#1|) (-1009 (-1143))))) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-841 |#1|) (-880))) (|has| (-841 |#1|) (-143))))) (-2082 (((-747)) NIL)) (-2546 (((-841 |#1|) $) NIL (|has| (-841 |#1|) (-534)))) (-1498 (((-112) $ $) NIL)) (-2661 (((-400 (-549)) $ (-549)) NIL)) (-3212 (($ $) NIL (|has| (-841 |#1|) (-796)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $) NIL (|has| (-841 |#1|) (-227))) (($ $ (-747)) NIL (|has| (-841 |#1|) (-227))) (($ $ (-1143)) NIL (|has| (-841 |#1|) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-841 |#1|) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-841 |#1|) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-841 |#1|) (-871 (-1143)))) (($ $ (-1 (-841 |#1|) (-841 |#1|)) (-747)) NIL) (($ $ (-1 (-841 |#1|) (-841 |#1|))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-841 |#1|) (-823)))) (-2425 (((-112) $ $) NIL (|has| (-841 |#1|) (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| (-841 |#1|) (-823)))) (-2412 (((-112) $ $) NIL (|has| (-841 |#1|) (-823)))) (-2513 (($ $ $) NIL) (($ (-841 |#1|) (-841 |#1|)) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-841 |#1|) $) NIL) (($ $ (-841 |#1|)) NIL)))
+(((-842 |#1|) (-13 (-963 (-841 |#1|)) (-10 -8 (-15 -2661 ((-400 (-549)) $ (-549))) (-15 -4116 ((-172 (-400 (-549))) $)) (-15 -2294 ($ $)) (-15 -2294 ($ (-549) $)))) (-549)) (T -842))
+((-2661 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-842 *4)) (-14 *4 *3) (-5 *3 (-549)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-549)))) (-5 *1 (-842 *3)) (-14 *3 (-549)))) (-2294 (*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-14 *2 (-549)))) (-2294 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-842 *3)) (-14 *3 *2))))
+(-13 (-963 (-841 |#1|)) (-10 -8 (-15 -2661 ((-400 (-549)) $ (-549))) (-15 -4116 ((-172 (-400 (-549))) $)) (-15 -2294 ($ $)) (-15 -2294 ($ (-549) $))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3329 ((|#2| $) NIL (|has| |#2| (-300)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL (|has| |#2| (-796)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#2| "failed") $) NIL) (((-3 (-1143) "failed") $) NIL (|has| |#2| (-1009 (-1143)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549))))) (-2659 ((|#2| $) NIL) (((-1143) $) NIL (|has| |#2| (-1009 (-1143)))) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-549)))) (((-549) $) NIL (|has| |#2| (-1009 (-549))))) (-2294 (($ $) 31) (($ (-549) $) 32)) (-2095 (($ $ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) 53)) (-3239 (($) NIL (|has| |#2| (-534)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-2772 (((-112) $) NIL (|has| |#2| (-796)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| |#2| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| |#2| (-857 (-372))))) (-2675 (((-112) $) NIL)) (-1726 (($ $) NIL)) (-1394 ((|#2| $) NIL)) (-1681 (((-3 $ "failed") $) NIL (|has| |#2| (-1118)))) (-2374 (((-112) $) NIL (|has| |#2| (-796)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2863 (($ $ $) NIL (|has| |#2| (-823)))) (-3575 (($ $ $) NIL (|has| |#2| (-823)))) (-2797 (($ (-1 |#2| |#2|) $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 49)) (-3060 (($) NIL (|has| |#2| (-1118)) CONST)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2873 (($ $) NIL (|has| |#2| (-300)))) (-3967 ((|#2| $) NIL (|has| |#2| (-534)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2686 (($ $ (-621 |#2|) (-621 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-302 |#2|))) (($ $ (-287 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ (-621 (-287 |#2|))) NIL (|has| |#2| (-302 |#2|))) (($ $ (-621 (-1143)) (-621 |#2|)) NIL (|has| |#2| (-505 (-1143) |#2|))) (($ $ (-1143) |#2|) NIL (|has| |#2| (-505 (-1143) |#2|)))) (-3684 (((-747) $) NIL)) (-3341 (($ $ |#2|) NIL (|has| |#2| (-279 |#2| |#2|)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| |#2| (-227))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $ (-1143)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3939 (($ $) NIL)) (-1403 ((|#2| $) NIL)) (-2845 (((-863 (-549)) $) NIL (|has| |#2| (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| |#2| (-594 (-863 (-372))))) (((-525) $) NIL (|has| |#2| (-594 (-525)))) (((-372) $) NIL (|has| |#2| (-993))) (((-219) $) NIL (|has| |#2| (-993)))) (-4116 (((-172 (-400 (-549))) $) 68)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880))))) (-3846 (((-834) $) 87) (($ (-549)) 19) (($ $) NIL) (($ (-400 (-549))) 24) (($ |#2|) 18) (($ (-1143)) NIL (|has| |#2| (-1009 (-1143))))) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#2| (-143))))) (-2082 (((-747)) NIL)) (-2546 ((|#2| $) NIL (|has| |#2| (-534)))) (-1498 (((-112) $ $) NIL)) (-2661 (((-400 (-549)) $ (-549)) 60)) (-3212 (($ $) NIL (|has| |#2| (-796)))) (-3276 (($) 14 T CONST)) (-3287 (($) 16 T CONST)) (-1702 (($ $) NIL (|has| |#2| (-227))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $ (-1143)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2389 (((-112) $ $) 35)) (-2438 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2513 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2500 (($ $) 39) (($ $ $) 41)) (-2486 (($ $ $) 37)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) 50)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 42) (($ $ $) 44) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-843 |#1| |#2|) (-13 (-963 |#2|) (-10 -8 (-15 -2661 ((-400 (-549)) $ (-549))) (-15 -4116 ((-172 (-400 (-549))) $)) (-15 -2294 ($ $)) (-15 -2294 ($ (-549) $)))) (-549) (-840 |#1|)) (T -843))
+((-2661 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-400 (-549))) (-5 *1 (-843 *4 *5)) (-5 *3 (-549)) (-4 *5 (-840 *4)))) (-4116 (*1 *2 *1) (-12 (-14 *3 (-549)) (-5 *2 (-172 (-400 (-549)))) (-5 *1 (-843 *3 *4)) (-4 *4 (-840 *3)))) (-2294 (*1 *1 *1) (-12 (-14 *2 (-549)) (-5 *1 (-843 *2 *3)) (-4 *3 (-840 *2)))) (-2294 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-14 *3 *2) (-5 *1 (-843 *3 *4)) (-4 *4 (-840 *3)))))
+(-13 (-963 |#2|) (-10 -8 (-15 -2661 ((-400 (-549)) $ (-549))) (-15 -4116 ((-172 (-400 (-549))) $)) (-15 -2294 ($ $)) (-15 -2294 ($ (-549) $))))
+((-3834 (((-112) $ $) NIL (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))))) (-2830 ((|#2| $) 12)) (-3528 (($ |#1| |#2|) 9)) (-3851 (((-1125) $) NIL (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))))) (-3990 (((-1087) $) NIL (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))))) (-3646 ((|#1| $) 11)) (-3854 (($ |#1| |#2|) 10)) (-3846 (((-834) $) 18 (-1536 (-12 (|has| |#1| (-593 (-834))) (|has| |#2| (-593 (-834)))) (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067)))))) (-2389 (((-112) $ $) 22 (-12 (|has| |#1| (-1067)) (|has| |#2| (-1067))))))
+(((-844 |#1| |#2|) (-13 (-1180) (-10 -8 (IF (|has| |#1| (-593 (-834))) (IF (|has| |#2| (-593 (-834))) (-6 (-593 (-834))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1067)) (IF (|has| |#2| (-1067)) (-6 (-1067)) |%noBranch|) |%noBranch|) (-15 -3528 ($ |#1| |#2|)) (-15 -3854 ($ |#1| |#2|)) (-15 -3646 (|#1| $)) (-15 -2830 (|#2| $)))) (-1180) (-1180)) (T -844))
+((-3528 (*1 *1 *2 *3) (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1180)) (-4 *3 (-1180)))) (-3854 (*1 *1 *2 *3) (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1180)) (-4 *3 (-1180)))) (-3646 (*1 *2 *1) (-12 (-4 *2 (-1180)) (-5 *1 (-844 *2 *3)) (-4 *3 (-1180)))) (-2830 (*1 *2 *1) (-12 (-4 *2 (-1180)) (-5 *1 (-844 *3 *2)) (-4 *3 (-1180)))))
+(-13 (-1180) (-10 -8 (IF (|has| |#1| (-593 (-834))) (IF (|has| |#2| (-593 (-834))) (-6 (-593 (-834))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1067)) (IF (|has| |#2| (-1067)) (-6 (-1067)) |%noBranch|) |%noBranch|) (-15 -3528 ($ |#1| |#2|)) (-15 -3854 ($ |#1| |#2|)) (-15 -3646 (|#1| $)) (-15 -2830 (|#2| $))))
+((-3834 (((-112) $ $) NIL)) (-3032 (((-549) $) 15)) (-2511 (($ (-155)) 11)) (-3177 (($ (-155)) 12)) (-3851 (((-1125) $) NIL)) (-1886 (((-155) $) 13)) (-3990 (((-1087) $) NIL)) (-2728 (($ (-155)) 9)) (-1385 (($ (-155)) 8)) (-3846 (((-834) $) 23) (($ (-155)) 16)) (-3274 (($ (-155)) 10)) (-2389 (((-112) $ $) NIL)))
+(((-845) (-13 (-1067) (-10 -8 (-15 -1385 ($ (-155))) (-15 -2728 ($ (-155))) (-15 -3274 ($ (-155))) (-15 -2511 ($ (-155))) (-15 -3177 ($ (-155))) (-15 -1886 ((-155) $)) (-15 -3032 ((-549) $)) (-15 -3846 ($ (-155)))))) (T -845))
+((-1385 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-2728 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-3274 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-3177 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-845)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-845)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+(-13 (-1067) (-10 -8 (-15 -1385 ($ (-155))) (-15 -2728 ($ (-155))) (-15 -3274 ($ (-155))) (-15 -2511 ($ (-155))) (-15 -3177 ($ (-155))) (-15 -1886 ((-155) $)) (-15 -3032 ((-549) $)) (-15 -3846 ($ (-155)))))
+((-3846 (((-309 (-549)) (-400 (-923 (-48)))) 23) (((-309 (-549)) (-923 (-48))) 18)))
+(((-846) (-10 -7 (-15 -3846 ((-309 (-549)) (-923 (-48)))) (-15 -3846 ((-309 (-549)) (-400 (-923 (-48))))))) (T -846))
+((-3846 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 (-48)))) (-5 *2 (-309 (-549))) (-5 *1 (-846)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-923 (-48))) (-5 *2 (-309 (-549))) (-5 *1 (-846)))))
+(-10 -7 (-15 -3846 ((-309 (-549)) (-923 (-48)))) (-15 -3846 ((-309 (-549)) (-400 (-923 (-48))))))
+((-2797 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 14)))
+(((-847 |#1| |#2|) (-10 -7 (-15 -2797 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) (-1180) (-1180)) (T -847))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6)))))
+(-10 -7 (-15 -2797 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|))))
+((-2237 (($ |#1| |#1|) 8)) (-2449 ((|#1| $ (-747)) 10)))
+(((-848 |#1|) (-10 -8 (-15 -2237 ($ |#1| |#1|)) (-15 -2449 (|#1| $ (-747)))) (-1180)) (T -848))
+((-2449 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-848 *2)) (-4 *2 (-1180)))) (-2237 (*1 *1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1180)))))
+(-10 -8 (-15 -2237 ($ |#1| |#1|)) (-15 -2449 (|#1| $ (-747))))
+((-2797 (((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)) 14)))
+(((-849 |#1| |#2|) (-10 -7 (-15 -2797 ((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)))) (-1180) (-1180)) (T -849))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-850 *6)) (-5 *1 (-849 *5 *6)))))
+(-10 -7 (-15 -2797 ((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|))))
+((-2237 (($ |#1| |#1| |#1|) 8)) (-2449 ((|#1| $ (-747)) 10)))
+(((-850 |#1|) (-10 -8 (-15 -2237 ($ |#1| |#1| |#1|)) (-15 -2449 (|#1| $ (-747)))) (-1180)) (T -850))
+((-2449 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-850 *2)) (-4 *2 (-1180)))) (-2237 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-850 *2)) (-4 *2 (-1180)))))
+(-10 -8 (-15 -2237 ($ |#1| |#1| |#1|)) (-15 -2449 (|#1| $ (-747))))
+((-2346 (((-621 (-1148)) (-1125)) 9)))
+(((-851) (-10 -7 (-15 -2346 ((-621 (-1148)) (-1125))))) (T -851))
+((-2346 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-621 (-1148))) (-5 *1 (-851)))))
+(-10 -7 (-15 -2346 ((-621 (-1148)) (-1125))))
+((-2797 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14)))
+(((-852 |#1| |#2|) (-10 -7 (-15 -2797 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) (-1180) (-1180)) (T -852))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))))
+(-10 -7 (-15 -2797 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))))
+((-1792 (($ |#1| |#1| |#1|) 8)) (-2449 ((|#1| $ (-747)) 10)))
+(((-853 |#1|) (-10 -8 (-15 -1792 ($ |#1| |#1| |#1|)) (-15 -2449 (|#1| $ (-747)))) (-1180)) (T -853))
+((-2449 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-853 *2)) (-4 *2 (-1180)))) (-1792 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1180)))))
+(-10 -8 (-15 -1792 ($ |#1| |#1| |#1|)) (-15 -2449 (|#1| $ (-747))))
+((-4103 (((-1123 (-621 (-549))) (-621 (-549)) (-1123 (-621 (-549)))) 32)) (-2660 (((-1123 (-621 (-549))) (-621 (-549)) (-621 (-549))) 28)) (-1473 (((-1123 (-621 (-549))) (-621 (-549))) 41) (((-1123 (-621 (-549))) (-621 (-549)) (-621 (-549))) 40)) (-2598 (((-1123 (-621 (-549))) (-549)) 42)) (-3118 (((-1123 (-621 (-549))) (-549) (-549)) 22) (((-1123 (-621 (-549))) (-549)) 16) (((-1123 (-621 (-549))) (-549) (-549) (-549)) 12)) (-2735 (((-1123 (-621 (-549))) (-1123 (-621 (-549)))) 26)) (-1955 (((-621 (-549)) (-621 (-549))) 25)))
+(((-854) (-10 -7 (-15 -3118 ((-1123 (-621 (-549))) (-549) (-549) (-549))) (-15 -3118 ((-1123 (-621 (-549))) (-549))) (-15 -3118 ((-1123 (-621 (-549))) (-549) (-549))) (-15 -1955 ((-621 (-549)) (-621 (-549)))) (-15 -2735 ((-1123 (-621 (-549))) (-1123 (-621 (-549))))) (-15 -2660 ((-1123 (-621 (-549))) (-621 (-549)) (-621 (-549)))) (-15 -4103 ((-1123 (-621 (-549))) (-621 (-549)) (-1123 (-621 (-549))))) (-15 -1473 ((-1123 (-621 (-549))) (-621 (-549)) (-621 (-549)))) (-15 -1473 ((-1123 (-621 (-549))) (-621 (-549)))) (-15 -2598 ((-1123 (-621 (-549))) (-549))))) (T -854))
+((-2598 (*1 *2 *3) (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549)))) (-1473 (*1 *2 *3) (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-621 (-549))))) (-1473 (*1 *2 *3 *3) (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-621 (-549))))) (-4103 (*1 *2 *3 *2) (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *3 (-621 (-549))) (-5 *1 (-854)))) (-2660 (*1 *2 *3 *3) (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-621 (-549))))) (-2735 (*1 *2 *2) (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)))) (-1955 (*1 *2 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-854)))) (-3118 (*1 *2 *3 *3) (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549)))) (-3118 (*1 *2 *3) (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549)))) (-3118 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549)))))
+(-10 -7 (-15 -3118 ((-1123 (-621 (-549))) (-549) (-549) (-549))) (-15 -3118 ((-1123 (-621 (-549))) (-549))) (-15 -3118 ((-1123 (-621 (-549))) (-549) (-549))) (-15 -1955 ((-621 (-549)) (-621 (-549)))) (-15 -2735 ((-1123 (-621 (-549))) (-1123 (-621 (-549))))) (-15 -2660 ((-1123 (-621 (-549))) (-621 (-549)) (-621 (-549)))) (-15 -4103 ((-1123 (-621 (-549))) (-621 (-549)) (-1123 (-621 (-549))))) (-15 -1473 ((-1123 (-621 (-549))) (-621 (-549)) (-621 (-549)))) (-15 -1473 ((-1123 (-621 (-549))) (-621 (-549)))) (-15 -2598 ((-1123 (-621 (-549))) (-549))))
+((-2845 (((-863 (-372)) $) 9 (|has| |#1| (-594 (-863 (-372))))) (((-863 (-549)) $) 8 (|has| |#1| (-594 (-863 (-549)))))))
+(((-855 |#1|) (-138) (-1180)) (T -855))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-594 (-863 (-549)))) (-6 (-594 (-863 (-549)))) |%noBranch|) (IF (|has| |t#1| (-594 (-863 (-372)))) (-6 (-594 (-863 (-372)))) |%noBranch|)))
+(((-594 (-863 (-372))) |has| |#1| (-594 (-863 (-372)))) ((-594 (-863 (-549))) |has| |#1| (-594 (-863 (-549)))))
+((-3834 (((-112) $ $) NIL)) (-3743 (($) 14)) (-3158 (($ (-860 |#1| |#2|) (-860 |#1| |#3|)) 27)) (-3183 (((-860 |#1| |#3|) $) 16)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3336 (((-112) $) 22)) (-4151 (($) 19)) (-3846 (((-834) $) 30)) (-3178 (((-860 |#1| |#2|) $) 15)) (-2389 (((-112) $ $) 25)))
+(((-856 |#1| |#2| |#3|) (-13 (-1067) (-10 -8 (-15 -3336 ((-112) $)) (-15 -4151 ($)) (-15 -3743 ($)) (-15 -3158 ($ (-860 |#1| |#2|) (-860 |#1| |#3|))) (-15 -3178 ((-860 |#1| |#2|) $)) (-15 -3183 ((-860 |#1| |#3|) $)))) (-1067) (-1067) (-642 |#2|)) (T -856))
+((-3336 (*1 *2 *1) (-12 (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1067)) (-4 *5 (-642 *4)))) (-4151 (*1 *1) (-12 (-4 *3 (-1067)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1067)) (-4 *4 (-642 *3)))) (-3743 (*1 *1) (-12 (-4 *3 (-1067)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1067)) (-4 *4 (-642 *3)))) (-3158 (*1 *1 *2 *3) (-12 (-5 *2 (-860 *4 *5)) (-5 *3 (-860 *4 *6)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-642 *5)) (-5 *1 (-856 *4 *5 *6)))) (-3178 (*1 *2 *1) (-12 (-4 *4 (-1067)) (-5 *2 (-860 *3 *4)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1067)) (-4 *5 (-642 *4)))) (-3183 (*1 *2 *1) (-12 (-4 *4 (-1067)) (-5 *2 (-860 *3 *5)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1067)) (-4 *5 (-642 *4)))))
+(-13 (-1067) (-10 -8 (-15 -3336 ((-112) $)) (-15 -4151 ($)) (-15 -3743 ($)) (-15 -3158 ($ (-860 |#1| |#2|) (-860 |#1| |#3|))) (-15 -3178 ((-860 |#1| |#2|) $)) (-15 -3183 ((-860 |#1| |#3|) $))))
+((-3834 (((-112) $ $) 7)) (-2932 (((-860 |#1| $) $ (-863 |#1|) (-860 |#1| $)) 13)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2389 (((-112) $ $) 6)))
+(((-857 |#1|) (-138) (-1067)) (T -857))
+((-2932 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-860 *4 *1)) (-5 *3 (-863 *4)) (-4 *1 (-857 *4)) (-4 *4 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -2932 ((-860 |t#1| $) $ (-863 |t#1|) (-860 |t#1| $)))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3421 (((-112) (-621 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3286 (((-860 |#1| |#2|) |#2| |#3|) 43 (-12 (-4008 (|has| |#2| (-1009 (-1143)))) (-4008 (|has| |#2| (-1018))))) (((-621 (-287 (-923 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1018)) (-4008 (|has| |#2| (-1009 (-1143)))))) (((-621 (-287 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1009 (-1143)))) (((-856 |#1| |#2| (-621 |#2|)) (-621 |#2|) |#3|) 21)))
+(((-858 |#1| |#2| |#3|) (-10 -7 (-15 -3421 ((-112) |#2| |#3|)) (-15 -3421 ((-112) (-621 |#2|) |#3|)) (-15 -3286 ((-856 |#1| |#2| (-621 |#2|)) (-621 |#2|) |#3|)) (IF (|has| |#2| (-1009 (-1143))) (-15 -3286 ((-621 (-287 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1018)) (-15 -3286 ((-621 (-287 (-923 |#2|))) |#2| |#3|)) (-15 -3286 ((-860 |#1| |#2|) |#2| |#3|))))) (-1067) (-857 |#1|) (-594 (-863 |#1|))) (T -858))
+((-3286 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-5 *2 (-860 *5 *3)) (-5 *1 (-858 *5 *3 *4)) (-4008 (-4 *3 (-1009 (-1143)))) (-4008 (-4 *3 (-1018))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5))))) (-3286 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-5 *2 (-621 (-287 (-923 *3)))) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-1018)) (-4008 (-4 *3 (-1009 (-1143)))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5))))) (-3286 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-5 *2 (-621 (-287 *3))) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-1009 (-1143))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5))))) (-3286 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-4 *6 (-857 *5)) (-5 *2 (-856 *5 *6 (-621 *6))) (-5 *1 (-858 *5 *6 *4)) (-5 *3 (-621 *6)) (-4 *4 (-594 (-863 *5))))) (-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6)) (-4 *6 (-857 *5)) (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-858 *5 *6 *4)) (-4 *4 (-594 (-863 *5))))) (-3421 (*1 *2 *3 *4) (-12 (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5))))))
+(-10 -7 (-15 -3421 ((-112) |#2| |#3|)) (-15 -3421 ((-112) (-621 |#2|) |#3|)) (-15 -3286 ((-856 |#1| |#2| (-621 |#2|)) (-621 |#2|) |#3|)) (IF (|has| |#2| (-1009 (-1143))) (-15 -3286 ((-621 (-287 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1018)) (-15 -3286 ((-621 (-287 (-923 |#2|))) |#2| |#3|)) (-15 -3286 ((-860 |#1| |#2|) |#2| |#3|)))))
+((-2797 (((-860 |#1| |#3|) (-1 |#3| |#2|) (-860 |#1| |#2|)) 22)))
+(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-860 |#1| |#3|) (-1 |#3| |#2|) (-860 |#1| |#2|)))) (-1067) (-1067) (-1067)) (T -859))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-860 *5 *6)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-860 *5 *7)) (-5 *1 (-859 *5 *6 *7)))))
+(-10 -7 (-15 -2797 ((-860 |#1| |#3|) (-1 |#3| |#2|) (-860 |#1| |#2|))))
+((-3834 (((-112) $ $) NIL)) (-1442 (($ $ $) 39)) (-3026 (((-3 (-112) "failed") $ (-863 |#1|)) 36)) (-3743 (($) 12)) (-3851 (((-1125) $) NIL)) (-3934 (($ (-863 |#1|) |#2| $) 20)) (-3990 (((-1087) $) NIL)) (-2462 (((-3 |#2| "failed") (-863 |#1|) $) 50)) (-3336 (((-112) $) 15)) (-4151 (($) 13)) (-2197 (((-621 (-2 (|:| -3337 (-1143)) (|:| -1793 |#2|))) $) 25)) (-3854 (($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 |#2|)))) 23)) (-3846 (((-834) $) 44)) (-4082 (($ (-863 |#1|) |#2| $ |#2|) 48)) (-3389 (($ (-863 |#1|) |#2| $) 47)) (-2389 (((-112) $ $) 41)))
+(((-860 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -3336 ((-112) $)) (-15 -4151 ($)) (-15 -3743 ($)) (-15 -1442 ($ $ $)) (-15 -2462 ((-3 |#2| "failed") (-863 |#1|) $)) (-15 -3389 ($ (-863 |#1|) |#2| $)) (-15 -3934 ($ (-863 |#1|) |#2| $)) (-15 -4082 ($ (-863 |#1|) |#2| $ |#2|)) (-15 -2197 ((-621 (-2 (|:| -3337 (-1143)) (|:| -1793 |#2|))) $)) (-15 -3854 ($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 |#2|))))) (-15 -3026 ((-3 (-112) "failed") $ (-863 |#1|))))) (-1067) (-1067)) (T -860))
+((-3336 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-860 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-4151 (*1 *1) (-12 (-5 *1 (-860 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3743 (*1 *1) (-12 (-5 *1 (-860 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-1442 (*1 *1 *1 *1) (-12 (-5 *1 (-860 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-2462 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-863 *4)) (-4 *4 (-1067)) (-4 *2 (-1067)) (-5 *1 (-860 *4 *2)))) (-3389 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-863 *4)) (-4 *4 (-1067)) (-5 *1 (-860 *4 *3)) (-4 *3 (-1067)))) (-3934 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-863 *4)) (-4 *4 (-1067)) (-5 *1 (-860 *4 *3)) (-4 *3 (-1067)))) (-4082 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-863 *4)) (-4 *4 (-1067)) (-5 *1 (-860 *4 *3)) (-4 *3 (-1067)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 *4)))) (-5 *1 (-860 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-3854 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 *4)))) (-4 *4 (-1067)) (-5 *1 (-860 *3 *4)) (-4 *3 (-1067)))) (-3026 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-863 *4)) (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-860 *4 *5)) (-4 *5 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -3336 ((-112) $)) (-15 -4151 ($)) (-15 -3743 ($)) (-15 -1442 ($ $ $)) (-15 -2462 ((-3 |#2| "failed") (-863 |#1|) $)) (-15 -3389 ($ (-863 |#1|) |#2| $)) (-15 -3934 ($ (-863 |#1|) |#2| $)) (-15 -4082 ($ (-863 |#1|) |#2| $ |#2|)) (-15 -2197 ((-621 (-2 (|:| -3337 (-1143)) (|:| -1793 |#2|))) $)) (-15 -3854 ($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 |#2|))))) (-15 -3026 ((-3 (-112) "failed") $ (-863 |#1|)))))
+((-1863 (((-863 |#1|) (-863 |#1|) (-621 (-1143)) (-1 (-112) (-621 |#2|))) 32) (((-863 |#1|) (-863 |#1|) (-621 (-1 (-112) |#2|))) 43) (((-863 |#1|) (-863 |#1|) (-1 (-112) |#2|)) 35)) (-3026 (((-112) (-621 |#2|) (-863 |#1|)) 40) (((-112) |#2| (-863 |#1|)) 36)) (-2824 (((-1 (-112) |#2|) (-863 |#1|)) 16)) (-1324 (((-621 |#2|) (-863 |#1|)) 24)) (-3664 (((-863 |#1|) (-863 |#1|) |#2|) 20)))
+(((-861 |#1| |#2|) (-10 -7 (-15 -1863 ((-863 |#1|) (-863 |#1|) (-1 (-112) |#2|))) (-15 -1863 ((-863 |#1|) (-863 |#1|) (-621 (-1 (-112) |#2|)))) (-15 -1863 ((-863 |#1|) (-863 |#1|) (-621 (-1143)) (-1 (-112) (-621 |#2|)))) (-15 -2824 ((-1 (-112) |#2|) (-863 |#1|))) (-15 -3026 ((-112) |#2| (-863 |#1|))) (-15 -3026 ((-112) (-621 |#2|) (-863 |#1|))) (-15 -3664 ((-863 |#1|) (-863 |#1|) |#2|)) (-15 -1324 ((-621 |#2|) (-863 |#1|)))) (-1067) (-1180)) (T -861))
+((-1324 (*1 *2 *3) (-12 (-5 *3 (-863 *4)) (-4 *4 (-1067)) (-5 *2 (-621 *5)) (-5 *1 (-861 *4 *5)) (-4 *5 (-1180)))) (-3664 (*1 *2 *2 *3) (-12 (-5 *2 (-863 *4)) (-4 *4 (-1067)) (-5 *1 (-861 *4 *3)) (-4 *3 (-1180)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6)) (-5 *4 (-863 *5)) (-4 *5 (-1067)) (-4 *6 (-1180)) (-5 *2 (-112)) (-5 *1 (-861 *5 *6)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *4 (-863 *5)) (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-861 *5 *3)) (-4 *3 (-1180)))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-863 *4)) (-4 *4 (-1067)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-861 *4 *5)) (-4 *5 (-1180)))) (-1863 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-863 *5)) (-5 *3 (-621 (-1143))) (-5 *4 (-1 (-112) (-621 *6))) (-4 *5 (-1067)) (-4 *6 (-1180)) (-5 *1 (-861 *5 *6)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-863 *4)) (-5 *3 (-621 (-1 (-112) *5))) (-4 *4 (-1067)) (-4 *5 (-1180)) (-5 *1 (-861 *4 *5)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-863 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1067)) (-4 *5 (-1180)) (-5 *1 (-861 *4 *5)))))
+(-10 -7 (-15 -1863 ((-863 |#1|) (-863 |#1|) (-1 (-112) |#2|))) (-15 -1863 ((-863 |#1|) (-863 |#1|) (-621 (-1 (-112) |#2|)))) (-15 -1863 ((-863 |#1|) (-863 |#1|) (-621 (-1143)) (-1 (-112) (-621 |#2|)))) (-15 -2824 ((-1 (-112) |#2|) (-863 |#1|))) (-15 -3026 ((-112) |#2| (-863 |#1|))) (-15 -3026 ((-112) (-621 |#2|) (-863 |#1|))) (-15 -3664 ((-863 |#1|) (-863 |#1|) |#2|)) (-15 -1324 ((-621 |#2|) (-863 |#1|))))
+((-2797 (((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)) 19)))
+(((-862 |#1| |#2|) (-10 -7 (-15 -2797 ((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)))) (-1067) (-1067)) (T -862))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-863 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-863 *6)) (-5 *1 (-862 *5 *6)))))
+(-10 -7 (-15 -2797 ((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|))))
+((-3834 (((-112) $ $) NIL)) (-2673 (($ $ (-621 (-52))) 64)) (-2272 (((-621 $) $) 118)) (-1312 (((-2 (|:| |var| (-621 (-1143))) (|:| |pred| (-52))) $) 24)) (-1404 (((-112) $) 30)) (-3363 (($ $ (-621 (-1143)) (-52)) 25)) (-2370 (($ $ (-621 (-52))) 63)) (-2714 (((-3 |#1| "failed") $) 61) (((-3 (-1143) "failed") $) 140)) (-2659 ((|#1| $) 58) (((-1143) $) NIL)) (-3305 (($ $) 108)) (-2552 (((-112) $) 47)) (-2521 (((-621 (-52)) $) 45)) (-3160 (($ (-1143) (-112) (-112) (-112)) 65)) (-1802 (((-3 (-621 $) "failed") (-621 $)) 72)) (-4143 (((-112) $) 50)) (-3074 (((-112) $) 49)) (-3851 (((-1125) $) NIL)) (-4266 (((-3 (-621 $) "failed") $) 36)) (-3984 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1671 (((-3 (-2 (|:| |val| $) (|:| -3731 $)) "failed") $) 83)) (-2533 (((-3 (-621 $) "failed") $) 33)) (-2353 (((-3 (-621 $) "failed") $ (-114)) 107) (((-3 (-2 (|:| -2721 (-114)) (|:| |arg| (-621 $))) "failed") $) 95)) (-1861 (((-3 (-621 $) "failed") $) 37)) (-1503 (((-3 (-2 (|:| |val| $) (|:| -3731 (-747))) "failed") $) 40)) (-3189 (((-112) $) 29)) (-3990 (((-1087) $) NIL)) (-3312 (((-112) $) 21)) (-2282 (((-112) $) 46)) (-3181 (((-621 (-52)) $) 111)) (-2869 (((-112) $) 48)) (-3341 (($ (-114) (-621 $)) 92)) (-1321 (((-747) $) 28)) (-2281 (($ $) 62)) (-2845 (($ (-621 $)) 59)) (-2645 (((-112) $) 26)) (-3846 (((-834) $) 53) (($ |#1|) 18) (($ (-1143)) 66)) (-3664 (($ $ (-52)) 110)) (-3276 (($) 91 T CONST)) (-3287 (($) 73 T CONST)) (-2389 (((-112) $ $) 79)) (-2513 (($ $ $) 100)) (-2486 (($ $ $) 104)) (** (($ $ (-747)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
+(((-863 |#1|) (-13 (-1067) (-1009 |#1|) (-1009 (-1143)) (-10 -8 (-15 0 ($) -2589) (-15 1 ($) -2589) (-15 -2533 ((-3 (-621 $) "failed") $)) (-15 -4266 ((-3 (-621 $) "failed") $)) (-15 -2353 ((-3 (-621 $) "failed") $ (-114))) (-15 -2353 ((-3 (-2 (|:| -2721 (-114)) (|:| |arg| (-621 $))) "failed") $)) (-15 -1503 ((-3 (-2 (|:| |val| $) (|:| -3731 (-747))) "failed") $)) (-15 -3984 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1861 ((-3 (-621 $) "failed") $)) (-15 -1671 ((-3 (-2 (|:| |val| $) (|:| -3731 $)) "failed") $)) (-15 -3341 ($ (-114) (-621 $))) (-15 -2486 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ $)) (-15 -2513 ($ $ $)) (-15 -1321 ((-747) $)) (-15 -2845 ($ (-621 $))) (-15 -2281 ($ $)) (-15 -3189 ((-112) $)) (-15 -2552 ((-112) $)) (-15 -1404 ((-112) $)) (-15 -2645 ((-112) $)) (-15 -2869 ((-112) $)) (-15 -3074 ((-112) $)) (-15 -4143 ((-112) $)) (-15 -2282 ((-112) $)) (-15 -2521 ((-621 (-52)) $)) (-15 -2370 ($ $ (-621 (-52)))) (-15 -2673 ($ $ (-621 (-52)))) (-15 -3160 ($ (-1143) (-112) (-112) (-112))) (-15 -3363 ($ $ (-621 (-1143)) (-52))) (-15 -1312 ((-2 (|:| |var| (-621 (-1143))) (|:| |pred| (-52))) $)) (-15 -3312 ((-112) $)) (-15 -3305 ($ $)) (-15 -3664 ($ $ (-52))) (-15 -3181 ((-621 (-52)) $)) (-15 -2272 ((-621 $) $)) (-15 -1802 ((-3 (-621 $) "failed") (-621 $))))) (-1067)) (T -863))
+((-3276 (*1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067)))) (-3287 (*1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067)))) (-2533 (*1 *2 *1) (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-4266 (*1 *2 *1) (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-2353 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-621 (-863 *4))) (-5 *1 (-863 *4)) (-4 *4 (-1067)))) (-2353 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2721 (-114)) (|:| |arg| (-621 (-863 *3))))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-1503 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-863 *3)) (|:| -3731 (-747)))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-3984 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-863 *3)) (|:| |den| (-863 *3)))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-1861 (*1 *2 *1) (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-1671 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-863 *3)) (|:| -3731 (-863 *3)))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-3341 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-621 (-863 *4))) (-5 *1 (-863 *4)) (-4 *4 (-1067)))) (-2486 (*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067)))) (-2513 (*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-2281 (*1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-2370 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-2673 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-3160 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-112)) (-5 *1 (-863 *4)) (-4 *4 (-1067)))) (-3363 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-52)) (-5 *1 (-863 *4)) (-4 *4 (-1067)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-621 (-1143))) (|:| |pred| (-52)))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-3312 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-3305 (*1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067)))) (-3664 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-3181 (*1 *2 *1) (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))) (-1802 (*1 *2 *2) (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
+(-13 (-1067) (-1009 |#1|) (-1009 (-1143)) (-10 -8 (-15 (-3276) ($) -2589) (-15 (-3287) ($) -2589) (-15 -2533 ((-3 (-621 $) "failed") $)) (-15 -4266 ((-3 (-621 $) "failed") $)) (-15 -2353 ((-3 (-621 $) "failed") $ (-114))) (-15 -2353 ((-3 (-2 (|:| -2721 (-114)) (|:| |arg| (-621 $))) "failed") $)) (-15 -1503 ((-3 (-2 (|:| |val| $) (|:| -3731 (-747))) "failed") $)) (-15 -3984 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1861 ((-3 (-621 $) "failed") $)) (-15 -1671 ((-3 (-2 (|:| |val| $) (|:| -3731 $)) "failed") $)) (-15 -3341 ($ (-114) (-621 $))) (-15 -2486 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747))) (-15 ** ($ $ $)) (-15 -2513 ($ $ $)) (-15 -1321 ((-747) $)) (-15 -2845 ($ (-621 $))) (-15 -2281 ($ $)) (-15 -3189 ((-112) $)) (-15 -2552 ((-112) $)) (-15 -1404 ((-112) $)) (-15 -2645 ((-112) $)) (-15 -2869 ((-112) $)) (-15 -3074 ((-112) $)) (-15 -4143 ((-112) $)) (-15 -2282 ((-112) $)) (-15 -2521 ((-621 (-52)) $)) (-15 -2370 ($ $ (-621 (-52)))) (-15 -2673 ($ $ (-621 (-52)))) (-15 -3160 ($ (-1143) (-112) (-112) (-112))) (-15 -3363 ($ $ (-621 (-1143)) (-52))) (-15 -1312 ((-2 (|:| |var| (-621 (-1143))) (|:| |pred| (-52))) $)) (-15 -3312 ((-112) $)) (-15 -3305 ($ $)) (-15 -3664 ($ $ (-52))) (-15 -3181 ((-621 (-52)) $)) (-15 -2272 ((-621 $) $)) (-15 -1802 ((-3 (-621 $) "failed") (-621 $)))))
+((-3834 (((-112) $ $) NIL)) (-3304 (((-621 |#1|) $) 16)) (-4304 (((-112) $) 38)) (-2714 (((-3 (-648 |#1|) "failed") $) 43)) (-2659 (((-648 |#1|) $) 41)) (-3657 (($ $) 18)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-4210 (((-747) $) 46)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3646 (((-648 |#1|) $) 17)) (-3846 (((-834) $) 37) (($ (-648 |#1|)) 21) (((-795 |#1|) $) 27) (($ |#1|) 20)) (-3287 (($) 8 T CONST)) (-2631 (((-621 (-648 |#1|)) $) 23)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 11)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 49)))
+(((-864 |#1|) (-13 (-823) (-1009 (-648 |#1|)) (-10 -8 (-15 1 ($) -2589) (-15 -3846 ((-795 |#1|) $)) (-15 -3846 ($ |#1|)) (-15 -3646 ((-648 |#1|) $)) (-15 -4210 ((-747) $)) (-15 -2631 ((-621 (-648 |#1|)) $)) (-15 -3657 ($ $)) (-15 -4304 ((-112) $)) (-15 -3304 ((-621 |#1|) $)))) (-823)) (T -864))
+((-3287 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-3846 (*1 *1 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-648 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-621 (-648 *3))) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-3657 (*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-823)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823)))))
+(-13 (-823) (-1009 (-648 |#1|)) (-10 -8 (-15 (-3287) ($) -2589) (-15 -3846 ((-795 |#1|) $)) (-15 -3846 ($ |#1|)) (-15 -3646 ((-648 |#1|) $)) (-15 -4210 ((-747) $)) (-15 -2631 ((-621 (-648 |#1|)) $)) (-15 -3657 ($ $)) (-15 -4304 ((-112) $)) (-15 -3304 ((-621 |#1|) $))))
+((-1341 ((|#1| |#1| |#1|) 19)))
+(((-865 |#1| |#2|) (-10 -7 (-15 -1341 (|#1| |#1| |#1|))) (-1202 |#2|) (-1018)) (T -865))
+((-1341 (*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-865 *2 *3)) (-4 *2 (-1202 *3)))))
+(-10 -7 (-15 -1341 (|#1| |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1391 (((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) 14)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2531 (((-1006) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) 13)) (-2389 (((-112) $ $) 6)))
+(((-866) (-138)) (T -866))
+((-1391 (*1 *2 *3 *4) (-12 (-4 *1 (-866)) (-5 *3 (-1030)) (-5 *4 (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) (-5 *2 (-2 (|:| -1391 (-372)) (|:| |explanations| (-1125)))))) (-2531 (*1 *2 *3) (-12 (-4 *1 (-866)) (-5 *3 (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) (-5 *2 (-1006)))))
+(-13 (-1067) (-10 -7 (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))) (-1030) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219))))) (-15 -2531 ((-1006) (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-2804 ((|#1| |#1| (-747)) 24)) (-2613 (((-3 |#1| "failed") |#1| |#1|) 22)) (-1655 (((-3 (-2 (|:| -3838 |#1|) (|:| -3848 |#1|)) "failed") |#1| (-747) (-747)) 27) (((-621 |#1|) |#1|) 29)))
+(((-867 |#1| |#2|) (-10 -7 (-15 -1655 ((-621 |#1|) |#1|)) (-15 -1655 ((-3 (-2 (|:| -3838 |#1|) (|:| -3848 |#1|)) "failed") |#1| (-747) (-747))) (-15 -2613 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2804 (|#1| |#1| (-747)))) (-1202 |#2|) (-356)) (T -867))
+((-2804 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-5 *1 (-867 *2 *4)) (-4 *2 (-1202 *4)))) (-2613 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-867 *2 *3)) (-4 *2 (-1202 *3)))) (-1655 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-747)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3838 *3) (|:| -3848 *3))) (-5 *1 (-867 *3 *5)) (-4 *3 (-1202 *5)))) (-1655 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-621 *3)) (-5 *1 (-867 *3 *4)) (-4 *3 (-1202 *4)))))
+(-10 -7 (-15 -1655 ((-621 |#1|) |#1|)) (-15 -1655 ((-3 (-2 (|:| -3838 |#1|) (|:| -3848 |#1|)) "failed") |#1| (-747) (-747))) (-15 -2613 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2804 (|#1| |#1| (-747))))
+((-2227 (((-1006) (-372) (-372) (-372) (-372) (-747) (-747) (-621 (-309 (-372))) (-621 (-621 (-309 (-372)))) (-1125)) 96) (((-1006) (-372) (-372) (-372) (-372) (-747) (-747) (-621 (-309 (-372))) (-621 (-621 (-309 (-372)))) (-1125) (-219)) 91) (((-1006) (-869) (-1030)) 83) (((-1006) (-869)) 84)) (-1391 (((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-869) (-1030)) 59) (((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-869)) 61)))
+(((-868) (-10 -7 (-15 -2227 ((-1006) (-869))) (-15 -2227 ((-1006) (-869) (-1030))) (-15 -2227 ((-1006) (-372) (-372) (-372) (-372) (-747) (-747) (-621 (-309 (-372))) (-621 (-621 (-309 (-372)))) (-1125) (-219))) (-15 -2227 ((-1006) (-372) (-372) (-372) (-372) (-747) (-747) (-621 (-309 (-372))) (-621 (-621 (-309 (-372)))) (-1125))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-869))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-869) (-1030))))) (T -868))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-869)) (-5 *4 (-1030)) (-5 *2 (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))))) (-5 *1 (-868)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-869)) (-5 *2 (-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125))))) (-5 *1 (-868)))) (-2227 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-747)) (-5 *6 (-621 (-621 (-309 *3)))) (-5 *7 (-1125)) (-5 *5 (-621 (-309 (-372)))) (-5 *3 (-372)) (-5 *2 (-1006)) (-5 *1 (-868)))) (-2227 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-747)) (-5 *6 (-621 (-621 (-309 *3)))) (-5 *7 (-1125)) (-5 *8 (-219)) (-5 *5 (-621 (-309 (-372)))) (-5 *3 (-372)) (-5 *2 (-1006)) (-5 *1 (-868)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-869)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-868)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-869)) (-5 *2 (-1006)) (-5 *1 (-868)))))
+(-10 -7 (-15 -2227 ((-1006) (-869))) (-15 -2227 ((-1006) (-869) (-1030))) (-15 -2227 ((-1006) (-372) (-372) (-372) (-372) (-747) (-747) (-621 (-309 (-372))) (-621 (-621 (-309 (-372)))) (-1125) (-219))) (-15 -2227 ((-1006) (-372) (-372) (-372) (-372) (-747) (-747) (-621 (-309 (-372))) (-621 (-621 (-309 (-372)))) (-1125))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-869))) (-15 -1391 ((-2 (|:| -1391 (-372)) (|:| -2481 (-1125)) (|:| |explanations| (-621 (-1125)))) (-869) (-1030))))
+((-3834 (((-112) $ $) NIL)) (-2659 (((-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219))) $) 19)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 21) (($ (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) 18)) (-2389 (((-112) $ $) NIL)))
+(((-869) (-13 (-1067) (-10 -8 (-15 -3846 ($ (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219))))) (-15 -3846 ((-834) $)) (-15 -2659 ((-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219))) $))))) (T -869))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-869)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) (-5 *1 (-869)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219)))) (-5 *1 (-869)))))
+(-13 (-1067) (-10 -8 (-15 -3846 ($ (-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219))))) (-15 -3846 ((-834) $)) (-15 -2659 ((-2 (|:| |pde| (-621 (-309 (-219)))) (|:| |constraints| (-621 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-747)) (|:| |boundaryType| (-549)) (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219)))))) (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125)) (|:| |tol| (-219))) $))))
+((-3456 (($ $ |#2|) NIL) (($ $ (-621 |#2|)) 10) (($ $ |#2| (-747)) 12) (($ $ (-621 |#2|) (-621 (-747))) 15)) (-1702 (($ $ |#2|) 16) (($ $ (-621 |#2|)) 18) (($ $ |#2| (-747)) 19) (($ $ (-621 |#2|) (-621 (-747))) 21)))
+(((-870 |#1| |#2|) (-10 -8 (-15 -1702 (|#1| |#1| (-621 |#2|) (-621 (-747)))) (-15 -1702 (|#1| |#1| |#2| (-747))) (-15 -1702 (|#1| |#1| (-621 |#2|))) (-15 -1702 (|#1| |#1| |#2|)) (-15 -3456 (|#1| |#1| (-621 |#2|) (-621 (-747)))) (-15 -3456 (|#1| |#1| |#2| (-747))) (-15 -3456 (|#1| |#1| (-621 |#2|))) (-15 -3456 (|#1| |#1| |#2|))) (-871 |#2|) (-1067)) (T -870))
+NIL
+(-10 -8 (-15 -1702 (|#1| |#1| (-621 |#2|) (-621 (-747)))) (-15 -1702 (|#1| |#1| |#2| (-747))) (-15 -1702 (|#1| |#1| (-621 |#2|))) (-15 -1702 (|#1| |#1| |#2|)) (-15 -3456 (|#1| |#1| (-621 |#2|) (-621 (-747)))) (-15 -3456 (|#1| |#1| |#2| (-747))) (-15 -3456 (|#1| |#1| (-621 |#2|))) (-15 -3456 (|#1| |#1| |#2|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3456 (($ $ |#1|) 40) (($ $ (-621 |#1|)) 39) (($ $ |#1| (-747)) 38) (($ $ (-621 |#1|) (-621 (-747))) 37)) (-3846 (((-834) $) 11) (($ (-549)) 27)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ |#1|) 36) (($ $ (-621 |#1|)) 35) (($ $ |#1| (-747)) 34) (($ $ (-621 |#1|) (-621 (-747))) 33)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-871 |#1|) (-138) (-1067)) (T -871))
+((-3456 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1067)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1067)))) (-3456 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1067)))) (-3456 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 (-747))) (-4 *1 (-871 *4)) (-4 *4 (-1067)))) (-1702 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1067)))) (-1702 (*1 *1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1067)))) (-1702 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1067)))) (-1702 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 (-747))) (-4 *1 (-871 *4)) (-4 *4 (-1067)))))
+(-13 (-1018) (-10 -8 (-15 -3456 ($ $ |t#1|)) (-15 -3456 ($ $ (-621 |t#1|))) (-15 -3456 ($ $ |t#1| (-747))) (-15 -3456 ($ $ (-621 |t#1|) (-621 (-747)))) (-15 -1702 ($ $ |t#1|)) (-15 -1702 ($ $ (-621 |t#1|))) (-15 -1702 ($ $ |t#1| (-747))) (-15 -1702 ($ $ (-621 |t#1|) (-621 (-747))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4161 ((|#1| $) 26)) (-1584 (((-112) $ (-747)) NIL)) (-2838 ((|#1| $ |#1|) NIL (|has| $ (-6 -4338)))) (-3869 (($ $ $) NIL (|has| $ (-6 -4338)))) (-3811 (($ $ $) NIL (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4338))) (($ $ "left" $) NIL (|has| $ (-6 -4338))) (($ $ "right" $) NIL (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) NIL (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-3848 (($ $) 25)) (-2778 (($ |#1|) 12) (($ $ $) 17)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) NIL)) (-3895 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3838 (($ $) 23)) (-3591 (((-621 |#1|) $) NIL)) (-2076 (((-112) $) 20)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3230 (((-549) $ $) NIL)) (-3497 (((-112) $) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-1166 |#1|) $) 9) (((-834) $) 29 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) NIL)) (-1987 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 21 (|has| |#1| (-1067)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-872 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -2778 ($ |#1|)) (-15 -2778 ($ $ $)) (-15 -3846 ((-1166 |#1|) $)))) (-1067)) (T -872))
+((-2778 (*1 *1 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1067)))) (-2778 (*1 *1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1067)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-872 *3)) (-4 *3 (-1067)))))
+(-13 (-119 |#1|) (-10 -8 (-15 -2778 ($ |#1|)) (-15 -2778 ($ $ $)) (-15 -3846 ((-1166 |#1|) $))))
+((-3073 ((|#2| (-1109 |#1| |#2|)) 40)))
+(((-873 |#1| |#2|) (-10 -7 (-15 -3073 (|#2| (-1109 |#1| |#2|)))) (-892) (-13 (-1018) (-10 -7 (-6 (-4339 "*"))))) (T -873))
+((-3073 (*1 *2 *3) (-12 (-5 *3 (-1109 *4 *2)) (-14 *4 (-892)) (-4 *2 (-13 (-1018) (-10 -7 (-6 (-4339 "*"))))) (-5 *1 (-873 *4 *2)))))
+(-10 -7 (-15 -3073 (|#2| (-1109 |#1| |#2|))))
+((-3834 (((-112) $ $) 7)) (-1682 (($) 18 T CONST)) (-2114 (((-3 $ "failed") $) 15)) (-1288 (((-1069 |#1|) $ |#1|) 32)) (-2675 (((-112) $) 17)) (-2863 (($ $ $) 30 (-1536 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-3575 (($ $ $) 29 (-1536 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-3851 (((-1125) $) 9)) (-1992 (($ $) 24)) (-3990 (((-1087) $) 10)) (-2686 ((|#1| $ |#1|) 34)) (-3341 ((|#1| $ |#1|) 33)) (-3489 (($ (-621 (-621 |#1|))) 35)) (-3820 (($ (-621 |#1|)) 36)) (-1955 (($ $ $) 21)) (-3293 (($ $ $) 20)) (-3846 (((-834) $) 11)) (-3287 (($) 19 T CONST)) (-2448 (((-112) $ $) 27 (-1536 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-2425 (((-112) $ $) 26 (-1536 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 28 (-1536 (|has| |#1| (-823)) (|has| |#1| (-361))))) (-2412 (((-112) $ $) 31)) (-2513 (($ $ $) 23)) (** (($ $ (-892)) 13) (($ $ (-747)) 16) (($ $ (-549)) 22)) (* (($ $ $) 14)))
+(((-874 |#1|) (-138) (-1067)) (T -874))
+((-3820 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-4 *1 (-874 *3)))) (-3489 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1067)) (-4 *1 (-874 *3)))) (-2686 (*1 *2 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1067)))) (-3341 (*1 *2 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1067)))) (-1288 (*1 *2 *1 *3) (-12 (-4 *1 (-874 *3)) (-4 *3 (-1067)) (-5 *2 (-1069 *3)))) (-2412 (*1 *2 *1 *1) (-12 (-4 *1 (-874 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(-13 (-465) (-10 -8 (-15 -3820 ($ (-621 |t#1|))) (-15 -3489 ($ (-621 (-621 |t#1|)))) (-15 -2686 (|t#1| $ |t#1|)) (-15 -3341 (|t#1| $ |t#1|)) (-15 -1288 ((-1069 |t#1|) $ |t#1|)) (-15 -2412 ((-112) $ $)) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-361)) (-6 (-823)) |%noBranch|)))
+(((-101) . T) ((-593 (-834)) . T) ((-465) . T) ((-703) . T) ((-823) -1536 (|has| |#1| (-823)) (|has| |#1| (-361))) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-2779 (((-621 (-621 (-747))) $) 108)) (-1798 (((-621 (-747)) (-876 |#1|) $) 130)) (-3357 (((-621 (-747)) (-876 |#1|) $) 131)) (-3961 (((-621 (-876 |#1|)) $) 98)) (-3239 (((-876 |#1|) $ (-549)) 103) (((-876 |#1|) $) 104)) (-3324 (($ (-621 (-876 |#1|))) 110)) (-2088 (((-747) $) 105)) (-2762 (((-1069 (-1069 |#1|)) $) 128)) (-1288 (((-1069 |#1|) $ |#1|) 121) (((-1069 (-1069 |#1|)) $ (-1069 |#1|)) 139) (((-1069 (-621 |#1|)) $ (-621 |#1|)) 142)) (-3091 (((-1069 |#1|) $) 101)) (-2090 (((-112) (-876 |#1|) $) 92)) (-3851 (((-1125) $) NIL)) (-2998 (((-1231) $) 95) (((-1231) $ (-549) (-549)) 143)) (-3990 (((-1087) $) NIL)) (-2384 (((-621 (-876 |#1|)) $) 96)) (-3341 (((-876 |#1|) $ (-747)) 99)) (-3701 (((-747) $) 106)) (-3846 (((-834) $) 119) (((-621 (-876 |#1|)) $) 23) (($ (-621 (-876 |#1|))) 109)) (-1864 (((-621 |#1|) $) 107)) (-2389 (((-112) $ $) 136)) (-2438 (((-112) $ $) 134)) (-2412 (((-112) $ $) 133)))
+(((-875 |#1|) (-13 (-1067) (-10 -8 (-15 -3846 ((-621 (-876 |#1|)) $)) (-15 -2384 ((-621 (-876 |#1|)) $)) (-15 -3341 ((-876 |#1|) $ (-747))) (-15 -3239 ((-876 |#1|) $ (-549))) (-15 -3239 ((-876 |#1|) $)) (-15 -2088 ((-747) $)) (-15 -3701 ((-747) $)) (-15 -1864 ((-621 |#1|) $)) (-15 -3961 ((-621 (-876 |#1|)) $)) (-15 -2779 ((-621 (-621 (-747))) $)) (-15 -3846 ($ (-621 (-876 |#1|)))) (-15 -3324 ($ (-621 (-876 |#1|)))) (-15 -1288 ((-1069 |#1|) $ |#1|)) (-15 -2762 ((-1069 (-1069 |#1|)) $)) (-15 -1288 ((-1069 (-1069 |#1|)) $ (-1069 |#1|))) (-15 -1288 ((-1069 (-621 |#1|)) $ (-621 |#1|))) (-15 -2090 ((-112) (-876 |#1|) $)) (-15 -1798 ((-621 (-747)) (-876 |#1|) $)) (-15 -3357 ((-621 (-747)) (-876 |#1|) $)) (-15 -3091 ((-1069 |#1|) $)) (-15 -2412 ((-112) $ $)) (-15 -2438 ((-112) $ $)) (-15 -2998 ((-1231) $)) (-15 -2998 ((-1231) $ (-549) (-549))))) (-1067)) (T -875))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-876 *4)) (-5 *1 (-875 *4)) (-4 *4 (-1067)))) (-3239 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-876 *4)) (-5 *1 (-875 *4)) (-4 *4 (-1067)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-876 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-747)))) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-876 *3))) (-4 *3 (-1067)) (-5 *1 (-875 *3)))) (-3324 (*1 *1 *2) (-12 (-5 *2 (-621 (-876 *3))) (-4 *3 (-1067)) (-5 *1 (-875 *3)))) (-1288 (*1 *2 *1 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-1069 (-1069 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-1288 (*1 *2 *1 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-1069 (-1069 *4))) (-5 *1 (-875 *4)) (-5 *3 (-1069 *4)))) (-1288 (*1 *2 *1 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-1069 (-621 *4))) (-5 *1 (-875 *4)) (-5 *3 (-621 *4)))) (-2090 (*1 *2 *3 *1) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-875 *4)))) (-1798 (*1 *2 *3 *1) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1067)) (-5 *2 (-621 (-747))) (-5 *1 (-875 *4)))) (-3357 (*1 *2 *3 *1) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1067)) (-5 *2 (-621 (-747))) (-5 *1 (-875 *4)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-2412 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-2438 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))) (-2998 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-875 *4)) (-4 *4 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -3846 ((-621 (-876 |#1|)) $)) (-15 -2384 ((-621 (-876 |#1|)) $)) (-15 -3341 ((-876 |#1|) $ (-747))) (-15 -3239 ((-876 |#1|) $ (-549))) (-15 -3239 ((-876 |#1|) $)) (-15 -2088 ((-747) $)) (-15 -3701 ((-747) $)) (-15 -1864 ((-621 |#1|) $)) (-15 -3961 ((-621 (-876 |#1|)) $)) (-15 -2779 ((-621 (-621 (-747))) $)) (-15 -3846 ($ (-621 (-876 |#1|)))) (-15 -3324 ($ (-621 (-876 |#1|)))) (-15 -1288 ((-1069 |#1|) $ |#1|)) (-15 -2762 ((-1069 (-1069 |#1|)) $)) (-15 -1288 ((-1069 (-1069 |#1|)) $ (-1069 |#1|))) (-15 -1288 ((-1069 (-621 |#1|)) $ (-621 |#1|))) (-15 -2090 ((-112) (-876 |#1|) $)) (-15 -1798 ((-621 (-747)) (-876 |#1|) $)) (-15 -3357 ((-621 (-747)) (-876 |#1|) $)) (-15 -3091 ((-1069 |#1|) $)) (-15 -2412 ((-112) $ $)) (-15 -2438 ((-112) $ $)) (-15 -2998 ((-1231) $)) (-15 -2998 ((-1231) $ (-549) (-549)))))
+((-3834 (((-112) $ $) NIL)) (-3193 (((-621 $) (-621 $)) 77)) (-1872 (((-549) $) 60)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) NIL)) (-2088 (((-747) $) 58)) (-1288 (((-1069 |#1|) $ |#1|) 49)) (-2675 (((-112) $) NIL)) (-3559 (((-112) $) 63)) (-2584 (((-747) $) 61)) (-3091 (((-1069 |#1|) $) 42)) (-2863 (($ $ $) NIL (-1536 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-3575 (($ $ $) NIL (-1536 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-1424 (((-2 (|:| |preimage| (-621 |#1|)) (|:| |image| (-621 |#1|))) $) 37)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 93)) (-3990 (((-1087) $) NIL)) (-3845 (((-1069 |#1|) $) 100 (|has| |#1| (-361)))) (-3450 (((-112) $) 59)) (-2686 ((|#1| $ |#1|) 47)) (-3341 ((|#1| $ |#1|) 94)) (-3701 (((-747) $) 44)) (-3489 (($ (-621 (-621 |#1|))) 85)) (-1905 (((-942) $) 53)) (-3820 (($ (-621 |#1|)) 21)) (-1955 (($ $ $) NIL)) (-3293 (($ $ $) NIL)) (-3738 (($ (-621 (-621 |#1|))) 39)) (-3962 (($ (-621 (-621 |#1|))) 88)) (-2899 (($ (-621 |#1|)) 96)) (-3846 (((-834) $) 84) (($ (-621 (-621 |#1|))) 66) (($ (-621 |#1|)) 67)) (-3287 (($) 16 T CONST)) (-2448 (((-112) $ $) NIL (-1536 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-2425 (((-112) $ $) NIL (-1536 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-2389 (((-112) $ $) 45)) (-2438 (((-112) $ $) NIL (-1536 (|has| |#1| (-361)) (|has| |#1| (-823))))) (-2412 (((-112) $ $) 65)) (-2513 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ $ $) 22)))
+(((-876 |#1|) (-13 (-874 |#1|) (-10 -8 (-15 -1424 ((-2 (|:| |preimage| (-621 |#1|)) (|:| |image| (-621 |#1|))) $)) (-15 -3738 ($ (-621 (-621 |#1|)))) (-15 -3846 ($ (-621 (-621 |#1|)))) (-15 -3846 ($ (-621 |#1|))) (-15 -3962 ($ (-621 (-621 |#1|)))) (-15 -3701 ((-747) $)) (-15 -3091 ((-1069 |#1|) $)) (-15 -1905 ((-942) $)) (-15 -2088 ((-747) $)) (-15 -2584 ((-747) $)) (-15 -1872 ((-549) $)) (-15 -3450 ((-112) $)) (-15 -3559 ((-112) $)) (-15 -3193 ((-621 $) (-621 $))) (IF (|has| |#1| (-361)) (-15 -3845 ((-1069 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-534)) (-15 -2899 ($ (-621 |#1|))) (IF (|has| |#1| (-361)) (-15 -2899 ($ (-621 |#1|))) |%noBranch|)))) (-1067)) (T -876))
+((-1424 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-621 *3)) (|:| |image| (-621 *3)))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3738 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-876 *3)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-942)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-2584 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-1872 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-876 *3)) (-4 *3 (-361)) (-4 *3 (-1067)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-876 *3)))))
+(-13 (-874 |#1|) (-10 -8 (-15 -1424 ((-2 (|:| |preimage| (-621 |#1|)) (|:| |image| (-621 |#1|))) $)) (-15 -3738 ($ (-621 (-621 |#1|)))) (-15 -3846 ($ (-621 (-621 |#1|)))) (-15 -3846 ($ (-621 |#1|))) (-15 -3962 ($ (-621 (-621 |#1|)))) (-15 -3701 ((-747) $)) (-15 -3091 ((-1069 |#1|) $)) (-15 -1905 ((-942) $)) (-15 -2088 ((-747) $)) (-15 -2584 ((-747) $)) (-15 -1872 ((-549) $)) (-15 -3450 ((-112) $)) (-15 -3559 ((-112) $)) (-15 -3193 ((-621 $) (-621 $))) (IF (|has| |#1| (-361)) (-15 -3845 ((-1069 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-534)) (-15 -2899 ($ (-621 |#1|))) (IF (|has| |#1| (-361)) (-15 -2899 ($ (-621 |#1|))) |%noBranch|))))
+((-3153 (((-3 (-621 (-1139 |#4|)) "failed") (-621 (-1139 |#4|)) (-1139 |#4|)) 128)) (-2971 ((|#1|) 77)) (-1480 (((-411 (-1139 |#4|)) (-1139 |#4|)) 137)) (-2218 (((-411 (-1139 |#4|)) (-621 |#3|) (-1139 |#4|)) 69)) (-1416 (((-411 (-1139 |#4|)) (-1139 |#4|)) 147)) (-1975 (((-3 (-621 (-1139 |#4|)) "failed") (-621 (-1139 |#4|)) (-1139 |#4|) |#3|) 92)))
+(((-877 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3153 ((-3 (-621 (-1139 |#4|)) "failed") (-621 (-1139 |#4|)) (-1139 |#4|))) (-15 -1416 ((-411 (-1139 |#4|)) (-1139 |#4|))) (-15 -1480 ((-411 (-1139 |#4|)) (-1139 |#4|))) (-15 -2971 (|#1|)) (-15 -1975 ((-3 (-621 (-1139 |#4|)) "failed") (-621 (-1139 |#4|)) (-1139 |#4|) |#3|)) (-15 -2218 ((-411 (-1139 |#4|)) (-621 |#3|) (-1139 |#4|)))) (-880) (-769) (-823) (-920 |#1| |#2| |#3|)) (T -877))
+((-2218 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *7)) (-4 *7 (-823)) (-4 *5 (-880)) (-4 *6 (-769)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-411 (-1139 *8))) (-5 *1 (-877 *5 *6 *7 *8)) (-5 *4 (-1139 *8)))) (-1975 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-621 (-1139 *7))) (-5 *3 (-1139 *7)) (-4 *7 (-920 *5 *6 *4)) (-4 *5 (-880)) (-4 *6 (-769)) (-4 *4 (-823)) (-5 *1 (-877 *5 *6 *4 *7)))) (-2971 (*1 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-880)) (-5 *1 (-877 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))) (-1480 (*1 *2 *3) (-12 (-4 *4 (-880)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-411 (-1139 *7))) (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-1139 *7)))) (-1416 (*1 *2 *3) (-12 (-4 *4 (-880)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-411 (-1139 *7))) (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-1139 *7)))) (-3153 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-1139 *7))) (-5 *3 (-1139 *7)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-880)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-877 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3153 ((-3 (-621 (-1139 |#4|)) "failed") (-621 (-1139 |#4|)) (-1139 |#4|))) (-15 -1416 ((-411 (-1139 |#4|)) (-1139 |#4|))) (-15 -1480 ((-411 (-1139 |#4|)) (-1139 |#4|))) (-15 -2971 (|#1|)) (-15 -1975 ((-3 (-621 (-1139 |#4|)) "failed") (-621 (-1139 |#4|)) (-1139 |#4|) |#3|)) (-15 -2218 ((-411 (-1139 |#4|)) (-621 |#3|) (-1139 |#4|))))
+((-3153 (((-3 (-621 (-1139 |#2|)) "failed") (-621 (-1139 |#2|)) (-1139 |#2|)) 36)) (-2971 ((|#1|) 54)) (-1480 (((-411 (-1139 |#2|)) (-1139 |#2|)) 102)) (-2218 (((-411 (-1139 |#2|)) (-1139 |#2|)) 90)) (-1416 (((-411 (-1139 |#2|)) (-1139 |#2|)) 113)))
+(((-878 |#1| |#2|) (-10 -7 (-15 -3153 ((-3 (-621 (-1139 |#2|)) "failed") (-621 (-1139 |#2|)) (-1139 |#2|))) (-15 -1416 ((-411 (-1139 |#2|)) (-1139 |#2|))) (-15 -1480 ((-411 (-1139 |#2|)) (-1139 |#2|))) (-15 -2971 (|#1|)) (-15 -2218 ((-411 (-1139 |#2|)) (-1139 |#2|)))) (-880) (-1202 |#1|)) (T -878))
+((-2218 (*1 *2 *3) (-12 (-4 *4 (-880)) (-4 *5 (-1202 *4)) (-5 *2 (-411 (-1139 *5))) (-5 *1 (-878 *4 *5)) (-5 *3 (-1139 *5)))) (-2971 (*1 *2) (-12 (-4 *2 (-880)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1202 *2)))) (-1480 (*1 *2 *3) (-12 (-4 *4 (-880)) (-4 *5 (-1202 *4)) (-5 *2 (-411 (-1139 *5))) (-5 *1 (-878 *4 *5)) (-5 *3 (-1139 *5)))) (-1416 (*1 *2 *3) (-12 (-4 *4 (-880)) (-4 *5 (-1202 *4)) (-5 *2 (-411 (-1139 *5))) (-5 *1 (-878 *4 *5)) (-5 *3 (-1139 *5)))) (-3153 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-1139 *5))) (-5 *3 (-1139 *5)) (-4 *5 (-1202 *4)) (-4 *4 (-880)) (-5 *1 (-878 *4 *5)))))
+(-10 -7 (-15 -3153 ((-3 (-621 (-1139 |#2|)) "failed") (-621 (-1139 |#2|)) (-1139 |#2|))) (-15 -1416 ((-411 (-1139 |#2|)) (-1139 |#2|))) (-15 -1480 ((-411 (-1139 |#2|)) (-1139 |#2|))) (-15 -2971 (|#1|)) (-15 -2218 ((-411 (-1139 |#2|)) (-1139 |#2|))))
+((-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 41)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 18)) (-2210 (((-3 $ "failed") $) 35)))
+(((-879 |#1|) (-10 -8 (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -1348 ((-3 (-621 (-1139 |#1|)) "failed") (-621 (-1139 |#1|)) (-1139 |#1|))) (-15 -1721 ((-1139 |#1|) (-1139 |#1|) (-1139 |#1|)))) (-880)) (T -879))
+NIL
+(-10 -8 (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -1348 ((-3 (-621 (-1139 |#1|)) "failed") (-621 (-1139 |#1|)) (-1139 |#1|))) (-15 -1721 ((-1139 |#1|) (-1139 |#1|) (-1139 |#1|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-3231 (((-411 (-1139 $)) (-1139 $)) 58)) (-3979 (($ $) 49)) (-2402 (((-411 $) $) 50)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 55)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-1420 (((-112) $) 51)) (-2675 (((-112) $) 30)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2905 (((-411 (-1139 $)) (-1139 $)) 56)) (-2413 (((-411 (-1139 $)) (-1139 $)) 57)) (-2121 (((-411 $) $) 48)) (-2042 (((-3 $ "failed") $ $) 40)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 54 (|has| $ (-143)))) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-2210 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-880) (-138)) (T -880))
+((-1721 (*1 *2 *2 *2) (-12 (-5 *2 (-1139 *1)) (-4 *1 (-880)))) (-3231 (*1 *2 *3) (-12 (-4 *1 (-880)) (-5 *2 (-411 (-1139 *1))) (-5 *3 (-1139 *1)))) (-2413 (*1 *2 *3) (-12 (-4 *1 (-880)) (-5 *2 (-411 (-1139 *1))) (-5 *3 (-1139 *1)))) (-2905 (*1 *2 *3) (-12 (-4 *1 (-880)) (-5 *2 (-411 (-1139 *1))) (-5 *3 (-1139 *1)))) (-1348 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 (-1139 *1))) (-5 *3 (-1139 *1)) (-4 *1 (-880)))) (-4186 (*1 *2 *3) (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-143)) (-4 *1 (-880)) (-5 *2 (-1226 *1)))) (-2210 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-880)))))
+(-13 (-1184) (-10 -8 (-15 -3231 ((-411 (-1139 $)) (-1139 $))) (-15 -2413 ((-411 (-1139 $)) (-1139 $))) (-15 -2905 ((-411 (-1139 $)) (-1139 $))) (-15 -1721 ((-1139 $) (-1139 $) (-1139 $))) (-15 -1348 ((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $))) (IF (|has| $ (-143)) (PROGN (-15 -4186 ((-3 (-1226 $) "failed") (-665 $))) (-15 -2210 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1184) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2044 (((-112) $) NIL)) (-3214 (((-747)) NIL)) (-2906 (($ $ (-892)) NIL (|has| $ (-361))) (($ $) NIL)) (-3062 (((-1153 (-892) (-747)) (-549)) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-3614 (((-747)) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 $ "failed") $) NIL)) (-2659 (($ $) NIL)) (-3492 (($ (-1226 $)) NIL)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-2405 (($) NIL)) (-2288 (((-112) $) NIL)) (-3165 (($ $) NIL) (($ $ (-747)) NIL)) (-1420 (((-112) $) NIL)) (-2088 (((-809 (-892)) $) NIL) (((-892) $) NIL)) (-2675 (((-112) $) NIL)) (-1973 (($) NIL (|has| $ (-361)))) (-4091 (((-112) $) NIL (|has| $ (-361)))) (-3630 (($ $ (-892)) NIL (|has| $ (-361))) (($ $) NIL)) (-1681 (((-3 $ "failed") $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3788 (((-1139 $) $ (-892)) NIL (|has| $ (-361))) (((-1139 $) $) NIL)) (-1881 (((-892) $) NIL)) (-3318 (((-1139 $) $) NIL (|has| $ (-361)))) (-1983 (((-3 (-1139 $) "failed") $ $) NIL (|has| $ (-361))) (((-1139 $) $) NIL (|has| $ (-361)))) (-3719 (($ $ (-1139 $)) NIL (|has| $ (-361)))) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL T CONST)) (-3493 (($ (-892)) NIL)) (-3980 (((-112) $) NIL)) (-3990 (((-1087) $) NIL)) (-4248 (($) NIL (|has| $ (-361)))) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL)) (-2121 (((-411 $) $) NIL)) (-3049 (((-892)) NIL) (((-809 (-892))) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3914 (((-3 (-747) "failed") $ $) NIL) (((-747) $) NIL)) (-2985 (((-133)) NIL)) (-3456 (($ $ (-747)) NIL) (($ $) NIL)) (-3701 (((-892) $) NIL) (((-809 (-892)) $) NIL)) (-2815 (((-1139 $)) NIL)) (-3170 (($) NIL)) (-1544 (($) NIL (|has| $ (-361)))) (-4263 (((-665 $) (-1226 $)) NIL) (((-1226 $) $) NIL)) (-2845 (((-549) $) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL)) (-2210 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2082 (((-747)) NIL)) (-1949 (((-1226 $) (-892)) NIL) (((-1226 $)) NIL)) (-1498 (((-112) $ $) NIL)) (-1606 (((-112) $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1933 (($ $ (-747)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-1702 (($ $ (-747)) NIL) (($ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
+(((-881 |#1|) (-13 (-342) (-322 $) (-594 (-549))) (-892)) (T -881))
+NIL
+(-13 (-342) (-322 $) (-594 (-549)))
+((-1765 (((-3 (-2 (|:| -2088 (-747)) (|:| -3568 |#5|)) "failed") (-329 |#2| |#3| |#4| |#5|)) 79)) (-3671 (((-112) (-329 |#2| |#3| |#4| |#5|)) 17)) (-2088 (((-3 (-747) "failed") (-329 |#2| |#3| |#4| |#5|)) 15)))
+(((-882 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2088 ((-3 (-747) "failed") (-329 |#2| |#3| |#4| |#5|))) (-15 -3671 ((-112) (-329 |#2| |#3| |#4| |#5|))) (-15 -1765 ((-3 (-2 (|:| -2088 (-747)) (|:| -3568 |#5|)) "failed") (-329 |#2| |#3| |#4| |#5|)))) (-13 (-823) (-541) (-1009 (-549))) (-423 |#1|) (-1202 |#2|) (-1202 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -882))
+((-1765 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1202 *5)) (-4 *7 (-1202 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-2 (|:| -2088 (-747)) (|:| -3568 *8))) (-5 *1 (-882 *4 *5 *6 *7 *8)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1202 *5)) (-4 *7 (-1202 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-112)) (-5 *1 (-882 *4 *5 *6 *7 *8)))) (-2088 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1202 *5)) (-4 *7 (-1202 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-747)) (-5 *1 (-882 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2088 ((-3 (-747) "failed") (-329 |#2| |#3| |#4| |#5|))) (-15 -3671 ((-112) (-329 |#2| |#3| |#4| |#5|))) (-15 -1765 ((-3 (-2 (|:| -2088 (-747)) (|:| -3568 |#5|)) "failed") (-329 |#2| |#3| |#4| |#5|))))
+((-1765 (((-3 (-2 (|:| -2088 (-747)) (|:| -3568 |#3|)) "failed") (-329 (-400 (-549)) |#1| |#2| |#3|)) 56)) (-3671 (((-112) (-329 (-400 (-549)) |#1| |#2| |#3|)) 16)) (-2088 (((-3 (-747) "failed") (-329 (-400 (-549)) |#1| |#2| |#3|)) 14)))
+(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -2088 ((-3 (-747) "failed") (-329 (-400 (-549)) |#1| |#2| |#3|))) (-15 -3671 ((-112) (-329 (-400 (-549)) |#1| |#2| |#3|))) (-15 -1765 ((-3 (-2 (|:| -2088 (-747)) (|:| -3568 |#3|)) "failed") (-329 (-400 (-549)) |#1| |#2| |#3|)))) (-1202 (-400 (-549))) (-1202 (-400 |#1|)) (-335 (-400 (-549)) |#1| |#2|)) (T -883))
+((-1765 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 (-400 (-549)) *4 *5 *6)) (-4 *4 (-1202 (-400 (-549)))) (-4 *5 (-1202 (-400 *4))) (-4 *6 (-335 (-400 (-549)) *4 *5)) (-5 *2 (-2 (|:| -2088 (-747)) (|:| -3568 *6))) (-5 *1 (-883 *4 *5 *6)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-329 (-400 (-549)) *4 *5 *6)) (-4 *4 (-1202 (-400 (-549)))) (-4 *5 (-1202 (-400 *4))) (-4 *6 (-335 (-400 (-549)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-883 *4 *5 *6)))) (-2088 (*1 *2 *3) (|partial| -12 (-5 *3 (-329 (-400 (-549)) *4 *5 *6)) (-4 *4 (-1202 (-400 (-549)))) (-4 *5 (-1202 (-400 *4))) (-4 *6 (-335 (-400 (-549)) *4 *5)) (-5 *2 (-747)) (-5 *1 (-883 *4 *5 *6)))))
+(-10 -7 (-15 -2088 ((-3 (-747) "failed") (-329 (-400 (-549)) |#1| |#2| |#3|))) (-15 -3671 ((-112) (-329 (-400 (-549)) |#1| |#2| |#3|))) (-15 -1765 ((-3 (-2 (|:| -2088 (-747)) (|:| -3568 |#3|)) "failed") (-329 (-400 (-549)) |#1| |#2| |#3|))))
+((-4068 ((|#2| |#2|) 26)) (-1880 (((-549) (-621 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))))) 15)) (-3104 (((-892) (-549)) 35)) (-2553 (((-549) |#2|) 42)) (-3172 (((-549) |#2|) 21) (((-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))) |#1|) 20)))
+(((-884 |#1| |#2|) (-10 -7 (-15 -3104 ((-892) (-549))) (-15 -3172 ((-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))) |#1|)) (-15 -3172 ((-549) |#2|)) (-15 -1880 ((-549) (-621 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))))) (-15 -2553 ((-549) |#2|)) (-15 -4068 (|#2| |#2|))) (-1202 (-400 (-549))) (-1202 (-400 |#1|))) (T -884))
+((-4068 (*1 *2 *2) (-12 (-4 *3 (-1202 (-400 (-549)))) (-5 *1 (-884 *3 *2)) (-4 *2 (-1202 (-400 *3))))) (-2553 (*1 *2 *3) (-12 (-4 *4 (-1202 (-400 *2))) (-5 *2 (-549)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1202 (-400 *4))))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))))) (-4 *4 (-1202 (-400 *2))) (-5 *2 (-549)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1202 (-400 *4))))) (-3172 (*1 *2 *3) (-12 (-4 *4 (-1202 (-400 *2))) (-5 *2 (-549)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1202 (-400 *4))))) (-3172 (*1 *2 *3) (-12 (-4 *3 (-1202 (-400 (-549)))) (-5 *2 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))) (-5 *1 (-884 *3 *4)) (-4 *4 (-1202 (-400 *3))))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-1202 (-400 *3))) (-5 *2 (-892)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1202 (-400 *4))))))
+(-10 -7 (-15 -3104 ((-892) (-549))) (-15 -3172 ((-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))) |#1|)) (-15 -3172 ((-549) |#2|)) (-15 -1880 ((-549) (-621 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))))) (-15 -2553 ((-549) |#2|)) (-15 -4068 (|#2| |#2|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3329 ((|#1| $) 81)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-2095 (($ $ $) NIL)) (-2114 (((-3 $ "failed") $) 75)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-2377 (($ |#1| (-411 |#1|)) 73)) (-1634 (((-1139 |#1|) |#1| |#1|) 41)) (-4301 (($ $) 49)) (-2675 (((-112) $) NIL)) (-2841 (((-549) $) 78)) (-1831 (($ $ (-549)) 80)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3882 ((|#1| $) 77)) (-1332 (((-411 |#1|) $) 76)) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) 74)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-4106 (($ $) 39)) (-3846 (((-834) $) 99) (($ (-549)) 54) (($ $) NIL) (($ (-400 (-549))) NIL) (($ |#1|) 31) (((-400 |#1|) $) 59) (($ (-400 (-411 |#1|))) 67)) (-2082 (((-747)) 52)) (-1498 (((-112) $ $) NIL)) (-3276 (($) 23 T CONST)) (-3287 (($) 12 T CONST)) (-2389 (((-112) $ $) 68)) (-2513 (($ $ $) NIL)) (-2500 (($ $) 88) (($ $ $) NIL)) (-2486 (($ $ $) 38)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 90) (($ $ $) 37) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-885 |#1|) (-13 (-356) (-38 |#1|) (-10 -8 (-15 -3846 ((-400 |#1|) $)) (-15 -3846 ($ (-400 (-411 |#1|)))) (-15 -4106 ($ $)) (-15 -1332 ((-411 |#1|) $)) (-15 -3882 (|#1| $)) (-15 -1831 ($ $ (-549))) (-15 -2841 ((-549) $)) (-15 -1634 ((-1139 |#1|) |#1| |#1|)) (-15 -4301 ($ $)) (-15 -2377 ($ |#1| (-411 |#1|))) (-15 -3329 (|#1| $)))) (-300)) (T -885))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-400 (-411 *3))) (-4 *3 (-300)) (-5 *1 (-885 *3)))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-411 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-3882 (*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) (-1831 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-1634 (*1 *2 *3 *3) (-12 (-5 *2 (-1139 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))) (-4301 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))) (-2377 (*1 *1 *2 *3) (-12 (-5 *3 (-411 *2)) (-4 *2 (-300)) (-5 *1 (-885 *2)))) (-3329 (*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))))
+(-13 (-356) (-38 |#1|) (-10 -8 (-15 -3846 ((-400 |#1|) $)) (-15 -3846 ($ (-400 (-411 |#1|)))) (-15 -4106 ($ $)) (-15 -1332 ((-411 |#1|) $)) (-15 -3882 (|#1| $)) (-15 -1831 ($ $ (-549))) (-15 -2841 ((-549) $)) (-15 -1634 ((-1139 |#1|) |#1| |#1|)) (-15 -4301 ($ $)) (-15 -2377 ($ |#1| (-411 |#1|))) (-15 -3329 (|#1| $))))
+((-2377 (((-52) (-923 |#1|) (-411 (-923 |#1|)) (-1143)) 17) (((-52) (-400 (-923 |#1|)) (-1143)) 18)))
+(((-886 |#1|) (-10 -7 (-15 -2377 ((-52) (-400 (-923 |#1|)) (-1143))) (-15 -2377 ((-52) (-923 |#1|) (-411 (-923 |#1|)) (-1143)))) (-13 (-300) (-145))) (T -886))
+((-2377 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-411 (-923 *6))) (-5 *5 (-1143)) (-5 *3 (-923 *6)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-886 *6)))) (-2377 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1143)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-886 *5)))))
+(-10 -7 (-15 -2377 ((-52) (-400 (-923 |#1|)) (-1143))) (-15 -2377 ((-52) (-923 |#1|) (-411 (-923 |#1|)) (-1143))))
+((-1731 ((|#4| (-621 |#4|)) 121) (((-1139 |#4|) (-1139 |#4|) (-1139 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3727 (((-1139 |#4|) (-621 (-1139 |#4|))) 114) (((-1139 |#4|) (-1139 |#4|) (-1139 |#4|)) 50) ((|#4| (-621 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
+(((-887 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3727 (|#4| |#4| |#4|)) (-15 -3727 (|#4| (-621 |#4|))) (-15 -3727 ((-1139 |#4|) (-1139 |#4|) (-1139 |#4|))) (-15 -3727 ((-1139 |#4|) (-621 (-1139 |#4|)))) (-15 -1731 (|#4| |#4| |#4|)) (-15 -1731 ((-1139 |#4|) (-1139 |#4|) (-1139 |#4|))) (-15 -1731 (|#4| (-621 |#4|)))) (-769) (-823) (-300) (-920 |#3| |#1| |#2|)) (T -887))
+((-1731 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *6 *4 *5)) (-5 *1 (-887 *4 *5 *6 *2)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)))) (-1731 (*1 *2 *2 *2) (-12 (-5 *2 (-1139 *6)) (-4 *6 (-920 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6)))) (-1731 (*1 *2 *2 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *2)) (-4 *2 (-920 *5 *3 *4)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-621 (-1139 *7))) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-1139 *7)) (-5 *1 (-887 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))) (-3727 (*1 *2 *2 *2) (-12 (-5 *2 (-1139 *6)) (-4 *6 (-920 *5 *3 *4)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *6 *4 *5)) (-5 *1 (-887 *4 *5 *6 *2)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)))) (-3727 (*1 *2 *2 *2) (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *2)) (-4 *2 (-920 *5 *3 *4)))))
+(-10 -7 (-15 -3727 (|#4| |#4| |#4|)) (-15 -3727 (|#4| (-621 |#4|))) (-15 -3727 ((-1139 |#4|) (-1139 |#4|) (-1139 |#4|))) (-15 -3727 ((-1139 |#4|) (-621 (-1139 |#4|)))) (-15 -1731 (|#4| |#4| |#4|)) (-15 -1731 ((-1139 |#4|) (-1139 |#4|) (-1139 |#4|))) (-15 -1731 (|#4| (-621 |#4|))))
+((-2846 (((-875 (-549)) (-942)) 23) (((-875 (-549)) (-621 (-549))) 20)) (-3190 (((-875 (-549)) (-621 (-549))) 48) (((-875 (-549)) (-892)) 49)) (-3942 (((-875 (-549))) 24)) (-4278 (((-875 (-549))) 38) (((-875 (-549)) (-621 (-549))) 37)) (-3857 (((-875 (-549))) 36) (((-875 (-549)) (-621 (-549))) 35)) (-1744 (((-875 (-549))) 34) (((-875 (-549)) (-621 (-549))) 33)) (-2360 (((-875 (-549))) 32) (((-875 (-549)) (-621 (-549))) 31)) (-1700 (((-875 (-549))) 30) (((-875 (-549)) (-621 (-549))) 29)) (-1873 (((-875 (-549))) 40) (((-875 (-549)) (-621 (-549))) 39)) (-2944 (((-875 (-549)) (-621 (-549))) 52) (((-875 (-549)) (-892)) 53)) (-3140 (((-875 (-549)) (-621 (-549))) 50) (((-875 (-549)) (-892)) 51)) (-3211 (((-875 (-549)) (-621 (-549))) 46) (((-875 (-549)) (-892)) 47)) (-3267 (((-875 (-549)) (-621 (-892))) 43)))
+(((-888) (-10 -7 (-15 -3190 ((-875 (-549)) (-892))) (-15 -3190 ((-875 (-549)) (-621 (-549)))) (-15 -3211 ((-875 (-549)) (-892))) (-15 -3211 ((-875 (-549)) (-621 (-549)))) (-15 -3267 ((-875 (-549)) (-621 (-892)))) (-15 -3140 ((-875 (-549)) (-892))) (-15 -3140 ((-875 (-549)) (-621 (-549)))) (-15 -2944 ((-875 (-549)) (-892))) (-15 -2944 ((-875 (-549)) (-621 (-549)))) (-15 -1700 ((-875 (-549)) (-621 (-549)))) (-15 -1700 ((-875 (-549)))) (-15 -2360 ((-875 (-549)) (-621 (-549)))) (-15 -2360 ((-875 (-549)))) (-15 -1744 ((-875 (-549)) (-621 (-549)))) (-15 -1744 ((-875 (-549)))) (-15 -3857 ((-875 (-549)) (-621 (-549)))) (-15 -3857 ((-875 (-549)))) (-15 -4278 ((-875 (-549)) (-621 (-549)))) (-15 -4278 ((-875 (-549)))) (-15 -1873 ((-875 (-549)) (-621 (-549)))) (-15 -1873 ((-875 (-549)))) (-15 -3942 ((-875 (-549)))) (-15 -2846 ((-875 (-549)) (-621 (-549)))) (-15 -2846 ((-875 (-549)) (-942))))) (T -888))
+((-2846 (*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3942 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-1873 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-4278 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3857 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3857 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-1744 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2360 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-1700 (*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2944 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-2944 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3267 (*1 *2 *3) (-12 (-5 *3 (-621 (-892))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(-10 -7 (-15 -3190 ((-875 (-549)) (-892))) (-15 -3190 ((-875 (-549)) (-621 (-549)))) (-15 -3211 ((-875 (-549)) (-892))) (-15 -3211 ((-875 (-549)) (-621 (-549)))) (-15 -3267 ((-875 (-549)) (-621 (-892)))) (-15 -3140 ((-875 (-549)) (-892))) (-15 -3140 ((-875 (-549)) (-621 (-549)))) (-15 -2944 ((-875 (-549)) (-892))) (-15 -2944 ((-875 (-549)) (-621 (-549)))) (-15 -1700 ((-875 (-549)) (-621 (-549)))) (-15 -1700 ((-875 (-549)))) (-15 -2360 ((-875 (-549)) (-621 (-549)))) (-15 -2360 ((-875 (-549)))) (-15 -1744 ((-875 (-549)) (-621 (-549)))) (-15 -1744 ((-875 (-549)))) (-15 -3857 ((-875 (-549)) (-621 (-549)))) (-15 -3857 ((-875 (-549)))) (-15 -4278 ((-875 (-549)) (-621 (-549)))) (-15 -4278 ((-875 (-549)))) (-15 -1873 ((-875 (-549)) (-621 (-549)))) (-15 -1873 ((-875 (-549)))) (-15 -3942 ((-875 (-549)))) (-15 -2846 ((-875 (-549)) (-621 (-549)))) (-15 -2846 ((-875 (-549)) (-942))))
+((-1277 (((-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1143))) 12)) (-2153 (((-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1143))) 11)))
+(((-889 |#1|) (-10 -7 (-15 -2153 ((-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1143)))) (-15 -1277 ((-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1143))))) (-444)) (T -889))
+((-1277 (*1 *2 *2 *3) (-12 (-5 *2 (-621 (-923 *4))) (-5 *3 (-621 (-1143))) (-4 *4 (-444)) (-5 *1 (-889 *4)))) (-2153 (*1 *2 *2 *3) (-12 (-5 *2 (-621 (-923 *4))) (-5 *3 (-621 (-1143))) (-4 *4 (-444)) (-5 *1 (-889 *4)))))
+(-10 -7 (-15 -2153 ((-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1143)))) (-15 -1277 ((-621 (-923 |#1|)) (-621 (-923 |#1|)) (-621 (-1143)))))
+((-3846 (((-309 |#1|) (-469)) 16)))
+(((-890 |#1|) (-10 -7 (-15 -3846 ((-309 |#1|) (-469)))) (-13 (-823) (-541))) (T -890))
+((-3846 (*1 *2 *3) (-12 (-5 *3 (-469)) (-5 *2 (-309 *4)) (-5 *1 (-890 *4)) (-4 *4 (-13 (-823) (-541))))))
+(-10 -7 (-15 -3846 ((-309 |#1|) (-469))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-2675 (((-112) $) 30)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-891) (-138)) (T -891))
+((-1309 (*1 *2 *3) (-12 (-4 *1 (-891)) (-5 *2 (-2 (|:| -1570 (-621 *1)) (|:| -4248 *1))) (-5 *3 (-621 *1)))) (-3644 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-621 *1)) (-4 *1 (-891)))))
+(-13 (-444) (-10 -8 (-15 -1309 ((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $))) (-15 -3644 ((-3 (-621 $) "failed") (-621 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) NIL)) (-2675 (((-112) $) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3727 (($ $ $) NIL)) (-3846 (((-834) $) NIL)) (-3287 (($) NIL T CONST)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-747)) NIL) (($ $ (-892)) NIL)) (* (($ (-892) $) NIL) (($ $ $) NIL)))
+(((-892) (-13 (-770) (-703) (-10 -8 (-15 -3727 ($ $ $)) (-6 (-4339 "*"))))) (T -892))
+((-3727 (*1 *1 *1 *1) (-5 *1 (-892))))
+(-13 (-770) (-703) (-10 -8 (-15 -3727 ($ $ $)) (-6 (-4339 "*"))))
+((-2225 ((|#2| (-621 |#1|) (-621 |#1|)) 24)))
+(((-893 |#1| |#2|) (-10 -7 (-15 -2225 (|#2| (-621 |#1|) (-621 |#1|)))) (-356) (-1202 |#1|)) (T -893))
+((-2225 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-356)) (-4 *2 (-1202 *4)) (-5 *1 (-893 *4 *2)))))
+(-10 -7 (-15 -2225 (|#2| (-621 |#1|) (-621 |#1|))))
+((-1842 (((-1139 |#2|) (-621 |#2|) (-621 |#2|)) 17) (((-1199 |#1| |#2|) (-1199 |#1| |#2|) (-621 |#2|) (-621 |#2|)) 13)))
+(((-894 |#1| |#2|) (-10 -7 (-15 -1842 ((-1199 |#1| |#2|) (-1199 |#1| |#2|) (-621 |#2|) (-621 |#2|))) (-15 -1842 ((-1139 |#2|) (-621 |#2|) (-621 |#2|)))) (-1143) (-356)) (T -894))
+((-1842 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-356)) (-5 *2 (-1139 *5)) (-5 *1 (-894 *4 *5)) (-14 *4 (-1143)))) (-1842 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1199 *4 *5)) (-5 *3 (-621 *5)) (-14 *4 (-1143)) (-4 *5 (-356)) (-5 *1 (-894 *4 *5)))))
+(-10 -7 (-15 -1842 ((-1199 |#1| |#2|) (-1199 |#1| |#2|) (-621 |#2|) (-621 |#2|))) (-15 -1842 ((-1139 |#2|) (-621 |#2|) (-621 |#2|))))
+((-2514 (((-549) (-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-1125)) 139)) (-3047 ((|#4| |#4|) 155)) (-2888 (((-621 (-400 (-923 |#1|))) (-621 (-1143))) 118)) (-2458 (((-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))) (-665 |#4|) (-621 (-400 (-923 |#1|))) (-621 (-621 |#4|)) (-747) (-747) (-549)) 75)) (-4146 (((-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))) (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))) (-621 |#4|)) 59)) (-1293 (((-665 |#4|) (-665 |#4|) (-621 |#4|)) 55)) (-3894 (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-1125)) 151)) (-1431 (((-549) (-665 |#4|) (-892) (-1125)) 132) (((-549) (-665 |#4|) (-621 (-1143)) (-892) (-1125)) 131) (((-549) (-665 |#4|) (-621 |#4|) (-892) (-1125)) 130) (((-549) (-665 |#4|) (-1125)) 127) (((-549) (-665 |#4|) (-621 (-1143)) (-1125)) 126) (((-549) (-665 |#4|) (-621 |#4|) (-1125)) 125) (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-892)) 124) (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 (-1143)) (-892)) 123) (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 |#4|) (-892)) 122) (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|)) 120) (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 (-1143))) 119) (((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 |#4|)) 115)) (-2605 ((|#4| (-923 |#1|)) 68)) (-3724 (((-112) (-621 |#4|) (-621 (-621 |#4|))) 152)) (-3636 (((-621 (-621 (-549))) (-549) (-549)) 129)) (-1939 (((-621 (-621 |#4|)) (-621 (-621 |#4|))) 88)) (-1330 (((-747) (-621 (-2 (|:| -3123 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|))))) 86)) (-4131 (((-747) (-621 (-2 (|:| -3123 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|))))) 85)) (-3161 (((-112) (-621 (-923 |#1|))) 17) (((-112) (-621 |#4|)) 13)) (-1615 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-621 |#4|)) (|:| |n0| (-621 |#4|))) (-621 |#4|) (-621 |#4|)) 71)) (-3126 (((-621 |#4|) |#4|) 49)) (-1351 (((-621 (-400 (-923 |#1|))) (-621 |#4|)) 114) (((-665 (-400 (-923 |#1|))) (-665 |#4|)) 56) (((-400 (-923 |#1|)) |#4|) 111)) (-4018 (((-2 (|:| |rgl| (-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))))))) (|:| |rgsz| (-549))) (-665 |#4|) (-621 (-400 (-923 |#1|))) (-747) (-1125) (-549)) 93)) (-1840 (((-621 (-2 (|:| -3123 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))) (-665 |#4|) (-747)) 84)) (-1895 (((-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549))))) (-665 |#4|) (-747)) 101)) (-1458 (((-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))) (-2 (|:| -3521 (-665 (-400 (-923 |#1|)))) (|:| |vec| (-621 (-400 (-923 |#1|)))) (|:| -3123 (-747)) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549))))) 48)))
+(((-895 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1431 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 |#4|))) (-15 -1431 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 (-1143)))) (-15 -1431 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|))) (-15 -1431 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 |#4|) (-892))) (-15 -1431 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 (-1143)) (-892))) (-15 -1431 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-892))) (-15 -1431 ((-549) (-665 |#4|) (-621 |#4|) (-1125))) (-15 -1431 ((-549) (-665 |#4|) (-621 (-1143)) (-1125))) (-15 -1431 ((-549) (-665 |#4|) (-1125))) (-15 -1431 ((-549) (-665 |#4|) (-621 |#4|) (-892) (-1125))) (-15 -1431 ((-549) (-665 |#4|) (-621 (-1143)) (-892) (-1125))) (-15 -1431 ((-549) (-665 |#4|) (-892) (-1125))) (-15 -2514 ((-549) (-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-1125))) (-15 -3894 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-1125))) (-15 -4018 ((-2 (|:| |rgl| (-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))))))) (|:| |rgsz| (-549))) (-665 |#4|) (-621 (-400 (-923 |#1|))) (-747) (-1125) (-549))) (-15 -1351 ((-400 (-923 |#1|)) |#4|)) (-15 -1351 ((-665 (-400 (-923 |#1|))) (-665 |#4|))) (-15 -1351 ((-621 (-400 (-923 |#1|))) (-621 |#4|))) (-15 -2888 ((-621 (-400 (-923 |#1|))) (-621 (-1143)))) (-15 -2605 (|#4| (-923 |#1|))) (-15 -1615 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-621 |#4|)) (|:| |n0| (-621 |#4|))) (-621 |#4|) (-621 |#4|))) (-15 -1840 ((-621 (-2 (|:| -3123 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))) (-665 |#4|) (-747))) (-15 -4146 ((-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))) (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))) (-621 |#4|))) (-15 -1458 ((-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))) (-2 (|:| -3521 (-665 (-400 (-923 |#1|)))) (|:| |vec| (-621 (-400 (-923 |#1|)))) (|:| -3123 (-747)) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (-15 -3126 ((-621 |#4|) |#4|)) (-15 -4131 ((-747) (-621 (-2 (|:| -3123 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))))) (-15 -1330 ((-747) (-621 (-2 (|:| -3123 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))))) (-15 -1939 ((-621 (-621 |#4|)) (-621 (-621 |#4|)))) (-15 -3636 ((-621 (-621 (-549))) (-549) (-549))) (-15 -3724 ((-112) (-621 |#4|) (-621 (-621 |#4|)))) (-15 -1895 ((-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549))))) (-665 |#4|) (-747))) (-15 -1293 ((-665 |#4|) (-665 |#4|) (-621 |#4|))) (-15 -2458 ((-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))) (-665 |#4|) (-621 (-400 (-923 |#1|))) (-621 (-621 |#4|)) (-747) (-747) (-549))) (-15 -3047 (|#4| |#4|)) (-15 -3161 ((-112) (-621 |#4|))) (-15 -3161 ((-112) (-621 (-923 |#1|))))) (-13 (-300) (-145)) (-13 (-823) (-594 (-1143))) (-769) (-920 |#1| |#3| |#2|)) (T -895))
+((-3161 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3047 (*1 *2 *2) (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1143)))) (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-920 *3 *5 *4)))) (-2458 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549))))) (-5 *4 (-665 *12)) (-5 *5 (-621 (-400 (-923 *9)))) (-5 *6 (-621 (-621 *12))) (-5 *7 (-747)) (-5 *8 (-549)) (-4 *9 (-13 (-300) (-145))) (-4 *12 (-920 *9 *11 *10)) (-4 *10 (-13 (-823) (-594 (-1143)))) (-4 *11 (-769)) (-5 *2 (-2 (|:| |eqzro| (-621 *12)) (|:| |neqzro| (-621 *12)) (|:| |wcond| (-621 (-923 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 *9)))) (|:| -1949 (-621 (-1226 (-400 (-923 *9))))))))) (-5 *1 (-895 *9 *10 *11 *12)))) (-1293 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-747)) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143)))) (-4 *7 (-769)) (-5 *2 (-621 (-2 (|:| |det| *8) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (-5 *1 (-895 *5 *6 *7 *8)))) (-3724 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-621 *8))) (-5 *3 (-621 *8)) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143)))) (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *5 *6 *7 *8)))) (-3636 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-621 (-621 (-549)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-549)) (-4 *7 (-920 *4 *6 *5)))) (-1939 (*1 *2 *2) (-12 (-5 *2 (-621 (-621 *6))) (-4 *6 (-920 *3 *5 *4)) (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1143)))) (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *6)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -3123 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| *7) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 *7))))) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-747)) (-5 *1 (-895 *4 *5 *6 *7)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -3123 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| *7) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 *7))))) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-747)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3126 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-621 *3)) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-920 *4 *6 *5)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3521 (-665 (-400 (-923 *4)))) (|:| |vec| (-621 (-400 (-923 *4)))) (|:| -3123 (-747)) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549))))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-2 (|:| |partsol| (-1226 (-400 (-923 *4)))) (|:| -1949 (-621 (-1226 (-400 (-923 *4))))))) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))) (-4146 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1226 (-400 (-923 *4)))) (|:| -1949 (-621 (-1226 (-400 (-923 *4))))))) (-5 *3 (-621 *7)) (-4 *4 (-13 (-300) (-145))) (-4 *7 (-920 *4 *6 *5)) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143)))) (-4 *7 (-769)) (-5 *2 (-621 (-2 (|:| -3123 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| *8) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 *8))))) (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-747)))) (-1615 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-4 *7 (-920 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-621 *7)) (|:| |n0| (-621 *7)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-923 *4)) (-4 *4 (-13 (-300) (-145))) (-4 *2 (-920 *4 *6 *5)) (-5 *1 (-895 *4 *5 *6 *2)) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-621 (-1143))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-621 (-400 (-923 *4)))) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-621 (-400 (-923 *4)))) (-5 *1 (-895 *4 *5 *6 *7)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-665 (-400 (-923 *4)))) (-5 *1 (-895 *4 *5 *6 *7)))) (-1351 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-400 (-923 *4))) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-920 *4 *6 *5)))) (-4018 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-665 *11)) (-5 *4 (-621 (-400 (-923 *8)))) (-5 *5 (-747)) (-5 *6 (-1125)) (-4 *8 (-13 (-300) (-145))) (-4 *11 (-920 *8 *10 *9)) (-4 *9 (-13 (-823) (-594 (-1143)))) (-4 *10 (-769)) (-5 *2 (-2 (|:| |rgl| (-621 (-2 (|:| |eqzro| (-621 *11)) (|:| |neqzro| (-621 *11)) (|:| |wcond| (-621 (-923 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 *8)))) (|:| -1949 (-621 (-1226 (-400 (-923 *8)))))))))) (|:| |rgsz| (-549)))) (-5 *1 (-895 *8 *9 *10 *11)) (-5 *7 (-549)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *7)) (|:| |neqzro| (-621 *7)) (|:| |wcond| (-621 (-923 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 *4)))) (|:| -1949 (-621 (-1226 (-400 (-923 *4)))))))))) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8)) (|:| |wcond| (-621 (-923 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 *5)))) (|:| -1949 (-621 (-1226 (-400 (-923 *5)))))))))) (-5 *4 (-1125)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-920 *5 *7 *6)) (-4 *6 (-13 (-823) (-594 (-1143)))) (-4 *7 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *5 *6 *7 *8)))) (-1431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-892)) (-5 *5 (-1125)) (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1143)))) (-4 *8 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *6 *7 *8 *9)))) (-1431 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 *10)) (-5 *4 (-621 (-1143))) (-5 *5 (-892)) (-5 *6 (-1125)) (-4 *10 (-920 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-823) (-594 (-1143)))) (-4 *9 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *7 *8 *9 *10)))) (-1431 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 *10)) (-5 *4 (-621 *10)) (-5 *5 (-892)) (-5 *6 (-1125)) (-4 *10 (-920 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-823) (-594 (-1143)))) (-4 *9 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *7 *8 *9 *10)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-1125)) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143)))) (-4 *7 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *5 *6 *7 *8)))) (-1431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-621 (-1143))) (-5 *5 (-1125)) (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1143)))) (-4 *8 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *6 *7 *8 *9)))) (-1431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-621 *9)) (-5 *5 (-1125)) (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1143)))) (-4 *8 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *6 *7 *8 *9)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-892)) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143)))) (-4 *7 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8)) (|:| |wcond| (-621 (-923 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 *5)))) (|:| -1949 (-621 (-1226 (-400 (-923 *5)))))))))) (-5 *1 (-895 *5 *6 *7 *8)))) (-1431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-621 (-1143))) (-5 *5 (-892)) (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1143)))) (-4 *8 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *9)) (|:| |neqzro| (-621 *9)) (|:| |wcond| (-621 (-923 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 *6)))) (|:| -1949 (-621 (-1226 (-400 (-923 *6)))))))))) (-5 *1 (-895 *6 *7 *8 *9)))) (-1431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *5 (-892)) (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1143)))) (-4 *8 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *9)) (|:| |neqzro| (-621 *9)) (|:| |wcond| (-621 (-923 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 *6)))) (|:| -1949 (-621 (-1226 (-400 (-923 *6)))))))))) (-5 *1 (-895 *6 *7 *8 *9)) (-5 *4 (-621 *9)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *7)) (|:| |neqzro| (-621 *7)) (|:| |wcond| (-621 (-923 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 *4)))) (|:| -1949 (-621 (-1226 (-400 (-923 *4)))))))))) (-5 *1 (-895 *4 *5 *6 *7)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-621 (-1143))) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143)))) (-4 *7 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8)) (|:| |wcond| (-621 (-923 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 *5)))) (|:| -1949 (-621 (-1226 (-400 (-923 *5)))))))))) (-5 *1 (-895 *5 *6 *7 *8)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143)))) (-4 *7 (-769)) (-5 *2 (-621 (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8)) (|:| |wcond| (-621 (-923 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 *5)))) (|:| -1949 (-621 (-1226 (-400 (-923 *5)))))))))) (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-621 *8)))))
+(-10 -7 (-15 -1431 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 |#4|))) (-15 -1431 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 (-1143)))) (-15 -1431 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|))) (-15 -1431 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 |#4|) (-892))) (-15 -1431 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-621 (-1143)) (-892))) (-15 -1431 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-665 |#4|) (-892))) (-15 -1431 ((-549) (-665 |#4|) (-621 |#4|) (-1125))) (-15 -1431 ((-549) (-665 |#4|) (-621 (-1143)) (-1125))) (-15 -1431 ((-549) (-665 |#4|) (-1125))) (-15 -1431 ((-549) (-665 |#4|) (-621 |#4|) (-892) (-1125))) (-15 -1431 ((-549) (-665 |#4|) (-621 (-1143)) (-892) (-1125))) (-15 -1431 ((-549) (-665 |#4|) (-892) (-1125))) (-15 -2514 ((-549) (-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-1125))) (-15 -3894 ((-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|))))))))) (-1125))) (-15 -4018 ((-2 (|:| |rgl| (-621 (-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))))))) (|:| |rgsz| (-549))) (-665 |#4|) (-621 (-400 (-923 |#1|))) (-747) (-1125) (-549))) (-15 -1351 ((-400 (-923 |#1|)) |#4|)) (-15 -1351 ((-665 (-400 (-923 |#1|))) (-665 |#4|))) (-15 -1351 ((-621 (-400 (-923 |#1|))) (-621 |#4|))) (-15 -2888 ((-621 (-400 (-923 |#1|))) (-621 (-1143)))) (-15 -2605 (|#4| (-923 |#1|))) (-15 -1615 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-621 |#4|)) (|:| |n0| (-621 |#4|))) (-621 |#4|) (-621 |#4|))) (-15 -1840 ((-621 (-2 (|:| -3123 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))) (-665 |#4|) (-747))) (-15 -4146 ((-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))) (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))) (-621 |#4|))) (-15 -1458 ((-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))) (-2 (|:| -3521 (-665 (-400 (-923 |#1|)))) (|:| |vec| (-621 (-400 (-923 |#1|)))) (|:| -3123 (-747)) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (-15 -3126 ((-621 |#4|) |#4|)) (-15 -4131 ((-747) (-621 (-2 (|:| -3123 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))))) (-15 -1330 ((-747) (-621 (-2 (|:| -3123 (-747)) (|:| |eqns| (-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))) (|:| |fgb| (-621 |#4|)))))) (-15 -1939 ((-621 (-621 |#4|)) (-621 (-621 |#4|)))) (-15 -3636 ((-621 (-621 (-549))) (-549) (-549))) (-15 -3724 ((-112) (-621 |#4|) (-621 (-621 |#4|)))) (-15 -1895 ((-621 (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549))))) (-665 |#4|) (-747))) (-15 -1293 ((-665 |#4|) (-665 |#4|) (-621 |#4|))) (-15 -2458 ((-2 (|:| |eqzro| (-621 |#4|)) (|:| |neqzro| (-621 |#4|)) (|:| |wcond| (-621 (-923 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1226 (-400 (-923 |#1|)))) (|:| -1949 (-621 (-1226 (-400 (-923 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))) (-665 |#4|) (-621 (-400 (-923 |#1|))) (-621 (-621 |#4|)) (-747) (-747) (-549))) (-15 -3047 (|#4| |#4|)) (-15 -3161 ((-112) (-621 |#4|))) (-15 -3161 ((-112) (-621 (-923 |#1|)))))
+((-1811 (((-898) |#1| (-1143)) 17) (((-898) |#1| (-1143) (-1061 (-219))) 21)) (-1645 (((-898) |#1| |#1| (-1143) (-1061 (-219))) 19) (((-898) |#1| (-1143) (-1061 (-219))) 15)))
+(((-896 |#1|) (-10 -7 (-15 -1645 ((-898) |#1| (-1143) (-1061 (-219)))) (-15 -1645 ((-898) |#1| |#1| (-1143) (-1061 (-219)))) (-15 -1811 ((-898) |#1| (-1143) (-1061 (-219)))) (-15 -1811 ((-898) |#1| (-1143)))) (-594 (-525))) (T -896))
+((-1811 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-5 *2 (-898)) (-5 *1 (-896 *3)) (-4 *3 (-594 (-525))))) (-1811 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1143)) (-5 *5 (-1061 (-219))) (-5 *2 (-898)) (-5 *1 (-896 *3)) (-4 *3 (-594 (-525))))) (-1645 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1143)) (-5 *5 (-1061 (-219))) (-5 *2 (-898)) (-5 *1 (-896 *3)) (-4 *3 (-594 (-525))))) (-1645 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1143)) (-5 *5 (-1061 (-219))) (-5 *2 (-898)) (-5 *1 (-896 *3)) (-4 *3 (-594 (-525))))))
+(-10 -7 (-15 -1645 ((-898) |#1| (-1143) (-1061 (-219)))) (-15 -1645 ((-898) |#1| |#1| (-1143) (-1061 (-219)))) (-15 -1811 ((-898) |#1| (-1143) (-1061 (-219)))) (-15 -1811 ((-898) |#1| (-1143))))
+((-2740 (($ $ (-1061 (-219)) (-1061 (-219)) (-1061 (-219))) 70)) (-1856 (((-1061 (-219)) $) 40)) (-1843 (((-1061 (-219)) $) 39)) (-1832 (((-1061 (-219)) $) 38)) (-2038 (((-621 (-621 (-219))) $) 43)) (-3865 (((-1061 (-219)) $) 41)) (-3991 (((-549) (-549)) 32)) (-1446 (((-549) (-549)) 28)) (-3835 (((-549) (-549)) 30)) (-3752 (((-112) (-112)) 35)) (-3748 (((-549)) 31)) (-4166 (($ $ (-1061 (-219))) 73) (($ $) 74)) (-1586 (($ (-1 (-914 (-219)) (-219)) (-1061 (-219))) 78) (($ (-1 (-914 (-219)) (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219))) 79)) (-1645 (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1061 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219))) 82) (($ $ (-1061 (-219))) 76)) (-4160 (((-549)) 36)) (-2308 (((-549)) 27)) (-2266 (((-549)) 29)) (-3928 (((-621 (-621 (-914 (-219)))) $) 95)) (-2351 (((-112) (-112)) 37)) (-3846 (((-834) $) 94)) (-3127 (((-112)) 34)))
+(((-897) (-13 (-945) (-10 -8 (-15 -1586 ($ (-1 (-914 (-219)) (-219)) (-1061 (-219)))) (-15 -1586 ($ (-1 (-914 (-219)) (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)))) (-15 -1645 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1061 (-219)))) (-15 -1645 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)))) (-15 -1645 ($ $ (-1061 (-219)))) (-15 -2740 ($ $ (-1061 (-219)) (-1061 (-219)) (-1061 (-219)))) (-15 -4166 ($ $ (-1061 (-219)))) (-15 -4166 ($ $)) (-15 -3865 ((-1061 (-219)) $)) (-15 -2038 ((-621 (-621 (-219))) $)) (-15 -2308 ((-549))) (-15 -1446 ((-549) (-549))) (-15 -2266 ((-549))) (-15 -3835 ((-549) (-549))) (-15 -3748 ((-549))) (-15 -3991 ((-549) (-549))) (-15 -3127 ((-112))) (-15 -3752 ((-112) (-112))) (-15 -4160 ((-549))) (-15 -2351 ((-112) (-112)))))) (T -897))
+((-1586 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1061 (-219))) (-5 *1 (-897)))) (-1586 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1061 (-219))) (-5 *1 (-897)))) (-1645 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219))) (-5 *1 (-897)))) (-1645 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219))) (-5 *1 (-897)))) (-1645 (*1 *1 *1 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-897)))) (-2740 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-897)))) (-4166 (*1 *1 *1 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-897)))) (-4166 (*1 *1 *1) (-5 *1 (-897))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-897)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-219)))) (-5 *1 (-897)))) (-2308 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-1446 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-2266 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-3748 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-3127 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-897)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-897)))) (-4160 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))) (-2351 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-897)))))
+(-13 (-945) (-10 -8 (-15 -1586 ($ (-1 (-914 (-219)) (-219)) (-1061 (-219)))) (-15 -1586 ($ (-1 (-914 (-219)) (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)))) (-15 -1645 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1061 (-219)))) (-15 -1645 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)))) (-15 -1645 ($ $ (-1061 (-219)))) (-15 -2740 ($ $ (-1061 (-219)) (-1061 (-219)) (-1061 (-219)))) (-15 -4166 ($ $ (-1061 (-219)))) (-15 -4166 ($ $)) (-15 -3865 ((-1061 (-219)) $)) (-15 -2038 ((-621 (-621 (-219))) $)) (-15 -2308 ((-549))) (-15 -1446 ((-549) (-549))) (-15 -2266 ((-549))) (-15 -3835 ((-549) (-549))) (-15 -3748 ((-549))) (-15 -3991 ((-549) (-549))) (-15 -3127 ((-112))) (-15 -3752 ((-112) (-112))) (-15 -4160 ((-549))) (-15 -2351 ((-112) (-112)))))
+((-2740 (($ $ (-1061 (-219))) 70) (($ $ (-1061 (-219)) (-1061 (-219))) 71)) (-1843 (((-1061 (-219)) $) 44)) (-1832 (((-1061 (-219)) $) 43)) (-3865 (((-1061 (-219)) $) 45)) (-1568 (((-549) (-549)) 37)) (-4096 (((-549) (-549)) 33)) (-1333 (((-549) (-549)) 35)) (-2569 (((-112) (-112)) 39)) (-3654 (((-549)) 36)) (-4166 (($ $ (-1061 (-219))) 74) (($ $) 75)) (-1586 (($ (-1 (-914 (-219)) (-219)) (-1061 (-219))) 84) (($ (-1 (-914 (-219)) (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219))) 85)) (-1811 (($ (-1 (-219) (-219)) (-1061 (-219))) 92) (($ (-1 (-219) (-219))) 95)) (-1645 (($ (-1 (-219) (-219)) (-1061 (-219))) 79) (($ (-1 (-219) (-219)) (-1061 (-219)) (-1061 (-219))) 80) (($ (-621 (-1 (-219) (-219))) (-1061 (-219))) 87) (($ (-621 (-1 (-219) (-219))) (-1061 (-219)) (-1061 (-219))) 88) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1061 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219))) 82) (($ $ (-1061 (-219))) 76)) (-2667 (((-112) $) 40)) (-4197 (((-549)) 41)) (-2474 (((-549)) 32)) (-3228 (((-549)) 34)) (-3928 (((-621 (-621 (-914 (-219)))) $) 23)) (-1690 (((-112) (-112)) 42)) (-3846 (((-834) $) 106)) (-3308 (((-112)) 38)))
+(((-898) (-13 (-926) (-10 -8 (-15 -1645 ($ (-1 (-219) (-219)) (-1061 (-219)))) (-15 -1645 ($ (-1 (-219) (-219)) (-1061 (-219)) (-1061 (-219)))) (-15 -1645 ($ (-621 (-1 (-219) (-219))) (-1061 (-219)))) (-15 -1645 ($ (-621 (-1 (-219) (-219))) (-1061 (-219)) (-1061 (-219)))) (-15 -1645 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1061 (-219)))) (-15 -1645 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)))) (-15 -1586 ($ (-1 (-914 (-219)) (-219)) (-1061 (-219)))) (-15 -1586 ($ (-1 (-914 (-219)) (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)))) (-15 -1811 ($ (-1 (-219) (-219)) (-1061 (-219)))) (-15 -1811 ($ (-1 (-219) (-219)))) (-15 -1645 ($ $ (-1061 (-219)))) (-15 -2667 ((-112) $)) (-15 -2740 ($ $ (-1061 (-219)))) (-15 -2740 ($ $ (-1061 (-219)) (-1061 (-219)))) (-15 -4166 ($ $ (-1061 (-219)))) (-15 -4166 ($ $)) (-15 -3865 ((-1061 (-219)) $)) (-15 -2474 ((-549))) (-15 -4096 ((-549) (-549))) (-15 -3228 ((-549))) (-15 -1333 ((-549) (-549))) (-15 -3654 ((-549))) (-15 -1568 ((-549) (-549))) (-15 -3308 ((-112))) (-15 -2569 ((-112) (-112))) (-15 -4197 ((-549))) (-15 -1690 ((-112) (-112)))))) (T -898))
+((-1645 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219))) (-5 *1 (-898)))) (-1645 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219))) (-5 *1 (-898)))) (-1645 (*1 *1 *2 *3) (-12 (-5 *2 (-621 (-1 (-219) (-219)))) (-5 *3 (-1061 (-219))) (-5 *1 (-898)))) (-1645 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-621 (-1 (-219) (-219)))) (-5 *3 (-1061 (-219))) (-5 *1 (-898)))) (-1645 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219))) (-5 *1 (-898)))) (-1645 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219))) (-5 *1 (-898)))) (-1586 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1061 (-219))) (-5 *1 (-898)))) (-1586 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1061 (-219))) (-5 *1 (-898)))) (-1811 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219))) (-5 *1 (-898)))) (-1811 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-898)))) (-1645 (*1 *1 *1 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-898)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898)))) (-2740 (*1 *1 *1 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-898)))) (-2740 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-898)))) (-4166 (*1 *1 *1 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-898)))) (-4166 (*1 *1 *1) (-5 *1 (-898))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-898)))) (-2474 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-4096 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-3228 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-1333 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-3654 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-1568 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-3308 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))) (-2569 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))) (-4197 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))) (-1690 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
+(-13 (-926) (-10 -8 (-15 -1645 ($ (-1 (-219) (-219)) (-1061 (-219)))) (-15 -1645 ($ (-1 (-219) (-219)) (-1061 (-219)) (-1061 (-219)))) (-15 -1645 ($ (-621 (-1 (-219) (-219))) (-1061 (-219)))) (-15 -1645 ($ (-621 (-1 (-219) (-219))) (-1061 (-219)) (-1061 (-219)))) (-15 -1645 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1061 (-219)))) (-15 -1645 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)))) (-15 -1586 ($ (-1 (-914 (-219)) (-219)) (-1061 (-219)))) (-15 -1586 ($ (-1 (-914 (-219)) (-219)) (-1061 (-219)) (-1061 (-219)) (-1061 (-219)))) (-15 -1811 ($ (-1 (-219) (-219)) (-1061 (-219)))) (-15 -1811 ($ (-1 (-219) (-219)))) (-15 -1645 ($ $ (-1061 (-219)))) (-15 -2667 ((-112) $)) (-15 -2740 ($ $ (-1061 (-219)))) (-15 -2740 ($ $ (-1061 (-219)) (-1061 (-219)))) (-15 -4166 ($ $ (-1061 (-219)))) (-15 -4166 ($ $)) (-15 -3865 ((-1061 (-219)) $)) (-15 -2474 ((-549))) (-15 -4096 ((-549) (-549))) (-15 -3228 ((-549))) (-15 -1333 ((-549) (-549))) (-15 -3654 ((-549))) (-15 -1568 ((-549) (-549))) (-15 -3308 ((-112))) (-15 -2569 ((-112) (-112))) (-15 -4197 ((-549))) (-15 -1690 ((-112) (-112)))))
+((-1488 (((-621 (-1061 (-219))) (-621 (-621 (-914 (-219))))) 24)))
+(((-899) (-10 -7 (-15 -1488 ((-621 (-1061 (-219))) (-621 (-621 (-914 (-219)))))))) (T -899))
+((-1488 (*1 *2 *3) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *2 (-621 (-1061 (-219)))) (-5 *1 (-899)))))
+(-10 -7 (-15 -1488 ((-621 (-1061 (-219))) (-621 (-621 (-914 (-219)))))))
+((-2415 ((|#2| |#2|) 26)) (-1779 ((|#2| |#2|) 27)) (-2589 ((|#2| |#2|) 25)) (-3053 ((|#2| |#2| (-1125)) 24)))
+(((-900 |#1| |#2|) (-10 -7 (-15 -3053 (|#2| |#2| (-1125))) (-15 -2589 (|#2| |#2|)) (-15 -2415 (|#2| |#2|)) (-15 -1779 (|#2| |#2|))) (-823) (-423 |#1|)) (T -900))
+((-1779 (*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-900 *3 *2)) (-4 *2 (-423 *3)))) (-2415 (*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-900 *3 *2)) (-4 *2 (-423 *3)))) (-2589 (*1 *2 *2) (-12 (-4 *3 (-823)) (-5 *1 (-900 *3 *2)) (-4 *2 (-423 *3)))) (-3053 (*1 *2 *2 *3) (-12 (-5 *3 (-1125)) (-4 *4 (-823)) (-5 *1 (-900 *4 *2)) (-4 *2 (-423 *4)))))
+(-10 -7 (-15 -3053 (|#2| |#2| (-1125))) (-15 -2589 (|#2| |#2|)) (-15 -2415 (|#2| |#2|)) (-15 -1779 (|#2| |#2|)))
+((-2415 (((-309 (-549)) (-1143)) 16)) (-1779 (((-309 (-549)) (-1143)) 14)) (-2589 (((-309 (-549)) (-1143)) 12)) (-3053 (((-309 (-549)) (-1143) (-1125)) 19)))
+(((-901) (-10 -7 (-15 -3053 ((-309 (-549)) (-1143) (-1125))) (-15 -2589 ((-309 (-549)) (-1143))) (-15 -2415 ((-309 (-549)) (-1143))) (-15 -1779 ((-309 (-549)) (-1143))))) (T -901))
+((-1779 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-309 (-549))) (-5 *1 (-901)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-309 (-549))) (-5 *1 (-901)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-309 (-549))) (-5 *1 (-901)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-1125)) (-5 *2 (-309 (-549))) (-5 *1 (-901)))))
+(-10 -7 (-15 -3053 ((-309 (-549)) (-1143) (-1125))) (-15 -2589 ((-309 (-549)) (-1143))) (-15 -2415 ((-309 (-549)) (-1143))) (-15 -1779 ((-309 (-549)) (-1143))))
+((-2932 (((-860 |#1| |#3|) |#2| (-863 |#1|) (-860 |#1| |#3|)) 25)) (-3233 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -3233 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2932 ((-860 |#1| |#3|) |#2| (-863 |#1|) (-860 |#1| |#3|)))) (-1067) (-857 |#1|) (-13 (-1067) (-1009 |#2|))) (T -902))
+((-2932 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 *6)) (-5 *4 (-863 *5)) (-4 *5 (-1067)) (-4 *6 (-13 (-1067) (-1009 *3))) (-4 *3 (-857 *5)) (-5 *1 (-902 *5 *3 *6)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1067) (-1009 *5))) (-4 *5 (-857 *4)) (-4 *4 (-1067)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-902 *4 *5 *6)))))
+(-10 -7 (-15 -3233 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2932 ((-860 |#1| |#3|) |#2| (-863 |#1|) (-860 |#1| |#3|))))
+((-2932 (((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)) 30)))
+(((-903 |#1| |#2| |#3|) (-10 -7 (-15 -2932 ((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)))) (-1067) (-13 (-541) (-823) (-857 |#1|)) (-13 (-423 |#2|) (-594 (-863 |#1|)) (-857 |#1|) (-1009 (-592 $)))) (T -903))
+((-2932 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 *3)) (-4 *5 (-1067)) (-4 *3 (-13 (-423 *6) (-594 *4) (-857 *5) (-1009 (-592 $)))) (-5 *4 (-863 *5)) (-4 *6 (-13 (-541) (-823) (-857 *5))) (-5 *1 (-903 *5 *6 *3)))))
+(-10 -7 (-15 -2932 ((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))))
+((-2932 (((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|)) 13)))
+(((-904 |#1|) (-10 -7 (-15 -2932 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|)))) (-534)) (T -904))
+((-2932 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 (-549) *3)) (-5 *4 (-863 (-549))) (-4 *3 (-534)) (-5 *1 (-904 *3)))))
+(-10 -7 (-15 -2932 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))))
+((-2932 (((-860 |#1| |#2|) (-592 |#2|) (-863 |#1|) (-860 |#1| |#2|)) 54)))
+(((-905 |#1| |#2|) (-10 -7 (-15 -2932 ((-860 |#1| |#2|) (-592 |#2|) (-863 |#1|) (-860 |#1| |#2|)))) (-1067) (-13 (-823) (-1009 (-592 $)) (-594 (-863 |#1|)) (-857 |#1|))) (T -905))
+((-2932 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 *6)) (-5 *3 (-592 *6)) (-4 *5 (-1067)) (-4 *6 (-13 (-823) (-1009 (-592 $)) (-594 *4) (-857 *5))) (-5 *4 (-863 *5)) (-5 *1 (-905 *5 *6)))))
+(-10 -7 (-15 -2932 ((-860 |#1| |#2|) (-592 |#2|) (-863 |#1|) (-860 |#1| |#2|))))
+((-2932 (((-856 |#1| |#2| |#3|) |#3| (-863 |#1|) (-856 |#1| |#2| |#3|)) 15)))
+(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -2932 ((-856 |#1| |#2| |#3|) |#3| (-863 |#1|) (-856 |#1| |#2| |#3|)))) (-1067) (-857 |#1|) (-642 |#2|)) (T -906))
+((-2932 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-856 *5 *6 *3)) (-5 *4 (-863 *5)) (-4 *5 (-1067)) (-4 *6 (-857 *5)) (-4 *3 (-642 *6)) (-5 *1 (-906 *5 *6 *3)))))
+(-10 -7 (-15 -2932 ((-856 |#1| |#2| |#3|) |#3| (-863 |#1|) (-856 |#1| |#2| |#3|))))
+((-2932 (((-860 |#1| |#5|) |#5| (-863 |#1|) (-860 |#1| |#5|)) 17 (|has| |#3| (-857 |#1|))) (((-860 |#1| |#5|) |#5| (-863 |#1|) (-860 |#1| |#5|) (-1 (-860 |#1| |#5|) |#3| (-863 |#1|) (-860 |#1| |#5|))) 16)))
+(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2932 ((-860 |#1| |#5|) |#5| (-863 |#1|) (-860 |#1| |#5|) (-1 (-860 |#1| |#5|) |#3| (-863 |#1|) (-860 |#1| |#5|)))) (IF (|has| |#3| (-857 |#1|)) (-15 -2932 ((-860 |#1| |#5|) |#5| (-863 |#1|) (-860 |#1| |#5|))) |%noBranch|)) (-1067) (-769) (-823) (-13 (-1018) (-823) (-857 |#1|)) (-13 (-920 |#4| |#2| |#3|) (-594 (-863 |#1|)))) (T -907))
+((-2932 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 *3)) (-4 *5 (-1067)) (-4 *3 (-13 (-920 *8 *6 *7) (-594 *4))) (-5 *4 (-863 *5)) (-4 *7 (-857 *5)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-13 (-1018) (-823) (-857 *5))) (-5 *1 (-907 *5 *6 *7 *8 *3)))) (-2932 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-860 *6 *3) *8 (-863 *6) (-860 *6 *3))) (-4 *8 (-823)) (-5 *2 (-860 *6 *3)) (-5 *4 (-863 *6)) (-4 *6 (-1067)) (-4 *3 (-13 (-920 *9 *7 *8) (-594 *4))) (-4 *7 (-769)) (-4 *9 (-13 (-1018) (-823) (-857 *6))) (-5 *1 (-907 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -2932 ((-860 |#1| |#5|) |#5| (-863 |#1|) (-860 |#1| |#5|) (-1 (-860 |#1| |#5|) |#3| (-863 |#1|) (-860 |#1| |#5|)))) (IF (|has| |#3| (-857 |#1|)) (-15 -2932 ((-860 |#1| |#5|) |#5| (-863 |#1|) (-860 |#1| |#5|))) |%noBranch|))
+((-1863 ((|#2| |#2| (-621 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -1863 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1863 (|#2| |#2| (-621 (-1 (-112) |#3|))))) (-823) (-423 |#1|) (-1180)) (T -908))
+((-1863 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-1 (-112) *5))) (-4 *5 (-1180)) (-4 *4 (-823)) (-5 *1 (-908 *4 *2 *5)) (-4 *2 (-423 *4)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1180)) (-4 *4 (-823)) (-5 *1 (-908 *4 *2 *5)) (-4 *2 (-423 *4)))))
+(-10 -7 (-15 -1863 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1863 (|#2| |#2| (-621 (-1 (-112) |#3|)))))
+((-1863 (((-309 (-549)) (-1143) (-621 (-1 (-112) |#1|))) 18) (((-309 (-549)) (-1143) (-1 (-112) |#1|)) 15)))
+(((-909 |#1|) (-10 -7 (-15 -1863 ((-309 (-549)) (-1143) (-1 (-112) |#1|))) (-15 -1863 ((-309 (-549)) (-1143) (-621 (-1 (-112) |#1|))))) (-1180)) (T -909))
+((-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-621 (-1 (-112) *5))) (-4 *5 (-1180)) (-5 *2 (-309 (-549))) (-5 *1 (-909 *5)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1180)) (-5 *2 (-309 (-549))) (-5 *1 (-909 *5)))))
+(-10 -7 (-15 -1863 ((-309 (-549)) (-1143) (-1 (-112) |#1|))) (-15 -1863 ((-309 (-549)) (-1143) (-621 (-1 (-112) |#1|)))))
+((-2932 (((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)) 25)))
+(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -2932 ((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)))) (-1067) (-13 (-541) (-857 |#1|) (-594 (-863 |#1|))) (-963 |#2|)) (T -910))
+((-2932 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 *3)) (-4 *5 (-1067)) (-4 *3 (-963 *6)) (-4 *6 (-13 (-541) (-857 *5) (-594 *4))) (-5 *4 (-863 *5)) (-5 *1 (-910 *5 *6 *3)))))
+(-10 -7 (-15 -2932 ((-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))))
+((-2932 (((-860 |#1| (-1143)) (-1143) (-863 |#1|) (-860 |#1| (-1143))) 17)))
+(((-911 |#1|) (-10 -7 (-15 -2932 ((-860 |#1| (-1143)) (-1143) (-863 |#1|) (-860 |#1| (-1143))))) (-1067)) (T -911))
+((-2932 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-860 *5 (-1143))) (-5 *3 (-1143)) (-5 *4 (-863 *5)) (-4 *5 (-1067)) (-5 *1 (-911 *5)))))
+(-10 -7 (-15 -2932 ((-860 |#1| (-1143)) (-1143) (-863 |#1|) (-860 |#1| (-1143)))))
+((-3086 (((-860 |#1| |#3|) (-621 |#3|) (-621 (-863 |#1|)) (-860 |#1| |#3|) (-1 (-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))) 33)) (-2932 (((-860 |#1| |#3|) (-621 |#3|) (-621 (-863 |#1|)) (-1 |#3| (-621 |#3|)) (-860 |#1| |#3|) (-1 (-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))) 32)))
+(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -2932 ((-860 |#1| |#3|) (-621 |#3|) (-621 (-863 |#1|)) (-1 |#3| (-621 |#3|)) (-860 |#1| |#3|) (-1 (-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)))) (-15 -3086 ((-860 |#1| |#3|) (-621 |#3|) (-621 (-863 |#1|)) (-860 |#1| |#3|) (-1 (-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|))))) (-1067) (-13 (-1018) (-823)) (-13 (-1018) (-594 (-863 |#1|)) (-1009 |#2|))) (T -912))
+((-3086 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 (-863 *6))) (-5 *5 (-1 (-860 *6 *8) *8 (-863 *6) (-860 *6 *8))) (-4 *6 (-1067)) (-4 *8 (-13 (-1018) (-594 (-863 *6)) (-1009 *7))) (-5 *2 (-860 *6 *8)) (-4 *7 (-13 (-1018) (-823))) (-5 *1 (-912 *6 *7 *8)))) (-2932 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-621 (-863 *7))) (-5 *5 (-1 *9 (-621 *9))) (-5 *6 (-1 (-860 *7 *9) *9 (-863 *7) (-860 *7 *9))) (-4 *7 (-1067)) (-4 *9 (-13 (-1018) (-594 (-863 *7)) (-1009 *8))) (-5 *2 (-860 *7 *9)) (-5 *3 (-621 *9)) (-4 *8 (-13 (-1018) (-823))) (-5 *1 (-912 *7 *8 *9)))))
+(-10 -7 (-15 -2932 ((-860 |#1| |#3|) (-621 |#3|) (-621 (-863 |#1|)) (-1 |#3| (-621 |#3|)) (-860 |#1| |#3|) (-1 (-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)))) (-15 -3086 ((-860 |#1| |#3|) (-621 |#3|) (-621 (-863 |#1|)) (-860 |#1| |#3|) (-1 (-860 |#1| |#3|) |#3| (-863 |#1|) (-860 |#1| |#3|)))))
+((-2497 (((-1139 (-400 (-549))) (-549)) 63)) (-2517 (((-1139 (-549)) (-549)) 66)) (-3367 (((-1139 (-549)) (-549)) 60)) (-2466 (((-549) (-1139 (-549))) 55)) (-4012 (((-1139 (-400 (-549))) (-549)) 49)) (-2856 (((-1139 (-549)) (-549)) 38)) (-2335 (((-1139 (-549)) (-549)) 68)) (-3020 (((-1139 (-549)) (-549)) 67)) (-3650 (((-1139 (-400 (-549))) (-549)) 51)))
+(((-913) (-10 -7 (-15 -3650 ((-1139 (-400 (-549))) (-549))) (-15 -3020 ((-1139 (-549)) (-549))) (-15 -2335 ((-1139 (-549)) (-549))) (-15 -2856 ((-1139 (-549)) (-549))) (-15 -4012 ((-1139 (-400 (-549))) (-549))) (-15 -2466 ((-549) (-1139 (-549)))) (-15 -3367 ((-1139 (-549)) (-549))) (-15 -2517 ((-1139 (-549)) (-549))) (-15 -2497 ((-1139 (-400 (-549))) (-549))))) (T -913))
+((-2497 (*1 *2 *3) (-12 (-5 *2 (-1139 (-400 (-549)))) (-5 *1 (-913)) (-5 *3 (-549)))) (-2517 (*1 *2 *3) (-12 (-5 *2 (-1139 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))) (-3367 (*1 *2 *3) (-12 (-5 *2 (-1139 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1139 (-549))) (-5 *2 (-549)) (-5 *1 (-913)))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-1139 (-400 (-549)))) (-5 *1 (-913)) (-5 *3 (-549)))) (-2856 (*1 *2 *3) (-12 (-5 *2 (-1139 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))) (-2335 (*1 *2 *3) (-12 (-5 *2 (-1139 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))) (-3020 (*1 *2 *3) (-12 (-5 *2 (-1139 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))) (-3650 (*1 *2 *3) (-12 (-5 *2 (-1139 (-400 (-549)))) (-5 *1 (-913)) (-5 *3 (-549)))))
+(-10 -7 (-15 -3650 ((-1139 (-400 (-549))) (-549))) (-15 -3020 ((-1139 (-549)) (-549))) (-15 -2335 ((-1139 (-549)) (-549))) (-15 -2856 ((-1139 (-549)) (-549))) (-15 -4012 ((-1139 (-400 (-549))) (-549))) (-15 -2466 ((-549) (-1139 (-549)))) (-15 -3367 ((-1139 (-549)) (-549))) (-15 -2517 ((-1139 (-549)) (-549))) (-15 -2497 ((-1139 (-400 (-549))) (-549))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3769 (($ (-747)) NIL (|has| |#1| (-23)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4311 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4338))) (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#1| $ (-549) |#1|) 11 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) NIL (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) NIL)) (-2883 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1067))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1067)))) (-2798 (($ (-621 |#1|)) 13)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-4050 (((-665 |#1|) $ $) NIL (|has| |#1| (-1018)))) (-3743 (($ (-747) |#1|) 8)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) 10 (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3890 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3359 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-1508 (((-112) $ (-747)) NIL)) (-4210 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-2616 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3646 ((|#1| $) NIL (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1642 (($ $ |#1|) NIL (|has| $ (-6 -4338)))) (-2763 (($ $ (-621 |#1|)) 26)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 20) (($ $ (-1193 (-549))) NIL)) (-1706 ((|#1| $ $) NIL (|has| |#1| (-1018)))) (-2985 (((-892) $) 16)) (-2167 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-2168 (($ $ $) 24)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| |#1| (-594 (-525)))) (($ (-621 |#1|)) 17)) (-3854 (($ (-621 |#1|)) NIL)) (-1952 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-621 $)) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2500 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2486 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-549) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-703))) (($ $ |#1|) NIL (|has| |#1| (-703)))) (-3775 (((-747) $) 14 (|has| $ (-6 -4337)))))
+(((-914 |#1|) (-951 |#1|) (-1018)) (T -914))
+NIL
+(-951 |#1|)
+((-1838 (((-473 |#1| |#2|) (-923 |#2|)) 20)) (-3119 (((-241 |#1| |#2|) (-923 |#2|)) 33)) (-2917 (((-923 |#2|) (-473 |#1| |#2|)) 25)) (-2504 (((-241 |#1| |#2|) (-473 |#1| |#2|)) 55)) (-2161 (((-923 |#2|) (-241 |#1| |#2|)) 30)) (-1339 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 46)))
+(((-915 |#1| |#2|) (-10 -7 (-15 -1339 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -2504 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -1838 ((-473 |#1| |#2|) (-923 |#2|))) (-15 -2917 ((-923 |#2|) (-473 |#1| |#2|))) (-15 -2161 ((-923 |#2|) (-241 |#1| |#2|))) (-15 -3119 ((-241 |#1| |#2|) (-923 |#2|)))) (-621 (-1143)) (-1018)) (T -915))
+((-3119 (*1 *2 *3) (-12 (-5 *3 (-923 *5)) (-4 *5 (-1018)) (-5 *2 (-241 *4 *5)) (-5 *1 (-915 *4 *5)) (-14 *4 (-621 (-1143))))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-621 (-1143))) (-4 *5 (-1018)) (-5 *2 (-923 *5)) (-5 *1 (-915 *4 *5)))) (-2917 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-621 (-1143))) (-4 *5 (-1018)) (-5 *2 (-923 *5)) (-5 *1 (-915 *4 *5)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-923 *5)) (-4 *5 (-1018)) (-5 *2 (-473 *4 *5)) (-5 *1 (-915 *4 *5)) (-14 *4 (-621 (-1143))))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-621 (-1143))) (-4 *5 (-1018)) (-5 *2 (-241 *4 *5)) (-5 *1 (-915 *4 *5)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-621 (-1143))) (-4 *5 (-1018)) (-5 *2 (-473 *4 *5)) (-5 *1 (-915 *4 *5)))))
+(-10 -7 (-15 -1339 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -2504 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -1838 ((-473 |#1| |#2|) (-923 |#2|))) (-15 -2917 ((-923 |#2|) (-473 |#1| |#2|))) (-15 -2161 ((-923 |#2|) (-241 |#1| |#2|))) (-15 -3119 ((-241 |#1| |#2|) (-923 |#2|))))
+((-2505 (((-621 |#2|) |#2| |#2|) 10)) (-2994 (((-747) (-621 |#1|)) 37 (|has| |#1| (-821)))) (-1808 (((-621 |#2|) |#2|) 11)) (-2472 (((-747) (-621 |#1|) (-549) (-549)) 39 (|has| |#1| (-821)))) (-3717 ((|#1| |#2|) 32 (|has| |#1| (-821)))))
+(((-916 |#1| |#2|) (-10 -7 (-15 -2505 ((-621 |#2|) |#2| |#2|)) (-15 -1808 ((-621 |#2|) |#2|)) (IF (|has| |#1| (-821)) (PROGN (-15 -3717 (|#1| |#2|)) (-15 -2994 ((-747) (-621 |#1|))) (-15 -2472 ((-747) (-621 |#1|) (-549) (-549)))) |%noBranch|)) (-356) (-1202 |#1|)) (T -916))
+((-2472 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-549)) (-4 *5 (-821)) (-4 *5 (-356)) (-5 *2 (-747)) (-5 *1 (-916 *5 *6)) (-4 *6 (-1202 *5)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-821)) (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-916 *4 *5)) (-4 *5 (-1202 *4)))) (-3717 (*1 *2 *3) (-12 (-4 *2 (-356)) (-4 *2 (-821)) (-5 *1 (-916 *2 *3)) (-4 *3 (-1202 *2)))) (-1808 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-621 *3)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1202 *4)))) (-2505 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-621 *3)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1202 *4)))))
+(-10 -7 (-15 -2505 ((-621 |#2|) |#2| |#2|)) (-15 -1808 ((-621 |#2|) |#2|)) (IF (|has| |#1| (-821)) (PROGN (-15 -3717 (|#1| |#2|)) (-15 -2994 ((-747) (-621 |#1|))) (-15 -2472 ((-747) (-621 |#1|) (-549) (-549)))) |%noBranch|))
+((-2797 (((-923 |#2|) (-1 |#2| |#1|) (-923 |#1|)) 19)))
+(((-917 |#1| |#2|) (-10 -7 (-15 -2797 ((-923 |#2|) (-1 |#2| |#1|) (-923 |#1|)))) (-1018) (-1018)) (T -917))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-923 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-923 *6)) (-5 *1 (-917 *5 *6)))))
+(-10 -7 (-15 -2797 ((-923 |#2|) (-1 |#2| |#1|) (-923 |#1|))))
+((-2084 (((-1199 |#1| (-923 |#2|)) (-923 |#2|) (-1222 |#1|)) 18)))
+(((-918 |#1| |#2|) (-10 -7 (-15 -2084 ((-1199 |#1| (-923 |#2|)) (-923 |#2|) (-1222 |#1|)))) (-1143) (-1018)) (T -918))
+((-2084 (*1 *2 *3 *4) (-12 (-5 *4 (-1222 *5)) (-14 *5 (-1143)) (-4 *6 (-1018)) (-5 *2 (-1199 *5 (-923 *6))) (-5 *1 (-918 *5 *6)) (-5 *3 (-923 *6)))))
+(-10 -7 (-15 -2084 ((-1199 |#1| (-923 |#2|)) (-923 |#2|) (-1222 |#1|))))
+((-3186 (((-747) $) 71) (((-747) $ (-621 |#4|)) 74)) (-3979 (($ $) 173)) (-2402 (((-411 $) $) 165)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 116)) (-2714 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 (-549) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2659 ((|#2| $) NIL) (((-400 (-549)) $) NIL) (((-549) $) NIL) ((|#4| $) 59)) (-1353 (($ $ $ |#4|) 76)) (-3879 (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) 106) (((-665 |#2|) (-665 $)) 99)) (-1285 (($ $) 180) (($ $ |#4|) 183)) (-2058 (((-621 $) $) 63)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 199) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 192)) (-3750 (((-621 $) $) 28)) (-2246 (($ |#2| |#3|) NIL) (($ $ |#4| (-747)) NIL) (($ $ (-621 |#4|) (-621 (-747))) 57)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ |#4|) 162)) (-4266 (((-3 (-621 $) "failed") $) 42)) (-2533 (((-3 (-621 $) "failed") $) 31)) (-1503 (((-3 (-2 (|:| |var| |#4|) (|:| -3731 (-747))) "failed") $) 47)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 109)) (-2905 (((-411 (-1139 $)) (-1139 $)) 122)) (-2413 (((-411 (-1139 $)) (-1139 $)) 120)) (-2121 (((-411 $) $) 140)) (-2686 (($ $ (-621 (-287 $))) 21) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-621 |#4|) (-621 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-621 |#4|) (-621 $)) NIL)) (-3602 (($ $ |#4|) 78)) (-2845 (((-863 (-372)) $) 213) (((-863 (-549)) $) 206) (((-525) $) 221)) (-2216 ((|#2| $) NIL) (($ $ |#4|) 175)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 154)) (-2152 ((|#2| $ |#3|) NIL) (($ $ |#4| (-747)) 52) (($ $ (-621 |#4|) (-621 (-747))) 55)) (-2210 (((-3 $ "failed") $) 156)) (-2412 (((-112) $ $) 186)))
+(((-919 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1721 ((-1139 |#1|) (-1139 |#1|) (-1139 |#1|))) (-15 -2402 ((-411 |#1|) |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -2412 ((-112) |#1| |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -2845 ((-863 (-549)) |#1|)) (-15 -2845 ((-863 (-372)) |#1|)) (-15 -2932 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2932 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -2121 ((-411 |#1|) |#1|)) (-15 -2413 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -2905 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -1348 ((-3 (-621 (-1139 |#1|)) "failed") (-621 (-1139 |#1|)) (-1139 |#1|))) (-15 -4186 ((-3 (-1226 |#1|) "failed") (-665 |#1|))) (-15 -1285 (|#1| |#1| |#4|)) (-15 -2216 (|#1| |#1| |#4|)) (-15 -3602 (|#1| |#1| |#4|)) (-15 -1353 (|#1| |#1| |#1| |#4|)) (-15 -2058 ((-621 |#1|) |#1|)) (-15 -3186 ((-747) |#1| (-621 |#4|))) (-15 -3186 ((-747) |#1|)) (-15 -1503 ((-3 (-2 (|:| |var| |#4|) (|:| -3731 (-747))) "failed") |#1|)) (-15 -4266 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2533 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2246 (|#1| |#1| (-621 |#4|) (-621 (-747)))) (-15 -2246 (|#1| |#1| |#4| (-747))) (-15 -3265 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1| |#4|)) (-15 -3750 ((-621 |#1|) |#1|)) (-15 -2152 (|#1| |#1| (-621 |#4|) (-621 (-747)))) (-15 -2152 (|#1| |#1| |#4| (-747))) (-15 -3879 ((-665 |#2|) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-665 (-549)) (-665 |#1|))) (-15 -2659 (|#4| |#1|)) (-15 -2714 ((-3 |#4| "failed") |#1|)) (-15 -2686 (|#1| |#1| (-621 |#4|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#4| |#1|)) (-15 -2686 (|#1| |#1| (-621 |#4|) (-621 |#2|))) (-15 -2686 (|#1| |#1| |#4| |#2|)) (-15 -2686 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| (-287 |#1|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -2246 (|#1| |#2| |#3|)) (-15 -2152 (|#2| |#1| |#3|)) (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1285 (|#1| |#1|))) (-920 |#2| |#3| |#4|) (-1018) (-769) (-823)) (T -919))
+NIL
+(-10 -8 (-15 -1721 ((-1139 |#1|) (-1139 |#1|) (-1139 |#1|))) (-15 -2402 ((-411 |#1|) |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -2412 ((-112) |#1| |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -2845 ((-863 (-549)) |#1|)) (-15 -2845 ((-863 (-372)) |#1|)) (-15 -2932 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2932 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -2121 ((-411 |#1|) |#1|)) (-15 -2413 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -2905 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -1348 ((-3 (-621 (-1139 |#1|)) "failed") (-621 (-1139 |#1|)) (-1139 |#1|))) (-15 -4186 ((-3 (-1226 |#1|) "failed") (-665 |#1|))) (-15 -1285 (|#1| |#1| |#4|)) (-15 -2216 (|#1| |#1| |#4|)) (-15 -3602 (|#1| |#1| |#4|)) (-15 -1353 (|#1| |#1| |#1| |#4|)) (-15 -2058 ((-621 |#1|) |#1|)) (-15 -3186 ((-747) |#1| (-621 |#4|))) (-15 -3186 ((-747) |#1|)) (-15 -1503 ((-3 (-2 (|:| |var| |#4|) (|:| -3731 (-747))) "failed") |#1|)) (-15 -4266 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2533 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2246 (|#1| |#1| (-621 |#4|) (-621 (-747)))) (-15 -2246 (|#1| |#1| |#4| (-747))) (-15 -3265 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1| |#4|)) (-15 -3750 ((-621 |#1|) |#1|)) (-15 -2152 (|#1| |#1| (-621 |#4|) (-621 (-747)))) (-15 -2152 (|#1| |#1| |#4| (-747))) (-15 -3879 ((-665 |#2|) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-665 (-549)) (-665 |#1|))) (-15 -2659 (|#4| |#1|)) (-15 -2714 ((-3 |#4| "failed") |#1|)) (-15 -2686 (|#1| |#1| (-621 |#4|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#4| |#1|)) (-15 -2686 (|#1| |#1| (-621 |#4|) (-621 |#2|))) (-15 -2686 (|#1| |#1| |#4| |#2|)) (-15 -2686 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| (-287 |#1|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -2246 (|#1| |#2| |#3|)) (-15 -2152 (|#2| |#1| |#3|)) (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1285 (|#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2272 (((-621 |#3|) $) 108)) (-2084 (((-1139 $) $ |#3|) 123) (((-1139 |#1|) $) 122)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 85 (|has| |#1| (-541)))) (-2258 (($ $) 86 (|has| |#1| (-541)))) (-2799 (((-112) $) 88 (|has| |#1| (-541)))) (-3186 (((-747) $) 110) (((-747) $ (-621 |#3|)) 109)) (-2001 (((-3 $ "failed") $ $) 19)) (-3231 (((-411 (-1139 $)) (-1139 $)) 98 (|has| |#1| (-880)))) (-3979 (($ $) 96 (|has| |#1| (-444)))) (-2402 (((-411 $) $) 95 (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 101 (|has| |#1| (-880)))) (-1682 (($) 17 T CONST)) (-2714 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-549)) "failed") $) 160 (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) 158 (|has| |#1| (-1009 (-549)))) (((-3 |#3| "failed") $) 134)) (-2659 ((|#1| $) 163) (((-400 (-549)) $) 159 (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) 157 (|has| |#1| (-1009 (-549)))) ((|#3| $) 133)) (-1353 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-2070 (($ $) 152)) (-3879 (((-665 (-549)) (-665 $)) 132 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 131 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-2114 (((-3 $ "failed") $) 32)) (-1285 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-2058 (((-621 $) $) 107)) (-1420 (((-112) $) 94 (|has| |#1| (-880)))) (-2691 (($ $ |#1| |#2| $) 170)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 82 (-12 (|has| |#3| (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 81 (-12 (|has| |#3| (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2675 (((-112) $) 30)) (-3347 (((-747) $) 167)) (-2261 (($ (-1139 |#1|) |#3|) 115) (($ (-1139 $) |#3|) 114)) (-3750 (((-621 $) $) 124)) (-2205 (((-112) $) 150)) (-2246 (($ |#1| |#2|) 151) (($ $ |#3| (-747)) 117) (($ $ (-621 |#3|) (-621 (-747))) 116)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ |#3|) 118)) (-3611 ((|#2| $) 168) (((-747) $ |#3|) 120) (((-621 (-747)) $ (-621 |#3|)) 119)) (-2863 (($ $ $) 77 (|has| |#1| (-823)))) (-3575 (($ $ $) 76 (|has| |#1| (-823)))) (-3705 (($ (-1 |#2| |#2|) $) 169)) (-2797 (($ (-1 |#1| |#1|) $) 149)) (-1520 (((-3 |#3| "failed") $) 121)) (-2028 (($ $) 147)) (-2043 ((|#1| $) 146)) (-3697 (($ (-621 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3851 (((-1125) $) 9)) (-4266 (((-3 (-621 $) "failed") $) 112)) (-2533 (((-3 (-621 $) "failed") $) 113)) (-1503 (((-3 (-2 (|:| |var| |#3|) (|:| -3731 (-747))) "failed") $) 111)) (-3990 (((-1087) $) 10)) (-2004 (((-112) $) 164)) (-2016 ((|#1| $) 165)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 93 (|has| |#1| (-444)))) (-3727 (($ (-621 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) 100 (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) 99 (|has| |#1| (-880)))) (-2121 (((-411 $) $) 97 (|has| |#1| (-880)))) (-2042 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-541)))) (-2686 (($ $ (-621 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-621 $) (-621 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-621 |#3|) (-621 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-621 |#3|) (-621 $)) 136)) (-3602 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-3456 (($ $ |#3|) 40) (($ $ (-621 |#3|)) 39) (($ $ |#3| (-747)) 38) (($ $ (-621 |#3|) (-621 (-747))) 37)) (-3701 ((|#2| $) 148) (((-747) $ |#3|) 128) (((-621 (-747)) $ (-621 |#3|)) 127)) (-2845 (((-863 (-372)) $) 80 (-12 (|has| |#3| (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) 79 (-12 (|has| |#3| (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) 78 (-12 (|has| |#3| (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-2216 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 102 (-1821 (|has| $ (-143)) (|has| |#1| (-880))))) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-541))) (($ (-400 (-549))) 70 (-1536 (|has| |#1| (-1009 (-400 (-549)))) (|has| |#1| (-38 (-400 (-549))))))) (-4141 (((-621 |#1|) $) 166)) (-2152 ((|#1| $ |#2|) 153) (($ $ |#3| (-747)) 126) (($ $ (-621 |#3|) (-621 (-747))) 125)) (-2210 (((-3 $ "failed") $) 71 (-1536 (-1821 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) 28)) (-1509 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-1498 (((-112) $ $) 87 (|has| |#1| (-541)))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ |#3|) 36) (($ $ (-621 |#3|)) 35) (($ $ |#3| (-747)) 34) (($ $ (-621 |#3|) (-621 (-747))) 33)) (-2448 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 73 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 75 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 72 (|has| |#1| (-823)))) (-2513 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 156 (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) 155 (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(((-920 |#1| |#2| |#3|) (-138) (-1018) (-769) (-823)) (T -920))
+((-1285 (*1 *1 *1) (-12 (-4 *1 (-920 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-3701 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-747)))) (-3701 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *6)) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 (-747))))) (-2152 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-920 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *2 (-823)))) (-2152 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *6)) (-5 *3 (-621 (-747))) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)))) (-3750 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-920 *3 *4 *5)))) (-2084 (*1 *2 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-1139 *1)) (-4 *1 (-920 *4 *5 *3)))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-1139 *3)))) (-1520 (*1 *2 *1) (|partial| -12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3611 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-747)))) (-3611 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *6)) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 (-747))))) (-3265 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-920 *4 *5 *3)))) (-2246 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-920 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *2 (-823)))) (-2246 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *6)) (-5 *3 (-621 (-747))) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)))) (-2261 (*1 *1 *2 *3) (-12 (-5 *2 (-1139 *4)) (-4 *4 (-1018)) (-4 *1 (-920 *4 *5 *3)) (-4 *5 (-769)) (-4 *3 (-823)))) (-2261 (*1 *1 *2 *3) (-12 (-5 *2 (-1139 *1)) (-4 *1 (-920 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)))) (-2533 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-920 *3 *4 *5)))) (-4266 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-920 *3 *4 *5)))) (-1503 (*1 *2 *1) (|partial| -12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| |var| *5) (|:| -3731 (-747)))))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-747)))) (-3186 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *6)) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *5)))) (-2058 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-920 *3 *4 *5)))) (-1353 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-170)))) (-3602 (*1 *1 *1 *2) (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-170)))) (-2216 (*1 *1 *1 *2) (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-444)))) (-1285 (*1 *1 *1 *2) (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *3 (-444)))) (-3979 (*1 *1 *1) (-12 (-4 *1 (-920 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-2402 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-411 *1)) (-4 *1 (-920 *3 *4 *5)))))
+(-13 (-871 |t#3|) (-319 |t#1| |t#2|) (-302 $) (-505 |t#3| |t#1|) (-505 |t#3| $) (-1009 |t#3|) (-370 |t#1|) (-10 -8 (-15 -3701 ((-747) $ |t#3|)) (-15 -3701 ((-621 (-747)) $ (-621 |t#3|))) (-15 -2152 ($ $ |t#3| (-747))) (-15 -2152 ($ $ (-621 |t#3|) (-621 (-747)))) (-15 -3750 ((-621 $) $)) (-15 -2084 ((-1139 $) $ |t#3|)) (-15 -2084 ((-1139 |t#1|) $)) (-15 -1520 ((-3 |t#3| "failed") $)) (-15 -3611 ((-747) $ |t#3|)) (-15 -3611 ((-621 (-747)) $ (-621 |t#3|))) (-15 -3265 ((-2 (|:| -4013 $) (|:| -3675 $)) $ $ |t#3|)) (-15 -2246 ($ $ |t#3| (-747))) (-15 -2246 ($ $ (-621 |t#3|) (-621 (-747)))) (-15 -2261 ($ (-1139 |t#1|) |t#3|)) (-15 -2261 ($ (-1139 $) |t#3|)) (-15 -2533 ((-3 (-621 $) "failed") $)) (-15 -4266 ((-3 (-621 $) "failed") $)) (-15 -1503 ((-3 (-2 (|:| |var| |t#3|) (|:| -3731 (-747))) "failed") $)) (-15 -3186 ((-747) $)) (-15 -3186 ((-747) $ (-621 |t#3|))) (-15 -2272 ((-621 |t#3|) $)) (-15 -2058 ((-621 $) $)) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-594 (-525))) (IF (|has| |t#3| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-594 (-863 (-549)))) (IF (|has| |t#3| (-594 (-863 (-549)))) (-6 (-594 (-863 (-549)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-594 (-863 (-372)))) (IF (|has| |t#3| (-594 (-863 (-372)))) (-6 (-594 (-863 (-372)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-857 (-549))) (IF (|has| |t#3| (-857 (-549))) (-6 (-857 (-549))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-857 (-372))) (IF (|has| |t#3| (-857 (-372))) (-6 (-857 (-372))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -1353 ($ $ $ |t#3|)) (-15 -3602 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-6 (-444)) (-15 -2216 ($ $ |t#3|)) (-15 -1285 ($ $)) (-15 -1285 ($ $ |t#3|)) (-15 -2402 ((-411 $) $)) (-15 -3979 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4335)) (-6 -4335) |%noBranch|) (IF (|has| |t#1| (-880)) (-6 (-880)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-594 (-525)) -12 (|has| |#1| (-594 (-525))) (|has| |#3| (-594 (-525)))) ((-594 (-863 (-372))) -12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#3| (-594 (-863 (-372))))) ((-594 (-863 (-549))) -12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#3| (-594 (-863 (-549))))) ((-283) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1536 (|has| |#1| (-880)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-541) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 |#3|) . T) ((-857 (-372)) -12 (|has| |#1| (-857 (-372))) (|has| |#3| (-857 (-372)))) ((-857 (-549)) -12 (|has| |#1| (-857 (-549))) (|has| |#3| (-857 (-549)))) ((-880) |has| |#1| (-880)) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1009 |#3|) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1184) |has| |#1| (-880)))
+((-2272 (((-621 |#2|) |#5|) 36)) (-2084 (((-1139 |#5|) |#5| |#2| (-1139 |#5|)) 23) (((-400 (-1139 |#5|)) |#5| |#2|) 16)) (-2261 ((|#5| (-400 (-1139 |#5|)) |#2|) 30)) (-1520 (((-3 |#2| "failed") |#5|) 65)) (-4266 (((-3 (-621 |#5|) "failed") |#5|) 59)) (-1671 (((-3 (-2 (|:| |val| |#5|) (|:| -3731 (-549))) "failed") |#5|) 47)) (-2533 (((-3 (-621 |#5|) "failed") |#5|) 61)) (-1503 (((-3 (-2 (|:| |var| |#2|) (|:| -3731 (-549))) "failed") |#5|) 51)))
+(((-921 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2272 ((-621 |#2|) |#5|)) (-15 -1520 ((-3 |#2| "failed") |#5|)) (-15 -2084 ((-400 (-1139 |#5|)) |#5| |#2|)) (-15 -2261 (|#5| (-400 (-1139 |#5|)) |#2|)) (-15 -2084 ((-1139 |#5|) |#5| |#2| (-1139 |#5|))) (-15 -2533 ((-3 (-621 |#5|) "failed") |#5|)) (-15 -4266 ((-3 (-621 |#5|) "failed") |#5|)) (-15 -1503 ((-3 (-2 (|:| |var| |#2|) (|:| -3731 (-549))) "failed") |#5|)) (-15 -1671 ((-3 (-2 (|:| |val| |#5|) (|:| -3731 (-549))) "failed") |#5|))) (-769) (-823) (-1018) (-920 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -3846 ($ |#4|)) (-15 -1394 (|#4| $)) (-15 -1403 (|#4| $))))) (T -921))
+((-1671 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3731 (-549)))) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $))))))) (-1503 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3731 (-549)))) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $))))))) (-4266 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-621 *3)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $))))))) (-2533 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-621 *3)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $))))))) (-2084 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1139 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $))))) (-4 *7 (-920 *6 *5 *4)) (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-5 *1 (-921 *5 *4 *6 *7 *3)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1139 *2))) (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-4 *2 (-13 (-356) (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $))))) (-5 *1 (-921 *5 *4 *6 *7 *2)) (-4 *7 (-920 *6 *5 *4)))) (-2084 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018)) (-4 *7 (-920 *6 *5 *4)) (-5 *2 (-400 (-1139 *3))) (-5 *1 (-921 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $))))))) (-1520 (*1 *2 *3) (|partial| -12 (-4 *4 (-769)) (-4 *5 (-1018)) (-4 *6 (-920 *5 *4 *2)) (-4 *2 (-823)) (-5 *1 (-921 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3846 ($ *6)) (-15 -1394 (*6 $)) (-15 -1403 (*6 $))))))) (-2272 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-621 *5)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $))))))))
+(-10 -7 (-15 -2272 ((-621 |#2|) |#5|)) (-15 -1520 ((-3 |#2| "failed") |#5|)) (-15 -2084 ((-400 (-1139 |#5|)) |#5| |#2|)) (-15 -2261 (|#5| (-400 (-1139 |#5|)) |#2|)) (-15 -2084 ((-1139 |#5|) |#5| |#2| (-1139 |#5|))) (-15 -2533 ((-3 (-621 |#5|) "failed") |#5|)) (-15 -4266 ((-3 (-621 |#5|) "failed") |#5|)) (-15 -1503 ((-3 (-2 (|:| |var| |#2|) (|:| -3731 (-549))) "failed") |#5|)) (-15 -1671 ((-3 (-2 (|:| |val| |#5|) (|:| -3731 (-549))) "failed") |#5|)))
+((-2797 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-922 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2797 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-769) (-823) (-1018) (-920 |#3| |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -2486 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747)))))) (T -922))
+((-2797 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-823)) (-4 *8 (-1018)) (-4 *6 (-769)) (-4 *2 (-13 (-1067) (-10 -8 (-15 -2486 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747)))))) (-5 *1 (-922 *6 *7 *8 *5 *2)) (-4 *5 (-920 *8 *6 *7)))))
+(-10 -7 (-15 -2797 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2272 (((-621 (-1143)) $) 16)) (-2084 (((-1139 $) $ (-1143)) 21) (((-1139 |#1|) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 (-1143))) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3979 (($ $) NIL (|has| |#1| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) 8) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-1143) "failed") $) NIL)) (-2659 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-1143) $) NIL)) (-1353 (($ $ $ (-1143)) NIL (|has| |#1| (-170)))) (-2070 (($ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1143)) NIL (|has| |#1| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-880)))) (-2691 (($ $ |#1| (-521 (-1143)) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1143) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1143) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-2261 (($ (-1139 |#1|) (-1143)) NIL) (($ (-1139 $) (-1143)) NIL)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-521 (-1143))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ (-1143)) NIL)) (-3611 (((-521 (-1143)) $) NIL) (((-747) $ (-1143)) NIL) (((-621 (-747)) $ (-621 (-1143))) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-3705 (($ (-1 (-521 (-1143)) (-521 (-1143))) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1520 (((-3 (-1143) "failed") $) 19)) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3851 (((-1125) $) NIL)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| (-1143)) (|:| -3731 (-747))) "failed") $) NIL)) (-3893 (($ $ (-1143)) 29 (|has| |#1| (-38 (-400 (-549)))))) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) NIL)) (-2016 ((|#1| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-880)))) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1143) |#1|) NIL) (($ $ (-621 (-1143)) (-621 |#1|)) NIL) (($ $ (-1143) $) NIL) (($ $ (-621 (-1143)) (-621 $)) NIL)) (-3602 (($ $ (-1143)) NIL (|has| |#1| (-170)))) (-3456 (($ $ (-1143)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL)) (-3701 (((-521 (-1143)) $) NIL) (((-747) $ (-1143)) NIL) (((-621 (-747)) $ (-621 (-1143))) NIL)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| (-1143) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-1143) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-1143) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-2216 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1143)) NIL (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3846 (((-834) $) 25) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-1143)) 27) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-521 (-1143))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-1143)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-923 |#1|) (-13 (-920 |#1| (-521 (-1143)) (-1143)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1143))) |%noBranch|))) (-1018)) (T -923))
+((-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-923 *3)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)))))
+(-13 (-920 |#1| (-521 (-1143)) (-1143)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1143))) |%noBranch|)))
+((-2034 (((-2 (|:| -3731 (-747)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#3| (-747)) 38)) (-1907 (((-2 (|:| -3731 (-747)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) (-400 (-549)) (-747)) 34)) (-3760 (((-2 (|:| -3731 (-747)) (|:| -1570 |#4|) (|:| |radicand| (-621 |#4|))) |#4| (-747)) 54)) (-4112 (((-2 (|:| -3731 (-747)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#5| (-747)) 64 (|has| |#3| (-444)))))
+(((-924 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2034 ((-2 (|:| -3731 (-747)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#3| (-747))) (-15 -1907 ((-2 (|:| -3731 (-747)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) (-400 (-549)) (-747))) (IF (|has| |#3| (-444)) (-15 -4112 ((-2 (|:| -3731 (-747)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#5| (-747))) |%noBranch|) (-15 -3760 ((-2 (|:| -3731 (-747)) (|:| -1570 |#4|) (|:| |radicand| (-621 |#4|))) |#4| (-747)))) (-769) (-823) (-541) (-920 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -1394 (|#4| $)) (-15 -1403 (|#4| $)) (-15 -3846 ($ |#4|))))) (T -924))
+((-3760 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-541)) (-4 *3 (-920 *7 *5 *6)) (-5 *2 (-2 (|:| -3731 (-747)) (|:| -1570 *3) (|:| |radicand| (-621 *3)))) (-5 *1 (-924 *5 *6 *7 *3 *8)) (-5 *4 (-747)) (-4 *8 (-13 (-356) (-10 -8 (-15 -1394 (*3 $)) (-15 -1403 (*3 $)) (-15 -3846 ($ *3))))))) (-4112 (*1 *2 *3 *4) (-12 (-4 *7 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-541)) (-4 *8 (-920 *7 *5 *6)) (-5 *2 (-2 (|:| -3731 (-747)) (|:| -1570 *3) (|:| |radicand| *3))) (-5 *1 (-924 *5 *6 *7 *8 *3)) (-5 *4 (-747)) (-4 *3 (-13 (-356) (-10 -8 (-15 -1394 (*8 $)) (-15 -1403 (*8 $)) (-15 -3846 ($ *8))))))) (-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-549))) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-541)) (-4 *8 (-920 *7 *5 *6)) (-5 *2 (-2 (|:| -3731 (-747)) (|:| -1570 *9) (|:| |radicand| *9))) (-5 *1 (-924 *5 *6 *7 *8 *9)) (-5 *4 (-747)) (-4 *9 (-13 (-356) (-10 -8 (-15 -1394 (*8 $)) (-15 -1403 (*8 $)) (-15 -3846 ($ *8))))))) (-2034 (*1 *2 *3 *4) (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-541)) (-4 *7 (-920 *3 *5 *6)) (-5 *2 (-2 (|:| -3731 (-747)) (|:| -1570 *8) (|:| |radicand| *8))) (-5 *1 (-924 *5 *6 *3 *7 *8)) (-5 *4 (-747)) (-4 *8 (-13 (-356) (-10 -8 (-15 -1394 (*7 $)) (-15 -1403 (*7 $)) (-15 -3846 ($ *7))))))))
+(-10 -7 (-15 -2034 ((-2 (|:| -3731 (-747)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#3| (-747))) (-15 -1907 ((-2 (|:| -3731 (-747)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) (-400 (-549)) (-747))) (IF (|has| |#3| (-444)) (-15 -4112 ((-2 (|:| -3731 (-747)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#5| (-747))) |%noBranch|) (-15 -3760 ((-2 (|:| -3731 (-747)) (|:| -1570 |#4|) (|:| |radicand| (-621 |#4|))) |#4| (-747))))
+((-3834 (((-112) $ $) NIL)) (-3734 (($ (-1087)) 8)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 14) (((-1087) $) 11)) (-2389 (((-112) $ $) 10)))
+(((-925) (-13 (-1067) (-593 (-1087)) (-10 -8 (-15 -3734 ($ (-1087)))))) (T -925))
+((-3734 (*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-925)))))
+(-13 (-1067) (-593 (-1087)) (-10 -8 (-15 -3734 ($ (-1087)))))
+((-1843 (((-1061 (-219)) $) 8)) (-1832 (((-1061 (-219)) $) 9)) (-3928 (((-621 (-621 (-914 (-219)))) $) 10)) (-3846 (((-834) $) 6)))
+(((-926) (-138)) (T -926))
+((-3928 (*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-621 (-621 (-914 (-219))))))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1061 (-219))))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1061 (-219))))))
+(-13 (-593 (-834)) (-10 -8 (-15 -3928 ((-621 (-621 (-914 (-219)))) $)) (-15 -1832 ((-1061 (-219)) $)) (-15 -1843 ((-1061 (-219)) $))))
+(((-593 (-834)) . T))
+((-4138 (((-3 (-665 |#1|) "failed") |#2| (-892)) 15)))
+(((-927 |#1| |#2|) (-10 -7 (-15 -4138 ((-3 (-665 |#1|) "failed") |#2| (-892)))) (-541) (-632 |#1|)) (T -927))
+((-4138 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-892)) (-4 *5 (-541)) (-5 *2 (-665 *5)) (-5 *1 (-927 *5 *3)) (-4 *3 (-632 *5)))))
+(-10 -7 (-15 -4138 ((-3 (-665 |#1|) "failed") |#2| (-892))))
+((-3804 (((-929 |#2|) (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|) 16)) (-2557 ((|#2| (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|) 18)) (-2797 (((-929 |#2|) (-1 |#2| |#1|) (-929 |#1|)) 13)))
+(((-928 |#1| |#2|) (-10 -7 (-15 -3804 ((-929 |#2|) (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -2557 (|#2| (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -2797 ((-929 |#2|) (-1 |#2| |#1|) (-929 |#1|)))) (-1180) (-1180)) (T -928))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-929 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-929 *6)) (-5 *1 (-928 *5 *6)))) (-2557 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-929 *5)) (-4 *5 (-1180)) (-4 *2 (-1180)) (-5 *1 (-928 *5 *2)))) (-3804 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-929 *6)) (-4 *6 (-1180)) (-4 *5 (-1180)) (-5 *2 (-929 *5)) (-5 *1 (-928 *6 *5)))))
+(-10 -7 (-15 -3804 ((-929 |#2|) (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -2557 (|#2| (-1 |#2| |#1| |#2|) (-929 |#1|) |#2|)) (-15 -2797 ((-929 |#2|) (-1 |#2| |#1|) (-929 |#1|))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4311 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4338))) (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#1| $ (-549) |#1|) 16 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) NIL (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) 15 (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) 13)) (-2883 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1067))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1067)))) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3743 (($ (-747) |#1|) 12)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) 10 (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3890 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-2616 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3646 ((|#1| $) NIL (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1642 (($ $ |#1|) 17 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) 11)) (-3341 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 14) (($ $ (-1193 (-549))) NIL)) (-2167 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) NIL)) (-1952 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3775 (((-747) $) 8 (|has| $ (-6 -4337)))))
+(((-929 |#1|) (-19 |#1|) (-1180)) (T -929))
NIL
(-19 |#1|)
-((-4277 (($ $ (-1056 $)) 7) (($ $ (-1136)) 6)))
-(((-928) (-138)) (T -928))
-((-4277 (*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-928)))) (-4277 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-1136)))))
-(-13 (-10 -8 (-15 -4277 ($ $ (-1136))) (-15 -4277 ($ $ (-1056 $)))))
-((-3527 (((-2 (|:| -1563 (-619 (-547))) (|:| |poly| (-619 (-1132 |#1|))) (|:| |prim| (-1132 |#1|))) (-619 (-921 |#1|)) (-619 (-1136)) (-1136)) 25) (((-2 (|:| -1563 (-619 (-547))) (|:| |poly| (-619 (-1132 |#1|))) (|:| |prim| (-1132 |#1|))) (-619 (-921 |#1|)) (-619 (-1136))) 26) (((-2 (|:| |coef1| (-547)) (|:| |coef2| (-547)) (|:| |prim| (-1132 |#1|))) (-921 |#1|) (-1136) (-921 |#1|) (-1136)) 43)))
-(((-929 |#1|) (-10 -7 (-15 -3527 ((-2 (|:| |coef1| (-547)) (|:| |coef2| (-547)) (|:| |prim| (-1132 |#1|))) (-921 |#1|) (-1136) (-921 |#1|) (-1136))) (-15 -3527 ((-2 (|:| -1563 (-619 (-547))) (|:| |poly| (-619 (-1132 |#1|))) (|:| |prim| (-1132 |#1|))) (-619 (-921 |#1|)) (-619 (-1136)))) (-15 -3527 ((-2 (|:| -1563 (-619 (-547))) (|:| |poly| (-619 (-1132 |#1|))) (|:| |prim| (-1132 |#1|))) (-619 (-921 |#1|)) (-619 (-1136)) (-1136)))) (-13 (-354) (-145))) (T -929))
-((-3527 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1136))) (-5 *5 (-1136)) (-4 *6 (-13 (-354) (-145))) (-5 *2 (-2 (|:| -1563 (-619 (-547))) (|:| |poly| (-619 (-1132 *6))) (|:| |prim| (-1132 *6)))) (-5 *1 (-929 *6)))) (-3527 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1136))) (-4 *5 (-13 (-354) (-145))) (-5 *2 (-2 (|:| -1563 (-619 (-547))) (|:| |poly| (-619 (-1132 *5))) (|:| |prim| (-1132 *5)))) (-5 *1 (-929 *5)))) (-3527 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-1136)) (-4 *5 (-13 (-354) (-145))) (-5 *2 (-2 (|:| |coef1| (-547)) (|:| |coef2| (-547)) (|:| |prim| (-1132 *5)))) (-5 *1 (-929 *5)))))
-(-10 -7 (-15 -3527 ((-2 (|:| |coef1| (-547)) (|:| |coef2| (-547)) (|:| |prim| (-1132 |#1|))) (-921 |#1|) (-1136) (-921 |#1|) (-1136))) (-15 -3527 ((-2 (|:| -1563 (-619 (-547))) (|:| |poly| (-619 (-1132 |#1|))) (|:| |prim| (-1132 |#1|))) (-619 (-921 |#1|)) (-619 (-1136)))) (-15 -3527 ((-2 (|:| -1563 (-619 (-547))) (|:| |poly| (-619 (-1132 |#1|))) (|:| |prim| (-1132 |#1|))) (-619 (-921 |#1|)) (-619 (-1136)) (-1136))))
-((-1962 (((-619 |#1|) |#1| |#1|) 42)) (-1791 (((-112) |#1|) 39)) (-2363 ((|#1| |#1|) 65)) (-2508 ((|#1| |#1|) 64)))
-(((-930 |#1|) (-10 -7 (-15 -1791 ((-112) |#1|)) (-15 -2508 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -1962 ((-619 |#1|) |#1| |#1|))) (-532)) (T -930))
-((-1962 (*1 *2 *3 *3) (-12 (-5 *2 (-619 *3)) (-5 *1 (-930 *3)) (-4 *3 (-532)))) (-2363 (*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-532)))) (-2508 (*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-532)))) (-1791 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-930 *3)) (-4 *3 (-532)))))
-(-10 -7 (-15 -1791 ((-112) |#1|)) (-15 -2508 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -1962 ((-619 |#1|) |#1| |#1|)))
-((-1799 (((-1224) (-832)) 9)))
-(((-931) (-10 -7 (-15 -1799 ((-1224) (-832))))) (T -931))
-((-1799 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1224)) (-5 *1 (-931)))))
-(-10 -7 (-15 -1799 ((-1224) (-832))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 61 (|has| |#1| (-539)))) (-3571 (($ $) 62 (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 28)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2063 (($ $) 24)) (-3855 (((-3 $ "failed") $) 35)) (-3350 (($ $) NIL (|has| |#1| (-442)))) (-3210 (($ $ |#1| |#2| $) 48)) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) 16)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| |#2|) NIL)) (-3095 ((|#2| $) 19)) (-4182 (($ (-1 |#2| |#2|) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-2019 (($ $) 23)) (-2037 ((|#1| $) 21)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) 40)) (-2009 ((|#1| $) NIL)) (-3902 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-539))))) (-2032 (((-3 $ "failed") $ $) 74 (|has| |#1| (-539))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-539)))) (-3705 ((|#2| $) 17)) (-2392 ((|#1| $) NIL (|has| |#1| (-442)))) (-3838 (((-832) $) NIL) (($ (-547)) 39) (($ $) NIL (|has| |#1| (-539))) (($ |#1|) 34) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ |#2|) 31)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) 15)) (-1379 (($ $ $ (-745)) 57 (|has| |#1| (-169)))) (-3577 (((-112) $ $) 67 (|has| |#1| (-539)))) (-3269 (($) 22 T CONST)) (-3281 (($) 12 T CONST)) (-2381 (((-112) $ $) 66)) (-2506 (($ $ |#1|) 75 (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) 54) (($ $ (-745)) 52)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-932 |#1| |#2|) (-13 (-317 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-539)) (IF (|has| |#2| (-130)) (-15 -3902 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4327)) (-6 -4327) |%noBranch|))) (-1016) (-766)) (T -932))
-((-3902 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-932 *3 *2)) (-4 *2 (-130)) (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *2 (-766)))))
-(-13 (-317 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-539)) (IF (|has| |#2| (-130)) (-15 -3902 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4327)) (-6 -4327) |%noBranch|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL (-1530 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))))) (-2794 (($ $ $) 63 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))) (-3672 (((-3 $ "failed") $ $) 50 (-1530 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))))) (-3608 (((-745)) 34 (-12 (|has| |#1| (-359)) (|has| |#2| (-359))))) (-4140 ((|#2| $) 21)) (-2276 ((|#1| $) 20)) (-1948 (($) NIL (-1530 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) CONST)) (-3855 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))) (-3232 (($) NIL (-12 (|has| |#1| (-359)) (|has| |#2| (-359))))) (-2261 (((-112) $) NIL (-1530 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))) (-2856 (($ $ $) NIL (-1530 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-3567 (($ $ $) NIL (-1530 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-1615 (($ |#1| |#2|) 19)) (-2402 (((-890) $) NIL (-12 (|has| |#1| (-359)) (|has| |#2| (-359))))) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 37 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))))) (-3487 (($ (-890)) NIL (-12 (|has| |#1| (-359)) (|has| |#2| (-359))))) (-3979 (((-1082) $) NIL)) (-3404 (($ $ $) NIL (-12 (|has| |#1| (-463)) (|has| |#2| (-463))))) (-1473 (($ $ $) NIL (-12 (|has| |#1| (-463)) (|has| |#2| (-463))))) (-3838 (((-832) $) 14)) (-3269 (($) 40 (-1530 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) CONST)) (-3281 (($) 24 (-1530 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))) CONST)) (-2441 (((-112) $ $) NIL (-1530 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2418 (((-112) $ $) NIL (-1530 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2381 (((-112) $ $) 18)) (-2430 (((-112) $ $) NIL (-1530 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2405 (((-112) $ $) 66 (-1530 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2506 (($ $ $) NIL (-12 (|has| |#1| (-463)) (|has| |#2| (-463))))) (-2493 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2479 (($ $ $) 43 (-1530 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))))) (** (($ $ (-547)) NIL (-12 (|has| |#1| (-463)) (|has| |#2| (-463)))) (($ $ (-745)) 31 (-1530 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))))) (($ $ (-890)) NIL (-1530 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))) (* (($ (-547) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-745) $) 46 (-1530 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))) (($ (-890) $) NIL (-1530 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))) (($ $ $) 27 (-1530 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))))
-(((-933 |#1| |#2|) (-13 (-1063) (-10 -8 (IF (|has| |#1| (-359)) (IF (|has| |#2| (-359)) (-6 (-359)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-701)) (IF (|has| |#2| (-701)) (-6 (-701)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-463)) (IF (|has| |#2| (-463)) (-6 (-463)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-767)) (IF (|has| |#2| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-821)) (IF (|has| |#2| (-821)) (-6 (-821)) |%noBranch|) |%noBranch|) (-15 -1615 ($ |#1| |#2|)) (-15 -2276 (|#1| $)) (-15 -4140 (|#2| $)))) (-1063) (-1063)) (T -933))
-((-1615 (*1 *1 *2 *3) (-12 (-5 *1 (-933 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-2276 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-933 *2 *3)) (-4 *3 (-1063)))) (-4140 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-933 *3 *2)) (-4 *3 (-1063)))))
-(-13 (-1063) (-10 -8 (IF (|has| |#1| (-359)) (IF (|has| |#2| (-359)) (-6 (-359)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-701)) (IF (|has| |#2| (-701)) (-6 (-701)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-463)) (IF (|has| |#2| (-463)) (-6 (-463)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-767)) (IF (|has| |#2| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-821)) (IF (|has| |#2| (-821)) (-6 (-821)) |%noBranch|) |%noBranch|) (-15 -1615 ($ |#1| |#2|)) (-15 -2276 (|#1| $)) (-15 -4140 (|#2| $))))
-((-4153 (((-1067) $) 12)) (-1991 (($ (-1136) (-1067)) 13)) (-2473 (((-1136) $) 10)) (-3838 (((-832) $) 22)))
-(((-934) (-13 (-591 (-832)) (-10 -8 (-15 -2473 ((-1136) $)) (-15 -4153 ((-1067) $)) (-15 -1991 ($ (-1136) (-1067)))))) (T -934))
-((-2473 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-934)))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-934)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1067)) (-5 *1 (-934)))))
-(-13 (-591 (-832)) (-10 -8 (-15 -2473 ((-1136) $)) (-15 -4153 ((-1067) $)) (-15 -1991 ($ (-1136) (-1067)))))
-((-3826 (((-112) $ $) NIL)) (-2267 (((-1065 (-1136)) $) 19)) (-3810 (((-112) $) 26)) (-3004 (((-1136) $) 27)) (-2859 (((-112) $) 24)) (-4099 ((|#1| $) 25)) (-2271 (((-842 $ $) $) 34)) (-3516 (((-112) $) 33)) (-4199 (($ $ $) 12)) (-4179 (($ $) 29)) (-3362 (((-112) $) 28)) (-4000 (($ $) 10)) (-1466 (((-1119) $) NIL)) (-2181 (((-842 $ $) $) 36)) (-4125 (((-112) $) 35)) (-2435 (($ $ $) 13)) (-3979 (((-1082) $) NIL)) (-1319 (((-842 $ $) $) 38)) (-1619 (((-112) $) 37)) (-4116 (($ $ $) 14)) (-3838 (((-832) $) 40) (($ |#1|) 7) (($ (-1136)) 9)) (-2059 (((-842 $ $) $) 32)) (-3596 (((-112) $) 30)) (-1814 (($ $ $) 11)) (-2381 (((-112) $ $) NIL)))
-(((-935 |#1|) (-13 (-936) (-10 -8 (-15 -3838 ($ |#1|)) (-15 -3838 ($ (-1136))) (-15 -2267 ((-1065 (-1136)) $)) (-15 -2859 ((-112) $)) (-15 -4099 (|#1| $)) (-15 -3810 ((-112) $)) (-15 -3004 ((-1136) $)) (-15 -3362 ((-112) $)) (-15 -4179 ($ $)) (-15 -3596 ((-112) $)) (-15 -2059 ((-842 $ $) $)) (-15 -3516 ((-112) $)) (-15 -2271 ((-842 $ $) $)) (-15 -4125 ((-112) $)) (-15 -2181 ((-842 $ $) $)) (-15 -1619 ((-112) $)) (-15 -1319 ((-842 $ $) $)))) (-936)) (T -935))
-((-3838 (*1 *1 *2) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-1065 (-1136))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-4099 (*1 *2 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) (-3810 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-4179 (*1 *1 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))))
-(-13 (-936) (-10 -8 (-15 -3838 ($ |#1|)) (-15 -3838 ($ (-1136))) (-15 -2267 ((-1065 (-1136)) $)) (-15 -2859 ((-112) $)) (-15 -4099 (|#1| $)) (-15 -3810 ((-112) $)) (-15 -3004 ((-1136) $)) (-15 -3362 ((-112) $)) (-15 -4179 ($ $)) (-15 -3596 ((-112) $)) (-15 -2059 ((-842 $ $) $)) (-15 -3516 ((-112) $)) (-15 -2271 ((-842 $ $) $)) (-15 -4125 ((-112) $)) (-15 -2181 ((-842 $ $) $)) (-15 -1619 ((-112) $)) (-15 -1319 ((-842 $ $) $))))
-((-3826 (((-112) $ $) 7)) (-4199 (($ $ $) 15)) (-4000 (($ $) 17)) (-1466 (((-1119) $) 9)) (-2435 (($ $ $) 14)) (-3979 (((-1082) $) 10)) (-4116 (($ $ $) 13)) (-3838 (((-832) $) 11)) (-1814 (($ $ $) 16)) (-2381 (((-112) $ $) 6)))
-(((-936) (-138)) (T -936))
-((-4000 (*1 *1 *1) (-4 *1 (-936))) (-1814 (*1 *1 *1 *1) (-4 *1 (-936))) (-4199 (*1 *1 *1 *1) (-4 *1 (-936))) (-2435 (*1 *1 *1 *1) (-4 *1 (-936))) (-4116 (*1 *1 *1 *1) (-4 *1 (-936))))
-(-13 (-1063) (-10 -8 (-15 -4000 ($ $)) (-15 -1814 ($ $ $)) (-15 -4199 ($ $ $)) (-15 -2435 ($ $ $)) (-15 -4116 ($ $ $))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) 8)) (-1948 (($) 7 T CONST)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-3145 (($ $ $) 43)) (-2777 (($ $ $) 44)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3567 ((|#1| $) 45)) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-4266 ((|#1| $) 39)) (-2657 (($ |#1| $) 40)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2056 ((|#1| $) 41)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2300 (($ (-619 |#1|)) 42)) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-937 |#1|) (-138) (-821)) (T -937))
-((-3567 (*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) (-2777 (*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) (-3145 (*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))))
-(-13 (-106 |t#1|) (-10 -8 (-6 -4329) (-15 -3567 (|t#1| $)) (-15 -2777 ($ $ $)) (-15 -3145 ($ $ $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-2198 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3719 |#2|)) |#2| |#2|) 85)) (-3286 ((|#2| |#2| |#2|) 83)) (-2107 (((-2 (|:| |coef2| |#2|) (|:| -3719 |#2|)) |#2| |#2|) 87)) (-3790 (((-2 (|:| |coef1| |#2|) (|:| -3719 |#2|)) |#2| |#2|) 89)) (-2744 (((-2 (|:| |coef2| |#2|) (|:| -1628 |#1|)) |#2| |#2|) 107 (|has| |#1| (-442)))) (-2390 (((-2 (|:| |coef2| |#2|) (|:| -1496 |#1|)) |#2| |#2|) 46)) (-3537 (((-2 (|:| |coef2| |#2|) (|:| -1496 |#1|)) |#2| |#2|) 64)) (-4269 (((-2 (|:| |coef1| |#2|) (|:| -1496 |#1|)) |#2| |#2|) 66)) (-3372 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3464 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 71)) (-3279 (((-2 (|:| |coef2| |#2|) (|:| -4056 |#1|)) |#2|) 97)) (-1364 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 74)) (-2164 (((-619 (-745)) |#2| |#2|) 82)) (-2947 ((|#1| |#2| |#2|) 42)) (-1718 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1628 |#1|)) |#2| |#2|) 105 (|has| |#1| (-442)))) (-1628 ((|#1| |#2| |#2|) 103 (|has| |#1| (-442)))) (-3832 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1496 |#1|)) |#2| |#2|) 44)) (-3110 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1496 |#1|)) |#2| |#2|) 63)) (-1496 ((|#1| |#2| |#2|) 61)) (-3445 (((-2 (|:| -1563 |#1|) (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2|) 35)) (-3164 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-1817 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-1717 ((|#2| |#2| |#2|) 75)) (-2760 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 69)) (-3760 ((|#2| |#2| |#2| (-745)) 67)) (-3719 ((|#2| |#2| |#2|) 111 (|has| |#1| (-442)))) (-2032 (((-1219 |#2|) (-1219 |#2|) |#1|) 21)) (-4030 (((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2|) 39)) (-1704 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4056 |#1|)) |#2|) 95)) (-4056 ((|#1| |#2|) 92)) (-2786 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 73)) (-3195 ((|#2| |#2| |#2| (-745)) 72)) (-1301 (((-619 |#2|) |#2| |#2|) 80)) (-3782 ((|#2| |#2| |#1| |#1| (-745)) 50)) (-1895 ((|#1| |#1| |#1| (-745)) 49)) (* (((-1219 |#2|) |#1| (-1219 |#2|)) 16)))
-(((-938 |#1| |#2|) (-10 -7 (-15 -1496 (|#1| |#2| |#2|)) (-15 -3110 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1496 |#1|)) |#2| |#2|)) (-15 -3537 ((-2 (|:| |coef2| |#2|) (|:| -1496 |#1|)) |#2| |#2|)) (-15 -4269 ((-2 (|:| |coef1| |#2|) (|:| -1496 |#1|)) |#2| |#2|)) (-15 -3760 (|#2| |#2| |#2| (-745))) (-15 -2760 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3464 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3195 (|#2| |#2| |#2| (-745))) (-15 -2786 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -1364 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -1717 (|#2| |#2| |#2|)) (-15 -1817 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3372 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3286 (|#2| |#2| |#2|)) (-15 -2198 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3719 |#2|)) |#2| |#2|)) (-15 -2107 ((-2 (|:| |coef2| |#2|) (|:| -3719 |#2|)) |#2| |#2|)) (-15 -3790 ((-2 (|:| |coef1| |#2|) (|:| -3719 |#2|)) |#2| |#2|)) (-15 -4056 (|#1| |#2|)) (-15 -1704 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4056 |#1|)) |#2|)) (-15 -3279 ((-2 (|:| |coef2| |#2|) (|:| -4056 |#1|)) |#2|)) (-15 -1301 ((-619 |#2|) |#2| |#2|)) (-15 -2164 ((-619 (-745)) |#2| |#2|)) (IF (|has| |#1| (-442)) (PROGN (-15 -1628 (|#1| |#2| |#2|)) (-15 -1718 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1628 |#1|)) |#2| |#2|)) (-15 -2744 ((-2 (|:| |coef2| |#2|) (|:| -1628 |#1|)) |#2| |#2|)) (-15 -3719 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1219 |#2|) |#1| (-1219 |#2|))) (-15 -2032 ((-1219 |#2|) (-1219 |#2|) |#1|)) (-15 -3445 ((-2 (|:| -1563 |#1|) (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2|)) (-15 -4030 ((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2|)) (-15 -1895 (|#1| |#1| |#1| (-745))) (-15 -3782 (|#2| |#2| |#1| |#1| (-745))) (-15 -3164 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2947 (|#1| |#2| |#2|)) (-15 -3832 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1496 |#1|)) |#2| |#2|)) (-15 -2390 ((-2 (|:| |coef2| |#2|) (|:| -1496 |#1|)) |#2| |#2|))) (-539) (-1195 |#1|)) (T -938))
-((-2390 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1496 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-3832 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1496 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-2947 (*1 *2 *3 *3) (-12 (-4 *2 (-539)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1195 *2)))) (-3164 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1195 *3)))) (-3782 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1195 *3)))) (-1895 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *2 (-539)) (-5 *1 (-938 *2 *4)) (-4 *4 (-1195 *2)))) (-4030 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-3445 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| -1563 *4) (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-2032 (*1 *2 *2 *3) (-12 (-5 *2 (-1219 *4)) (-4 *4 (-1195 *3)) (-4 *3 (-539)) (-5 *1 (-938 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1219 *4)) (-4 *4 (-1195 *3)) (-4 *3 (-539)) (-5 *1 (-938 *3 *4)))) (-3719 (*1 *2 *2 *2) (-12 (-4 *3 (-442)) (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1195 *3)))) (-2744 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1628 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-1718 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1628 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-1628 (*1 *2 *3 *3) (-12 (-4 *2 (-539)) (-4 *2 (-442)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1195 *2)))) (-2164 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 (-745))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-1301 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-3279 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4056 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-1704 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4056 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-4056 (*1 *2 *3) (-12 (-4 *2 (-539)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1195 *2)))) (-3790 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3719 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-2107 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3719 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-2198 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3719 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-3286 (*1 *2 *2 *2) (-12 (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1195 *3)))) (-3372 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-1817 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-1717 (*1 *2 *2 *2) (-12 (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1195 *3)))) (-1364 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1195 *5)))) (-2786 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1195 *5)))) (-3195 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-539)) (-5 *1 (-938 *4 *2)) (-4 *2 (-1195 *4)))) (-3464 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1195 *5)))) (-2760 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1195 *5)))) (-3760 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-539)) (-5 *1 (-938 *4 *2)) (-4 *2 (-1195 *4)))) (-4269 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1496 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-3537 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1496 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-3110 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1496 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))) (-1496 (*1 *2 *3 *3) (-12 (-4 *2 (-539)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1195 *2)))))
-(-10 -7 (-15 -1496 (|#1| |#2| |#2|)) (-15 -3110 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1496 |#1|)) |#2| |#2|)) (-15 -3537 ((-2 (|:| |coef2| |#2|) (|:| -1496 |#1|)) |#2| |#2|)) (-15 -4269 ((-2 (|:| |coef1| |#2|) (|:| -1496 |#1|)) |#2| |#2|)) (-15 -3760 (|#2| |#2| |#2| (-745))) (-15 -2760 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3464 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3195 (|#2| |#2| |#2| (-745))) (-15 -2786 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -1364 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -1717 (|#2| |#2| |#2|)) (-15 -1817 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3372 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3286 (|#2| |#2| |#2|)) (-15 -2198 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3719 |#2|)) |#2| |#2|)) (-15 -2107 ((-2 (|:| |coef2| |#2|) (|:| -3719 |#2|)) |#2| |#2|)) (-15 -3790 ((-2 (|:| |coef1| |#2|) (|:| -3719 |#2|)) |#2| |#2|)) (-15 -4056 (|#1| |#2|)) (-15 -1704 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4056 |#1|)) |#2|)) (-15 -3279 ((-2 (|:| |coef2| |#2|) (|:| -4056 |#1|)) |#2|)) (-15 -1301 ((-619 |#2|) |#2| |#2|)) (-15 -2164 ((-619 (-745)) |#2| |#2|)) (IF (|has| |#1| (-442)) (PROGN (-15 -1628 (|#1| |#2| |#2|)) (-15 -1718 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1628 |#1|)) |#2| |#2|)) (-15 -2744 ((-2 (|:| |coef2| |#2|) (|:| -1628 |#1|)) |#2| |#2|)) (-15 -3719 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1219 |#2|) |#1| (-1219 |#2|))) (-15 -2032 ((-1219 |#2|) (-1219 |#2|) |#1|)) (-15 -3445 ((-2 (|:| -1563 |#1|) (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2|)) (-15 -4030 ((-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) |#2| |#2|)) (-15 -1895 (|#1| |#1| |#1| (-745))) (-15 -3782 (|#2| |#2| |#1| |#1| (-745))) (-15 -3164 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2947 (|#1| |#2| |#2|)) (-15 -3832 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1496 |#1|)) |#2| |#2|)) (-15 -2390 ((-2 (|:| |coef2| |#2|) (|:| -1496 |#1|)) |#2| |#2|)))
-((-3826 (((-112) $ $) NIL)) (-2093 (((-1172) $) 12)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3947 (((-1141) $) 9)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-939) (-13 (-1047) (-10 -8 (-15 -3947 ((-1141) $)) (-15 -2093 ((-1172) $))))) (T -939))
-((-3947 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-939)))) (-2093 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-939)))))
-(-13 (-1047) (-10 -8 (-15 -3947 ((-1141) $)) (-15 -2093 ((-1172) $))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) 27)) (-1948 (($) NIL T CONST)) (-3064 (((-619 (-619 (-547))) (-619 (-547))) 29)) (-2146 (((-547) $) 45)) (-1527 (($ (-619 (-547))) 17)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2838 (((-619 (-547)) $) 12)) (-3404 (($ $) 32)) (-3838 (((-832) $) 43) (((-619 (-547)) $) 10)) (-3269 (($) 7 T CONST)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 20)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 19)) (-2479 (($ $ $) 21)) (* (($ (-890) $) NIL) (($ (-745) $) 25)))
-(((-940) (-13 (-769) (-592 (-619 (-547))) (-10 -8 (-15 -1527 ($ (-619 (-547)))) (-15 -3064 ((-619 (-619 (-547))) (-619 (-547)))) (-15 -2146 ((-547) $)) (-15 -3404 ($ $)) (-15 -3838 ((-619 (-547)) $))))) (T -940))
-((-1527 (*1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-940)))) (-3064 (*1 *2 *3) (-12 (-5 *2 (-619 (-619 (-547)))) (-5 *1 (-940)) (-5 *3 (-619 (-547))))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-940)))) (-3404 (*1 *1 *1) (-5 *1 (-940))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-940)))))
-(-13 (-769) (-592 (-619 (-547))) (-10 -8 (-15 -1527 ($ (-619 (-547)))) (-15 -3064 ((-619 (-619 (-547))) (-619 (-547)))) (-15 -2146 ((-547) $)) (-15 -3404 ($ $)) (-15 -3838 ((-619 (-547)) $))))
-((-2506 (($ $ |#2|) 30)) (-2493 (($ $) 22) (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-398 (-547)) $) 26) (($ $ (-398 (-547))) 28)))
-(((-941 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -2506 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-942 |#2| |#3| |#4|) (-1016) (-766) (-821)) (T -941))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -2506 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2267 (((-619 |#3|) $) 72)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3571 (($ $) 50 (|has| |#1| (-539)))) (-3915 (((-112) $) 52 (|has| |#1| (-539)))) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-2063 (($ $) 58)) (-3855 (((-3 $ "failed") $) 32)) (-1713 (((-112) $) 71)) (-2261 (((-112) $) 30)) (-1759 (((-112) $) 60)) (-2238 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-619 |#3|) (-619 |#2|)) 73)) (-2790 (($ (-1 |#1| |#1|) $) 61)) (-2019 (($ $) 63)) (-2037 ((|#1| $) 64)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2032 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-3705 ((|#2| $) 62)) (-2804 (($ $) 70)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539))) (($ |#1|) 45 (|has| |#1| (-169)))) (-2450 ((|#1| $ |#2|) 57)) (-2220 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 51 (|has| |#1| (-539)))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#1|) 56 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547)))))))
-(((-942 |#1| |#2| |#3|) (-138) (-1016) (-766) (-821)) (T -942))
-((-2037 (*1 *2 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *3 (-766)) (-4 *4 (-821)) (-4 *2 (-1016)))) (-2019 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *4 (-821)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *2 *4)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *2 (-766)))) (-2238 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-942 *4 *3 *2)) (-4 *4 (-1016)) (-4 *3 (-766)) (-4 *2 (-821)))) (-2238 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 *5)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-766)) (-4 *6 (-821)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766)) (-4 *5 (-821)) (-5 *2 (-619 *5)))) (-1713 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2804 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *4 (-821)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2238 ($ $ |t#3| |t#2|)) (-15 -2238 ($ $ (-619 |t#3|) (-619 |t#2|))) (-15 -2019 ($ $)) (-15 -2037 (|t#1| $)) (-15 -3705 (|t#2| $)) (-15 -2267 ((-619 |t#3|) $)) (-15 -1713 ((-112) $)) (-15 -2804 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-281) |has| |#1| (-539)) ((-539) |has| |#1| (-539)) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-1849 (((-1058 (-217)) $) 8)) (-1836 (((-1058 (-217)) $) 9)) (-1825 (((-1058 (-217)) $) 10)) (-2290 (((-619 (-619 (-912 (-217)))) $) 11)) (-3838 (((-832) $) 6)))
-(((-943) (-138)) (T -943))
-((-2290 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-619 (-619 (-912 (-217))))))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-217))))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-217))))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-217))))))
-(-13 (-591 (-832)) (-10 -8 (-15 -2290 ((-619 (-619 (-912 (-217)))) $)) (-15 -1825 ((-1058 (-217)) $)) (-15 -1836 ((-1058 (-217)) $)) (-15 -1849 ((-1058 (-217)) $))))
-(((-591 (-832)) . T))
-((-2267 (((-619 |#4|) $) 23)) (-1474 (((-112) $) 48)) (-1843 (((-112) $) 47)) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |#4|) 36)) (-1651 (((-112) $) 49)) (-4230 (((-112) $ $) 55)) (-2360 (((-112) $ $) 58)) (-1840 (((-112) $) 53)) (-4017 (((-619 |#5|) (-619 |#5|) $) 90)) (-1900 (((-619 |#5|) (-619 |#5|) $) 87)) (-2916 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-4138 (((-619 |#4|) $) 27)) (-3758 (((-112) |#4| $) 30)) (-1770 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3461 (($ $ |#4|) 33)) (-3007 (($ $ |#4|) 32)) (-3619 (($ $ |#4|) 34)) (-2381 (((-112) $ $) 40)))
-(((-944 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1843 ((-112) |#1|)) (-15 -4017 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -1900 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -2916 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1770 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1651 ((-112) |#1|)) (-15 -2360 ((-112) |#1| |#1|)) (-15 -4230 ((-112) |#1| |#1|)) (-15 -1840 ((-112) |#1|)) (-15 -1474 ((-112) |#1|)) (-15 -3185 ((-2 (|:| |under| |#1|) (|:| -1276 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3461 (|#1| |#1| |#4|)) (-15 -3619 (|#1| |#1| |#4|)) (-15 -3007 (|#1| |#1| |#4|)) (-15 -3758 ((-112) |#4| |#1|)) (-15 -4138 ((-619 |#4|) |#1|)) (-15 -2267 ((-619 |#4|) |#1|)) (-15 -2381 ((-112) |#1| |#1|))) (-945 |#2| |#3| |#4| |#5|) (-1016) (-767) (-821) (-1030 |#2| |#3| |#4|)) (T -944))
-NIL
-(-10 -8 (-15 -1843 ((-112) |#1|)) (-15 -4017 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -1900 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -2916 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1770 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1651 ((-112) |#1|)) (-15 -2360 ((-112) |#1| |#1|)) (-15 -4230 ((-112) |#1| |#1|)) (-15 -1840 ((-112) |#1|)) (-15 -1474 ((-112) |#1|)) (-15 -3185 ((-2 (|:| |under| |#1|) (|:| -1276 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3461 (|#1| |#1| |#4|)) (-15 -3619 (|#1| |#1| |#4|)) (-15 -3007 (|#1| |#1| |#4|)) (-15 -3758 ((-112) |#4| |#1|)) (-15 -4138 ((-619 |#4|) |#1|)) (-15 -2267 ((-619 |#4|) |#1|)) (-15 -2381 ((-112) |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-2267 (((-619 |#3|) $) 33)) (-1474 (((-112) $) 26)) (-1843 (((-112) $) 17 (|has| |#1| (-539)))) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |#3|) 27)) (-3899 (((-112) $ (-745)) 44)) (-1482 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4329)))) (-1948 (($) 45 T CONST)) (-1651 (((-112) $) 22 (|has| |#1| (-539)))) (-4230 (((-112) $ $) 24 (|has| |#1| (-539)))) (-2360 (((-112) $ $) 23 (|has| |#1| (-539)))) (-1840 (((-112) $) 25 (|has| |#1| (-539)))) (-4017 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-539)))) (-1900 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-539)))) (-2707 (((-3 $ "failed") (-619 |#4|)) 36)) (-2652 (($ (-619 |#4|)) 35)) (-3668 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4329)))) (-2916 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-539)))) (-2552 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4329))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4329)))) (-2982 (((-619 |#4|) $) 52 (|has| $ (-6 -4329)))) (-3338 ((|#3| $) 34)) (-2763 (((-112) $ (-745)) 43)) (-2284 (((-619 |#4|) $) 53 (|has| $ (-6 -4329)))) (-2132 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#4| |#4|) $) 47)) (-4138 (((-619 |#3|) $) 32)) (-3758 (((-112) |#3| $) 31)) (-3806 (((-112) $ (-745)) 42)) (-1466 (((-1119) $) 9)) (-1770 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-539)))) (-3979 (((-1082) $) 10)) (-3650 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1598 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) 57 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) 56 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2052 (((-112) $ $) 38)) (-2884 (((-112) $) 41)) (-2245 (($) 40)) (-3992 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4329)))) (-2274 (($ $) 39)) (-2838 (((-523) $) 69 (|has| |#4| (-592 (-523))))) (-3846 (($ (-619 |#4|)) 60)) (-3461 (($ $ |#3|) 28)) (-3007 (($ $ |#3|) 30)) (-3619 (($ $ |#3|) 29)) (-3838 (((-832) $) 11) (((-619 |#4|) $) 37)) (-2693 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 6)) (-3767 (((-745) $) 46 (|has| $ (-6 -4329)))))
-(((-945 |#1| |#2| |#3| |#4|) (-138) (-1016) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -945))
-((-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *1 (-945 *3 *4 *5 *6)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *1 (-945 *3 *4 *5 *6)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-1030 *3 *4 *2)) (-4 *2 (-821)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) (-3758 (*1 *2 *3 *1) (-12 (-4 *1 (-945 *4 *5 *3 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112)))) (-3007 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))) (-3619 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))) (-3461 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1276 *1) (|:| |upper| *1))) (-4 *1 (-945 *4 *5 *3 *6)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-5 *2 (-112)))) (-4230 (*1 *2 *1 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-5 *2 (-112)))) (-2360 (*1 *2 *1 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-5 *2 (-112)))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-5 *2 (-112)))) (-1770 (*1 *2 *3 *1) (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2916 (*1 *2 *3 *1) (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1900 (*1 *2 *2 *1) (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)))) (-4017 (*1 *2 *2 *1) (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-5 *2 (-112)))))
-(-13 (-1063) (-149 |t#4|) (-591 (-619 |t#4|)) (-10 -8 (-6 -4329) (-15 -2707 ((-3 $ "failed") (-619 |t#4|))) (-15 -2652 ($ (-619 |t#4|))) (-15 -3338 (|t#3| $)) (-15 -2267 ((-619 |t#3|) $)) (-15 -4138 ((-619 |t#3|) $)) (-15 -3758 ((-112) |t#3| $)) (-15 -3007 ($ $ |t#3|)) (-15 -3619 ($ $ |t#3|)) (-15 -3461 ($ $ |t#3|)) (-15 -3185 ((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |t#3|)) (-15 -1474 ((-112) $)) (IF (|has| |t#1| (-539)) (PROGN (-15 -1840 ((-112) $)) (-15 -4230 ((-112) $ $)) (-15 -2360 ((-112) $ $)) (-15 -1651 ((-112) $)) (-15 -1770 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2916 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1900 ((-619 |t#4|) (-619 |t#4|) $)) (-15 -4017 ((-619 |t#4|) (-619 |t#4|) $)) (-15 -1843 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-101) . T) ((-591 (-619 |#4|)) . T) ((-591 (-832)) . T) ((-149 |#4|) . T) ((-592 (-523)) |has| |#4| (-592 (-523))) ((-300 |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-479 |#4|) . T) ((-503 |#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-1063) . T) ((-1173) . T))
-((-4068 (((-619 |#4|) |#4| |#4|) 118)) (-2872 (((-619 |#4|) (-619 |#4|) (-112)) 107 (|has| |#1| (-442))) (((-619 |#4|) (-619 |#4|)) 108 (|has| |#1| (-442)))) (-3613 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 35)) (-3018 (((-112) |#4|) 34)) (-4061 (((-619 |#4|) |#4|) 103 (|has| |#1| (-442)))) (-3239 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-1 (-112) |#4|) (-619 |#4|)) 20)) (-3219 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|)) 22)) (-2265 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|)) 23)) (-4102 (((-3 (-2 (|:| |bas| (-466 |#1| |#2| |#3| |#4|)) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|)) 73)) (-2461 (((-619 |#4|) (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2545 (((-619 |#4|) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3060 (((-619 |#4|) (-619 |#4|)) 110)) (-2211 (((-619 |#4|) (-619 |#4|) (-619 |#4|) (-112)) 48) (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 50)) (-2918 ((|#4| |#4| (-619 |#4|)) 49)) (-3481 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 114 (|has| |#1| (-442)))) (-2180 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 117 (|has| |#1| (-442)))) (-2690 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 116 (|has| |#1| (-442)))) (-2399 (((-619 |#4|) (-619 |#4|) (-619 |#4|) (-1 (-619 |#4|) (-619 |#4|))) 87) (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 89) (((-619 |#4|) (-619 |#4|) |#4|) 121) (((-619 |#4|) |#4| |#4|) 119) (((-619 |#4|) (-619 |#4|)) 88)) (-4231 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-298))))) (-4195 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 41)) (-2647 (((-112) (-619 |#4|)) 62)) (-2762 (((-112) (-619 |#4|) (-619 (-619 |#4|))) 53)) (-2370 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 29)) (-1459 (((-112) |#4|) 28)) (-3573 (((-619 |#4|) (-619 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-298))))) (-2021 (((-619 |#4|) (-619 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-298))))) (-2316 (((-619 |#4|) (-619 |#4|)) 66)) (-3631 (((-619 |#4|) (-619 |#4|)) 79)) (-4108 (((-112) (-619 |#4|) (-619 |#4|)) 51)) (-1267 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 39)) (-1835 (((-112) |#4|) 36)))
-(((-946 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2399 ((-619 |#4|) (-619 |#4|))) (-15 -2399 ((-619 |#4|) |#4| |#4|)) (-15 -3060 ((-619 |#4|) (-619 |#4|))) (-15 -4068 ((-619 |#4|) |#4| |#4|)) (-15 -2399 ((-619 |#4|) (-619 |#4|) |#4|)) (-15 -2399 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2399 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-1 (-619 |#4|) (-619 |#4|)))) (-15 -4108 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2762 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -2647 ((-112) (-619 |#4|))) (-15 -3239 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-1 (-112) |#4|) (-619 |#4|))) (-15 -3219 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2265 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -4195 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -3018 ((-112) |#4|)) (-15 -3613 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -1459 ((-112) |#4|)) (-15 -2370 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -1835 ((-112) |#4|)) (-15 -1267 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2211 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2211 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-112))) (-15 -2918 (|#4| |#4| (-619 |#4|))) (-15 -2316 ((-619 |#4|) (-619 |#4|))) (-15 -4102 ((-3 (-2 (|:| |bas| (-466 |#1| |#2| |#3| |#4|)) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|))) (-15 -3631 ((-619 |#4|) (-619 |#4|))) (-15 -2461 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2545 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-442)) (PROGN (-15 -4061 ((-619 |#4|) |#4|)) (-15 -2872 ((-619 |#4|) (-619 |#4|))) (-15 -2872 ((-619 |#4|) (-619 |#4|) (-112))) (-15 -3481 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2690 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2180 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) (IF (|has| |#1| (-298)) (IF (|has| |#1| (-145)) (PROGN (-15 -2021 ((-619 |#4|) (-619 |#4|))) (-15 -3573 ((-619 |#4|) (-619 |#4|))) (-15 -4231 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) |%noBranch|)) (-539) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -946))
-((-4231 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-298)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-298)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2021 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-298)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2180 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2690 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-3481 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2872 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2872 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-4061 (*1 *2 *3) (-12 (-4 *4 (-442)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2545 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-946 *5 *6 *7 *8)))) (-2461 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-619 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-539)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *1 (-946 *6 *7 *8 *9)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-4102 (*1 *2 *3) (|partial| -12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-466 *4 *5 *6 *7)) (|:| -2312 (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2316 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2918 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *2)))) (-2211 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2211 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-1267 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-1835 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2370 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-1459 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-3613 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-4195 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) (-3219 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) (-3239 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) (-2647 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *5 *6 *7 *8)))) (-4108 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2399 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-619 *7) (-619 *7))) (-5 *2 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2399 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2399 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *3)))) (-4068 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-3060 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2399 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2399 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2399 ((-619 |#4|) (-619 |#4|))) (-15 -2399 ((-619 |#4|) |#4| |#4|)) (-15 -3060 ((-619 |#4|) (-619 |#4|))) (-15 -4068 ((-619 |#4|) |#4| |#4|)) (-15 -2399 ((-619 |#4|) (-619 |#4|) |#4|)) (-15 -2399 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2399 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-1 (-619 |#4|) (-619 |#4|)))) (-15 -4108 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2762 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -2647 ((-112) (-619 |#4|))) (-15 -3239 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-1 (-112) |#4|) (-619 |#4|))) (-15 -3219 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2265 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -4195 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -3018 ((-112) |#4|)) (-15 -3613 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -1459 ((-112) |#4|)) (-15 -2370 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -1835 ((-112) |#4|)) (-15 -1267 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2211 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2211 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-112))) (-15 -2918 (|#4| |#4| (-619 |#4|))) (-15 -2316 ((-619 |#4|) (-619 |#4|))) (-15 -4102 ((-3 (-2 (|:| |bas| (-466 |#1| |#2| |#3| |#4|)) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|))) (-15 -3631 ((-619 |#4|) (-619 |#4|))) (-15 -2461 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2545 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-442)) (PROGN (-15 -4061 ((-619 |#4|) |#4|)) (-15 -2872 ((-619 |#4|) (-619 |#4|))) (-15 -2872 ((-619 |#4|) (-619 |#4|) (-112))) (-15 -3481 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2690 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2180 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) (IF (|has| |#1| (-298)) (IF (|has| |#1| (-145)) (PROGN (-15 -2021 ((-619 |#4|) (-619 |#4|))) (-15 -3573 ((-619 |#4|) (-619 |#4|))) (-15 -4231 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) |%noBranch|))
-((-3529 (((-2 (|:| R (-663 |#1|)) (|:| A (-663 |#1|)) (|:| |Ainv| (-663 |#1|))) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-4154 (((-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1219 |#1|)))) (-663 |#1|) (-1219 |#1|)) 36)) (-1830 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16)))
-(((-947 |#1|) (-10 -7 (-15 -3529 ((-2 (|:| R (-663 |#1|)) (|:| A (-663 |#1|)) (|:| |Ainv| (-663 |#1|))) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -1830 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -4154 ((-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1219 |#1|)))) (-663 |#1|) (-1219 |#1|)))) (-354)) (T -947))
-((-4154 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-5 *2 (-619 (-2 (|:| C (-663 *5)) (|:| |g| (-1219 *5))))) (-5 *1 (-947 *5)) (-5 *3 (-663 *5)) (-5 *4 (-1219 *5)))) (-1830 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-663 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-354)) (-5 *1 (-947 *5)))) (-3529 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-354)) (-5 *2 (-2 (|:| R (-663 *6)) (|:| A (-663 *6)) (|:| |Ainv| (-663 *6)))) (-5 *1 (-947 *6)) (-5 *3 (-663 *6)))))
-(-10 -7 (-15 -3529 ((-2 (|:| R (-663 |#1|)) (|:| A (-663 |#1|)) (|:| |Ainv| (-663 |#1|))) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -1830 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -4154 ((-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1219 |#1|)))) (-663 |#1|) (-1219 |#1|))))
-((-3299 (((-409 |#4|) |#4|) 48)))
-(((-948 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3299 ((-409 |#4|) |#4|))) (-821) (-767) (-442) (-918 |#3| |#2| |#1|)) (T -948))
-((-3299 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-442)) (-5 *2 (-409 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4)))))
-(-10 -7 (-15 -3299 ((-409 |#4|) |#4|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3761 (($ (-745)) 112 (|has| |#1| (-23)))) (-1652 (((-1224) $ (-547) (-547)) 40 (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2809 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4330))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4330))))) (-3185 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-3899 (((-112) $ (-745)) 8)) (-2247 ((|#1| $ (-547) |#1|) 52 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) 58 (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-3044 (($ $) 90 (|has| $ (-6 -4330)))) (-3057 (($ $) 100)) (-3668 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) 53 (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) 51)) (-2876 (((-547) (-1 (-112) |#1|) $) 97) (((-547) |#1| $) 96 (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) 95 (|has| |#1| (-1063)))) (-2791 (($ (-619 |#1|)) 118)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-4042 (((-663 |#1|) $ $) 105 (|has| |#1| (-1016)))) (-3735 (($ (-745) |#1|) 69)) (-2763 (((-112) $ (-745)) 9)) (-2434 (((-547) $) 43 (|has| (-547) (-821)))) (-2856 (($ $ $) 87 (|has| |#1| (-821)))) (-2777 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 44 (|has| (-547) (-821)))) (-3567 (($ $ $) 86 (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2881 ((|#1| $) 102 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-3806 (((-112) $ (-745)) 10)) (-4202 ((|#1| $) 103 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-2606 (($ |#1| $ (-547)) 60) (($ $ $ (-547)) 59)) (-2121 (((-619 (-547)) $) 46)) (-2018 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3638 ((|#1| $) 42 (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3632 (($ $ |#1|) 41 (|has| $ (-6 -4330)))) (-3708 (($ $ (-619 |#1|)) 115)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) 48)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ (-547) |#1|) 50) ((|#1| $ (-547)) 49) (($ $ (-1186 (-547))) 63)) (-4117 ((|#1| $ $) 106 (|has| |#1| (-1016)))) (-3970 (((-890) $) 117)) (-2159 (($ $ (-547)) 62) (($ $ (-1186 (-547))) 61)) (-1838 (($ $ $) 104)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-4282 (($ $ $ (-547)) 91 (|has| $ (-6 -4330)))) (-2274 (($ $) 13)) (-2838 (((-523) $) 79 (|has| |#1| (-592 (-523)))) (($ (-619 |#1|)) 116)) (-3846 (($ (-619 |#1|)) 70)) (-1945 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2430 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 82 (|has| |#1| (-821)))) (-2493 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2479 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-547) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-701))) (($ $ |#1|) 107 (|has| |#1| (-701)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-949 |#1|) (-138) (-1016)) (T -949))
-((-2791 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3)))) (-3970 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1016)) (-5 *2 (-890)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3)))) (-1838 (*1 *1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1016)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-949 *3)) (-4 *3 (-1016)))))
-(-13 (-1217 |t#1|) (-10 -8 (-15 -2791 ($ (-619 |t#1|))) (-15 -3970 ((-890) $)) (-15 -2838 ($ (-619 |t#1|))) (-15 -1838 ($ $ $)) (-15 -3708 ($ $ (-619 |t#1|)))))
-(((-34) . T) ((-101) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-364 |#1|) . T) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-19 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1173) . T) ((-1217 |#1|) . T))
-((-2790 (((-912 |#2|) (-1 |#2| |#1|) (-912 |#1|)) 17)))
-(((-950 |#1| |#2|) (-10 -7 (-15 -2790 ((-912 |#2|) (-1 |#2| |#1|) (-912 |#1|)))) (-1016) (-1016)) (T -950))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-912 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-912 *6)) (-5 *1 (-950 *5 *6)))))
-(-10 -7 (-15 -2790 ((-912 |#2|) (-1 |#2| |#1|) (-912 |#1|))))
-((-1826 ((|#1| (-912 |#1|)) 13)) (-4131 ((|#1| (-912 |#1|)) 12)) (-1420 ((|#1| (-912 |#1|)) 11)) (-2393 ((|#1| (-912 |#1|)) 15)) (-1901 ((|#1| (-912 |#1|)) 21)) (-2895 ((|#1| (-912 |#1|)) 14)) (-3609 ((|#1| (-912 |#1|)) 16)) (-1733 ((|#1| (-912 |#1|)) 20)) (-3157 ((|#1| (-912 |#1|)) 19)))
-(((-951 |#1|) (-10 -7 (-15 -1420 (|#1| (-912 |#1|))) (-15 -4131 (|#1| (-912 |#1|))) (-15 -1826 (|#1| (-912 |#1|))) (-15 -2895 (|#1| (-912 |#1|))) (-15 -2393 (|#1| (-912 |#1|))) (-15 -3609 (|#1| (-912 |#1|))) (-15 -3157 (|#1| (-912 |#1|))) (-15 -1733 (|#1| (-912 |#1|))) (-15 -1901 (|#1| (-912 |#1|)))) (-1016)) (T -951))
-((-1901 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2895 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))))
-(-10 -7 (-15 -1420 (|#1| (-912 |#1|))) (-15 -4131 (|#1| (-912 |#1|))) (-15 -1826 (|#1| (-912 |#1|))) (-15 -2895 (|#1| (-912 |#1|))) (-15 -2393 (|#1| (-912 |#1|))) (-15 -3609 (|#1| (-912 |#1|))) (-15 -3157 (|#1| (-912 |#1|))) (-15 -1733 (|#1| (-912 |#1|))) (-15 -1901 (|#1| (-912 |#1|))))
-((-1862 (((-3 |#1| "failed") |#1|) 18)) (-2922 (((-3 |#1| "failed") |#1|) 6)) (-1888 (((-3 |#1| "failed") |#1|) 16)) (-3411 (((-3 |#1| "failed") |#1|) 4)) (-2901 (((-3 |#1| "failed") |#1|) 20)) (-4004 (((-3 |#1| "failed") |#1|) 8)) (-2310 (((-3 |#1| "failed") |#1| (-745)) 1)) (-1622 (((-3 |#1| "failed") |#1|) 3)) (-4040 (((-3 |#1| "failed") |#1|) 2)) (-3497 (((-3 |#1| "failed") |#1|) 21)) (-2039 (((-3 |#1| "failed") |#1|) 9)) (-1896 (((-3 |#1| "failed") |#1|) 19)) (-4007 (((-3 |#1| "failed") |#1|) 7)) (-4050 (((-3 |#1| "failed") |#1|) 17)) (-1875 (((-3 |#1| "failed") |#1|) 5)) (-3549 (((-3 |#1| "failed") |#1|) 24)) (-2906 (((-3 |#1| "failed") |#1|) 12)) (-1789 (((-3 |#1| "failed") |#1|) 22)) (-3769 (((-3 |#1| "failed") |#1|) 10)) (-3438 (((-3 |#1| "failed") |#1|) 26)) (-1646 (((-3 |#1| "failed") |#1|) 14)) (-3827 (((-3 |#1| "failed") |#1|) 27)) (-3259 (((-3 |#1| "failed") |#1|) 15)) (-2640 (((-3 |#1| "failed") |#1|) 25)) (-2890 (((-3 |#1| "failed") |#1|) 13)) (-2022 (((-3 |#1| "failed") |#1|) 23)) (-2812 (((-3 |#1| "failed") |#1|) 11)))
-(((-952 |#1|) (-138) (-1158)) (T -952))
-((-3827 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-3438 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-2640 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-3549 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-2022 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-1789 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-3497 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-2901 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-1896 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-1862 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-4050 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-1888 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-3259 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-1646 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-2890 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-2906 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-2812 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-3769 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-2039 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-4004 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-4007 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-2922 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-1875 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-3411 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-1622 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-4040 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))) (-2310 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-745)) (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(-13 (-10 -7 (-15 -2310 ((-3 |t#1| "failed") |t#1| (-745))) (-15 -4040 ((-3 |t#1| "failed") |t#1|)) (-15 -1622 ((-3 |t#1| "failed") |t#1|)) (-15 -3411 ((-3 |t#1| "failed") |t#1|)) (-15 -1875 ((-3 |t#1| "failed") |t#1|)) (-15 -2922 ((-3 |t#1| "failed") |t#1|)) (-15 -4007 ((-3 |t#1| "failed") |t#1|)) (-15 -4004 ((-3 |t#1| "failed") |t#1|)) (-15 -2039 ((-3 |t#1| "failed") |t#1|)) (-15 -3769 ((-3 |t#1| "failed") |t#1|)) (-15 -2812 ((-3 |t#1| "failed") |t#1|)) (-15 -2906 ((-3 |t#1| "failed") |t#1|)) (-15 -2890 ((-3 |t#1| "failed") |t#1|)) (-15 -1646 ((-3 |t#1| "failed") |t#1|)) (-15 -3259 ((-3 |t#1| "failed") |t#1|)) (-15 -1888 ((-3 |t#1| "failed") |t#1|)) (-15 -4050 ((-3 |t#1| "failed") |t#1|)) (-15 -1862 ((-3 |t#1| "failed") |t#1|)) (-15 -1896 ((-3 |t#1| "failed") |t#1|)) (-15 -2901 ((-3 |t#1| "failed") |t#1|)) (-15 -3497 ((-3 |t#1| "failed") |t#1|)) (-15 -1789 ((-3 |t#1| "failed") |t#1|)) (-15 -2022 ((-3 |t#1| "failed") |t#1|)) (-15 -3549 ((-3 |t#1| "failed") |t#1|)) (-15 -2640 ((-3 |t#1| "failed") |t#1|)) (-15 -3438 ((-3 |t#1| "failed") |t#1|)) (-15 -3827 ((-3 |t#1| "failed") |t#1|))))
-((-1794 ((|#4| |#4| (-619 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3452 ((|#4| |#4| (-619 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2790 ((|#4| (-1 |#4| (-921 |#1|)) |#4|) 30)))
-(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3452 (|#4| |#4| |#3|)) (-15 -3452 (|#4| |#4| (-619 |#3|))) (-15 -1794 (|#4| |#4| |#3|)) (-15 -1794 (|#4| |#4| (-619 |#3|))) (-15 -2790 (|#4| (-1 |#4| (-921 |#1|)) |#4|))) (-1016) (-767) (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $)) (-15 -3004 ((-3 $ "failed") (-1136))))) (-918 (-921 |#1|) |#2| |#3|)) (T -953))
-((-2790 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-921 *4))) (-4 *4 (-1016)) (-4 *2 (-918 (-921 *4) *5 *6)) (-4 *5 (-767)) (-4 *6 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $)) (-15 -3004 ((-3 $ "failed") (-1136)))))) (-5 *1 (-953 *4 *5 *6 *2)))) (-1794 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $)) (-15 -3004 ((-3 $ "failed") (-1136)))))) (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) (-4 *2 (-918 (-921 *4) *5 *6)))) (-1794 (*1 *2 *2 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $)) (-15 -3004 ((-3 $ "failed") (-1136)))))) (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3)))) (-3452 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $)) (-15 -3004 ((-3 $ "failed") (-1136)))))) (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) (-4 *2 (-918 (-921 *4) *5 *6)))) (-3452 (*1 *2 *2 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $)) (-15 -3004 ((-3 $ "failed") (-1136)))))) (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3)))))
-(-10 -7 (-15 -3452 (|#4| |#4| |#3|)) (-15 -3452 (|#4| |#4| (-619 |#3|))) (-15 -1794 (|#4| |#4| |#3|)) (-15 -1794 (|#4| |#4| (-619 |#3|))) (-15 -2790 (|#4| (-1 |#4| (-921 |#1|)) |#4|)))
-((-3991 ((|#2| |#3|) 35)) (-3213 (((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|) 73)) (-1380 (((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) 89)))
-(((-954 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1380 ((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3213 ((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|)) (-15 -3991 (|#2| |#3|))) (-340) (-1195 |#1|) (-1195 |#2|) (-699 |#2| |#3|)) (T -954))
-((-3991 (*1 *2 *3) (-12 (-4 *3 (-1195 *2)) (-4 *2 (-1195 *4)) (-5 *1 (-954 *4 *2 *3 *5)) (-4 *4 (-340)) (-4 *5 (-699 *2 *3)))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-340)) (-4 *3 (-1195 *4)) (-4 *5 (-1195 *3)) (-5 *2 (-2 (|:| -1917 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-954 *4 *3 *5 *6)) (-4 *6 (-699 *3 *5)))) (-1380 (*1 *2) (-12 (-4 *3 (-340)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 *4)) (-5 *2 (-2 (|:| -1917 (-663 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-663 *4)))) (-5 *1 (-954 *3 *4 *5 *6)) (-4 *6 (-699 *4 *5)))))
-(-10 -7 (-15 -1380 ((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3213 ((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|)) (-15 -3991 (|#2| |#3|)))
-((-2221 (((-956 (-398 (-547)) (-834 |#1|) (-232 |#2| (-745)) (-239 |#1| (-398 (-547)))) (-956 (-398 (-547)) (-834 |#1|) (-232 |#2| (-745)) (-239 |#1| (-398 (-547))))) 69)))
-(((-955 |#1| |#2|) (-10 -7 (-15 -2221 ((-956 (-398 (-547)) (-834 |#1|) (-232 |#2| (-745)) (-239 |#1| (-398 (-547)))) (-956 (-398 (-547)) (-834 |#1|) (-232 |#2| (-745)) (-239 |#1| (-398 (-547))))))) (-619 (-1136)) (-745)) (T -955))
-((-2221 (*1 *2 *2) (-12 (-5 *2 (-956 (-398 (-547)) (-834 *3) (-232 *4 (-745)) (-239 *3 (-398 (-547))))) (-14 *3 (-619 (-1136))) (-14 *4 (-745)) (-5 *1 (-955 *3 *4)))))
-(-10 -7 (-15 -2221 ((-956 (-398 (-547)) (-834 |#1|) (-232 |#2| (-745)) (-239 |#1| (-398 (-547)))) (-956 (-398 (-547)) (-834 |#1|) (-232 |#2| (-745)) (-239 |#1| (-398 (-547)))))))
-((-3826 (((-112) $ $) NIL)) (-1456 (((-3 (-112) "failed") $) 69)) (-3088 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-298))))) (-1587 (($ $ (-3 (-112) "failed")) 70)) (-1918 (($ (-619 |#4|) |#4|) 25)) (-1466 (((-1119) $) NIL)) (-1803 (($ $) 67)) (-3979 (((-1082) $) NIL)) (-2884 (((-112) $) 68)) (-2245 (($) 30)) (-3147 ((|#4| $) 72)) (-4158 (((-619 |#4|) $) 71)) (-3838 (((-832) $) 66)) (-2381 (((-112) $ $) NIL)))
-(((-956 |#1| |#2| |#3| |#4|) (-13 (-1063) (-591 (-832)) (-10 -8 (-15 -2245 ($)) (-15 -1918 ($ (-619 |#4|) |#4|)) (-15 -1456 ((-3 (-112) "failed") $)) (-15 -1587 ($ $ (-3 (-112) "failed"))) (-15 -2884 ((-112) $)) (-15 -4158 ((-619 |#4|) $)) (-15 -3147 (|#4| $)) (-15 -1803 ($ $)) (IF (|has| |#1| (-298)) (IF (|has| |#1| (-145)) (-15 -3088 ($ $)) |%noBranch|) |%noBranch|))) (-442) (-821) (-767) (-918 |#1| |#3| |#2|)) (T -956))
-((-2245 (*1 *1) (-12 (-4 *2 (-442)) (-4 *3 (-821)) (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) (-1918 (*1 *1 *2 *3) (-12 (-5 *2 (-619 *3)) (-4 *3 (-918 *4 *6 *5)) (-4 *4 (-442)) (-4 *5 (-821)) (-4 *6 (-767)) (-5 *1 (-956 *4 *5 *6 *3)))) (-1456 (*1 *2 *1) (|partial| -12 (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-1587 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-2884 (*1 *2 *1) (-12 (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-4158 (*1 *2 *1) (-12 (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-619 *6)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-3147 (*1 *2 *1) (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-956 *3 *4 *5 *2)) (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)))) (-1803 (*1 *1 *1) (-12 (-4 *2 (-442)) (-4 *3 (-821)) (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) (-3088 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-298)) (-4 *2 (-442)) (-4 *3 (-821)) (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))))
-(-13 (-1063) (-591 (-832)) (-10 -8 (-15 -2245 ($)) (-15 -1918 ($ (-619 |#4|) |#4|)) (-15 -1456 ((-3 (-112) "failed") $)) (-15 -1587 ($ $ (-3 (-112) "failed"))) (-15 -2884 ((-112) $)) (-15 -4158 ((-619 |#4|) $)) (-15 -3147 (|#4| $)) (-15 -1803 ($ $)) (IF (|has| |#1| (-298)) (IF (|has| |#1| (-145)) (-15 -3088 ($ $)) |%noBranch|) |%noBranch|)))
-((-3308 (((-112) |#5| |#5|) 38)) (-4187 (((-112) |#5| |#5|) 52)) (-3158 (((-112) |#5| (-619 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3703 (((-112) (-619 |#4|) (-619 |#4|)) 58)) (-2810 (((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) 63)) (-3187 (((-1224)) 33)) (-1975 (((-1224) (-1119) (-1119) (-1119)) 29)) (-2633 (((-619 |#5|) (-619 |#5|)) 81)) (-3540 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)))) 79)) (-2145 (((-619 (-2 (|:| -2644 (-619 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112)) 101)) (-3870 (((-112) |#5| |#5|) 47)) (-1929 (((-3 (-112) "failed") |#5| |#5|) 71)) (-2608 (((-112) (-619 |#4|) (-619 |#4|)) 57)) (-4110 (((-112) (-619 |#4|) (-619 |#4|)) 59)) (-1458 (((-112) (-619 |#4|) (-619 |#4|)) 60)) (-4248 (((-3 (-2 (|:| -2644 (-619 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-2206 (((-619 |#5|) (-619 |#5|)) 43)))
-(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1975 ((-1224) (-1119) (-1119) (-1119))) (-15 -3187 ((-1224))) (-15 -3308 ((-112) |#5| |#5|)) (-15 -2206 ((-619 |#5|) (-619 |#5|))) (-15 -3870 ((-112) |#5| |#5|)) (-15 -4187 ((-112) |#5| |#5|)) (-15 -3703 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2608 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -4110 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -1458 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -1929 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3158 ((-112) |#5| |#5|)) (-15 -3158 ((-112) |#5| (-619 |#5|))) (-15 -2633 ((-619 |#5|) (-619 |#5|))) (-15 -2810 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)))) (-15 -3540 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) (-15 -2145 ((-619 (-2 (|:| -2644 (-619 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -4248 ((-3 (-2 (|:| -2644 (-619 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -957))
-((-4248 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| -2644 (-619 *9)) (|:| -1974 *4) (|:| |ineq| (-619 *9)))) (-5 *1 (-957 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) (-4 *4 (-1036 *6 *7 *8 *9)))) (-2145 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| -2644 (-619 *9)) (|:| -1974 *10) (|:| |ineq| (-619 *9))))) (-5 *1 (-957 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9)))) (-3540 (*1 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1974 *7)))) (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) (-2810 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1974 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)))) (-2633 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) (-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-957 *5 *6 *7 *8 *3)))) (-3158 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-1929 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-1458 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-4110 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2608 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-3703 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-4187 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-3870 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2206 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) (-3308 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-3187 (*1 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1224)) (-5 *1 (-957 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1975 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1119)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1224)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1975 ((-1224) (-1119) (-1119) (-1119))) (-15 -3187 ((-1224))) (-15 -3308 ((-112) |#5| |#5|)) (-15 -2206 ((-619 |#5|) (-619 |#5|))) (-15 -3870 ((-112) |#5| |#5|)) (-15 -4187 ((-112) |#5| |#5|)) (-15 -3703 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2608 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -4110 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -1458 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -1929 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3158 ((-112) |#5| |#5|)) (-15 -3158 ((-112) |#5| (-619 |#5|))) (-15 -2633 ((-619 |#5|) (-619 |#5|))) (-15 -2810 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)))) (-15 -3540 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) (-15 -2145 ((-619 (-2 (|:| -2644 (-619 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -4248 ((-3 (-2 (|:| -2644 (-619 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-3004 (((-1136) $) 15)) (-4153 (((-1119) $) 16)) (-2384 (($ (-1136) (-1119)) 14)) (-3838 (((-832) $) 13)))
-(((-958) (-13 (-591 (-832)) (-10 -8 (-15 -2384 ($ (-1136) (-1119))) (-15 -3004 ((-1136) $)) (-15 -4153 ((-1119) $))))) (T -958))
-((-2384 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1119)) (-5 *1 (-958)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-958)))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-958)))))
-(-13 (-591 (-832)) (-10 -8 (-15 -2384 ($ (-1136) (-1119))) (-15 -3004 ((-1136) $)) (-15 -4153 ((-1119) $))))
-((-2790 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-959 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2790 (|#4| (-1 |#2| |#1|) |#3|))) (-539) (-539) (-961 |#1|) (-961 |#2|)) (T -959))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-539)) (-4 *6 (-539)) (-4 *2 (-961 *6)) (-5 *1 (-959 *5 *6 *4 *2)) (-4 *4 (-961 *5)))))
-(-10 -7 (-15 -2790 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2707 (((-3 |#2| "failed") $) NIL) (((-3 (-1136) "failed") $) 65) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 (-547) "failed") $) 95)) (-2652 ((|#2| $) NIL) (((-1136) $) 60) (((-398 (-547)) $) NIL) (((-547) $) 92)) (-1694 (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) 112) (((-663 |#2|) (-663 $)) 28)) (-3232 (($) 98)) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 75) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 84)) (-4170 (($ $) 10)) (-3477 (((-3 $ "failed") $) 20)) (-2790 (($ (-1 |#2| |#2|) $) 22)) (-3054 (($) 16)) (-3682 (($ $) 54)) (-3448 (($ $) NIL) (($ $ (-745)) NIL) (($ $ (-1136)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2995 (($ $) 12)) (-2838 (((-861 (-547)) $) 70) (((-861 (-370)) $) 79) (((-523) $) 40) (((-370) $) 44) (((-217) $) 47)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) 90) (($ |#2|) NIL) (($ (-1136)) 57)) (-2736 (((-745)) 31)) (-2405 (((-112) $ $) 50)))
-(((-960 |#1| |#2|) (-10 -8 (-15 -2405 ((-112) |#1| |#1|)) (-15 -3054 (|#1|)) (-15 -3477 ((-3 |#1| "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2838 ((-217) |#1|)) (-15 -2838 ((-370) |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -2652 ((-1136) |#1|)) (-15 -2707 ((-3 (-1136) "failed") |#1|)) (-15 -3838 (|#1| (-1136))) (-15 -3232 (|#1|)) (-15 -3682 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -3521 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -3521 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -2838 ((-861 (-370)) |#1|)) (-15 -2838 ((-861 (-547)) |#1|)) (-15 -1694 ((-663 |#2|) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-663 (-547)) (-663 |#1|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| (-547))) (-15 -2736 ((-745))) (-15 -3838 ((-832) |#1|))) (-961 |#2|) (-539)) (T -960))
-((-2736 (*1 *2) (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-960 *3 *4)) (-4 *3 (-961 *4)))))
-(-10 -8 (-15 -2405 ((-112) |#1| |#1|)) (-15 -3054 (|#1|)) (-15 -3477 ((-3 |#1| "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2838 ((-217) |#1|)) (-15 -2838 ((-370) |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -2652 ((-1136) |#1|)) (-15 -2707 ((-3 (-1136) "failed") |#1|)) (-15 -3838 (|#1| (-1136))) (-15 -3232 (|#1|)) (-15 -3682 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -3521 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -3521 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -2838 ((-861 (-370)) |#1|)) (-15 -2838 ((-861 (-547)) |#1|)) (-15 -1694 ((-663 |#2|) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-663 (-547)) (-663 |#1|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| (-547))) (-15 -2736 ((-745))) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2092 ((|#1| $) 136 (|has| |#1| (-298)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-2277 (((-409 (-1132 $)) (-1132 $)) 127 (|has| |#1| (-878)))) (-2555 (($ $) 70)) (-3299 (((-409 $) $) 69)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 130 (|has| |#1| (-878)))) (-1547 (((-112) $ $) 57)) (-2500 (((-547) $) 117 (|has| |#1| (-794)))) (-1948 (($) 17 T CONST)) (-2707 (((-3 |#1| "failed") $) 175) (((-3 (-1136) "failed") $) 125 (|has| |#1| (-1007 (-1136)))) (((-3 (-398 (-547)) "failed") $) 109 (|has| |#1| (-1007 (-547)))) (((-3 (-547) "failed") $) 107 (|has| |#1| (-1007 (-547))))) (-2652 ((|#1| $) 174) (((-1136) $) 124 (|has| |#1| (-1007 (-1136)))) (((-398 (-547)) $) 108 (|has| |#1| (-1007 (-547)))) (((-547) $) 106 (|has| |#1| (-1007 (-547))))) (-2089 (($ $ $) 53)) (-1694 (((-663 (-547)) (-663 $)) 149 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 148 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 147) (((-663 |#1|) (-663 $)) 146)) (-3855 (((-3 $ "failed") $) 32)) (-3232 (($) 134 (|has| |#1| (-532)))) (-2061 (($ $ $) 54)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-1791 (((-112) $) 68)) (-4270 (((-112) $) 119 (|has| |#1| (-794)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 143 (|has| |#1| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 142 (|has| |#1| (-855 (-370))))) (-2261 (((-112) $) 30)) (-4170 (($ $) 138)) (-1386 ((|#1| $) 140)) (-3477 (((-3 $ "failed") $) 105 (|has| |#1| (-1112)))) (-1860 (((-112) $) 118 (|has| |#1| (-794)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2856 (($ $ $) 115 (|has| |#1| (-821)))) (-3567 (($ $ $) 114 (|has| |#1| (-821)))) (-2790 (($ (-1 |#1| |#1|) $) 166)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 67)) (-3054 (($) 104 (|has| |#1| (-1112)) CONST)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-3682 (($ $) 135 (|has| |#1| (-298)))) (-1276 ((|#1| $) 132 (|has| |#1| (-532)))) (-2834 (((-409 (-1132 $)) (-1132 $)) 129 (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) 128 (|has| |#1| (-878)))) (-2115 (((-409 $) $) 71)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2679 (($ $ (-619 |#1|) (-619 |#1|)) 172 (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) 170 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) 169 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1136)) (-619 |#1|)) 168 (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-1136) |#1|) 167 (|has| |#1| (-503 (-1136) |#1|)))) (-2471 (((-745) $) 56)) (-3334 (($ $ |#1|) 173 (|has| |#1| (-277 |#1| |#1|)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55)) (-3448 (($ $) 165 (|has| |#1| (-225))) (($ $ (-745)) 163 (|has| |#1| (-225))) (($ $ (-1136)) 161 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) 160 (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) 159 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) 158 (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-2995 (($ $) 137)) (-1396 ((|#1| $) 139)) (-2838 (((-861 (-547)) $) 145 (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) 144 (|has| |#1| (-592 (-861 (-370))))) (((-523) $) 122 (|has| |#1| (-592 (-523)))) (((-370) $) 121 (|has| |#1| (-991))) (((-217) $) 120 (|has| |#1| (-991)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 131 (-1814 (|has| $ (-143)) (|has| |#1| (-878))))) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63) (($ |#1|) 178) (($ (-1136)) 126 (|has| |#1| (-1007 (-1136))))) (-2220 (((-3 $ "failed") $) 123 (-1530 (|has| |#1| (-143)) (-1814 (|has| $ (-143)) (|has| |#1| (-878)))))) (-2736 (((-745)) 28)) (-3720 ((|#1| $) 133 (|has| |#1| (-532)))) (-3577 (((-112) $ $) 37)) (-2255 (($ $) 116 (|has| |#1| (-794)))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $) 164 (|has| |#1| (-225))) (($ $ (-745)) 162 (|has| |#1| (-225))) (($ $ (-1136)) 157 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) 156 (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) 155 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) 154 (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2441 (((-112) $ $) 112 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 111 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 113 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 110 (|has| |#1| (-821)))) (-2506 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176)))
-(((-961 |#1|) (-138) (-539)) (T -961))
-((-2506 (*1 *1 *2 *2) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))) (-1396 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))) (-4170 (*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-298)))) (-3682 (*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-298)))) (-3232 (*1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-532)) (-4 *2 (-539)))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-532)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-532)))))
-(-13 (-354) (-38 |t#1|) (-1007 |t#1|) (-329 |t#1|) (-223 |t#1|) (-368 |t#1|) (-853 |t#1|) (-391 |t#1|) (-10 -8 (-15 -2506 ($ |t#1| |t#1|)) (-15 -1386 (|t#1| $)) (-15 -1396 (|t#1| $)) (-15 -4170 ($ $)) (-15 -2995 ($ $)) (IF (|has| |t#1| (-1112)) (-6 (-1112)) |%noBranch|) (IF (|has| |t#1| (-1007 (-547))) (PROGN (-6 (-1007 (-547))) (-6 (-1007 (-398 (-547))))) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-794)) (-6 (-794)) |%noBranch|) (IF (|has| |t#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |t#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1007 (-1136))) (-6 (-1007 (-1136))) |%noBranch|) (IF (|has| |t#1| (-298)) (PROGN (-15 -2092 (|t#1| $)) (-15 -3682 ($ $))) |%noBranch|) (IF (|has| |t#1| (-532)) (PROGN (-15 -3232 ($)) (-15 -3720 (|t#1| $)) (-15 -1276 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-878)) (-6 (-878)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) . T) ((-592 (-217)) |has| |#1| (-991)) ((-592 (-370)) |has| |#1| (-991)) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-592 (-861 (-370))) |has| |#1| (-592 (-861 (-370)))) ((-592 (-861 (-547))) |has| |#1| (-592 (-861 (-547)))) ((-223 |#1|) . T) ((-225) |has| |#1| (-225)) ((-235) . T) ((-277 |#1| $) |has| |#1| (-277 |#1| |#1|)) ((-281) . T) ((-298) . T) ((-300 |#1|) |has| |#1| (-300 |#1|)) ((-354) . T) ((-329 |#1|) . T) ((-368 |#1|) . T) ((-391 |#1|) . T) ((-442) . T) ((-503 (-1136) |#1|) |has| |#1| (-503 (-1136) |#1|)) ((-503 |#1| |#1|) |has| |#1| (-300 |#1|)) ((-539) . T) ((-622 #0#) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) . T) ((-692 |#1|) . T) ((-692 $) . T) ((-701) . T) ((-765) |has| |#1| (-794)) ((-766) |has| |#1| (-794)) ((-768) |has| |#1| (-794)) ((-769) |has| |#1| (-794)) ((-794) |has| |#1| (-794)) ((-819) |has| |#1| (-794)) ((-821) -1530 (|has| |#1| (-821)) (|has| |#1| (-794))) ((-869 (-1136)) |has| |#1| (-869 (-1136))) ((-855 (-370)) |has| |#1| (-855 (-370))) ((-855 (-547)) |has| |#1| (-855 (-547))) ((-853 |#1|) . T) ((-878) |has| |#1| (-878)) ((-889) . T) ((-991) |has| |#1| (-991)) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-547))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 (-1136)) |has| |#1| (-1007 (-1136))) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1112) |has| |#1| (-1112)) ((-1173) . T) ((-1177) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2286 (($ (-1103 |#1| |#2|)) 11)) (-3938 (((-1103 |#1| |#2|) $) 12)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3334 ((|#2| $ (-232 |#1| |#2|)) 16)) (-3838 (((-832) $) NIL)) (-3269 (($) NIL T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL)))
-(((-962 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2286 ($ (-1103 |#1| |#2|))) (-15 -3938 ((-1103 |#1| |#2|) $)) (-15 -3334 (|#2| $ (-232 |#1| |#2|))))) (-890) (-354)) (T -962))
-((-2286 (*1 *1 *2) (-12 (-5 *2 (-1103 *3 *4)) (-14 *3 (-890)) (-4 *4 (-354)) (-5 *1 (-962 *3 *4)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-1103 *3 *4)) (-5 *1 (-962 *3 *4)) (-14 *3 (-890)) (-4 *4 (-354)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 (-232 *4 *2)) (-14 *4 (-890)) (-4 *2 (-354)) (-5 *1 (-962 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -2286 ($ (-1103 |#1| |#2|))) (-15 -3938 ((-1103 |#1| |#2|) $)) (-15 -3334 (|#2| $ (-232 |#1| |#2|)))))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3947 (((-1141) $) 9)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-963) (-13 (-1047) (-10 -8 (-15 -3947 ((-1141) $))))) (T -963))
-((-3947 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-963)))))
-(-13 (-1047) (-10 -8 (-15 -3947 ((-1141) $))))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) 8)) (-1948 (($) 7 T CONST)) (-3935 (($ $) 46)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-4202 (((-745) $) 45)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-4266 ((|#1| $) 39)) (-2657 (($ |#1| $) 40)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3436 ((|#1| $) 44)) (-2056 ((|#1| $) 41)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-1724 ((|#1| |#1| $) 48)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-2369 ((|#1| $) 47)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2300 (($ (-619 |#1|)) 42)) (-3819 ((|#1| $) 43)) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-964 |#1|) (-138) (-1173)) (T -964))
-((-1724 (*1 *2 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1173)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1173)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1173)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-964 *3)) (-4 *3 (-1173)) (-5 *2 (-745)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1173)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1173)))))
-(-13 (-106 |t#1|) (-10 -8 (-6 -4329) (-15 -1724 (|t#1| |t#1| $)) (-15 -2369 (|t#1| $)) (-15 -3935 ($ $)) (-15 -4202 ((-745) $)) (-15 -3436 (|t#1| $)) (-15 -3819 (|t#1| $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-1499 (((-112) $) 42)) (-2707 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2652 (((-547) $) NIL) (((-398 (-547)) $) NIL) ((|#2| $) 43)) (-4265 (((-3 (-398 (-547)) "failed") $) 78)) (-3198 (((-112) $) 72)) (-2453 (((-398 (-547)) $) 76)) (-2261 (((-112) $) 41)) (-3160 ((|#2| $) 22)) (-2790 (($ (-1 |#2| |#2|) $) 19)) (-1984 (($ $) 61)) (-3448 (($ $) NIL) (($ $ (-745)) NIL) (($ $ (-1136)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2838 (((-523) $) 67)) (-3404 (($ $) 17)) (-3838 (((-832) $) 56) (($ (-547)) 38) (($ |#2|) 36) (($ (-398 (-547))) NIL)) (-2736 (((-745)) 10)) (-2255 ((|#2| $) 71)) (-2381 (((-112) $ $) 25)) (-2405 (((-112) $ $) 69)) (-2493 (($ $) 29) (($ $ $) 28)) (-2479 (($ $ $) 26)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL)))
-(((-965 |#1| |#2|) (-10 -8 (-15 -3838 (|#1| (-398 (-547)))) (-15 -2405 ((-112) |#1| |#1|)) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 * (|#1| |#1| (-398 (-547)))) (-15 -1984 (|#1| |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -4265 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2453 ((-398 (-547)) |#1|)) (-15 -3198 ((-112) |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -3160 (|#2| |#1|)) (-15 -3404 (|#1| |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -3838 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3838 (|#1| (-547))) (-15 -2736 ((-745))) (-15 -2261 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -1499 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2479 (|#1| |#1| |#1|)) (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|))) (-966 |#2|) (-169)) (T -965))
-((-2736 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-965 *3 *4)) (-4 *3 (-966 *4)))))
-(-10 -8 (-15 -3838 (|#1| (-398 (-547)))) (-15 -2405 ((-112) |#1| |#1|)) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 * (|#1| |#1| (-398 (-547)))) (-15 -1984 (|#1| |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -4265 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2453 ((-398 (-547)) |#1|)) (-15 -3198 ((-112) |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -3160 (|#2| |#1|)) (-15 -3404 (|#1| |#1|)) (-15 -2790 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -3838 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3838 (|#1| (-547))) (-15 -2736 ((-745))) (-15 -2261 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -1499 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2479 (|#1| |#1| |#1|)) (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-2707 (((-3 (-547) "failed") $) 116 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 114 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 113)) (-2652 (((-547) $) 117 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 115 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 112)) (-1694 (((-663 (-547)) (-663 $)) 87 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 86 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 85) (((-663 |#1|) (-663 $)) 84)) (-3855 (((-3 $ "failed") $) 32)) (-2139 ((|#1| $) 77)) (-4265 (((-3 (-398 (-547)) "failed") $) 73 (|has| |#1| (-532)))) (-3198 (((-112) $) 75 (|has| |#1| (-532)))) (-2453 (((-398 (-547)) $) 74 (|has| |#1| (-532)))) (-2352 (($ |#1| |#1| |#1| |#1|) 78)) (-2261 (((-112) $) 30)) (-3160 ((|#1| $) 79)) (-2856 (($ $ $) 66 (|has| |#1| (-821)))) (-3567 (($ $ $) 65 (|has| |#1| (-821)))) (-2790 (($ (-1 |#1| |#1|) $) 88)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 70 (|has| |#1| (-354)))) (-1568 ((|#1| $) 80)) (-2546 ((|#1| $) 81)) (-2806 ((|#1| $) 82)) (-3979 (((-1082) $) 10)) (-2679 (($ $ (-619 |#1|) (-619 |#1|)) 94 (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) 92 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) 91 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1136)) (-619 |#1|)) 90 (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-1136) |#1|) 89 (|has| |#1| (-503 (-1136) |#1|)))) (-3334 (($ $ |#1|) 95 (|has| |#1| (-277 |#1| |#1|)))) (-3448 (($ $) 111 (|has| |#1| (-225))) (($ $ (-745)) 109 (|has| |#1| (-225))) (($ $ (-1136)) 107 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) 106 (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) 105 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) 104 (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-2838 (((-523) $) 71 (|has| |#1| (-592 (-523))))) (-3404 (($ $) 83)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35) (($ (-398 (-547))) 60 (-1530 (|has| |#1| (-354)) (|has| |#1| (-1007 (-398 (-547))))))) (-2220 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-2736 (((-745)) 28)) (-2255 ((|#1| $) 76 (|has| |#1| (-1025)))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $) 110 (|has| |#1| (-225))) (($ $ (-745)) 108 (|has| |#1| (-225))) (($ $ (-1136)) 103 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) 102 (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) 101 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) 100 (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2441 (((-112) $ $) 63 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 62 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 64 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 61 (|has| |#1| (-821)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 69 (|has| |#1| (-354)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-398 (-547))) 68 (|has| |#1| (-354))) (($ (-398 (-547)) $) 67 (|has| |#1| (-354)))))
-(((-966 |#1|) (-138) (-169)) (T -966))
-((-3404 (*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2806 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2352 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-112)))) (-2453 (*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-398 (-547))))) (-4265 (*1 *2 *1) (|partial| -12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-398 (-547))))))
-(-13 (-38 |t#1|) (-402 |t#1|) (-223 |t#1|) (-329 |t#1|) (-368 |t#1|) (-10 -8 (-15 -3404 ($ $)) (-15 -2806 (|t#1| $)) (-15 -2546 (|t#1| $)) (-15 -1568 (|t#1| $)) (-15 -3160 (|t#1| $)) (-15 -2352 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2139 (|t#1| $)) (IF (|has| |t#1| (-281)) (-6 (-281)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-354)) (-6 (-235)) |%noBranch|) (IF (|has| |t#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -2255 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-532)) (PROGN (-15 -3198 ((-112) $)) (-15 -2453 ((-398 (-547)) $)) (-15 -4265 ((-3 (-398 (-547)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-354)) ((-38 |#1|) . T) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-354)) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-354)) (|has| |#1| (-281))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-223 |#1|) . T) ((-225) |has| |#1| (-225)) ((-235) |has| |#1| (-354)) ((-277 |#1| $) |has| |#1| (-277 |#1| |#1|)) ((-281) -1530 (|has| |#1| (-354)) (|has| |#1| (-281))) ((-300 |#1|) |has| |#1| (-300 |#1|)) ((-329 |#1|) . T) ((-368 |#1|) . T) ((-402 |#1|) . T) ((-503 (-1136) |#1|) |has| |#1| (-503 (-1136) |#1|)) ((-503 |#1| |#1|) |has| |#1| (-300 |#1|)) ((-622 #0#) |has| |#1| (-354)) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-354)) ((-692 |#1|) . T) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 (-1136)) |has| |#1| (-869 (-1136))) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 #0#) |has| |#1| (-354)) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-354)) (|has| |#1| (-281))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2790 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-967 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2790 (|#3| (-1 |#4| |#2|) |#1|))) (-966 |#2|) (-169) (-966 |#4|) (-169)) (T -967))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-966 *6)) (-5 *1 (-967 *4 *5 *2 *6)) (-4 *4 (-966 *5)))))
-(-10 -7 (-15 -2790 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2139 ((|#1| $) 12)) (-4265 (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-532)))) (-3198 (((-112) $) NIL (|has| |#1| (-532)))) (-2453 (((-398 (-547)) $) NIL (|has| |#1| (-532)))) (-2352 (($ |#1| |#1| |#1| |#1|) 16)) (-2261 (((-112) $) NIL)) (-3160 ((|#1| $) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-354)))) (-1568 ((|#1| $) 15)) (-2546 ((|#1| $) 14)) (-2806 ((|#1| $) 13)) (-3979 (((-1082) $) NIL)) (-2679 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1136)) (-619 |#1|)) NIL (|has| |#1| (-503 (-1136) |#1|))) (($ $ (-1136) |#1|) NIL (|has| |#1| (-503 (-1136) |#1|)))) (-3334 (($ $ |#1|) NIL (|has| |#1| (-277 |#1| |#1|)))) (-3448 (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2838 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3404 (($ $) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-354)) (|has| |#1| (-1007 (-398 (-547))))))) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-2255 ((|#1| $) NIL (|has| |#1| (-1025)))) (-3269 (($) 8 T CONST)) (-3281 (($) 10 T CONST)) (-1695 (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-354))) (($ (-398 (-547)) $) NIL (|has| |#1| (-354)))))
-(((-968 |#1|) (-966 |#1|) (-169)) (T -968))
-NIL
-(-966 |#1|)
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3899 (((-112) $ (-745)) NIL)) (-1948 (($) NIL T CONST)) (-3935 (($ $) 20)) (-1809 (($ (-619 |#1|)) 29)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-4202 (((-745) $) 22)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-4266 ((|#1| $) 24)) (-2657 (($ |#1| $) 15)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3436 ((|#1| $) 23)) (-2056 ((|#1| $) 19)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-1724 ((|#1| |#1| $) 14)) (-2884 (((-112) $) 17)) (-2245 (($) NIL)) (-2369 ((|#1| $) 18)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2300 (($ (-619 |#1|)) NIL)) (-3819 ((|#1| $) 26)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-969 |#1|) (-13 (-964 |#1|) (-10 -8 (-15 -1809 ($ (-619 |#1|))))) (-1063)) (T -969))
-((-1809 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-969 *3)))))
-(-13 (-964 |#1|) (-10 -8 (-15 -1809 ($ (-619 |#1|)))))
-((-2127 (($ $) 12)) (-3869 (($ $ (-547)) 13)))
-(((-970 |#1|) (-10 -8 (-15 -2127 (|#1| |#1|)) (-15 -3869 (|#1| |#1| (-547)))) (-971)) (T -970))
-NIL
-(-10 -8 (-15 -2127 (|#1| |#1|)) (-15 -3869 (|#1| |#1| (-547))))
-((-2127 (($ $) 6)) (-3869 (($ $ (-547)) 7)) (** (($ $ (-398 (-547))) 8)))
-(((-971) (-138)) (T -971))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-398 (-547))))) (-3869 (*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-547)))) (-2127 (*1 *1 *1) (-4 *1 (-971))))
-(-13 (-10 -8 (-15 -2127 ($ $)) (-15 -3869 ($ $ (-547))) (-15 ** ($ $ (-398 (-547))))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2675 (((-2 (|:| |num| (-1219 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| (-398 |#2|) (-354)))) (-3571 (($ $) NIL (|has| (-398 |#2|) (-354)))) (-3915 (((-112) $) NIL (|has| (-398 |#2|) (-354)))) (-3401 (((-663 (-398 |#2|)) (-1219 $)) NIL) (((-663 (-398 |#2|))) NIL)) (-2899 (((-398 |#2|) $) NIL)) (-2797 (((-1146 (-890) (-745)) (-547)) NIL (|has| (-398 |#2|) (-340)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL (|has| (-398 |#2|) (-354)))) (-3299 (((-409 $) $) NIL (|has| (-398 |#2|) (-354)))) (-1547 (((-112) $ $) NIL (|has| (-398 |#2|) (-354)))) (-3608 (((-745)) NIL (|has| (-398 |#2|) (-359)))) (-3451 (((-112)) NIL)) (-3303 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (|has| (-398 |#2|) (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-398 |#2|) (-1007 (-398 (-547))))) (((-3 (-398 |#2|) "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| (-398 |#2|) (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| (-398 |#2|) (-1007 (-398 (-547))))) (((-398 |#2|) $) NIL)) (-2614 (($ (-1219 (-398 |#2|)) (-1219 $)) NIL) (($ (-1219 (-398 |#2|))) 70) (($ (-1219 |#2|) |#2|) NIL)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-398 |#2|) (-340)))) (-2089 (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-3565 (((-663 (-398 |#2|)) $ (-1219 $)) NIL) (((-663 (-398 |#2|)) $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| (-398 |#2|) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| (-398 |#2|) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-398 |#2|))) (|:| |vec| (-1219 (-398 |#2|)))) (-663 $) (-1219 $)) NIL) (((-663 (-398 |#2|)) (-663 $)) NIL)) (-2451 (((-1219 $) (-1219 $)) NIL)) (-2552 (($ |#3|) 65) (((-3 $ "failed") (-398 |#3|)) NIL (|has| (-398 |#2|) (-354)))) (-3855 (((-3 $ "failed") $) NIL)) (-2564 (((-619 (-619 |#1|))) NIL (|has| |#1| (-359)))) (-3454 (((-112) |#1| |#1|) NIL)) (-3116 (((-890)) NIL)) (-3232 (($) NIL (|has| (-398 |#2|) (-359)))) (-3165 (((-112)) NIL)) (-3012 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-2061 (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| (-398 |#2|) (-354)))) (-3350 (($ $) NIL)) (-3527 (($) NIL (|has| (-398 |#2|) (-340)))) (-3078 (((-112) $) NIL (|has| (-398 |#2|) (-340)))) (-1551 (($ $ (-745)) NIL (|has| (-398 |#2|) (-340))) (($ $) NIL (|has| (-398 |#2|) (-340)))) (-1791 (((-112) $) NIL (|has| (-398 |#2|) (-354)))) (-3275 (((-890) $) NIL (|has| (-398 |#2|) (-340))) (((-807 (-890)) $) NIL (|has| (-398 |#2|) (-340)))) (-2261 (((-112) $) NIL)) (-3209 (((-745)) NIL)) (-3278 (((-1219 $) (-1219 $)) NIL)) (-3160 (((-398 |#2|) $) NIL)) (-3361 (((-619 (-921 |#1|)) (-1136)) NIL (|has| |#1| (-354)))) (-3477 (((-3 $ "failed") $) NIL (|has| (-398 |#2|) (-340)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-398 |#2|) (-354)))) (-3786 ((|#3| $) NIL (|has| (-398 |#2|) (-354)))) (-2402 (((-890) $) NIL (|has| (-398 |#2|) (-359)))) (-2540 ((|#3| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| (-398 |#2|) (-354))) (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-1466 (((-1119) $) NIL)) (-1560 (((-663 (-398 |#2|))) 52)) (-1311 (((-663 (-398 |#2|))) 51)) (-1984 (($ $) NIL (|has| (-398 |#2|) (-354)))) (-3132 (($ (-1219 |#2|) |#2|) 71)) (-1524 (((-663 (-398 |#2|))) 50)) (-3476 (((-663 (-398 |#2|))) 49)) (-2650 (((-2 (|:| |num| (-663 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1321 (((-2 (|:| |num| (-1219 |#2|)) (|:| |den| |#2|)) $) 77)) (-3787 (((-1219 $)) 46)) (-1380 (((-1219 $)) 45)) (-3019 (((-112) $) NIL)) (-1322 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3054 (($) NIL (|has| (-398 |#2|) (-340)) CONST)) (-3487 (($ (-890)) NIL (|has| (-398 |#2|) (-359)))) (-4052 (((-3 |#2| "failed")) 63)) (-3979 (((-1082) $) NIL)) (-2489 (((-745)) NIL)) (-4238 (($) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| (-398 |#2|) (-354)))) (-3719 (($ (-619 $)) NIL (|has| (-398 |#2|) (-354))) (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL (|has| (-398 |#2|) (-340)))) (-2115 (((-409 $) $) NIL (|has| (-398 |#2|) (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-398 |#2|) (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| (-398 |#2|) (-354)))) (-2032 (((-3 $ "failed") $ $) NIL (|has| (-398 |#2|) (-354)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-398 |#2|) (-354)))) (-2471 (((-745) $) NIL (|has| (-398 |#2|) (-354)))) (-3334 ((|#1| $ |#1| |#1|) NIL)) (-1734 (((-3 |#2| "failed")) 62)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| (-398 |#2|) (-354)))) (-4056 (((-398 |#2|) (-1219 $)) NIL) (((-398 |#2|)) 42)) (-1422 (((-745) $) NIL (|has| (-398 |#2|) (-340))) (((-3 (-745) "failed") $ $) NIL (|has| (-398 |#2|) (-340)))) (-3448 (($ $ (-1 (-398 |#2|) (-398 |#2|)) (-745)) NIL (|has| (-398 |#2|) (-354))) (($ $ (-1 (-398 |#2|) (-398 |#2|))) NIL (|has| (-398 |#2|) (-354))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-745)) NIL (-1530 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340)))) (($ $) NIL (-1530 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340))))) (-3101 (((-663 (-398 |#2|)) (-1219 $) (-1 (-398 |#2|) (-398 |#2|))) NIL (|has| (-398 |#2|) (-354)))) (-1882 ((|#3|) 53)) (-3823 (($) NIL (|has| (-398 |#2|) (-340)))) (-3220 (((-1219 (-398 |#2|)) $ (-1219 $)) NIL) (((-663 (-398 |#2|)) (-1219 $) (-1219 $)) NIL) (((-1219 (-398 |#2|)) $) 72) (((-663 (-398 |#2|)) (-1219 $)) NIL)) (-2838 (((-1219 (-398 |#2|)) $) NIL) (($ (-1219 (-398 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| (-398 |#2|) (-340)))) (-4308 (((-1219 $) (-1219 $)) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 |#2|)) NIL) (($ (-398 (-547))) NIL (-1530 (|has| (-398 |#2|) (-1007 (-398 (-547)))) (|has| (-398 |#2|) (-354)))) (($ $) NIL (|has| (-398 |#2|) (-354)))) (-2220 (($ $) NIL (|has| (-398 |#2|) (-340))) (((-3 $ "failed") $) NIL (|has| (-398 |#2|) (-143)))) (-1316 ((|#3| $) NIL)) (-2736 (((-745)) NIL)) (-2861 (((-112)) 60)) (-2204 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-1917 (((-1219 $)) 121)) (-3577 (((-112) $ $) NIL (|has| (-398 |#2|) (-354)))) (-4226 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2887 (((-112)) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-1 (-398 |#2|) (-398 |#2|)) (-745)) NIL (|has| (-398 |#2|) (-354))) (($ $ (-1 (-398 |#2|) (-398 |#2|))) NIL (|has| (-398 |#2|) (-354))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1136))))) (($ $ (-745)) NIL (-1530 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340)))) (($ $) NIL (-1530 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340))))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| (-398 |#2|) (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 |#2|)) NIL) (($ (-398 |#2|) $) NIL) (($ (-398 (-547)) $) NIL (|has| (-398 |#2|) (-354))) (($ $ (-398 (-547))) NIL (|has| (-398 |#2|) (-354)))))
-(((-972 |#1| |#2| |#3| |#4| |#5|) (-333 |#1| |#2| |#3|) (-1177) (-1195 |#1|) (-1195 (-398 |#2|)) (-398 |#2|) (-745)) (T -972))
-NIL
-(-333 |#1| |#2| |#3|)
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-1504 (((-619 (-547)) $) 54)) (-1921 (($ (-619 (-547))) 62)) (-2092 (((-547) $) 40 (|has| (-547) (-298)))) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL (|has| (-547) (-794)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) 49) (((-3 (-1136) "failed") $) NIL (|has| (-547) (-1007 (-1136)))) (((-3 (-398 (-547)) "failed") $) 47 (|has| (-547) (-1007 (-547)))) (((-3 (-547) "failed") $) 49 (|has| (-547) (-1007 (-547))))) (-2652 (((-547) $) NIL) (((-1136) $) NIL (|has| (-547) (-1007 (-1136)))) (((-398 (-547)) $) NIL (|has| (-547) (-1007 (-547)))) (((-547) $) NIL (|has| (-547) (-1007 (-547))))) (-2089 (($ $ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL) (((-663 (-547)) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3232 (($) NIL (|has| (-547) (-532)))) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-1282 (((-619 (-547)) $) 60)) (-4270 (((-112) $) NIL (|has| (-547) (-794)))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-547) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-547) (-855 (-370))))) (-2261 (((-112) $) NIL)) (-4170 (($ $) NIL)) (-1386 (((-547) $) 37)) (-3477 (((-3 $ "failed") $) NIL (|has| (-547) (-1112)))) (-1860 (((-112) $) NIL (|has| (-547) (-794)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2856 (($ $ $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| (-547) (-821)))) (-2790 (($ (-1 (-547) (-547)) $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL)) (-3054 (($) NIL (|has| (-547) (-1112)) CONST)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3682 (($ $) NIL (|has| (-547) (-298))) (((-398 (-547)) $) 42)) (-3865 (((-1117 (-547)) $) 59)) (-1807 (($ (-619 (-547)) (-619 (-547))) 63)) (-1276 (((-547) $) 53 (|has| (-547) (-532)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| (-547) (-878)))) (-2115 (((-409 $) $) NIL)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2679 (($ $ (-619 (-547)) (-619 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-547) (-547)) NIL (|has| (-547) (-300 (-547)))) (($ $ (-285 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-285 (-547)))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-1136)) (-619 (-547))) NIL (|has| (-547) (-503 (-1136) (-547)))) (($ $ (-1136) (-547)) NIL (|has| (-547) (-503 (-1136) (-547))))) (-2471 (((-745) $) NIL)) (-3334 (($ $ (-547)) NIL (|has| (-547) (-277 (-547) (-547))))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3448 (($ $) 11 (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1136)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-2995 (($ $) NIL)) (-1396 (((-547) $) 39)) (-2362 (((-619 (-547)) $) 61)) (-2838 (((-861 (-547)) $) NIL (|has| (-547) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-547) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-547) (-592 (-523)))) (((-370) $) NIL (|has| (-547) (-991))) (((-217) $) NIL (|has| (-547) (-991)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-547) (-878))))) (-3838 (((-832) $) 77) (($ (-547)) 43) (($ $) NIL) (($ (-398 (-547))) 20) (($ (-547)) 43) (($ (-1136)) NIL (|has| (-547) (-1007 (-1136)))) (((-398 (-547)) $) 18)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| (-547) (-878))) (|has| (-547) (-143))))) (-2736 (((-745)) 9)) (-3720 (((-547) $) 51 (|has| (-547) (-532)))) (-3577 (((-112) $ $) NIL)) (-2255 (($ $) NIL (|has| (-547) (-794)))) (-3269 (($) 10 T CONST)) (-3281 (($) 12 T CONST)) (-1695 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1136)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| (-547) (-869 (-1136)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-2441 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2418 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2381 (((-112) $ $) 14)) (-2430 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2405 (((-112) $ $) 33 (|has| (-547) (-821)))) (-2506 (($ $ $) 29) (($ (-547) (-547)) 31)) (-2493 (($ $) 15) (($ $ $) 23)) (-2479 (($ $ $) 21)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 25) (($ $ $) 27) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-547) $) 25) (($ $ (-547)) NIL)))
-(((-973 |#1|) (-13 (-961 (-547)) (-10 -8 (-15 -3838 ((-398 (-547)) $)) (-15 -3682 ((-398 (-547)) $)) (-15 -1504 ((-619 (-547)) $)) (-15 -3865 ((-1117 (-547)) $)) (-15 -1282 ((-619 (-547)) $)) (-15 -2362 ((-619 (-547)) $)) (-15 -1921 ($ (-619 (-547)))) (-15 -1807 ($ (-619 (-547)) (-619 (-547)))))) (-547)) (T -973))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1117 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-1282 (*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-1921 (*1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-1807 (*1 *1 *2 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))))
-(-13 (-961 (-547)) (-10 -8 (-15 -3838 ((-398 (-547)) $)) (-15 -3682 ((-398 (-547)) $)) (-15 -1504 ((-619 (-547)) $)) (-15 -3865 ((-1117 (-547)) $)) (-15 -1282 ((-619 (-547)) $)) (-15 -2362 ((-619 (-547)) $)) (-15 -1921 ($ (-619 (-547)))) (-15 -1807 ($ (-619 (-547)) (-619 (-547))))))
-((-3450 (((-52) (-398 (-547)) (-547)) 9)))
-(((-974) (-10 -7 (-15 -3450 ((-52) (-398 (-547)) (-547))))) (T -974))
-((-3450 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-547))) (-5 *4 (-547)) (-5 *2 (-52)) (-5 *1 (-974)))))
-(-10 -7 (-15 -3450 ((-52) (-398 (-547)) (-547))))
-((-3608 (((-547)) 13)) (-3405 (((-547)) 16)) (-1908 (((-1224) (-547)) 15)) (-3509 (((-547) (-547)) 17) (((-547)) 12)))
-(((-975) (-10 -7 (-15 -3509 ((-547))) (-15 -3608 ((-547))) (-15 -3509 ((-547) (-547))) (-15 -1908 ((-1224) (-547))) (-15 -3405 ((-547))))) (T -975))
-((-3405 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975)))) (-1908 (*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-975)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975)))) (-3608 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975)))) (-3509 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975)))))
-(-10 -7 (-15 -3509 ((-547))) (-15 -3608 ((-547))) (-15 -3509 ((-547) (-547))) (-15 -1908 ((-1224) (-547))) (-15 -3405 ((-547))))
-((-1857 (((-409 |#1|) |#1|) 41)) (-2115 (((-409 |#1|) |#1|) 40)))
-(((-976 |#1|) (-10 -7 (-15 -2115 ((-409 |#1|) |#1|)) (-15 -1857 ((-409 |#1|) |#1|))) (-1195 (-398 (-547)))) (T -976))
-((-1857 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-976 *3)) (-4 *3 (-1195 (-398 (-547)))))) (-2115 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-976 *3)) (-4 *3 (-1195 (-398 (-547)))))))
-(-10 -7 (-15 -2115 ((-409 |#1|) |#1|)) (-15 -1857 ((-409 |#1|) |#1|)))
-((-4265 (((-3 (-398 (-547)) "failed") |#1|) 15)) (-3198 (((-112) |#1|) 14)) (-2453 (((-398 (-547)) |#1|) 10)))
-(((-977 |#1|) (-10 -7 (-15 -2453 ((-398 (-547)) |#1|)) (-15 -3198 ((-112) |#1|)) (-15 -4265 ((-3 (-398 (-547)) "failed") |#1|))) (-1007 (-398 (-547)))) (T -977))
-((-4265 (*1 *2 *3) (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-977 *3)) (-4 *3 (-1007 *2)))) (-3198 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-977 *3)) (-4 *3 (-1007 (-398 (-547)))))) (-2453 (*1 *2 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-977 *3)) (-4 *3 (-1007 *2)))))
-(-10 -7 (-15 -2453 ((-398 (-547)) |#1|)) (-15 -3198 ((-112) |#1|)) (-15 -4265 ((-3 (-398 (-547)) "failed") |#1|)))
-((-2247 ((|#2| $ "value" |#2|) 12)) (-3334 ((|#2| $ "value") 10)) (-1421 (((-112) $ $) 18)))
-(((-978 |#1| |#2|) (-10 -8 (-15 -2247 (|#2| |#1| "value" |#2|)) (-15 -1421 ((-112) |#1| |#1|)) (-15 -3334 (|#2| |#1| "value"))) (-979 |#2|) (-1173)) (T -978))
-NIL
-(-10 -8 (-15 -2247 (|#2| |#1| "value" |#2|)) (-15 -1421 ((-112) |#1| |#1|)) (-15 -3334 (|#2| |#1| "value")))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4153 ((|#1| $) 48)) (-3899 (((-112) $ (-745)) 8)) (-1986 ((|#1| $ |#1|) 39 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) 41 (|has| $ (-6 -4330)))) (-1948 (($) 7 T CONST)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) 50)) (-2554 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-3583 (((-619 |#1|) $) 45)) (-1489 (((-112) $) 49)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ "value") 47)) (-2857 (((-547) $ $) 44)) (-1850 (((-112) $) 46)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) 51)) (-1421 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-979 |#1|) (-138) (-1173)) (T -979))
-((-2514 (*1 *2 *1) (-12 (-4 *3 (-1173)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3)))) (-3203 (*1 *2 *1) (-12 (-4 *3 (-1173)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1173)) (-5 *2 (-112)))) (-4153 (*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-1173)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-979 *2)) (-4 *2 (-1173)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1173)) (-5 *2 (-112)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1173)) (-5 *2 (-619 *3)))) (-2857 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1173)) (-5 *2 (-547)))) (-1421 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1173)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-2554 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1173)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-3489 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *1)) (|has| *1 (-6 -4330)) (-4 *1 (-979 *3)) (-4 *3 (-1173)))) (-2247 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4330)) (-4 *1 (-979 *2)) (-4 *2 (-1173)))) (-1986 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-979 *2)) (-4 *2 (-1173)))))
-(-13 (-479 |t#1|) (-10 -8 (-15 -2514 ((-619 $) $)) (-15 -3203 ((-619 $) $)) (-15 -1489 ((-112) $)) (-15 -4153 (|t#1| $)) (-15 -3334 (|t#1| $ "value")) (-15 -1850 ((-112) $)) (-15 -3583 ((-619 |t#1|) $)) (-15 -2857 ((-547) $ $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -1421 ((-112) $ $)) (-15 -2554 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4330)) (PROGN (-15 -3489 ($ $ (-619 $))) (-15 -2247 (|t#1| $ "value" |t#1|)) (-15 -1986 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-2127 (($ $) 9) (($ $ (-890)) 43) (($ (-398 (-547))) 13) (($ (-547)) 15)) (-1531 (((-3 $ "failed") (-1132 $) (-890) (-832)) 23) (((-3 $ "failed") (-1132 $) (-890)) 28)) (-3869 (($ $ (-547)) 49)) (-2736 (((-745)) 17)) (-2826 (((-619 $) (-1132 $)) NIL) (((-619 $) (-1132 (-398 (-547)))) 54) (((-619 $) (-1132 (-547))) 59) (((-619 $) (-921 $)) 63) (((-619 $) (-921 (-398 (-547)))) 67) (((-619 $) (-921 (-547))) 71)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL) (($ $ (-398 (-547))) 47)))
-(((-980 |#1|) (-10 -8 (-15 -2127 (|#1| (-547))) (-15 -2127 (|#1| (-398 (-547)))) (-15 -2127 (|#1| |#1| (-890))) (-15 -2826 ((-619 |#1|) (-921 (-547)))) (-15 -2826 ((-619 |#1|) (-921 (-398 (-547))))) (-15 -2826 ((-619 |#1|) (-921 |#1|))) (-15 -2826 ((-619 |#1|) (-1132 (-547)))) (-15 -2826 ((-619 |#1|) (-1132 (-398 (-547))))) (-15 -2826 ((-619 |#1|) (-1132 |#1|))) (-15 -1531 ((-3 |#1| "failed") (-1132 |#1|) (-890))) (-15 -1531 ((-3 |#1| "failed") (-1132 |#1|) (-890) (-832))) (-15 ** (|#1| |#1| (-398 (-547)))) (-15 -3869 (|#1| |#1| (-547))) (-15 -2127 (|#1| |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 -2736 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) (-981)) (T -980))
-((-2736 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-980 *3)) (-4 *3 (-981)))))
-(-10 -8 (-15 -2127 (|#1| (-547))) (-15 -2127 (|#1| (-398 (-547)))) (-15 -2127 (|#1| |#1| (-890))) (-15 -2826 ((-619 |#1|) (-921 (-547)))) (-15 -2826 ((-619 |#1|) (-921 (-398 (-547))))) (-15 -2826 ((-619 |#1|) (-921 |#1|))) (-15 -2826 ((-619 |#1|) (-1132 (-547)))) (-15 -2826 ((-619 |#1|) (-1132 (-398 (-547))))) (-15 -2826 ((-619 |#1|) (-1132 |#1|))) (-15 -1531 ((-3 |#1| "failed") (-1132 |#1|) (-890))) (-15 -1531 ((-3 |#1| "failed") (-1132 |#1|) (-890) (-832))) (-15 ** (|#1| |#1| (-398 (-547)))) (-15 -3869 (|#1| |#1| (-547))) (-15 -2127 (|#1| |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 -2736 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 87)) (-3571 (($ $) 88)) (-3915 (((-112) $) 90)) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 107)) (-3299 (((-409 $) $) 108)) (-2127 (($ $) 71) (($ $ (-890)) 57) (($ (-398 (-547))) 56) (($ (-547)) 55)) (-1547 (((-112) $ $) 98)) (-2500 (((-547) $) 124)) (-1948 (($) 17 T CONST)) (-1531 (((-3 $ "failed") (-1132 $) (-890) (-832)) 65) (((-3 $ "failed") (-1132 $) (-890)) 64)) (-2707 (((-3 (-547) "failed") $) 83 (|has| (-398 (-547)) (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 81 (|has| (-398 (-547)) (-1007 (-398 (-547))))) (((-3 (-398 (-547)) "failed") $) 79)) (-2652 (((-547) $) 84 (|has| (-398 (-547)) (-1007 (-547)))) (((-398 (-547)) $) 82 (|has| (-398 (-547)) (-1007 (-398 (-547))))) (((-398 (-547)) $) 78)) (-2645 (($ $ (-832)) 54)) (-1509 (($ $ (-832)) 53)) (-2089 (($ $ $) 102)) (-3855 (((-3 $ "failed") $) 32)) (-2061 (($ $ $) 101)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 96)) (-1791 (((-112) $) 109)) (-4270 (((-112) $) 122)) (-2261 (((-112) $) 30)) (-3869 (($ $ (-547)) 70)) (-1860 (((-112) $) 123)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 105)) (-2856 (($ $ $) 121)) (-3567 (($ $ $) 120)) (-2345 (((-3 (-1132 $) "failed") $) 66)) (-2076 (((-3 (-832) "failed") $) 68)) (-1443 (((-3 (-1132 $) "failed") $) 67)) (-3689 (($ (-619 $)) 94) (($ $ $) 93)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 110)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 95)) (-3719 (($ (-619 $)) 92) (($ $ $) 91)) (-2115 (((-409 $) $) 106)) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 103)) (-2032 (((-3 $ "failed") $ $) 86)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 97)) (-2471 (((-745) $) 99)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 100)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 114) (($ $) 85) (($ (-398 (-547))) 80) (($ (-547)) 77) (($ (-398 (-547))) 74)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 89)) (-2654 (((-398 (-547)) $ $) 52)) (-2826 (((-619 $) (-1132 $)) 63) (((-619 $) (-1132 (-398 (-547)))) 62) (((-619 $) (-1132 (-547))) 61) (((-619 $) (-921 $)) 60) (((-619 $) (-921 (-398 (-547)))) 59) (((-619 $) (-921 (-547))) 58)) (-2255 (($ $) 125)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2441 (((-112) $ $) 118)) (-2418 (((-112) $ $) 117)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 119)) (-2405 (((-112) $ $) 116)) (-2506 (($ $ $) 115)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 111) (($ $ (-398 (-547))) 69)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ (-398 (-547)) $) 113) (($ $ (-398 (-547))) 112) (($ (-547) $) 76) (($ $ (-547)) 75) (($ (-398 (-547)) $) 73) (($ $ (-398 (-547))) 72)))
-(((-981) (-138)) (T -981))
-((-2127 (*1 *1 *1) (-4 *1 (-981))) (-2076 (*1 *2 *1) (|partial| -12 (-4 *1 (-981)) (-5 *2 (-832)))) (-1443 (*1 *2 *1) (|partial| -12 (-5 *2 (-1132 *1)) (-4 *1 (-981)))) (-2345 (*1 *2 *1) (|partial| -12 (-5 *2 (-1132 *1)) (-4 *1 (-981)))) (-1531 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1132 *1)) (-5 *3 (-890)) (-5 *4 (-832)) (-4 *1 (-981)))) (-1531 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1132 *1)) (-5 *3 (-890)) (-4 *1 (-981)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-1132 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-1132 (-398 (-547)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-1132 (-547))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-921 (-398 (-547)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-921 (-547))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-2127 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-890)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-4 *1 (-981)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-981)))) (-2645 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832)))) (-1509 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832)))) (-2654 (*1 *2 *1 *1) (-12 (-4 *1 (-981)) (-5 *2 (-398 (-547))))))
-(-13 (-145) (-819) (-169) (-354) (-402 (-398 (-547))) (-38 (-547)) (-38 (-398 (-547))) (-971) (-10 -8 (-15 -2076 ((-3 (-832) "failed") $)) (-15 -1443 ((-3 (-1132 $) "failed") $)) (-15 -2345 ((-3 (-1132 $) "failed") $)) (-15 -1531 ((-3 $ "failed") (-1132 $) (-890) (-832))) (-15 -1531 ((-3 $ "failed") (-1132 $) (-890))) (-15 -2826 ((-619 $) (-1132 $))) (-15 -2826 ((-619 $) (-1132 (-398 (-547))))) (-15 -2826 ((-619 $) (-1132 (-547)))) (-15 -2826 ((-619 $) (-921 $))) (-15 -2826 ((-619 $) (-921 (-398 (-547))))) (-15 -2826 ((-619 $) (-921 (-547)))) (-15 -2127 ($ $ (-890))) (-15 -2127 ($ $)) (-15 -2127 ($ (-398 (-547)))) (-15 -2127 ($ (-547))) (-15 -2645 ($ $ (-832))) (-15 -1509 ($ $ (-832))) (-15 -2654 ((-398 (-547)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 #1=(-547)) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-591 (-832)) . T) ((-169) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-402 (-398 (-547))) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 #1#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 #1#) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-889) . T) ((-971) . T) ((-1007 (-398 (-547))) . T) ((-1007 (-547)) |has| (-398 (-547)) (-1007 (-547))) ((-1022 #0#) . T) ((-1022 #1#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1177) . T))
-((-2126 (((-2 (|:| |ans| |#2|) (|:| -3840 |#2|) (|:| |sol?| (-112))) (-547) |#2| |#2| (-1136) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
-(((-982 |#1| |#2|) (-10 -7 (-15 -2126 ((-2 (|:| |ans| |#2|) (|:| -3840 |#2|) (|:| |sol?| (-112))) (-547) |#2| |#2| (-1136) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1158) (-27) (-421 |#1|))) (T -982))
-((-2126 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1136)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-619 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2510 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1158) (-27) (-421 *8))) (-4 *8 (-13 (-442) (-821) (-145) (-1007 *3) (-615 *3))) (-5 *3 (-547)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3840 *4) (|:| |sol?| (-112)))) (-5 *1 (-982 *8 *4)))))
-(-10 -7 (-15 -2126 ((-2 (|:| |ans| |#2|) (|:| -3840 |#2|) (|:| |sol?| (-112))) (-547) |#2| |#2| (-1136) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-4002 (((-3 (-619 |#2|) "failed") (-547) |#2| |#2| |#2| (-1136) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
-(((-983 |#1| |#2|) (-10 -7 (-15 -4002 ((-3 (-619 |#2|) "failed") (-547) |#2| |#2| |#2| (-1136) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1158) (-27) (-421 |#1|))) (T -983))
-((-4002 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1136)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-619 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2510 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1158) (-27) (-421 *8))) (-4 *8 (-13 (-442) (-821) (-145) (-1007 *3) (-615 *3))) (-5 *3 (-547)) (-5 *2 (-619 *4)) (-5 *1 (-983 *8 *4)))))
-(-10 -7 (-15 -4002 ((-3 (-619 |#2|) "failed") (-547) |#2| |#2| |#2| (-1136) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -2510 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2035 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2644 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-547)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-547) (-1 |#2| |#2|)) 30)) (-3241 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-398 |#2|)) (|:| |c| (-398 |#2|)) (|:| -2625 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-1 |#2| |#2|)) 58)) (-3175 (((-2 (|:| |ans| (-398 |#2|)) (|:| |nosol| (-112))) (-398 |#2|) (-398 |#2|)) 63)))
-(((-984 |#1| |#2|) (-10 -7 (-15 -3241 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-398 |#2|)) (|:| |c| (-398 |#2|)) (|:| -2625 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-1 |#2| |#2|))) (-15 -3175 ((-2 (|:| |ans| (-398 |#2|)) (|:| |nosol| (-112))) (-398 |#2|) (-398 |#2|))) (-15 -2035 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2644 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-547)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-547) (-1 |#2| |#2|)))) (-13 (-354) (-145) (-1007 (-547))) (-1195 |#1|)) (T -984))
-((-2035 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1195 *6)) (-4 *6 (-13 (-354) (-145) (-1007 *4))) (-5 *4 (-547)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2644 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-984 *6 *3)))) (-3175 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) (-4 *5 (-1195 *4)) (-5 *2 (-2 (|:| |ans| (-398 *5)) (|:| |nosol| (-112)))) (-5 *1 (-984 *4 *5)) (-5 *3 (-398 *5)))) (-3241 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-398 *6)) (|:| |c| (-398 *6)) (|:| -2625 *6))) (-5 *1 (-984 *5 *6)) (-5 *3 (-398 *6)))))
-(-10 -7 (-15 -3241 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-398 |#2|)) (|:| |c| (-398 |#2|)) (|:| -2625 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-1 |#2| |#2|))) (-15 -3175 ((-2 (|:| |ans| (-398 |#2|)) (|:| |nosol| (-112))) (-398 |#2|) (-398 |#2|))) (-15 -2035 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2644 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-547)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-547) (-1 |#2| |#2|))))
-((-2068 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-398 |#2|)) (|:| |h| |#2|) (|:| |c1| (-398 |#2|)) (|:| |c2| (-398 |#2|)) (|:| -2625 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|) (-1 |#2| |#2|)) 22)) (-2691 (((-3 (-619 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|)) 33)))
-(((-985 |#1| |#2|) (-10 -7 (-15 -2068 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-398 |#2|)) (|:| |h| |#2|) (|:| |c1| (-398 |#2|)) (|:| |c2| (-398 |#2|)) (|:| -2625 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|) (-1 |#2| |#2|))) (-15 -2691 ((-3 (-619 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|)))) (-13 (-354) (-145) (-1007 (-547))) (-1195 |#1|)) (T -985))
-((-2691 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) (-4 *5 (-1195 *4)) (-5 *2 (-619 (-398 *5))) (-5 *1 (-985 *4 *5)) (-5 *3 (-398 *5)))) (-2068 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-398 *6)) (|:| |h| *6) (|:| |c1| (-398 *6)) (|:| |c2| (-398 *6)) (|:| -2625 *6))) (-5 *1 (-985 *5 *6)) (-5 *3 (-398 *6)))))
-(-10 -7 (-15 -2068 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-398 |#2|)) (|:| |h| |#2|) (|:| |c1| (-398 |#2|)) (|:| |c2| (-398 |#2|)) (|:| -2625 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|) (-1 |#2| |#2|))) (-15 -2691 ((-3 (-619 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|))))
-((-2053 (((-1 |#1|) (-619 (-2 (|:| -4153 |#1|) (|:| -2601 (-547))))) 37)) (-2604 (((-1 |#1|) (-1065 |#1|)) 45)) (-3972 (((-1 |#1|) (-1219 |#1|) (-1219 (-547)) (-547)) 34)))
-(((-986 |#1|) (-10 -7 (-15 -2604 ((-1 |#1|) (-1065 |#1|))) (-15 -2053 ((-1 |#1|) (-619 (-2 (|:| -4153 |#1|) (|:| -2601 (-547)))))) (-15 -3972 ((-1 |#1|) (-1219 |#1|) (-1219 (-547)) (-547)))) (-1063)) (T -986))
-((-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1219 *6)) (-5 *4 (-1219 (-547))) (-5 *5 (-547)) (-4 *6 (-1063)) (-5 *2 (-1 *6)) (-5 *1 (-986 *6)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -4153 *4) (|:| -2601 (-547))))) (-4 *4 (-1063)) (-5 *2 (-1 *4)) (-5 *1 (-986 *4)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-1065 *4)) (-4 *4 (-1063)) (-5 *2 (-1 *4)) (-5 *1 (-986 *4)))))
-(-10 -7 (-15 -2604 ((-1 |#1|) (-1065 |#1|))) (-15 -2053 ((-1 |#1|) (-619 (-2 (|:| -4153 |#1|) (|:| -2601 (-547)))))) (-15 -3972 ((-1 |#1|) (-1219 |#1|) (-1219 (-547)) (-547))))
-((-3275 (((-745) (-327 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-987 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3275 ((-745) (-327 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-354) (-1195 |#1|) (-1195 (-398 |#2|)) (-333 |#1| |#2| |#3|) (-13 (-359) (-354))) (T -987))
-((-3275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-354)) (-4 *7 (-1195 *6)) (-4 *4 (-1195 (-398 *7))) (-4 *8 (-333 *6 *7 *4)) (-4 *9 (-13 (-359) (-354))) (-5 *2 (-745)) (-5 *1 (-987 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3275 ((-745) (-327 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-3826 (((-112) $ $) NIL)) (-4185 (((-1141) $) 9)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2487 (((-1141) $) 11)) (-2381 (((-112) $ $) NIL)))
-(((-988) (-13 (-1047) (-10 -8 (-15 -4185 ((-1141) $)) (-15 -2487 ((-1141) $))))) (T -988))
-((-4185 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-988)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-988)))))
-(-13 (-1047) (-10 -8 (-15 -4185 ((-1141) $)) (-15 -2487 ((-1141) $))))
-((-2557 (((-3 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) "failed") |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) 31) (((-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-398 (-547))) 28)) (-2923 (((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-398 (-547))) 33) (((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-398 (-547))) 29) (((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) 32) (((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1|) 27)) (-4113 (((-619 (-398 (-547))) (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) 19)) (-4085 (((-398 (-547)) (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) 16)))
-(((-989 |#1|) (-10 -7 (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1|)) (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-398 (-547)))) (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-398 (-547)))) (-15 -2557 ((-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-398 (-547)))) (-15 -2557 ((-3 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) "failed") |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-15 -4085 ((-398 (-547)) (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-15 -4113 ((-619 (-398 (-547))) (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))))) (-1195 (-547))) (T -989))
-((-4113 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-5 *2 (-619 (-398 (-547)))) (-5 *1 (-989 *4)) (-4 *4 (-1195 (-547))))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) (-5 *2 (-398 (-547))) (-5 *1 (-989 *4)) (-4 *4 (-1195 (-547))))) (-2557 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) (-5 *1 (-989 *3)) (-4 *3 (-1195 (-547))))) (-2557 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) (-5 *4 (-398 (-547))) (-5 *1 (-989 *3)) (-4 *3 (-1195 (-547))))) (-2923 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-398 (-547))) (-5 *2 (-619 (-2 (|:| -3830 *5) (|:| -3840 *5)))) (-5 *1 (-989 *3)) (-4 *3 (-1195 (-547))) (-5 *4 (-2 (|:| -3830 *5) (|:| -3840 *5))))) (-2923 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-5 *1 (-989 *3)) (-4 *3 (-1195 (-547))) (-5 *4 (-398 (-547))))) (-2923 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-5 *1 (-989 *3)) (-4 *3 (-1195 (-547))) (-5 *4 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))) (-2923 (*1 *2 *3) (-12 (-5 *2 (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-5 *1 (-989 *3)) (-4 *3 (-1195 (-547))))))
-(-10 -7 (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1|)) (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-398 (-547)))) (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-398 (-547)))) (-15 -2557 ((-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-398 (-547)))) (-15 -2557 ((-3 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) "failed") |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-15 -4085 ((-398 (-547)) (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-15 -4113 ((-619 (-398 (-547))) (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))))
-((-2557 (((-3 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) "failed") |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) 35) (((-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-398 (-547))) 32)) (-2923 (((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-398 (-547))) 30) (((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-398 (-547))) 26) (((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) 28) (((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1|) 24)))
-(((-990 |#1|) (-10 -7 (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1|)) (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-398 (-547)))) (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-398 (-547)))) (-15 -2557 ((-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-398 (-547)))) (-15 -2557 ((-3 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) "failed") |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))) (-1195 (-398 (-547)))) (T -990))
-((-2557 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) (-5 *1 (-990 *3)) (-4 *3 (-1195 (-398 (-547)))))) (-2557 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) (-5 *4 (-398 (-547))) (-5 *1 (-990 *3)) (-4 *3 (-1195 *4)))) (-2923 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-398 (-547))) (-5 *2 (-619 (-2 (|:| -3830 *5) (|:| -3840 *5)))) (-5 *1 (-990 *3)) (-4 *3 (-1195 *5)) (-5 *4 (-2 (|:| -3830 *5) (|:| -3840 *5))))) (-2923 (*1 *2 *3 *4) (-12 (-5 *4 (-398 (-547))) (-5 *2 (-619 (-2 (|:| -3830 *4) (|:| -3840 *4)))) (-5 *1 (-990 *3)) (-4 *3 (-1195 *4)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-5 *1 (-990 *3)) (-4 *3 (-1195 (-398 (-547)))) (-5 *4 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))) (-2923 (*1 *2 *3) (-12 (-5 *2 (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-5 *1 (-990 *3)) (-4 *3 (-1195 (-398 (-547)))))))
-(-10 -7 (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1|)) (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))) (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-398 (-547)))) (-15 -2923 ((-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-398 (-547)))) (-15 -2557 ((-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-398 (-547)))) (-15 -2557 ((-3 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) "failed") |#1| (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))) (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))))
-((-2838 (((-217) $) 6) (((-370) $) 9)))
-(((-991) (-138)) (T -991))
-NIL
-(-13 (-592 (-217)) (-592 (-370)))
-(((-592 (-217)) . T) ((-592 (-370)) . T))
-((-3468 (((-619 (-370)) (-921 (-547)) (-370)) 28) (((-619 (-370)) (-921 (-398 (-547))) (-370)) 27)) (-3412 (((-619 (-619 (-370))) (-619 (-921 (-547))) (-619 (-1136)) (-370)) 37)))
-(((-992) (-10 -7 (-15 -3468 ((-619 (-370)) (-921 (-398 (-547))) (-370))) (-15 -3468 ((-619 (-370)) (-921 (-547)) (-370))) (-15 -3412 ((-619 (-619 (-370))) (-619 (-921 (-547))) (-619 (-1136)) (-370))))) (T -992))
-((-3412 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-619 (-1136))) (-5 *2 (-619 (-619 (-370)))) (-5 *1 (-992)) (-5 *5 (-370)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-547))) (-5 *2 (-619 (-370))) (-5 *1 (-992)) (-5 *4 (-370)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-398 (-547)))) (-5 *2 (-619 (-370))) (-5 *1 (-992)) (-5 *4 (-370)))))
-(-10 -7 (-15 -3468 ((-619 (-370)) (-921 (-398 (-547))) (-370))) (-15 -3468 ((-619 (-370)) (-921 (-547)) (-370))) (-15 -3412 ((-619 (-619 (-370))) (-619 (-921 (-547))) (-619 (-1136)) (-370))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 70)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-2127 (($ $) NIL) (($ $ (-890)) NIL) (($ (-398 (-547))) NIL) (($ (-547)) NIL)) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) 65)) (-1948 (($) NIL T CONST)) (-1531 (((-3 $ "failed") (-1132 $) (-890) (-832)) NIL) (((-3 $ "failed") (-1132 $) (-890)) 50)) (-2707 (((-3 (-398 (-547)) "failed") $) NIL (|has| (-398 (-547)) (-1007 (-398 (-547))))) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-547) "failed") $) NIL (-1530 (|has| (-398 (-547)) (-1007 (-547))) (|has| |#1| (-1007 (-547)))))) (-2652 (((-398 (-547)) $) 15 (|has| (-398 (-547)) (-1007 (-398 (-547))))) (((-398 (-547)) $) 15) ((|#1| $) 108) (((-547) $) NIL (-1530 (|has| (-398 (-547)) (-1007 (-547))) (|has| |#1| (-1007 (-547)))))) (-2645 (($ $ (-832)) 42)) (-1509 (($ $ (-832)) 43)) (-2089 (($ $ $) NIL)) (-2592 (((-398 (-547)) $ $) 19)) (-3855 (((-3 $ "failed") $) 83)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-4270 (((-112) $) 61)) (-2261 (((-112) $) NIL)) (-3869 (($ $ (-547)) NIL)) (-1860 (((-112) $) 64)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2345 (((-3 (-1132 $) "failed") $) 78)) (-2076 (((-3 (-832) "failed") $) 77)) (-1443 (((-3 (-1132 $) "failed") $) 75)) (-1867 (((-3 (-1026 $ (-1132 $)) "failed") $) 73)) (-3689 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 84)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2115 (((-409 $) $) NIL)) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3838 (((-832) $) 82) (($ (-547)) NIL) (($ (-398 (-547))) NIL) (($ $) 58) (($ (-398 (-547))) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL) (($ |#1|) 110)) (-2736 (((-745)) NIL)) (-3577 (((-112) $ $) NIL)) (-2654 (((-398 (-547)) $ $) 25)) (-2826 (((-619 $) (-1132 $)) 56) (((-619 $) (-1132 (-398 (-547)))) NIL) (((-619 $) (-1132 (-547))) NIL) (((-619 $) (-921 $)) NIL) (((-619 $) (-921 (-398 (-547)))) NIL) (((-619 $) (-921 (-547))) NIL)) (-3817 (($ (-1026 $ (-1132 $)) (-832)) 41)) (-2255 (($ $) 20)) (-3269 (($) 29 T CONST)) (-3281 (($) 35 T CONST)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 71)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 22)) (-2506 (($ $ $) 33)) (-2493 (($ $) 34) (($ $ $) 69)) (-2479 (($ $ $) 103)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL) (($ $ (-398 (-547))) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 91) (($ $ $) 96) (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL) (($ (-547) $) 91) (($ $ (-547)) NIL) (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-993 |#1|) (-13 (-981) (-402 |#1|) (-38 |#1|) (-10 -8 (-15 -3817 ($ (-1026 $ (-1132 $)) (-832))) (-15 -1867 ((-3 (-1026 $ (-1132 $)) "failed") $)) (-15 -2592 ((-398 (-547)) $ $)))) (-13 (-819) (-354) (-991))) (T -993))
-((-3817 (*1 *1 *2 *3) (-12 (-5 *2 (-1026 (-993 *4) (-1132 (-993 *4)))) (-5 *3 (-832)) (-5 *1 (-993 *4)) (-4 *4 (-13 (-819) (-354) (-991))))) (-1867 (*1 *2 *1) (|partial| -12 (-5 *2 (-1026 (-993 *3) (-1132 (-993 *3)))) (-5 *1 (-993 *3)) (-4 *3 (-13 (-819) (-354) (-991))))) (-2592 (*1 *2 *1 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-993 *3)) (-4 *3 (-13 (-819) (-354) (-991))))))
-(-13 (-981) (-402 |#1|) (-38 |#1|) (-10 -8 (-15 -3817 ($ (-1026 $ (-1132 $)) (-832))) (-15 -1867 ((-3 (-1026 $ (-1132 $)) "failed") $)) (-15 -2592 ((-398 (-547)) $ $))))
-((-2879 (((-2 (|:| -2644 |#2|) (|:| -2714 (-619 |#1|))) |#2| (-619 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-994 |#1| |#2|) (-10 -7 (-15 -2879 (|#2| |#2| |#1|)) (-15 -2879 ((-2 (|:| -2644 |#2|) (|:| -2714 (-619 |#1|))) |#2| (-619 |#1|)))) (-354) (-630 |#1|)) (T -994))
-((-2879 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-5 *2 (-2 (|:| -2644 *3) (|:| -2714 (-619 *5)))) (-5 *1 (-994 *5 *3)) (-5 *4 (-619 *5)) (-4 *3 (-630 *5)))) (-2879 (*1 *2 *2 *3) (-12 (-4 *3 (-354)) (-5 *1 (-994 *3 *2)) (-4 *2 (-630 *3)))))
-(-10 -7 (-15 -2879 (|#2| |#2| |#1|)) (-15 -2879 ((-2 (|:| -2644 |#2|) (|:| -2714 (-619 |#1|))) |#2| (-619 |#1|))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2919 ((|#1| $ |#1|) 14)) (-2247 ((|#1| $ |#1|) 12)) (-3180 (($ |#1|) 10)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3334 ((|#1| $) 11)) (-1767 ((|#1| $) 13)) (-3838 (((-832) $) 21 (|has| |#1| (-1063)))) (-2381 (((-112) $ $) 9)))
-(((-995 |#1|) (-13 (-1173) (-10 -8 (-15 -3180 ($ |#1|)) (-15 -3334 (|#1| $)) (-15 -2247 (|#1| $ |#1|)) (-15 -1767 (|#1| $)) (-15 -2919 (|#1| $ |#1|)) (-15 -2381 ((-112) $ $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) (-1173)) (T -995))
-((-3180 (*1 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1173)))) (-3334 (*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1173)))) (-2247 (*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1173)))) (-1767 (*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1173)))) (-2919 (*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1173)))) (-2381 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-995 *3)) (-4 *3 (-1173)))))
-(-13 (-1173) (-10 -8 (-15 -3180 ($ |#1|)) (-15 -3334 (|#1| $)) (-15 -2247 (|#1| $ |#1|)) (-15 -1767 (|#1| $)) (-15 -2919 (|#1| $ |#1|)) (-15 -2381 ((-112) $ $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|)))
-((-3826 (((-112) $ $) NIL)) (-1320 (((-619 (-2 (|:| -2674 $) (|:| -1352 (-619 |#4|)))) (-619 |#4|)) NIL)) (-2128 (((-619 $) (-619 |#4|)) 105) (((-619 $) (-619 |#4|) (-112)) 106) (((-619 $) (-619 |#4|) (-112) (-112)) 104) (((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112)) 107)) (-2267 (((-619 |#3|) $) NIL)) (-1474 (((-112) $) NIL)) (-1843 (((-112) $) NIL (|has| |#1| (-539)))) (-4151 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2081 ((|#4| |#4| $) NIL)) (-2555 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| $) 99)) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |#3|) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1482 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329))) (((-3 |#4| "failed") $ |#3|) 54)) (-1948 (($) NIL T CONST)) (-1651 (((-112) $) 26 (|has| |#1| (-539)))) (-4230 (((-112) $ $) NIL (|has| |#1| (-539)))) (-2360 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1840 (((-112) $) NIL (|has| |#1| (-539)))) (-3805 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4017 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-1900 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-2707 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2652 (($ (-619 |#4|)) NIL)) (-3649 (((-3 $ "failed") $) 39)) (-2584 ((|#4| |#4| $) 57)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-3803 (($ |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2916 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-539)))) (-2173 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2442 ((|#4| |#4| $) NIL)) (-2552 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4329))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4329))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2951 (((-2 (|:| -2674 (-619 |#4|)) (|:| -1352 (-619 |#4|))) $) NIL)) (-1611 (((-112) |#4| $) NIL)) (-3465 (((-112) |#4| $) NIL)) (-1837 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1337 (((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112)) 119)) (-2982 (((-619 |#4|) $) 16 (|has| $ (-6 -4329)))) (-1779 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#3| $) 33)) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#4|) $) 17 (|has| $ (-6 -4329)))) (-2132 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-1859 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#4| |#4|) $) 21)) (-4138 (((-619 |#3|) $) NIL)) (-3758 (((-112) |#3| $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-3150 (((-3 |#4| (-619 $)) |#4| |#4| $) NIL)) (-1717 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| |#4| $) 97)) (-3820 (((-3 |#4| "failed") $) 37)) (-2756 (((-619 $) |#4| $) 80)) (-2867 (((-3 (-112) (-619 $)) |#4| $) NIL)) (-2237 (((-619 (-2 (|:| |val| (-112)) (|:| -1974 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3594 (((-619 $) |#4| $) 102) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 103) (((-619 $) |#4| (-619 $)) NIL)) (-1976 (((-619 $) (-619 |#4|) (-112) (-112) (-112)) 114)) (-1428 (($ |#4| $) 70) (($ (-619 |#4|) $) 71) (((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-2498 (((-619 |#4|) $) NIL)) (-3112 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3065 ((|#4| |#4| $) NIL)) (-1458 (((-112) $ $) NIL)) (-1770 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2012 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1772 ((|#4| |#4| $) NIL)) (-3979 (((-1082) $) NIL)) (-3638 (((-3 |#4| "failed") $) 35)) (-3650 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1362 (((-3 $ "failed") $ |#4|) 48)) (-3708 (($ $ |#4|) NIL) (((-619 $) |#4| $) 82) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 77)) (-1598 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 15)) (-2245 (($) 13)) (-3705 (((-745) $) NIL)) (-3992 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) 12)) (-2838 (((-523) $) NIL (|has| |#4| (-592 (-523))))) (-3846 (($ (-619 |#4|)) 20)) (-3461 (($ $ |#3|) 42)) (-3007 (($ $ |#3|) 44)) (-2553 (($ $) NIL)) (-3619 (($ $ |#3|) NIL)) (-3838 (((-832) $) 31) (((-619 |#4|) $) 40)) (-2815 (((-745) $) NIL (|has| |#3| (-359)))) (-2672 (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2636 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-1283 (((-619 $) |#4| $) 79) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) NIL)) (-2693 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-3463 (((-619 |#3|) $) NIL)) (-1669 (((-112) |#4| $) NIL)) (-2593 (((-112) |#3| $) 53)) (-2381 (((-112) $ $) NIL)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-996 |#1| |#2| |#3| |#4|) (-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1428 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2128 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -2128 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -1976 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -1337 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -996))
-((-1428 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *3))) (-5 *1 (-996 *5 *6 *7 *3)) (-4 *3 (-1030 *5 *6 *7)))) (-2128 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) (-2128 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) (-1976 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) (-1337 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-619 *8)) (|:| |towers| (-619 (-996 *5 *6 *7 *8))))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *3 (-619 *8)))))
-(-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1428 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2128 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -2128 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -1976 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -1337 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112)))))
-((-3005 (((-619 (-663 |#1|)) (-619 (-663 |#1|))) 58) (((-663 |#1|) (-663 |#1|)) 57) (((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-619 (-663 |#1|))) 56) (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 53)) (-2855 (((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890)) 52) (((-663 |#1|) (-663 |#1|) (-890)) 51)) (-1930 (((-619 (-663 (-547))) (-619 (-619 (-547)))) 68) (((-619 (-663 (-547))) (-619 (-874 (-547))) (-547)) 67) (((-663 (-547)) (-619 (-547))) 64) (((-663 (-547)) (-874 (-547)) (-547)) 63)) (-3752 (((-663 (-921 |#1|)) (-745)) 81)) (-2917 (((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890)) 37 (|has| |#1| (-6 (-4331 "*")))) (((-663 |#1|) (-663 |#1|) (-890)) 35 (|has| |#1| (-6 (-4331 "*"))))))
-(((-997 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4331 "*"))) (-15 -2917 ((-663 |#1|) (-663 |#1|) (-890))) |%noBranch|) (IF (|has| |#1| (-6 (-4331 "*"))) (-15 -2917 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) |%noBranch|) (-15 -3752 ((-663 (-921 |#1|)) (-745))) (-15 -2855 ((-663 |#1|) (-663 |#1|) (-890))) (-15 -2855 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) (-15 -3005 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3005 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -3005 ((-663 |#1|) (-663 |#1|))) (-15 -3005 ((-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1930 ((-663 (-547)) (-874 (-547)) (-547))) (-15 -1930 ((-663 (-547)) (-619 (-547)))) (-15 -1930 ((-619 (-663 (-547))) (-619 (-874 (-547))) (-547))) (-15 -1930 ((-619 (-663 (-547))) (-619 (-619 (-547)))))) (-1016)) (T -997))
-((-1930 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-547)))) (-5 *2 (-619 (-663 (-547)))) (-5 *1 (-997 *4)) (-4 *4 (-1016)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-874 (-547)))) (-5 *4 (-547)) (-5 *2 (-619 (-663 *4))) (-5 *1 (-997 *5)) (-4 *5 (-1016)))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-997 *4)) (-4 *4 (-1016)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-547))) (-5 *4 (-547)) (-5 *2 (-663 *4)) (-5 *1 (-997 *5)) (-4 *5 (-1016)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-3005 (*1 *2 *2 *2) (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-3005 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-2855 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) (-4 *4 (-1016)) (-5 *1 (-997 *4)))) (-2855 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (-4 *4 (-1016)) (-5 *1 (-997 *4)))) (-3752 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-663 (-921 *4))) (-5 *1 (-997 *4)) (-4 *4 (-1016)))) (-2917 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) (|has| *4 (-6 (-4331 "*"))) (-4 *4 (-1016)) (-5 *1 (-997 *4)))) (-2917 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (|has| *4 (-6 (-4331 "*"))) (-4 *4 (-1016)) (-5 *1 (-997 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4331 "*"))) (-15 -2917 ((-663 |#1|) (-663 |#1|) (-890))) |%noBranch|) (IF (|has| |#1| (-6 (-4331 "*"))) (-15 -2917 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) |%noBranch|) (-15 -3752 ((-663 (-921 |#1|)) (-745))) (-15 -2855 ((-663 |#1|) (-663 |#1|) (-890))) (-15 -2855 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) (-15 -3005 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3005 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -3005 ((-663 |#1|) (-663 |#1|))) (-15 -3005 ((-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1930 ((-663 (-547)) (-874 (-547)) (-547))) (-15 -1930 ((-663 (-547)) (-619 (-547)))) (-15 -1930 ((-619 (-663 (-547))) (-619 (-874 (-547))) (-547))) (-15 -1930 ((-619 (-663 (-547))) (-619 (-619 (-547))))))
-((-3207 (((-663 |#1|) (-619 (-663 |#1|)) (-1219 |#1|)) 50 (|has| |#1| (-298)))) (-4194 (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1219 (-1219 |#1|))) 76 (|has| |#1| (-354))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1219 |#1|)) 79 (|has| |#1| (-354)))) (-4206 (((-1219 |#1|) (-619 (-1219 |#1|)) (-547)) 93 (-12 (|has| |#1| (-354)) (|has| |#1| (-359))))) (-2722 (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-890)) 85 (-12 (|has| |#1| (-354)) (|has| |#1| (-359)))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112)) 83 (-12 (|has| |#1| (-354)) (|has| |#1| (-359)))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|))) 82 (-12 (|has| |#1| (-354)) (|has| |#1| (-359)))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112) (-547) (-547)) 81 (-12 (|has| |#1| (-354)) (|has| |#1| (-359))))) (-2118 (((-112) (-619 (-663 |#1|))) 71 (|has| |#1| (-354))) (((-112) (-619 (-663 |#1|)) (-547)) 73 (|has| |#1| (-354)))) (-1358 (((-1219 (-1219 |#1|)) (-619 (-663 |#1|)) (-1219 |#1|)) 48 (|has| |#1| (-298)))) (-4137 (((-663 |#1|) (-619 (-663 |#1|)) (-663 |#1|)) 34)) (-4180 (((-663 |#1|) (-1219 (-1219 |#1|))) 31)) (-4165 (((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-547)) 65 (|has| |#1| (-354))) (((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|))) 64 (|has| |#1| (-354))) (((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-112) (-547)) 69 (|has| |#1| (-354)))))
-(((-998 |#1|) (-10 -7 (-15 -4180 ((-663 |#1|) (-1219 (-1219 |#1|)))) (-15 -4137 ((-663 |#1|) (-619 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-298)) (PROGN (-15 -1358 ((-1219 (-1219 |#1|)) (-619 (-663 |#1|)) (-1219 |#1|))) (-15 -3207 ((-663 |#1|) (-619 (-663 |#1|)) (-1219 |#1|)))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-15 -4165 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-112) (-547))) (-15 -4165 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -4165 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-547))) (-15 -2118 ((-112) (-619 (-663 |#1|)) (-547))) (-15 -2118 ((-112) (-619 (-663 |#1|)))) (-15 -4194 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1219 |#1|))) (-15 -4194 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1219 (-1219 |#1|))))) |%noBranch|) (IF (|has| |#1| (-359)) (IF (|has| |#1| (-354)) (PROGN (-15 -2722 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112) (-547) (-547))) (-15 -2722 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)))) (-15 -2722 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112))) (-15 -2722 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-890))) (-15 -4206 ((-1219 |#1|) (-619 (-1219 |#1|)) (-547)))) |%noBranch|) |%noBranch|)) (-1016)) (T -998))
-((-4206 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1219 *5))) (-5 *4 (-547)) (-5 *2 (-1219 *5)) (-5 *1 (-998 *5)) (-4 *5 (-354)) (-4 *5 (-359)) (-4 *5 (-1016)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-354)) (-4 *5 (-359)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-2722 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-354)) (-4 *5 (-359)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-2722 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *4 (-359)) (-4 *4 (-1016)) (-5 *2 (-619 (-619 (-663 *4)))) (-5 *1 (-998 *4)) (-5 *3 (-619 (-663 *4))))) (-2722 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-547)) (-4 *6 (-354)) (-4 *6 (-359)) (-4 *6 (-1016)) (-5 *2 (-619 (-619 (-663 *6)))) (-5 *1 (-998 *6)) (-5 *3 (-619 (-663 *6))))) (-4194 (*1 *2 *3 *4) (-12 (-5 *4 (-1219 (-1219 *5))) (-4 *5 (-354)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-4194 (*1 *2 *3 *4) (-12 (-5 *4 (-1219 *5)) (-4 *5 (-354)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-354)) (-4 *4 (-1016)) (-5 *2 (-112)) (-5 *1 (-998 *4)))) (-2118 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-547)) (-4 *5 (-354)) (-4 *5 (-1016)) (-5 *2 (-112)) (-5 *1 (-998 *5)))) (-4165 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-547)) (-5 *2 (-663 *5)) (-5 *1 (-998 *5)) (-4 *5 (-354)) (-4 *5 (-1016)))) (-4165 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-5 *1 (-998 *4)) (-4 *4 (-354)) (-4 *4 (-1016)))) (-4165 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-619 (-663 *6))) (-5 *4 (-112)) (-5 *5 (-547)) (-5 *2 (-663 *6)) (-5 *1 (-998 *6)) (-4 *6 (-354)) (-4 *6 (-1016)))) (-3207 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-1219 *5)) (-4 *5 (-298)) (-4 *5 (-1016)) (-5 *2 (-663 *5)) (-5 *1 (-998 *5)))) (-1358 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-4 *5 (-298)) (-4 *5 (-1016)) (-5 *2 (-1219 (-1219 *5))) (-5 *1 (-998 *5)) (-5 *4 (-1219 *5)))) (-4137 (*1 *2 *3 *2) (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-1016)) (-5 *1 (-998 *4)))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-1219 (-1219 *4))) (-4 *4 (-1016)) (-5 *2 (-663 *4)) (-5 *1 (-998 *4)))))
-(-10 -7 (-15 -4180 ((-663 |#1|) (-1219 (-1219 |#1|)))) (-15 -4137 ((-663 |#1|) (-619 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-298)) (PROGN (-15 -1358 ((-1219 (-1219 |#1|)) (-619 (-663 |#1|)) (-1219 |#1|))) (-15 -3207 ((-663 |#1|) (-619 (-663 |#1|)) (-1219 |#1|)))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-15 -4165 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-112) (-547))) (-15 -4165 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -4165 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-547))) (-15 -2118 ((-112) (-619 (-663 |#1|)) (-547))) (-15 -2118 ((-112) (-619 (-663 |#1|)))) (-15 -4194 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1219 |#1|))) (-15 -4194 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1219 (-1219 |#1|))))) |%noBranch|) (IF (|has| |#1| (-359)) (IF (|has| |#1| (-354)) (PROGN (-15 -2722 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112) (-547) (-547))) (-15 -2722 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)))) (-15 -2722 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112))) (-15 -2722 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-890))) (-15 -4206 ((-1219 |#1|) (-619 (-1219 |#1|)) (-547)))) |%noBranch|) |%noBranch|))
-((-4020 ((|#1| (-890) |#1|) 9)))
-(((-999 |#1|) (-10 -7 (-15 -4020 (|#1| (-890) |#1|))) (-13 (-1063) (-10 -8 (-15 -2479 ($ $ $))))) (T -999))
-((-4020 (*1 *2 *3 *2) (-12 (-5 *3 (-890)) (-5 *1 (-999 *2)) (-4 *2 (-13 (-1063) (-10 -8 (-15 -2479 ($ $ $))))))))
-(-10 -7 (-15 -4020 (|#1| (-890) |#1|)))
-((-2808 (((-619 (-2 (|:| |radval| (-307 (-547))) (|:| |radmult| (-547)) (|:| |radvect| (-619 (-663 (-307 (-547))))))) (-663 (-398 (-921 (-547))))) 59)) (-3916 (((-619 (-663 (-307 (-547)))) (-307 (-547)) (-663 (-398 (-921 (-547))))) 48)) (-2182 (((-619 (-307 (-547))) (-663 (-398 (-921 (-547))))) 41)) (-2216 (((-619 (-663 (-307 (-547)))) (-663 (-398 (-921 (-547))))) 68)) (-3553 (((-663 (-307 (-547))) (-663 (-307 (-547)))) 34)) (-2988 (((-619 (-663 (-307 (-547)))) (-619 (-663 (-307 (-547))))) 62)) (-2109 (((-3 (-663 (-307 (-547))) "failed") (-663 (-398 (-921 (-547))))) 66)))
-(((-1000) (-10 -7 (-15 -2808 ((-619 (-2 (|:| |radval| (-307 (-547))) (|:| |radmult| (-547)) (|:| |radvect| (-619 (-663 (-307 (-547))))))) (-663 (-398 (-921 (-547)))))) (-15 -3916 ((-619 (-663 (-307 (-547)))) (-307 (-547)) (-663 (-398 (-921 (-547)))))) (-15 -2182 ((-619 (-307 (-547))) (-663 (-398 (-921 (-547)))))) (-15 -2109 ((-3 (-663 (-307 (-547))) "failed") (-663 (-398 (-921 (-547)))))) (-15 -3553 ((-663 (-307 (-547))) (-663 (-307 (-547))))) (-15 -2988 ((-619 (-663 (-307 (-547)))) (-619 (-663 (-307 (-547)))))) (-15 -2216 ((-619 (-663 (-307 (-547)))) (-663 (-398 (-921 (-547)))))))) (T -1000))
-((-2216 (*1 *2 *3) (-12 (-5 *3 (-663 (-398 (-921 (-547))))) (-5 *2 (-619 (-663 (-307 (-547))))) (-5 *1 (-1000)))) (-2988 (*1 *2 *2) (-12 (-5 *2 (-619 (-663 (-307 (-547))))) (-5 *1 (-1000)))) (-3553 (*1 *2 *2) (-12 (-5 *2 (-663 (-307 (-547)))) (-5 *1 (-1000)))) (-2109 (*1 *2 *3) (|partial| -12 (-5 *3 (-663 (-398 (-921 (-547))))) (-5 *2 (-663 (-307 (-547)))) (-5 *1 (-1000)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-663 (-398 (-921 (-547))))) (-5 *2 (-619 (-307 (-547)))) (-5 *1 (-1000)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-398 (-921 (-547))))) (-5 *2 (-619 (-663 (-307 (-547))))) (-5 *1 (-1000)) (-5 *3 (-307 (-547))))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-663 (-398 (-921 (-547))))) (-5 *2 (-619 (-2 (|:| |radval| (-307 (-547))) (|:| |radmult| (-547)) (|:| |radvect| (-619 (-663 (-307 (-547)))))))) (-5 *1 (-1000)))))
-(-10 -7 (-15 -2808 ((-619 (-2 (|:| |radval| (-307 (-547))) (|:| |radmult| (-547)) (|:| |radvect| (-619 (-663 (-307 (-547))))))) (-663 (-398 (-921 (-547)))))) (-15 -3916 ((-619 (-663 (-307 (-547)))) (-307 (-547)) (-663 (-398 (-921 (-547)))))) (-15 -2182 ((-619 (-307 (-547))) (-663 (-398 (-921 (-547)))))) (-15 -2109 ((-3 (-663 (-307 (-547))) "failed") (-663 (-398 (-921 (-547)))))) (-15 -3553 ((-663 (-307 (-547))) (-663 (-307 (-547))))) (-15 -2988 ((-619 (-663 (-307 (-547)))) (-619 (-663 (-307 (-547)))))) (-15 -2216 ((-619 (-663 (-307 (-547)))) (-663 (-398 (-921 (-547)))))))
-((-1720 ((|#1| |#1| (-890)) 9)))
-(((-1001 |#1|) (-10 -7 (-15 -1720 (|#1| |#1| (-890)))) (-13 (-1063) (-10 -8 (-15 * ($ $ $))))) (T -1001))
-((-1720 (*1 *2 *2 *3) (-12 (-5 *3 (-890)) (-5 *1 (-1001 *2)) (-4 *2 (-13 (-1063) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -1720 (|#1| |#1| (-890))))
-((-3838 ((|#1| (-303)) 11) (((-1224) |#1|) 9)))
-(((-1002 |#1|) (-10 -7 (-15 -3838 ((-1224) |#1|)) (-15 -3838 (|#1| (-303)))) (-1173)) (T -1002))
-((-3838 (*1 *2 *3) (-12 (-5 *3 (-303)) (-5 *1 (-1002 *2)) (-4 *2 (-1173)))) (-3838 (*1 *2 *3) (-12 (-5 *2 (-1224)) (-5 *1 (-1002 *3)) (-4 *3 (-1173)))))
-(-10 -7 (-15 -3838 ((-1224) |#1|)) (-15 -3838 (|#1| (-303))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2552 (($ |#4|) 25)) (-3855 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-2540 ((|#4| $) 27)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 46) (($ (-547)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2736 (((-745)) 43)) (-3269 (($) 21 T CONST)) (-3281 (($) 23 T CONST)) (-2381 (((-112) $ $) 40)) (-2493 (($ $) 31) (($ $ $) NIL)) (-2479 (($ $ $) 29)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1003 |#1| |#2| |#3| |#4| |#5|) (-13 (-169) (-38 |#1|) (-10 -8 (-15 -2552 ($ |#4|)) (-15 -3838 ($ |#4|)) (-15 -2540 (|#4| $)))) (-354) (-767) (-821) (-918 |#1| |#2| |#3|) (-619 |#4|)) (T -1003))
-((-2552 (*1 *1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) (-14 *6 (-619 *2)))) (-3838 (*1 *1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) (-14 *6 (-619 *2)))) (-2540 (*1 *2 *1) (-12 (-4 *2 (-918 *3 *4 *5)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-14 *6 (-619 *2)))))
-(-13 (-169) (-38 |#1|) (-10 -8 (-15 -2552 ($ |#4|)) (-15 -3838 ($ |#4|)) (-15 -2540 (|#4| $))))
-((-3826 (((-112) $ $) NIL (-1530 (|has| (-52) (-1063)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063))))) (-3726 (($) NIL) (($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) NIL)) (-1652 (((-1224) $ (-1136) (-1136)) NIL (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) NIL)) (-4201 (((-112) (-112)) 39)) (-2152 (((-112) (-112)) 38)) (-2247 (((-52) $ (-1136) (-52)) NIL)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329)))) (-3482 (((-3 (-52) "failed") (-1136) $) NIL)) (-1948 (($) NIL T CONST)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063))))) (-1513 (($ (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-3 (-52) "failed") (-1136) $) NIL)) (-3803 (($ (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (($ (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $ (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (((-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $ (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329)))) (-1872 (((-52) $ (-1136) (-52)) NIL (|has| $ (-6 -4330)))) (-1802 (((-52) $ (-1136)) NIL)) (-2982 (((-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-619 (-52)) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-1136) $) NIL (|has| (-1136) (-821)))) (-2284 (((-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-619 (-52)) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-52) (-1063))))) (-1416 (((-1136) $) NIL (|has| (-1136) (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4330))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (-1530 (|has| (-52) (-1063)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063))))) (-3441 (((-619 (-1136)) $) 34)) (-4073 (((-112) (-1136) $) NIL)) (-4266 (((-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) NIL)) (-2657 (($ (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) NIL)) (-2121 (((-619 (-1136)) $) NIL)) (-2018 (((-112) (-1136) $) NIL)) (-3979 (((-1082) $) NIL (-1530 (|has| (-52) (-1063)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063))))) (-3638 (((-52) $) NIL (|has| (-1136) (-821)))) (-3650 (((-3 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) "failed") (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL)) (-3632 (($ $ (-52)) NIL (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) NIL)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))))) NIL (-12 (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (($ $ (-285 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) NIL (-12 (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (($ $ (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) NIL (-12 (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (($ $ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) NIL (-12 (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (($ $ (-619 (-52)) (-619 (-52))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-285 (-52))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-619 (-285 (-52)))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-52) (-1063))))) (-2987 (((-619 (-52)) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 (((-52) $ (-1136)) 35) (((-52) $ (-1136) (-52)) NIL)) (-2699 (($) NIL) (($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) NIL)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (((-745) (-52) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-52) (-1063)))) (((-745) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) NIL)) (-3838 (((-832) $) 37 (-1530 (|has| (-52) (-591 (-832))) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-591 (-832)))))) (-2300 (($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) NIL)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (-1530 (|has| (-52) (-1063)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063))))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1004) (-13 (-1149 (-1136) (-52)) (-10 -7 (-15 -4201 ((-112) (-112))) (-15 -2152 ((-112) (-112))) (-6 -4329)))) (T -1004))
-((-4201 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004)))) (-2152 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004)))))
-(-13 (-1149 (-1136) (-52)) (-10 -7 (-15 -4201 ((-112) (-112))) (-15 -2152 ((-112) (-112))) (-6 -4329)))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3947 (((-1141) $) 9)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-1005) (-13 (-1047) (-10 -8 (-15 -3947 ((-1141) $))))) (T -1005))
-((-3947 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1005)))))
-(-13 (-1047) (-10 -8 (-15 -3947 ((-1141) $))))
-((-2652 ((|#2| $) 10)))
-(((-1006 |#1| |#2|) (-10 -8 (-15 -2652 (|#2| |#1|))) (-1007 |#2|) (-1173)) (T -1006))
-NIL
-(-10 -8 (-15 -2652 (|#2| |#1|)))
-((-2707 (((-3 |#1| "failed") $) 7)) (-2652 ((|#1| $) 8)) (-3838 (($ |#1|) 6)))
-(((-1007 |#1|) (-138) (-1173)) (T -1007))
-((-2652 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1173)))) (-2707 (*1 *2 *1) (|partial| -12 (-4 *1 (-1007 *2)) (-4 *2 (-1173)))) (-3838 (*1 *1 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1173)))))
-(-13 (-10 -8 (-15 -3838 ($ |t#1|)) (-15 -2707 ((-3 |t#1| "failed") $)) (-15 -2652 (|t#1| $))))
-((-2641 (((-619 (-619 (-285 (-398 (-921 |#2|))))) (-619 (-921 |#2|)) (-619 (-1136))) 38)))
-(((-1008 |#1| |#2|) (-10 -7 (-15 -2641 ((-619 (-619 (-285 (-398 (-921 |#2|))))) (-619 (-921 |#2|)) (-619 (-1136))))) (-539) (-13 (-539) (-1007 |#1|))) (T -1008))
-((-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1136))) (-4 *6 (-13 (-539) (-1007 *5))) (-4 *5 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *6)))))) (-5 *1 (-1008 *5 *6)))))
-(-10 -7 (-15 -2641 ((-619 (-619 (-285 (-398 (-921 |#2|))))) (-619 (-921 |#2|)) (-619 (-1136)))))
-((-1556 (((-370)) 15)) (-2604 (((-1 (-370)) (-370) (-370)) 20)) (-2625 (((-1 (-370)) (-745)) 43)) (-2346 (((-370)) 34)) (-4032 (((-1 (-370)) (-370) (-370)) 35)) (-4149 (((-370)) 26)) (-3722 (((-1 (-370)) (-370)) 27)) (-3986 (((-370) (-745)) 38)) (-3310 (((-1 (-370)) (-745)) 39)) (-1415 (((-1 (-370)) (-745) (-745)) 42)) (-3243 (((-1 (-370)) (-745) (-745)) 40)))
-(((-1009) (-10 -7 (-15 -1556 ((-370))) (-15 -2346 ((-370))) (-15 -4149 ((-370))) (-15 -3986 ((-370) (-745))) (-15 -2604 ((-1 (-370)) (-370) (-370))) (-15 -4032 ((-1 (-370)) (-370) (-370))) (-15 -3722 ((-1 (-370)) (-370))) (-15 -3310 ((-1 (-370)) (-745))) (-15 -3243 ((-1 (-370)) (-745) (-745))) (-15 -1415 ((-1 (-370)) (-745) (-745))) (-15 -2625 ((-1 (-370)) (-745))))) (T -1009))
-((-2625 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009)))) (-1415 (*1 *2 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009)))) (-3243 (*1 *2 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009)))) (-3722 (*1 *2 *3) (-12 (-5 *2 (-1 (-370))) (-5 *1 (-1009)) (-5 *3 (-370)))) (-4032 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-370))) (-5 *1 (-1009)) (-5 *3 (-370)))) (-2604 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-370))) (-5 *1 (-1009)) (-5 *3 (-370)))) (-3986 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-370)) (-5 *1 (-1009)))) (-4149 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1009)))) (-2346 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1009)))) (-1556 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1009)))))
-(-10 -7 (-15 -1556 ((-370))) (-15 -2346 ((-370))) (-15 -4149 ((-370))) (-15 -3986 ((-370) (-745))) (-15 -2604 ((-1 (-370)) (-370) (-370))) (-15 -4032 ((-1 (-370)) (-370) (-370))) (-15 -3722 ((-1 (-370)) (-370))) (-15 -3310 ((-1 (-370)) (-745))) (-15 -3243 ((-1 (-370)) (-745) (-745))) (-15 -1415 ((-1 (-370)) (-745) (-745))) (-15 -2625 ((-1 (-370)) (-745))))
-((-2115 (((-409 |#1|) |#1|) 33)))
-(((-1010 |#1|) (-10 -7 (-15 -2115 ((-409 |#1|) |#1|))) (-1195 (-398 (-921 (-547))))) (T -1010))
-((-2115 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1010 *3)) (-4 *3 (-1195 (-398 (-921 (-547))))))))
-(-10 -7 (-15 -2115 ((-409 |#1|) |#1|)))
-((-2332 (((-398 (-409 (-921 |#1|))) (-398 (-921 |#1|))) 14)))
-(((-1011 |#1|) (-10 -7 (-15 -2332 ((-398 (-409 (-921 |#1|))) (-398 (-921 |#1|))))) (-298)) (T -1011))
-((-2332 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-298)) (-5 *2 (-398 (-409 (-921 *4)))) (-5 *1 (-1011 *4)))))
-(-10 -7 (-15 -2332 ((-398 (-409 (-921 |#1|))) (-398 (-921 |#1|)))))
-((-2267 (((-619 (-1136)) (-398 (-921 |#1|))) 17)) (-2078 (((-398 (-1132 (-398 (-921 |#1|)))) (-398 (-921 |#1|)) (-1136)) 24)) (-2254 (((-398 (-921 |#1|)) (-398 (-1132 (-398 (-921 |#1|)))) (-1136)) 26)) (-1631 (((-3 (-1136) "failed") (-398 (-921 |#1|))) 20)) (-2679 (((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-619 (-285 (-398 (-921 |#1|))))) 32) (((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|)))) 33) (((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-619 (-1136)) (-619 (-398 (-921 |#1|)))) 28) (((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-1136) (-398 (-921 |#1|))) 29)) (-3838 (((-398 (-921 |#1|)) |#1|) 11)))
-(((-1012 |#1|) (-10 -7 (-15 -2267 ((-619 (-1136)) (-398 (-921 |#1|)))) (-15 -1631 ((-3 (-1136) "failed") (-398 (-921 |#1|)))) (-15 -2078 ((-398 (-1132 (-398 (-921 |#1|)))) (-398 (-921 |#1|)) (-1136))) (-15 -2254 ((-398 (-921 |#1|)) (-398 (-1132 (-398 (-921 |#1|)))) (-1136))) (-15 -2679 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-1136) (-398 (-921 |#1|)))) (-15 -2679 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-619 (-1136)) (-619 (-398 (-921 |#1|))))) (-15 -2679 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))))) (-15 -2679 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-619 (-285 (-398 (-921 |#1|)))))) (-15 -3838 ((-398 (-921 |#1|)) |#1|))) (-539)) (T -1012))
-((-3838 (*1 *2 *3) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-1012 *3)) (-4 *3 (-539)))) (-2679 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-285 (-398 (-921 *4))))) (-5 *2 (-398 (-921 *4))) (-4 *4 (-539)) (-5 *1 (-1012 *4)))) (-2679 (*1 *2 *2 *3) (-12 (-5 *3 (-285 (-398 (-921 *4)))) (-5 *2 (-398 (-921 *4))) (-4 *4 (-539)) (-5 *1 (-1012 *4)))) (-2679 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-619 (-1136))) (-5 *4 (-619 (-398 (-921 *5)))) (-5 *2 (-398 (-921 *5))) (-4 *5 (-539)) (-5 *1 (-1012 *5)))) (-2679 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-398 (-921 *4))) (-5 *3 (-1136)) (-4 *4 (-539)) (-5 *1 (-1012 *4)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-1132 (-398 (-921 *5))))) (-5 *4 (-1136)) (-5 *2 (-398 (-921 *5))) (-5 *1 (-1012 *5)) (-4 *5 (-539)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-539)) (-5 *2 (-398 (-1132 (-398 (-921 *5))))) (-5 *1 (-1012 *5)) (-5 *3 (-398 (-921 *5))))) (-1631 (*1 *2 *3) (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-5 *2 (-1136)) (-5 *1 (-1012 *4)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-5 *2 (-619 (-1136))) (-5 *1 (-1012 *4)))))
-(-10 -7 (-15 -2267 ((-619 (-1136)) (-398 (-921 |#1|)))) (-15 -1631 ((-3 (-1136) "failed") (-398 (-921 |#1|)))) (-15 -2078 ((-398 (-1132 (-398 (-921 |#1|)))) (-398 (-921 |#1|)) (-1136))) (-15 -2254 ((-398 (-921 |#1|)) (-398 (-1132 (-398 (-921 |#1|)))) (-1136))) (-15 -2679 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-1136) (-398 (-921 |#1|)))) (-15 -2679 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-619 (-1136)) (-619 (-398 (-921 |#1|))))) (-15 -2679 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))))) (-15 -2679 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-619 (-285 (-398 (-921 |#1|)))))) (-15 -3838 ((-398 (-921 |#1|)) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1320 (((-619 (-2 (|:| -2674 $) (|:| -1352 (-619 (-754 |#1| (-834 |#2|)))))) (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-2128 (((-619 $) (-619 (-754 |#1| (-834 |#2|)))) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112)) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112) (-112)) NIL)) (-2267 (((-619 (-834 |#2|)) $) NIL)) (-1474 (((-112) $) NIL)) (-1843 (((-112) $) NIL (|has| |#1| (-539)))) (-4151 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-2081 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-2555 (((-619 (-2 (|:| |val| (-754 |#1| (-834 |#2|))) (|:| -1974 $))) (-754 |#1| (-834 |#2|)) $) NIL)) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ (-834 |#2|)) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1482 (($ (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-3 (-754 |#1| (-834 |#2|)) "failed") $ (-834 |#2|)) NIL)) (-1948 (($) NIL T CONST)) (-1651 (((-112) $) NIL (|has| |#1| (-539)))) (-4230 (((-112) $ $) NIL (|has| |#1| (-539)))) (-2360 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1840 (((-112) $) NIL (|has| |#1| (-539)))) (-3805 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))) $ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-4017 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| |#1| (-539)))) (-1900 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| |#1| (-539)))) (-2707 (((-3 $ "failed") (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-2652 (($ (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-3649 (((-3 $ "failed") $) NIL)) (-2584 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-754 |#1| (-834 |#2|)) (-1063))))) (-3803 (($ (-754 |#1| (-834 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2916 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-754 |#1| (-834 |#2|))) (|:| |den| |#1|)) (-754 |#1| (-834 |#2|)) $) NIL (|has| |#1| (-539)))) (-2173 (((-112) (-754 |#1| (-834 |#2|)) $ (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2442 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-2552 (((-754 |#1| (-834 |#2|)) (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $ (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (((-754 |#1| (-834 |#2|)) (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $ (-754 |#1| (-834 |#2|))) NIL (|has| $ (-6 -4329))) (((-754 |#1| (-834 |#2|)) (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2951 (((-2 (|:| -2674 (-619 (-754 |#1| (-834 |#2|)))) (|:| -1352 (-619 (-754 |#1| (-834 |#2|))))) $) NIL)) (-1611 (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-3465 (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-1837 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-2982 (((-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1779 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-3338 (((-834 |#2|) $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-754 |#1| (-834 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-754 |#1| (-834 |#2|)) (-1063))))) (-1859 (($ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $) NIL)) (-4138 (((-619 (-834 |#2|)) $) NIL)) (-3758 (((-112) (-834 |#2|) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-3150 (((-3 (-754 |#1| (-834 |#2|)) (-619 $)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-1717 (((-619 (-2 (|:| |val| (-754 |#1| (-834 |#2|))) (|:| -1974 $))) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3820 (((-3 (-754 |#1| (-834 |#2|)) "failed") $) NIL)) (-2756 (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL)) (-2867 (((-3 (-112) (-619 $)) (-754 |#1| (-834 |#2|)) $) NIL)) (-2237 (((-619 (-2 (|:| |val| (-112)) (|:| -1974 $))) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-3594 (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-619 $)) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) (-619 $)) NIL)) (-1428 (($ (-754 |#1| (-834 |#2|)) $) NIL) (($ (-619 (-754 |#1| (-834 |#2|))) $) NIL)) (-2498 (((-619 (-754 |#1| (-834 |#2|))) $) NIL)) (-3112 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-3065 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-1458 (((-112) $ $) NIL)) (-1770 (((-2 (|:| |num| (-754 |#1| (-834 |#2|))) (|:| |den| |#1|)) (-754 |#1| (-834 |#2|)) $) NIL (|has| |#1| (-539)))) (-2012 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-1772 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3979 (((-1082) $) NIL)) (-3638 (((-3 (-754 |#1| (-834 |#2|)) "failed") $) NIL)) (-3650 (((-3 (-754 |#1| (-834 |#2|)) "failed") (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL)) (-1362 (((-3 $ "failed") $ (-754 |#1| (-834 |#2|))) NIL)) (-3708 (($ $ (-754 |#1| (-834 |#2|))) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) (-619 $)) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-619 $)) NIL)) (-1598 (((-112) (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|)))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-300 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ $ (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-300 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ $ (-285 (-754 |#1| (-834 |#2|)))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-300 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ $ (-619 (-285 (-754 |#1| (-834 |#2|))))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-300 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3705 (((-745) $) NIL)) (-3992 (((-745) (-754 |#1| (-834 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (((-745) (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-754 |#1| (-834 |#2|)) (-592 (-523))))) (-3846 (($ (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-3461 (($ $ (-834 |#2|)) NIL)) (-3007 (($ $ (-834 |#2|)) NIL)) (-2553 (($ $) NIL)) (-3619 (($ $ (-834 |#2|)) NIL)) (-3838 (((-832) $) NIL) (((-619 (-754 |#1| (-834 |#2|))) $) NIL)) (-2815 (((-745) $) NIL (|has| (-834 |#2|) (-359)))) (-2672 (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 (-754 |#1| (-834 |#2|))))) "failed") (-619 (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 (-754 |#1| (-834 |#2|))))) "failed") (-619 (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2636 (((-112) $ (-1 (-112) (-754 |#1| (-834 |#2|)) (-619 (-754 |#1| (-834 |#2|))))) NIL)) (-1283 (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) (-619 $)) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-619 $)) NIL)) (-2693 (((-112) (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-3463 (((-619 (-834 |#2|)) $) NIL)) (-1669 (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-2593 (((-112) (-834 |#2|) $) NIL)) (-2381 (((-112) $ $) NIL)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1013 |#1| |#2|) (-13 (-1036 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) (-10 -8 (-15 -2128 ((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112) (-112))))) (-442) (-619 (-1136))) (T -1013))
-((-2128 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) (-14 *6 (-619 (-1136))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1013 *5 *6)))))
-(-13 (-1036 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) (-10 -8 (-15 -2128 ((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112) (-112)))))
-((-2604 (((-1 (-547)) (-1058 (-547))) 33)) (-3633 (((-547) (-547) (-547) (-547) (-547)) 30)) (-3920 (((-1 (-547)) |RationalNumber|) NIL)) (-4016 (((-1 (-547)) |RationalNumber|) NIL)) (-3658 (((-1 (-547)) (-547) |RationalNumber|) NIL)))
-(((-1014) (-10 -7 (-15 -2604 ((-1 (-547)) (-1058 (-547)))) (-15 -3658 ((-1 (-547)) (-547) |RationalNumber|)) (-15 -3920 ((-1 (-547)) |RationalNumber|)) (-15 -4016 ((-1 (-547)) |RationalNumber|)) (-15 -3633 ((-547) (-547) (-547) (-547) (-547))))) (T -1014))
-((-3633 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1014)))) (-4016 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-547))) (-5 *1 (-1014)))) (-3920 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-547))) (-5 *1 (-1014)))) (-3658 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-547))) (-5 *1 (-1014)) (-5 *3 (-547)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-1058 (-547))) (-5 *2 (-1 (-547))) (-5 *1 (-1014)))))
-(-10 -7 (-15 -2604 ((-1 (-547)) (-1058 (-547)))) (-15 -3658 ((-1 (-547)) (-547) |RationalNumber|)) (-15 -3920 ((-1 (-547)) |RationalNumber|)) (-15 -4016 ((-1 (-547)) |RationalNumber|)) (-15 -3633 ((-547) (-547) (-547) (-547) (-547))))
-((-3838 (((-832) $) NIL) (($ (-547)) 10)))
-(((-1015 |#1|) (-10 -8 (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|))) (-1016)) (T -1015))
-NIL
-(-10 -8 (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ (-547)) 27)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-1016) (-138)) (T -1016))
-((-2736 (*1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-745)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1016)))))
-(-13 (-1023) (-701) (-622 $) (-10 -8 (-15 -2736 ((-745))) (-15 -3838 ($ (-547))) (-6 -4326)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2459 (((-398 (-921 |#2|)) (-619 |#2|) (-619 |#2|) (-745) (-745)) 46)))
-(((-1017 |#1| |#2|) (-10 -7 (-15 -2459 ((-398 (-921 |#2|)) (-619 |#2|) (-619 |#2|) (-745) (-745)))) (-1136) (-354)) (T -1017))
-((-2459 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-745)) (-4 *6 (-354)) (-5 *2 (-398 (-921 *6))) (-5 *1 (-1017 *5 *6)) (-14 *5 (-1136)))))
-(-10 -7 (-15 -2459 ((-398 (-921 |#2|)) (-619 |#2|) (-619 |#2|) (-745) (-745))))
-((-2597 (((-112) $) 29)) (-1907 (((-112) $) 16)) (-2135 (((-745) $) 13)) (-2148 (((-745) $) 14)) (-3691 (((-112) $) 26)) (-1485 (((-112) $) 31)))
-(((-1018 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2148 ((-745) |#1|)) (-15 -2135 ((-745) |#1|)) (-15 -1485 ((-112) |#1|)) (-15 -2597 ((-112) |#1|)) (-15 -3691 ((-112) |#1|)) (-15 -1907 ((-112) |#1|))) (-1019 |#2| |#3| |#4| |#5| |#6|) (-745) (-745) (-1016) (-230 |#3| |#4|) (-230 |#2| |#4|)) (T -1018))
-NIL
-(-10 -8 (-15 -2148 ((-745) |#1|)) (-15 -2135 ((-745) |#1|)) (-15 -1485 ((-112) |#1|)) (-15 -2597 ((-112) |#1|)) (-15 -3691 ((-112) |#1|)) (-15 -1907 ((-112) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2597 (((-112) $) 51)) (-3672 (((-3 $ "failed") $ $) 19)) (-1907 (((-112) $) 53)) (-3899 (((-112) $ (-745)) 61)) (-1948 (($) 17 T CONST)) (-2648 (($ $) 34 (|has| |#3| (-298)))) (-2330 ((|#4| $ (-547)) 39)) (-3116 (((-745) $) 33 (|has| |#3| (-539)))) (-1802 ((|#3| $ (-547) (-547)) 41)) (-2982 (((-619 |#3|) $) 68 (|has| $ (-6 -4329)))) (-3316 (((-745) $) 32 (|has| |#3| (-539)))) (-3861 (((-619 |#5|) $) 31 (|has| |#3| (-539)))) (-2135 (((-745) $) 45)) (-2148 (((-745) $) 44)) (-2763 (((-112) $ (-745)) 60)) (-3612 (((-547) $) 49)) (-3628 (((-547) $) 47)) (-2284 (((-619 |#3|) $) 69 (|has| $ (-6 -4329)))) (-2132 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1063)) (|has| $ (-6 -4329))))) (-3120 (((-547) $) 48)) (-1599 (((-547) $) 46)) (-3938 (($ (-619 (-619 |#3|))) 54)) (-1859 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-1580 (((-619 (-619 |#3|)) $) 43)) (-3806 (((-112) $ (-745)) 59)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2032 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-539)))) (-1598 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#3|) (-619 |#3|)) 75 (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-285 |#3|)) 73 (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 (-285 |#3|))) 72 (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))) (-2052 (((-112) $ $) 55)) (-2884 (((-112) $) 58)) (-2245 (($) 57)) (-3334 ((|#3| $ (-547) (-547)) 42) ((|#3| $ (-547) (-547) |#3|) 40)) (-3691 (((-112) $) 52)) (-3992 (((-745) |#3| $) 70 (-12 (|has| |#3| (-1063)) (|has| $ (-6 -4329)))) (((-745) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4329)))) (-2274 (($ $) 56)) (-1295 ((|#5| $ (-547)) 38)) (-3838 (((-832) $) 11)) (-2693 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4329)))) (-1485 (((-112) $) 50)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#3|) 35 (|has| |#3| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3767 (((-745) $) 62 (|has| $ (-6 -4329)))))
-(((-1019 |#1| |#2| |#3| |#4| |#5|) (-138) (-745) (-745) (-1016) (-230 |t#2| |t#3|) (-230 |t#1| |t#3|)) (T -1019))
-((-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *5))) (-4 *5 (-1016)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547)))) (-3628 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547)))) (-2135 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-745)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-745)))) (-1580 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-619 (-619 *5))))) (-3334 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)) (-4 *2 (-1016)))) (-1802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)) (-4 *2 (-1016)))) (-3334 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *2 (-1016)) (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)))) (-2330 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *6 *2 *7)) (-4 *6 (-1016)) (-4 *7 (-230 *4 *6)) (-4 *2 (-230 *5 *6)))) (-1295 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *6 *7 *2)) (-4 *6 (-1016)) (-4 *7 (-230 *5 *6)) (-4 *2 (-230 *4 *6)))) (-2790 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) (-2032 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) (-4 *5 (-230 *4 *2)) (-4 *6 (-230 *3 *2)) (-4 *2 (-539)))) (-2506 (*1 *1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) (-4 *5 (-230 *4 *2)) (-4 *6 (-230 *3 *2)) (-4 *2 (-354)))) (-2648 (*1 *1 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *2 *4)) (-4 *4 (-298)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-539)) (-5 *2 (-745)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-539)) (-5 *2 (-745)))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-539)) (-5 *2 (-619 *7)))))
-(-13 (-111 |t#3| |t#3|) (-479 |t#3|) (-10 -8 (-6 -4329) (IF (|has| |t#3| (-169)) (-6 (-692 |t#3|)) |%noBranch|) (-15 -3938 ($ (-619 (-619 |t#3|)))) (-15 -1907 ((-112) $)) (-15 -3691 ((-112) $)) (-15 -2597 ((-112) $)) (-15 -1485 ((-112) $)) (-15 -3612 ((-547) $)) (-15 -3120 ((-547) $)) (-15 -3628 ((-547) $)) (-15 -1599 ((-547) $)) (-15 -2135 ((-745) $)) (-15 -2148 ((-745) $)) (-15 -1580 ((-619 (-619 |t#3|)) $)) (-15 -3334 (|t#3| $ (-547) (-547))) (-15 -1802 (|t#3| $ (-547) (-547))) (-15 -3334 (|t#3| $ (-547) (-547) |t#3|)) (-15 -2330 (|t#4| $ (-547))) (-15 -1295 (|t#5| $ (-547))) (-15 -2790 ($ (-1 |t#3| |t#3|) $)) (-15 -2790 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-539)) (-15 -2032 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-354)) (-15 -2506 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-298)) (-15 -2648 ($ $)) |%noBranch|) (IF (|has| |t#3| (-539)) (PROGN (-15 -3116 ((-745) $)) (-15 -3316 ((-745) $)) (-15 -3861 ((-619 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-591 (-832)) . T) ((-300 |#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))) ((-479 |#3|) . T) ((-503 |#3| |#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))) ((-622 |#3|) . T) ((-692 |#3|) |has| |#3| (-169)) ((-1022 |#3|) . T) ((-1063) . T) ((-1173) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2597 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1907 (((-112) $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1948 (($) NIL T CONST)) (-2648 (($ $) 43 (|has| |#3| (-298)))) (-2330 (((-232 |#2| |#3|) $ (-547)) 32)) (-3141 (($ (-663 |#3|)) 41)) (-3116 (((-745) $) 45 (|has| |#3| (-539)))) (-1802 ((|#3| $ (-547) (-547)) NIL)) (-2982 (((-619 |#3|) $) NIL (|has| $ (-6 -4329)))) (-3316 (((-745) $) 47 (|has| |#3| (-539)))) (-3861 (((-619 (-232 |#1| |#3|)) $) 51 (|has| |#3| (-539)))) (-2135 (((-745) $) NIL)) (-2148 (((-745) $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-3612 (((-547) $) NIL)) (-3628 (((-547) $) NIL)) (-2284 (((-619 |#3|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#3| (-1063))))) (-3120 (((-547) $) NIL)) (-1599 (((-547) $) NIL)) (-3938 (($ (-619 (-619 |#3|))) 27)) (-1859 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1580 (((-619 (-619 |#3|)) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2032 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-539)))) (-1598 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#3|) (-619 |#3|)) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-285 |#3|)) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 (-285 |#3|))) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#3| $ (-547) (-547)) NIL) ((|#3| $ (-547) (-547) |#3|) NIL)) (-3970 (((-133)) 54 (|has| |#3| (-354)))) (-3691 (((-112) $) NIL)) (-3992 (((-745) |#3| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#3| (-1063)))) (((-745) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) 63 (|has| |#3| (-592 (-523))))) (-1295 (((-232 |#1| |#3|) $ (-547)) 36)) (-3838 (((-832) $) 16) (((-663 |#3|) $) 38)) (-2693 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4329)))) (-1485 (((-112) $) NIL)) (-3269 (($) 13 T CONST)) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ |#3|) NIL (|has| |#3| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1020 |#1| |#2| |#3|) (-13 (-1019 |#1| |#2| |#3| (-232 |#2| |#3|) (-232 |#1| |#3|)) (-591 (-663 |#3|)) (-10 -8 (IF (|has| |#3| (-354)) (-6 (-1226 |#3|)) |%noBranch|) (IF (|has| |#3| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (-15 -3141 ($ (-663 |#3|))) (-15 -3838 ((-663 |#3|) $)))) (-745) (-745) (-1016)) (T -1020))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-663 *5)) (-5 *1 (-1020 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-1016)))) (-3141 (*1 *1 *2) (-12 (-5 *2 (-663 *5)) (-4 *5 (-1016)) (-5 *1 (-1020 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)))))
-(-13 (-1019 |#1| |#2| |#3| (-232 |#2| |#3|) (-232 |#1| |#3|)) (-591 (-663 |#3|)) (-10 -8 (IF (|has| |#3| (-354)) (-6 (-1226 |#3|)) |%noBranch|) (IF (|has| |#3| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (-15 -3141 ($ (-663 |#3|))) (-15 -3838 ((-663 |#3|) $))))
-((-2552 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2790 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-1021 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2790 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2552 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-745) (-745) (-1016) (-230 |#2| |#3|) (-230 |#1| |#3|) (-1019 |#1| |#2| |#3| |#4| |#5|) (-1016) (-230 |#2| |#7|) (-230 |#1| |#7|) (-1019 |#1| |#2| |#7| |#8| |#9|)) (T -1021))
-((-2552 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1016)) (-4 *2 (-1016)) (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-230 *6 *7)) (-4 *9 (-230 *5 *7)) (-4 *10 (-230 *6 *2)) (-4 *11 (-230 *5 *2)) (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *12 (-1019 *5 *6 *2 *10 *11)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1016)) (-4 *10 (-1016)) (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-230 *6 *7)) (-4 *9 (-230 *5 *7)) (-4 *2 (-1019 *5 *6 *10 *11 *12)) (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *11 (-230 *6 *10)) (-4 *12 (-230 *5 *10)))))
-(-10 -7 (-15 -2790 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2552 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ |#1|) 23)))
-(((-1022 |#1|) (-138) (-1023)) (T -1022))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1023)))))
+((-2204 (($ $ (-1059 $)) 7) (($ $ (-1143)) 6)))
+(((-930) (-138)) (T -930))
+((-2204 (*1 *1 *1 *2) (-12 (-5 *2 (-1059 *1)) (-4 *1 (-930)))) (-2204 (*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-1143)))))
+(-13 (-10 -8 (-15 -2204 ($ $ (-1143))) (-15 -2204 ($ $ (-1059 $)))))
+((-2405 (((-2 (|:| -1570 (-621 (-549))) (|:| |poly| (-621 (-1139 |#1|))) (|:| |prim| (-1139 |#1|))) (-621 (-923 |#1|)) (-621 (-1143)) (-1143)) 25) (((-2 (|:| -1570 (-621 (-549))) (|:| |poly| (-621 (-1139 |#1|))) (|:| |prim| (-1139 |#1|))) (-621 (-923 |#1|)) (-621 (-1143))) 26) (((-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1139 |#1|))) (-923 |#1|) (-1143) (-923 |#1|) (-1143)) 43)))
+(((-931 |#1|) (-10 -7 (-15 -2405 ((-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1139 |#1|))) (-923 |#1|) (-1143) (-923 |#1|) (-1143))) (-15 -2405 ((-2 (|:| -1570 (-621 (-549))) (|:| |poly| (-621 (-1139 |#1|))) (|:| |prim| (-1139 |#1|))) (-621 (-923 |#1|)) (-621 (-1143)))) (-15 -2405 ((-2 (|:| -1570 (-621 (-549))) (|:| |poly| (-621 (-1139 |#1|))) (|:| |prim| (-1139 |#1|))) (-621 (-923 |#1|)) (-621 (-1143)) (-1143)))) (-13 (-356) (-145))) (T -931))
+((-2405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 (-923 *6))) (-5 *4 (-621 (-1143))) (-5 *5 (-1143)) (-4 *6 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -1570 (-621 (-549))) (|:| |poly| (-621 (-1139 *6))) (|:| |prim| (-1139 *6)))) (-5 *1 (-931 *6)))) (-2405 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-621 (-1143))) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -1570 (-621 (-549))) (|:| |poly| (-621 (-1139 *5))) (|:| |prim| (-1139 *5)))) (-5 *1 (-931 *5)))) (-2405 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-923 *5)) (-5 *4 (-1143)) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1139 *5)))) (-5 *1 (-931 *5)))))
+(-10 -7 (-15 -2405 ((-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1139 |#1|))) (-923 |#1|) (-1143) (-923 |#1|) (-1143))) (-15 -2405 ((-2 (|:| -1570 (-621 (-549))) (|:| |poly| (-621 (-1139 |#1|))) (|:| |prim| (-1139 |#1|))) (-621 (-923 |#1|)) (-621 (-1143)))) (-15 -2405 ((-2 (|:| -1570 (-621 (-549))) (|:| |poly| (-621 (-1139 |#1|))) (|:| |prim| (-1139 |#1|))) (-621 (-923 |#1|)) (-621 (-1143)) (-1143))))
+((-2539 (((-621 |#1|) |#1| |#1|) 42)) (-1420 (((-112) |#1|) 39)) (-1513 ((|#1| |#1|) 65)) (-3334 ((|#1| |#1|) 64)))
+(((-932 |#1|) (-10 -7 (-15 -1420 ((-112) |#1|)) (-15 -3334 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -2539 ((-621 |#1|) |#1| |#1|))) (-534)) (T -932))
+((-2539 (*1 *2 *3 *3) (-12 (-5 *2 (-621 *3)) (-5 *1 (-932 *3)) (-4 *3 (-534)))) (-1513 (*1 *2 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-534)))) (-3334 (*1 *2 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-534)))) (-1420 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-932 *3)) (-4 *3 (-534)))))
+(-10 -7 (-15 -1420 ((-112) |#1|)) (-15 -3334 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -2539 ((-621 |#1|) |#1| |#1|)))
+((-1806 (((-1231) (-834)) 9)))
+(((-933) (-10 -7 (-15 -1806 ((-1231) (-834))))) (T -933))
+((-1806 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1231)) (-5 *1 (-933)))))
+(-10 -7 (-15 -1806 ((-1231) (-834))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 61 (|has| |#1| (-541)))) (-2258 (($ $) 62 (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 28)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2070 (($ $) 24)) (-2114 (((-3 $ "failed") $) 35)) (-1285 (($ $) NIL (|has| |#1| (-444)))) (-2691 (($ $ |#1| |#2| $) 48)) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) 16)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| |#2|) NIL)) (-3611 ((|#2| $) 19)) (-3705 (($ (-1 |#2| |#2|) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-2028 (($ $) 23)) (-2043 ((|#1| $) 21)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) 40)) (-2016 ((|#1| $) NIL)) (-1835 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-541))))) (-2042 (((-3 $ "failed") $ $) 74 (|has| |#1| (-541))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-541)))) (-3701 ((|#2| $) 17)) (-2216 ((|#1| $) NIL (|has| |#1| (-444)))) (-3846 (((-834) $) NIL) (($ (-549)) 39) (($ $) NIL (|has| |#1| (-541))) (($ |#1|) 34) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ |#2|) 31)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) 15)) (-1509 (($ $ $ (-747)) 57 (|has| |#1| (-170)))) (-1498 (((-112) $ $) 67 (|has| |#1| (-541)))) (-3276 (($) 22 T CONST)) (-3287 (($) 12 T CONST)) (-2389 (((-112) $ $) 66)) (-2513 (($ $ |#1|) 75 (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) 54) (($ $ (-747)) 52)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-934 |#1| |#2|) (-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-541)) (IF (|has| |#2| (-130)) (-15 -1835 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4335)) (-6 -4335) |%noBranch|))) (-1018) (-768)) (T -934))
+((-1835 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-934 *3 *2)) (-4 *2 (-130)) (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *2 (-768)))))
+(-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-541)) (IF (|has| |#2| (-130)) (-15 -1835 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4335)) (-6 -4335) |%noBranch|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))))) (-2861 (($ $ $) 63 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))) (-2001 (((-3 $ "failed") $ $) 50 (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))))) (-3614 (((-747)) 34 (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-1472 ((|#2| $) 21)) (-1376 ((|#1| $) 20)) (-1682 (($) NIL (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))) CONST)) (-2114 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))) (-3239 (($) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-2675 (((-112) $) NIL (-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))) (-2863 (($ $ $) NIL (-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-3575 (($ $ $) NIL (-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-2781 (($ |#1| |#2|) 19)) (-1881 (((-892) $) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 37 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-3493 (($ (-892)) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3990 (((-1087) $) NIL)) (-1955 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-3293 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-3846 (((-834) $) 14)) (-3276 (($) 40 (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))) CONST)) (-3287 (($) 24 (-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))) CONST)) (-2448 (((-112) $ $) NIL (-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-2425 (((-112) $ $) NIL (-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-2389 (((-112) $ $) 18)) (-2438 (((-112) $ $) NIL (-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-2412 (((-112) $ $) 66 (-1536 (-12 (|has| |#1| (-769)) (|has| |#2| (-769))) (-12 (|has| |#1| (-823)) (|has| |#2| (-823)))))) (-2513 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2500 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2486 (($ $ $) 43 (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769)))))) (** (($ $ (-549)) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465)))) (($ $ (-747)) 31 (-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703))))) (($ $ (-892)) NIL (-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))) (* (($ (-549) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-747) $) 46 (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))) (($ (-892) $) NIL (-1536 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-769)) (|has| |#2| (-769))))) (($ $ $) 27 (-1536 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-703)) (|has| |#2| (-703)))))))
+(((-935 |#1| |#2|) (-13 (-1067) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-703)) (IF (|has| |#2| (-703)) (-6 (-703)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-769)) (IF (|has| |#2| (-769)) (-6 (-769)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-823)) (IF (|has| |#2| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (-15 -2781 ($ |#1| |#2|)) (-15 -1376 (|#1| $)) (-15 -1472 (|#2| $)))) (-1067) (-1067)) (T -935))
+((-2781 (*1 *1 *2 *3) (-12 (-5 *1 (-935 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-1376 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1067)))) (-1472 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-935 *3 *2)) (-4 *3 (-1067)))))
+(-13 (-1067) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-703)) (IF (|has| |#2| (-703)) (-6 (-703)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-769)) (IF (|has| |#2| (-769)) (-6 (-769)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-823)) (IF (|has| |#2| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (-15 -2781 ($ |#1| |#2|)) (-15 -1376 (|#1| $)) (-15 -1472 (|#2| $))))
+((-4161 (((-1071) $) 12)) (-1997 (($ (-1143) (-1071)) 13)) (-2481 (((-1143) $) 10)) (-3846 (((-834) $) 22)))
+(((-936) (-13 (-593 (-834)) (-10 -8 (-15 -2481 ((-1143) $)) (-15 -4161 ((-1071) $)) (-15 -1997 ($ (-1143) (-1071)))))) (T -936))
+((-2481 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-936)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-936)))) (-1997 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1071)) (-5 *1 (-936)))))
+(-13 (-593 (-834)) (-10 -8 (-15 -2481 ((-1143) $)) (-15 -4161 ((-1071) $)) (-15 -1997 ($ (-1143) (-1071)))))
+((-3834 (((-112) $ $) NIL)) (-2272 (((-1069 (-1143)) $) 19)) (-1945 (((-112) $) 26)) (-3011 (((-1143) $) 27)) (-3468 (((-112) $) 24)) (-2802 ((|#1| $) 25)) (-4089 (((-844 $ $) $) 34)) (-2729 (((-112) $) 33)) (-4207 (($ $ $) 12)) (-3397 (($ $) 29)) (-3370 (((-112) $) 28)) (-4008 (($ $) 10)) (-3851 (((-1125) $) NIL)) (-1812 (((-844 $ $) $) 36)) (-2325 (((-112) $) 35)) (-2442 (($ $ $) 13)) (-3990 (((-1087) $) NIL)) (-3403 (((-844 $ $) $) 38)) (-3111 (((-112) $) 37)) (-1583 (($ $ $) 14)) (-3846 (((-834) $) 40) (($ |#1|) 7) (($ (-1143)) 9)) (-3608 (((-844 $ $) $) 32)) (-2650 (((-112) $) 30)) (-1821 (($ $ $) 11)) (-2389 (((-112) $ $) NIL)))
+(((-937 |#1|) (-13 (-938) (-10 -8 (-15 -3846 ($ |#1|)) (-15 -3846 ($ (-1143))) (-15 -2272 ((-1069 (-1143)) $)) (-15 -3468 ((-112) $)) (-15 -2802 (|#1| $)) (-15 -1945 ((-112) $)) (-15 -3011 ((-1143) $)) (-15 -3370 ((-112) $)) (-15 -3397 ($ $)) (-15 -2650 ((-112) $)) (-15 -3608 ((-844 $ $) $)) (-15 -2729 ((-112) $)) (-15 -4089 ((-844 $ $) $)) (-15 -2325 ((-112) $)) (-15 -1812 ((-844 $ $) $)) (-15 -3111 ((-112) $)) (-15 -3403 ((-844 $ $) $)))) (-938)) (T -937))
+((-3846 (*1 *1 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-1069 (-1143))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-2802 (*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-4089 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-2325 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(-13 (-938) (-10 -8 (-15 -3846 ($ |#1|)) (-15 -3846 ($ (-1143))) (-15 -2272 ((-1069 (-1143)) $)) (-15 -3468 ((-112) $)) (-15 -2802 (|#1| $)) (-15 -1945 ((-112) $)) (-15 -3011 ((-1143) $)) (-15 -3370 ((-112) $)) (-15 -3397 ($ $)) (-15 -2650 ((-112) $)) (-15 -3608 ((-844 $ $) $)) (-15 -2729 ((-112) $)) (-15 -4089 ((-844 $ $) $)) (-15 -2325 ((-112) $)) (-15 -1812 ((-844 $ $) $)) (-15 -3111 ((-112) $)) (-15 -3403 ((-844 $ $) $))))
+((-3834 (((-112) $ $) 7)) (-4207 (($ $ $) 15)) (-4008 (($ $) 17)) (-3851 (((-1125) $) 9)) (-2442 (($ $ $) 14)) (-3990 (((-1087) $) 10)) (-1583 (($ $ $) 13)) (-3846 (((-834) $) 11)) (-1821 (($ $ $) 16)) (-2389 (((-112) $ $) 6)))
+(((-938) (-138)) (T -938))
+((-4008 (*1 *1 *1) (-4 *1 (-938))) (-1821 (*1 *1 *1 *1) (-4 *1 (-938))) (-4207 (*1 *1 *1 *1) (-4 *1 (-938))) (-2442 (*1 *1 *1 *1) (-4 *1 (-938))) (-1583 (*1 *1 *1 *1) (-4 *1 (-938))))
+(-13 (-1067) (-10 -8 (-15 -4008 ($ $)) (-15 -1821 ($ $ $)) (-15 -4207 ($ $ $)) (-15 -2442 ($ $ $)) (-15 -1583 ($ $ $))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) 8)) (-1682 (($) 7 T CONST)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-1303 (($ $ $) 43)) (-3890 (($ $ $) 44)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-3575 ((|#1| $) 45)) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3504 ((|#1| $) 39)) (-2751 (($ |#1| $) 40)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3325 ((|#1| $) 41)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3624 (($ (-621 |#1|)) 42)) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-939 |#1|) (-138) (-823)) (T -939))
+((-3575 (*1 *2 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))) (-3890 (*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))) (-1303 (*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))))
+(-13 (-106 |t#1|) (-10 -8 (-6 -4337) (-15 -3575 (|t#1| $)) (-15 -3890 ($ $ $)) (-15 -1303 ($ $ $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-2885 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3727 |#2|)) |#2| |#2|) 85)) (-1910 ((|#2| |#2| |#2|) 83)) (-2499 (((-2 (|:| |coef2| |#2|) (|:| -3727 |#2|)) |#2| |#2|) 87)) (-2968 (((-2 (|:| |coef1| |#2|) (|:| -3727 |#2|)) |#2| |#2|) 89)) (-1674 (((-2 (|:| |coef2| |#2|) (|:| -2558 |#1|)) |#2| |#2|) 107 (|has| |#1| (-444)))) (-3229 (((-2 (|:| |coef2| |#2|) (|:| -1353 |#1|)) |#2| |#2|) 46)) (-3915 (((-2 (|:| |coef2| |#2|) (|:| -1353 |#1|)) |#2| |#2|) 64)) (-3797 (((-2 (|:| |coef1| |#2|) (|:| -1353 |#1|)) |#2| |#2|) 66)) (-4211 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3077 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 71)) (-2575 (((-2 (|:| |coef2| |#2|) (|:| -3602 |#1|)) |#2|) 97)) (-3138 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 74)) (-1296 (((-621 (-747)) |#2| |#2|) 82)) (-2371 ((|#1| |#2| |#2|) 42)) (-3143 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2558 |#1|)) |#2| |#2|) 105 (|has| |#1| (-444)))) (-2558 ((|#1| |#2| |#2|) 103 (|has| |#1| (-444)))) (-1399 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1353 |#1|)) |#2| |#2|) 44)) (-3704 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1353 |#1|)) |#2| |#2|) 63)) (-1353 ((|#1| |#2| |#2|) 61)) (-3921 (((-2 (|:| -1570 |#1|) (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2|) 35)) (-2952 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-2381 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3072 ((|#2| |#2| |#2|) 75)) (-2897 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 69)) (-2563 ((|#2| |#2| |#2| (-747)) 67)) (-3727 ((|#2| |#2| |#2|) 111 (|has| |#1| (-444)))) (-2042 (((-1226 |#2|) (-1226 |#2|) |#1|) 21)) (-3148 (((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2|) 39)) (-3470 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3602 |#1|)) |#2|) 95)) (-3602 ((|#1| |#2|) 92)) (-3459 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747)) 73)) (-3313 ((|#2| |#2| |#2| (-747)) 72)) (-2172 (((-621 |#2|) |#2| |#2|) 80)) (-3424 ((|#2| |#2| |#1| |#1| (-747)) 50)) (-1632 ((|#1| |#1| |#1| (-747)) 49)) (* (((-1226 |#2|) |#1| (-1226 |#2|)) 16)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -1353 (|#1| |#2| |#2|)) (-15 -3704 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1353 |#1|)) |#2| |#2|)) (-15 -3915 ((-2 (|:| |coef2| |#2|) (|:| -1353 |#1|)) |#2| |#2|)) (-15 -3797 ((-2 (|:| |coef1| |#2|) (|:| -1353 |#1|)) |#2| |#2|)) (-15 -2563 (|#2| |#2| |#2| (-747))) (-15 -2897 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3077 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3313 (|#2| |#2| |#2| (-747))) (-15 -3459 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3138 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3072 (|#2| |#2| |#2|)) (-15 -2381 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4211 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1910 (|#2| |#2| |#2|)) (-15 -2885 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3727 |#2|)) |#2| |#2|)) (-15 -2499 ((-2 (|:| |coef2| |#2|) (|:| -3727 |#2|)) |#2| |#2|)) (-15 -2968 ((-2 (|:| |coef1| |#2|) (|:| -3727 |#2|)) |#2| |#2|)) (-15 -3602 (|#1| |#2|)) (-15 -3470 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3602 |#1|)) |#2|)) (-15 -2575 ((-2 (|:| |coef2| |#2|) (|:| -3602 |#1|)) |#2|)) (-15 -2172 ((-621 |#2|) |#2| |#2|)) (-15 -1296 ((-621 (-747)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -2558 (|#1| |#2| |#2|)) (-15 -3143 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2558 |#1|)) |#2| |#2|)) (-15 -1674 ((-2 (|:| |coef2| |#2|) (|:| -2558 |#1|)) |#2| |#2|)) (-15 -3727 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1226 |#2|) |#1| (-1226 |#2|))) (-15 -2042 ((-1226 |#2|) (-1226 |#2|) |#1|)) (-15 -3921 ((-2 (|:| -1570 |#1|) (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2|)) (-15 -3148 ((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2|)) (-15 -1632 (|#1| |#1| |#1| (-747))) (-15 -3424 (|#2| |#2| |#1| |#1| (-747))) (-15 -2952 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2371 (|#1| |#2| |#2|)) (-15 -1399 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1353 |#1|)) |#2| |#2|)) (-15 -3229 ((-2 (|:| |coef2| |#2|) (|:| -1353 |#1|)) |#2| |#2|))) (-541) (-1202 |#1|)) (T -940))
+((-3229 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1353 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-1399 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1353 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-2371 (*1 *2 *3 *3) (-12 (-4 *2 (-541)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1202 *2)))) (-2952 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1202 *3)))) (-3424 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1202 *3)))) (-1632 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *2 (-541)) (-5 *1 (-940 *2 *4)) (-4 *4 (-1202 *2)))) (-3148 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-3921 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| -1570 *4) (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-2042 (*1 *2 *2 *3) (-12 (-5 *2 (-1226 *4)) (-4 *4 (-1202 *3)) (-4 *3 (-541)) (-5 *1 (-940 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1226 *4)) (-4 *4 (-1202 *3)) (-4 *3 (-541)) (-5 *1 (-940 *3 *4)))) (-3727 (*1 *2 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1202 *3)))) (-1674 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2558 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-3143 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2558 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-2558 (*1 *2 *3 *3) (-12 (-4 *2 (-541)) (-4 *2 (-444)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1202 *2)))) (-1296 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 (-747))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-2172 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 *3)) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-2575 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3602 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-3470 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3602 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-3602 (*1 *2 *3) (-12 (-4 *2 (-541)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1202 *2)))) (-2968 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3727 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-2499 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3727 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-2885 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3727 *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-1910 (*1 *2 *2 *2) (-12 (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1202 *3)))) (-4211 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-2381 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-3072 (*1 *2 *2 *2) (-12 (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1202 *3)))) (-3138 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1202 *5)))) (-3459 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1202 *5)))) (-3313 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-541)) (-5 *1 (-940 *4 *2)) (-4 *2 (-1202 *4)))) (-3077 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1202 *5)))) (-2897 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-940 *5 *3)) (-4 *3 (-1202 *5)))) (-2563 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-541)) (-5 *1 (-940 *4 *2)) (-4 *2 (-1202 *4)))) (-3797 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1353 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-3915 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1353 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-3704 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1353 *4))) (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))) (-1353 (*1 *2 *3 *3) (-12 (-4 *2 (-541)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1202 *2)))))
+(-10 -7 (-15 -1353 (|#1| |#2| |#2|)) (-15 -3704 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1353 |#1|)) |#2| |#2|)) (-15 -3915 ((-2 (|:| |coef2| |#2|) (|:| -1353 |#1|)) |#2| |#2|)) (-15 -3797 ((-2 (|:| |coef1| |#2|) (|:| -1353 |#1|)) |#2| |#2|)) (-15 -2563 (|#2| |#2| |#2| (-747))) (-15 -2897 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3077 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3313 (|#2| |#2| |#2| (-747))) (-15 -3459 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3138 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-747))) (-15 -3072 (|#2| |#2| |#2|)) (-15 -2381 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4211 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1910 (|#2| |#2| |#2|)) (-15 -2885 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3727 |#2|)) |#2| |#2|)) (-15 -2499 ((-2 (|:| |coef2| |#2|) (|:| -3727 |#2|)) |#2| |#2|)) (-15 -2968 ((-2 (|:| |coef1| |#2|) (|:| -3727 |#2|)) |#2| |#2|)) (-15 -3602 (|#1| |#2|)) (-15 -3470 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3602 |#1|)) |#2|)) (-15 -2575 ((-2 (|:| |coef2| |#2|) (|:| -3602 |#1|)) |#2|)) (-15 -2172 ((-621 |#2|) |#2| |#2|)) (-15 -1296 ((-621 (-747)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -2558 (|#1| |#2| |#2|)) (-15 -3143 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2558 |#1|)) |#2| |#2|)) (-15 -1674 ((-2 (|:| |coef2| |#2|) (|:| -2558 |#1|)) |#2| |#2|)) (-15 -3727 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1226 |#2|) |#1| (-1226 |#2|))) (-15 -2042 ((-1226 |#2|) (-1226 |#2|) |#1|)) (-15 -3921 ((-2 (|:| -1570 |#1|) (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2|)) (-15 -3148 ((-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) |#2| |#2|)) (-15 -1632 (|#1| |#1| |#1| (-747))) (-15 -3424 (|#2| |#2| |#1| |#1| (-747))) (-15 -2952 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2371 (|#1| |#2| |#2|)) (-15 -1399 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1353 |#1|)) |#2| |#2|)) (-15 -3229 ((-2 (|:| |coef2| |#2|) (|:| -1353 |#1|)) |#2| |#2|)))
+((-3834 (((-112) $ $) NIL)) (-2100 (((-1179) $) 12)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3955 (((-1148) $) 9)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-941) (-13 (-1050) (-10 -8 (-15 -3955 ((-1148) $)) (-15 -2100 ((-1179) $))))) (T -941))
+((-3955 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-941)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-941)))))
+(-13 (-1050) (-10 -8 (-15 -3955 ((-1148) $)) (-15 -2100 ((-1179) $))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) 27)) (-1682 (($) NIL T CONST)) (-4295 (((-621 (-621 (-549))) (-621 (-549))) 29)) (-4059 (((-549) $) 45)) (-3457 (($ (-621 (-549))) 17)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2845 (((-621 (-549)) $) 12)) (-1955 (($ $) 32)) (-3846 (((-834) $) 43) (((-621 (-549)) $) 10)) (-3276 (($) 7 T CONST)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 20)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 19)) (-2486 (($ $ $) 21)) (* (($ (-892) $) NIL) (($ (-747) $) 25)))
+(((-942) (-13 (-771) (-594 (-621 (-549))) (-10 -8 (-15 -3457 ($ (-621 (-549)))) (-15 -4295 ((-621 (-621 (-549))) (-621 (-549)))) (-15 -4059 ((-549) $)) (-15 -1955 ($ $)) (-15 -3846 ((-621 (-549)) $))))) (T -942))
+((-3457 (*1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-942)))) (-4295 (*1 *2 *3) (-12 (-5 *2 (-621 (-621 (-549)))) (-5 *1 (-942)) (-5 *3 (-621 (-549))))) (-4059 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-942)))) (-1955 (*1 *1 *1) (-5 *1 (-942))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-942)))))
+(-13 (-771) (-594 (-621 (-549))) (-10 -8 (-15 -3457 ($ (-621 (-549)))) (-15 -4295 ((-621 (-621 (-549))) (-621 (-549)))) (-15 -4059 ((-549) $)) (-15 -1955 ($ $)) (-15 -3846 ((-621 (-549)) $))))
+((-2513 (($ $ |#2|) 30)) (-2500 (($ $) 22) (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-400 (-549)) $) 26) (($ $ (-400 (-549))) 28)))
+(((-943 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -2513 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|))) (-944 |#2| |#3| |#4|) (-1018) (-768) (-823)) (T -943))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-400 (-549)))) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 -2513 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 * (|#1| (-892) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2272 (((-621 |#3|) $) 72)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2258 (($ $) 50 (|has| |#1| (-541)))) (-2799 (((-112) $) 52 (|has| |#1| (-541)))) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2070 (($ $) 58)) (-2114 (((-3 $ "failed") $) 32)) (-2871 (((-112) $) 71)) (-2675 (((-112) $) 30)) (-2205 (((-112) $) 60)) (-2246 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-621 |#3|) (-621 |#2|)) 73)) (-2797 (($ (-1 |#1| |#1|) $) 61)) (-2028 (($ $) 63)) (-2043 ((|#1| $) 64)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2042 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-3701 ((|#2| $) 62)) (-1977 (($ $) 70)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541))) (($ |#1|) 45 (|has| |#1| (-170)))) (-2152 ((|#1| $ |#2|) 57)) (-2210 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 51 (|has| |#1| (-541)))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+(((-944 |#1| |#2| |#3|) (-138) (-1018) (-768) (-823)) (T -944))
+((-2043 (*1 *2 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *3 (-768)) (-4 *4 (-823)) (-4 *2 (-1018)))) (-2028 (*1 *1 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *4 (-823)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *2 *4)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *2 (-768)))) (-2246 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-944 *4 *3 *2)) (-4 *4 (-1018)) (-4 *3 (-768)) (-4 *2 (-823)))) (-2246 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 *6)) (-5 *3 (-621 *5)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-768)) (-4 *6 (-823)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *5 (-823)) (-5 *2 (-621 *5)))) (-2871 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768)) (-4 *5 (-823)) (-5 *2 (-112)))) (-1977 (*1 *1 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768)) (-4 *4 (-823)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2246 ($ $ |t#3| |t#2|)) (-15 -2246 ($ $ (-621 |t#3|) (-621 |t#2|))) (-15 -2028 ($ $)) (-15 -2043 (|t#1| $)) (-15 -3701 (|t#2| $)) (-15 -2272 ((-621 |t#3|) $)) (-15 -2871 ((-112) $)) (-15 -1977 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-283) |has| |#1| (-541)) ((-541) |has| |#1| (-541)) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-1856 (((-1061 (-219)) $) 8)) (-1843 (((-1061 (-219)) $) 9)) (-1832 (((-1061 (-219)) $) 10)) (-3928 (((-621 (-621 (-914 (-219)))) $) 11)) (-3846 (((-834) $) 6)))
+(((-945) (-138)) (T -945))
+((-3928 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-621 (-621 (-914 (-219))))))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1061 (-219))))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1061 (-219))))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1061 (-219))))))
+(-13 (-593 (-834)) (-10 -8 (-15 -3928 ((-621 (-621 (-914 (-219)))) $)) (-15 -1832 ((-1061 (-219)) $)) (-15 -1843 ((-1061 (-219)) $)) (-15 -1856 ((-1061 (-219)) $))))
+(((-593 (-834)) . T))
+((-2272 (((-621 |#4|) $) 23)) (-3422 (((-112) $) 48)) (-2527 (((-112) $) 47)) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |#4|) 36)) (-1433 (((-112) $) 49)) (-2555 (((-112) $ $) 55)) (-2595 (((-112) $ $) 58)) (-2397 (((-112) $) 53)) (-3269 (((-621 |#5|) (-621 |#5|) $) 90)) (-2953 (((-621 |#5|) (-621 |#5|) $) 87)) (-3675 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2561 (((-621 |#4|) $) 27)) (-2378 (((-112) |#4| $) 30)) (-4203 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2858 (($ $ |#4|) 33)) (-3758 (($ $ |#4|) 32)) (-4317 (($ $ |#4|) 34)) (-2389 (((-112) $ $) 40)))
+(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2527 ((-112) |#1|)) (-15 -3269 ((-621 |#5|) (-621 |#5|) |#1|)) (-15 -2953 ((-621 |#5|) (-621 |#5|) |#1|)) (-15 -3675 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4203 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1433 ((-112) |#1|)) (-15 -2595 ((-112) |#1| |#1|)) (-15 -2555 ((-112) |#1| |#1|)) (-15 -2397 ((-112) |#1|)) (-15 -3422 ((-112) |#1|)) (-15 -3193 ((-2 (|:| |under| |#1|) (|:| -3967 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2858 (|#1| |#1| |#4|)) (-15 -4317 (|#1| |#1| |#4|)) (-15 -3758 (|#1| |#1| |#4|)) (-15 -2378 ((-112) |#4| |#1|)) (-15 -2561 ((-621 |#4|) |#1|)) (-15 -2272 ((-621 |#4|) |#1|)) (-15 -2389 ((-112) |#1| |#1|))) (-947 |#2| |#3| |#4| |#5|) (-1018) (-769) (-823) (-1032 |#2| |#3| |#4|)) (T -946))
+NIL
+(-10 -8 (-15 -2527 ((-112) |#1|)) (-15 -3269 ((-621 |#5|) (-621 |#5|) |#1|)) (-15 -2953 ((-621 |#5|) (-621 |#5|) |#1|)) (-15 -3675 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4203 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1433 ((-112) |#1|)) (-15 -2595 ((-112) |#1| |#1|)) (-15 -2555 ((-112) |#1| |#1|)) (-15 -2397 ((-112) |#1|)) (-15 -3422 ((-112) |#1|)) (-15 -3193 ((-2 (|:| |under| |#1|) (|:| -3967 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2858 (|#1| |#1| |#4|)) (-15 -4317 (|#1| |#1| |#4|)) (-15 -3758 (|#1| |#1| |#4|)) (-15 -2378 ((-112) |#4| |#1|)) (-15 -2561 ((-621 |#4|) |#1|)) (-15 -2272 ((-621 |#4|) |#1|)) (-15 -2389 ((-112) |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-2272 (((-621 |#3|) $) 33)) (-3422 (((-112) $) 26)) (-2527 (((-112) $) 17 (|has| |#1| (-541)))) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |#3|) 27)) (-1584 (((-112) $ (-747)) 44)) (-1489 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4337)))) (-1682 (($) 45 T CONST)) (-1433 (((-112) $) 22 (|has| |#1| (-541)))) (-2555 (((-112) $ $) 24 (|has| |#1| (-541)))) (-2595 (((-112) $ $) 23 (|has| |#1| (-541)))) (-2397 (((-112) $) 25 (|has| |#1| (-541)))) (-3269 (((-621 |#4|) (-621 |#4|) $) 18 (|has| |#1| (-541)))) (-2953 (((-621 |#4|) (-621 |#4|) $) 19 (|has| |#1| (-541)))) (-2714 (((-3 $ "failed") (-621 |#4|)) 36)) (-2659 (($ (-621 |#4|)) 35)) (-3676 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4337)))) (-3675 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-541)))) (-2557 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4337))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4337)))) (-2989 (((-621 |#4|) $) 52 (|has| $ (-6 -4337)))) (-2745 ((|#3| $) 34)) (-3194 (((-112) $ (-747)) 43)) (-1562 (((-621 |#4|) $) 53 (|has| $ (-6 -4337)))) (-2090 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#4| |#4|) $) 47)) (-2561 (((-621 |#3|) $) 32)) (-2378 (((-112) |#3| $) 31)) (-1508 (((-112) $ (-747)) 42)) (-3851 (((-1125) $) 9)) (-4203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-541)))) (-3990 (((-1087) $) 10)) (-3779 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1780 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#4|) (-621 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-621 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-4144 (((-112) $ $) 38)) (-3670 (((-112) $) 41)) (-3742 (($) 40)) (-4000 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4337)))) (-2281 (($ $) 39)) (-2845 (((-525) $) 69 (|has| |#4| (-594 (-525))))) (-3854 (($ (-621 |#4|)) 60)) (-2858 (($ $ |#3|) 28)) (-3758 (($ $ |#3|) 30)) (-4317 (($ $ |#3|) 29)) (-3846 (((-834) $) 11) (((-621 |#4|) $) 37)) (-3527 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 6)) (-3775 (((-747) $) 46 (|has| $ (-6 -4337)))))
+(((-947 |#1| |#2| |#3| |#4|) (-138) (-1018) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -947))
+((-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6)))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-1032 *3 *4 *2)) (-4 *2 (-823)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *5)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *5)))) (-2378 (*1 *2 *3 *1) (-12 (-4 *1 (-947 *4 *5 *3 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112)))) (-3758 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))) (-4317 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))) (-2858 (*1 *1 *1 *2) (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))) (-3193 (*1 *2 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3967 *1) (|:| |upper| *1))) (-4 *1 (-947 *4 *5 *3 *6)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-5 *2 (-112)))) (-2555 (*1 *2 *1 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-5 *2 (-112)))) (-2595 (*1 *2 *1 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-5 *2 (-112)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-5 *2 (-112)))) (-4203 (*1 *2 *3 *1) (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3675 (*1 *2 *3 *1) (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2953 (*1 *2 *2 *1) (-12 (-5 *2 (-621 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)))) (-3269 (*1 *2 *2 *1) (-12 (-5 *2 (-621 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-5 *2 (-112)))))
+(-13 (-1067) (-149 |t#4|) (-593 (-621 |t#4|)) (-10 -8 (-6 -4337) (-15 -2714 ((-3 $ "failed") (-621 |t#4|))) (-15 -2659 ($ (-621 |t#4|))) (-15 -2745 (|t#3| $)) (-15 -2272 ((-621 |t#3|) $)) (-15 -2561 ((-621 |t#3|) $)) (-15 -2378 ((-112) |t#3| $)) (-15 -3758 ($ $ |t#3|)) (-15 -4317 ($ $ |t#3|)) (-15 -2858 ($ $ |t#3|)) (-15 -3193 ((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |t#3|)) (-15 -3422 ((-112) $)) (IF (|has| |t#1| (-541)) (PROGN (-15 -2397 ((-112) $)) (-15 -2555 ((-112) $ $)) (-15 -2595 ((-112) $ $)) (-15 -1433 ((-112) $)) (-15 -4203 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3675 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2953 ((-621 |t#4|) (-621 |t#4|) $)) (-15 -3269 ((-621 |t#4|) (-621 |t#4|) $)) (-15 -2527 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-101) . T) ((-593 (-621 |#4|)) . T) ((-593 (-834)) . T) ((-149 |#4|) . T) ((-594 (-525)) |has| |#4| (-594 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-1067) . T) ((-1180) . T))
+((-2135 (((-621 |#4|) |#4| |#4|) 118)) (-2032 (((-621 |#4|) (-621 |#4|) (-112)) 107 (|has| |#1| (-444))) (((-621 |#4|) (-621 |#4|)) 108 (|has| |#1| (-444)))) (-1867 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|)) 35)) (-3241 (((-112) |#4|) 34)) (-2881 (((-621 |#4|) |#4|) 103 (|has| |#1| (-444)))) (-3476 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-1 (-112) |#4|) (-621 |#4|)) 20)) (-4159 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 (-1 (-112) |#4|)) (-621 |#4|)) 22)) (-1753 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 (-1 (-112) |#4|)) (-621 |#4|)) 23)) (-2951 (((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|)) 73)) (-3924 (((-621 |#4|) (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2628 (((-621 |#4|) (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3843 (((-621 |#4|) (-621 |#4|)) 110)) (-1807 (((-621 |#4|) (-621 |#4|) (-621 |#4|) (-112)) 48) (((-621 |#4|) (-621 |#4|) (-621 |#4|)) 50)) (-2052 ((|#4| |#4| (-621 |#4|)) 49)) (-2005 (((-621 |#4|) (-621 |#4|) (-621 |#4|)) 114 (|has| |#1| (-444)))) (-1696 (((-621 |#4|) (-621 |#4|) (-621 |#4|)) 117 (|has| |#1| (-444)))) (-3349 (((-621 |#4|) (-621 |#4|) (-621 |#4|)) 116 (|has| |#1| (-444)))) (-1559 (((-621 |#4|) (-621 |#4|) (-621 |#4|) (-1 (-621 |#4|) (-621 |#4|))) 87) (((-621 |#4|) (-621 |#4|) (-621 |#4|)) 89) (((-621 |#4|) (-621 |#4|) |#4|) 121) (((-621 |#4|) |#4| |#4|) 119) (((-621 |#4|) (-621 |#4|)) 88)) (-1313 (((-621 |#4|) (-621 |#4|) (-621 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-1926 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|)) 41)) (-3352 (((-112) (-621 |#4|)) 62)) (-3092 (((-112) (-621 |#4|) (-621 (-621 |#4|))) 53)) (-4014 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|)) 29)) (-2604 (((-112) |#4|) 28)) (-2387 (((-621 |#4|) (-621 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-2814 (((-621 |#4|) (-621 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-2359 (((-621 |#4|) (-621 |#4|)) 66)) (-1554 (((-621 |#4|) (-621 |#4|)) 79)) (-2253 (((-112) (-621 |#4|) (-621 |#4|)) 51)) (-3221 (((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|)) 39)) (-2542 (((-112) |#4|) 36)))
+(((-948 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1559 ((-621 |#4|) (-621 |#4|))) (-15 -1559 ((-621 |#4|) |#4| |#4|)) (-15 -3843 ((-621 |#4|) (-621 |#4|))) (-15 -2135 ((-621 |#4|) |#4| |#4|)) (-15 -1559 ((-621 |#4|) (-621 |#4|) |#4|)) (-15 -1559 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -1559 ((-621 |#4|) (-621 |#4|) (-621 |#4|) (-1 (-621 |#4|) (-621 |#4|)))) (-15 -2253 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3092 ((-112) (-621 |#4|) (-621 (-621 |#4|)))) (-15 -3352 ((-112) (-621 |#4|))) (-15 -3476 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-1 (-112) |#4|) (-621 |#4|))) (-15 -4159 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 (-1 (-112) |#4|)) (-621 |#4|))) (-15 -1753 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 (-1 (-112) |#4|)) (-621 |#4|))) (-15 -1926 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -3241 ((-112) |#4|)) (-15 -1867 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -2604 ((-112) |#4|)) (-15 -4014 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -2542 ((-112) |#4|)) (-15 -3221 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -1807 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -1807 ((-621 |#4|) (-621 |#4|) (-621 |#4|) (-112))) (-15 -2052 (|#4| |#4| (-621 |#4|))) (-15 -2359 ((-621 |#4|) (-621 |#4|))) (-15 -2951 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|))) (-15 -1554 ((-621 |#4|) (-621 |#4|))) (-15 -3924 ((-621 |#4|) (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2628 ((-621 |#4|) (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -2881 ((-621 |#4|) |#4|)) (-15 -2032 ((-621 |#4|) (-621 |#4|))) (-15 -2032 ((-621 |#4|) (-621 |#4|) (-112))) (-15 -2005 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -3349 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -1696 ((-621 |#4|) (-621 |#4|) (-621 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -2814 ((-621 |#4|) (-621 |#4|))) (-15 -2387 ((-621 |#4|) (-621 |#4|))) (-15 -1313 ((-621 |#4|) (-621 |#4|) (-621 |#4|)))) |%noBranch|) |%noBranch|)) (-541) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -948))
+((-1313 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-2387 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-2814 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-1696 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3349 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-2005 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-2032 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))) (-2032 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-2881 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-2628 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-621 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-948 *5 *6 *7 *8)))) (-3924 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-621 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-541)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *1 (-948 *6 *7 *8 *9)))) (-1554 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-2951 (*1 *2 *3) (|partial| -12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -2317 (-621 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-2359 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-2052 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *2)))) (-1807 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))) (-1807 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-3221 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-4014 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-2604 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-1867 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-3241 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-1926 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7)))) (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))) (-1753 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |goodPols| (-621 *8)) (|:| |badPols| (-621 *8)))) (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-621 *8)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |goodPols| (-621 *8)) (|:| |badPols| (-621 *8)))) (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-621 *8)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |goodPols| (-621 *8)) (|:| |badPols| (-621 *8)))) (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-621 *8)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *7)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-621 *8))) (-5 *3 (-621 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *5 *6 *7 *8)))) (-2253 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *4 *5 *6 *7)))) (-1559 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-621 *7) (-621 *7))) (-5 *2 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))) (-1559 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-1559 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *3)))) (-2135 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))) (-1559 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))) (-1559 (*1 *2 *2) (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1559 ((-621 |#4|) (-621 |#4|))) (-15 -1559 ((-621 |#4|) |#4| |#4|)) (-15 -3843 ((-621 |#4|) (-621 |#4|))) (-15 -2135 ((-621 |#4|) |#4| |#4|)) (-15 -1559 ((-621 |#4|) (-621 |#4|) |#4|)) (-15 -1559 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -1559 ((-621 |#4|) (-621 |#4|) (-621 |#4|) (-1 (-621 |#4|) (-621 |#4|)))) (-15 -2253 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3092 ((-112) (-621 |#4|) (-621 (-621 |#4|)))) (-15 -3352 ((-112) (-621 |#4|))) (-15 -3476 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-1 (-112) |#4|) (-621 |#4|))) (-15 -4159 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 (-1 (-112) |#4|)) (-621 |#4|))) (-15 -1753 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 (-1 (-112) |#4|)) (-621 |#4|))) (-15 -1926 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -3241 ((-112) |#4|)) (-15 -1867 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -2604 ((-112) |#4|)) (-15 -4014 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -2542 ((-112) |#4|)) (-15 -3221 ((-2 (|:| |goodPols| (-621 |#4|)) (|:| |badPols| (-621 |#4|))) (-621 |#4|))) (-15 -1807 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -1807 ((-621 |#4|) (-621 |#4|) (-621 |#4|) (-112))) (-15 -2052 (|#4| |#4| (-621 |#4|))) (-15 -2359 ((-621 |#4|) (-621 |#4|))) (-15 -2951 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|))) (-15 -1554 ((-621 |#4|) (-621 |#4|))) (-15 -3924 ((-621 |#4|) (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2628 ((-621 |#4|) (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -2881 ((-621 |#4|) |#4|)) (-15 -2032 ((-621 |#4|) (-621 |#4|))) (-15 -2032 ((-621 |#4|) (-621 |#4|) (-112))) (-15 -2005 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -3349 ((-621 |#4|) (-621 |#4|) (-621 |#4|))) (-15 -1696 ((-621 |#4|) (-621 |#4|) (-621 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -2814 ((-621 |#4|) (-621 |#4|))) (-15 -2387 ((-621 |#4|) (-621 |#4|))) (-15 -1313 ((-621 |#4|) (-621 |#4|) (-621 |#4|)))) |%noBranch|) |%noBranch|))
+((-2519 (((-2 (|:| R (-665 |#1|)) (|:| A (-665 |#1|)) (|:| |Ainv| (-665 |#1|))) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-3502 (((-621 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1226 |#1|)))) (-665 |#1|) (-1226 |#1|)) 36)) (-4216 (((-665 |#1|) (-665 |#1|) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16)))
+(((-949 |#1|) (-10 -7 (-15 -2519 ((-2 (|:| R (-665 |#1|)) (|:| A (-665 |#1|)) (|:| |Ainv| (-665 |#1|))) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -4216 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3502 ((-621 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1226 |#1|)))) (-665 |#1|) (-1226 |#1|)))) (-356)) (T -949))
+((-3502 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-621 (-2 (|:| C (-665 *5)) (|:| |g| (-1226 *5))))) (-5 *1 (-949 *5)) (-5 *3 (-665 *5)) (-5 *4 (-1226 *5)))) (-4216 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-665 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-949 *5)))) (-2519 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) (-5 *2 (-2 (|:| R (-665 *6)) (|:| A (-665 *6)) (|:| |Ainv| (-665 *6)))) (-5 *1 (-949 *6)) (-5 *3 (-665 *6)))))
+(-10 -7 (-15 -2519 ((-2 (|:| R (-665 |#1|)) (|:| A (-665 |#1|)) (|:| |Ainv| (-665 |#1|))) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -4216 ((-665 |#1|) (-665 |#1|) (-665 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3502 ((-621 (-2 (|:| C (-665 |#1|)) (|:| |g| (-1226 |#1|)))) (-665 |#1|) (-1226 |#1|))))
+((-2402 (((-411 |#4|) |#4|) 48)))
+(((-950 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2402 ((-411 |#4|) |#4|))) (-823) (-769) (-444) (-920 |#3| |#2| |#1|)) (T -950))
+((-2402 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-444)) (-5 *2 (-411 *3)) (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-920 *6 *5 *4)))))
+(-10 -7 (-15 -2402 ((-411 |#4|) |#4|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3769 (($ (-747)) 112 (|has| |#1| (-23)))) (-1535 (((-1231) $ (-549) (-549)) 40 (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-4311 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4338))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4338))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1584 (((-112) $ (-747)) 8)) (-2254 ((|#1| $ (-549) |#1|) 52 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) 58 (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-1585 (($ $) 90 (|has| $ (-6 -4338)))) (-3064 (($ $) 100)) (-3676 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) 51)) (-2883 (((-549) (-1 (-112) |#1|) $) 97) (((-549) |#1| $) 96 (|has| |#1| (-1067))) (((-549) |#1| $ (-549)) 95 (|has| |#1| (-1067)))) (-2798 (($ (-621 |#1|)) 118)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-4050 (((-665 |#1|) $ $) 105 (|has| |#1| (-1018)))) (-3743 (($ (-747) |#1|) 69)) (-3194 (((-112) $ (-747)) 9)) (-4031 (((-549) $) 43 (|has| (-549) (-823)))) (-2863 (($ $ $) 87 (|has| |#1| (-823)))) (-3890 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 44 (|has| (-549) (-823)))) (-3575 (($ $ $) 86 (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3359 ((|#1| $) 102 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-1508 (((-112) $ (-747)) 10)) (-4210 ((|#1| $) 103 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-2616 (($ |#1| $ (-549)) 60) (($ $ $ (-549)) 59)) (-3303 (((-621 (-549)) $) 46)) (-3761 (((-112) (-549) $) 47)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3646 ((|#1| $) 42 (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-1642 (($ $ |#1|) 41 (|has| $ (-6 -4338)))) (-2763 (($ $ (-621 |#1|)) 115)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) 48)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ (-549) |#1|) 50) ((|#1| $ (-549)) 49) (($ $ (-1193 (-549))) 63)) (-1706 ((|#1| $ $) 106 (|has| |#1| (-1018)))) (-2985 (((-892) $) 117)) (-2167 (($ $ (-549)) 62) (($ $ (-1193 (-549))) 61)) (-2168 (($ $ $) 104)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2730 (($ $ $ (-549)) 91 (|has| $ (-6 -4338)))) (-2281 (($ $) 13)) (-2845 (((-525) $) 79 (|has| |#1| (-594 (-525)))) (($ (-621 |#1|)) 116)) (-3854 (($ (-621 |#1|)) 70)) (-1952 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 83 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-2438 (((-112) $ $) 85 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 82 (|has| |#1| (-823)))) (-2500 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2486 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-549) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-703))) (($ $ |#1|) 107 (|has| |#1| (-703)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-951 |#1|) (-138) (-1018)) (T -951))
+((-2798 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1018)) (-5 *2 (-892)))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3)))) (-2168 (*1 *1 *1 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1018)))) (-2763 (*1 *1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *1 (-951 *3)) (-4 *3 (-1018)))))
+(-13 (-1224 |t#1|) (-10 -8 (-15 -2798 ($ (-621 |t#1|))) (-15 -2985 ((-892) $)) (-15 -2845 ($ (-621 |t#1|))) (-15 -2168 ($ $ $)) (-15 -2763 ($ $ (-621 |t#1|)))))
+(((-34) . T) ((-101) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-19 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1067) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1180) . T) ((-1224 |#1|) . T))
+((-2797 (((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|)) 17)))
+(((-952 |#1| |#2|) (-10 -7 (-15 -2797 ((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|)))) (-1018) (-1018)) (T -952))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-914 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-914 *6)) (-5 *1 (-952 *5 *6)))))
+(-10 -7 (-15 -2797 ((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|))))
+((-1965 ((|#1| (-914 |#1|)) 13)) (-1484 ((|#1| (-914 |#1|)) 12)) (-1891 ((|#1| (-914 |#1|)) 11)) (-2334 ((|#1| (-914 |#1|)) 15)) (-3032 ((|#1| (-914 |#1|)) 21)) (-2383 ((|#1| (-914 |#1|)) 14)) (-1402 ((|#1| (-914 |#1|)) 16)) (-1886 ((|#1| (-914 |#1|)) 20)) (-3288 ((|#1| (-914 |#1|)) 19)))
+(((-953 |#1|) (-10 -7 (-15 -1891 (|#1| (-914 |#1|))) (-15 -1484 (|#1| (-914 |#1|))) (-15 -1965 (|#1| (-914 |#1|))) (-15 -2383 (|#1| (-914 |#1|))) (-15 -2334 (|#1| (-914 |#1|))) (-15 -1402 (|#1| (-914 |#1|))) (-15 -3288 (|#1| (-914 |#1|))) (-15 -1886 (|#1| (-914 |#1|))) (-15 -3032 (|#1| (-914 |#1|)))) (-1018)) (T -953))
+((-3032 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(-10 -7 (-15 -1891 (|#1| (-914 |#1|))) (-15 -1484 (|#1| (-914 |#1|))) (-15 -1965 (|#1| (-914 |#1|))) (-15 -2383 (|#1| (-914 |#1|))) (-15 -2334 (|#1| (-914 |#1|))) (-15 -1402 (|#1| (-914 |#1|))) (-15 -3288 (|#1| (-914 |#1|))) (-15 -1886 (|#1| (-914 |#1|))) (-15 -3032 (|#1| (-914 |#1|))))
+((-1263 (((-3 |#1| "failed") |#1|) 18)) (-3164 (((-3 |#1| "failed") |#1|) 6)) (-2278 (((-3 |#1| "failed") |#1|) 16)) (-3310 (((-3 |#1| "failed") |#1|) 4)) (-2685 (((-3 |#1| "failed") |#1|) 20)) (-2141 (((-3 |#1| "failed") |#1|) 8)) (-2022 (((-3 |#1| "failed") |#1| (-747)) 1)) (-3284 (((-3 |#1| "failed") |#1|) 3)) (-1556 (((-3 |#1| "failed") |#1|) 2)) (-2426 (((-3 |#1| "failed") |#1|) 21)) (-2639 (((-3 |#1| "failed") |#1|) 9)) (-1736 (((-3 |#1| "failed") |#1|) 19)) (-2252 (((-3 |#1| "failed") |#1|) 7)) (-4178 (((-3 |#1| "failed") |#1|) 17)) (-3311 (((-3 |#1| "failed") |#1|) 5)) (-3696 (((-3 |#1| "failed") |#1|) 24)) (-1871 (((-3 |#1| "failed") |#1|) 12)) (-2540 (((-3 |#1| "failed") |#1|) 22)) (-1781 (((-3 |#1| "failed") |#1|) 10)) (-1528 (((-3 |#1| "failed") |#1|) 26)) (-2273 (((-3 |#1| "failed") |#1|) 14)) (-2376 (((-3 |#1| "failed") |#1|) 27)) (-4219 (((-3 |#1| "failed") |#1|) 15)) (-3943 (((-3 |#1| "failed") |#1|) 25)) (-3069 (((-3 |#1| "failed") |#1|) 13)) (-2767 (((-3 |#1| "failed") |#1|) 23)) (-1598 (((-3 |#1| "failed") |#1|) 11)))
+(((-954 |#1|) (-138) (-1165)) (T -954))
+((-2376 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-1528 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-3943 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-3696 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-2767 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-2540 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-2426 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-2685 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-1736 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-1263 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-4178 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-2278 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-4219 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-2273 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-3069 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-1871 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-1598 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-1781 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-2639 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-2141 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-2252 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-3164 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-3311 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-3310 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-3284 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-1556 (*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))) (-2022 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-747)) (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(-13 (-10 -7 (-15 -2022 ((-3 |t#1| "failed") |t#1| (-747))) (-15 -1556 ((-3 |t#1| "failed") |t#1|)) (-15 -3284 ((-3 |t#1| "failed") |t#1|)) (-15 -3310 ((-3 |t#1| "failed") |t#1|)) (-15 -3311 ((-3 |t#1| "failed") |t#1|)) (-15 -3164 ((-3 |t#1| "failed") |t#1|)) (-15 -2252 ((-3 |t#1| "failed") |t#1|)) (-15 -2141 ((-3 |t#1| "failed") |t#1|)) (-15 -2639 ((-3 |t#1| "failed") |t#1|)) (-15 -1781 ((-3 |t#1| "failed") |t#1|)) (-15 -1598 ((-3 |t#1| "failed") |t#1|)) (-15 -1871 ((-3 |t#1| "failed") |t#1|)) (-15 -3069 ((-3 |t#1| "failed") |t#1|)) (-15 -2273 ((-3 |t#1| "failed") |t#1|)) (-15 -4219 ((-3 |t#1| "failed") |t#1|)) (-15 -2278 ((-3 |t#1| "failed") |t#1|)) (-15 -4178 ((-3 |t#1| "failed") |t#1|)) (-15 -1263 ((-3 |t#1| "failed") |t#1|)) (-15 -1736 ((-3 |t#1| "failed") |t#1|)) (-15 -2685 ((-3 |t#1| "failed") |t#1|)) (-15 -2426 ((-3 |t#1| "failed") |t#1|)) (-15 -2540 ((-3 |t#1| "failed") |t#1|)) (-15 -2767 ((-3 |t#1| "failed") |t#1|)) (-15 -3696 ((-3 |t#1| "failed") |t#1|)) (-15 -3943 ((-3 |t#1| "failed") |t#1|)) (-15 -1528 ((-3 |t#1| "failed") |t#1|)) (-15 -2376 ((-3 |t#1| "failed") |t#1|))))
+((-1825 ((|#4| |#4| (-621 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1361 ((|#4| |#4| (-621 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2797 ((|#4| (-1 |#4| (-923 |#1|)) |#4|) 30)))
+(((-955 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1361 (|#4| |#4| |#3|)) (-15 -1361 (|#4| |#4| (-621 |#3|))) (-15 -1825 (|#4| |#4| |#3|)) (-15 -1825 (|#4| |#4| (-621 |#3|))) (-15 -2797 (|#4| (-1 |#4| (-923 |#1|)) |#4|))) (-1018) (-769) (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $)) (-15 -3011 ((-3 $ "failed") (-1143))))) (-920 (-923 |#1|) |#2| |#3|)) (T -955))
+((-2797 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-923 *4))) (-4 *4 (-1018)) (-4 *2 (-920 (-923 *4) *5 *6)) (-4 *5 (-769)) (-4 *6 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $)) (-15 -3011 ((-3 $ "failed") (-1143)))))) (-5 *1 (-955 *4 *5 *6 *2)))) (-1825 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *6)) (-4 *6 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $)) (-15 -3011 ((-3 $ "failed") (-1143)))))) (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2)) (-4 *2 (-920 (-923 *4) *5 *6)))) (-1825 (*1 *2 *2 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $)) (-15 -3011 ((-3 $ "failed") (-1143)))))) (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-920 (-923 *4) *5 *3)))) (-1361 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *6)) (-4 *6 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $)) (-15 -3011 ((-3 $ "failed") (-1143)))))) (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2)) (-4 *2 (-920 (-923 *4) *5 *6)))) (-1361 (*1 *2 *2 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $)) (-15 -3011 ((-3 $ "failed") (-1143)))))) (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-920 (-923 *4) *5 *3)))))
+(-10 -7 (-15 -1361 (|#4| |#4| |#3|)) (-15 -1361 (|#4| |#4| (-621 |#3|))) (-15 -1825 (|#4| |#4| |#3|)) (-15 -1825 (|#4| |#4| (-621 |#3|))) (-15 -2797 (|#4| (-1 |#4| (-923 |#1|)) |#4|)))
+((-3996 ((|#2| |#3|) 35)) (-1784 (((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|) 73)) (-1613 (((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) 89)))
+(((-956 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1613 ((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -1784 ((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|)) (-15 -3996 (|#2| |#3|))) (-342) (-1202 |#1|) (-1202 |#2|) (-701 |#2| |#3|)) (T -956))
+((-3996 (*1 *2 *3) (-12 (-4 *3 (-1202 *2)) (-4 *2 (-1202 *4)) (-5 *1 (-956 *4 *2 *3 *5)) (-4 *4 (-342)) (-4 *5 (-701 *2 *3)))) (-1784 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *3 (-1202 *4)) (-4 *5 (-1202 *3)) (-5 *2 (-2 (|:| -1949 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-956 *4 *3 *5 *6)) (-4 *6 (-701 *3 *5)))) (-1613 (*1 *2) (-12 (-4 *3 (-342)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 *4)) (-5 *2 (-2 (|:| -1949 (-665 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-665 *4)))) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-701 *4 *5)))))
+(-10 -7 (-15 -1613 ((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -1784 ((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|)) (-15 -3996 (|#2| |#3|)))
+((-2299 (((-958 (-400 (-549)) (-836 |#1|) (-234 |#2| (-747)) (-241 |#1| (-400 (-549)))) (-958 (-400 (-549)) (-836 |#1|) (-234 |#2| (-747)) (-241 |#1| (-400 (-549))))) 69)))
+(((-957 |#1| |#2|) (-10 -7 (-15 -2299 ((-958 (-400 (-549)) (-836 |#1|) (-234 |#2| (-747)) (-241 |#1| (-400 (-549)))) (-958 (-400 (-549)) (-836 |#1|) (-234 |#2| (-747)) (-241 |#1| (-400 (-549))))))) (-621 (-1143)) (-747)) (T -957))
+((-2299 (*1 *2 *2) (-12 (-5 *2 (-958 (-400 (-549)) (-836 *3) (-234 *4 (-747)) (-241 *3 (-400 (-549))))) (-14 *3 (-621 (-1143))) (-14 *4 (-747)) (-5 *1 (-957 *3 *4)))))
+(-10 -7 (-15 -2299 ((-958 (-400 (-549)) (-836 |#1|) (-234 |#2| (-747)) (-241 |#1| (-400 (-549)))) (-958 (-400 (-549)) (-836 |#1|) (-234 |#2| (-747)) (-241 |#1| (-400 (-549)))))))
+((-3834 (((-112) $ $) NIL)) (-1464 (((-3 (-112) "failed") $) 69)) (-4038 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-2274 (($ $ (-3 (-112) "failed")) 70)) (-3885 (($ (-621 |#4|) |#4|) 25)) (-3851 (((-1125) $) NIL)) (-3249 (($ $) 67)) (-3990 (((-1087) $) NIL)) (-3670 (((-112) $) 68)) (-3742 (($) 30)) (-1530 ((|#4| $) 72)) (-2837 (((-621 |#4|) $) 71)) (-3846 (((-834) $) 66)) (-2389 (((-112) $ $) NIL)))
+(((-958 |#1| |#2| |#3| |#4|) (-13 (-1067) (-593 (-834)) (-10 -8 (-15 -3742 ($)) (-15 -3885 ($ (-621 |#4|) |#4|)) (-15 -1464 ((-3 (-112) "failed") $)) (-15 -2274 ($ $ (-3 (-112) "failed"))) (-15 -3670 ((-112) $)) (-15 -2837 ((-621 |#4|) $)) (-15 -1530 (|#4| $)) (-15 -3249 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -4038 ($ $)) |%noBranch|) |%noBranch|))) (-444) (-823) (-769) (-920 |#1| |#3| |#2|)) (T -958))
+((-3742 (*1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-958 *2 *3 *4 *5)) (-4 *5 (-920 *2 *4 *3)))) (-3885 (*1 *1 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-920 *4 *6 *5)) (-4 *4 (-444)) (-4 *5 (-823)) (-4 *6 (-769)) (-5 *1 (-958 *4 *5 *6 *3)))) (-1464 (*1 *2 *1) (|partial| -12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4)))) (-2274 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4)))) (-3670 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112)) (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4)))) (-2837 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-621 *6)) (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4)))) (-1530 (*1 *2 *1) (-12 (-4 *2 (-920 *3 *5 *4)) (-5 *1 (-958 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)))) (-3249 (*1 *1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-958 *2 *3 *4 *5)) (-4 *5 (-920 *2 *4 *3)))) (-4038 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769)) (-5 *1 (-958 *2 *3 *4 *5)) (-4 *5 (-920 *2 *4 *3)))))
+(-13 (-1067) (-593 (-834)) (-10 -8 (-15 -3742 ($)) (-15 -3885 ($ (-621 |#4|) |#4|)) (-15 -1464 ((-3 (-112) "failed") $)) (-15 -2274 ($ $ (-3 (-112) "failed"))) (-15 -3670 ((-112) $)) (-15 -2837 ((-621 |#4|) $)) (-15 -1530 (|#4| $)) (-15 -3249 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -4038 ($ $)) |%noBranch|) |%noBranch|)))
+((-1897 (((-112) |#5| |#5|) 38)) (-2954 (((-112) |#5| |#5|) 52)) (-3417 (((-112) |#5| (-621 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3503 (((-112) (-621 |#4|) (-621 |#4|)) 58)) (-1346 (((-112) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) 63)) (-1663 (((-1231)) 33)) (-4164 (((-1231) (-1125) (-1125) (-1125)) 29)) (-1382 (((-621 |#5|) (-621 |#5|)) 81)) (-4118 (((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)))) 79)) (-3954 (((-621 (-2 (|:| -2652 (-621 |#4|)) (|:| -1981 |#5|) (|:| |ineq| (-621 |#4|)))) (-621 |#4|) (-621 |#5|) (-112) (-112)) 101)) (-4282 (((-112) |#5| |#5|) 47)) (-3597 (((-3 (-112) "failed") |#5| |#5|) 71)) (-4083 (((-112) (-621 |#4|) (-621 |#4|)) 57)) (-2457 (((-112) (-621 |#4|) (-621 |#4|)) 59)) (-2473 (((-112) (-621 |#4|) (-621 |#4|)) 60)) (-3751 (((-3 (-2 (|:| -2652 (-621 |#4|)) (|:| -1981 |#5|) (|:| |ineq| (-621 |#4|))) "failed") (-621 |#4|) |#5| (-621 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-2587 (((-621 |#5|) (-621 |#5|)) 43)))
+(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4164 ((-1231) (-1125) (-1125) (-1125))) (-15 -1663 ((-1231))) (-15 -1897 ((-112) |#5| |#5|)) (-15 -2587 ((-621 |#5|) (-621 |#5|))) (-15 -4282 ((-112) |#5| |#5|)) (-15 -2954 ((-112) |#5| |#5|)) (-15 -3503 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -4083 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -2457 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -2473 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3597 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3417 ((-112) |#5| |#5|)) (-15 -3417 ((-112) |#5| (-621 |#5|))) (-15 -1382 ((-621 |#5|) (-621 |#5|))) (-15 -1346 ((-112) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)))) (-15 -4118 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) (-15 -3954 ((-621 (-2 (|:| -2652 (-621 |#4|)) (|:| -1981 |#5|) (|:| |ineq| (-621 |#4|)))) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -3751 ((-3 (-2 (|:| -2652 (-621 |#4|)) (|:| -1981 |#5|) (|:| |ineq| (-621 |#4|))) "failed") (-621 |#4|) |#5| (-621 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -959))
+((-3751 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| -2652 (-621 *9)) (|:| -1981 *4) (|:| |ineq| (-621 *9)))) (-5 *1 (-959 *6 *7 *8 *9 *4)) (-5 *3 (-621 *9)) (-4 *4 (-1038 *6 *7 *8 *9)))) (-3954 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-621 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-621 (-2 (|:| -2652 (-621 *9)) (|:| -1981 *10) (|:| |ineq| (-621 *9))))) (-5 *1 (-959 *6 *7 *8 *9 *10)) (-5 *3 (-621 *9)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-621 (-2 (|:| |val| (-621 *6)) (|:| -1981 *7)))) (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) (-1346 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1981 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-959 *5 *6 *7 *8 *3)))) (-3417 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3597 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-2473 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-2457 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-4083 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3503 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-2954 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-4282 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-2587 (*1 *2 *2) (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-959 *3 *4 *5 *6 *7)))) (-1897 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-1663 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1231)) (-5 *1 (-959 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-4164 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1125)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1231)) (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4164 ((-1231) (-1125) (-1125) (-1125))) (-15 -1663 ((-1231))) (-15 -1897 ((-112) |#5| |#5|)) (-15 -2587 ((-621 |#5|) (-621 |#5|))) (-15 -4282 ((-112) |#5| |#5|)) (-15 -2954 ((-112) |#5| |#5|)) (-15 -3503 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -4083 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -2457 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -2473 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3597 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3417 ((-112) |#5| |#5|)) (-15 -3417 ((-112) |#5| (-621 |#5|))) (-15 -1382 ((-621 |#5|) (-621 |#5|))) (-15 -1346 ((-112) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)))) (-15 -4118 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) (-15 -3954 ((-621 (-2 (|:| -2652 (-621 |#4|)) (|:| -1981 |#5|) (|:| |ineq| (-621 |#4|)))) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -3751 ((-3 (-2 (|:| -2652 (-621 |#4|)) (|:| -1981 |#5|) (|:| |ineq| (-621 |#4|))) "failed") (-621 |#4|) |#5| (-621 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-3011 (((-1143) $) 15)) (-4161 (((-1125) $) 16)) (-2391 (($ (-1143) (-1125)) 14)) (-3846 (((-834) $) 13)))
+(((-960) (-13 (-593 (-834)) (-10 -8 (-15 -2391 ($ (-1143) (-1125))) (-15 -3011 ((-1143) $)) (-15 -4161 ((-1125) $))))) (T -960))
+((-2391 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1125)) (-5 *1 (-960)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-960)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-960)))))
+(-13 (-593 (-834)) (-10 -8 (-15 -2391 ($ (-1143) (-1125))) (-15 -3011 ((-1143) $)) (-15 -4161 ((-1125) $))))
+((-2797 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-961 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2797 (|#4| (-1 |#2| |#1|) |#3|))) (-541) (-541) (-963 |#1|) (-963 |#2|)) (T -961))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-541)) (-4 *6 (-541)) (-4 *2 (-963 *6)) (-5 *1 (-961 *5 *6 *4 *2)) (-4 *4 (-963 *5)))))
+(-10 -7 (-15 -2797 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2714 (((-3 |#2| "failed") $) NIL) (((-3 (-1143) "failed") $) 65) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 (-549) "failed") $) 95)) (-2659 ((|#2| $) NIL) (((-1143) $) 60) (((-400 (-549)) $) NIL) (((-549) $) 92)) (-3879 (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) 112) (((-665 |#2|) (-665 $)) 28)) (-3239 (($) 98)) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 75) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 84)) (-1726 (($ $) 10)) (-1681 (((-3 $ "failed") $) 20)) (-2797 (($ (-1 |#2| |#2|) $) 22)) (-3060 (($) 16)) (-2873 (($ $) 54)) (-3456 (($ $) NIL) (($ $ (-747)) NIL) (($ $ (-1143)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3939 (($ $) 12)) (-2845 (((-863 (-549)) $) 70) (((-863 (-372)) $) 79) (((-525) $) 40) (((-372) $) 44) (((-219) $) 47)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) 90) (($ |#2|) NIL) (($ (-1143)) 57)) (-2082 (((-747)) 31)) (-2412 (((-112) $ $) 50)))
+(((-962 |#1| |#2|) (-10 -8 (-15 -2412 ((-112) |#1| |#1|)) (-15 -3060 (|#1|)) (-15 -1681 ((-3 |#1| "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2845 ((-219) |#1|)) (-15 -2845 ((-372) |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -2659 ((-1143) |#1|)) (-15 -2714 ((-3 (-1143) "failed") |#1|)) (-15 -3846 (|#1| (-1143))) (-15 -3239 (|#1|)) (-15 -2873 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -1726 (|#1| |#1|)) (-15 -2932 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -2932 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2845 ((-863 (-372)) |#1|)) (-15 -2845 ((-863 (-549)) |#1|)) (-15 -3879 ((-665 |#2|) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-665 (-549)) (-665 |#1|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 (|#1| |#1|)) (-15 -3846 (|#1| (-549))) (-15 -2082 ((-747))) (-15 -3846 ((-834) |#1|))) (-963 |#2|) (-541)) (T -962))
+((-2082 (*1 *2) (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-962 *3 *4)) (-4 *3 (-963 *4)))))
+(-10 -8 (-15 -2412 ((-112) |#1| |#1|)) (-15 -3060 (|#1|)) (-15 -1681 ((-3 |#1| "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2845 ((-219) |#1|)) (-15 -2845 ((-372) |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -2659 ((-1143) |#1|)) (-15 -2714 ((-3 (-1143) "failed") |#1|)) (-15 -3846 (|#1| (-1143))) (-15 -3239 (|#1|)) (-15 -2873 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -1726 (|#1| |#1|)) (-15 -2932 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -2932 ((-860 (-549) |#1|) |#1| (-863 (-549)) (-860 (-549) |#1|))) (-15 -2845 ((-863 (-372)) |#1|)) (-15 -2845 ((-863 (-549)) |#1|)) (-15 -3879 ((-665 |#2|) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-665 (-549)) (-665 |#1|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 (|#1| |#1|)) (-15 -3846 (|#1| (-549))) (-15 -2082 ((-747))) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-3329 ((|#1| $) 136 (|has| |#1| (-300)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-3231 (((-411 (-1139 $)) (-1139 $)) 127 (|has| |#1| (-880)))) (-3979 (($ $) 70)) (-2402 (((-411 $) $) 69)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 130 (|has| |#1| (-880)))) (-3866 (((-112) $ $) 57)) (-1872 (((-549) $) 117 (|has| |#1| (-796)))) (-1682 (($) 17 T CONST)) (-2714 (((-3 |#1| "failed") $) 175) (((-3 (-1143) "failed") $) 125 (|has| |#1| (-1009 (-1143)))) (((-3 (-400 (-549)) "failed") $) 109 (|has| |#1| (-1009 (-549)))) (((-3 (-549) "failed") $) 107 (|has| |#1| (-1009 (-549))))) (-2659 ((|#1| $) 174) (((-1143) $) 124 (|has| |#1| (-1009 (-1143)))) (((-400 (-549)) $) 108 (|has| |#1| (-1009 (-549)))) (((-549) $) 106 (|has| |#1| (-1009 (-549))))) (-2095 (($ $ $) 53)) (-3879 (((-665 (-549)) (-665 $)) 149 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 148 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 147) (((-665 |#1|) (-665 $)) 146)) (-2114 (((-3 $ "failed") $) 32)) (-3239 (($) 134 (|has| |#1| (-534)))) (-2067 (($ $ $) 54)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-1420 (((-112) $) 68)) (-2772 (((-112) $) 119 (|has| |#1| (-796)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 143 (|has| |#1| (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 142 (|has| |#1| (-857 (-372))))) (-2675 (((-112) $) 30)) (-1726 (($ $) 138)) (-1394 ((|#1| $) 140)) (-1681 (((-3 $ "failed") $) 105 (|has| |#1| (-1118)))) (-2374 (((-112) $) 118 (|has| |#1| (-796)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-2863 (($ $ $) 115 (|has| |#1| (-823)))) (-3575 (($ $ $) 114 (|has| |#1| (-823)))) (-2797 (($ (-1 |#1| |#1|) $) 166)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 67)) (-3060 (($) 104 (|has| |#1| (-1118)) CONST)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2873 (($ $) 135 (|has| |#1| (-300)))) (-3967 ((|#1| $) 132 (|has| |#1| (-534)))) (-2905 (((-411 (-1139 $)) (-1139 $)) 129 (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) 128 (|has| |#1| (-880)))) (-2121 (((-411 $) $) 71)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-2686 (($ $ (-621 |#1|) (-621 |#1|)) 172 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 170 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) 169 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1143)) (-621 |#1|)) 168 (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-1143) |#1|) 167 (|has| |#1| (-505 (-1143) |#1|)))) (-3684 (((-747) $) 56)) (-3341 (($ $ |#1|) 173 (|has| |#1| (-279 |#1| |#1|)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55)) (-3456 (($ $) 165 (|has| |#1| (-227))) (($ $ (-747)) 163 (|has| |#1| (-227))) (($ $ (-1143)) 161 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) 160 (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) 159 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) 158 (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-3939 (($ $) 137)) (-1403 ((|#1| $) 139)) (-2845 (((-863 (-549)) $) 145 (|has| |#1| (-594 (-863 (-549))))) (((-863 (-372)) $) 144 (|has| |#1| (-594 (-863 (-372))))) (((-525) $) 122 (|has| |#1| (-594 (-525)))) (((-372) $) 121 (|has| |#1| (-993))) (((-219) $) 120 (|has| |#1| (-993)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 131 (-1821 (|has| $ (-143)) (|has| |#1| (-880))))) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63) (($ |#1|) 178) (($ (-1143)) 126 (|has| |#1| (-1009 (-1143))))) (-2210 (((-3 $ "failed") $) 123 (-1536 (|has| |#1| (-143)) (-1821 (|has| $ (-143)) (|has| |#1| (-880)))))) (-2082 (((-747)) 28)) (-2546 ((|#1| $) 133 (|has| |#1| (-534)))) (-1498 (((-112) $ $) 37)) (-3212 (($ $) 116 (|has| |#1| (-796)))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $) 164 (|has| |#1| (-227))) (($ $ (-747)) 162 (|has| |#1| (-227))) (($ $ (-1143)) 157 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) 156 (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) 155 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) 154 (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2448 (((-112) $ $) 112 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 111 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 113 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 110 (|has| |#1| (-823)))) (-2513 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176)))
+(((-963 |#1|) (-138) (-541)) (T -963))
+((-2513 (*1 *1 *2 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))) (-1403 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))) (-1726 (*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))) (-3939 (*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-300)))) (-2873 (*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-300)))) (-3239 (*1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-534)) (-4 *2 (-541)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-534)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-534)))))
+(-13 (-356) (-38 |t#1|) (-1009 |t#1|) (-331 |t#1|) (-225 |t#1|) (-370 |t#1|) (-855 |t#1|) (-393 |t#1|) (-10 -8 (-15 -2513 ($ |t#1| |t#1|)) (-15 -1394 (|t#1| $)) (-15 -1403 (|t#1| $)) (-15 -1726 ($ $)) (-15 -3939 ($ $)) (IF (|has| |t#1| (-1118)) (-6 (-1118)) |%noBranch|) (IF (|has| |t#1| (-1009 (-549))) (PROGN (-6 (-1009 (-549))) (-6 (-1009 (-400 (-549))))) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-796)) (-6 (-796)) |%noBranch|) (IF (|has| |t#1| (-993)) (-6 (-993)) |%noBranch|) (IF (|has| |t#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1009 (-1143))) (-6 (-1009 (-1143))) |%noBranch|) (IF (|has| |t#1| (-300)) (PROGN (-15 -3329 (|t#1| $)) (-15 -2873 ($ $))) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3239 ($)) (-15 -2546 (|t#1| $)) (-15 -3967 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-880)) (-6 (-880)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) . T) ((-594 (-219)) |has| |#1| (-993)) ((-594 (-372)) |has| |#1| (-993)) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-594 (-863 (-372))) |has| |#1| (-594 (-863 (-372)))) ((-594 (-863 (-549))) |has| |#1| (-594 (-863 (-549)))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) . T) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) . T) ((-300) . T) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-444) . T) ((-505 (-1143) |#1|) |has| |#1| (-505 (-1143) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-541) . T) ((-624 #0#) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) . T) ((-694 |#1|) . T) ((-694 $) . T) ((-703) . T) ((-767) |has| |#1| (-796)) ((-768) |has| |#1| (-796)) ((-770) |has| |#1| (-796)) ((-771) |has| |#1| (-796)) ((-796) |has| |#1| (-796)) ((-821) |has| |#1| (-796)) ((-823) -1536 (|has| |#1| (-823)) (|has| |#1| (-796))) ((-871 (-1143)) |has| |#1| (-871 (-1143))) ((-857 (-372)) |has| |#1| (-857 (-372))) ((-857 (-549)) |has| |#1| (-857 (-549))) ((-855 |#1|) . T) ((-880) |has| |#1| (-880)) ((-891) . T) ((-993) |has| |#1| (-993)) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-549))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 (-1143)) |has| |#1| (-1009 (-1143))) ((-1009 |#1|) . T) ((-1024 #0#) . T) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1118) |has| |#1| (-1118)) ((-1180) . T) ((-1184) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-1790 (($ (-1109 |#1| |#2|)) 11)) (-3946 (((-1109 |#1| |#2|) $) 12)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3341 ((|#2| $ (-234 |#1| |#2|)) 16)) (-3846 (((-834) $) NIL)) (-3276 (($) NIL T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL)))
+(((-964 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1790 ($ (-1109 |#1| |#2|))) (-15 -3946 ((-1109 |#1| |#2|) $)) (-15 -3341 (|#2| $ (-234 |#1| |#2|))))) (-892) (-356)) (T -964))
+((-1790 (*1 *1 *2) (-12 (-5 *2 (-1109 *3 *4)) (-14 *3 (-892)) (-4 *4 (-356)) (-5 *1 (-964 *3 *4)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1109 *3 *4)) (-5 *1 (-964 *3 *4)) (-14 *3 (-892)) (-4 *4 (-356)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-234 *4 *2)) (-14 *4 (-892)) (-4 *2 (-356)) (-5 *1 (-964 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -1790 ($ (-1109 |#1| |#2|))) (-15 -3946 ((-1109 |#1| |#2|) $)) (-15 -3341 (|#2| $ (-234 |#1| |#2|)))))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3955 (((-1148) $) 9)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-965) (-13 (-1050) (-10 -8 (-15 -3955 ((-1148) $))))) (T -965))
+((-3955 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-965)))))
+(-13 (-1050) (-10 -8 (-15 -3955 ((-1148) $))))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) 8)) (-1682 (($) 7 T CONST)) (-4194 (($ $) 46)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-4210 (((-747) $) 45)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3504 ((|#1| $) 39)) (-2751 (($ |#1| $) 40)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-1409 ((|#1| $) 44)) (-3325 ((|#1| $) 41)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-2502 ((|#1| |#1| $) 48)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3912 ((|#1| $) 47)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3624 (($ (-621 |#1|)) 42)) (-1410 ((|#1| $) 43)) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-966 |#1|) (-138) (-1180)) (T -966))
+((-2502 (*1 *2 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1180)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1180)))) (-4194 (*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1180)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-1180)) (-5 *2 (-747)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1180)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1180)))))
+(-13 (-106 |t#1|) (-10 -8 (-6 -4337) (-15 -2502 (|t#1| |t#1| $)) (-15 -3912 (|t#1| $)) (-15 -4194 ($ $)) (-15 -4210 ((-747) $)) (-15 -1409 (|t#1| $)) (-15 -1410 (|t#1| $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-1763 (((-112) $) 42)) (-2714 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2659 (((-549) $) NIL) (((-400 (-549)) $) NIL) ((|#2| $) 43)) (-3405 (((-3 (-400 (-549)) "failed") $) 78)) (-3679 (((-112) $) 72)) (-2532 (((-400 (-549)) $) 76)) (-2675 (((-112) $) 41)) (-3630 ((|#2| $) 22)) (-2797 (($ (-1 |#2| |#2|) $) 19)) (-1992 (($ $) 61)) (-3456 (($ $) NIL) (($ $ (-747)) NIL) (($ $ (-1143)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2845 (((-525) $) 67)) (-1955 (($ $) 17)) (-3846 (((-834) $) 56) (($ (-549)) 38) (($ |#2|) 36) (($ (-400 (-549))) NIL)) (-2082 (((-747)) 10)) (-3212 ((|#2| $) 71)) (-2389 (((-112) $ $) 25)) (-2412 (((-112) $ $) 69)) (-2500 (($ $) 29) (($ $ $) 28)) (-2486 (($ $ $) 26)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL)))
+(((-967 |#1| |#2|) (-10 -8 (-15 -3846 (|#1| (-400 (-549)))) (-15 -2412 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 * (|#1| |#1| (-400 (-549)))) (-15 -1992 (|#1| |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -3405 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2532 ((-400 (-549)) |#1|)) (-15 -3679 ((-112) |#1|)) (-15 -3212 (|#2| |#1|)) (-15 -3630 (|#2| |#1|)) (-15 -1955 (|#1| |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -3846 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3846 (|#1| (-549))) (-15 -2082 ((-747))) (-15 -2675 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -1763 ((-112) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -2486 (|#1| |#1| |#1|)) (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|))) (-968 |#2|) (-170)) (T -967))
+((-2082 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-967 *3 *4)) (-4 *3 (-968 *4)))))
+(-10 -8 (-15 -3846 (|#1| (-400 (-549)))) (-15 -2412 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-549)) |#1|)) (-15 * (|#1| |#1| (-400 (-549)))) (-15 -1992 (|#1| |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -3405 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2532 ((-400 (-549)) |#1|)) (-15 -3679 ((-112) |#1|)) (-15 -3212 (|#2| |#1|)) (-15 -3630 (|#2| |#1|)) (-15 -1955 (|#1| |#1|)) (-15 -2797 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -3846 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3846 (|#1| (-549))) (-15 -2082 ((-747))) (-15 -2675 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 * (|#1| (-747) |#1|)) (-15 -1763 ((-112) |#1|)) (-15 * (|#1| (-892) |#1|)) (-15 -2486 (|#1| |#1| |#1|)) (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2714 (((-3 (-549) "failed") $) 116 (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 114 (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) 113)) (-2659 (((-549) $) 117 (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) 115 (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) 112)) (-3879 (((-665 (-549)) (-665 $)) 87 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 86 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 85) (((-665 |#1|) (-665 $)) 84)) (-2114 (((-3 $ "failed") $) 32)) (-2145 ((|#1| $) 77)) (-3405 (((-3 (-400 (-549)) "failed") $) 73 (|has| |#1| (-534)))) (-3679 (((-112) $) 75 (|has| |#1| (-534)))) (-2532 (((-400 (-549)) $) 74 (|has| |#1| (-534)))) (-3162 (($ |#1| |#1| |#1| |#1|) 78)) (-2675 (((-112) $) 30)) (-3630 ((|#1| $) 79)) (-2863 (($ $ $) 66 (|has| |#1| (-823)))) (-3575 (($ $ $) 65 (|has| |#1| (-823)))) (-2797 (($ (-1 |#1| |#1|) $) 88)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 70 (|has| |#1| (-356)))) (-2318 ((|#1| $) 80)) (-2697 ((|#1| $) 81)) (-2194 ((|#1| $) 82)) (-3990 (((-1087) $) 10)) (-2686 (($ $ (-621 |#1|) (-621 |#1|)) 94 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) 92 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) 91 (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1143)) (-621 |#1|)) 90 (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-1143) |#1|) 89 (|has| |#1| (-505 (-1143) |#1|)))) (-3341 (($ $ |#1|) 95 (|has| |#1| (-279 |#1| |#1|)))) (-3456 (($ $) 111 (|has| |#1| (-227))) (($ $ (-747)) 109 (|has| |#1| (-227))) (($ $ (-1143)) 107 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) 106 (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) 105 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) 104 (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-2845 (((-525) $) 71 (|has| |#1| (-594 (-525))))) (-1955 (($ $) 83)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 35) (($ (-400 (-549))) 60 (-1536 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-549))))))) (-2210 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-2082 (((-747)) 28)) (-3212 ((|#1| $) 76 (|has| |#1| (-1027)))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $) 110 (|has| |#1| (-227))) (($ $ (-747)) 108 (|has| |#1| (-227))) (($ $ (-1143)) 103 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) 102 (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) 101 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) 100 (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2448 (((-112) $ $) 63 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 62 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 64 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 61 (|has| |#1| (-823)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 69 (|has| |#1| (-356)))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-400 (-549))) 68 (|has| |#1| (-356))) (($ (-400 (-549)) $) 67 (|has| |#1| (-356)))))
+(((-968 |#1|) (-138) (-170)) (T -968))
+((-1955 (*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-3162 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-2145 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)) (-4 *2 (-1027)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-968 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-549))))) (-3405 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-400 (-549))))))
+(-13 (-38 |t#1|) (-404 |t#1|) (-225 |t#1|) (-331 |t#1|) (-370 |t#1|) (-10 -8 (-15 -1955 ($ $)) (-15 -2194 (|t#1| $)) (-15 -2697 (|t#1| $)) (-15 -2318 (|t#1| $)) (-15 -3630 (|t#1| $)) (-15 -3162 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2145 (|t#1| $)) (IF (|has| |t#1| (-283)) (-6 (-283)) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1027)) (-15 -3212 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-534)) (PROGN (-15 -3679 ((-112) $)) (-15 -2532 ((-400 (-549)) $)) (-15 -3405 ((-3 (-400 (-549)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-356)) ((-38 |#1|) . T) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-356)) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) |has| |#1| (-356)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -1536 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-505 (-1143) |#1|) |has| |#1| (-505 (-1143) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-624 #0#) |has| |#1| (-356)) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) |has| |#1| (-356)) ((-694 |#1|) . T) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 (-1143)) |has| |#1| (-871 (-1143))) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1024 #0#) |has| |#1| (-356)) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-2797 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-969 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2797 (|#3| (-1 |#4| |#2|) |#1|))) (-968 |#2|) (-170) (-968 |#4|) (-170)) (T -969))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-968 *6)) (-5 *1 (-969 *4 *5 *2 *6)) (-4 *4 (-968 *5)))))
+(-10 -7 (-15 -2797 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2145 ((|#1| $) 12)) (-3405 (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-534)))) (-3679 (((-112) $) NIL (|has| |#1| (-534)))) (-2532 (((-400 (-549)) $) NIL (|has| |#1| (-534)))) (-3162 (($ |#1| |#1| |#1| |#1|) 16)) (-2675 (((-112) $) NIL)) (-3630 ((|#1| $) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL (|has| |#1| (-356)))) (-2318 ((|#1| $) 15)) (-2697 ((|#1| $) 14)) (-2194 ((|#1| $) 13)) (-3990 (((-1087) $) NIL)) (-2686 (($ $ (-621 |#1|) (-621 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-287 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-287 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-621 (-1143)) (-621 |#1|)) NIL (|has| |#1| (-505 (-1143) |#1|))) (($ $ (-1143) |#1|) NIL (|has| |#1| (-505 (-1143) |#1|)))) (-3341 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-3456 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2845 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-1955 (($ $) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-549))))))) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-3212 ((|#1| $) NIL (|has| |#1| (-1027)))) (-3276 (($) 8 T CONST)) (-3287 (($) 10 T CONST)) (-1702 (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-356))) (($ (-400 (-549)) $) NIL (|has| |#1| (-356)))))
+(((-970 |#1|) (-968 |#1|) (-170)) (T -970))
+NIL
+(-968 |#1|)
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1584 (((-112) $ (-747)) NIL)) (-1682 (($) NIL T CONST)) (-4194 (($ $) 20)) (-2808 (($ (-621 |#1|)) 29)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-4210 (((-747) $) 22)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3504 ((|#1| $) 24)) (-2751 (($ |#1| $) 15)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1409 ((|#1| $) 23)) (-3325 ((|#1| $) 19)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2502 ((|#1| |#1| $) 14)) (-3670 (((-112) $) 17)) (-3742 (($) NIL)) (-3912 ((|#1| $) 18)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3624 (($ (-621 |#1|)) NIL)) (-1410 ((|#1| $) 26)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-971 |#1|) (-13 (-966 |#1|) (-10 -8 (-15 -2808 ($ (-621 |#1|))))) (-1067)) (T -971))
+((-2808 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-971 *3)))))
+(-13 (-966 |#1|) (-10 -8 (-15 -2808 ($ (-621 |#1|)))))
+((-2134 (($ $) 12)) (-4187 (($ $ (-549)) 13)))
+(((-972 |#1|) (-10 -8 (-15 -2134 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-549)))) (-973)) (T -972))
+NIL
+(-10 -8 (-15 -2134 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-549))))
+((-2134 (($ $) 6)) (-4187 (($ $ (-549)) 7)) (** (($ $ (-400 (-549))) 8)))
+(((-973) (-138)) (T -973))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-400 (-549))))) (-4187 (*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-549)))) (-2134 (*1 *1 *1) (-4 *1 (-973))))
+(-13 (-10 -8 (-15 -2134 ($ $)) (-15 -4187 ($ $ (-549))) (-15 ** ($ $ (-400 (-549))))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2724 (((-2 (|:| |num| (-1226 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-2258 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2799 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-1738 (((-665 (-400 |#2|)) (-1226 $)) NIL) (((-665 (-400 |#2|))) NIL)) (-2906 (((-400 |#2|) $) NIL)) (-3062 (((-1153 (-892) (-747)) (-549)) NIL (|has| (-400 |#2|) (-342)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2402 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3866 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3614 (((-747)) NIL (|has| (-400 |#2|) (-361)))) (-1279 (((-112)) NIL)) (-1388 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (|has| (-400 |#2|) (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-400 |#2|) (-1009 (-400 (-549))))) (((-3 (-400 |#2|) "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| (-400 |#2|) (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| (-400 |#2|) (-1009 (-400 (-549))))) (((-400 |#2|) $) NIL)) (-3492 (($ (-1226 (-400 |#2|)) (-1226 $)) NIL) (($ (-1226 (-400 |#2|))) 70) (($ (-1226 |#2|) |#2|) NIL)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-342)))) (-2095 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3506 (((-665 (-400 |#2|)) $ (-1226 $)) NIL) (((-665 (-400 |#2|)) $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| (-400 |#2|) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| (-400 |#2|) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-400 |#2|))) (|:| |vec| (-1226 (-400 |#2|)))) (-665 $) (-1226 $)) NIL) (((-665 (-400 |#2|)) (-665 $)) NIL)) (-2263 (((-1226 $) (-1226 $)) NIL)) (-2557 (($ |#3|) 65) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-2114 (((-3 $ "failed") $) NIL)) (-3690 (((-621 (-621 |#1|))) NIL (|has| |#1| (-361)))) (-3465 (((-112) |#1| |#1|) NIL)) (-3123 (((-892)) NIL)) (-3239 (($) NIL (|has| (-400 |#2|) (-361)))) (-3031 (((-112)) NIL)) (-2941 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-2067 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| (-400 |#2|) (-356)))) (-1285 (($ $) NIL)) (-2405 (($) NIL (|has| (-400 |#2|) (-342)))) (-2288 (((-112) $) NIL (|has| (-400 |#2|) (-342)))) (-3165 (($ $ (-747)) NIL (|has| (-400 |#2|) (-342))) (($ $) NIL (|has| (-400 |#2|) (-342)))) (-1420 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-2088 (((-892) $) NIL (|has| (-400 |#2|) (-342))) (((-809 (-892)) $) NIL (|has| (-400 |#2|) (-342)))) (-2675 (((-112) $) NIL)) (-2609 (((-747)) NIL)) (-2453 (((-1226 $) (-1226 $)) NIL)) (-3630 (((-400 |#2|) $) NIL)) (-1672 (((-621 (-923 |#1|)) (-1143)) NIL (|has| |#1| (-356)))) (-1681 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-342)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3788 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-1881 (((-892) $) NIL (|has| (-400 |#2|) (-361)))) (-2548 ((|#3| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3851 (((-1125) $) NIL)) (-2768 (((-665 (-400 |#2|))) 52)) (-1948 (((-665 (-400 |#2|))) 51)) (-1992 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3569 (($ (-1226 |#2|) |#2|) 71)) (-2955 (((-665 (-400 |#2|))) 50)) (-1519 (((-665 (-400 |#2|))) 49)) (-3621 (((-2 (|:| |num| (-665 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3581 (((-2 (|:| |num| (-1226 |#2|)) (|:| |den| |#2|)) $) 77)) (-3852 (((-1226 $)) 46)) (-1613 (((-1226 $)) 45)) (-2128 (((-112) $) NIL)) (-3710 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3060 (($) NIL (|has| (-400 |#2|) (-342)) CONST)) (-3493 (($ (-892)) NIL (|has| (-400 |#2|) (-361)))) (-1314 (((-3 |#2| "failed")) 63)) (-3990 (((-1087) $) NIL)) (-2118 (((-747)) NIL)) (-4248 (($) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| (-400 |#2|) (-356)))) (-3727 (($ (-621 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL (|has| (-400 |#2|) (-342)))) (-2121 (((-411 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-2042 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| (-400 |#2|) (-356)))) (-3684 (((-747) $) NIL (|has| (-400 |#2|) (-356)))) (-3341 ((|#1| $ |#1| |#1|) NIL)) (-1969 (((-3 |#2| "failed")) 62)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3602 (((-400 |#2|) (-1226 $)) NIL) (((-400 |#2|)) 42)) (-3914 (((-747) $) NIL (|has| (-400 |#2|) (-342))) (((-3 (-747) "failed") $ $) NIL (|has| (-400 |#2|) (-342)))) (-3456 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-747)) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2901 (((-665 (-400 |#2|)) (-1226 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-2815 ((|#3|) 53)) (-3170 (($) NIL (|has| (-400 |#2|) (-342)))) (-4263 (((-1226 (-400 |#2|)) $ (-1226 $)) NIL) (((-665 (-400 |#2|)) (-1226 $) (-1226 $)) NIL) (((-1226 (-400 |#2|)) $) 72) (((-665 (-400 |#2|)) (-1226 $)) NIL)) (-2845 (((-1226 (-400 |#2|)) $) NIL) (($ (-1226 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| (-400 |#2|) (-342)))) (-3339 (((-1226 $) (-1226 $)) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-549))) NIL (-1536 (|has| (-400 |#2|) (-1009 (-400 (-549)))) (|has| (-400 |#2|) (-356)))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2210 (($ $) NIL (|has| (-400 |#2|) (-342))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-4154 ((|#3| $) NIL)) (-2082 (((-747)) NIL)) (-3672 (((-112)) 60)) (-2330 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-1949 (((-1226 $)) 121)) (-1498 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-2033 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2810 (((-112)) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-747)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-871 (-1143))))) (($ $ (-747)) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342)))) (($ $) NIL (-1536 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-342))))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-549)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-549))) NIL (|has| (-400 |#2|) (-356)))))
+(((-974 |#1| |#2| |#3| |#4| |#5|) (-335 |#1| |#2| |#3|) (-1184) (-1202 |#1|) (-1202 (-400 |#2|)) (-400 |#2|) (-747)) (T -974))
+NIL
+(-335 |#1| |#2| |#3|)
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-4148 (((-621 (-549)) $) 54)) (-4056 (($ (-621 (-549))) 62)) (-3329 (((-549) $) 40 (|has| (-549) (-300)))) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL (|has| (-549) (-796)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) 49) (((-3 (-1143) "failed") $) NIL (|has| (-549) (-1009 (-1143)))) (((-3 (-400 (-549)) "failed") $) 47 (|has| (-549) (-1009 (-549)))) (((-3 (-549) "failed") $) 49 (|has| (-549) (-1009 (-549))))) (-2659 (((-549) $) NIL) (((-1143) $) NIL (|has| (-549) (-1009 (-1143)))) (((-400 (-549)) $) NIL (|has| (-549) (-1009 (-549)))) (((-549) $) NIL (|has| (-549) (-1009 (-549))))) (-2095 (($ $ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| (-549) (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL) (((-665 (-549)) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3239 (($) NIL (|has| (-549) (-534)))) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-1381 (((-621 (-549)) $) 60)) (-2772 (((-112) $) NIL (|has| (-549) (-796)))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (|has| (-549) (-857 (-549)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (|has| (-549) (-857 (-372))))) (-2675 (((-112) $) NIL)) (-1726 (($ $) NIL)) (-1394 (((-549) $) 37)) (-1681 (((-3 $ "failed") $) NIL (|has| (-549) (-1118)))) (-2374 (((-112) $) NIL (|has| (-549) (-796)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2863 (($ $ $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| (-549) (-823)))) (-2797 (($ (-1 (-549) (-549)) $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL)) (-3060 (($) NIL (|has| (-549) (-1118)) CONST)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-2873 (($ $) NIL (|has| (-549) (-300))) (((-400 (-549)) $) 42)) (-3880 (((-1123 (-549)) $) 59)) (-3721 (($ (-621 (-549)) (-621 (-549))) 63)) (-3967 (((-549) $) 53 (|has| (-549) (-534)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| (-549) (-880)))) (-2121 (((-411 $) $) NIL)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2686 (($ $ (-621 (-549)) (-621 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-302 (-549)))) (($ $ (-287 (-549))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-287 (-549)))) NIL (|has| (-549) (-302 (-549)))) (($ $ (-621 (-1143)) (-621 (-549))) NIL (|has| (-549) (-505 (-1143) (-549)))) (($ $ (-1143) (-549)) NIL (|has| (-549) (-505 (-1143) (-549))))) (-3684 (((-747) $) NIL)) (-3341 (($ $ (-549)) NIL (|has| (-549) (-279 (-549) (-549))))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3456 (($ $) 11 (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1143)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-3939 (($ $) NIL)) (-1403 (((-549) $) 39)) (-1419 (((-621 (-549)) $) 61)) (-2845 (((-863 (-549)) $) NIL (|has| (-549) (-594 (-863 (-549))))) (((-863 (-372)) $) NIL (|has| (-549) (-594 (-863 (-372))))) (((-525) $) NIL (|has| (-549) (-594 (-525)))) (((-372) $) NIL (|has| (-549) (-993))) (((-219) $) NIL (|has| (-549) (-993)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-549) (-880))))) (-3846 (((-834) $) 77) (($ (-549)) 43) (($ $) NIL) (($ (-400 (-549))) 20) (($ (-549)) 43) (($ (-1143)) NIL (|has| (-549) (-1009 (-1143)))) (((-400 (-549)) $) 18)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-549) (-880))) (|has| (-549) (-143))))) (-2082 (((-747)) 9)) (-2546 (((-549) $) 51 (|has| (-549) (-534)))) (-1498 (((-112) $ $) NIL)) (-3212 (($ $) NIL (|has| (-549) (-796)))) (-3276 (($) 10 T CONST)) (-3287 (($) 12 T CONST)) (-1702 (($ $) NIL (|has| (-549) (-227))) (($ $ (-747)) NIL (|has| (-549) (-227))) (($ $ (-1143)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| (-549) (-871 (-1143)))) (($ $ (-1 (-549) (-549)) (-747)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2448 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2425 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2389 (((-112) $ $) 14)) (-2438 (((-112) $ $) NIL (|has| (-549) (-823)))) (-2412 (((-112) $ $) 33 (|has| (-549) (-823)))) (-2513 (($ $ $) 29) (($ (-549) (-549)) 31)) (-2500 (($ $) 15) (($ $ $) 23)) (-2486 (($ $ $) 21)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 25) (($ $ $) 27) (($ $ (-400 (-549))) NIL) (($ (-400 (-549)) $) NIL) (($ (-549) $) 25) (($ $ (-549)) NIL)))
+(((-975 |#1|) (-13 (-963 (-549)) (-10 -8 (-15 -3846 ((-400 (-549)) $)) (-15 -2873 ((-400 (-549)) $)) (-15 -4148 ((-621 (-549)) $)) (-15 -3880 ((-1123 (-549)) $)) (-15 -1381 ((-621 (-549)) $)) (-15 -1419 ((-621 (-549)) $)) (-15 -4056 ($ (-621 (-549)))) (-15 -3721 ($ (-621 (-549)) (-621 (-549)))))) (-549)) (T -975))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-1123 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))) (-3721 (*1 *1 *2 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
+(-13 (-963 (-549)) (-10 -8 (-15 -3846 ((-400 (-549)) $)) (-15 -2873 ((-400 (-549)) $)) (-15 -4148 ((-621 (-549)) $)) (-15 -3880 ((-1123 (-549)) $)) (-15 -1381 ((-621 (-549)) $)) (-15 -1419 ((-621 (-549)) $)) (-15 -4056 ($ (-621 (-549)))) (-15 -3721 ($ (-621 (-549)) (-621 (-549))))))
+((-4259 (((-52) (-400 (-549)) (-549)) 9)))
+(((-976) (-10 -7 (-15 -4259 ((-52) (-400 (-549)) (-549))))) (T -976))
+((-4259 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-549))) (-5 *4 (-549)) (-5 *2 (-52)) (-5 *1 (-976)))))
+(-10 -7 (-15 -4259 ((-52) (-400 (-549)) (-549))))
+((-3614 (((-549)) 13)) (-3889 (((-549)) 16)) (-2439 (((-1231) (-549)) 15)) (-4173 (((-549) (-549)) 17) (((-549)) 12)))
+(((-977) (-10 -7 (-15 -4173 ((-549))) (-15 -3614 ((-549))) (-15 -4173 ((-549) (-549))) (-15 -2439 ((-1231) (-549))) (-15 -3889 ((-549))))) (T -977))
+((-3889 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-977)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977)))) (-3614 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977)))) (-4173 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977)))))
+(-10 -7 (-15 -4173 ((-549))) (-15 -3614 ((-549))) (-15 -4173 ((-549) (-549))) (-15 -2439 ((-1231) (-549))) (-15 -3889 ((-549))))
+((-2131 (((-411 |#1|) |#1|) 41)) (-2121 (((-411 |#1|) |#1|) 40)))
+(((-978 |#1|) (-10 -7 (-15 -2121 ((-411 |#1|) |#1|)) (-15 -2131 ((-411 |#1|) |#1|))) (-1202 (-400 (-549)))) (T -978))
+((-2131 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1202 (-400 (-549)))))) (-2121 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1202 (-400 (-549)))))))
+(-10 -7 (-15 -2121 ((-411 |#1|) |#1|)) (-15 -2131 ((-411 |#1|) |#1|)))
+((-3405 (((-3 (-400 (-549)) "failed") |#1|) 15)) (-3679 (((-112) |#1|) 14)) (-2532 (((-400 (-549)) |#1|) 10)))
+(((-979 |#1|) (-10 -7 (-15 -2532 ((-400 (-549)) |#1|)) (-15 -3679 ((-112) |#1|)) (-15 -3405 ((-3 (-400 (-549)) "failed") |#1|))) (-1009 (-400 (-549)))) (T -979))
+((-3405 (*1 *2 *3) (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2)))) (-3679 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-979 *3)) (-4 *3 (-1009 (-400 (-549)))))) (-2532 (*1 *2 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2)))))
+(-10 -7 (-15 -2532 ((-400 (-549)) |#1|)) (-15 -3679 ((-112) |#1|)) (-15 -3405 ((-3 (-400 (-549)) "failed") |#1|)))
+((-2254 ((|#2| $ "value" |#2|) 12)) (-3341 ((|#2| $ "value") 10)) (-1987 (((-112) $ $) 18)))
+(((-980 |#1| |#2|) (-10 -8 (-15 -2254 (|#2| |#1| "value" |#2|)) (-15 -1987 ((-112) |#1| |#1|)) (-15 -3341 (|#2| |#1| "value"))) (-981 |#2|) (-1180)) (T -980))
+NIL
+(-10 -8 (-15 -2254 (|#2| |#1| "value" |#2|)) (-15 -1987 ((-112) |#1| |#1|)) (-15 -3341 (|#2| |#1| "value")))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4161 ((|#1| $) 48)) (-1584 (((-112) $ (-747)) 8)) (-2838 ((|#1| $ |#1|) 39 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) 41 (|has| $ (-6 -4338)))) (-1682 (($) 7 T CONST)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) 50)) (-3895 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3591 (((-621 |#1|) $) 45)) (-2076 (((-112) $) 49)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ "value") 47)) (-3230 (((-549) $ $) 44)) (-3497 (((-112) $) 46)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) 51)) (-1987 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-981 |#1|) (-138) (-1180)) (T -981))
+((-2742 (*1 *2 *1) (-12 (-4 *3 (-1180)) (-5 *2 (-621 *1)) (-4 *1 (-981 *3)))) (-3075 (*1 *2 *1) (-12 (-4 *3 (-1180)) (-5 *2 (-621 *1)) (-4 *1 (-981 *3)))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1180)) (-5 *2 (-112)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1180)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-981 *2)) (-4 *2 (-1180)))) (-3497 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1180)) (-5 *2 (-112)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1180)) (-5 *2 (-621 *3)))) (-3230 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1180)) (-5 *2 (-549)))) (-1987 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1180)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-3895 (*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1180)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-2722 (*1 *1 *1 *2) (-12 (-5 *2 (-621 *1)) (|has| *1 (-6 -4338)) (-4 *1 (-981 *3)) (-4 *3 (-1180)))) (-2254 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4338)) (-4 *1 (-981 *2)) (-4 *2 (-1180)))) (-2838 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-981 *2)) (-4 *2 (-1180)))))
+(-13 (-481 |t#1|) (-10 -8 (-15 -2742 ((-621 $) $)) (-15 -3075 ((-621 $) $)) (-15 -2076 ((-112) $)) (-15 -4161 (|t#1| $)) (-15 -3341 (|t#1| $ "value")) (-15 -3497 ((-112) $)) (-15 -3591 ((-621 |t#1|) $)) (-15 -3230 ((-549) $ $)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -1987 ((-112) $ $)) (-15 -3895 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4338)) (PROGN (-15 -2722 ($ $ (-621 $))) (-15 -2254 (|t#1| $ "value" |t#1|)) (-15 -2838 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-2134 (($ $) 9) (($ $ (-892)) 43) (($ (-400 (-549))) 13) (($ (-549)) 15)) (-1947 (((-3 $ "failed") (-1139 $) (-892) (-834)) 23) (((-3 $ "failed") (-1139 $) (-892)) 28)) (-4187 (($ $ (-549)) 49)) (-2082 (((-747)) 17)) (-3302 (((-621 $) (-1139 $)) NIL) (((-621 $) (-1139 (-400 (-549)))) 54) (((-621 $) (-1139 (-549))) 59) (((-621 $) (-923 $)) 63) (((-621 $) (-923 (-400 (-549)))) 67) (((-621 $) (-923 (-549))) 71)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL) (($ $ (-400 (-549))) 47)))
+(((-982 |#1|) (-10 -8 (-15 -2134 (|#1| (-549))) (-15 -2134 (|#1| (-400 (-549)))) (-15 -2134 (|#1| |#1| (-892))) (-15 -3302 ((-621 |#1|) (-923 (-549)))) (-15 -3302 ((-621 |#1|) (-923 (-400 (-549))))) (-15 -3302 ((-621 |#1|) (-923 |#1|))) (-15 -3302 ((-621 |#1|) (-1139 (-549)))) (-15 -3302 ((-621 |#1|) (-1139 (-400 (-549))))) (-15 -3302 ((-621 |#1|) (-1139 |#1|))) (-15 -1947 ((-3 |#1| "failed") (-1139 |#1|) (-892))) (-15 -1947 ((-3 |#1| "failed") (-1139 |#1|) (-892) (-834))) (-15 ** (|#1| |#1| (-400 (-549)))) (-15 -4187 (|#1| |#1| (-549))) (-15 -2134 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -2082 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892)))) (-983)) (T -982))
+((-2082 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-982 *3)) (-4 *3 (-983)))))
+(-10 -8 (-15 -2134 (|#1| (-549))) (-15 -2134 (|#1| (-400 (-549)))) (-15 -2134 (|#1| |#1| (-892))) (-15 -3302 ((-621 |#1|) (-923 (-549)))) (-15 -3302 ((-621 |#1|) (-923 (-400 (-549))))) (-15 -3302 ((-621 |#1|) (-923 |#1|))) (-15 -3302 ((-621 |#1|) (-1139 (-549)))) (-15 -3302 ((-621 |#1|) (-1139 (-400 (-549))))) (-15 -3302 ((-621 |#1|) (-1139 |#1|))) (-15 -1947 ((-3 |#1| "failed") (-1139 |#1|) (-892))) (-15 -1947 ((-3 |#1| "failed") (-1139 |#1|) (-892) (-834))) (-15 ** (|#1| |#1| (-400 (-549)))) (-15 -4187 (|#1| |#1| (-549))) (-15 -2134 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -2082 ((-747))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 87)) (-2258 (($ $) 88)) (-2799 (((-112) $) 90)) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 107)) (-2402 (((-411 $) $) 108)) (-2134 (($ $) 71) (($ $ (-892)) 57) (($ (-400 (-549))) 56) (($ (-549)) 55)) (-3866 (((-112) $ $) 98)) (-1872 (((-549) $) 124)) (-1682 (($) 17 T CONST)) (-1947 (((-3 $ "failed") (-1139 $) (-892) (-834)) 65) (((-3 $ "failed") (-1139 $) (-892)) 64)) (-2714 (((-3 (-549) "failed") $) 83 (|has| (-400 (-549)) (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 81 (|has| (-400 (-549)) (-1009 (-400 (-549))))) (((-3 (-400 (-549)) "failed") $) 79)) (-2659 (((-549) $) 84 (|has| (-400 (-549)) (-1009 (-549)))) (((-400 (-549)) $) 82 (|has| (-400 (-549)) (-1009 (-400 (-549))))) (((-400 (-549)) $) 78)) (-4300 (($ $ (-834)) 54)) (-1266 (($ $ (-834)) 53)) (-2095 (($ $ $) 102)) (-2114 (((-3 $ "failed") $) 32)) (-2067 (($ $ $) 101)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 96)) (-1420 (((-112) $) 109)) (-2772 (((-112) $) 122)) (-2675 (((-112) $) 30)) (-4187 (($ $ (-549)) 70)) (-2374 (((-112) $) 123)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 105)) (-2863 (($ $ $) 121)) (-3575 (($ $ $) 120)) (-2785 (((-3 (-1139 $) "failed") $) 66)) (-2373 (((-3 (-834) "failed") $) 68)) (-3436 (((-3 (-1139 $) "failed") $) 67)) (-3697 (($ (-621 $)) 94) (($ $ $) 93)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 110)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 95)) (-3727 (($ (-621 $)) 92) (($ $ $) 91)) (-2121 (((-411 $) $) 106)) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 103)) (-2042 (((-3 $ "failed") $ $) 86)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 97)) (-3684 (((-747) $) 99)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 100)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 114) (($ $) 85) (($ (-400 (-549))) 80) (($ (-549)) 77) (($ (-400 (-549))) 74)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 89)) (-2661 (((-400 (-549)) $ $) 52)) (-3302 (((-621 $) (-1139 $)) 63) (((-621 $) (-1139 (-400 (-549)))) 62) (((-621 $) (-1139 (-549))) 61) (((-621 $) (-923 $)) 60) (((-621 $) (-923 (-400 (-549)))) 59) (((-621 $) (-923 (-549))) 58)) (-3212 (($ $) 125)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 118)) (-2425 (((-112) $ $) 117)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 119)) (-2412 (((-112) $ $) 116)) (-2513 (($ $ $) 115)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 111) (($ $ (-400 (-549))) 69)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ (-400 (-549)) $) 113) (($ $ (-400 (-549))) 112) (($ (-549) $) 76) (($ $ (-549)) 75) (($ (-400 (-549)) $) 73) (($ $ (-400 (-549))) 72)))
+(((-983) (-138)) (T -983))
+((-2134 (*1 *1 *1) (-4 *1 (-983))) (-2373 (*1 *2 *1) (|partial| -12 (-4 *1 (-983)) (-5 *2 (-834)))) (-3436 (*1 *2 *1) (|partial| -12 (-5 *2 (-1139 *1)) (-4 *1 (-983)))) (-2785 (*1 *2 *1) (|partial| -12 (-5 *2 (-1139 *1)) (-4 *1 (-983)))) (-1947 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1139 *1)) (-5 *3 (-892)) (-5 *4 (-834)) (-4 *1 (-983)))) (-1947 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1139 *1)) (-5 *3 (-892)) (-4 *1 (-983)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-1139 *1)) (-4 *1 (-983)) (-5 *2 (-621 *1)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-1139 (-400 (-549)))) (-5 *2 (-621 *1)) (-4 *1 (-983)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-1139 (-549))) (-5 *2 (-621 *1)) (-4 *1 (-983)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-923 *1)) (-4 *1 (-983)) (-5 *2 (-621 *1)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-923 (-400 (-549)))) (-5 *2 (-621 *1)) (-4 *1 (-983)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-923 (-549))) (-5 *2 (-621 *1)) (-4 *1 (-983)))) (-2134 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-892)))) (-2134 (*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-4 *1 (-983)))) (-2134 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-983)))) (-4300 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-834)))) (-1266 (*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-834)))) (-2661 (*1 *2 *1 *1) (-12 (-4 *1 (-983)) (-5 *2 (-400 (-549))))))
+(-13 (-145) (-821) (-170) (-356) (-404 (-400 (-549))) (-38 (-549)) (-38 (-400 (-549))) (-973) (-10 -8 (-15 -2373 ((-3 (-834) "failed") $)) (-15 -3436 ((-3 (-1139 $) "failed") $)) (-15 -2785 ((-3 (-1139 $) "failed") $)) (-15 -1947 ((-3 $ "failed") (-1139 $) (-892) (-834))) (-15 -1947 ((-3 $ "failed") (-1139 $) (-892))) (-15 -3302 ((-621 $) (-1139 $))) (-15 -3302 ((-621 $) (-1139 (-400 (-549))))) (-15 -3302 ((-621 $) (-1139 (-549)))) (-15 -3302 ((-621 $) (-923 $))) (-15 -3302 ((-621 $) (-923 (-400 (-549))))) (-15 -3302 ((-621 $) (-923 (-549)))) (-15 -2134 ($ $ (-892))) (-15 -2134 ($ $)) (-15 -2134 ($ (-400 (-549)))) (-15 -2134 ($ (-549))) (-15 -4300 ($ $ (-834))) (-15 -1266 ($ $ (-834))) (-15 -2661 ((-400 (-549)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 #1=(-549)) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-834)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-404 (-400 (-549))) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 #1#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 #1#) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-821) . T) ((-823) . T) ((-891) . T) ((-973) . T) ((-1009 (-400 (-549))) . T) ((-1009 (-549)) |has| (-400 (-549)) (-1009 (-549))) ((-1024 #0#) . T) ((-1024 #1#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1184) . T))
+((-2770 (((-2 (|:| |ans| |#2|) (|:| -3848 |#2|) (|:| |sol?| (-112))) (-549) |#2| |#2| (-1143) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|)) (-1 (-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
+(((-984 |#1| |#2|) (-10 -7 (-15 -2770 ((-2 (|:| |ans| |#2|) (|:| -3848 |#2|) (|:| |sol?| (-112))) (-549) |#2| |#2| (-1143) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|)) (-1 (-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1165) (-27) (-423 |#1|))) (T -984))
+((-2770 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1143)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-621 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3440 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1165) (-27) (-423 *8))) (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3))) (-5 *3 (-549)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3848 *4) (|:| |sol?| (-112)))) (-5 *1 (-984 *8 *4)))))
+(-10 -7 (-15 -2770 ((-2 (|:| |ans| |#2|) (|:| -3848 |#2|) (|:| |sol?| (-112))) (-549) |#2| |#2| (-1143) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|)) (-1 (-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2515 (((-3 (-621 |#2|) "failed") (-549) |#2| |#2| |#2| (-1143) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|)) (-1 (-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
+(((-985 |#1| |#2|) (-10 -7 (-15 -2515 ((-3 (-621 |#2|) "failed") (-549) |#2| |#2| |#2| (-1143) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|)) (-1 (-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))) (-13 (-1165) (-27) (-423 |#1|))) (T -985))
+((-2515 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1143)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-621 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3440 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1165) (-27) (-423 *8))) (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3))) (-5 *3 (-549)) (-5 *2 (-621 *4)) (-5 *1 (-985 *8 *4)))))
+(-10 -7 (-15 -2515 ((-3 (-621 |#2|) "failed") (-549) |#2| |#2| |#2| (-1143) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-621 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|)) (-1 (-3 (-2 (|:| -3440 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2452 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2652 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-549)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-549) (-1 |#2| |#2|)) 30)) (-3660 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -2632 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 58)) (-2961 (((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|)) 63)))
+(((-986 |#1| |#2|) (-10 -7 (-15 -3660 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -2632 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2961 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -2452 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2652 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-549)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-549) (-1 |#2| |#2|)))) (-13 (-356) (-145) (-1009 (-549))) (-1202 |#1|)) (T -986))
+((-2452 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1202 *6)) (-4 *6 (-13 (-356) (-145) (-1009 *4))) (-5 *4 (-549)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2652 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-986 *6 *3)))) (-2961 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-549)))) (-4 *5 (-1202 *4)) (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) (-5 *1 (-986 *4 *5)) (-5 *3 (-400 *5)))) (-3660 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) (|:| -2632 *6))) (-5 *1 (-986 *5 *6)) (-5 *3 (-400 *6)))))
+(-10 -7 (-15 -3660 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -2632 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2961 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -2452 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2652 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-549)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-549) (-1 |#2| |#2|))))
+((-2960 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -2632 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 22)) (-3434 (((-3 (-621 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 33)))
+(((-987 |#1| |#2|) (-10 -7 (-15 -2960 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -2632 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3434 ((-3 (-621 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) (-13 (-356) (-145) (-1009 (-549))) (-1202 |#1|)) (T -987))
+((-3434 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-549)))) (-4 *5 (-1202 *4)) (-5 *2 (-621 (-400 *5))) (-5 *1 (-987 *4 *5)) (-5 *3 (-400 *5)))) (-2960 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) (|:| |c1| (-400 *6)) (|:| |c2| (-400 *6)) (|:| -2632 *6))) (-5 *1 (-987 *5 *6)) (-5 *3 (-400 *6)))))
+(-10 -7 (-15 -2960 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -2632 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3434 ((-3 (-621 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))))
+((-4223 (((-1 |#1|) (-621 (-2 (|:| -4161 |#1|) (|:| -1637 (-549))))) 37)) (-1950 (((-1 |#1|) (-1069 |#1|)) 45)) (-3149 (((-1 |#1|) (-1226 |#1|) (-1226 (-549)) (-549)) 34)))
+(((-988 |#1|) (-10 -7 (-15 -1950 ((-1 |#1|) (-1069 |#1|))) (-15 -4223 ((-1 |#1|) (-621 (-2 (|:| -4161 |#1|) (|:| -1637 (-549)))))) (-15 -3149 ((-1 |#1|) (-1226 |#1|) (-1226 (-549)) (-549)))) (-1067)) (T -988))
+((-3149 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1226 *6)) (-5 *4 (-1226 (-549))) (-5 *5 (-549)) (-4 *6 (-1067)) (-5 *2 (-1 *6)) (-5 *1 (-988 *6)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -4161 *4) (|:| -1637 (-549))))) (-4 *4 (-1067)) (-5 *2 (-1 *4)) (-5 *1 (-988 *4)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-1067)) (-5 *2 (-1 *4)) (-5 *1 (-988 *4)))))
+(-10 -7 (-15 -1950 ((-1 |#1|) (-1069 |#1|))) (-15 -4223 ((-1 |#1|) (-621 (-2 (|:| -4161 |#1|) (|:| -1637 (-549)))))) (-15 -3149 ((-1 |#1|) (-1226 |#1|) (-1226 (-549)) (-549))))
+((-2088 (((-747) (-329 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-989 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2088 ((-747) (-329 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-356) (-1202 |#1|) (-1202 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-13 (-361) (-356))) (T -989))
+((-2088 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-329 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) (-4 *7 (-1202 *6)) (-4 *4 (-1202 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) (-4 *9 (-13 (-361) (-356))) (-5 *2 (-747)) (-5 *1 (-989 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -2088 ((-747) (-329 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-3834 (((-112) $ $) NIL)) (-2834 (((-1148) $) 9)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2492 (((-1148) $) 11)) (-2389 (((-112) $ $) NIL)))
+(((-990) (-13 (-1050) (-10 -8 (-15 -2834 ((-1148) $)) (-15 -2492 ((-1148) $))))) (T -990))
+((-2834 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-990)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-990)))))
+(-13 (-1050) (-10 -8 (-15 -2834 ((-1148) $)) (-15 -2492 ((-1148) $))))
+((-4166 (((-3 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) "failed") |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) 31) (((-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-400 (-549))) 28)) (-4274 (((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-400 (-549))) 33) (((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-400 (-549))) 29) (((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) 32) (((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1|) 27)) (-2644 (((-621 (-400 (-549))) (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) 19)) (-4044 (((-400 (-549)) (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) 16)))
+(((-991 |#1|) (-10 -7 (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1|)) (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-400 (-549)))) (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-400 (-549)))) (-15 -4166 ((-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-400 (-549)))) (-15 -4166 ((-3 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) "failed") |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-15 -4044 ((-400 (-549)) (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-15 -2644 ((-621 (-400 (-549))) (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))))) (-1202 (-549))) (T -991))
+((-2644 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-5 *2 (-621 (-400 (-549)))) (-5 *1 (-991 *4)) (-4 *4 (-1202 (-549))))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) (-5 *2 (-400 (-549))) (-5 *1 (-991 *4)) (-4 *4 (-1202 (-549))))) (-4166 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) (-5 *1 (-991 *3)) (-4 *3 (-1202 (-549))))) (-4166 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) (-5 *4 (-400 (-549))) (-5 *1 (-991 *3)) (-4 *3 (-1202 (-549))))) (-4274 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-549))) (-5 *2 (-621 (-2 (|:| -3838 *5) (|:| -3848 *5)))) (-5 *1 (-991 *3)) (-4 *3 (-1202 (-549))) (-5 *4 (-2 (|:| -3838 *5) (|:| -3848 *5))))) (-4274 (*1 *2 *3 *4) (-12 (-5 *2 (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-5 *1 (-991 *3)) (-4 *3 (-1202 (-549))) (-5 *4 (-400 (-549))))) (-4274 (*1 *2 *3 *4) (-12 (-5 *2 (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-5 *1 (-991 *3)) (-4 *3 (-1202 (-549))) (-5 *4 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))) (-4274 (*1 *2 *3) (-12 (-5 *2 (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-5 *1 (-991 *3)) (-4 *3 (-1202 (-549))))))
+(-10 -7 (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1|)) (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-400 (-549)))) (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-400 (-549)))) (-15 -4166 ((-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-400 (-549)))) (-15 -4166 ((-3 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) "failed") |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-15 -4044 ((-400 (-549)) (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-15 -2644 ((-621 (-400 (-549))) (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))))
+((-4166 (((-3 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) "failed") |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) 35) (((-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-400 (-549))) 32)) (-4274 (((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-400 (-549))) 30) (((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-400 (-549))) 26) (((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) 28) (((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1|) 24)))
+(((-992 |#1|) (-10 -7 (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1|)) (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-400 (-549)))) (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-400 (-549)))) (-15 -4166 ((-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-400 (-549)))) (-15 -4166 ((-3 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) "failed") |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))) (-1202 (-400 (-549)))) (T -992))
+((-4166 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) (-5 *1 (-992 *3)) (-4 *3 (-1202 (-400 (-549)))))) (-4166 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) (-5 *4 (-400 (-549))) (-5 *1 (-992 *3)) (-4 *3 (-1202 *4)))) (-4274 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-549))) (-5 *2 (-621 (-2 (|:| -3838 *5) (|:| -3848 *5)))) (-5 *1 (-992 *3)) (-4 *3 (-1202 *5)) (-5 *4 (-2 (|:| -3838 *5) (|:| -3848 *5))))) (-4274 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-549))) (-5 *2 (-621 (-2 (|:| -3838 *4) (|:| -3848 *4)))) (-5 *1 (-992 *3)) (-4 *3 (-1202 *4)))) (-4274 (*1 *2 *3 *4) (-12 (-5 *2 (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-5 *1 (-992 *3)) (-4 *3 (-1202 (-400 (-549)))) (-5 *4 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))) (-4274 (*1 *2 *3) (-12 (-5 *2 (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-5 *1 (-992 *3)) (-4 *3 (-1202 (-400 (-549)))))))
+(-10 -7 (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1|)) (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))) (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-400 (-549)))) (-15 -4274 ((-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-400 (-549)))) (-15 -4166 ((-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-400 (-549)))) (-15 -4166 ((-3 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) "failed") |#1| (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))) (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))))
+((-2845 (((-219) $) 6) (((-372) $) 9)))
+(((-993) (-138)) (T -993))
+NIL
+(-13 (-594 (-219)) (-594 (-372)))
+(((-594 (-219)) . T) ((-594 (-372)) . T))
+((-2227 (((-621 (-372)) (-923 (-549)) (-372)) 28) (((-621 (-372)) (-923 (-400 (-549))) (-372)) 27)) (-3409 (((-621 (-621 (-372))) (-621 (-923 (-549))) (-621 (-1143)) (-372)) 37)))
+(((-994) (-10 -7 (-15 -2227 ((-621 (-372)) (-923 (-400 (-549))) (-372))) (-15 -2227 ((-621 (-372)) (-923 (-549)) (-372))) (-15 -3409 ((-621 (-621 (-372))) (-621 (-923 (-549))) (-621 (-1143)) (-372))))) (T -994))
+((-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-621 (-1143))) (-5 *2 (-621 (-621 (-372)))) (-5 *1 (-994)) (-5 *5 (-372)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-923 (-549))) (-5 *2 (-621 (-372))) (-5 *1 (-994)) (-5 *4 (-372)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-923 (-400 (-549)))) (-5 *2 (-621 (-372))) (-5 *1 (-994)) (-5 *4 (-372)))))
+(-10 -7 (-15 -2227 ((-621 (-372)) (-923 (-400 (-549))) (-372))) (-15 -2227 ((-621 (-372)) (-923 (-549)) (-372))) (-15 -3409 ((-621 (-621 (-372))) (-621 (-923 (-549))) (-621 (-1143)) (-372))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 70)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-2134 (($ $) NIL) (($ $ (-892)) NIL) (($ (-400 (-549))) NIL) (($ (-549)) NIL)) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) 65)) (-1682 (($) NIL T CONST)) (-1947 (((-3 $ "failed") (-1139 $) (-892) (-834)) NIL) (((-3 $ "failed") (-1139 $) (-892)) 50)) (-2714 (((-3 (-400 (-549)) "failed") $) NIL (|has| (-400 (-549)) (-1009 (-400 (-549))))) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-549) "failed") $) NIL (-1536 (|has| (-400 (-549)) (-1009 (-549))) (|has| |#1| (-1009 (-549)))))) (-2659 (((-400 (-549)) $) 15 (|has| (-400 (-549)) (-1009 (-400 (-549))))) (((-400 (-549)) $) 15) ((|#1| $) 108) (((-549) $) NIL (-1536 (|has| (-400 (-549)) (-1009 (-549))) (|has| |#1| (-1009 (-549)))))) (-4300 (($ $ (-834)) 42)) (-1266 (($ $ (-834)) 43)) (-2095 (($ $ $) NIL)) (-1336 (((-400 (-549)) $ $) 19)) (-2114 (((-3 $ "failed") $) 83)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-2772 (((-112) $) 61)) (-2675 (((-112) $) NIL)) (-4187 (($ $ (-549)) NIL)) (-2374 (((-112) $) 64)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2785 (((-3 (-1139 $) "failed") $) 78)) (-2373 (((-3 (-834) "failed") $) 77)) (-3436 (((-3 (-1139 $) "failed") $) 75)) (-1847 (((-3 (-1028 $ (-1139 $)) "failed") $) 73)) (-3697 (($ (-621 $)) NIL) (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 84)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ (-621 $)) NIL) (($ $ $) NIL)) (-2121 (((-411 $) $) NIL)) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3846 (((-834) $) 82) (($ (-549)) NIL) (($ (-400 (-549))) NIL) (($ $) 58) (($ (-400 (-549))) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL) (($ |#1|) 110)) (-2082 (((-747)) NIL)) (-1498 (((-112) $ $) NIL)) (-2661 (((-400 (-549)) $ $) 25)) (-3302 (((-621 $) (-1139 $)) 56) (((-621 $) (-1139 (-400 (-549)))) NIL) (((-621 $) (-1139 (-549))) NIL) (((-621 $) (-923 $)) NIL) (((-621 $) (-923 (-400 (-549)))) NIL) (((-621 $) (-923 (-549))) NIL)) (-2562 (($ (-1028 $ (-1139 $)) (-834)) 41)) (-3212 (($ $) 20)) (-3276 (($) 29 T CONST)) (-3287 (($) 35 T CONST)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 71)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 22)) (-2513 (($ $ $) 33)) (-2500 (($ $) 34) (($ $ $) 69)) (-2486 (($ $ $) 103)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL) (($ $ (-400 (-549))) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 91) (($ $ $) 96) (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL) (($ (-549) $) 91) (($ $ (-549)) NIL) (($ (-400 (-549)) $) NIL) (($ $ (-400 (-549))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
+(((-995 |#1|) (-13 (-983) (-404 |#1|) (-38 |#1|) (-10 -8 (-15 -2562 ($ (-1028 $ (-1139 $)) (-834))) (-15 -1847 ((-3 (-1028 $ (-1139 $)) "failed") $)) (-15 -1336 ((-400 (-549)) $ $)))) (-13 (-821) (-356) (-993))) (T -995))
+((-2562 (*1 *1 *2 *3) (-12 (-5 *2 (-1028 (-995 *4) (-1139 (-995 *4)))) (-5 *3 (-834)) (-5 *1 (-995 *4)) (-4 *4 (-13 (-821) (-356) (-993))))) (-1847 (*1 *2 *1) (|partial| -12 (-5 *2 (-1028 (-995 *3) (-1139 (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-13 (-821) (-356) (-993))))) (-1336 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-995 *3)) (-4 *3 (-13 (-821) (-356) (-993))))))
+(-13 (-983) (-404 |#1|) (-38 |#1|) (-10 -8 (-15 -2562 ($ (-1028 $ (-1139 $)) (-834))) (-15 -1847 ((-3 (-1028 $ (-1139 $)) "failed") $)) (-15 -1336 ((-400 (-549)) $ $))))
+((-4306 (((-2 (|:| -2652 |#2|) (|:| -2721 (-621 |#1|))) |#2| (-621 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-996 |#1| |#2|) (-10 -7 (-15 -4306 (|#2| |#2| |#1|)) (-15 -4306 ((-2 (|:| -2652 |#2|) (|:| -2721 (-621 |#1|))) |#2| (-621 |#1|)))) (-356) (-632 |#1|)) (T -996))
+((-4306 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -2652 *3) (|:| -2721 (-621 *5)))) (-5 *1 (-996 *5 *3)) (-5 *4 (-621 *5)) (-4 *3 (-632 *5)))) (-4306 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-996 *3 *2)) (-4 *2 (-632 *3)))))
+(-10 -7 (-15 -4306 (|#2| |#2| |#1|)) (-15 -4306 ((-2 (|:| -2652 |#2|) (|:| -2721 (-621 |#1|))) |#2| (-621 |#1|))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2154 ((|#1| $ |#1|) 14)) (-2254 ((|#1| $ |#1|) 12)) (-2219 (($ |#1|) 10)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3341 ((|#1| $) 11)) (-1658 ((|#1| $) 13)) (-3846 (((-834) $) 21 (|has| |#1| (-1067)))) (-2389 (((-112) $ $) 9)))
+(((-997 |#1|) (-13 (-1180) (-10 -8 (-15 -2219 ($ |#1|)) (-15 -3341 (|#1| $)) (-15 -2254 (|#1| $ |#1|)) (-15 -1658 (|#1| $)) (-15 -2154 (|#1| $ |#1|)) (-15 -2389 ((-112) $ $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|))) (-1180)) (T -997))
+((-2219 (*1 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1180)))) (-3341 (*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1180)))) (-2254 (*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1180)))) (-1658 (*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1180)))) (-2154 (*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1180)))) (-2389 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-997 *3)) (-4 *3 (-1180)))))
+(-13 (-1180) (-10 -8 (-15 -2219 ($ |#1|)) (-15 -3341 (|#1| $)) (-15 -2254 (|#1| $ |#1|)) (-15 -1658 (|#1| $)) (-15 -2154 (|#1| $ |#1|)) (-15 -2389 ((-112) $ $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|)))
+((-3834 (((-112) $ $) NIL)) (-3514 (((-621 (-2 (|:| -2681 $) (|:| -1359 (-621 |#4|)))) (-621 |#4|)) NIL)) (-2866 (((-621 $) (-621 |#4|)) 105) (((-621 $) (-621 |#4|) (-112)) 106) (((-621 $) (-621 |#4|) (-112) (-112)) 104) (((-621 $) (-621 |#4|) (-112) (-112) (-112) (-112)) 107)) (-2272 (((-621 |#3|) $) NIL)) (-3422 (((-112) $) NIL)) (-2527 (((-112) $) NIL (|has| |#1| (-541)))) (-3282 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2731 ((|#4| |#4| $) NIL)) (-3979 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 $))) |#4| $) 99)) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |#3|) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-1489 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337))) (((-3 |#4| "failed") $ |#3|) 54)) (-1682 (($) NIL T CONST)) (-1433 (((-112) $) 26 (|has| |#1| (-541)))) (-2555 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2595 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2397 (((-112) $) NIL (|has| |#1| (-541)))) (-2737 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3269 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2953 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2714 (((-3 $ "failed") (-621 |#4|)) NIL)) (-2659 (($ (-621 |#4|)) NIL)) (-3657 (((-3 $ "failed") $) 39)) (-1903 ((|#4| |#4| $) 57)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-3812 (($ |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-3675 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-541)))) (-2217 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3615 ((|#4| |#4| $) NIL)) (-2557 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4337))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4337))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1439 (((-2 (|:| -2681 (-621 |#4|)) (|:| -1359 (-621 |#4|))) $) NIL)) (-3516 (((-112) |#4| $) NIL)) (-3150 (((-112) |#4| $) NIL)) (-2064 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4181 (((-2 (|:| |val| (-621 |#4|)) (|:| |towers| (-621 $))) (-621 |#4|) (-112) (-112)) 119)) (-2989 (((-621 |#4|) $) 16 (|has| $ (-6 -4337)))) (-2812 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2745 ((|#3| $) 33)) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#4|) $) 17 (|has| $ (-6 -4337)))) (-2090 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-1868 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#4| |#4|) $) 21)) (-2561 (((-621 |#3|) $) NIL)) (-2378 (((-112) |#3| $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-1878 (((-3 |#4| (-621 $)) |#4| |#4| $) NIL)) (-3072 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 $))) |#4| |#4| $) 97)) (-3829 (((-3 |#4| "failed") $) 37)) (-3689 (((-621 $) |#4| $) 80)) (-1514 (((-3 (-112) (-621 $)) |#4| $) NIL)) (-4184 (((-621 (-2 (|:| |val| (-112)) (|:| -1981 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3655 (((-621 $) |#4| $) 102) (((-621 $) (-621 |#4|) $) NIL) (((-621 $) (-621 |#4|) (-621 $)) 103) (((-621 $) |#4| (-621 $)) NIL)) (-4249 (((-621 $) (-621 |#4|) (-112) (-112) (-112)) 114)) (-4283 (($ |#4| $) 70) (($ (-621 |#4|) $) 71) (((-621 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-1638 (((-621 |#4|) $) NIL)) (-2170 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3270 ((|#4| |#4| $) NIL)) (-2473 (((-112) $ $) NIL)) (-4203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-1335 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4298 ((|#4| |#4| $) NIL)) (-3990 (((-1087) $) NIL)) (-3646 (((-3 |#4| "failed") $) 35)) (-3779 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2640 (((-3 $ "failed") $ |#4|) 48)) (-2763 (($ $ |#4|) NIL) (((-621 $) |#4| $) 82) (((-621 $) |#4| (-621 $)) NIL) (((-621 $) (-621 |#4|) $) NIL) (((-621 $) (-621 |#4|) (-621 $)) 77)) (-1780 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#4|) (-621 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-621 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 15)) (-3742 (($) 13)) (-3701 (((-747) $) NIL)) (-4000 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) 12)) (-2845 (((-525) $) NIL (|has| |#4| (-594 (-525))))) (-3854 (($ (-621 |#4|)) 20)) (-2858 (($ $ |#3|) 42)) (-3758 (($ $ |#3|) 44)) (-1962 (($ $) NIL)) (-4317 (($ $ |#3|) NIL)) (-3846 (((-834) $) 31) (((-621 |#4|) $) 40)) (-1824 (((-747) $) NIL (|has| |#3| (-361)))) (-2574 (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1716 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) NIL)) (-1518 (((-621 $) |#4| $) 79) (((-621 $) |#4| (-621 $)) NIL) (((-621 $) (-621 |#4|) $) NIL) (((-621 $) (-621 |#4|) (-621 $)) NIL)) (-3527 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-3002 (((-621 |#3|) $) NIL)) (-3524 (((-112) |#4| $) NIL)) (-1606 (((-112) |#3| $) 53)) (-2389 (((-112) $ $) NIL)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-998 |#1| |#2| |#3| |#4|) (-13 (-1038 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4283 ((-621 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2866 ((-621 $) (-621 |#4|) (-112) (-112))) (-15 -2866 ((-621 $) (-621 |#4|) (-112) (-112) (-112) (-112))) (-15 -4249 ((-621 $) (-621 |#4|) (-112) (-112) (-112))) (-15 -4181 ((-2 (|:| |val| (-621 |#4|)) (|:| |towers| (-621 $))) (-621 |#4|) (-112) (-112))))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -998))
+((-4283 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-998 *5 *6 *7 *3))) (-5 *1 (-998 *5 *6 *7 *3)) (-4 *3 (-1032 *5 *6 *7)))) (-2866 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8)))) (-2866 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8)))) (-4249 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8)))) (-4181 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-621 *8)) (|:| |towers| (-621 (-998 *5 *6 *7 *8))))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *3 (-621 *8)))))
+(-13 (-1038 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4283 ((-621 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2866 ((-621 $) (-621 |#4|) (-112) (-112))) (-15 -2866 ((-621 $) (-621 |#4|) (-112) (-112) (-112) (-112))) (-15 -4249 ((-621 $) (-621 |#4|) (-112) (-112) (-112))) (-15 -4181 ((-2 (|:| |val| (-621 |#4|)) (|:| |towers| (-621 $))) (-621 |#4|) (-112) (-112)))))
+((-3585 (((-621 (-665 |#1|)) (-621 (-665 |#1|))) 58) (((-665 |#1|) (-665 |#1|)) 57) (((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-621 (-665 |#1|))) 56) (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 53)) (-4290 (((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-892)) 52) (((-665 |#1|) (-665 |#1|) (-892)) 51)) (-3681 (((-621 (-665 (-549))) (-621 (-621 (-549)))) 68) (((-621 (-665 (-549))) (-621 (-876 (-549))) (-549)) 67) (((-665 (-549)) (-621 (-549))) 64) (((-665 (-549)) (-876 (-549)) (-549)) 63)) (-2185 (((-665 (-923 |#1|)) (-747)) 81)) (-2529 (((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-892)) 37 (|has| |#1| (-6 (-4339 "*")))) (((-665 |#1|) (-665 |#1|) (-892)) 35 (|has| |#1| (-6 (-4339 "*"))))))
+(((-999 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4339 "*"))) (-15 -2529 ((-665 |#1|) (-665 |#1|) (-892))) |%noBranch|) (IF (|has| |#1| (-6 (-4339 "*"))) (-15 -2529 ((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-892))) |%noBranch|) (-15 -2185 ((-665 (-923 |#1|)) (-747))) (-15 -4290 ((-665 |#1|) (-665 |#1|) (-892))) (-15 -4290 ((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-892))) (-15 -3585 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3585 ((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -3585 ((-665 |#1|) (-665 |#1|))) (-15 -3585 ((-621 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -3681 ((-665 (-549)) (-876 (-549)) (-549))) (-15 -3681 ((-665 (-549)) (-621 (-549)))) (-15 -3681 ((-621 (-665 (-549))) (-621 (-876 (-549))) (-549))) (-15 -3681 ((-621 (-665 (-549))) (-621 (-621 (-549)))))) (-1018)) (T -999))
+((-3681 (*1 *2 *3) (-12 (-5 *3 (-621 (-621 (-549)))) (-5 *2 (-621 (-665 (-549)))) (-5 *1 (-999 *4)) (-4 *4 (-1018)))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-876 (-549)))) (-5 *4 (-549)) (-5 *2 (-621 (-665 *4))) (-5 *1 (-999 *5)) (-4 *5 (-1018)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-999 *4)) (-4 *4 (-1018)))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-549))) (-5 *4 (-549)) (-5 *2 (-665 *4)) (-5 *1 (-999 *5)) (-4 *5 (-1018)))) (-3585 (*1 *2 *2) (-12 (-5 *2 (-621 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-999 *3)))) (-3585 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-999 *3)))) (-3585 (*1 *2 *2 *2) (-12 (-5 *2 (-621 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-999 *3)))) (-3585 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-999 *3)))) (-4290 (*1 *2 *2 *3) (-12 (-5 *2 (-621 (-665 *4))) (-5 *3 (-892)) (-4 *4 (-1018)) (-5 *1 (-999 *4)))) (-4290 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-892)) (-4 *4 (-1018)) (-5 *1 (-999 *4)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-665 (-923 *4))) (-5 *1 (-999 *4)) (-4 *4 (-1018)))) (-2529 (*1 *2 *2 *3) (-12 (-5 *2 (-621 (-665 *4))) (-5 *3 (-892)) (|has| *4 (-6 (-4339 "*"))) (-4 *4 (-1018)) (-5 *1 (-999 *4)))) (-2529 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-892)) (|has| *4 (-6 (-4339 "*"))) (-4 *4 (-1018)) (-5 *1 (-999 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4339 "*"))) (-15 -2529 ((-665 |#1|) (-665 |#1|) (-892))) |%noBranch|) (IF (|has| |#1| (-6 (-4339 "*"))) (-15 -2529 ((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-892))) |%noBranch|) (-15 -2185 ((-665 (-923 |#1|)) (-747))) (-15 -4290 ((-665 |#1|) (-665 |#1|) (-892))) (-15 -4290 ((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-892))) (-15 -3585 ((-665 |#1|) (-665 |#1|) (-665 |#1|))) (-15 -3585 ((-621 (-665 |#1|)) (-621 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -3585 ((-665 |#1|) (-665 |#1|))) (-15 -3585 ((-621 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -3681 ((-665 (-549)) (-876 (-549)) (-549))) (-15 -3681 ((-665 (-549)) (-621 (-549)))) (-15 -3681 ((-621 (-665 (-549))) (-621 (-876 (-549))) (-549))) (-15 -3681 ((-621 (-665 (-549))) (-621 (-621 (-549))))))
+((-2333 (((-665 |#1|) (-621 (-665 |#1|)) (-1226 |#1|)) 50 (|has| |#1| (-300)))) (-3628 (((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-1226 (-1226 |#1|))) 76 (|has| |#1| (-356))) (((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-1226 |#1|)) 79 (|has| |#1| (-356)))) (-1649 (((-1226 |#1|) (-621 (-1226 |#1|)) (-549)) 93 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-1956 (((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-892)) 85 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-112)) 83 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|))) 82 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-112) (-549) (-549)) 81 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-4113 (((-112) (-621 (-665 |#1|))) 71 (|has| |#1| (-356))) (((-112) (-621 (-665 |#1|)) (-549)) 73 (|has| |#1| (-356)))) (-3466 (((-1226 (-1226 |#1|)) (-621 (-665 |#1|)) (-1226 |#1|)) 48 (|has| |#1| (-300)))) (-2450 (((-665 |#1|) (-621 (-665 |#1|)) (-665 |#1|)) 34)) (-3509 (((-665 |#1|) (-1226 (-1226 |#1|))) 31)) (-2419 (((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)) (-549)) 65 (|has| |#1| (-356))) (((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|))) 64 (|has| |#1| (-356))) (((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)) (-112) (-549)) 69 (|has| |#1| (-356)))))
+(((-1000 |#1|) (-10 -7 (-15 -3509 ((-665 |#1|) (-1226 (-1226 |#1|)))) (-15 -2450 ((-665 |#1|) (-621 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -3466 ((-1226 (-1226 |#1|)) (-621 (-665 |#1|)) (-1226 |#1|))) (-15 -2333 ((-665 |#1|) (-621 (-665 |#1|)) (-1226 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2419 ((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)) (-112) (-549))) (-15 -2419 ((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -2419 ((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)) (-549))) (-15 -4113 ((-112) (-621 (-665 |#1|)) (-549))) (-15 -4113 ((-112) (-621 (-665 |#1|)))) (-15 -3628 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-1226 |#1|))) (-15 -3628 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-1226 (-1226 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -1956 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-112) (-549) (-549))) (-15 -1956 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)))) (-15 -1956 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-112))) (-15 -1956 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-892))) (-15 -1649 ((-1226 |#1|) (-621 (-1226 |#1|)) (-549)))) |%noBranch|) |%noBranch|)) (-1018)) (T -1000))
+((-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-1226 *5))) (-5 *4 (-549)) (-5 *2 (-1226 *5)) (-5 *1 (-1000 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)) (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5)) (-5 *3 (-621 (-665 *5))))) (-1956 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)) (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5)) (-5 *3 (-621 (-665 *5))))) (-1956 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1018)) (-5 *2 (-621 (-621 (-665 *4)))) (-5 *1 (-1000 *4)) (-5 *3 (-621 (-665 *4))))) (-1956 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-549)) (-4 *6 (-356)) (-4 *6 (-361)) (-4 *6 (-1018)) (-5 *2 (-621 (-621 (-665 *6)))) (-5 *1 (-1000 *6)) (-5 *3 (-621 (-665 *6))))) (-3628 (*1 *2 *3 *4) (-12 (-5 *4 (-1226 (-1226 *5))) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5)) (-5 *3 (-621 (-665 *5))))) (-3628 (*1 *2 *3 *4) (-12 (-5 *4 (-1226 *5)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5)) (-5 *3 (-621 (-665 *5))))) (-4113 (*1 *2 *3) (-12 (-5 *3 (-621 (-665 *4))) (-4 *4 (-356)) (-4 *4 (-1018)) (-5 *2 (-112)) (-5 *1 (-1000 *4)))) (-4113 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-665 *5))) (-5 *4 (-549)) (-4 *5 (-356)) (-4 *5 (-1018)) (-5 *2 (-112)) (-5 *1 (-1000 *5)))) (-2419 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-621 (-665 *5))) (-5 *4 (-549)) (-5 *2 (-665 *5)) (-5 *1 (-1000 *5)) (-4 *5 (-356)) (-4 *5 (-1018)))) (-2419 (*1 *2 *3 *3) (-12 (-5 *3 (-621 (-665 *4))) (-5 *2 (-665 *4)) (-5 *1 (-1000 *4)) (-4 *4 (-356)) (-4 *4 (-1018)))) (-2419 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-621 (-665 *6))) (-5 *4 (-112)) (-5 *5 (-549)) (-5 *2 (-665 *6)) (-5 *1 (-1000 *6)) (-4 *6 (-356)) (-4 *6 (-1018)))) (-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-665 *5))) (-5 *4 (-1226 *5)) (-4 *5 (-300)) (-4 *5 (-1018)) (-5 *2 (-665 *5)) (-5 *1 (-1000 *5)))) (-3466 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-665 *5))) (-4 *5 (-300)) (-4 *5 (-1018)) (-5 *2 (-1226 (-1226 *5))) (-5 *1 (-1000 *5)) (-5 *4 (-1226 *5)))) (-2450 (*1 *2 *3 *2) (-12 (-5 *3 (-621 (-665 *4))) (-5 *2 (-665 *4)) (-4 *4 (-1018)) (-5 *1 (-1000 *4)))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-1226 (-1226 *4))) (-4 *4 (-1018)) (-5 *2 (-665 *4)) (-5 *1 (-1000 *4)))))
+(-10 -7 (-15 -3509 ((-665 |#1|) (-1226 (-1226 |#1|)))) (-15 -2450 ((-665 |#1|) (-621 (-665 |#1|)) (-665 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -3466 ((-1226 (-1226 |#1|)) (-621 (-665 |#1|)) (-1226 |#1|))) (-15 -2333 ((-665 |#1|) (-621 (-665 |#1|)) (-1226 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2419 ((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)) (-112) (-549))) (-15 -2419 ((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -2419 ((-665 |#1|) (-621 (-665 |#1|)) (-621 (-665 |#1|)) (-549))) (-15 -4113 ((-112) (-621 (-665 |#1|)) (-549))) (-15 -4113 ((-112) (-621 (-665 |#1|)))) (-15 -3628 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-1226 |#1|))) (-15 -3628 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-1226 (-1226 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -1956 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-112) (-549) (-549))) (-15 -1956 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)))) (-15 -1956 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-112))) (-15 -1956 ((-621 (-621 (-665 |#1|))) (-621 (-665 |#1|)) (-892))) (-15 -1649 ((-1226 |#1|) (-621 (-1226 |#1|)) (-549)))) |%noBranch|) |%noBranch|))
+((-4028 ((|#1| (-892) |#1|) 9)))
+(((-1001 |#1|) (-10 -7 (-15 -4028 (|#1| (-892) |#1|))) (-13 (-1067) (-10 -8 (-15 -2486 ($ $ $))))) (T -1001))
+((-4028 (*1 *2 *3 *2) (-12 (-5 *3 (-892)) (-5 *1 (-1001 *2)) (-4 *2 (-13 (-1067) (-10 -8 (-15 -2486 ($ $ $))))))))
+(-10 -7 (-15 -4028 (|#1| (-892) |#1|)))
+((-2471 (((-621 (-2 (|:| |radval| (-309 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-621 (-665 (-309 (-549))))))) (-665 (-400 (-923 (-549))))) 59)) (-2914 (((-621 (-665 (-309 (-549)))) (-309 (-549)) (-665 (-400 (-923 (-549))))) 48)) (-3784 (((-621 (-309 (-549))) (-665 (-400 (-923 (-549))))) 41)) (-4185 (((-621 (-665 (-309 (-549)))) (-665 (-400 (-923 (-549))))) 68)) (-2823 (((-665 (-309 (-549))) (-665 (-309 (-549)))) 34)) (-1435 (((-621 (-665 (-309 (-549)))) (-621 (-665 (-309 (-549))))) 62)) (-1379 (((-3 (-665 (-309 (-549))) "failed") (-665 (-400 (-923 (-549))))) 66)))
+(((-1002) (-10 -7 (-15 -2471 ((-621 (-2 (|:| |radval| (-309 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-621 (-665 (-309 (-549))))))) (-665 (-400 (-923 (-549)))))) (-15 -2914 ((-621 (-665 (-309 (-549)))) (-309 (-549)) (-665 (-400 (-923 (-549)))))) (-15 -3784 ((-621 (-309 (-549))) (-665 (-400 (-923 (-549)))))) (-15 -1379 ((-3 (-665 (-309 (-549))) "failed") (-665 (-400 (-923 (-549)))))) (-15 -2823 ((-665 (-309 (-549))) (-665 (-309 (-549))))) (-15 -1435 ((-621 (-665 (-309 (-549)))) (-621 (-665 (-309 (-549)))))) (-15 -4185 ((-621 (-665 (-309 (-549)))) (-665 (-400 (-923 (-549)))))))) (T -1002))
+((-4185 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-923 (-549))))) (-5 *2 (-621 (-665 (-309 (-549))))) (-5 *1 (-1002)))) (-1435 (*1 *2 *2) (-12 (-5 *2 (-621 (-665 (-309 (-549))))) (-5 *1 (-1002)))) (-2823 (*1 *2 *2) (-12 (-5 *2 (-665 (-309 (-549)))) (-5 *1 (-1002)))) (-1379 (*1 *2 *3) (|partial| -12 (-5 *3 (-665 (-400 (-923 (-549))))) (-5 *2 (-665 (-309 (-549)))) (-5 *1 (-1002)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-923 (-549))))) (-5 *2 (-621 (-309 (-549)))) (-5 *1 (-1002)))) (-2914 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-400 (-923 (-549))))) (-5 *2 (-621 (-665 (-309 (-549))))) (-5 *1 (-1002)) (-5 *3 (-309 (-549))))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-665 (-400 (-923 (-549))))) (-5 *2 (-621 (-2 (|:| |radval| (-309 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-621 (-665 (-309 (-549)))))))) (-5 *1 (-1002)))))
+(-10 -7 (-15 -2471 ((-621 (-2 (|:| |radval| (-309 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-621 (-665 (-309 (-549))))))) (-665 (-400 (-923 (-549)))))) (-15 -2914 ((-621 (-665 (-309 (-549)))) (-309 (-549)) (-665 (-400 (-923 (-549)))))) (-15 -3784 ((-621 (-309 (-549))) (-665 (-400 (-923 (-549)))))) (-15 -1379 ((-3 (-665 (-309 (-549))) "failed") (-665 (-400 (-923 (-549)))))) (-15 -2823 ((-665 (-309 (-549))) (-665 (-309 (-549))))) (-15 -1435 ((-621 (-665 (-309 (-549)))) (-621 (-665 (-309 (-549)))))) (-15 -4185 ((-621 (-665 (-309 (-549)))) (-665 (-400 (-923 (-549)))))))
+((-2099 ((|#1| |#1| (-892)) 9)))
+(((-1003 |#1|) (-10 -7 (-15 -2099 (|#1| |#1| (-892)))) (-13 (-1067) (-10 -8 (-15 * ($ $ $))))) (T -1003))
+((-2099 (*1 *2 *2 *3) (-12 (-5 *3 (-892)) (-5 *1 (-1003 *2)) (-4 *2 (-13 (-1067) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -2099 (|#1| |#1| (-892))))
+((-3846 ((|#1| (-305)) 11) (((-1231) |#1|) 9)))
+(((-1004 |#1|) (-10 -7 (-15 -3846 ((-1231) |#1|)) (-15 -3846 (|#1| (-305)))) (-1180)) (T -1004))
+((-3846 (*1 *2 *3) (-12 (-5 *3 (-305)) (-5 *1 (-1004 *2)) (-4 *2 (-1180)))) (-3846 (*1 *2 *3) (-12 (-5 *2 (-1231)) (-5 *1 (-1004 *3)) (-4 *3 (-1180)))))
+(-10 -7 (-15 -3846 ((-1231) |#1|)) (-15 -3846 (|#1| (-305))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2557 (($ |#4|) 25)) (-2114 (((-3 $ "failed") $) NIL)) (-2675 (((-112) $) NIL)) (-2548 ((|#4| $) 27)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 46) (($ (-549)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2082 (((-747)) 43)) (-3276 (($) 21 T CONST)) (-3287 (($) 23 T CONST)) (-2389 (((-112) $ $) 40)) (-2500 (($ $) 31) (($ $ $) NIL)) (-2486 (($ $ $) 29)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1005 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -2557 ($ |#4|)) (-15 -3846 ($ |#4|)) (-15 -2548 (|#4| $)))) (-356) (-769) (-823) (-920 |#1| |#2| |#3|) (-621 |#4|)) (T -1005))
+((-2557 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-920 *3 *4 *5)) (-14 *6 (-621 *2)))) (-3846 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-920 *3 *4 *5)) (-14 *6 (-621 *2)))) (-2548 (*1 *2 *1) (-12 (-4 *2 (-920 *3 *4 *5)) (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-14 *6 (-621 *2)))))
+(-13 (-170) (-38 |#1|) (-10 -8 (-15 -2557 ($ |#4|)) (-15 -3846 ($ |#4|)) (-15 -2548 (|#4| $))))
+((-3834 (((-112) $ $) NIL (-1536 (|has| (-52) (-1067)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067))))) (-3733 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) NIL)) (-1535 (((-1231) $ (-1143) (-1143)) NIL (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) NIL)) (-2549 (((-112) (-112)) 39)) (-3438 (((-112) (-112)) 38)) (-2254 (((-52) $ (-1143) (-52)) NIL)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337)))) (-3490 (((-3 (-52) "failed") (-1143) $) NIL)) (-1682 (($) NIL T CONST)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067))))) (-2129 (($ (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-3 (-52) "failed") (-1143) $) NIL)) (-3812 (($ (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (($ (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $ (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (((-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $ (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337)))) (-1879 (((-52) $ (-1143) (-52)) NIL (|has| $ (-6 -4338)))) (-1809 (((-52) $ (-1143)) NIL)) (-2989 (((-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-621 (-52)) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-1143) $) NIL (|has| (-1143) (-823)))) (-1562 (((-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-621 (-52)) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-52) (-1067))))) (-1569 (((-1143) $) NIL (|has| (-1143) (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4338))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (-1536 (|has| (-52) (-1067)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067))))) (-3449 (((-621 (-1143)) $) 34)) (-2427 (((-112) (-1143) $) NIL)) (-3504 (((-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) NIL)) (-2751 (($ (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) NIL)) (-3303 (((-621 (-1143)) $) NIL)) (-3761 (((-112) (-1143) $) NIL)) (-3990 (((-1087) $) NIL (-1536 (|has| (-52) (-1067)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067))))) (-3646 (((-52) $) NIL (|has| (-1143) (-823)))) (-3779 (((-3 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) "failed") (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL)) (-1642 (($ $ (-52)) NIL (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) NIL)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))))) NIL (-12 (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (($ $ (-287 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) NIL (-12 (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (($ $ (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) NIL (-12 (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (($ $ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) NIL (-12 (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (($ $ (-621 (-52)) (-621 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1067)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1067)))) (($ $ (-287 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1067)))) (($ $ (-621 (-287 (-52)))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-52) (-1067))))) (-2696 (((-621 (-52)) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 (((-52) $ (-1143)) 35) (((-52) $ (-1143) (-52)) NIL)) (-2898 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) NIL)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (((-747) (-52) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-52) (-1067)))) (((-747) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) NIL)) (-3846 (((-834) $) 37 (-1536 (|has| (-52) (-593 (-834))) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-593 (-834)))))) (-3624 (($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) NIL)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (-1536 (|has| (-52) (-1067)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067))))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1006) (-13 (-1156 (-1143) (-52)) (-10 -7 (-15 -2549 ((-112) (-112))) (-15 -3438 ((-112) (-112))) (-6 -4337)))) (T -1006))
+((-2549 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))) (-3438 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))))
+(-13 (-1156 (-1143) (-52)) (-10 -7 (-15 -2549 ((-112) (-112))) (-15 -3438 ((-112) (-112))) (-6 -4337)))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3955 (((-1148) $) 9)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-1007) (-13 (-1050) (-10 -8 (-15 -3955 ((-1148) $))))) (T -1007))
+((-3955 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1007)))))
+(-13 (-1050) (-10 -8 (-15 -3955 ((-1148) $))))
+((-2659 ((|#2| $) 10)))
+(((-1008 |#1| |#2|) (-10 -8 (-15 -2659 (|#2| |#1|))) (-1009 |#2|) (-1180)) (T -1008))
+NIL
+(-10 -8 (-15 -2659 (|#2| |#1|)))
+((-2714 (((-3 |#1| "failed") $) 7)) (-2659 ((|#1| $) 8)) (-3846 (($ |#1|) 6)))
+(((-1009 |#1|) (-138) (-1180)) (T -1009))
+((-2659 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1180)))) (-2714 (*1 *2 *1) (|partial| -12 (-4 *1 (-1009 *2)) (-4 *2 (-1180)))) (-3846 (*1 *1 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1180)))))
+(-13 (-10 -8 (-15 -3846 ($ |t#1|)) (-15 -2714 ((-3 |t#1| "failed") $)) (-15 -2659 (|t#1| $))))
+((-4037 (((-621 (-621 (-287 (-400 (-923 |#2|))))) (-621 (-923 |#2|)) (-621 (-1143))) 38)))
+(((-1010 |#1| |#2|) (-10 -7 (-15 -4037 ((-621 (-621 (-287 (-400 (-923 |#2|))))) (-621 (-923 |#2|)) (-621 (-1143))))) (-541) (-13 (-541) (-1009 |#1|))) (T -1010))
+((-4037 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *6))) (-5 *4 (-621 (-1143))) (-4 *6 (-13 (-541) (-1009 *5))) (-4 *5 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *6)))))) (-5 *1 (-1010 *5 *6)))))
+(-10 -7 (-15 -4037 ((-621 (-621 (-287 (-400 (-923 |#2|))))) (-621 (-923 |#2|)) (-621 (-1143)))))
+((-3699 (((-372)) 15)) (-1950 (((-1 (-372)) (-372) (-372)) 20)) (-2632 (((-1 (-372)) (-747)) 43)) (-2862 (((-372)) 34)) (-4041 (((-1 (-372)) (-372) (-372)) 35)) (-4191 (((-372)) 26)) (-1374 (((-1 (-372)) (-372)) 27)) (-1774 (((-372) (-747)) 38)) (-2008 (((-1 (-372)) (-747)) 39)) (-1422 (((-1 (-372)) (-747) (-747)) 42)) (-2096 (((-1 (-372)) (-747) (-747)) 40)))
+(((-1011) (-10 -7 (-15 -3699 ((-372))) (-15 -2862 ((-372))) (-15 -4191 ((-372))) (-15 -1774 ((-372) (-747))) (-15 -1950 ((-1 (-372)) (-372) (-372))) (-15 -4041 ((-1 (-372)) (-372) (-372))) (-15 -1374 ((-1 (-372)) (-372))) (-15 -2008 ((-1 (-372)) (-747))) (-15 -2096 ((-1 (-372)) (-747) (-747))) (-15 -1422 ((-1 (-372)) (-747) (-747))) (-15 -2632 ((-1 (-372)) (-747))))) (T -1011))
+((-2632 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))) (-1422 (*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))) (-2096 (*1 *2 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))) (-1374 (*1 *2 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1011)) (-5 *3 (-372)))) (-4041 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1011)) (-5 *3 (-372)))) (-1950 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1011)) (-5 *3 (-372)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-372)) (-5 *1 (-1011)))) (-4191 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1011)))) (-2862 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1011)))) (-3699 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1011)))))
+(-10 -7 (-15 -3699 ((-372))) (-15 -2862 ((-372))) (-15 -4191 ((-372))) (-15 -1774 ((-372) (-747))) (-15 -1950 ((-1 (-372)) (-372) (-372))) (-15 -4041 ((-1 (-372)) (-372) (-372))) (-15 -1374 ((-1 (-372)) (-372))) (-15 -2008 ((-1 (-372)) (-747))) (-15 -2096 ((-1 (-372)) (-747) (-747))) (-15 -1422 ((-1 (-372)) (-747) (-747))) (-15 -2632 ((-1 (-372)) (-747))))
+((-2121 (((-411 |#1|) |#1|) 33)))
+(((-1012 |#1|) (-10 -7 (-15 -2121 ((-411 |#1|) |#1|))) (-1202 (-400 (-923 (-549))))) (T -1012))
+((-2121 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-1012 *3)) (-4 *3 (-1202 (-400 (-923 (-549))))))))
+(-10 -7 (-15 -2121 ((-411 |#1|) |#1|)))
+((-4254 (((-400 (-411 (-923 |#1|))) (-400 (-923 |#1|))) 14)))
+(((-1013 |#1|) (-10 -7 (-15 -4254 ((-400 (-411 (-923 |#1|))) (-400 (-923 |#1|))))) (-300)) (T -1013))
+((-4254 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-300)) (-5 *2 (-400 (-411 (-923 *4)))) (-5 *1 (-1013 *4)))))
+(-10 -7 (-15 -4254 ((-400 (-411 (-923 |#1|))) (-400 (-923 |#1|)))))
+((-2272 (((-621 (-1143)) (-400 (-923 |#1|))) 17)) (-2084 (((-400 (-1139 (-400 (-923 |#1|)))) (-400 (-923 |#1|)) (-1143)) 24)) (-2261 (((-400 (-923 |#1|)) (-400 (-1139 (-400 (-923 |#1|)))) (-1143)) 26)) (-1520 (((-3 (-1143) "failed") (-400 (-923 |#1|))) 20)) (-2686 (((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-621 (-287 (-400 (-923 |#1|))))) 32) (((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|)))) 33) (((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-621 (-1143)) (-621 (-400 (-923 |#1|)))) 28) (((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-1143) (-400 (-923 |#1|))) 29)) (-3846 (((-400 (-923 |#1|)) |#1|) 11)))
+(((-1014 |#1|) (-10 -7 (-15 -2272 ((-621 (-1143)) (-400 (-923 |#1|)))) (-15 -1520 ((-3 (-1143) "failed") (-400 (-923 |#1|)))) (-15 -2084 ((-400 (-1139 (-400 (-923 |#1|)))) (-400 (-923 |#1|)) (-1143))) (-15 -2261 ((-400 (-923 |#1|)) (-400 (-1139 (-400 (-923 |#1|)))) (-1143))) (-15 -2686 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-1143) (-400 (-923 |#1|)))) (-15 -2686 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-621 (-1143)) (-621 (-400 (-923 |#1|))))) (-15 -2686 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))))) (-15 -2686 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-621 (-287 (-400 (-923 |#1|)))))) (-15 -3846 ((-400 (-923 |#1|)) |#1|))) (-541)) (T -1014))
+((-3846 (*1 *2 *3) (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-1014 *3)) (-4 *3 (-541)))) (-2686 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-287 (-400 (-923 *4))))) (-5 *2 (-400 (-923 *4))) (-4 *4 (-541)) (-5 *1 (-1014 *4)))) (-2686 (*1 *2 *2 *3) (-12 (-5 *3 (-287 (-400 (-923 *4)))) (-5 *2 (-400 (-923 *4))) (-4 *4 (-541)) (-5 *1 (-1014 *4)))) (-2686 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-621 (-1143))) (-5 *4 (-621 (-400 (-923 *5)))) (-5 *2 (-400 (-923 *5))) (-4 *5 (-541)) (-5 *1 (-1014 *5)))) (-2686 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-400 (-923 *4))) (-5 *3 (-1143)) (-4 *4 (-541)) (-5 *1 (-1014 *4)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1139 (-400 (-923 *5))))) (-5 *4 (-1143)) (-5 *2 (-400 (-923 *5))) (-5 *1 (-1014 *5)) (-4 *5 (-541)))) (-2084 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-541)) (-5 *2 (-400 (-1139 (-400 (-923 *5))))) (-5 *1 (-1014 *5)) (-5 *3 (-400 (-923 *5))))) (-1520 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-5 *2 (-1143)) (-5 *1 (-1014 *4)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-5 *2 (-621 (-1143))) (-5 *1 (-1014 *4)))))
+(-10 -7 (-15 -2272 ((-621 (-1143)) (-400 (-923 |#1|)))) (-15 -1520 ((-3 (-1143) "failed") (-400 (-923 |#1|)))) (-15 -2084 ((-400 (-1139 (-400 (-923 |#1|)))) (-400 (-923 |#1|)) (-1143))) (-15 -2261 ((-400 (-923 |#1|)) (-400 (-1139 (-400 (-923 |#1|)))) (-1143))) (-15 -2686 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-1143) (-400 (-923 |#1|)))) (-15 -2686 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-621 (-1143)) (-621 (-400 (-923 |#1|))))) (-15 -2686 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-287 (-400 (-923 |#1|))))) (-15 -2686 ((-400 (-923 |#1|)) (-400 (-923 |#1|)) (-621 (-287 (-400 (-923 |#1|)))))) (-15 -3846 ((-400 (-923 |#1|)) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-3514 (((-621 (-2 (|:| -2681 $) (|:| -1359 (-621 (-756 |#1| (-836 |#2|)))))) (-621 (-756 |#1| (-836 |#2|)))) NIL)) (-2866 (((-621 $) (-621 (-756 |#1| (-836 |#2|)))) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-112)) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-112) (-112)) NIL)) (-2272 (((-621 (-836 |#2|)) $) NIL)) (-3422 (((-112) $) NIL)) (-2527 (((-112) $) NIL (|has| |#1| (-541)))) (-3282 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-2731 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3979 (((-621 (-2 (|:| |val| (-756 |#1| (-836 |#2|))) (|:| -1981 $))) (-756 |#1| (-836 |#2|)) $) NIL)) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ (-836 |#2|)) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-1489 (($ (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-3 (-756 |#1| (-836 |#2|)) "failed") $ (-836 |#2|)) NIL)) (-1682 (($) NIL T CONST)) (-1433 (((-112) $) NIL (|has| |#1| (-541)))) (-2555 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2595 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2397 (((-112) $) NIL (|has| |#1| (-541)))) (-2737 (((-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|))) $ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-3269 (((-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|))) $) NIL (|has| |#1| (-541)))) (-2953 (((-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|))) $) NIL (|has| |#1| (-541)))) (-2714 (((-3 $ "failed") (-621 (-756 |#1| (-836 |#2|)))) NIL)) (-2659 (($ (-621 (-756 |#1| (-836 |#2|)))) NIL)) (-3657 (((-3 $ "failed") $) NIL)) (-1903 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-756 |#1| (-836 |#2|)) (-1067))))) (-3812 (($ (-756 |#1| (-836 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (($ (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-3675 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-756 |#1| (-836 |#2|))) (|:| |den| |#1|)) (-756 |#1| (-836 |#2|)) $) NIL (|has| |#1| (-541)))) (-2217 (((-112) (-756 |#1| (-836 |#2|)) $ (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-3615 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-2557 (((-756 |#1| (-836 |#2|)) (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $ (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (((-756 |#1| (-836 |#2|)) (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $ (-756 |#1| (-836 |#2|))) NIL (|has| $ (-6 -4337))) (((-756 |#1| (-836 |#2|)) (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-1439 (((-2 (|:| -2681 (-621 (-756 |#1| (-836 |#2|)))) (|:| -1359 (-621 (-756 |#1| (-836 |#2|))))) $) NIL)) (-3516 (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-3150 (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-2064 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-2989 (((-621 (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2812 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-2745 (((-836 |#2|) $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-756 |#1| (-836 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-756 |#1| (-836 |#2|)) (-1067))))) (-1868 (($ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) $) NIL)) (-2561 (((-621 (-836 |#2|)) $) NIL)) (-2378 (((-112) (-836 |#2|) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-1878 (((-3 (-756 |#1| (-836 |#2|)) (-621 $)) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3072 (((-621 (-2 (|:| |val| (-756 |#1| (-836 |#2|))) (|:| -1981 $))) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3829 (((-3 (-756 |#1| (-836 |#2|)) "failed") $) NIL)) (-3689 (((-621 $) (-756 |#1| (-836 |#2|)) $) NIL)) (-1514 (((-3 (-112) (-621 $)) (-756 |#1| (-836 |#2|)) $) NIL)) (-4184 (((-621 (-2 (|:| |val| (-112)) (|:| -1981 $))) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-3655 (((-621 $) (-756 |#1| (-836 |#2|)) $) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) $) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-621 $)) NIL) (((-621 $) (-756 |#1| (-836 |#2|)) (-621 $)) NIL)) (-4283 (($ (-756 |#1| (-836 |#2|)) $) NIL) (($ (-621 (-756 |#1| (-836 |#2|))) $) NIL)) (-1638 (((-621 (-756 |#1| (-836 |#2|))) $) NIL)) (-2170 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-3270 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-2473 (((-112) $ $) NIL)) (-4203 (((-2 (|:| |num| (-756 |#1| (-836 |#2|))) (|:| |den| |#1|)) (-756 |#1| (-836 |#2|)) $) NIL (|has| |#1| (-541)))) (-1335 (((-112) (-756 |#1| (-836 |#2|)) $) NIL) (((-112) $) NIL)) (-4298 (((-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)) $) NIL)) (-3990 (((-1087) $) NIL)) (-3646 (((-3 (-756 |#1| (-836 |#2|)) "failed") $) NIL)) (-3779 (((-3 (-756 |#1| (-836 |#2|)) "failed") (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL)) (-2640 (((-3 $ "failed") $ (-756 |#1| (-836 |#2|))) NIL)) (-2763 (($ $ (-756 |#1| (-836 |#2|))) NIL) (((-621 $) (-756 |#1| (-836 |#2|)) $) NIL) (((-621 $) (-756 |#1| (-836 |#2|)) (-621 $)) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) $) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-621 $)) NIL)) (-1780 (((-112) (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-756 |#1| (-836 |#2|))) (-621 (-756 |#1| (-836 |#2|)))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (($ $ (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (($ $ (-287 (-756 |#1| (-836 |#2|)))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (($ $ (-621 (-287 (-756 |#1| (-836 |#2|))))) NIL (-12 (|has| (-756 |#1| (-836 |#2|)) (-302 (-756 |#1| (-836 |#2|)))) (|has| (-756 |#1| (-836 |#2|)) (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3701 (((-747) $) NIL)) (-4000 (((-747) (-756 |#1| (-836 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-756 |#1| (-836 |#2|)) (-1067)))) (((-747) (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-756 |#1| (-836 |#2|)) (-594 (-525))))) (-3854 (($ (-621 (-756 |#1| (-836 |#2|)))) NIL)) (-2858 (($ $ (-836 |#2|)) NIL)) (-3758 (($ $ (-836 |#2|)) NIL)) (-1962 (($ $) NIL)) (-4317 (($ $ (-836 |#2|)) NIL)) (-3846 (((-834) $) NIL) (((-621 (-756 |#1| (-836 |#2|))) $) NIL)) (-1824 (((-747) $) NIL (|has| (-836 |#2|) (-361)))) (-2574 (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 (-756 |#1| (-836 |#2|))))) "failed") (-621 (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 (-756 |#1| (-836 |#2|))))) "failed") (-621 (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|))) (-1 (-112) (-756 |#1| (-836 |#2|)) (-756 |#1| (-836 |#2|)))) NIL)) (-1716 (((-112) $ (-1 (-112) (-756 |#1| (-836 |#2|)) (-621 (-756 |#1| (-836 |#2|))))) NIL)) (-1518 (((-621 $) (-756 |#1| (-836 |#2|)) $) NIL) (((-621 $) (-756 |#1| (-836 |#2|)) (-621 $)) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) $) NIL) (((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-621 $)) NIL)) (-3527 (((-112) (-1 (-112) (-756 |#1| (-836 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-3002 (((-621 (-836 |#2|)) $) NIL)) (-3524 (((-112) (-756 |#1| (-836 |#2|)) $) NIL)) (-1606 (((-112) (-836 |#2|) $) NIL)) (-2389 (((-112) $ $) NIL)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1015 |#1| |#2|) (-13 (-1038 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) (-10 -8 (-15 -2866 ((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-112) (-112))))) (-444) (-621 (-1143))) (T -1015))
+((-2866 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-621 (-1143))) (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-1015 *5 *6)))))
+(-13 (-1038 |#1| (-521 (-836 |#2|)) (-836 |#2|) (-756 |#1| (-836 |#2|))) (-10 -8 (-15 -2866 ((-621 $) (-621 (-756 |#1| (-836 |#2|))) (-112) (-112)))))
+((-1950 (((-1 (-549)) (-1061 (-549))) 33)) (-1746 (((-549) (-549) (-549) (-549) (-549)) 30)) (-2112 (((-1 (-549)) |RationalNumber|) NIL)) (-4314 (((-1 (-549)) |RationalNumber|) NIL)) (-3179 (((-1 (-549)) (-549) |RationalNumber|) NIL)))
+(((-1016) (-10 -7 (-15 -1950 ((-1 (-549)) (-1061 (-549)))) (-15 -3179 ((-1 (-549)) (-549) |RationalNumber|)) (-15 -2112 ((-1 (-549)) |RationalNumber|)) (-15 -4314 ((-1 (-549)) |RationalNumber|)) (-15 -1746 ((-549) (-549) (-549) (-549) (-549))))) (T -1016))
+((-1746 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1016)))) (-4314 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1016)))) (-2112 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1016)))) (-3179 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1016)) (-5 *3 (-549)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-1061 (-549))) (-5 *2 (-1 (-549))) (-5 *1 (-1016)))))
+(-10 -7 (-15 -1950 ((-1 (-549)) (-1061 (-549)))) (-15 -3179 ((-1 (-549)) (-549) |RationalNumber|)) (-15 -2112 ((-1 (-549)) |RationalNumber|)) (-15 -4314 ((-1 (-549)) |RationalNumber|)) (-15 -1746 ((-549) (-549) (-549) (-549) (-549))))
+((-3846 (((-834) $) NIL) (($ (-549)) 10)))
+(((-1017 |#1|) (-10 -8 (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|))) (-1018)) (T -1017))
+NIL
+(-10 -8 (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ (-549)) 27)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-1018) (-138)) (T -1018))
+((-2082 (*1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-747)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1018)))))
+(-13 (-1025) (-703) (-624 $) (-10 -8 (-15 -2082 ((-747))) (-15 -3846 ($ (-549))) (-6 -4334)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 $) . T) ((-703) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-1842 (((-400 (-923 |#2|)) (-621 |#2|) (-621 |#2|) (-747) (-747)) 46)))
+(((-1019 |#1| |#2|) (-10 -7 (-15 -1842 ((-400 (-923 |#2|)) (-621 |#2|) (-621 |#2|) (-747) (-747)))) (-1143) (-356)) (T -1019))
+((-1842 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-621 *6)) (-5 *4 (-747)) (-4 *6 (-356)) (-5 *2 (-400 (-923 *6))) (-5 *1 (-1019 *5 *6)) (-14 *5 (-1143)))))
+(-10 -7 (-15 -1842 ((-400 (-923 |#2|)) (-621 |#2|) (-621 |#2|) (-747) (-747))))
+((-2092 (((-112) $) 29)) (-2340 (((-112) $) 16)) (-2142 (((-747) $) 13)) (-2155 (((-747) $) 14)) (-1757 (((-112) $) 26)) (-2974 (((-112) $) 31)))
+(((-1020 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2155 ((-747) |#1|)) (-15 -2142 ((-747) |#1|)) (-15 -2974 ((-112) |#1|)) (-15 -2092 ((-112) |#1|)) (-15 -1757 ((-112) |#1|)) (-15 -2340 ((-112) |#1|))) (-1021 |#2| |#3| |#4| |#5| |#6|) (-747) (-747) (-1018) (-232 |#3| |#4|) (-232 |#2| |#4|)) (T -1020))
+NIL
+(-10 -8 (-15 -2155 ((-747) |#1|)) (-15 -2142 ((-747) |#1|)) (-15 -2974 ((-112) |#1|)) (-15 -2092 ((-112) |#1|)) (-15 -1757 ((-112) |#1|)) (-15 -2340 ((-112) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2092 (((-112) $) 51)) (-2001 (((-3 $ "failed") $ $) 19)) (-2340 (((-112) $) 53)) (-1584 (((-112) $ (-747)) 61)) (-1682 (($) 17 T CONST)) (-3460 (($ $) 34 (|has| |#3| (-300)))) (-4060 ((|#4| $ (-549)) 39)) (-3123 (((-747) $) 33 (|has| |#3| (-541)))) (-1809 ((|#3| $ (-549) (-549)) 41)) (-2989 (((-621 |#3|) $) 68 (|has| $ (-6 -4337)))) (-1323 (((-747) $) 32 (|has| |#3| (-541)))) (-1479 (((-621 |#5|) $) 31 (|has| |#3| (-541)))) (-2142 (((-747) $) 45)) (-2155 (((-747) $) 44)) (-3194 (((-112) $ (-747)) 60)) (-1761 (((-549) $) 49)) (-2703 (((-549) $) 47)) (-1562 (((-621 |#3|) $) 69 (|has| $ (-6 -4337)))) (-2090 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1067)) (|has| $ (-6 -4337))))) (-1661 (((-549) $) 48)) (-1887 (((-549) $) 46)) (-3946 (($ (-621 (-621 |#3|))) 54)) (-1868 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2913 (((-621 (-621 |#3|)) $) 43)) (-1508 (((-112) $ (-747)) 59)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2042 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-541)))) (-1780 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#3|) (-621 |#3|)) 75 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-287 |#3|)) 73 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-621 (-287 |#3|))) 72 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))) (-4144 (((-112) $ $) 55)) (-3670 (((-112) $) 58)) (-3742 (($) 57)) (-3341 ((|#3| $ (-549) (-549)) 42) ((|#3| $ (-549) (-549) |#3|) 40)) (-1757 (((-112) $) 52)) (-4000 (((-747) |#3| $) 70 (-12 (|has| |#3| (-1067)) (|has| $ (-6 -4337)))) (((-747) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4337)))) (-2281 (($ $) 56)) (-2851 ((|#5| $ (-549)) 38)) (-3846 (((-834) $) 11)) (-3527 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4337)))) (-2974 (((-112) $) 50)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#3|) 35 (|has| |#3| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3775 (((-747) $) 62 (|has| $ (-6 -4337)))))
+(((-1021 |#1| |#2| |#3| |#4| |#5|) (-138) (-747) (-747) (-1018) (-232 |t#2| |t#3|) (-232 |t#1| |t#3|)) (T -1021))
+((-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *5))) (-4 *5 (-1018)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-2340 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-1761 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))) (-1887 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))) (-2142 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-621 (-621 *5))))) (-3341 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1018)))) (-1809 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1018)))) (-3341 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *2 (-1018)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) (-4060 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *6 *2 *7)) (-4 *6 (-1018)) (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6)))) (-2851 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *6 *7 *2)) (-4 *6 (-1018)) (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6)))) (-2797 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-2042 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-541)))) (-2513 (*1 *1 *1 *2) (-12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) (-3460 (*1 *1 *1) (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *2 *4)) (-4 *4 (-300)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-541)) (-5 *2 (-747)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-541)) (-5 *2 (-747)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-541)) (-5 *2 (-621 *7)))))
+(-13 (-111 |t#3| |t#3|) (-481 |t#3|) (-10 -8 (-6 -4337) (IF (|has| |t#3| (-170)) (-6 (-694 |t#3|)) |%noBranch|) (-15 -3946 ($ (-621 (-621 |t#3|)))) (-15 -2340 ((-112) $)) (-15 -1757 ((-112) $)) (-15 -2092 ((-112) $)) (-15 -2974 ((-112) $)) (-15 -1761 ((-549) $)) (-15 -1661 ((-549) $)) (-15 -2703 ((-549) $)) (-15 -1887 ((-549) $)) (-15 -2142 ((-747) $)) (-15 -2155 ((-747) $)) (-15 -2913 ((-621 (-621 |t#3|)) $)) (-15 -3341 (|t#3| $ (-549) (-549))) (-15 -1809 (|t#3| $ (-549) (-549))) (-15 -3341 (|t#3| $ (-549) (-549) |t#3|)) (-15 -4060 (|t#4| $ (-549))) (-15 -2851 (|t#5| $ (-549))) (-15 -2797 ($ (-1 |t#3| |t#3|) $)) (-15 -2797 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-541)) (-15 -2042 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-356)) (-15 -2513 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-300)) (-15 -3460 ($ $)) |%noBranch|) (IF (|has| |t#3| (-541)) (PROGN (-15 -3123 ((-747) $)) (-15 -1323 ((-747) $)) (-15 -1479 ((-621 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-593 (-834)) . T) ((-302 |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))) ((-481 |#3|) . T) ((-505 |#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))) ((-624 |#3|) . T) ((-694 |#3|) |has| |#3| (-170)) ((-1024 |#3|) . T) ((-1067) . T) ((-1180) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2092 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-2340 (((-112) $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-1682 (($) NIL T CONST)) (-3460 (($ $) 43 (|has| |#3| (-300)))) (-4060 (((-234 |#2| |#3|) $ (-549)) 32)) (-2176 (($ (-665 |#3|)) 41)) (-3123 (((-747) $) 45 (|has| |#3| (-541)))) (-1809 ((|#3| $ (-549) (-549)) NIL)) (-2989 (((-621 |#3|) $) NIL (|has| $ (-6 -4337)))) (-1323 (((-747) $) 47 (|has| |#3| (-541)))) (-1479 (((-621 (-234 |#1| |#3|)) $) 51 (|has| |#3| (-541)))) (-2142 (((-747) $) NIL)) (-2155 (((-747) $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-1761 (((-549) $) NIL)) (-2703 (((-549) $) NIL)) (-1562 (((-621 |#3|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#3| (-1067))))) (-1661 (((-549) $) NIL)) (-1887 (((-549) $) NIL)) (-3946 (($ (-621 (-621 |#3|))) 27)) (-1868 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2913 (((-621 (-621 |#3|)) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2042 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-541)))) (-1780 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#3|) (-621 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-287 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-621 (-287 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#3| $ (-549) (-549)) NIL) ((|#3| $ (-549) (-549) |#3|) NIL)) (-2985 (((-133)) 54 (|has| |#3| (-356)))) (-1757 (((-112) $) NIL)) (-4000 (((-747) |#3| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#3| (-1067)))) (((-747) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) 63 (|has| |#3| (-594 (-525))))) (-2851 (((-234 |#1| |#3|) $ (-549)) 36)) (-3846 (((-834) $) 16) (((-665 |#3|) $) 38)) (-3527 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4337)))) (-2974 (((-112) $) NIL)) (-3276 (($) 13 T CONST)) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1022 |#1| |#2| |#3|) (-13 (-1021 |#1| |#2| |#3| (-234 |#2| |#3|) (-234 |#1| |#3|)) (-593 (-665 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1233 |#3|)) |%noBranch|) (IF (|has| |#3| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (-15 -2176 ($ (-665 |#3|))) (-15 -3846 ((-665 |#3|) $)))) (-747) (-747) (-1018)) (T -1022))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-665 *5)) (-5 *1 (-1022 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)) (-4 *5 (-1018)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-665 *5)) (-4 *5 (-1018)) (-5 *1 (-1022 *3 *4 *5)) (-14 *3 (-747)) (-14 *4 (-747)))))
+(-13 (-1021 |#1| |#2| |#3| (-234 |#2| |#3|) (-234 |#1| |#3|)) (-593 (-665 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1233 |#3|)) |%noBranch|) (IF (|has| |#3| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|) (-15 -2176 ($ (-665 |#3|))) (-15 -3846 ((-665 |#3|) $))))
+((-2557 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2797 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-1023 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2797 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2557 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-747) (-747) (-1018) (-232 |#2| |#3|) (-232 |#1| |#3|) (-1021 |#1| |#2| |#3| |#4| |#5|) (-1018) (-232 |#2| |#7|) (-232 |#1| |#7|) (-1021 |#1| |#2| |#7| |#8| |#9|)) (T -1023))
+((-2557 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1018)) (-4 *2 (-1018)) (-14 *5 (-747)) (-14 *6 (-747)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *12 (-1021 *5 *6 *2 *10 *11)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1018)) (-4 *10 (-1018)) (-14 *5 (-747)) (-14 *6 (-747)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *2 (-1021 *5 *6 *10 *11 *12)) (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) (-4 *12 (-232 *5 *10)))))
+(-10 -7 (-15 -2797 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2557 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ |#1|) 23)))
+(((-1024 |#1|) (-138) (-1025)) (T -1024))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1025)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-1023) (-138)) (T -1023))
-NIL
-(-13 (-21) (-1075))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-1075) . T) ((-1063) . T))
-((-3931 (($ $) 16)) (-3659 (($ $) 22)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 49)) (-3160 (($ $) 24)) (-3682 (($ $) 11)) (-1276 (($ $) 38)) (-2838 (((-370) $) NIL) (((-217) $) NIL) (((-861 (-370)) $) 33)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) 28) (($ (-547)) NIL) (($ (-398 (-547))) 28)) (-2736 (((-745)) 8)) (-3720 (($ $) 39)))
-(((-1024 |#1|) (-10 -8 (-15 -3659 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -1276 (|#1| |#1|)) (-15 -3720 (|#1| |#1|)) (-15 -3160 (|#1| |#1|)) (-15 -3521 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -2838 ((-861 (-370)) |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 (|#1| (-547))) (-15 -2838 ((-217) |#1|)) (-15 -2838 ((-370) |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| (-547))) (-15 -2736 ((-745))) (-15 -3838 ((-832) |#1|))) (-1025)) (T -1024))
-((-2736 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1024 *3)) (-4 *3 (-1025)))))
-(-10 -8 (-15 -3659 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -1276 (|#1| |#1|)) (-15 -3720 (|#1| |#1|)) (-15 -3160 (|#1| |#1|)) (-15 -3521 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -2838 ((-861 (-370)) |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 (|#1| (-547))) (-15 -2838 ((-217) |#1|)) (-15 -2838 ((-370) |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| (-547))) (-15 -2736 ((-745))) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2092 (((-547) $) 86)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3931 (($ $) 84)) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 70)) (-3299 (((-409 $) $) 69)) (-2127 (($ $) 94)) (-1547 (((-112) $ $) 57)) (-2500 (((-547) $) 111)) (-1948 (($) 17 T CONST)) (-3659 (($ $) 83)) (-2707 (((-3 (-547) "failed") $) 99) (((-3 (-398 (-547)) "failed") $) 96)) (-2652 (((-547) $) 98) (((-398 (-547)) $) 95)) (-2089 (($ $ $) 53)) (-3855 (((-3 $ "failed") $) 32)) (-2061 (($ $ $) 54)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-1791 (((-112) $) 68)) (-4270 (((-112) $) 109)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 90)) (-2261 (((-112) $) 30)) (-3869 (($ $ (-547)) 93)) (-3160 (($ $) 89)) (-1860 (((-112) $) 110)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2856 (($ $ $) 108)) (-3567 (($ $ $) 107)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 67)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-3682 (($ $) 85)) (-1276 (($ $) 87)) (-2115 (((-409 $) $) 71)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2471 (((-745) $) 56)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55)) (-2838 (((-370) $) 102) (((-217) $) 101) (((-861 (-370)) $) 91)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63) (($ (-547)) 100) (($ (-398 (-547))) 97)) (-2736 (((-745)) 28)) (-3720 (($ $) 88)) (-3577 (((-112) $ $) 37)) (-2255 (($ $) 112)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2441 (((-112) $ $) 105)) (-2418 (((-112) $ $) 104)) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 106)) (-2405 (((-112) $ $) 103)) (-2506 (($ $ $) 62)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66) (($ $ (-398 (-547))) 92)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
(((-1025) (-138)) (T -1025))
-((-2255 (*1 *1 *1) (-4 *1 (-1025))) (-3160 (*1 *1 *1) (-4 *1 (-1025))) (-3720 (*1 *1 *1) (-4 *1 (-1025))) (-1276 (*1 *1 *1) (-4 *1 (-1025))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-1025)) (-5 *2 (-547)))) (-3682 (*1 *1 *1) (-4 *1 (-1025))) (-3931 (*1 *1 *1) (-4 *1 (-1025))) (-3659 (*1 *1 *1) (-4 *1 (-1025))))
-(-13 (-354) (-819) (-991) (-1007 (-547)) (-1007 (-398 (-547))) (-971) (-592 (-861 (-370))) (-855 (-370)) (-145) (-10 -8 (-15 -3160 ($ $)) (-15 -3720 ($ $)) (-15 -1276 ($ $)) (-15 -2092 ((-547) $)) (-15 -3682 ($ $)) (-15 -3931 ($ $)) (-15 -3659 ($ $)) (-15 -2255 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-591 (-832)) . T) ((-169) . T) ((-592 (-217)) . T) ((-592 (-370)) . T) ((-592 (-861 (-370))) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-855 (-370)) . T) ((-889) . T) ((-971) . T) ((-991) . T) ((-1007 (-398 (-547))) . T) ((-1007 (-547)) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1177) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) |#2| $) 23)) (-3608 ((|#1| $) 10)) (-2500 (((-547) |#2| $) 88)) (-1531 (((-3 $ "failed") |#2| (-890)) 57)) (-3840 ((|#1| $) 28)) (-2592 ((|#1| |#2| $ |#1|) 37)) (-2557 (($ $) 25)) (-3855 (((-3 |#2| "failed") |#2| $) 87)) (-4270 (((-112) |#2| $) NIL)) (-1860 (((-112) |#2| $) NIL)) (-1736 (((-112) |#2| $) 24)) (-2846 ((|#1| $) 89)) (-3830 ((|#1| $) 27)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1882 ((|#2| $) 79)) (-3838 (((-832) $) 70)) (-2654 ((|#1| |#2| $ |#1|) 38)) (-2826 (((-619 $) |#2|) 59)) (-2381 (((-112) $ $) 74)))
-(((-1026 |#1| |#2|) (-13 (-1033 |#1| |#2|) (-10 -8 (-15 -3830 (|#1| $)) (-15 -3840 (|#1| $)) (-15 -3608 (|#1| $)) (-15 -2846 (|#1| $)) (-15 -2557 ($ $)) (-15 -1736 ((-112) |#2| $)) (-15 -2592 (|#1| |#2| $ |#1|)))) (-13 (-819) (-354)) (-1195 |#1|)) (T -1026))
-((-2592 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1195 *2)))) (-3830 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1195 *2)))) (-3840 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1195 *2)))) (-3608 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1195 *2)))) (-2846 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1195 *2)))) (-2557 (*1 *1 *1) (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1195 *2)))) (-1736 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-819) (-354))) (-5 *2 (-112)) (-5 *1 (-1026 *4 *3)) (-4 *3 (-1195 *4)))))
-(-13 (-1033 |#1| |#2|) (-10 -8 (-15 -3830 (|#1| $)) (-15 -3840 (|#1| $)) (-15 -3608 (|#1| $)) (-15 -2846 (|#1| $)) (-15 -2557 ($ $)) (-15 -1736 ((-112) |#2| $)) (-15 -2592 (|#1| |#2| $ |#1|))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1933 (($ $ $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3780 (($ $ $ $) NIL)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL)) (-1303 (($ $ $) NIL)) (-1948 (($) NIL T CONST)) (-1963 (($ (-1136)) 10) (($ (-547)) 7)) (-2707 (((-3 (-547) "failed") $) NIL)) (-2652 (((-547) $) NIL)) (-2089 (($ $ $) NIL)) (-1694 (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL) (((-663 (-547)) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-4265 (((-3 (-398 (-547)) "failed") $) NIL)) (-3198 (((-112) $) NIL)) (-2453 (((-398 (-547)) $) NIL)) (-3232 (($) NIL) (($ $) NIL)) (-2061 (($ $ $) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-3459 (($ $ $ $) NIL)) (-3125 (($ $ $) NIL)) (-4270 (((-112) $) NIL)) (-3091 (($ $ $) NIL)) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL)) (-2261 (((-112) $) NIL)) (-2935 (((-112) $) NIL)) (-3477 (((-3 $ "failed") $) NIL)) (-1860 (((-112) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1618 (($ $ $ $) NIL)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2426 (($ $) NIL)) (-4202 (($ $) NIL)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1617 (($ $ $) NIL)) (-3054 (($) NIL T CONST)) (-3773 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2462 (($ $) NIL)) (-2115 (((-409 $) $) NIL)) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3874 (((-112) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3448 (($ $ (-745)) NIL) (($ $) NIL)) (-1892 (($ $) NIL)) (-2274 (($ $) NIL)) (-2838 (((-547) $) 16) (((-523) $) NIL) (((-861 (-547)) $) NIL) (((-370) $) NIL) (((-217) $) NIL) (($ (-1136)) 9)) (-3838 (((-832) $) 20) (($ (-547)) 6) (($ $) NIL) (($ (-547)) 6)) (-2736 (((-745)) NIL)) (-1253 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-1856 (($) NIL)) (-3577 (((-112) $ $) NIL)) (-1292 (($ $ $ $) NIL)) (-2255 (($ $) NIL)) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-745)) NIL) (($ $) NIL)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) NIL)) (-2493 (($ $) 19) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL)))
-(((-1027) (-13 (-532) (-10 -8 (-6 -4316) (-6 -4321) (-6 -4317) (-15 -2838 ($ (-1136))) (-15 -1963 ($ (-1136))) (-15 -1963 ($ (-547)))))) (T -1027))
-((-2838 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1027)))) (-1963 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1027)))) (-1963 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1027)))))
-(-13 (-532) (-10 -8 (-6 -4316) (-6 -4321) (-6 -4317) (-15 -2838 ($ (-1136))) (-15 -1963 ($ (-1136))) (-15 -1963 ($ (-547)))))
-((-3826 (((-112) $ $) NIL (-1530 (|has| (-52) (-1063)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063))))) (-3726 (($) NIL) (($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) NIL)) (-1652 (((-1224) $ (-1136) (-1136)) NIL (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) NIL)) (-3424 (($) 9)) (-2247 (((-52) $ (-1136) (-52)) NIL)) (-2431 (($ $) 30)) (-1387 (($ $) 28)) (-1507 (($ $) 27)) (-4287 (($ $) 29)) (-1432 (($ $) 32)) (-4193 (($ $) 33)) (-3383 (($ $) 26)) (-3256 (($ $) 31)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) 25 (|has| $ (-6 -4329)))) (-3482 (((-3 (-52) "failed") (-1136) $) 40)) (-1948 (($) NIL T CONST)) (-2209 (($) 7)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063))))) (-1513 (($ (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) 50 (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-3 (-52) "failed") (-1136) $) NIL)) (-3803 (($ (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (($ (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $ (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (((-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $ (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329)))) (-2981 (((-3 (-1119) "failed") $ (-1119) (-547)) 59)) (-1872 (((-52) $ (-1136) (-52)) NIL (|has| $ (-6 -4330)))) (-1802 (((-52) $ (-1136)) NIL)) (-2982 (((-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-619 (-52)) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-1136) $) NIL (|has| (-1136) (-821)))) (-2284 (((-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) 35 (|has| $ (-6 -4329))) (((-619 (-52)) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-52) (-1063))))) (-1416 (((-1136) $) NIL (|has| (-1136) (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4330))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (-1530 (|has| (-52) (-1063)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063))))) (-3441 (((-619 (-1136)) $) NIL)) (-4073 (((-112) (-1136) $) NIL)) (-4266 (((-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) NIL)) (-2657 (($ (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) 43)) (-2121 (((-619 (-1136)) $) NIL)) (-2018 (((-112) (-1136) $) NIL)) (-3979 (((-1082) $) NIL (-1530 (|has| (-52) (-1063)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063))))) (-3715 (((-370) $ (-1136)) 49)) (-2492 (((-619 (-1119)) $ (-1119)) 60)) (-3638 (((-52) $) NIL (|has| (-1136) (-821)))) (-3650 (((-3 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) "failed") (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL)) (-3632 (($ $ (-52)) NIL (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) NIL)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))))) NIL (-12 (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (($ $ (-285 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) NIL (-12 (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (($ $ (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) NIL (-12 (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (($ $ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) NIL (-12 (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-300 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (($ $ (-619 (-52)) (-619 (-52))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-285 (-52))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-619 (-285 (-52)))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-52) (-1063))))) (-2987 (((-619 (-52)) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 (((-52) $ (-1136)) NIL) (((-52) $ (-1136) (-52)) NIL)) (-2699 (($) NIL) (($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) NIL)) (-3675 (($ $ (-1136)) 51)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063)))) (((-745) (-52) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-52) (-1063)))) (((-745) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) 37)) (-1945 (($ $ $) 38)) (-3838 (((-832) $) NIL (-1530 (|has| (-52) (-591 (-832))) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-591 (-832)))))) (-1346 (($ $ (-1136) (-370)) 47)) (-3089 (($ $ (-1136) (-370)) 48)) (-2300 (($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))))) NIL)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 (-1136)) (|:| -1786 (-52)))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (-1530 (|has| (-52) (-1063)) (|has| (-2 (|:| -3331 (-1136)) (|:| -1786 (-52))) (-1063))))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1028) (-13 (-1149 (-1136) (-52)) (-10 -8 (-15 -1945 ($ $ $)) (-15 -2209 ($)) (-15 -3383 ($ $)) (-15 -1507 ($ $)) (-15 -1387 ($ $)) (-15 -4287 ($ $)) (-15 -3256 ($ $)) (-15 -2431 ($ $)) (-15 -1432 ($ $)) (-15 -4193 ($ $)) (-15 -1346 ($ $ (-1136) (-370))) (-15 -3089 ($ $ (-1136) (-370))) (-15 -3715 ((-370) $ (-1136))) (-15 -2492 ((-619 (-1119)) $ (-1119))) (-15 -3675 ($ $ (-1136))) (-15 -3424 ($)) (-15 -2981 ((-3 (-1119) "failed") $ (-1119) (-547))) (-6 -4329)))) (T -1028))
-((-1945 (*1 *1 *1 *1) (-5 *1 (-1028))) (-2209 (*1 *1) (-5 *1 (-1028))) (-3383 (*1 *1 *1) (-5 *1 (-1028))) (-1507 (*1 *1 *1) (-5 *1 (-1028))) (-1387 (*1 *1 *1) (-5 *1 (-1028))) (-4287 (*1 *1 *1) (-5 *1 (-1028))) (-3256 (*1 *1 *1) (-5 *1 (-1028))) (-2431 (*1 *1 *1) (-5 *1 (-1028))) (-1432 (*1 *1 *1) (-5 *1 (-1028))) (-4193 (*1 *1 *1) (-5 *1 (-1028))) (-1346 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-370)) (-5 *1 (-1028)))) (-3089 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-370)) (-5 *1 (-1028)))) (-3715 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-370)) (-5 *1 (-1028)))) (-2492 (*1 *2 *1 *3) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1028)) (-5 *3 (-1119)))) (-3675 (*1 *1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1028)))) (-3424 (*1 *1) (-5 *1 (-1028))) (-2981 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1119)) (-5 *3 (-547)) (-5 *1 (-1028)))))
-(-13 (-1149 (-1136) (-52)) (-10 -8 (-15 -1945 ($ $ $)) (-15 -2209 ($)) (-15 -3383 ($ $)) (-15 -1507 ($ $)) (-15 -1387 ($ $)) (-15 -4287 ($ $)) (-15 -3256 ($ $)) (-15 -2431 ($ $)) (-15 -1432 ($ $)) (-15 -4193 ($ $)) (-15 -1346 ($ $ (-1136) (-370))) (-15 -3089 ($ $ (-1136) (-370))) (-15 -3715 ((-370) $ (-1136))) (-15 -2492 ((-619 (-1119)) $ (-1119))) (-15 -3675 ($ $ (-1136))) (-15 -3424 ($)) (-15 -2981 ((-3 (-1119) "failed") $ (-1119) (-547))) (-6 -4329)))
-((-1336 (($ $) 45)) (-2577 (((-112) $ $) 74)) (-2707 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 (-547) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-921 (-398 (-547)))) 227) (((-3 $ "failed") (-921 (-547))) 226) (((-3 $ "failed") (-921 |#2|)) 229)) (-2652 ((|#2| $) NIL) (((-398 (-547)) $) NIL) (((-547) $) NIL) ((|#4| $) NIL) (($ (-921 (-398 (-547)))) 215) (($ (-921 (-547))) 211) (($ (-921 |#2|)) 231)) (-2063 (($ $) NIL) (($ $ |#4|) 43)) (-2173 (((-112) $ $) 112) (((-112) $ (-619 $)) 113)) (-3717 (((-112) $) 56)) (-3445 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 107)) (-3530 (($ $) 138)) (-4109 (($ $) 134)) (-1305 (($ $) 133)) (-4298 (($ $ $) 79) (($ $ $ |#4|) 84)) (-4222 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1779 (((-112) $ $) 121) (((-112) $ (-619 $)) 122)) (-3338 ((|#4| $) 33)) (-1643 (($ $ $) 110)) (-2769 (((-112) $) 55)) (-1873 (((-745) $) 35)) (-1940 (($ $) 152)) (-2486 (($ $) 149)) (-3193 (((-619 $) $) 68)) (-2102 (($ $) 57)) (-4100 (($ $) 145)) (-3770 (((-619 $) $) 65)) (-2303 (($ $) 59)) (-2037 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3462 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1368 (-745))) $ $) 111)) (-1800 (((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2235 $) (|:| -2916 $)) $ $) 108) (((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2235 $) (|:| -2916 $)) $ $ |#4|) 109)) (-1291 (((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2916 $)) $ $) 104) (((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2916 $)) $ $ |#4|) 105)) (-3170 (($ $ $) 89) (($ $ $ |#4|) 95)) (-1876 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3236 (((-619 $) $) 51)) (-3112 (((-112) $ $) 118) (((-112) $ (-619 $)) 119)) (-3065 (($ $ $) 103)) (-3054 (($ $) 37)) (-1458 (((-112) $ $) 72)) (-2012 (((-112) $ $) 114) (((-112) $ (-619 $)) 116)) (-1772 (($ $ $) 101)) (-1775 (($ $) 40)) (-3719 ((|#2| |#2| $) 142) (($ (-619 $)) NIL) (($ $ $) NIL)) (-3660 (($ $ |#2|) NIL) (($ $ $) 131)) (-2299 (($ $ |#2|) 126) (($ $ $) 129)) (-1711 (($ $) 48)) (-4284 (($ $) 52)) (-2838 (((-861 (-370)) $) NIL) (((-861 (-547)) $) NIL) (((-523) $) NIL) (($ (-921 (-398 (-547)))) 217) (($ (-921 (-547))) 213) (($ (-921 |#2|)) 228) (((-1119) $) 250) (((-921 |#2|) $) 162)) (-3838 (((-832) $) 30) (($ (-547)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-921 |#2|) $) 163) (($ (-398 (-547))) NIL) (($ $) NIL)) (-1731 (((-3 (-112) "failed") $ $) 71)))
-(((-1029 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3838 (|#1| |#1|)) (-15 -3719 (|#1| |#1| |#1|)) (-15 -3719 (|#1| (-619 |#1|))) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 ((-921 |#2|) |#1|)) (-15 -2838 ((-921 |#2|) |#1|)) (-15 -2838 ((-1119) |#1|)) (-15 -1940 (|#1| |#1|)) (-15 -2486 (|#1| |#1|)) (-15 -4100 (|#1| |#1|)) (-15 -3530 (|#1| |#1|)) (-15 -3719 (|#2| |#2| |#1|)) (-15 -3660 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -3660 (|#1| |#1| |#2|)) (-15 -2299 (|#1| |#1| |#2|)) (-15 -4109 (|#1| |#1|)) (-15 -1305 (|#1| |#1|)) (-15 -2838 (|#1| (-921 |#2|))) (-15 -2652 (|#1| (-921 |#2|))) (-15 -2707 ((-3 |#1| "failed") (-921 |#2|))) (-15 -2838 (|#1| (-921 (-547)))) (-15 -2652 (|#1| (-921 (-547)))) (-15 -2707 ((-3 |#1| "failed") (-921 (-547)))) (-15 -2838 (|#1| (-921 (-398 (-547))))) (-15 -2652 (|#1| (-921 (-398 (-547))))) (-15 -2707 ((-3 |#1| "failed") (-921 (-398 (-547))))) (-15 -3065 (|#1| |#1| |#1|)) (-15 -1772 (|#1| |#1| |#1|)) (-15 -3462 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1368 (-745))) |#1| |#1|)) (-15 -1643 (|#1| |#1| |#1|)) (-15 -3445 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -1800 ((-2 (|:| -1563 |#1|) (|:| |gap| (-745)) (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1| |#4|)) (-15 -1800 ((-2 (|:| -1563 |#1|) (|:| |gap| (-745)) (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -1291 ((-2 (|:| -1563 |#1|) (|:| |gap| (-745)) (|:| -2916 |#1|)) |#1| |#1| |#4|)) (-15 -1291 ((-2 (|:| -1563 |#1|) (|:| |gap| (-745)) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -1876 (|#1| |#1| |#1| |#4|)) (-15 -3170 (|#1| |#1| |#1| |#4|)) (-15 -1876 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -4222 (|#1| |#1| |#1| |#4|)) (-15 -4298 (|#1| |#1| |#1| |#4|)) (-15 -4222 (|#1| |#1| |#1|)) (-15 -4298 (|#1| |#1| |#1|)) (-15 -1779 ((-112) |#1| (-619 |#1|))) (-15 -1779 ((-112) |#1| |#1|)) (-15 -3112 ((-112) |#1| (-619 |#1|))) (-15 -3112 ((-112) |#1| |#1|)) (-15 -2012 ((-112) |#1| (-619 |#1|))) (-15 -2012 ((-112) |#1| |#1|)) (-15 -2173 ((-112) |#1| (-619 |#1|))) (-15 -2173 ((-112) |#1| |#1|)) (-15 -2577 ((-112) |#1| |#1|)) (-15 -1458 ((-112) |#1| |#1|)) (-15 -1731 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3193 ((-619 |#1|) |#1|)) (-15 -3770 ((-619 |#1|) |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -2102 (|#1| |#1|)) (-15 -3717 ((-112) |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2063 (|#1| |#1| |#4|)) (-15 -2037 (|#1| |#1| |#4|)) (-15 -4284 (|#1| |#1|)) (-15 -3236 ((-619 |#1|) |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1336 (|#1| |#1|)) (-15 -1775 (|#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -1873 ((-745) |#1|)) (-15 -3338 (|#4| |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -2838 ((-861 (-547)) |#1|)) (-15 -2838 ((-861 (-370)) |#1|)) (-15 -2652 (|#4| |#1|)) (-15 -2707 ((-3 |#4| "failed") |#1|)) (-15 -3838 (|#1| |#4|)) (-15 -2037 (|#2| |#1|)) (-15 -2063 (|#1| |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|))) (-1030 |#2| |#3| |#4|) (-1016) (-767) (-821)) (T -1029))
-NIL
-(-10 -8 (-15 -3838 (|#1| |#1|)) (-15 -3719 (|#1| |#1| |#1|)) (-15 -3719 (|#1| (-619 |#1|))) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 ((-921 |#2|) |#1|)) (-15 -2838 ((-921 |#2|) |#1|)) (-15 -2838 ((-1119) |#1|)) (-15 -1940 (|#1| |#1|)) (-15 -2486 (|#1| |#1|)) (-15 -4100 (|#1| |#1|)) (-15 -3530 (|#1| |#1|)) (-15 -3719 (|#2| |#2| |#1|)) (-15 -3660 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -3660 (|#1| |#1| |#2|)) (-15 -2299 (|#1| |#1| |#2|)) (-15 -4109 (|#1| |#1|)) (-15 -1305 (|#1| |#1|)) (-15 -2838 (|#1| (-921 |#2|))) (-15 -2652 (|#1| (-921 |#2|))) (-15 -2707 ((-3 |#1| "failed") (-921 |#2|))) (-15 -2838 (|#1| (-921 (-547)))) (-15 -2652 (|#1| (-921 (-547)))) (-15 -2707 ((-3 |#1| "failed") (-921 (-547)))) (-15 -2838 (|#1| (-921 (-398 (-547))))) (-15 -2652 (|#1| (-921 (-398 (-547))))) (-15 -2707 ((-3 |#1| "failed") (-921 (-398 (-547))))) (-15 -3065 (|#1| |#1| |#1|)) (-15 -1772 (|#1| |#1| |#1|)) (-15 -3462 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1368 (-745))) |#1| |#1|)) (-15 -1643 (|#1| |#1| |#1|)) (-15 -3445 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -1800 ((-2 (|:| -1563 |#1|) (|:| |gap| (-745)) (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1| |#4|)) (-15 -1800 ((-2 (|:| -1563 |#1|) (|:| |gap| (-745)) (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -1291 ((-2 (|:| -1563 |#1|) (|:| |gap| (-745)) (|:| -2916 |#1|)) |#1| |#1| |#4|)) (-15 -1291 ((-2 (|:| -1563 |#1|) (|:| |gap| (-745)) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -1876 (|#1| |#1| |#1| |#4|)) (-15 -3170 (|#1| |#1| |#1| |#4|)) (-15 -1876 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -4222 (|#1| |#1| |#1| |#4|)) (-15 -4298 (|#1| |#1| |#1| |#4|)) (-15 -4222 (|#1| |#1| |#1|)) (-15 -4298 (|#1| |#1| |#1|)) (-15 -1779 ((-112) |#1| (-619 |#1|))) (-15 -1779 ((-112) |#1| |#1|)) (-15 -3112 ((-112) |#1| (-619 |#1|))) (-15 -3112 ((-112) |#1| |#1|)) (-15 -2012 ((-112) |#1| (-619 |#1|))) (-15 -2012 ((-112) |#1| |#1|)) (-15 -2173 ((-112) |#1| (-619 |#1|))) (-15 -2173 ((-112) |#1| |#1|)) (-15 -2577 ((-112) |#1| |#1|)) (-15 -1458 ((-112) |#1| |#1|)) (-15 -1731 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3193 ((-619 |#1|) |#1|)) (-15 -3770 ((-619 |#1|) |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -2102 (|#1| |#1|)) (-15 -3717 ((-112) |#1|)) (-15 -2769 ((-112) |#1|)) (-15 -2063 (|#1| |#1| |#4|)) (-15 -2037 (|#1| |#1| |#4|)) (-15 -4284 (|#1| |#1|)) (-15 -3236 ((-619 |#1|) |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1336 (|#1| |#1|)) (-15 -1775 (|#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -1873 ((-745) |#1|)) (-15 -3338 (|#4| |#1|)) (-15 -2838 ((-523) |#1|)) (-15 -2838 ((-861 (-547)) |#1|)) (-15 -2838 ((-861 (-370)) |#1|)) (-15 -2652 (|#4| |#1|)) (-15 -2707 ((-3 |#4| "failed") |#1|)) (-15 -3838 (|#1| |#4|)) (-15 -2037 (|#2| |#1|)) (-15 -2063 (|#1| |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2267 (((-619 |#3|) $) 108)) (-2078 (((-1132 $) $ |#3|) 123) (((-1132 |#1|) $) 122)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 85 (|has| |#1| (-539)))) (-3571 (($ $) 86 (|has| |#1| (-539)))) (-3915 (((-112) $) 88 (|has| |#1| (-539)))) (-2624 (((-745) $) 110) (((-745) $ (-619 |#3|)) 109)) (-1336 (($ $) 269)) (-2577 (((-112) $ $) 255)) (-3672 (((-3 $ "failed") $ $) 19)) (-3286 (($ $ $) 214 (|has| |#1| (-539)))) (-2772 (((-619 $) $ $) 209 (|has| |#1| (-539)))) (-2277 (((-409 (-1132 $)) (-1132 $)) 98 (|has| |#1| (-878)))) (-2555 (($ $) 96 (|has| |#1| (-442)))) (-3299 (((-409 $) $) 95 (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 101 (|has| |#1| (-878)))) (-1948 (($) 17 T CONST)) (-2707 (((-3 |#1| "failed") $) 162) (((-3 (-398 (-547)) "failed") $) 160 (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) 158 (|has| |#1| (-1007 (-547)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-921 (-398 (-547)))) 229 (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1136))))) (((-3 $ "failed") (-921 (-547))) 226 (-1530 (-12 (-4000 (|has| |#1| (-38 (-398 (-547))))) (|has| |#1| (-38 (-547))) (|has| |#3| (-592 (-1136)))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1136)))))) (((-3 $ "failed") (-921 |#1|)) 223 (-1530 (-12 (-4000 (|has| |#1| (-38 (-398 (-547))))) (-4000 (|has| |#1| (-38 (-547)))) (|has| |#3| (-592 (-1136)))) (-12 (-4000 (|has| |#1| (-532))) (-4000 (|has| |#1| (-38 (-398 (-547))))) (|has| |#1| (-38 (-547))) (|has| |#3| (-592 (-1136)))) (-12 (-4000 (|has| |#1| (-961 (-547)))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1136))))))) (-2652 ((|#1| $) 163) (((-398 (-547)) $) 159 (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) 157 (|has| |#1| (-1007 (-547)))) ((|#3| $) 133) (($ (-921 (-398 (-547)))) 228 (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1136))))) (($ (-921 (-547))) 225 (-1530 (-12 (-4000 (|has| |#1| (-38 (-398 (-547))))) (|has| |#1| (-38 (-547))) (|has| |#3| (-592 (-1136)))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1136)))))) (($ (-921 |#1|)) 222 (-1530 (-12 (-4000 (|has| |#1| (-38 (-398 (-547))))) (-4000 (|has| |#1| (-38 (-547)))) (|has| |#3| (-592 (-1136)))) (-12 (-4000 (|has| |#1| (-532))) (-4000 (|has| |#1| (-38 (-398 (-547))))) (|has| |#1| (-38 (-547))) (|has| |#3| (-592 (-1136)))) (-12 (-4000 (|has| |#1| (-961 (-547)))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1136))))))) (-1496 (($ $ $ |#3|) 106 (|has| |#1| (-169))) (($ $ $) 210 (|has| |#1| (-539)))) (-2063 (($ $) 152) (($ $ |#3|) 264)) (-1694 (((-663 (-547)) (-663 $)) 132 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 131 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-2173 (((-112) $ $) 254) (((-112) $ (-619 $)) 253)) (-3855 (((-3 $ "failed") $) 32)) (-3717 (((-112) $) 262)) (-3445 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 234)) (-3530 (($ $) 203 (|has| |#1| (-442)))) (-3350 (($ $) 174 (|has| |#1| (-442))) (($ $ |#3|) 103 (|has| |#1| (-442)))) (-2049 (((-619 $) $) 107)) (-1791 (((-112) $) 94 (|has| |#1| (-878)))) (-4109 (($ $) 219 (|has| |#1| (-539)))) (-1305 (($ $) 220 (|has| |#1| (-539)))) (-4298 (($ $ $) 246) (($ $ $ |#3|) 244)) (-4222 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3210 (($ $ |#1| |#2| $) 170)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 82 (-12 (|has| |#3| (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 81 (-12 (|has| |#3| (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-2261 (((-112) $) 30)) (-3376 (((-745) $) 167)) (-1779 (((-112) $ $) 248) (((-112) $ (-619 $)) 247)) (-2347 (($ $ $ $ $) 205 (|has| |#1| (-539)))) (-3338 ((|#3| $) 273)) (-2254 (($ (-1132 |#1|) |#3|) 115) (($ (-1132 $) |#3|) 114)) (-4097 (((-619 $) $) 124)) (-1759 (((-112) $) 150)) (-2238 (($ |#1| |#2|) 151) (($ $ |#3| (-745)) 117) (($ $ (-619 |#3|) (-619 (-745))) 116)) (-1643 (($ $ $) 233)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ |#3|) 118)) (-2769 (((-112) $) 263)) (-3095 ((|#2| $) 168) (((-745) $ |#3|) 120) (((-619 (-745)) $ (-619 |#3|)) 119)) (-2856 (($ $ $) 77 (|has| |#1| (-821)))) (-1873 (((-745) $) 272)) (-3567 (($ $ $) 76 (|has| |#1| (-821)))) (-4182 (($ (-1 |#2| |#2|) $) 169)) (-2790 (($ (-1 |#1| |#1|) $) 149)) (-1631 (((-3 |#3| "failed") $) 121)) (-1940 (($ $) 200 (|has| |#1| (-442)))) (-2486 (($ $) 201 (|has| |#1| (-442)))) (-3193 (((-619 $) $) 258)) (-2102 (($ $) 261)) (-4100 (($ $) 202 (|has| |#1| (-442)))) (-3770 (((-619 $) $) 259)) (-2303 (($ $) 260)) (-2019 (($ $) 147)) (-2037 ((|#1| $) 146) (($ $ |#3|) 265)) (-3689 (($ (-619 $)) 92 (|has| |#1| (-442))) (($ $ $) 91 (|has| |#1| (-442)))) (-3462 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1368 (-745))) $ $) 232)) (-1800 (((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2235 $) (|:| -2916 $)) $ $) 236) (((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2235 $) (|:| -2916 $)) $ $ |#3|) 235)) (-1291 (((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2916 $)) $ $) 238) (((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2916 $)) $ $ |#3|) 237)) (-3170 (($ $ $) 242) (($ $ $ |#3|) 240)) (-1876 (($ $ $) 241) (($ $ $ |#3|) 239)) (-1466 (((-1119) $) 9)) (-1717 (($ $ $) 208 (|has| |#1| (-539)))) (-3236 (((-619 $) $) 267)) (-2505 (((-3 (-619 $) "failed") $) 112)) (-3663 (((-3 (-619 $) "failed") $) 113)) (-3949 (((-3 (-2 (|:| |var| |#3|) (|:| -3322 (-745))) "failed") $) 111)) (-3112 (((-112) $ $) 250) (((-112) $ (-619 $)) 249)) (-3065 (($ $ $) 230)) (-3054 (($ $) 271)) (-1458 (((-112) $ $) 256)) (-2012 (((-112) $ $) 252) (((-112) $ (-619 $)) 251)) (-1772 (($ $ $) 231)) (-1775 (($ $) 270)) (-3979 (((-1082) $) 10)) (-3224 (((-2 (|:| -3719 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-539)))) (-2133 (((-2 (|:| -3719 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-539)))) (-1996 (((-112) $) 164)) (-2009 ((|#1| $) 165)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 93 (|has| |#1| (-442)))) (-3719 ((|#1| |#1| $) 204 (|has| |#1| (-442))) (($ (-619 $)) 90 (|has| |#1| (-442))) (($ $ $) 89 (|has| |#1| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) 100 (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) 99 (|has| |#1| (-878)))) (-2115 (((-409 $) $) 97 (|has| |#1| (-878)))) (-3250 (((-2 (|:| -3719 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-539)))) (-2032 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-539)))) (-3660 (($ $ |#1|) 217 (|has| |#1| (-539))) (($ $ $) 215 (|has| |#1| (-539)))) (-2299 (($ $ |#1|) 218 (|has| |#1| (-539))) (($ $ $) 216 (|has| |#1| (-539)))) (-2679 (($ $ (-619 (-285 $))) 143) (($ $ (-285 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-619 |#3|) (-619 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-619 |#3|) (-619 $)) 136)) (-4056 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-3448 (($ $ |#3|) 40) (($ $ (-619 |#3|)) 39) (($ $ |#3| (-745)) 38) (($ $ (-619 |#3|) (-619 (-745))) 37)) (-3705 ((|#2| $) 148) (((-745) $ |#3|) 128) (((-619 (-745)) $ (-619 |#3|)) 127)) (-1711 (($ $) 268)) (-4284 (($ $) 266)) (-2838 (((-861 (-370)) $) 80 (-12 (|has| |#3| (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) 79 (-12 (|has| |#3| (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) 78 (-12 (|has| |#3| (-592 (-523))) (|has| |#1| (-592 (-523))))) (($ (-921 (-398 (-547)))) 227 (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1136))))) (($ (-921 (-547))) 224 (-1530 (-12 (-4000 (|has| |#1| (-38 (-398 (-547))))) (|has| |#1| (-38 (-547))) (|has| |#3| (-592 (-1136)))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1136)))))) (($ (-921 |#1|)) 221 (|has| |#3| (-592 (-1136)))) (((-1119) $) 199 (-12 (|has| |#1| (-1007 (-547))) (|has| |#3| (-592 (-1136))))) (((-921 |#1|) $) 198 (|has| |#3| (-592 (-1136))))) (-2392 ((|#1| $) 173 (|has| |#1| (-442))) (($ $ |#3|) 104 (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 102 (-1814 (|has| $ (-143)) (|has| |#1| (-878))))) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-921 |#1|) $) 197 (|has| |#3| (-592 (-1136)))) (($ (-398 (-547))) 70 (-1530 (|has| |#1| (-1007 (-398 (-547)))) (|has| |#1| (-38 (-398 (-547)))))) (($ $) 83 (|has| |#1| (-539)))) (-1277 (((-619 |#1|) $) 166)) (-2450 ((|#1| $ |#2|) 153) (($ $ |#3| (-745)) 126) (($ $ (-619 |#3|) (-619 (-745))) 125)) (-2220 (((-3 $ "failed") $) 71 (-1530 (-1814 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) 28)) (-1379 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-3577 (((-112) $ $) 87 (|has| |#1| (-539)))) (-3269 (($) 18 T CONST)) (-1731 (((-3 (-112) "failed") $ $) 257)) (-3281 (($) 29 T CONST)) (-1777 (($ $ $ $ (-745)) 206 (|has| |#1| (-539)))) (-3599 (($ $ $ (-745)) 207 (|has| |#1| (-539)))) (-1695 (($ $ |#3|) 36) (($ $ (-619 |#3|)) 35) (($ $ |#3| (-745)) 34) (($ $ (-619 |#3|) (-619 (-745))) 33)) (-2441 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2506 (($ $ |#1|) 154 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 156 (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) 155 (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
-(((-1030 |#1| |#2| |#3|) (-138) (-1016) (-767) (-821)) (T -1030))
-((-3338 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-745)))) (-3054 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-1775 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-1336 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-1711 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3236 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-4284 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2037 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-2063 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2102 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2303 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3770 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-3193 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-1731 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-1458 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2577 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2173 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2173 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-2012 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-3112 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-1779 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-4298 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-4222 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-4298 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-4222 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3170 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-1876 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3170 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-1876 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-1291 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -1563 *1) (|:| |gap| (-745)) (|:| -2916 *1))) (-4 *1 (-1030 *3 *4 *5)))) (-1291 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -1563 *1) (|:| |gap| (-745)) (|:| -2916 *1))) (-4 *1 (-1030 *4 *5 *3)))) (-1800 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -1563 *1) (|:| |gap| (-745)) (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-1030 *3 *4 *5)))) (-1800 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -1563 *1) (|:| |gap| (-745)) (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-1030 *4 *5 *3)))) (-3445 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-1030 *3 *4 *5)))) (-1643 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3462 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1368 (-745)))) (-4 *1 (-1030 *3 *4 *5)))) (-1772 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3065 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2707 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-398 (-547)))) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-921 (-398 (-547)))) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-921 (-398 (-547)))) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) (-2707 (*1 *1 *2) (|partial| -1530 (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4000 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1136)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2652 (*1 *1 *2) (-1530 (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4000 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1136)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2838 (*1 *1 *2) (-1530 (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4000 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1136)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2707 (*1 *1 *2) (|partial| -1530 (-12 (-5 *2 (-921 *3)) (-12 (-4000 (-4 *3 (-38 (-398 (-547))))) (-4000 (-4 *3 (-38 (-547)))) (-4 *5 (-592 (-1136)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-4000 (-4 *3 (-532))) (-4000 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1136)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-4000 (-4 *3 (-961 (-547)))) (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2652 (*1 *1 *2) (-1530 (-12 (-5 *2 (-921 *3)) (-12 (-4000 (-4 *3 (-38 (-398 (-547))))) (-4000 (-4 *3 (-38 (-547)))) (-4 *5 (-592 (-1136)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-4000 (-4 *3 (-532))) (-4000 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1136)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-4000 (-4 *3 (-961 (-547)))) (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *5 (-592 (-1136))) (-4 *4 (-767)) (-4 *5 (-821)))) (-1305 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-4109 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-2299 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-3660 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-2299 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-3660 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-3286 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-3250 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3719 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1030 *3 *4 *5)))) (-2133 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3719 *1) (|:| |coef1| *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3224 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3719 *1) (|:| |coef2| *1))) (-4 *1 (-1030 *3 *4 *5)))) (-1496 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-2772 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-1717 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-3599 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-539)))) (-1777 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-539)))) (-2347 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-3719 (*1 *2 *2 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))) (-3530 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))) (-4100 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))) (-2486 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))) (-1940 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))))
-(-13 (-918 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3338 (|t#3| $)) (-15 -1873 ((-745) $)) (-15 -3054 ($ $)) (-15 -1775 ($ $)) (-15 -1336 ($ $)) (-15 -1711 ($ $)) (-15 -3236 ((-619 $) $)) (-15 -4284 ($ $)) (-15 -2037 ($ $ |t#3|)) (-15 -2063 ($ $ |t#3|)) (-15 -2769 ((-112) $)) (-15 -3717 ((-112) $)) (-15 -2102 ($ $)) (-15 -2303 ($ $)) (-15 -3770 ((-619 $) $)) (-15 -3193 ((-619 $) $)) (-15 -1731 ((-3 (-112) "failed") $ $)) (-15 -1458 ((-112) $ $)) (-15 -2577 ((-112) $ $)) (-15 -2173 ((-112) $ $)) (-15 -2173 ((-112) $ (-619 $))) (-15 -2012 ((-112) $ $)) (-15 -2012 ((-112) $ (-619 $))) (-15 -3112 ((-112) $ $)) (-15 -3112 ((-112) $ (-619 $))) (-15 -1779 ((-112) $ $)) (-15 -1779 ((-112) $ (-619 $))) (-15 -4298 ($ $ $)) (-15 -4222 ($ $ $)) (-15 -4298 ($ $ $ |t#3|)) (-15 -4222 ($ $ $ |t#3|)) (-15 -3170 ($ $ $)) (-15 -1876 ($ $ $)) (-15 -3170 ($ $ $ |t#3|)) (-15 -1876 ($ $ $ |t#3|)) (-15 -1291 ((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2916 $)) $ $)) (-15 -1291 ((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2916 $)) $ $ |t#3|)) (-15 -1800 ((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2235 $) (|:| -2916 $)) $ $)) (-15 -1800 ((-2 (|:| -1563 $) (|:| |gap| (-745)) (|:| -2235 $) (|:| -2916 $)) $ $ |t#3|)) (-15 -3445 ((-2 (|:| -2235 $) (|:| -2916 $)) $ $)) (-15 -1643 ($ $ $)) (-15 -3462 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1368 (-745))) $ $)) (-15 -1772 ($ $ $)) (-15 -3065 ($ $ $)) (IF (|has| |t#3| (-592 (-1136))) (PROGN (-6 (-591 (-921 |t#1|))) (-6 (-592 (-921 |t#1|))) (IF (|has| |t#1| (-38 (-398 (-547)))) (PROGN (-15 -2707 ((-3 $ "failed") (-921 (-398 (-547))))) (-15 -2652 ($ (-921 (-398 (-547))))) (-15 -2838 ($ (-921 (-398 (-547))))) (-15 -2707 ((-3 $ "failed") (-921 (-547)))) (-15 -2652 ($ (-921 (-547)))) (-15 -2838 ($ (-921 (-547)))) (IF (|has| |t#1| (-961 (-547))) |%noBranch| (PROGN (-15 -2707 ((-3 $ "failed") (-921 |t#1|))) (-15 -2652 ($ (-921 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-547))) (IF (|has| |t#1| (-38 (-398 (-547)))) |%noBranch| (PROGN (-15 -2707 ((-3 $ "failed") (-921 (-547)))) (-15 -2652 ($ (-921 (-547)))) (-15 -2838 ($ (-921 (-547)))) (IF (|has| |t#1| (-532)) |%noBranch| (PROGN (-15 -2707 ((-3 $ "failed") (-921 |t#1|))) (-15 -2652 ($ (-921 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-547))) |%noBranch| (IF (|has| |t#1| (-38 (-398 (-547)))) |%noBranch| (PROGN (-15 -2707 ((-3 $ "failed") (-921 |t#1|))) (-15 -2652 ($ (-921 |t#1|)))))) (-15 -2838 ($ (-921 |t#1|))) (IF (|has| |t#1| (-1007 (-547))) (-6 (-592 (-1119))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -1305 ($ $)) (-15 -4109 ($ $)) (-15 -2299 ($ $ |t#1|)) (-15 -3660 ($ $ |t#1|)) (-15 -2299 ($ $ $)) (-15 -3660 ($ $ $)) (-15 -3286 ($ $ $)) (-15 -3250 ((-2 (|:| -3719 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2133 ((-2 (|:| -3719 $) (|:| |coef1| $)) $ $)) (-15 -3224 ((-2 (|:| -3719 $) (|:| |coef2| $)) $ $)) (-15 -1496 ($ $ $)) (-15 -2772 ((-619 $) $ $)) (-15 -1717 ($ $ $)) (-15 -3599 ($ $ $ (-745))) (-15 -1777 ($ $ $ $ (-745))) (-15 -2347 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-442)) (PROGN (-15 -3719 (|t#1| |t#1| $)) (-15 -3530 ($ $)) (-15 -4100 ($ $)) (-15 -2486 ($ $)) (-15 -1940 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-591 (-921 |#1|)) |has| |#3| (-592 (-1136))) ((-169) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-592 (-523)) -12 (|has| |#1| (-592 (-523))) (|has| |#3| (-592 (-523)))) ((-592 (-861 (-370))) -12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#3| (-592 (-861 (-370))))) ((-592 (-861 (-547))) -12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#3| (-592 (-861 (-547))))) ((-592 (-921 |#1|)) |has| |#3| (-592 (-1136))) ((-592 (-1119)) -12 (|has| |#1| (-1007 (-547))) (|has| |#3| (-592 (-1136)))) ((-281) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-300 $) . T) ((-317 |#1| |#2|) . T) ((-368 |#1|) . T) ((-402 |#1|) . T) ((-442) -1530 (|has| |#1| (-878)) (|has| |#1| (-442))) ((-503 |#3| |#1|) . T) ((-503 |#3| $) . T) ((-503 $ $) . T) ((-539) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 |#3|) . T) ((-855 (-370)) -12 (|has| |#1| (-855 (-370))) (|has| |#3| (-855 (-370)))) ((-855 (-547)) -12 (|has| |#1| (-855 (-547))) (|has| |#3| (-855 (-547)))) ((-918 |#1| |#2| |#3|) . T) ((-878) |has| |#1| (-878)) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1007 |#3|) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1177) |has| |#1| (-878)))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3015 (((-619 (-1141)) $) 13)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2487 (((-1141) $) 15)) (-2381 (((-112) $ $) NIL)))
-(((-1031) (-13 (-1047) (-10 -8 (-15 -3015 ((-619 (-1141)) $)) (-15 -2487 ((-1141) $))))) (T -1031))
-((-3015 (*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-1031)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1031)))))
-(-13 (-1047) (-10 -8 (-15 -3015 ((-619 (-1141)) $)) (-15 -2487 ((-1141) $))))
-((-1499 (((-112) |#3| $) 13)) (-1531 (((-3 $ "failed") |#3| (-890)) 23)) (-3855 (((-3 |#3| "failed") |#3| $) 38)) (-4270 (((-112) |#3| $) 16)) (-1860 (((-112) |#3| $) 14)))
-(((-1032 |#1| |#2| |#3|) (-10 -8 (-15 -1531 ((-3 |#1| "failed") |#3| (-890))) (-15 -3855 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4270 ((-112) |#3| |#1|)) (-15 -1860 ((-112) |#3| |#1|)) (-15 -1499 ((-112) |#3| |#1|))) (-1033 |#2| |#3|) (-13 (-819) (-354)) (-1195 |#2|)) (T -1032))
-NIL
-(-10 -8 (-15 -1531 ((-3 |#1| "failed") |#3| (-890))) (-15 -3855 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4270 ((-112) |#3| |#1|)) (-15 -1860 ((-112) |#3| |#1|)) (-15 -1499 ((-112) |#3| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) |#2| $) 21)) (-2500 (((-547) |#2| $) 22)) (-1531 (((-3 $ "failed") |#2| (-890)) 15)) (-2592 ((|#1| |#2| $ |#1|) 13)) (-3855 (((-3 |#2| "failed") |#2| $) 18)) (-4270 (((-112) |#2| $) 19)) (-1860 (((-112) |#2| $) 20)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-1882 ((|#2| $) 17)) (-3838 (((-832) $) 11)) (-2654 ((|#1| |#2| $ |#1|) 14)) (-2826 (((-619 $) |#2|) 16)) (-2381 (((-112) $ $) 6)))
-(((-1033 |#1| |#2|) (-138) (-13 (-819) (-354)) (-1195 |t#1|)) (T -1033))
-((-2500 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354))) (-4 *3 (-1195 *4)) (-5 *2 (-547)))) (-1499 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354))) (-4 *3 (-1195 *4)) (-5 *2 (-112)))) (-1860 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354))) (-4 *3 (-1195 *4)) (-5 *2 (-112)))) (-4270 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354))) (-4 *3 (-1195 *4)) (-5 *2 (-112)))) (-3855 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-354))) (-4 *2 (-1195 *3)))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-354))) (-4 *2 (-1195 *3)))) (-2826 (*1 *2 *3) (-12 (-4 *4 (-13 (-819) (-354))) (-4 *3 (-1195 *4)) (-5 *2 (-619 *1)) (-4 *1 (-1033 *4 *3)))) (-1531 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-890)) (-4 *4 (-13 (-819) (-354))) (-4 *1 (-1033 *4 *2)) (-4 *2 (-1195 *4)))) (-2654 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-354))) (-4 *3 (-1195 *2)))) (-2592 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-354))) (-4 *3 (-1195 *2)))))
-(-13 (-1063) (-10 -8 (-15 -2500 ((-547) |t#2| $)) (-15 -1499 ((-112) |t#2| $)) (-15 -1860 ((-112) |t#2| $)) (-15 -4270 ((-112) |t#2| $)) (-15 -3855 ((-3 |t#2| "failed") |t#2| $)) (-15 -1882 (|t#2| $)) (-15 -2826 ((-619 $) |t#2|)) (-15 -1531 ((-3 $ "failed") |t#2| (-890))) (-15 -2654 (|t#1| |t#2| $ |t#1|)) (-15 -2592 (|t#1| |t#2| $ |t#1|))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-2382 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) (-745)) 96)) (-4189 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745)) 56)) (-3754 (((-1224) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-745)) 87)) (-1521 (((-745) (-619 |#4|) (-619 |#5|)) 27)) (-4163 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745)) 58) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745) (-112)) 60)) (-2773 (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112)) 79)) (-2838 (((-1119) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) 82)) (-3766 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-112)) 55)) (-3610 (((-745) (-619 |#4|) (-619 |#5|)) 19)))
-(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3610 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -1521 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3766 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-112))) (-15 -4189 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745))) (-15 -4189 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -4163 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -4163 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745))) (-15 -4163 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2773 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -2773 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2382 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) (-745))) (-15 -2838 ((-1119) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)))) (-15 -3754 ((-1224) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-745)))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1034))
-((-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1974 *9)))) (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1224)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1974 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1119)) (-5 *1 (-1034 *4 *5 *6 *7 *8)))) (-2382 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-619 *11)) (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1974 *11)))))) (-5 *6 (-745)) (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1974 *11)))) (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-442)) (-4 *8 (-767)) (-4 *9 (-821)) (-5 *1 (-1034 *7 *8 *9 *10 *11)))) (-2773 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-2773 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-4163 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-4163 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-4163 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-442)) (-4 *8 (-767)) (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))))) (-5 *1 (-1034 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3)))) (-4189 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-4189 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-3766 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-1521 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-3610 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3610 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -1521 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3766 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-112))) (-15 -4189 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745))) (-15 -4189 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -4163 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -4163 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745))) (-15 -4163 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2773 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -2773 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2382 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) (-745))) (-15 -2838 ((-1119) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)))) (-15 -3754 ((-1224) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-745))))
-((-1611 (((-112) |#5| $) 21)) (-3465 (((-112) |#5| $) 24)) (-1837 (((-112) |#5| $) 16) (((-112) $) 45)) (-3594 (((-619 $) |#5| $) NIL) (((-619 $) (-619 |#5|) $) 77) (((-619 $) (-619 |#5|) (-619 $)) 75) (((-619 $) |#5| (-619 $)) 78)) (-3708 (($ $ |#5|) NIL) (((-619 $) |#5| $) NIL) (((-619 $) |#5| (-619 $)) 60) (((-619 $) (-619 |#5|) $) 62) (((-619 $) (-619 |#5|) (-619 $)) 64)) (-1283 (((-619 $) |#5| $) NIL) (((-619 $) |#5| (-619 $)) 54) (((-619 $) (-619 |#5|) $) 56) (((-619 $) (-619 |#5|) (-619 $)) 58)) (-1669 (((-112) |#5| $) 27)))
-(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3708 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -3708 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -3708 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -3708 ((-619 |#1|) |#5| |#1|)) (-15 -1283 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -1283 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -1283 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -1283 ((-619 |#1|) |#5| |#1|)) (-15 -3594 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -3594 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -3594 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -3594 ((-619 |#1|) |#5| |#1|)) (-15 -3465 ((-112) |#5| |#1|)) (-15 -1837 ((-112) |#1|)) (-15 -1669 ((-112) |#5| |#1|)) (-15 -1611 ((-112) |#5| |#1|)) (-15 -1837 ((-112) |#5| |#1|)) (-15 -3708 (|#1| |#1| |#5|))) (-1036 |#2| |#3| |#4| |#5|) (-442) (-767) (-821) (-1030 |#2| |#3| |#4|)) (T -1035))
-NIL
-(-10 -8 (-15 -3708 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -3708 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -3708 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -3708 ((-619 |#1|) |#5| |#1|)) (-15 -1283 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -1283 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -1283 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -1283 ((-619 |#1|) |#5| |#1|)) (-15 -3594 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -3594 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -3594 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -3594 ((-619 |#1|) |#5| |#1|)) (-15 -3465 ((-112) |#5| |#1|)) (-15 -1837 ((-112) |#1|)) (-15 -1669 ((-112) |#5| |#1|)) (-15 -1611 ((-112) |#5| |#1|)) (-15 -1837 ((-112) |#5| |#1|)) (-15 -3708 (|#1| |#1| |#5|)))
-((-3826 (((-112) $ $) 7)) (-1320 (((-619 (-2 (|:| -2674 $) (|:| -1352 (-619 |#4|)))) (-619 |#4|)) 85)) (-2128 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2267 (((-619 |#3|) $) 33)) (-1474 (((-112) $) 26)) (-1843 (((-112) $) 17 (|has| |#1| (-539)))) (-4151 (((-112) |#4| $) 101) (((-112) $) 97)) (-2081 ((|#4| |#4| $) 92)) (-2555 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| $) 126)) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |#3|) 27)) (-3899 (((-112) $ (-745)) 44)) (-1482 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4329))) (((-3 |#4| "failed") $ |#3|) 79)) (-1948 (($) 45 T CONST)) (-1651 (((-112) $) 22 (|has| |#1| (-539)))) (-4230 (((-112) $ $) 24 (|has| |#1| (-539)))) (-2360 (((-112) $ $) 23 (|has| |#1| (-539)))) (-1840 (((-112) $) 25 (|has| |#1| (-539)))) (-3805 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-4017 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-539)))) (-1900 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-539)))) (-2707 (((-3 $ "failed") (-619 |#4|)) 36)) (-2652 (($ (-619 |#4|)) 35)) (-3649 (((-3 $ "failed") $) 82)) (-2584 ((|#4| |#4| $) 89)) (-3668 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4329)))) (-2916 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-539)))) (-2173 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2442 ((|#4| |#4| $) 87)) (-2552 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4329))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4329))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2951 (((-2 (|:| -2674 (-619 |#4|)) (|:| -1352 (-619 |#4|))) $) 105)) (-1611 (((-112) |#4| $) 136)) (-3465 (((-112) |#4| $) 133)) (-1837 (((-112) |#4| $) 137) (((-112) $) 134)) (-2982 (((-619 |#4|) $) 52 (|has| $ (-6 -4329)))) (-1779 (((-112) |#4| $) 104) (((-112) $) 103)) (-3338 ((|#3| $) 34)) (-2763 (((-112) $ (-745)) 43)) (-2284 (((-619 |#4|) $) 53 (|has| $ (-6 -4329)))) (-2132 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#4| |#4|) $) 47)) (-4138 (((-619 |#3|) $) 32)) (-3758 (((-112) |#3| $) 31)) (-3806 (((-112) $ (-745)) 42)) (-1466 (((-1119) $) 9)) (-3150 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-1717 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| |#4| $) 127)) (-3820 (((-3 |#4| "failed") $) 83)) (-2756 (((-619 $) |#4| $) 129)) (-2867 (((-3 (-112) (-619 $)) |#4| $) 132)) (-2237 (((-619 (-2 (|:| |val| (-112)) (|:| -1974 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3594 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-1428 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-2498 (((-619 |#4|) $) 107)) (-3112 (((-112) |#4| $) 99) (((-112) $) 95)) (-3065 ((|#4| |#4| $) 90)) (-1458 (((-112) $ $) 110)) (-1770 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-539)))) (-2012 (((-112) |#4| $) 100) (((-112) $) 96)) (-1772 ((|#4| |#4| $) 91)) (-3979 (((-1082) $) 10)) (-3638 (((-3 |#4| "failed") $) 84)) (-3650 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1362 (((-3 $ "failed") $ |#4|) 78)) (-3708 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-1598 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) 57 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) 56 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2052 (((-112) $ $) 38)) (-2884 (((-112) $) 41)) (-2245 (($) 40)) (-3705 (((-745) $) 106)) (-3992 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4329)))) (-2274 (($ $) 39)) (-2838 (((-523) $) 69 (|has| |#4| (-592 (-523))))) (-3846 (($ (-619 |#4|)) 60)) (-3461 (($ $ |#3|) 28)) (-3007 (($ $ |#3|) 30)) (-2553 (($ $) 88)) (-3619 (($ $ |#3|) 29)) (-3838 (((-832) $) 11) (((-619 |#4|) $) 37)) (-2815 (((-745) $) 76 (|has| |#3| (-359)))) (-2672 (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2636 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-1283 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-2693 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4329)))) (-3463 (((-619 |#3|) $) 81)) (-1669 (((-112) |#4| $) 135)) (-2593 (((-112) |#3| $) 80)) (-2381 (((-112) $ $) 6)) (-3767 (((-745) $) 46 (|has| $ (-6 -4329)))))
-(((-1036 |#1| |#2| |#3| |#4|) (-138) (-442) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1036))
-((-1837 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-1611 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-1669 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-3465 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2867 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 (-112) (-619 *1))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-2237 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1974 *1)))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-2237 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2756 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3150 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 *3 (-619 *1))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-1717 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *1)))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-2555 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *1)))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3594 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3594 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) (-3594 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) (-3594 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) (-1283 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-1283 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) (-1283 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) (-1283 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) (-1428 (*1 *1 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-1428 (*1 *1 *2 *1) (-12 (-5 *2 (-619 *6)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)))) (-3708 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3708 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) (-3708 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) (-3708 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) (-2128 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *5 *6 *7 *8)))))
-(-13 (-1166 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1837 ((-112) |t#4| $)) (-15 -1611 ((-112) |t#4| $)) (-15 -1669 ((-112) |t#4| $)) (-15 -1837 ((-112) $)) (-15 -3465 ((-112) |t#4| $)) (-15 -2867 ((-3 (-112) (-619 $)) |t#4| $)) (-15 -2237 ((-619 (-2 (|:| |val| (-112)) (|:| -1974 $))) |t#4| $)) (-15 -2237 ((-112) |t#4| $)) (-15 -2756 ((-619 $) |t#4| $)) (-15 -3150 ((-3 |t#4| (-619 $)) |t#4| |t#4| $)) (-15 -1717 ((-619 (-2 (|:| |val| |t#4|) (|:| -1974 $))) |t#4| |t#4| $)) (-15 -2555 ((-619 (-2 (|:| |val| |t#4|) (|:| -1974 $))) |t#4| $)) (-15 -3594 ((-619 $) |t#4| $)) (-15 -3594 ((-619 $) (-619 |t#4|) $)) (-15 -3594 ((-619 $) (-619 |t#4|) (-619 $))) (-15 -3594 ((-619 $) |t#4| (-619 $))) (-15 -1283 ((-619 $) |t#4| $)) (-15 -1283 ((-619 $) |t#4| (-619 $))) (-15 -1283 ((-619 $) (-619 |t#4|) $)) (-15 -1283 ((-619 $) (-619 |t#4|) (-619 $))) (-15 -1428 ($ |t#4| $)) (-15 -1428 ($ (-619 |t#4|) $)) (-15 -3708 ((-619 $) |t#4| $)) (-15 -3708 ((-619 $) |t#4| (-619 $))) (-15 -3708 ((-619 $) (-619 |t#4|) $)) (-15 -3708 ((-619 $) (-619 |t#4|) (-619 $))) (-15 -2128 ((-619 $) (-619 |t#4|) (-112)))))
-(((-34) . T) ((-101) . T) ((-591 (-619 |#4|)) . T) ((-591 (-832)) . T) ((-149 |#4|) . T) ((-592 (-523)) |has| |#4| (-592 (-523))) ((-300 |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-479 |#4|) . T) ((-503 |#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1166 |#1| |#2| |#3| |#4|) . T) ((-1173) . T))
-((-1330 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|) 81)) (-2373 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|) 113)) (-1434 (((-619 |#5|) |#4| |#5|) 70)) (-4260 (((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2490 (((-1224)) 37)) (-3775 (((-1224)) 26)) (-1351 (((-1224) (-1119) (-1119) (-1119)) 33)) (-1540 (((-1224) (-1119) (-1119) (-1119)) 22)) (-3323 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) |#4| |#4| |#5|) 96)) (-1820 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) |#3| (-112)) 107) (((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2660 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|) 102)))
-(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1540 ((-1224) (-1119) (-1119) (-1119))) (-15 -3775 ((-1224))) (-15 -1351 ((-1224) (-1119) (-1119) (-1119))) (-15 -2490 ((-1224))) (-15 -3323 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -1820 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1820 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) |#3| (-112))) (-15 -2660 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -2373 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -4260 ((-112) |#4| |#5|)) (-15 -4260 ((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -1434 ((-619 |#5|) |#4| |#5|)) (-15 -1330 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1037))
-((-1330 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1434 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-4260 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1974 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-4260 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2373 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2660 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1820 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1974 *9)))) (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *4 (-821)) (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1974 *9)))) (-5 *1 (-1037 *6 *7 *4 *8 *9)))) (-1820 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1037 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-3323 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2490 (*1 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1224)) (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1351 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1119)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1224)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-3775 (*1 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1224)) (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1540 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1119)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1224)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1540 ((-1224) (-1119) (-1119) (-1119))) (-15 -3775 ((-1224))) (-15 -1351 ((-1224) (-1119) (-1119) (-1119))) (-15 -2490 ((-1224))) (-15 -3323 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -1820 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1820 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) |#3| (-112))) (-15 -2660 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -2373 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -4260 ((-112) |#4| |#5|)) (-15 -4260 ((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -1434 ((-619 |#5|) |#4| |#5|)) (-15 -1330 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|)))
-((-3826 (((-112) $ $) NIL)) (-2473 (((-1136) $) 8)) (-1466 (((-1119) $) 16)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 11)) (-2381 (((-112) $ $) 13)))
-(((-1038 |#1|) (-13 (-1063) (-10 -8 (-15 -2473 ((-1136) $)))) (-1136)) (T -1038))
-((-2473 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1038 *3)) (-14 *3 *2))))
-(-13 (-1063) (-10 -8 (-15 -2473 ((-1136) $))))
-((-3826 (((-112) $ $) NIL)) (-1854 (($ $ (-619 (-1136)) (-1 (-112) (-619 |#3|))) 33)) (-3656 (($ |#3| |#3|) 22) (($ |#3| |#3| (-619 (-1136))) 20)) (-2196 ((|#3| $) 13)) (-2707 (((-3 (-285 |#3|) "failed") $) 58)) (-2652 (((-285 |#3|) $) NIL)) (-1995 (((-619 (-1136)) $) 16)) (-3648 (((-861 |#1|) $) 11)) (-2183 ((|#3| $) 12)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3334 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-890)) 39)) (-3838 (((-832) $) 86) (($ (-285 |#3|)) 21)) (-2381 (((-112) $ $) 36)))
-(((-1039 |#1| |#2| |#3|) (-13 (-1063) (-277 |#3| |#3|) (-1007 (-285 |#3|)) (-10 -8 (-15 -3656 ($ |#3| |#3|)) (-15 -3656 ($ |#3| |#3| (-619 (-1136)))) (-15 -1854 ($ $ (-619 (-1136)) (-1 (-112) (-619 |#3|)))) (-15 -3648 ((-861 |#1|) $)) (-15 -2183 (|#3| $)) (-15 -2196 (|#3| $)) (-15 -3334 (|#3| $ |#3| (-890))) (-15 -1995 ((-619 (-1136)) $)))) (-1063) (-13 (-1016) (-855 |#1|) (-821) (-592 (-861 |#1|))) (-13 (-421 |#2|) (-855 |#1|) (-592 (-861 |#1|)))) (T -1039))
-((-3656 (*1 *1 *2 *2) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) (-4 *2 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))))) (-3656 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-619 (-1136))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-5 *1 (-1039 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))))) (-1854 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-1 (-112) (-619 *6))) (-4 *6 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-5 *1 (-1039 *4 *5 *6)))) (-3648 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 *2))) (-5 *2 (-861 *3)) (-5 *1 (-1039 *3 *4 *5)) (-4 *5 (-13 (-421 *4) (-855 *3) (-592 *2))))) (-2183 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *2 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))))) (-2196 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *2 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))))) (-3334 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-5 *1 (-1039 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))))) (-1995 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))) (-5 *2 (-619 (-1136))) (-5 *1 (-1039 *3 *4 *5)) (-4 *5 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))))))
-(-13 (-1063) (-277 |#3| |#3|) (-1007 (-285 |#3|)) (-10 -8 (-15 -3656 ($ |#3| |#3|)) (-15 -3656 ($ |#3| |#3| (-619 (-1136)))) (-15 -1854 ($ $ (-619 (-1136)) (-1 (-112) (-619 |#3|)))) (-15 -3648 ((-861 |#1|) $)) (-15 -2183 (|#3| $)) (-15 -2196 (|#3| $)) (-15 -3334 (|#3| $ |#3| (-890))) (-15 -1995 ((-619 (-1136)) $))))
-((-3826 (((-112) $ $) NIL)) (-1819 (($ (-619 (-1039 |#1| |#2| |#3|))) 13)) (-3629 (((-619 (-1039 |#1| |#2| |#3|)) $) 20)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3334 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-890)) 26)) (-3838 (((-832) $) 16)) (-2381 (((-112) $ $) 19)))
-(((-1040 |#1| |#2| |#3|) (-13 (-1063) (-277 |#3| |#3|) (-10 -8 (-15 -1819 ($ (-619 (-1039 |#1| |#2| |#3|)))) (-15 -3629 ((-619 (-1039 |#1| |#2| |#3|)) $)) (-15 -3334 (|#3| $ |#3| (-890))))) (-1063) (-13 (-1016) (-855 |#1|) (-821) (-592 (-861 |#1|))) (-13 (-421 |#2|) (-855 |#1|) (-592 (-861 |#1|)))) (T -1040))
-((-1819 (*1 *1 *2) (-12 (-5 *2 (-619 (-1039 *3 *4 *5))) (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))) (-4 *5 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))) (-5 *1 (-1040 *3 *4 *5)))) (-3629 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))) (-5 *2 (-619 (-1039 *3 *4 *5))) (-5 *1 (-1040 *3 *4 *5)) (-4 *5 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))))) (-3334 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-5 *1 (-1040 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))))))
-(-13 (-1063) (-277 |#3| |#3|) (-10 -8 (-15 -1819 ($ (-619 (-1039 |#1| |#2| |#3|)))) (-15 -3629 ((-619 (-1039 |#1| |#2| |#3|)) $)) (-15 -3334 (|#3| $ |#3| (-890)))))
-((-2383 (((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)) 75) (((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|))) 77) (((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112)) 76)))
-(((-1041 |#1| |#2|) (-10 -7 (-15 -2383 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -2383 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -2383 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)))) (-13 (-298) (-145)) (-619 (-1136))) (T -1041))
-((-2383 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-5 *2 (-619 (-2 (|:| -3117 (-1132 *5)) (|:| -3220 (-619 (-921 *5)))))) (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1136))))) (-2383 (*1 *2 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-5 *2 (-619 (-2 (|:| -3117 (-1132 *4)) (|:| -3220 (-619 (-921 *4)))))) (-5 *1 (-1041 *4 *5)) (-5 *3 (-619 (-921 *4))) (-14 *5 (-619 (-1136))))) (-2383 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-5 *2 (-619 (-2 (|:| -3117 (-1132 *5)) (|:| -3220 (-619 (-921 *5)))))) (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1136))))))
-(-10 -7 (-15 -2383 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -2383 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -2383 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112))))
-((-2115 (((-409 |#3|) |#3|) 18)))
-(((-1042 |#1| |#2| |#3|) (-10 -7 (-15 -2115 ((-409 |#3|) |#3|))) (-1195 (-398 (-547))) (-13 (-354) (-145) (-699 (-398 (-547)) |#1|)) (-1195 |#2|)) (T -1042))
-((-2115 (*1 *2 *3) (-12 (-4 *4 (-1195 (-398 (-547)))) (-4 *5 (-13 (-354) (-145) (-699 (-398 (-547)) *4))) (-5 *2 (-409 *3)) (-5 *1 (-1042 *4 *5 *3)) (-4 *3 (-1195 *5)))))
-(-10 -7 (-15 -2115 ((-409 |#3|) |#3|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 126)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-354)))) (-3571 (($ $) NIL (|has| |#1| (-354)))) (-3915 (((-112) $) NIL (|has| |#1| (-354)))) (-3401 (((-663 |#1|) (-1219 $)) NIL) (((-663 |#1|)) 115)) (-2899 ((|#1| $) 119)) (-2797 (((-1146 (-890) (-745)) (-547)) NIL (|has| |#1| (-340)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL (|has| |#1| (-354)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-354)))) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-3608 (((-745)) 40 (|has| |#1| (-359)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2614 (($ (-1219 |#1|) (-1219 $)) NIL) (($ (-1219 |#1|)) 43)) (-2424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-340)))) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-3565 (((-663 |#1|) $ (-1219 $)) NIL) (((-663 |#1|) $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 106) (((-663 |#1|) (-663 $)) 101)) (-2552 (($ |#2|) 61) (((-3 $ "failed") (-398 |#2|)) NIL (|has| |#1| (-354)))) (-3855 (((-3 $ "failed") $) NIL)) (-3116 (((-890)) 77)) (-3232 (($) 44 (|has| |#1| (-359)))) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3527 (($) NIL (|has| |#1| (-340)))) (-3078 (((-112) $) NIL (|has| |#1| (-340)))) (-1551 (($ $ (-745)) NIL (|has| |#1| (-340))) (($ $) NIL (|has| |#1| (-340)))) (-1791 (((-112) $) NIL (|has| |#1| (-354)))) (-3275 (((-890) $) NIL (|has| |#1| (-340))) (((-807 (-890)) $) NIL (|has| |#1| (-340)))) (-2261 (((-112) $) NIL)) (-3160 ((|#1| $) NIL)) (-3477 (((-3 $ "failed") $) NIL (|has| |#1| (-340)))) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-3786 ((|#2| $) 84 (|has| |#1| (-354)))) (-2402 (((-890) $) 131 (|has| |#1| (-359)))) (-2540 ((|#2| $) 58)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-354)))) (-3054 (($) NIL (|has| |#1| (-340)) CONST)) (-3487 (($ (-890)) 125 (|has| |#1| (-359)))) (-3979 (((-1082) $) NIL)) (-4238 (($) 121)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-354)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2954 (((-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))) NIL (|has| |#1| (-340)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2471 (((-745) $) NIL (|has| |#1| (-354)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-4056 ((|#1| (-1219 $)) NIL) ((|#1|) 109)) (-1422 (((-745) $) NIL (|has| |#1| (-340))) (((-3 (-745) "failed") $ $) NIL (|has| |#1| (-340)))) (-3448 (($ $) NIL (-1530 (-12 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-745)) NIL (-1530 (-12 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1136))))) (($ $ (-1 |#1| |#1|) (-745)) NIL (|has| |#1| (-354))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-354)))) (-3101 (((-663 |#1|) (-1219 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-354)))) (-1882 ((|#2|) 73)) (-3823 (($) NIL (|has| |#1| (-340)))) (-3220 (((-1219 |#1|) $ (-1219 $)) 89) (((-663 |#1|) (-1219 $) (-1219 $)) NIL) (((-1219 |#1|) $) 71) (((-663 |#1|) (-1219 $)) 85)) (-2838 (((-1219 |#1|) $) NIL) (($ (-1219 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (|has| |#1| (-340)))) (-3838 (((-832) $) 57) (($ (-547)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-354))) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-354)) (|has| |#1| (-1007 (-398 (-547))))))) (-2220 (($ $) NIL (|has| |#1| (-340))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-1316 ((|#2| $) 82)) (-2736 (((-745)) 75)) (-1917 (((-1219 $)) 81)) (-3577 (((-112) $ $) NIL (|has| |#1| (-354)))) (-3269 (($) 30 T CONST)) (-3281 (($) 19 T CONST)) (-1695 (($ $) NIL (-1530 (-12 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-745)) NIL (-1530 (-12 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1136))))) (($ $ (-1 |#1| |#1|) (-745)) NIL (|has| |#1| (-354))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-354)))) (-2381 (((-112) $ $) 63)) (-2506 (($ $ $) NIL (|has| |#1| (-354)))) (-2493 (($ $) 67) (($ $ $) NIL)) (-2479 (($ $ $) 65)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-398 (-547)) $) NIL (|has| |#1| (-354))) (($ $ (-398 (-547))) NIL (|has| |#1| (-354)))))
-(((-1043 |#1| |#2| |#3|) (-699 |#1| |#2|) (-169) (-1195 |#1|) |#2|) (T -1043))
-NIL
-(-699 |#1| |#2|)
-((-2115 (((-409 |#3|) |#3|) 19)))
-(((-1044 |#1| |#2| |#3|) (-10 -7 (-15 -2115 ((-409 |#3|) |#3|))) (-1195 (-398 (-921 (-547)))) (-13 (-354) (-145) (-699 (-398 (-921 (-547))) |#1|)) (-1195 |#2|)) (T -1044))
-((-2115 (*1 *2 *3) (-12 (-4 *4 (-1195 (-398 (-921 (-547))))) (-4 *5 (-13 (-354) (-145) (-699 (-398 (-921 (-547))) *4))) (-5 *2 (-409 *3)) (-5 *1 (-1044 *4 *5 *3)) (-4 *3 (-1195 *5)))))
-(-10 -7 (-15 -2115 ((-409 |#3|) |#3|)))
-((-3826 (((-112) $ $) NIL)) (-2856 (($ $ $) 14)) (-3567 (($ $ $) 15)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2920 (($) 6)) (-2838 (((-1136) $) 18)) (-3838 (((-832) $) 12)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 13)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 8)))
-(((-1045) (-13 (-821) (-10 -8 (-15 -2920 ($)) (-15 -2838 ((-1136) $))))) (T -1045))
-((-2920 (*1 *1) (-5 *1 (-1045))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1045)))))
-(-13 (-821) (-10 -8 (-15 -2920 ($)) (-15 -2838 ((-1136) $))))
-((-3838 (((-832) $) 37) (((-1141) $) NIL)))
-(((-1046 |#1|) (-10 -8 (-15 -3838 ((-1141) |#1|)) (-15 -3838 ((-832) |#1|))) (-1047)) (T -1046))
-NIL
-(-10 -8 (-15 -3838 ((-1141) |#1|)) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (((-1141) $) 14)) (-2381 (((-112) $ $) 6)))
-(((-1047) (-138)) (T -1047))
+NIL
+(-13 (-21) (-1079))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-593 (-834)) . T) ((-1079) . T) ((-1067) . T))
+((-3896 (($ $) 16)) (-3252 (($ $) 22)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 49)) (-3630 (($ $) 24)) (-2873 (($ $) 11)) (-3967 (($ $) 38)) (-2845 (((-372) $) NIL) (((-219) $) NIL) (((-863 (-372)) $) 33)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-400 (-549))) 28) (($ (-549)) NIL) (($ (-400 (-549))) 28)) (-2082 (((-747)) 8)) (-2546 (($ $) 39)))
+(((-1026 |#1|) (-10 -8 (-15 -3252 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -3967 (|#1| |#1|)) (-15 -2546 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -2932 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -2845 ((-863 (-372)) |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 (|#1| (-549))) (-15 -2845 ((-219) |#1|)) (-15 -2845 ((-372) |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 (|#1| |#1|)) (-15 -3846 (|#1| (-549))) (-15 -2082 ((-747))) (-15 -3846 ((-834) |#1|))) (-1027)) (T -1026))
+((-2082 (*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1026 *3)) (-4 *3 (-1027)))))
+(-10 -8 (-15 -3252 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -3967 (|#1| |#1|)) (-15 -2546 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -2932 ((-860 (-372) |#1|) |#1| (-863 (-372)) (-860 (-372) |#1|))) (-15 -2845 ((-863 (-372)) |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 (|#1| (-549))) (-15 -2845 ((-219) |#1|)) (-15 -2845 ((-372) |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 (|#1| |#1|)) (-15 -3846 (|#1| (-549))) (-15 -2082 ((-747))) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-3329 (((-549) $) 86)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-3896 (($ $) 84)) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 70)) (-2402 (((-411 $) $) 69)) (-2134 (($ $) 94)) (-3866 (((-112) $ $) 57)) (-1872 (((-549) $) 111)) (-1682 (($) 17 T CONST)) (-3252 (($ $) 83)) (-2714 (((-3 (-549) "failed") $) 99) (((-3 (-400 (-549)) "failed") $) 96)) (-2659 (((-549) $) 98) (((-400 (-549)) $) 95)) (-2095 (($ $ $) 53)) (-2114 (((-3 $ "failed") $) 32)) (-2067 (($ $ $) 54)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-1420 (((-112) $) 68)) (-2772 (((-112) $) 109)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 90)) (-2675 (((-112) $) 30)) (-4187 (($ $ (-549)) 93)) (-3630 (($ $) 89)) (-2374 (((-112) $) 110)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-2863 (($ $ $) 108)) (-3575 (($ $ $) 107)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 67)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2873 (($ $) 85)) (-3967 (($ $) 87)) (-2121 (((-411 $) $) 71)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3684 (((-747) $) 56)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55)) (-2845 (((-372) $) 102) (((-219) $) 101) (((-863 (-372)) $) 91)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63) (($ (-549)) 100) (($ (-400 (-549))) 97)) (-2082 (((-747)) 28)) (-2546 (($ $) 88)) (-1498 (((-112) $ $) 37)) (-3212 (($ $) 112)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2448 (((-112) $ $) 105)) (-2425 (((-112) $ $) 104)) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 106)) (-2412 (((-112) $ $) 103)) (-2513 (($ $ $) 62)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66) (($ $ (-400 (-549))) 92)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64)))
+(((-1027) (-138)) (T -1027))
+((-3212 (*1 *1 *1) (-4 *1 (-1027))) (-3630 (*1 *1 *1) (-4 *1 (-1027))) (-2546 (*1 *1 *1) (-4 *1 (-1027))) (-3967 (*1 *1 *1) (-4 *1 (-1027))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-549)))) (-2873 (*1 *1 *1) (-4 *1 (-1027))) (-3896 (*1 *1 *1) (-4 *1 (-1027))) (-3252 (*1 *1 *1) (-4 *1 (-1027))))
+(-13 (-356) (-821) (-993) (-1009 (-549)) (-1009 (-400 (-549))) (-973) (-594 (-863 (-372))) (-857 (-372)) (-145) (-10 -8 (-15 -3630 ($ $)) (-15 -2546 ($ $)) (-15 -3967 ($ $)) (-15 -3329 ((-549) $)) (-15 -2873 ($ $)) (-15 -3896 ($ $)) (-15 -3252 ($ $)) (-15 -3212 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-593 (-834)) . T) ((-170) . T) ((-594 (-219)) . T) ((-594 (-372)) . T) ((-594 (-863 (-372))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 $) . T) ((-703) . T) ((-767) . T) ((-768) . T) ((-770) . T) ((-771) . T) ((-821) . T) ((-823) . T) ((-857 (-372)) . T) ((-891) . T) ((-973) . T) ((-993) . T) ((-1009 (-400 (-549))) . T) ((-1009 (-549)) . T) ((-1024 #0#) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1184) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) |#2| $) 23)) (-3614 ((|#1| $) 10)) (-1872 (((-549) |#2| $) 88)) (-1947 (((-3 $ "failed") |#2| (-892)) 57)) (-3848 ((|#1| $) 28)) (-1336 ((|#1| |#2| $ |#1|) 37)) (-4166 (($ $) 25)) (-2114 (((-3 |#2| "failed") |#2| $) 87)) (-2772 (((-112) |#2| $) NIL)) (-2374 (((-112) |#2| $) NIL)) (-3992 (((-112) |#2| $) 24)) (-1592 ((|#1| $) 89)) (-3838 ((|#1| $) 27)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2815 ((|#2| $) 79)) (-3846 (((-834) $) 70)) (-2661 ((|#1| |#2| $ |#1|) 38)) (-3302 (((-621 $) |#2|) 59)) (-2389 (((-112) $ $) 74)))
+(((-1028 |#1| |#2|) (-13 (-1035 |#1| |#2|) (-10 -8 (-15 -3838 (|#1| $)) (-15 -3848 (|#1| $)) (-15 -3614 (|#1| $)) (-15 -1592 (|#1| $)) (-15 -4166 ($ $)) (-15 -3992 ((-112) |#2| $)) (-15 -1336 (|#1| |#2| $ |#1|)))) (-13 (-821) (-356)) (-1202 |#1|)) (T -1028))
+((-1336 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1202 *2)))) (-3838 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1202 *2)))) (-3848 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1202 *2)))) (-3614 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1202 *2)))) (-1592 (*1 *2 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1202 *2)))) (-4166 (*1 *1 *1) (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3)) (-4 *3 (-1202 *2)))) (-3992 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-821) (-356))) (-5 *2 (-112)) (-5 *1 (-1028 *4 *3)) (-4 *3 (-1202 *4)))))
+(-13 (-1035 |#1| |#2|) (-10 -8 (-15 -3838 (|#1| $)) (-15 -3848 (|#1| $)) (-15 -3614 (|#1| $)) (-15 -1592 (|#1| $)) (-15 -4166 ($ $)) (-15 -3992 ((-112) |#2| $)) (-15 -1336 (|#1| |#2| $ |#1|))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2831 (($ $ $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3332 (($ $ $ $) NIL)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL)) (-1310 (($ $ $) NIL)) (-1682 (($) NIL T CONST)) (-2625 (($ (-1143)) 10) (($ (-549)) 7)) (-2714 (((-3 (-549) "failed") $) NIL)) (-2659 (((-549) $) NIL)) (-2095 (($ $ $) NIL)) (-3879 (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL) (((-665 (-549)) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3405 (((-3 (-400 (-549)) "failed") $) NIL)) (-3679 (((-112) $) NIL)) (-2532 (((-400 (-549)) $) NIL)) (-3239 (($) NIL) (($ $) NIL)) (-2067 (($ $ $) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-3806 (($ $ $ $) NIL)) (-3947 (($ $ $) NIL)) (-2772 (((-112) $) NIL)) (-1271 (($ $ $) NIL)) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL)) (-2675 (((-112) $) NIL)) (-3559 (((-112) $) NIL)) (-1681 (((-3 $ "failed") $) NIL)) (-2374 (((-112) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3030 (($ $ $ $) NIL)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-2433 (($ $) NIL)) (-4210 (($ $) NIL)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-2950 (($ $ $) NIL)) (-3060 (($) NIL T CONST)) (-3781 (($ $) NIL)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) NIL) (($ (-621 $)) NIL)) (-4005 (($ $) NIL)) (-2121 (((-411 $) $) NIL)) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3450 (((-112) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3456 (($ $ (-747)) NIL) (($ $) NIL)) (-1900 (($ $) NIL)) (-2281 (($ $) NIL)) (-2845 (((-549) $) 16) (((-525) $) NIL) (((-863 (-549)) $) NIL) (((-372) $) NIL) (((-219) $) NIL) (($ (-1143)) 9)) (-3846 (((-834) $) 20) (($ (-549)) 6) (($ $) NIL) (($ (-549)) 6)) (-2082 (((-747)) NIL)) (-3935 (((-112) $ $) NIL)) (-3179 (($ $ $) NIL)) (-1864 (($) NIL)) (-1498 (((-112) $ $) NIL)) (-3610 (($ $ $ $) NIL)) (-3212 (($ $) NIL)) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-747)) NIL) (($ $) NIL)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) NIL)) (-2500 (($ $) 19) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL)))
+(((-1029) (-13 (-534) (-10 -8 (-6 -4324) (-6 -4329) (-6 -4325) (-15 -2845 ($ (-1143))) (-15 -2625 ($ (-1143))) (-15 -2625 ($ (-549)))))) (T -1029))
+((-2845 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1029)))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1029)))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1029)))))
+(-13 (-534) (-10 -8 (-6 -4324) (-6 -4329) (-6 -4325) (-15 -2845 ($ (-1143))) (-15 -2625 ($ (-1143))) (-15 -2625 ($ (-549)))))
+((-3834 (((-112) $ $) NIL (-1536 (|has| (-52) (-1067)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067))))) (-3733 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) NIL)) (-1535 (((-1231) $ (-1143) (-1143)) NIL (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) NIL)) (-3013 (($) 9)) (-2254 (((-52) $ (-1143) (-52)) NIL)) (-1849 (($ $) 30)) (-3949 (($ $) 28)) (-1354 (($ $) 27)) (-1925 (($ $) 29)) (-1899 (($ $) 32)) (-2262 (($ $) 33)) (-2789 (($ $) 26)) (-3999 (($ $) 31)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) 25 (|has| $ (-6 -4337)))) (-3490 (((-3 (-52) "failed") (-1143) $) 40)) (-1682 (($) NIL T CONST)) (-1579 (($) 7)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067))))) (-2129 (($ (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) 50 (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-3 (-52) "failed") (-1143) $) NIL)) (-3812 (($ (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (($ (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $ (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (((-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $ (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337)))) (-2428 (((-3 (-1125) "failed") $ (-1125) (-549)) 59)) (-1879 (((-52) $ (-1143) (-52)) NIL (|has| $ (-6 -4338)))) (-1809 (((-52) $ (-1143)) NIL)) (-2989 (((-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-621 (-52)) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-1143) $) NIL (|has| (-1143) (-823)))) (-1562 (((-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) 35 (|has| $ (-6 -4337))) (((-621 (-52)) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-52) (-1067))))) (-1569 (((-1143) $) NIL (|has| (-1143) (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4338))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (-1536 (|has| (-52) (-1067)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067))))) (-3449 (((-621 (-1143)) $) NIL)) (-2427 (((-112) (-1143) $) NIL)) (-3504 (((-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) NIL)) (-2751 (($ (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) 43)) (-3303 (((-621 (-1143)) $) NIL)) (-3761 (((-112) (-1143) $) NIL)) (-3990 (((-1087) $) NIL (-1536 (|has| (-52) (-1067)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067))))) (-2089 (((-372) $ (-1143)) 49)) (-2398 (((-621 (-1125)) $ (-1125)) 60)) (-3646 (((-52) $) NIL (|has| (-1143) (-823)))) (-3779 (((-3 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) "failed") (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL)) (-1642 (($ $ (-52)) NIL (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) NIL)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))))) NIL (-12 (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (($ $ (-287 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) NIL (-12 (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (($ $ (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) NIL (-12 (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (($ $ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) NIL (-12 (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-302 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (($ $ (-621 (-52)) (-621 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1067)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1067)))) (($ $ (-287 (-52))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1067)))) (($ $ (-621 (-287 (-52)))) NIL (-12 (|has| (-52) (-302 (-52))) (|has| (-52) (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-52) (-1067))))) (-2696 (((-621 (-52)) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 (((-52) $ (-1143)) NIL) (((-52) $ (-1143) (-52)) NIL)) (-2898 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) NIL)) (-4130 (($ $ (-1143)) 51)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067)))) (((-747) (-52) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-52) (-1067)))) (((-747) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) 37)) (-1952 (($ $ $) 38)) (-3846 (((-834) $) NIL (-1536 (|has| (-52) (-593 (-834))) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-593 (-834)))))) (-4023 (($ $ (-1143) (-372)) 47)) (-4139 (($ $ (-1143) (-372)) 48)) (-3624 (($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))))) NIL)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 (-1143)) (|:| -1793 (-52)))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (-1536 (|has| (-52) (-1067)) (|has| (-2 (|:| -3337 (-1143)) (|:| -1793 (-52))) (-1067))))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1030) (-13 (-1156 (-1143) (-52)) (-10 -8 (-15 -1952 ($ $ $)) (-15 -1579 ($)) (-15 -2789 ($ $)) (-15 -1354 ($ $)) (-15 -3949 ($ $)) (-15 -1925 ($ $)) (-15 -3999 ($ $)) (-15 -1849 ($ $)) (-15 -1899 ($ $)) (-15 -2262 ($ $)) (-15 -4023 ($ $ (-1143) (-372))) (-15 -4139 ($ $ (-1143) (-372))) (-15 -2089 ((-372) $ (-1143))) (-15 -2398 ((-621 (-1125)) $ (-1125))) (-15 -4130 ($ $ (-1143))) (-15 -3013 ($)) (-15 -2428 ((-3 (-1125) "failed") $ (-1125) (-549))) (-6 -4337)))) (T -1030))
+((-1952 (*1 *1 *1 *1) (-5 *1 (-1030))) (-1579 (*1 *1) (-5 *1 (-1030))) (-2789 (*1 *1 *1) (-5 *1 (-1030))) (-1354 (*1 *1 *1) (-5 *1 (-1030))) (-3949 (*1 *1 *1) (-5 *1 (-1030))) (-1925 (*1 *1 *1) (-5 *1 (-1030))) (-3999 (*1 *1 *1) (-5 *1 (-1030))) (-1849 (*1 *1 *1) (-5 *1 (-1030))) (-1899 (*1 *1 *1) (-5 *1 (-1030))) (-2262 (*1 *1 *1) (-5 *1 (-1030))) (-4023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-372)) (-5 *1 (-1030)))) (-4139 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-372)) (-5 *1 (-1030)))) (-2089 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-372)) (-5 *1 (-1030)))) (-2398 (*1 *2 *1 *3) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1030)) (-5 *3 (-1125)))) (-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1030)))) (-3013 (*1 *1) (-5 *1 (-1030))) (-2428 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1125)) (-5 *3 (-549)) (-5 *1 (-1030)))))
+(-13 (-1156 (-1143) (-52)) (-10 -8 (-15 -1952 ($ $ $)) (-15 -1579 ($)) (-15 -2789 ($ $)) (-15 -1354 ($ $)) (-15 -3949 ($ $)) (-15 -1925 ($ $)) (-15 -3999 ($ $)) (-15 -1849 ($ $)) (-15 -1899 ($ $)) (-15 -2262 ($ $)) (-15 -4023 ($ $ (-1143) (-372))) (-15 -4139 ($ $ (-1143) (-372))) (-15 -2089 ((-372) $ (-1143))) (-15 -2398 ((-621 (-1125)) $ (-1125))) (-15 -4130 ($ $ (-1143))) (-15 -3013 ($)) (-15 -2428 ((-3 (-1125) "failed") $ (-1125) (-549))) (-6 -4337)))
+((-1343 (($ $) 45)) (-2635 (((-112) $ $) 74)) (-2714 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 (-549) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-923 (-400 (-549)))) 227) (((-3 $ "failed") (-923 (-549))) 226) (((-3 $ "failed") (-923 |#2|)) 229)) (-2659 ((|#2| $) NIL) (((-400 (-549)) $) NIL) (((-549) $) NIL) ((|#4| $) NIL) (($ (-923 (-400 (-549)))) 215) (($ (-923 (-549))) 211) (($ (-923 |#2|)) 231)) (-2070 (($ $) NIL) (($ $ |#4|) 43)) (-2217 (((-112) $ $) 112) (((-112) $ (-621 $)) 113)) (-2316 (((-112) $) 56)) (-3921 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 107)) (-2653 (($ $) 138)) (-2348 (($ $) 134)) (-2582 (($ $) 133)) (-2882 (($ $ $) 79) (($ $ $ |#4|) 84)) (-2854 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2812 (((-112) $ $) 121) (((-112) $ (-621 $)) 122)) (-2745 ((|#4| $) 33)) (-2083 (($ $ $) 110)) (-2600 (((-112) $) 55)) (-4247 (((-747) $) 35)) (-2280 (($ $) 152)) (-1915 (($ $) 149)) (-4239 (((-621 $) $) 68)) (-3070 (($ $) 57)) (-2878 (($ $) 145)) (-1876 (((-621 $) $) 65)) (-2801 (($ $) 59)) (-2043 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2926 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3063 (-747))) $ $) 111)) (-4163 (((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -4013 $) (|:| -3675 $)) $ $) 108) (((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -4013 $) (|:| -3675 $)) $ $ |#4|) 109)) (-3507 (((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -3675 $)) $ $) 104) (((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -3675 $)) $ $ |#4|) 105)) (-3564 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3420 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3263 (((-621 $) $) 51)) (-2170 (((-112) $ $) 118) (((-112) $ (-621 $)) 119)) (-3270 (($ $ $) 103)) (-3060 (($ $) 37)) (-2473 (((-112) $ $) 72)) (-1335 (((-112) $ $) 114) (((-112) $ (-621 $)) 116)) (-4298 (($ $ $) 101)) (-3477 (($ $) 40)) (-3727 ((|#2| |#2| $) 142) (($ (-621 $)) NIL) (($ $ $) NIL)) (-2191 (($ $ |#2|) NIL) (($ $ $) 131)) (-3535 (($ $ |#2|) 126) (($ $ $) 129)) (-3828 (($ $) 48)) (-1608 (($ $) 52)) (-2845 (((-863 (-372)) $) NIL) (((-863 (-549)) $) NIL) (((-525) $) NIL) (($ (-923 (-400 (-549)))) 217) (($ (-923 (-549))) 213) (($ (-923 |#2|)) 228) (((-1125) $) 250) (((-923 |#2|) $) 162)) (-3846 (((-834) $) 30) (($ (-549)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-923 |#2|) $) 163) (($ (-400 (-549))) NIL) (($ $) NIL)) (-1712 (((-3 (-112) "failed") $ $) 71)))
+(((-1031 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3846 (|#1| |#1|)) (-15 -3727 (|#1| |#1| |#1|)) (-15 -3727 (|#1| (-621 |#1|))) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 ((-923 |#2|) |#1|)) (-15 -2845 ((-923 |#2|) |#1|)) (-15 -2845 ((-1125) |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -1915 (|#1| |#1|)) (-15 -2878 (|#1| |#1|)) (-15 -2653 (|#1| |#1|)) (-15 -3727 (|#2| |#2| |#1|)) (-15 -2191 (|#1| |#1| |#1|)) (-15 -3535 (|#1| |#1| |#1|)) (-15 -2191 (|#1| |#1| |#2|)) (-15 -3535 (|#1| |#1| |#2|)) (-15 -2348 (|#1| |#1|)) (-15 -2582 (|#1| |#1|)) (-15 -2845 (|#1| (-923 |#2|))) (-15 -2659 (|#1| (-923 |#2|))) (-15 -2714 ((-3 |#1| "failed") (-923 |#2|))) (-15 -2845 (|#1| (-923 (-549)))) (-15 -2659 (|#1| (-923 (-549)))) (-15 -2714 ((-3 |#1| "failed") (-923 (-549)))) (-15 -2845 (|#1| (-923 (-400 (-549))))) (-15 -2659 (|#1| (-923 (-400 (-549))))) (-15 -2714 ((-3 |#1| "failed") (-923 (-400 (-549))))) (-15 -3270 (|#1| |#1| |#1|)) (-15 -4298 (|#1| |#1| |#1|)) (-15 -2926 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3063 (-747))) |#1| |#1|)) (-15 -2083 (|#1| |#1| |#1|)) (-15 -3921 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -4163 ((-2 (|:| -1570 |#1|) (|:| |gap| (-747)) (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1| |#4|)) (-15 -4163 ((-2 (|:| -1570 |#1|) (|:| |gap| (-747)) (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -3507 ((-2 (|:| -1570 |#1|) (|:| |gap| (-747)) (|:| -3675 |#1|)) |#1| |#1| |#4|)) (-15 -3507 ((-2 (|:| -1570 |#1|) (|:| |gap| (-747)) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -3420 (|#1| |#1| |#1| |#4|)) (-15 -3564 (|#1| |#1| |#1| |#4|)) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3564 (|#1| |#1| |#1|)) (-15 -2854 (|#1| |#1| |#1| |#4|)) (-15 -2882 (|#1| |#1| |#1| |#4|)) (-15 -2854 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -2812 ((-112) |#1| (-621 |#1|))) (-15 -2812 ((-112) |#1| |#1|)) (-15 -2170 ((-112) |#1| (-621 |#1|))) (-15 -2170 ((-112) |#1| |#1|)) (-15 -1335 ((-112) |#1| (-621 |#1|))) (-15 -1335 ((-112) |#1| |#1|)) (-15 -2217 ((-112) |#1| (-621 |#1|))) (-15 -2217 ((-112) |#1| |#1|)) (-15 -2635 ((-112) |#1| |#1|)) (-15 -2473 ((-112) |#1| |#1|)) (-15 -1712 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4239 ((-621 |#1|) |#1|)) (-15 -1876 ((-621 |#1|) |#1|)) (-15 -2801 (|#1| |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2600 ((-112) |#1|)) (-15 -2070 (|#1| |#1| |#4|)) (-15 -2043 (|#1| |#1| |#4|)) (-15 -1608 (|#1| |#1|)) (-15 -3263 ((-621 |#1|) |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -1343 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3060 (|#1| |#1|)) (-15 -4247 ((-747) |#1|)) (-15 -2745 (|#4| |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -2845 ((-863 (-549)) |#1|)) (-15 -2845 ((-863 (-372)) |#1|)) (-15 -2659 (|#4| |#1|)) (-15 -2714 ((-3 |#4| "failed") |#1|)) (-15 -3846 (|#1| |#4|)) (-15 -2043 (|#2| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|))) (-1032 |#2| |#3| |#4|) (-1018) (-769) (-823)) (T -1031))
+NIL
+(-10 -8 (-15 -3846 (|#1| |#1|)) (-15 -3727 (|#1| |#1| |#1|)) (-15 -3727 (|#1| (-621 |#1|))) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 ((-923 |#2|) |#1|)) (-15 -2845 ((-923 |#2|) |#1|)) (-15 -2845 ((-1125) |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -1915 (|#1| |#1|)) (-15 -2878 (|#1| |#1|)) (-15 -2653 (|#1| |#1|)) (-15 -3727 (|#2| |#2| |#1|)) (-15 -2191 (|#1| |#1| |#1|)) (-15 -3535 (|#1| |#1| |#1|)) (-15 -2191 (|#1| |#1| |#2|)) (-15 -3535 (|#1| |#1| |#2|)) (-15 -2348 (|#1| |#1|)) (-15 -2582 (|#1| |#1|)) (-15 -2845 (|#1| (-923 |#2|))) (-15 -2659 (|#1| (-923 |#2|))) (-15 -2714 ((-3 |#1| "failed") (-923 |#2|))) (-15 -2845 (|#1| (-923 (-549)))) (-15 -2659 (|#1| (-923 (-549)))) (-15 -2714 ((-3 |#1| "failed") (-923 (-549)))) (-15 -2845 (|#1| (-923 (-400 (-549))))) (-15 -2659 (|#1| (-923 (-400 (-549))))) (-15 -2714 ((-3 |#1| "failed") (-923 (-400 (-549))))) (-15 -3270 (|#1| |#1| |#1|)) (-15 -4298 (|#1| |#1| |#1|)) (-15 -2926 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3063 (-747))) |#1| |#1|)) (-15 -2083 (|#1| |#1| |#1|)) (-15 -3921 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -4163 ((-2 (|:| -1570 |#1|) (|:| |gap| (-747)) (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1| |#4|)) (-15 -4163 ((-2 (|:| -1570 |#1|) (|:| |gap| (-747)) (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -3507 ((-2 (|:| -1570 |#1|) (|:| |gap| (-747)) (|:| -3675 |#1|)) |#1| |#1| |#4|)) (-15 -3507 ((-2 (|:| -1570 |#1|) (|:| |gap| (-747)) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -3420 (|#1| |#1| |#1| |#4|)) (-15 -3564 (|#1| |#1| |#1| |#4|)) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3564 (|#1| |#1| |#1|)) (-15 -2854 (|#1| |#1| |#1| |#4|)) (-15 -2882 (|#1| |#1| |#1| |#4|)) (-15 -2854 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|)) (-15 -2812 ((-112) |#1| (-621 |#1|))) (-15 -2812 ((-112) |#1| |#1|)) (-15 -2170 ((-112) |#1| (-621 |#1|))) (-15 -2170 ((-112) |#1| |#1|)) (-15 -1335 ((-112) |#1| (-621 |#1|))) (-15 -1335 ((-112) |#1| |#1|)) (-15 -2217 ((-112) |#1| (-621 |#1|))) (-15 -2217 ((-112) |#1| |#1|)) (-15 -2635 ((-112) |#1| |#1|)) (-15 -2473 ((-112) |#1| |#1|)) (-15 -1712 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4239 ((-621 |#1|) |#1|)) (-15 -1876 ((-621 |#1|) |#1|)) (-15 -2801 (|#1| |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2600 ((-112) |#1|)) (-15 -2070 (|#1| |#1| |#4|)) (-15 -2043 (|#1| |#1| |#4|)) (-15 -1608 (|#1| |#1|)) (-15 -3263 ((-621 |#1|) |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -1343 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3060 (|#1| |#1|)) (-15 -4247 ((-747) |#1|)) (-15 -2745 (|#4| |#1|)) (-15 -2845 ((-525) |#1|)) (-15 -2845 ((-863 (-549)) |#1|)) (-15 -2845 ((-863 (-372)) |#1|)) (-15 -2659 (|#4| |#1|)) (-15 -2714 ((-3 |#4| "failed") |#1|)) (-15 -3846 (|#1| |#4|)) (-15 -2043 (|#2| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2272 (((-621 |#3|) $) 108)) (-2084 (((-1139 $) $ |#3|) 123) (((-1139 |#1|) $) 122)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 85 (|has| |#1| (-541)))) (-2258 (($ $) 86 (|has| |#1| (-541)))) (-2799 (((-112) $) 88 (|has| |#1| (-541)))) (-3186 (((-747) $) 110) (((-747) $ (-621 |#3|)) 109)) (-1343 (($ $) 269)) (-2635 (((-112) $ $) 255)) (-2001 (((-3 $ "failed") $ $) 19)) (-1910 (($ $ $) 214 (|has| |#1| (-541)))) (-1506 (((-621 $) $ $) 209 (|has| |#1| (-541)))) (-3231 (((-411 (-1139 $)) (-1139 $)) 98 (|has| |#1| (-880)))) (-3979 (($ $) 96 (|has| |#1| (-444)))) (-2402 (((-411 $) $) 95 (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 101 (|has| |#1| (-880)))) (-1682 (($) 17 T CONST)) (-2714 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-549)) "failed") $) 160 (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) 158 (|has| |#1| (-1009 (-549)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-923 (-400 (-549)))) 229 (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1143))))) (((-3 $ "failed") (-923 (-549))) 226 (-1536 (-12 (-4008 (|has| |#1| (-38 (-400 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-594 (-1143)))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1143)))))) (((-3 $ "failed") (-923 |#1|)) 223 (-1536 (-12 (-4008 (|has| |#1| (-38 (-400 (-549))))) (-4008 (|has| |#1| (-38 (-549)))) (|has| |#3| (-594 (-1143)))) (-12 (-4008 (|has| |#1| (-534))) (-4008 (|has| |#1| (-38 (-400 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-594 (-1143)))) (-12 (-4008 (|has| |#1| (-963 (-549)))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1143))))))) (-2659 ((|#1| $) 163) (((-400 (-549)) $) 159 (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) 157 (|has| |#1| (-1009 (-549)))) ((|#3| $) 133) (($ (-923 (-400 (-549)))) 228 (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1143))))) (($ (-923 (-549))) 225 (-1536 (-12 (-4008 (|has| |#1| (-38 (-400 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-594 (-1143)))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1143)))))) (($ (-923 |#1|)) 222 (-1536 (-12 (-4008 (|has| |#1| (-38 (-400 (-549))))) (-4008 (|has| |#1| (-38 (-549)))) (|has| |#3| (-594 (-1143)))) (-12 (-4008 (|has| |#1| (-534))) (-4008 (|has| |#1| (-38 (-400 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-594 (-1143)))) (-12 (-4008 (|has| |#1| (-963 (-549)))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1143))))))) (-1353 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 210 (|has| |#1| (-541)))) (-2070 (($ $) 152) (($ $ |#3|) 264)) (-3879 (((-665 (-549)) (-665 $)) 132 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 131 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-2217 (((-112) $ $) 254) (((-112) $ (-621 $)) 253)) (-2114 (((-3 $ "failed") $) 32)) (-2316 (((-112) $) 262)) (-3921 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 234)) (-2653 (($ $) 203 (|has| |#1| (-444)))) (-1285 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-2058 (((-621 $) $) 107)) (-1420 (((-112) $) 94 (|has| |#1| (-880)))) (-2348 (($ $) 219 (|has| |#1| (-541)))) (-2582 (($ $) 220 (|has| |#1| (-541)))) (-2882 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2854 (($ $ $) 245) (($ $ $ |#3|) 243)) (-2691 (($ $ |#1| |#2| $) 170)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 82 (-12 (|has| |#3| (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 81 (-12 (|has| |#3| (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2675 (((-112) $) 30)) (-3347 (((-747) $) 167)) (-2812 (((-112) $ $) 248) (((-112) $ (-621 $)) 247)) (-2937 (($ $ $ $ $) 205 (|has| |#1| (-541)))) (-2745 ((|#3| $) 273)) (-2261 (($ (-1139 |#1|) |#3|) 115) (($ (-1139 $) |#3|) 114)) (-3750 (((-621 $) $) 124)) (-2205 (((-112) $) 150)) (-2246 (($ |#1| |#2|) 151) (($ $ |#3| (-747)) 117) (($ $ (-621 |#3|) (-621 (-747))) 116)) (-2083 (($ $ $) 233)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ |#3|) 118)) (-2600 (((-112) $) 263)) (-3611 ((|#2| $) 168) (((-747) $ |#3|) 120) (((-621 (-747)) $ (-621 |#3|)) 119)) (-2863 (($ $ $) 77 (|has| |#1| (-823)))) (-4247 (((-747) $) 272)) (-3575 (($ $ $) 76 (|has| |#1| (-823)))) (-3705 (($ (-1 |#2| |#2|) $) 169)) (-2797 (($ (-1 |#1| |#1|) $) 149)) (-1520 (((-3 |#3| "failed") $) 121)) (-2280 (($ $) 200 (|has| |#1| (-444)))) (-1915 (($ $) 201 (|has| |#1| (-444)))) (-4239 (((-621 $) $) 258)) (-3070 (($ $) 261)) (-2878 (($ $) 202 (|has| |#1| (-444)))) (-1876 (((-621 $) $) 259)) (-2801 (($ $) 260)) (-2028 (($ $) 147)) (-2043 ((|#1| $) 146) (($ $ |#3|) 265)) (-3697 (($ (-621 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-2926 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3063 (-747))) $ $) 232)) (-4163 (((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -4013 $) (|:| -3675 $)) $ $) 236) (((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -4013 $) (|:| -3675 $)) $ $ |#3|) 235)) (-3507 (((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -3675 $)) $ $) 238) (((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -3675 $)) $ $ |#3|) 237)) (-3564 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3420 (($ $ $) 241) (($ $ $ |#3|) 239)) (-3851 (((-1125) $) 9)) (-3072 (($ $ $) 208 (|has| |#1| (-541)))) (-3263 (((-621 $) $) 267)) (-4266 (((-3 (-621 $) "failed") $) 112)) (-2533 (((-3 (-621 $) "failed") $) 113)) (-1503 (((-3 (-2 (|:| |var| |#3|) (|:| -3731 (-747))) "failed") $) 111)) (-2170 (((-112) $ $) 250) (((-112) $ (-621 $)) 249)) (-3270 (($ $ $) 230)) (-3060 (($ $) 271)) (-2473 (((-112) $ $) 256)) (-1335 (((-112) $ $) 252) (((-112) $ (-621 $)) 251)) (-4298 (($ $ $) 231)) (-3477 (($ $) 270)) (-3990 (((-1087) $) 10)) (-3542 (((-2 (|:| -3727 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-541)))) (-2214 (((-2 (|:| -3727 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-541)))) (-2004 (((-112) $) 164)) (-2016 ((|#1| $) 165)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 93 (|has| |#1| (-444)))) (-3727 ((|#1| |#1| $) 204 (|has| |#1| (-444))) (($ (-621 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) 100 (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) 99 (|has| |#1| (-880)))) (-2121 (((-411 $) $) 97 (|has| |#1| (-880)))) (-1444 (((-2 (|:| -3727 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-541)))) (-2042 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-541)))) (-2191 (($ $ |#1|) 217 (|has| |#1| (-541))) (($ $ $) 215 (|has| |#1| (-541)))) (-3535 (($ $ |#1|) 218 (|has| |#1| (-541))) (($ $ $) 216 (|has| |#1| (-541)))) (-2686 (($ $ (-621 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-621 $) (-621 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-621 |#3|) (-621 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-621 |#3|) (-621 $)) 136)) (-3602 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-3456 (($ $ |#3|) 40) (($ $ (-621 |#3|)) 39) (($ $ |#3| (-747)) 38) (($ $ (-621 |#3|) (-621 (-747))) 37)) (-3701 ((|#2| $) 148) (((-747) $ |#3|) 128) (((-621 (-747)) $ (-621 |#3|)) 127)) (-3828 (($ $) 268)) (-1608 (($ $) 266)) (-2845 (((-863 (-372)) $) 80 (-12 (|has| |#3| (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) 79 (-12 (|has| |#3| (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) 78 (-12 (|has| |#3| (-594 (-525))) (|has| |#1| (-594 (-525))))) (($ (-923 (-400 (-549)))) 227 (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1143))))) (($ (-923 (-549))) 224 (-1536 (-12 (-4008 (|has| |#1| (-38 (-400 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-594 (-1143)))) (-12 (|has| |#1| (-38 (-400 (-549)))) (|has| |#3| (-594 (-1143)))))) (($ (-923 |#1|)) 221 (|has| |#3| (-594 (-1143)))) (((-1125) $) 199 (-12 (|has| |#1| (-1009 (-549))) (|has| |#3| (-594 (-1143))))) (((-923 |#1|) $) 198 (|has| |#3| (-594 (-1143))))) (-2216 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 102 (-1821 (|has| $ (-143)) (|has| |#1| (-880))))) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-923 |#1|) $) 197 (|has| |#3| (-594 (-1143)))) (($ (-400 (-549))) 70 (-1536 (|has| |#1| (-1009 (-400 (-549)))) (|has| |#1| (-38 (-400 (-549)))))) (($ $) 83 (|has| |#1| (-541)))) (-4141 (((-621 |#1|) $) 166)) (-2152 ((|#1| $ |#2|) 153) (($ $ |#3| (-747)) 126) (($ $ (-621 |#3|) (-621 (-747))) 125)) (-2210 (((-3 $ "failed") $) 71 (-1536 (-1821 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) 28)) (-1509 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-1498 (((-112) $ $) 87 (|has| |#1| (-541)))) (-3276 (($) 18 T CONST)) (-1712 (((-3 (-112) "failed") $ $) 257)) (-3287 (($) 29 T CONST)) (-3706 (($ $ $ $ (-747)) 206 (|has| |#1| (-541)))) (-2938 (($ $ $ (-747)) 207 (|has| |#1| (-541)))) (-1702 (($ $ |#3|) 36) (($ $ (-621 |#3|)) 35) (($ $ |#3| (-747)) 34) (($ $ (-621 |#3|) (-621 (-747))) 33)) (-2448 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 73 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 75 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 72 (|has| |#1| (-823)))) (-2513 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 156 (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) 155 (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(((-1032 |#1| |#2| |#3|) (-138) (-1018) (-769) (-823)) (T -1032))
+((-2745 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-747)))) (-3060 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3477 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-1343 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3828 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3263 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-1608 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-2043 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-2070 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-2600 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-3070 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-2801 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-1876 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-4239 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-1712 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-2473 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-2635 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-2217 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-2217 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-1335 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-1335 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-2170 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-2170 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-2812 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))) (-2812 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)))) (-2882 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-2854 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-2882 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-2854 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3564 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3420 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3564 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3420 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *2 (-823)))) (-3507 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-747)) (|:| -3675 *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3507 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-747)) (|:| -3675 *1))) (-4 *1 (-1032 *4 *5 *3)))) (-4163 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-747)) (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-1032 *3 *4 *5)))) (-4163 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-747)) (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-1032 *4 *5 *3)))) (-3921 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-1032 *3 *4 *5)))) (-2083 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-2926 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3063 (-747)))) (-4 *1 (-1032 *3 *4 *5)))) (-4298 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-3270 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)))) (-2714 (*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-400 (-549)))) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-923 (-400 (-549)))) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-923 (-400 (-549)))) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))) (-2714 (*1 *1 *2) (|partial| -1536 (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4008 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1143)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))))) (-2659 (*1 *1 *2) (-1536 (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4008 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1143)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))))) (-2845 (*1 *1 *2) (-1536 (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4008 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1143)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143)))) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))))) (-2714 (*1 *1 *2) (|partial| -1536 (-12 (-5 *2 (-923 *3)) (-12 (-4008 (-4 *3 (-38 (-400 (-549))))) (-4008 (-4 *3 (-38 (-549)))) (-4 *5 (-594 (-1143)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 *3)) (-12 (-4008 (-4 *3 (-534))) (-4008 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1143)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 *3)) (-12 (-4008 (-4 *3 (-963 (-549)))) (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))))) (-2659 (*1 *1 *2) (-1536 (-12 (-5 *2 (-923 *3)) (-12 (-4008 (-4 *3 (-38 (-400 (-549))))) (-4008 (-4 *3 (-38 (-549)))) (-4 *5 (-594 (-1143)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 *3)) (-12 (-4008 (-4 *3 (-534))) (-4008 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1143)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))) (-12 (-5 *2 (-923 *3)) (-12 (-4008 (-4 *3 (-963 (-549)))) (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143)))) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769)) (-4 *5 (-823))))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-923 *3)) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *5 (-594 (-1143))) (-4 *4 (-769)) (-4 *5 (-823)))) (-2582 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-2348 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-3535 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-2191 (*1 *1 *1 *2) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-3535 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-2191 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-1910 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-1444 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -3727 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1032 *3 *4 *5)))) (-2214 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -3727 *1) (|:| |coef1| *1))) (-4 *1 (-1032 *3 *4 *5)))) (-3542 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-2 (|:| -3727 *1) (|:| |coef2| *1))) (-4 *1 (-1032 *3 *4 *5)))) (-1353 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-1506 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1032 *3 *4 *5)))) (-3072 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-2938 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *3 (-541)))) (-3706 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *3 (-541)))) (-2937 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-541)))) (-3727 (*1 *2 *2 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-2653 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-2878 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-1915 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))) (-2280 (*1 *1 *1) (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-444)))))
+(-13 (-920 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2745 (|t#3| $)) (-15 -4247 ((-747) $)) (-15 -3060 ($ $)) (-15 -3477 ($ $)) (-15 -1343 ($ $)) (-15 -3828 ($ $)) (-15 -3263 ((-621 $) $)) (-15 -1608 ($ $)) (-15 -2043 ($ $ |t#3|)) (-15 -2070 ($ $ |t#3|)) (-15 -2600 ((-112) $)) (-15 -2316 ((-112) $)) (-15 -3070 ($ $)) (-15 -2801 ($ $)) (-15 -1876 ((-621 $) $)) (-15 -4239 ((-621 $) $)) (-15 -1712 ((-3 (-112) "failed") $ $)) (-15 -2473 ((-112) $ $)) (-15 -2635 ((-112) $ $)) (-15 -2217 ((-112) $ $)) (-15 -2217 ((-112) $ (-621 $))) (-15 -1335 ((-112) $ $)) (-15 -1335 ((-112) $ (-621 $))) (-15 -2170 ((-112) $ $)) (-15 -2170 ((-112) $ (-621 $))) (-15 -2812 ((-112) $ $)) (-15 -2812 ((-112) $ (-621 $))) (-15 -2882 ($ $ $)) (-15 -2854 ($ $ $)) (-15 -2882 ($ $ $ |t#3|)) (-15 -2854 ($ $ $ |t#3|)) (-15 -3564 ($ $ $)) (-15 -3420 ($ $ $)) (-15 -3564 ($ $ $ |t#3|)) (-15 -3420 ($ $ $ |t#3|)) (-15 -3507 ((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -3675 $)) $ $)) (-15 -3507 ((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -3675 $)) $ $ |t#3|)) (-15 -4163 ((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -4013 $) (|:| -3675 $)) $ $)) (-15 -4163 ((-2 (|:| -1570 $) (|:| |gap| (-747)) (|:| -4013 $) (|:| -3675 $)) $ $ |t#3|)) (-15 -3921 ((-2 (|:| -4013 $) (|:| -3675 $)) $ $)) (-15 -2083 ($ $ $)) (-15 -2926 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3063 (-747))) $ $)) (-15 -4298 ($ $ $)) (-15 -3270 ($ $ $)) (IF (|has| |t#3| (-594 (-1143))) (PROGN (-6 (-593 (-923 |t#1|))) (-6 (-594 (-923 |t#1|))) (IF (|has| |t#1| (-38 (-400 (-549)))) (PROGN (-15 -2714 ((-3 $ "failed") (-923 (-400 (-549))))) (-15 -2659 ($ (-923 (-400 (-549))))) (-15 -2845 ($ (-923 (-400 (-549))))) (-15 -2714 ((-3 $ "failed") (-923 (-549)))) (-15 -2659 ($ (-923 (-549)))) (-15 -2845 ($ (-923 (-549)))) (IF (|has| |t#1| (-963 (-549))) |%noBranch| (PROGN (-15 -2714 ((-3 $ "failed") (-923 |t#1|))) (-15 -2659 ($ (-923 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-549))) (IF (|has| |t#1| (-38 (-400 (-549)))) |%noBranch| (PROGN (-15 -2714 ((-3 $ "failed") (-923 (-549)))) (-15 -2659 ($ (-923 (-549)))) (-15 -2845 ($ (-923 (-549)))) (IF (|has| |t#1| (-534)) |%noBranch| (PROGN (-15 -2714 ((-3 $ "failed") (-923 |t#1|))) (-15 -2659 ($ (-923 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-549))) |%noBranch| (IF (|has| |t#1| (-38 (-400 (-549)))) |%noBranch| (PROGN (-15 -2714 ((-3 $ "failed") (-923 |t#1|))) (-15 -2659 ($ (-923 |t#1|)))))) (-15 -2845 ($ (-923 |t#1|))) (IF (|has| |t#1| (-1009 (-549))) (-6 (-594 (-1125))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-541)) (PROGN (-15 -2582 ($ $)) (-15 -2348 ($ $)) (-15 -3535 ($ $ |t#1|)) (-15 -2191 ($ $ |t#1|)) (-15 -3535 ($ $ $)) (-15 -2191 ($ $ $)) (-15 -1910 ($ $ $)) (-15 -1444 ((-2 (|:| -3727 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2214 ((-2 (|:| -3727 $) (|:| |coef1| $)) $ $)) (-15 -3542 ((-2 (|:| -3727 $) (|:| |coef2| $)) $ $)) (-15 -1353 ($ $ $)) (-15 -1506 ((-621 $) $ $)) (-15 -3072 ($ $ $)) (-15 -2938 ($ $ $ (-747))) (-15 -3706 ($ $ $ $ (-747))) (-15 -2937 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3727 (|t#1| |t#1| $)) (-15 -2653 ($ $)) (-15 -2878 ($ $)) (-15 -1915 ($ $)) (-15 -2280 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-593 (-923 |#1|)) |has| |#3| (-594 (-1143))) ((-170) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-594 (-525)) -12 (|has| |#1| (-594 (-525))) (|has| |#3| (-594 (-525)))) ((-594 (-863 (-372))) -12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#3| (-594 (-863 (-372))))) ((-594 (-863 (-549))) -12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#3| (-594 (-863 (-549))))) ((-594 (-923 |#1|)) |has| |#3| (-594 (-1143))) ((-594 (-1125)) -12 (|has| |#1| (-1009 (-549))) (|has| |#3| (-594 (-1143)))) ((-283) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1536 (|has| |#1| (-880)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-541) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 |#3|) . T) ((-857 (-372)) -12 (|has| |#1| (-857 (-372))) (|has| |#3| (-857 (-372)))) ((-857 (-549)) -12 (|has| |#1| (-857 (-549))) (|has| |#3| (-857 (-549)))) ((-920 |#1| |#2| |#3|) . T) ((-880) |has| |#1| (-880)) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 |#1|) . T) ((-1009 |#3|) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1184) |has| |#1| (-880)))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3022 (((-621 (-1148)) $) 13)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2492 (((-1148) $) 15)) (-2389 (((-112) $ $) NIL)))
+(((-1033) (-13 (-1050) (-10 -8 (-15 -3022 ((-621 (-1148)) $)) (-15 -2492 ((-1148) $))))) (T -1033))
+((-3022 (*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-1033)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1033)))))
+(-13 (-1050) (-10 -8 (-15 -3022 ((-621 (-1148)) $)) (-15 -2492 ((-1148) $))))
+((-1763 (((-112) |#3| $) 13)) (-1947 (((-3 $ "failed") |#3| (-892)) 23)) (-2114 (((-3 |#3| "failed") |#3| $) 38)) (-2772 (((-112) |#3| $) 16)) (-2374 (((-112) |#3| $) 14)))
+(((-1034 |#1| |#2| |#3|) (-10 -8 (-15 -1947 ((-3 |#1| "failed") |#3| (-892))) (-15 -2114 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2772 ((-112) |#3| |#1|)) (-15 -2374 ((-112) |#3| |#1|)) (-15 -1763 ((-112) |#3| |#1|))) (-1035 |#2| |#3|) (-13 (-821) (-356)) (-1202 |#2|)) (T -1034))
+NIL
+(-10 -8 (-15 -1947 ((-3 |#1| "failed") |#3| (-892))) (-15 -2114 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2772 ((-112) |#3| |#1|)) (-15 -2374 ((-112) |#3| |#1|)) (-15 -1763 ((-112) |#3| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) |#2| $) 21)) (-1872 (((-549) |#2| $) 22)) (-1947 (((-3 $ "failed") |#2| (-892)) 15)) (-1336 ((|#1| |#2| $ |#1|) 13)) (-2114 (((-3 |#2| "failed") |#2| $) 18)) (-2772 (((-112) |#2| $) 19)) (-2374 (((-112) |#2| $) 20)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2815 ((|#2| $) 17)) (-3846 (((-834) $) 11)) (-2661 ((|#1| |#2| $ |#1|) 14)) (-3302 (((-621 $) |#2|) 16)) (-2389 (((-112) $ $) 6)))
+(((-1035 |#1| |#2|) (-138) (-13 (-821) (-356)) (-1202 |t#1|)) (T -1035))
+((-1872 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1202 *4)) (-5 *2 (-549)))) (-1763 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1202 *4)) (-5 *2 (-112)))) (-2374 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1202 *4)) (-5 *2 (-112)))) (-2772 (*1 *2 *3 *1) (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1202 *4)) (-5 *2 (-112)))) (-2114 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356))) (-4 *2 (-1202 *3)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356))) (-4 *2 (-1202 *3)))) (-3302 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1202 *4)) (-5 *2 (-621 *1)) (-4 *1 (-1035 *4 *3)))) (-1947 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-892)) (-4 *4 (-13 (-821) (-356))) (-4 *1 (-1035 *4 *2)) (-4 *2 (-1202 *4)))) (-2661 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356))) (-4 *3 (-1202 *2)))) (-1336 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356))) (-4 *3 (-1202 *2)))))
+(-13 (-1067) (-10 -8 (-15 -1872 ((-549) |t#2| $)) (-15 -1763 ((-112) |t#2| $)) (-15 -2374 ((-112) |t#2| $)) (-15 -2772 ((-112) |t#2| $)) (-15 -2114 ((-3 |t#2| "failed") |t#2| $)) (-15 -2815 (|t#2| $)) (-15 -3302 ((-621 $) |t#2|)) (-15 -1947 ((-3 $ "failed") |t#2| (-892))) (-15 -2661 (|t#1| |t#2| $ |t#1|)) (-15 -1336 (|t#1| |t#2| $ |t#1|))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3817 (((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-621 |#4|) (-621 |#5|) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) (-747)) 96)) (-3105 (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747)) 56)) (-3762 (((-1231) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-747)) 87)) (-1362 (((-747) (-621 |#4|) (-621 |#5|)) 27)) (-2166 (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747)) 58) (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747) (-112)) 60)) (-1655 (((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112)) 79)) (-2845 (((-1125) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) 82)) (-1589 (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-112)) 55)) (-1516 (((-747) (-621 |#4|) (-621 |#5|)) 19)))
+(((-1036 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1516 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -1362 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -1589 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-112))) (-15 -3105 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747))) (-15 -3105 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|)) (-15 -2166 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -2166 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747))) (-15 -2166 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|)) (-15 -1655 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -1655 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3817 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-621 |#4|) (-621 |#5|) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) (-747))) (-15 -2845 ((-1125) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)))) (-15 -3762 ((-1231) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-747)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1036))
+((-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1981 *9)))) (-5 *4 (-747)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1231)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1981 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1125)) (-5 *1 (-1036 *4 *5 *6 *7 *8)))) (-3817 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-621 *11)) (|:| |todo| (-621 (-2 (|:| |val| *3) (|:| -1981 *11)))))) (-5 *6 (-747)) (-5 *2 (-621 (-2 (|:| |val| (-621 *10)) (|:| -1981 *11)))) (-5 *3 (-621 *10)) (-5 *4 (-621 *11)) (-4 *10 (-1032 *7 *8 *9)) (-4 *11 (-1038 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-5 *1 (-1036 *7 *8 *9 *10 *11)))) (-1655 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-1655 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-2166 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))))) (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2166 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))))) (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-2166 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))))) (-5 *1 (-1036 *7 *8 *9 *3 *4)) (-4 *4 (-1038 *7 *8 *9 *3)))) (-3105 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))))) (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3105 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))))) (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-1589 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))))) (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-1362 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1516 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -1362 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -1589 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-112))) (-15 -3105 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747))) (-15 -3105 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|)) (-15 -2166 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -2166 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747))) (-15 -2166 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|)) (-15 -1655 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -1655 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3817 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-621 |#4|) (-621 |#5|) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) (-747))) (-15 -2845 ((-1125) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)))) (-15 -3762 ((-1231) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-747))))
+((-3516 (((-112) |#5| $) 21)) (-3150 (((-112) |#5| $) 24)) (-2064 (((-112) |#5| $) 16) (((-112) $) 45)) (-3655 (((-621 $) |#5| $) NIL) (((-621 $) (-621 |#5|) $) 77) (((-621 $) (-621 |#5|) (-621 $)) 75) (((-621 $) |#5| (-621 $)) 78)) (-2763 (($ $ |#5|) NIL) (((-621 $) |#5| $) NIL) (((-621 $) |#5| (-621 $)) 60) (((-621 $) (-621 |#5|) $) 62) (((-621 $) (-621 |#5|) (-621 $)) 64)) (-1518 (((-621 $) |#5| $) NIL) (((-621 $) |#5| (-621 $)) 54) (((-621 $) (-621 |#5|) $) 56) (((-621 $) (-621 |#5|) (-621 $)) 58)) (-3524 (((-112) |#5| $) 27)))
+(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2763 ((-621 |#1|) (-621 |#5|) (-621 |#1|))) (-15 -2763 ((-621 |#1|) (-621 |#5|) |#1|)) (-15 -2763 ((-621 |#1|) |#5| (-621 |#1|))) (-15 -2763 ((-621 |#1|) |#5| |#1|)) (-15 -1518 ((-621 |#1|) (-621 |#5|) (-621 |#1|))) (-15 -1518 ((-621 |#1|) (-621 |#5|) |#1|)) (-15 -1518 ((-621 |#1|) |#5| (-621 |#1|))) (-15 -1518 ((-621 |#1|) |#5| |#1|)) (-15 -3655 ((-621 |#1|) |#5| (-621 |#1|))) (-15 -3655 ((-621 |#1|) (-621 |#5|) (-621 |#1|))) (-15 -3655 ((-621 |#1|) (-621 |#5|) |#1|)) (-15 -3655 ((-621 |#1|) |#5| |#1|)) (-15 -3150 ((-112) |#5| |#1|)) (-15 -2064 ((-112) |#1|)) (-15 -3524 ((-112) |#5| |#1|)) (-15 -3516 ((-112) |#5| |#1|)) (-15 -2064 ((-112) |#5| |#1|)) (-15 -2763 (|#1| |#1| |#5|))) (-1038 |#2| |#3| |#4| |#5|) (-444) (-769) (-823) (-1032 |#2| |#3| |#4|)) (T -1037))
+NIL
+(-10 -8 (-15 -2763 ((-621 |#1|) (-621 |#5|) (-621 |#1|))) (-15 -2763 ((-621 |#1|) (-621 |#5|) |#1|)) (-15 -2763 ((-621 |#1|) |#5| (-621 |#1|))) (-15 -2763 ((-621 |#1|) |#5| |#1|)) (-15 -1518 ((-621 |#1|) (-621 |#5|) (-621 |#1|))) (-15 -1518 ((-621 |#1|) (-621 |#5|) |#1|)) (-15 -1518 ((-621 |#1|) |#5| (-621 |#1|))) (-15 -1518 ((-621 |#1|) |#5| |#1|)) (-15 -3655 ((-621 |#1|) |#5| (-621 |#1|))) (-15 -3655 ((-621 |#1|) (-621 |#5|) (-621 |#1|))) (-15 -3655 ((-621 |#1|) (-621 |#5|) |#1|)) (-15 -3655 ((-621 |#1|) |#5| |#1|)) (-15 -3150 ((-112) |#5| |#1|)) (-15 -2064 ((-112) |#1|)) (-15 -3524 ((-112) |#5| |#1|)) (-15 -3516 ((-112) |#5| |#1|)) (-15 -2064 ((-112) |#5| |#1|)) (-15 -2763 (|#1| |#1| |#5|)))
+((-3834 (((-112) $ $) 7)) (-3514 (((-621 (-2 (|:| -2681 $) (|:| -1359 (-621 |#4|)))) (-621 |#4|)) 85)) (-2866 (((-621 $) (-621 |#4|)) 86) (((-621 $) (-621 |#4|) (-112)) 111)) (-2272 (((-621 |#3|) $) 33)) (-3422 (((-112) $) 26)) (-2527 (((-112) $) 17 (|has| |#1| (-541)))) (-3282 (((-112) |#4| $) 101) (((-112) $) 97)) (-2731 ((|#4| |#4| $) 92)) (-3979 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 $))) |#4| $) 126)) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |#3|) 27)) (-1584 (((-112) $ (-747)) 44)) (-1489 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4337))) (((-3 |#4| "failed") $ |#3|) 79)) (-1682 (($) 45 T CONST)) (-1433 (((-112) $) 22 (|has| |#1| (-541)))) (-2555 (((-112) $ $) 24 (|has| |#1| (-541)))) (-2595 (((-112) $ $) 23 (|has| |#1| (-541)))) (-2397 (((-112) $) 25 (|has| |#1| (-541)))) (-2737 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3269 (((-621 |#4|) (-621 |#4|) $) 18 (|has| |#1| (-541)))) (-2953 (((-621 |#4|) (-621 |#4|) $) 19 (|has| |#1| (-541)))) (-2714 (((-3 $ "failed") (-621 |#4|)) 36)) (-2659 (($ (-621 |#4|)) 35)) (-3657 (((-3 $ "failed") $) 82)) (-1903 ((|#4| |#4| $) 89)) (-3676 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4337)))) (-3675 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-541)))) (-2217 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3615 ((|#4| |#4| $) 87)) (-2557 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4337))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4337))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1439 (((-2 (|:| -2681 (-621 |#4|)) (|:| -1359 (-621 |#4|))) $) 105)) (-3516 (((-112) |#4| $) 136)) (-3150 (((-112) |#4| $) 133)) (-2064 (((-112) |#4| $) 137) (((-112) $) 134)) (-2989 (((-621 |#4|) $) 52 (|has| $ (-6 -4337)))) (-2812 (((-112) |#4| $) 104) (((-112) $) 103)) (-2745 ((|#3| $) 34)) (-3194 (((-112) $ (-747)) 43)) (-1562 (((-621 |#4|) $) 53 (|has| $ (-6 -4337)))) (-2090 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#4| |#4|) $) 47)) (-2561 (((-621 |#3|) $) 32)) (-2378 (((-112) |#3| $) 31)) (-1508 (((-112) $ (-747)) 42)) (-3851 (((-1125) $) 9)) (-1878 (((-3 |#4| (-621 $)) |#4| |#4| $) 128)) (-3072 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 $))) |#4| |#4| $) 127)) (-3829 (((-3 |#4| "failed") $) 83)) (-3689 (((-621 $) |#4| $) 129)) (-1514 (((-3 (-112) (-621 $)) |#4| $) 132)) (-4184 (((-621 (-2 (|:| |val| (-112)) (|:| -1981 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3655 (((-621 $) |#4| $) 125) (((-621 $) (-621 |#4|) $) 124) (((-621 $) (-621 |#4|) (-621 $)) 123) (((-621 $) |#4| (-621 $)) 122)) (-4283 (($ |#4| $) 117) (($ (-621 |#4|) $) 116)) (-1638 (((-621 |#4|) $) 107)) (-2170 (((-112) |#4| $) 99) (((-112) $) 95)) (-3270 ((|#4| |#4| $) 90)) (-2473 (((-112) $ $) 110)) (-4203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-541)))) (-1335 (((-112) |#4| $) 100) (((-112) $) 96)) (-4298 ((|#4| |#4| $) 91)) (-3990 (((-1087) $) 10)) (-3646 (((-3 |#4| "failed") $) 84)) (-3779 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2640 (((-3 $ "failed") $ |#4|) 78)) (-2763 (($ $ |#4|) 77) (((-621 $) |#4| $) 115) (((-621 $) |#4| (-621 $)) 114) (((-621 $) (-621 |#4|) $) 113) (((-621 $) (-621 |#4|) (-621 $)) 112)) (-1780 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#4|) (-621 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-621 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-4144 (((-112) $ $) 38)) (-3670 (((-112) $) 41)) (-3742 (($) 40)) (-3701 (((-747) $) 106)) (-4000 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4337)))) (-2281 (($ $) 39)) (-2845 (((-525) $) 69 (|has| |#4| (-594 (-525))))) (-3854 (($ (-621 |#4|)) 60)) (-2858 (($ $ |#3|) 28)) (-3758 (($ $ |#3|) 30)) (-1962 (($ $) 88)) (-4317 (($ $ |#3|) 29)) (-3846 (((-834) $) 11) (((-621 |#4|) $) 37)) (-1824 (((-747) $) 76 (|has| |#3| (-361)))) (-2574 (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1716 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) 98)) (-1518 (((-621 $) |#4| $) 121) (((-621 $) |#4| (-621 $)) 120) (((-621 $) (-621 |#4|) $) 119) (((-621 $) (-621 |#4|) (-621 $)) 118)) (-3527 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4337)))) (-3002 (((-621 |#3|) $) 81)) (-3524 (((-112) |#4| $) 135)) (-1606 (((-112) |#3| $) 80)) (-2389 (((-112) $ $) 6)) (-3775 (((-747) $) 46 (|has| $ (-6 -4337)))))
+(((-1038 |#1| |#2| |#3| |#4|) (-138) (-444) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1038))
+((-2064 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3516 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3524 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-2064 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-3150 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-1514 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-3 (-112) (-621 *1))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-4184 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1981 *1)))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-4184 (*1 *2 *3 *1) (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3689 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-1878 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-3 *3 (-621 *1))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3072 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *1)))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3979 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *1)))) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3655 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-3655 (*1 *2 *3 *1) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) (-3655 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *1)) (-5 *3 (-621 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) (-3655 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) (-1518 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) (-1518 (*1 *2 *3 *1) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *1)) (-5 *3 (-621 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) (-4283 (*1 *1 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4283 (*1 *1 *2 *1) (-12 (-5 *2 (-621 *6)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)))) (-2763 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)))) (-2763 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)))) (-2763 (*1 *2 *3 *1) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *7)))) (-2763 (*1 *2 *3 *2) (-12 (-5 *2 (-621 *1)) (-5 *3 (-621 *7)) (-4 *1 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)))) (-2866 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1038 *5 *6 *7 *8)))))
+(-13 (-1173 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2064 ((-112) |t#4| $)) (-15 -3516 ((-112) |t#4| $)) (-15 -3524 ((-112) |t#4| $)) (-15 -2064 ((-112) $)) (-15 -3150 ((-112) |t#4| $)) (-15 -1514 ((-3 (-112) (-621 $)) |t#4| $)) (-15 -4184 ((-621 (-2 (|:| |val| (-112)) (|:| -1981 $))) |t#4| $)) (-15 -4184 ((-112) |t#4| $)) (-15 -3689 ((-621 $) |t#4| $)) (-15 -1878 ((-3 |t#4| (-621 $)) |t#4| |t#4| $)) (-15 -3072 ((-621 (-2 (|:| |val| |t#4|) (|:| -1981 $))) |t#4| |t#4| $)) (-15 -3979 ((-621 (-2 (|:| |val| |t#4|) (|:| -1981 $))) |t#4| $)) (-15 -3655 ((-621 $) |t#4| $)) (-15 -3655 ((-621 $) (-621 |t#4|) $)) (-15 -3655 ((-621 $) (-621 |t#4|) (-621 $))) (-15 -3655 ((-621 $) |t#4| (-621 $))) (-15 -1518 ((-621 $) |t#4| $)) (-15 -1518 ((-621 $) |t#4| (-621 $))) (-15 -1518 ((-621 $) (-621 |t#4|) $)) (-15 -1518 ((-621 $) (-621 |t#4|) (-621 $))) (-15 -4283 ($ |t#4| $)) (-15 -4283 ($ (-621 |t#4|) $)) (-15 -2763 ((-621 $) |t#4| $)) (-15 -2763 ((-621 $) |t#4| (-621 $))) (-15 -2763 ((-621 $) (-621 |t#4|) $)) (-15 -2763 ((-621 $) (-621 |t#4|) (-621 $))) (-15 -2866 ((-621 $) (-621 |t#4|) (-112)))))
+(((-34) . T) ((-101) . T) ((-593 (-621 |#4|)) . T) ((-593 (-834)) . T) ((-149 |#4|) . T) ((-594 (-525)) |has| |#4| (-594 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1173 |#1| |#2| |#3| |#4|) . T) ((-1180) . T))
+((-3353 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#5|) 81)) (-4270 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5|) 113)) (-3963 (((-621 |#5|) |#4| |#5|) 70)) (-4085 (((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2283 (((-1231)) 37)) (-4066 (((-1231)) 26)) (-3847 (((-1231) (-1125) (-1125) (-1125)) 33)) (-1418 (((-1231) (-1125) (-1125) (-1125)) 22)) (-3825 (((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) |#4| |#4| |#5|) 96)) (-2642 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) |#3| (-112)) 107) (((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2902 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5|) 102)))
+(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1418 ((-1231) (-1125) (-1125) (-1125))) (-15 -4066 ((-1231))) (-15 -3847 ((-1231) (-1125) (-1125) (-1125))) (-15 -2283 ((-1231))) (-15 -3825 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) |#4| |#4| |#5|)) (-15 -2642 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2642 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) |#3| (-112))) (-15 -2902 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5|)) (-15 -4270 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5|)) (-15 -4085 ((-112) |#4| |#5|)) (-15 -4085 ((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|)) (-15 -3963 ((-621 |#5|) |#4| |#5|)) (-15 -3353 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#5|))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1039))
+((-3353 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3963 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4)) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-4085 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1981 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-4085 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-4270 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2902 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2642 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1981 *9)))) (-5 *5 (-112)) (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *4 (-823)) (-5 *2 (-621 (-2 (|:| |val| *8) (|:| -1981 *9)))) (-5 *1 (-1039 *6 *7 *4 *8 *9)))) (-2642 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4)))) (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3825 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))) (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2283 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1231)) (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3847 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1125)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1231)) (-5 *1 (-1039 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-4066 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1231)) (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-1418 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1125)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1231)) (-5 *1 (-1039 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1418 ((-1231) (-1125) (-1125) (-1125))) (-15 -4066 ((-1231))) (-15 -3847 ((-1231) (-1125) (-1125) (-1125))) (-15 -2283 ((-1231))) (-15 -3825 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) |#4| |#4| |#5|)) (-15 -2642 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2642 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) |#3| (-112))) (-15 -2902 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5|)) (-15 -4270 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5|)) (-15 -4085 ((-112) |#4| |#5|)) (-15 -4085 ((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|)) (-15 -3963 ((-621 |#5|) |#4| |#5|)) (-15 -3353 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#5|)))
+((-3834 (((-112) $ $) NIL)) (-2100 (((-1179) $) 12)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3955 (((-1148) $) 9)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-1040) (-13 (-1050) (-10 -8 (-15 -3955 ((-1148) $)) (-15 -2100 ((-1179) $))))) (T -1040))
+((-3955 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1040)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1040)))))
+(-13 (-1050) (-10 -8 (-15 -3955 ((-1148) $)) (-15 -2100 ((-1179) $))))
+((-3834 (((-112) $ $) NIL)) (-2481 (((-1143) $) 8)) (-3851 (((-1125) $) 16)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 11)) (-2389 (((-112) $ $) 13)))
+(((-1041 |#1|) (-13 (-1067) (-10 -8 (-15 -2481 ((-1143) $)))) (-1143)) (T -1041))
+((-2481 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1041 *3)) (-14 *3 *2))))
+(-13 (-1067) (-10 -8 (-15 -2481 ((-1143) $))))
+((-3834 (((-112) $ $) NIL)) (-1863 (($ $ (-621 (-1143)) (-1 (-112) (-621 |#3|))) 33)) (-3662 (($ |#3| |#3|) 22) (($ |#3| |#3| (-621 (-1143))) 20)) (-2203 ((|#3| $) 13)) (-2714 (((-3 (-287 |#3|) "failed") $) 58)) (-2659 (((-287 |#3|) $) NIL)) (-2406 (((-621 (-1143)) $) 16)) (-3656 (((-863 |#1|) $) 11)) (-2190 ((|#3| $) 12)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3341 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-892)) 39)) (-3846 (((-834) $) 86) (($ (-287 |#3|)) 21)) (-2389 (((-112) $ $) 36)))
+(((-1042 |#1| |#2| |#3|) (-13 (-1067) (-279 |#3| |#3|) (-1009 (-287 |#3|)) (-10 -8 (-15 -3662 ($ |#3| |#3|)) (-15 -3662 ($ |#3| |#3| (-621 (-1143)))) (-15 -1863 ($ $ (-621 (-1143)) (-1 (-112) (-621 |#3|)))) (-15 -3656 ((-863 |#1|) $)) (-15 -2190 (|#3| $)) (-15 -2203 (|#3| $)) (-15 -3341 (|#3| $ |#3| (-892))) (-15 -2406 ((-621 (-1143)) $)))) (-1067) (-13 (-1018) (-857 |#1|) (-823) (-594 (-863 |#1|))) (-13 (-423 |#2|) (-857 |#1|) (-594 (-863 |#1|)))) (T -1042))
+((-3662 (*1 *1 *2 *2) (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3)))) (-5 *1 (-1042 *3 *4 *2)) (-4 *2 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))))) (-3662 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-621 (-1143))) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4)))) (-5 *1 (-1042 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))))) (-1863 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-1 (-112) (-621 *6))) (-4 *6 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4)))) (-5 *1 (-1042 *4 *5 *6)))) (-3656 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 *2))) (-5 *2 (-863 *3)) (-5 *1 (-1042 *3 *4 *5)) (-4 *5 (-13 (-423 *4) (-857 *3) (-594 *2))))) (-2190 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *2 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))) (-5 *1 (-1042 *3 *4 *2)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3)))))) (-2203 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *2 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))) (-5 *1 (-1042 *3 *4 *2)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3)))))) (-3341 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-892)) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4)))) (-5 *1 (-1042 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))))) (-2406 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3)))) (-5 *2 (-621 (-1143))) (-5 *1 (-1042 *3 *4 *5)) (-4 *5 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))))))
+(-13 (-1067) (-279 |#3| |#3|) (-1009 (-287 |#3|)) (-10 -8 (-15 -3662 ($ |#3| |#3|)) (-15 -3662 ($ |#3| |#3| (-621 (-1143)))) (-15 -1863 ($ $ (-621 (-1143)) (-1 (-112) (-621 |#3|)))) (-15 -3656 ((-863 |#1|) $)) (-15 -2190 (|#3| $)) (-15 -2203 (|#3| $)) (-15 -3341 (|#3| $ |#3| (-892))) (-15 -2406 ((-621 (-1143)) $))))
+((-3834 (((-112) $ $) NIL)) (-1826 (($ (-621 (-1042 |#1| |#2| |#3|))) 13)) (-3638 (((-621 (-1042 |#1| |#2| |#3|)) $) 20)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3341 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-892)) 26)) (-3846 (((-834) $) 16)) (-2389 (((-112) $ $) 19)))
+(((-1043 |#1| |#2| |#3|) (-13 (-1067) (-279 |#3| |#3|) (-10 -8 (-15 -1826 ($ (-621 (-1042 |#1| |#2| |#3|)))) (-15 -3638 ((-621 (-1042 |#1| |#2| |#3|)) $)) (-15 -3341 (|#3| $ |#3| (-892))))) (-1067) (-13 (-1018) (-857 |#1|) (-823) (-594 (-863 |#1|))) (-13 (-423 |#2|) (-857 |#1|) (-594 (-863 |#1|)))) (T -1043))
+((-1826 (*1 *1 *2) (-12 (-5 *2 (-621 (-1042 *3 *4 *5))) (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3)))) (-4 *5 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))) (-5 *1 (-1043 *3 *4 *5)))) (-3638 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3)))) (-5 *2 (-621 (-1042 *3 *4 *5))) (-5 *1 (-1043 *3 *4 *5)) (-4 *5 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))))) (-3341 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-892)) (-4 *4 (-1067)) (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4)))) (-5 *1 (-1043 *4 *5 *2)) (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))))))
+(-13 (-1067) (-279 |#3| |#3|) (-10 -8 (-15 -1826 ($ (-621 (-1042 |#1| |#2| |#3|)))) (-15 -3638 ((-621 (-1042 |#1| |#2| |#3|)) $)) (-15 -3341 (|#3| $ |#3| (-892)))))
+((-2782 (((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112)) 75) (((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|))) 77) (((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112)) 76)))
+(((-1044 |#1| |#2|) (-10 -7 (-15 -2782 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112))) (-15 -2782 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)))) (-15 -2782 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112)))) (-13 (-300) (-145)) (-621 (-1143))) (T -1044))
+((-2782 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-621 (-2 (|:| -1298 (-1139 *5)) (|:| -4263 (-621 (-923 *5)))))) (-5 *1 (-1044 *5 *6)) (-5 *3 (-621 (-923 *5))) (-14 *6 (-621 (-1143))))) (-2782 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-5 *2 (-621 (-2 (|:| -1298 (-1139 *4)) (|:| -4263 (-621 (-923 *4)))))) (-5 *1 (-1044 *4 *5)) (-5 *3 (-621 (-923 *4))) (-14 *5 (-621 (-1143))))) (-2782 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-621 (-2 (|:| -1298 (-1139 *5)) (|:| -4263 (-621 (-923 *5)))))) (-5 *1 (-1044 *5 *6)) (-5 *3 (-621 (-923 *5))) (-14 *6 (-621 (-1143))))))
+(-10 -7 (-15 -2782 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112))) (-15 -2782 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)))) (-15 -2782 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112))))
+((-2121 (((-411 |#3|) |#3|) 18)))
+(((-1045 |#1| |#2| |#3|) (-10 -7 (-15 -2121 ((-411 |#3|) |#3|))) (-1202 (-400 (-549))) (-13 (-356) (-145) (-701 (-400 (-549)) |#1|)) (-1202 |#2|)) (T -1045))
+((-2121 (*1 *2 *3) (-12 (-4 *4 (-1202 (-400 (-549)))) (-4 *5 (-13 (-356) (-145) (-701 (-400 (-549)) *4))) (-5 *2 (-411 *3)) (-5 *1 (-1045 *4 *5 *3)) (-4 *3 (-1202 *5)))))
+(-10 -7 (-15 -2121 ((-411 |#3|) |#3|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 126)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-356)))) (-2258 (($ $) NIL (|has| |#1| (-356)))) (-2799 (((-112) $) NIL (|has| |#1| (-356)))) (-1738 (((-665 |#1|) (-1226 $)) NIL) (((-665 |#1|)) 115)) (-2906 ((|#1| $) 119)) (-3062 (((-1153 (-892) (-747)) (-549)) NIL (|has| |#1| (-342)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL (|has| |#1| (-356)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3614 (((-747)) 40 (|has| |#1| (-361)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-3492 (($ (-1226 |#1|) (-1226 $)) NIL) (($ (-1226 |#1|)) 43)) (-2523 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-3506 (((-665 |#1|) $ (-1226 $)) NIL) (((-665 |#1|) $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 106) (((-665 |#1|) (-665 $)) 101)) (-2557 (($ |#2|) 61) (((-3 $ "failed") (-400 |#2|)) NIL (|has| |#1| (-356)))) (-2114 (((-3 $ "failed") $) NIL)) (-3123 (((-892)) 77)) (-3239 (($) 44 (|has| |#1| (-361)))) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-2405 (($) NIL (|has| |#1| (-342)))) (-2288 (((-112) $) NIL (|has| |#1| (-342)))) (-3165 (($ $ (-747)) NIL (|has| |#1| (-342))) (($ $) NIL (|has| |#1| (-342)))) (-1420 (((-112) $) NIL (|has| |#1| (-356)))) (-2088 (((-892) $) NIL (|has| |#1| (-342))) (((-809 (-892)) $) NIL (|has| |#1| (-342)))) (-2675 (((-112) $) NIL)) (-3630 ((|#1| $) NIL)) (-1681 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-3788 ((|#2| $) 84 (|has| |#1| (-356)))) (-1881 (((-892) $) 131 (|has| |#1| (-361)))) (-2548 ((|#2| $) 58)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL (|has| |#1| (-356)))) (-3060 (($) NIL (|has| |#1| (-342)) CONST)) (-3493 (($ (-892)) 125 (|has| |#1| (-361)))) (-3990 (((-1087) $) NIL)) (-4248 (($) 121)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-356)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1762 (((-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))) NIL (|has| |#1| (-342)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-3684 (((-747) $) NIL (|has| |#1| (-356)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-3602 ((|#1| (-1226 $)) NIL) ((|#1|) 109)) (-3914 (((-747) $) NIL (|has| |#1| (-342))) (((-3 (-747) "failed") $ $) NIL (|has| |#1| (-342)))) (-3456 (($ $) NIL (-1536 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-747)) NIL (-1536 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1143))))) (($ $ (-1 |#1| |#1|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2901 (((-665 |#1|) (-1226 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2815 ((|#2|) 73)) (-3170 (($) NIL (|has| |#1| (-342)))) (-4263 (((-1226 |#1|) $ (-1226 $)) 89) (((-665 |#1|) (-1226 $) (-1226 $)) NIL) (((-1226 |#1|) $) 71) (((-665 |#1|) (-1226 $)) 85)) (-2845 (((-1226 |#1|) $) NIL) (($ (-1226 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (|has| |#1| (-342)))) (-3846 (((-834) $) 57) (($ (-549)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-356))) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-356)) (|has| |#1| (-1009 (-400 (-549))))))) (-2210 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4154 ((|#2| $) 82)) (-2082 (((-747)) 75)) (-1949 (((-1226 $)) 81)) (-1498 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3276 (($) 30 T CONST)) (-3287 (($) 19 T CONST)) (-1702 (($ $) NIL (-1536 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-747)) NIL (-1536 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-342)))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-871 (-1143))))) (($ $ (-1 |#1| |#1|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2389 (((-112) $ $) 63)) (-2513 (($ $ $) NIL (|has| |#1| (-356)))) (-2500 (($ $) 67) (($ $ $) NIL)) (-2486 (($ $ $) 65)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-400 (-549)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-549))) NIL (|has| |#1| (-356)))))
+(((-1046 |#1| |#2| |#3|) (-701 |#1| |#2|) (-170) (-1202 |#1|) |#2|) (T -1046))
+NIL
+(-701 |#1| |#2|)
+((-2121 (((-411 |#3|) |#3|) 19)))
+(((-1047 |#1| |#2| |#3|) (-10 -7 (-15 -2121 ((-411 |#3|) |#3|))) (-1202 (-400 (-923 (-549)))) (-13 (-356) (-145) (-701 (-400 (-923 (-549))) |#1|)) (-1202 |#2|)) (T -1047))
+((-2121 (*1 *2 *3) (-12 (-4 *4 (-1202 (-400 (-923 (-549))))) (-4 *5 (-13 (-356) (-145) (-701 (-400 (-923 (-549))) *4))) (-5 *2 (-411 *3)) (-5 *1 (-1047 *4 *5 *3)) (-4 *3 (-1202 *5)))))
+(-10 -7 (-15 -2121 ((-411 |#3|) |#3|)))
+((-3834 (((-112) $ $) NIL)) (-2863 (($ $ $) 14)) (-3575 (($ $ $) 15)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2269 (($) 6)) (-2845 (((-1143) $) 18)) (-3846 (((-834) $) 12)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 13)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 8)))
+(((-1048) (-13 (-823) (-10 -8 (-15 -2269 ($)) (-15 -2845 ((-1143) $))))) (T -1048))
+((-2269 (*1 *1) (-5 *1 (-1048))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1048)))))
+(-13 (-823) (-10 -8 (-15 -2269 ($)) (-15 -2845 ((-1143) $))))
+((-3846 (((-834) $) 37) (((-1148) $) NIL)))
+(((-1049 |#1|) (-10 -8 (-15 -3846 ((-1148) |#1|)) (-15 -3846 ((-834) |#1|))) (-1050)) (T -1049))
+NIL
+(-10 -8 (-15 -3846 ((-1148) |#1|)) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (((-1148) $) 14)) (-2389 (((-112) $ $) 6)))
+(((-1050) (-138)) (T -1050))
NIL
(-13 (-92))
-(((-92) . T) ((-101) . T) ((-591 (-832)) . T) ((-591 (-1141)) . T) ((-1063) . T))
-((-1781 ((|#1| |#1| (-1 (-547) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-2626 (((-1224)) 15)) (-1275 (((-619 |#1|)) 9)))
-(((-1048 |#1|) (-10 -7 (-15 -2626 ((-1224))) (-15 -1275 ((-619 |#1|))) (-15 -1781 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1781 (|#1| |#1| (-1 (-547) |#1| |#1|)))) (-131)) (T -1048))
-((-1781 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-547) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2)))) (-1781 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2)))) (-1275 (*1 *2) (-12 (-5 *2 (-619 *3)) (-5 *1 (-1048 *3)) (-4 *3 (-131)))) (-2626 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1048 *3)) (-4 *3 (-131)))))
-(-10 -7 (-15 -2626 ((-1224))) (-15 -1275 ((-619 |#1|))) (-15 -1781 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1781 (|#1| |#1| (-1 (-547) |#1| |#1|))))
-((-2869 (($ (-108) $) 16)) (-4263 (((-3 (-108) "failed") (-1136) $) 15)) (-2245 (($) 7)) (-2268 (($) 17)) (-1746 (($) 18)) (-4148 (((-619 (-172)) $) 10)) (-3838 (((-832) $) 21)))
-(((-1049) (-13 (-591 (-832)) (-10 -8 (-15 -2245 ($)) (-15 -4148 ((-619 (-172)) $)) (-15 -4263 ((-3 (-108) "failed") (-1136) $)) (-15 -2869 ($ (-108) $)) (-15 -2268 ($)) (-15 -1746 ($))))) (T -1049))
-((-2245 (*1 *1) (-5 *1 (-1049))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-619 (-172))) (-5 *1 (-1049)))) (-4263 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1136)) (-5 *2 (-108)) (-5 *1 (-1049)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1049)))) (-2268 (*1 *1) (-5 *1 (-1049))) (-1746 (*1 *1) (-5 *1 (-1049))))
-(-13 (-591 (-832)) (-10 -8 (-15 -2245 ($)) (-15 -4148 ((-619 (-172)) $)) (-15 -4263 ((-3 (-108) "failed") (-1136) $)) (-15 -2869 ($ (-108) $)) (-15 -2268 ($)) (-15 -1746 ($))))
-((-3620 (((-1219 (-663 |#1|)) (-619 (-663 |#1|))) 42) (((-1219 (-663 (-921 |#1|))) (-619 (-1136)) (-663 (-921 |#1|))) 63) (((-1219 (-663 (-398 (-921 |#1|)))) (-619 (-1136)) (-663 (-398 (-921 |#1|)))) 79)) (-3220 (((-1219 |#1|) (-663 |#1|) (-619 (-663 |#1|))) 36)))
-(((-1050 |#1|) (-10 -7 (-15 -3620 ((-1219 (-663 (-398 (-921 |#1|)))) (-619 (-1136)) (-663 (-398 (-921 |#1|))))) (-15 -3620 ((-1219 (-663 (-921 |#1|))) (-619 (-1136)) (-663 (-921 |#1|)))) (-15 -3620 ((-1219 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -3220 ((-1219 |#1|) (-663 |#1|) (-619 (-663 |#1|))))) (-354)) (T -1050))
-((-3220 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-663 *5))) (-5 *3 (-663 *5)) (-4 *5 (-354)) (-5 *2 (-1219 *5)) (-5 *1 (-1050 *5)))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-354)) (-5 *2 (-1219 (-663 *4))) (-5 *1 (-1050 *4)))) (-3620 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1136))) (-4 *5 (-354)) (-5 *2 (-1219 (-663 (-921 *5)))) (-5 *1 (-1050 *5)) (-5 *4 (-663 (-921 *5))))) (-3620 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1136))) (-4 *5 (-354)) (-5 *2 (-1219 (-663 (-398 (-921 *5))))) (-5 *1 (-1050 *5)) (-5 *4 (-663 (-398 (-921 *5)))))))
-(-10 -7 (-15 -3620 ((-1219 (-663 (-398 (-921 |#1|)))) (-619 (-1136)) (-663 (-398 (-921 |#1|))))) (-15 -3620 ((-1219 (-663 (-921 |#1|))) (-619 (-1136)) (-663 (-921 |#1|)))) (-15 -3620 ((-1219 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -3220 ((-1219 |#1|) (-663 |#1|) (-619 (-663 |#1|)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3839 (((-619 (-745)) $) NIL) (((-619 (-745)) $ (-1136)) NIL)) (-2601 (((-745) $) NIL) (((-745) $ (-1136)) NIL)) (-2267 (((-619 (-1052 (-1136))) $) NIL)) (-2078 (((-1132 $) $ (-1052 (-1136))) NIL) (((-1132 |#1|) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 (-1052 (-1136)))) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2555 (($ $) NIL (|has| |#1| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2234 (($ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-1052 (-1136)) "failed") $) NIL) (((-3 (-1136) "failed") $) NIL) (((-3 (-1087 |#1| (-1136)) "failed") $) NIL)) (-2652 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-1052 (-1136)) $) NIL) (((-1136) $) NIL) (((-1087 |#1| (-1136)) $) NIL)) (-1496 (($ $ $ (-1052 (-1136))) NIL (|has| |#1| (-169)))) (-2063 (($ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#1| (-442))) (($ $ (-1052 (-1136))) NIL (|has| |#1| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#1| (-878)))) (-3210 (($ $ |#1| (-519 (-1052 (-1136))) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1052 (-1136)) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1052 (-1136)) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3275 (((-745) $ (-1136)) NIL) (((-745) $) NIL)) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-2254 (($ (-1132 |#1|) (-1052 (-1136))) NIL) (($ (-1132 $) (-1052 (-1136))) NIL)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-519 (-1052 (-1136)))) NIL) (($ $ (-1052 (-1136)) (-745)) NIL) (($ $ (-619 (-1052 (-1136))) (-619 (-745))) NIL)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ (-1052 (-1136))) NIL)) (-3095 (((-519 (-1052 (-1136))) $) NIL) (((-745) $ (-1052 (-1136))) NIL) (((-619 (-745)) $ (-619 (-1052 (-1136)))) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-4182 (($ (-1 (-519 (-1052 (-1136))) (-519 (-1052 (-1136)))) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-1 $ (-745)) (-1136)) NIL) (((-1 $ (-745)) $) NIL (|has| |#1| (-225)))) (-1631 (((-3 (-1052 (-1136)) "failed") $) NIL)) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-4044 (((-1052 (-1136)) $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1466 (((-1119) $) NIL)) (-2578 (((-112) $) NIL)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-1052 (-1136))) (|:| -3322 (-745))) "failed") $) NIL)) (-2250 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) NIL)) (-2009 ((|#1| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-878)))) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1052 (-1136)) |#1|) NIL) (($ $ (-619 (-1052 (-1136))) (-619 |#1|)) NIL) (($ $ (-1052 (-1136)) $) NIL) (($ $ (-619 (-1052 (-1136))) (-619 $)) NIL) (($ $ (-1136) $) NIL (|has| |#1| (-225))) (($ $ (-619 (-1136)) (-619 $)) NIL (|has| |#1| (-225))) (($ $ (-1136) |#1|) NIL (|has| |#1| (-225))) (($ $ (-619 (-1136)) (-619 |#1|)) NIL (|has| |#1| (-225)))) (-4056 (($ $ (-1052 (-1136))) NIL (|has| |#1| (-169)))) (-3448 (($ $ (-1052 (-1136))) NIL) (($ $ (-619 (-1052 (-1136)))) NIL) (($ $ (-1052 (-1136)) (-745)) NIL) (($ $ (-619 (-1052 (-1136))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2924 (((-619 (-1136)) $) NIL)) (-3705 (((-519 (-1052 (-1136))) $) NIL) (((-745) $ (-1052 (-1136))) NIL) (((-619 (-745)) $ (-619 (-1052 (-1136)))) NIL) (((-745) $ (-1136)) NIL)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| (-1052 (-1136)) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-1052 (-1136)) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-1052 (-1136)) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-2392 ((|#1| $) NIL (|has| |#1| (-442))) (($ $ (-1052 (-1136))) NIL (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-1052 (-1136))) NIL) (($ (-1136)) NIL) (($ (-1087 |#1| (-1136))) NIL) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-519 (-1052 (-1136)))) NIL) (($ $ (-1052 (-1136)) (-745)) NIL) (($ $ (-619 (-1052 (-1136))) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-1052 (-1136))) NIL) (($ $ (-619 (-1052 (-1136)))) NIL) (($ $ (-1052 (-1136)) (-745)) NIL) (($ $ (-619 (-1052 (-1136))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1051 |#1|) (-13 (-244 |#1| (-1136) (-1052 (-1136)) (-519 (-1052 (-1136)))) (-1007 (-1087 |#1| (-1136)))) (-1016)) (T -1051))
-NIL
-(-13 (-244 |#1| (-1136) (-1052 (-1136)) (-519 (-1052 (-1136)))) (-1007 (-1087 |#1| (-1136))))
-((-3826 (((-112) $ $) NIL)) (-2601 (((-745) $) NIL)) (-3004 ((|#1| $) 10)) (-2707 (((-3 |#1| "failed") $) NIL)) (-2652 ((|#1| $) NIL)) (-3275 (((-745) $) 11)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-2026 (($ |#1| (-745)) 9)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3448 (($ $) NIL) (($ $ (-745)) NIL)) (-3838 (((-832) $) NIL) (($ |#1|) NIL)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 15)))
-(((-1052 |#1|) (-257 |#1|) (-821)) (T -1052))
-NIL
-(-257 |#1|)
-((-2790 (((-619 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 24 (|has| |#1| (-819))) (((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 14)))
-(((-1053 |#1| |#2|) (-10 -7 (-15 -2790 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (IF (|has| |#1| (-819)) (-15 -2790 ((-619 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) |%noBranch|)) (-1173) (-1173)) (T -1053))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-819)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-619 *6)) (-5 *1 (-1053 *5 *6)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-1058 *6)) (-5 *1 (-1053 *5 *6)))))
-(-10 -7 (-15 -2790 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (IF (|has| |#1| (-819)) (-15 -2790 ((-619 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) |%noBranch|))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2189 (((-619 (-1141)) $) 9)) (-2381 (((-112) $ $) NIL)))
-(((-1054) (-13 (-1047) (-10 -8 (-15 -2189 ((-619 (-1141)) $))))) (T -1054))
-((-2189 (*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-1054)))))
-(-13 (-1047) (-10 -8 (-15 -2189 ((-619 (-1141)) $))))
-((-2790 (((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|)) 19)))
-(((-1055 |#1| |#2|) (-10 -7 (-15 -2790 ((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|)))) (-1173) (-1173)) (T -1055))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1056 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-1056 *6)) (-5 *1 (-1055 *5 *6)))))
-(-10 -7 (-15 -2790 ((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3004 (((-1136) $) 11)) (-3123 (((-1058 |#1|) $) 12)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2384 (($ (-1136) (-1058 |#1|)) 10)) (-3838 (((-832) $) 20 (|has| |#1| (-1063)))) (-2381 (((-112) $ $) 15 (|has| |#1| (-1063)))))
-(((-1056 |#1|) (-13 (-1173) (-10 -8 (-15 -2384 ($ (-1136) (-1058 |#1|))) (-15 -3004 ((-1136) $)) (-15 -3123 ((-1058 |#1|) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) (-1173)) (T -1056))
-((-2384 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1058 *4)) (-4 *4 (-1173)) (-5 *1 (-1056 *4)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1056 *3)) (-4 *3 (-1173)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1056 *3)) (-4 *3 (-1173)))))
-(-13 (-1173) (-10 -8 (-15 -2384 ($ (-1136) (-1058 |#1|))) (-15 -3004 ((-1136) $)) (-15 -3123 ((-1058 |#1|) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|)))
-((-3123 (($ |#1| |#1|) 7)) (-2677 ((|#1| $) 10)) (-1258 ((|#1| $) 12)) (-1271 (((-547) $) 8)) (-4234 ((|#1| $) 9)) (-1281 ((|#1| $) 11)) (-2838 (($ |#1|) 6)) (-1851 (($ |#1| |#1|) 14)) (-2116 (($ $ (-547)) 13)))
-(((-1057 |#1|) (-138) (-1173)) (T -1057))
-((-1851 (*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173)))) (-2116 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1057 *3)) (-4 *3 (-1173)))) (-1258 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173)))) (-1281 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173)))) (-1271 (*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1173)) (-5 *2 (-547)))) (-3123 (*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173)))) (-2838 (*1 *1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173)))))
-(-13 (-1173) (-10 -8 (-15 -1851 ($ |t#1| |t#1|)) (-15 -2116 ($ $ (-547))) (-15 -1258 (|t#1| $)) (-15 -1281 (|t#1| $)) (-15 -2677 (|t#1| $)) (-15 -4234 (|t#1| $)) (-15 -1271 ((-547) $)) (-15 -3123 ($ |t#1| |t#1|)) (-15 -2838 ($ |t#1|))))
-(((-1173) . T))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3123 (($ |#1| |#1|) 15)) (-2790 (((-619 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-819)))) (-2677 ((|#1| $) 10)) (-1258 ((|#1| $) 9)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-1271 (((-547) $) 14)) (-4234 ((|#1| $) 12)) (-1281 ((|#1| $) 11)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1442 (((-619 |#1|) $) 36 (|has| |#1| (-819))) (((-619 |#1|) (-619 $)) 35 (|has| |#1| (-819)))) (-2838 (($ |#1|) 26)) (-3838 (((-832) $) 25 (|has| |#1| (-1063)))) (-1851 (($ |#1| |#1|) 8)) (-2116 (($ $ (-547)) 16)) (-2381 (((-112) $ $) 19 (|has| |#1| (-1063)))))
-(((-1058 |#1|) (-13 (-1057 |#1|) (-10 -7 (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-619 |#1|))) |%noBranch|))) (-1173)) (T -1058))
-NIL
-(-13 (-1057 |#1|) (-10 -7 (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-619 |#1|))) |%noBranch|)))
-((-3123 (($ |#1| |#1|) 7)) (-2790 ((|#2| (-1 |#1| |#1|) $) 16)) (-2677 ((|#1| $) 10)) (-1258 ((|#1| $) 12)) (-1271 (((-547) $) 8)) (-4234 ((|#1| $) 9)) (-1281 ((|#1| $) 11)) (-1442 ((|#2| (-619 $)) 18) ((|#2| $) 17)) (-2838 (($ |#1|) 6)) (-1851 (($ |#1| |#1|) 14)) (-2116 (($ $ (-547)) 13)))
-(((-1059 |#1| |#2|) (-138) (-819) (-1110 |t#1|)) (T -1059))
-((-1442 (*1 *2 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819)) (-4 *2 (-1110 *4)))) (-1442 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-819)) (-4 *2 (-1110 *3)))) (-2790 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819)) (-4 *2 (-1110 *4)))))
-(-13 (-1057 |t#1|) (-10 -8 (-15 -1442 (|t#2| (-619 $))) (-15 -1442 (|t#2| $)) (-15 -2790 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-1057 |#1|) . T) ((-1173) . T))
-((-1435 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2984 (($ $ $) 10)) (-1832 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1060 |#1| |#2|) (-10 -8 (-15 -1435 (|#1| |#2| |#1|)) (-15 -1435 (|#1| |#1| |#2|)) (-15 -1435 (|#1| |#1| |#1|)) (-15 -2984 (|#1| |#1| |#1|)) (-15 -1832 (|#1| |#1| |#2|)) (-15 -1832 (|#1| |#1| |#1|))) (-1061 |#2|) (-1063)) (T -1060))
-NIL
-(-10 -8 (-15 -1435 (|#1| |#2| |#1|)) (-15 -1435 (|#1| |#1| |#2|)) (-15 -1435 (|#1| |#1| |#1|)) (-15 -2984 (|#1| |#1| |#1|)) (-15 -1832 (|#1| |#1| |#2|)) (-15 -1832 (|#1| |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1435 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2984 (($ $ $) 20)) (-1361 (((-112) $ $) 19)) (-3899 (((-112) $ (-745)) 35)) (-2782 (($) 25) (($ (-619 |#1|)) 24)) (-1482 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4329)))) (-1948 (($) 36 T CONST)) (-3668 (($ $) 59 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#1| $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4329)))) (-2982 (((-619 |#1|) $) 43 (|has| $ (-6 -4329)))) (-2841 (((-112) $ $) 28)) (-2763 (((-112) $ (-745)) 34)) (-2284 (((-619 |#1|) $) 44 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 38)) (-3806 (((-112) $ (-745)) 33)) (-1466 (((-1119) $) 9)) (-3594 (($ $ $) 23)) (-3979 (((-1082) $) 10)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1598 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#1|) (-619 |#1|)) 50 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 48 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 (-285 |#1|))) 47 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 29)) (-2884 (((-112) $) 32)) (-2245 (($) 31)) (-1832 (($ $ $) 22) (($ $ |#1|) 21)) (-3992 (((-745) |#1| $) 45 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (((-745) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4329)))) (-2274 (($ $) 30)) (-2838 (((-523) $) 60 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 51)) (-3838 (((-832) $) 11)) (-4112 (($) 27) (($ (-619 |#1|)) 26)) (-2693 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 6)) (-3767 (((-745) $) 37 (|has| $ (-6 -4329)))))
-(((-1061 |#1|) (-138) (-1063)) (T -1061))
-((-2841 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-4112 (*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) (-2782 (*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) (-3594 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1832 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1832 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2984 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1361 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-1435 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1435 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1435 (*1 *1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))))
-(-13 (-1063) (-149 |t#1|) (-10 -8 (-6 -4319) (-15 -2841 ((-112) $ $)) (-15 -4112 ($)) (-15 -4112 ($ (-619 |t#1|))) (-15 -2782 ($)) (-15 -2782 ($ (-619 |t#1|))) (-15 -3594 ($ $ $)) (-15 -1832 ($ $ $)) (-15 -1832 ($ $ |t#1|)) (-15 -2984 ($ $ $)) (-15 -1361 ((-112) $ $)) (-15 -1435 ($ $ $)) (-15 -1435 ($ $ |t#1|)) (-15 -1435 ($ |t#1| $))))
-(((-34) . T) ((-101) . T) ((-591 (-832)) . T) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) . T) ((-1173) . T))
-((-1466 (((-1119) $) 10)) (-3979 (((-1082) $) 8)))
-(((-1062 |#1|) (-10 -8 (-15 -1466 ((-1119) |#1|)) (-15 -3979 ((-1082) |#1|))) (-1063)) (T -1062))
-NIL
-(-10 -8 (-15 -1466 ((-1119) |#1|)) (-15 -3979 ((-1082) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2381 (((-112) $ $) 6)))
-(((-1063) (-138)) (T -1063))
-((-3979 (*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1082)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1119)))))
-(-13 (-101) (-591 (-832)) (-10 -8 (-15 -3979 ((-1082) $)) (-15 -1466 ((-1119) $))))
-(((-101) . T) ((-591 (-832)) . T))
-((-3826 (((-112) $ $) NIL)) (-3608 (((-745)) 30)) (-2550 (($ (-619 (-890))) 52)) (-4211 (((-3 $ "failed") $ (-890) (-890)) 58)) (-3232 (($) 32)) (-2132 (((-112) (-890) $) 35)) (-2402 (((-890) $) 50)) (-1466 (((-1119) $) NIL)) (-3487 (($ (-890)) 31)) (-1740 (((-3 $ "failed") $ (-890)) 55)) (-3979 (((-1082) $) NIL)) (-4216 (((-1219 $)) 40)) (-2266 (((-619 (-890)) $) 24)) (-2655 (((-745) $ (-890) (-890)) 56)) (-3838 (((-832) $) 29)) (-2381 (((-112) $ $) 21)))
-(((-1064 |#1| |#2|) (-13 (-359) (-10 -8 (-15 -1740 ((-3 $ "failed") $ (-890))) (-15 -4211 ((-3 $ "failed") $ (-890) (-890))) (-15 -2266 ((-619 (-890)) $)) (-15 -2550 ($ (-619 (-890)))) (-15 -4216 ((-1219 $))) (-15 -2132 ((-112) (-890) $)) (-15 -2655 ((-745) $ (-890) (-890))))) (-890) (-890)) (T -1064))
-((-1740 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4211 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-2550 (*1 *1 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-4216 (*1 *2) (-12 (-5 *2 (-1219 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-2132 (*1 *2 *3 *1) (-12 (-5 *3 (-890)) (-5 *2 (-112)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2655 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-745)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-359) (-10 -8 (-15 -1740 ((-3 $ "failed") $ (-890))) (-15 -4211 ((-3 $ "failed") $ (-890) (-890))) (-15 -2266 ((-619 (-890)) $)) (-15 -2550 ($ (-619 (-890)))) (-15 -4216 ((-1219 $))) (-15 -2132 ((-112) (-890) $)) (-15 -2655 ((-745) $ (-890) (-890)))))
-((-3826 (((-112) $ $) NIL)) (-3134 (($) NIL (|has| |#1| (-359)))) (-1435 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2984 (($ $ $) 72)) (-1361 (((-112) $ $) 73)) (-3899 (((-112) $ (-745)) NIL)) (-3608 (((-745)) NIL (|has| |#1| (-359)))) (-2782 (($ (-619 |#1|)) NIL) (($) 13)) (-4285 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1513 (($ |#1| $) 67 (|has| $ (-6 -4329))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-3803 (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4329)))) (-3232 (($) NIL (|has| |#1| (-359)))) (-2982 (((-619 |#1|) $) 19 (|has| $ (-6 -4329)))) (-2841 (((-112) $ $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2856 ((|#1| $) 57 (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3567 ((|#1| $) 55 (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 34)) (-2402 (((-890) $) NIL (|has| |#1| (-359)))) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-3594 (($ $ $) 70)) (-4266 ((|#1| $) 25)) (-2657 (($ |#1| $) 65)) (-3487 (($ (-890)) NIL (|has| |#1| (-359)))) (-3979 (((-1082) $) NIL)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2056 ((|#1| $) 27)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 21)) (-2245 (($) 11)) (-1832 (($ $ |#1|) NIL) (($ $ $) 71)) (-2699 (($) NIL) (($ (-619 |#1|)) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) 16)) (-2838 (((-523) $) 52 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 61)) (-2283 (($ $) NIL (|has| |#1| (-359)))) (-3838 (((-832) $) NIL)) (-1952 (((-745) $) NIL)) (-4112 (($ (-619 |#1|)) NIL) (($) 12)) (-2300 (($ (-619 |#1|)) NIL)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 54)) (-3767 (((-745) $) 10 (|has| $ (-6 -4329)))))
-(((-1065 |#1|) (-416 |#1|) (-1063)) (T -1065))
-NIL
-(-416 |#1|)
-((-3826 (((-112) $ $) 7)) (-1821 (((-112) $) 32)) (-3936 ((|#2| $) 27)) (-1756 (((-112) $) 33)) (-1517 ((|#1| $) 28)) (-3738 (((-112) $) 35)) (-2864 (((-112) $) 37)) (-3374 (((-112) $) 34)) (-1466 (((-1119) $) 9)) (-4072 (((-112) $) 31)) (-3957 ((|#3| $) 26)) (-3979 (((-1082) $) 10)) (-1642 (((-112) $) 30)) (-1348 ((|#4| $) 25)) (-2970 ((|#5| $) 24)) (-2644 (((-112) $ $) 38)) (-3334 (($ $ (-547)) 14) (($ $ (-619 (-547))) 13)) (-2190 (((-619 $) $) 29)) (-2838 (($ (-619 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-3838 (((-832) $) 11)) (-3538 (($ $) 16)) (-3528 (($ $) 17)) (-1768 (((-112) $) 36)) (-2381 (((-112) $ $) 6)) (-3767 (((-547) $) 15)))
-(((-1066 |#1| |#2| |#3| |#4| |#5|) (-138) (-1063) (-1063) (-1063) (-1063) (-1063)) (T -1066))
-((-2644 (*1 *2 *1 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2864 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-1768 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-3738 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-1642 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2190 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7)))) (-1517 (*1 *2 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-3957 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) (-2838 (*1 *1 *2) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-2838 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *2 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-2838 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *2 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-2838 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *2 (-1063)) (-4 *6 (-1063)))) (-2838 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-3528 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-3538 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-547)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))))
-(-13 (-1063) (-10 -8 (-15 -2644 ((-112) $ $)) (-15 -2864 ((-112) $)) (-15 -1768 ((-112) $)) (-15 -3738 ((-112) $)) (-15 -3374 ((-112) $)) (-15 -1756 ((-112) $)) (-15 -1821 ((-112) $)) (-15 -4072 ((-112) $)) (-15 -1642 ((-112) $)) (-15 -2190 ((-619 $) $)) (-15 -1517 (|t#1| $)) (-15 -3936 (|t#2| $)) (-15 -3957 (|t#3| $)) (-15 -1348 (|t#4| $)) (-15 -2970 (|t#5| $)) (-15 -2838 ($ (-619 $))) (-15 -2838 ($ |t#1|)) (-15 -2838 ($ |t#2|)) (-15 -2838 ($ |t#3|)) (-15 -2838 ($ |t#4|)) (-15 -2838 ($ |t#5|)) (-15 -3528 ($ $)) (-15 -3538 ($ $)) (-15 -3767 ((-547) $)) (-15 -3334 ($ $ (-547))) (-15 -3334 ($ $ (-619 (-547))))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL)) (-1821 (((-112) $) NIL)) (-3936 (((-1136) $) NIL)) (-1756 (((-112) $) NIL)) (-1517 (((-1119) $) NIL)) (-3738 (((-112) $) NIL)) (-2864 (((-112) $) NIL)) (-3374 (((-112) $) NIL)) (-1466 (((-1119) $) NIL)) (-4072 (((-112) $) NIL)) (-3957 (((-547) $) NIL)) (-3979 (((-1082) $) NIL)) (-1642 (((-112) $) NIL)) (-1348 (((-217) $) NIL)) (-2970 (((-832) $) NIL)) (-2644 (((-112) $ $) NIL)) (-3334 (($ $ (-547)) NIL) (($ $ (-619 (-547))) NIL)) (-2190 (((-619 $) $) NIL)) (-2838 (($ (-619 $)) NIL) (($ (-1119)) NIL) (($ (-1136)) NIL) (($ (-547)) NIL) (($ (-217)) NIL) (($ (-832)) NIL)) (-3838 (((-832) $) NIL)) (-3538 (($ $) NIL)) (-3528 (($ $) NIL)) (-1768 (((-112) $) NIL)) (-2381 (((-112) $ $) NIL)) (-3767 (((-547) $) NIL)))
-(((-1067) (-1066 (-1119) (-1136) (-547) (-217) (-832))) (T -1067))
-NIL
-(-1066 (-1119) (-1136) (-547) (-217) (-832))
-((-3826 (((-112) $ $) NIL)) (-1821 (((-112) $) 38)) (-3936 ((|#2| $) 42)) (-1756 (((-112) $) 37)) (-1517 ((|#1| $) 41)) (-3738 (((-112) $) 35)) (-2864 (((-112) $) 14)) (-3374 (((-112) $) 36)) (-1466 (((-1119) $) NIL)) (-4072 (((-112) $) 39)) (-3957 ((|#3| $) 44)) (-3979 (((-1082) $) NIL)) (-1642 (((-112) $) 40)) (-1348 ((|#4| $) 43)) (-2970 ((|#5| $) 45)) (-2644 (((-112) $ $) 34)) (-3334 (($ $ (-547)) 56) (($ $ (-619 (-547))) 58)) (-2190 (((-619 $) $) 22)) (-2838 (($ (-619 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-3838 (((-832) $) 23)) (-3538 (($ $) 21)) (-3528 (($ $) 52)) (-1768 (((-112) $) 18)) (-2381 (((-112) $ $) 33)) (-3767 (((-547) $) 54)))
-(((-1068 |#1| |#2| |#3| |#4| |#5|) (-1066 |#1| |#2| |#3| |#4| |#5|) (-1063) (-1063) (-1063) (-1063) (-1063)) (T -1068))
-NIL
-(-1066 |#1| |#2| |#3| |#4| |#5|)
-((-3309 (((-1224) $) 23)) (-1313 (($ (-1136) (-425) |#2|) 11)) (-3838 (((-832) $) 16)))
-(((-1069 |#1| |#2|) (-13 (-386) (-10 -8 (-15 -1313 ($ (-1136) (-425) |#2|)))) (-821) (-421 |#1|)) (T -1069))
-((-1313 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1136)) (-5 *3 (-425)) (-4 *5 (-821)) (-5 *1 (-1069 *5 *4)) (-4 *4 (-421 *5)))))
-(-13 (-386) (-10 -8 (-15 -1313 ($ (-1136) (-425) |#2|))))
-((-3308 (((-112) |#5| |#5|) 38)) (-4187 (((-112) |#5| |#5|) 52)) (-3158 (((-112) |#5| (-619 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3703 (((-112) (-619 |#4|) (-619 |#4|)) 58)) (-2810 (((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) 63)) (-3187 (((-1224)) 33)) (-1975 (((-1224) (-1119) (-1119) (-1119)) 29)) (-2633 (((-619 |#5|) (-619 |#5|)) 82)) (-3540 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)))) 80)) (-2145 (((-619 (-2 (|:| -2644 (-619 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112)) 102)) (-3870 (((-112) |#5| |#5|) 47)) (-1929 (((-3 (-112) "failed") |#5| |#5|) 71)) (-2608 (((-112) (-619 |#4|) (-619 |#4|)) 57)) (-4110 (((-112) (-619 |#4|) (-619 |#4|)) 59)) (-1458 (((-112) (-619 |#4|) (-619 |#4|)) 60)) (-4248 (((-3 (-2 (|:| -2644 (-619 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-2206 (((-619 |#5|) (-619 |#5|)) 43)))
-(((-1070 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1975 ((-1224) (-1119) (-1119) (-1119))) (-15 -3187 ((-1224))) (-15 -3308 ((-112) |#5| |#5|)) (-15 -2206 ((-619 |#5|) (-619 |#5|))) (-15 -3870 ((-112) |#5| |#5|)) (-15 -4187 ((-112) |#5| |#5|)) (-15 -3703 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2608 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -4110 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -1458 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -1929 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3158 ((-112) |#5| |#5|)) (-15 -3158 ((-112) |#5| (-619 |#5|))) (-15 -2633 ((-619 |#5|) (-619 |#5|))) (-15 -2810 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)))) (-15 -3540 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) (-15 -2145 ((-619 (-2 (|:| -2644 (-619 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -4248 ((-3 (-2 (|:| -2644 (-619 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1070))
-((-4248 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| -2644 (-619 *9)) (|:| -1974 *4) (|:| |ineq| (-619 *9)))) (-5 *1 (-1070 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) (-4 *4 (-1036 *6 *7 *8 *9)))) (-2145 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| -2644 (-619 *9)) (|:| -1974 *10) (|:| |ineq| (-619 *9))))) (-5 *1 (-1070 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9)))) (-3540 (*1 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1974 *7)))) (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))) (-2810 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1974 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)))) (-2633 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))) (-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1070 *5 *6 *7 *8 *3)))) (-3158 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-1929 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-1458 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-4110 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2608 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-3703 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-4187 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-3870 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2206 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))) (-3308 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-3187 (*1 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1224)) (-5 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1975 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1119)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1224)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1975 ((-1224) (-1119) (-1119) (-1119))) (-15 -3187 ((-1224))) (-15 -3308 ((-112) |#5| |#5|)) (-15 -2206 ((-619 |#5|) (-619 |#5|))) (-15 -3870 ((-112) |#5| |#5|)) (-15 -4187 ((-112) |#5| |#5|)) (-15 -3703 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2608 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -4110 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -1458 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -1929 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3158 ((-112) |#5| |#5|)) (-15 -3158 ((-112) |#5| (-619 |#5|))) (-15 -2633 ((-619 |#5|) (-619 |#5|))) (-15 -2810 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)))) (-15 -3540 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) (-15 -2145 ((-619 (-2 (|:| -2644 (-619 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -4248 ((-3 (-2 (|:| -2644 (-619 |#4|)) (|:| -1974 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-1855 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|) 96)) (-2958 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) |#4| |#4| |#5|) 72)) (-3307 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|) 91)) (-1339 (((-619 |#5|) |#4| |#5|) 110)) (-4105 (((-619 |#5|) |#4| |#5|) 117)) (-4033 (((-619 |#5|) |#4| |#5|) 118)) (-2527 (((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|) 97)) (-4019 (((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|) 116)) (-1627 (((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2086 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) |#3| (-112)) 84) (((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3403 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|) 79)) (-2490 (((-1224)) 37)) (-3775 (((-1224)) 26)) (-1351 (((-1224) (-1119) (-1119) (-1119)) 33)) (-1540 (((-1224) (-1119) (-1119) (-1119)) 22)))
-(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1540 ((-1224) (-1119) (-1119) (-1119))) (-15 -3775 ((-1224))) (-15 -1351 ((-1224) (-1119) (-1119) (-1119))) (-15 -2490 ((-1224))) (-15 -2958 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -2086 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2086 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) |#3| (-112))) (-15 -3403 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -3307 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -1627 ((-112) |#4| |#5|)) (-15 -2527 ((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -1339 ((-619 |#5|) |#4| |#5|)) (-15 -4019 ((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -4105 ((-619 |#5|) |#4| |#5|)) (-15 -1627 ((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -4033 ((-619 |#5|) |#4| |#5|)) (-15 -1855 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1071))
-((-1855 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-4033 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1627 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1974 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-4105 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-4019 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1974 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1339 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2527 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1974 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1627 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3307 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3403 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2086 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1974 *9)))) (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *4 (-821)) (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1974 *9)))) (-5 *1 (-1071 *6 *7 *4 *8 *9)))) (-2086 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-2958 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2490 (*1 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1224)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1351 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1119)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1224)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-3775 (*1 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1224)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1540 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1119)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1224)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1540 ((-1224) (-1119) (-1119) (-1119))) (-15 -3775 ((-1224))) (-15 -1351 ((-1224) (-1119) (-1119) (-1119))) (-15 -2490 ((-1224))) (-15 -2958 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -2086 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2086 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) |#3| (-112))) (-15 -3403 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -3307 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#4| |#5|)) (-15 -1627 ((-112) |#4| |#5|)) (-15 -2527 ((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -1339 ((-619 |#5|) |#4| |#5|)) (-15 -4019 ((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -4105 ((-619 |#5|) |#4| |#5|)) (-15 -1627 ((-619 (-2 (|:| |val| (-112)) (|:| -1974 |#5|))) |#4| |#5|)) (-15 -4033 ((-619 |#5|) |#4| |#5|)) (-15 -1855 ((-619 (-2 (|:| |val| |#4|) (|:| -1974 |#5|))) |#4| |#5|)))
-((-3826 (((-112) $ $) 7)) (-1320 (((-619 (-2 (|:| -2674 $) (|:| -1352 (-619 |#4|)))) (-619 |#4|)) 85)) (-2128 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2267 (((-619 |#3|) $) 33)) (-1474 (((-112) $) 26)) (-1843 (((-112) $) 17 (|has| |#1| (-539)))) (-4151 (((-112) |#4| $) 101) (((-112) $) 97)) (-2081 ((|#4| |#4| $) 92)) (-2555 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| $) 126)) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |#3|) 27)) (-3899 (((-112) $ (-745)) 44)) (-1482 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4329))) (((-3 |#4| "failed") $ |#3|) 79)) (-1948 (($) 45 T CONST)) (-1651 (((-112) $) 22 (|has| |#1| (-539)))) (-4230 (((-112) $ $) 24 (|has| |#1| (-539)))) (-2360 (((-112) $ $) 23 (|has| |#1| (-539)))) (-1840 (((-112) $) 25 (|has| |#1| (-539)))) (-3805 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-4017 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-539)))) (-1900 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-539)))) (-2707 (((-3 $ "failed") (-619 |#4|)) 36)) (-2652 (($ (-619 |#4|)) 35)) (-3649 (((-3 $ "failed") $) 82)) (-2584 ((|#4| |#4| $) 89)) (-3668 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4329)))) (-2916 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-539)))) (-2173 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2442 ((|#4| |#4| $) 87)) (-2552 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4329))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4329))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2951 (((-2 (|:| -2674 (-619 |#4|)) (|:| -1352 (-619 |#4|))) $) 105)) (-1611 (((-112) |#4| $) 136)) (-3465 (((-112) |#4| $) 133)) (-1837 (((-112) |#4| $) 137) (((-112) $) 134)) (-2982 (((-619 |#4|) $) 52 (|has| $ (-6 -4329)))) (-1779 (((-112) |#4| $) 104) (((-112) $) 103)) (-3338 ((|#3| $) 34)) (-2763 (((-112) $ (-745)) 43)) (-2284 (((-619 |#4|) $) 53 (|has| $ (-6 -4329)))) (-2132 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#4| |#4|) $) 47)) (-4138 (((-619 |#3|) $) 32)) (-3758 (((-112) |#3| $) 31)) (-3806 (((-112) $ (-745)) 42)) (-1466 (((-1119) $) 9)) (-3150 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-1717 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| |#4| $) 127)) (-3820 (((-3 |#4| "failed") $) 83)) (-2756 (((-619 $) |#4| $) 129)) (-2867 (((-3 (-112) (-619 $)) |#4| $) 132)) (-2237 (((-619 (-2 (|:| |val| (-112)) (|:| -1974 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3594 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-1428 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-2498 (((-619 |#4|) $) 107)) (-3112 (((-112) |#4| $) 99) (((-112) $) 95)) (-3065 ((|#4| |#4| $) 90)) (-1458 (((-112) $ $) 110)) (-1770 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-539)))) (-2012 (((-112) |#4| $) 100) (((-112) $) 96)) (-1772 ((|#4| |#4| $) 91)) (-3979 (((-1082) $) 10)) (-3638 (((-3 |#4| "failed") $) 84)) (-3650 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1362 (((-3 $ "failed") $ |#4|) 78)) (-3708 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-1598 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) 57 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) 56 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2052 (((-112) $ $) 38)) (-2884 (((-112) $) 41)) (-2245 (($) 40)) (-3705 (((-745) $) 106)) (-3992 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4329)))) (-2274 (($ $) 39)) (-2838 (((-523) $) 69 (|has| |#4| (-592 (-523))))) (-3846 (($ (-619 |#4|)) 60)) (-3461 (($ $ |#3|) 28)) (-3007 (($ $ |#3|) 30)) (-2553 (($ $) 88)) (-3619 (($ $ |#3|) 29)) (-3838 (((-832) $) 11) (((-619 |#4|) $) 37)) (-2815 (((-745) $) 76 (|has| |#3| (-359)))) (-2672 (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2636 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-1283 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-2693 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4329)))) (-3463 (((-619 |#3|) $) 81)) (-1669 (((-112) |#4| $) 135)) (-2593 (((-112) |#3| $) 80)) (-2381 (((-112) $ $) 6)) (-3767 (((-745) $) 46 (|has| $ (-6 -4329)))))
-(((-1072 |#1| |#2| |#3| |#4|) (-138) (-442) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1072))
-NIL
-(-13 (-1036 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-101) . T) ((-591 (-619 |#4|)) . T) ((-591 (-832)) . T) ((-149 |#4|) . T) ((-592 (-523)) |has| |#4| (-592 (-523))) ((-300 |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-479 |#4|) . T) ((-503 |#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1166 |#1| |#2| |#3| |#4|) . T) ((-1173) . T))
-((-2611 (((-619 (-547)) (-547) (-547) (-547)) 22)) (-3713 (((-619 (-547)) (-547) (-547) (-547)) 12)) (-3942 (((-619 (-547)) (-547) (-547) (-547)) 18)) (-3634 (((-547) (-547) (-547)) 9)) (-3023 (((-1219 (-547)) (-619 (-547)) (-1219 (-547)) (-547)) 46) (((-1219 (-547)) (-1219 (-547)) (-1219 (-547)) (-547)) 41)) (-3799 (((-619 (-547)) (-619 (-547)) (-619 (-547)) (-112)) 28)) (-4119 (((-663 (-547)) (-619 (-547)) (-619 (-547)) (-663 (-547))) 45)) (-1409 (((-663 (-547)) (-619 (-547)) (-619 (-547))) 33)) (-3052 (((-619 (-663 (-547))) (-619 (-547))) 35)) (-2521 (((-619 (-547)) (-619 (-547)) (-619 (-547)) (-663 (-547))) 49)) (-2765 (((-663 (-547)) (-619 (-547)) (-619 (-547)) (-619 (-547))) 57)))
-(((-1073) (-10 -7 (-15 -2765 ((-663 (-547)) (-619 (-547)) (-619 (-547)) (-619 (-547)))) (-15 -2521 ((-619 (-547)) (-619 (-547)) (-619 (-547)) (-663 (-547)))) (-15 -3052 ((-619 (-663 (-547))) (-619 (-547)))) (-15 -1409 ((-663 (-547)) (-619 (-547)) (-619 (-547)))) (-15 -4119 ((-663 (-547)) (-619 (-547)) (-619 (-547)) (-663 (-547)))) (-15 -3799 ((-619 (-547)) (-619 (-547)) (-619 (-547)) (-112))) (-15 -3023 ((-1219 (-547)) (-1219 (-547)) (-1219 (-547)) (-547))) (-15 -3023 ((-1219 (-547)) (-619 (-547)) (-1219 (-547)) (-547))) (-15 -3634 ((-547) (-547) (-547))) (-15 -3942 ((-619 (-547)) (-547) (-547) (-547))) (-15 -3713 ((-619 (-547)) (-547) (-547) (-547))) (-15 -2611 ((-619 (-547)) (-547) (-547) (-547))))) (T -1073))
-((-2611 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-1073)) (-5 *3 (-547)))) (-3713 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-1073)) (-5 *3 (-547)))) (-3942 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-1073)) (-5 *3 (-547)))) (-3634 (*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1073)))) (-3023 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1219 (-547))) (-5 *3 (-619 (-547))) (-5 *4 (-547)) (-5 *1 (-1073)))) (-3023 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1219 (-547))) (-5 *3 (-547)) (-5 *1 (-1073)))) (-3799 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-619 (-547))) (-5 *3 (-112)) (-5 *1 (-1073)))) (-4119 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-663 (-547))) (-5 *3 (-619 (-547))) (-5 *1 (-1073)))) (-1409 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-1073)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-619 (-663 (-547)))) (-5 *1 (-1073)))) (-2521 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-619 (-547))) (-5 *3 (-663 (-547))) (-5 *1 (-1073)))) (-2765 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-1073)))))
-(-10 -7 (-15 -2765 ((-663 (-547)) (-619 (-547)) (-619 (-547)) (-619 (-547)))) (-15 -2521 ((-619 (-547)) (-619 (-547)) (-619 (-547)) (-663 (-547)))) (-15 -3052 ((-619 (-663 (-547))) (-619 (-547)))) (-15 -1409 ((-663 (-547)) (-619 (-547)) (-619 (-547)))) (-15 -4119 ((-663 (-547)) (-619 (-547)) (-619 (-547)) (-663 (-547)))) (-15 -3799 ((-619 (-547)) (-619 (-547)) (-619 (-547)) (-112))) (-15 -3023 ((-1219 (-547)) (-1219 (-547)) (-1219 (-547)) (-547))) (-15 -3023 ((-1219 (-547)) (-619 (-547)) (-1219 (-547)) (-547))) (-15 -3634 ((-547) (-547) (-547))) (-15 -3942 ((-619 (-547)) (-547) (-547) (-547))) (-15 -3713 ((-619 (-547)) (-547) (-547) (-547))) (-15 -2611 ((-619 (-547)) (-547) (-547) (-547))))
-((** (($ $ (-890)) 10)))
-(((-1074 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-890)))) (-1075)) (T -1074))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-890))))
-((-3826 (((-112) $ $) 7)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2381 (((-112) $ $) 6)) (** (($ $ (-890)) 13)) (* (($ $ $) 14)))
-(((-1075) (-138)) (T -1075))
-((* (*1 *1 *1 *1) (-4 *1 (-1075))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1075)) (-5 *2 (-890)))))
-(-13 (-1063) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-890)))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3826 (((-112) $ $) NIL (|has| |#3| (-1063)))) (-1499 (((-112) $) NIL (|has| |#3| (-130)))) (-4289 (($ (-890)) NIL (|has| |#3| (-1016)))) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2794 (($ $ $) NIL (|has| |#3| (-767)))) (-3672 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-3899 (((-112) $ (-745)) NIL)) (-3608 (((-745)) NIL (|has| |#3| (-359)))) (-2500 (((-547) $) NIL (|has| |#3| (-819)))) (-2247 ((|#3| $ (-547) |#3|) NIL (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (-12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1063)))) (-2652 (((-547) $) NIL (-12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063)))) (((-398 (-547)) $) NIL (-12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063)))) ((|#3| $) NIL (|has| |#3| (-1063)))) (-1694 (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016)))) (((-2 (|:| -1877 (-663 |#3|)) (|:| |vec| (-1219 |#3|))) (-663 $) (-1219 $)) NIL (|has| |#3| (-1016))) (((-663 |#3|) (-663 $)) NIL (|has| |#3| (-1016)))) (-3855 (((-3 $ "failed") $) NIL (|has| |#3| (-701)))) (-3232 (($) NIL (|has| |#3| (-359)))) (-1872 ((|#3| $ (-547) |#3|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#3| $ (-547)) 12)) (-4270 (((-112) $) NIL (|has| |#3| (-819)))) (-2982 (((-619 |#3|) $) NIL (|has| $ (-6 -4329)))) (-2261 (((-112) $) NIL (|has| |#3| (-701)))) (-1860 (((-112) $) NIL (|has| |#3| (-819)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (-1530 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2284 (((-619 |#3|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#3| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (-1530 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-1859 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#3| |#3|) $) NIL)) (-2402 (((-890) $) NIL (|has| |#3| (-359)))) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#3| (-1063)))) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3487 (($ (-890)) NIL (|has| |#3| (-359)))) (-3979 (((-1082) $) NIL (|has| |#3| (-1063)))) (-3638 ((|#3| $) NIL (|has| (-547) (-821)))) (-3632 (($ $ |#3|) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#3|))) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-285 |#3|)) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 |#3|) (-619 |#3|)) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#3| (-1063))))) (-2987 (((-619 |#3|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#3| $ (-547) |#3|) NIL) ((|#3| $ (-547)) NIL)) (-4117 ((|#3| $ $) NIL (|has| |#3| (-1016)))) (-2162 (($ (-1219 |#3|)) NIL)) (-3970 (((-133)) NIL (|has| |#3| (-354)))) (-3448 (($ $) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))) (($ $ (-1136)) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016)))) (-3992 (((-745) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4329))) (((-745) |#3| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#3| (-1063))))) (-2274 (($ $) NIL)) (-3838 (((-1219 |#3|) $) NIL) (($ (-547)) NIL (-1530 (-12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063))) (|has| |#3| (-1016)))) (($ (-398 (-547))) NIL (-12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063)))) (($ |#3|) NIL (|has| |#3| (-1063))) (((-832) $) NIL (|has| |#3| (-591 (-832))))) (-2736 (((-745)) NIL (|has| |#3| (-1016)))) (-2693 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4329)))) (-2255 (($ $) NIL (|has| |#3| (-819)))) (-3269 (($) NIL (|has| |#3| (-130)) CONST)) (-3281 (($) NIL (|has| |#3| (-701)) CONST)) (-1695 (($ $) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))) (($ $ (-1136)) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1136))) (|has| |#3| (-1016)))) (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016)))) (-2441 (((-112) $ $) NIL (-1530 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2418 (((-112) $ $) NIL (-1530 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2381 (((-112) $ $) NIL (|has| |#3| (-1063)))) (-2430 (((-112) $ $) NIL (-1530 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2405 (((-112) $ $) 17 (-1530 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2506 (($ $ |#3|) NIL (|has| |#3| (-354)))) (-2493 (($ $ $) NIL (|has| |#3| (-1016))) (($ $) NIL (|has| |#3| (-1016)))) (-2479 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-745)) NIL (|has| |#3| (-701))) (($ $ (-890)) NIL (|has| |#3| (-701)))) (* (($ (-547) $) NIL (|has| |#3| (-1016))) (($ $ $) NIL (|has| |#3| (-701))) (($ $ |#3|) NIL (|has| |#3| (-701))) (($ |#3| $) NIL (|has| |#3| (-701))) (($ (-745) $) NIL (|has| |#3| (-130))) (($ (-890) $) NIL (|has| |#3| (-25)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1076 |#1| |#2| |#3|) (-230 |#1| |#3|) (-745) (-745) (-767)) (T -1076))
-NIL
-(-230 |#1| |#3|)
-((-3815 (((-619 (-1192 |#2| |#1|)) (-1192 |#2| |#1|) (-1192 |#2| |#1|)) 37)) (-3021 (((-547) (-1192 |#2| |#1|)) 69 (|has| |#1| (-442)))) (-3748 (((-547) (-1192 |#2| |#1|)) 54)) (-4262 (((-619 (-1192 |#2| |#1|)) (-1192 |#2| |#1|) (-1192 |#2| |#1|)) 45)) (-1869 (((-547) (-1192 |#2| |#1|) (-1192 |#2| |#1|)) 68 (|has| |#1| (-442)))) (-1612 (((-619 |#1|) (-1192 |#2| |#1|) (-1192 |#2| |#1|)) 48)) (-3428 (((-547) (-1192 |#2| |#1|) (-1192 |#2| |#1|)) 53)))
-(((-1077 |#1| |#2|) (-10 -7 (-15 -3815 ((-619 (-1192 |#2| |#1|)) (-1192 |#2| |#1|) (-1192 |#2| |#1|))) (-15 -4262 ((-619 (-1192 |#2| |#1|)) (-1192 |#2| |#1|) (-1192 |#2| |#1|))) (-15 -1612 ((-619 |#1|) (-1192 |#2| |#1|) (-1192 |#2| |#1|))) (-15 -3428 ((-547) (-1192 |#2| |#1|) (-1192 |#2| |#1|))) (-15 -3748 ((-547) (-1192 |#2| |#1|))) (IF (|has| |#1| (-442)) (PROGN (-15 -1869 ((-547) (-1192 |#2| |#1|) (-1192 |#2| |#1|))) (-15 -3021 ((-547) (-1192 |#2| |#1|)))) |%noBranch|)) (-794) (-1136)) (T -1077))
-((-3021 (*1 *2 *3) (-12 (-5 *3 (-1192 *5 *4)) (-4 *4 (-442)) (-4 *4 (-794)) (-14 *5 (-1136)) (-5 *2 (-547)) (-5 *1 (-1077 *4 *5)))) (-1869 (*1 *2 *3 *3) (-12 (-5 *3 (-1192 *5 *4)) (-4 *4 (-442)) (-4 *4 (-794)) (-14 *5 (-1136)) (-5 *2 (-547)) (-5 *1 (-1077 *4 *5)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-1192 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1136)) (-5 *2 (-547)) (-5 *1 (-1077 *4 *5)))) (-3428 (*1 *2 *3 *3) (-12 (-5 *3 (-1192 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1136)) (-5 *2 (-547)) (-5 *1 (-1077 *4 *5)))) (-1612 (*1 *2 *3 *3) (-12 (-5 *3 (-1192 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1136)) (-5 *2 (-619 *4)) (-5 *1 (-1077 *4 *5)))) (-4262 (*1 *2 *3 *3) (-12 (-4 *4 (-794)) (-14 *5 (-1136)) (-5 *2 (-619 (-1192 *5 *4))) (-5 *1 (-1077 *4 *5)) (-5 *3 (-1192 *5 *4)))) (-3815 (*1 *2 *3 *3) (-12 (-4 *4 (-794)) (-14 *5 (-1136)) (-5 *2 (-619 (-1192 *5 *4))) (-5 *1 (-1077 *4 *5)) (-5 *3 (-1192 *5 *4)))))
-(-10 -7 (-15 -3815 ((-619 (-1192 |#2| |#1|)) (-1192 |#2| |#1|) (-1192 |#2| |#1|))) (-15 -4262 ((-619 (-1192 |#2| |#1|)) (-1192 |#2| |#1|) (-1192 |#2| |#1|))) (-15 -1612 ((-619 |#1|) (-1192 |#2| |#1|) (-1192 |#2| |#1|))) (-15 -3428 ((-547) (-1192 |#2| |#1|) (-1192 |#2| |#1|))) (-15 -3748 ((-547) (-1192 |#2| |#1|))) (IF (|has| |#1| (-442)) (PROGN (-15 -1869 ((-547) (-1192 |#2| |#1|) (-1192 |#2| |#1|))) (-15 -3021 ((-547) (-1192 |#2| |#1|)))) |%noBranch|))
-((-2500 (((-3 (-547) "failed") |#2| (-1136) |#2| (-1119)) 17) (((-3 (-547) "failed") |#2| (-1136) (-814 |#2|)) 15) (((-3 (-547) "failed") |#2|) 54)))
-(((-1078 |#1| |#2|) (-10 -7 (-15 -2500 ((-3 (-547) "failed") |#2|)) (-15 -2500 ((-3 (-547) "failed") |#2| (-1136) (-814 |#2|))) (-15 -2500 ((-3 (-547) "failed") |#2| (-1136) |#2| (-1119)))) (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)) (-442)) (-13 (-27) (-1158) (-421 |#1|))) (T -1078))
-((-2500 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1136)) (-5 *5 (-1119)) (-4 *6 (-13 (-539) (-821) (-1007 *2) (-615 *2) (-442))) (-5 *2 (-547)) (-5 *1 (-1078 *6 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *6))))) (-2500 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1136)) (-5 *5 (-814 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *6))) (-4 *6 (-13 (-539) (-821) (-1007 *2) (-615 *2) (-442))) (-5 *2 (-547)) (-5 *1 (-1078 *6 *3)))) (-2500 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-539) (-821) (-1007 *2) (-615 *2) (-442))) (-5 *2 (-547)) (-5 *1 (-1078 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *4))))))
-(-10 -7 (-15 -2500 ((-3 (-547) "failed") |#2|)) (-15 -2500 ((-3 (-547) "failed") |#2| (-1136) (-814 |#2|))) (-15 -2500 ((-3 (-547) "failed") |#2| (-1136) |#2| (-1119))))
-((-2500 (((-3 (-547) "failed") (-398 (-921 |#1|)) (-1136) (-398 (-921 |#1|)) (-1119)) 35) (((-3 (-547) "failed") (-398 (-921 |#1|)) (-1136) (-814 (-398 (-921 |#1|)))) 30) (((-3 (-547) "failed") (-398 (-921 |#1|))) 13)))
-(((-1079 |#1|) (-10 -7 (-15 -2500 ((-3 (-547) "failed") (-398 (-921 |#1|)))) (-15 -2500 ((-3 (-547) "failed") (-398 (-921 |#1|)) (-1136) (-814 (-398 (-921 |#1|))))) (-15 -2500 ((-3 (-547) "failed") (-398 (-921 |#1|)) (-1136) (-398 (-921 |#1|)) (-1119)))) (-442)) (T -1079))
-((-2500 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-398 (-921 *6))) (-5 *4 (-1136)) (-5 *5 (-1119)) (-4 *6 (-442)) (-5 *2 (-547)) (-5 *1 (-1079 *6)))) (-2500 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1136)) (-5 *5 (-814 (-398 (-921 *6)))) (-5 *3 (-398 (-921 *6))) (-4 *6 (-442)) (-5 *2 (-547)) (-5 *1 (-1079 *6)))) (-2500 (*1 *2 *3) (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-442)) (-5 *2 (-547)) (-5 *1 (-1079 *4)))))
-(-10 -7 (-15 -2500 ((-3 (-547) "failed") (-398 (-921 |#1|)))) (-15 -2500 ((-3 (-547) "failed") (-398 (-921 |#1|)) (-1136) (-814 (-398 (-921 |#1|))))) (-15 -2500 ((-3 (-547) "failed") (-398 (-921 |#1|)) (-1136) (-398 (-921 |#1|)) (-1119))))
-((-3826 (((-112) $ $) NIL)) (-2093 (((-1141) $) 10)) (-3215 (((-619 (-1141)) $) 11)) (-3977 (($ (-619 (-1141)) (-1141)) 9)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 20)) (-2381 (((-112) $ $) 14)))
-(((-1080) (-13 (-1063) (-10 -8 (-15 -3977 ($ (-619 (-1141)) (-1141))) (-15 -2093 ((-1141) $)) (-15 -3215 ((-619 (-1141)) $))))) (T -1080))
-((-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-619 (-1141))) (-5 *3 (-1141)) (-5 *1 (-1080)))) (-2093 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1080)))) (-3215 (*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-1080)))))
-(-13 (-1063) (-10 -8 (-15 -3977 ($ (-619 (-1141)) (-1141))) (-15 -2093 ((-1141) $)) (-15 -3215 ((-619 (-1141)) $))))
-((-3088 (((-307 (-547)) (-48)) 12)))
-(((-1081) (-10 -7 (-15 -3088 ((-307 (-547)) (-48))))) (T -1081))
-((-3088 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-307 (-547))) (-5 *1 (-1081)))))
-(-10 -7 (-15 -3088 ((-307 (-547)) (-48))))
-((-3826 (((-112) $ $) NIL)) (-1333 (($ $) 41)) (-1499 (((-112) $) 65)) (-2456 (($ $ $) 48)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 86)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-1933 (($ $ $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3780 (($ $ $ $) 75)) (-2555 (($ $) NIL)) (-3299 (((-409 $) $) NIL)) (-1547 (((-112) $ $) NIL)) (-2500 (((-547) $) NIL)) (-1303 (($ $ $) 72)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL)) (-2652 (((-547) $) NIL)) (-2089 (($ $ $) 59)) (-1694 (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 80) (((-663 (-547)) (-663 $)) 28)) (-3855 (((-3 $ "failed") $) NIL)) (-4265 (((-3 (-398 (-547)) "failed") $) NIL)) (-3198 (((-112) $) NIL)) (-2453 (((-398 (-547)) $) NIL)) (-3232 (($) 83) (($ $) 84)) (-2061 (($ $ $) 58)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL)) (-1791 (((-112) $) NIL)) (-3459 (($ $ $ $) NIL)) (-3125 (($ $ $) 81)) (-4270 (((-112) $) NIL)) (-3091 (($ $ $) NIL)) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL)) (-2261 (((-112) $) 66)) (-2935 (((-112) $) 64)) (-4000 (($ $) 42)) (-3477 (((-3 $ "failed") $) NIL)) (-1860 (((-112) $) 76)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1618 (($ $ $ $) 73)) (-2856 (($ $ $) 68) (($) 39)) (-3567 (($ $ $) 67) (($) 38)) (-2426 (($ $) NIL)) (-4202 (($ $) 71)) (-3689 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1466 (((-1119) $) NIL)) (-1617 (($ $ $) NIL)) (-3054 (($) NIL T CONST)) (-3773 (($ $) 50)) (-3979 (((-1082) $) 70)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL)) (-3719 (($ $ $) 62) (($ (-619 $)) NIL)) (-2462 (($ $) NIL)) (-2115 (((-409 $) $) NIL)) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL)) (-2032 (((-3 $ "failed") $ $) NIL)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3874 (((-112) $) NIL)) (-2471 (((-745) $) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 61)) (-3448 (($ $ (-745)) NIL) (($ $) NIL)) (-1892 (($ $) 51)) (-2274 (($ $) NIL)) (-2838 (((-547) $) 32) (((-523) $) NIL) (((-861 (-547)) $) NIL) (((-370) $) NIL) (((-217) $) NIL)) (-3838 (((-832) $) 31) (($ (-547)) 82) (($ $) NIL) (($ (-547)) 82)) (-2736 (((-745)) NIL)) (-1253 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-1856 (($) 37)) (-3577 (((-112) $ $) NIL)) (-1292 (($ $ $ $) 74)) (-2255 (($ $) 63)) (-3700 (($ $ $) 44)) (-3269 (($) 35 T CONST)) (-3791 (($ $ $) 47)) (-3281 (($) 36 T CONST)) (-2273 (((-1119) $) 21) (((-1119) $ (-112)) 23) (((-1224) (-796) $) 24) (((-1224) (-796) $ (-112)) 25)) (-3801 (($ $) 45)) (-1695 (($ $ (-745)) NIL) (($ $) NIL)) (-3781 (($ $ $) 46)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 40)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 49)) (-3688 (($ $ $) 43)) (-2493 (($ $) 52) (($ $ $) 54)) (-2479 (($ $ $) 53)) (** (($ $ (-890)) NIL) (($ $ (-745)) 57)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 34) (($ $ $) 55)))
-(((-1082) (-13 (-532) (-635) (-802) (-10 -8 (-6 -4316) (-6 -4321) (-6 -4317) (-15 -3567 ($)) (-15 -2856 ($)) (-15 -4000 ($ $)) (-15 -1333 ($ $)) (-15 -3688 ($ $ $)) (-15 -3700 ($ $ $)) (-15 -2456 ($ $ $)) (-15 -3801 ($ $)) (-15 -3781 ($ $ $)) (-15 -3791 ($ $ $))))) (T -1082))
-((-3700 (*1 *1 *1 *1) (-5 *1 (-1082))) (-3688 (*1 *1 *1 *1) (-5 *1 (-1082))) (-1333 (*1 *1 *1) (-5 *1 (-1082))) (-3567 (*1 *1) (-5 *1 (-1082))) (-2856 (*1 *1) (-5 *1 (-1082))) (-4000 (*1 *1 *1) (-5 *1 (-1082))) (-2456 (*1 *1 *1 *1) (-5 *1 (-1082))) (-3801 (*1 *1 *1) (-5 *1 (-1082))) (-3781 (*1 *1 *1 *1) (-5 *1 (-1082))) (-3791 (*1 *1 *1 *1) (-5 *1 (-1082))))
-(-13 (-532) (-635) (-802) (-10 -8 (-6 -4316) (-6 -4321) (-6 -4317) (-15 -3567 ($)) (-15 -2856 ($)) (-15 -4000 ($ $)) (-15 -1333 ($ $)) (-15 -3688 ($ $ $)) (-15 -3700 ($ $ $)) (-15 -2456 ($ $ $)) (-15 -3801 ($ $)) (-15 -3781 ($ $ $)) (-15 -3791 ($ $ $))))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2312 ((|#1| $) 44)) (-3899 (((-112) $ (-745)) 8)) (-1948 (($) 7 T CONST)) (-3329 ((|#1| |#1| $) 46)) (-1742 ((|#1| $) 45)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-4266 ((|#1| $) 39)) (-2657 (($ |#1| $) 40)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2056 ((|#1| $) 41)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-1314 (((-745) $) 43)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2300 (($ (-619 |#1|)) 42)) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-1083 |#1|) (-138) (-1173)) (T -1083))
-((-3329 (*1 *2 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1173)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1173)))) (-2312 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1173)))) (-1314 (*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1173)) (-5 *2 (-745)))))
-(-13 (-106 |t#1|) (-10 -8 (-6 -4329) (-15 -3329 (|t#1| |t#1| $)) (-15 -1742 (|t#1| $)) (-15 -2312 (|t#1| $)) (-15 -1314 ((-745) $))))
-(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-2899 ((|#3| $) 76)) (-2707 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2652 (((-547) $) NIL) (((-398 (-547)) $) NIL) ((|#3| $) 37)) (-1694 (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL) (((-2 (|:| -1877 (-663 |#3|)) (|:| |vec| (-1219 |#3|))) (-663 $) (-1219 $)) 73) (((-663 |#3|) (-663 $)) 65)) (-3448 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-2278 ((|#3| $) 78)) (-2172 ((|#4| $) 32)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL) (($ |#3|) 16)) (** (($ $ (-890)) NIL) (($ $ (-745)) 15) (($ $ (-547)) 82)))
-(((-1084 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-547))) (-15 -2278 (|#3| |#1|)) (-15 -2899 (|#3| |#1|)) (-15 -2172 (|#4| |#1|)) (-15 -1694 ((-663 |#3|) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 |#3|)) (|:| |vec| (-1219 |#3|))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-663 (-547)) (-663 |#1|))) (-15 -2652 (|#3| |#1|)) (-15 -2707 ((-3 |#3| "failed") |#1|)) (-15 -3838 (|#1| |#3|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -3448 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -3448 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3838 (|#1| (-547))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -3838 ((-832) |#1|))) (-1085 |#2| |#3| |#4| |#5|) (-745) (-1016) (-230 |#2| |#3|) (-230 |#2| |#3|)) (T -1084))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-547))) (-15 -2278 (|#3| |#1|)) (-15 -2899 (|#3| |#1|)) (-15 -2172 (|#4| |#1|)) (-15 -1694 ((-663 |#3|) (-663 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 |#3|)) (|:| |vec| (-1219 |#3|))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 |#1|) (-1219 |#1|))) (-15 -1694 ((-663 (-547)) (-663 |#1|))) (-15 -2652 (|#3| |#1|)) (-15 -2707 ((-3 |#3| "failed") |#1|)) (-15 -3838 (|#1| |#3|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-547) |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -3448 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -3448 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3838 (|#1| (-547))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2899 ((|#2| $) 70)) (-2597 (((-112) $) 110)) (-3672 (((-3 $ "failed") $ $) 19)) (-1907 (((-112) $) 108)) (-3899 (((-112) $ (-745)) 100)) (-3893 (($ |#2|) 73)) (-1948 (($) 17 T CONST)) (-2648 (($ $) 127 (|has| |#2| (-298)))) (-2330 ((|#3| $ (-547)) 122)) (-2707 (((-3 (-547) "failed") $) 84 (|has| |#2| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 82 (|has| |#2| (-1007 (-398 (-547))))) (((-3 |#2| "failed") $) 79)) (-2652 (((-547) $) 85 (|has| |#2| (-1007 (-547)))) (((-398 (-547)) $) 83 (|has| |#2| (-1007 (-398 (-547))))) ((|#2| $) 78)) (-1694 (((-663 (-547)) (-663 $)) 77 (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 76 (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) 75) (((-663 |#2|) (-663 $)) 74)) (-3855 (((-3 $ "failed") $) 32)) (-3116 (((-745) $) 128 (|has| |#2| (-539)))) (-1802 ((|#2| $ (-547) (-547)) 120)) (-2982 (((-619 |#2|) $) 93 (|has| $ (-6 -4329)))) (-2261 (((-112) $) 30)) (-3316 (((-745) $) 129 (|has| |#2| (-539)))) (-3861 (((-619 |#4|) $) 130 (|has| |#2| (-539)))) (-2135 (((-745) $) 116)) (-2148 (((-745) $) 117)) (-2763 (((-112) $ (-745)) 101)) (-3836 ((|#2| $) 65 (|has| |#2| (-6 (-4331 "*"))))) (-3612 (((-547) $) 112)) (-3628 (((-547) $) 114)) (-2284 (((-619 |#2|) $) 92 (|has| $ (-6 -4329)))) (-2132 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4329))))) (-3120 (((-547) $) 113)) (-1599 (((-547) $) 115)) (-3938 (($ (-619 (-619 |#2|))) 107)) (-1859 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-1580 (((-619 (-619 |#2|)) $) 118)) (-3806 (((-112) $ (-745)) 102)) (-1466 (((-1119) $) 9)) (-3582 (((-3 $ "failed") $) 64 (|has| |#2| (-354)))) (-3979 (((-1082) $) 10)) (-2032 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-539)))) (-1598 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#2|))) 89 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) 88 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 86 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) 106)) (-2884 (((-112) $) 103)) (-2245 (($) 104)) (-3334 ((|#2| $ (-547) (-547) |#2|) 121) ((|#2| $ (-547) (-547)) 119)) (-3448 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-745)) 49) (($ $ (-619 (-1136)) (-619 (-745))) 42 (|has| |#2| (-869 (-1136)))) (($ $ (-1136) (-745)) 41 (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136))) 40 (|has| |#2| (-869 (-1136)))) (($ $ (-1136)) 39 (|has| |#2| (-869 (-1136)))) (($ $ (-745)) 37 (|has| |#2| (-225))) (($ $) 35 (|has| |#2| (-225)))) (-2278 ((|#2| $) 69)) (-4123 (($ (-619 |#2|)) 72)) (-3691 (((-112) $) 109)) (-2172 ((|#3| $) 71)) (-1299 ((|#2| $) 66 (|has| |#2| (-6 (-4331 "*"))))) (-3992 (((-745) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4329))) (((-745) |#2| $) 91 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 105)) (-1295 ((|#4| $ (-547)) 123)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 81 (|has| |#2| (-1007 (-398 (-547))))) (($ |#2|) 80)) (-2736 (((-745)) 28)) (-2693 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4329)))) (-1485 (((-112) $) 111)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-745)) 47) (($ $ (-619 (-1136)) (-619 (-745))) 46 (|has| |#2| (-869 (-1136)))) (($ $ (-1136) (-745)) 45 (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136))) 44 (|has| |#2| (-869 (-1136)))) (($ $ (-1136)) 43 (|has| |#2| (-869 (-1136)))) (($ $ (-745)) 38 (|has| |#2| (-225))) (($ $) 36 (|has| |#2| (-225)))) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#2|) 126 (|has| |#2| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 63 (|has| |#2| (-354)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-3767 (((-745) $) 99 (|has| $ (-6 -4329)))))
-(((-1085 |#1| |#2| |#3| |#4|) (-138) (-745) (-1016) (-230 |t#1| |t#2|) (-230 |t#1| |t#2|)) (T -1085))
-((-3893 (*1 *1 *2) (-12 (-4 *2 (-1016)) (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)))) (-4123 (*1 *1 *2) (-12 (-5 *2 (-619 *4)) (-4 *4 (-1016)) (-4 *1 (-1085 *3 *4 *5 *6)) (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *3 *4)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *5 (-230 *3 *4)) (-4 *2 (-230 *3 *4)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (-4 *2 (-1016)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (-4 *2 (-1016)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-230 *3 *4)) (-4 *2 (-230 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *2 (-230 *3 *4)) (-4 *5 (-230 *3 *4)))) (-1299 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (|has| *2 (-6 (-4331 "*"))) (-4 *2 (-1016)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (|has| *2 (-6 (-4331 "*"))) (-4 *2 (-1016)))) (-3582 (*1 *1 *1) (|partial| -12 (-4 *1 (-1085 *2 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-230 *2 *3)) (-4 *5 (-230 *2 *3)) (-4 *3 (-354)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1085 *3 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *3 *4)) (-4 *4 (-354)))))
-(-13 (-223 |t#2|) (-111 |t#2| |t#2|) (-1019 |t#1| |t#1| |t#2| |t#3| |t#4|) (-402 |t#2|) (-368 |t#2|) (-10 -8 (IF (|has| |t#2| (-169)) (-6 (-692 |t#2|)) |%noBranch|) (-15 -3893 ($ |t#2|)) (-15 -4123 ($ (-619 |t#2|))) (-15 -2172 (|t#3| $)) (-15 -2899 (|t#2| $)) (-15 -2278 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4331 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1299 (|t#2| $)) (-15 -3836 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-354)) (PROGN (-15 -3582 ((-3 $ "failed") $)) (-15 ** ($ $ (-547)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4331 "*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-591 (-832)) . T) ((-223 |#2|) . T) ((-225) |has| |#2| (-225)) ((-300 |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-368 |#2|) . T) ((-402 |#2|) . T) ((-479 |#2|) . T) ((-503 |#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-622 |#2|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#2| (-615 (-547))) ((-615 |#2|) . T) ((-692 |#2|) -1530 (|has| |#2| (-169)) (|has| |#2| (-6 (-4331 "*")))) ((-701) . T) ((-869 (-1136)) |has| |#2| (-869 (-1136))) ((-1019 |#1| |#1| |#2| |#3| |#4|) . T) ((-1007 (-398 (-547))) |has| |#2| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#2| (-1007 (-547))) ((-1007 |#2|) . T) ((-1022 |#2|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1173) . T))
-((-1922 ((|#4| |#4|) 70)) (-1804 ((|#4| |#4|) 65)) (-4235 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1917 (-619 |#3|))) |#4| |#3|) 78)) (-3736 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-4181 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
-(((-1086 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1804 (|#4| |#4|)) (-15 -4181 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1922 (|#4| |#4|)) (-15 -3736 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4235 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1917 (-619 |#3|))) |#4| |#3|))) (-298) (-364 |#1|) (-364 |#1|) (-661 |#1| |#2| |#3|)) (T -1086))
-((-4235 (*1 *2 *3 *4) (-12 (-4 *5 (-298)) (-4 *6 (-364 *5)) (-4 *4 (-364 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4)))) (-5 *1 (-1086 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-1922 (*1 *2 *2) (-12 (-4 *3 (-298)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-4181 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-1804 (*1 *2 *2) (-12 (-4 *3 (-298)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))))
-(-10 -7 (-15 -1804 (|#4| |#4|)) (-15 -4181 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1922 (|#4| |#4|)) (-15 -3736 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4235 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1917 (-619 |#3|))) |#4| |#3|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 17)) (-2267 (((-619 |#2|) $) 159)) (-2078 (((-1132 $) $ |#2|) 54) (((-1132 |#1|) $) 43)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 108 (|has| |#1| (-539)))) (-3571 (($ $) 110 (|has| |#1| (-539)))) (-3915 (((-112) $) 112 (|has| |#1| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 |#2|)) 192)) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2555 (($ $) NIL (|has| |#1| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) 156) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 |#2| "failed") $) NIL)) (-2652 ((|#1| $) 154) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) ((|#2| $) NIL)) (-1496 (($ $ $ |#2|) NIL (|has| |#1| (-169)))) (-2063 (($ $) 196)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) 82)) (-3350 (($ $) NIL (|has| |#1| (-442))) (($ $ |#2|) NIL (|has| |#1| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#1| (-878)))) (-3210 (($ $ |#1| (-519 |#2|) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| |#1| (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| |#1| (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-2261 (((-112) $) 19)) (-3376 (((-745) $) 26)) (-2254 (($ (-1132 |#1|) |#2|) 48) (($ (-1132 $) |#2|) 64)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) 32)) (-2238 (($ |#1| (-519 |#2|)) 71) (($ $ |#2| (-745)) 52) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ |#2|) NIL)) (-3095 (((-519 |#2|) $) 186) (((-745) $ |#2|) 187) (((-619 (-745)) $ (-619 |#2|)) 188)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-4182 (($ (-1 (-519 |#2|) (-519 |#2|)) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) 120)) (-1631 (((-3 |#2| "failed") $) 161)) (-2019 (($ $) 195)) (-2037 ((|#1| $) 37)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1466 (((-1119) $) NIL)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| |#2|) (|:| -3322 (-745))) "failed") $) NIL)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) 33)) (-2009 ((|#1| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 138 (|has| |#1| (-442)))) (-3719 (($ (-619 $)) 143 (|has| |#1| (-442))) (($ $ $) 130 (|has| |#1| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#1| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-878)))) (-2032 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-539)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-619 |#2|) (-619 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-619 |#2|) (-619 $)) 176)) (-4056 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-3448 (($ $ |#2|) 194) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-3705 (((-519 |#2|) $) 182) (((-745) $ |#2|) 178) (((-619 (-745)) $ (-619 |#2|)) 180)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| |#1| (-592 (-523))) (|has| |#2| (-592 (-523)))))) (-2392 ((|#1| $) 126 (|has| |#1| (-442))) (($ $ |#2|) 129 (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3838 (((-832) $) 149) (($ (-547)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-539))) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-1277 (((-619 |#1|) $) 152)) (-2450 ((|#1| $ (-519 |#2|)) 73) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) 79)) (-1379 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3577 (((-112) $ $) 115 (|has| |#1| (-539)))) (-3269 (($) 12 T CONST)) (-3281 (($) 14 T CONST)) (-1695 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) 97)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2506 (($ $ |#1|) 124 (|has| |#1| (-354)))) (-2493 (($ $) 85) (($ $ $) 95)) (-2479 (($ $ $) 49)) (** (($ $ (-890)) 102) (($ $ (-745)) 100)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 88) (($ $ $) 65) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
-(((-1087 |#1| |#2|) (-918 |#1| (-519 |#2|) |#2|) (-1016) (-821)) (T -1087))
-NIL
-(-918 |#1| (-519 |#2|) |#2|)
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2267 (((-619 |#2|) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-1656 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2127 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1632 (($ $) 137 (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) 113 (|has| |#1| (-38 (-398 (-547)))))) (-1678 (($ $) 145 (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) NIL T CONST)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-1407 (((-921 |#1|) $ (-745)) NIL) (((-921 |#1|) $ (-745) (-745)) NIL)) (-1713 (((-112) $) NIL)) (-1419 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-745) $ |#2|) NIL) (((-745) $ |#2| (-745)) NIL)) (-2261 (((-112) $) NIL)) (-3869 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1759 (((-112) $) NIL)) (-2238 (($ $ (-619 |#2|) (-619 (-519 |#2|))) NIL) (($ $ |#2| (-519 |#2|)) NIL) (($ |#1| (-519 |#2|)) NIL) (($ $ |#2| (-745)) 56) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3624 (($ $) 111 (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3694 (($ $ |#2|) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-1515 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-398 (-547)))))) (-3708 (($ $ (-745)) 13)) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2712 (($ $) 109 (|has| |#1| (-38 (-398 (-547)))))) (-2679 (($ $ |#2| $) 95) (($ $ (-619 |#2|) (-619 $)) 88) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL)) (-3448 (($ $ |#2|) 98) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-3705 (((-519 |#2|) $) NIL)) (-2007 (((-1 (-1117 |#3|) |#3|) (-619 |#2|) (-619 (-1117 |#3|))) 77)) (-1690 (($ $) 147 (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) 143 (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) 139 (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) 15)) (-3838 (((-832) $) 180) (($ (-547)) NIL) (($ |#1|) 40 (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-539))) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#2|) 63) (($ |#3|) 61)) (-2450 ((|#1| $ (-519 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL) ((|#3| $ (-745)) 38)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-1726 (($ $) 153 (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) 129 (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1703 (($ $) 149 (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) 157 (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-1927 (($ $) 159 (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) 135 (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) 155 (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) 151 (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) 127 (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) 47 T CONST)) (-3281 (($) 55 T CONST)) (-1695 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ |#1|) 182 (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 59)) (** (($ $ (-890)) NIL) (($ $ (-745)) 68) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 101 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 58) (($ $ (-398 (-547))) 106 (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) 104 (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
-(((-1088 |#1| |#2| |#3|) (-13 (-715 |#1| |#2|) (-10 -8 (-15 -2450 (|#3| $ (-745))) (-15 -3838 ($ |#2|)) (-15 -3838 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2007 ((-1 (-1117 |#3|) |#3|) (-619 |#2|) (-619 (-1117 |#3|)))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -3694 ($ $ |#2| |#1|)) (-15 -1515 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1016) (-821) (-918 |#1| (-519 |#2|) |#2|)) (T -1088))
-((-2450 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *2 (-918 *4 (-519 *5) *5)) (-5 *1 (-1088 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-821)))) (-3838 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *2 (-821)) (-5 *1 (-1088 *3 *2 *4)) (-4 *4 (-918 *3 (-519 *2) *2)))) (-3838 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2)) (-4 *2 (-918 *3 (-519 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2)) (-4 *2 (-918 *3 (-519 *4) *4)))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1117 *7))) (-4 *6 (-821)) (-4 *7 (-918 *5 (-519 *6) *6)) (-4 *5 (-1016)) (-5 *2 (-1 (-1117 *7) *7)) (-5 *1 (-1088 *5 *6 *7)))) (-3694 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-4 *2 (-821)) (-5 *1 (-1088 *3 *2 *4)) (-4 *4 (-918 *3 (-519 *2) *2)))) (-1515 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1088 *4 *3 *5))) (-4 *4 (-38 (-398 (-547)))) (-4 *4 (-1016)) (-4 *3 (-821)) (-5 *1 (-1088 *4 *3 *5)) (-4 *5 (-918 *4 (-519 *3) *3)))))
-(-13 (-715 |#1| |#2|) (-10 -8 (-15 -2450 (|#3| $ (-745))) (-15 -3838 ($ |#2|)) (-15 -3838 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2007 ((-1 (-1117 |#3|) |#3|) (-619 |#2|) (-619 (-1117 |#3|)))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -3694 ($ $ |#2| |#1|)) (-15 -1515 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-3826 (((-112) $ $) 7)) (-1320 (((-619 (-2 (|:| -2674 $) (|:| -1352 (-619 |#4|)))) (-619 |#4|)) 85)) (-2128 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2267 (((-619 |#3|) $) 33)) (-1474 (((-112) $) 26)) (-1843 (((-112) $) 17 (|has| |#1| (-539)))) (-4151 (((-112) |#4| $) 101) (((-112) $) 97)) (-2081 ((|#4| |#4| $) 92)) (-2555 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| $) 126)) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |#3|) 27)) (-3899 (((-112) $ (-745)) 44)) (-1482 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4329))) (((-3 |#4| "failed") $ |#3|) 79)) (-1948 (($) 45 T CONST)) (-1651 (((-112) $) 22 (|has| |#1| (-539)))) (-4230 (((-112) $ $) 24 (|has| |#1| (-539)))) (-2360 (((-112) $ $) 23 (|has| |#1| (-539)))) (-1840 (((-112) $) 25 (|has| |#1| (-539)))) (-3805 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-4017 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-539)))) (-1900 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-539)))) (-2707 (((-3 $ "failed") (-619 |#4|)) 36)) (-2652 (($ (-619 |#4|)) 35)) (-3649 (((-3 $ "failed") $) 82)) (-2584 ((|#4| |#4| $) 89)) (-3668 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4329)))) (-2916 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-539)))) (-2173 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2442 ((|#4| |#4| $) 87)) (-2552 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4329))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4329))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2951 (((-2 (|:| -2674 (-619 |#4|)) (|:| -1352 (-619 |#4|))) $) 105)) (-1611 (((-112) |#4| $) 136)) (-3465 (((-112) |#4| $) 133)) (-1837 (((-112) |#4| $) 137) (((-112) $) 134)) (-2982 (((-619 |#4|) $) 52 (|has| $ (-6 -4329)))) (-1779 (((-112) |#4| $) 104) (((-112) $) 103)) (-3338 ((|#3| $) 34)) (-2763 (((-112) $ (-745)) 43)) (-2284 (((-619 |#4|) $) 53 (|has| $ (-6 -4329)))) (-2132 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#4| |#4|) $) 47)) (-4138 (((-619 |#3|) $) 32)) (-3758 (((-112) |#3| $) 31)) (-3806 (((-112) $ (-745)) 42)) (-1466 (((-1119) $) 9)) (-3150 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-1717 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| |#4| $) 127)) (-3820 (((-3 |#4| "failed") $) 83)) (-2756 (((-619 $) |#4| $) 129)) (-2867 (((-3 (-112) (-619 $)) |#4| $) 132)) (-2237 (((-619 (-2 (|:| |val| (-112)) (|:| -1974 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3594 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-1428 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-2498 (((-619 |#4|) $) 107)) (-3112 (((-112) |#4| $) 99) (((-112) $) 95)) (-3065 ((|#4| |#4| $) 90)) (-1458 (((-112) $ $) 110)) (-1770 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-539)))) (-2012 (((-112) |#4| $) 100) (((-112) $) 96)) (-1772 ((|#4| |#4| $) 91)) (-3979 (((-1082) $) 10)) (-3638 (((-3 |#4| "failed") $) 84)) (-3650 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1362 (((-3 $ "failed") $ |#4|) 78)) (-3708 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-1598 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) 57 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) 56 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2052 (((-112) $ $) 38)) (-2884 (((-112) $) 41)) (-2245 (($) 40)) (-3705 (((-745) $) 106)) (-3992 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4329)))) (-2274 (($ $) 39)) (-2838 (((-523) $) 69 (|has| |#4| (-592 (-523))))) (-3846 (($ (-619 |#4|)) 60)) (-3461 (($ $ |#3|) 28)) (-3007 (($ $ |#3|) 30)) (-2553 (($ $) 88)) (-3619 (($ $ |#3|) 29)) (-3838 (((-832) $) 11) (((-619 |#4|) $) 37)) (-2815 (((-745) $) 76 (|has| |#3| (-359)))) (-2672 (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2636 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-1283 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-2693 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4329)))) (-3463 (((-619 |#3|) $) 81)) (-1669 (((-112) |#4| $) 135)) (-2593 (((-112) |#3| $) 80)) (-2381 (((-112) $ $) 6)) (-3767 (((-745) $) 46 (|has| $ (-6 -4329)))))
-(((-1089 |#1| |#2| |#3| |#4|) (-138) (-442) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1089))
-NIL
-(-13 (-1072 |t#1| |t#2| |t#3| |t#4|) (-758 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-101) . T) ((-591 (-619 |#4|)) . T) ((-591 (-832)) . T) ((-149 |#4|) . T) ((-592 (-523)) |has| |#4| (-592 (-523))) ((-300 |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-479 |#4|) . T) ((-503 |#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-758 |#1| |#2| |#3| |#4|) . T) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1072 |#1| |#2| |#3| |#4|) . T) ((-1166 |#1| |#2| |#3| |#4|) . T) ((-1173) . T))
-((-3468 (((-619 |#2|) |#1|) 12)) (-1998 (((-619 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-619 |#2|) |#1|) 52)) (-1477 (((-619 |#2|) |#2| |#2| |#2|) 39) (((-619 |#2|) |#1|) 50)) (-2723 ((|#2| |#1|) 46)) (-2407 (((-2 (|:| |solns| (-619 |#2|)) (|:| |maps| (-619 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1385 (((-619 |#2|) |#2| |#2|) 38) (((-619 |#2|) |#1|) 49)) (-3129 (((-619 |#2|) |#2| |#2| |#2| |#2|) 40) (((-619 |#2|) |#1|) 51)) (-3555 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-2562 ((|#2| |#2| |#2| |#2|) 43)) (-2120 ((|#2| |#2| |#2|) 42)) (-3070 ((|#2| |#2| |#2| |#2| |#2|) 44)))
-(((-1090 |#1| |#2|) (-10 -7 (-15 -3468 ((-619 |#2|) |#1|)) (-15 -2723 (|#2| |#1|)) (-15 -2407 ((-2 (|:| |solns| (-619 |#2|)) (|:| |maps| (-619 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1385 ((-619 |#2|) |#1|)) (-15 -1477 ((-619 |#2|) |#1|)) (-15 -3129 ((-619 |#2|) |#1|)) (-15 -1998 ((-619 |#2|) |#1|)) (-15 -1385 ((-619 |#2|) |#2| |#2|)) (-15 -1477 ((-619 |#2|) |#2| |#2| |#2|)) (-15 -3129 ((-619 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1998 ((-619 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2120 (|#2| |#2| |#2|)) (-15 -2562 (|#2| |#2| |#2| |#2|)) (-15 -3070 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3555 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1195 |#2|) (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (T -1090))
-((-3555 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1195 *2)))) (-3070 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1195 *2)))) (-2562 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1195 *2)))) (-2120 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1195 *2)))) (-1998 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1195 *3)))) (-3129 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1195 *3)))) (-1477 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1195 *3)))) (-1385 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1195 *3)))) (-1998 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1195 *4)))) (-3129 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1195 *4)))) (-1477 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1195 *4)))) (-1385 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1195 *4)))) (-2407 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-2 (|:| |solns| (-619 *5)) (|:| |maps| (-619 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1090 *3 *5)) (-4 *3 (-1195 *5)))) (-2723 (*1 *2 *3) (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1195 *2)))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1195 *4)))))
-(-10 -7 (-15 -3468 ((-619 |#2|) |#1|)) (-15 -2723 (|#2| |#1|)) (-15 -2407 ((-2 (|:| |solns| (-619 |#2|)) (|:| |maps| (-619 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1385 ((-619 |#2|) |#1|)) (-15 -1477 ((-619 |#2|) |#1|)) (-15 -3129 ((-619 |#2|) |#1|)) (-15 -1998 ((-619 |#2|) |#1|)) (-15 -1385 ((-619 |#2|) |#2| |#2|)) (-15 -1477 ((-619 |#2|) |#2| |#2| |#2|)) (-15 -3129 ((-619 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1998 ((-619 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2120 (|#2| |#2| |#2|)) (-15 -2562 (|#2| |#2| |#2| |#2|)) (-15 -3070 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3555 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-1737 (((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-398 (-921 |#1|))))) 95) (((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-398 (-921 |#1|)))) (-619 (-1136))) 94) (((-619 (-619 (-285 (-307 |#1|)))) (-619 (-398 (-921 |#1|)))) 92) (((-619 (-619 (-285 (-307 |#1|)))) (-619 (-398 (-921 |#1|))) (-619 (-1136))) 90) (((-619 (-285 (-307 |#1|))) (-285 (-398 (-921 |#1|)))) 75) (((-619 (-285 (-307 |#1|))) (-285 (-398 (-921 |#1|))) (-1136)) 76) (((-619 (-285 (-307 |#1|))) (-398 (-921 |#1|))) 70) (((-619 (-285 (-307 |#1|))) (-398 (-921 |#1|)) (-1136)) 59)) (-3862 (((-619 (-619 (-307 |#1|))) (-619 (-398 (-921 |#1|))) (-619 (-1136))) 88) (((-619 (-307 |#1|)) (-398 (-921 |#1|)) (-1136)) 43)) (-3339 (((-1126 (-619 (-307 |#1|)) (-619 (-285 (-307 |#1|)))) (-398 (-921 |#1|)) (-1136)) 98) (((-1126 (-619 (-307 |#1|)) (-619 (-285 (-307 |#1|)))) (-285 (-398 (-921 |#1|))) (-1136)) 97)))
-(((-1091 |#1|) (-10 -7 (-15 -1737 ((-619 (-285 (-307 |#1|))) (-398 (-921 |#1|)) (-1136))) (-15 -1737 ((-619 (-285 (-307 |#1|))) (-398 (-921 |#1|)))) (-15 -1737 ((-619 (-285 (-307 |#1|))) (-285 (-398 (-921 |#1|))) (-1136))) (-15 -1737 ((-619 (-285 (-307 |#1|))) (-285 (-398 (-921 |#1|))))) (-15 -1737 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-398 (-921 |#1|))) (-619 (-1136)))) (-15 -1737 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-398 (-921 |#1|))))) (-15 -1737 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-398 (-921 |#1|)))) (-619 (-1136)))) (-15 -1737 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-398 (-921 |#1|)))))) (-15 -3862 ((-619 (-307 |#1|)) (-398 (-921 |#1|)) (-1136))) (-15 -3862 ((-619 (-619 (-307 |#1|))) (-619 (-398 (-921 |#1|))) (-619 (-1136)))) (-15 -3339 ((-1126 (-619 (-307 |#1|)) (-619 (-285 (-307 |#1|)))) (-285 (-398 (-921 |#1|))) (-1136))) (-15 -3339 ((-1126 (-619 (-307 |#1|)) (-619 (-285 (-307 |#1|)))) (-398 (-921 |#1|)) (-1136)))) (-13 (-298) (-821) (-145))) (T -1091))
-((-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1136)) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-1126 (-619 (-307 *5)) (-619 (-285 (-307 *5))))) (-5 *1 (-1091 *5)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-285 (-398 (-921 *5)))) (-5 *4 (-1136)) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-1126 (-619 (-307 *5)) (-619 (-285 (-307 *5))))) (-5 *1 (-1091 *5)))) (-3862 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1136))) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-619 (-307 *5)))) (-5 *1 (-1091 *5)))) (-3862 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1136)) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-307 *5))) (-5 *1 (-1091 *5)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-619 (-285 (-398 (-921 *4))))) (-4 *4 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-619 (-285 (-307 *4))))) (-5 *1 (-1091 *4)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-285 (-398 (-921 *5))))) (-5 *4 (-619 (-1136))) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-619 (-285 (-307 *5))))) (-5 *1 (-1091 *5)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-619 (-398 (-921 *4)))) (-4 *4 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-619 (-285 (-307 *4))))) (-5 *1 (-1091 *4)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1136))) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-619 (-285 (-307 *5))))) (-5 *1 (-1091 *5)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-285 (-398 (-921 *4)))) (-4 *4 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1091 *4)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *3 (-285 (-398 (-921 *5)))) (-5 *4 (-1136)) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *5)))) (-5 *1 (-1091 *5)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1091 *4)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1136)) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *5)))) (-5 *1 (-1091 *5)))))
-(-10 -7 (-15 -1737 ((-619 (-285 (-307 |#1|))) (-398 (-921 |#1|)) (-1136))) (-15 -1737 ((-619 (-285 (-307 |#1|))) (-398 (-921 |#1|)))) (-15 -1737 ((-619 (-285 (-307 |#1|))) (-285 (-398 (-921 |#1|))) (-1136))) (-15 -1737 ((-619 (-285 (-307 |#1|))) (-285 (-398 (-921 |#1|))))) (-15 -1737 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-398 (-921 |#1|))) (-619 (-1136)))) (-15 -1737 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-398 (-921 |#1|))))) (-15 -1737 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-398 (-921 |#1|)))) (-619 (-1136)))) (-15 -1737 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-398 (-921 |#1|)))))) (-15 -3862 ((-619 (-307 |#1|)) (-398 (-921 |#1|)) (-1136))) (-15 -3862 ((-619 (-619 (-307 |#1|))) (-619 (-398 (-921 |#1|))) (-619 (-1136)))) (-15 -3339 ((-1126 (-619 (-307 |#1|)) (-619 (-285 (-307 |#1|)))) (-285 (-398 (-921 |#1|))) (-1136))) (-15 -3339 ((-1126 (-619 (-307 |#1|)) (-619 (-285 (-307 |#1|)))) (-398 (-921 |#1|)) (-1136))))
-((-3199 (((-398 (-1132 (-307 |#1|))) (-1219 (-307 |#1|)) (-398 (-1132 (-307 |#1|))) (-547)) 29)) (-2040 (((-398 (-1132 (-307 |#1|))) (-398 (-1132 (-307 |#1|))) (-398 (-1132 (-307 |#1|))) (-398 (-1132 (-307 |#1|)))) 40)))
-(((-1092 |#1|) (-10 -7 (-15 -2040 ((-398 (-1132 (-307 |#1|))) (-398 (-1132 (-307 |#1|))) (-398 (-1132 (-307 |#1|))) (-398 (-1132 (-307 |#1|))))) (-15 -3199 ((-398 (-1132 (-307 |#1|))) (-1219 (-307 |#1|)) (-398 (-1132 (-307 |#1|))) (-547)))) (-13 (-539) (-821))) (T -1092))
-((-3199 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-398 (-1132 (-307 *5)))) (-5 *3 (-1219 (-307 *5))) (-5 *4 (-547)) (-4 *5 (-13 (-539) (-821))) (-5 *1 (-1092 *5)))) (-2040 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-398 (-1132 (-307 *3)))) (-4 *3 (-13 (-539) (-821))) (-5 *1 (-1092 *3)))))
-(-10 -7 (-15 -2040 ((-398 (-1132 (-307 |#1|))) (-398 (-1132 (-307 |#1|))) (-398 (-1132 (-307 |#1|))) (-398 (-1132 (-307 |#1|))))) (-15 -3199 ((-398 (-1132 (-307 |#1|))) (-1219 (-307 |#1|)) (-398 (-1132 (-307 |#1|))) (-547))))
-((-3468 (((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-307 |#1|))) (-619 (-1136))) 224) (((-619 (-285 (-307 |#1|))) (-307 |#1|) (-1136)) 20) (((-619 (-285 (-307 |#1|))) (-285 (-307 |#1|)) (-1136)) 26) (((-619 (-285 (-307 |#1|))) (-285 (-307 |#1|))) 25) (((-619 (-285 (-307 |#1|))) (-307 |#1|)) 21)))
-(((-1093 |#1|) (-10 -7 (-15 -3468 ((-619 (-285 (-307 |#1|))) (-307 |#1|))) (-15 -3468 ((-619 (-285 (-307 |#1|))) (-285 (-307 |#1|)))) (-15 -3468 ((-619 (-285 (-307 |#1|))) (-285 (-307 |#1|)) (-1136))) (-15 -3468 ((-619 (-285 (-307 |#1|))) (-307 |#1|) (-1136))) (-15 -3468 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-307 |#1|))) (-619 (-1136))))) (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (T -1093))
-((-3468 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1136))) (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-619 (-285 (-307 *5))))) (-5 *1 (-1093 *5)) (-5 *3 (-619 (-285 (-307 *5)))))) (-3468 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-285 (-307 *5)))) (-5 *1 (-1093 *5)) (-5 *3 (-307 *5)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-285 (-307 *5)))) (-5 *1 (-1093 *5)) (-5 *3 (-285 (-307 *5))))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1093 *4)) (-5 *3 (-285 (-307 *4))))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1093 *4)) (-5 *3 (-307 *4)))))
-(-10 -7 (-15 -3468 ((-619 (-285 (-307 |#1|))) (-307 |#1|))) (-15 -3468 ((-619 (-285 (-307 |#1|))) (-285 (-307 |#1|)))) (-15 -3468 ((-619 (-285 (-307 |#1|))) (-285 (-307 |#1|)) (-1136))) (-15 -3468 ((-619 (-285 (-307 |#1|))) (-307 |#1|) (-1136))) (-15 -3468 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-307 |#1|))) (-619 (-1136)))))
-((-1664 ((|#2| |#2|) 20 (|has| |#1| (-821))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-2535 ((|#2| |#2|) 19 (|has| |#1| (-821))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
-(((-1094 |#1| |#2|) (-10 -7 (-15 -2535 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1664 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-821)) (PROGN (-15 -2535 (|#2| |#2|)) (-15 -1664 (|#2| |#2|))) |%noBranch|)) (-1173) (-13 (-582 (-547) |#1|) (-10 -7 (-6 -4329) (-6 -4330)))) (T -1094))
-((-1664 (*1 *2 *2) (-12 (-4 *3 (-821)) (-4 *3 (-1173)) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-582 (-547) *3) (-10 -7 (-6 -4329) (-6 -4330)))))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-821)) (-4 *3 (-1173)) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-582 (-547) *3) (-10 -7 (-6 -4329) (-6 -4330)))))) (-1664 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1173)) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-582 (-547) *4) (-10 -7 (-6 -4329) (-6 -4330)))))) (-2535 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1173)) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-582 (-547) *4) (-10 -7 (-6 -4329) (-6 -4330)))))))
-(-10 -7 (-15 -2535 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1664 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-821)) (PROGN (-15 -2535 (|#2| |#2|)) (-15 -1664 (|#2| |#2|))) |%noBranch|))
-((-3826 (((-112) $ $) NIL)) (-4018 (((-1125 3 |#1|) $) 107)) (-2581 (((-112) $) 72)) (-3349 (($ $ (-619 (-912 |#1|))) 20) (($ $ (-619 (-619 |#1|))) 75) (($ (-619 (-912 |#1|))) 74) (((-619 (-912 |#1|)) $) 73)) (-3126 (((-112) $) 41)) (-2791 (($ $ (-912 |#1|)) 46) (($ $ (-619 |#1|)) 51) (($ $ (-745)) 53) (($ (-912 |#1|)) 47) (((-912 |#1|) $) 45)) (-1842 (((-2 (|:| -2371 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745))) $) 105)) (-2328 (((-745) $) 26)) (-3209 (((-745) $) 25)) (-3821 (($ $ (-745) (-912 |#1|)) 39)) (-3988 (((-112) $) 82)) (-2176 (($ $ (-619 (-619 (-912 |#1|))) (-619 (-168)) (-168)) 89) (($ $ (-619 (-619 (-619 |#1|))) (-619 (-168)) (-168)) 91) (($ $ (-619 (-619 (-912 |#1|))) (-112) (-112)) 85) (($ $ (-619 (-619 (-619 |#1|))) (-112) (-112)) 93) (($ (-619 (-619 (-912 |#1|)))) 86) (($ (-619 (-619 (-912 |#1|))) (-112) (-112)) 87) (((-619 (-619 (-912 |#1|))) $) 84)) (-2777 (($ (-619 $)) 28) (($ $ $) 29)) (-4091 (((-619 (-168)) $) 102)) (-2784 (((-619 (-912 |#1|)) $) 96)) (-3683 (((-619 (-619 (-168))) $) 101)) (-3578 (((-619 (-619 (-619 (-912 |#1|)))) $) NIL)) (-2875 (((-619 (-619 (-619 (-745)))) $) 99)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3063 (((-745) $ (-619 (-912 |#1|))) 37)) (-1753 (((-112) $) 54)) (-3332 (($ $ (-619 (-912 |#1|))) 56) (($ $ (-619 (-619 |#1|))) 62) (($ (-619 (-912 |#1|))) 57) (((-619 (-912 |#1|)) $) 55)) (-2959 (($) 23) (($ (-1125 3 |#1|)) 24)) (-2274 (($ $) 35)) (-4294 (((-619 $) $) 34)) (-4188 (($ (-619 $)) 31)) (-1919 (((-619 $) $) 33)) (-3838 (((-832) $) 111)) (-3230 (((-112) $) 64)) (-2662 (($ $ (-619 (-912 |#1|))) 66) (($ $ (-619 (-619 |#1|))) 69) (($ (-619 (-912 |#1|))) 67) (((-619 (-912 |#1|)) $) 65)) (-3104 (($ $) 106)) (-2381 (((-112) $ $) NIL)))
-(((-1095 |#1|) (-1096 |#1|) (-1016)) (T -1095))
-NIL
-(-1096 |#1|)
-((-3826 (((-112) $ $) 7)) (-4018 (((-1125 3 |#1|) $) 13)) (-2581 (((-112) $) 29)) (-3349 (($ $ (-619 (-912 |#1|))) 33) (($ $ (-619 (-619 |#1|))) 32) (($ (-619 (-912 |#1|))) 31) (((-619 (-912 |#1|)) $) 30)) (-3126 (((-112) $) 44)) (-2791 (($ $ (-912 |#1|)) 49) (($ $ (-619 |#1|)) 48) (($ $ (-745)) 47) (($ (-912 |#1|)) 46) (((-912 |#1|) $) 45)) (-1842 (((-2 (|:| -2371 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745))) $) 15)) (-2328 (((-745) $) 58)) (-3209 (((-745) $) 59)) (-3821 (($ $ (-745) (-912 |#1|)) 50)) (-3988 (((-112) $) 21)) (-2176 (($ $ (-619 (-619 (-912 |#1|))) (-619 (-168)) (-168)) 28) (($ $ (-619 (-619 (-619 |#1|))) (-619 (-168)) (-168)) 27) (($ $ (-619 (-619 (-912 |#1|))) (-112) (-112)) 26) (($ $ (-619 (-619 (-619 |#1|))) (-112) (-112)) 25) (($ (-619 (-619 (-912 |#1|)))) 24) (($ (-619 (-619 (-912 |#1|))) (-112) (-112)) 23) (((-619 (-619 (-912 |#1|))) $) 22)) (-2777 (($ (-619 $)) 57) (($ $ $) 56)) (-4091 (((-619 (-168)) $) 16)) (-2784 (((-619 (-912 |#1|)) $) 20)) (-3683 (((-619 (-619 (-168))) $) 17)) (-3578 (((-619 (-619 (-619 (-912 |#1|)))) $) 18)) (-2875 (((-619 (-619 (-619 (-745)))) $) 19)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3063 (((-745) $ (-619 (-912 |#1|))) 51)) (-1753 (((-112) $) 39)) (-3332 (($ $ (-619 (-912 |#1|))) 43) (($ $ (-619 (-619 |#1|))) 42) (($ (-619 (-912 |#1|))) 41) (((-619 (-912 |#1|)) $) 40)) (-2959 (($) 61) (($ (-1125 3 |#1|)) 60)) (-2274 (($ $) 52)) (-4294 (((-619 $) $) 53)) (-4188 (($ (-619 $)) 55)) (-1919 (((-619 $) $) 54)) (-3838 (((-832) $) 11)) (-3230 (((-112) $) 34)) (-2662 (($ $ (-619 (-912 |#1|))) 38) (($ $ (-619 (-619 |#1|))) 37) (($ (-619 (-912 |#1|))) 36) (((-619 (-912 |#1|)) $) 35)) (-3104 (($ $) 14)) (-2381 (((-112) $ $) 6)))
-(((-1096 |#1|) (-138) (-1016)) (T -1096))
-((-3838 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-832)))) (-2959 (*1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-2959 (*1 *1 *2) (-12 (-5 *2 (-1125 3 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-2777 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2777 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-4188 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1919 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)))) (-4294 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)))) (-2274 (*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-3063 (*1 *2 *1 *3) (-12 (-5 *3 (-619 (-912 *4))) (-4 *1 (-1096 *4)) (-4 *4 (-1016)) (-5 *2 (-745)))) (-3821 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-912 *4)) (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-912 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2791 (*1 *1 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-2791 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-912 *3)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-3332 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-3332 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-3332 (*1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-2662 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2662 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2662 (*1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-2662 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-3349 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-3349 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-2176 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-619 (-912 *5)))) (-5 *3 (-619 (-168))) (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016)))) (-2176 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-619 (-168))) (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016)))) (-2176 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-619 (-912 *4)))) (-5 *3 (-112)) (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) (-2176 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-112)) (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 *3)))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-2176 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-619 (-912 *4)))) (-5 *3 (-112)) (-4 *4 (-1016)) (-4 *1 (-1096 *4)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-912 *3)))))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-2875 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-619 (-745))))))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-619 (-912 *3))))))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-168)))))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-168))))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2371 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745)))))) (-3104 (*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-1125 3 *3)))))
-(-13 (-1063) (-10 -8 (-15 -2959 ($)) (-15 -2959 ($ (-1125 3 |t#1|))) (-15 -3209 ((-745) $)) (-15 -2328 ((-745) $)) (-15 -2777 ($ (-619 $))) (-15 -2777 ($ $ $)) (-15 -4188 ($ (-619 $))) (-15 -1919 ((-619 $) $)) (-15 -4294 ((-619 $) $)) (-15 -2274 ($ $)) (-15 -3063 ((-745) $ (-619 (-912 |t#1|)))) (-15 -3821 ($ $ (-745) (-912 |t#1|))) (-15 -2791 ($ $ (-912 |t#1|))) (-15 -2791 ($ $ (-619 |t#1|))) (-15 -2791 ($ $ (-745))) (-15 -2791 ($ (-912 |t#1|))) (-15 -2791 ((-912 |t#1|) $)) (-15 -3126 ((-112) $)) (-15 -3332 ($ $ (-619 (-912 |t#1|)))) (-15 -3332 ($ $ (-619 (-619 |t#1|)))) (-15 -3332 ($ (-619 (-912 |t#1|)))) (-15 -3332 ((-619 (-912 |t#1|)) $)) (-15 -1753 ((-112) $)) (-15 -2662 ($ $ (-619 (-912 |t#1|)))) (-15 -2662 ($ $ (-619 (-619 |t#1|)))) (-15 -2662 ($ (-619 (-912 |t#1|)))) (-15 -2662 ((-619 (-912 |t#1|)) $)) (-15 -3230 ((-112) $)) (-15 -3349 ($ $ (-619 (-912 |t#1|)))) (-15 -3349 ($ $ (-619 (-619 |t#1|)))) (-15 -3349 ($ (-619 (-912 |t#1|)))) (-15 -3349 ((-619 (-912 |t#1|)) $)) (-15 -2581 ((-112) $)) (-15 -2176 ($ $ (-619 (-619 (-912 |t#1|))) (-619 (-168)) (-168))) (-15 -2176 ($ $ (-619 (-619 (-619 |t#1|))) (-619 (-168)) (-168))) (-15 -2176 ($ $ (-619 (-619 (-912 |t#1|))) (-112) (-112))) (-15 -2176 ($ $ (-619 (-619 (-619 |t#1|))) (-112) (-112))) (-15 -2176 ($ (-619 (-619 (-912 |t#1|))))) (-15 -2176 ($ (-619 (-619 (-912 |t#1|))) (-112) (-112))) (-15 -2176 ((-619 (-619 (-912 |t#1|))) $)) (-15 -3988 ((-112) $)) (-15 -2784 ((-619 (-912 |t#1|)) $)) (-15 -2875 ((-619 (-619 (-619 (-745)))) $)) (-15 -3578 ((-619 (-619 (-619 (-912 |t#1|)))) $)) (-15 -3683 ((-619 (-619 (-168))) $)) (-15 -4091 ((-619 (-168)) $)) (-15 -1842 ((-2 (|:| -2371 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745))) $)) (-15 -3104 ($ $)) (-15 -4018 ((-1125 3 |t#1|) $)) (-15 -3838 ((-832) $))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-3375 (((-619 (-1141)) (-1119)) 9)))
-(((-1097) (-10 -7 (-15 -3375 ((-619 (-1141)) (-1119))))) (T -1097))
-((-3375 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-619 (-1141))) (-5 *1 (-1097)))))
-(-10 -7 (-15 -3375 ((-619 (-1141)) (-1119))))
-((-3826 (((-112) $ $) 7)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (((-1141) $) 14)) (-3258 (((-112 (SEQ (-1 (-112) $ (-210)) (-1 (-112) $ (-650)) (-1 (-112) $ (-1229)) (-1 (-112) $ (-137)) (-1 (-112) $ (-132)) (-1 (-112) $ (|SignatureAst|)) (-1 (-112) $ (-95)) (-1 (-112) $ (-655)) (-1 (-112) $ (-506)) (-1 (-112) $ (-1031)) (-1 (-112) $ (-1230)) (-1 (-112) $ (-514)) (-1 (-112) $ (|CollectAst|)) (-1 (-112) $ (-645)) (-1 (-112) $ (-302)) (-1 (-112) $ (-1005)) (-1 (-112) $ (|CoerceAst|)) (-1 (-112) $ (-939)) (-1 (-112) $ (|RestrictAst|)) (-1 (-112) $ (-1054)) (-1 (-112) $ (|SequenceAst|)) (-1 (-112) $ (-602)) (-1 (-112) $ (|SuchThatAst|)) (-1 (-112) $ (-153)) (-1 (-112) $ (-136)) (-1 (-112) $ (-468)) (-1 (-112) $ (-571)) (|exit| 1 (-1 (-571) $)))) $ (-513)) 17)) (-2381 (((-112) $ $) 6)))
-(((-1098) (-138)) (T -1098))
-((-3258 (*1 *2 *1 *3) (-12 (-5 *3 (-513)) (-5 *2 (-112 (SEQ (-1 (-112) *1 (-210)) (-1 (-112) *1 (-650)) (-1 (-112) *1 (-1229)) (-1 (-112) *1 (-137)) (-1 (-112) *1 (-132)) (-1 (-112) *1 (|SignatureAst|)) (-1 (-112) *1 (-95)) (-1 (-112) *1 (-655)) (-1 (-112) *1 (-506)) (-1 (-112) *1 (-1031)) (-1 (-112) *1 (-1230)) (-1 (-112) *1 (-514)) (-1 (-112) *1 (|CollectAst|)) (-1 (-112) *1 (-645)) (-1 (-112) *1 (-302)) (-1 (-112) *1 (-1005)) (-1 (-112) *1 (|CoerceAst|)) (-1 (-112) *1 (-939)) (-1 (-112) *1 (|RestrictAst|)) (-1 (-112) *1 (-1054)) (-1 (-112) *1 (|SequenceAst|)) (-1 (-112) *1 (-602)) (-1 (-112) *1 (|SuchThatAst|)) (-1 (-112) *1 (-153)) (-1 (-112) *1 (-136)) (-1 (-112) *1 (-468)) (-1 (-112) *1 (-571)) (|exit| 1 (-1 (-571) *1))))) (-4 *1 (-1098)))))
-(-13 (-1047) (-1214) (-10 -8 (-15 -3258 ((-112 (SEQ (-1 (-112) $ (-210)) (-1 (-112) $ (-650)) (-1 (-112) $ (-1229)) (-1 (-112) $ (-137)) (-1 (-112) $ (-132)) (-1 (-112) $ (|SignatureAst|)) (-1 (-112) $ (-95)) (-1 (-112) $ (-655)) (-1 (-112) $ (-506)) (-1 (-112) $ (-1031)) (-1 (-112) $ (-1230)) (-1 (-112) $ (-514)) (-1 (-112) $ (|CollectAst|)) (-1 (-112) $ (-645)) (-1 (-112) $ (-302)) (-1 (-112) $ (-1005)) (-1 (-112) $ (|CoerceAst|)) (-1 (-112) $ (-939)) (-1 (-112) $ (|RestrictAst|)) (-1 (-112) $ (-1054)) (-1 (-112) $ (|SequenceAst|)) (-1 (-112) $ (-602)) (-1 (-112) $ (|SuchThatAst|)) (-1 (-112) $ (-153)) (-1 (-112) $ (-136)) (-1 (-112) $ (-468)) (-1 (-112) $ (-571)) (|exit| 1 (-1 (-571) $)))) $ (-513)))))
-(((-92) . T) ((-101) . T) ((-591 (-832)) . T) ((-591 (-1141)) . T) ((-1063) . T) ((-1047) . T) ((-1214) . T))
-((-1784 (((-1224) (-619 (-832))) 23) (((-1224) (-832)) 22)) (-3311 (((-1224) (-619 (-832))) 21) (((-1224) (-832)) 20)) (-3309 (((-1224) (-619 (-832))) 19) (((-1224) (-832)) 11) (((-1224) (-1119) (-832)) 17)))
-(((-1099) (-10 -7 (-15 -3309 ((-1224) (-1119) (-832))) (-15 -3309 ((-1224) (-832))) (-15 -3311 ((-1224) (-832))) (-15 -1784 ((-1224) (-832))) (-15 -3309 ((-1224) (-619 (-832)))) (-15 -3311 ((-1224) (-619 (-832)))) (-15 -1784 ((-1224) (-619 (-832)))))) (T -1099))
-((-1784 (*1 *2 *3) (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1224)) (-5 *1 (-1099)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1224)) (-5 *1 (-1099)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1224)) (-5 *1 (-1099)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1224)) (-5 *1 (-1099)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1224)) (-5 *1 (-1099)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1224)) (-5 *1 (-1099)))) (-3309 (*1 *2 *3 *4) (-12 (-5 *3 (-1119)) (-5 *4 (-832)) (-5 *2 (-1224)) (-5 *1 (-1099)))))
-(-10 -7 (-15 -3309 ((-1224) (-1119) (-832))) (-15 -3309 ((-1224) (-832))) (-15 -3311 ((-1224) (-832))) (-15 -1784 ((-1224) (-832))) (-15 -3309 ((-1224) (-619 (-832)))) (-15 -3311 ((-1224) (-619 (-832)))) (-15 -1784 ((-1224) (-619 (-832)))))
-((-2758 (($ $ $) 10)) (-1878 (($ $) 9)) (-2560 (($ $ $) 13)) (-4142 (($ $ $) 15)) (-3272 (($ $ $) 12)) (-3611 (($ $ $) 14)) (-2275 (($ $) 17)) (-1988 (($ $) 16)) (-2255 (($ $) 6)) (-1705 (($ $ $) 11) (($ $) 7)) (-3243 (($ $ $) 8)))
-(((-1100) (-138)) (T -1100))
-((-2275 (*1 *1 *1) (-4 *1 (-1100))) (-1988 (*1 *1 *1) (-4 *1 (-1100))) (-4142 (*1 *1 *1 *1) (-4 *1 (-1100))) (-3611 (*1 *1 *1 *1) (-4 *1 (-1100))) (-2560 (*1 *1 *1 *1) (-4 *1 (-1100))) (-3272 (*1 *1 *1 *1) (-4 *1 (-1100))) (-1705 (*1 *1 *1 *1) (-4 *1 (-1100))) (-2758 (*1 *1 *1 *1) (-4 *1 (-1100))) (-1878 (*1 *1 *1) (-4 *1 (-1100))) (-3243 (*1 *1 *1 *1) (-4 *1 (-1100))) (-1705 (*1 *1 *1) (-4 *1 (-1100))) (-2255 (*1 *1 *1) (-4 *1 (-1100))))
-(-13 (-10 -8 (-15 -2255 ($ $)) (-15 -1705 ($ $)) (-15 -3243 ($ $ $)) (-15 -1878 ($ $)) (-15 -2758 ($ $ $)) (-15 -1705 ($ $ $)) (-15 -3272 ($ $ $)) (-15 -2560 ($ $ $)) (-15 -3611 ($ $ $)) (-15 -4142 ($ $ $)) (-15 -1988 ($ $)) (-15 -2275 ($ $))))
-((-3826 (((-112) $ $) 41)) (-4153 ((|#1| $) 15)) (-3277 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-1456 (((-112) $) 17)) (-3273 (($ $ |#1|) 28)) (-3784 (($ $ (-112)) 30)) (-1559 (($ $) 31)) (-2478 (($ $ |#2|) 29)) (-1466 (((-1119) $) NIL)) (-1848 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3979 (((-1082) $) NIL)) (-2884 (((-112) $) 14)) (-2245 (($) 10)) (-2274 (($ $) 27)) (-3846 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1974 |#2|))) 21) (((-619 $) (-619 (-2 (|:| |val| |#1|) (|:| -1974 |#2|)))) 24) (((-619 $) |#1| (-619 |#2|)) 26)) (-1920 ((|#2| $) 16)) (-3838 (((-832) $) 50)) (-2381 (((-112) $ $) 39)))
-(((-1101 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -2245 ($)) (-15 -2884 ((-112) $)) (-15 -4153 (|#1| $)) (-15 -1920 (|#2| $)) (-15 -1456 ((-112) $)) (-15 -3846 ($ |#1| |#2| (-112))) (-15 -3846 ($ |#1| |#2|)) (-15 -3846 ($ (-2 (|:| |val| |#1|) (|:| -1974 |#2|)))) (-15 -3846 ((-619 $) (-619 (-2 (|:| |val| |#1|) (|:| -1974 |#2|))))) (-15 -3846 ((-619 $) |#1| (-619 |#2|))) (-15 -2274 ($ $)) (-15 -3273 ($ $ |#1|)) (-15 -2478 ($ $ |#2|)) (-15 -3784 ($ $ (-112))) (-15 -1559 ($ $)) (-15 -1848 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3277 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1063) (-34)) (-13 (-1063) (-34))) (T -1101))
-((-2245 (*1 *1) (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-4153 (*1 *2 *1) (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1101 *2 *3)) (-4 *3 (-13 (-1063) (-34))))) (-1920 (*1 *2 *1) (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-13 (-1063) (-34))))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-3846 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3846 (*1 *1 *2 *3) (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1974 *4))) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |val| *4) (|:| -1974 *5)))) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-619 (-1101 *4 *5))) (-5 *1 (-1101 *4 *5)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *5)) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-619 (-1101 *3 *5))) (-5 *1 (-1101 *3 *5)) (-4 *3 (-13 (-1063) (-34))))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3273 (*1 *1 *1 *2) (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-2478 (*1 *1 *1 *2) (-12 (-5 *1 (-1101 *3 *2)) (-4 *3 (-13 (-1063) (-34))) (-4 *2 (-13 (-1063) (-34))))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-1559 (*1 *1 *1) (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-1848 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6)))) (-3277 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5)) (-4 *4 (-13 (-1063) (-34))))))
-(-13 (-1063) (-10 -8 (-15 -2245 ($)) (-15 -2884 ((-112) $)) (-15 -4153 (|#1| $)) (-15 -1920 (|#2| $)) (-15 -1456 ((-112) $)) (-15 -3846 ($ |#1| |#2| (-112))) (-15 -3846 ($ |#1| |#2|)) (-15 -3846 ($ (-2 (|:| |val| |#1|) (|:| -1974 |#2|)))) (-15 -3846 ((-619 $) (-619 (-2 (|:| |val| |#1|) (|:| -1974 |#2|))))) (-15 -3846 ((-619 $) |#1| (-619 |#2|))) (-15 -2274 ($ $)) (-15 -3273 ($ $ |#1|)) (-15 -2478 ($ $ |#2|)) (-15 -3784 ($ $ (-112))) (-15 -1559 ($ $)) (-15 -1848 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3277 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-3826 (((-112) $ $) NIL (|has| (-1101 |#1| |#2|) (-1063)))) (-4153 (((-1101 |#1| |#2|) $) 25)) (-3980 (($ $) 76)) (-3430 (((-112) (-1101 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-2163 (($ $ $ (-619 (-1101 |#1| |#2|))) 90) (($ $ $ (-619 (-1101 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-3899 (((-112) $ (-745)) NIL)) (-1986 (((-1101 |#1| |#2|) $ (-1101 |#1| |#2|)) 43 (|has| $ (-6 -4330)))) (-2247 (((-1101 |#1| |#2|) $ "value" (-1101 |#1| |#2|)) NIL (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) 41 (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-1492 (((-619 (-2 (|:| |val| |#1|) (|:| -1974 |#2|))) $) 80)) (-1513 (($ (-1101 |#1| |#2|) $) 39)) (-3803 (($ (-1101 |#1| |#2|) $) 31)) (-2982 (((-619 (-1101 |#1| |#2|)) $) NIL (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) 51)) (-2050 (((-112) (-1101 |#1| |#2|) $) 82)) (-2554 (((-112) $ $) NIL (|has| (-1101 |#1| |#2|) (-1063)))) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 (-1101 |#1| |#2|)) $) 55 (|has| $ (-6 -4329)))) (-2132 (((-112) (-1101 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-1101 |#1| |#2|) (-1063))))) (-1859 (($ (-1 (-1101 |#1| |#2|) (-1101 |#1| |#2|)) $) 47 (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-1101 |#1| |#2|) (-1101 |#1| |#2|)) $) 46)) (-3806 (((-112) $ (-745)) NIL)) (-3583 (((-619 (-1101 |#1| |#2|)) $) 53)) (-1489 (((-112) $) 42)) (-1466 (((-1119) $) NIL (|has| (-1101 |#1| |#2|) (-1063)))) (-3979 (((-1082) $) NIL (|has| (-1101 |#1| |#2|) (-1063)))) (-3718 (((-3 $ "failed") $) 75)) (-1598 (((-112) (-1 (-112) (-1101 |#1| |#2|)) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-1101 |#1| |#2|)))) NIL (-12 (|has| (-1101 |#1| |#2|) (-300 (-1101 |#1| |#2|))) (|has| (-1101 |#1| |#2|) (-1063)))) (($ $ (-285 (-1101 |#1| |#2|))) NIL (-12 (|has| (-1101 |#1| |#2|) (-300 (-1101 |#1| |#2|))) (|has| (-1101 |#1| |#2|) (-1063)))) (($ $ (-1101 |#1| |#2|) (-1101 |#1| |#2|)) NIL (-12 (|has| (-1101 |#1| |#2|) (-300 (-1101 |#1| |#2|))) (|has| (-1101 |#1| |#2|) (-1063)))) (($ $ (-619 (-1101 |#1| |#2|)) (-619 (-1101 |#1| |#2|))) NIL (-12 (|has| (-1101 |#1| |#2|) (-300 (-1101 |#1| |#2|))) (|has| (-1101 |#1| |#2|) (-1063))))) (-2052 (((-112) $ $) 50)) (-2884 (((-112) $) 22)) (-2245 (($) 24)) (-3334 (((-1101 |#1| |#2|) $ "value") NIL)) (-2857 (((-547) $ $) NIL)) (-1850 (((-112) $) 44)) (-3992 (((-745) (-1 (-112) (-1101 |#1| |#2|)) $) NIL (|has| $ (-6 -4329))) (((-745) (-1101 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-1101 |#1| |#2|) (-1063))))) (-2274 (($ $) 49)) (-3846 (($ (-1101 |#1| |#2|)) 9) (($ |#1| |#2| (-619 $)) 12) (($ |#1| |#2| (-619 (-1101 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-619 |#2|)) 17)) (-3584 (((-619 |#2|) $) 81)) (-3838 (((-832) $) 73 (|has| (-1101 |#1| |#2|) (-591 (-832))))) (-2514 (((-619 $) $) 28)) (-1421 (((-112) $ $) NIL (|has| (-1101 |#1| |#2|) (-1063)))) (-2693 (((-112) (-1 (-112) (-1101 |#1| |#2|)) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 64 (|has| (-1101 |#1| |#2|) (-1063)))) (-3767 (((-745) $) 58 (|has| $ (-6 -4329)))))
-(((-1102 |#1| |#2|) (-13 (-979 (-1101 |#1| |#2|)) (-10 -8 (-6 -4330) (-6 -4329) (-15 -3718 ((-3 $ "failed") $)) (-15 -3980 ($ $)) (-15 -3846 ($ (-1101 |#1| |#2|))) (-15 -3846 ($ |#1| |#2| (-619 $))) (-15 -3846 ($ |#1| |#2| (-619 (-1101 |#1| |#2|)))) (-15 -3846 ($ |#1| |#2| |#1| (-619 |#2|))) (-15 -3584 ((-619 |#2|) $)) (-15 -1492 ((-619 (-2 (|:| |val| |#1|) (|:| -1974 |#2|))) $)) (-15 -2050 ((-112) (-1101 |#1| |#2|) $)) (-15 -3430 ((-112) (-1101 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3803 ($ (-1101 |#1| |#2|) $)) (-15 -1513 ($ (-1101 |#1| |#2|) $)) (-15 -2163 ($ $ $ (-619 (-1101 |#1| |#2|)))) (-15 -2163 ($ $ $ (-619 (-1101 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1063) (-34)) (-13 (-1063) (-34))) (T -1102))
-((-3718 (*1 *1 *1) (|partial| -12 (-5 *1 (-1102 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3980 (*1 *1 *1) (-12 (-5 *1 (-1102 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1102 *3 *4)))) (-3846 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-619 (-1102 *2 *3))) (-5 *1 (-1102 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3846 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-619 (-1101 *2 *3))) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))) (-5 *1 (-1102 *2 *3)))) (-3846 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-13 (-1063) (-34))) (-5 *1 (-1102 *2 *3)) (-4 *2 (-13 (-1063) (-34))))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-619 *4)) (-5 *1 (-1102 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4)))) (-5 *1 (-1102 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-2050 (*1 *2 *3 *1) (-12 (-5 *3 (-1101 *4 *5)) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1102 *4 *5)))) (-3430 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1101 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1102 *5 *6)))) (-3803 (*1 *1 *2 *1) (-12 (-5 *2 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1102 *3 *4)))) (-1513 (*1 *1 *2 *1) (-12 (-5 *2 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1102 *3 *4)))) (-2163 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-619 (-1101 *3 *4))) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1102 *3 *4)))) (-2163 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1101 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *1 (-1102 *4 *5)))))
-(-13 (-979 (-1101 |#1| |#2|)) (-10 -8 (-6 -4330) (-6 -4329) (-15 -3718 ((-3 $ "failed") $)) (-15 -3980 ($ $)) (-15 -3846 ($ (-1101 |#1| |#2|))) (-15 -3846 ($ |#1| |#2| (-619 $))) (-15 -3846 ($ |#1| |#2| (-619 (-1101 |#1| |#2|)))) (-15 -3846 ($ |#1| |#2| |#1| (-619 |#2|))) (-15 -3584 ((-619 |#2|) $)) (-15 -1492 ((-619 (-2 (|:| |val| |#1|) (|:| -1974 |#2|))) $)) (-15 -2050 ((-112) (-1101 |#1| |#2|) $)) (-15 -3430 ((-112) (-1101 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3803 ($ (-1101 |#1| |#2|) $)) (-15 -1513 ($ (-1101 |#1| |#2|) $)) (-15 -2163 ($ $ $ (-619 (-1101 |#1| |#2|)))) (-15 -2163 ($ $ $ (-619 (-1101 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3890 (($ $) NIL)) (-2899 ((|#2| $) NIL)) (-2597 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1637 (($ (-663 |#2|)) 47)) (-1907 (((-112) $) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-3893 (($ |#2|) 9)) (-1948 (($) NIL T CONST)) (-2648 (($ $) 60 (|has| |#2| (-298)))) (-2330 (((-232 |#1| |#2|) $ (-547)) 34)) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 |#2| "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) ((|#2| $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) 74)) (-3116 (((-745) $) 62 (|has| |#2| (-539)))) (-1802 ((|#2| $ (-547) (-547)) NIL)) (-2982 (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2261 (((-112) $) NIL)) (-3316 (((-745) $) 64 (|has| |#2| (-539)))) (-3861 (((-619 (-232 |#1| |#2|)) $) 68 (|has| |#2| (-539)))) (-2135 (((-745) $) NIL)) (-2148 (((-745) $) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-3836 ((|#2| $) 58 (|has| |#2| (-6 (-4331 "*"))))) (-3612 (((-547) $) NIL)) (-3628 (((-547) $) NIL)) (-2284 (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-3120 (((-547) $) NIL)) (-1599 (((-547) $) NIL)) (-3938 (($ (-619 (-619 |#2|))) 29)) (-1859 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1580 (((-619 (-619 |#2|)) $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-3582 (((-3 $ "failed") $) 71 (|has| |#2| (-354)))) (-3979 (((-1082) $) NIL)) (-2032 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539)))) (-1598 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#2| $ (-547) (-547) |#2|) NIL) ((|#2| $ (-547) (-547)) NIL)) (-3448 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-2278 ((|#2| $) NIL)) (-4123 (($ (-619 |#2|)) 42)) (-3691 (((-112) $) NIL)) (-2172 (((-232 |#1| |#2|) $) NIL)) (-1299 ((|#2| $) 56 (|has| |#2| (-6 (-4331 "*"))))) (-3992 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2274 (($ $) NIL)) (-2838 (((-523) $) 83 (|has| |#2| (-592 (-523))))) (-1295 (((-232 |#1| |#2|) $ (-547)) 36)) (-3838 (((-832) $) 39) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#2| (-1007 (-398 (-547))))) (($ |#2|) NIL) (((-663 |#2|) $) 44)) (-2736 (((-745)) 17)) (-2693 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-1485 (((-112) $) NIL)) (-3269 (($) 11 T CONST)) (-3281 (($) 14 T CONST)) (-1695 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) 54) (($ $ (-547)) 73 (|has| |#2| (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-232 |#1| |#2|) $ (-232 |#1| |#2|)) 50) (((-232 |#1| |#2|) (-232 |#1| |#2|) $) 52)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1103 |#1| |#2|) (-13 (-1085 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-591 (-663 |#2|)) (-10 -8 (-15 -3890 ($ $)) (-15 -1637 ($ (-663 |#2|))) (-15 -3838 ((-663 |#2|) $)) (IF (|has| |#2| (-6 (-4331 "*"))) (-6 -4318) |%noBranch|) (IF (|has| |#2| (-6 (-4331 "*"))) (IF (|has| |#2| (-6 -4326)) (-6 -4326) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|))) (-745) (-1016)) (T -1103))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-663 *4)) (-5 *1 (-1103 *3 *4)) (-14 *3 (-745)) (-4 *4 (-1016)))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-1103 *2 *3)) (-14 *2 (-745)) (-4 *3 (-1016)))) (-1637 (*1 *1 *2) (-12 (-5 *2 (-663 *4)) (-4 *4 (-1016)) (-5 *1 (-1103 *3 *4)) (-14 *3 (-745)))))
-(-13 (-1085 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-591 (-663 |#2|)) (-10 -8 (-15 -3890 ($ $)) (-15 -1637 ($ (-663 |#2|))) (-15 -3838 ((-663 |#2|) $)) (IF (|has| |#2| (-6 (-4331 "*"))) (-6 -4318) |%noBranch|) (IF (|has| |#2| (-6 (-4331 "*"))) (IF (|has| |#2| (-6 -4326)) (-6 -4326) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|)))
-((-4306 (($ $) 19)) (-3630 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-2341 (((-112) $ $) 24)) (-3093 (($ $) 17)) (-3334 (((-142) $ (-547) (-142)) NIL) (((-142) $ (-547)) NIL) (($ $ (-1186 (-547))) NIL) (($ $ $) 29)) (-3838 (($ (-142)) 27) (((-832) $) NIL)))
-(((-1104 |#1|) (-10 -8 (-15 -3838 ((-832) |#1|)) (-15 -3334 (|#1| |#1| |#1|)) (-15 -3630 (|#1| |#1| (-139))) (-15 -3630 (|#1| |#1| (-142))) (-15 -3838 (|#1| (-142))) (-15 -2341 ((-112) |#1| |#1|)) (-15 -4306 (|#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3334 (|#1| |#1| (-1186 (-547)))) (-15 -3334 ((-142) |#1| (-547))) (-15 -3334 ((-142) |#1| (-547) (-142)))) (-1105)) (T -1104))
-NIL
-(-10 -8 (-15 -3838 ((-832) |#1|)) (-15 -3334 (|#1| |#1| |#1|)) (-15 -3630 (|#1| |#1| (-139))) (-15 -3630 (|#1| |#1| (-142))) (-15 -3838 (|#1| (-142))) (-15 -2341 ((-112) |#1| |#1|)) (-15 -4306 (|#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3334 (|#1| |#1| (-1186 (-547)))) (-15 -3334 ((-142) |#1| (-547))) (-15 -3334 ((-142) |#1| (-547) (-142))))
-((-3826 (((-112) $ $) 19 (|has| (-142) (-1063)))) (-1449 (($ $) 120)) (-4306 (($ $) 121)) (-3630 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-1652 (((-1224) $ (-547) (-547)) 40 (|has| $ (-6 -4330)))) (-2313 (((-112) $ $) 118)) (-2287 (((-112) $ $ (-547)) 117)) (-4194 (((-619 $) $ (-142)) 110) (((-619 $) $ (-139)) 109)) (-2436 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-821)))) (-2809 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4330))) (($ $) 88 (-12 (|has| (-142) (-821)) (|has| $ (-6 -4330))))) (-3185 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-821)))) (-3899 (((-112) $ (-745)) 8)) (-2247 (((-142) $ (-547) (-142)) 52 (|has| $ (-6 -4330))) (((-142) $ (-1186 (-547)) (-142)) 58 (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-3580 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-3044 (($ $) 90 (|has| $ (-6 -4330)))) (-3057 (($ $) 100)) (-4118 (($ $ (-1186 (-547)) $) 114)) (-3668 (($ $) 78 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ (-142) $) 77 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4329)))) (-2552 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4329)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4329))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4329)))) (-1872 (((-142) $ (-547) (-142)) 53 (|has| $ (-6 -4330)))) (-1802 (((-142) $ (-547)) 51)) (-2341 (((-112) $ $) 119)) (-2876 (((-547) (-1 (-112) (-142)) $) 97) (((-547) (-142) $) 96 (|has| (-142) (-1063))) (((-547) (-142) $ (-547)) 95 (|has| (-142) (-1063))) (((-547) $ $ (-547)) 113) (((-547) (-139) $ (-547)) 112)) (-2982 (((-619 (-142)) $) 30 (|has| $ (-6 -4329)))) (-3735 (($ (-745) (-142)) 69)) (-2763 (((-112) $ (-745)) 9)) (-2434 (((-547) $) 43 (|has| (-547) (-821)))) (-2856 (($ $ $) 87 (|has| (-142) (-821)))) (-2777 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-821)))) (-2284 (((-619 (-142)) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 44 (|has| (-547) (-821)))) (-3567 (($ $ $) 86 (|has| (-142) (-821)))) (-2305 (((-112) $ $ (-142)) 115)) (-2468 (((-745) $ $ (-142)) 116)) (-1859 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-1574 (($ $) 122)) (-3093 (($ $) 123)) (-3806 (((-112) $ (-745)) 10)) (-3595 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-1466 (((-1119) $) 22 (|has| (-142) (-1063)))) (-2606 (($ (-142) $ (-547)) 60) (($ $ $ (-547)) 59)) (-2121 (((-619 (-547)) $) 46)) (-2018 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| (-142) (-1063)))) (-3638 (((-142) $) 42 (|has| (-547) (-821)))) (-3650 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-3632 (($ $ (-142)) 41 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-142)))) 26 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-285 (-142))) 25 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) 23 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-2987 (((-619 (-142)) $) 48)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 (((-142) $ (-547) (-142)) 50) (((-142) $ (-547)) 49) (($ $ (-1186 (-547))) 63) (($ $ $) 102)) (-2159 (($ $ (-547)) 62) (($ $ (-1186 (-547))) 61)) (-3992 (((-745) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4329))) (((-745) (-142) $) 28 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4329))))) (-4282 (($ $ $ (-547)) 91 (|has| $ (-6 -4330)))) (-2274 (($ $) 13)) (-2838 (((-523) $) 79 (|has| (-142) (-592 (-523))))) (-3846 (($ (-619 (-142))) 70)) (-1945 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3838 (($ (-142)) 111) (((-832) $) 18 (|has| (-142) (-591 (-832))))) (-2693 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) 84 (|has| (-142) (-821)))) (-2418 (((-112) $ $) 83 (|has| (-142) (-821)))) (-2381 (((-112) $ $) 20 (|has| (-142) (-1063)))) (-2430 (((-112) $ $) 85 (|has| (-142) (-821)))) (-2405 (((-112) $ $) 82 (|has| (-142) (-821)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-1105) (-138)) (T -1105))
-((-3093 (*1 *1 *1) (-4 *1 (-1105))) (-1574 (*1 *1 *1) (-4 *1 (-1105))) (-4306 (*1 *1 *1) (-4 *1 (-1105))) (-1449 (*1 *1 *1) (-4 *1 (-1105))) (-2341 (*1 *2 *1 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-112)))) (-2313 (*1 *2 *1 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-112)))) (-2287 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (-547)) (-5 *2 (-112)))) (-2468 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (-142)) (-5 *2 (-745)))) (-2305 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (-142)) (-5 *2 (-112)))) (-4118 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1186 (-547))))) (-2876 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-547)))) (-2876 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-547)) (-5 *3 (-139)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1105)))) (-4194 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-619 *1)) (-4 *1 (-1105)))) (-4194 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-619 *1)) (-4 *1 (-1105)))) (-3630 (*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-142)))) (-3630 (*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-139)))) (-3595 (*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-142)))) (-3595 (*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-139)))) (-3580 (*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-142)))) (-3580 (*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-139)))) (-3334 (*1 *1 *1 *1) (-4 *1 (-1105))))
-(-13 (-19 (-142)) (-10 -8 (-15 -3093 ($ $)) (-15 -1574 ($ $)) (-15 -4306 ($ $)) (-15 -1449 ($ $)) (-15 -2341 ((-112) $ $)) (-15 -2313 ((-112) $ $)) (-15 -2287 ((-112) $ $ (-547))) (-15 -2468 ((-745) $ $ (-142))) (-15 -2305 ((-112) $ $ (-142))) (-15 -4118 ($ $ (-1186 (-547)) $)) (-15 -2876 ((-547) $ $ (-547))) (-15 -2876 ((-547) (-139) $ (-547))) (-15 -3838 ($ (-142))) (-15 -4194 ((-619 $) $ (-142))) (-15 -4194 ((-619 $) $ (-139))) (-15 -3630 ($ $ (-142))) (-15 -3630 ($ $ (-139))) (-15 -3595 ($ $ (-142))) (-15 -3595 ($ $ (-139))) (-15 -3580 ($ $ (-142))) (-15 -3580 ($ $ (-139))) (-15 -3334 ($ $ $))))
-(((-34) . T) ((-101) -1530 (|has| (-142) (-1063)) (|has| (-142) (-821))) ((-591 (-832)) -1530 (|has| (-142) (-1063)) (|has| (-142) (-821)) (|has| (-142) (-591 (-832)))) ((-149 #0=(-142)) . T) ((-592 (-523)) |has| (-142) (-592 (-523))) ((-277 #1=(-547) #0#) . T) ((-279 #1# #0#) . T) ((-300 #0#) -12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))) ((-364 #0#) . T) ((-479 #0#) . T) ((-582 #1# #0#) . T) ((-503 #0# #0#) -12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))) ((-625 #0#) . T) ((-19 #0#) . T) ((-821) |has| (-142) (-821)) ((-1063) -1530 (|has| (-142) (-1063)) (|has| (-142) (-821))) ((-1173) . T))
-((-2382 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) (-745)) 94)) (-4189 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745)) 54)) (-3754 (((-1224) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-745)) 85)) (-1521 (((-745) (-619 |#4|) (-619 |#5|)) 27)) (-4163 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745)) 56) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745) (-112)) 58)) (-2773 (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112)) 77)) (-2838 (((-1119) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) 80)) (-3766 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|) 53)) (-3610 (((-745) (-619 |#4|) (-619 |#5|)) 19)))
-(((-1106 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3610 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -1521 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3766 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -4189 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745))) (-15 -4189 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -4163 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -4163 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745))) (-15 -4163 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2773 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -2773 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2382 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) (-745))) (-15 -2838 ((-1119) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)))) (-15 -3754 ((-1224) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-745)))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -1106))
-((-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1974 *9)))) (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1224)) (-5 *1 (-1106 *5 *6 *7 *8 *9)))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1974 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1119)) (-5 *1 (-1106 *4 *5 *6 *7 *8)))) (-2382 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-619 *11)) (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1974 *11)))))) (-5 *6 (-745)) (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1974 *11)))) (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) (-4 *11 (-1072 *7 *8 *9 *10)) (-4 *7 (-442)) (-4 *8 (-767)) (-4 *9 (-821)) (-5 *1 (-1106 *7 *8 *9 *10 *11)))) (-2773 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1106 *5 *6 *7 *8 *9)))) (-2773 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1106 *5 *6 *7 *8 *9)))) (-4163 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))))) (-5 *1 (-1106 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-4163 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))))) (-5 *1 (-1106 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-4163 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-442)) (-4 *8 (-767)) (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))))) (-5 *1 (-1106 *7 *8 *9 *3 *4)) (-4 *4 (-1072 *7 *8 *9 *3)))) (-4189 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))))) (-5 *1 (-1106 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-4189 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))))) (-5 *1 (-1106 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-3766 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4)))))) (-5 *1 (-1106 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-1521 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1106 *5 *6 *7 *8 *9)))) (-3610 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1106 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3610 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -1521 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3766 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -4189 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745))) (-15 -4189 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -4163 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -4163 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5| (-745))) (-15 -4163 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) |#4| |#5|)) (-15 -2773 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -2773 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2382 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))))) (-745))) (-15 -2838 ((-1119) (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|)))) (-15 -3754 ((-1224) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1974 |#5|))) (-745))))
-((-3826 (((-112) $ $) NIL)) (-1320 (((-619 (-2 (|:| -2674 $) (|:| -1352 (-619 |#4|)))) (-619 |#4|)) NIL)) (-2128 (((-619 $) (-619 |#4|)) 110) (((-619 $) (-619 |#4|) (-112)) 111) (((-619 $) (-619 |#4|) (-112) (-112)) 109) (((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112)) 112)) (-2267 (((-619 |#3|) $) NIL)) (-1474 (((-112) $) NIL)) (-1843 (((-112) $) NIL (|has| |#1| (-539)))) (-4151 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2081 ((|#4| |#4| $) NIL)) (-2555 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| $) 84)) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |#3|) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1482 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329))) (((-3 |#4| "failed") $ |#3|) 62)) (-1948 (($) NIL T CONST)) (-1651 (((-112) $) 26 (|has| |#1| (-539)))) (-4230 (((-112) $ $) NIL (|has| |#1| (-539)))) (-2360 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1840 (((-112) $) NIL (|has| |#1| (-539)))) (-3805 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4017 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-1900 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-2707 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2652 (($ (-619 |#4|)) NIL)) (-3649 (((-3 $ "failed") $) 39)) (-2584 ((|#4| |#4| $) 65)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-3803 (($ |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2916 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-539)))) (-2173 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2442 ((|#4| |#4| $) NIL)) (-2552 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4329))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4329))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2951 (((-2 (|:| -2674 (-619 |#4|)) (|:| -1352 (-619 |#4|))) $) NIL)) (-1611 (((-112) |#4| $) NIL)) (-3465 (((-112) |#4| $) NIL)) (-1837 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1337 (((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112)) 124)) (-2982 (((-619 |#4|) $) 16 (|has| $ (-6 -4329)))) (-1779 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#3| $) 33)) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#4|) $) 17 (|has| $ (-6 -4329)))) (-2132 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-1859 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#4| |#4|) $) 21)) (-4138 (((-619 |#3|) $) NIL)) (-3758 (((-112) |#3| $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-3150 (((-3 |#4| (-619 $)) |#4| |#4| $) NIL)) (-1717 (((-619 (-2 (|:| |val| |#4|) (|:| -1974 $))) |#4| |#4| $) 103)) (-3820 (((-3 |#4| "failed") $) 37)) (-2756 (((-619 $) |#4| $) 88)) (-2867 (((-3 (-112) (-619 $)) |#4| $) NIL)) (-2237 (((-619 (-2 (|:| |val| (-112)) (|:| -1974 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3594 (((-619 $) |#4| $) 107) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 108) (((-619 $) |#4| (-619 $)) NIL)) (-1976 (((-619 $) (-619 |#4|) (-112) (-112) (-112)) 119)) (-1428 (($ |#4| $) 75) (($ (-619 |#4|) $) 76) (((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-2498 (((-619 |#4|) $) NIL)) (-3112 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3065 ((|#4| |#4| $) NIL)) (-1458 (((-112) $ $) NIL)) (-1770 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2012 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1772 ((|#4| |#4| $) NIL)) (-3979 (((-1082) $) NIL)) (-3638 (((-3 |#4| "failed") $) 35)) (-3650 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1362 (((-3 $ "failed") $ |#4|) 48)) (-3708 (($ $ |#4|) NIL) (((-619 $) |#4| $) 90) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 86)) (-1598 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 15)) (-2245 (($) 13)) (-3705 (((-745) $) NIL)) (-3992 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) 12)) (-2838 (((-523) $) NIL (|has| |#4| (-592 (-523))))) (-3846 (($ (-619 |#4|)) 20)) (-3461 (($ $ |#3|) 42)) (-3007 (($ $ |#3|) 44)) (-2553 (($ $) NIL)) (-3619 (($ $ |#3|) NIL)) (-3838 (((-832) $) 31) (((-619 |#4|) $) 40)) (-2815 (((-745) $) NIL (|has| |#3| (-359)))) (-2672 (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2636 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-1283 (((-619 $) |#4| $) 54) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) NIL)) (-2693 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-3463 (((-619 |#3|) $) NIL)) (-1669 (((-112) |#4| $) NIL)) (-2593 (((-112) |#3| $) 61)) (-2381 (((-112) $ $) NIL)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1107 |#1| |#2| |#3| |#4|) (-13 (-1072 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1428 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2128 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -2128 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -1976 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -1337 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -1107))
-((-1428 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1107 *5 *6 *7 *3))) (-5 *1 (-1107 *5 *6 *7 *3)) (-4 *3 (-1030 *5 *6 *7)))) (-2128 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1107 *5 *6 *7 *8))) (-5 *1 (-1107 *5 *6 *7 *8)))) (-2128 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1107 *5 *6 *7 *8))) (-5 *1 (-1107 *5 *6 *7 *8)))) (-1976 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1107 *5 *6 *7 *8))) (-5 *1 (-1107 *5 *6 *7 *8)))) (-1337 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-619 *8)) (|:| |towers| (-619 (-1107 *5 *6 *7 *8))))) (-5 *1 (-1107 *5 *6 *7 *8)) (-5 *3 (-619 *8)))))
-(-13 (-1072 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1428 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2128 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -2128 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -1976 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -1337 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112)))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2312 ((|#1| $) 34)) (-3804 (($ (-619 |#1|)) 39)) (-3899 (((-112) $ (-745)) NIL)) (-1948 (($) NIL T CONST)) (-3329 ((|#1| |#1| $) 36)) (-1742 ((|#1| $) 32)) (-2982 (((-619 |#1|) $) 18 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1859 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 22)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-4266 ((|#1| $) 35)) (-2657 (($ |#1| $) 37)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2056 ((|#1| $) 33)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 31)) (-2245 (($) 38)) (-1314 (((-745) $) 29)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) 27)) (-3838 (((-832) $) 14 (|has| |#1| (-591 (-832))))) (-2300 (($ (-619 |#1|)) NIL)) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 17 (|has| |#1| (-1063)))) (-3767 (((-745) $) 30 (|has| $ (-6 -4329)))))
-(((-1108 |#1|) (-13 (-1083 |#1|) (-10 -8 (-15 -3804 ($ (-619 |#1|))))) (-1173)) (T -1108))
-((-3804 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-1108 *3)))))
-(-13 (-1083 |#1|) (-10 -8 (-15 -3804 ($ (-619 |#1|)))))
-((-2247 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1186 (-547)) |#2|) 44) ((|#2| $ (-547) |#2|) 41)) (-2963 (((-112) $) 12)) (-1859 (($ (-1 |#2| |#2|) $) 39)) (-3638 ((|#2| $) NIL) (($ $ (-745)) 17)) (-3632 (($ $ |#2|) 40)) (-1884 (((-112) $) 11)) (-3334 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1186 (-547))) 31) ((|#2| $ (-547)) 23) ((|#2| $ (-547) |#2|) NIL)) (-3794 (($ $ $) 47) (($ $ |#2|) NIL)) (-1945 (($ $ $) 33) (($ |#2| $) NIL) (($ (-619 $)) 36) (($ $ |#2|) NIL)))
-(((-1109 |#1| |#2|) (-10 -8 (-15 -2963 ((-112) |#1|)) (-15 -1884 ((-112) |#1|)) (-15 -2247 (|#2| |#1| (-547) |#2|)) (-15 -3334 (|#2| |#1| (-547) |#2|)) (-15 -3334 (|#2| |#1| (-547))) (-15 -3632 (|#1| |#1| |#2|)) (-15 -1945 (|#1| |#1| |#2|)) (-15 -1945 (|#1| (-619 |#1|))) (-15 -3334 (|#1| |#1| (-1186 (-547)))) (-15 -2247 (|#2| |#1| (-1186 (-547)) |#2|)) (-15 -2247 (|#2| |#1| "last" |#2|)) (-15 -2247 (|#1| |#1| "rest" |#1|)) (-15 -2247 (|#2| |#1| "first" |#2|)) (-15 -3794 (|#1| |#1| |#2|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3334 (|#2| |#1| "last")) (-15 -3334 (|#1| |#1| "rest")) (-15 -3638 (|#1| |#1| (-745))) (-15 -3334 (|#2| |#1| "first")) (-15 -3638 (|#2| |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -1945 (|#1| |#1| |#1|)) (-15 -2247 (|#2| |#1| "value" |#2|)) (-15 -3334 (|#2| |#1| "value")) (-15 -1859 (|#1| (-1 |#2| |#2|) |#1|))) (-1110 |#2|) (-1173)) (T -1109))
-NIL
-(-10 -8 (-15 -2963 ((-112) |#1|)) (-15 -1884 ((-112) |#1|)) (-15 -2247 (|#2| |#1| (-547) |#2|)) (-15 -3334 (|#2| |#1| (-547) |#2|)) (-15 -3334 (|#2| |#1| (-547))) (-15 -3632 (|#1| |#1| |#2|)) (-15 -1945 (|#1| |#1| |#2|)) (-15 -1945 (|#1| (-619 |#1|))) (-15 -3334 (|#1| |#1| (-1186 (-547)))) (-15 -2247 (|#2| |#1| (-1186 (-547)) |#2|)) (-15 -2247 (|#2| |#1| "last" |#2|)) (-15 -2247 (|#1| |#1| "rest" |#1|)) (-15 -2247 (|#2| |#1| "first" |#2|)) (-15 -3794 (|#1| |#1| |#2|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3334 (|#2| |#1| "last")) (-15 -3334 (|#1| |#1| "rest")) (-15 -3638 (|#1| |#1| (-745))) (-15 -3334 (|#2| |#1| "first")) (-15 -3638 (|#2| |#1|)) (-15 -1945 (|#1| |#2| |#1|)) (-15 -1945 (|#1| |#1| |#1|)) (-15 -2247 (|#2| |#1| "value" |#2|)) (-15 -3334 (|#2| |#1| "value")) (-15 -1859 (|#1| (-1 |#2| |#2|) |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4153 ((|#1| $) 48)) (-2832 ((|#1| $) 65)) (-1336 (($ $) 67)) (-1652 (((-1224) $ (-547) (-547)) 97 (|has| $ (-6 -4330)))) (-2165 (($ $ (-547)) 52 (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) 8)) (-1986 ((|#1| $ |#1|) 39 (|has| $ (-6 -4330)))) (-2272 (($ $ $) 56 (|has| $ (-6 -4330)))) (-3200 ((|#1| $ |#1|) 54 (|has| $ (-6 -4330)))) (-4086 ((|#1| $ |#1|) 58 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4330))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4330))) (($ $ "rest" $) 55 (|has| $ (-6 -4330))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) 117 (|has| $ (-6 -4330))) ((|#1| $ (-547) |#1|) 86 (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) 41 (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4329)))) (-2823 ((|#1| $) 66)) (-1948 (($) 7 T CONST)) (-3649 (($ $) 73) (($ $ (-745)) 71)) (-3668 (($ $) 99 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4329))) (($ |#1| $) 100 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1872 ((|#1| $ (-547) |#1|) 85 (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) 87)) (-2963 (((-112) $) 83)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) 50)) (-2554 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3735 (($ (-745) |#1|) 108)) (-2763 (((-112) $ (-745)) 9)) (-2434 (((-547) $) 95 (|has| (-547) (-821)))) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 94 (|has| (-547) (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3806 (((-112) $ (-745)) 10)) (-3583 (((-619 |#1|) $) 45)) (-1489 (((-112) $) 49)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-3820 ((|#1| $) 70) (($ $ (-745)) 68)) (-2606 (($ $ $ (-547)) 116) (($ |#1| $ (-547)) 115)) (-2121 (((-619 (-547)) $) 92)) (-2018 (((-112) (-547) $) 91)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3638 ((|#1| $) 76) (($ $ (-745)) 74)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3632 (($ $ |#1|) 96 (|has| $ (-6 -4330)))) (-1884 (((-112) $) 84)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) 90)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1186 (-547))) 112) ((|#1| $ (-547)) 89) ((|#1| $ (-547) |#1|) 88)) (-2857 (((-547) $ $) 44)) (-2159 (($ $ (-1186 (-547))) 114) (($ $ (-547)) 113)) (-1850 (((-112) $) 46)) (-2005 (($ $) 62)) (-2632 (($ $) 59 (|has| $ (-6 -4330)))) (-1749 (((-745) $) 63)) (-2016 (($ $) 64)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-2838 (((-523) $) 98 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 107)) (-3794 (($ $ $) 61 (|has| $ (-6 -4330))) (($ $ |#1|) 60 (|has| $ (-6 -4330)))) (-1945 (($ $ $) 78) (($ |#1| $) 77) (($ (-619 $)) 110) (($ $ |#1|) 109)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) 51)) (-1421 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-1110 |#1|) (-138) (-1173)) (T -1110))
-((-1884 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1173)) (-5 *2 (-112)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1173)) (-5 *2 (-112)))))
-(-13 (-1207 |t#1|) (-625 |t#1|) (-10 -8 (-15 -1884 ((-112) $)) (-15 -2963 ((-112) $))))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1173) . T) ((-1207 |#1|) . T))
-((-3826 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3726 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-1652 (((-1224) $ |#1| |#1|) NIL (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#2| $ |#1| |#2|) NIL)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-3482 (((-3 |#2| "failed") |#1| $) NIL)) (-1948 (($) NIL T CONST)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-1513 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-3 |#2| "failed") |#1| $) NIL)) (-3803 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#2| $ |#1|) NIL)) (-2982 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 ((|#1| $) NIL (|has| |#1| (-821)))) (-2284 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-1416 ((|#1| $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4330))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3441 (((-619 |#1|) $) NIL)) (-4073 (((-112) |#1| $) NIL)) (-4266 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2657 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2121 (((-619 |#1|) $) NIL)) (-2018 (((-112) |#1| $) NIL)) (-3979 (((-1082) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3638 ((|#2| $) NIL (|has| |#1| (-821)))) (-3650 (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL)) (-3632 (($ $ |#2|) NIL (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2987 (((-619 |#2|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2699 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3838 (((-832) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2300 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1111 |#1| |#2| |#3|) (-1149 |#1| |#2|) (-1063) (-1063) |#2|) (T -1111))
-NIL
-(-1149 |#1| |#2|)
-((-3826 (((-112) $ $) 7)) (-3477 (((-3 $ "failed") $) 13)) (-1466 (((-1119) $) 9)) (-3054 (($) 14 T CONST)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11)) (-2381 (((-112) $ $) 6)))
-(((-1112) (-138)) (T -1112))
-((-3054 (*1 *1) (-4 *1 (-1112))) (-3477 (*1 *1 *1) (|partial| -4 *1 (-1112))))
-(-13 (-1063) (-10 -8 (-15 -3054 ($) -2582) (-15 -3477 ((-3 $ "failed") $))))
-(((-101) . T) ((-591 (-832)) . T) ((-1063) . T))
-((-2735 (((-1117 |#1|) (-1117 |#1|)) 17)) (-2789 (((-1117 |#1|) (-1117 |#1|)) 13)) (-3824 (((-1117 |#1|) (-1117 |#1|) (-547) (-547)) 20)) (-2419 (((-1117 |#1|) (-1117 |#1|)) 15)))
-(((-1113 |#1|) (-10 -7 (-15 -2789 ((-1117 |#1|) (-1117 |#1|))) (-15 -2419 ((-1117 |#1|) (-1117 |#1|))) (-15 -2735 ((-1117 |#1|) (-1117 |#1|))) (-15 -3824 ((-1117 |#1|) (-1117 |#1|) (-547) (-547)))) (-13 (-539) (-145))) (T -1113))
-((-3824 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1117 *4)) (-5 *3 (-547)) (-4 *4 (-13 (-539) (-145))) (-5 *1 (-1113 *4)))) (-2735 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-13 (-539) (-145))) (-5 *1 (-1113 *3)))) (-2419 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-13 (-539) (-145))) (-5 *1 (-1113 *3)))) (-2789 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-13 (-539) (-145))) (-5 *1 (-1113 *3)))))
-(-10 -7 (-15 -2789 ((-1117 |#1|) (-1117 |#1|))) (-15 -2419 ((-1117 |#1|) (-1117 |#1|))) (-15 -2735 ((-1117 |#1|) (-1117 |#1|))) (-15 -3824 ((-1117 |#1|) (-1117 |#1|) (-547) (-547))))
-((-1945 (((-1117 |#1|) (-1117 (-1117 |#1|))) 15)))
-(((-1114 |#1|) (-10 -7 (-15 -1945 ((-1117 |#1|) (-1117 (-1117 |#1|))))) (-1173)) (T -1114))
-((-1945 (*1 *2 *3) (-12 (-5 *3 (-1117 (-1117 *4))) (-5 *2 (-1117 *4)) (-5 *1 (-1114 *4)) (-4 *4 (-1173)))))
-(-10 -7 (-15 -1945 ((-1117 |#1|) (-1117 (-1117 |#1|)))))
-((-2816 (((-1117 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1117 |#1|)) 25)) (-2552 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1117 |#1|)) 26)) (-2790 (((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)) 16)))
-(((-1115 |#1| |#2|) (-10 -7 (-15 -2790 ((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|))) (-15 -2816 ((-1117 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1117 |#1|))) (-15 -2552 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1117 |#1|)))) (-1173) (-1173)) (T -1115))
-((-2552 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1117 *5)) (-4 *5 (-1173)) (-4 *2 (-1173)) (-5 *1 (-1115 *5 *2)))) (-2816 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1117 *6)) (-4 *6 (-1173)) (-4 *3 (-1173)) (-5 *2 (-1117 *3)) (-5 *1 (-1115 *6 *3)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1117 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-1117 *6)) (-5 *1 (-1115 *5 *6)))))
-(-10 -7 (-15 -2790 ((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|))) (-15 -2816 ((-1117 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1117 |#1|))) (-15 -2552 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1117 |#1|))))
-((-2790 (((-1117 |#3|) (-1 |#3| |#1| |#2|) (-1117 |#1|) (-1117 |#2|)) 21)))
-(((-1116 |#1| |#2| |#3|) (-10 -7 (-15 -2790 ((-1117 |#3|) (-1 |#3| |#1| |#2|) (-1117 |#1|) (-1117 |#2|)))) (-1173) (-1173) (-1173)) (T -1116))
-((-2790 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1117 *6)) (-5 *5 (-1117 *7)) (-4 *6 (-1173)) (-4 *7 (-1173)) (-4 *8 (-1173)) (-5 *2 (-1117 *8)) (-5 *1 (-1116 *6 *7 *8)))))
-(-10 -7 (-15 -2790 ((-1117 |#3|) (-1 |#3| |#1| |#2|) (-1117 |#1|) (-1117 |#2|))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4153 ((|#1| $) NIL)) (-2832 ((|#1| $) NIL)) (-1336 (($ $) 52)) (-1652 (((-1224) $ (-547) (-547)) 77 (|has| $ (-6 -4330)))) (-2165 (($ $ (-547)) 111 (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) NIL)) (-2964 (((-832) $) 41 (|has| |#1| (-1063)))) (-2883 (((-112)) 40 (|has| |#1| (-1063)))) (-1986 ((|#1| $ |#1|) NIL (|has| $ (-6 -4330)))) (-2272 (($ $ $) 99 (|has| $ (-6 -4330))) (($ $ (-547) $) 123)) (-3200 ((|#1| $ |#1|) 108 (|has| $ (-6 -4330)))) (-4086 ((|#1| $ |#1|) 103 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4330))) (($ $ "rest" $) 107 (|has| $ (-6 -4330))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) 90 (|has| $ (-6 -4330))) ((|#1| $ (-547) |#1|) 56 (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) NIL (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) 59)) (-2823 ((|#1| $) NIL)) (-1948 (($) NIL T CONST)) (-1727 (($ $) 14)) (-3649 (($ $) 29) (($ $ (-745)) 89)) (-1827 (((-112) (-619 |#1|) $) 117 (|has| |#1| (-1063)))) (-2033 (($ (-619 |#1|)) 113)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3803 (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) 58)) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1872 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) NIL)) (-2963 (((-112) $) NIL)) (-2982 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2069 (((-1224) (-547) $) 122 (|has| |#1| (-1063)))) (-2952 (((-745) $) 119)) (-3203 (((-619 $) $) NIL)) (-2554 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3735 (($ (-745) |#1|) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-3806 (((-112) $ (-745)) NIL)) (-3583 (((-619 |#1|) $) NIL)) (-1489 (((-112) $) NIL)) (-1675 (($ $) 91)) (-3984 (((-112) $) 13)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3820 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2606 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) 75)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1405 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-2507 ((|#1| $) 10)) (-3638 ((|#1| $) 28) (($ $ (-745)) 50)) (-2700 (((-2 (|:| |cycle?| (-112)) (|:| -1881 (-745)) (|:| |period| (-745))) (-745) $) 25)) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1453 (($ (-1 (-112) |#1|) $) 127)) (-1467 (($ (-1 (-112) |#1|) $) 128)) (-3632 (($ $ |#1|) 69 (|has| $ (-6 -4330)))) (-3708 (($ $ (-547)) 32)) (-1884 (((-112) $) 73)) (-3360 (((-112) $) 12)) (-3828 (((-112) $) 118)) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 20)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) 15)) (-2245 (($) 45)) (-3334 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1186 (-547))) NIL) ((|#1| $ (-547)) 55) ((|#1| $ (-547) |#1|) NIL)) (-2857 (((-547) $ $) 49)) (-2159 (($ $ (-1186 (-547))) NIL) (($ $ (-547)) NIL)) (-2802 (($ (-1 $)) 48)) (-1850 (((-112) $) 70)) (-2005 (($ $) 71)) (-2632 (($ $) 100 (|has| $ (-6 -4330)))) (-1749 (((-745) $) NIL)) (-2016 (($ $) NIL)) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) 44)) (-2838 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 54)) (-3166 (($ |#1| $) 98)) (-3794 (($ $ $) 101 (|has| $ (-6 -4330))) (($ $ |#1|) 102 (|has| $ (-6 -4330)))) (-1945 (($ $ $) 79) (($ |#1| $) 46) (($ (-619 $)) 84) (($ $ |#1|) 78)) (-2804 (($ $) 51)) (-3838 (($ (-619 |#1|)) 112) (((-832) $) 42 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) NIL)) (-1421 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 115 (|has| |#1| (-1063)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1117 |#1|) (-13 (-648 |#1|) (-10 -8 (-6 -4330) (-15 -3838 ($ (-619 |#1|))) (-15 -2033 ($ (-619 |#1|))) (IF (|has| |#1| (-1063)) (-15 -1827 ((-112) (-619 |#1|) $)) |%noBranch|) (-15 -2700 ((-2 (|:| |cycle?| (-112)) (|:| -1881 (-745)) (|:| |period| (-745))) (-745) $)) (-15 -2802 ($ (-1 $))) (-15 -3166 ($ |#1| $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -2069 ((-1224) (-547) $)) (-15 -2964 ((-832) $)) (-15 -2883 ((-112)))) |%noBranch|) (-15 -2272 ($ $ (-547) $)) (-15 -1405 ($ (-1 |#1|))) (-15 -1405 ($ (-1 |#1| |#1|) |#1|)) (-15 -1453 ($ (-1 (-112) |#1|) $)) (-15 -1467 ($ (-1 (-112) |#1|) $)))) (-1173)) (T -1117))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-1117 *3)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-1117 *3)))) (-1827 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-4 *4 (-1173)) (-5 *2 (-112)) (-5 *1 (-1117 *4)))) (-2700 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1881 (-745)) (|:| |period| (-745)))) (-5 *1 (-1117 *4)) (-4 *4 (-1173)) (-5 *3 (-745)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-1 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1173)))) (-3166 (*1 *1 *2 *1) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1173)))) (-2069 (*1 *2 *3 *1) (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-1117 *4)) (-4 *4 (-1063)) (-4 *4 (-1173)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1117 *3)) (-4 *3 (-1063)) (-4 *3 (-1173)))) (-2883 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1117 *3)) (-4 *3 (-1063)) (-4 *3 (-1173)))) (-2272 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1117 *3)) (-4 *3 (-1173)))) (-1405 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1173)) (-5 *1 (-1117 *3)))) (-1405 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1173)) (-5 *1 (-1117 *3)))) (-1453 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1173)) (-5 *1 (-1117 *3)))) (-1467 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1173)) (-5 *1 (-1117 *3)))))
-(-13 (-648 |#1|) (-10 -8 (-6 -4330) (-15 -3838 ($ (-619 |#1|))) (-15 -2033 ($ (-619 |#1|))) (IF (|has| |#1| (-1063)) (-15 -1827 ((-112) (-619 |#1|) $)) |%noBranch|) (-15 -2700 ((-2 (|:| |cycle?| (-112)) (|:| -1881 (-745)) (|:| |period| (-745))) (-745) $)) (-15 -2802 ($ (-1 $))) (-15 -3166 ($ |#1| $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -2069 ((-1224) (-547) $)) (-15 -2964 ((-832) $)) (-15 -2883 ((-112)))) |%noBranch|) (-15 -2272 ($ $ (-547) $)) (-15 -1405 ($ (-1 |#1|))) (-15 -1405 ($ (-1 |#1| |#1|) |#1|)) (-15 -1453 ($ (-1 (-112) |#1|) $)) (-15 -1467 ($ (-1 (-112) |#1|) $))))
-((-3826 (((-112) $ $) 19)) (-1449 (($ $) 120)) (-4306 (($ $) 121)) (-3630 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-1652 (((-1224) $ (-547) (-547)) 40 (|has| $ (-6 -4330)))) (-2313 (((-112) $ $) 118)) (-2287 (((-112) $ $ (-547)) 117)) (-1517 (($ (-547)) 127)) (-4194 (((-619 $) $ (-142)) 110) (((-619 $) $ (-139)) 109)) (-2436 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-821)))) (-2809 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4330))) (($ $) 88 (-12 (|has| (-142) (-821)) (|has| $ (-6 -4330))))) (-3185 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-821)))) (-3899 (((-112) $ (-745)) 8)) (-2247 (((-142) $ (-547) (-142)) 52 (|has| $ (-6 -4330))) (((-142) $ (-1186 (-547)) (-142)) 58 (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-3580 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-3044 (($ $) 90 (|has| $ (-6 -4330)))) (-3057 (($ $) 100)) (-4118 (($ $ (-1186 (-547)) $) 114)) (-3668 (($ $) 78 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ (-142) $) 77 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4329)))) (-2552 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4329)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4329))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4329)))) (-1872 (((-142) $ (-547) (-142)) 53 (|has| $ (-6 -4330)))) (-1802 (((-142) $ (-547)) 51)) (-2341 (((-112) $ $) 119)) (-2876 (((-547) (-1 (-112) (-142)) $) 97) (((-547) (-142) $) 96 (|has| (-142) (-1063))) (((-547) (-142) $ (-547)) 95 (|has| (-142) (-1063))) (((-547) $ $ (-547)) 113) (((-547) (-139) $ (-547)) 112)) (-2982 (((-619 (-142)) $) 30 (|has| $ (-6 -4329)))) (-3735 (($ (-745) (-142)) 69)) (-2763 (((-112) $ (-745)) 9)) (-2434 (((-547) $) 43 (|has| (-547) (-821)))) (-2856 (($ $ $) 87 (|has| (-142) (-821)))) (-2777 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-821)))) (-2284 (((-619 (-142)) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 44 (|has| (-547) (-821)))) (-3567 (($ $ $) 86 (|has| (-142) (-821)))) (-2305 (((-112) $ $ (-142)) 115)) (-2468 (((-745) $ $ (-142)) 116)) (-1859 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-1574 (($ $) 122)) (-3093 (($ $) 123)) (-3806 (((-112) $ (-745)) 10)) (-3595 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-1466 (((-1119) $) 22)) (-2606 (($ (-142) $ (-547)) 60) (($ $ $ (-547)) 59)) (-2121 (((-619 (-547)) $) 46)) (-2018 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21)) (-3638 (((-142) $) 42 (|has| (-547) (-821)))) (-3650 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-3632 (($ $ (-142)) 41 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-142)))) 26 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-285 (-142))) 25 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) 23 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-2987 (((-619 (-142)) $) 48)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 (((-142) $ (-547) (-142)) 50) (((-142) $ (-547)) 49) (($ $ (-1186 (-547))) 63) (($ $ $) 102)) (-2159 (($ $ (-547)) 62) (($ $ (-1186 (-547))) 61)) (-3992 (((-745) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4329))) (((-745) (-142) $) 28 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4329))))) (-4282 (($ $ $ (-547)) 91 (|has| $ (-6 -4330)))) (-2274 (($ $) 13)) (-2838 (((-523) $) 79 (|has| (-142) (-592 (-523))))) (-3846 (($ (-619 (-142))) 70)) (-1945 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3838 (($ (-142)) 111) (((-832) $) 18)) (-2693 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4329)))) (-2273 (((-1119) $) 131) (((-1119) $ (-112)) 130) (((-1224) (-796) $) 129) (((-1224) (-796) $ (-112)) 128)) (-2441 (((-112) $ $) 84 (|has| (-142) (-821)))) (-2418 (((-112) $ $) 83 (|has| (-142) (-821)))) (-2381 (((-112) $ $) 20)) (-2430 (((-112) $ $) 85 (|has| (-142) (-821)))) (-2405 (((-112) $ $) 82 (|has| (-142) (-821)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
+(((-92) . T) ((-101) . T) ((-593 (-834)) . T) ((-593 (-1148)) . T) ((-1067) . T))
+((-2911 ((|#1| |#1| (-1 (-549) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-2633 (((-1231)) 15)) (-1284 (((-621 |#1|)) 9)))
+(((-1051 |#1|) (-10 -7 (-15 -2633 ((-1231))) (-15 -1284 ((-621 |#1|))) (-15 -2911 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2911 (|#1| |#1| (-1 (-549) |#1| |#1|)))) (-131)) (T -1051))
+((-2911 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-549) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1051 *2)))) (-2911 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1051 *2)))) (-1284 (*1 *2) (-12 (-5 *2 (-621 *3)) (-5 *1 (-1051 *3)) (-4 *3 (-131)))) (-2633 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1051 *3)) (-4 *3 (-131)))))
+(-10 -7 (-15 -2633 ((-1231))) (-15 -1284 ((-621 |#1|))) (-15 -2911 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2911 (|#1| |#1| (-1 (-549) |#1| |#1|))))
+((-1723 (($ (-108) $) 16)) (-1292 (((-3 (-108) "failed") (-1143) $) 15)) (-3742 (($) 7)) (-1957 (($) 17)) (-3548 (($) 18)) (-4064 (((-621 (-173)) $) 10)) (-3846 (((-834) $) 21)))
+(((-1052) (-13 (-593 (-834)) (-10 -8 (-15 -3742 ($)) (-15 -4064 ((-621 (-173)) $)) (-15 -1292 ((-3 (-108) "failed") (-1143) $)) (-15 -1723 ($ (-108) $)) (-15 -1957 ($)) (-15 -3548 ($))))) (T -1052))
+((-3742 (*1 *1) (-5 *1 (-1052))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-621 (-173))) (-5 *1 (-1052)))) (-1292 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1143)) (-5 *2 (-108)) (-5 *1 (-1052)))) (-1723 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1052)))) (-1957 (*1 *1) (-5 *1 (-1052))) (-3548 (*1 *1) (-5 *1 (-1052))))
+(-13 (-593 (-834)) (-10 -8 (-15 -3742 ($)) (-15 -4064 ((-621 (-173)) $)) (-15 -1292 ((-3 (-108) "failed") (-1143) $)) (-15 -1723 ($ (-108) $)) (-15 -1957 ($)) (-15 -3548 ($))))
+((-3277 (((-1226 (-665 |#1|)) (-621 (-665 |#1|))) 42) (((-1226 (-665 (-923 |#1|))) (-621 (-1143)) (-665 (-923 |#1|))) 63) (((-1226 (-665 (-400 (-923 |#1|)))) (-621 (-1143)) (-665 (-400 (-923 |#1|)))) 79)) (-4263 (((-1226 |#1|) (-665 |#1|) (-621 (-665 |#1|))) 36)))
+(((-1053 |#1|) (-10 -7 (-15 -3277 ((-1226 (-665 (-400 (-923 |#1|)))) (-621 (-1143)) (-665 (-400 (-923 |#1|))))) (-15 -3277 ((-1226 (-665 (-923 |#1|))) (-621 (-1143)) (-665 (-923 |#1|)))) (-15 -3277 ((-1226 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -4263 ((-1226 |#1|) (-665 |#1|) (-621 (-665 |#1|))))) (-356)) (T -1053))
+((-4263 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-665 *5))) (-5 *3 (-665 *5)) (-4 *5 (-356)) (-5 *2 (-1226 *5)) (-5 *1 (-1053 *5)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-621 (-665 *4))) (-4 *4 (-356)) (-5 *2 (-1226 (-665 *4))) (-5 *1 (-1053 *4)))) (-3277 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-1143))) (-4 *5 (-356)) (-5 *2 (-1226 (-665 (-923 *5)))) (-5 *1 (-1053 *5)) (-5 *4 (-665 (-923 *5))))) (-3277 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-1143))) (-4 *5 (-356)) (-5 *2 (-1226 (-665 (-400 (-923 *5))))) (-5 *1 (-1053 *5)) (-5 *4 (-665 (-400 (-923 *5)))))))
+(-10 -7 (-15 -3277 ((-1226 (-665 (-400 (-923 |#1|)))) (-621 (-1143)) (-665 (-400 (-923 |#1|))))) (-15 -3277 ((-1226 (-665 (-923 |#1|))) (-621 (-1143)) (-665 (-923 |#1|)))) (-15 -3277 ((-1226 (-665 |#1|)) (-621 (-665 |#1|)))) (-15 -4263 ((-1226 |#1|) (-665 |#1|) (-621 (-665 |#1|)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3977 (((-621 (-747)) $) NIL) (((-621 (-747)) $ (-1143)) NIL)) (-1637 (((-747) $) NIL) (((-747) $ (-1143)) NIL)) (-2272 (((-621 (-1055 (-1143))) $) NIL)) (-2084 (((-1139 $) $ (-1055 (-1143))) NIL) (((-1139 |#1|) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 (-1055 (-1143)))) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3979 (($ $) NIL (|has| |#1| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3920 (($ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-1055 (-1143)) "failed") $) NIL) (((-3 (-1143) "failed") $) NIL) (((-3 (-1092 |#1| (-1143)) "failed") $) NIL)) (-2659 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-1055 (-1143)) $) NIL) (((-1143) $) NIL) (((-1092 |#1| (-1143)) $) NIL)) (-1353 (($ $ $ (-1055 (-1143))) NIL (|has| |#1| (-170)))) (-2070 (($ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1055 (-1143))) NIL (|has| |#1| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-880)))) (-2691 (($ $ |#1| (-521 (-1055 (-1143))) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1055 (-1143)) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1055 (-1143)) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2088 (((-747) $ (-1143)) NIL) (((-747) $) NIL)) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-2261 (($ (-1139 |#1|) (-1055 (-1143))) NIL) (($ (-1139 $) (-1055 (-1143))) NIL)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-521 (-1055 (-1143)))) NIL) (($ $ (-1055 (-1143)) (-747)) NIL) (($ $ (-621 (-1055 (-1143))) (-621 (-747))) NIL)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ (-1055 (-1143))) NIL)) (-3611 (((-521 (-1055 (-1143))) $) NIL) (((-747) $ (-1055 (-1143))) NIL) (((-621 (-747)) $ (-621 (-1055 (-1143)))) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-3705 (($ (-1 (-521 (-1055 (-1143))) (-521 (-1055 (-1143)))) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3040 (((-1 $ (-747)) (-1143)) NIL) (((-1 $ (-747)) $) NIL (|has| |#1| (-227)))) (-1520 (((-3 (-1055 (-1143)) "failed") $) NIL)) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-4052 (((-1055 (-1143)) $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3851 (((-1125) $) NIL)) (-2709 (((-112) $) NIL)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| (-1055 (-1143))) (|:| -3731 (-747))) "failed") $) NIL)) (-2255 (($ $) NIL)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) NIL)) (-2016 ((|#1| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-880)))) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1055 (-1143)) |#1|) NIL) (($ $ (-621 (-1055 (-1143))) (-621 |#1|)) NIL) (($ $ (-1055 (-1143)) $) NIL) (($ $ (-621 (-1055 (-1143))) (-621 $)) NIL) (($ $ (-1143) $) NIL (|has| |#1| (-227))) (($ $ (-621 (-1143)) (-621 $)) NIL (|has| |#1| (-227))) (($ $ (-1143) |#1|) NIL (|has| |#1| (-227))) (($ $ (-621 (-1143)) (-621 |#1|)) NIL (|has| |#1| (-227)))) (-3602 (($ $ (-1055 (-1143))) NIL (|has| |#1| (-170)))) (-3456 (($ $ (-1055 (-1143))) NIL) (($ $ (-621 (-1055 (-1143)))) NIL) (($ $ (-1055 (-1143)) (-747)) NIL) (($ $ (-621 (-1055 (-1143))) (-621 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1920 (((-621 (-1143)) $) NIL)) (-3701 (((-521 (-1055 (-1143))) $) NIL) (((-747) $ (-1055 (-1143))) NIL) (((-621 (-747)) $ (-621 (-1055 (-1143)))) NIL) (((-747) $ (-1143)) NIL)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| (-1055 (-1143)) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-1055 (-1143)) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-1055 (-1143)) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-2216 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1055 (-1143))) NIL (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-1055 (-1143))) NIL) (($ (-1143)) NIL) (($ (-1092 |#1| (-1143))) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-521 (-1055 (-1143)))) NIL) (($ $ (-1055 (-1143)) (-747)) NIL) (($ $ (-621 (-1055 (-1143))) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-1055 (-1143))) NIL) (($ $ (-621 (-1055 (-1143)))) NIL) (($ $ (-1055 (-1143)) (-747)) NIL) (($ $ (-621 (-1055 (-1143))) (-621 (-747))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-747)) NIL (|has| |#1| (-227))) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1054 |#1|) (-13 (-246 |#1| (-1143) (-1055 (-1143)) (-521 (-1055 (-1143)))) (-1009 (-1092 |#1| (-1143)))) (-1018)) (T -1054))
+NIL
+(-13 (-246 |#1| (-1143) (-1055 (-1143)) (-521 (-1055 (-1143)))) (-1009 (-1092 |#1| (-1143))))
+((-3834 (((-112) $ $) NIL)) (-1637 (((-747) $) NIL)) (-3011 ((|#1| $) 10)) (-2714 (((-3 |#1| "failed") $) NIL)) (-2659 ((|#1| $) NIL)) (-2088 (((-747) $) 11)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3040 (($ |#1| (-747)) 9)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3456 (($ $) NIL) (($ $ (-747)) NIL)) (-3846 (((-834) $) NIL) (($ |#1|) NIL)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 15)))
+(((-1055 |#1|) (-259 |#1|) (-823)) (T -1055))
+NIL
+(-259 |#1|)
+((-2797 (((-621 |#2|) (-1 |#2| |#1|) (-1061 |#1|)) 24 (|has| |#1| (-821))) (((-1061 |#2|) (-1 |#2| |#1|) (-1061 |#1|)) 14)))
+(((-1056 |#1| |#2|) (-10 -7 (-15 -2797 ((-1061 |#2|) (-1 |#2| |#1|) (-1061 |#1|))) (IF (|has| |#1| (-821)) (-15 -2797 ((-621 |#2|) (-1 |#2| |#1|) (-1061 |#1|))) |%noBranch|)) (-1180) (-1180)) (T -1056))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1061 *5)) (-4 *5 (-821)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-621 *6)) (-5 *1 (-1056 *5 *6)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1061 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-1061 *6)) (-5 *1 (-1056 *5 *6)))))
+(-10 -7 (-15 -2797 ((-1061 |#2|) (-1 |#2| |#1|) (-1061 |#1|))) (IF (|has| |#1| (-821)) (-15 -2797 ((-621 |#2|) (-1 |#2| |#1|) (-1061 |#1|))) |%noBranch|))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-3280 (((-621 (-1148)) $) 9)) (-2389 (((-112) $ $) NIL)))
+(((-1057) (-13 (-1050) (-10 -8 (-15 -3280 ((-621 (-1148)) $))))) (T -1057))
+((-3280 (*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-1057)))))
+(-13 (-1050) (-10 -8 (-15 -3280 ((-621 (-1148)) $))))
+((-2797 (((-1059 |#2|) (-1 |#2| |#1|) (-1059 |#1|)) 19)))
+(((-1058 |#1| |#2|) (-10 -7 (-15 -2797 ((-1059 |#2|) (-1 |#2| |#1|) (-1059 |#1|)))) (-1180) (-1180)) (T -1058))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1059 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-1059 *6)) (-5 *1 (-1058 *5 *6)))))
+(-10 -7 (-15 -2797 ((-1059 |#2|) (-1 |#2| |#1|) (-1059 |#1|))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3011 (((-1143) $) 11)) (-3130 (((-1061 |#1|) $) 12)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-2391 (($ (-1143) (-1061 |#1|)) 10)) (-3846 (((-834) $) 20 (|has| |#1| (-1067)))) (-2389 (((-112) $ $) 15 (|has| |#1| (-1067)))))
+(((-1059 |#1|) (-13 (-1180) (-10 -8 (-15 -2391 ($ (-1143) (-1061 |#1|))) (-15 -3011 ((-1143) $)) (-15 -3130 ((-1061 |#1|) $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|))) (-1180)) (T -1059))
+((-2391 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1061 *4)) (-4 *4 (-1180)) (-5 *1 (-1059 *4)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1059 *3)) (-4 *3 (-1180)))) (-3130 (*1 *2 *1) (-12 (-5 *2 (-1061 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-1180)))))
+(-13 (-1180) (-10 -8 (-15 -2391 ($ (-1143) (-1061 |#1|))) (-15 -3011 ((-1143) $)) (-15 -3130 ((-1061 |#1|) $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|)))
+((-3130 (($ |#1| |#1|) 7)) (-1578 ((|#1| $) 10)) (-1267 ((|#1| $) 12)) (-1276 (((-549) $) 8)) (-1667 ((|#1| $) 9)) (-1289 ((|#1| $) 11)) (-2845 (($ |#1|) 6)) (-1854 (($ |#1| |#1|) 14)) (-2123 (($ $ (-549)) 13)))
+(((-1060 |#1|) (-138) (-1180)) (T -1060))
+((-1854 (*1 *1 *2 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180)))) (-2123 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1060 *3)) (-4 *3 (-1180)))) (-1267 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180)))) (-1289 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180)))) (-1667 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-1180)) (-5 *2 (-549)))) (-3130 (*1 *1 *2 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180)))) (-2845 (*1 *1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180)))))
+(-13 (-1180) (-10 -8 (-15 -1854 ($ |t#1| |t#1|)) (-15 -2123 ($ $ (-549))) (-15 -1267 (|t#1| $)) (-15 -1289 (|t#1| $)) (-15 -1578 (|t#1| $)) (-15 -1667 (|t#1| $)) (-15 -1276 ((-549) $)) (-15 -3130 ($ |t#1| |t#1|)) (-15 -2845 ($ |t#1|))))
+(((-1180) . T))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3130 (($ |#1| |#1|) 15)) (-2797 (((-621 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-821)))) (-1578 ((|#1| $) 10)) (-1267 ((|#1| $) 9)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-1276 (((-549) $) 14)) (-1667 ((|#1| $) 12)) (-1289 ((|#1| $) 11)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1449 (((-621 |#1|) $) 36 (|has| |#1| (-821))) (((-621 |#1|) (-621 $)) 35 (|has| |#1| (-821)))) (-2845 (($ |#1|) 26)) (-3846 (((-834) $) 25 (|has| |#1| (-1067)))) (-1854 (($ |#1| |#1|) 8)) (-2123 (($ $ (-549)) 16)) (-2389 (((-112) $ $) 19 (|has| |#1| (-1067)))))
+(((-1061 |#1|) (-13 (-1060 |#1|) (-10 -7 (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1062 |#1| (-621 |#1|))) |%noBranch|))) (-1180)) (T -1061))
+NIL
+(-13 (-1060 |#1|) (-10 -7 (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1062 |#1| (-621 |#1|))) |%noBranch|)))
+((-3130 (($ |#1| |#1|) 7)) (-2797 ((|#2| (-1 |#1| |#1|) $) 16)) (-1578 ((|#1| $) 10)) (-1267 ((|#1| $) 12)) (-1276 (((-549) $) 8)) (-1667 ((|#1| $) 9)) (-1289 ((|#1| $) 11)) (-1449 ((|#2| (-621 $)) 18) ((|#2| $) 17)) (-2845 (($ |#1|) 6)) (-1854 (($ |#1| |#1|) 14)) (-2123 (($ $ (-549)) 13)))
+(((-1062 |#1| |#2|) (-138) (-821) (-1116 |t#1|)) (T -1062))
+((-1449 (*1 *2 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-1062 *4 *2)) (-4 *4 (-821)) (-4 *2 (-1116 *4)))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1116 *3)))) (-2797 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1062 *4 *2)) (-4 *4 (-821)) (-4 *2 (-1116 *4)))))
+(-13 (-1060 |t#1|) (-10 -8 (-15 -1449 (|t#2| (-621 $))) (-15 -1449 (|t#2| $)) (-15 -2797 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-1060 |#1|) . T) ((-1180) . T))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3829 (((-1148) $) 12)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2492 (((-621 (-1148)) $) 10)) (-2389 (((-112) $ $) NIL)))
+(((-1063) (-13 (-1050) (-10 -8 (-15 -2492 ((-621 (-1148)) $)) (-15 -3829 ((-1148) $))))) (T -1063))
+((-2492 (*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-1063)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1063)))))
+(-13 (-1050) (-10 -8 (-15 -2492 ((-621 (-1148)) $)) (-15 -3829 ((-1148) $))))
+((-1442 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2440 (($ $ $) 10)) (-1334 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1064 |#1| |#2|) (-10 -8 (-15 -1442 (|#1| |#2| |#1|)) (-15 -1442 (|#1| |#1| |#2|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -2440 (|#1| |#1| |#1|)) (-15 -1334 (|#1| |#1| |#2|)) (-15 -1334 (|#1| |#1| |#1|))) (-1065 |#2|) (-1067)) (T -1064))
+NIL
+(-10 -8 (-15 -1442 (|#1| |#2| |#1|)) (-15 -1442 (|#1| |#1| |#2|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -2440 (|#1| |#1| |#1|)) (-15 -1334 (|#1| |#1| |#2|)) (-15 -1334 (|#1| |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1442 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2440 (($ $ $) 20)) (-2695 (((-112) $ $) 19)) (-1584 (((-112) $ (-747)) 35)) (-2787 (($) 25) (($ (-621 |#1|)) 24)) (-1489 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4337)))) (-1682 (($) 36 T CONST)) (-3676 (($ $) 59 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#1| $) 58 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4337)))) (-2989 (((-621 |#1|) $) 43 (|has| $ (-6 -4337)))) (-2369 (((-112) $ $) 28)) (-3194 (((-112) $ (-747)) 34)) (-1562 (((-621 |#1|) $) 44 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 38)) (-1508 (((-112) $ (-747)) 33)) (-3851 (((-1125) $) 9)) (-3655 (($ $ $) 23)) (-3990 (((-1087) $) 10)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1780 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#1|) (-621 |#1|)) 50 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 48 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 (-287 |#1|))) 47 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 29)) (-3670 (((-112) $) 32)) (-3742 (($) 31)) (-1334 (($ $ $) 22) (($ $ |#1|) 21)) (-4000 (((-747) |#1| $) 45 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (((-747) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4337)))) (-2281 (($ $) 30)) (-2845 (((-525) $) 60 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 51)) (-3846 (((-834) $) 11)) (-4120 (($) 27) (($ (-621 |#1|)) 26)) (-3527 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 6)) (-3775 (((-747) $) 37 (|has| $ (-6 -4337)))))
+(((-1065 |#1|) (-138) (-1067)) (T -1065))
+((-2369 (*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-4120 (*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-4120 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-4 *1 (-1065 *3)))) (-2787 (*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-2787 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-4 *1 (-1065 *3)))) (-3655 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-1334 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-1334 (*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-2440 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-2695 (*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-1442 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-1442 (*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))) (-1442 (*1 *1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(-13 (-1067) (-149 |t#1|) (-10 -8 (-6 -4327) (-15 -2369 ((-112) $ $)) (-15 -4120 ($)) (-15 -4120 ($ (-621 |t#1|))) (-15 -2787 ($)) (-15 -2787 ($ (-621 |t#1|))) (-15 -3655 ($ $ $)) (-15 -1334 ($ $ $)) (-15 -1334 ($ $ |t#1|)) (-15 -2440 ($ $ $)) (-15 -2695 ((-112) $ $)) (-15 -1442 ($ $ $)) (-15 -1442 ($ $ |t#1|)) (-15 -1442 ($ |t#1| $))))
+(((-34) . T) ((-101) . T) ((-593 (-834)) . T) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) . T) ((-1180) . T))
+((-3851 (((-1125) $) 10)) (-3990 (((-1087) $) 8)))
+(((-1066 |#1|) (-10 -8 (-15 -3851 ((-1125) |#1|)) (-15 -3990 ((-1087) |#1|))) (-1067)) (T -1066))
+NIL
+(-10 -8 (-15 -3851 ((-1125) |#1|)) (-15 -3990 ((-1087) |#1|)))
+((-3834 (((-112) $ $) 7)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2389 (((-112) $ $) 6)))
+(((-1067) (-138)) (T -1067))
+((-3990 (*1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1087)))) (-3851 (*1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1125)))))
+(-13 (-101) (-593 (-834)) (-10 -8 (-15 -3990 ((-1087) $)) (-15 -3851 ((-1125) $))))
+(((-101) . T) ((-593 (-834)) . T))
+((-3834 (((-112) $ $) NIL)) (-3614 (((-747)) 30)) (-1760 (($ (-621 (-892))) 52)) (-4072 (((-3 $ "failed") $ (-892) (-892)) 58)) (-3239 (($) 32)) (-2090 (((-112) (-892) $) 35)) (-1881 (((-892) $) 50)) (-3851 (((-1125) $) NIL)) (-3493 (($ (-892)) 31)) (-4251 (((-3 $ "failed") $ (-892)) 55)) (-3990 (((-1087) $) NIL)) (-3355 (((-1226 $)) 40)) (-1845 (((-621 (-892)) $) 24)) (-2662 (((-747) $ (-892) (-892)) 56)) (-3846 (((-834) $) 29)) (-2389 (((-112) $ $) 21)))
+(((-1068 |#1| |#2|) (-13 (-361) (-10 -8 (-15 -4251 ((-3 $ "failed") $ (-892))) (-15 -4072 ((-3 $ "failed") $ (-892) (-892))) (-15 -1845 ((-621 (-892)) $)) (-15 -1760 ($ (-621 (-892)))) (-15 -3355 ((-1226 $))) (-15 -2090 ((-112) (-892) $)) (-15 -2662 ((-747) $ (-892) (-892))))) (-892) (-892)) (T -1068))
+((-4251 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-892)) (-5 *1 (-1068 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4072 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-892)) (-5 *1 (-1068 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1845 (*1 *2 *1) (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))) (-1760 (*1 *1 *2) (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))) (-3355 (*1 *2) (-12 (-5 *2 (-1226 (-1068 *3 *4))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892)))) (-2090 (*1 *2 *3 *1) (-12 (-5 *3 (-892)) (-5 *2 (-112)) (-5 *1 (-1068 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2662 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-892)) (-5 *2 (-747)) (-5 *1 (-1068 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-361) (-10 -8 (-15 -4251 ((-3 $ "failed") $ (-892))) (-15 -4072 ((-3 $ "failed") $ (-892) (-892))) (-15 -1845 ((-621 (-892)) $)) (-15 -1760 ($ (-621 (-892)))) (-15 -3355 ((-1226 $))) (-15 -2090 ((-112) (-892) $)) (-15 -2662 ((-747) $ (-892) (-892)))))
+((-3834 (((-112) $ $) NIL)) (-2664 (($) NIL (|has| |#1| (-361)))) (-1442 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2440 (($ $ $) 72)) (-2695 (((-112) $ $) 73)) (-1584 (((-112) $ (-747)) NIL)) (-3614 (((-747)) NIL (|has| |#1| (-361)))) (-2787 (($ (-621 |#1|)) NIL) (($) 13)) (-1717 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2129 (($ |#1| $) 67 (|has| $ (-6 -4337))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4337)))) (-3239 (($) NIL (|has| |#1| (-361)))) (-2989 (((-621 |#1|) $) 19 (|has| $ (-6 -4337)))) (-2369 (((-112) $ $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-2863 ((|#1| $) 57 (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-3575 ((|#1| $) 55 (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 34)) (-1881 (((-892) $) NIL (|has| |#1| (-361)))) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-3655 (($ $ $) 70)) (-3504 ((|#1| $) 25)) (-2751 (($ |#1| $) 65)) (-3493 (($ (-892)) NIL (|has| |#1| (-361)))) (-3990 (((-1087) $) NIL)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3325 ((|#1| $) 27)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 21)) (-3742 (($) 11)) (-1334 (($ $ |#1|) NIL) (($ $ $) 71)) (-2898 (($) NIL) (($ (-621 |#1|)) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) 16)) (-2845 (((-525) $) 52 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 61)) (-1417 (($ $) NIL (|has| |#1| (-361)))) (-3846 (((-834) $) NIL)) (-3916 (((-747) $) NIL)) (-4120 (($ (-621 |#1|)) NIL) (($) 12)) (-3624 (($ (-621 |#1|)) NIL)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 54)) (-3775 (((-747) $) 10 (|has| $ (-6 -4337)))))
+(((-1069 |#1|) (-418 |#1|) (-1067)) (T -1069))
+NIL
+(-418 |#1|)
+((-3834 (((-112) $ $) 7)) (-1404 (((-112) $) 32)) (-3944 ((|#2| $) 27)) (-3128 (((-112) $) 33)) (-1525 ((|#1| $) 28)) (-3374 (((-112) $) 35)) (-2671 (((-112) $) 37)) (-3259 (((-112) $) 34)) (-3851 (((-1125) $) 9)) (-2528 (((-112) $) 31)) (-3965 ((|#3| $) 26)) (-3990 (((-1087) $) 10)) (-1978 (((-112) $) 30)) (-1355 ((|#4| $) 25)) (-2977 ((|#5| $) 24)) (-2652 (((-112) $ $) 38)) (-3341 (($ $ (-549)) 14) (($ $ (-621 (-549))) 13)) (-2197 (((-621 $) $) 29)) (-2845 (($ (-621 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-3846 (((-834) $) 11)) (-3546 (($ $) 16)) (-3536 (($ $) 17)) (-1775 (((-112) $) 36)) (-2389 (((-112) $ $) 6)) (-3775 (((-549) $) 15)))
+(((-1070 |#1| |#2| |#3| |#4| |#5|) (-138) (-1067) (-1067) (-1067) (-1067) (-1067)) (T -1070))
+((-2652 (*1 *2 *1 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-1404 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-1978 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))) (-2197 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-621 *1)) (-4 *1 (-1070 *3 *4 *5 *6 *7)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *2 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *2 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *2)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)))) (-2845 (*1 *1 *2) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-2845 (*1 *1 *2) (-12 (-4 *1 (-1070 *3 *2 *4 *5 *6)) (-4 *3 (-1067)) (-4 *2 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-2845 (*1 *1 *2) (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *2 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-2845 (*1 *1 *2) (-12 (-4 *1 (-1070 *3 *4 *5 *2 *6)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *2 (-1067)) (-4 *6 (-1067)))) (-2845 (*1 *1 *2) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *2)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))) (-3536 (*1 *1 *1) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-3546 (*1 *1 *1) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-549)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -2652 ((-112) $ $)) (-15 -2671 ((-112) $)) (-15 -1775 ((-112) $)) (-15 -3374 ((-112) $)) (-15 -3259 ((-112) $)) (-15 -3128 ((-112) $)) (-15 -1404 ((-112) $)) (-15 -2528 ((-112) $)) (-15 -1978 ((-112) $)) (-15 -2197 ((-621 $) $)) (-15 -1525 (|t#1| $)) (-15 -3944 (|t#2| $)) (-15 -3965 (|t#3| $)) (-15 -1355 (|t#4| $)) (-15 -2977 (|t#5| $)) (-15 -2845 ($ (-621 $))) (-15 -2845 ($ |t#1|)) (-15 -2845 ($ |t#2|)) (-15 -2845 ($ |t#3|)) (-15 -2845 ($ |t#4|)) (-15 -2845 ($ |t#5|)) (-15 -3536 ($ $)) (-15 -3546 ($ $)) (-15 -3775 ((-549) $)) (-15 -3341 ($ $ (-549))) (-15 -3341 ($ $ (-621 (-549))))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-1404 (((-112) $) NIL)) (-3944 (((-1143) $) NIL)) (-3128 (((-112) $) NIL)) (-1525 (((-1125) $) NIL)) (-3374 (((-112) $) NIL)) (-2671 (((-112) $) NIL)) (-3259 (((-112) $) NIL)) (-3851 (((-1125) $) NIL)) (-2528 (((-112) $) NIL)) (-3965 (((-549) $) NIL)) (-3990 (((-1087) $) NIL)) (-1978 (((-112) $) NIL)) (-1355 (((-219) $) NIL)) (-2977 (((-834) $) NIL)) (-2652 (((-112) $ $) NIL)) (-3341 (($ $ (-549)) NIL) (($ $ (-621 (-549))) NIL)) (-2197 (((-621 $) $) NIL)) (-2845 (($ (-621 $)) NIL) (($ (-1125)) NIL) (($ (-1143)) NIL) (($ (-549)) NIL) (($ (-219)) NIL) (($ (-834)) NIL)) (-3846 (((-834) $) NIL)) (-3546 (($ $) NIL)) (-3536 (($ $) NIL)) (-1775 (((-112) $) NIL)) (-2389 (((-112) $ $) NIL)) (-3775 (((-549) $) NIL)))
+(((-1071) (-1070 (-1125) (-1143) (-549) (-219) (-834))) (T -1071))
+NIL
+(-1070 (-1125) (-1143) (-549) (-219) (-834))
+((-3834 (((-112) $ $) NIL)) (-1404 (((-112) $) 38)) (-3944 ((|#2| $) 42)) (-3128 (((-112) $) 37)) (-1525 ((|#1| $) 41)) (-3374 (((-112) $) 35)) (-2671 (((-112) $) 14)) (-3259 (((-112) $) 36)) (-3851 (((-1125) $) NIL)) (-2528 (((-112) $) 39)) (-3965 ((|#3| $) 44)) (-3990 (((-1087) $) NIL)) (-1978 (((-112) $) 40)) (-1355 ((|#4| $) 43)) (-2977 ((|#5| $) 45)) (-2652 (((-112) $ $) 34)) (-3341 (($ $ (-549)) 56) (($ $ (-621 (-549))) 58)) (-2197 (((-621 $) $) 22)) (-2845 (($ (-621 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-3846 (((-834) $) 23)) (-3546 (($ $) 21)) (-3536 (($ $) 52)) (-1775 (((-112) $) 18)) (-2389 (((-112) $ $) 33)) (-3775 (((-549) $) 54)))
+(((-1072 |#1| |#2| |#3| |#4| |#5|) (-1070 |#1| |#2| |#3| |#4| |#5|) (-1067) (-1067) (-1067) (-1067) (-1067)) (T -1072))
+NIL
+(-1070 |#1| |#2| |#3| |#4| |#5|)
+((-3316 (((-1231) $) 23)) (-1320 (($ (-1143) (-427) |#2|) 11)) (-3846 (((-834) $) 16)))
+(((-1073 |#1| |#2|) (-13 (-388) (-10 -8 (-15 -1320 ($ (-1143) (-427) |#2|)))) (-823) (-423 |#1|)) (T -1073))
+((-1320 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1143)) (-5 *3 (-427)) (-4 *5 (-823)) (-5 *1 (-1073 *5 *4)) (-4 *4 (-423 *5)))))
+(-13 (-388) (-10 -8 (-15 -1320 ($ (-1143) (-427) |#2|))))
+((-1897 (((-112) |#5| |#5|) 38)) (-2954 (((-112) |#5| |#5|) 52)) (-3417 (((-112) |#5| (-621 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3503 (((-112) (-621 |#4|) (-621 |#4|)) 58)) (-1346 (((-112) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) 63)) (-1663 (((-1231)) 33)) (-4164 (((-1231) (-1125) (-1125) (-1125)) 29)) (-1382 (((-621 |#5|) (-621 |#5|)) 82)) (-4118 (((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)))) 80)) (-3954 (((-621 (-2 (|:| -2652 (-621 |#4|)) (|:| -1981 |#5|) (|:| |ineq| (-621 |#4|)))) (-621 |#4|) (-621 |#5|) (-112) (-112)) 102)) (-4282 (((-112) |#5| |#5|) 47)) (-3597 (((-3 (-112) "failed") |#5| |#5|) 71)) (-4083 (((-112) (-621 |#4|) (-621 |#4|)) 57)) (-2457 (((-112) (-621 |#4|) (-621 |#4|)) 59)) (-2473 (((-112) (-621 |#4|) (-621 |#4|)) 60)) (-3751 (((-3 (-2 (|:| -2652 (-621 |#4|)) (|:| -1981 |#5|) (|:| |ineq| (-621 |#4|))) "failed") (-621 |#4|) |#5| (-621 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-2587 (((-621 |#5|) (-621 |#5|)) 43)))
+(((-1074 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4164 ((-1231) (-1125) (-1125) (-1125))) (-15 -1663 ((-1231))) (-15 -1897 ((-112) |#5| |#5|)) (-15 -2587 ((-621 |#5|) (-621 |#5|))) (-15 -4282 ((-112) |#5| |#5|)) (-15 -2954 ((-112) |#5| |#5|)) (-15 -3503 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -4083 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -2457 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -2473 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3597 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3417 ((-112) |#5| |#5|)) (-15 -3417 ((-112) |#5| (-621 |#5|))) (-15 -1382 ((-621 |#5|) (-621 |#5|))) (-15 -1346 ((-112) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)))) (-15 -4118 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) (-15 -3954 ((-621 (-2 (|:| -2652 (-621 |#4|)) (|:| -1981 |#5|) (|:| |ineq| (-621 |#4|)))) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -3751 ((-3 (-2 (|:| -2652 (-621 |#4|)) (|:| -1981 |#5|) (|:| |ineq| (-621 |#4|))) "failed") (-621 |#4|) |#5| (-621 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1074))
+((-3751 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| -2652 (-621 *9)) (|:| -1981 *4) (|:| |ineq| (-621 *9)))) (-5 *1 (-1074 *6 *7 *8 *9 *4)) (-5 *3 (-621 *9)) (-4 *4 (-1038 *6 *7 *8 *9)))) (-3954 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-621 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8)) (-5 *2 (-621 (-2 (|:| -2652 (-621 *9)) (|:| -1981 *10) (|:| |ineq| (-621 *9))))) (-5 *1 (-1074 *6 *7 *8 *9 *10)) (-5 *3 (-621 *9)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-621 (-2 (|:| |val| (-621 *6)) (|:| -1981 *7)))) (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1074 *3 *4 *5 *6 *7)))) (-1346 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1981 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5 *6 *7 *8)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-1074 *3 *4 *5 *6 *7)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1074 *5 *6 *7 *8 *3)))) (-3417 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-3597 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-2473 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-2457 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-4083 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-3503 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-2954 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-4282 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-2587 (*1 *2 *2) (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-1074 *3 *4 *5 *6 *7)))) (-1897 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))) (-1663 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1231)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-4164 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1125)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1231)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4164 ((-1231) (-1125) (-1125) (-1125))) (-15 -1663 ((-1231))) (-15 -1897 ((-112) |#5| |#5|)) (-15 -2587 ((-621 |#5|) (-621 |#5|))) (-15 -4282 ((-112) |#5| |#5|)) (-15 -2954 ((-112) |#5| |#5|)) (-15 -3503 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -4083 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -2457 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -2473 ((-112) (-621 |#4|) (-621 |#4|))) (-15 -3597 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3417 ((-112) |#5| |#5|)) (-15 -3417 ((-112) |#5| (-621 |#5|))) (-15 -1382 ((-621 |#5|) (-621 |#5|))) (-15 -1346 ((-112) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)))) (-15 -4118 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) (-15 -3954 ((-621 (-2 (|:| -2652 (-621 |#4|)) (|:| -1981 |#5|) (|:| |ineq| (-621 |#4|)))) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -3751 ((-3 (-2 (|:| -2652 (-621 |#4|)) (|:| -1981 |#5|) (|:| |ineq| (-621 |#4|))) "failed") (-621 |#4|) |#5| (-621 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-1991 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#5|) 96)) (-3995 (((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) |#4| |#4| |#5|) 72)) (-1803 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5|) 91)) (-4308 (((-621 |#5|) |#4| |#5|) 110)) (-3169 (((-621 |#5|) |#4| |#5|) 117)) (-2151 (((-621 |#5|) |#4| |#5|) 118)) (-1504 (((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|) 97)) (-3464 (((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|) 116)) (-2446 (((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-1718 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) |#3| (-112)) 84) (((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-1855 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5|) 79)) (-2283 (((-1231)) 37)) (-4066 (((-1231)) 26)) (-3847 (((-1231) (-1125) (-1125) (-1125)) 33)) (-1418 (((-1231) (-1125) (-1125) (-1125)) 22)))
+(((-1075 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1418 ((-1231) (-1125) (-1125) (-1125))) (-15 -4066 ((-1231))) (-15 -3847 ((-1231) (-1125) (-1125) (-1125))) (-15 -2283 ((-1231))) (-15 -3995 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) |#4| |#4| |#5|)) (-15 -1718 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1718 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) |#3| (-112))) (-15 -1855 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5|)) (-15 -1803 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5|)) (-15 -2446 ((-112) |#4| |#5|)) (-15 -1504 ((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|)) (-15 -4308 ((-621 |#5|) |#4| |#5|)) (-15 -3464 ((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|)) (-15 -3169 ((-621 |#5|) |#4| |#5|)) (-15 -2446 ((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|)) (-15 -2151 ((-621 |#5|) |#4| |#5|)) (-15 -1991 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#5|))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1038 |#1| |#2| |#3| |#4|)) (T -1075))
+((-1991 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2151 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4)) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2446 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1981 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3169 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4)) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-3464 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1981 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-4308 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4)) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-1504 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1981 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2446 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-1803 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-1855 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-1718 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1981 *9)))) (-5 *5 (-112)) (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *4 (-823)) (-5 *2 (-621 (-2 (|:| |val| *8) (|:| -1981 *9)))) (-5 *1 (-1075 *6 *7 *4 *8 *9)))) (-1718 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4)))) (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3)))) (-3995 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))) (-2283 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1231)) (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-3847 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1125)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1231)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))) (-4066 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1231)) (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))) (-1418 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1125)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1231)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1418 ((-1231) (-1125) (-1125) (-1125))) (-15 -4066 ((-1231))) (-15 -3847 ((-1231) (-1125) (-1125) (-1125))) (-15 -2283 ((-1231))) (-15 -3995 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) |#4| |#4| |#5|)) (-15 -1718 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1718 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) |#3| (-112))) (-15 -1855 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5|)) (-15 -1803 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#4| |#5|)) (-15 -2446 ((-112) |#4| |#5|)) (-15 -1504 ((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|)) (-15 -4308 ((-621 |#5|) |#4| |#5|)) (-15 -3464 ((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|)) (-15 -3169 ((-621 |#5|) |#4| |#5|)) (-15 -2446 ((-621 (-2 (|:| |val| (-112)) (|:| -1981 |#5|))) |#4| |#5|)) (-15 -2151 ((-621 |#5|) |#4| |#5|)) (-15 -1991 ((-621 (-2 (|:| |val| |#4|) (|:| -1981 |#5|))) |#4| |#5|)))
+((-3834 (((-112) $ $) 7)) (-3514 (((-621 (-2 (|:| -2681 $) (|:| -1359 (-621 |#4|)))) (-621 |#4|)) 85)) (-2866 (((-621 $) (-621 |#4|)) 86) (((-621 $) (-621 |#4|) (-112)) 111)) (-2272 (((-621 |#3|) $) 33)) (-3422 (((-112) $) 26)) (-2527 (((-112) $) 17 (|has| |#1| (-541)))) (-3282 (((-112) |#4| $) 101) (((-112) $) 97)) (-2731 ((|#4| |#4| $) 92)) (-3979 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 $))) |#4| $) 126)) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |#3|) 27)) (-1584 (((-112) $ (-747)) 44)) (-1489 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4337))) (((-3 |#4| "failed") $ |#3|) 79)) (-1682 (($) 45 T CONST)) (-1433 (((-112) $) 22 (|has| |#1| (-541)))) (-2555 (((-112) $ $) 24 (|has| |#1| (-541)))) (-2595 (((-112) $ $) 23 (|has| |#1| (-541)))) (-2397 (((-112) $) 25 (|has| |#1| (-541)))) (-2737 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3269 (((-621 |#4|) (-621 |#4|) $) 18 (|has| |#1| (-541)))) (-2953 (((-621 |#4|) (-621 |#4|) $) 19 (|has| |#1| (-541)))) (-2714 (((-3 $ "failed") (-621 |#4|)) 36)) (-2659 (($ (-621 |#4|)) 35)) (-3657 (((-3 $ "failed") $) 82)) (-1903 ((|#4| |#4| $) 89)) (-3676 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4337)))) (-3675 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-541)))) (-2217 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3615 ((|#4| |#4| $) 87)) (-2557 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4337))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4337))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1439 (((-2 (|:| -2681 (-621 |#4|)) (|:| -1359 (-621 |#4|))) $) 105)) (-3516 (((-112) |#4| $) 136)) (-3150 (((-112) |#4| $) 133)) (-2064 (((-112) |#4| $) 137) (((-112) $) 134)) (-2989 (((-621 |#4|) $) 52 (|has| $ (-6 -4337)))) (-2812 (((-112) |#4| $) 104) (((-112) $) 103)) (-2745 ((|#3| $) 34)) (-3194 (((-112) $ (-747)) 43)) (-1562 (((-621 |#4|) $) 53 (|has| $ (-6 -4337)))) (-2090 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#4| |#4|) $) 47)) (-2561 (((-621 |#3|) $) 32)) (-2378 (((-112) |#3| $) 31)) (-1508 (((-112) $ (-747)) 42)) (-3851 (((-1125) $) 9)) (-1878 (((-3 |#4| (-621 $)) |#4| |#4| $) 128)) (-3072 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 $))) |#4| |#4| $) 127)) (-3829 (((-3 |#4| "failed") $) 83)) (-3689 (((-621 $) |#4| $) 129)) (-1514 (((-3 (-112) (-621 $)) |#4| $) 132)) (-4184 (((-621 (-2 (|:| |val| (-112)) (|:| -1981 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3655 (((-621 $) |#4| $) 125) (((-621 $) (-621 |#4|) $) 124) (((-621 $) (-621 |#4|) (-621 $)) 123) (((-621 $) |#4| (-621 $)) 122)) (-4283 (($ |#4| $) 117) (($ (-621 |#4|) $) 116)) (-1638 (((-621 |#4|) $) 107)) (-2170 (((-112) |#4| $) 99) (((-112) $) 95)) (-3270 ((|#4| |#4| $) 90)) (-2473 (((-112) $ $) 110)) (-4203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-541)))) (-1335 (((-112) |#4| $) 100) (((-112) $) 96)) (-4298 ((|#4| |#4| $) 91)) (-3990 (((-1087) $) 10)) (-3646 (((-3 |#4| "failed") $) 84)) (-3779 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2640 (((-3 $ "failed") $ |#4|) 78)) (-2763 (($ $ |#4|) 77) (((-621 $) |#4| $) 115) (((-621 $) |#4| (-621 $)) 114) (((-621 $) (-621 |#4|) $) 113) (((-621 $) (-621 |#4|) (-621 $)) 112)) (-1780 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#4|) (-621 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-621 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-4144 (((-112) $ $) 38)) (-3670 (((-112) $) 41)) (-3742 (($) 40)) (-3701 (((-747) $) 106)) (-4000 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4337)))) (-2281 (($ $) 39)) (-2845 (((-525) $) 69 (|has| |#4| (-594 (-525))))) (-3854 (($ (-621 |#4|)) 60)) (-2858 (($ $ |#3|) 28)) (-3758 (($ $ |#3|) 30)) (-1962 (($ $) 88)) (-4317 (($ $ |#3|) 29)) (-3846 (((-834) $) 11) (((-621 |#4|) $) 37)) (-1824 (((-747) $) 76 (|has| |#3| (-361)))) (-2574 (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1716 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) 98)) (-1518 (((-621 $) |#4| $) 121) (((-621 $) |#4| (-621 $)) 120) (((-621 $) (-621 |#4|) $) 119) (((-621 $) (-621 |#4|) (-621 $)) 118)) (-3527 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4337)))) (-3002 (((-621 |#3|) $) 81)) (-3524 (((-112) |#4| $) 135)) (-1606 (((-112) |#3| $) 80)) (-2389 (((-112) $ $) 6)) (-3775 (((-747) $) 46 (|has| $ (-6 -4337)))))
+(((-1076 |#1| |#2| |#3| |#4|) (-138) (-444) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1076))
+NIL
+(-13 (-1038 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-101) . T) ((-593 (-621 |#4|)) . T) ((-593 (-834)) . T) ((-149 |#4|) . T) ((-594 (-525)) |has| |#4| (-594 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1038 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1173 |#1| |#2| |#3| |#4|) . T) ((-1180) . T))
+((-1290 (((-621 (-549)) (-549) (-549) (-549)) 22)) (-3100 (((-621 (-549)) (-549) (-549) (-549)) 12)) (-3588 (((-621 (-549)) (-549) (-549) (-549)) 18)) (-1865 (((-549) (-549) (-549)) 9)) (-2559 (((-1226 (-549)) (-621 (-549)) (-1226 (-549)) (-549)) 46) (((-1226 (-549)) (-1226 (-549)) (-1226 (-549)) (-549)) 41)) (-2480 (((-621 (-549)) (-621 (-549)) (-621 (-549)) (-112)) 28)) (-1822 (((-665 (-549)) (-621 (-549)) (-621 (-549)) (-665 (-549))) 45)) (-2279 (((-665 (-549)) (-621 (-549)) (-621 (-549))) 33)) (-2572 (((-621 (-665 (-549))) (-621 (-549))) 35)) (-2150 (((-621 (-549)) (-621 (-549)) (-621 (-549)) (-665 (-549))) 49)) (-2235 (((-665 (-549)) (-621 (-549)) (-621 (-549)) (-621 (-549))) 57)))
+(((-1077) (-10 -7 (-15 -2235 ((-665 (-549)) (-621 (-549)) (-621 (-549)) (-621 (-549)))) (-15 -2150 ((-621 (-549)) (-621 (-549)) (-621 (-549)) (-665 (-549)))) (-15 -2572 ((-621 (-665 (-549))) (-621 (-549)))) (-15 -2279 ((-665 (-549)) (-621 (-549)) (-621 (-549)))) (-15 -1822 ((-665 (-549)) (-621 (-549)) (-621 (-549)) (-665 (-549)))) (-15 -2480 ((-621 (-549)) (-621 (-549)) (-621 (-549)) (-112))) (-15 -2559 ((-1226 (-549)) (-1226 (-549)) (-1226 (-549)) (-549))) (-15 -2559 ((-1226 (-549)) (-621 (-549)) (-1226 (-549)) (-549))) (-15 -1865 ((-549) (-549) (-549))) (-15 -3588 ((-621 (-549)) (-549) (-549) (-549))) (-15 -3100 ((-621 (-549)) (-549) (-549) (-549))) (-15 -1290 ((-621 (-549)) (-549) (-549) (-549))))) (T -1077))
+((-1290 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-1077)) (-5 *3 (-549)))) (-3100 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-1077)) (-5 *3 (-549)))) (-3588 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-1077)) (-5 *3 (-549)))) (-1865 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1077)))) (-2559 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1226 (-549))) (-5 *3 (-621 (-549))) (-5 *4 (-549)) (-5 *1 (-1077)))) (-2559 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1226 (-549))) (-5 *3 (-549)) (-5 *1 (-1077)))) (-2480 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 (-549))) (-5 *3 (-112)) (-5 *1 (-1077)))) (-1822 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-665 (-549))) (-5 *3 (-621 (-549))) (-5 *1 (-1077)))) (-2279 (*1 *2 *3 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-1077)))) (-2572 (*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-621 (-665 (-549)))) (-5 *1 (-1077)))) (-2150 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 (-549))) (-5 *3 (-665 (-549))) (-5 *1 (-1077)))) (-2235 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-1077)))))
+(-10 -7 (-15 -2235 ((-665 (-549)) (-621 (-549)) (-621 (-549)) (-621 (-549)))) (-15 -2150 ((-621 (-549)) (-621 (-549)) (-621 (-549)) (-665 (-549)))) (-15 -2572 ((-621 (-665 (-549))) (-621 (-549)))) (-15 -2279 ((-665 (-549)) (-621 (-549)) (-621 (-549)))) (-15 -1822 ((-665 (-549)) (-621 (-549)) (-621 (-549)) (-665 (-549)))) (-15 -2480 ((-621 (-549)) (-621 (-549)) (-621 (-549)) (-112))) (-15 -2559 ((-1226 (-549)) (-1226 (-549)) (-1226 (-549)) (-549))) (-15 -2559 ((-1226 (-549)) (-621 (-549)) (-1226 (-549)) (-549))) (-15 -1865 ((-549) (-549) (-549))) (-15 -3588 ((-621 (-549)) (-549) (-549) (-549))) (-15 -3100 ((-621 (-549)) (-549) (-549) (-549))) (-15 -1290 ((-621 (-549)) (-549) (-549) (-549))))
+((** (($ $ (-892)) 10)))
+(((-1078 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-892)))) (-1079)) (T -1078))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-892))))
+((-3834 (((-112) $ $) 7)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2389 (((-112) $ $) 6)) (** (($ $ (-892)) 13)) (* (($ $ $) 14)))
+(((-1079) (-138)) (T -1079))
+((* (*1 *1 *1 *1) (-4 *1 (-1079))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1079)) (-5 *2 (-892)))))
+(-13 (-1067) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-892)))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL (|has| |#3| (-1067)))) (-1763 (((-112) $) NIL (|has| |#3| (-130)))) (-3956 (($ (-892)) NIL (|has| |#3| (-1018)))) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-2861 (($ $ $) NIL (|has| |#3| (-769)))) (-2001 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-1584 (((-112) $ (-747)) NIL)) (-3614 (((-747)) NIL (|has| |#3| (-361)))) (-1872 (((-549) $) NIL (|has| |#3| (-821)))) (-2254 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (-12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1067)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1067)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1067)))) (-2659 (((-549) $) NIL (-12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1067)))) (((-400 (-549)) $) NIL (-12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1067)))) ((|#3| $) NIL (|has| |#3| (-1067)))) (-3879 (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (-12 (|has| |#3| (-617 (-549))) (|has| |#3| (-1018)))) (((-2 (|:| -3521 (-665 |#3|)) (|:| |vec| (-1226 |#3|))) (-665 $) (-1226 $)) NIL (|has| |#3| (-1018))) (((-665 |#3|) (-665 $)) NIL (|has| |#3| (-1018)))) (-2114 (((-3 $ "failed") $) NIL (|has| |#3| (-703)))) (-3239 (($) NIL (|has| |#3| (-361)))) (-1879 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#3| $ (-549)) 12)) (-2772 (((-112) $) NIL (|has| |#3| (-821)))) (-2989 (((-621 |#3|) $) NIL (|has| $ (-6 -4337)))) (-2675 (((-112) $) NIL (|has| |#3| (-703)))) (-2374 (((-112) $) NIL (|has| |#3| (-821)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-1562 (((-621 |#3|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#3| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-1868 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#3| |#3|) $) NIL)) (-1881 (((-892) $) NIL (|has| |#3| (-361)))) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#3| (-1067)))) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3493 (($ (-892)) NIL (|has| |#3| (-361)))) (-3990 (((-1087) $) NIL (|has| |#3| (-1067)))) (-3646 ((|#3| $) NIL (|has| (-549) (-823)))) (-1642 (($ $ |#3|) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-287 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067)))) (($ $ (-621 |#3|) (-621 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#3| (-1067))))) (-2696 (((-621 |#3|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#3| $ (-549) |#3|) NIL) ((|#3| $ (-549)) NIL)) (-1706 ((|#3| $ $) NIL (|has| |#3| (-1018)))) (-2169 (($ (-1226 |#3|)) NIL)) (-2985 (((-133)) NIL (|has| |#3| (-356)))) (-3456 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-1143)) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018)))) (-4000 (((-747) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4337))) (((-747) |#3| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#3| (-1067))))) (-2281 (($ $) NIL)) (-3846 (((-1226 |#3|) $) NIL) (($ (-549)) NIL (-1536 (-12 (|has| |#3| (-1009 (-549))) (|has| |#3| (-1067))) (|has| |#3| (-1018)))) (($ (-400 (-549))) NIL (-12 (|has| |#3| (-1009 (-400 (-549)))) (|has| |#3| (-1067)))) (($ |#3|) NIL (|has| |#3| (-1067))) (((-834) $) NIL (|has| |#3| (-593 (-834))))) (-2082 (((-747)) NIL (|has| |#3| (-1018)))) (-3527 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4337)))) (-3212 (($ $) NIL (|has| |#3| (-821)))) (-3276 (($) NIL (|has| |#3| (-130)) CONST)) (-3287 (($) NIL (|has| |#3| (-703)) CONST)) (-1702 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-747)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1018)))) (($ $ (-1143)) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#3| (-871 (-1143))) (|has| |#3| (-1018)))) (($ $ (-1 |#3| |#3|) (-747)) NIL (|has| |#3| (-1018))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1018)))) (-2448 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2425 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2389 (((-112) $ $) NIL (|has| |#3| (-1067)))) (-2438 (((-112) $ $) NIL (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2412 (((-112) $ $) 17 (-1536 (|has| |#3| (-769)) (|has| |#3| (-821))))) (-2513 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-2500 (($ $ $) NIL (|has| |#3| (-1018))) (($ $) NIL (|has| |#3| (-1018)))) (-2486 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-747)) NIL (|has| |#3| (-703))) (($ $ (-892)) NIL (|has| |#3| (-703)))) (* (($ (-549) $) NIL (|has| |#3| (-1018))) (($ $ $) NIL (|has| |#3| (-703))) (($ $ |#3|) NIL (|has| |#3| (-703))) (($ |#3| $) NIL (|has| |#3| (-703))) (($ (-747) $) NIL (|has| |#3| (-130))) (($ (-892) $) NIL (|has| |#3| (-25)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1080 |#1| |#2| |#3|) (-232 |#1| |#3|) (-747) (-747) (-769)) (T -1080))
+NIL
+(-232 |#1| |#3|)
+((-2364 (((-621 (-1199 |#2| |#1|)) (-1199 |#2| |#1|) (-1199 |#2| |#1|)) 37)) (-2361 (((-549) (-1199 |#2| |#1|)) 69 (|has| |#1| (-444)))) (-3041 (((-549) (-1199 |#2| |#1|)) 54)) (-4260 (((-621 (-1199 |#2| |#1|)) (-1199 |#2| |#1|) (-1199 |#2| |#1|)) 45)) (-3917 (((-549) (-1199 |#2| |#1|) (-1199 |#2| |#1|)) 68 (|has| |#1| (-444)))) (-3626 (((-621 |#1|) (-1199 |#2| |#1|) (-1199 |#2| |#1|)) 48)) (-2122 (((-549) (-1199 |#2| |#1|) (-1199 |#2| |#1|)) 53)))
+(((-1081 |#1| |#2|) (-10 -7 (-15 -2364 ((-621 (-1199 |#2| |#1|)) (-1199 |#2| |#1|) (-1199 |#2| |#1|))) (-15 -4260 ((-621 (-1199 |#2| |#1|)) (-1199 |#2| |#1|) (-1199 |#2| |#1|))) (-15 -3626 ((-621 |#1|) (-1199 |#2| |#1|) (-1199 |#2| |#1|))) (-15 -2122 ((-549) (-1199 |#2| |#1|) (-1199 |#2| |#1|))) (-15 -3041 ((-549) (-1199 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3917 ((-549) (-1199 |#2| |#1|) (-1199 |#2| |#1|))) (-15 -2361 ((-549) (-1199 |#2| |#1|)))) |%noBranch|)) (-796) (-1143)) (T -1081))
+((-2361 (*1 *2 *3) (-12 (-5 *3 (-1199 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796)) (-14 *5 (-1143)) (-5 *2 (-549)) (-5 *1 (-1081 *4 *5)))) (-3917 (*1 *2 *3 *3) (-12 (-5 *3 (-1199 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796)) (-14 *5 (-1143)) (-5 *2 (-549)) (-5 *1 (-1081 *4 *5)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-1199 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1143)) (-5 *2 (-549)) (-5 *1 (-1081 *4 *5)))) (-2122 (*1 *2 *3 *3) (-12 (-5 *3 (-1199 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1143)) (-5 *2 (-549)) (-5 *1 (-1081 *4 *5)))) (-3626 (*1 *2 *3 *3) (-12 (-5 *3 (-1199 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1143)) (-5 *2 (-621 *4)) (-5 *1 (-1081 *4 *5)))) (-4260 (*1 *2 *3 *3) (-12 (-4 *4 (-796)) (-14 *5 (-1143)) (-5 *2 (-621 (-1199 *5 *4))) (-5 *1 (-1081 *4 *5)) (-5 *3 (-1199 *5 *4)))) (-2364 (*1 *2 *3 *3) (-12 (-4 *4 (-796)) (-14 *5 (-1143)) (-5 *2 (-621 (-1199 *5 *4))) (-5 *1 (-1081 *4 *5)) (-5 *3 (-1199 *5 *4)))))
+(-10 -7 (-15 -2364 ((-621 (-1199 |#2| |#1|)) (-1199 |#2| |#1|) (-1199 |#2| |#1|))) (-15 -4260 ((-621 (-1199 |#2| |#1|)) (-1199 |#2| |#1|) (-1199 |#2| |#1|))) (-15 -3626 ((-621 |#1|) (-1199 |#2| |#1|) (-1199 |#2| |#1|))) (-15 -2122 ((-549) (-1199 |#2| |#1|) (-1199 |#2| |#1|))) (-15 -3041 ((-549) (-1199 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3917 ((-549) (-1199 |#2| |#1|) (-1199 |#2| |#1|))) (-15 -2361 ((-549) (-1199 |#2| |#1|)))) |%noBranch|))
+((-3834 (((-112) $ $) NIL)) (-2966 (($ (-497) (-1085)) 14)) (-3986 (((-1085) $) 20)) (-2481 (((-497) $) 17)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-1082) (-13 (-1050) (-10 -8 (-15 -2966 ($ (-497) (-1085))) (-15 -2481 ((-497) $)) (-15 -3986 ((-1085) $))))) (T -1082))
+((-2966 (*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1085)) (-5 *1 (-1082)))) (-2481 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1082)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1082)))))
+(-13 (-1050) (-10 -8 (-15 -2966 ($ (-497) (-1085))) (-15 -2481 ((-497) $)) (-15 -3986 ((-1085) $))))
+((-1872 (((-3 (-549) "failed") |#2| (-1143) |#2| (-1125)) 17) (((-3 (-549) "failed") |#2| (-1143) (-816 |#2|)) 15) (((-3 (-549) "failed") |#2|) 54)))
+(((-1083 |#1| |#2|) (-10 -7 (-15 -1872 ((-3 (-549) "failed") |#2|)) (-15 -1872 ((-3 (-549) "failed") |#2| (-1143) (-816 |#2|))) (-15 -1872 ((-3 (-549) "failed") |#2| (-1143) |#2| (-1125)))) (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)) (-444)) (-13 (-27) (-1165) (-423 |#1|))) (T -1083))
+((-1872 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1143)) (-5 *5 (-1125)) (-4 *6 (-13 (-541) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-549)) (-5 *1 (-1083 *6 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *6))))) (-1872 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1143)) (-5 *5 (-816 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *6))) (-4 *6 (-13 (-541) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-549)) (-5 *1 (-1083 *6 *3)))) (-1872 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-541) (-823) (-1009 *2) (-617 *2) (-444))) (-5 *2 (-549)) (-5 *1 (-1083 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *4))))))
+(-10 -7 (-15 -1872 ((-3 (-549) "failed") |#2|)) (-15 -1872 ((-3 (-549) "failed") |#2| (-1143) (-816 |#2|))) (-15 -1872 ((-3 (-549) "failed") |#2| (-1143) |#2| (-1125))))
+((-1872 (((-3 (-549) "failed") (-400 (-923 |#1|)) (-1143) (-400 (-923 |#1|)) (-1125)) 35) (((-3 (-549) "failed") (-400 (-923 |#1|)) (-1143) (-816 (-400 (-923 |#1|)))) 30) (((-3 (-549) "failed") (-400 (-923 |#1|))) 13)))
+(((-1084 |#1|) (-10 -7 (-15 -1872 ((-3 (-549) "failed") (-400 (-923 |#1|)))) (-15 -1872 ((-3 (-549) "failed") (-400 (-923 |#1|)) (-1143) (-816 (-400 (-923 |#1|))))) (-15 -1872 ((-3 (-549) "failed") (-400 (-923 |#1|)) (-1143) (-400 (-923 |#1|)) (-1125)))) (-444)) (T -1084))
+((-1872 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-400 (-923 *6))) (-5 *4 (-1143)) (-5 *5 (-1125)) (-4 *6 (-444)) (-5 *2 (-549)) (-5 *1 (-1084 *6)))) (-1872 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1143)) (-5 *5 (-816 (-400 (-923 *6)))) (-5 *3 (-400 (-923 *6))) (-4 *6 (-444)) (-5 *2 (-549)) (-5 *1 (-1084 *6)))) (-1872 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-444)) (-5 *2 (-549)) (-5 *1 (-1084 *4)))))
+(-10 -7 (-15 -1872 ((-3 (-549) "failed") (-400 (-923 |#1|)))) (-15 -1872 ((-3 (-549) "failed") (-400 (-923 |#1|)) (-1143) (-816 (-400 (-923 |#1|))))) (-15 -1872 ((-3 (-549) "failed") (-400 (-923 |#1|)) (-1143) (-400 (-923 |#1|)) (-1125))))
+((-3834 (((-112) $ $) NIL)) (-2100 (((-1148) $) 10)) (-3224 (((-621 (-1148)) $) 11)) (-3986 (($ (-621 (-1148)) (-1148)) 9)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 20)) (-2389 (((-112) $ $) 14)))
+(((-1085) (-13 (-1067) (-10 -8 (-15 -3986 ($ (-621 (-1148)) (-1148))) (-15 -2100 ((-1148) $)) (-15 -3224 ((-621 (-1148)) $))))) (T -1085))
+((-3986 (*1 *1 *2 *3) (-12 (-5 *2 (-621 (-1148))) (-5 *3 (-1148)) (-5 *1 (-1085)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1085)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-1085)))))
+(-13 (-1067) (-10 -8 (-15 -3986 ($ (-621 (-1148)) (-1148))) (-15 -2100 ((-1148) $)) (-15 -3224 ((-621 (-1148)) $))))
+((-4038 (((-309 (-549)) (-48)) 12)))
+(((-1086) (-10 -7 (-15 -4038 ((-309 (-549)) (-48))))) (T -1086))
+((-4038 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-309 (-549))) (-5 *1 (-1086)))))
+(-10 -7 (-15 -4038 ((-309 (-549)) (-48))))
+((-3834 (((-112) $ $) NIL)) (-1340 (($ $) 41)) (-1763 (((-112) $) 65)) (-2464 (($ $ $) 48)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 86)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2831 (($ $ $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3332 (($ $ $ $) 75)) (-3979 (($ $) NIL)) (-2402 (((-411 $) $) NIL)) (-3866 (((-112) $ $) NIL)) (-1872 (((-549) $) NIL)) (-1310 (($ $ $) 72)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL)) (-2659 (((-549) $) NIL)) (-2095 (($ $ $) 59)) (-3879 (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 80) (((-665 (-549)) (-665 $)) 28)) (-2114 (((-3 $ "failed") $) NIL)) (-3405 (((-3 (-400 (-549)) "failed") $) NIL)) (-3679 (((-112) $) NIL)) (-2532 (((-400 (-549)) $) NIL)) (-3239 (($) 83) (($ $) 84)) (-2067 (($ $ $) 58)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL)) (-1420 (((-112) $) NIL)) (-3806 (($ $ $ $) NIL)) (-3947 (($ $ $) 81)) (-2772 (((-112) $) NIL)) (-1271 (($ $ $) NIL)) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL)) (-2675 (((-112) $) 66)) (-3559 (((-112) $) 64)) (-4008 (($ $) 42)) (-1681 (((-3 $ "failed") $) NIL)) (-2374 (((-112) $) 76)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3030 (($ $ $ $) 73)) (-2863 (($ $ $) 68) (($) 39)) (-3575 (($ $ $) 67) (($) 38)) (-2433 (($ $) NIL)) (-4210 (($ $) 71)) (-3697 (($ $ $) NIL) (($ (-621 $)) NIL)) (-3851 (((-1125) $) NIL)) (-2950 (($ $ $) NIL)) (-3060 (($) NIL T CONST)) (-3781 (($ $) 50)) (-3990 (((-1087) $) 70)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL)) (-3727 (($ $ $) 62) (($ (-621 $)) NIL)) (-4005 (($ $) NIL)) (-2121 (((-411 $) $) NIL)) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL)) (-2042 (((-3 $ "failed") $ $) NIL)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL)) (-3450 (((-112) $) NIL)) (-3684 (((-747) $) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 61)) (-3456 (($ $ (-747)) NIL) (($ $) NIL)) (-1900 (($ $) 51)) (-2281 (($ $) NIL)) (-2845 (((-549) $) 32) (((-525) $) NIL) (((-863 (-549)) $) NIL) (((-372) $) NIL) (((-219) $) NIL)) (-3846 (((-834) $) 31) (($ (-549)) 82) (($ $) NIL) (($ (-549)) 82)) (-2082 (((-747)) NIL)) (-3935 (((-112) $ $) NIL)) (-3179 (($ $ $) NIL)) (-1864 (($) 37)) (-1498 (((-112) $ $) NIL)) (-3610 (($ $ $ $) 74)) (-3212 (($ $) 63)) (-3708 (($ $ $) 44)) (-3276 (($) 35 T CONST)) (-3799 (($ $ $) 47)) (-3287 (($) 36 T CONST)) (-4245 (((-1125) $) 21) (((-1125) $ (-112)) 23) (((-1231) (-798) $) 24) (((-1231) (-798) $ (-112)) 25)) (-3809 (($ $) 45)) (-1702 (($ $ (-747)) NIL) (($ $) NIL)) (-3789 (($ $ $) 46)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 40)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 49)) (-3695 (($ $ $) 43)) (-2500 (($ $) 52) (($ $ $) 54)) (-2486 (($ $ $) 53)) (** (($ $ (-892)) NIL) (($ $ (-747)) 57)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 34) (($ $ $) 55)))
+(((-1087) (-13 (-534) (-637) (-804) (-10 -8 (-6 -4324) (-6 -4329) (-6 -4325) (-15 -3575 ($)) (-15 -2863 ($)) (-15 -4008 ($ $)) (-15 -1340 ($ $)) (-15 -3695 ($ $ $)) (-15 -3708 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -3809 ($ $)) (-15 -3789 ($ $ $)) (-15 -3799 ($ $ $))))) (T -1087))
+((-3708 (*1 *1 *1 *1) (-5 *1 (-1087))) (-3695 (*1 *1 *1 *1) (-5 *1 (-1087))) (-1340 (*1 *1 *1) (-5 *1 (-1087))) (-3575 (*1 *1) (-5 *1 (-1087))) (-2863 (*1 *1) (-5 *1 (-1087))) (-4008 (*1 *1 *1) (-5 *1 (-1087))) (-2464 (*1 *1 *1 *1) (-5 *1 (-1087))) (-3809 (*1 *1 *1) (-5 *1 (-1087))) (-3789 (*1 *1 *1 *1) (-5 *1 (-1087))) (-3799 (*1 *1 *1 *1) (-5 *1 (-1087))))
+(-13 (-534) (-637) (-804) (-10 -8 (-6 -4324) (-6 -4329) (-6 -4325) (-15 -3575 ($)) (-15 -2863 ($)) (-15 -4008 ($ $)) (-15 -1340 ($ $)) (-15 -3695 ($ $ $)) (-15 -3708 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -3809 ($ $)) (-15 -3789 ($ $ $)) (-15 -3799 ($ $ $))))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-2317 ((|#1| $) 44)) (-1584 (((-112) $ (-747)) 8)) (-1682 (($) 7 T CONST)) (-3204 ((|#1| |#1| $) 46)) (-1350 ((|#1| $) 45)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3504 ((|#1| $) 39)) (-2751 (($ |#1| $) 40)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3325 ((|#1| $) 41)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-1321 (((-747) $) 43)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3624 (($ (-621 |#1|)) 42)) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-1088 |#1|) (-138) (-1180)) (T -1088))
+((-3204 (*1 *2 *2 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1180)))) (-1350 (*1 *2 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1180)))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1180)))) (-1321 (*1 *2 *1) (-12 (-4 *1 (-1088 *3)) (-4 *3 (-1180)) (-5 *2 (-747)))))
+(-13 (-106 |t#1|) (-10 -8 (-6 -4337) (-15 -3204 (|t#1| |t#1| $)) (-15 -1350 (|t#1| $)) (-15 -2317 (|t#1| $)) (-15 -1321 ((-747) $))))
+(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-2906 ((|#3| $) 76)) (-2714 (((-3 (-549) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2659 (((-549) $) NIL) (((-400 (-549)) $) NIL) ((|#3| $) 37)) (-3879 (((-665 (-549)) (-665 $)) NIL) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL) (((-2 (|:| -3521 (-665 |#3|)) (|:| |vec| (-1226 |#3|))) (-665 $) (-1226 $)) 73) (((-665 |#3|) (-665 $)) 65)) (-3456 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143)) NIL) (($ $ (-747)) NIL) (($ $) NIL)) (-3136 ((|#3| $) 78)) (-2081 ((|#4| $) 32)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ (-400 (-549))) NIL) (($ |#3|) 16)) (** (($ $ (-892)) NIL) (($ $ (-747)) 15) (($ $ (-549)) 82)))
+(((-1089 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 -3136 (|#3| |#1|)) (-15 -2906 (|#3| |#1|)) (-15 -2081 (|#4| |#1|)) (-15 -3879 ((-665 |#3|) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 |#3|)) (|:| |vec| (-1226 |#3|))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-665 (-549)) (-665 |#1|))) (-15 -2659 (|#3| |#1|)) (-15 -2714 ((-3 |#3| "failed") |#1|)) (-15 -3846 (|#1| |#3|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3846 (|#1| (-549))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892))) (-15 -3846 ((-834) |#1|))) (-1090 |#2| |#3| |#4| |#5|) (-747) (-1018) (-232 |#2| |#3|) (-232 |#2| |#3|)) (T -1089))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 -3136 (|#3| |#1|)) (-15 -2906 (|#3| |#1|)) (-15 -2081 (|#4| |#1|)) (-15 -3879 ((-665 |#3|) (-665 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 |#3|)) (|:| |vec| (-1226 |#3|))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 |#1|) (-1226 |#1|))) (-15 -3879 ((-665 (-549)) (-665 |#1|))) (-15 -2659 (|#3| |#1|)) (-15 -2714 ((-3 |#3| "failed") |#1|)) (-15 -3846 (|#1| |#3|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-549) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|) (-747))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3846 (|#1| (-549))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892))) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2906 ((|#2| $) 70)) (-2092 (((-112) $) 110)) (-2001 (((-3 $ "failed") $ $) 19)) (-2340 (((-112) $) 108)) (-1584 (((-112) $ (-747)) 100)) (-2228 (($ |#2|) 73)) (-1682 (($) 17 T CONST)) (-3460 (($ $) 127 (|has| |#2| (-300)))) (-4060 ((|#3| $ (-549)) 122)) (-2714 (((-3 (-549) "failed") $) 84 (|has| |#2| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) 82 (|has| |#2| (-1009 (-400 (-549))))) (((-3 |#2| "failed") $) 79)) (-2659 (((-549) $) 85 (|has| |#2| (-1009 (-549)))) (((-400 (-549)) $) 83 (|has| |#2| (-1009 (-400 (-549))))) ((|#2| $) 78)) (-3879 (((-665 (-549)) (-665 $)) 77 (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 76 (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) 75) (((-665 |#2|) (-665 $)) 74)) (-2114 (((-3 $ "failed") $) 32)) (-3123 (((-747) $) 128 (|has| |#2| (-541)))) (-1809 ((|#2| $ (-549) (-549)) 120)) (-2989 (((-621 |#2|) $) 93 (|has| $ (-6 -4337)))) (-2675 (((-112) $) 30)) (-1323 (((-747) $) 129 (|has| |#2| (-541)))) (-1479 (((-621 |#4|) $) 130 (|has| |#2| (-541)))) (-2142 (((-747) $) 116)) (-2155 (((-747) $) 117)) (-3194 (((-112) $ (-747)) 101)) (-1929 ((|#2| $) 65 (|has| |#2| (-6 (-4339 "*"))))) (-1761 (((-549) $) 112)) (-2703 (((-549) $) 114)) (-1562 (((-621 |#2|) $) 92 (|has| $ (-6 -4337)))) (-2090 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4337))))) (-1661 (((-549) $) 113)) (-1887 (((-549) $) 115)) (-3946 (($ (-621 (-621 |#2|))) 107)) (-1868 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-2913 (((-621 (-621 |#2|)) $) 118)) (-1508 (((-112) $ (-747)) 102)) (-3851 (((-1125) $) 9)) (-3849 (((-3 $ "failed") $) 64 (|has| |#2| (-356)))) (-3990 (((-1087) $) 10)) (-2042 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-541)))) (-1780 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#2|))) 89 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) 88 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) 106)) (-3670 (((-112) $) 103)) (-3742 (($) 104)) (-3341 ((|#2| $ (-549) (-549) |#2|) 121) ((|#2| $ (-549) (-549)) 119)) (-3456 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-747)) 49) (($ $ (-621 (-1143)) (-621 (-747))) 42 (|has| |#2| (-871 (-1143)))) (($ $ (-1143) (-747)) 41 (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143))) 40 (|has| |#2| (-871 (-1143)))) (($ $ (-1143)) 39 (|has| |#2| (-871 (-1143)))) (($ $ (-747)) 37 (|has| |#2| (-227))) (($ $) 35 (|has| |#2| (-227)))) (-3136 ((|#2| $) 69)) (-2133 (($ (-621 |#2|)) 72)) (-1757 (((-112) $) 109)) (-2081 ((|#3| $) 71)) (-2029 ((|#2| $) 66 (|has| |#2| (-6 (-4339 "*"))))) (-4000 (((-747) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4337))) (((-747) |#2| $) 91 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 105)) (-2851 ((|#4| $ (-549)) 123)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 81 (|has| |#2| (-1009 (-400 (-549))))) (($ |#2|) 80)) (-2082 (((-747)) 28)) (-3527 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4337)))) (-2974 (((-112) $) 111)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-747)) 47) (($ $ (-621 (-1143)) (-621 (-747))) 46 (|has| |#2| (-871 (-1143)))) (($ $ (-1143) (-747)) 45 (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143))) 44 (|has| |#2| (-871 (-1143)))) (($ $ (-1143)) 43 (|has| |#2| (-871 (-1143)))) (($ $ (-747)) 38 (|has| |#2| (-227))) (($ $) 36 (|has| |#2| (-227)))) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#2|) 126 (|has| |#2| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 63 (|has| |#2| (-356)))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-3775 (((-747) $) 99 (|has| $ (-6 -4337)))))
+(((-1090 |#1| |#2| |#3| |#4|) (-138) (-747) (-1018) (-232 |t#1| |t#2|) (-232 |t#1| |t#2|)) (T -1090))
+((-2228 (*1 *1 *2) (-12 (-4 *2 (-1018)) (-4 *1 (-1090 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-621 *4)) (-4 *4 (-1018)) (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)))) (-2081 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1018)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1018)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *2 (-232 *3 *4)) (-4 *5 (-232 *3 *4)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4339 "*"))) (-4 *2 (-1018)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4339 "*"))) (-4 *2 (-1018)))) (-3849 (*1 *1 *1) (|partial| -12 (-4 *1 (-1090 *2 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356)))))
+(-13 (-225 |t#2|) (-111 |t#2| |t#2|) (-1021 |t#1| |t#1| |t#2| |t#3| |t#4|) (-404 |t#2|) (-370 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-694 |t#2|)) |%noBranch|) (-15 -2228 ($ |t#2|)) (-15 -2133 ($ (-621 |t#2|))) (-15 -2081 (|t#3| $)) (-15 -2906 (|t#2| $)) (-15 -3136 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4339 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2029 (|t#2| $)) (-15 -1929 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-356)) (PROGN (-15 -3849 ((-3 $ "failed") $)) (-15 ** ($ $ (-549)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4339 "*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-834)) . T) ((-225 |#2|) . T) ((-227) |has| |#2| (-227)) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-370 |#2|) . T) ((-404 |#2|) . T) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-624 |#2|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#2| (-617 (-549))) ((-617 |#2|) . T) ((-694 |#2|) -1536 (|has| |#2| (-170)) (|has| |#2| (-6 (-4339 "*")))) ((-703) . T) ((-871 (-1143)) |has| |#2| (-871 (-1143))) ((-1021 |#1| |#1| |#2| |#3| |#4|) . T) ((-1009 (-400 (-549))) |has| |#2| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#2| (-1009 (-549))) ((-1009 |#2|) . T) ((-1024 |#2|) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1180) . T))
+((-4156 ((|#4| |#4|) 70)) (-3367 ((|#4| |#4|) 65)) (-1782 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1949 (-621 |#3|))) |#4| |#3|) 78)) (-4309 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3622 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
+(((-1091 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3367 (|#4| |#4|)) (-15 -3622 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4156 (|#4| |#4|)) (-15 -4309 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1782 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1949 (-621 |#3|))) |#4| |#3|))) (-300) (-366 |#1|) (-366 |#1|) (-663 |#1| |#2| |#3|)) (T -1091))
+((-1782 (*1 *2 *3 *4) (-12 (-4 *5 (-300)) (-4 *6 (-366 *5)) (-4 *4 (-366 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4)))) (-5 *1 (-1091 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4)))) (-4309 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1091 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-4156 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1091 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1091 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))) (-3367 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1091 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
+(-10 -7 (-15 -3367 (|#4| |#4|)) (-15 -3622 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4156 (|#4| |#4|)) (-15 -4309 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1782 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1949 (-621 |#3|))) |#4| |#3|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 17)) (-2272 (((-621 |#2|) $) 159)) (-2084 (((-1139 $) $ |#2|) 54) (((-1139 |#1|) $) 43)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 108 (|has| |#1| (-541)))) (-2258 (($ $) 110 (|has| |#1| (-541)))) (-2799 (((-112) $) 112 (|has| |#1| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 |#2|)) 192)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-3979 (($ $) NIL (|has| |#1| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) 156) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 |#2| "failed") $) NIL)) (-2659 ((|#1| $) 154) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) ((|#2| $) NIL)) (-1353 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-2070 (($ $) 196)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) 82)) (-1285 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-880)))) (-2691 (($ $ |#1| (-521 |#2|) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| |#1| (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| |#1| (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-2675 (((-112) $) 19)) (-3347 (((-747) $) 26)) (-2261 (($ (-1139 |#1|) |#2|) 48) (($ (-1139 $) |#2|) 64)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) 32)) (-2246 (($ |#1| (-521 |#2|)) 71) (($ $ |#2| (-747)) 52) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ |#2|) NIL)) (-3611 (((-521 |#2|) $) 186) (((-747) $ |#2|) 187) (((-621 (-747)) $ (-621 |#2|)) 188)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-3705 (($ (-1 (-521 |#2|) (-521 |#2|)) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) 120)) (-1520 (((-3 |#2| "failed") $) 161)) (-2028 (($ $) 195)) (-2043 ((|#1| $) 37)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3851 (((-1125) $) NIL)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| |#2|) (|:| -3731 (-747))) "failed") $) NIL)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) 33)) (-2016 ((|#1| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 138 (|has| |#1| (-444)))) (-3727 (($ (-621 $)) 143 (|has| |#1| (-444))) (($ $ $) 130 (|has| |#1| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#1| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-880)))) (-2042 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-541)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-621 |#2|) (-621 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-621 |#2|) (-621 $)) 176)) (-3602 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-3456 (($ $ |#2|) 194) (($ $ (-621 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-3701 (((-521 |#2|) $) 182) (((-747) $ |#2|) 178) (((-621 (-747)) $ (-621 |#2|)) 180)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| |#1| (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| |#1| (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| |#1| (-594 (-525))) (|has| |#2| (-594 (-525)))))) (-2216 ((|#1| $) 126 (|has| |#1| (-444))) (($ $ |#2|) 129 (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3846 (((-834) $) 149) (($ (-549)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-541))) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-4141 (((-621 |#1|) $) 152)) (-2152 ((|#1| $ (-521 |#2|)) 73) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) 79)) (-1509 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-1498 (((-112) $ $) 115 (|has| |#1| (-541)))) (-3276 (($) 12 T CONST)) (-3287 (($) 14 T CONST)) (-1702 (($ $ |#2|) NIL) (($ $ (-621 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) 97)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2513 (($ $ |#1|) 124 (|has| |#1| (-356)))) (-2500 (($ $) 85) (($ $ $) 95)) (-2486 (($ $ $) 49)) (** (($ $ (-892)) 102) (($ $ (-747)) 100)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 88) (($ $ $) 65) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
+(((-1092 |#1| |#2|) (-920 |#1| (-521 |#2|) |#2|) (-1018) (-823)) (T -1092))
+NIL
+(-920 |#1| (-521 |#2|) |#2|)
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2272 (((-621 |#2|) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-1664 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1640 (($ $) 137 (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) 113 (|has| |#1| (-38 (-400 (-549)))))) (-1685 (($ $) 145 (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) NIL T CONST)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1414 (((-923 |#1|) $ (-747)) NIL) (((-923 |#1|) $ (-747) (-747)) NIL)) (-2871 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-747) $ |#2|) NIL) (((-747) $ |#2| (-747)) NIL)) (-2675 (((-112) $) NIL)) (-4187 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2205 (((-112) $) NIL)) (-2246 (($ $ (-621 |#2|) (-621 (-521 |#2|))) NIL) (($ $ |#2| (-521 |#2|)) NIL) (($ |#1| (-521 |#2|)) NIL) (($ $ |#2| (-747)) 56) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3632 (($ $) 111 (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3893 (($ $ |#2|) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-400 (-549)))))) (-3990 (((-1087) $) NIL)) (-2238 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-400 (-549)))))) (-2763 (($ $ (-747)) 13)) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2719 (($ $) 109 (|has| |#1| (-38 (-400 (-549)))))) (-2686 (($ $ |#2| $) 95) (($ $ (-621 |#2|) (-621 $)) 88) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL)) (-3456 (($ $ |#2|) 98) (($ $ (-621 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-3701 (((-521 |#2|) $) NIL)) (-4016 (((-1 (-1123 |#3|) |#3|) (-621 |#2|) (-621 (-1123 |#3|))) 77)) (-1698 (($ $) 147 (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) 143 (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) 139 (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) 15)) (-3846 (((-834) $) 180) (($ (-549)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-541))) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#2|) 63) (($ |#3|) 61)) (-2152 ((|#1| $ (-521 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL) ((|#3| $ (-747)) 38)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-1733 (($ $) 153 (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) 129 (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1710 (($ $) 149 (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) 157 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-1934 (($ $) 159 (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) 135 (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) 155 (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) 151 (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) 127 (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) 47 T CONST)) (-3287 (($) 55 T CONST)) (-1702 (($ $ |#2|) NIL) (($ $ (-621 |#2|)) NIL) (($ $ |#2| (-747)) NIL) (($ $ (-621 |#2|) (-621 (-747))) NIL)) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ |#1|) 182 (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 59)) (** (($ $ (-892)) NIL) (($ $ (-747)) 68) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 101 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 58) (($ $ (-400 (-549))) 106 (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) 104 (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42)))
+(((-1093 |#1| |#2| |#3|) (-13 (-717 |#1| |#2|) (-10 -8 (-15 -2152 (|#3| $ (-747))) (-15 -3846 ($ |#2|)) (-15 -3846 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4016 ((-1 (-1123 |#3|) |#3|) (-621 |#2|) (-621 (-1123 |#3|)))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -3893 ($ $ |#2| |#1|)) (-15 -2238 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1018) (-823) (-920 |#1| (-521 |#2|) |#2|)) (T -1093))
+((-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *2 (-920 *4 (-521 *5) *5)) (-5 *1 (-1093 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-823)))) (-3846 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *2 (-823)) (-5 *1 (-1093 *3 *2 *4)) (-4 *4 (-920 *3 (-521 *2) *2)))) (-3846 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1093 *3 *4 *2)) (-4 *2 (-920 *3 (-521 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1093 *3 *4 *2)) (-4 *2 (-920 *3 (-521 *4) *4)))) (-4016 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 (-1123 *7))) (-4 *6 (-823)) (-4 *7 (-920 *5 (-521 *6) *6)) (-4 *5 (-1018)) (-5 *2 (-1 (-1123 *7) *7)) (-5 *1 (-1093 *5 *6 *7)))) (-3893 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-4 *2 (-823)) (-5 *1 (-1093 *3 *2 *4)) (-4 *4 (-920 *3 (-521 *2) *2)))) (-2238 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1093 *4 *3 *5))) (-4 *4 (-38 (-400 (-549)))) (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *1 (-1093 *4 *3 *5)) (-4 *5 (-920 *4 (-521 *3) *3)))))
+(-13 (-717 |#1| |#2|) (-10 -8 (-15 -2152 (|#3| $ (-747))) (-15 -3846 ($ |#2|)) (-15 -3846 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4016 ((-1 (-1123 |#3|) |#3|) (-621 |#2|) (-621 (-1123 |#3|)))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -3893 ($ $ |#2| |#1|)) (-15 -2238 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-3834 (((-112) $ $) 7)) (-3514 (((-621 (-2 (|:| -2681 $) (|:| -1359 (-621 |#4|)))) (-621 |#4|)) 85)) (-2866 (((-621 $) (-621 |#4|)) 86) (((-621 $) (-621 |#4|) (-112)) 111)) (-2272 (((-621 |#3|) $) 33)) (-3422 (((-112) $) 26)) (-2527 (((-112) $) 17 (|has| |#1| (-541)))) (-3282 (((-112) |#4| $) 101) (((-112) $) 97)) (-2731 ((|#4| |#4| $) 92)) (-3979 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 $))) |#4| $) 126)) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |#3|) 27)) (-1584 (((-112) $ (-747)) 44)) (-1489 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4337))) (((-3 |#4| "failed") $ |#3|) 79)) (-1682 (($) 45 T CONST)) (-1433 (((-112) $) 22 (|has| |#1| (-541)))) (-2555 (((-112) $ $) 24 (|has| |#1| (-541)))) (-2595 (((-112) $ $) 23 (|has| |#1| (-541)))) (-2397 (((-112) $) 25 (|has| |#1| (-541)))) (-2737 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3269 (((-621 |#4|) (-621 |#4|) $) 18 (|has| |#1| (-541)))) (-2953 (((-621 |#4|) (-621 |#4|) $) 19 (|has| |#1| (-541)))) (-2714 (((-3 $ "failed") (-621 |#4|)) 36)) (-2659 (($ (-621 |#4|)) 35)) (-3657 (((-3 $ "failed") $) 82)) (-1903 ((|#4| |#4| $) 89)) (-3676 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4337)))) (-3675 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-541)))) (-2217 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3615 ((|#4| |#4| $) 87)) (-2557 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4337))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4337))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1439 (((-2 (|:| -2681 (-621 |#4|)) (|:| -1359 (-621 |#4|))) $) 105)) (-3516 (((-112) |#4| $) 136)) (-3150 (((-112) |#4| $) 133)) (-2064 (((-112) |#4| $) 137) (((-112) $) 134)) (-2989 (((-621 |#4|) $) 52 (|has| $ (-6 -4337)))) (-2812 (((-112) |#4| $) 104) (((-112) $) 103)) (-2745 ((|#3| $) 34)) (-3194 (((-112) $ (-747)) 43)) (-1562 (((-621 |#4|) $) 53 (|has| $ (-6 -4337)))) (-2090 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#4| |#4|) $) 47)) (-2561 (((-621 |#3|) $) 32)) (-2378 (((-112) |#3| $) 31)) (-1508 (((-112) $ (-747)) 42)) (-3851 (((-1125) $) 9)) (-1878 (((-3 |#4| (-621 $)) |#4| |#4| $) 128)) (-3072 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 $))) |#4| |#4| $) 127)) (-3829 (((-3 |#4| "failed") $) 83)) (-3689 (((-621 $) |#4| $) 129)) (-1514 (((-3 (-112) (-621 $)) |#4| $) 132)) (-4184 (((-621 (-2 (|:| |val| (-112)) (|:| -1981 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3655 (((-621 $) |#4| $) 125) (((-621 $) (-621 |#4|) $) 124) (((-621 $) (-621 |#4|) (-621 $)) 123) (((-621 $) |#4| (-621 $)) 122)) (-4283 (($ |#4| $) 117) (($ (-621 |#4|) $) 116)) (-1638 (((-621 |#4|) $) 107)) (-2170 (((-112) |#4| $) 99) (((-112) $) 95)) (-3270 ((|#4| |#4| $) 90)) (-2473 (((-112) $ $) 110)) (-4203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-541)))) (-1335 (((-112) |#4| $) 100) (((-112) $) 96)) (-4298 ((|#4| |#4| $) 91)) (-3990 (((-1087) $) 10)) (-3646 (((-3 |#4| "failed") $) 84)) (-3779 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2640 (((-3 $ "failed") $ |#4|) 78)) (-2763 (($ $ |#4|) 77) (((-621 $) |#4| $) 115) (((-621 $) |#4| (-621 $)) 114) (((-621 $) (-621 |#4|) $) 113) (((-621 $) (-621 |#4|) (-621 $)) 112)) (-1780 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#4|) (-621 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-621 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-4144 (((-112) $ $) 38)) (-3670 (((-112) $) 41)) (-3742 (($) 40)) (-3701 (((-747) $) 106)) (-4000 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4337)))) (-2281 (($ $) 39)) (-2845 (((-525) $) 69 (|has| |#4| (-594 (-525))))) (-3854 (($ (-621 |#4|)) 60)) (-2858 (($ $ |#3|) 28)) (-3758 (($ $ |#3|) 30)) (-1962 (($ $) 88)) (-4317 (($ $ |#3|) 29)) (-3846 (((-834) $) 11) (((-621 |#4|) $) 37)) (-1824 (((-747) $) 76 (|has| |#3| (-361)))) (-2574 (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1716 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) 98)) (-1518 (((-621 $) |#4| $) 121) (((-621 $) |#4| (-621 $)) 120) (((-621 $) (-621 |#4|) $) 119) (((-621 $) (-621 |#4|) (-621 $)) 118)) (-3527 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4337)))) (-3002 (((-621 |#3|) $) 81)) (-3524 (((-112) |#4| $) 135)) (-1606 (((-112) |#3| $) 80)) (-2389 (((-112) $ $) 6)) (-3775 (((-747) $) 46 (|has| $ (-6 -4337)))))
+(((-1094 |#1| |#2| |#3| |#4|) (-138) (-444) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1094))
+NIL
+(-13 (-1076 |t#1| |t#2| |t#3| |t#4|) (-760 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-101) . T) ((-593 (-621 |#4|)) . T) ((-593 (-834)) . T) ((-149 |#4|) . T) ((-594 (-525)) |has| |#4| (-594 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-760 |#1| |#2| |#3| |#4|) . T) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1038 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1076 |#1| |#2| |#3| |#4|) . T) ((-1173 |#1| |#2| |#3| |#4|) . T) ((-1180) . T))
+((-2227 (((-621 |#2|) |#1|) 12)) (-2619 (((-621 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-621 |#2|) |#1|) 52)) (-3767 (((-621 |#2|) |#2| |#2| |#2|) 39) (((-621 |#2|) |#1|) 50)) (-2079 ((|#2| |#1|) 46)) (-2196 (((-2 (|:| |solns| (-621 |#2|)) (|:| |maps| (-621 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1392 (((-621 |#2|) |#2| |#2|) 38) (((-621 |#2|) |#1|) 49)) (-3248 (((-621 |#2|) |#2| |#2| |#2| |#2|) 40) (((-621 |#2|) |#1|) 51)) (-2893 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3496 ((|#2| |#2| |#2| |#2|) 43)) (-1278 ((|#2| |#2| |#2|) 42)) (-2744 ((|#2| |#2| |#2| |#2| |#2|) 44)))
+(((-1095 |#1| |#2|) (-10 -7 (-15 -2227 ((-621 |#2|) |#1|)) (-15 -2079 (|#2| |#1|)) (-15 -2196 ((-2 (|:| |solns| (-621 |#2|)) (|:| |maps| (-621 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1392 ((-621 |#2|) |#1|)) (-15 -3767 ((-621 |#2|) |#1|)) (-15 -3248 ((-621 |#2|) |#1|)) (-15 -2619 ((-621 |#2|) |#1|)) (-15 -1392 ((-621 |#2|) |#2| |#2|)) (-15 -3767 ((-621 |#2|) |#2| |#2| |#2|)) (-15 -3248 ((-621 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2619 ((-621 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1278 (|#2| |#2| |#2|)) (-15 -3496 (|#2| |#2| |#2| |#2|)) (-15 -2744 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2893 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1202 |#2|) (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (T -1095))
+((-2893 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *1 (-1095 *3 *2)) (-4 *3 (-1202 *2)))) (-2744 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *1 (-1095 *3 *2)) (-4 *3 (-1202 *2)))) (-3496 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *1 (-1095 *3 *2)) (-4 *3 (-1202 *2)))) (-1278 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *1 (-1095 *3 *2)) (-4 *3 (-1202 *2)))) (-2619 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *3)) (-5 *1 (-1095 *4 *3)) (-4 *4 (-1202 *3)))) (-3248 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *3)) (-5 *1 (-1095 *4 *3)) (-4 *4 (-1202 *3)))) (-3767 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *3)) (-5 *1 (-1095 *4 *3)) (-4 *4 (-1202 *3)))) (-1392 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *3)) (-5 *1 (-1095 *4 *3)) (-4 *4 (-1202 *3)))) (-2619 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *4)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1202 *4)))) (-3248 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *4)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1202 *4)))) (-3767 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *4)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1202 *4)))) (-1392 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *4)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1202 *4)))) (-2196 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-2 (|:| |solns| (-621 *5)) (|:| |maps| (-621 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1095 *3 *5)) (-4 *3 (-1202 *5)))) (-2079 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *1 (-1095 *3 *2)) (-4 *3 (-1202 *2)))) (-2227 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549))))))) (-5 *2 (-621 *4)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1202 *4)))))
+(-10 -7 (-15 -2227 ((-621 |#2|) |#1|)) (-15 -2079 (|#2| |#1|)) (-15 -2196 ((-2 (|:| |solns| (-621 |#2|)) (|:| |maps| (-621 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1392 ((-621 |#2|) |#1|)) (-15 -3767 ((-621 |#2|) |#1|)) (-15 -3248 ((-621 |#2|) |#1|)) (-15 -2619 ((-621 |#2|) |#1|)) (-15 -1392 ((-621 |#2|) |#2| |#2|)) (-15 -3767 ((-621 |#2|) |#2| |#2| |#2|)) (-15 -3248 ((-621 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2619 ((-621 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1278 (|#2| |#2| |#2|)) (-15 -3496 (|#2| |#2| |#2| |#2|)) (-15 -2744 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2893 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-4094 (((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-400 (-923 |#1|))))) 95) (((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-400 (-923 |#1|)))) (-621 (-1143))) 94) (((-621 (-621 (-287 (-309 |#1|)))) (-621 (-400 (-923 |#1|)))) 92) (((-621 (-621 (-287 (-309 |#1|)))) (-621 (-400 (-923 |#1|))) (-621 (-1143))) 90) (((-621 (-287 (-309 |#1|))) (-287 (-400 (-923 |#1|)))) 75) (((-621 (-287 (-309 |#1|))) (-287 (-400 (-923 |#1|))) (-1143)) 76) (((-621 (-287 (-309 |#1|))) (-400 (-923 |#1|))) 70) (((-621 (-287 (-309 |#1|))) (-400 (-923 |#1|)) (-1143)) 59)) (-1620 (((-621 (-621 (-309 |#1|))) (-621 (-400 (-923 |#1|))) (-621 (-1143))) 88) (((-621 (-309 |#1|)) (-400 (-923 |#1|)) (-1143)) 43)) (-1534 (((-1132 (-621 (-309 |#1|)) (-621 (-287 (-309 |#1|)))) (-400 (-923 |#1|)) (-1143)) 98) (((-1132 (-621 (-309 |#1|)) (-621 (-287 (-309 |#1|)))) (-287 (-400 (-923 |#1|))) (-1143)) 97)))
+(((-1096 |#1|) (-10 -7 (-15 -4094 ((-621 (-287 (-309 |#1|))) (-400 (-923 |#1|)) (-1143))) (-15 -4094 ((-621 (-287 (-309 |#1|))) (-400 (-923 |#1|)))) (-15 -4094 ((-621 (-287 (-309 |#1|))) (-287 (-400 (-923 |#1|))) (-1143))) (-15 -4094 ((-621 (-287 (-309 |#1|))) (-287 (-400 (-923 |#1|))))) (-15 -4094 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-400 (-923 |#1|))) (-621 (-1143)))) (-15 -4094 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-400 (-923 |#1|))))) (-15 -4094 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-400 (-923 |#1|)))) (-621 (-1143)))) (-15 -4094 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-400 (-923 |#1|)))))) (-15 -1620 ((-621 (-309 |#1|)) (-400 (-923 |#1|)) (-1143))) (-15 -1620 ((-621 (-621 (-309 |#1|))) (-621 (-400 (-923 |#1|))) (-621 (-1143)))) (-15 -1534 ((-1132 (-621 (-309 |#1|)) (-621 (-287 (-309 |#1|)))) (-287 (-400 (-923 |#1|))) (-1143))) (-15 -1534 ((-1132 (-621 (-309 |#1|)) (-621 (-287 (-309 |#1|)))) (-400 (-923 |#1|)) (-1143)))) (-13 (-300) (-823) (-145))) (T -1096))
+((-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1143)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-1132 (-621 (-309 *5)) (-621 (-287 (-309 *5))))) (-5 *1 (-1096 *5)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-923 *5)))) (-5 *4 (-1143)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-1132 (-621 (-309 *5)) (-621 (-287 (-309 *5))))) (-5 *1 (-1096 *5)))) (-1620 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1143))) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-621 (-309 *5)))) (-5 *1 (-1096 *5)))) (-1620 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1143)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-309 *5))) (-5 *1 (-1096 *5)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-621 (-287 (-400 (-923 *4))))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-621 (-287 (-309 *4))))) (-5 *1 (-1096 *4)))) (-4094 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-287 (-400 (-923 *5))))) (-5 *4 (-621 (-1143))) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-621 (-287 (-309 *5))))) (-5 *1 (-1096 *5)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-621 (-400 (-923 *4)))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-621 (-287 (-309 *4))))) (-5 *1 (-1096 *4)))) (-4094 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1143))) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-621 (-287 (-309 *5))))) (-5 *1 (-1096 *5)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-287 (-400 (-923 *4)))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1096 *4)))) (-4094 (*1 *2 *3 *4) (-12 (-5 *3 (-287 (-400 (-923 *5)))) (-5 *4 (-1143)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *5)))) (-5 *1 (-1096 *5)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1096 *4)))) (-4094 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1143)) (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *5)))) (-5 *1 (-1096 *5)))))
+(-10 -7 (-15 -4094 ((-621 (-287 (-309 |#1|))) (-400 (-923 |#1|)) (-1143))) (-15 -4094 ((-621 (-287 (-309 |#1|))) (-400 (-923 |#1|)))) (-15 -4094 ((-621 (-287 (-309 |#1|))) (-287 (-400 (-923 |#1|))) (-1143))) (-15 -4094 ((-621 (-287 (-309 |#1|))) (-287 (-400 (-923 |#1|))))) (-15 -4094 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-400 (-923 |#1|))) (-621 (-1143)))) (-15 -4094 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-400 (-923 |#1|))))) (-15 -4094 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-400 (-923 |#1|)))) (-621 (-1143)))) (-15 -4094 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-400 (-923 |#1|)))))) (-15 -1620 ((-621 (-309 |#1|)) (-400 (-923 |#1|)) (-1143))) (-15 -1620 ((-621 (-621 (-309 |#1|))) (-621 (-400 (-923 |#1|))) (-621 (-1143)))) (-15 -1534 ((-1132 (-621 (-309 |#1|)) (-621 (-287 (-309 |#1|)))) (-287 (-400 (-923 |#1|))) (-1143))) (-15 -1534 ((-1132 (-621 (-309 |#1|)) (-621 (-287 (-309 |#1|)))) (-400 (-923 |#1|)) (-1143))))
+((-3787 (((-400 (-1139 (-309 |#1|))) (-1226 (-309 |#1|)) (-400 (-1139 (-309 |#1|))) (-549)) 29)) (-2713 (((-400 (-1139 (-309 |#1|))) (-400 (-1139 (-309 |#1|))) (-400 (-1139 (-309 |#1|))) (-400 (-1139 (-309 |#1|)))) 40)))
+(((-1097 |#1|) (-10 -7 (-15 -2713 ((-400 (-1139 (-309 |#1|))) (-400 (-1139 (-309 |#1|))) (-400 (-1139 (-309 |#1|))) (-400 (-1139 (-309 |#1|))))) (-15 -3787 ((-400 (-1139 (-309 |#1|))) (-1226 (-309 |#1|)) (-400 (-1139 (-309 |#1|))) (-549)))) (-13 (-541) (-823))) (T -1097))
+((-3787 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-400 (-1139 (-309 *5)))) (-5 *3 (-1226 (-309 *5))) (-5 *4 (-549)) (-4 *5 (-13 (-541) (-823))) (-5 *1 (-1097 *5)))) (-2713 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-400 (-1139 (-309 *3)))) (-4 *3 (-13 (-541) (-823))) (-5 *1 (-1097 *3)))))
+(-10 -7 (-15 -2713 ((-400 (-1139 (-309 |#1|))) (-400 (-1139 (-309 |#1|))) (-400 (-1139 (-309 |#1|))) (-400 (-1139 (-309 |#1|))))) (-15 -3787 ((-400 (-1139 (-309 |#1|))) (-1226 (-309 |#1|)) (-400 (-1139 (-309 |#1|))) (-549))))
+((-2227 (((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-309 |#1|))) (-621 (-1143))) 224) (((-621 (-287 (-309 |#1|))) (-309 |#1|) (-1143)) 20) (((-621 (-287 (-309 |#1|))) (-287 (-309 |#1|)) (-1143)) 26) (((-621 (-287 (-309 |#1|))) (-287 (-309 |#1|))) 25) (((-621 (-287 (-309 |#1|))) (-309 |#1|)) 21)))
+(((-1098 |#1|) (-10 -7 (-15 -2227 ((-621 (-287 (-309 |#1|))) (-309 |#1|))) (-15 -2227 ((-621 (-287 (-309 |#1|))) (-287 (-309 |#1|)))) (-15 -2227 ((-621 (-287 (-309 |#1|))) (-287 (-309 |#1|)) (-1143))) (-15 -2227 ((-621 (-287 (-309 |#1|))) (-309 |#1|) (-1143))) (-15 -2227 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-309 |#1|))) (-621 (-1143))))) (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (T -1098))
+((-2227 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-1143))) (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-621 (-621 (-287 (-309 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-621 (-287 (-309 *5)))))) (-2227 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-621 (-287 (-309 *5)))) (-5 *1 (-1098 *5)) (-5 *3 (-309 *5)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-621 (-287 (-309 *5)))) (-5 *1 (-1098 *5)) (-5 *3 (-287 (-309 *5))))) (-2227 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1098 *4)) (-5 *3 (-287 (-309 *4))))) (-2227 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145))) (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1098 *4)) (-5 *3 (-309 *4)))))
+(-10 -7 (-15 -2227 ((-621 (-287 (-309 |#1|))) (-309 |#1|))) (-15 -2227 ((-621 (-287 (-309 |#1|))) (-287 (-309 |#1|)))) (-15 -2227 ((-621 (-287 (-309 |#1|))) (-287 (-309 |#1|)) (-1143))) (-15 -2227 ((-621 (-287 (-309 |#1|))) (-309 |#1|) (-1143))) (-15 -2227 ((-621 (-621 (-287 (-309 |#1|)))) (-621 (-287 (-309 |#1|))) (-621 (-1143)))))
+((-4287 ((|#2| |#2|) 20 (|has| |#1| (-823))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-4127 ((|#2| |#2|) 19 (|has| |#1| (-823))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16)))
+(((-1099 |#1| |#2|) (-10 -7 (-15 -4127 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4287 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-823)) (PROGN (-15 -4127 (|#2| |#2|)) (-15 -4287 (|#2| |#2|))) |%noBranch|)) (-1180) (-13 (-584 (-549) |#1|) (-10 -7 (-6 -4337) (-6 -4338)))) (T -1099))
+((-4287 (*1 *2 *2) (-12 (-4 *3 (-823)) (-4 *3 (-1180)) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-584 (-549) *3) (-10 -7 (-6 -4337) (-6 -4338)))))) (-4127 (*1 *2 *2) (-12 (-4 *3 (-823)) (-4 *3 (-1180)) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-584 (-549) *3) (-10 -7 (-6 -4337) (-6 -4338)))))) (-4287 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1180)) (-5 *1 (-1099 *4 *2)) (-4 *2 (-13 (-584 (-549) *4) (-10 -7 (-6 -4337) (-6 -4338)))))) (-4127 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1180)) (-5 *1 (-1099 *4 *2)) (-4 *2 (-13 (-584 (-549) *4) (-10 -7 (-6 -4337) (-6 -4338)))))))
+(-10 -7 (-15 -4127 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4287 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-823)) (PROGN (-15 -4127 (|#2| |#2|)) (-15 -4287 (|#2| |#2|))) |%noBranch|))
+((-3834 (((-112) $ $) NIL)) (-3368 (((-1131 3 |#1|) $) 107)) (-1705 (((-112) $) 72)) (-4255 (($ $ (-621 (-914 |#1|))) 20) (($ $ (-621 (-621 |#1|))) 75) (($ (-621 (-914 |#1|))) 74) (((-621 (-914 |#1|)) $) 73)) (-4081 (((-112) $) 41)) (-2798 (($ $ (-914 |#1|)) 46) (($ $ (-621 |#1|)) 51) (($ $ (-747)) 53) (($ (-914 |#1|)) 47) (((-914 |#1|) $) 45)) (-1850 (((-2 (|:| -4115 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747))) $) 105)) (-3898 (((-747) $) 26)) (-2609 (((-747) $) 25)) (-2986 (($ $ (-747) (-914 |#1|)) 39)) (-1976 (((-112) $) 82)) (-2580 (($ $ (-621 (-621 (-914 |#1|))) (-621 (-169)) (-169)) 89) (($ $ (-621 (-621 (-621 |#1|))) (-621 (-169)) (-169)) 91) (($ $ (-621 (-621 (-914 |#1|))) (-112) (-112)) 85) (($ $ (-621 (-621 (-621 |#1|))) (-112) (-112)) 93) (($ (-621 (-621 (-914 |#1|)))) 86) (($ (-621 (-621 (-914 |#1|))) (-112) (-112)) 87) (((-621 (-621 (-914 |#1|))) $) 84)) (-3890 (($ (-621 $)) 28) (($ $ $) 29)) (-3306 (((-621 (-169)) $) 102)) (-2790 (((-621 (-914 |#1|)) $) 96)) (-2105 (((-621 (-621 (-169))) $) 101)) (-1625 (((-621 (-621 (-621 (-914 |#1|)))) $) NIL)) (-4134 (((-621 (-621 (-621 (-747)))) $) 99)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-4200 (((-747) $ (-621 (-914 |#1|))) 37)) (-2918 (((-112) $) 54)) (-2237 (($ $ (-621 (-914 |#1|))) 56) (($ $ (-621 (-621 |#1|))) 62) (($ (-621 (-914 |#1|))) 57) (((-621 (-914 |#1|)) $) 55)) (-4088 (($) 23) (($ (-1131 3 |#1|)) 24)) (-2281 (($ $) 35)) (-1345 (((-621 $) $) 34)) (-3033 (($ (-621 $)) 31)) (-3971 (((-621 $) $) 33)) (-3846 (((-834) $) 111)) (-2629 (((-112) $) 64)) (-3052 (($ $ (-621 (-914 |#1|))) 66) (($ $ (-621 (-621 |#1|))) 69) (($ (-621 (-914 |#1|))) 67) (((-621 (-914 |#1|)) $) 65)) (-3097 (($ $) 106)) (-2389 (((-112) $ $) NIL)))
+(((-1100 |#1|) (-1101 |#1|) (-1018)) (T -1100))
+NIL
+(-1101 |#1|)
+((-3834 (((-112) $ $) 7)) (-3368 (((-1131 3 |#1|) $) 13)) (-1705 (((-112) $) 29)) (-4255 (($ $ (-621 (-914 |#1|))) 33) (($ $ (-621 (-621 |#1|))) 32) (($ (-621 (-914 |#1|))) 31) (((-621 (-914 |#1|)) $) 30)) (-4081 (((-112) $) 44)) (-2798 (($ $ (-914 |#1|)) 49) (($ $ (-621 |#1|)) 48) (($ $ (-747)) 47) (($ (-914 |#1|)) 46) (((-914 |#1|) $) 45)) (-1850 (((-2 (|:| -4115 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747))) $) 15)) (-3898 (((-747) $) 58)) (-2609 (((-747) $) 59)) (-2986 (($ $ (-747) (-914 |#1|)) 50)) (-1976 (((-112) $) 21)) (-2580 (($ $ (-621 (-621 (-914 |#1|))) (-621 (-169)) (-169)) 28) (($ $ (-621 (-621 (-621 |#1|))) (-621 (-169)) (-169)) 27) (($ $ (-621 (-621 (-914 |#1|))) (-112) (-112)) 26) (($ $ (-621 (-621 (-621 |#1|))) (-112) (-112)) 25) (($ (-621 (-621 (-914 |#1|)))) 24) (($ (-621 (-621 (-914 |#1|))) (-112) (-112)) 23) (((-621 (-621 (-914 |#1|))) $) 22)) (-3890 (($ (-621 $)) 57) (($ $ $) 56)) (-3306 (((-621 (-169)) $) 16)) (-2790 (((-621 (-914 |#1|)) $) 20)) (-2105 (((-621 (-621 (-169))) $) 17)) (-1625 (((-621 (-621 (-621 (-914 |#1|)))) $) 18)) (-4134 (((-621 (-621 (-621 (-747)))) $) 19)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-4200 (((-747) $ (-621 (-914 |#1|))) 51)) (-2918 (((-112) $) 39)) (-2237 (($ $ (-621 (-914 |#1|))) 43) (($ $ (-621 (-621 |#1|))) 42) (($ (-621 (-914 |#1|))) 41) (((-621 (-914 |#1|)) $) 40)) (-4088 (($) 61) (($ (-1131 3 |#1|)) 60)) (-2281 (($ $) 52)) (-1345 (((-621 $) $) 53)) (-3033 (($ (-621 $)) 55)) (-3971 (((-621 $) $) 54)) (-3846 (((-834) $) 11)) (-2629 (((-112) $) 34)) (-3052 (($ $ (-621 (-914 |#1|))) 38) (($ $ (-621 (-621 |#1|))) 37) (($ (-621 (-914 |#1|))) 36) (((-621 (-914 |#1|)) $) 35)) (-3097 (($ $) 14)) (-2389 (((-112) $ $) 6)))
+(((-1101 |#1|) (-138) (-1018)) (T -1101))
+((-3846 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-834)))) (-4088 (*1 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1018)))) (-4088 (*1 *1 *2) (-12 (-5 *2 (-1131 3 *3)) (-4 *3 (-1018)) (-4 *1 (-1101 *3)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3898 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))) (-3890 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))) (-3890 (*1 *1 *1 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1018)))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))) (-3971 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-621 *1)) (-4 *1 (-1101 *3)))) (-1345 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-621 *1)) (-4 *1 (-1101 *3)))) (-2281 (*1 *1 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1018)))) (-4200 (*1 *2 *1 *3) (-12 (-5 *3 (-621 (-914 *4))) (-4 *1 (-1101 *4)) (-4 *4 (-1018)) (-5 *2 (-747)))) (-2986 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-914 *4)) (-4 *1 (-1101 *4)) (-4 *4 (-1018)))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-914 *3)) (-4 *3 (-1018)) (-4 *1 (-1101 *3)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-914 *3)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-2237 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-914 *3))) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))) (-2237 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-621 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1101 *3)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3))))) (-2918 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-3052 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-914 *3))) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))) (-3052 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))) (-3052 (*1 *1 *2) (-12 (-5 *2 (-621 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1101 *3)))) (-3052 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3))))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-4255 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-914 *3))) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))) (-4255 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-621 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1101 *3)))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3))))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-2580 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-621 (-621 (-914 *5)))) (-5 *3 (-621 (-169))) (-5 *4 (-169)) (-4 *1 (-1101 *5)) (-4 *5 (-1018)))) (-2580 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-621 (-621 (-621 *5)))) (-5 *3 (-621 (-169))) (-5 *4 (-169)) (-4 *1 (-1101 *5)) (-4 *5 (-1018)))) (-2580 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-621 (-621 (-914 *4)))) (-5 *3 (-112)) (-4 *1 (-1101 *4)) (-4 *4 (-1018)))) (-2580 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-621 (-621 (-621 *4)))) (-5 *3 (-112)) (-4 *1 (-1101 *4)) (-4 *4 (-1018)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-914 *3)))) (-4 *3 (-1018)) (-4 *1 (-1101 *3)))) (-2580 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-621 (-621 (-914 *4)))) (-5 *3 (-112)) (-4 *4 (-1018)) (-4 *1 (-1101 *4)))) (-2580 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-621 (-914 *3)))))) (-1976 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3))))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-621 (-621 (-747))))))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-621 (-621 (-914 *3))))))) (-2105 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-621 (-169)))))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-169))))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -4115 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747)))))) (-3097 (*1 *1 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1018)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-1131 3 *3)))))
+(-13 (-1067) (-10 -8 (-15 -4088 ($)) (-15 -4088 ($ (-1131 3 |t#1|))) (-15 -2609 ((-747) $)) (-15 -3898 ((-747) $)) (-15 -3890 ($ (-621 $))) (-15 -3890 ($ $ $)) (-15 -3033 ($ (-621 $))) (-15 -3971 ((-621 $) $)) (-15 -1345 ((-621 $) $)) (-15 -2281 ($ $)) (-15 -4200 ((-747) $ (-621 (-914 |t#1|)))) (-15 -2986 ($ $ (-747) (-914 |t#1|))) (-15 -2798 ($ $ (-914 |t#1|))) (-15 -2798 ($ $ (-621 |t#1|))) (-15 -2798 ($ $ (-747))) (-15 -2798 ($ (-914 |t#1|))) (-15 -2798 ((-914 |t#1|) $)) (-15 -4081 ((-112) $)) (-15 -2237 ($ $ (-621 (-914 |t#1|)))) (-15 -2237 ($ $ (-621 (-621 |t#1|)))) (-15 -2237 ($ (-621 (-914 |t#1|)))) (-15 -2237 ((-621 (-914 |t#1|)) $)) (-15 -2918 ((-112) $)) (-15 -3052 ($ $ (-621 (-914 |t#1|)))) (-15 -3052 ($ $ (-621 (-621 |t#1|)))) (-15 -3052 ($ (-621 (-914 |t#1|)))) (-15 -3052 ((-621 (-914 |t#1|)) $)) (-15 -2629 ((-112) $)) (-15 -4255 ($ $ (-621 (-914 |t#1|)))) (-15 -4255 ($ $ (-621 (-621 |t#1|)))) (-15 -4255 ($ (-621 (-914 |t#1|)))) (-15 -4255 ((-621 (-914 |t#1|)) $)) (-15 -1705 ((-112) $)) (-15 -2580 ($ $ (-621 (-621 (-914 |t#1|))) (-621 (-169)) (-169))) (-15 -2580 ($ $ (-621 (-621 (-621 |t#1|))) (-621 (-169)) (-169))) (-15 -2580 ($ $ (-621 (-621 (-914 |t#1|))) (-112) (-112))) (-15 -2580 ($ $ (-621 (-621 (-621 |t#1|))) (-112) (-112))) (-15 -2580 ($ (-621 (-621 (-914 |t#1|))))) (-15 -2580 ($ (-621 (-621 (-914 |t#1|))) (-112) (-112))) (-15 -2580 ((-621 (-621 (-914 |t#1|))) $)) (-15 -1976 ((-112) $)) (-15 -2790 ((-621 (-914 |t#1|)) $)) (-15 -4134 ((-621 (-621 (-621 (-747)))) $)) (-15 -1625 ((-621 (-621 (-621 (-914 |t#1|)))) $)) (-15 -2105 ((-621 (-621 (-169))) $)) (-15 -3306 ((-621 (-169)) $)) (-15 -1850 ((-2 (|:| -4115 (-747)) (|:| |curves| (-747)) (|:| |polygons| (-747)) (|:| |constructs| (-747))) $)) (-15 -3097 ($ $)) (-15 -3368 ((-1131 3 |t#1|) $)) (-15 -3846 ((-834) $))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) 7)) (-3264 (((-112) $ (|[\|\|]| (-515))) 17) (((-112) $ (|[\|\|]| (-212))) 21) (((-112) $ (|[\|\|]| (-652))) 25) (((-112) $ (|[\|\|]| (-1236))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1082))) 41) (((-112) $ (|[\|\|]| (-95))) 45) (((-112) $ (|[\|\|]| (-657))) 49) (((-112) $ (|[\|\|]| (-508))) 53) (((-112) $ (|[\|\|]| (-1033))) 57) (((-112) $ (|[\|\|]| (-1237))) 61) (((-112) $ (|[\|\|]| (-516))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-647))) 73) (((-112) $ (|[\|\|]| (-304))) 77) (((-112) $ (|[\|\|]| (-1007))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-941))) 89) (((-112) $ (|[\|\|]| (-1040))) 93) (((-112) $ (|[\|\|]| (-1057))) 97) (((-112) $ (|[\|\|]| (-1063))) 101) (((-112) $ (|[\|\|]| (-604))) 105) (((-112) $ (|[\|\|]| (-1133))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-470))) 121) (((-112) $ (|[\|\|]| (-573))) 125)) (-2321 (((-515) $) 18) (((-212) $) 22) (((-652) $) 26) (((-1236) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1082) $) 42) (((-95) $) 46) (((-657) $) 50) (((-508) $) 54) (((-1033) $) 58) (((-1237) $) 62) (((-516) $) 66) (((-152) $) 70) (((-647) $) 74) (((-304) $) 78) (((-1007) $) 82) (((-178) $) 86) (((-941) $) 90) (((-1040) $) 94) (((-1057) $) 98) (((-1063) $) 102) (((-604) $) 106) (((-1133) $) 110) (((-154) $) 114) (((-136) $) 118) (((-470) $) 122) (((-573) $) 126)) (-2389 (((-112) $ $) NIL)))
+(((-1102) (-1104)) (T -1102))
+NIL
+(-1104)
+((-3383 (((-621 (-1148)) (-1125)) 9)))
+(((-1103) (-10 -7 (-15 -3383 ((-621 (-1148)) (-1125))))) (T -1103))
+((-3383 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-621 (-1148))) (-5 *1 (-1103)))))
+(-10 -7 (-15 -3383 ((-621 (-1148)) (-1125))))
+((-3834 (((-112) $ $) 7)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (((-1148) $) 14)) (-3264 (((-112) $ (|[\|\|]| (-515))) 72) (((-112) $ (|[\|\|]| (-212))) 70) (((-112) $ (|[\|\|]| (-652))) 68) (((-112) $ (|[\|\|]| (-1236))) 66) (((-112) $ (|[\|\|]| (-137))) 64) (((-112) $ (|[\|\|]| (-132))) 62) (((-112) $ (|[\|\|]| (-1082))) 60) (((-112) $ (|[\|\|]| (-95))) 58) (((-112) $ (|[\|\|]| (-657))) 56) (((-112) $ (|[\|\|]| (-508))) 54) (((-112) $ (|[\|\|]| (-1033))) 52) (((-112) $ (|[\|\|]| (-1237))) 50) (((-112) $ (|[\|\|]| (-516))) 48) (((-112) $ (|[\|\|]| (-152))) 46) (((-112) $ (|[\|\|]| (-647))) 44) (((-112) $ (|[\|\|]| (-304))) 42) (((-112) $ (|[\|\|]| (-1007))) 40) (((-112) $ (|[\|\|]| (-178))) 38) (((-112) $ (|[\|\|]| (-941))) 36) (((-112) $ (|[\|\|]| (-1040))) 34) (((-112) $ (|[\|\|]| (-1057))) 32) (((-112) $ (|[\|\|]| (-1063))) 30) (((-112) $ (|[\|\|]| (-604))) 28) (((-112) $ (|[\|\|]| (-1133))) 26) (((-112) $ (|[\|\|]| (-154))) 24) (((-112) $ (|[\|\|]| (-136))) 22) (((-112) $ (|[\|\|]| (-470))) 20) (((-112) $ (|[\|\|]| (-573))) 18)) (-2321 (((-515) $) 71) (((-212) $) 69) (((-652) $) 67) (((-1236) $) 65) (((-137) $) 63) (((-132) $) 61) (((-1082) $) 59) (((-95) $) 57) (((-657) $) 55) (((-508) $) 53) (((-1033) $) 51) (((-1237) $) 49) (((-516) $) 47) (((-152) $) 45) (((-647) $) 43) (((-304) $) 41) (((-1007) $) 39) (((-178) $) 37) (((-941) $) 35) (((-1040) $) 33) (((-1057) $) 31) (((-1063) $) 29) (((-604) $) 27) (((-1133) $) 25) (((-154) $) 23) (((-136) $) 21) (((-470) $) 19) (((-573) $) 17)) (-2389 (((-112) $ $) 6)))
+(((-1104) (-138)) (T -1104))
+((-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-515)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-212)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-652))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-652)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1236))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1236)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-137)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-132)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1082)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-95)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-657))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-657)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-508)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1033)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1237))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1237)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-516)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-152)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-647))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-647)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-304))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-304)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1007)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-178)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-941))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-941)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1040)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1057)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1063)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-604)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1133))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1133)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-154)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-136)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-470)))) (-3264 (*1 *2 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-573)))))
+(-13 (-1050) (-1221) (-10 -8 (-15 -3264 ((-112) $ (|[\|\|]| (-515)))) (-15 -2321 ((-515) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-212)))) (-15 -2321 ((-212) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-652)))) (-15 -2321 ((-652) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1236)))) (-15 -2321 ((-1236) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-137)))) (-15 -2321 ((-137) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-132)))) (-15 -2321 ((-132) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1082)))) (-15 -2321 ((-1082) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-95)))) (-15 -2321 ((-95) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-657)))) (-15 -2321 ((-657) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-508)))) (-15 -2321 ((-508) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1033)))) (-15 -2321 ((-1033) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1237)))) (-15 -2321 ((-1237) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-516)))) (-15 -2321 ((-516) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-152)))) (-15 -2321 ((-152) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-647)))) (-15 -2321 ((-647) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-304)))) (-15 -2321 ((-304) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1007)))) (-15 -2321 ((-1007) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-178)))) (-15 -2321 ((-178) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-941)))) (-15 -2321 ((-941) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1040)))) (-15 -2321 ((-1040) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1057)))) (-15 -2321 ((-1057) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1063)))) (-15 -2321 ((-1063) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-604)))) (-15 -2321 ((-604) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-1133)))) (-15 -2321 ((-1133) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-154)))) (-15 -2321 ((-154) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-136)))) (-15 -2321 ((-136) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-470)))) (-15 -2321 ((-470) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-573)))) (-15 -2321 ((-573) $))))
+(((-92) . T) ((-101) . T) ((-593 (-834)) . T) ((-593 (-1148)) . T) ((-1067) . T) ((-1050) . T) ((-1221) . T))
+((-2006 (((-1231) (-621 (-834))) 23) (((-1231) (-834)) 22)) (-3930 (((-1231) (-621 (-834))) 21) (((-1231) (-834)) 20)) (-3316 (((-1231) (-621 (-834))) 19) (((-1231) (-834)) 11) (((-1231) (-1125) (-834)) 17)))
+(((-1105) (-10 -7 (-15 -3316 ((-1231) (-1125) (-834))) (-15 -3316 ((-1231) (-834))) (-15 -3930 ((-1231) (-834))) (-15 -2006 ((-1231) (-834))) (-15 -3316 ((-1231) (-621 (-834)))) (-15 -3930 ((-1231) (-621 (-834)))) (-15 -2006 ((-1231) (-621 (-834)))))) (T -1105))
+((-2006 (*1 *2 *3) (-12 (-5 *3 (-621 (-834))) (-5 *2 (-1231)) (-5 *1 (-1105)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-621 (-834))) (-5 *2 (-1231)) (-5 *1 (-1105)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-621 (-834))) (-5 *2 (-1231)) (-5 *1 (-1105)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1231)) (-5 *1 (-1105)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1231)) (-5 *1 (-1105)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1231)) (-5 *1 (-1105)))) (-3316 (*1 *2 *3 *4) (-12 (-5 *3 (-1125)) (-5 *4 (-834)) (-5 *2 (-1231)) (-5 *1 (-1105)))))
+(-10 -7 (-15 -3316 ((-1231) (-1125) (-834))) (-15 -3316 ((-1231) (-834))) (-15 -3930 ((-1231) (-834))) (-15 -2006 ((-1231) (-834))) (-15 -3316 ((-1231) (-621 (-834)))) (-15 -3930 ((-1231) (-621 (-834)))) (-15 -2006 ((-1231) (-621 (-834)))))
+((-3796 (($ $ $) 10)) (-3634 (($ $) 9)) (-1370 (($ $ $) 13)) (-1611 (($ $ $) 15)) (-2981 (($ $ $) 12)) (-1643 (($ $ $) 14)) (-1273 (($ $) 17)) (-3000 (($ $) 16)) (-3212 (($ $) 6)) (-3553 (($ $ $) 11) (($ $) 7)) (-2096 (($ $ $) 8)))
+(((-1106) (-138)) (T -1106))
+((-1273 (*1 *1 *1) (-4 *1 (-1106))) (-3000 (*1 *1 *1) (-4 *1 (-1106))) (-1611 (*1 *1 *1 *1) (-4 *1 (-1106))) (-1643 (*1 *1 *1 *1) (-4 *1 (-1106))) (-1370 (*1 *1 *1 *1) (-4 *1 (-1106))) (-2981 (*1 *1 *1 *1) (-4 *1 (-1106))) (-3553 (*1 *1 *1 *1) (-4 *1 (-1106))) (-3796 (*1 *1 *1 *1) (-4 *1 (-1106))) (-3634 (*1 *1 *1) (-4 *1 (-1106))) (-2096 (*1 *1 *1 *1) (-4 *1 (-1106))) (-3553 (*1 *1 *1) (-4 *1 (-1106))) (-3212 (*1 *1 *1) (-4 *1 (-1106))))
+(-13 (-10 -8 (-15 -3212 ($ $)) (-15 -3553 ($ $)) (-15 -2096 ($ $ $)) (-15 -3634 ($ $)) (-15 -3796 ($ $ $)) (-15 -3553 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -1643 ($ $ $)) (-15 -1611 ($ $ $)) (-15 -3000 ($ $)) (-15 -1273 ($ $))))
+((-3834 (((-112) $ $) 41)) (-4161 ((|#1| $) 15)) (-2345 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-1464 (((-112) $) 17)) (-3082 (($ $ |#1|) 28)) (-3627 (($ $ (-112)) 30)) (-2690 (($ $) 31)) (-4034 (($ $ |#2|) 29)) (-3851 (((-1125) $) NIL)) (-3416 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3990 (((-1087) $) NIL)) (-3670 (((-112) $) 14)) (-3742 (($) 10)) (-2281 (($ $) 27)) (-3854 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1981 |#2|))) 21) (((-621 $) (-621 (-2 (|:| |val| |#1|) (|:| -1981 |#2|)))) 24) (((-621 $) |#1| (-621 |#2|)) 26)) (-1927 ((|#2| $) 16)) (-3846 (((-834) $) 50)) (-2389 (((-112) $ $) 39)))
+(((-1107 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -3742 ($)) (-15 -3670 ((-112) $)) (-15 -4161 (|#1| $)) (-15 -1927 (|#2| $)) (-15 -1464 ((-112) $)) (-15 -3854 ($ |#1| |#2| (-112))) (-15 -3854 ($ |#1| |#2|)) (-15 -3854 ($ (-2 (|:| |val| |#1|) (|:| -1981 |#2|)))) (-15 -3854 ((-621 $) (-621 (-2 (|:| |val| |#1|) (|:| -1981 |#2|))))) (-15 -3854 ((-621 $) |#1| (-621 |#2|))) (-15 -2281 ($ $)) (-15 -3082 ($ $ |#1|)) (-15 -4034 ($ $ |#2|)) (-15 -3627 ($ $ (-112))) (-15 -2690 ($ $)) (-15 -3416 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2345 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1067) (-34)) (-13 (-1067) (-34))) (T -1107))
+((-3742 (*1 *1) (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-4161 (*1 *2 *1) (-12 (-4 *2 (-13 (-1067) (-34))) (-5 *1 (-1107 *2 *3)) (-4 *3 (-13 (-1067) (-34))))) (-1927 (*1 *2 *1) (-12 (-4 *2 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *2)) (-4 *3 (-13 (-1067) (-34))))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-3854 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3854 (*1 *1 *2 *3) (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3854 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1981 *4))) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *4)))) (-3854 (*1 *2 *3) (-12 (-5 *3 (-621 (-2 (|:| |val| *4) (|:| -1981 *5)))) (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-621 (-1107 *4 *5))) (-5 *1 (-1107 *4 *5)))) (-3854 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *5)) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-621 (-1107 *3 *5))) (-5 *1 (-1107 *3 *5)) (-4 *3 (-13 (-1067) (-34))))) (-2281 (*1 *1 *1) (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3082 (*1 *1 *1 *2) (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-4034 (*1 *1 *1 *2) (-12 (-5 *1 (-1107 *3 *2)) (-4 *3 (-13 (-1067) (-34))) (-4 *2 (-13 (-1067) (-34))))) (-3627 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-2690 (*1 *1 *1) (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3416 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1067) (-34))) (-4 *6 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1107 *5 *6)))) (-2345 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-13 (-1067) (-34))))))
+(-13 (-1067) (-10 -8 (-15 -3742 ($)) (-15 -3670 ((-112) $)) (-15 -4161 (|#1| $)) (-15 -1927 (|#2| $)) (-15 -1464 ((-112) $)) (-15 -3854 ($ |#1| |#2| (-112))) (-15 -3854 ($ |#1| |#2|)) (-15 -3854 ($ (-2 (|:| |val| |#1|) (|:| -1981 |#2|)))) (-15 -3854 ((-621 $) (-621 (-2 (|:| |val| |#1|) (|:| -1981 |#2|))))) (-15 -3854 ((-621 $) |#1| (-621 |#2|))) (-15 -2281 ($ $)) (-15 -3082 ($ $ |#1|)) (-15 -4034 ($ $ |#2|)) (-15 -3627 ($ $ (-112))) (-15 -2690 ($ $)) (-15 -3416 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2345 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-3834 (((-112) $ $) NIL (|has| (-1107 |#1| |#2|) (-1067)))) (-4161 (((-1107 |#1| |#2|) $) 25)) (-2493 (($ $) 76)) (-2327 (((-112) (-1107 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-1913 (($ $ $ (-621 (-1107 |#1| |#2|))) 90) (($ $ $ (-621 (-1107 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-1584 (((-112) $ (-747)) NIL)) (-2838 (((-1107 |#1| |#2|) $ (-1107 |#1| |#2|)) 43 (|has| $ (-6 -4338)))) (-2254 (((-1107 |#1| |#2|) $ "value" (-1107 |#1| |#2|)) NIL (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) 41 (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-1499 (((-621 (-2 (|:| |val| |#1|) (|:| -1981 |#2|))) $) 80)) (-2129 (($ (-1107 |#1| |#2|) $) 39)) (-3812 (($ (-1107 |#1| |#2|) $) 31)) (-2989 (((-621 (-1107 |#1| |#2|)) $) NIL (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) 51)) (-3951 (((-112) (-1107 |#1| |#2|) $) 82)) (-3895 (((-112) $ $) NIL (|has| (-1107 |#1| |#2|) (-1067)))) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 (-1107 |#1| |#2|)) $) 55 (|has| $ (-6 -4337)))) (-2090 (((-112) (-1107 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-1107 |#1| |#2|) (-1067))))) (-1868 (($ (-1 (-1107 |#1| |#2|) (-1107 |#1| |#2|)) $) 47 (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-1107 |#1| |#2|) (-1107 |#1| |#2|)) $) 46)) (-1508 (((-112) $ (-747)) NIL)) (-3591 (((-621 (-1107 |#1| |#2|)) $) 53)) (-2076 (((-112) $) 42)) (-3851 (((-1125) $) NIL (|has| (-1107 |#1| |#2|) (-1067)))) (-3990 (((-1087) $) NIL (|has| (-1107 |#1| |#2|) (-1067)))) (-2431 (((-3 $ "failed") $) 75)) (-1780 (((-112) (-1 (-112) (-1107 |#1| |#2|)) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-1107 |#1| |#2|)))) NIL (-12 (|has| (-1107 |#1| |#2|) (-302 (-1107 |#1| |#2|))) (|has| (-1107 |#1| |#2|) (-1067)))) (($ $ (-287 (-1107 |#1| |#2|))) NIL (-12 (|has| (-1107 |#1| |#2|) (-302 (-1107 |#1| |#2|))) (|has| (-1107 |#1| |#2|) (-1067)))) (($ $ (-1107 |#1| |#2|) (-1107 |#1| |#2|)) NIL (-12 (|has| (-1107 |#1| |#2|) (-302 (-1107 |#1| |#2|))) (|has| (-1107 |#1| |#2|) (-1067)))) (($ $ (-621 (-1107 |#1| |#2|)) (-621 (-1107 |#1| |#2|))) NIL (-12 (|has| (-1107 |#1| |#2|) (-302 (-1107 |#1| |#2|))) (|has| (-1107 |#1| |#2|) (-1067))))) (-4144 (((-112) $ $) 50)) (-3670 (((-112) $) 22)) (-3742 (($) 24)) (-3341 (((-1107 |#1| |#2|) $ "value") NIL)) (-3230 (((-549) $ $) NIL)) (-3497 (((-112) $) 44)) (-4000 (((-747) (-1 (-112) (-1107 |#1| |#2|)) $) NIL (|has| $ (-6 -4337))) (((-747) (-1107 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-1107 |#1| |#2|) (-1067))))) (-2281 (($ $) 49)) (-3854 (($ (-1107 |#1| |#2|)) 9) (($ |#1| |#2| (-621 $)) 12) (($ |#1| |#2| (-621 (-1107 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-621 |#2|)) 17)) (-3592 (((-621 |#2|) $) 81)) (-3846 (((-834) $) 73 (|has| (-1107 |#1| |#2|) (-593 (-834))))) (-2742 (((-621 $) $) 28)) (-1987 (((-112) $ $) NIL (|has| (-1107 |#1| |#2|) (-1067)))) (-3527 (((-112) (-1 (-112) (-1107 |#1| |#2|)) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 64 (|has| (-1107 |#1| |#2|) (-1067)))) (-3775 (((-747) $) 58 (|has| $ (-6 -4337)))))
+(((-1108 |#1| |#2|) (-13 (-981 (-1107 |#1| |#2|)) (-10 -8 (-6 -4338) (-6 -4337) (-15 -2431 ((-3 $ "failed") $)) (-15 -2493 ($ $)) (-15 -3854 ($ (-1107 |#1| |#2|))) (-15 -3854 ($ |#1| |#2| (-621 $))) (-15 -3854 ($ |#1| |#2| (-621 (-1107 |#1| |#2|)))) (-15 -3854 ($ |#1| |#2| |#1| (-621 |#2|))) (-15 -3592 ((-621 |#2|) $)) (-15 -1499 ((-621 (-2 (|:| |val| |#1|) (|:| -1981 |#2|))) $)) (-15 -3951 ((-112) (-1107 |#1| |#2|) $)) (-15 -2327 ((-112) (-1107 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3812 ($ (-1107 |#1| |#2|) $)) (-15 -2129 ($ (-1107 |#1| |#2|) $)) (-15 -1913 ($ $ $ (-621 (-1107 |#1| |#2|)))) (-15 -1913 ($ $ $ (-621 (-1107 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1067) (-34)) (-13 (-1067) (-34))) (T -1108))
+((-2431 (*1 *1 *1) (|partial| -12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-2493 (*1 *1 *1) (-12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3854 (*1 *1 *2) (-12 (-5 *2 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1108 *3 *4)))) (-3854 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-621 (-1108 *2 *3))) (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))))) (-3854 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-621 (-1107 *2 *3))) (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34))) (-5 *1 (-1108 *2 *3)))) (-3854 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-1067) (-34))) (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1067) (-34))))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-621 *4)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4)))) (-5 *1 (-1108 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))) (-3951 (*1 *2 *3 *1) (-12 (-5 *3 (-1107 *4 *5)) (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5)))) (-2327 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1107 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1067) (-34))) (-4 *6 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1108 *5 *6)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1108 *3 *4)))) (-2129 (*1 *1 *2 *1) (-12 (-5 *2 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1108 *3 *4)))) (-1913 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-621 (-1107 *3 *4))) (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1108 *3 *4)))) (-1913 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-1107 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34))) (-5 *1 (-1108 *4 *5)))))
+(-13 (-981 (-1107 |#1| |#2|)) (-10 -8 (-6 -4338) (-6 -4337) (-15 -2431 ((-3 $ "failed") $)) (-15 -2493 ($ $)) (-15 -3854 ($ (-1107 |#1| |#2|))) (-15 -3854 ($ |#1| |#2| (-621 $))) (-15 -3854 ($ |#1| |#2| (-621 (-1107 |#1| |#2|)))) (-15 -3854 ($ |#1| |#2| |#1| (-621 |#2|))) (-15 -3592 ((-621 |#2|) $)) (-15 -1499 ((-621 (-2 (|:| |val| |#1|) (|:| -1981 |#2|))) $)) (-15 -3951 ((-112) (-1107 |#1| |#2|) $)) (-15 -2327 ((-112) (-1107 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3812 ($ (-1107 |#1| |#2|) $)) (-15 -2129 ($ (-1107 |#1| |#2|) $)) (-15 -1913 ($ $ $ (-621 (-1107 |#1| |#2|)))) (-15 -1913 ($ $ $ (-621 (-1107 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3682 (($ $) NIL)) (-2906 ((|#2| $) NIL)) (-2092 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-2040 (($ (-665 |#2|)) 47)) (-2340 (((-112) $) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-2228 (($ |#2|) 9)) (-1682 (($) NIL T CONST)) (-3460 (($ $) 60 (|has| |#2| (-300)))) (-4060 (((-234 |#1| |#2|) $ (-549)) 34)) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 |#2| "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) ((|#2| $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) 74)) (-3123 (((-747) $) 62 (|has| |#2| (-541)))) (-1809 ((|#2| $ (-549) (-549)) NIL)) (-2989 (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2675 (((-112) $) NIL)) (-1323 (((-747) $) 64 (|has| |#2| (-541)))) (-1479 (((-621 (-234 |#1| |#2|)) $) 68 (|has| |#2| (-541)))) (-2142 (((-747) $) NIL)) (-2155 (((-747) $) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-1929 ((|#2| $) 58 (|has| |#2| (-6 (-4339 "*"))))) (-1761 (((-549) $) NIL)) (-2703 (((-549) $) NIL)) (-1562 (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-1661 (((-549) $) NIL)) (-1887 (((-549) $) NIL)) (-3946 (($ (-621 (-621 |#2|))) 29)) (-1868 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2913 (((-621 (-621 |#2|)) $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-3849 (((-3 $ "failed") $) 71 (|has| |#2| (-356)))) (-3990 (((-1087) $) NIL)) (-2042 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541)))) (-1780 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#2| $ (-549) (-549) |#2|) NIL) ((|#2| $ (-549) (-549)) NIL)) (-3456 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3136 ((|#2| $) NIL)) (-2133 (($ (-621 |#2|)) 42)) (-1757 (((-112) $) NIL)) (-2081 (((-234 |#1| |#2|) $) NIL)) (-2029 ((|#2| $) 56 (|has| |#2| (-6 (-4339 "*"))))) (-4000 (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2281 (($ $) NIL)) (-2845 (((-525) $) 83 (|has| |#2| (-594 (-525))))) (-2851 (((-234 |#1| |#2|) $ (-549)) 36)) (-3846 (((-834) $) 39) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#2| (-1009 (-400 (-549))))) (($ |#2|) NIL) (((-665 |#2|) $) 44)) (-2082 (((-747)) 17)) (-3527 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2974 (((-112) $) NIL)) (-3276 (($) 11 T CONST)) (-3287 (($) 14 T CONST)) (-1702 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-747)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) 54) (($ $ (-549)) 73 (|has| |#2| (-356)))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-234 |#1| |#2|) $ (-234 |#1| |#2|)) 50) (((-234 |#1| |#2|) (-234 |#1| |#2|) $) 52)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1109 |#1| |#2|) (-13 (-1090 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-593 (-665 |#2|)) (-10 -8 (-15 -3682 ($ $)) (-15 -2040 ($ (-665 |#2|))) (-15 -3846 ((-665 |#2|) $)) (IF (|has| |#2| (-6 (-4339 "*"))) (-6 -4326) |%noBranch|) (IF (|has| |#2| (-6 (-4339 "*"))) (IF (|has| |#2| (-6 -4334)) (-6 -4334) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|))) (-747) (-1018)) (T -1109))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-665 *4)) (-5 *1 (-1109 *3 *4)) (-14 *3 (-747)) (-4 *4 (-1018)))) (-3682 (*1 *1 *1) (-12 (-5 *1 (-1109 *2 *3)) (-14 *2 (-747)) (-4 *3 (-1018)))) (-2040 (*1 *1 *2) (-12 (-5 *2 (-665 *4)) (-4 *4 (-1018)) (-5 *1 (-1109 *3 *4)) (-14 *3 (-747)))))
+(-13 (-1090 |#1| |#2| (-234 |#1| |#2|) (-234 |#1| |#2|)) (-593 (-665 |#2|)) (-10 -8 (-15 -3682 ($ $)) (-15 -2040 ($ (-665 |#2|))) (-15 -3846 ((-665 |#2|) $)) (IF (|has| |#2| (-6 (-4339 "*"))) (-6 -4326) |%noBranch|) (IF (|has| |#2| (-6 (-4339 "*"))) (IF (|has| |#2| (-6 -4334)) (-6 -4334) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-594 (-525))) (-6 (-594 (-525))) |%noBranch|)))
+((-2946 (($ $) 19)) (-1445 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-2349 (((-112) $ $) 24)) (-3408 (($ $) 17)) (-3341 (((-142) $ (-549) (-142)) NIL) (((-142) $ (-549)) NIL) (($ $ (-1193 (-549))) NIL) (($ $ $) 29)) (-3846 (($ (-142)) 27) (((-834) $) NIL)))
+(((-1110 |#1|) (-10 -8 (-15 -3846 ((-834) |#1|)) (-15 -3341 (|#1| |#1| |#1|)) (-15 -1445 (|#1| |#1| (-139))) (-15 -1445 (|#1| |#1| (-142))) (-15 -3846 (|#1| (-142))) (-15 -2349 ((-112) |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -3408 (|#1| |#1|)) (-15 -3341 (|#1| |#1| (-1193 (-549)))) (-15 -3341 ((-142) |#1| (-549))) (-15 -3341 ((-142) |#1| (-549) (-142)))) (-1111)) (T -1110))
+NIL
+(-10 -8 (-15 -3846 ((-834) |#1|)) (-15 -3341 (|#1| |#1| |#1|)) (-15 -1445 (|#1| |#1| (-139))) (-15 -1445 (|#1| |#1| (-142))) (-15 -3846 (|#1| (-142))) (-15 -2349 ((-112) |#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -3408 (|#1| |#1|)) (-15 -3341 (|#1| |#1| (-1193 (-549)))) (-15 -3341 ((-142) |#1| (-549))) (-15 -3341 ((-142) |#1| (-549) (-142))))
+((-3834 (((-112) $ $) 19 (|has| (-142) (-1067)))) (-2969 (($ $) 120)) (-2946 (($ $) 121)) (-1445 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-1535 (((-1231) $ (-549) (-549)) 40 (|has| $ (-6 -4338)))) (-2319 (((-112) $ $) 118)) (-2293 (((-112) $ $ (-549)) 117)) (-3628 (((-621 $) $ (-142)) 110) (((-621 $) $ (-139)) 109)) (-4142 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-823)))) (-4311 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4338))) (($ $) 88 (-12 (|has| (-142) (-823)) (|has| $ (-6 -4338))))) (-3193 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-823)))) (-1584 (((-112) $ (-747)) 8)) (-2254 (((-142) $ (-549) (-142)) 52 (|has| $ (-6 -4338))) (((-142) $ (-1193 (-549)) (-142)) 58 (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-3590 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-1585 (($ $) 90 (|has| $ (-6 -4338)))) (-3064 (($ $) 100)) (-4126 (($ $ (-1193 (-549)) $) 114)) (-3676 (($ $) 78 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ (-142) $) 77 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4337)))) (-2557 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4337)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4337))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4337)))) (-1879 (((-142) $ (-549) (-142)) 53 (|has| $ (-6 -4338)))) (-1809 (((-142) $ (-549)) 51)) (-2349 (((-112) $ $) 119)) (-2883 (((-549) (-1 (-112) (-142)) $) 97) (((-549) (-142) $) 96 (|has| (-142) (-1067))) (((-549) (-142) $ (-549)) 95 (|has| (-142) (-1067))) (((-549) $ $ (-549)) 113) (((-549) (-139) $ (-549)) 112)) (-2989 (((-621 (-142)) $) 30 (|has| $ (-6 -4337)))) (-3743 (($ (-747) (-142)) 69)) (-3194 (((-112) $ (-747)) 9)) (-4031 (((-549) $) 43 (|has| (-549) (-823)))) (-2863 (($ $ $) 87 (|has| (-142) (-823)))) (-3890 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-823)))) (-1562 (((-621 (-142)) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 44 (|has| (-549) (-823)))) (-3575 (($ $ $) 86 (|has| (-142) (-823)))) (-2312 (((-112) $ $ (-142)) 115)) (-2475 (((-747) $ $ (-142)) 116)) (-1868 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-1555 (($ $) 122)) (-3408 (($ $) 123)) (-1508 (((-112) $ (-747)) 10)) (-3603 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3851 (((-1125) $) 22 (|has| (-142) (-1067)))) (-2616 (($ (-142) $ (-549)) 60) (($ $ $ (-549)) 59)) (-3303 (((-621 (-549)) $) 46)) (-3761 (((-112) (-549) $) 47)) (-3990 (((-1087) $) 21 (|has| (-142) (-1067)))) (-3646 (((-142) $) 42 (|has| (-549) (-823)))) (-3779 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-1642 (($ $ (-142)) 41 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-287 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-621 (-142)) (-621 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-2696 (((-621 (-142)) $) 48)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 (((-142) $ (-549) (-142)) 50) (((-142) $ (-549)) 49) (($ $ (-1193 (-549))) 63) (($ $ $) 102)) (-2167 (($ $ (-549)) 62) (($ $ (-1193 (-549))) 61)) (-4000 (((-747) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4337))) (((-747) (-142) $) 28 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4337))))) (-2730 (($ $ $ (-549)) 91 (|has| $ (-6 -4338)))) (-2281 (($ $) 13)) (-2845 (((-525) $) 79 (|has| (-142) (-594 (-525))))) (-3854 (($ (-621 (-142))) 70)) (-1952 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3846 (($ (-142)) 111) (((-834) $) 18 (|has| (-142) (-593 (-834))))) (-3527 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) 84 (|has| (-142) (-823)))) (-2425 (((-112) $ $) 83 (|has| (-142) (-823)))) (-2389 (((-112) $ $) 20 (|has| (-142) (-1067)))) (-2438 (((-112) $ $) 85 (|has| (-142) (-823)))) (-2412 (((-112) $ $) 82 (|has| (-142) (-823)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-1111) (-138)) (T -1111))
+((-3408 (*1 *1 *1) (-4 *1 (-1111))) (-1555 (*1 *1 *1) (-4 *1 (-1111))) (-2946 (*1 *1 *1) (-4 *1 (-1111))) (-2969 (*1 *1 *1) (-4 *1 (-1111))) (-2349 (*1 *2 *1 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-112)))) (-2319 (*1 *2 *1 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-112)))) (-2293 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1111)) (-5 *3 (-549)) (-5 *2 (-112)))) (-2475 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1111)) (-5 *3 (-142)) (-5 *2 (-747)))) (-2312 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1111)) (-5 *3 (-142)) (-5 *2 (-112)))) (-4126 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-1193 (-549))))) (-2883 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-549)))) (-2883 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-549)) (-5 *3 (-139)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1111)))) (-3628 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-621 *1)) (-4 *1 (-1111)))) (-3628 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-621 *1)) (-4 *1 (-1111)))) (-1445 (*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-142)))) (-1445 (*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-139)))) (-3603 (*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-142)))) (-3603 (*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-139)))) (-3590 (*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-142)))) (-3590 (*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-139)))) (-3341 (*1 *1 *1 *1) (-4 *1 (-1111))))
+(-13 (-19 (-142)) (-10 -8 (-15 -3408 ($ $)) (-15 -1555 ($ $)) (-15 -2946 ($ $)) (-15 -2969 ($ $)) (-15 -2349 ((-112) $ $)) (-15 -2319 ((-112) $ $)) (-15 -2293 ((-112) $ $ (-549))) (-15 -2475 ((-747) $ $ (-142))) (-15 -2312 ((-112) $ $ (-142))) (-15 -4126 ($ $ (-1193 (-549)) $)) (-15 -2883 ((-549) $ $ (-549))) (-15 -2883 ((-549) (-139) $ (-549))) (-15 -3846 ($ (-142))) (-15 -3628 ((-621 $) $ (-142))) (-15 -3628 ((-621 $) $ (-139))) (-15 -1445 ($ $ (-142))) (-15 -1445 ($ $ (-139))) (-15 -3603 ($ $ (-142))) (-15 -3603 ($ $ (-139))) (-15 -3590 ($ $ (-142))) (-15 -3590 ($ $ (-139))) (-15 -3341 ($ $ $))))
+(((-34) . T) ((-101) -1536 (|has| (-142) (-1067)) (|has| (-142) (-823))) ((-593 (-834)) -1536 (|has| (-142) (-1067)) (|has| (-142) (-823)) (|has| (-142) (-593 (-834)))) ((-149 #0=(-142)) . T) ((-594 (-525)) |has| (-142) (-594 (-525))) ((-279 #1=(-549) #0#) . T) ((-281 #1# #0#) . T) ((-302 #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))) ((-366 #0#) . T) ((-481 #0#) . T) ((-584 #1# #0#) . T) ((-505 #0# #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))) ((-627 #0#) . T) ((-19 #0#) . T) ((-823) |has| (-142) (-823)) ((-1067) -1536 (|has| (-142) (-1067)) (|has| (-142) (-823))) ((-1180) . T))
+((-3817 (((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-621 |#4|) (-621 |#5|) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) (-747)) 94)) (-3105 (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747)) 54)) (-3762 (((-1231) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-747)) 85)) (-1362 (((-747) (-621 |#4|) (-621 |#5|)) 27)) (-2166 (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747)) 56) (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747) (-112)) 58)) (-1655 (((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112)) 77)) (-2845 (((-1125) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) 80)) (-1589 (((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|) 53)) (-1516 (((-747) (-621 |#4|) (-621 |#5|)) 19)))
+(((-1112 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1516 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -1362 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -1589 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|)) (-15 -3105 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747))) (-15 -3105 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|)) (-15 -2166 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -2166 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747))) (-15 -2166 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|)) (-15 -1655 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -1655 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3817 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-621 |#4|) (-621 |#5|) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) (-747))) (-15 -2845 ((-1125) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)))) (-15 -3762 ((-1231) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-747)))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|) (-1076 |#1| |#2| |#3| |#4|)) (T -1112))
+((-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1981 *9)))) (-5 *4 (-747)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1076 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1231)) (-5 *1 (-1112 *5 *6 *7 *8 *9)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1981 *8))) (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1076 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1125)) (-5 *1 (-1112 *4 *5 *6 *7 *8)))) (-3817 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-621 *11)) (|:| |todo| (-621 (-2 (|:| |val| *3) (|:| -1981 *11)))))) (-5 *6 (-747)) (-5 *2 (-621 (-2 (|:| |val| (-621 *10)) (|:| -1981 *11)))) (-5 *3 (-621 *10)) (-5 *4 (-621 *11)) (-4 *10 (-1032 *7 *8 *9)) (-4 *11 (-1076 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-5 *1 (-1112 *7 *8 *9 *10 *11)))) (-1655 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1076 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1112 *5 *6 *7 *8 *9)))) (-1655 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1076 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1112 *5 *6 *7 *8 *9)))) (-2166 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))))) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1076 *5 *6 *7 *3)))) (-2166 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))))) (-5 *1 (-1112 *6 *7 *8 *3 *4)) (-4 *4 (-1076 *6 *7 *8 *3)))) (-2166 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769)) (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))))) (-5 *1 (-1112 *7 *8 *9 *3 *4)) (-4 *4 (-1076 *7 *8 *9 *3)))) (-3105 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))))) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1076 *5 *6 *7 *3)))) (-3105 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *3 (-1032 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))))) (-5 *1 (-1112 *6 *7 *8 *3 *4)) (-4 *4 (-1076 *6 *7 *8 *3)))) (-1589 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-621 *4)) (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4)))))) (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1076 *5 *6 *7 *3)))) (-1362 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1076 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1112 *5 *6 *7 *8 *9)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1076 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1112 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1516 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -1362 ((-747) (-621 |#4|) (-621 |#5|))) (-15 -1589 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|)) (-15 -3105 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747))) (-15 -3105 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|)) (-15 -2166 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747) (-112))) (-15 -2166 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5| (-747))) (-15 -2166 ((-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) |#4| |#5|)) (-15 -1655 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112))) (-15 -1655 ((-621 |#5|) (-621 |#4|) (-621 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3817 ((-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-621 |#4|) (-621 |#5|) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-2 (|:| |done| (-621 |#5|)) (|:| |todo| (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))))) (-747))) (-15 -2845 ((-1125) (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|)))) (-15 -3762 ((-1231) (-621 (-2 (|:| |val| (-621 |#4|)) (|:| -1981 |#5|))) (-747))))
+((-3834 (((-112) $ $) NIL)) (-3514 (((-621 (-2 (|:| -2681 $) (|:| -1359 (-621 |#4|)))) (-621 |#4|)) NIL)) (-2866 (((-621 $) (-621 |#4|)) 110) (((-621 $) (-621 |#4|) (-112)) 111) (((-621 $) (-621 |#4|) (-112) (-112)) 109) (((-621 $) (-621 |#4|) (-112) (-112) (-112) (-112)) 112)) (-2272 (((-621 |#3|) $) NIL)) (-3422 (((-112) $) NIL)) (-2527 (((-112) $) NIL (|has| |#1| (-541)))) (-3282 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2731 ((|#4| |#4| $) NIL)) (-3979 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 $))) |#4| $) 84)) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |#3|) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-1489 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337))) (((-3 |#4| "failed") $ |#3|) 62)) (-1682 (($) NIL T CONST)) (-1433 (((-112) $) 26 (|has| |#1| (-541)))) (-2555 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2595 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2397 (((-112) $) NIL (|has| |#1| (-541)))) (-2737 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3269 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2953 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2714 (((-3 $ "failed") (-621 |#4|)) NIL)) (-2659 (($ (-621 |#4|)) NIL)) (-3657 (((-3 $ "failed") $) 39)) (-1903 ((|#4| |#4| $) 65)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-3812 (($ |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-3675 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-541)))) (-2217 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3615 ((|#4| |#4| $) NIL)) (-2557 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4337))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4337))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1439 (((-2 (|:| -2681 (-621 |#4|)) (|:| -1359 (-621 |#4|))) $) NIL)) (-3516 (((-112) |#4| $) NIL)) (-3150 (((-112) |#4| $) NIL)) (-2064 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4181 (((-2 (|:| |val| (-621 |#4|)) (|:| |towers| (-621 $))) (-621 |#4|) (-112) (-112)) 124)) (-2989 (((-621 |#4|) $) 16 (|has| $ (-6 -4337)))) (-2812 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2745 ((|#3| $) 33)) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#4|) $) 17 (|has| $ (-6 -4337)))) (-2090 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-1868 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#4| |#4|) $) 21)) (-2561 (((-621 |#3|) $) NIL)) (-2378 (((-112) |#3| $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-1878 (((-3 |#4| (-621 $)) |#4| |#4| $) NIL)) (-3072 (((-621 (-2 (|:| |val| |#4|) (|:| -1981 $))) |#4| |#4| $) 103)) (-3829 (((-3 |#4| "failed") $) 37)) (-3689 (((-621 $) |#4| $) 88)) (-1514 (((-3 (-112) (-621 $)) |#4| $) NIL)) (-4184 (((-621 (-2 (|:| |val| (-112)) (|:| -1981 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3655 (((-621 $) |#4| $) 107) (((-621 $) (-621 |#4|) $) NIL) (((-621 $) (-621 |#4|) (-621 $)) 108) (((-621 $) |#4| (-621 $)) NIL)) (-4249 (((-621 $) (-621 |#4|) (-112) (-112) (-112)) 119)) (-4283 (($ |#4| $) 75) (($ (-621 |#4|) $) 76) (((-621 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-1638 (((-621 |#4|) $) NIL)) (-2170 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3270 ((|#4| |#4| $) NIL)) (-2473 (((-112) $ $) NIL)) (-4203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-1335 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4298 ((|#4| |#4| $) NIL)) (-3990 (((-1087) $) NIL)) (-3646 (((-3 |#4| "failed") $) 35)) (-3779 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2640 (((-3 $ "failed") $ |#4|) 48)) (-2763 (($ $ |#4|) NIL) (((-621 $) |#4| $) 90) (((-621 $) |#4| (-621 $)) NIL) (((-621 $) (-621 |#4|) $) NIL) (((-621 $) (-621 |#4|) (-621 $)) 86)) (-1780 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#4|) (-621 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-621 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 15)) (-3742 (($) 13)) (-3701 (((-747) $) NIL)) (-4000 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) 12)) (-2845 (((-525) $) NIL (|has| |#4| (-594 (-525))))) (-3854 (($ (-621 |#4|)) 20)) (-2858 (($ $ |#3|) 42)) (-3758 (($ $ |#3|) 44)) (-1962 (($ $) NIL)) (-4317 (($ $ |#3|) NIL)) (-3846 (((-834) $) 31) (((-621 |#4|) $) 40)) (-1824 (((-747) $) NIL (|has| |#3| (-361)))) (-2574 (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1716 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) NIL)) (-1518 (((-621 $) |#4| $) 54) (((-621 $) |#4| (-621 $)) NIL) (((-621 $) (-621 |#4|) $) NIL) (((-621 $) (-621 |#4|) (-621 $)) NIL)) (-3527 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-3002 (((-621 |#3|) $) NIL)) (-3524 (((-112) |#4| $) NIL)) (-1606 (((-112) |#3| $) 61)) (-2389 (((-112) $ $) NIL)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1113 |#1| |#2| |#3| |#4|) (-13 (-1076 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4283 ((-621 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2866 ((-621 $) (-621 |#4|) (-112) (-112))) (-15 -2866 ((-621 $) (-621 |#4|) (-112) (-112) (-112) (-112))) (-15 -4249 ((-621 $) (-621 |#4|) (-112) (-112) (-112))) (-15 -4181 ((-2 (|:| |val| (-621 |#4|)) (|:| |towers| (-621 $))) (-621 |#4|) (-112) (-112))))) (-444) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -1113))
+((-4283 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-1113 *5 *6 *7 *3))) (-5 *1 (-1113 *5 *6 *7 *3)) (-4 *3 (-1032 *5 *6 *7)))) (-2866 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-1113 *5 *6 *7 *8))) (-5 *1 (-1113 *5 *6 *7 *8)))) (-2866 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-1113 *5 *6 *7 *8))) (-5 *1 (-1113 *5 *6 *7 *8)))) (-4249 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 (-1113 *5 *6 *7 *8))) (-5 *1 (-1113 *5 *6 *7 *8)))) (-4181 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-621 *8)) (|:| |towers| (-621 (-1113 *5 *6 *7 *8))))) (-5 *1 (-1113 *5 *6 *7 *8)) (-5 *3 (-621 *8)))))
+(-13 (-1076 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4283 ((-621 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2866 ((-621 $) (-621 |#4|) (-112) (-112))) (-15 -2866 ((-621 $) (-621 |#4|) (-112) (-112) (-112) (-112))) (-15 -4249 ((-621 $) (-621 |#4|) (-112) (-112) (-112))) (-15 -4181 ((-2 (|:| |val| (-621 |#4|)) (|:| |towers| (-621 $))) (-621 |#4|) (-112) (-112)))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2317 ((|#1| $) 34)) (-3813 (($ (-621 |#1|)) 39)) (-1584 (((-112) $ (-747)) NIL)) (-1682 (($) NIL T CONST)) (-3204 ((|#1| |#1| $) 36)) (-1350 ((|#1| $) 32)) (-2989 (((-621 |#1|) $) 18 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1868 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 22)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3504 ((|#1| $) 35)) (-2751 (($ |#1| $) 37)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3325 ((|#1| $) 33)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 31)) (-3742 (($) 38)) (-1321 (((-747) $) 29)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) 27)) (-3846 (((-834) $) 14 (|has| |#1| (-593 (-834))))) (-3624 (($ (-621 |#1|)) NIL)) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 17 (|has| |#1| (-1067)))) (-3775 (((-747) $) 30 (|has| $ (-6 -4337)))))
+(((-1114 |#1|) (-13 (-1088 |#1|) (-10 -8 (-15 -3813 ($ (-621 |#1|))))) (-1180)) (T -1114))
+((-3813 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-1114 *3)))))
+(-13 (-1088 |#1|) (-10 -8 (-15 -3813 ($ (-621 |#1|)))))
+((-2254 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1193 (-549)) |#2|) 44) ((|#2| $ (-549) |#2|) 41)) (-3331 (((-112) $) 12)) (-1868 (($ (-1 |#2| |#2|) $) 39)) (-3646 ((|#2| $) NIL) (($ $ (-747)) 17)) (-1642 (($ $ |#2|) 40)) (-3016 (((-112) $) 11)) (-3341 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1193 (-549))) 31) ((|#2| $ (-549)) 23) ((|#2| $ (-549) |#2|) NIL)) (-3196 (($ $ $) 47) (($ $ |#2|) NIL)) (-1952 (($ $ $) 33) (($ |#2| $) NIL) (($ (-621 $)) 36) (($ $ |#2|) NIL)))
+(((-1115 |#1| |#2|) (-10 -8 (-15 -3331 ((-112) |#1|)) (-15 -3016 ((-112) |#1|)) (-15 -2254 (|#2| |#1| (-549) |#2|)) (-15 -3341 (|#2| |#1| (-549) |#2|)) (-15 -3341 (|#2| |#1| (-549))) (-15 -1642 (|#1| |#1| |#2|)) (-15 -1952 (|#1| |#1| |#2|)) (-15 -1952 (|#1| (-621 |#1|))) (-15 -3341 (|#1| |#1| (-1193 (-549)))) (-15 -2254 (|#2| |#1| (-1193 (-549)) |#2|)) (-15 -2254 (|#2| |#1| "last" |#2|)) (-15 -2254 (|#1| |#1| "rest" |#1|)) (-15 -2254 (|#2| |#1| "first" |#2|)) (-15 -3196 (|#1| |#1| |#2|)) (-15 -3196 (|#1| |#1| |#1|)) (-15 -3341 (|#2| |#1| "last")) (-15 -3341 (|#1| |#1| "rest")) (-15 -3646 (|#1| |#1| (-747))) (-15 -3341 (|#2| |#1| "first")) (-15 -3646 (|#2| |#1|)) (-15 -1952 (|#1| |#2| |#1|)) (-15 -1952 (|#1| |#1| |#1|)) (-15 -2254 (|#2| |#1| "value" |#2|)) (-15 -3341 (|#2| |#1| "value")) (-15 -1868 (|#1| (-1 |#2| |#2|) |#1|))) (-1116 |#2|) (-1180)) (T -1115))
+NIL
+(-10 -8 (-15 -3331 ((-112) |#1|)) (-15 -3016 ((-112) |#1|)) (-15 -2254 (|#2| |#1| (-549) |#2|)) (-15 -3341 (|#2| |#1| (-549) |#2|)) (-15 -3341 (|#2| |#1| (-549))) (-15 -1642 (|#1| |#1| |#2|)) (-15 -1952 (|#1| |#1| |#2|)) (-15 -1952 (|#1| (-621 |#1|))) (-15 -3341 (|#1| |#1| (-1193 (-549)))) (-15 -2254 (|#2| |#1| (-1193 (-549)) |#2|)) (-15 -2254 (|#2| |#1| "last" |#2|)) (-15 -2254 (|#1| |#1| "rest" |#1|)) (-15 -2254 (|#2| |#1| "first" |#2|)) (-15 -3196 (|#1| |#1| |#2|)) (-15 -3196 (|#1| |#1| |#1|)) (-15 -3341 (|#2| |#1| "last")) (-15 -3341 (|#1| |#1| "rest")) (-15 -3646 (|#1| |#1| (-747))) (-15 -3341 (|#2| |#1| "first")) (-15 -3646 (|#2| |#1|)) (-15 -1952 (|#1| |#2| |#1|)) (-15 -1952 (|#1| |#1| |#1|)) (-15 -2254 (|#2| |#1| "value" |#2|)) (-15 -3341 (|#2| |#1| "value")) (-15 -1868 (|#1| (-1 |#2| |#2|) |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4161 ((|#1| $) 48)) (-2839 ((|#1| $) 65)) (-1343 (($ $) 67)) (-1535 (((-1231) $ (-549) (-549)) 97 (|has| $ (-6 -4338)))) (-3174 (($ $ (-549)) 52 (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) 8)) (-2838 ((|#1| $ |#1|) 39 (|has| $ (-6 -4338)))) (-4179 (($ $ $) 56 (|has| $ (-6 -4338)))) (-2780 ((|#1| $ |#1|) 54 (|has| $ (-6 -4338)))) (-4135 ((|#1| $ |#1|) 58 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4338))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4338))) (($ $ "rest" $) 55 (|has| $ (-6 -4338))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) 117 (|has| $ (-6 -4338))) ((|#1| $ (-549) |#1|) 86 (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) 41 (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4337)))) (-2830 ((|#1| $) 66)) (-1682 (($) 7 T CONST)) (-3657 (($ $) 73) (($ $ (-747)) 71)) (-3676 (($ $) 99 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4337))) (($ |#1| $) 100 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1879 ((|#1| $ (-549) |#1|) 85 (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) 87)) (-3331 (((-112) $) 83)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) 50)) (-3895 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3743 (($ (-747) |#1|) 108)) (-3194 (((-112) $ (-747)) 9)) (-4031 (((-549) $) 95 (|has| (-549) (-823)))) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 94 (|has| (-549) (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1508 (((-112) $ (-747)) 10)) (-3591 (((-621 |#1|) $) 45)) (-2076 (((-112) $) 49)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3829 ((|#1| $) 70) (($ $ (-747)) 68)) (-2616 (($ $ $ (-549)) 116) (($ |#1| $ (-549)) 115)) (-3303 (((-621 (-549)) $) 92)) (-3761 (((-112) (-549) $) 91)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3646 ((|#1| $) 76) (($ $ (-747)) 74)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-1642 (($ $ |#1|) 96 (|has| $ (-6 -4338)))) (-3016 (((-112) $) 84)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) 90)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1193 (-549))) 112) ((|#1| $ (-549)) 89) ((|#1| $ (-549) |#1|) 88)) (-3230 (((-549) $ $) 44)) (-2167 (($ $ (-1193 (-549))) 114) (($ $ (-549)) 113)) (-3497 (((-112) $) 46)) (-1999 (($ $) 62)) (-2643 (($ $) 59 (|has| $ (-6 -4338)))) (-3798 (((-747) $) 63)) (-3612 (($ $) 64)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-2845 (((-525) $) 98 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 107)) (-3196 (($ $ $) 61 (|has| $ (-6 -4338))) (($ $ |#1|) 60 (|has| $ (-6 -4338)))) (-1952 (($ $ $) 78) (($ |#1| $) 77) (($ (-621 $)) 110) (($ $ |#1|) 109)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) 51)) (-1987 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-1116 |#1|) (-138) (-1180)) (T -1116))
+((-3016 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1180)) (-5 *2 (-112)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1180)) (-5 *2 (-112)))))
+(-13 (-1214 |t#1|) (-627 |t#1|) (-10 -8 (-15 -3016 ((-112) $)) (-15 -3331 ((-112) $))))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1180) . T) ((-1214 |#1|) . T))
+((-3834 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3733 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-1535 (((-1231) $ |#1| |#1|) NIL (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#2| $ |#1| |#2|) NIL)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-3490 (((-3 |#2| "failed") |#1| $) NIL)) (-1682 (($) NIL T CONST)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-2129 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-3 |#2| "failed") |#1| $) NIL)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#2| $ |#1|) NIL)) (-2989 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 ((|#1| $) NIL (|has| |#1| (-823)))) (-1562 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-1569 ((|#1| $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4338))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3449 (((-621 |#1|) $) NIL)) (-2427 (((-112) |#1| $) NIL)) (-3504 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-2751 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-3303 (((-621 |#1|) $) NIL)) (-3761 (((-112) |#1| $) NIL)) (-3990 (((-1087) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3646 ((|#2| $) NIL (|has| |#1| (-823)))) (-3779 (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL)) (-1642 (($ $ |#2|) NIL (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2696 (((-621 |#2|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2898 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3846 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-3624 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1117 |#1| |#2| |#3|) (-1156 |#1| |#2|) (-1067) (-1067) |#2|) (T -1117))
+NIL
+(-1156 |#1| |#2|)
+((-3834 (((-112) $ $) 7)) (-1681 (((-3 $ "failed") $) 13)) (-3851 (((-1125) $) 9)) (-3060 (($) 14 T CONST)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11)) (-2389 (((-112) $ $) 6)))
(((-1118) (-138)) (T -1118))
-((-1517 (*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1118)))))
-(-13 (-1105) (-1063) (-802) (-10 -8 (-15 -1517 ($ (-547)))))
-(((-34) . T) ((-101) . T) ((-591 (-832)) . T) ((-149 #0=(-142)) . T) ((-592 (-523)) |has| (-142) (-592 (-523))) ((-277 #1=(-547) #0#) . T) ((-279 #1# #0#) . T) ((-300 #0#) -12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))) ((-364 #0#) . T) ((-479 #0#) . T) ((-582 #1# #0#) . T) ((-503 #0# #0#) -12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))) ((-625 #0#) . T) ((-19 #0#) . T) ((-802) . T) ((-821) |has| (-142) (-821)) ((-1063) . T) ((-1105) . T) ((-1173) . T))
-((-3826 (((-112) $ $) NIL)) (-1449 (($ $) NIL)) (-4306 (($ $) NIL)) (-3630 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2313 (((-112) $ $) NIL)) (-2287 (((-112) $ $ (-547)) NIL)) (-1517 (($ (-547)) 7)) (-4194 (((-619 $) $ (-142)) NIL) (((-619 $) $ (-139)) NIL)) (-2436 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-821)))) (-2809 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4330))) (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| (-142) (-821))))) (-3185 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-821)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 (((-142) $ (-547) (-142)) NIL (|has| $ (-6 -4330))) (((-142) $ (-1186 (-547)) (-142)) NIL (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3580 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-4118 (($ $ (-1186 (-547)) $) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-3803 (($ (-142) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4329))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4329)))) (-1872 (((-142) $ (-547) (-142)) NIL (|has| $ (-6 -4330)))) (-1802 (((-142) $ (-547)) NIL)) (-2341 (((-112) $ $) NIL)) (-2876 (((-547) (-1 (-112) (-142)) $) NIL) (((-547) (-142) $) NIL (|has| (-142) (-1063))) (((-547) (-142) $ (-547)) NIL (|has| (-142) (-1063))) (((-547) $ $ (-547)) NIL) (((-547) (-139) $ (-547)) NIL)) (-2982 (((-619 (-142)) $) NIL (|has| $ (-6 -4329)))) (-3735 (($ (-745) (-142)) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| (-142) (-821)))) (-2777 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-821)))) (-2284 (((-619 (-142)) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| (-142) (-821)))) (-2305 (((-112) $ $ (-142)) NIL)) (-2468 (((-745) $ $ (-142)) NIL)) (-1859 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-1574 (($ $) NIL)) (-3093 (($ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-3595 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-1466 (((-1119) $) NIL)) (-2606 (($ (-142) $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL)) (-3638 (((-142) $) NIL (|has| (-547) (-821)))) (-3650 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-3632 (($ $ (-142)) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-142)))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-285 (-142))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-2987 (((-619 (-142)) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 (((-142) $ (-547) (-142)) NIL) (((-142) $ (-547)) NIL) (($ $ (-1186 (-547))) NIL) (($ $ $) NIL)) (-2159 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-3992 (((-745) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329))) (((-745) (-142) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-1063))))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-142) (-592 (-523))))) (-3846 (($ (-619 (-142))) NIL)) (-1945 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3838 (($ (-142)) NIL) (((-832) $) NIL)) (-2693 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4329)))) (-2273 (((-1119) $) 18) (((-1119) $ (-112)) 20) (((-1224) (-796) $) 21) (((-1224) (-796) $ (-112)) 22)) (-2441 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2418 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2405 (((-112) $ $) NIL (|has| (-142) (-821)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1119) (-1118)) (T -1119))
-NIL
-(-1118)
-((-3826 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3726 (($) NIL) (($ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) NIL)) (-1652 (((-1224) $ (-1119) (-1119)) NIL (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#1| $ (-1119) |#1|) NIL)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329)))) (-3482 (((-3 |#1| "failed") (-1119) $) NIL)) (-1948 (($) NIL T CONST)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063))))) (-1513 (($ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329))) (((-3 |#1| "failed") (-1119) $) NIL)) (-3803 (($ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)))) (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-1119) |#1|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-1119)) NIL)) (-2982 (((-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-1119) $) NIL (|has| (-1119) (-821)))) (-2284 (((-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-1119) $) NIL (|has| (-1119) (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4330))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (-1530 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3441 (((-619 (-1119)) $) NIL)) (-4073 (((-112) (-1119) $) NIL)) (-4266 (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL)) (-2657 (($ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL)) (-2121 (((-619 (-1119)) $) NIL)) (-2018 (((-112) (-1119) $) NIL)) (-3979 (((-1082) $) NIL (-1530 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3638 ((|#1| $) NIL (|has| (-1119) (-821)))) (-3650 (((-3 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) "failed") (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL)) (-3632 (($ $ |#1|) NIL (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))))) NIL (-12 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) NIL (-12 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)))) (($ $ (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) NIL (-12 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)))) (($ $ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) NIL (-12 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-300 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ (-1119)) NIL) ((|#1| $ (-1119) |#1|) NIL)) (-2699 (($) NIL) (($ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) NIL)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) NIL)) (-3838 (((-832) $) NIL (-1530 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-591 (-832))) (|has| |#1| (-591 (-832)))))) (-2300 (($ (-619 (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)))) NIL)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 (-1119)) (|:| -1786 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1120 |#1|) (-13 (-1149 (-1119) |#1|) (-10 -7 (-6 -4329))) (-1063)) (T -1120))
-NIL
-(-13 (-1149 (-1119) |#1|) (-10 -7 (-6 -4329)))
-((-1260 (((-1117 |#1|) (-1117 |#1|)) 77)) (-3855 (((-3 (-1117 |#1|) "failed") (-1117 |#1|)) 37)) (-3701 (((-1117 |#1|) (-398 (-547)) (-1117 |#1|)) 121 (|has| |#1| (-38 (-398 (-547)))))) (-1368 (((-1117 |#1|) |#1| (-1117 |#1|)) 127 (|has| |#1| (-354)))) (-3541 (((-1117 |#1|) (-1117 |#1|)) 90)) (-3434 (((-1117 (-547)) (-547)) 57)) (-2051 (((-1117 |#1|) (-1117 (-1117 |#1|))) 109 (|has| |#1| (-38 (-398 (-547)))))) (-3679 (((-1117 |#1|) (-547) (-547) (-1117 |#1|)) 95)) (-3518 (((-1117 |#1|) |#1| (-547)) 45)) (-1999 (((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)) 60)) (-2520 (((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)) 124 (|has| |#1| (-354)))) (-2083 (((-1117 |#1|) |#1| (-1 (-1117 |#1|))) 108 (|has| |#1| (-38 (-398 (-547)))))) (-3905 (((-1117 |#1|) (-1 |#1| (-547)) |#1| (-1 (-1117 |#1|))) 125 (|has| |#1| (-354)))) (-3709 (((-1117 |#1|) (-1117 |#1|)) 89)) (-3860 (((-1117 |#1|) (-1117 |#1|)) 76)) (-2541 (((-1117 |#1|) (-547) (-547) (-1117 |#1|)) 96)) (-3694 (((-1117 |#1|) |#1| (-1117 |#1|)) 105 (|has| |#1| (-38 (-398 (-547)))))) (-1967 (((-1117 (-547)) (-547)) 56)) (-2011 (((-1117 |#1|) |#1|) 59)) (-2595 (((-1117 |#1|) (-1117 |#1|) (-547) (-547)) 92)) (-3444 (((-1117 |#1|) (-1 |#1| (-547)) (-1117 |#1|)) 66)) (-2032 (((-3 (-1117 |#1|) "failed") (-1117 |#1|) (-1117 |#1|)) 35)) (-3260 (((-1117 |#1|) (-1117 |#1|)) 91)) (-2679 (((-1117 |#1|) (-1117 |#1|) |#1|) 71)) (-2314 (((-1117 |#1|) (-1117 |#1|)) 62)) (-2880 (((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)) 72)) (-3838 (((-1117 |#1|) |#1|) 67)) (-2386 (((-1117 |#1|) (-1117 (-1117 |#1|))) 82)) (-2506 (((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)) 36)) (-2493 (((-1117 |#1|) (-1117 |#1|)) 21) (((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)) 23)) (-2479 (((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)) 17)) (* (((-1117 |#1|) (-1117 |#1|) |#1|) 29) (((-1117 |#1|) |#1| (-1117 |#1|)) 26) (((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)) 27)))
-(((-1121 |#1|) (-10 -7 (-15 -2479 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -2493 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -2493 ((-1117 |#1|) (-1117 |#1|))) (-15 * ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 * ((-1117 |#1|) |#1| (-1117 |#1|))) (-15 * ((-1117 |#1|) (-1117 |#1|) |#1|)) (-15 -2032 ((-3 (-1117 |#1|) "failed") (-1117 |#1|) (-1117 |#1|))) (-15 -2506 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -3855 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -3518 ((-1117 |#1|) |#1| (-547))) (-15 -1967 ((-1117 (-547)) (-547))) (-15 -3434 ((-1117 (-547)) (-547))) (-15 -2011 ((-1117 |#1|) |#1|)) (-15 -1999 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -2314 ((-1117 |#1|) (-1117 |#1|))) (-15 -3444 ((-1117 |#1|) (-1 |#1| (-547)) (-1117 |#1|))) (-15 -3838 ((-1117 |#1|) |#1|)) (-15 -2679 ((-1117 |#1|) (-1117 |#1|) |#1|)) (-15 -2880 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -3860 ((-1117 |#1|) (-1117 |#1|))) (-15 -1260 ((-1117 |#1|) (-1117 |#1|))) (-15 -2386 ((-1117 |#1|) (-1117 (-1117 |#1|)))) (-15 -3709 ((-1117 |#1|) (-1117 |#1|))) (-15 -3541 ((-1117 |#1|) (-1117 |#1|))) (-15 -3260 ((-1117 |#1|) (-1117 |#1|))) (-15 -2595 ((-1117 |#1|) (-1117 |#1|) (-547) (-547))) (-15 -3679 ((-1117 |#1|) (-547) (-547) (-1117 |#1|))) (-15 -2541 ((-1117 |#1|) (-547) (-547) (-1117 |#1|))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -3694 ((-1117 |#1|) |#1| (-1117 |#1|))) (-15 -2083 ((-1117 |#1|) |#1| (-1 (-1117 |#1|)))) (-15 -2051 ((-1117 |#1|) (-1117 (-1117 |#1|)))) (-15 -3701 ((-1117 |#1|) (-398 (-547)) (-1117 |#1|)))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-15 -2520 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -3905 ((-1117 |#1|) (-1 |#1| (-547)) |#1| (-1 (-1117 |#1|)))) (-15 -1368 ((-1117 |#1|) |#1| (-1117 |#1|)))) |%noBranch|)) (-1016)) (T -1121))
-((-1368 (*1 *2 *3 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-354)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-547))) (-5 *5 (-1 (-1117 *4))) (-4 *4 (-354)) (-4 *4 (-1016)) (-5 *2 (-1117 *4)) (-5 *1 (-1121 *4)))) (-2520 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-354)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-3701 (*1 *2 *3 *2) (-12 (-5 *2 (-1117 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1016)) (-5 *3 (-398 (-547))) (-5 *1 (-1121 *4)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-1117 (-1117 *4))) (-5 *2 (-1117 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-38 (-398 (-547)))) (-4 *4 (-1016)))) (-2083 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1117 *3))) (-5 *2 (-1117 *3)) (-5 *1 (-1121 *3)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)))) (-3694 (*1 *2 *3 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-2541 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1117 *4)) (-5 *3 (-547)) (-4 *4 (-1016)) (-5 *1 (-1121 *4)))) (-3679 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1117 *4)) (-5 *3 (-547)) (-4 *4 (-1016)) (-5 *1 (-1121 *4)))) (-2595 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1117 *4)) (-5 *3 (-547)) (-4 *4 (-1016)) (-5 *1 (-1121 *4)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-3541 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-1117 (-1117 *4))) (-5 *2 (-1117 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-1016)))) (-1260 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-3860 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-2880 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-2679 (*1 *2 *2 *3) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-3838 (*1 *2 *3) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-1121 *3)) (-4 *3 (-1016)))) (-3444 (*1 *2 *3 *2) (-12 (-5 *2 (-1117 *4)) (-5 *3 (-1 *4 (-547))) (-4 *4 (-1016)) (-5 *1 (-1121 *4)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-1999 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-2011 (*1 *2 *3) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-1121 *3)) (-4 *3 (-1016)))) (-3434 (*1 *2 *3) (-12 (-5 *2 (-1117 (-547))) (-5 *1 (-1121 *4)) (-4 *4 (-1016)) (-5 *3 (-547)))) (-1967 (*1 *2 *3) (-12 (-5 *2 (-1117 (-547))) (-5 *1 (-1121 *4)) (-4 *4 (-1016)) (-5 *3 (-547)))) (-3518 (*1 *2 *3 *4) (-12 (-5 *4 (-547)) (-5 *2 (-1117 *3)) (-5 *1 (-1121 *3)) (-4 *3 (-1016)))) (-3855 (*1 *2 *2) (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-2506 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-2032 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-2493 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-2493 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))) (-2479 (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))))
-(-10 -7 (-15 -2479 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -2493 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -2493 ((-1117 |#1|) (-1117 |#1|))) (-15 * ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 * ((-1117 |#1|) |#1| (-1117 |#1|))) (-15 * ((-1117 |#1|) (-1117 |#1|) |#1|)) (-15 -2032 ((-3 (-1117 |#1|) "failed") (-1117 |#1|) (-1117 |#1|))) (-15 -2506 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -3855 ((-3 (-1117 |#1|) "failed") (-1117 |#1|))) (-15 -3518 ((-1117 |#1|) |#1| (-547))) (-15 -1967 ((-1117 (-547)) (-547))) (-15 -3434 ((-1117 (-547)) (-547))) (-15 -2011 ((-1117 |#1|) |#1|)) (-15 -1999 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -2314 ((-1117 |#1|) (-1117 |#1|))) (-15 -3444 ((-1117 |#1|) (-1 |#1| (-547)) (-1117 |#1|))) (-15 -3838 ((-1117 |#1|) |#1|)) (-15 -2679 ((-1117 |#1|) (-1117 |#1|) |#1|)) (-15 -2880 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -3860 ((-1117 |#1|) (-1117 |#1|))) (-15 -1260 ((-1117 |#1|) (-1117 |#1|))) (-15 -2386 ((-1117 |#1|) (-1117 (-1117 |#1|)))) (-15 -3709 ((-1117 |#1|) (-1117 |#1|))) (-15 -3541 ((-1117 |#1|) (-1117 |#1|))) (-15 -3260 ((-1117 |#1|) (-1117 |#1|))) (-15 -2595 ((-1117 |#1|) (-1117 |#1|) (-547) (-547))) (-15 -3679 ((-1117 |#1|) (-547) (-547) (-1117 |#1|))) (-15 -2541 ((-1117 |#1|) (-547) (-547) (-1117 |#1|))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -3694 ((-1117 |#1|) |#1| (-1117 |#1|))) (-15 -2083 ((-1117 |#1|) |#1| (-1 (-1117 |#1|)))) (-15 -2051 ((-1117 |#1|) (-1117 (-1117 |#1|)))) (-15 -3701 ((-1117 |#1|) (-398 (-547)) (-1117 |#1|)))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-15 -2520 ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -3905 ((-1117 |#1|) (-1 |#1| (-547)) |#1| (-1 (-1117 |#1|)))) (-15 -1368 ((-1117 |#1|) |#1| (-1117 |#1|)))) |%noBranch|))
-((-1656 (((-1117 |#1|) (-1117 |#1|)) 57)) (-1505 (((-1117 |#1|) (-1117 |#1|)) 39)) (-1632 (((-1117 |#1|) (-1117 |#1|)) 53)) (-1479 (((-1117 |#1|) (-1117 |#1|)) 35)) (-1678 (((-1117 |#1|) (-1117 |#1|)) 60)) (-1532 (((-1117 |#1|) (-1117 |#1|)) 42)) (-3624 (((-1117 |#1|) (-1117 |#1|)) 31)) (-2712 (((-1117 |#1|) (-1117 |#1|)) 27)) (-1690 (((-1117 |#1|) (-1117 |#1|)) 61)) (-1545 (((-1117 |#1|) (-1117 |#1|)) 43)) (-1668 (((-1117 |#1|) (-1117 |#1|)) 58)) (-1519 (((-1117 |#1|) (-1117 |#1|)) 40)) (-1644 (((-1117 |#1|) (-1117 |#1|)) 55)) (-1493 (((-1117 |#1|) (-1117 |#1|)) 37)) (-1726 (((-1117 |#1|) (-1117 |#1|)) 65)) (-1579 (((-1117 |#1|) (-1117 |#1|)) 47)) (-1703 (((-1117 |#1|) (-1117 |#1|)) 63)) (-1557 (((-1117 |#1|) (-1117 |#1|)) 45)) (-1751 (((-1117 |#1|) (-1117 |#1|)) 68)) (-1606 (((-1117 |#1|) (-1117 |#1|)) 50)) (-1927 (((-1117 |#1|) (-1117 |#1|)) 69)) (-1620 (((-1117 |#1|) (-1117 |#1|)) 51)) (-1738 (((-1117 |#1|) (-1117 |#1|)) 67)) (-1593 (((-1117 |#1|) (-1117 |#1|)) 49)) (-1714 (((-1117 |#1|) (-1117 |#1|)) 66)) (-1569 (((-1117 |#1|) (-1117 |#1|)) 48)) (** (((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)) 33)))
-(((-1122 |#1|) (-10 -7 (-15 -2712 ((-1117 |#1|) (-1117 |#1|))) (-15 -3624 ((-1117 |#1|) (-1117 |#1|))) (-15 ** ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -1479 ((-1117 |#1|) (-1117 |#1|))) (-15 -1493 ((-1117 |#1|) (-1117 |#1|))) (-15 -1505 ((-1117 |#1|) (-1117 |#1|))) (-15 -1519 ((-1117 |#1|) (-1117 |#1|))) (-15 -1532 ((-1117 |#1|) (-1117 |#1|))) (-15 -1545 ((-1117 |#1|) (-1117 |#1|))) (-15 -1557 ((-1117 |#1|) (-1117 |#1|))) (-15 -1569 ((-1117 |#1|) (-1117 |#1|))) (-15 -1579 ((-1117 |#1|) (-1117 |#1|))) (-15 -1593 ((-1117 |#1|) (-1117 |#1|))) (-15 -1606 ((-1117 |#1|) (-1117 |#1|))) (-15 -1620 ((-1117 |#1|) (-1117 |#1|))) (-15 -1632 ((-1117 |#1|) (-1117 |#1|))) (-15 -1644 ((-1117 |#1|) (-1117 |#1|))) (-15 -1656 ((-1117 |#1|) (-1117 |#1|))) (-15 -1668 ((-1117 |#1|) (-1117 |#1|))) (-15 -1678 ((-1117 |#1|) (-1117 |#1|))) (-15 -1690 ((-1117 |#1|) (-1117 |#1|))) (-15 -1703 ((-1117 |#1|) (-1117 |#1|))) (-15 -1714 ((-1117 |#1|) (-1117 |#1|))) (-15 -1726 ((-1117 |#1|) (-1117 |#1|))) (-15 -1738 ((-1117 |#1|) (-1117 |#1|))) (-15 -1751 ((-1117 |#1|) (-1117 |#1|))) (-15 -1927 ((-1117 |#1|) (-1117 |#1|)))) (-38 (-398 (-547)))) (T -1122))
-((-1927 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1751 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1738 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1726 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1714 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1703 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1690 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1678 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1668 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1644 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1632 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1606 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1579 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1569 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1557 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1545 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1532 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1519 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-3624 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))))
-(-10 -7 (-15 -2712 ((-1117 |#1|) (-1117 |#1|))) (-15 -3624 ((-1117 |#1|) (-1117 |#1|))) (-15 ** ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -1479 ((-1117 |#1|) (-1117 |#1|))) (-15 -1493 ((-1117 |#1|) (-1117 |#1|))) (-15 -1505 ((-1117 |#1|) (-1117 |#1|))) (-15 -1519 ((-1117 |#1|) (-1117 |#1|))) (-15 -1532 ((-1117 |#1|) (-1117 |#1|))) (-15 -1545 ((-1117 |#1|) (-1117 |#1|))) (-15 -1557 ((-1117 |#1|) (-1117 |#1|))) (-15 -1569 ((-1117 |#1|) (-1117 |#1|))) (-15 -1579 ((-1117 |#1|) (-1117 |#1|))) (-15 -1593 ((-1117 |#1|) (-1117 |#1|))) (-15 -1606 ((-1117 |#1|) (-1117 |#1|))) (-15 -1620 ((-1117 |#1|) (-1117 |#1|))) (-15 -1632 ((-1117 |#1|) (-1117 |#1|))) (-15 -1644 ((-1117 |#1|) (-1117 |#1|))) (-15 -1656 ((-1117 |#1|) (-1117 |#1|))) (-15 -1668 ((-1117 |#1|) (-1117 |#1|))) (-15 -1678 ((-1117 |#1|) (-1117 |#1|))) (-15 -1690 ((-1117 |#1|) (-1117 |#1|))) (-15 -1703 ((-1117 |#1|) (-1117 |#1|))) (-15 -1714 ((-1117 |#1|) (-1117 |#1|))) (-15 -1726 ((-1117 |#1|) (-1117 |#1|))) (-15 -1738 ((-1117 |#1|) (-1117 |#1|))) (-15 -1751 ((-1117 |#1|) (-1117 |#1|))) (-15 -1927 ((-1117 |#1|) (-1117 |#1|))))
-((-1656 (((-1117 |#1|) (-1117 |#1|)) 100)) (-1505 (((-1117 |#1|) (-1117 |#1|)) 64)) (-1406 (((-2 (|:| -1632 (-1117 |#1|)) (|:| -1644 (-1117 |#1|))) (-1117 |#1|)) 96)) (-1632 (((-1117 |#1|) (-1117 |#1|)) 97)) (-2466 (((-2 (|:| -1479 (-1117 |#1|)) (|:| -1493 (-1117 |#1|))) (-1117 |#1|)) 53)) (-1479 (((-1117 |#1|) (-1117 |#1|)) 54)) (-1678 (((-1117 |#1|) (-1117 |#1|)) 102)) (-1532 (((-1117 |#1|) (-1117 |#1|)) 71)) (-3624 (((-1117 |#1|) (-1117 |#1|)) 39)) (-2712 (((-1117 |#1|) (-1117 |#1|)) 36)) (-1690 (((-1117 |#1|) (-1117 |#1|)) 103)) (-1545 (((-1117 |#1|) (-1117 |#1|)) 72)) (-1668 (((-1117 |#1|) (-1117 |#1|)) 101)) (-1519 (((-1117 |#1|) (-1117 |#1|)) 67)) (-1644 (((-1117 |#1|) (-1117 |#1|)) 98)) (-1493 (((-1117 |#1|) (-1117 |#1|)) 55)) (-1726 (((-1117 |#1|) (-1117 |#1|)) 111)) (-1579 (((-1117 |#1|) (-1117 |#1|)) 86)) (-1703 (((-1117 |#1|) (-1117 |#1|)) 105)) (-1557 (((-1117 |#1|) (-1117 |#1|)) 82)) (-1751 (((-1117 |#1|) (-1117 |#1|)) 115)) (-1606 (((-1117 |#1|) (-1117 |#1|)) 90)) (-1927 (((-1117 |#1|) (-1117 |#1|)) 117)) (-1620 (((-1117 |#1|) (-1117 |#1|)) 92)) (-1738 (((-1117 |#1|) (-1117 |#1|)) 113)) (-1593 (((-1117 |#1|) (-1117 |#1|)) 88)) (-1714 (((-1117 |#1|) (-1117 |#1|)) 107)) (-1569 (((-1117 |#1|) (-1117 |#1|)) 84)) (** (((-1117 |#1|) (-1117 |#1|) (-1117 |#1|)) 40)))
-(((-1123 |#1|) (-10 -7 (-15 -2712 ((-1117 |#1|) (-1117 |#1|))) (-15 -3624 ((-1117 |#1|) (-1117 |#1|))) (-15 ** ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -2466 ((-2 (|:| -1479 (-1117 |#1|)) (|:| -1493 (-1117 |#1|))) (-1117 |#1|))) (-15 -1479 ((-1117 |#1|) (-1117 |#1|))) (-15 -1493 ((-1117 |#1|) (-1117 |#1|))) (-15 -1505 ((-1117 |#1|) (-1117 |#1|))) (-15 -1519 ((-1117 |#1|) (-1117 |#1|))) (-15 -1532 ((-1117 |#1|) (-1117 |#1|))) (-15 -1545 ((-1117 |#1|) (-1117 |#1|))) (-15 -1557 ((-1117 |#1|) (-1117 |#1|))) (-15 -1569 ((-1117 |#1|) (-1117 |#1|))) (-15 -1579 ((-1117 |#1|) (-1117 |#1|))) (-15 -1593 ((-1117 |#1|) (-1117 |#1|))) (-15 -1606 ((-1117 |#1|) (-1117 |#1|))) (-15 -1620 ((-1117 |#1|) (-1117 |#1|))) (-15 -1406 ((-2 (|:| -1632 (-1117 |#1|)) (|:| -1644 (-1117 |#1|))) (-1117 |#1|))) (-15 -1632 ((-1117 |#1|) (-1117 |#1|))) (-15 -1644 ((-1117 |#1|) (-1117 |#1|))) (-15 -1656 ((-1117 |#1|) (-1117 |#1|))) (-15 -1668 ((-1117 |#1|) (-1117 |#1|))) (-15 -1678 ((-1117 |#1|) (-1117 |#1|))) (-15 -1690 ((-1117 |#1|) (-1117 |#1|))) (-15 -1703 ((-1117 |#1|) (-1117 |#1|))) (-15 -1714 ((-1117 |#1|) (-1117 |#1|))) (-15 -1726 ((-1117 |#1|) (-1117 |#1|))) (-15 -1738 ((-1117 |#1|) (-1117 |#1|))) (-15 -1751 ((-1117 |#1|) (-1117 |#1|))) (-15 -1927 ((-1117 |#1|) (-1117 |#1|)))) (-38 (-398 (-547)))) (T -1123))
-((-1927 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1751 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1738 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1726 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1714 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1703 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1690 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1678 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1668 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1644 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1632 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1406 (*1 *2 *3) (-12 (-4 *4 (-38 (-398 (-547)))) (-5 *2 (-2 (|:| -1632 (-1117 *4)) (|:| -1644 (-1117 *4)))) (-5 *1 (-1123 *4)) (-5 *3 (-1117 *4)))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1606 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1579 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1569 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1557 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1545 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1532 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1519 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-2466 (*1 *2 *3) (-12 (-4 *4 (-38 (-398 (-547)))) (-5 *2 (-2 (|:| -1479 (-1117 *4)) (|:| -1493 (-1117 *4)))) (-5 *1 (-1123 *4)) (-5 *3 (-1117 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-3624 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1123 *3)))))
-(-10 -7 (-15 -2712 ((-1117 |#1|) (-1117 |#1|))) (-15 -3624 ((-1117 |#1|) (-1117 |#1|))) (-15 ** ((-1117 |#1|) (-1117 |#1|) (-1117 |#1|))) (-15 -2466 ((-2 (|:| -1479 (-1117 |#1|)) (|:| -1493 (-1117 |#1|))) (-1117 |#1|))) (-15 -1479 ((-1117 |#1|) (-1117 |#1|))) (-15 -1493 ((-1117 |#1|) (-1117 |#1|))) (-15 -1505 ((-1117 |#1|) (-1117 |#1|))) (-15 -1519 ((-1117 |#1|) (-1117 |#1|))) (-15 -1532 ((-1117 |#1|) (-1117 |#1|))) (-15 -1545 ((-1117 |#1|) (-1117 |#1|))) (-15 -1557 ((-1117 |#1|) (-1117 |#1|))) (-15 -1569 ((-1117 |#1|) (-1117 |#1|))) (-15 -1579 ((-1117 |#1|) (-1117 |#1|))) (-15 -1593 ((-1117 |#1|) (-1117 |#1|))) (-15 -1606 ((-1117 |#1|) (-1117 |#1|))) (-15 -1620 ((-1117 |#1|) (-1117 |#1|))) (-15 -1406 ((-2 (|:| -1632 (-1117 |#1|)) (|:| -1644 (-1117 |#1|))) (-1117 |#1|))) (-15 -1632 ((-1117 |#1|) (-1117 |#1|))) (-15 -1644 ((-1117 |#1|) (-1117 |#1|))) (-15 -1656 ((-1117 |#1|) (-1117 |#1|))) (-15 -1668 ((-1117 |#1|) (-1117 |#1|))) (-15 -1678 ((-1117 |#1|) (-1117 |#1|))) (-15 -1690 ((-1117 |#1|) (-1117 |#1|))) (-15 -1703 ((-1117 |#1|) (-1117 |#1|))) (-15 -1714 ((-1117 |#1|) (-1117 |#1|))) (-15 -1726 ((-1117 |#1|) (-1117 |#1|))) (-15 -1738 ((-1117 |#1|) (-1117 |#1|))) (-15 -1751 ((-1117 |#1|) (-1117 |#1|))) (-15 -1927 ((-1117 |#1|) (-1117 |#1|))))
-((-4035 (((-927 |#2|) |#2| |#2|) 35)) (-3350 ((|#2| |#2| |#1|) 19 (|has| |#1| (-298)))))
-(((-1124 |#1| |#2|) (-10 -7 (-15 -4035 ((-927 |#2|) |#2| |#2|)) (IF (|has| |#1| (-298)) (-15 -3350 (|#2| |#2| |#1|)) |%noBranch|)) (-539) (-1195 |#1|)) (T -1124))
-((-3350 (*1 *2 *2 *3) (-12 (-4 *3 (-298)) (-4 *3 (-539)) (-5 *1 (-1124 *3 *2)) (-4 *2 (-1195 *3)))) (-4035 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-927 *3)) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1195 *4)))))
-(-10 -7 (-15 -4035 ((-927 |#2|) |#2| |#2|)) (IF (|has| |#1| (-298)) (-15 -3350 (|#2| |#2| |#1|)) |%noBranch|))
-((-3826 (((-112) $ $) NIL)) (-2285 (($ $ (-619 (-745))) 67)) (-4018 (($) 26)) (-3146 (($ $) 42)) (-1460 (((-619 $) $) 51)) (-2942 (((-112) $) 16)) (-2925 (((-619 (-912 |#2|)) $) 74)) (-3270 (($ $) 68)) (-4236 (((-745) $) 37)) (-3735 (($) 25)) (-3923 (($ $ (-619 (-745)) (-912 |#2|)) 60) (($ $ (-619 (-745)) (-745)) 61) (($ $ (-745) (-912 |#2|)) 63)) (-2777 (($ $ $) 48) (($ (-619 $)) 50)) (-1486 (((-745) $) 75)) (-1489 (((-112) $) 15)) (-1466 (((-1119) $) NIL)) (-1636 (((-112) $) 18)) (-3979 (((-1082) $) NIL)) (-3231 (((-168) $) 73)) (-2588 (((-912 |#2|) $) 69)) (-3381 (((-745) $) 70)) (-2724 (((-112) $) 72)) (-2642 (($ $ (-619 (-745)) (-168)) 66)) (-3887 (($ $) 43)) (-3838 (((-832) $) 86)) (-2667 (($ $ (-619 (-745)) (-112)) 65)) (-2514 (((-619 $) $) 11)) (-1880 (($ $ (-745)) 36)) (-4278 (($ $) 32)) (-1812 (($ $ $ (-912 |#2|) (-745)) 56)) (-1657 (($ $ (-912 |#2|)) 55)) (-3880 (($ $ (-619 (-745)) (-912 |#2|)) 54) (($ $ (-619 (-745)) (-745)) 58) (((-745) $ (-912 |#2|)) 59)) (-2381 (((-112) $ $) 80)))
-(((-1125 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -1489 ((-112) $)) (-15 -2942 ((-112) $)) (-15 -1636 ((-112) $)) (-15 -3735 ($)) (-15 -4018 ($)) (-15 -4278 ($ $)) (-15 -1880 ($ $ (-745))) (-15 -2514 ((-619 $) $)) (-15 -4236 ((-745) $)) (-15 -3146 ($ $)) (-15 -3887 ($ $)) (-15 -2777 ($ $ $)) (-15 -2777 ($ (-619 $))) (-15 -1460 ((-619 $) $)) (-15 -3880 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -1657 ($ $ (-912 |#2|))) (-15 -1812 ($ $ $ (-912 |#2|) (-745))) (-15 -3923 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -3880 ($ $ (-619 (-745)) (-745))) (-15 -3923 ($ $ (-619 (-745)) (-745))) (-15 -3880 ((-745) $ (-912 |#2|))) (-15 -3923 ($ $ (-745) (-912 |#2|))) (-15 -2667 ($ $ (-619 (-745)) (-112))) (-15 -2642 ($ $ (-619 (-745)) (-168))) (-15 -2285 ($ $ (-619 (-745)))) (-15 -2588 ((-912 |#2|) $)) (-15 -3381 ((-745) $)) (-15 -2724 ((-112) $)) (-15 -3231 ((-168) $)) (-15 -1486 ((-745) $)) (-15 -3270 ($ $)) (-15 -2925 ((-619 (-912 |#2|)) $)))) (-890) (-1016)) (T -1125))
-((-1489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-1636 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3735 (*1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-4018 (*1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-4278 (*1 *1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-1880 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-619 (-1125 *3 *4))) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-4236 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3146 (*1 *1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-3887 (*1 *1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2777 (*1 *1 *1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2777 (*1 *1 *2) (-12 (-5 *2 (-619 (-1125 *3 *4))) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-619 (-1125 *3 *4))) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3880 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *1 (-1125 *4 *5)) (-14 *4 (-890)))) (-1657 (*1 *1 *1 *2) (-12 (-5 *2 (-912 *4)) (-4 *4 (-1016)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)))) (-1812 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-912 *5)) (-5 *3 (-745)) (-4 *5 (-1016)) (-5 *1 (-1125 *4 *5)) (-14 *4 (-890)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *1 (-1125 *4 *5)) (-14 *4 (-890)))) (-3880 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1125 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1125 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *2 (-745)) (-5 *1 (-1125 *4 *5)) (-14 *4 (-890)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *1 (-1125 *4 *5)) (-14 *4 (-890)))) (-2667 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-112)) (-5 *1 (-1125 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-168)) (-5 *1 (-1125 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-2285 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-912 *4)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-168)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3270 (*1 *1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-619 (-912 *4))) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))))
-(-13 (-1063) (-10 -8 (-15 -1489 ((-112) $)) (-15 -2942 ((-112) $)) (-15 -1636 ((-112) $)) (-15 -3735 ($)) (-15 -4018 ($)) (-15 -4278 ($ $)) (-15 -1880 ($ $ (-745))) (-15 -2514 ((-619 $) $)) (-15 -4236 ((-745) $)) (-15 -3146 ($ $)) (-15 -3887 ($ $)) (-15 -2777 ($ $ $)) (-15 -2777 ($ (-619 $))) (-15 -1460 ((-619 $) $)) (-15 -3880 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -1657 ($ $ (-912 |#2|))) (-15 -1812 ($ $ $ (-912 |#2|) (-745))) (-15 -3923 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -3880 ($ $ (-619 (-745)) (-745))) (-15 -3923 ($ $ (-619 (-745)) (-745))) (-15 -3880 ((-745) $ (-912 |#2|))) (-15 -3923 ($ $ (-745) (-912 |#2|))) (-15 -2667 ($ $ (-619 (-745)) (-112))) (-15 -2642 ($ $ (-619 (-745)) (-168))) (-15 -2285 ($ $ (-619 (-745)))) (-15 -2588 ((-912 |#2|) $)) (-15 -3381 ((-745) $)) (-15 -2724 ((-112) $)) (-15 -3231 ((-168) $)) (-15 -1486 ((-745) $)) (-15 -3270 ($ $)) (-15 -2925 ((-619 (-912 |#2|)) $))))
-((-3826 (((-112) $ $) NIL)) (-2196 ((|#2| $) 11)) (-2183 ((|#1| $) 10)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3846 (($ |#1| |#2|) 9)) (-3838 (((-832) $) 16)) (-2381 (((-112) $ $) NIL)))
-(((-1126 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3846 ($ |#1| |#2|)) (-15 -2183 (|#1| $)) (-15 -2196 (|#2| $)))) (-1063) (-1063)) (T -1126))
-((-3846 (*1 *1 *2 *3) (-12 (-5 *1 (-1126 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-2183 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-1126 *2 *3)) (-4 *3 (-1063)))) (-2196 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-1126 *3 *2)) (-4 *3 (-1063)))))
-(-13 (-1063) (-10 -8 (-15 -3846 ($ |#1| |#2|)) (-15 -2183 (|#1| $)) (-15 -2196 (|#2| $))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2092 (((-1134 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-298)) (|has| |#1| (-354))))) (-2267 (((-619 (-1045)) $) NIL)) (-3004 (((-1136) $) 11)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-3571 (($ $) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-3915 (((-112) $) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-3931 (($ $ (-547)) NIL) (($ $ (-547) (-547)) 66)) (-2203 (((-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) NIL)) (-3614 (((-1134 |#1| |#2| |#3|) $) 36)) (-4224 (((-3 (-1134 |#1| |#2| |#3|) "failed") $) 29)) (-2334 (((-1134 |#1| |#2| |#3|) $) 30)) (-1656 (($ $) 107 (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) 83 (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-2555 (($ $) NIL (|has| |#1| (-354)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2127 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1632 (($ $) 103 (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) 79 (|has| |#1| (-38 (-398 (-547)))))) (-2500 (((-547) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-2819 (($ (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) NIL)) (-1678 (($ $) 111 (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) 87 (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-1134 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1136) "failed") $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-1007 (-1136))) (|has| |#1| (-354)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354)))) (((-3 (-547) "failed") $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354))))) (-2652 (((-1134 |#1| |#2| |#3|) $) 131) (((-1136) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-1007 (-1136))) (|has| |#1| (-354)))) (((-398 (-547)) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354)))) (((-547) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354))))) (-2708 (($ $) 34) (($ (-547) $) 35)) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-2063 (($ $) NIL)) (-1694 (((-663 (-1134 |#1| |#2| |#3|)) (-663 $)) NIL (|has| |#1| (-354))) (((-2 (|:| -1877 (-663 (-1134 |#1| |#2| |#3|))) (|:| |vec| (-1219 (-1134 |#1| |#2| |#3|)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-354))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-615 (-547))) (|has| |#1| (-354)))) (((-663 (-547)) (-663 $)) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-615 (-547))) (|has| |#1| (-354))))) (-3855 (((-3 $ "failed") $) 48)) (-4047 (((-398 (-921 |#1|)) $ (-547)) 65 (|has| |#1| (-539))) (((-398 (-921 |#1|)) $ (-547) (-547)) 67 (|has| |#1| (-539)))) (-3232 (($) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-532)) (|has| |#1| (-354))))) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-1791 (((-112) $) NIL (|has| |#1| (-354)))) (-4270 (((-112) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-1713 (((-112) $) 25)) (-1419 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-855 (-547))) (|has| |#1| (-354)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-855 (-370))) (|has| |#1| (-354))))) (-3275 (((-547) $) NIL) (((-547) $ (-547)) 24)) (-2261 (((-112) $) NIL)) (-4170 (($ $) NIL (|has| |#1| (-354)))) (-1386 (((-1134 |#1| |#2| |#3|) $) 38 (|has| |#1| (-354)))) (-3869 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3477 (((-3 $ "failed") $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-1112)) (|has| |#1| (-354))))) (-1860 (((-112) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-3852 (($ $ (-890)) NIL)) (-3201 (($ (-1 |#1| (-547)) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-547)) 18) (($ $ (-1045) (-547)) NIL) (($ $ (-619 (-1045)) (-619 (-547))) NIL)) (-2856 (($ $ $) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-3567 (($ $ $) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1134 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-354)))) (-3624 (($ $) 72 (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2343 (($ (-547) (-1134 |#1| |#2| |#3|)) 33)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-354)))) (-3694 (($ $) 70 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) NIL (-1530 (-12 (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1158))))) (($ $ (-1215 |#2|)) 71 (|has| |#1| (-38 (-398 (-547)))))) (-3054 (($) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-1112)) (|has| |#1| (-354))) CONST)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-354)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-3682 (($ $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-298)) (|has| |#1| (-354))))) (-1276 (((-1134 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-532)) (|has| |#1| (-354))))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-2115 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-3708 (($ $ (-547)) 145)) (-2032 (((-3 $ "failed") $ $) 49 (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2712 (($ $) 73 (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-547))))) (($ $ (-1136) (-1134 |#1| |#2| |#3|)) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-503 (-1136) (-1134 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-619 (-1136)) (-619 (-1134 |#1| |#2| |#3|))) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-503 (-1136) (-1134 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-619 (-285 (-1134 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-300 (-1134 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-285 (-1134 |#1| |#2| |#3|))) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-300 (-1134 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-1134 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3|)) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-300 (-1134 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-619 (-1134 |#1| |#2| |#3|)) (-619 (-1134 |#1| |#2| |#3|))) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-300 (-1134 |#1| |#2| |#3|))) (|has| |#1| (-354))))) (-2471 (((-745) $) NIL (|has| |#1| (-354)))) (-3334 ((|#1| $ (-547)) NIL) (($ $ $) 54 (|has| (-547) (-1075))) (($ $ (-1134 |#1| |#2| |#3|)) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-277 (-1134 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3|))) (|has| |#1| (-354))))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-3448 (($ $ (-1 (-1134 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3|))) NIL (|has| |#1| (-354))) (($ $ (-1 (-1134 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-354))) (($ $ (-1215 |#2|)) 51) (($ $ (-745)) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) 50 (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-1136) (-745)) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-619 (-1136))) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-1136)) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))))) (-2995 (($ $) NIL (|has| |#1| (-354)))) (-1396 (((-1134 |#1| |#2| |#3|) $) 41 (|has| |#1| (-354)))) (-3705 (((-547) $) 37)) (-1690 (($ $) 113 (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) 89 (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) 109 (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) 85 (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) 105 (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) 81 (|has| |#1| (-38 (-398 (-547)))))) (-2838 (((-523) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-592 (-523))) (|has| |#1| (-354)))) (((-370) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-991)) (|has| |#1| (-354)))) (((-217) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-991)) (|has| |#1| (-354)))) (((-861 (-370)) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-592 (-861 (-370)))) (|has| |#1| (-354)))) (((-861 (-547)) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-592 (-861 (-547)))) (|has| |#1| (-354))))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-1134 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-2804 (($ $) NIL)) (-3838 (((-832) $) 149) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1134 |#1| |#2| |#3|)) 27) (($ (-1215 |#2|)) 23) (($ (-1136)) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-1007 (-1136))) (|has| |#1| (-354)))) (($ $) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539)))) (($ (-398 (-547))) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354))) (|has| |#1| (-38 (-398 (-547))))))) (-2450 ((|#1| $ (-547)) 68)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| (-1134 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-143)) (|has| |#1| (-354))) (|has| |#1| (-143))))) (-2736 (((-745)) NIL)) (-2591 ((|#1| $) 12)) (-3720 (((-1134 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-532)) (|has| |#1| (-354))))) (-1726 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) 95 (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-1703 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) 91 (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) 99 (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-547)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-547)))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) 101 (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) 97 (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) 93 (|has| |#1| (-38 (-398 (-547)))))) (-2255 (($ $) NIL (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-3269 (($) 20 T CONST)) (-3281 (($) 16 T CONST)) (-1695 (($ $ (-1 (-1134 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3|))) NIL (|has| |#1| (-354))) (($ $ (-1 (-1134 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-354))) (($ $ (-745)) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-1136) (-745)) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-619 (-1136))) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-1136)) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))))) (-2441 (((-112) $ $) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2418 (((-112) $ $) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2405 (((-112) $ $) NIL (-1530 (-12 (|has| (-1134 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1134 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) 44 (|has| |#1| (-354))) (($ (-1134 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3|)) 45 (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 21)) (** (($ $ (-890)) NIL) (($ $ (-745)) 53) (($ $ (-547)) NIL (|has| |#1| (-354))) (($ $ $) 74 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 128 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1134 |#1| |#2| |#3|)) 43 (|has| |#1| (-354))) (($ (-1134 |#1| |#2| |#3|) $) 42 (|has| |#1| (-354))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-1127 |#1| |#2| |#3|) (-13 (-1181 |#1| (-1134 |#1| |#2| |#3|)) (-10 -8 (-15 -3838 ($ (-1215 |#2|))) (-15 -3448 ($ $ (-1215 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|))) (-1016) (-1136) |#1|) (T -1127))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1127 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1127 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3694 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1127 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))))
-(-13 (-1181 |#1| (-1134 |#1| |#2| |#3|)) (-10 -8 (-15 -3838 ($ (-1215 |#2|))) (-15 -3448 ($ $ (-1215 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|)))
-((-2814 ((|#2| |#2| (-1056 |#2|)) 26) ((|#2| |#2| (-1136)) 28)))
-(((-1128 |#1| |#2|) (-10 -7 (-15 -2814 (|#2| |#2| (-1136))) (-15 -2814 (|#2| |#2| (-1056 |#2|)))) (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-421 |#1|) (-157) (-27) (-1158))) (T -1128))
-((-2814 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-421 *4) (-157) (-27) (-1158))) (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1128 *4 *2)))) (-2814 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1128 *4 *2)) (-4 *2 (-13 (-421 *4) (-157) (-27) (-1158))))))
-(-10 -7 (-15 -2814 (|#2| |#2| (-1136))) (-15 -2814 (|#2| |#2| (-1056 |#2|))))
-((-2814 (((-3 (-398 (-921 |#1|)) (-307 |#1|)) (-398 (-921 |#1|)) (-1056 (-398 (-921 |#1|)))) 31) (((-398 (-921 |#1|)) (-921 |#1|) (-1056 (-921 |#1|))) 44) (((-3 (-398 (-921 |#1|)) (-307 |#1|)) (-398 (-921 |#1|)) (-1136)) 33) (((-398 (-921 |#1|)) (-921 |#1|) (-1136)) 36)))
-(((-1129 |#1|) (-10 -7 (-15 -2814 ((-398 (-921 |#1|)) (-921 |#1|) (-1136))) (-15 -2814 ((-3 (-398 (-921 |#1|)) (-307 |#1|)) (-398 (-921 |#1|)) (-1136))) (-15 -2814 ((-398 (-921 |#1|)) (-921 |#1|) (-1056 (-921 |#1|)))) (-15 -2814 ((-3 (-398 (-921 |#1|)) (-307 |#1|)) (-398 (-921 |#1|)) (-1056 (-398 (-921 |#1|)))))) (-13 (-539) (-821) (-1007 (-547)))) (T -1129))
-((-2814 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-398 (-921 *5)))) (-5 *3 (-398 (-921 *5))) (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-3 *3 (-307 *5))) (-5 *1 (-1129 *5)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-921 *5))) (-5 *3 (-921 *5)) (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-398 *3)) (-5 *1 (-1129 *5)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-3 (-398 (-921 *5)) (-307 *5))) (-5 *1 (-1129 *5)) (-5 *3 (-398 (-921 *5))))) (-2814 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-398 (-921 *5))) (-5 *1 (-1129 *5)) (-5 *3 (-921 *5)))))
-(-10 -7 (-15 -2814 ((-398 (-921 |#1|)) (-921 |#1|) (-1136))) (-15 -2814 ((-3 (-398 (-921 |#1|)) (-307 |#1|)) (-398 (-921 |#1|)) (-1136))) (-15 -2814 ((-398 (-921 |#1|)) (-921 |#1|) (-1056 (-921 |#1|)))) (-15 -2814 ((-3 (-398 (-921 |#1|)) (-307 |#1|)) (-398 (-921 |#1|)) (-1056 (-398 (-921 |#1|))))))
-((-2790 (((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|)) 13)))
-(((-1130 |#1| |#2|) (-10 -7 (-15 -2790 ((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|)))) (-1016) (-1016)) (T -1130))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1132 *6)) (-5 *1 (-1130 *5 *6)))))
-(-10 -7 (-15 -2790 ((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|))))
-((-3299 (((-409 (-1132 (-398 |#4|))) (-1132 (-398 |#4|))) 51)) (-2115 (((-409 (-1132 (-398 |#4|))) (-1132 (-398 |#4|))) 52)))
-(((-1131 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2115 ((-409 (-1132 (-398 |#4|))) (-1132 (-398 |#4|)))) (-15 -3299 ((-409 (-1132 (-398 |#4|))) (-1132 (-398 |#4|))))) (-767) (-821) (-442) (-918 |#3| |#1| |#2|)) (T -1131))
-((-3299 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-442)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-409 (-1132 (-398 *7)))) (-5 *1 (-1131 *4 *5 *6 *7)) (-5 *3 (-1132 (-398 *7))))) (-2115 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-442)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-409 (-1132 (-398 *7)))) (-5 *1 (-1131 *4 *5 *6 *7)) (-5 *3 (-1132 (-398 *7))))))
-(-10 -7 (-15 -2115 ((-409 (-1132 (-398 |#4|))) (-1132 (-398 |#4|)))) (-15 -3299 ((-409 (-1132 (-398 |#4|))) (-1132 (-398 |#4|)))))
-((-3826 (((-112) $ $) 137)) (-1499 (((-112) $) 27)) (-3079 (((-1219 |#1|) $ (-745)) NIL)) (-2267 (((-619 (-1045)) $) NIL)) (-2167 (($ (-1132 |#1|)) NIL)) (-2078 (((-1132 $) $ (-1045)) 58) (((-1132 |#1|) $) 47)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) 132 (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3286 (($ $ $) 126 (|has| |#1| (-539)))) (-2277 (((-409 (-1132 $)) (-1132 $)) 71 (|has| |#1| (-878)))) (-2555 (($ $) NIL (|has| |#1| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 91 (|has| |#1| (-878)))) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-2160 (($ $ (-745)) 39)) (-4279 (($ $ (-745)) 40)) (-1460 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-442)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-1045) "failed") $) NIL)) (-2652 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-1045) $) NIL)) (-1496 (($ $ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $ $) 128 (|has| |#1| (-169)))) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-2063 (($ $) 56)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-3315 (($ $ $) 104)) (-2522 (($ $ $) NIL (|has| |#1| (-539)))) (-3445 (((-2 (|:| -1563 |#1|) (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-539)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3350 (($ $) 133 (|has| |#1| (-442))) (($ $ (-1045)) NIL (|has| |#1| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#1| (-878)))) (-3210 (($ $ |#1| (-745) $) 45)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1045) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1045) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-1591 (((-832) $ (-832)) 117)) (-3275 (((-745) $ $) NIL (|has| |#1| (-539)))) (-2261 (((-112) $) 30)) (-3376 (((-745) $) NIL)) (-3477 (((-3 $ "failed") $) NIL (|has| |#1| (-1112)))) (-2254 (($ (-1132 |#1|) (-1045)) 49) (($ (-1132 $) (-1045)) 65)) (-3852 (($ $ (-745)) 32)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-745)) 63) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ (-1045)) NIL) (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 121)) (-3095 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-4182 (($ (-1 (-745) (-745)) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-4095 (((-1132 |#1|) $) NIL)) (-1631 (((-3 (-1045) "failed") $) NIL)) (-2019 (($ $) NIL)) (-2037 ((|#1| $) 52)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1466 (((-1119) $) NIL)) (-2836 (((-2 (|:| -2235 $) (|:| -2916 $)) $ (-745)) 38)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-1045)) (|:| -3322 (-745))) "failed") $) NIL)) (-3694 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3054 (($) NIL (|has| |#1| (-1112)) CONST)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) 31)) (-2009 ((|#1| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 79 (|has| |#1| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) 135 (|has| |#1| (-442)))) (-3902 (($ $ (-745) |#1| $) 99)) (-2834 (((-409 (-1132 $)) (-1132 $)) 77 (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) 76 (|has| |#1| (-878)))) (-2115 (((-409 $) $) 84 (|has| |#1| (-878)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-2032 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#1|) NIL) (($ $ (-619 (-1045)) (-619 |#1|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-2471 (((-745) $) NIL (|has| |#1| (-354)))) (-3334 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-398 $) (-398 $) (-398 $)) NIL (|has| |#1| (-539))) ((|#1| (-398 $) |#1|) NIL (|has| |#1| (-354))) (((-398 $) $ (-398 $)) NIL (|has| |#1| (-539)))) (-1397 (((-3 $ "failed") $ (-745)) 35)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 138 (|has| |#1| (-354)))) (-4056 (($ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $) 124 (|has| |#1| (-169)))) (-3448 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3705 (((-745) $) 54) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-1045) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-2392 ((|#1| $) 130 (|has| |#1| (-442))) (($ $ (-1045)) NIL (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-4188 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539))) (((-3 (-398 $) "failed") (-398 $) $) NIL (|has| |#1| (-539)))) (-3838 (((-832) $) 118) (($ (-547)) NIL) (($ |#1|) 53) (($ (-1045)) NIL) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) 25 (|has| |#1| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3269 (($) 15 T CONST)) (-3281 (($) 16 T CONST)) (-1695 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1136)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) 96)) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2506 (($ $ |#1|) 139 (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 66)) (** (($ $ (-890)) 14) (($ $ (-745)) 12)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 24) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1132 |#1|) (-13 (-1195 |#1|) (-10 -8 (-15 -1591 ((-832) $ (-832))) (-15 -3902 ($ $ (-745) |#1| $)))) (-1016)) (T -1132))
-((-1591 (*1 *2 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1132 *3)) (-4 *3 (-1016)))) (-3902 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1132 *3)) (-4 *3 (-1016)))))
-(-13 (-1195 |#1|) (-10 -8 (-15 -1591 ((-832) $ (-832))) (-15 -3902 ($ $ (-745) |#1| $))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2267 (((-619 (-1045)) $) NIL)) (-3004 (((-1136) $) 11)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-3931 (($ $ (-398 (-547))) NIL) (($ $ (-398 (-547)) (-398 (-547))) NIL)) (-2203 (((-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) NIL)) (-1656 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL (|has| |#1| (-354)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2127 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1632 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2819 (($ (-745) (-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) NIL)) (-1678 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-1127 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1134 |#1| |#2| |#3|) "failed") $) 36)) (-2652 (((-1127 |#1| |#2| |#3|) $) NIL) (((-1134 |#1| |#2| |#3|) $) NIL)) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-1937 (((-398 (-547)) $) 55)) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-2356 (($ (-398 (-547)) (-1127 |#1| |#2| |#3|)) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-1791 (((-112) $) NIL (|has| |#1| (-354)))) (-1713 (((-112) $) NIL)) (-1419 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-398 (-547)) $) NIL) (((-398 (-547)) $ (-398 (-547))) NIL)) (-2261 (((-112) $) NIL)) (-3869 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3852 (($ $ (-890)) NIL) (($ $ (-398 (-547))) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-398 (-547))) 20) (($ $ (-1045) (-398 (-547))) NIL) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-3090 (((-1127 |#1| |#2| |#3|) $) 41)) (-4205 (((-3 (-1127 |#1| |#2| |#3|) "failed") $) NIL)) (-2343 (((-1127 |#1| |#2| |#3|) $) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-354)))) (-3694 (($ $) 39 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) NIL (-1530 (-12 (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1158))))) (($ $ (-1215 |#2|)) 40 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-354)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-3708 (($ $ (-398 (-547))) NIL)) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2712 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2471 (((-745) $) NIL (|has| |#1| (-354)))) (-3334 ((|#1| $ (-398 (-547))) NIL) (($ $ $) NIL (|has| (-398 (-547)) (-1075)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $ (-1215 |#2|)) 38)) (-3705 (((-398 (-547)) $) NIL)) (-1690 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) NIL)) (-3838 (((-832) $) 58) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1127 |#1| |#2| |#3|)) 30) (($ (-1134 |#1| |#2| |#3|)) 31) (($ (-1215 |#2|)) 26) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539)))) (-2450 ((|#1| $ (-398 (-547))) NIL)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-2591 ((|#1| $) 12)) (-1726 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-398 (-547))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) 22 T CONST)) (-3281 (($) 16 T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 24)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-1133 |#1| |#2| |#3|) (-13 (-1202 |#1| (-1127 |#1| |#2| |#3|)) (-1007 (-1134 |#1| |#2| |#3|)) (-10 -8 (-15 -3838 ($ (-1215 |#2|))) (-15 -3448 ($ $ (-1215 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|))) (-1016) (-1136) |#1|) (T -1133))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3694 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))))
-(-13 (-1202 |#1| (-1127 |#1| |#2| |#3|)) (-1007 (-1134 |#1| |#2| |#3|)) (-10 -8 (-15 -3838 ($ (-1215 |#2|))) (-15 -3448 ($ $ (-1215 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 125)) (-2267 (((-619 (-1045)) $) NIL)) (-3004 (((-1136) $) 116)) (-3964 (((-1192 |#2| |#1|) $ (-745)) 63)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-3931 (($ $ (-745)) 79) (($ $ (-745) (-745)) 76)) (-2203 (((-1117 (-2 (|:| |k| (-745)) (|:| |c| |#1|))) $) 102)) (-1656 (($ $) 169 (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) 145 (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2127 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1632 (($ $) 165 (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-2819 (($ (-1117 (-2 (|:| |k| (-745)) (|:| |c| |#1|)))) 115) (($ (-1117 |#1|)) 110)) (-1678 (($ $) 173 (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) 149 (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) NIL T CONST)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) 23)) (-4208 (($ $) 26)) (-1407 (((-921 |#1|) $ (-745)) 75) (((-921 |#1|) $ (-745) (-745)) 77)) (-1713 (((-112) $) 120)) (-1419 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-745) $) 122) (((-745) $ (-745)) 124)) (-2261 (((-112) $) NIL)) (-3869 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3852 (($ $ (-890)) NIL)) (-3201 (($ (-1 |#1| (-547)) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-745)) 13) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3624 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3694 (($ $) 129 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) NIL (-1530 (-12 (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1158))))) (($ $ (-1215 |#2|)) 130 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-3708 (($ $ (-745)) 15)) (-2032 (((-3 $ "failed") $ $) 24 (|has| |#1| (-539)))) (-2712 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-745)))))) (-3334 ((|#1| $ (-745)) 119) (($ $ $) 128 (|has| (-745) (-1075)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $ (-1215 |#2|)) 29)) (-3705 (((-745) $) NIL)) (-1690 (($ $) 175 (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) 151 (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) 171 (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) 147 (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) 167 (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) 143 (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) NIL)) (-3838 (((-832) $) 201) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539))) (($ |#1|) 126 (|has| |#1| (-169))) (($ (-1192 |#2| |#1|)) 51) (($ (-1215 |#2|)) 32)) (-1277 (((-1117 |#1|) $) 98)) (-2450 ((|#1| $ (-745)) 118)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-2591 ((|#1| $) 54)) (-1726 (($ $) 181 (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) 157 (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1703 (($ $) 177 (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) 153 (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) 185 (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) 161 (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-745)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-745)))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) 187 (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) 163 (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) 183 (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) 159 (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) 179 (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) 155 (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) 17 T CONST)) (-3281 (($) 19 T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) 194)) (-2479 (($ $ $) 31)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ |#1|) 198 (|has| |#1| (-354))) (($ $ $) 134 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 137 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-1134 |#1| |#2| |#3|) (-13 (-1210 |#1|) (-10 -8 (-15 -3838 ($ (-1192 |#2| |#1|))) (-15 -3964 ((-1192 |#2| |#1|) $ (-745))) (-15 -3838 ($ (-1215 |#2|))) (-15 -3448 ($ $ (-1215 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|))) (-1016) (-1136) |#1|) (T -1134))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1192 *4 *3)) (-4 *3 (-1016)) (-14 *4 (-1136)) (-14 *5 *3) (-5 *1 (-1134 *3 *4 *5)))) (-3964 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1192 *5 *4)) (-5 *1 (-1134 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-1136)) (-14 *6 *4))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1134 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1134 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3694 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1134 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))))
-(-13 (-1210 |#1|) (-10 -8 (-15 -3838 ($ (-1192 |#2| |#1|))) (-15 -3964 ((-1192 |#2| |#1|) $ (-745))) (-15 -3838 ($ (-1215 |#2|))) (-15 -3448 ($ $ (-1215 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|)))
-((-3838 (((-832) $) 27) (($ (-1136)) 29)) (-1530 (($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 40)) (-1514 (($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 33) (($ $) 34)) (-3390 (($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 35)) (-3380 (($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 37)) (-3367 (($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 36)) (-3356 (($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 38)) (-3900 (($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 39)))
-(((-1135) (-13 (-591 (-832)) (-10 -8 (-15 -3838 ($ (-1136))) (-15 -3390 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3367 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3380 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3356 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -1530 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3900 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -1514 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -1514 ($ $))))) (T -1135))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1135)))) (-3390 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135)))) (-5 *1 (-1135)))) (-3367 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135)))) (-5 *1 (-1135)))) (-3380 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135)))) (-5 *1 (-1135)))) (-3356 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135)))) (-5 *1 (-1135)))) (-1530 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135)))) (-5 *1 (-1135)))) (-3900 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135)))) (-5 *1 (-1135)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135)))) (-5 *1 (-1135)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135)))) (-5 *1 (-1135)))) (-1514 (*1 *1 *1) (-5 *1 (-1135))))
-(-13 (-591 (-832)) (-10 -8 (-15 -3838 ($ (-1136))) (-15 -3390 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3367 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3380 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3356 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -1530 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3900 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -1514 ($ (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -1514 ($ $))))
-((-3826 (((-112) $ $) NIL)) (-4237 (($ $ (-619 (-832))) 59)) (-1447 (($ $ (-619 (-832))) 57)) (-1517 (((-1119) $) 84)) (-4213 (((-2 (|:| -1278 (-619 (-832))) (|:| -2794 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2539 (-619 (-832))) (|:| |args| (-619 (-832)))) $) 87)) (-1417 (((-112) $) 22)) (-1439 (($ $ (-619 (-619 (-832)))) 56) (($ $ (-2 (|:| -1278 (-619 (-832))) (|:| -2794 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2539 (-619 (-832))) (|:| |args| (-619 (-832))))) 82)) (-1948 (($) 124 T CONST)) (-1538 (((-1224)) 106)) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 66) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 73)) (-3735 (($) 95) (($ $) 101)) (-2473 (($ $) 83)) (-2856 (($ $ $) NIL)) (-3567 (($ $ $) NIL)) (-3517 (((-619 $) $) 107)) (-1466 (((-1119) $) 90)) (-3979 (((-1082) $) NIL)) (-3334 (($ $ (-619 (-832))) 58)) (-2838 (((-523) $) 46) (((-1136) $) 47) (((-861 (-547)) $) 77) (((-861 (-370)) $) 75)) (-3838 (((-832) $) 53) (($ (-1119)) 48)) (-3987 (($ $ (-619 (-832))) 60)) (-2273 (((-1119) $) 33) (((-1119) $ (-112)) 34) (((-1224) (-796) $) 35) (((-1224) (-796) $ (-112)) 36)) (-2441 (((-112) $ $) NIL)) (-2418 (((-112) $ $) NIL)) (-2381 (((-112) $ $) 49)) (-2430 (((-112) $ $) NIL)) (-2405 (((-112) $ $) 50)))
-(((-1136) (-13 (-821) (-592 (-523)) (-802) (-592 (-1136)) (-592 (-861 (-547))) (-592 (-861 (-370))) (-855 (-547)) (-855 (-370)) (-10 -8 (-15 -3735 ($)) (-15 -3735 ($ $)) (-15 -1538 ((-1224))) (-15 -3838 ($ (-1119))) (-15 -2473 ($ $)) (-15 -1417 ((-112) $)) (-15 -4213 ((-2 (|:| -1278 (-619 (-832))) (|:| -2794 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2539 (-619 (-832))) (|:| |args| (-619 (-832)))) $)) (-15 -1439 ($ $ (-619 (-619 (-832))))) (-15 -1439 ($ $ (-2 (|:| -1278 (-619 (-832))) (|:| -2794 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2539 (-619 (-832))) (|:| |args| (-619 (-832)))))) (-15 -1447 ($ $ (-619 (-832)))) (-15 -4237 ($ $ (-619 (-832)))) (-15 -3987 ($ $ (-619 (-832)))) (-15 -3334 ($ $ (-619 (-832)))) (-15 -1517 ((-1119) $)) (-15 -3517 ((-619 $) $)) (-15 -1948 ($) -2582)))) (T -1136))
-((-3735 (*1 *1) (-5 *1 (-1136))) (-3735 (*1 *1 *1) (-5 *1 (-1136))) (-1538 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1136)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1136)))) (-2473 (*1 *1 *1) (-5 *1 (-1136))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1136)))) (-4213 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1278 (-619 (-832))) (|:| -2794 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2539 (-619 (-832))) (|:| |args| (-619 (-832))))) (-5 *1 (-1136)))) (-1439 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-1136)))) (-1439 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1278 (-619 (-832))) (|:| -2794 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2539 (-619 (-832))) (|:| |args| (-619 (-832))))) (-5 *1 (-1136)))) (-1447 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1136)))) (-4237 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1136)))) (-3987 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1136)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1136)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1136)))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-1136)))) (-1948 (*1 *1) (-5 *1 (-1136))))
-(-13 (-821) (-592 (-523)) (-802) (-592 (-1136)) (-592 (-861 (-547))) (-592 (-861 (-370))) (-855 (-547)) (-855 (-370)) (-10 -8 (-15 -3735 ($)) (-15 -3735 ($ $)) (-15 -1538 ((-1224))) (-15 -3838 ($ (-1119))) (-15 -2473 ($ $)) (-15 -1417 ((-112) $)) (-15 -4213 ((-2 (|:| -1278 (-619 (-832))) (|:| -2794 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2539 (-619 (-832))) (|:| |args| (-619 (-832)))) $)) (-15 -1439 ($ $ (-619 (-619 (-832))))) (-15 -1439 ($ $ (-2 (|:| -1278 (-619 (-832))) (|:| -2794 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2539 (-619 (-832))) (|:| |args| (-619 (-832)))))) (-15 -1447 ($ $ (-619 (-832)))) (-15 -4237 ($ $ (-619 (-832)))) (-15 -3987 ($ $ (-619 (-832)))) (-15 -3334 ($ $ (-619 (-832)))) (-15 -1517 ((-1119) $)) (-15 -3517 ((-619 $) $)) (-15 -1948 ($) -2582)))
-((-2201 (((-1219 |#1|) |#1| (-890)) 16) (((-1219 |#1|) (-619 |#1|)) 20)))
-(((-1137 |#1|) (-10 -7 (-15 -2201 ((-1219 |#1|) (-619 |#1|))) (-15 -2201 ((-1219 |#1|) |#1| (-890)))) (-1016)) (T -1137))
-((-2201 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-1219 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1016)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1016)) (-5 *2 (-1219 *4)) (-5 *1 (-1137 *4)))))
-(-10 -7 (-15 -2201 ((-1219 |#1|) (-619 |#1|))) (-15 -2201 ((-1219 |#1|) |#1| (-890))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2652 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-3350 (($ $) NIL (|has| |#1| (-442)))) (-3210 (($ $ |#1| (-940) $) NIL)) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-940)) NIL)) (-3095 (((-940) $) NIL)) (-4182 (($ (-1 (-940) (-940)) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) NIL)) (-2009 ((|#1| $) NIL)) (-3902 (($ $ (-940) |#1| $) NIL (-12 (|has| (-940) (-130)) (|has| |#1| (-539))))) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-3705 (((-940) $) NIL)) (-2392 ((|#1| $) NIL (|has| |#1| (-442)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL (|has| |#1| (-539))) (($ |#1|) NIL) (($ (-398 (-547))) NIL (-1530 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ (-940)) NIL)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3269 (($) 9 T CONST)) (-3281 (($) 14 T CONST)) (-2381 (((-112) $ $) 16)) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 19)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-1138 |#1|) (-13 (-317 |#1| (-940)) (-10 -8 (IF (|has| |#1| (-539)) (IF (|has| (-940) (-130)) (-15 -3902 ($ $ (-940) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4327)) (-6 -4327) |%noBranch|))) (-1016)) (T -1138))
-((-3902 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-940)) (-4 *2 (-130)) (-5 *1 (-1138 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))))
-(-13 (-317 |#1| (-940)) (-10 -8 (IF (|has| |#1| (-539)) (IF (|has| (-940) (-130)) (-15 -3902 ($ $ (-940) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4327)) (-6 -4327) |%noBranch|)))
-((-2231 (((-1140) (-1136) $) 25)) (-3859 (($) 29)) (-3062 (((-3 (|:| |fst| (-425)) (|:| -2896 "void")) (-1136) $) 22)) (-3539 (((-1224) (-1136) (-3 (|:| |fst| (-425)) (|:| -2896 "void")) $) 41) (((-1224) (-1136) (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) 42) (((-1224) (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) 43)) (-3458 (((-1224) (-1136)) 58)) (-4172 (((-1224) (-1136) $) 55) (((-1224) (-1136)) 56) (((-1224)) 57)) (-1911 (((-1224) (-1136)) 37)) (-1679 (((-1136)) 36)) (-2245 (($) 34)) (-4092 (((-428) (-1136) (-428) (-1136) $) 45) (((-428) (-619 (-1136)) (-428) (-1136) $) 49) (((-428) (-1136) (-428)) 46) (((-428) (-1136) (-428) (-1136)) 50)) (-4243 (((-1136)) 35)) (-3838 (((-832) $) 28)) (-2344 (((-1224)) 30) (((-1224) (-1136)) 33)) (-3948 (((-619 (-1136)) (-1136) $) 24)) (-2709 (((-1224) (-1136) (-619 (-1136)) $) 38) (((-1224) (-1136) (-619 (-1136))) 39) (((-1224) (-619 (-1136))) 40)))
-(((-1139) (-13 (-591 (-832)) (-10 -8 (-15 -3859 ($)) (-15 -2344 ((-1224))) (-15 -2344 ((-1224) (-1136))) (-15 -4092 ((-428) (-1136) (-428) (-1136) $)) (-15 -4092 ((-428) (-619 (-1136)) (-428) (-1136) $)) (-15 -4092 ((-428) (-1136) (-428))) (-15 -4092 ((-428) (-1136) (-428) (-1136))) (-15 -1911 ((-1224) (-1136))) (-15 -4243 ((-1136))) (-15 -1679 ((-1136))) (-15 -2709 ((-1224) (-1136) (-619 (-1136)) $)) (-15 -2709 ((-1224) (-1136) (-619 (-1136)))) (-15 -2709 ((-1224) (-619 (-1136)))) (-15 -3539 ((-1224) (-1136) (-3 (|:| |fst| (-425)) (|:| -2896 "void")) $)) (-15 -3539 ((-1224) (-1136) (-3 (|:| |fst| (-425)) (|:| -2896 "void")))) (-15 -3539 ((-1224) (-3 (|:| |fst| (-425)) (|:| -2896 "void")))) (-15 -4172 ((-1224) (-1136) $)) (-15 -4172 ((-1224) (-1136))) (-15 -4172 ((-1224))) (-15 -3458 ((-1224) (-1136))) (-15 -2245 ($)) (-15 -3062 ((-3 (|:| |fst| (-425)) (|:| -2896 "void")) (-1136) $)) (-15 -3948 ((-619 (-1136)) (-1136) $)) (-15 -2231 ((-1140) (-1136) $))))) (T -1139))
-((-3859 (*1 *1) (-5 *1 (-1139))) (-2344 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1139)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-1139)))) (-4092 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-428)) (-5 *3 (-1136)) (-5 *1 (-1139)))) (-4092 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-428)) (-5 *3 (-619 (-1136))) (-5 *4 (-1136)) (-5 *1 (-1139)))) (-4092 (*1 *2 *3 *2) (-12 (-5 *2 (-428)) (-5 *3 (-1136)) (-5 *1 (-1139)))) (-4092 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-428)) (-5 *3 (-1136)) (-5 *1 (-1139)))) (-1911 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-1139)))) (-4243 (*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1139)))) (-1679 (*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1139)))) (-2709 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-619 (-1136))) (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-1139)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1136))) (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-1139)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-619 (-1136))) (-5 *2 (-1224)) (-5 *1 (-1139)))) (-3539 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1136)) (-5 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-5 *2 (-1224)) (-5 *1 (-1139)))) (-3539 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-5 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-5 *2 (-1224)) (-5 *1 (-1139)))) (-3539 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-5 *2 (-1224)) (-5 *1 (-1139)))) (-4172 (*1 *2 *3 *1) (-12 (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-1139)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-1139)))) (-4172 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1139)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-1139)))) (-2245 (*1 *1) (-5 *1 (-1139))) (-3062 (*1 *2 *3 *1) (-12 (-5 *3 (-1136)) (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-5 *1 (-1139)))) (-3948 (*1 *2 *3 *1) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-1139)) (-5 *3 (-1136)))) (-2231 (*1 *2 *3 *1) (-12 (-5 *3 (-1136)) (-5 *2 (-1140)) (-5 *1 (-1139)))))
-(-13 (-591 (-832)) (-10 -8 (-15 -3859 ($)) (-15 -2344 ((-1224))) (-15 -2344 ((-1224) (-1136))) (-15 -4092 ((-428) (-1136) (-428) (-1136) $)) (-15 -4092 ((-428) (-619 (-1136)) (-428) (-1136) $)) (-15 -4092 ((-428) (-1136) (-428))) (-15 -4092 ((-428) (-1136) (-428) (-1136))) (-15 -1911 ((-1224) (-1136))) (-15 -4243 ((-1136))) (-15 -1679 ((-1136))) (-15 -2709 ((-1224) (-1136) (-619 (-1136)) $)) (-15 -2709 ((-1224) (-1136) (-619 (-1136)))) (-15 -2709 ((-1224) (-619 (-1136)))) (-15 -3539 ((-1224) (-1136) (-3 (|:| |fst| (-425)) (|:| -2896 "void")) $)) (-15 -3539 ((-1224) (-1136) (-3 (|:| |fst| (-425)) (|:| -2896 "void")))) (-15 -3539 ((-1224) (-3 (|:| |fst| (-425)) (|:| -2896 "void")))) (-15 -4172 ((-1224) (-1136) $)) (-15 -4172 ((-1224) (-1136))) (-15 -4172 ((-1224))) (-15 -3458 ((-1224) (-1136))) (-15 -2245 ($)) (-15 -3062 ((-3 (|:| |fst| (-425)) (|:| -2896 "void")) (-1136) $)) (-15 -3948 ((-619 (-1136)) (-1136) $)) (-15 -2231 ((-1140) (-1136) $))))
-((-4233 (((-619 (-619 (-3 (|:| -2473 (-1136)) (|:| -2189 (-619 (-3 (|:| S (-1136)) (|:| P (-921 (-547))))))))) $) 59)) (-1555 (((-619 (-3 (|:| -2473 (-1136)) (|:| -2189 (-619 (-3 (|:| S (-1136)) (|:| P (-921 (-547)))))))) (-425) $) 43)) (-3265 (($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-428))))) 17)) (-3458 (((-1224) $) 67)) (-2318 (((-619 (-1136)) $) 22)) (-3692 (((-1067) $) 55)) (-3756 (((-428) (-1136) $) 27)) (-3913 (((-619 (-1136)) $) 30)) (-2245 (($) 19)) (-4092 (((-428) (-619 (-1136)) (-428) $) 25) (((-428) (-1136) (-428) $) 24)) (-3838 (((-832) $) 9) (((-1146 (-1136) (-428)) $) 13)))
-(((-1140) (-13 (-591 (-832)) (-10 -8 (-15 -3838 ((-1146 (-1136) (-428)) $)) (-15 -2245 ($)) (-15 -4092 ((-428) (-619 (-1136)) (-428) $)) (-15 -4092 ((-428) (-1136) (-428) $)) (-15 -3756 ((-428) (-1136) $)) (-15 -2318 ((-619 (-1136)) $)) (-15 -1555 ((-619 (-3 (|:| -2473 (-1136)) (|:| -2189 (-619 (-3 (|:| S (-1136)) (|:| P (-921 (-547)))))))) (-425) $)) (-15 -3913 ((-619 (-1136)) $)) (-15 -4233 ((-619 (-619 (-3 (|:| -2473 (-1136)) (|:| -2189 (-619 (-3 (|:| S (-1136)) (|:| P (-921 (-547))))))))) $)) (-15 -3692 ((-1067) $)) (-15 -3458 ((-1224) $)) (-15 -3265 ($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-428))))))))) (T -1140))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-1146 (-1136) (-428))) (-5 *1 (-1140)))) (-2245 (*1 *1) (-5 *1 (-1140))) (-4092 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-428)) (-5 *3 (-619 (-1136))) (-5 *1 (-1140)))) (-4092 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-428)) (-5 *3 (-1136)) (-5 *1 (-1140)))) (-3756 (*1 *2 *3 *1) (-12 (-5 *3 (-1136)) (-5 *2 (-428)) (-5 *1 (-1140)))) (-2318 (*1 *2 *1) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-1140)))) (-1555 (*1 *2 *3 *1) (-12 (-5 *3 (-425)) (-5 *2 (-619 (-3 (|:| -2473 (-1136)) (|:| -2189 (-619 (-3 (|:| S (-1136)) (|:| P (-921 (-547))))))))) (-5 *1 (-1140)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-1140)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-3 (|:| -2473 (-1136)) (|:| -2189 (-619 (-3 (|:| S (-1136)) (|:| P (-921 (-547)))))))))) (-5 *1 (-1140)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1140)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1140)))) (-3265 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-428))))) (-5 *1 (-1140)))))
-(-13 (-591 (-832)) (-10 -8 (-15 -3838 ((-1146 (-1136) (-428)) $)) (-15 -2245 ($)) (-15 -4092 ((-428) (-619 (-1136)) (-428) $)) (-15 -4092 ((-428) (-1136) (-428) $)) (-15 -3756 ((-428) (-1136) $)) (-15 -2318 ((-619 (-1136)) $)) (-15 -1555 ((-619 (-3 (|:| -2473 (-1136)) (|:| -2189 (-619 (-3 (|:| S (-1136)) (|:| P (-921 (-547)))))))) (-425) $)) (-15 -3913 ((-619 (-1136)) $)) (-15 -4233 ((-619 (-619 (-3 (|:| -2473 (-1136)) (|:| -2189 (-619 (-3 (|:| S (-1136)) (|:| P (-921 (-547))))))))) $)) (-15 -3692 ((-1067) $)) (-15 -3458 ((-1224) $)) (-15 -3265 ($ (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-428))))))))
-((-3826 (((-112) $ $) NIL)) (-3196 (((-112) $) 42)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1418 (((-3 (-547) (-217) (-1136) (-1119) $) $) 50)) (-1956 (((-619 $) $) 55)) (-2838 (((-1067) $) 24) (($ (-1067)) 25)) (-1950 (((-112) $) 52)) (-3838 (((-832) $) NIL) (($ (-547)) 26) (((-547) $) 28) (($ (-217)) 29) (((-217) $) 31) (($ (-1136)) 32) (((-1136) $) 34) (($ (-1119)) 35) (((-1119) $) 37)) (-3258 (((-112) $ (|[\|\|]| (-547))) 11) (((-112) $ (|[\|\|]| (-217))) 15) (((-112) $ (|[\|\|]| (-1136))) 23) (((-112) $ (|[\|\|]| (-1119))) 19)) (-2000 (($ (-1136) (-619 $)) 39) (($ $ (-619 $)) 40)) (-2315 (((-547) $) 27) (((-217) $) 30) (((-1136) $) 33) (((-1119) $) 36)) (-2381 (((-112) $ $) 7)))
-(((-1141) (-13 (-1214) (-1063) (-10 -8 (-15 -2838 ((-1067) $)) (-15 -2838 ($ (-1067))) (-15 -3838 ($ (-547))) (-15 -3838 ((-547) $)) (-15 -2315 ((-547) $)) (-15 -3838 ($ (-217))) (-15 -3838 ((-217) $)) (-15 -2315 ((-217) $)) (-15 -3838 ($ (-1136))) (-15 -3838 ((-1136) $)) (-15 -2315 ((-1136) $)) (-15 -3838 ($ (-1119))) (-15 -3838 ((-1119) $)) (-15 -2315 ((-1119) $)) (-15 -2000 ($ (-1136) (-619 $))) (-15 -2000 ($ $ (-619 $))) (-15 -3196 ((-112) $)) (-15 -1418 ((-3 (-547) (-217) (-1136) (-1119) $) $)) (-15 -1956 ((-619 $) $)) (-15 -1950 ((-112) $)) (-15 -3258 ((-112) $ (|[\|\|]| (-547)))) (-15 -3258 ((-112) $ (|[\|\|]| (-217)))) (-15 -3258 ((-112) $ (|[\|\|]| (-1136)))) (-15 -3258 ((-112) $ (|[\|\|]| (-1119))))))) (T -1141))
-((-2838 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1141)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1141)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1141)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1141)))) (-2315 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1141)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-1141)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-1141)))) (-2315 (*1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-1141)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1141)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1141)))) (-2315 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1141)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1141)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1141)))) (-2315 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1141)))) (-2000 (*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-1141))) (-5 *1 (-1141)))) (-2000 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-1141)))) (-3196 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1141)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-3 (-547) (-217) (-1136) (-1119) (-1141))) (-5 *1 (-1141)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-1141)))) (-1950 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1141)))) (-3258 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-547))) (-5 *2 (-112)) (-5 *1 (-1141)))) (-3258 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)) (-5 *1 (-1141)))) (-3258 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-112)) (-5 *1 (-1141)))) (-3258 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1119))) (-5 *2 (-112)) (-5 *1 (-1141)))))
-(-13 (-1214) (-1063) (-10 -8 (-15 -2838 ((-1067) $)) (-15 -2838 ($ (-1067))) (-15 -3838 ($ (-547))) (-15 -3838 ((-547) $)) (-15 -2315 ((-547) $)) (-15 -3838 ($ (-217))) (-15 -3838 ((-217) $)) (-15 -2315 ((-217) $)) (-15 -3838 ($ (-1136))) (-15 -3838 ((-1136) $)) (-15 -2315 ((-1136) $)) (-15 -3838 ($ (-1119))) (-15 -3838 ((-1119) $)) (-15 -2315 ((-1119) $)) (-15 -2000 ($ (-1136) (-619 $))) (-15 -2000 ($ $ (-619 $))) (-15 -3196 ((-112) $)) (-15 -1418 ((-3 (-547) (-217) (-1136) (-1119) $) $)) (-15 -1956 ((-619 $) $)) (-15 -1950 ((-112) $)) (-15 -3258 ((-112) $ (|[\|\|]| (-547)))) (-15 -3258 ((-112) $ (|[\|\|]| (-217)))) (-15 -3258 ((-112) $ (|[\|\|]| (-1136)))) (-15 -3258 ((-112) $ (|[\|\|]| (-1119))))))
-((-3908 (((-619 (-619 (-921 |#1|))) (-619 (-398 (-921 |#1|))) (-619 (-1136))) 57)) (-3468 (((-619 (-285 (-398 (-921 |#1|)))) (-285 (-398 (-921 |#1|)))) 69) (((-619 (-285 (-398 (-921 |#1|)))) (-398 (-921 |#1|))) 65) (((-619 (-285 (-398 (-921 |#1|)))) (-285 (-398 (-921 |#1|))) (-1136)) 70) (((-619 (-285 (-398 (-921 |#1|)))) (-398 (-921 |#1|)) (-1136)) 64) (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-285 (-398 (-921 |#1|))))) 93) (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-398 (-921 |#1|)))) 92) (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-285 (-398 (-921 |#1|)))) (-619 (-1136))) 94) (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-398 (-921 |#1|))) (-619 (-1136))) 91)))
-(((-1142 |#1|) (-10 -7 (-15 -3468 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-398 (-921 |#1|))) (-619 (-1136)))) (-15 -3468 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-285 (-398 (-921 |#1|)))) (-619 (-1136)))) (-15 -3468 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-398 (-921 |#1|))))) (-15 -3468 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-285 (-398 (-921 |#1|)))))) (-15 -3468 ((-619 (-285 (-398 (-921 |#1|)))) (-398 (-921 |#1|)) (-1136))) (-15 -3468 ((-619 (-285 (-398 (-921 |#1|)))) (-285 (-398 (-921 |#1|))) (-1136))) (-15 -3468 ((-619 (-285 (-398 (-921 |#1|)))) (-398 (-921 |#1|)))) (-15 -3468 ((-619 (-285 (-398 (-921 |#1|)))) (-285 (-398 (-921 |#1|))))) (-15 -3908 ((-619 (-619 (-921 |#1|))) (-619 (-398 (-921 |#1|))) (-619 (-1136))))) (-539)) (T -1142))
-((-3908 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1136))) (-4 *5 (-539)) (-5 *2 (-619 (-619 (-921 *5)))) (-5 *1 (-1142 *5)))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 (-285 (-398 (-921 *4))))) (-5 *1 (-1142 *4)) (-5 *3 (-285 (-398 (-921 *4)))))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 (-285 (-398 (-921 *4))))) (-5 *1 (-1142 *4)) (-5 *3 (-398 (-921 *4))))) (-3468 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-539)) (-5 *2 (-619 (-285 (-398 (-921 *5))))) (-5 *1 (-1142 *5)) (-5 *3 (-285 (-398 (-921 *5)))))) (-3468 (*1 *2 *3 *4) (-12 (-5 *4 (-1136)) (-4 *5 (-539)) (-5 *2 (-619 (-285 (-398 (-921 *5))))) (-5 *1 (-1142 *5)) (-5 *3 (-398 (-921 *5))))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-1142 *4)) (-5 *3 (-619 (-285 (-398 (-921 *4))))))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-619 (-398 (-921 *4)))) (-4 *4 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-1142 *4)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1136))) (-4 *5 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-1142 *5)) (-5 *3 (-619 (-285 (-398 (-921 *5))))))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1136))) (-4 *5 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-1142 *5)))))
-(-10 -7 (-15 -3468 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-398 (-921 |#1|))) (-619 (-1136)))) (-15 -3468 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-285 (-398 (-921 |#1|)))) (-619 (-1136)))) (-15 -3468 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-398 (-921 |#1|))))) (-15 -3468 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-285 (-398 (-921 |#1|)))))) (-15 -3468 ((-619 (-285 (-398 (-921 |#1|)))) (-398 (-921 |#1|)) (-1136))) (-15 -3468 ((-619 (-285 (-398 (-921 |#1|)))) (-285 (-398 (-921 |#1|))) (-1136))) (-15 -3468 ((-619 (-285 (-398 (-921 |#1|)))) (-398 (-921 |#1|)))) (-15 -3468 ((-619 (-285 (-398 (-921 |#1|)))) (-285 (-398 (-921 |#1|))))) (-15 -3908 ((-619 (-619 (-921 |#1|))) (-619 (-398 (-921 |#1|))) (-619 (-1136)))))
-((-1595 (((-1119)) 7)) (-3218 (((-1119)) 9)) (-3014 (((-1224) (-1119)) 11)) (-3016 (((-1119)) 8)))
-(((-1143) (-10 -7 (-15 -1595 ((-1119))) (-15 -3016 ((-1119))) (-15 -3218 ((-1119))) (-15 -3014 ((-1224) (-1119))))) (T -1143))
-((-3014 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1143)))) (-3218 (*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1143)))) (-3016 (*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1143)))) (-1595 (*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1143)))))
-(-10 -7 (-15 -1595 ((-1119))) (-15 -3016 ((-1119))) (-15 -3218 ((-1119))) (-15 -3014 ((-1224) (-1119))))
-((-2391 (((-619 (-619 |#1|)) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|)))) 38)) (-4041 (((-619 (-619 (-619 |#1|))) (-619 (-619 |#1|))) 24)) (-4015 (((-1145 (-619 |#1|)) (-619 |#1|)) 34)) (-3197 (((-619 (-619 |#1|)) (-619 |#1|)) 30)) (-3238 (((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 (-619 (-619 |#1|)))) 37)) (-3995 (((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 |#1|) (-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|)))) 36)) (-3897 (((-619 (-619 |#1|)) (-619 (-619 |#1|))) 28)) (-3582 (((-619 |#1|) (-619 |#1|)) 31)) (-3328 (((-619 (-619 (-619 |#1|))) (-619 |#1|) (-619 (-619 (-619 |#1|)))) 18)) (-2067 (((-619 (-619 (-619 |#1|))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 (-619 |#1|)))) 16)) (-2377 (((-2 (|:| |fs| (-112)) (|:| |sd| (-619 |#1|)) (|:| |td| (-619 (-619 |#1|)))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 |#1|))) 14)) (-1629 (((-619 (-619 |#1|)) (-619 (-619 (-619 |#1|)))) 39)) (-3930 (((-619 (-619 |#1|)) (-1145 (-619 |#1|))) 41)))
-(((-1144 |#1|) (-10 -7 (-15 -2377 ((-2 (|:| |fs| (-112)) (|:| |sd| (-619 |#1|)) (|:| |td| (-619 (-619 |#1|)))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 |#1|)))) (-15 -2067 ((-619 (-619 (-619 |#1|))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -3328 ((-619 (-619 (-619 |#1|))) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -2391 ((-619 (-619 |#1|)) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -1629 ((-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -3930 ((-619 (-619 |#1|)) (-1145 (-619 |#1|)))) (-15 -4041 ((-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)))) (-15 -4015 ((-1145 (-619 |#1|)) (-619 |#1|))) (-15 -3897 ((-619 (-619 |#1|)) (-619 (-619 |#1|)))) (-15 -3197 ((-619 (-619 |#1|)) (-619 |#1|))) (-15 -3582 ((-619 |#1|) (-619 |#1|))) (-15 -3995 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 |#1|) (-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))))) (-15 -3238 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 (-619 (-619 |#1|)))))) (-821)) (T -1144))
-((-3238 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-2 (|:| |f1| (-619 *4)) (|:| |f2| (-619 (-619 (-619 *4)))) (|:| |f3| (-619 (-619 *4))) (|:| |f4| (-619 (-619 (-619 *4)))))) (-5 *1 (-1144 *4)) (-5 *3 (-619 (-619 (-619 *4)))))) (-3995 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-821)) (-5 *3 (-619 *6)) (-5 *5 (-619 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-619 *5)) (|:| |f3| *5) (|:| |f4| (-619 *5)))) (-5 *1 (-1144 *6)) (-5 *4 (-619 *5)))) (-3582 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-1144 *3)))) (-3197 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1144 *4)) (-5 *3 (-619 *4)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-821)) (-5 *1 (-1144 *3)))) (-4015 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-1145 (-619 *4))) (-5 *1 (-1144 *4)) (-5 *3 (-619 *4)))) (-4041 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 (-619 *4)))) (-5 *1 (-1144 *4)) (-5 *3 (-619 (-619 *4))))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-1145 (-619 *4))) (-4 *4 (-821)) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1144 *4)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1144 *4)) (-4 *4 (-821)))) (-2391 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) (-4 *4 (-821)) (-5 *1 (-1144 *4)))) (-3328 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-619 *4)) (-4 *4 (-821)) (-5 *1 (-1144 *4)))) (-2067 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-619 *5)) (-4 *5 (-821)) (-5 *1 (-1144 *5)))) (-2377 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-821)) (-5 *4 (-619 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-619 *4)))) (-5 *1 (-1144 *6)) (-5 *5 (-619 *4)))))
-(-10 -7 (-15 -2377 ((-2 (|:| |fs| (-112)) (|:| |sd| (-619 |#1|)) (|:| |td| (-619 (-619 |#1|)))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 |#1|)))) (-15 -2067 ((-619 (-619 (-619 |#1|))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -3328 ((-619 (-619 (-619 |#1|))) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -2391 ((-619 (-619 |#1|)) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -1629 ((-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -3930 ((-619 (-619 |#1|)) (-1145 (-619 |#1|)))) (-15 -4041 ((-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)))) (-15 -4015 ((-1145 (-619 |#1|)) (-619 |#1|))) (-15 -3897 ((-619 (-619 |#1|)) (-619 (-619 |#1|)))) (-15 -3197 ((-619 (-619 |#1|)) (-619 |#1|))) (-15 -3582 ((-619 |#1|) (-619 |#1|))) (-15 -3995 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 |#1|) (-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))))) (-15 -3238 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 (-619 (-619 |#1|))))))
-((-1824 (($ (-619 (-619 |#1|))) 10)) (-1580 (((-619 (-619 |#1|)) $) 11)) (-3838 (((-832) $) 26)))
-(((-1145 |#1|) (-10 -8 (-15 -1824 ($ (-619 (-619 |#1|)))) (-15 -1580 ((-619 (-619 |#1|)) $)) (-15 -3838 ((-832) $))) (-1063)) (T -1145))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1145 *3)) (-4 *3 (-1063)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 *3))) (-5 *1 (-1145 *3)) (-4 *3 (-1063)))) (-1824 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-1145 *3)))))
-(-10 -8 (-15 -1824 ($ (-619 (-619 |#1|)))) (-15 -1580 ((-619 (-619 |#1|)) $)) (-15 -3838 ((-832) $)))
-((-3826 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3726 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-1652 (((-1224) $ |#1| |#1|) NIL (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#2| $ |#1| |#2|) NIL)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-3482 (((-3 |#2| "failed") |#1| $) NIL)) (-1948 (($) NIL T CONST)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-1513 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-3 |#2| "failed") |#1| $) NIL)) (-3803 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#2| $ |#1|) NIL)) (-2982 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) NIL)) (-2434 ((|#1| $) NIL (|has| |#1| (-821)))) (-2284 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-619 |#2|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-1416 ((|#1| $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4330))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3441 (((-619 |#1|) $) NIL)) (-4073 (((-112) |#1| $) NIL)) (-4266 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2657 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-2121 (((-619 |#1|) $) NIL)) (-2018 (((-112) |#1| $) NIL)) (-3979 (((-1082) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3638 ((|#2| $) NIL (|has| |#1| (-821)))) (-3650 (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL)) (-3632 (($ $ |#2|) NIL (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2987 (((-619 |#2|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2699 (($) NIL) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-3838 (((-832) $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2300 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) NIL)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) NIL (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) NIL (-1530 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1146 |#1| |#2|) (-13 (-1149 |#1| |#2|) (-10 -7 (-6 -4329))) (-1063) (-1063)) (T -1146))
-NIL
-(-13 (-1149 |#1| |#2|) (-10 -7 (-6 -4329)))
-((-3177 ((|#1| (-619 |#1|)) 32)) (-3102 ((|#1| |#1| (-547)) 18)) (-3471 (((-1132 |#1|) |#1| (-890)) 15)))
-(((-1147 |#1|) (-10 -7 (-15 -3177 (|#1| (-619 |#1|))) (-15 -3471 ((-1132 |#1|) |#1| (-890))) (-15 -3102 (|#1| |#1| (-547)))) (-354)) (T -1147))
-((-3102 (*1 *2 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-1147 *2)) (-4 *2 (-354)))) (-3471 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-1132 *3)) (-5 *1 (-1147 *3)) (-4 *3 (-354)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-1147 *2)) (-4 *2 (-354)))))
-(-10 -7 (-15 -3177 (|#1| (-619 |#1|))) (-15 -3471 ((-1132 |#1|) |#1| (-890))) (-15 -3102 (|#1| |#1| (-547))))
-((-3726 (($) 10) (($ (-619 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)))) 14)) (-1513 (($ (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2982 (((-619 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) $) 39) (((-619 |#3|) $) 41)) (-1859 (($ (-1 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2790 (($ (-1 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-4266 (((-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) $) 54)) (-2657 (($ (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) $) 16)) (-2121 (((-619 |#2|) $) 19)) (-2018 (((-112) |#2| $) 59)) (-3650 (((-3 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) "failed") (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) $) 58)) (-2056 (((-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) $) 63)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-2987 (((-619 |#3|) $) 43)) (-3334 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) $) NIL) (((-745) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) $) NIL) (((-745) |#3| $) NIL) (((-745) (-1 (-112) |#3|) $) 68)) (-3838 (((-832) $) 27)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-2381 (((-112) $ $) 49)))
-(((-1148 |#1| |#2| |#3|) (-10 -8 (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -2790 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3726 (|#1| (-619 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))))) (-15 -3726 (|#1|)) (-15 -2790 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1859 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2693 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1598 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3992 ((-745) (-1 (-112) |#3|) |#1|)) (-15 -2982 ((-619 |#3|) |#1|)) (-15 -3992 ((-745) |#3| |#1|)) (-15 -3334 (|#3| |#1| |#2| |#3|)) (-15 -3334 (|#3| |#1| |#2|)) (-15 -2987 ((-619 |#3|) |#1|)) (-15 -2018 ((-112) |#2| |#1|)) (-15 -2121 ((-619 |#2|) |#1|)) (-15 -1513 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1513 (|#1| (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -1513 (|#1| (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) |#1|)) (-15 -3650 ((-3 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) "failed") (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -4266 ((-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) |#1|)) (-15 -2657 (|#1| (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) |#1|)) (-15 -2056 ((-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) |#1|)) (-15 -3992 ((-745) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) |#1|)) (-15 -2982 ((-619 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -3992 ((-745) (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -1598 ((-112) (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -2693 ((-112) (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -1859 (|#1| (-1 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -2790 (|#1| (-1 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|))) (-1149 |#2| |#3|) (-1063) (-1063)) (T -1148))
-NIL
-(-10 -8 (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -2790 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3726 (|#1| (-619 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))))) (-15 -3726 (|#1|)) (-15 -2790 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1859 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2693 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1598 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3992 ((-745) (-1 (-112) |#3|) |#1|)) (-15 -2982 ((-619 |#3|) |#1|)) (-15 -3992 ((-745) |#3| |#1|)) (-15 -3334 (|#3| |#1| |#2| |#3|)) (-15 -3334 (|#3| |#1| |#2|)) (-15 -2987 ((-619 |#3|) |#1|)) (-15 -2018 ((-112) |#2| |#1|)) (-15 -2121 ((-619 |#2|) |#1|)) (-15 -1513 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1513 (|#1| (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -1513 (|#1| (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) |#1|)) (-15 -3650 ((-3 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) "failed") (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -4266 ((-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) |#1|)) (-15 -2657 (|#1| (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) |#1|)) (-15 -2056 ((-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) |#1|)) (-15 -3992 ((-745) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) |#1|)) (-15 -2982 ((-619 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -3992 ((-745) (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -1598 ((-112) (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -2693 ((-112) (-1 (-112) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -1859 (|#1| (-1 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)) (-15 -2790 (|#1| (-1 (-2 (|:| -3331 |#2|) (|:| -1786 |#3|)) (-2 (|:| -3331 |#2|) (|:| -1786 |#3|))) |#1|)))
-((-3826 (((-112) $ $) 19 (-1530 (|has| |#2| (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-3726 (($) 72) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 71)) (-1652 (((-1224) $ |#1| |#1|) 99 (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) 8)) (-2247 ((|#2| $ |#1| |#2|) 73)) (-4285 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 45 (|has| $ (-6 -4329)))) (-1482 (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 55 (|has| $ (-6 -4329)))) (-3482 (((-3 |#2| "failed") |#1| $) 61)) (-1948 (($) 7 T CONST)) (-3668 (($ $) 58 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329))))) (-1513 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 47 (|has| $ (-6 -4329))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 46 (|has| $ (-6 -4329))) (((-3 |#2| "failed") |#1| $) 62)) (-3803 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 54 (|has| $ (-6 -4329)))) (-2552 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 56 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 53 (|has| $ (-6 -4329))) (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 52 (|has| $ (-6 -4329)))) (-1872 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4330)))) (-1802 ((|#2| $ |#1|) 88)) (-2982 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 30 (|has| $ (-6 -4329))) (((-619 |#2|) $) 79 (|has| $ (-6 -4329)))) (-2763 (((-112) $ (-745)) 9)) (-2434 ((|#1| $) 96 (|has| |#1| (-821)))) (-2284 (((-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 29 (|has| $ (-6 -4329))) (((-619 |#2|) $) 80 (|has| $ (-6 -4329)))) (-2132 (((-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4329))))) (-1416 ((|#1| $) 95 (|has| |#1| (-821)))) (-1859 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 34 (|has| $ (-6 -4330))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4330)))) (-2790 (($ (-1 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3806 (((-112) $ (-745)) 10)) (-1466 (((-1119) $) 22 (-1530 (|has| |#2| (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-3441 (((-619 |#1|) $) 63)) (-4073 (((-112) |#1| $) 64)) (-4266 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 39)) (-2657 (($ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 40)) (-2121 (((-619 |#1|) $) 93)) (-2018 (((-112) |#1| $) 92)) (-3979 (((-1082) $) 21 (-1530 (|has| |#2| (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-3638 ((|#2| $) 97 (|has| |#1| (-821)))) (-3650 (((-3 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) "failed") (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 51)) (-3632 (($ $ |#2|) 98 (|has| $ (-6 -4330)))) (-2056 (((-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 41)) (-1598 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 32 (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))))) 26 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 25 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) 24 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 23 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 86 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) 84 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) 83 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4329)) (|has| |#2| (-1063))))) (-2987 (((-619 |#2|) $) 91)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2699 (($) 49) (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 48)) (-3992 (((-745) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 31 (|has| $ (-6 -4329))) (((-745) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| $ (-6 -4329)))) (((-745) |#2| $) 81 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4329)))) (((-745) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4329)))) (-2274 (($ $) 13)) (-2838 (((-523) $) 59 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))))) (-3846 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 50)) (-3838 (((-832) $) 18 (-1530 (|has| |#2| (-591 (-832))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832)))))) (-2300 (($ (-619 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) 42)) (-2693 (((-112) (-1 (-112) (-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) $) 33 (|has| $ (-6 -4329))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (-1530 (|has| |#2| (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-1149 |#1| |#2|) (-138) (-1063) (-1063)) (T -1149))
-((-2247 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3726 (*1 *1) (-12 (-4 *1 (-1149 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-3726 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3331 *3) (|:| -1786 *4)))) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *1 (-1149 *3 *4)))) (-2790 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))))
-(-13 (-588 |t#1| |t#2|) (-582 |t#1| |t#2|) (-10 -8 (-15 -2247 (|t#2| $ |t#1| |t#2|)) (-15 -3726 ($)) (-15 -3726 ($ (-619 (-2 (|:| -3331 |t#1|) (|:| -1786 |t#2|))))) (-15 -2790 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-106 #0=(-2 (|:| -3331 |#1|) (|:| -1786 |#2|))) . T) ((-101) -1530 (|has| |#2| (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))) ((-591 (-832)) -1530 (|has| |#2| (-1063)) (|has| |#2| (-591 (-832))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-591 (-832)))) ((-149 #0#) . T) ((-592 (-523)) |has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-592 (-523))) ((-221 #0#) . T) ((-227 #0#) . T) ((-277 |#1| |#2|) . T) ((-279 |#1| |#2|) . T) ((-300 #0#) -12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))) ((-300 |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-479 #0#) . T) ((-479 |#2|) . T) ((-582 |#1| |#2|) . T) ((-503 #0# #0#) -12 (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-300 (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)))) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))) ((-503 |#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-588 |#1| |#2|) . T) ((-1063) -1530 (|has| |#2| (-1063)) (|has| (-2 (|:| -3331 |#1|) (|:| -1786 |#2|)) (-1063))) ((-1173) . T))
-((-3698 (((-112)) 24)) (-1578 (((-1224) (-1119)) 26)) (-2991 (((-112)) 36)) (-3314 (((-1224)) 34)) (-4272 (((-1224) (-1119) (-1119)) 25)) (-3575 (((-112)) 37)) (-2657 (((-1224) |#1| |#2|) 44)) (-3724 (((-1224)) 20)) (-3399 (((-3 |#2| "failed") |#1|) 42)) (-3447 (((-1224)) 35)))
-(((-1150 |#1| |#2|) (-10 -7 (-15 -3724 ((-1224))) (-15 -4272 ((-1224) (-1119) (-1119))) (-15 -1578 ((-1224) (-1119))) (-15 -3314 ((-1224))) (-15 -3447 ((-1224))) (-15 -3698 ((-112))) (-15 -2991 ((-112))) (-15 -3575 ((-112))) (-15 -3399 ((-3 |#2| "failed") |#1|)) (-15 -2657 ((-1224) |#1| |#2|))) (-1063) (-1063)) (T -1150))
-((-2657 (*1 *2 *3 *4) (-12 (-5 *2 (-1224)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-3399 (*1 *2 *3) (|partial| -12 (-4 *2 (-1063)) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1063)))) (-3575 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2991 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-3698 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-3447 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-3314 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1150 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)))) (-4272 (*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1150 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)))) (-3724 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))))
-(-10 -7 (-15 -3724 ((-1224))) (-15 -4272 ((-1224) (-1119) (-1119))) (-15 -1578 ((-1224) (-1119))) (-15 -3314 ((-1224))) (-15 -3447 ((-1224))) (-15 -3698 ((-112))) (-15 -2991 ((-112))) (-15 -3575 ((-112))) (-15 -3399 ((-3 |#2| "failed") |#1|)) (-15 -2657 ((-1224) |#1| |#2|)))
-((-4258 (((-1119) (-1119)) 18)) (-3252 (((-52) (-1119)) 21)))
-(((-1151) (-10 -7 (-15 -3252 ((-52) (-1119))) (-15 -4258 ((-1119) (-1119))))) (T -1151))
-((-4258 (*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1151)))) (-3252 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-52)) (-5 *1 (-1151)))))
-(-10 -7 (-15 -3252 ((-52) (-1119))) (-15 -4258 ((-1119) (-1119))))
-((-3838 (((-1153) |#1|) 11)))
-(((-1152 |#1|) (-10 -7 (-15 -3838 ((-1153) |#1|))) (-1063)) (T -1152))
-((-3838 (*1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *1 (-1152 *3)) (-4 *3 (-1063)))))
-(-10 -7 (-15 -3838 ((-1153) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1478 (((-619 (-1119)) $) 34)) (-3600 (((-619 (-1119)) $ (-619 (-1119))) 37)) (-2147 (((-619 (-1119)) $ (-619 (-1119))) 36)) (-3728 (((-619 (-1119)) $ (-619 (-1119))) 38)) (-2843 (((-619 (-1119)) $) 33)) (-3735 (($) 22)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1518 (((-619 (-1119)) $) 35)) (-2692 (((-1224) $ (-547)) 29) (((-1224) $) 30)) (-2838 (($ (-832) (-547)) 26) (($ (-832) (-547) (-832)) NIL)) (-3838 (((-832) $) 40) (($ (-832)) 24)) (-2381 (((-112) $ $) NIL)))
-(((-1153) (-13 (-1063) (-10 -8 (-15 -3838 ($ (-832))) (-15 -2838 ($ (-832) (-547))) (-15 -2838 ($ (-832) (-547) (-832))) (-15 -2692 ((-1224) $ (-547))) (-15 -2692 ((-1224) $)) (-15 -1518 ((-619 (-1119)) $)) (-15 -1478 ((-619 (-1119)) $)) (-15 -3735 ($)) (-15 -2843 ((-619 (-1119)) $)) (-15 -3728 ((-619 (-1119)) $ (-619 (-1119)))) (-15 -3600 ((-619 (-1119)) $ (-619 (-1119)))) (-15 -2147 ((-619 (-1119)) $ (-619 (-1119))))))) (T -1153))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1153)))) (-2838 (*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-547)) (-5 *1 (-1153)))) (-2838 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-547)) (-5 *1 (-1153)))) (-2692 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-1153)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1153)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1153)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1153)))) (-3735 (*1 *1) (-5 *1 (-1153))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1153)))) (-3728 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1153)))) (-3600 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1153)))) (-2147 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1153)))))
-(-13 (-1063) (-10 -8 (-15 -3838 ($ (-832))) (-15 -2838 ($ (-832) (-547))) (-15 -2838 ($ (-832) (-547) (-832))) (-15 -2692 ((-1224) $ (-547))) (-15 -2692 ((-1224) $)) (-15 -1518 ((-619 (-1119)) $)) (-15 -1478 ((-619 (-1119)) $)) (-15 -3735 ($)) (-15 -2843 ((-619 (-1119)) $)) (-15 -3728 ((-619 (-1119)) $ (-619 (-1119)))) (-15 -3600 ((-619 (-1119)) $ (-619 (-1119)))) (-15 -2147 ((-619 (-1119)) $ (-619 (-1119))))))
-((-3826 (((-112) $ $) NIL)) (-2375 (((-1119) $ (-1119)) 17) (((-1119) $) 16)) (-2027 (((-1119) $ (-1119)) 15)) (-1566 (($ $ (-1119)) NIL)) (-1633 (((-3 (-1119) "failed") $) 11)) (-3863 (((-1119) $) 8)) (-3355 (((-3 (-1119) "failed") $) 12)) (-2569 (((-1119) $) 9)) (-1352 (($ (-379)) NIL) (($ (-379) (-1119)) NIL)) (-2473 (((-379) $) NIL)) (-1466 (((-1119) $) NIL)) (-3818 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-4252 (((-112) $) 18)) (-3838 (((-832) $) NIL)) (-1708 (($ $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-1154) (-13 (-355 (-379) (-1119)) (-10 -8 (-15 -2375 ((-1119) $ (-1119))) (-15 -2375 ((-1119) $)) (-15 -3863 ((-1119) $)) (-15 -1633 ((-3 (-1119) "failed") $)) (-15 -3355 ((-3 (-1119) "failed") $)) (-15 -4252 ((-112) $))))) (T -1154))
-((-2375 (*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1154)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1154)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1154)))) (-1633 (*1 *2 *1) (|partial| -12 (-5 *2 (-1119)) (-5 *1 (-1154)))) (-3355 (*1 *2 *1) (|partial| -12 (-5 *2 (-1119)) (-5 *1 (-1154)))) (-4252 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))))
-(-13 (-355 (-379) (-1119)) (-10 -8 (-15 -2375 ((-1119) $ (-1119))) (-15 -2375 ((-1119) $)) (-15 -3863 ((-1119) $)) (-15 -1633 ((-3 (-1119) "failed") $)) (-15 -3355 ((-3 (-1119) "failed") $)) (-15 -4252 ((-112) $))))
-((-2500 (((-3 (-547) "failed") |#1|) 19)) (-2015 (((-3 (-547) "failed") |#1|) 14)) (-2397 (((-547) (-1119)) 28)))
-(((-1155 |#1|) (-10 -7 (-15 -2500 ((-3 (-547) "failed") |#1|)) (-15 -2015 ((-3 (-547) "failed") |#1|)) (-15 -2397 ((-547) (-1119)))) (-1016)) (T -1155))
-((-2397 (*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-547)) (-5 *1 (-1155 *4)) (-4 *4 (-1016)))) (-2015 (*1 *2 *3) (|partial| -12 (-5 *2 (-547)) (-5 *1 (-1155 *3)) (-4 *3 (-1016)))) (-2500 (*1 *2 *3) (|partial| -12 (-5 *2 (-547)) (-5 *1 (-1155 *3)) (-4 *3 (-1016)))))
-(-10 -7 (-15 -2500 ((-3 (-547) "failed") |#1|)) (-15 -2015 ((-3 (-547) "failed") |#1|)) (-15 -2397 ((-547) (-1119))))
-((-2045 (((-1095 (-217))) 9)))
-(((-1156) (-10 -7 (-15 -2045 ((-1095 (-217)))))) (T -1156))
-((-2045 (*1 *2) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-1156)))))
-(-10 -7 (-15 -2045 ((-1095 (-217)))))
-((-1419 (($) 11)) (-1726 (($ $) 35)) (-1703 (($ $) 33)) (-1557 (($ $) 25)) (-1751 (($ $) 17)) (-1927 (($ $) 15)) (-1738 (($ $) 19)) (-1593 (($ $) 30)) (-1714 (($ $) 34)) (-1569 (($ $) 29)))
-(((-1157 |#1|) (-10 -8 (-15 -1419 (|#1|)) (-15 -1726 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1927 (|#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -1714 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1569 (|#1| |#1|))) (-1158)) (T -1157))
-NIL
-(-10 -8 (-15 -1419 (|#1|)) (-15 -1726 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1927 (|#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -1714 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)))
-((-1656 (($ $) 26)) (-1505 (($ $) 11)) (-1632 (($ $) 27)) (-1479 (($ $) 10)) (-1678 (($ $) 28)) (-1532 (($ $) 9)) (-1419 (($) 16)) (-3624 (($ $) 19)) (-2712 (($ $) 18)) (-1690 (($ $) 29)) (-1545 (($ $) 8)) (-1668 (($ $) 30)) (-1519 (($ $) 7)) (-1644 (($ $) 31)) (-1493 (($ $) 6)) (-1726 (($ $) 20)) (-1579 (($ $) 32)) (-1703 (($ $) 21)) (-1557 (($ $) 33)) (-1751 (($ $) 22)) (-1606 (($ $) 34)) (-1927 (($ $) 23)) (-1620 (($ $) 35)) (-1738 (($ $) 24)) (-1593 (($ $) 36)) (-1714 (($ $) 25)) (-1569 (($ $) 37)) (** (($ $ $) 17)))
-(((-1158) (-138)) (T -1158))
-((-1419 (*1 *1) (-4 *1 (-1158))))
-(-13 (-1161) (-94) (-482) (-35) (-275) (-10 -8 (-15 -1419 ($))))
-(((-35) . T) ((-94) . T) ((-275) . T) ((-482) . T) ((-1161) . T))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4153 ((|#1| $) 17)) (-1653 (($ |#1| (-619 $)) 23) (($ (-619 |#1|)) 27) (($ |#1|) 25)) (-3899 (((-112) $ (-745)) 48)) (-1986 ((|#1| $ |#1|) 14 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) 13 (|has| $ (-6 -4330)))) (-1948 (($) NIL T CONST)) (-2982 (((-619 |#1|) $) 52 (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) 43)) (-2554 (((-112) $ $) 33 (|has| |#1| (-1063)))) (-2763 (((-112) $ (-745)) 41)) (-2284 (((-619 |#1|) $) 53 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1859 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 22)) (-3806 (((-112) $ (-745)) 40)) (-3583 (((-619 |#1|) $) 37)) (-1489 (((-112) $) 36)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1598 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 74)) (-2884 (((-112) $) 9)) (-2245 (($) 10)) (-3334 ((|#1| $ "value") NIL)) (-2857 (((-547) $ $) 32)) (-3192 (((-619 $) $) 59)) (-2357 (((-112) $ $) 77)) (-3807 (((-619 $) $) 72)) (-2909 (($ $) 73)) (-1850 (((-112) $) 56)) (-3992 (((-745) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4329))) (((-745) |#1| $) 16 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2274 (($ $) 58)) (-3838 (((-832) $) 61 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) 12)) (-1421 (((-112) $ $) 29 (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 28 (|has| |#1| (-1063)))) (-3767 (((-745) $) 39 (|has| $ (-6 -4329)))))
-(((-1159 |#1|) (-13 (-979 |#1|) (-10 -8 (-6 -4329) (-6 -4330) (-15 -1653 ($ |#1| (-619 $))) (-15 -1653 ($ (-619 |#1|))) (-15 -1653 ($ |#1|)) (-15 -1850 ((-112) $)) (-15 -2909 ($ $)) (-15 -3807 ((-619 $) $)) (-15 -2357 ((-112) $ $)) (-15 -3192 ((-619 $) $)))) (-1063)) (T -1159))
-((-1850 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3)) (-4 *3 (-1063)))) (-1653 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-1159 *2))) (-5 *1 (-1159 *2)) (-4 *2 (-1063)))) (-1653 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-1159 *3)))) (-1653 (*1 *1 *2) (-12 (-5 *1 (-1159 *2)) (-4 *2 (-1063)))) (-2909 (*1 *1 *1) (-12 (-5 *1 (-1159 *2)) (-4 *2 (-1063)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-619 (-1159 *3))) (-5 *1 (-1159 *3)) (-4 *3 (-1063)))) (-2357 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3)) (-4 *3 (-1063)))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-619 (-1159 *3))) (-5 *1 (-1159 *3)) (-4 *3 (-1063)))))
-(-13 (-979 |#1|) (-10 -8 (-6 -4329) (-6 -4330) (-15 -1653 ($ |#1| (-619 $))) (-15 -1653 ($ (-619 |#1|))) (-15 -1653 ($ |#1|)) (-15 -1850 ((-112) $)) (-15 -2909 ($ $)) (-15 -3807 ((-619 $) $)) (-15 -2357 ((-112) $ $)) (-15 -3192 ((-619 $) $))))
-((-1505 (($ $) 15)) (-1532 (($ $) 12)) (-1545 (($ $) 10)) (-1519 (($ $) 17)))
-(((-1160 |#1|) (-10 -8 (-15 -1519 (|#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1505 (|#1| |#1|))) (-1161)) (T -1160))
-NIL
-(-10 -8 (-15 -1519 (|#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1505 (|#1| |#1|)))
-((-1505 (($ $) 11)) (-1479 (($ $) 10)) (-1532 (($ $) 9)) (-1545 (($ $) 8)) (-1519 (($ $) 7)) (-1493 (($ $) 6)))
-(((-1161) (-138)) (T -1161))
-((-1505 (*1 *1 *1) (-4 *1 (-1161))) (-1479 (*1 *1 *1) (-4 *1 (-1161))) (-1532 (*1 *1 *1) (-4 *1 (-1161))) (-1545 (*1 *1 *1) (-4 *1 (-1161))) (-1519 (*1 *1 *1) (-4 *1 (-1161))) (-1493 (*1 *1 *1) (-4 *1 (-1161))))
-(-13 (-10 -8 (-15 -1493 ($ $)) (-15 -1519 ($ $)) (-15 -1545 ($ $)) (-15 -1532 ($ $)) (-15 -1479 ($ $)) (-15 -1505 ($ $))))
-((-3943 ((|#2| |#2|) 88)) (-4246 (((-112) |#2|) 26)) (-2139 ((|#2| |#2|) 30)) (-2154 ((|#2| |#2|) 32)) (-4239 ((|#2| |#2| (-1136)) 83) ((|#2| |#2|) 84)) (-3772 (((-166 |#2|) |#2|) 28)) (-3981 ((|#2| |#2| (-1136)) 85) ((|#2| |#2|) 86)))
-(((-1162 |#1| |#2|) (-10 -7 (-15 -4239 (|#2| |#2|)) (-15 -4239 (|#2| |#2| (-1136))) (-15 -3981 (|#2| |#2|)) (-15 -3981 (|#2| |#2| (-1136))) (-15 -3943 (|#2| |#2|)) (-15 -2139 (|#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -4246 ((-112) |#2|)) (-15 -3772 ((-166 |#2|) |#2|))) (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1158) (-421 |#1|))) (T -1162))
-((-3772 (*1 *2 *3) (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-166 *3)) (-5 *1 (-1162 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *4))))) (-4246 (*1 *2 *3) (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-112)) (-5 *1 (-1162 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *4))))) (-2154 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3))))) (-2139 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3))))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3))))) (-3981 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3))))) (-4239 (*1 *2 *2 *3) (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4))))) (-4239 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3))))))
-(-10 -7 (-15 -4239 (|#2| |#2|)) (-15 -4239 (|#2| |#2| (-1136))) (-15 -3981 (|#2| |#2|)) (-15 -3981 (|#2| |#2| (-1136))) (-15 -3943 (|#2| |#2|)) (-15 -2139 (|#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -4246 ((-112) |#2|)) (-15 -3772 ((-166 |#2|) |#2|)))
-((-3324 ((|#4| |#4| |#1|) 27)) (-2978 ((|#4| |#4| |#1|) 28)))
-(((-1163 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3324 (|#4| |#4| |#1|)) (-15 -2978 (|#4| |#4| |#1|))) (-539) (-364 |#1|) (-364 |#1|) (-661 |#1| |#2| |#3|)) (T -1163))
-((-2978 (*1 *2 *2 *3) (-12 (-4 *3 (-539)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-1163 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-3324 (*1 *2 *2 *3) (-12 (-4 *3 (-539)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-1163 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))))
-(-10 -7 (-15 -3324 (|#4| |#4| |#1|)) (-15 -2978 (|#4| |#4| |#1|)))
-((-2930 ((|#2| |#2|) 133)) (-3073 ((|#2| |#2|) 130)) (-3181 ((|#2| |#2|) 121)) (-2737 ((|#2| |#2|) 118)) (-1259 ((|#2| |#2|) 126)) (-4013 ((|#2| |#2|) 114)) (-2097 ((|#2| |#2|) 43)) (-3904 ((|#2| |#2|) 94)) (-3088 ((|#2| |#2|) 74)) (-2619 ((|#2| |#2|) 128)) (-4025 ((|#2| |#2|) 116)) (-2457 ((|#2| |#2|) 138)) (-2445 ((|#2| |#2|) 136)) (-3551 ((|#2| |#2|) 137)) (-1960 ((|#2| |#2|) 135)) (-2698 ((|#2| |#2|) 148)) (-4038 ((|#2| |#2|) 30 (-12 (|has| |#2| (-592 (-861 |#1|))) (|has| |#2| (-855 |#1|)) (|has| |#1| (-592 (-861 |#1|))) (|has| |#1| (-855 |#1|))))) (-2953 ((|#2| |#2|) 75)) (-3956 ((|#2| |#2|) 139)) (-1442 ((|#2| |#2|) 140)) (-1457 ((|#2| |#2|) 127)) (-2609 ((|#2| |#2|) 115)) (-2342 ((|#2| |#2|) 134)) (-4064 ((|#2| |#2|) 132)) (-3558 ((|#2| |#2|) 122)) (-1841 ((|#2| |#2|) 120)) (-4076 ((|#2| |#2|) 124)) (-2087 ((|#2| |#2|) 112)))
-(((-1164 |#1| |#2|) (-10 -7 (-15 -1442 (|#2| |#2|)) (-15 -3088 (|#2| |#2|)) (-15 -2698 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -2953 (|#2| |#2|)) (-15 -3956 (|#2| |#2|)) (-15 -2087 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -3558 (|#2| |#2|)) (-15 -2342 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -1457 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -2619 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -1259 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -2930 (|#2| |#2|)) (-15 -2737 (|#2| |#2|)) (-15 -3073 (|#2| |#2|)) (-15 -1841 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -1960 (|#2| |#2|)) (-15 -2445 (|#2| |#2|)) (-15 -3551 (|#2| |#2|)) (-15 -2457 (|#2| |#2|)) (IF (|has| |#1| (-855 |#1|)) (IF (|has| |#1| (-592 (-861 |#1|))) (IF (|has| |#2| (-592 (-861 |#1|))) (IF (|has| |#2| (-855 |#1|)) (-15 -4038 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-821) (-442)) (-13 (-421 |#1|) (-1158))) (T -1164))
-((-4038 (*1 *2 *2) (-12 (-4 *3 (-592 (-861 *3))) (-4 *3 (-855 *3)) (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-592 (-861 *3))) (-4 *2 (-855 *3)) (-4 *2 (-13 (-421 *3) (-1158))))) (-2457 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-3551 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-1960 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-1841 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-3073 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-2737 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-2930 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-3181 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-1259 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-2619 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-4025 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-1457 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-2342 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-3558 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-2087 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-3956 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-2953 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-2097 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-2698 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-3088 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))) (-1442 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-421 *3) (-1158))))))
-(-10 -7 (-15 -1442 (|#2| |#2|)) (-15 -3088 (|#2| |#2|)) (-15 -2698 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -2953 (|#2| |#2|)) (-15 -3956 (|#2| |#2|)) (-15 -2087 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -3558 (|#2| |#2|)) (-15 -2342 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -1457 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -2619 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -1259 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -2930 (|#2| |#2|)) (-15 -2737 (|#2| |#2|)) (-15 -3073 (|#2| |#2|)) (-15 -1841 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -1960 (|#2| |#2|)) (-15 -2445 (|#2| |#2|)) (-15 -3551 (|#2| |#2|)) (-15 -2457 (|#2| |#2|)) (IF (|has| |#1| (-855 |#1|)) (IF (|has| |#1| (-592 (-861 |#1|))) (IF (|has| |#2| (-592 (-861 |#1|))) (IF (|has| |#2| (-855 |#1|)) (-15 -4038 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-4151 (((-112) |#5| $) 60) (((-112) $) 102)) (-2081 ((|#5| |#5| $) 75)) (-1482 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3805 (((-619 |#5|) (-619 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-2707 (((-3 $ "failed") (-619 |#5|)) 126)) (-3649 (((-3 $ "failed") $) 112)) (-2584 ((|#5| |#5| $) 94)) (-2173 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-2442 ((|#5| |#5| $) 98)) (-2552 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-2951 (((-2 (|:| -2674 (-619 |#5|)) (|:| -1352 (-619 |#5|))) $) 55)) (-1779 (((-112) |#5| $) 58) (((-112) $) 103)) (-3338 ((|#4| $) 108)) (-3820 (((-3 |#5| "failed") $) 110)) (-2498 (((-619 |#5|) $) 49)) (-3112 (((-112) |#5| $) 67) (((-112) $) 107)) (-3065 ((|#5| |#5| $) 81)) (-1458 (((-112) $ $) 27)) (-2012 (((-112) |#5| $) 63) (((-112) $) 105)) (-1772 ((|#5| |#5| $) 78)) (-3638 (((-3 |#5| "failed") $) 109)) (-3708 (($ $ |#5|) 127)) (-3705 (((-745) $) 52)) (-3846 (($ (-619 |#5|)) 124)) (-3461 (($ $ |#4|) 122)) (-3007 (($ $ |#4|) 121)) (-2553 (($ $) 120)) (-3838 (((-832) $) NIL) (((-619 |#5|) $) 113)) (-2815 (((-745) $) 130)) (-2672 (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-2636 (((-112) $ (-1 (-112) |#5| (-619 |#5|))) 100)) (-3463 (((-619 |#4|) $) 115)) (-2593 (((-112) |#4| $) 118)) (-2381 (((-112) $ $) 19)))
-(((-1165 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2815 ((-745) |#1|)) (-15 -3708 (|#1| |#1| |#5|)) (-15 -1482 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2593 ((-112) |#4| |#1|)) (-15 -3463 ((-619 |#4|) |#1|)) (-15 -3649 ((-3 |#1| "failed") |#1|)) (-15 -3820 ((-3 |#5| "failed") |#1|)) (-15 -3638 ((-3 |#5| "failed") |#1|)) (-15 -2442 (|#5| |#5| |#1|)) (-15 -2553 (|#1| |#1|)) (-15 -2584 (|#5| |#5| |#1|)) (-15 -3065 (|#5| |#5| |#1|)) (-15 -1772 (|#5| |#5| |#1|)) (-15 -2081 (|#5| |#5| |#1|)) (-15 -3805 ((-619 |#5|) (-619 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2552 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3112 ((-112) |#1|)) (-15 -2012 ((-112) |#1|)) (-15 -4151 ((-112) |#1|)) (-15 -2636 ((-112) |#1| (-1 (-112) |#5| (-619 |#5|)))) (-15 -3112 ((-112) |#5| |#1|)) (-15 -2012 ((-112) |#5| |#1|)) (-15 -4151 ((-112) |#5| |#1|)) (-15 -2173 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1779 ((-112) |#1|)) (-15 -1779 ((-112) |#5| |#1|)) (-15 -2951 ((-2 (|:| -2674 (-619 |#5|)) (|:| -1352 (-619 |#5|))) |#1|)) (-15 -3705 ((-745) |#1|)) (-15 -2498 ((-619 |#5|) |#1|)) (-15 -2672 ((-3 (-2 (|:| |bas| |#1|) (|:| -2312 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2672 ((-3 (-2 (|:| |bas| |#1|) (|:| -2312 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1458 ((-112) |#1| |#1|)) (-15 -3461 (|#1| |#1| |#4|)) (-15 -3007 (|#1| |#1| |#4|)) (-15 -3338 (|#4| |#1|)) (-15 -2707 ((-3 |#1| "failed") (-619 |#5|))) (-15 -3838 ((-619 |#5|) |#1|)) (-15 -3846 (|#1| (-619 |#5|))) (-15 -2552 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2552 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1482 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2552 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|))) (-1166 |#2| |#3| |#4| |#5|) (-539) (-767) (-821) (-1030 |#2| |#3| |#4|)) (T -1165))
-NIL
-(-10 -8 (-15 -2815 ((-745) |#1|)) (-15 -3708 (|#1| |#1| |#5|)) (-15 -1482 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2593 ((-112) |#4| |#1|)) (-15 -3463 ((-619 |#4|) |#1|)) (-15 -3649 ((-3 |#1| "failed") |#1|)) (-15 -3820 ((-3 |#5| "failed") |#1|)) (-15 -3638 ((-3 |#5| "failed") |#1|)) (-15 -2442 (|#5| |#5| |#1|)) (-15 -2553 (|#1| |#1|)) (-15 -2584 (|#5| |#5| |#1|)) (-15 -3065 (|#5| |#5| |#1|)) (-15 -1772 (|#5| |#5| |#1|)) (-15 -2081 (|#5| |#5| |#1|)) (-15 -3805 ((-619 |#5|) (-619 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2552 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3112 ((-112) |#1|)) (-15 -2012 ((-112) |#1|)) (-15 -4151 ((-112) |#1|)) (-15 -2636 ((-112) |#1| (-1 (-112) |#5| (-619 |#5|)))) (-15 -3112 ((-112) |#5| |#1|)) (-15 -2012 ((-112) |#5| |#1|)) (-15 -4151 ((-112) |#5| |#1|)) (-15 -2173 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1779 ((-112) |#1|)) (-15 -1779 ((-112) |#5| |#1|)) (-15 -2951 ((-2 (|:| -2674 (-619 |#5|)) (|:| -1352 (-619 |#5|))) |#1|)) (-15 -3705 ((-745) |#1|)) (-15 -2498 ((-619 |#5|) |#1|)) (-15 -2672 ((-3 (-2 (|:| |bas| |#1|) (|:| -2312 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2672 ((-3 (-2 (|:| |bas| |#1|) (|:| -2312 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1458 ((-112) |#1| |#1|)) (-15 -3461 (|#1| |#1| |#4|)) (-15 -3007 (|#1| |#1| |#4|)) (-15 -3338 (|#4| |#1|)) (-15 -2707 ((-3 |#1| "failed") (-619 |#5|))) (-15 -3838 ((-619 |#5|) |#1|)) (-15 -3846 (|#1| (-619 |#5|))) (-15 -2552 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2552 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1482 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2552 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3838 ((-832) |#1|)) (-15 -2381 ((-112) |#1| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1320 (((-619 (-2 (|:| -2674 $) (|:| -1352 (-619 |#4|)))) (-619 |#4|)) 85)) (-2128 (((-619 $) (-619 |#4|)) 86)) (-2267 (((-619 |#3|) $) 33)) (-1474 (((-112) $) 26)) (-1843 (((-112) $) 17 (|has| |#1| (-539)))) (-4151 (((-112) |#4| $) 101) (((-112) $) 97)) (-2081 ((|#4| |#4| $) 92)) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |#3|) 27)) (-3899 (((-112) $ (-745)) 44)) (-1482 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4329))) (((-3 |#4| "failed") $ |#3|) 79)) (-1948 (($) 45 T CONST)) (-1651 (((-112) $) 22 (|has| |#1| (-539)))) (-4230 (((-112) $ $) 24 (|has| |#1| (-539)))) (-2360 (((-112) $ $) 23 (|has| |#1| (-539)))) (-1840 (((-112) $) 25 (|has| |#1| (-539)))) (-3805 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-4017 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-539)))) (-1900 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-539)))) (-2707 (((-3 $ "failed") (-619 |#4|)) 36)) (-2652 (($ (-619 |#4|)) 35)) (-3649 (((-3 $ "failed") $) 82)) (-2584 ((|#4| |#4| $) 89)) (-3668 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4329)))) (-2916 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-539)))) (-2173 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2442 ((|#4| |#4| $) 87)) (-2552 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4329))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4329))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2951 (((-2 (|:| -2674 (-619 |#4|)) (|:| -1352 (-619 |#4|))) $) 105)) (-2982 (((-619 |#4|) $) 52 (|has| $ (-6 -4329)))) (-1779 (((-112) |#4| $) 104) (((-112) $) 103)) (-3338 ((|#3| $) 34)) (-2763 (((-112) $ (-745)) 43)) (-2284 (((-619 |#4|) $) 53 (|has| $ (-6 -4329)))) (-2132 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#4| |#4|) $) 47)) (-4138 (((-619 |#3|) $) 32)) (-3758 (((-112) |#3| $) 31)) (-3806 (((-112) $ (-745)) 42)) (-1466 (((-1119) $) 9)) (-3820 (((-3 |#4| "failed") $) 83)) (-2498 (((-619 |#4|) $) 107)) (-3112 (((-112) |#4| $) 99) (((-112) $) 95)) (-3065 ((|#4| |#4| $) 90)) (-1458 (((-112) $ $) 110)) (-1770 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-539)))) (-2012 (((-112) |#4| $) 100) (((-112) $) 96)) (-1772 ((|#4| |#4| $) 91)) (-3979 (((-1082) $) 10)) (-3638 (((-3 |#4| "failed") $) 84)) (-3650 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1362 (((-3 $ "failed") $ |#4|) 78)) (-3708 (($ $ |#4|) 77)) (-1598 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) 57 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) 56 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2052 (((-112) $ $) 38)) (-2884 (((-112) $) 41)) (-2245 (($) 40)) (-3705 (((-745) $) 106)) (-3992 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4329)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4329)))) (-2274 (($ $) 39)) (-2838 (((-523) $) 69 (|has| |#4| (-592 (-523))))) (-3846 (($ (-619 |#4|)) 60)) (-3461 (($ $ |#3|) 28)) (-3007 (($ $ |#3|) 30)) (-2553 (($ $) 88)) (-3619 (($ $ |#3|) 29)) (-3838 (((-832) $) 11) (((-619 |#4|) $) 37)) (-2815 (((-745) $) 76 (|has| |#3| (-359)))) (-2672 (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2636 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-2693 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4329)))) (-3463 (((-619 |#3|) $) 81)) (-2593 (((-112) |#3| $) 80)) (-2381 (((-112) $ $) 6)) (-3767 (((-745) $) 46 (|has| $ (-6 -4329)))))
-(((-1166 |#1| |#2| |#3| |#4|) (-138) (-539) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1166))
-((-1458 (*1 *2 *1 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2672 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2312 (-619 *8)))) (-5 *3 (-619 *8)) (-4 *1 (-1166 *5 *6 *7 *8)))) (-2672 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-539)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2312 (-619 *9)))) (-5 *3 (-619 *9)) (-4 *1 (-1166 *6 *7 *8 *9)))) (-2498 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *6)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-745)))) (-2951 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-2 (|:| -2674 (-619 *6)) (|:| -1352 (-619 *6)))))) (-1779 (*1 *2 *3 *1) (-12 (-4 *1 (-1166 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2173 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1166 *5 *6 *7 *3)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)))) (-4151 (*1 *2 *3 *1) (-12 (-4 *1 (-1166 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2012 (*1 *2 *3 *1) (-12 (-4 *1 (-1166 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-3112 (*1 *2 *3 *1) (-12 (-4 *1 (-1166 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-619 *7))) (-4 *1 (-1166 *4 *5 *6 *7)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2552 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1166 *5 *6 *7 *2)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *2 (-1030 *5 *6 *7)))) (-3805 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1166 *5 *6 *7 *8)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)))) (-2081 (*1 *2 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-1772 (*1 *2 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3065 (*1 *2 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2584 (*1 *2 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2553 (*1 *1 *1) (-12 (-4 *1 (-1166 *2 *3 *4 *5)) (-4 *2 (-539)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4)))) (-2442 (*1 *2 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1166 *4 *5 *6 *7)))) (-1320 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| -2674 *1) (|:| -1352 (-619 *7))))) (-5 *3 (-619 *7)) (-4 *1 (-1166 *4 *5 *6 *7)))) (-3638 (*1 *2 *1) (|partial| -12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3820 (*1 *2 *1) (|partial| -12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3649 (*1 *1 *1) (|partial| -12 (-4 *1 (-1166 *2 *3 *4 *5)) (-4 *2 (-539)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) (-2593 (*1 *2 *3 *1) (-12 (-4 *1 (-1166 *4 *5 *3 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112)))) (-1482 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1166 *4 *5 *3 *2)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *2 (-1030 *4 *5 *3)))) (-1362 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3708 (*1 *1 *1 *2) (-12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *5 (-359)) (-5 *2 (-745)))))
-(-13 (-945 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4329) (-6 -4330) (-15 -1458 ((-112) $ $)) (-15 -2672 ((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |t#4|))) "failed") (-619 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2672 ((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |t#4|))) "failed") (-619 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2498 ((-619 |t#4|) $)) (-15 -3705 ((-745) $)) (-15 -2951 ((-2 (|:| -2674 (-619 |t#4|)) (|:| -1352 (-619 |t#4|))) $)) (-15 -1779 ((-112) |t#4| $)) (-15 -1779 ((-112) $)) (-15 -2173 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4151 ((-112) |t#4| $)) (-15 -2012 ((-112) |t#4| $)) (-15 -3112 ((-112) |t#4| $)) (-15 -2636 ((-112) $ (-1 (-112) |t#4| (-619 |t#4|)))) (-15 -4151 ((-112) $)) (-15 -2012 ((-112) $)) (-15 -3112 ((-112) $)) (-15 -2552 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3805 ((-619 |t#4|) (-619 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2081 (|t#4| |t#4| $)) (-15 -1772 (|t#4| |t#4| $)) (-15 -3065 (|t#4| |t#4| $)) (-15 -2584 (|t#4| |t#4| $)) (-15 -2553 ($ $)) (-15 -2442 (|t#4| |t#4| $)) (-15 -2128 ((-619 $) (-619 |t#4|))) (-15 -1320 ((-619 (-2 (|:| -2674 $) (|:| -1352 (-619 |t#4|)))) (-619 |t#4|))) (-15 -3638 ((-3 |t#4| "failed") $)) (-15 -3820 ((-3 |t#4| "failed") $)) (-15 -3649 ((-3 $ "failed") $)) (-15 -3463 ((-619 |t#3|) $)) (-15 -2593 ((-112) |t#3| $)) (-15 -1482 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1362 ((-3 $ "failed") $ |t#4|)) (-15 -3708 ($ $ |t#4|)) (IF (|has| |t#3| (-359)) (-15 -2815 ((-745) $)) |%noBranch|)))
-(((-34) . T) ((-101) . T) ((-591 (-619 |#4|)) . T) ((-591 (-832)) . T) ((-149 |#4|) . T) ((-592 (-523)) |has| |#4| (-592 (-523))) ((-300 |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-479 |#4|) . T) ((-503 |#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1173) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2267 (((-619 (-1136)) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-1656 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2127 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1632 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1678 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) NIL T CONST)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-1407 (((-921 |#1|) $ (-745)) 17) (((-921 |#1|) $ (-745) (-745)) NIL)) (-1713 (((-112) $) NIL)) (-1419 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-745) $ (-1136)) NIL) (((-745) $ (-1136) (-745)) NIL)) (-2261 (((-112) $) NIL)) (-3869 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1759 (((-112) $) NIL)) (-2238 (($ $ (-619 (-1136)) (-619 (-519 (-1136)))) NIL) (($ $ (-1136) (-519 (-1136))) NIL) (($ |#1| (-519 (-1136))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3694 (($ $ (-1136)) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136) |#1|) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-1515 (($ (-1 $) (-1136) |#1|) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3708 (($ $ (-745)) NIL)) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2712 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2679 (($ $ (-1136) $) NIL) (($ $ (-619 (-1136)) (-619 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL)) (-3448 (($ $ (-1136)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL)) (-3705 (((-519 (-1136)) $) NIL)) (-1690 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-539))) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-1136)) NIL) (($ (-921 |#1|)) NIL)) (-2450 ((|#1| $ (-519 (-1136))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL) (((-921 |#1|) $ (-745)) NIL)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-1726 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1927 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) NIL T CONST)) (-3281 (($) NIL T CONST)) (-1695 (($ $ (-1136)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL)) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1167 |#1|) (-13 (-715 |#1| (-1136)) (-10 -8 (-15 -2450 ((-921 |#1|) $ (-745))) (-15 -3838 ($ (-1136))) (-15 -3838 ($ (-921 |#1|))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -3694 ($ $ (-1136) |#1|)) (-15 -1515 ($ (-1 $) (-1136) |#1|))) |%noBranch|))) (-1016)) (T -1167))
-((-2450 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-921 *4)) (-5 *1 (-1167 *4)) (-4 *4 (-1016)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1167 *3)) (-4 *3 (-1016)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-1167 *3)))) (-3694 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *1 (-1167 *3)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)))) (-1515 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1167 *4))) (-5 *3 (-1136)) (-5 *1 (-1167 *4)) (-4 *4 (-38 (-398 (-547)))) (-4 *4 (-1016)))))
-(-13 (-715 |#1| (-1136)) (-10 -8 (-15 -2450 ((-921 |#1|) $ (-745))) (-15 -3838 ($ (-1136))) (-15 -3838 ($ (-921 |#1|))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -3694 ($ $ (-1136) |#1|)) (-15 -1515 ($ (-1 $) (-1136) |#1|))) |%noBranch|)))
-((-4267 (($ |#1| (-619 (-619 (-912 (-217)))) (-112)) 19)) (-2143 (((-112) $ (-112)) 18)) (-3898 (((-112) $) 17)) (-3542 (((-619 (-619 (-912 (-217)))) $) 13)) (-2108 ((|#1| $) 8)) (-2262 (((-112) $) 15)))
-(((-1168 |#1|) (-10 -8 (-15 -2108 (|#1| $)) (-15 -3542 ((-619 (-619 (-912 (-217)))) $)) (-15 -2262 ((-112) $)) (-15 -3898 ((-112) $)) (-15 -2143 ((-112) $ (-112))) (-15 -4267 ($ |#1| (-619 (-619 (-912 (-217)))) (-112)))) (-943)) (T -1168))
-((-4267 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-112)) (-5 *1 (-1168 *2)) (-4 *2 (-943)))) (-2143 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-943)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-943)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-943)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-1168 *3)) (-4 *3 (-943)))) (-2108 (*1 *2 *1) (-12 (-5 *1 (-1168 *2)) (-4 *2 (-943)))))
-(-10 -8 (-15 -2108 (|#1| $)) (-15 -3542 ((-619 (-619 (-912 (-217)))) $)) (-15 -2262 ((-112) $)) (-15 -3898 ((-112) $)) (-15 -2143 ((-112) $ (-112))) (-15 -4267 ($ |#1| (-619 (-619 (-912 (-217)))) (-112))))
-((-4289 (((-912 (-217)) (-912 (-217))) 25)) (-2791 (((-912 (-217)) (-217) (-217) (-217) (-217)) 10)) (-3216 (((-619 (-912 (-217))) (-912 (-217)) (-912 (-217)) (-912 (-217)) (-217) (-619 (-619 (-217)))) 37)) (-4117 (((-217) (-912 (-217)) (-912 (-217))) 21)) (-1838 (((-912 (-217)) (-912 (-217)) (-912 (-217))) 22)) (-1335 (((-619 (-619 (-217))) (-547)) 31)) (-2493 (((-912 (-217)) (-912 (-217)) (-912 (-217))) 20)) (-2479 (((-912 (-217)) (-912 (-217)) (-912 (-217))) 19)) (* (((-912 (-217)) (-217) (-912 (-217))) 18)))
-(((-1169) (-10 -7 (-15 -2791 ((-912 (-217)) (-217) (-217) (-217) (-217))) (-15 * ((-912 (-217)) (-217) (-912 (-217)))) (-15 -2479 ((-912 (-217)) (-912 (-217)) (-912 (-217)))) (-15 -2493 ((-912 (-217)) (-912 (-217)) (-912 (-217)))) (-15 -4117 ((-217) (-912 (-217)) (-912 (-217)))) (-15 -1838 ((-912 (-217)) (-912 (-217)) (-912 (-217)))) (-15 -4289 ((-912 (-217)) (-912 (-217)))) (-15 -1335 ((-619 (-619 (-217))) (-547))) (-15 -3216 ((-619 (-912 (-217))) (-912 (-217)) (-912 (-217)) (-912 (-217)) (-217) (-619 (-619 (-217))))))) (T -1169))
-((-3216 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-619 (-619 (-217)))) (-5 *4 (-217)) (-5 *2 (-619 (-912 *4))) (-5 *1 (-1169)) (-5 *3 (-912 *4)))) (-1335 (*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *2 (-619 (-619 (-217)))) (-5 *1 (-1169)))) (-4289 (*1 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1169)))) (-1838 (*1 *2 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1169)))) (-4117 (*1 *2 *3 *3) (-12 (-5 *3 (-912 (-217))) (-5 *2 (-217)) (-5 *1 (-1169)))) (-2493 (*1 *2 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1169)))) (-2479 (*1 *2 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1169)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-912 (-217))) (-5 *3 (-217)) (-5 *1 (-1169)))) (-2791 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1169)) (-5 *3 (-217)))))
-(-10 -7 (-15 -2791 ((-912 (-217)) (-217) (-217) (-217) (-217))) (-15 * ((-912 (-217)) (-217) (-912 (-217)))) (-15 -2479 ((-912 (-217)) (-912 (-217)) (-912 (-217)))) (-15 -2493 ((-912 (-217)) (-912 (-217)) (-912 (-217)))) (-15 -4117 ((-217) (-912 (-217)) (-912 (-217)))) (-15 -1838 ((-912 (-217)) (-912 (-217)) (-912 (-217)))) (-15 -4289 ((-912 (-217)) (-912 (-217)))) (-15 -1335 ((-619 (-619 (-217))) (-547))) (-15 -3216 ((-619 (-912 (-217))) (-912 (-217)) (-912 (-217)) (-912 (-217)) (-217) (-619 (-619 (-217))))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1482 ((|#1| $ (-745)) 13)) (-4202 (((-745) $) 12)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3838 (((-927 |#1|) $) 10) (($ (-927 |#1|)) 9) (((-832) $) 23 (|has| |#1| (-591 (-832))))) (-2381 (((-112) $ $) 16 (|has| |#1| (-1063)))))
-(((-1170 |#1|) (-13 (-591 (-927 |#1|)) (-10 -8 (-15 -3838 ($ (-927 |#1|))) (-15 -1482 (|#1| $ (-745))) (-15 -4202 ((-745) $)) (IF (|has| |#1| (-591 (-832))) (-6 (-591 (-832))) |%noBranch|) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) (-1173)) (T -1170))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-927 *3)) (-4 *3 (-1173)) (-5 *1 (-1170 *3)))) (-1482 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-1170 *2)) (-4 *2 (-1173)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1170 *3)) (-4 *3 (-1173)))))
-(-13 (-591 (-927 |#1|)) (-10 -8 (-15 -3838 ($ (-927 |#1|))) (-15 -1482 (|#1| $ (-745))) (-15 -4202 ((-745) $)) (IF (|has| |#1| (-591 (-832))) (-6 (-591 (-832))) |%noBranch|) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|)))
-((-2748 (((-409 (-1132 (-1132 |#1|))) (-1132 (-1132 |#1|)) (-547)) 80)) (-3872 (((-409 (-1132 (-1132 |#1|))) (-1132 (-1132 |#1|))) 74)) (-3295 (((-409 (-1132 (-1132 |#1|))) (-1132 (-1132 |#1|))) 59)))
-(((-1171 |#1|) (-10 -7 (-15 -3872 ((-409 (-1132 (-1132 |#1|))) (-1132 (-1132 |#1|)))) (-15 -3295 ((-409 (-1132 (-1132 |#1|))) (-1132 (-1132 |#1|)))) (-15 -2748 ((-409 (-1132 (-1132 |#1|))) (-1132 (-1132 |#1|)) (-547)))) (-340)) (T -1171))
-((-2748 (*1 *2 *3 *4) (-12 (-5 *4 (-547)) (-4 *5 (-340)) (-5 *2 (-409 (-1132 (-1132 *5)))) (-5 *1 (-1171 *5)) (-5 *3 (-1132 (-1132 *5))))) (-3295 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-409 (-1132 (-1132 *4)))) (-5 *1 (-1171 *4)) (-5 *3 (-1132 (-1132 *4))))) (-3872 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-409 (-1132 (-1132 *4)))) (-5 *1 (-1171 *4)) (-5 *3 (-1132 (-1132 *4))))))
-(-10 -7 (-15 -3872 ((-409 (-1132 (-1132 |#1|))) (-1132 (-1132 |#1|)))) (-15 -3295 ((-409 (-1132 (-1132 |#1|))) (-1132 (-1132 |#1|)))) (-15 -2748 ((-409 (-1132 (-1132 |#1|))) (-1132 (-1132 |#1|)) (-547))))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL) (($ (-1141)) 8)) (-2381 (((-112) $ $) NIL)))
-(((-1172) (-13 (-1047) (-10 -8 (-15 -3838 ($ (-1141)))))) (T -1172))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-1172)))))
-(-13 (-1047) (-10 -8 (-15 -3838 ($ (-1141)))))
-NIL
-(((-1173) (-138)) (T -1173))
-NIL
-(-13 (-10 -7 (-6 -2618)))
-((-1450 (((-112)) 15)) (-2443 (((-1224) (-619 |#1|) (-619 |#1|)) 19) (((-1224) (-619 |#1|)) 20)) (-2763 (((-112) |#1| |#1|) 32 (|has| |#1| (-821)))) (-3806 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-3699 ((|#1| (-619 |#1|)) 33 (|has| |#1| (-821))) ((|#1| (-619 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-2202 (((-2 (|:| -2677 (-619 |#1|)) (|:| -4234 (-619 |#1|)))) 17)))
-(((-1174 |#1|) (-10 -7 (-15 -2443 ((-1224) (-619 |#1|))) (-15 -2443 ((-1224) (-619 |#1|) (-619 |#1|))) (-15 -2202 ((-2 (|:| -2677 (-619 |#1|)) (|:| -4234 (-619 |#1|))))) (-15 -3806 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3806 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3699 (|#1| (-619 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1450 ((-112))) (IF (|has| |#1| (-821)) (PROGN (-15 -3699 (|#1| (-619 |#1|))) (-15 -2763 ((-112) |#1| |#1|))) |%noBranch|)) (-1063)) (T -1174))
-((-2763 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-821)) (-4 *3 (-1063)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-821)) (-5 *1 (-1174 *2)))) (-1450 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-1063)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1174 *2)) (-4 *2 (-1063)))) (-3806 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1063)) (-5 *2 (-112)) (-5 *1 (-1174 *3)))) (-3806 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-1063)))) (-2202 (*1 *2) (-12 (-5 *2 (-2 (|:| -2677 (-619 *3)) (|:| -4234 (-619 *3)))) (-5 *1 (-1174 *3)) (-4 *3 (-1063)))) (-2443 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1224)) (-5 *1 (-1174 *4)))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1224)) (-5 *1 (-1174 *4)))))
-(-10 -7 (-15 -2443 ((-1224) (-619 |#1|))) (-15 -2443 ((-1224) (-619 |#1|) (-619 |#1|))) (-15 -2202 ((-2 (|:| -2677 (-619 |#1|)) (|:| -4234 (-619 |#1|))))) (-15 -3806 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3806 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3699 (|#1| (-619 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1450 ((-112))) (IF (|has| |#1| (-821)) (PROGN (-15 -3699 (|#1| (-619 |#1|))) (-15 -2763 ((-112) |#1| |#1|))) |%noBranch|))
-((-3071 (((-1224) (-619 (-1136)) (-619 (-1136))) 13) (((-1224) (-619 (-1136))) 11)) (-2710 (((-1224)) 14)) (-3435 (((-2 (|:| -4234 (-619 (-1136))) (|:| -2677 (-619 (-1136))))) 18)))
-(((-1175) (-10 -7 (-15 -3071 ((-1224) (-619 (-1136)))) (-15 -3071 ((-1224) (-619 (-1136)) (-619 (-1136)))) (-15 -3435 ((-2 (|:| -4234 (-619 (-1136))) (|:| -2677 (-619 (-1136)))))) (-15 -2710 ((-1224))))) (T -1175))
-((-2710 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1175)))) (-3435 (*1 *2) (-12 (-5 *2 (-2 (|:| -4234 (-619 (-1136))) (|:| -2677 (-619 (-1136))))) (-5 *1 (-1175)))) (-3071 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-1136))) (-5 *2 (-1224)) (-5 *1 (-1175)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-619 (-1136))) (-5 *2 (-1224)) (-5 *1 (-1175)))))
-(-10 -7 (-15 -3071 ((-1224) (-619 (-1136)))) (-15 -3071 ((-1224) (-619 (-1136)) (-619 (-1136)))) (-15 -3435 ((-2 (|:| -4234 (-619 (-1136))) (|:| -2677 (-619 (-1136)))))) (-15 -2710 ((-1224))))
-((-2555 (($ $) 17)) (-1791 (((-112) $) 24)))
-(((-1176 |#1|) (-10 -8 (-15 -2555 (|#1| |#1|)) (-15 -1791 ((-112) |#1|))) (-1177)) (T -1176))
-NIL
-(-10 -8 (-15 -2555 (|#1| |#1|)) (-15 -1791 ((-112) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 49)) (-3299 (((-409 $) $) 50)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-1791 (((-112) $) 51)) (-2261 (((-112) $) 30)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-2115 (((-409 $) $) 48)) (-2032 (((-3 $ "failed") $ $) 40)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24)))
-(((-1177) (-138)) (T -1177))
-((-1791 (*1 *2 *1) (-12 (-4 *1 (-1177)) (-5 *2 (-112)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1177)))) (-2555 (*1 *1 *1) (-4 *1 (-1177))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1177)))))
-(-13 (-442) (-10 -8 (-15 -1791 ((-112) $)) (-15 -3299 ((-409 $) $)) (-15 -2555 ($ $)) (-15 -2115 ((-409 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-442) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2790 (((-1183 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1183 |#1| |#3| |#5|)) 23)))
-(((-1178 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2790 ((-1183 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1183 |#1| |#3| |#5|)))) (-1016) (-1016) (-1136) (-1136) |#1| |#2|) (T -1178))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1183 *5 *7 *9)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-14 *7 (-1136)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1183 *6 *8 *10)) (-5 *1 (-1178 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1136)))))
-(-10 -7 (-15 -2790 ((-1183 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1183 |#1| |#3| |#5|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2267 (((-619 (-1045)) $) 72)) (-3004 (((-1136) $) 101)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3571 (($ $) 50 (|has| |#1| (-539)))) (-3915 (((-112) $) 52 (|has| |#1| (-539)))) (-3931 (($ $ (-547)) 96) (($ $ (-547) (-547)) 95)) (-2203 (((-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) 103)) (-1656 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) 116 (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 160 (|has| |#1| (-354)))) (-3299 (((-409 $) $) 161 (|has| |#1| (-354)))) (-2127 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-1547 (((-112) $ $) 151 (|has| |#1| (-354)))) (-1632 (($ $) 132 (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-2819 (($ (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) 171)) (-1678 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) 118 (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) 17 T CONST)) (-2089 (($ $ $) 155 (|has| |#1| (-354)))) (-2063 (($ $) 58)) (-3855 (((-3 $ "failed") $) 32)) (-4047 (((-398 (-921 |#1|)) $ (-547)) 169 (|has| |#1| (-539))) (((-398 (-921 |#1|)) $ (-547) (-547)) 168 (|has| |#1| (-539)))) (-2061 (($ $ $) 154 (|has| |#1| (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 149 (|has| |#1| (-354)))) (-1791 (((-112) $) 162 (|has| |#1| (-354)))) (-1713 (((-112) $) 71)) (-1419 (($) 143 (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-547) $) 98) (((-547) $ (-547)) 97)) (-2261 (((-112) $) 30)) (-3869 (($ $ (-547)) 114 (|has| |#1| (-38 (-398 (-547)))))) (-3852 (($ $ (-890)) 99)) (-3201 (($ (-1 |#1| (-547)) $) 170)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-354)))) (-1759 (((-112) $) 60)) (-2238 (($ |#1| (-547)) 59) (($ $ (-1045) (-547)) 74) (($ $ (-619 (-1045)) (-619 (-547))) 73)) (-2790 (($ (-1 |#1| |#1|) $) 61)) (-3624 (($ $) 140 (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) 63)) (-2037 ((|#1| $) 64)) (-3689 (($ (-619 $)) 147 (|has| |#1| (-354))) (($ $ $) 146 (|has| |#1| (-354)))) (-1466 (((-1119) $) 9)) (-1984 (($ $) 163 (|has| |#1| (-354)))) (-3694 (($ $) 167 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) 166 (-1530 (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-928)) (|has| |#1| (-1158)) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-38 (-398 (-547)))))))) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 148 (|has| |#1| (-354)))) (-3719 (($ (-619 $)) 145 (|has| |#1| (-354))) (($ $ $) 144 (|has| |#1| (-354)))) (-2115 (((-409 $) $) 159 (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 156 (|has| |#1| (-354)))) (-3708 (($ $ (-547)) 93)) (-2032 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-354)))) (-2712 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-547)))))) (-2471 (((-745) $) 152 (|has| |#1| (-354)))) (-3334 ((|#1| $ (-547)) 102) (($ $ $) 79 (|has| (-547) (-1075)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 153 (|has| |#1| (-354)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-1136) (-745)) 86 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1136))) 85 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-1136)) 84 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-547) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (-3705 (((-547) $) 62)) (-1690 (($ $) 130 (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) 129 (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) 120 (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) 128 (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) 70)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539)))) (-2450 ((|#1| $ (-547)) 57)) (-2220 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2736 (((-745)) 28)) (-2591 ((|#1| $) 100)) (-1726 (($ $) 139 (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) 127 (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) 51 (|has| |#1| (-539)))) (-1703 (($ $) 138 (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) 126 (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) 137 (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-547)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-547)))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) 136 (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) 124 (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) 135 (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) 134 (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) 122 (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-1136) (-745)) 90 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1136))) 89 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-1136)) 88 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-547) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#1|) 56 (|has| |#1| (-354))) (($ $ $) 165 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 164 (|has| |#1| (-354))) (($ $ $) 142 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 113 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547)))))))
-(((-1179 |#1|) (-138) (-1016)) (T -1179))
-((-2819 (*1 *1 *2) (-12 (-5 *2 (-1117 (-2 (|:| |k| (-547)) (|:| |c| *3)))) (-4 *3 (-1016)) (-4 *1 (-1179 *3)))) (-3201 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-547))) (-4 *1 (-1179 *3)) (-4 *3 (-1016)))) (-4047 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-1179 *4)) (-4 *4 (-1016)) (-4 *4 (-539)) (-5 *2 (-398 (-921 *4))))) (-4047 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-4 *1 (-1179 *4)) (-4 *4 (-1016)) (-4 *4 (-539)) (-5 *2 (-398 (-921 *4))))) (-3694 (*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547)))))) (-3694 (*1 *1 *1 *2) (-1530 (-12 (-5 *2 (-1136)) (-4 *1 (-1179 *3)) (-4 *3 (-1016)) (-12 (-4 *3 (-29 (-547))) (-4 *3 (-928)) (-4 *3 (-1158)) (-4 *3 (-38 (-398 (-547)))))) (-12 (-5 *2 (-1136)) (-4 *1 (-1179 *3)) (-4 *3 (-1016)) (-12 (|has| *3 (-15 -2267 ((-619 *2) *3))) (|has| *3 (-15 -3694 (*3 *3 *2))) (-4 *3 (-38 (-398 (-547)))))))))
-(-13 (-1197 |t#1| (-547)) (-10 -8 (-15 -2819 ($ (-1117 (-2 (|:| |k| (-547)) (|:| |c| |t#1|))))) (-15 -3201 ($ (-1 |t#1| (-547)) $)) (IF (|has| |t#1| (-539)) (PROGN (-15 -4047 ((-398 (-921 |t#1|)) $ (-547))) (-15 -4047 ((-398 (-921 |t#1|)) $ (-547) (-547)))) |%noBranch|) (IF (|has| |t#1| (-38 (-398 (-547)))) (PROGN (-15 -3694 ($ $)) (IF (|has| |t#1| (-15 -3694 (|t#1| |t#1| (-1136)))) (IF (|has| |t#1| (-15 -2267 ((-619 (-1136)) |t#1|))) (-15 -3694 ($ $ (-1136))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1158)) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-29 (-547))) (-15 -3694 ($ $ (-1136))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-971)) (-6 (-1158))) |%noBranch|) (IF (|has| |t#1| (-354)) (-6 (-354)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-547)) . T) ((-25) . T) ((-38 #1=(-398 (-547))) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-35) |has| |#1| (-38 (-398 (-547)))) ((-94) |has| |#1| (-38 (-398 (-547)))) ((-101) . T) ((-111 #1# #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-225) |has| |#1| (-15 * (|#1| (-547) |#1|))) ((-235) |has| |#1| (-354)) ((-275) |has| |#1| (-38 (-398 (-547)))) ((-277 $ $) |has| (-547) (-1075)) ((-281) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-298) |has| |#1| (-354)) ((-354) |has| |#1| (-354)) ((-442) |has| |#1| (-354)) ((-482) |has| |#1| (-38 (-398 (-547)))) ((-539) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-622 #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-701) . T) ((-869 (-1136)) -12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-354)) ((-971) |has| |#1| (-38 (-398 (-547)))) ((-1022 #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1158) |has| |#1| (-38 (-398 (-547)))) ((-1161) |has| |#1| (-38 (-398 (-547)))) ((-1177) |has| |#1| (-354)) ((-1197 |#1| #0#) . T))
-((-1499 (((-112) $) 12)) (-2707 (((-3 |#3| "failed") $) 17) (((-3 (-1136) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 (-547) "failed") $) NIL)) (-2652 ((|#3| $) 14) (((-1136) $) NIL) (((-398 (-547)) $) NIL) (((-547) $) NIL)))
-(((-1180 |#1| |#2| |#3|) (-10 -8 (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2652 ((-1136) |#1|)) (-15 -2707 ((-3 (-1136) "failed") |#1|)) (-15 -2652 (|#3| |#1|)) (-15 -2707 ((-3 |#3| "failed") |#1|)) (-15 -1499 ((-112) |#1|))) (-1181 |#2| |#3|) (-1016) (-1210 |#2|)) (T -1180))
-NIL
-(-10 -8 (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2652 ((-1136) |#1|)) (-15 -2707 ((-3 (-1136) "failed") |#1|)) (-15 -2652 (|#3| |#1|)) (-15 -2707 ((-3 |#3| "failed") |#1|)) (-15 -1499 ((-112) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2092 ((|#2| $) 228 (-1814 (|has| |#2| (-298)) (|has| |#1| (-354))))) (-2267 (((-619 (-1045)) $) 72)) (-3004 (((-1136) $) 101)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3571 (($ $) 50 (|has| |#1| (-539)))) (-3915 (((-112) $) 52 (|has| |#1| (-539)))) (-3931 (($ $ (-547)) 96) (($ $ (-547) (-547)) 95)) (-2203 (((-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) 103)) (-3614 ((|#2| $) 264)) (-4224 (((-3 |#2| "failed") $) 260)) (-2334 ((|#2| $) 261)) (-1656 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) 116 (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) 19)) (-2277 (((-409 (-1132 $)) (-1132 $)) 237 (-1814 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-2555 (($ $) 160 (|has| |#1| (-354)))) (-3299 (((-409 $) $) 161 (|has| |#1| (-354)))) (-2127 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 234 (-1814 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-1547 (((-112) $ $) 151 (|has| |#1| (-354)))) (-1632 (($ $) 132 (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-2500 (((-547) $) 246 (-1814 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-2819 (($ (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) 171)) (-1678 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) 118 (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) 17 T CONST)) (-2707 (((-3 |#2| "failed") $) 267) (((-3 (-547) "failed") $) 256 (-1814 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-3 (-398 (-547)) "failed") $) 254 (-1814 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-3 (-1136) "failed") $) 239 (-1814 (|has| |#2| (-1007 (-1136))) (|has| |#1| (-354))))) (-2652 ((|#2| $) 266) (((-547) $) 257 (-1814 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-398 (-547)) $) 255 (-1814 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-1136) $) 240 (-1814 (|has| |#2| (-1007 (-1136))) (|has| |#1| (-354))))) (-2708 (($ $) 263) (($ (-547) $) 262)) (-2089 (($ $ $) 155 (|has| |#1| (-354)))) (-2063 (($ $) 58)) (-1694 (((-663 |#2|) (-663 $)) 218 (|has| |#1| (-354))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) 217 (|has| |#1| (-354))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 216 (-1814 (|has| |#2| (-615 (-547))) (|has| |#1| (-354)))) (((-663 (-547)) (-663 $)) 215 (-1814 (|has| |#2| (-615 (-547))) (|has| |#1| (-354))))) (-3855 (((-3 $ "failed") $) 32)) (-4047 (((-398 (-921 |#1|)) $ (-547)) 169 (|has| |#1| (-539))) (((-398 (-921 |#1|)) $ (-547) (-547)) 168 (|has| |#1| (-539)))) (-3232 (($) 230 (-1814 (|has| |#2| (-532)) (|has| |#1| (-354))))) (-2061 (($ $ $) 154 (|has| |#1| (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 149 (|has| |#1| (-354)))) (-1791 (((-112) $) 162 (|has| |#1| (-354)))) (-4270 (((-112) $) 244 (-1814 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-1713 (((-112) $) 71)) (-1419 (($) 143 (|has| |#1| (-38 (-398 (-547)))))) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 222 (-1814 (|has| |#2| (-855 (-370))) (|has| |#1| (-354)))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 221 (-1814 (|has| |#2| (-855 (-547))) (|has| |#1| (-354))))) (-3275 (((-547) $) 98) (((-547) $ (-547)) 97)) (-2261 (((-112) $) 30)) (-4170 (($ $) 226 (|has| |#1| (-354)))) (-1386 ((|#2| $) 224 (|has| |#1| (-354)))) (-3869 (($ $ (-547)) 114 (|has| |#1| (-38 (-398 (-547)))))) (-3477 (((-3 $ "failed") $) 258 (-1814 (|has| |#2| (-1112)) (|has| |#1| (-354))))) (-1860 (((-112) $) 245 (-1814 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-3852 (($ $ (-890)) 99)) (-3201 (($ (-1 |#1| (-547)) $) 170)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-354)))) (-1759 (((-112) $) 60)) (-2238 (($ |#1| (-547)) 59) (($ $ (-1045) (-547)) 74) (($ $ (-619 (-1045)) (-619 (-547))) 73)) (-2856 (($ $ $) 248 (-1814 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-3567 (($ $ $) 249 (-1814 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2790 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-354)))) (-3624 (($ $) 140 (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) 63)) (-2037 ((|#1| $) 64)) (-3689 (($ (-619 $)) 147 (|has| |#1| (-354))) (($ $ $) 146 (|has| |#1| (-354)))) (-2343 (($ (-547) |#2|) 265)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 163 (|has| |#1| (-354)))) (-3694 (($ $) 167 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) 166 (-1530 (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-928)) (|has| |#1| (-1158)) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-38 (-398 (-547)))))))) (-3054 (($) 259 (-1814 (|has| |#2| (-1112)) (|has| |#1| (-354))) CONST)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 148 (|has| |#1| (-354)))) (-3719 (($ (-619 $)) 145 (|has| |#1| (-354))) (($ $ $) 144 (|has| |#1| (-354)))) (-3682 (($ $) 229 (-1814 (|has| |#2| (-298)) (|has| |#1| (-354))))) (-1276 ((|#2| $) 232 (-1814 (|has| |#2| (-532)) (|has| |#1| (-354))))) (-2834 (((-409 (-1132 $)) (-1132 $)) 235 (-1814 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-4071 (((-409 (-1132 $)) (-1132 $)) 236 (-1814 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-2115 (((-409 $) $) 159 (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 156 (|has| |#1| (-354)))) (-3708 (($ $ (-547)) 93)) (-2032 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-354)))) (-2712 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-547))))) (($ $ (-1136) |#2|) 209 (-1814 (|has| |#2| (-503 (-1136) |#2|)) (|has| |#1| (-354)))) (($ $ (-619 (-1136)) (-619 |#2|)) 208 (-1814 (|has| |#2| (-503 (-1136) |#2|)) (|has| |#1| (-354)))) (($ $ (-619 (-285 |#2|))) 207 (-1814 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354)))) (($ $ (-285 |#2|)) 206 (-1814 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354)))) (($ $ |#2| |#2|) 205 (-1814 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354)))) (($ $ (-619 |#2|) (-619 |#2|)) 204 (-1814 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354))))) (-2471 (((-745) $) 152 (|has| |#1| (-354)))) (-3334 ((|#1| $ (-547)) 102) (($ $ $) 79 (|has| (-547) (-1075))) (($ $ |#2|) 203 (-1814 (|has| |#2| (-277 |#2| |#2|)) (|has| |#1| (-354))))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 153 (|has| |#1| (-354)))) (-3448 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-354))) (($ $ (-1 |#2| |#2|) (-745)) 213 (|has| |#1| (-354))) (($ $ (-745)) 82 (-1530 (-1814 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) 80 (-1530 (-1814 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1136)) (-619 (-745))) 87 (-1530 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))))) (($ $ (-1136) (-745)) 86 (-1530 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))))) (($ $ (-619 (-1136))) 85 (-1530 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))))) (($ $ (-1136)) 84 (-1530 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))))) (-2995 (($ $) 227 (|has| |#1| (-354)))) (-1396 ((|#2| $) 225 (|has| |#1| (-354)))) (-3705 (((-547) $) 62)) (-1690 (($ $) 130 (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) 129 (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) 120 (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) 128 (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-2838 (((-217) $) 243 (-1814 (|has| |#2| (-991)) (|has| |#1| (-354)))) (((-370) $) 242 (-1814 (|has| |#2| (-991)) (|has| |#1| (-354)))) (((-523) $) 241 (-1814 (|has| |#2| (-592 (-523))) (|has| |#1| (-354)))) (((-861 (-370)) $) 220 (-1814 (|has| |#2| (-592 (-861 (-370)))) (|has| |#1| (-354)))) (((-861 (-547)) $) 219 (-1814 (|has| |#2| (-592 (-861 (-547)))) (|has| |#1| (-354))))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 233 (-1814 (-1814 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#1| (-354))))) (-2804 (($ $) 70)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 268) (($ (-1136)) 238 (-1814 (|has| |#2| (-1007 (-1136))) (|has| |#1| (-354)))) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539)))) (-2450 ((|#1| $ (-547)) 57)) (-2220 (((-3 $ "failed") $) 46 (-1530 (-1814 (-1530 (|has| |#2| (-143)) (-1814 (|has| $ (-143)) (|has| |#2| (-878)))) (|has| |#1| (-354))) (|has| |#1| (-143))))) (-2736 (((-745)) 28)) (-2591 ((|#1| $) 100)) (-3720 ((|#2| $) 231 (-1814 (|has| |#2| (-532)) (|has| |#1| (-354))))) (-1726 (($ $) 139 (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) 127 (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) 51 (|has| |#1| (-539)))) (-1703 (($ $) 138 (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) 126 (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) 137 (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-547)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-547)))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) 136 (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) 124 (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) 135 (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) 134 (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) 122 (|has| |#1| (-38 (-398 (-547)))))) (-2255 (($ $) 247 (-1814 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-354))) (($ $ (-1 |#2| |#2|) (-745)) 211 (|has| |#1| (-354))) (($ $ (-745)) 83 (-1530 (-1814 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) 81 (-1530 (-1814 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1136)) (-619 (-745))) 91 (-1530 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))))) (($ $ (-1136) (-745)) 90 (-1530 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))))) (($ $ (-619 (-1136))) 89 (-1530 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))))) (($ $ (-1136)) 88 (-1530 (-1814 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))))) (-2441 (((-112) $ $) 251 (-1814 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2418 (((-112) $ $) 252 (-1814 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 250 (-1814 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2405 (((-112) $ $) 253 (-1814 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2506 (($ $ |#1|) 56 (|has| |#1| (-354))) (($ $ $) 165 (|has| |#1| (-354))) (($ |#2| |#2|) 223 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 164 (|has| |#1| (-354))) (($ $ $) 142 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 113 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-354))) (($ |#2| $) 201 (|has| |#1| (-354))) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547)))))))
-(((-1181 |#1| |#2|) (-138) (-1016) (-1210 |t#1|)) (T -1181))
-((-3705 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1210 *3)) (-5 *2 (-547)))) (-3838 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-1181 *3 *2)) (-4 *2 (-1210 *3)))) (-2343 (*1 *1 *2 *3) (-12 (-5 *2 (-547)) (-4 *4 (-1016)) (-4 *1 (-1181 *4 *3)) (-4 *3 (-1210 *4)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1210 *3)))) (-2708 (*1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1210 *2)))) (-2708 (*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1210 *3)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1210 *3)))) (-4224 (*1 *2 *1) (|partial| -12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1210 *3)))))
-(-13 (-1179 |t#1|) (-1007 |t#2|) (-10 -8 (-15 -2343 ($ (-547) |t#2|)) (-15 -3705 ((-547) $)) (-15 -3614 (|t#2| $)) (-15 -2708 ($ $)) (-15 -2708 ($ (-547) $)) (-15 -3838 ($ |t#2|)) (-15 -2334 (|t#2| $)) (-15 -4224 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-354)) (-6 (-961 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-547)) . T) ((-25) . T) ((-38 #1=(-398 (-547))) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 |#2|) |has| |#1| (-354)) ((-38 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-35) |has| |#1| (-38 (-398 (-547)))) ((-94) |has| |#1| (-38 (-398 (-547)))) ((-101) . T) ((-111 #1# #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-354)) ((-111 $ $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-130) . T) ((-143) -1530 (-12 (|has| |#1| (-354)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -1530 (-12 (|has| |#1| (-354)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-592 (-217)) -12 (|has| |#1| (-354)) (|has| |#2| (-991))) ((-592 (-370)) -12 (|has| |#1| (-354)) (|has| |#2| (-991))) ((-592 (-523)) -12 (|has| |#1| (-354)) (|has| |#2| (-592 (-523)))) ((-592 (-861 (-370))) -12 (|has| |#1| (-354)) (|has| |#2| (-592 (-861 (-370))))) ((-592 (-861 (-547))) -12 (|has| |#1| (-354)) (|has| |#2| (-592 (-861 (-547))))) ((-223 |#2|) |has| |#1| (-354)) ((-225) -1530 (-12 (|has| |#1| (-354)) (|has| |#2| (-225))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))) ((-235) |has| |#1| (-354)) ((-275) |has| |#1| (-38 (-398 (-547)))) ((-277 |#2| $) -12 (|has| |#1| (-354)) (|has| |#2| (-277 |#2| |#2|))) ((-277 $ $) |has| (-547) (-1075)) ((-281) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-298) |has| |#1| (-354)) ((-300 |#2|) -12 (|has| |#1| (-354)) (|has| |#2| (-300 |#2|))) ((-354) |has| |#1| (-354)) ((-329 |#2|) |has| |#1| (-354)) ((-368 |#2|) |has| |#1| (-354)) ((-391 |#2|) |has| |#1| (-354)) ((-442) |has| |#1| (-354)) ((-482) |has| |#1| (-38 (-398 (-547)))) ((-503 (-1136) |#2|) -12 (|has| |#1| (-354)) (|has| |#2| (-503 (-1136) |#2|))) ((-503 |#2| |#2|) -12 (|has| |#1| (-354)) (|has| |#2| (-300 |#2|))) ((-539) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-622 #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-622 |#1|) . T) ((-622 |#2|) |has| |#1| (-354)) ((-622 $) . T) ((-615 (-547)) -12 (|has| |#1| (-354)) (|has| |#2| (-615 (-547)))) ((-615 |#2|) |has| |#1| (-354)) ((-692 #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 |#2|) |has| |#1| (-354)) ((-692 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-701) . T) ((-765) -12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((-766) -12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((-768) -12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((-769) -12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((-794) -12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((-819) -12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((-821) -1530 (-12 (|has| |#1| (-354)) (|has| |#2| (-821))) (-12 (|has| |#1| (-354)) (|has| |#2| (-794)))) ((-869 (-1136)) -1530 (-12 (|has| |#1| (-354)) (|has| |#2| (-869 (-1136)))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))) ((-855 (-370)) -12 (|has| |#1| (-354)) (|has| |#2| (-855 (-370)))) ((-855 (-547)) -12 (|has| |#1| (-354)) (|has| |#2| (-855 (-547)))) ((-853 |#2|) |has| |#1| (-354)) ((-878) -12 (|has| |#1| (-354)) (|has| |#2| (-878))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-354)) ((-961 |#2|) |has| |#1| (-354)) ((-971) |has| |#1| (-38 (-398 (-547)))) ((-991) -12 (|has| |#1| (-354)) (|has| |#2| (-991))) ((-1007 (-398 (-547))) -12 (|has| |#1| (-354)) (|has| |#2| (-1007 (-547)))) ((-1007 (-547)) -12 (|has| |#1| (-354)) (|has| |#2| (-1007 (-547)))) ((-1007 (-1136)) -12 (|has| |#1| (-354)) (|has| |#2| (-1007 (-1136)))) ((-1007 |#2|) . T) ((-1022 #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-1022 |#1|) . T) ((-1022 |#2|) |has| |#1| (-354)) ((-1022 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1112) -12 (|has| |#1| (-354)) (|has| |#2| (-1112))) ((-1158) |has| |#1| (-38 (-398 (-547)))) ((-1161) |has| |#1| (-38 (-398 (-547)))) ((-1173) |has| |#1| (-354)) ((-1177) |has| |#1| (-354)) ((-1179 |#1|) . T) ((-1197 |#1| #0#) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 70)) (-2092 ((|#2| $) NIL (-12 (|has| |#2| (-298)) (|has| |#1| (-354))))) (-2267 (((-619 (-1045)) $) NIL)) (-3004 (((-1136) $) 88)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-3931 (($ $ (-547)) 97) (($ $ (-547) (-547)) 99)) (-2203 (((-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) 47)) (-3614 ((|#2| $) 11)) (-4224 (((-3 |#2| "failed") $) 30)) (-2334 ((|#2| $) 31)) (-1656 (($ $) 192 (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) 168 (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-2555 (($ $) NIL (|has| |#1| (-354)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2127 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1632 (($ $) 188 (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) 164 (|has| |#1| (-38 (-398 (-547)))))) (-2500 (((-547) $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-2819 (($ (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) 57)) (-1678 (($ $) 196 (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) 172 (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#2| "failed") $) 144) (((-3 (-547) "failed") $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-3 (-1136) "failed") $) NIL (-12 (|has| |#2| (-1007 (-1136))) (|has| |#1| (-354))))) (-2652 ((|#2| $) 143) (((-547) $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-398 (-547)) $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-1136) $) NIL (-12 (|has| |#2| (-1007 (-1136))) (|has| |#1| (-354))))) (-2708 (($ $) 61) (($ (-547) $) 24)) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-2063 (($ $) NIL)) (-1694 (((-663 |#2|) (-663 $)) NIL (|has| |#1| (-354))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL (|has| |#1| (-354))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#1| (-354)))) (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#1| (-354))))) (-3855 (((-3 $ "failed") $) 77)) (-4047 (((-398 (-921 |#1|)) $ (-547)) 112 (|has| |#1| (-539))) (((-398 (-921 |#1|)) $ (-547) (-547)) 114 (|has| |#1| (-539)))) (-3232 (($) NIL (-12 (|has| |#2| (-532)) (|has| |#1| (-354))))) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-1791 (((-112) $) NIL (|has| |#1| (-354)))) (-4270 (((-112) $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-1713 (((-112) $) 64)) (-1419 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| |#2| (-855 (-370))) (|has| |#1| (-354)))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| |#2| (-855 (-547))) (|has| |#1| (-354))))) (-3275 (((-547) $) 93) (((-547) $ (-547)) 95)) (-2261 (((-112) $) NIL)) (-4170 (($ $) NIL (|has| |#1| (-354)))) (-1386 ((|#2| $) 151 (|has| |#1| (-354)))) (-3869 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3477 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1112)) (|has| |#1| (-354))))) (-1860 (((-112) $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-3852 (($ $ (-890)) 136)) (-3201 (($ (-1 |#1| (-547)) $) 132)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-547)) 19) (($ $ (-1045) (-547)) NIL) (($ $ (-619 (-1045)) (-619 (-547))) NIL)) (-2856 (($ $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-3567 (($ $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2790 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-354)))) (-3624 (($ $) 162 (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2343 (($ (-547) |#2|) 10)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 145 (|has| |#1| (-354)))) (-3694 (($ $) 214 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) 219 (-1530 (-12 (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1158)))))) (-3054 (($) NIL (-12 (|has| |#2| (-1112)) (|has| |#1| (-354))) CONST)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-354)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-3682 (($ $) NIL (-12 (|has| |#2| (-298)) (|has| |#1| (-354))))) (-1276 ((|#2| $) NIL (-12 (|has| |#2| (-532)) (|has| |#1| (-354))))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-2115 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-3708 (($ $ (-547)) 126)) (-2032 (((-3 $ "failed") $ $) 116 (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2712 (($ $) 160 (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-547))))) (($ $ (-1136) |#2|) NIL (-12 (|has| |#2| (-503 (-1136) |#2|)) (|has| |#1| (-354)))) (($ $ (-619 (-1136)) (-619 |#2|)) NIL (-12 (|has| |#2| (-503 (-1136) |#2|)) (|has| |#1| (-354)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354))))) (-2471 (((-745) $) NIL (|has| |#1| (-354)))) (-3334 ((|#1| $ (-547)) 91) (($ $ $) 79 (|has| (-547) (-1075))) (($ $ |#2|) NIL (-12 (|has| |#2| (-277 |#2| |#2|)) (|has| |#1| (-354))))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-3448 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-354))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#1| (-354))) (($ $ (-745)) NIL (-1530 (-12 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) 137 (-1530 (-12 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-1530 (-12 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-1136) (-745)) NIL (-1530 (-12 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-619 (-1136))) NIL (-1530 (-12 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-1136)) 140 (-1530 (-12 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))))) (-2995 (($ $) NIL (|has| |#1| (-354)))) (-1396 ((|#2| $) 152 (|has| |#1| (-354)))) (-3705 (((-547) $) 12)) (-1690 (($ $) 198 (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) 174 (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) 194 (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) 170 (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) 190 (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) 166 (|has| |#1| (-38 (-398 (-547)))))) (-2838 (((-217) $) NIL (-12 (|has| |#2| (-991)) (|has| |#1| (-354)))) (((-370) $) NIL (-12 (|has| |#2| (-991)) (|has| |#1| (-354)))) (((-523) $) NIL (-12 (|has| |#2| (-592 (-523))) (|has| |#1| (-354)))) (((-861 (-370)) $) NIL (-12 (|has| |#2| (-592 (-861 (-370)))) (|has| |#1| (-354)))) (((-861 (-547)) $) NIL (-12 (|has| |#2| (-592 (-861 (-547)))) (|has| |#1| (-354))))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878)) (|has| |#1| (-354))))) (-2804 (($ $) 124)) (-3838 (((-832) $) 245) (($ (-547)) 23) (($ |#1|) 21 (|has| |#1| (-169))) (($ |#2|) 20) (($ (-1136)) NIL (-12 (|has| |#2| (-1007 (-1136))) (|has| |#1| (-354)))) (($ (-398 (-547))) 155 (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539)))) (-2450 ((|#1| $ (-547)) 74)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#2| (-878)) (|has| |#1| (-354))) (-12 (|has| |#2| (-143)) (|has| |#1| (-354))) (|has| |#1| (-143))))) (-2736 (((-745)) 142)) (-2591 ((|#1| $) 90)) (-3720 ((|#2| $) NIL (-12 (|has| |#2| (-532)) (|has| |#1| (-354))))) (-1726 (($ $) 204 (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) 180 (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1703 (($ $) 200 (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) 176 (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) 208 (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) 184 (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-547)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-547)))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) 210 (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) 186 (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) 206 (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) 182 (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) 202 (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) 178 (|has| |#1| (-38 (-398 (-547)))))) (-2255 (($ $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-3269 (($) 13 T CONST)) (-3281 (($) 17 T CONST)) (-1695 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-354))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#1| (-354))) (($ $ (-745)) NIL (-1530 (-12 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) NIL (-1530 (-12 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-1530 (-12 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-1136) (-745)) NIL (-1530 (-12 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-619 (-1136))) NIL (-1530 (-12 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-1136)) NIL (-1530 (-12 (|has| |#2| (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))))) (-2441 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2418 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2381 (((-112) $ $) 63)) (-2430 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2405 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) 149 (|has| |#1| (-354))) (($ |#2| |#2|) 150 (|has| |#1| (-354)))) (-2493 (($ $) 213) (($ $ $) 68)) (-2479 (($ $ $) 66)) (** (($ $ (-890)) NIL) (($ $ (-745)) 73) (($ $ (-547)) 146 (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 158 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-354))) (($ |#2| $) 147 (|has| |#1| (-354))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-1182 |#1| |#2|) (-1181 |#1| |#2|) (-1016) (-1210 |#1|)) (T -1182))
-NIL
-(-1181 |#1| |#2|)
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2092 (((-1211 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-298)) (|has| |#1| (-354))))) (-2267 (((-619 (-1045)) $) NIL)) (-3004 (((-1136) $) 10)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-3571 (($ $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-3915 (((-112) $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-3931 (($ $ (-547)) NIL) (($ $ (-547) (-547)) NIL)) (-2203 (((-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) NIL)) (-3614 (((-1211 |#1| |#2| |#3|) $) NIL)) (-4224 (((-3 (-1211 |#1| |#2| |#3|) "failed") $) NIL)) (-2334 (((-1211 |#1| |#2| |#3|) $) NIL)) (-1656 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-2555 (($ $) NIL (|has| |#1| (-354)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2127 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1632 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2500 (((-547) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-2819 (($ (-1117 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) NIL)) (-1678 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-1211 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1136) "failed") $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-1007 (-1136))) (|has| |#1| (-354)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354)))) (((-3 (-547) "failed") $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354))))) (-2652 (((-1211 |#1| |#2| |#3|) $) NIL) (((-1136) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-1007 (-1136))) (|has| |#1| (-354)))) (((-398 (-547)) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354)))) (((-547) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354))))) (-2708 (($ $) NIL) (($ (-547) $) NIL)) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-2063 (($ $) NIL)) (-1694 (((-663 (-1211 |#1| |#2| |#3|)) (-663 $)) NIL (|has| |#1| (-354))) (((-2 (|:| -1877 (-663 (-1211 |#1| |#2| |#3|))) (|:| |vec| (-1219 (-1211 |#1| |#2| |#3|)))) (-663 $) (-1219 $)) NIL (|has| |#1| (-354))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-615 (-547))) (|has| |#1| (-354)))) (((-663 (-547)) (-663 $)) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-615 (-547))) (|has| |#1| (-354))))) (-3855 (((-3 $ "failed") $) NIL)) (-4047 (((-398 (-921 |#1|)) $ (-547)) NIL (|has| |#1| (-539))) (((-398 (-921 |#1|)) $ (-547) (-547)) NIL (|has| |#1| (-539)))) (-3232 (($) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-532)) (|has| |#1| (-354))))) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-1791 (((-112) $) NIL (|has| |#1| (-354)))) (-4270 (((-112) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-1713 (((-112) $) NIL)) (-1419 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3521 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-855 (-547))) (|has| |#1| (-354)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-855 (-370))) (|has| |#1| (-354))))) (-3275 (((-547) $) NIL) (((-547) $ (-547)) NIL)) (-2261 (((-112) $) NIL)) (-4170 (($ $) NIL (|has| |#1| (-354)))) (-1386 (((-1211 |#1| |#2| |#3|) $) NIL (|has| |#1| (-354)))) (-3869 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3477 (((-3 $ "failed") $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-1112)) (|has| |#1| (-354))))) (-1860 (((-112) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-3852 (($ $ (-890)) NIL)) (-3201 (($ (-1 |#1| (-547)) $) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-547)) 17) (($ $ (-1045) (-547)) NIL) (($ $ (-619 (-1045)) (-619 (-547))) NIL)) (-2856 (($ $ $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-3567 (($ $ $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1211 |#1| |#2| |#3|) (-1211 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-354)))) (-3624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2343 (($ (-547) (-1211 |#1| |#2| |#3|)) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-354)))) (-3694 (($ $) 25 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) NIL (-1530 (-12 (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1158))))) (($ $ (-1215 |#2|)) 26 (|has| |#1| (-38 (-398 (-547)))))) (-3054 (($) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-1112)) (|has| |#1| (-354))) CONST)) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-354)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-3682 (($ $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-298)) (|has| |#1| (-354))))) (-1276 (((-1211 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-532)) (|has| |#1| (-354))))) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-2115 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-3708 (($ $ (-547)) NIL)) (-2032 (((-3 $ "failed") $ $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2712 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-547))))) (($ $ (-1136) (-1211 |#1| |#2| |#3|)) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-503 (-1136) (-1211 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-619 (-1136)) (-619 (-1211 |#1| |#2| |#3|))) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-503 (-1136) (-1211 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-619 (-285 (-1211 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-300 (-1211 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-285 (-1211 |#1| |#2| |#3|))) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-300 (-1211 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-1211 |#1| |#2| |#3|) (-1211 |#1| |#2| |#3|)) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-300 (-1211 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-619 (-1211 |#1| |#2| |#3|)) (-619 (-1211 |#1| |#2| |#3|))) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-300 (-1211 |#1| |#2| |#3|))) (|has| |#1| (-354))))) (-2471 (((-745) $) NIL (|has| |#1| (-354)))) (-3334 ((|#1| $ (-547)) NIL) (($ $ $) NIL (|has| (-547) (-1075))) (($ $ (-1211 |#1| |#2| |#3|)) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-277 (-1211 |#1| |#2| |#3|) (-1211 |#1| |#2| |#3|))) (|has| |#1| (-354))))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-3448 (($ $ (-1 (-1211 |#1| |#2| |#3|) (-1211 |#1| |#2| |#3|))) NIL (|has| |#1| (-354))) (($ $ (-1 (-1211 |#1| |#2| |#3|) (-1211 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-354))) (($ $ (-1215 |#2|)) 24) (($ $ (-745)) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) 23 (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-1136) (-745)) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-619 (-1136))) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-1136)) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))))) (-2995 (($ $) NIL (|has| |#1| (-354)))) (-1396 (((-1211 |#1| |#2| |#3|) $) NIL (|has| |#1| (-354)))) (-3705 (((-547) $) NIL)) (-1690 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2838 (((-523) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-592 (-523))) (|has| |#1| (-354)))) (((-370) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-991)) (|has| |#1| (-354)))) (((-217) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-991)) (|has| |#1| (-354)))) (((-861 (-370)) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-592 (-861 (-370)))) (|has| |#1| (-354)))) (((-861 (-547)) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-592 (-861 (-547)))) (|has| |#1| (-354))))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-1211 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-2804 (($ $) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1211 |#1| |#2| |#3|)) NIL) (($ (-1215 |#2|)) 22) (($ (-1136)) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-1007 (-1136))) (|has| |#1| (-354)))) (($ $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539)))) (($ (-398 (-547))) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354))) (|has| |#1| (-38 (-398 (-547))))))) (-2450 ((|#1| $ (-547)) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| (-1211 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-143)) (|has| |#1| (-354))) (|has| |#1| (-143))))) (-2736 (((-745)) NIL)) (-2591 ((|#1| $) 11)) (-3720 (((-1211 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-532)) (|has| |#1| (-354))))) (-1726 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-1703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-547)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-547)))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2255 (($ $) NIL (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-3269 (($) 19 T CONST)) (-3281 (($) 15 T CONST)) (-1695 (($ $ (-1 (-1211 |#1| |#2| |#3|) (-1211 |#1| |#2| |#3|))) NIL (|has| |#1| (-354))) (($ $ (-1 (-1211 |#1| |#2| |#3|) (-1211 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-354))) (($ $ (-745)) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-1136) (-745)) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-619 (-1136))) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136)))))) (($ $ (-1136)) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-869 (-1136))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1136))))))) (-2441 (((-112) $ $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2418 (((-112) $ $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2405 (((-112) $ $) NIL (-1530 (-12 (|has| (-1211 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1211 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354))) (($ (-1211 |#1| |#2| |#3|) (-1211 |#1| |#2| |#3|)) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 20)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1211 |#1| |#2| |#3|)) NIL (|has| |#1| (-354))) (($ (-1211 |#1| |#2| |#3|) $) NIL (|has| |#1| (-354))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-1183 |#1| |#2| |#3|) (-13 (-1181 |#1| (-1211 |#1| |#2| |#3|)) (-10 -8 (-15 -3838 ($ (-1215 |#2|))) (-15 -3448 ($ $ (-1215 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|))) (-1016) (-1136) |#1|) (T -1183))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3694 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))))
-(-13 (-1181 |#1| (-1211 |#1| |#2| |#3|)) (-10 -8 (-15 -3838 ($ (-1215 |#2|))) (-15 -3448 ($ $ (-1215 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|)))
-((-4077 (((-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| |#1|) (|:| -3038 (-547)))))) |#1| (-112)) 12)) (-1857 (((-409 |#1|) |#1|) 22)) (-2115 (((-409 |#1|) |#1|) 21)))
-(((-1184 |#1|) (-10 -7 (-15 -2115 ((-409 |#1|) |#1|)) (-15 -1857 ((-409 |#1|) |#1|)) (-15 -4077 ((-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| |#1|) (|:| -3038 (-547)))))) |#1| (-112)))) (-1195 (-547))) (T -1184))
-((-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| *3) (|:| -3038 (-547))))))) (-5 *1 (-1184 *3)) (-4 *3 (-1195 (-547))))) (-1857 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1184 *3)) (-4 *3 (-1195 (-547))))) (-2115 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1184 *3)) (-4 *3 (-1195 (-547))))))
-(-10 -7 (-15 -2115 ((-409 |#1|) |#1|)) (-15 -1857 ((-409 |#1|) |#1|)) (-15 -4077 ((-2 (|:| |contp| (-547)) (|:| -2534 (-619 (-2 (|:| |irr| |#1|) (|:| -3038 (-547)))))) |#1| (-112))))
-((-2790 (((-1117 |#2|) (-1 |#2| |#1|) (-1186 |#1|)) 23 (|has| |#1| (-819))) (((-1186 |#2|) (-1 |#2| |#1|) (-1186 |#1|)) 17)))
-(((-1185 |#1| |#2|) (-10 -7 (-15 -2790 ((-1186 |#2|) (-1 |#2| |#1|) (-1186 |#1|))) (IF (|has| |#1| (-819)) (-15 -2790 ((-1117 |#2|) (-1 |#2| |#1|) (-1186 |#1|))) |%noBranch|)) (-1173) (-1173)) (T -1185))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1186 *5)) (-4 *5 (-819)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-1117 *6)) (-5 *1 (-1185 *5 *6)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1186 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-1186 *6)) (-5 *1 (-1185 *5 *6)))))
-(-10 -7 (-15 -2790 ((-1186 |#2|) (-1 |#2| |#1|) (-1186 |#1|))) (IF (|has| |#1| (-819)) (-15 -2790 ((-1117 |#2|) (-1 |#2| |#1|) (-1186 |#1|))) |%noBranch|))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3123 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2790 (((-1117 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-819)))) (-2677 ((|#1| $) 14)) (-1258 ((|#1| $) 10)) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-1271 (((-547) $) 18)) (-4234 ((|#1| $) 17)) (-1281 ((|#1| $) 11)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2207 (((-112) $) 16)) (-1442 (((-1117 |#1|) $) 38 (|has| |#1| (-819))) (((-1117 |#1|) (-619 $)) 37 (|has| |#1| (-819)))) (-2838 (($ |#1|) 25)) (-3838 (($ (-1058 |#1|)) 24) (((-832) $) 34 (|has| |#1| (-1063)))) (-1851 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2116 (($ $ (-547)) 13)) (-2381 (((-112) $ $) 27 (|has| |#1| (-1063)))))
-(((-1186 |#1|) (-13 (-1057 |#1|) (-10 -8 (-15 -1851 ($ |#1|)) (-15 -3123 ($ |#1|)) (-15 -3838 ($ (-1058 |#1|))) (-15 -2207 ((-112) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-1117 |#1|))) |%noBranch|))) (-1173)) (T -1186))
-((-1851 (*1 *1 *2) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-1173)))) (-3123 (*1 *1 *2) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-1173)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-1173)) (-5 *1 (-1186 *3)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3)) (-4 *3 (-1173)))))
-(-13 (-1057 |#1|) (-10 -8 (-15 -1851 ($ |#1|)) (-15 -3123 ($ |#1|)) (-15 -3838 ($ (-1058 |#1|))) (-15 -2207 ((-112) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-1117 |#1|))) |%noBranch|)))
-((-2790 (((-1192 |#3| |#4|) (-1 |#4| |#2|) (-1192 |#1| |#2|)) 15)))
-(((-1187 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2790 ((-1192 |#3| |#4|) (-1 |#4| |#2|) (-1192 |#1| |#2|)))) (-1136) (-1016) (-1136) (-1016)) (T -1187))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1192 *5 *6)) (-14 *5 (-1136)) (-4 *6 (-1016)) (-4 *8 (-1016)) (-5 *2 (-1192 *7 *8)) (-5 *1 (-1187 *5 *6 *7 *8)) (-14 *7 (-1136)))))
-(-10 -7 (-15 -2790 ((-1192 |#3| |#4|) (-1 |#4| |#2|) (-1192 |#1| |#2|))))
-((-3076 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3598 ((|#1| |#3|) 13)) (-3996 ((|#3| |#3|) 19)))
-(((-1188 |#1| |#2| |#3|) (-10 -7 (-15 -3598 (|#1| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-539) (-961 |#1|) (-1195 |#2|)) (T -1188))
-((-3076 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1188 *4 *5 *3)) (-4 *3 (-1195 *5)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-539)) (-4 *4 (-961 *3)) (-5 *1 (-1188 *3 *4 *2)) (-4 *2 (-1195 *4)))) (-3598 (*1 *2 *3) (-12 (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-1188 *2 *4 *3)) (-4 *3 (-1195 *4)))))
-(-10 -7 (-15 -3598 (|#1| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1701 (((-3 |#2| "failed") |#2| (-745) |#1|) 29)) (-1815 (((-3 |#2| "failed") |#2| (-745)) 30)) (-3843 (((-3 (-2 (|:| -3830 |#2|) (|:| -3840 |#2|)) "failed") |#2|) 43)) (-2715 (((-619 |#2|) |#2|) 45)) (-4209 (((-3 |#2| "failed") |#2| |#2|) 40)))
-(((-1189 |#1| |#2|) (-10 -7 (-15 -1815 ((-3 |#2| "failed") |#2| (-745))) (-15 -1701 ((-3 |#2| "failed") |#2| (-745) |#1|)) (-15 -4209 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3843 ((-3 (-2 (|:| -3830 |#2|) (|:| -3840 |#2|)) "failed") |#2|)) (-15 -2715 ((-619 |#2|) |#2|))) (-13 (-539) (-145)) (-1195 |#1|)) (T -1189))
-((-2715 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-145))) (-5 *2 (-619 *3)) (-5 *1 (-1189 *4 *3)) (-4 *3 (-1195 *4)))) (-3843 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-539) (-145))) (-5 *2 (-2 (|:| -3830 *3) (|:| -3840 *3))) (-5 *1 (-1189 *4 *3)) (-4 *3 (-1195 *4)))) (-4209 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-1189 *3 *2)) (-4 *2 (-1195 *3)))) (-1701 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-539) (-145))) (-5 *1 (-1189 *4 *2)) (-4 *2 (-1195 *4)))) (-1815 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-539) (-145))) (-5 *1 (-1189 *4 *2)) (-4 *2 (-1195 *4)))))
-(-10 -7 (-15 -1815 ((-3 |#2| "failed") |#2| (-745))) (-15 -1701 ((-3 |#2| "failed") |#2| (-745) |#1|)) (-15 -4209 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3843 ((-3 (-2 (|:| -3830 |#2|) (|:| -3840 |#2|)) "failed") |#2|)) (-15 -2715 ((-619 |#2|) |#2|)))
-((-2348 (((-3 (-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) "failed") |#2| |#2|) 32)))
-(((-1190 |#1| |#2|) (-10 -7 (-15 -2348 ((-3 (-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) "failed") |#2| |#2|))) (-539) (-1195 |#1|)) (T -1190))
-((-2348 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-539)) (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-1190 *4 *3)) (-4 *3 (-1195 *4)))))
-(-10 -7 (-15 -2348 ((-3 (-2 (|:| -2235 |#2|) (|:| -2916 |#2|)) "failed") |#2| |#2|)))
-((-3217 ((|#2| |#2| |#2|) 19)) (-2807 ((|#2| |#2| |#2|) 30)) (-3214 ((|#2| |#2| |#2| (-745) (-745)) 36)))
-(((-1191 |#1| |#2|) (-10 -7 (-15 -3217 (|#2| |#2| |#2|)) (-15 -2807 (|#2| |#2| |#2|)) (-15 -3214 (|#2| |#2| |#2| (-745) (-745)))) (-1016) (-1195 |#1|)) (T -1191))
-((-3214 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-1191 *4 *2)) (-4 *2 (-1195 *4)))) (-2807 (*1 *2 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-1191 *3 *2)) (-4 *2 (-1195 *3)))) (-3217 (*1 *2 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-1191 *3 *2)) (-4 *2 (-1195 *3)))))
-(-10 -7 (-15 -3217 (|#2| |#2| |#2|)) (-15 -2807 (|#2| |#2| |#2|)) (-15 -3214 (|#2| |#2| |#2| (-745) (-745))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3079 (((-1219 |#2|) $ (-745)) NIL)) (-2267 (((-619 (-1045)) $) NIL)) (-2167 (($ (-1132 |#2|)) NIL)) (-2078 (((-1132 $) $ (-1045)) NIL) (((-1132 |#2|) $) NIL)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#2| (-539)))) (-3571 (($ $) NIL (|has| |#2| (-539)))) (-3915 (((-112) $) NIL (|has| |#2| (-539)))) (-2624 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3286 (($ $ $) NIL (|has| |#2| (-539)))) (-2277 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-2555 (($ $) NIL (|has| |#2| (-442)))) (-3299 (((-409 $) $) NIL (|has| |#2| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-1547 (((-112) $ $) NIL (|has| |#2| (-354)))) (-2160 (($ $ (-745)) NIL)) (-4279 (($ $ (-745)) NIL)) (-1460 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-442)))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-1045) "failed") $) NIL)) (-2652 ((|#2| $) NIL) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-1045) $) NIL)) (-1496 (($ $ $ (-1045)) NIL (|has| |#2| (-169))) ((|#2| $ $) NIL (|has| |#2| (-169)))) (-2089 (($ $ $) NIL (|has| |#2| (-354)))) (-2063 (($ $) NIL)) (-1694 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#2|)) (|:| |vec| (-1219 |#2|))) (-663 $) (-1219 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-2061 (($ $ $) NIL (|has| |#2| (-354)))) (-3315 (($ $ $) NIL)) (-2522 (($ $ $) NIL (|has| |#2| (-539)))) (-3445 (((-2 (|:| -1563 |#2|) (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#2| (-539)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#2| (-354)))) (-3350 (($ $) NIL (|has| |#2| (-442))) (($ $ (-1045)) NIL (|has| |#2| (-442)))) (-2049 (((-619 $) $) NIL)) (-1791 (((-112) $) NIL (|has| |#2| (-878)))) (-3210 (($ $ |#2| (-745) $) NIL)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1045) (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1045) (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-3275 (((-745) $ $) NIL (|has| |#2| (-539)))) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-3477 (((-3 $ "failed") $) NIL (|has| |#2| (-1112)))) (-2254 (($ (-1132 |#2|) (-1045)) NIL) (($ (-1132 $) (-1045)) NIL)) (-3852 (($ $ (-745)) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-354)))) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-2238 (($ |#2| (-745)) 17) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ (-1045)) NIL) (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL)) (-3095 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2856 (($ $ $) NIL (|has| |#2| (-821)))) (-3567 (($ $ $) NIL (|has| |#2| (-821)))) (-4182 (($ (-1 (-745) (-745)) $) NIL)) (-2790 (($ (-1 |#2| |#2|) $) NIL)) (-4095 (((-1132 |#2|) $) NIL)) (-1631 (((-3 (-1045) "failed") $) NIL)) (-2019 (($ $) NIL)) (-2037 ((|#2| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-1466 (((-1119) $) NIL)) (-2836 (((-2 (|:| -2235 $) (|:| -2916 $)) $ (-745)) NIL)) (-2505 (((-3 (-619 $) "failed") $) NIL)) (-3663 (((-3 (-619 $) "failed") $) NIL)) (-3949 (((-3 (-2 (|:| |var| (-1045)) (|:| -3322 (-745))) "failed") $) NIL)) (-3694 (($ $) NIL (|has| |#2| (-38 (-398 (-547)))))) (-3054 (($) NIL (|has| |#2| (-1112)) CONST)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) NIL)) (-2009 ((|#2| $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#2| (-442)))) (-3719 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-3902 (($ $ (-745) |#2| $) NIL)) (-2834 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) NIL (|has| |#2| (-878)))) (-2115 (((-409 $) $) NIL (|has| |#2| (-878)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#2| (-354)))) (-2032 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-354)))) (-2679 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#2|) NIL) (($ $ (-619 (-1045)) (-619 |#2|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-2471 (((-745) $) NIL (|has| |#2| (-354)))) (-3334 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-398 $) (-398 $) (-398 $)) NIL (|has| |#2| (-539))) ((|#2| (-398 $) |#2|) NIL (|has| |#2| (-354))) (((-398 $) $ (-398 $)) NIL (|has| |#2| (-539)))) (-1397 (((-3 $ "failed") $ (-745)) NIL)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#2| (-354)))) (-4056 (($ $ (-1045)) NIL (|has| |#2| (-169))) ((|#2| $) NIL (|has| |#2| (-169)))) (-3448 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1136)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3705 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2838 (((-861 (-370)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-1045) (-592 (-523))) (|has| |#2| (-592 (-523)))))) (-2392 ((|#2| $) NIL (|has| |#2| (-442))) (($ $ (-1045)) NIL (|has| |#2| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-4188 (((-3 $ "failed") $ $) NIL (|has| |#2| (-539))) (((-3 (-398 $) "failed") (-398 $) $) NIL (|has| |#2| (-539)))) (-3838 (((-832) $) 13) (($ (-547)) NIL) (($ |#2|) NIL) (($ (-1045)) NIL) (($ (-1215 |#1|)) 19) (($ (-398 (-547))) NIL (-1530 (|has| |#2| (-38 (-398 (-547)))) (|has| |#2| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#2| (-539)))) (-1277 (((-619 |#2|) $) NIL)) (-2450 ((|#2| $ (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-2220 (((-3 $ "failed") $) NIL (-1530 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3577 (((-112) $ $) NIL (|has| |#2| (-539)))) (-3269 (($) NIL T CONST)) (-3281 (($) 14 T CONST)) (-1695 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1136)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1136) (-745)) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) NIL (|has| |#2| (-869 (-1136)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2441 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2381 (((-112) $ $) NIL)) (-2430 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2506 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#2| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#2| (-38 (-398 (-547))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1192 |#1| |#2|) (-13 (-1195 |#2|) (-10 -8 (-15 -3838 ($ (-1215 |#1|))) (-15 -3902 ($ $ (-745) |#2| $)))) (-1136) (-1016)) (T -1192))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1215 *3)) (-14 *3 (-1136)) (-5 *1 (-1192 *3 *4)) (-4 *4 (-1016)))) (-3902 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1192 *4 *3)) (-14 *4 (-1136)) (-4 *3 (-1016)))))
-(-13 (-1195 |#2|) (-10 -8 (-15 -3838 ($ (-1215 |#1|))) (-15 -3902 ($ $ (-745) |#2| $))))
-((-2790 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1193 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2790 (|#4| (-1 |#3| |#1|) |#2|))) (-1016) (-1195 |#1|) (-1016) (-1195 |#3|)) (T -1193))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1195 *6)) (-5 *1 (-1193 *5 *4 *6 *2)) (-4 *4 (-1195 *5)))))
-(-10 -7 (-15 -2790 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3079 (((-1219 |#2|) $ (-745)) 114)) (-2267 (((-619 (-1045)) $) 15)) (-2167 (($ (-1132 |#2|)) 67)) (-2624 (((-745) $) NIL) (((-745) $ (-619 (-1045))) 18)) (-2277 (((-409 (-1132 $)) (-1132 $)) 185)) (-2555 (($ $) 175)) (-3299 (((-409 $) $) 173)) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 82)) (-2160 (($ $ (-745)) 71)) (-4279 (($ $ (-745)) 73)) (-1460 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2707 (((-3 |#2| "failed") $) 117) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 (-547) "failed") $) NIL) (((-3 (-1045) "failed") $) NIL)) (-2652 ((|#2| $) 115) (((-398 (-547)) $) NIL) (((-547) $) NIL) (((-1045) $) NIL)) (-2522 (($ $ $) 151)) (-3445 (((-2 (|:| -1563 |#2|) (|:| -2235 $) (|:| -2916 $)) $ $) 153)) (-3275 (((-745) $ $) 170)) (-3477 (((-3 $ "failed") $) 123)) (-2238 (($ |#2| (-745)) NIL) (($ $ (-1045) (-745)) 47) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-3095 (((-745) $) NIL) (((-745) $ (-1045)) 42) (((-619 (-745)) $ (-619 (-1045))) 43)) (-4095 (((-1132 |#2|) $) 59)) (-1631 (((-3 (-1045) "failed") $) 40)) (-2836 (((-2 (|:| -2235 $) (|:| -2916 $)) $ (-745)) 70)) (-3694 (($ $) 197)) (-3054 (($) 119)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 182)) (-2834 (((-409 (-1132 $)) (-1132 $)) 88)) (-4071 (((-409 (-1132 $)) (-1132 $)) 86)) (-2115 (((-409 $) $) 107)) (-2679 (($ $ (-619 (-285 $))) 39) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#2|) 31) (($ $ (-619 (-1045)) (-619 |#2|)) 28) (($ $ (-1045) $) 25) (($ $ (-619 (-1045)) (-619 $)) 23)) (-2471 (((-745) $) 188)) (-3334 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-398 $) (-398 $) (-398 $)) 147) ((|#2| (-398 $) |#2|) 187) (((-398 $) $ (-398 $)) 169)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 191)) (-3448 (($ $ (-1045)) 140) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) 138) (($ $ (-1136)) NIL) (($ $ (-619 (-1136))) NIL) (($ $ (-1136) (-745)) NIL) (($ $ (-619 (-1136)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3705 (((-745) $) NIL) (((-745) $ (-1045)) 16) (((-619 (-745)) $ (-619 (-1045))) 20)) (-2392 ((|#2| $) NIL) (($ $ (-1045)) 125)) (-4188 (((-3 $ "failed") $ $) 161) (((-3 (-398 $) "failed") (-398 $) $) 157)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) NIL) (($ (-1045)) 51) (($ (-398 (-547))) NIL) (($ $) NIL)))
-(((-1194 |#1| |#2|) (-10 -8 (-15 -3838 (|#1| |#1|)) (-15 -2429 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3299 ((-409 |#1|) |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3054 (|#1|)) (-15 -3477 ((-3 |#1| "failed") |#1|)) (-15 -3334 ((-398 |#1|) |#1| (-398 |#1|))) (-15 -2471 ((-745) |#1|)) (-15 -4030 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -3694 (|#1| |#1|)) (-15 -3334 (|#2| (-398 |#1|) |#2|)) (-15 -1460 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3445 ((-2 (|:| -1563 |#2|) (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -2522 (|#1| |#1| |#1|)) (-15 -4188 ((-3 (-398 |#1|) "failed") (-398 |#1|) |#1|)) (-15 -4188 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3275 ((-745) |#1| |#1|)) (-15 -3334 ((-398 |#1|) (-398 |#1|) (-398 |#1|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4279 (|#1| |#1| (-745))) (-15 -2160 (|#1| |#1| (-745))) (-15 -2836 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| (-745))) (-15 -2167 (|#1| (-1132 |#2|))) (-15 -4095 ((-1132 |#2|) |#1|)) (-15 -3079 ((-1219 |#2|) |#1| (-745))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3334 (|#1| |#1| |#1|)) (-15 -3334 (|#2| |#1| |#2|)) (-15 -2115 ((-409 |#1|) |#1|)) (-15 -2277 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -4071 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -2834 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -4139 ((-3 (-619 (-1132 |#1|)) "failed") (-619 (-1132 |#1|)) (-1132 |#1|))) (-15 -2392 (|#1| |#1| (-1045))) (-15 -2267 ((-619 (-1045)) |#1|)) (-15 -2624 ((-745) |#1| (-619 (-1045)))) (-15 -2624 ((-745) |#1|)) (-15 -2238 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -2238 (|#1| |#1| (-1045) (-745))) (-15 -3095 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -3095 ((-745) |#1| (-1045))) (-15 -1631 ((-3 (-1045) "failed") |#1|)) (-15 -3705 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -3705 ((-745) |#1| (-1045))) (-15 -2652 ((-1045) |#1|)) (-15 -2707 ((-3 (-1045) "failed") |#1|)) (-15 -3838 (|#1| (-1045))) (-15 -2679 (|#1| |#1| (-619 (-1045)) (-619 |#1|))) (-15 -2679 (|#1| |#1| (-1045) |#1|)) (-15 -2679 (|#1| |#1| (-619 (-1045)) (-619 |#2|))) (-15 -2679 (|#1| |#1| (-1045) |#2|)) (-15 -2679 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-285 |#1|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -3705 ((-745) |#1|)) (-15 -2238 (|#1| |#2| (-745))) (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -3095 ((-745) |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -3448 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -3448 (|#1| |#1| (-1045) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1045)))) (-15 -3448 (|#1| |#1| (-1045))) (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|))) (-1195 |#2|) (-1016)) (T -1194))
-NIL
-(-10 -8 (-15 -3838 (|#1| |#1|)) (-15 -2429 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3299 ((-409 |#1|) |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3054 (|#1|)) (-15 -3477 ((-3 |#1| "failed") |#1|)) (-15 -3334 ((-398 |#1|) |#1| (-398 |#1|))) (-15 -2471 ((-745) |#1|)) (-15 -4030 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -3694 (|#1| |#1|)) (-15 -3334 (|#2| (-398 |#1|) |#2|)) (-15 -1460 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3445 ((-2 (|:| -1563 |#2|) (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| |#1|)) (-15 -2522 (|#1| |#1| |#1|)) (-15 -4188 ((-3 (-398 |#1|) "failed") (-398 |#1|) |#1|)) (-15 -4188 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3275 ((-745) |#1| |#1|)) (-15 -3334 ((-398 |#1|) (-398 |#1|) (-398 |#1|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4279 (|#1| |#1| (-745))) (-15 -2160 (|#1| |#1| (-745))) (-15 -2836 ((-2 (|:| -2235 |#1|) (|:| -2916 |#1|)) |#1| (-745))) (-15 -2167 (|#1| (-1132 |#2|))) (-15 -4095 ((-1132 |#2|) |#1|)) (-15 -3079 ((-1219 |#2|) |#1| (-745))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3448 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)) (-619 (-745)))) (-15 -3448 (|#1| |#1| (-1136) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1136)))) (-15 -3448 (|#1| |#1| (-1136))) (-15 -3448 (|#1| |#1|)) (-15 -3448 (|#1| |#1| (-745))) (-15 -3334 (|#1| |#1| |#1|)) (-15 -3334 (|#2| |#1| |#2|)) (-15 -2115 ((-409 |#1|) |#1|)) (-15 -2277 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -4071 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -2834 ((-409 (-1132 |#1|)) (-1132 |#1|))) (-15 -4139 ((-3 (-619 (-1132 |#1|)) "failed") (-619 (-1132 |#1|)) (-1132 |#1|))) (-15 -2392 (|#1| |#1| (-1045))) (-15 -2267 ((-619 (-1045)) |#1|)) (-15 -2624 ((-745) |#1| (-619 (-1045)))) (-15 -2624 ((-745) |#1|)) (-15 -2238 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -2238 (|#1| |#1| (-1045) (-745))) (-15 -3095 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -3095 ((-745) |#1| (-1045))) (-15 -1631 ((-3 (-1045) "failed") |#1|)) (-15 -3705 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -3705 ((-745) |#1| (-1045))) (-15 -2652 ((-1045) |#1|)) (-15 -2707 ((-3 (-1045) "failed") |#1|)) (-15 -3838 (|#1| (-1045))) (-15 -2679 (|#1| |#1| (-619 (-1045)) (-619 |#1|))) (-15 -2679 (|#1| |#1| (-1045) |#1|)) (-15 -2679 (|#1| |#1| (-619 (-1045)) (-619 |#2|))) (-15 -2679 (|#1| |#1| (-1045) |#2|)) (-15 -2679 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2679 (|#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| |#1| (-285 |#1|))) (-15 -2679 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -3705 ((-745) |#1|)) (-15 -2238 (|#1| |#2| (-745))) (-15 -2652 ((-547) |#1|)) (-15 -2707 ((-3 (-547) "failed") |#1|)) (-15 -2652 ((-398 (-547)) |#1|)) (-15 -2707 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3838 (|#1| |#2|)) (-15 -2707 ((-3 |#2| "failed") |#1|)) (-15 -2652 (|#2| |#1|)) (-15 -3095 ((-745) |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -3448 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -3448 (|#1| |#1| (-1045) (-745))) (-15 -3448 (|#1| |#1| (-619 (-1045)))) (-15 -3448 (|#1| |#1| (-1045))) (-15 -3838 (|#1| (-547))) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3079 (((-1219 |#1|) $ (-745)) 236)) (-2267 (((-619 (-1045)) $) 108)) (-2167 (($ (-1132 |#1|)) 234)) (-2078 (((-1132 $) $ (-1045)) 123) (((-1132 |#1|) $) 122)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 85 (|has| |#1| (-539)))) (-3571 (($ $) 86 (|has| |#1| (-539)))) (-3915 (((-112) $) 88 (|has| |#1| (-539)))) (-2624 (((-745) $) 110) (((-745) $ (-619 (-1045))) 109)) (-3672 (((-3 $ "failed") $ $) 19)) (-3286 (($ $ $) 221 (|has| |#1| (-539)))) (-2277 (((-409 (-1132 $)) (-1132 $)) 98 (|has| |#1| (-878)))) (-2555 (($ $) 96 (|has| |#1| (-442)))) (-3299 (((-409 $) $) 95 (|has| |#1| (-442)))) (-4139 (((-3 (-619 (-1132 $)) "failed") (-619 (-1132 $)) (-1132 $)) 101 (|has| |#1| (-878)))) (-1547 (((-112) $ $) 206 (|has| |#1| (-354)))) (-2160 (($ $ (-745)) 229)) (-4279 (($ $ (-745)) 228)) (-1460 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-442)))) (-1948 (($) 17 T CONST)) (-2707 (((-3 |#1| "failed") $) 162) (((-3 (-398 (-547)) "failed") $) 160 (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) 158 (|has| |#1| (-1007 (-547)))) (((-3 (-1045) "failed") $) 134)) (-2652 ((|#1| $) 163) (((-398 (-547)) $) 159 (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) 157 (|has| |#1| (-1007 (-547)))) (((-1045) $) 133)) (-1496 (($ $ $ (-1045)) 106 (|has| |#1| (-169))) ((|#1| $ $) 224 (|has| |#1| (-169)))) (-2089 (($ $ $) 210 (|has| |#1| (-354)))) (-2063 (($ $) 152)) (-1694 (((-663 (-547)) (-663 $)) 132 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 (-547))) (|:| |vec| (-1219 (-547)))) (-663 $) (-1219 $)) 131 (|has| |#1| (-615 (-547)))) (((-2 (|:| -1877 (-663 |#1|)) (|:| |vec| (-1219 |#1|))) (-663 $) (-1219 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-3855 (((-3 $ "failed") $) 32)) (-2061 (($ $ $) 209 (|has| |#1| (-354)))) (-3315 (($ $ $) 227)) (-2522 (($ $ $) 218 (|has| |#1| (-539)))) (-3445 (((-2 (|:| -1563 |#1|) (|:| -2235 $) (|:| -2916 $)) $ $) 217 (|has| |#1| (-539)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 204 (|has| |#1| (-354)))) (-3350 (($ $) 174 (|has| |#1| (-442))) (($ $ (-1045)) 103 (|has| |#1| (-442)))) (-2049 (((-619 $) $) 107)) (-1791 (((-112) $) 94 (|has| |#1| (-878)))) (-3210 (($ $ |#1| (-745) $) 170)) (-3521 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 82 (-12 (|has| (-1045) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 81 (-12 (|has| (-1045) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3275 (((-745) $ $) 222 (|has| |#1| (-539)))) (-2261 (((-112) $) 30)) (-3376 (((-745) $) 167)) (-3477 (((-3 $ "failed") $) 202 (|has| |#1| (-1112)))) (-2254 (($ (-1132 |#1|) (-1045)) 115) (($ (-1132 $) (-1045)) 114)) (-3852 (($ $ (-745)) 233)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 213 (|has| |#1| (-354)))) (-4097 (((-619 $) $) 124)) (-1759 (((-112) $) 150)) (-2238 (($ |#1| (-745)) 151) (($ $ (-1045) (-745)) 117) (($ $ (-619 (-1045)) (-619 (-745))) 116)) (-1354 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $ (-1045)) 118) (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 231)) (-3095 (((-745) $) 168) (((-745) $ (-1045)) 120) (((-619 (-745)) $ (-619 (-1045))) 119)) (-2856 (($ $ $) 77 (|has| |#1| (-821)))) (-3567 (($ $ $) 76 (|has| |#1| (-821)))) (-4182 (($ (-1 (-745) (-745)) $) 169)) (-2790 (($ (-1 |#1| |#1|) $) 149)) (-4095 (((-1132 |#1|) $) 235)) (-1631 (((-3 (-1045) "failed") $) 121)) (-2019 (($ $) 147)) (-2037 ((|#1| $) 146)) (-3689 (($ (-619 $)) 92 (|has| |#1| (-442))) (($ $ $) 91 (|has| |#1| (-442)))) (-1466 (((-1119) $) 9)) (-2836 (((-2 (|:| -2235 $) (|:| -2916 $)) $ (-745)) 230)) (-2505 (((-3 (-619 $) "failed") $) 112)) (-3663 (((-3 (-619 $) "failed") $) 113)) (-3949 (((-3 (-2 (|:| |var| (-1045)) (|:| -3322 (-745))) "failed") $) 111)) (-3694 (($ $) 214 (|has| |#1| (-38 (-398 (-547)))))) (-3054 (($) 201 (|has| |#1| (-1112)) CONST)) (-3979 (((-1082) $) 10)) (-1996 (((-112) $) 164)) (-2009 ((|#1| $) 165)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 93 (|has| |#1| (-442)))) (-3719 (($ (-619 $)) 90 (|has| |#1| (-442))) (($ $ $) 89 (|has| |#1| (-442)))) (-2834 (((-409 (-1132 $)) (-1132 $)) 100 (|has| |#1| (-878)))) (-4071 (((-409 (-1132 $)) (-1132 $)) 99 (|has| |#1| (-878)))) (-2115 (((-409 $) $) 97 (|has| |#1| (-878)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 211 (|has| |#1| (-354)))) (-2032 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 205 (|has| |#1| (-354)))) (-2679 (($ $ (-619 (-285 $))) 143) (($ $ (-285 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ (-1045) |#1|) 139) (($ $ (-619 (-1045)) (-619 |#1|)) 138) (($ $ (-1045) $) 137) (($ $ (-619 (-1045)) (-619 $)) 136)) (-2471 (((-745) $) 207 (|has| |#1| (-354)))) (-3334 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-398 $) (-398 $) (-398 $)) 223 (|has| |#1| (-539))) ((|#1| (-398 $) |#1|) 215 (|has| |#1| (-354))) (((-398 $) $ (-398 $)) 203 (|has| |#1| (-539)))) (-1397 (((-3 $ "failed") $ (-745)) 232)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 208 (|has| |#1| (-354)))) (-4056 (($ $ (-1045)) 105 (|has| |#1| (-169))) ((|#1| $) 225 (|has| |#1| (-169)))) (-3448 (($ $ (-1045)) 40) (($ $ (-619 (-1045))) 39) (($ $ (-1045) (-745)) 38) (($ $ (-619 (-1045)) (-619 (-745))) 37) (($ $ (-745)) 251) (($ $) 249) (($ $ (-1136)) 248 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) 247 (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) 246 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) 245 (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-3705 (((-745) $) 148) (((-745) $ (-1045)) 128) (((-619 (-745)) $ (-619 (-1045))) 127)) (-2838 (((-861 (-370)) $) 80 (-12 (|has| (-1045) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) 79 (-12 (|has| (-1045) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) 78 (-12 (|has| (-1045) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-2392 ((|#1| $) 173 (|has| |#1| (-442))) (($ $ (-1045)) 104 (|has| |#1| (-442)))) (-1427 (((-3 (-1219 $) "failed") (-663 $)) 102 (-1814 (|has| $ (-143)) (|has| |#1| (-878))))) (-4188 (((-3 $ "failed") $ $) 220 (|has| |#1| (-539))) (((-3 (-398 $) "failed") (-398 $) $) 219 (|has| |#1| (-539)))) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 161) (($ (-1045)) 135) (($ (-398 (-547))) 70 (-1530 (|has| |#1| (-1007 (-398 (-547)))) (|has| |#1| (-38 (-398 (-547)))))) (($ $) 83 (|has| |#1| (-539)))) (-1277 (((-619 |#1|) $) 166)) (-2450 ((|#1| $ (-745)) 153) (($ $ (-1045) (-745)) 126) (($ $ (-619 (-1045)) (-619 (-745))) 125)) (-2220 (((-3 $ "failed") $) 71 (-1530 (-1814 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2736 (((-745)) 28)) (-1379 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-3577 (((-112) $ $) 87 (|has| |#1| (-539)))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-1045)) 36) (($ $ (-619 (-1045))) 35) (($ $ (-1045) (-745)) 34) (($ $ (-619 (-1045)) (-619 (-745))) 33) (($ $ (-745)) 252) (($ $) 250) (($ $ (-1136)) 244 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136))) 243 (|has| |#1| (-869 (-1136)))) (($ $ (-1136) (-745)) 242 (|has| |#1| (-869 (-1136)))) (($ $ (-619 (-1136)) (-619 (-745))) 241 (|has| |#1| (-869 (-1136)))) (($ $ (-1 |#1| |#1|) (-745)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2441 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 6)) (-2430 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2506 (($ $ |#1|) 154 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 156 (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) 155 (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
-(((-1195 |#1|) (-138) (-1016)) (T -1195))
-((-3079 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-1195 *4)) (-4 *4 (-1016)) (-5 *2 (-1219 *4)))) (-4095 (*1 *2 *1) (-12 (-4 *1 (-1195 *3)) (-4 *3 (-1016)) (-5 *2 (-1132 *3)))) (-2167 (*1 *1 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1016)) (-4 *1 (-1195 *3)))) (-3852 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1195 *3)) (-4 *3 (-1016)))) (-1397 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-745)) (-4 *1 (-1195 *3)) (-4 *3 (-1016)))) (-1354 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-1195 *3)))) (-2836 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-1195 *4)))) (-2160 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1195 *3)) (-4 *3 (-1016)))) (-4279 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1195 *3)) (-4 *3 (-1016)))) (-3315 (*1 *1 *1 *1) (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)))) (-3448 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1195 *3)) (-4 *3 (-1016)))) (-4056 (*1 *2 *1) (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-169)))) (-1496 (*1 *2 *1 *1) (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-169)))) (-3334 (*1 *2 *2 *2) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1195 *3)) (-4 *3 (-1016)) (-4 *3 (-539)))) (-3275 (*1 *2 *1 *1) (-12 (-4 *1 (-1195 *3)) (-4 *3 (-1016)) (-4 *3 (-539)) (-5 *2 (-745)))) (-3286 (*1 *1 *1 *1) (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-539)))) (-4188 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-539)))) (-4188 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-398 *1)) (-4 *1 (-1195 *3)) (-4 *3 (-1016)) (-4 *3 (-539)))) (-2522 (*1 *1 *1 *1) (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-539)))) (-3445 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -1563 *3) (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-1195 *3)))) (-1460 (*1 *2 *1 *1) (-12 (-4 *3 (-442)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1195 *3)))) (-3334 (*1 *2 *3 *2) (-12 (-5 *3 (-398 *1)) (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-3694 (*1 *1 *1) (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547)))))))
-(-13 (-918 |t#1| (-745) (-1045)) (-277 |t#1| |t#1|) (-277 $ $) (-225) (-223 |t#1|) (-10 -8 (-15 -3079 ((-1219 |t#1|) $ (-745))) (-15 -4095 ((-1132 |t#1|) $)) (-15 -2167 ($ (-1132 |t#1|))) (-15 -3852 ($ $ (-745))) (-15 -1397 ((-3 $ "failed") $ (-745))) (-15 -1354 ((-2 (|:| -2235 $) (|:| -2916 $)) $ $)) (-15 -2836 ((-2 (|:| -2235 $) (|:| -2916 $)) $ (-745))) (-15 -2160 ($ $ (-745))) (-15 -4279 ($ $ (-745))) (-15 -3315 ($ $ $)) (-15 -3448 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1112)) (-6 (-1112)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -4056 (|t#1| $)) (-15 -1496 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-6 (-277 (-398 $) (-398 $))) (-15 -3334 ((-398 $) (-398 $) (-398 $))) (-15 -3275 ((-745) $ $)) (-15 -3286 ($ $ $)) (-15 -4188 ((-3 $ "failed") $ $)) (-15 -4188 ((-3 (-398 $) "failed") (-398 $) $)) (-15 -2522 ($ $ $)) (-15 -3445 ((-2 (|:| -1563 |t#1|) (|:| -2235 $) (|:| -2916 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-442)) (-15 -1460 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-354)) (PROGN (-6 (-298)) (-6 -4325) (-15 -3334 (|t#1| (-398 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-398 (-547)))) (-15 -3694 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-745)) . T) ((-25) . T) ((-38 #1=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-592 (-523)) -12 (|has| (-1045) (-592 (-523))) (|has| |#1| (-592 (-523)))) ((-592 (-861 (-370))) -12 (|has| (-1045) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370))))) ((-592 (-861 (-547))) -12 (|has| (-1045) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547))))) ((-223 |#1|) . T) ((-225) . T) ((-277 (-398 $) (-398 $)) |has| |#1| (-539)) ((-277 |#1| |#1|) . T) ((-277 $ $) . T) ((-281) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354))) ((-298) |has| |#1| (-354)) ((-300 $) . T) ((-317 |#1| #0#) . T) ((-368 |#1|) . T) ((-402 |#1|) . T) ((-442) -1530 (|has| |#1| (-878)) (|has| |#1| (-442)) (|has| |#1| (-354))) ((-503 #2=(-1045) |#1|) . T) ((-503 #2# $) . T) ((-503 $ $) . T) ((-539) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354))) ((-622 #1#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #1#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 #2#) . T) ((-869 (-1136)) |has| |#1| (-869 (-1136))) ((-855 (-370)) -12 (|has| (-1045) (-855 (-370))) (|has| |#1| (-855 (-370)))) ((-855 (-547)) -12 (|has| (-1045) (-855 (-547))) (|has| |#1| (-855 (-547)))) ((-918 |#1| #0# #2#) . T) ((-878) |has| |#1| (-878)) ((-889) |has| |#1| (-354)) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 #2#) . T) ((-1007 |#1|) . T) ((-1022 #1#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1112) |has| |#1| (-1112)) ((-1177) |has| |#1| (-878)))
-((-2267 (((-619 (-1045)) $) 28)) (-2063 (($ $) 25)) (-2238 (($ |#2| |#3|) NIL) (($ $ (-1045) |#3|) 22) (($ $ (-619 (-1045)) (-619 |#3|)) 21)) (-2019 (($ $) 14)) (-2037 ((|#2| $) 12)) (-3705 ((|#3| $) 10)))
-(((-1196 |#1| |#2| |#3|) (-10 -8 (-15 -2267 ((-619 (-1045)) |#1|)) (-15 -2238 (|#1| |#1| (-619 (-1045)) (-619 |#3|))) (-15 -2238 (|#1| |#1| (-1045) |#3|)) (-15 -2063 (|#1| |#1|)) (-15 -2238 (|#1| |#2| |#3|)) (-15 -3705 (|#3| |#1|)) (-15 -2019 (|#1| |#1|)) (-15 -2037 (|#2| |#1|))) (-1197 |#2| |#3|) (-1016) (-766)) (T -1196))
-NIL
-(-10 -8 (-15 -2267 ((-619 (-1045)) |#1|)) (-15 -2238 (|#1| |#1| (-619 (-1045)) (-619 |#3|))) (-15 -2238 (|#1| |#1| (-1045) |#3|)) (-15 -2063 (|#1| |#1|)) (-15 -2238 (|#1| |#2| |#3|)) (-15 -3705 (|#3| |#1|)) (-15 -2019 (|#1| |#1|)) (-15 -2037 (|#2| |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2267 (((-619 (-1045)) $) 72)) (-3004 (((-1136) $) 101)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3571 (($ $) 50 (|has| |#1| (-539)))) (-3915 (((-112) $) 52 (|has| |#1| (-539)))) (-3931 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-2203 (((-1117 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-2063 (($ $) 58)) (-3855 (((-3 $ "failed") $) 32)) (-1713 (((-112) $) 71)) (-3275 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2261 (((-112) $) 30)) (-3852 (($ $ (-890)) 99)) (-1759 (((-112) $) 60)) (-2238 (($ |#1| |#2|) 59) (($ $ (-1045) |#2|) 74) (($ $ (-619 (-1045)) (-619 |#2|)) 73)) (-2790 (($ (-1 |#1| |#1|) $) 61)) (-2019 (($ $) 63)) (-2037 ((|#1| $) 64)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3708 (($ $ |#2|) 93)) (-2032 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-2679 (((-1117 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3334 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1075)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1136) (-745)) 86 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-619 (-1136))) 85 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1136)) 84 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3705 ((|#2| $) 62)) (-2804 (($ $) 70)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539))) (($ |#1|) 45 (|has| |#1| (-169)))) (-2450 ((|#1| $ |#2|) 57)) (-2220 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2736 (((-745)) 28)) (-2591 ((|#1| $) 100)) (-3577 (((-112) $ $) 51 (|has| |#1| (-539)))) (-2654 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1136) (-745)) 90 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-619 (-1136))) 89 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1136)) 88 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#1|) 56 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547)))))))
-(((-1197 |#1| |#2|) (-138) (-1016) (-766)) (T -1197))
-((-2203 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-1117 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3334 (*1 *2 *1 *3) (-12 (-4 *1 (-1197 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-1136)))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-3852 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-3275 (*1 *2 *1 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-3931 (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-3931 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-2654 (*1 *2 *1 *3) (-12 (-4 *1 (-1197 *2 *3)) (-4 *3 (-766)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3838 (*2 (-1136)))) (-4 *2 (-1016)))) (-3708 (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-2679 (*1 *2 *1 *3) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1117 *3)))))
-(-13 (-942 |t#1| |t#2| (-1045)) (-10 -8 (-15 -2203 ((-1117 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3334 (|t#1| $ |t#2|)) (-15 -3004 ((-1136) $)) (-15 -2591 (|t#1| $)) (-15 -3852 ($ $ (-890))) (-15 -3275 (|t#2| $)) (-15 -3275 (|t#2| $ |t#2|)) (-15 -3931 ($ $ |t#2|)) (-15 -3931 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3838 (|t#1| (-1136)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2654 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3708 ($ $ |t#2|)) (IF (|has| |t#2| (-1075)) (-6 (-277 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-225)) (IF (|has| |t#1| (-869 (-1136))) (-6 (-869 (-1136))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2679 ((-1117 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-225) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-277 $ $) |has| |#2| (-1075)) ((-281) |has| |#1| (-539)) ((-539) |has| |#1| (-539)) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) . T) ((-869 (-1136)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-869 (-1136)))) ((-942 |#1| |#2| (-1045)) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-2555 ((|#2| |#2|) 12)) (-3299 (((-409 |#2|) |#2|) 14)) (-3001 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-547))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-547)))) 30)))
-(((-1198 |#1| |#2|) (-10 -7 (-15 -3299 ((-409 |#2|) |#2|)) (-15 -2555 (|#2| |#2|)) (-15 -3001 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-547))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-547)))))) (-539) (-13 (-1195 |#1|) (-539) (-10 -8 (-15 -3719 ($ $ $))))) (T -1198))
-((-3001 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-547)))) (-4 *4 (-13 (-1195 *3) (-539) (-10 -8 (-15 -3719 ($ $ $))))) (-4 *3 (-539)) (-5 *1 (-1198 *3 *4)))) (-2555 (*1 *2 *2) (-12 (-4 *3 (-539)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-1195 *3) (-539) (-10 -8 (-15 -3719 ($ $ $))))))) (-3299 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-409 *3)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-1195 *4) (-539) (-10 -8 (-15 -3719 ($ $ $))))))))
-(-10 -7 (-15 -3299 ((-409 |#2|) |#2|)) (-15 -2555 (|#2| |#2|)) (-15 -3001 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-547))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-547))))))
-((-2790 (((-1204 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1204 |#1| |#3| |#5|)) 24)))
-(((-1199 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2790 ((-1204 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1204 |#1| |#3| |#5|)))) (-1016) (-1016) (-1136) (-1136) |#1| |#2|) (T -1199))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1204 *5 *7 *9)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-14 *7 (-1136)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1204 *6 *8 *10)) (-5 *1 (-1199 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1136)))))
-(-10 -7 (-15 -2790 ((-1204 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1204 |#1| |#3| |#5|))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2267 (((-619 (-1045)) $) 72)) (-3004 (((-1136) $) 101)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3571 (($ $) 50 (|has| |#1| (-539)))) (-3915 (((-112) $) 52 (|has| |#1| (-539)))) (-3931 (($ $ (-398 (-547))) 96) (($ $ (-398 (-547)) (-398 (-547))) 95)) (-2203 (((-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) 103)) (-1656 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) 116 (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 160 (|has| |#1| (-354)))) (-3299 (((-409 $) $) 161 (|has| |#1| (-354)))) (-2127 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-1547 (((-112) $ $) 151 (|has| |#1| (-354)))) (-1632 (($ $) 132 (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-2819 (($ (-745) (-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) 169)) (-1678 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) 118 (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) 17 T CONST)) (-2089 (($ $ $) 155 (|has| |#1| (-354)))) (-2063 (($ $) 58)) (-3855 (((-3 $ "failed") $) 32)) (-2061 (($ $ $) 154 (|has| |#1| (-354)))) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 149 (|has| |#1| (-354)))) (-1791 (((-112) $) 162 (|has| |#1| (-354)))) (-1713 (((-112) $) 71)) (-1419 (($) 143 (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-398 (-547)) $) 98) (((-398 (-547)) $ (-398 (-547))) 97)) (-2261 (((-112) $) 30)) (-3869 (($ $ (-547)) 114 (|has| |#1| (-38 (-398 (-547)))))) (-3852 (($ $ (-890)) 99) (($ $ (-398 (-547))) 168)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-354)))) (-1759 (((-112) $) 60)) (-2238 (($ |#1| (-398 (-547))) 59) (($ $ (-1045) (-398 (-547))) 74) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) 73)) (-2790 (($ (-1 |#1| |#1|) $) 61)) (-3624 (($ $) 140 (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) 63)) (-2037 ((|#1| $) 64)) (-3689 (($ (-619 $)) 147 (|has| |#1| (-354))) (($ $ $) 146 (|has| |#1| (-354)))) (-1466 (((-1119) $) 9)) (-1984 (($ $) 163 (|has| |#1| (-354)))) (-3694 (($ $) 167 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) 166 (-1530 (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-928)) (|has| |#1| (-1158)) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-38 (-398 (-547)))))))) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 148 (|has| |#1| (-354)))) (-3719 (($ (-619 $)) 145 (|has| |#1| (-354))) (($ $ $) 144 (|has| |#1| (-354)))) (-2115 (((-409 $) $) 159 (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 156 (|has| |#1| (-354)))) (-3708 (($ $ (-398 (-547))) 93)) (-2032 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-354)))) (-2712 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2471 (((-745) $) 152 (|has| |#1| (-354)))) (-3334 ((|#1| $ (-398 (-547))) 102) (($ $ $) 79 (|has| (-398 (-547)) (-1075)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 153 (|has| |#1| (-354)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1136) (-745)) 86 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-619 (-1136))) 85 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1136)) 84 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-3705 (((-398 (-547)) $) 62)) (-1690 (($ $) 130 (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) 129 (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) 120 (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) 128 (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) 70)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539)))) (-2450 ((|#1| $ (-398 (-547))) 57)) (-2220 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2736 (((-745)) 28)) (-2591 ((|#1| $) 100)) (-1726 (($ $) 139 (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) 127 (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) 51 (|has| |#1| (-539)))) (-1703 (($ $) 138 (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) 126 (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) 137 (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-398 (-547))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) 136 (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) 124 (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) 135 (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) 134 (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) 122 (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1136) (-745)) 90 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-619 (-1136))) 89 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1136)) 88 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#1|) 56 (|has| |#1| (-354))) (($ $ $) 165 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 164 (|has| |#1| (-354))) (($ $ $) 142 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 113 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547)))))))
-(((-1200 |#1|) (-138) (-1016)) (T -1200))
-((-2819 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| *4)))) (-4 *4 (-1016)) (-4 *1 (-1200 *4)))) (-3852 (*1 *1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-4 *1 (-1200 *3)) (-4 *3 (-1016)))) (-3694 (*1 *1 *1) (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547)))))) (-3694 (*1 *1 *1 *2) (-1530 (-12 (-5 *2 (-1136)) (-4 *1 (-1200 *3)) (-4 *3 (-1016)) (-12 (-4 *3 (-29 (-547))) (-4 *3 (-928)) (-4 *3 (-1158)) (-4 *3 (-38 (-398 (-547)))))) (-12 (-5 *2 (-1136)) (-4 *1 (-1200 *3)) (-4 *3 (-1016)) (-12 (|has| *3 (-15 -2267 ((-619 *2) *3))) (|has| *3 (-15 -3694 (*3 *3 *2))) (-4 *3 (-38 (-398 (-547)))))))))
-(-13 (-1197 |t#1| (-398 (-547))) (-10 -8 (-15 -2819 ($ (-745) (-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |t#1|))))) (-15 -3852 ($ $ (-398 (-547)))) (IF (|has| |t#1| (-38 (-398 (-547)))) (PROGN (-15 -3694 ($ $)) (IF (|has| |t#1| (-15 -3694 (|t#1| |t#1| (-1136)))) (IF (|has| |t#1| (-15 -2267 ((-619 (-1136)) |t#1|))) (-15 -3694 ($ $ (-1136))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1158)) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-29 (-547))) (-15 -3694 ($ $ (-1136))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-971)) (-6 (-1158))) |%noBranch|) (IF (|has| |t#1| (-354)) (-6 (-354)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-398 (-547))) . T) ((-25) . T) ((-38 #1=(-398 (-547))) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-35) |has| |#1| (-38 (-398 (-547)))) ((-94) |has| |#1| (-38 (-398 (-547)))) ((-101) . T) ((-111 #1# #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-225) |has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) ((-235) |has| |#1| (-354)) ((-275) |has| |#1| (-38 (-398 (-547)))) ((-277 $ $) |has| (-398 (-547)) (-1075)) ((-281) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-298) |has| |#1| (-354)) ((-354) |has| |#1| (-354)) ((-442) |has| |#1| (-354)) ((-482) |has| |#1| (-38 (-398 (-547)))) ((-539) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-622 #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-701) . T) ((-869 (-1136)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136)))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-354)) ((-971) |has| |#1| (-38 (-398 (-547)))) ((-1022 #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1158) |has| |#1| (-38 (-398 (-547)))) ((-1161) |has| |#1| (-38 (-398 (-547)))) ((-1177) |has| |#1| (-354)) ((-1197 |#1| #0#) . T))
-((-1499 (((-112) $) 12)) (-2707 (((-3 |#3| "failed") $) 17)) (-2652 ((|#3| $) 14)))
-(((-1201 |#1| |#2| |#3|) (-10 -8 (-15 -2652 (|#3| |#1|)) (-15 -2707 ((-3 |#3| "failed") |#1|)) (-15 -1499 ((-112) |#1|))) (-1202 |#2| |#3|) (-1016) (-1179 |#2|)) (T -1201))
-NIL
-(-10 -8 (-15 -2652 (|#3| |#1|)) (-15 -2707 ((-3 |#3| "failed") |#1|)) (-15 -1499 ((-112) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2267 (((-619 (-1045)) $) 72)) (-3004 (((-1136) $) 101)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3571 (($ $) 50 (|has| |#1| (-539)))) (-3915 (((-112) $) 52 (|has| |#1| (-539)))) (-3931 (($ $ (-398 (-547))) 96) (($ $ (-398 (-547)) (-398 (-547))) 95)) (-2203 (((-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) 103)) (-1656 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) 116 (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 160 (|has| |#1| (-354)))) (-3299 (((-409 $) $) 161 (|has| |#1| (-354)))) (-2127 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-1547 (((-112) $ $) 151 (|has| |#1| (-354)))) (-1632 (($ $) 132 (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-2819 (($ (-745) (-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) 169)) (-1678 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) 118 (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) 17 T CONST)) (-2707 (((-3 |#2| "failed") $) 180)) (-2652 ((|#2| $) 179)) (-2089 (($ $ $) 155 (|has| |#1| (-354)))) (-2063 (($ $) 58)) (-3855 (((-3 $ "failed") $) 32)) (-1937 (((-398 (-547)) $) 177)) (-2061 (($ $ $) 154 (|has| |#1| (-354)))) (-2356 (($ (-398 (-547)) |#2|) 178)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 149 (|has| |#1| (-354)))) (-1791 (((-112) $) 162 (|has| |#1| (-354)))) (-1713 (((-112) $) 71)) (-1419 (($) 143 (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-398 (-547)) $) 98) (((-398 (-547)) $ (-398 (-547))) 97)) (-2261 (((-112) $) 30)) (-3869 (($ $ (-547)) 114 (|has| |#1| (-38 (-398 (-547)))))) (-3852 (($ $ (-890)) 99) (($ $ (-398 (-547))) 168)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-354)))) (-1759 (((-112) $) 60)) (-2238 (($ |#1| (-398 (-547))) 59) (($ $ (-1045) (-398 (-547))) 74) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) 73)) (-2790 (($ (-1 |#1| |#1|) $) 61)) (-3624 (($ $) 140 (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) 63)) (-2037 ((|#1| $) 64)) (-3689 (($ (-619 $)) 147 (|has| |#1| (-354))) (($ $ $) 146 (|has| |#1| (-354)))) (-3090 ((|#2| $) 176)) (-4205 (((-3 |#2| "failed") $) 174)) (-2343 ((|#2| $) 175)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 163 (|has| |#1| (-354)))) (-3694 (($ $) 167 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) 166 (-1530 (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-928)) (|has| |#1| (-1158)) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-38 (-398 (-547)))))))) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 148 (|has| |#1| (-354)))) (-3719 (($ (-619 $)) 145 (|has| |#1| (-354))) (($ $ $) 144 (|has| |#1| (-354)))) (-2115 (((-409 $) $) 159 (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 156 (|has| |#1| (-354)))) (-3708 (($ $ (-398 (-547))) 93)) (-2032 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-354)))) (-2712 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2471 (((-745) $) 152 (|has| |#1| (-354)))) (-3334 ((|#1| $ (-398 (-547))) 102) (($ $ $) 79 (|has| (-398 (-547)) (-1075)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 153 (|has| |#1| (-354)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1136) (-745)) 86 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-619 (-1136))) 85 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1136)) 84 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-3705 (((-398 (-547)) $) 62)) (-1690 (($ $) 130 (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) 129 (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) 120 (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) 128 (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) 70)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 181) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539)))) (-2450 ((|#1| $ (-398 (-547))) 57)) (-2220 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2736 (((-745)) 28)) (-2591 ((|#1| $) 100)) (-1726 (($ $) 139 (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) 127 (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) 51 (|has| |#1| (-539)))) (-1703 (($ $) 138 (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) 126 (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) 137 (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-398 (-547))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) 136 (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) 124 (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) 135 (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) 134 (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) 122 (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1136) (-745)) 90 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-619 (-1136))) 89 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1136)) 88 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#1|) 56 (|has| |#1| (-354))) (($ $ $) 165 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 164 (|has| |#1| (-354))) (($ $ $) 142 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 113 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547)))))))
-(((-1202 |#1| |#2|) (-138) (-1016) (-1179 |t#1|)) (T -1202))
-((-3705 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1179 *3)) (-5 *2 (-398 (-547))))) (-3838 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-1202 *3 *2)) (-4 *2 (-1179 *3)))) (-2356 (*1 *1 *2 *3) (-12 (-5 *2 (-398 (-547))) (-4 *4 (-1016)) (-4 *1 (-1202 *4 *3)) (-4 *3 (-1179 *4)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1179 *3)) (-5 *2 (-398 (-547))))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1179 *3)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1179 *3)))) (-4205 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1179 *3)))))
-(-13 (-1200 |t#1|) (-1007 |t#2|) (-10 -8 (-15 -2356 ($ (-398 (-547)) |t#2|)) (-15 -1937 ((-398 (-547)) $)) (-15 -3090 (|t#2| $)) (-15 -3705 ((-398 (-547)) $)) (-15 -3838 ($ |t#2|)) (-15 -2343 (|t#2| $)) (-15 -4205 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-398 (-547))) . T) ((-25) . T) ((-38 #1=(-398 (-547))) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-35) |has| |#1| (-38 (-398 (-547)))) ((-94) |has| |#1| (-38 (-398 (-547)))) ((-101) . T) ((-111 #1# #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-225) |has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) ((-235) |has| |#1| (-354)) ((-275) |has| |#1| (-38 (-398 (-547)))) ((-277 $ $) |has| (-398 (-547)) (-1075)) ((-281) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-298) |has| |#1| (-354)) ((-354) |has| |#1| (-354)) ((-442) |has| |#1| (-354)) ((-482) |has| |#1| (-38 (-398 (-547)))) ((-539) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-622 #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-701) . T) ((-869 (-1136)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136)))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-354)) ((-971) |has| |#1| (-38 (-398 (-547)))) ((-1007 |#2|) . T) ((-1022 #1#) -1530 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1158) |has| |#1| (-38 (-398 (-547)))) ((-1161) |has| |#1| (-38 (-398 (-547)))) ((-1177) |has| |#1| (-354)) ((-1197 |#1| #0#) . T) ((-1200 |#1|) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2267 (((-619 (-1045)) $) NIL)) (-3004 (((-1136) $) 96)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-3931 (($ $ (-398 (-547))) 106) (($ $ (-398 (-547)) (-398 (-547))) 108)) (-2203 (((-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) 51)) (-1656 (($ $) 180 (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) 156 (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL (|has| |#1| (-354)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2127 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1632 (($ $) 176 (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) 152 (|has| |#1| (-38 (-398 (-547)))))) (-2819 (($ (-745) (-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) 61)) (-1678 (($ $) 184 (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) 160 (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#2| "failed") $) NIL)) (-2652 ((|#2| $) NIL)) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) 79)) (-1937 (((-398 (-547)) $) 13)) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-2356 (($ (-398 (-547)) |#2|) 11)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-1791 (((-112) $) NIL (|has| |#1| (-354)))) (-1713 (((-112) $) 68)) (-1419 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-398 (-547)) $) 103) (((-398 (-547)) $ (-398 (-547))) 104)) (-2261 (((-112) $) NIL)) (-3869 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3852 (($ $ (-890)) 120) (($ $ (-398 (-547))) 118)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-398 (-547))) 31) (($ $ (-1045) (-398 (-547))) NIL) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) NIL)) (-2790 (($ (-1 |#1| |#1|) $) 115)) (-3624 (($ $) 150 (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-3090 ((|#2| $) 12)) (-4205 (((-3 |#2| "failed") $) 41)) (-2343 ((|#2| $) 42)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) 93 (|has| |#1| (-354)))) (-3694 (($ $) 135 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) 140 (-1530 (-12 (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1158)))))) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-354)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-3708 (($ $ (-398 (-547))) 112)) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2712 (($ $) 148 (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2471 (((-745) $) NIL (|has| |#1| (-354)))) (-3334 ((|#1| $ (-398 (-547))) 100) (($ $ $) 86 (|has| (-398 (-547)) (-1075)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) 127 (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-3705 (((-398 (-547)) $) 16)) (-1690 (($ $) 186 (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) 162 (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) 182 (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) 158 (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) 178 (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) 154 (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) 110)) (-3838 (((-832) $) NIL) (($ (-547)) 35) (($ |#1|) 27 (|has| |#1| (-169))) (($ |#2|) 32) (($ (-398 (-547))) 128 (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539)))) (-2450 ((|#1| $ (-398 (-547))) 99)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) 117)) (-2591 ((|#1| $) 98)) (-1726 (($ $) 192 (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) 168 (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1703 (($ $) 188 (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) 164 (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) 196 (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) 172 (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-398 (-547))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) 198 (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) 174 (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) 194 (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) 170 (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) 190 (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) 166 (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) 21 T CONST)) (-3281 (($) 17 T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2381 (((-112) $ $) 66)) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) 92 (|has| |#1| (-354)))) (-2493 (($ $) 131) (($ $ $) 72)) (-2479 (($ $ $) 70)) (** (($ $ (-890)) NIL) (($ $ (-745)) 76) (($ $ (-547)) 145 (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 146 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-1203 |#1| |#2|) (-1202 |#1| |#2|) (-1016) (-1179 |#1|)) (T -1203))
-NIL
-(-1202 |#1| |#2|)
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2267 (((-619 (-1045)) $) NIL)) (-3004 (((-1136) $) 11)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) NIL (|has| |#1| (-539)))) (-3931 (($ $ (-398 (-547))) NIL) (($ $ (-398 (-547)) (-398 (-547))) NIL)) (-2203 (((-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) NIL)) (-1656 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2555 (($ $) NIL (|has| |#1| (-354)))) (-3299 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2127 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1547 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1632 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2819 (($ (-745) (-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) NIL)) (-1678 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-1183 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1211 |#1| |#2| |#3|) "failed") $) 22)) (-2652 (((-1183 |#1| |#2| |#3|) $) NIL) (((-1211 |#1| |#2| |#3|) $) NIL)) (-2089 (($ $ $) NIL (|has| |#1| (-354)))) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-1937 (((-398 (-547)) $) 57)) (-2061 (($ $ $) NIL (|has| |#1| (-354)))) (-2356 (($ (-398 (-547)) (-1183 |#1| |#2| |#3|)) NIL)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-1791 (((-112) $) NIL (|has| |#1| (-354)))) (-1713 (((-112) $) NIL)) (-1419 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-398 (-547)) $) NIL) (((-398 (-547)) $ (-398 (-547))) NIL)) (-2261 (((-112) $) NIL)) (-3869 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3852 (($ $ (-890)) NIL) (($ $ (-398 (-547))) NIL)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-398 (-547))) 30) (($ $ (-1045) (-398 (-547))) NIL) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-3689 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-3090 (((-1183 |#1| |#2| |#3|) $) 60)) (-4205 (((-3 (-1183 |#1| |#2| |#3|) "failed") $) NIL)) (-2343 (((-1183 |#1| |#2| |#3|) $) NIL)) (-1466 (((-1119) $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-354)))) (-3694 (($ $) 39 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) NIL (-1530 (-12 (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1158))))) (($ $ (-1215 |#2|)) 40 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) NIL (|has| |#1| (-354)))) (-3719 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2115 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3853 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) NIL (|has| |#1| (-354)))) (-3708 (($ $ (-398 (-547))) NIL)) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2512 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2712 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2471 (((-745) $) NIL (|has| |#1| (-354)))) (-3334 ((|#1| $ (-398 (-547))) NIL) (($ $ $) NIL (|has| (-398 (-547)) (-1075)))) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) NIL (|has| |#1| (-354)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $ (-1215 |#2|)) 38)) (-3705 (((-398 (-547)) $) NIL)) (-1690 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) NIL)) (-3838 (((-832) $) 89) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1183 |#1| |#2| |#3|)) 16) (($ (-1211 |#1| |#2| |#3|)) 17) (($ (-1215 |#2|)) 36) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539)))) (-2450 ((|#1| $ (-398 (-547))) NIL)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-2591 ((|#1| $) 12)) (-1726 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-398 (-547))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) 32 T CONST)) (-3281 (($) 26 T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 34)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-1204 |#1| |#2| |#3|) (-13 (-1202 |#1| (-1183 |#1| |#2| |#3|)) (-1007 (-1211 |#1| |#2| |#3|)) (-10 -8 (-15 -3838 ($ (-1215 |#2|))) (-15 -3448 ($ $ (-1215 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|))) (-1016) (-1136) |#1|) (T -1204))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1204 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1204 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3694 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1204 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))))
-(-13 (-1202 |#1| (-1183 |#1| |#2| |#3|)) (-1007 (-1211 |#1| |#2| |#3|)) (-10 -8 (-15 -3838 ($ (-1215 |#2|))) (-15 -3448 ($ $ (-1215 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 34)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL)) (-3571 (($ $) NIL)) (-3915 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 (-547) "failed") $) NIL (|has| (-1204 |#2| |#3| |#4|) (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-1204 |#2| |#3| |#4|) (-1007 (-398 (-547))))) (((-3 (-1204 |#2| |#3| |#4|) "failed") $) 20)) (-2652 (((-547) $) NIL (|has| (-1204 |#2| |#3| |#4|) (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| (-1204 |#2| |#3| |#4|) (-1007 (-398 (-547))))) (((-1204 |#2| |#3| |#4|) $) NIL)) (-2063 (($ $) 35)) (-3855 (((-3 $ "failed") $) 25)) (-3350 (($ $) NIL (|has| (-1204 |#2| |#3| |#4|) (-442)))) (-3210 (($ $ (-1204 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|) $) NIL)) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) 11)) (-1759 (((-112) $) NIL)) (-2238 (($ (-1204 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|)) 23)) (-3095 (((-310 |#2| |#3| |#4|) $) NIL)) (-4182 (($ (-1 (-310 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|)) $) NIL)) (-2790 (($ (-1 (-1204 |#2| |#3| |#4|) (-1204 |#2| |#3| |#4|)) $) NIL)) (-3671 (((-3 (-814 |#2|) "failed") $) 75)) (-2019 (($ $) NIL)) (-2037 (((-1204 |#2| |#3| |#4|) $) 18)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1996 (((-112) $) NIL)) (-2009 (((-1204 |#2| |#3| |#4|) $) NIL)) (-2032 (((-3 $ "failed") $ (-1204 |#2| |#3| |#4|)) NIL (|has| (-1204 |#2| |#3| |#4|) (-539))) (((-3 $ "failed") $ $) NIL)) (-4229 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1204 |#2| |#3| |#4|)) (|:| |%expon| (-310 |#2| |#3| |#4|)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#2|)))))) (|:| |%type| (-1119))) "failed") $) 58)) (-3705 (((-310 |#2| |#3| |#4|) $) 14)) (-2392 (((-1204 |#2| |#3| |#4|) $) NIL (|has| (-1204 |#2| |#3| |#4|) (-442)))) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ (-1204 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL (-1530 (|has| (-1204 |#2| |#3| |#4|) (-38 (-398 (-547)))) (|has| (-1204 |#2| |#3| |#4|) (-1007 (-398 (-547))))))) (-1277 (((-619 (-1204 |#2| |#3| |#4|)) $) NIL)) (-2450 (((-1204 |#2| |#3| |#4|) $ (-310 |#2| |#3| |#4|)) NIL)) (-2220 (((-3 $ "failed") $) NIL (|has| (-1204 |#2| |#3| |#4|) (-143)))) (-2736 (((-745)) NIL)) (-1379 (($ $ $ (-745)) NIL (|has| (-1204 |#2| |#3| |#4|) (-169)))) (-3577 (((-112) $ $) NIL)) (-3269 (($) 63 T CONST)) (-3281 (($) NIL T CONST)) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ (-1204 |#2| |#3| |#4|)) NIL (|has| (-1204 |#2| |#3| |#4|) (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-1204 |#2| |#3| |#4|)) NIL) (($ (-1204 |#2| |#3| |#4|) $) NIL) (($ (-398 (-547)) $) NIL (|has| (-1204 |#2| |#3| |#4|) (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| (-1204 |#2| |#3| |#4|) (-38 (-398 (-547)))))))
-(((-1205 |#1| |#2| |#3| |#4|) (-13 (-317 (-1204 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|)) (-539) (-10 -8 (-15 -3671 ((-3 (-814 |#2|) "failed") $)) (-15 -4229 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1204 |#2| |#3| |#4|)) (|:| |%expon| (-310 |#2| |#3| |#4|)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#2|)))))) (|:| |%type| (-1119))) "failed") $)))) (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442)) (-13 (-27) (-1158) (-421 |#1|)) (-1136) |#2|) (T -1205))
-((-3671 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442))) (-5 *2 (-814 *4)) (-5 *1 (-1205 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1158) (-421 *3))) (-14 *5 (-1136)) (-14 *6 *4))) (-4229 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1204 *4 *5 *6)) (|:| |%expon| (-310 *4 *5 *6)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-398 (-547))) (|:| |c| *4)))))) (|:| |%type| (-1119)))) (-5 *1 (-1205 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1158) (-421 *3))) (-14 *5 (-1136)) (-14 *6 *4))))
-(-13 (-317 (-1204 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|)) (-539) (-10 -8 (-15 -3671 ((-3 (-814 |#2|) "failed") $)) (-15 -4229 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1204 |#2| |#3| |#4|)) (|:| |%expon| (-310 |#2| |#3| |#4|)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#2|)))))) (|:| |%type| (-1119))) "failed") $))))
-((-4153 ((|#2| $) 29)) (-2832 ((|#2| $) 18)) (-1336 (($ $) 36)) (-2165 (($ $ (-547)) 64)) (-3899 (((-112) $ (-745)) 33)) (-1986 ((|#2| $ |#2|) 61)) (-3200 ((|#2| $ |#2|) 59)) (-2247 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3489 (($ $ (-619 $)) 60)) (-2823 ((|#2| $) 17)) (-3649 (($ $) NIL) (($ $ (-745)) 42)) (-3203 (((-619 $) $) 26)) (-2554 (((-112) $ $) 50)) (-2763 (((-112) $ (-745)) 32)) (-3806 (((-112) $ (-745)) 31)) (-1489 (((-112) $) 28)) (-3820 ((|#2| $) 24) (($ $ (-745)) 46)) (-3334 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1850 (((-112) $) 22)) (-2005 (($ $) 39)) (-2632 (($ $) 65)) (-1749 (((-745) $) 41)) (-2016 (($ $) 40)) (-1945 (($ $ $) 58) (($ |#2| $) NIL)) (-2514 (((-619 $) $) 27)) (-2381 (((-112) $ $) 48)) (-3767 (((-745) $) 35)))
-(((-1206 |#1| |#2|) (-10 -8 (-15 -2165 (|#1| |#1| (-547))) (-15 -2247 (|#2| |#1| "last" |#2|)) (-15 -3200 (|#2| |#1| |#2|)) (-15 -2247 (|#1| |#1| "rest" |#1|)) (-15 -2247 (|#2| |#1| "first" |#2|)) (-15 -2632 (|#1| |#1|)) (-15 -2005 (|#1| |#1|)) (-15 -1749 ((-745) |#1|)) (-15 -2016 (|#1| |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -2823 (|#2| |#1|)) (-15 -1336 (|#1| |#1|)) (-15 -3820 (|#1| |#1| (-745))) (-15 -3334 (|#2| |#1| "last")) (-15 -3820 (|#2| |#1|)) (-15 -3649 (|#1| |#1| (-745))) (-15 -3334 (|#1| |#1| "rest")) (-15 -3649 (|#1| |#1|)) (-15 -3334 (|#2| |#1| "first")) (-15 -1945 (|#1| |#2| |#1|)) (-15 -1945 (|#1| |#1| |#1|)) (-15 -1986 (|#2| |#1| |#2|)) (-15 -2247 (|#2| |#1| "value" |#2|)) (-15 -3489 (|#1| |#1| (-619 |#1|))) (-15 -2554 ((-112) |#1| |#1|)) (-15 -1850 ((-112) |#1|)) (-15 -3334 (|#2| |#1| "value")) (-15 -4153 (|#2| |#1|)) (-15 -1489 ((-112) |#1|)) (-15 -3203 ((-619 |#1|) |#1|)) (-15 -2514 ((-619 |#1|) |#1|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -3767 ((-745) |#1|)) (-15 -3899 ((-112) |#1| (-745))) (-15 -2763 ((-112) |#1| (-745))) (-15 -3806 ((-112) |#1| (-745)))) (-1207 |#2|) (-1173)) (T -1206))
-NIL
-(-10 -8 (-15 -2165 (|#1| |#1| (-547))) (-15 -2247 (|#2| |#1| "last" |#2|)) (-15 -3200 (|#2| |#1| |#2|)) (-15 -2247 (|#1| |#1| "rest" |#1|)) (-15 -2247 (|#2| |#1| "first" |#2|)) (-15 -2632 (|#1| |#1|)) (-15 -2005 (|#1| |#1|)) (-15 -1749 ((-745) |#1|)) (-15 -2016 (|#1| |#1|)) (-15 -2832 (|#2| |#1|)) (-15 -2823 (|#2| |#1|)) (-15 -1336 (|#1| |#1|)) (-15 -3820 (|#1| |#1| (-745))) (-15 -3334 (|#2| |#1| "last")) (-15 -3820 (|#2| |#1|)) (-15 -3649 (|#1| |#1| (-745))) (-15 -3334 (|#1| |#1| "rest")) (-15 -3649 (|#1| |#1|)) (-15 -3334 (|#2| |#1| "first")) (-15 -1945 (|#1| |#2| |#1|)) (-15 -1945 (|#1| |#1| |#1|)) (-15 -1986 (|#2| |#1| |#2|)) (-15 -2247 (|#2| |#1| "value" |#2|)) (-15 -3489 (|#1| |#1| (-619 |#1|))) (-15 -2554 ((-112) |#1| |#1|)) (-15 -1850 ((-112) |#1|)) (-15 -3334 (|#2| |#1| "value")) (-15 -4153 (|#2| |#1|)) (-15 -1489 ((-112) |#1|)) (-15 -3203 ((-619 |#1|) |#1|)) (-15 -2514 ((-619 |#1|) |#1|)) (-15 -2381 ((-112) |#1| |#1|)) (-15 -3767 ((-745) |#1|)) (-15 -3899 ((-112) |#1| (-745))) (-15 -2763 ((-112) |#1| (-745))) (-15 -3806 ((-112) |#1| (-745))))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4153 ((|#1| $) 48)) (-2832 ((|#1| $) 65)) (-1336 (($ $) 67)) (-2165 (($ $ (-547)) 52 (|has| $ (-6 -4330)))) (-3899 (((-112) $ (-745)) 8)) (-1986 ((|#1| $ |#1|) 39 (|has| $ (-6 -4330)))) (-2272 (($ $ $) 56 (|has| $ (-6 -4330)))) (-3200 ((|#1| $ |#1|) 54 (|has| $ (-6 -4330)))) (-4086 ((|#1| $ |#1|) 58 (|has| $ (-6 -4330)))) (-2247 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4330))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4330))) (($ $ "rest" $) 55 (|has| $ (-6 -4330))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4330)))) (-3489 (($ $ (-619 $)) 41 (|has| $ (-6 -4330)))) (-2823 ((|#1| $) 66)) (-1948 (($) 7 T CONST)) (-3649 (($ $) 73) (($ $ (-745)) 71)) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-3203 (((-619 $) $) 50)) (-2554 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-2763 (((-112) $ (-745)) 9)) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35)) (-3806 (((-112) $ (-745)) 10)) (-3583 (((-619 |#1|) $) 45)) (-1489 (((-112) $) 49)) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-3820 ((|#1| $) 70) (($ $ (-745)) 68)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3638 ((|#1| $) 76) (($ $ (-745)) 74)) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2857 (((-547) $ $) 44)) (-1850 (((-112) $) 46)) (-2005 (($ $) 62)) (-2632 (($ $) 59 (|has| $ (-6 -4330)))) (-1749 (((-745) $) 63)) (-2016 (($ $) 64)) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-2274 (($ $) 13)) (-3794 (($ $ $) 61 (|has| $ (-6 -4330))) (($ $ |#1|) 60 (|has| $ (-6 -4330)))) (-1945 (($ $ $) 78) (($ |#1| $) 77)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2514 (((-619 $) $) 51)) (-1421 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-1207 |#1|) (-138) (-1173)) (T -1207))
-((-1945 (*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-1945 (*1 *1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-3638 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1207 *3)) (-4 *3 (-1173)))) (-3649 (*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1207 *3)) (-4 *3 (-1173)))) (-3649 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1207 *3)) (-4 *3 (-1173)))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-3820 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1207 *3)) (-4 *3 (-1173)))) (-1336 (*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-2832 (*1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-2016 (*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-1207 *3)) (-4 *3 (-1173)) (-5 *2 (-745)))) (-2005 (*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-3794 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-3794 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-2632 (*1 *1 *1) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-4086 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-2247 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-2272 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-2247 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4330)) (-4 *1 (-1207 *3)) (-4 *3 (-1173)))) (-3200 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-2247 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))) (-2165 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (|has| *1 (-6 -4330)) (-4 *1 (-1207 *3)) (-4 *3 (-1173)))))
-(-13 (-979 |t#1|) (-10 -8 (-15 -1945 ($ $ $)) (-15 -1945 ($ |t#1| $)) (-15 -3638 (|t#1| $)) (-15 -3334 (|t#1| $ "first")) (-15 -3638 ($ $ (-745))) (-15 -3649 ($ $)) (-15 -3334 ($ $ "rest")) (-15 -3649 ($ $ (-745))) (-15 -3820 (|t#1| $)) (-15 -3334 (|t#1| $ "last")) (-15 -3820 ($ $ (-745))) (-15 -1336 ($ $)) (-15 -2823 (|t#1| $)) (-15 -2832 (|t#1| $)) (-15 -2016 ($ $)) (-15 -1749 ((-745) $)) (-15 -2005 ($ $)) (IF (|has| $ (-6 -4330)) (PROGN (-15 -3794 ($ $ $)) (-15 -3794 ($ $ |t#1|)) (-15 -2632 ($ $)) (-15 -4086 (|t#1| $ |t#1|)) (-15 -2247 (|t#1| $ "first" |t#1|)) (-15 -2272 ($ $ $)) (-15 -2247 ($ $ "rest" $)) (-15 -3200 (|t#1| $ |t#1|)) (-15 -2247 (|t#1| $ "last" |t#1|)) (-15 -2165 ($ $ (-547)))) |%noBranch|)))
-(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1173) . T))
-((-2790 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1208 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2790 (|#4| (-1 |#2| |#1|) |#3|))) (-1016) (-1016) (-1210 |#1|) (-1210 |#2|)) (T -1208))
-((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1210 *6)) (-5 *1 (-1208 *5 *6 *4 *2)) (-4 *4 (-1210 *5)))))
-(-10 -7 (-15 -2790 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1499 (((-112) $) 15)) (-1656 (($ $) 92)) (-1505 (($ $) 68)) (-1632 (($ $) 88)) (-1479 (($ $) 64)) (-1678 (($ $) 96)) (-1532 (($ $) 72)) (-3624 (($ $) 62)) (-2712 (($ $) 60)) (-1690 (($ $) 98)) (-1545 (($ $) 74)) (-1668 (($ $) 94)) (-1519 (($ $) 70)) (-1644 (($ $) 90)) (-1493 (($ $) 66)) (-3838 (((-832) $) 48) (($ (-547)) NIL) (($ (-398 (-547))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1726 (($ $) 104)) (-1579 (($ $) 80)) (-1703 (($ $) 100)) (-1557 (($ $) 76)) (-1751 (($ $) 108)) (-1606 (($ $) 84)) (-1927 (($ $) 110)) (-1620 (($ $) 86)) (-1738 (($ $) 106)) (-1593 (($ $) 82)) (-1714 (($ $) 102)) (-1569 (($ $) 78)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-398 (-547))) 58)))
-(((-1209 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-398 (-547)))) (-15 -1505 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1620 (|#1| |#1|)) (-15 -1606 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1579 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -1668 (|#1| |#1|)) (-15 -1690 (|#1| |#1|)) (-15 -1678 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -1714 (|#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -1927 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1726 (|#1| |#1|)) (-15 -3624 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3838 (|#1| |#2|)) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 (|#1| (-547))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -1499 ((-112) |#1|)) (-15 -3838 ((-832) |#1|))) (-1210 |#2|) (-1016)) (T -1209))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-398 (-547)))) (-15 -1505 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1620 (|#1| |#1|)) (-15 -1606 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1579 (|#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -1668 (|#1| |#1|)) (-15 -1690 (|#1| |#1|)) (-15 -1678 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -1714 (|#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -1927 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1726 (|#1| |#1|)) (-15 -3624 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3838 (|#1| |#2|)) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| (-398 (-547)))) (-15 -3838 (|#1| (-547))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -1499 ((-112) |#1|)) (-15 -3838 ((-832) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-2267 (((-619 (-1045)) $) 72)) (-3004 (((-1136) $) 101)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3571 (($ $) 50 (|has| |#1| (-539)))) (-3915 (((-112) $) 52 (|has| |#1| (-539)))) (-3931 (($ $ (-745)) 96) (($ $ (-745) (-745)) 95)) (-2203 (((-1117 (-2 (|:| |k| (-745)) (|:| |c| |#1|))) $) 103)) (-1656 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) 116 (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) 19)) (-2127 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-1632 (($ $) 132 (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-2819 (($ (-1117 (-2 (|:| |k| (-745)) (|:| |c| |#1|)))) 153) (($ (-1117 |#1|)) 151)) (-1678 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) 118 (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) 17 T CONST)) (-2063 (($ $) 58)) (-3855 (((-3 $ "failed") $) 32)) (-4208 (($ $) 150)) (-1407 (((-921 |#1|) $ (-745)) 148) (((-921 |#1|) $ (-745) (-745)) 147)) (-1713 (((-112) $) 71)) (-1419 (($) 143 (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-745) $) 98) (((-745) $ (-745)) 97)) (-2261 (((-112) $) 30)) (-3869 (($ $ (-547)) 114 (|has| |#1| (-38 (-398 (-547)))))) (-3852 (($ $ (-890)) 99)) (-3201 (($ (-1 |#1| (-547)) $) 149)) (-1759 (((-112) $) 60)) (-2238 (($ |#1| (-745)) 59) (($ $ (-1045) (-745)) 74) (($ $ (-619 (-1045)) (-619 (-745))) 73)) (-2790 (($ (-1 |#1| |#1|) $) 61)) (-3624 (($ $) 140 (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) 63)) (-2037 ((|#1| $) 64)) (-1466 (((-1119) $) 9)) (-3694 (($ $) 145 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) 144 (-1530 (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-928)) (|has| |#1| (-1158)) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-38 (-398 (-547)))))))) (-3979 (((-1082) $) 10)) (-3708 (($ $ (-745)) 93)) (-2032 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-2712 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-2679 (((-1117 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-745)))))) (-3334 ((|#1| $ (-745)) 102) (($ $ $) 79 (|has| (-745) (-1075)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1136) (-745)) 86 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-619 (-1136))) 85 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1136)) 84 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-3705 (((-745) $) 62)) (-1690 (($ $) 130 (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) 129 (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) 120 (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) 128 (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) 70)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1277 (((-1117 |#1|) $) 152)) (-2450 ((|#1| $ (-745)) 57)) (-2220 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2736 (((-745)) 28)) (-2591 ((|#1| $) 100)) (-1726 (($ $) 139 (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) 127 (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) 51 (|has| |#1| (-539)))) (-1703 (($ $) 138 (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) 126 (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) 137 (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-745)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-745)))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) 136 (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) 124 (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) 135 (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) 134 (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) 122 (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1136) (-745)) 90 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-619 (-1136))) 89 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1136)) 88 (-12 (|has| |#1| (-869 (-1136))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#1|) 56 (|has| |#1| (-354)))) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ |#1|) 146 (|has| |#1| (-354))) (($ $ $) 142 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 113 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547)))))))
-(((-1210 |#1|) (-138) (-1016)) (T -1210))
-((-2819 (*1 *1 *2) (-12 (-5 *2 (-1117 (-2 (|:| |k| (-745)) (|:| |c| *3)))) (-4 *3 (-1016)) (-4 *1 (-1210 *3)))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-1210 *3)) (-4 *3 (-1016)) (-5 *2 (-1117 *3)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-4 *1 (-1210 *3)))) (-4208 (*1 *1 *1) (-12 (-4 *1 (-1210 *2)) (-4 *2 (-1016)))) (-3201 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-547))) (-4 *1 (-1210 *3)) (-4 *3 (-1016)))) (-1407 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-1210 *4)) (-4 *4 (-1016)) (-5 *2 (-921 *4)))) (-1407 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-4 *1 (-1210 *4)) (-4 *4 (-1016)) (-5 *2 (-921 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1210 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-3694 (*1 *1 *1) (-12 (-4 *1 (-1210 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547)))))) (-3694 (*1 *1 *1 *2) (-1530 (-12 (-5 *2 (-1136)) (-4 *1 (-1210 *3)) (-4 *3 (-1016)) (-12 (-4 *3 (-29 (-547))) (-4 *3 (-928)) (-4 *3 (-1158)) (-4 *3 (-38 (-398 (-547)))))) (-12 (-5 *2 (-1136)) (-4 *1 (-1210 *3)) (-4 *3 (-1016)) (-12 (|has| *3 (-15 -2267 ((-619 *2) *3))) (|has| *3 (-15 -3694 (*3 *3 *2))) (-4 *3 (-38 (-398 (-547)))))))))
-(-13 (-1197 |t#1| (-745)) (-10 -8 (-15 -2819 ($ (-1117 (-2 (|:| |k| (-745)) (|:| |c| |t#1|))))) (-15 -1277 ((-1117 |t#1|) $)) (-15 -2819 ($ (-1117 |t#1|))) (-15 -4208 ($ $)) (-15 -3201 ($ (-1 |t#1| (-547)) $)) (-15 -1407 ((-921 |t#1|) $ (-745))) (-15 -1407 ((-921 |t#1|) $ (-745) (-745))) (IF (|has| |t#1| (-354)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-398 (-547)))) (PROGN (-15 -3694 ($ $)) (IF (|has| |t#1| (-15 -3694 (|t#1| |t#1| (-1136)))) (IF (|has| |t#1| (-15 -2267 ((-619 (-1136)) |t#1|))) (-15 -3694 ($ $ (-1136))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1158)) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-29 (-547))) (-15 -3694 ($ $ (-1136))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-971)) (-6 (-1158))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-745)) . T) ((-25) . T) ((-38 #1=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-35) |has| |#1| (-38 (-398 (-547)))) ((-94) |has| |#1| (-38 (-398 (-547)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-225) |has| |#1| (-15 * (|#1| (-745) |#1|))) ((-275) |has| |#1| (-38 (-398 (-547)))) ((-277 $ $) |has| (-745) (-1075)) ((-281) |has| |#1| (-539)) ((-482) |has| |#1| (-38 (-398 (-547)))) ((-539) |has| |#1| (-539)) ((-622 #1#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) . T) ((-869 (-1136)) -12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136)))) ((-942 |#1| #0# (-1045)) . T) ((-971) |has| |#1| (-38 (-398 (-547)))) ((-1022 #1#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1530 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1158) |has| |#1| (-38 (-398 (-547)))) ((-1161) |has| |#1| (-38 (-398 (-547)))) ((-1197 |#1| #0#) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-2267 (((-619 (-1045)) $) NIL)) (-3004 (((-1136) $) 87)) (-3964 (((-1192 |#2| |#1|) $ (-745)) 73)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3571 (($ $) NIL (|has| |#1| (-539)))) (-3915 (((-112) $) 137 (|has| |#1| (-539)))) (-3931 (($ $ (-745)) 122) (($ $ (-745) (-745)) 124)) (-2203 (((-1117 (-2 (|:| |k| (-745)) (|:| |c| |#1|))) $) 42)) (-1656 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3672 (((-3 $ "failed") $ $) NIL)) (-2127 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1632 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2819 (($ (-1117 (-2 (|:| |k| (-745)) (|:| |c| |#1|)))) 53) (($ (-1117 |#1|)) NIL)) (-1678 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1532 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1948 (($) NIL T CONST)) (-1260 (($ $) 128)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-4208 (($ $) 135)) (-1407 (((-921 |#1|) $ (-745)) 63) (((-921 |#1|) $ (-745) (-745)) 65)) (-1713 (((-112) $) NIL)) (-1419 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3275 (((-745) $) NIL) (((-745) $ (-745)) NIL)) (-2261 (((-112) $) NIL)) (-3541 (($ $) 112)) (-3869 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3679 (($ (-547) (-547) $) 130)) (-3852 (($ $ (-890)) 134)) (-3201 (($ (-1 |#1| (-547)) $) 106)) (-1759 (((-112) $) NIL)) (-2238 (($ |#1| (-745)) 15) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-2790 (($ (-1 |#1| |#1|) $) 94)) (-3624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2019 (($ $) NIL)) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3709 (($ $) 110)) (-3860 (($ $) 108)) (-2541 (($ (-547) (-547) $) 132)) (-3694 (($ $) 145 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1136)) 151 (-1530 (-12 (|has| |#1| (-15 -3694 (|#1| |#1| (-1136)))) (|has| |#1| (-15 -2267 ((-619 (-1136)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1158))))) (($ $ (-1215 |#2|)) 146 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-2595 (($ $ (-547) (-547)) 116)) (-3708 (($ $ (-745)) 118)) (-2032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2712 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3260 (($ $) 114)) (-2679 (((-1117 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-745)))))) (-3334 ((|#1| $ (-745)) 91) (($ $ $) 126 (|has| (-745) (-1075)))) (-3448 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) 103 (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $ (-1215 |#2|)) 99)) (-3705 (((-745) $) NIL)) (-1690 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1545 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1668 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1519 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1644 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1493 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2804 (($ $) 120)) (-3838 (((-832) $) NIL) (($ (-547)) 24) (($ (-398 (-547))) 143 (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539))) (($ |#1|) 23 (|has| |#1| (-169))) (($ (-1192 |#2| |#1|)) 80) (($ (-1215 |#2|)) 20)) (-1277 (((-1117 |#1|) $) NIL)) (-2450 ((|#1| $ (-745)) 90)) (-2220 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2736 (((-745)) NIL)) (-2591 ((|#1| $) 88)) (-1726 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1579 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3577 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1557 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1751 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1606 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2654 ((|#1| $ (-745)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-745)))) (|has| |#1| (-15 -3838 (|#1| (-1136))))))) (-1927 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1738 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1714 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1569 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3269 (($) 17 T CONST)) (-3281 (($) 13 T CONST)) (-1695 (($ $ (-619 (-1136)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-619 (-1136))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-1136)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1136))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2381 (((-112) $ $) NIL)) (-2506 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) 102)) (-2479 (($ $ $) 18)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ |#1|) 140 (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))))
-(((-1211 |#1| |#2| |#3|) (-13 (-1210 |#1|) (-10 -8 (-15 -3838 ($ (-1192 |#2| |#1|))) (-15 -3964 ((-1192 |#2| |#1|) $ (-745))) (-15 -3838 ($ (-1215 |#2|))) (-15 -3448 ($ $ (-1215 |#2|))) (-15 -3860 ($ $)) (-15 -3709 ($ $)) (-15 -3541 ($ $)) (-15 -3260 ($ $)) (-15 -2595 ($ $ (-547) (-547))) (-15 -1260 ($ $)) (-15 -3679 ($ (-547) (-547) $)) (-15 -2541 ($ (-547) (-547) $)) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|))) (-1016) (-1136) |#1|) (T -1211))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-1192 *4 *3)) (-4 *3 (-1016)) (-14 *4 (-1136)) (-14 *5 *3) (-5 *1 (-1211 *3 *4 *5)))) (-3964 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1192 *5 *4)) (-5 *1 (-1211 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-1136)) (-14 *6 *4))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1211 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1211 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3860 (*1 *1 *1) (-12 (-5 *1 (-1211 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1136)) (-14 *4 *2))) (-3709 (*1 *1 *1) (-12 (-5 *1 (-1211 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1136)) (-14 *4 *2))) (-3541 (*1 *1 *1) (-12 (-5 *1 (-1211 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1136)) (-14 *4 *2))) (-3260 (*1 *1 *1) (-12 (-5 *1 (-1211 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1136)) (-14 *4 *2))) (-2595 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1211 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1136)) (-14 *5 *3))) (-1260 (*1 *1 *1) (-12 (-5 *1 (-1211 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1136)) (-14 *4 *2))) (-3679 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1211 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1136)) (-14 *5 *3))) (-2541 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1211 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1136)) (-14 *5 *3))) (-3694 (*1 *1 *1 *2) (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1211 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))))
-(-13 (-1210 |#1|) (-10 -8 (-15 -3838 ($ (-1192 |#2| |#1|))) (-15 -3964 ((-1192 |#2| |#1|) $ (-745))) (-15 -3838 ($ (-1215 |#2|))) (-15 -3448 ($ $ (-1215 |#2|))) (-15 -3860 ($ $)) (-15 -3709 ($ $)) (-15 -3541 ($ $)) (-15 -3260 ($ $)) (-15 -2595 ($ $ (-547) (-547))) (-15 -1260 ($ $)) (-15 -3679 ($ (-547) (-547) $)) (-15 -2541 ($ (-547) (-547) $)) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3694 ($ $ (-1215 |#2|))) |%noBranch|)))
-((-2101 (((-1 (-1117 |#1|) (-619 (-1117 |#1|))) (-1 |#2| (-619 |#2|))) 24)) (-3895 (((-1 (-1117 |#1|) (-1117 |#1|) (-1117 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3917 (((-1 (-1117 |#1|) (-1117 |#1|)) (-1 |#2| |#2|)) 13)) (-2412 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3336 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3837 ((|#2| (-1 |#2| (-619 |#2|)) (-619 |#1|)) 54)) (-3745 (((-619 |#2|) (-619 |#1|) (-619 (-1 |#2| (-619 |#2|)))) 61)) (-3098 ((|#2| |#2| |#2|) 43)))
-(((-1212 |#1| |#2|) (-10 -7 (-15 -3917 ((-1 (-1117 |#1|) (-1117 |#1|)) (-1 |#2| |#2|))) (-15 -3895 ((-1 (-1117 |#1|) (-1117 |#1|) (-1117 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2101 ((-1 (-1117 |#1|) (-619 (-1117 |#1|))) (-1 |#2| (-619 |#2|)))) (-15 -3098 (|#2| |#2| |#2|)) (-15 -3336 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2412 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3837 (|#2| (-1 |#2| (-619 |#2|)) (-619 |#1|))) (-15 -3745 ((-619 |#2|) (-619 |#1|) (-619 (-1 |#2| (-619 |#2|)))))) (-38 (-398 (-547))) (-1210 |#1|)) (T -1212))
-((-3745 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 (-1 *6 (-619 *6)))) (-4 *5 (-38 (-398 (-547)))) (-4 *6 (-1210 *5)) (-5 *2 (-619 *6)) (-5 *1 (-1212 *5 *6)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-619 *2))) (-5 *4 (-619 *5)) (-4 *5 (-38 (-398 (-547)))) (-4 *2 (-1210 *5)) (-5 *1 (-1212 *5 *2)))) (-2412 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1210 *4)) (-5 *1 (-1212 *4 *2)) (-4 *4 (-38 (-398 (-547)))))) (-3336 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1210 *4)) (-5 *1 (-1212 *4 *2)) (-4 *4 (-38 (-398 (-547)))))) (-3098 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-1210 *3)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-619 *5))) (-4 *5 (-1210 *4)) (-4 *4 (-38 (-398 (-547)))) (-5 *2 (-1 (-1117 *4) (-619 (-1117 *4)))) (-5 *1 (-1212 *4 *5)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1210 *4)) (-4 *4 (-38 (-398 (-547)))) (-5 *2 (-1 (-1117 *4) (-1117 *4) (-1117 *4))) (-5 *1 (-1212 *4 *5)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1210 *4)) (-4 *4 (-38 (-398 (-547)))) (-5 *2 (-1 (-1117 *4) (-1117 *4))) (-5 *1 (-1212 *4 *5)))))
-(-10 -7 (-15 -3917 ((-1 (-1117 |#1|) (-1117 |#1|)) (-1 |#2| |#2|))) (-15 -3895 ((-1 (-1117 |#1|) (-1117 |#1|) (-1117 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2101 ((-1 (-1117 |#1|) (-619 (-1117 |#1|))) (-1 |#2| (-619 |#2|)))) (-15 -3098 (|#2| |#2| |#2|)) (-15 -3336 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2412 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3837 (|#2| (-1 |#2| (-619 |#2|)) (-619 |#1|))) (-15 -3745 ((-619 |#2|) (-619 |#1|) (-619 (-1 |#2| (-619 |#2|))))))
-((-1844 ((|#2| |#4| (-745)) 30)) (-2134 ((|#4| |#2|) 25)) (-3695 ((|#4| (-398 |#2|)) 52 (|has| |#1| (-539)))) (-1916 (((-1 |#4| (-619 |#4|)) |#3|) 46)))
-(((-1213 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2134 (|#4| |#2|)) (-15 -1844 (|#2| |#4| (-745))) (-15 -1916 ((-1 |#4| (-619 |#4|)) |#3|)) (IF (|has| |#1| (-539)) (-15 -3695 (|#4| (-398 |#2|))) |%noBranch|)) (-1016) (-1195 |#1|) (-630 |#2|) (-1210 |#1|)) (T -1213))
-((-3695 (*1 *2 *3) (-12 (-5 *3 (-398 *5)) (-4 *5 (-1195 *4)) (-4 *4 (-539)) (-4 *4 (-1016)) (-4 *2 (-1210 *4)) (-5 *1 (-1213 *4 *5 *6 *2)) (-4 *6 (-630 *5)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-1195 *4)) (-5 *2 (-1 *6 (-619 *6))) (-5 *1 (-1213 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-1210 *4)))) (-1844 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-4 *2 (-1195 *5)) (-5 *1 (-1213 *5 *2 *6 *3)) (-4 *6 (-630 *2)) (-4 *3 (-1210 *5)))) (-2134 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *3 (-1195 *4)) (-4 *2 (-1210 *4)) (-5 *1 (-1213 *4 *3 *5 *2)) (-4 *5 (-630 *3)))))
-(-10 -7 (-15 -2134 (|#4| |#2|)) (-15 -1844 (|#2| |#4| (-745))) (-15 -1916 ((-1 |#4| (-619 |#4|)) |#3|)) (IF (|has| |#1| (-539)) (-15 -3695 (|#4| (-398 |#2|))) |%noBranch|))
-NIL
-(((-1214) (-138)) (T -1214))
-NIL
-(-13 (-10 -7 (-6 -2618)))
-((-3826 (((-112) $ $) NIL)) (-3004 (((-1136)) 12)) (-1466 (((-1119) $) 17)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 11) (((-1136) $) 8)) (-2381 (((-112) $ $) 14)))
-(((-1215 |#1|) (-13 (-1063) (-591 (-1136)) (-10 -8 (-15 -3838 ((-1136) $)) (-15 -3004 ((-1136))))) (-1136)) (T -1215))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1215 *3)) (-14 *3 *2))) (-3004 (*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1215 *3)) (-14 *3 *2))))
-(-13 (-1063) (-591 (-1136)) (-10 -8 (-15 -3838 ((-1136) $)) (-15 -3004 ((-1136)))))
-((-3761 (($ (-745)) 18)) (-4042 (((-663 |#2|) $ $) 40)) (-2881 ((|#2| $) 48)) (-4202 ((|#2| $) 47)) (-4117 ((|#2| $ $) 35)) (-1838 (($ $ $) 44)) (-2493 (($ $) 22) (($ $ $) 28)) (-2479 (($ $ $) 15)) (* (($ (-547) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
-(((-1216 |#1| |#2|) (-10 -8 (-15 -2881 (|#2| |#1|)) (-15 -4202 (|#2| |#1|)) (-15 -1838 (|#1| |#1| |#1|)) (-15 -4042 ((-663 |#2|) |#1| |#1|)) (-15 -4117 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 -3761 (|#1| (-745))) (-15 -2479 (|#1| |#1| |#1|))) (-1217 |#2|) (-1173)) (T -1216))
-NIL
-(-10 -8 (-15 -2881 (|#2| |#1|)) (-15 -4202 (|#2| |#1|)) (-15 -1838 (|#1| |#1| |#1|)) (-15 -4042 ((-663 |#2|) |#1| |#1|)) (-15 -4117 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 -3761 (|#1| (-745))) (-15 -2479 (|#1| |#1| |#1|)))
-((-3826 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3761 (($ (-745)) 112 (|has| |#1| (-23)))) (-1652 (((-1224) $ (-547) (-547)) 40 (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2809 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4330))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4330))))) (-3185 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-3899 (((-112) $ (-745)) 8)) (-2247 ((|#1| $ (-547) |#1|) 52 (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) 58 (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4329)))) (-1948 (($) 7 T CONST)) (-3044 (($ $) 90 (|has| $ (-6 -4330)))) (-3057 (($ $) 100)) (-3668 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-3803 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) 53 (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) 51)) (-2876 (((-547) (-1 (-112) |#1|) $) 97) (((-547) |#1| $) 96 (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) 95 (|has| |#1| (-1063)))) (-2982 (((-619 |#1|) $) 30 (|has| $ (-6 -4329)))) (-4042 (((-663 |#1|) $ $) 105 (|has| |#1| (-1016)))) (-3735 (($ (-745) |#1|) 69)) (-2763 (((-112) $ (-745)) 9)) (-2434 (((-547) $) 43 (|has| (-547) (-821)))) (-2856 (($ $ $) 87 (|has| |#1| (-821)))) (-2777 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-1416 (((-547) $) 44 (|has| (-547) (-821)))) (-3567 (($ $ $) 86 (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2881 ((|#1| $) 102 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-3806 (((-112) $ (-745)) 10)) (-4202 ((|#1| $) 103 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-1466 (((-1119) $) 22 (|has| |#1| (-1063)))) (-2606 (($ |#1| $ (-547)) 60) (($ $ $ (-547)) 59)) (-2121 (((-619 (-547)) $) 46)) (-2018 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3638 ((|#1| $) 42 (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3632 (($ $ |#1|) 41 (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) 14)) (-2075 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) 48)) (-2884 (((-112) $) 11)) (-2245 (($) 12)) (-3334 ((|#1| $ (-547) |#1|) 50) ((|#1| $ (-547)) 49) (($ $ (-1186 (-547))) 63)) (-4117 ((|#1| $ $) 106 (|has| |#1| (-1016)))) (-2159 (($ $ (-547)) 62) (($ $ (-1186 (-547))) 61)) (-1838 (($ $ $) 104 (|has| |#1| (-1016)))) (-3992 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4329))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4329))))) (-4282 (($ $ $ (-547)) 91 (|has| $ (-6 -4330)))) (-2274 (($ $) 13)) (-2838 (((-523) $) 79 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 70)) (-1945 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3838 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2418 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2381 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2430 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2405 (((-112) $ $) 82 (|has| |#1| (-821)))) (-2493 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2479 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-547) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-701))) (($ $ |#1|) 107 (|has| |#1| (-701)))) (-3767 (((-745) $) 6 (|has| $ (-6 -4329)))))
-(((-1217 |#1|) (-138) (-1173)) (T -1217))
-((-2479 (*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-25)))) (-3761 (*1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1217 *3)) (-4 *3 (-23)) (-4 *3 (-1173)))) (-2493 (*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-21)))) (-2493 (*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-4 *1 (-1217 *3)) (-4 *3 (-1173)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-701)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-701)))) (-4117 (*1 *2 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-1016)))) (-4042 (*1 *2 *1 *1) (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1173)) (-4 *3 (-1016)) (-5 *2 (-663 *3)))) (-1838 (*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-1016)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-971)) (-4 *2 (-1016)))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-971)) (-4 *2 (-1016)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2479 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3761 ($ (-745))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2493 ($ $)) (-15 -2493 ($ $ $)) (-15 * ($ (-547) $))) |%noBranch|) (IF (|has| |t#1| (-701)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1016)) (PROGN (-15 -4117 (|t#1| $ $)) (-15 -4042 ((-663 |t#1|) $ $)) (-15 -1838 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-971)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -4202 (|t#1| $)) (-15 -2881 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-101) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-591 (-832)) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-364 |#1|) . T) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-19 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1530 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1173) . T))
-((-2816 (((-1219 |#2|) (-1 |#2| |#1| |#2|) (-1219 |#1|) |#2|) 13)) (-2552 ((|#2| (-1 |#2| |#1| |#2|) (-1219 |#1|) |#2|) 15)) (-2790 (((-3 (-1219 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1219 |#1|)) 28) (((-1219 |#2|) (-1 |#2| |#1|) (-1219 |#1|)) 18)))
-(((-1218 |#1| |#2|) (-10 -7 (-15 -2816 ((-1219 |#2|) (-1 |#2| |#1| |#2|) (-1219 |#1|) |#2|)) (-15 -2552 (|#2| (-1 |#2| |#1| |#2|) (-1219 |#1|) |#2|)) (-15 -2790 ((-1219 |#2|) (-1 |#2| |#1|) (-1219 |#1|))) (-15 -2790 ((-3 (-1219 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1219 |#1|)))) (-1173) (-1173)) (T -1218))
-((-2790 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1219 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-1219 *6)) (-5 *1 (-1218 *5 *6)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1219 *5)) (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-1219 *6)) (-5 *1 (-1218 *5 *6)))) (-2552 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1219 *5)) (-4 *5 (-1173)) (-4 *2 (-1173)) (-5 *1 (-1218 *5 *2)))) (-2816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1219 *6)) (-4 *6 (-1173)) (-4 *5 (-1173)) (-5 *2 (-1219 *5)) (-5 *1 (-1218 *6 *5)))))
-(-10 -7 (-15 -2816 ((-1219 |#2|) (-1 |#2| |#1| |#2|) (-1219 |#1|) |#2|)) (-15 -2552 (|#2| (-1 |#2| |#1| |#2|) (-1219 |#1|) |#2|)) (-15 -2790 ((-1219 |#2|) (-1 |#2| |#1|) (-1219 |#1|))) (-15 -2790 ((-3 (-1219 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1219 |#1|))))
-((-3826 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3761 (($ (-745)) NIL (|has| |#1| (-23)))) (-3437 (($ (-619 |#1|)) 9)) (-1652 (((-1224) $ (-547) (-547)) NIL (|has| $ (-6 -4330)))) (-2436 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2809 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4330))) (($ $) NIL (-12 (|has| $ (-6 -4330)) (|has| |#1| (-821))))) (-3185 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-3899 (((-112) $ (-745)) NIL)) (-2247 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330))) ((|#1| $ (-1186 (-547)) |#1|) NIL (|has| $ (-6 -4330)))) (-1482 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-1948 (($) NIL T CONST)) (-3044 (($ $) NIL (|has| $ (-6 -4330)))) (-3057 (($ $) NIL)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-3803 (($ |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2552 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4329))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-1872 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4330)))) (-1802 ((|#1| $ (-547)) NIL)) (-2876 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-2982 (((-619 |#1|) $) 15 (|has| $ (-6 -4329)))) (-4042 (((-663 |#1|) $ $) NIL (|has| |#1| (-1016)))) (-3735 (($ (-745) |#1|) NIL)) (-2763 (((-112) $ (-745)) NIL)) (-2434 (((-547) $) NIL (|has| (-547) (-821)))) (-2856 (($ $ $) NIL (|has| |#1| (-821)))) (-2777 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2284 (((-619 |#1|) $) NIL (|has| $ (-6 -4329)))) (-2132 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-1416 (((-547) $) NIL (|has| (-547) (-821)))) (-3567 (($ $ $) NIL (|has| |#1| (-821)))) (-1859 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2881 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-3806 (((-112) $ (-745)) NIL)) (-4202 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-1466 (((-1119) $) NIL (|has| |#1| (-1063)))) (-2606 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2121 (((-619 (-547)) $) NIL)) (-2018 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3638 ((|#1| $) NIL (|has| (-547) (-821)))) (-3650 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3632 (($ $ |#1|) NIL (|has| $ (-6 -4330)))) (-1598 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2075 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-2987 (((-619 |#1|) $) NIL)) (-2884 (((-112) $) NIL)) (-2245 (($) NIL)) (-3334 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-4117 ((|#1| $ $) NIL (|has| |#1| (-1016)))) (-2159 (($ $ (-547)) NIL) (($ $ (-1186 (-547))) NIL)) (-1838 (($ $ $) NIL (|has| |#1| (-1016)))) (-3992 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-1063))))) (-4282 (($ $ $ (-547)) NIL (|has| $ (-6 -4330)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) 19 (|has| |#1| (-592 (-523))))) (-3846 (($ (-619 |#1|)) 8)) (-1945 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3838 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2693 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4329)))) (-2441 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2418 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2381 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2430 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2405 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2493 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2479 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-547) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-701))) (($ $ |#1|) NIL (|has| |#1| (-701)))) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1219 |#1|) (-13 (-1217 |#1|) (-10 -8 (-15 -3437 ($ (-619 |#1|))))) (-1173)) (T -1219))
-((-3437 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-1219 *3)))))
-(-13 (-1217 |#1|) (-10 -8 (-15 -3437 ($ (-619 |#1|)))))
-((-3826 (((-112) $ $) NIL)) (-2518 (((-1119) $ (-1119)) 90) (((-1119) $ (-1119) (-1119)) 88) (((-1119) $ (-1119) (-619 (-1119))) 87)) (-1758 (($) 59)) (-2818 (((-1224) $ (-458) (-890)) 45)) (-2029 (((-1224) $ (-890) (-1119)) 73) (((-1224) $ (-890) (-843)) 74)) (-2776 (((-1224) $ (-890) (-370) (-370)) 48)) (-1589 (((-1224) $ (-1119)) 69)) (-2878 (((-1224) $ (-890) (-1119)) 78)) (-1715 (((-1224) $ (-890) (-370) (-370)) 49)) (-1785 (((-1224) $ (-890) (-890)) 46)) (-2491 (((-1224) $) 70)) (-2365 (((-1224) $ (-890) (-1119)) 77)) (-1691 (((-1224) $ (-458) (-890)) 31)) (-2371 (((-1224) $ (-890) (-1119)) 76)) (-1480 (((-619 (-254)) $) 23) (($ $ (-619 (-254))) 24)) (-2805 (((-1224) $ (-745) (-745)) 43)) (-3342 (($ $) 60) (($ (-458) (-619 (-254))) 61)) (-1466 (((-1119) $) NIL)) (-3331 (((-547) $) 38)) (-3979 (((-1082) $) NIL)) (-2720 (((-1219 (-3 (-458) "undefined")) $) 37)) (-1274 (((-1219 (-2 (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)) (|:| -2371 (-547)) (|:| -3850 (-547)) (|:| |spline| (-547)) (|:| -1373 (-547)) (|:| |axesColor| (-843)) (|:| -2029 (-547)) (|:| |unitsColor| (-843)) (|:| |showing| (-547)))) $) 36)) (-3442 (((-1224) $ (-890) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-843) (-547) (-843) (-547)) 68)) (-3319 (((-619 (-912 (-217))) $) NIL)) (-1487 (((-458) $ (-890)) 33)) (-1687 (((-1224) $ (-745) (-745) (-890) (-890)) 40)) (-3524 (((-1224) $ (-1119)) 79)) (-3850 (((-1224) $ (-890) (-1119)) 75)) (-3838 (((-832) $) 85)) (-2674 (((-1224) $) 80)) (-1373 (((-1224) $ (-890) (-1119)) 71) (((-1224) $ (-890) (-843)) 72)) (-2381 (((-112) $ $) NIL)))
-(((-1220) (-13 (-1063) (-10 -8 (-15 -3319 ((-619 (-912 (-217))) $)) (-15 -1758 ($)) (-15 -3342 ($ $)) (-15 -1480 ((-619 (-254)) $)) (-15 -1480 ($ $ (-619 (-254)))) (-15 -3342 ($ (-458) (-619 (-254)))) (-15 -3442 ((-1224) $ (-890) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-843) (-547) (-843) (-547))) (-15 -1274 ((-1219 (-2 (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)) (|:| -2371 (-547)) (|:| -3850 (-547)) (|:| |spline| (-547)) (|:| -1373 (-547)) (|:| |axesColor| (-843)) (|:| -2029 (-547)) (|:| |unitsColor| (-843)) (|:| |showing| (-547)))) $)) (-15 -2720 ((-1219 (-3 (-458) "undefined")) $)) (-15 -1589 ((-1224) $ (-1119))) (-15 -1691 ((-1224) $ (-458) (-890))) (-15 -1487 ((-458) $ (-890))) (-15 -1373 ((-1224) $ (-890) (-1119))) (-15 -1373 ((-1224) $ (-890) (-843))) (-15 -2029 ((-1224) $ (-890) (-1119))) (-15 -2029 ((-1224) $ (-890) (-843))) (-15 -2371 ((-1224) $ (-890) (-1119))) (-15 -2365 ((-1224) $ (-890) (-1119))) (-15 -3850 ((-1224) $ (-890) (-1119))) (-15 -3524 ((-1224) $ (-1119))) (-15 -2674 ((-1224) $)) (-15 -1687 ((-1224) $ (-745) (-745) (-890) (-890))) (-15 -1715 ((-1224) $ (-890) (-370) (-370))) (-15 -2776 ((-1224) $ (-890) (-370) (-370))) (-15 -2878 ((-1224) $ (-890) (-1119))) (-15 -2805 ((-1224) $ (-745) (-745))) (-15 -2818 ((-1224) $ (-458) (-890))) (-15 -1785 ((-1224) $ (-890) (-890))) (-15 -2518 ((-1119) $ (-1119))) (-15 -2518 ((-1119) $ (-1119) (-1119))) (-15 -2518 ((-1119) $ (-1119) (-619 (-1119)))) (-15 -2491 ((-1224) $)) (-15 -3331 ((-547) $)) (-15 -3838 ((-832) $))))) (T -1220))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1220)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-619 (-912 (-217)))) (-5 *1 (-1220)))) (-1758 (*1 *1) (-5 *1 (-1220))) (-3342 (*1 *1 *1) (-5 *1 (-1220))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1220)))) (-1480 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1220)))) (-3342 (*1 *1 *2 *3) (-12 (-5 *2 (-458)) (-5 *3 (-619 (-254))) (-5 *1 (-1220)))) (-3442 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-890)) (-5 *4 (-217)) (-5 *5 (-547)) (-5 *6 (-843)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-1219 (-2 (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)) (|:| -2371 (-547)) (|:| -3850 (-547)) (|:| |spline| (-547)) (|:| -1373 (-547)) (|:| |axesColor| (-843)) (|:| -2029 (-547)) (|:| |unitsColor| (-843)) (|:| |showing| (-547))))) (-5 *1 (-1220)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-1219 (-3 (-458) "undefined"))) (-5 *1 (-1220)))) (-1589 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-1691 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-458)) (-5 *4 (-890)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-1487 (*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-5 *2 (-458)) (-5 *1 (-1220)))) (-1373 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-1373 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-2029 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-2029 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-2371 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-2365 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-3524 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1220)))) (-1687 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-1715 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-890)) (-5 *4 (-370)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-2776 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-890)) (-5 *4 (-370)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-2878 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-2805 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-2818 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-458)) (-5 *4 (-890)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-1785 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224)) (-5 *1 (-1220)))) (-2518 (*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1220)))) (-2518 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1220)))) (-2518 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-619 (-1119))) (-5 *2 (-1119)) (-5 *1 (-1220)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1220)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1220)))))
-(-13 (-1063) (-10 -8 (-15 -3319 ((-619 (-912 (-217))) $)) (-15 -1758 ($)) (-15 -3342 ($ $)) (-15 -1480 ((-619 (-254)) $)) (-15 -1480 ($ $ (-619 (-254)))) (-15 -3342 ($ (-458) (-619 (-254)))) (-15 -3442 ((-1224) $ (-890) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-843) (-547) (-843) (-547))) (-15 -1274 ((-1219 (-2 (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)) (|:| -2371 (-547)) (|:| -3850 (-547)) (|:| |spline| (-547)) (|:| -1373 (-547)) (|:| |axesColor| (-843)) (|:| -2029 (-547)) (|:| |unitsColor| (-843)) (|:| |showing| (-547)))) $)) (-15 -2720 ((-1219 (-3 (-458) "undefined")) $)) (-15 -1589 ((-1224) $ (-1119))) (-15 -1691 ((-1224) $ (-458) (-890))) (-15 -1487 ((-458) $ (-890))) (-15 -1373 ((-1224) $ (-890) (-1119))) (-15 -1373 ((-1224) $ (-890) (-843))) (-15 -2029 ((-1224) $ (-890) (-1119))) (-15 -2029 ((-1224) $ (-890) (-843))) (-15 -2371 ((-1224) $ (-890) (-1119))) (-15 -2365 ((-1224) $ (-890) (-1119))) (-15 -3850 ((-1224) $ (-890) (-1119))) (-15 -3524 ((-1224) $ (-1119))) (-15 -2674 ((-1224) $)) (-15 -1687 ((-1224) $ (-745) (-745) (-890) (-890))) (-15 -1715 ((-1224) $ (-890) (-370) (-370))) (-15 -2776 ((-1224) $ (-890) (-370) (-370))) (-15 -2878 ((-1224) $ (-890) (-1119))) (-15 -2805 ((-1224) $ (-745) (-745))) (-15 -2818 ((-1224) $ (-458) (-890))) (-15 -1785 ((-1224) $ (-890) (-890))) (-15 -2518 ((-1119) $ (-1119))) (-15 -2518 ((-1119) $ (-1119) (-1119))) (-15 -2518 ((-1119) $ (-1119) (-619 (-1119)))) (-15 -2491 ((-1224) $)) (-15 -3331 ((-547) $)) (-15 -3838 ((-832) $))))
-((-3826 (((-112) $ $) NIL)) (-2474 (((-1224) $ (-370)) 140) (((-1224) $ (-370) (-370) (-370)) 141)) (-2518 (((-1119) $ (-1119)) 148) (((-1119) $ (-1119) (-1119)) 146) (((-1119) $ (-1119) (-619 (-1119))) 145)) (-3351 (($) 50)) (-1894 (((-1224) $ (-370) (-370) (-370) (-370) (-370)) 116) (((-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))) $) 114) (((-1224) $ (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) 115) (((-1224) $ (-547) (-547) (-370) (-370) (-370)) 117) (((-1224) $ (-370) (-370)) 118) (((-1224) $ (-370) (-370) (-370)) 125)) (-2403 (((-370)) 97) (((-370) (-370)) 98)) (-1494 (((-370)) 92) (((-370) (-370)) 94)) (-3693 (((-370)) 95) (((-370) (-370)) 96)) (-1670 (((-370)) 101) (((-370) (-370)) 102)) (-1858 (((-370)) 99) (((-370) (-370)) 100)) (-2776 (((-1224) $ (-370) (-370)) 142)) (-1589 (((-1224) $ (-1119)) 126)) (-4018 (((-1095 (-217)) $) 51) (($ $ (-1095 (-217))) 52)) (-1548 (((-1224) $ (-1119)) 154)) (-3763 (((-1224) $ (-1119)) 155)) (-2467 (((-1224) $ (-370) (-370)) 124) (((-1224) $ (-547) (-547)) 139)) (-1785 (((-1224) $ (-890) (-890)) 132)) (-2491 (((-1224) $) 112)) (-3352 (((-1224) $ (-1119)) 153)) (-3364 (((-1224) $ (-1119)) 109)) (-1480 (((-619 (-254)) $) 53) (($ $ (-619 (-254))) 54)) (-2805 (((-1224) $ (-745) (-745)) 131)) (-3821 (((-1224) $ (-745) (-912 (-217))) 160)) (-3040 (($ $) 56) (($ (-1095 (-217)) (-1119)) 57) (($ (-1095 (-217)) (-619 (-254))) 58)) (-4043 (((-1224) $ (-370) (-370) (-370)) 106)) (-1466 (((-1119) $) NIL)) (-3331 (((-547) $) 103)) (-1699 (((-1224) $ (-370)) 143)) (-1550 (((-1224) $ (-370)) 158)) (-3979 (((-1082) $) NIL)) (-2544 (((-1224) $ (-370)) 157)) (-3077 (((-1224) $ (-1119)) 111)) (-1687 (((-1224) $ (-745) (-745) (-890) (-890)) 130)) (-2821 (((-1224) $ (-1119)) 108)) (-3524 (((-1224) $ (-1119)) 110)) (-3107 (((-1224) $ (-154) (-154)) 129)) (-3838 (((-832) $) 137)) (-2674 (((-1224) $) 113)) (-3317 (((-1224) $ (-1119)) 156)) (-1373 (((-1224) $ (-1119)) 107)) (-2381 (((-112) $ $) NIL)))
-(((-1221) (-13 (-1063) (-10 -8 (-15 -1494 ((-370))) (-15 -1494 ((-370) (-370))) (-15 -3693 ((-370))) (-15 -3693 ((-370) (-370))) (-15 -2403 ((-370))) (-15 -2403 ((-370) (-370))) (-15 -1858 ((-370))) (-15 -1858 ((-370) (-370))) (-15 -1670 ((-370))) (-15 -1670 ((-370) (-370))) (-15 -3351 ($)) (-15 -3040 ($ $)) (-15 -3040 ($ (-1095 (-217)) (-1119))) (-15 -3040 ($ (-1095 (-217)) (-619 (-254)))) (-15 -4018 ((-1095 (-217)) $)) (-15 -4018 ($ $ (-1095 (-217)))) (-15 -3821 ((-1224) $ (-745) (-912 (-217)))) (-15 -1480 ((-619 (-254)) $)) (-15 -1480 ($ $ (-619 (-254)))) (-15 -2805 ((-1224) $ (-745) (-745))) (-15 -1785 ((-1224) $ (-890) (-890))) (-15 -1589 ((-1224) $ (-1119))) (-15 -1687 ((-1224) $ (-745) (-745) (-890) (-890))) (-15 -1894 ((-1224) $ (-370) (-370) (-370) (-370) (-370))) (-15 -1894 ((-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))) $)) (-15 -1894 ((-1224) $ (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))) (-15 -1894 ((-1224) $ (-547) (-547) (-370) (-370) (-370))) (-15 -1894 ((-1224) $ (-370) (-370))) (-15 -1894 ((-1224) $ (-370) (-370) (-370))) (-15 -3524 ((-1224) $ (-1119))) (-15 -1373 ((-1224) $ (-1119))) (-15 -2821 ((-1224) $ (-1119))) (-15 -3364 ((-1224) $ (-1119))) (-15 -3077 ((-1224) $ (-1119))) (-15 -2467 ((-1224) $ (-370) (-370))) (-15 -2467 ((-1224) $ (-547) (-547))) (-15 -2474 ((-1224) $ (-370))) (-15 -2474 ((-1224) $ (-370) (-370) (-370))) (-15 -2776 ((-1224) $ (-370) (-370))) (-15 -3352 ((-1224) $ (-1119))) (-15 -2544 ((-1224) $ (-370))) (-15 -1550 ((-1224) $ (-370))) (-15 -1548 ((-1224) $ (-1119))) (-15 -3763 ((-1224) $ (-1119))) (-15 -3317 ((-1224) $ (-1119))) (-15 -4043 ((-1224) $ (-370) (-370) (-370))) (-15 -1699 ((-1224) $ (-370))) (-15 -2491 ((-1224) $)) (-15 -3107 ((-1224) $ (-154) (-154))) (-15 -2518 ((-1119) $ (-1119))) (-15 -2518 ((-1119) $ (-1119) (-1119))) (-15 -2518 ((-1119) $ (-1119) (-619 (-1119)))) (-15 -2674 ((-1224) $)) (-15 -3331 ((-547) $))))) (T -1221))
-((-1494 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))) (-1494 (*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))) (-3693 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))) (-2403 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))) (-1858 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))) (-1858 (*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))) (-1670 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))) (-3351 (*1 *1) (-5 *1 (-1221))) (-3040 (*1 *1 *1) (-5 *1 (-1221))) (-3040 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 (-217))) (-5 *3 (-1119)) (-5 *1 (-1221)))) (-3040 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 (-217))) (-5 *3 (-619 (-254))) (-5 *1 (-1221)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-1221)))) (-4018 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-1221)))) (-3821 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-912 (-217))) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1221)))) (-1480 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1221)))) (-2805 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1785 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1589 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1687 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1894 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) (-5 *1 (-1221)))) (-1894 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1894 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-547)) (-5 *4 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1894 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1894 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-3524 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1373 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-2821 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-3364 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-3077 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-2467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-2467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-2474 (*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-2474 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-2776 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-3352 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1550 (*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1548 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-3763 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-3317 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-4043 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1221)))) (-3107 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-154)) (-5 *2 (-1224)) (-5 *1 (-1221)))) (-2518 (*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1221)))) (-2518 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1221)))) (-2518 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-619 (-1119))) (-5 *2 (-1119)) (-5 *1 (-1221)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1221)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1221)))))
-(-13 (-1063) (-10 -8 (-15 -1494 ((-370))) (-15 -1494 ((-370) (-370))) (-15 -3693 ((-370))) (-15 -3693 ((-370) (-370))) (-15 -2403 ((-370))) (-15 -2403 ((-370) (-370))) (-15 -1858 ((-370))) (-15 -1858 ((-370) (-370))) (-15 -1670 ((-370))) (-15 -1670 ((-370) (-370))) (-15 -3351 ($)) (-15 -3040 ($ $)) (-15 -3040 ($ (-1095 (-217)) (-1119))) (-15 -3040 ($ (-1095 (-217)) (-619 (-254)))) (-15 -4018 ((-1095 (-217)) $)) (-15 -4018 ($ $ (-1095 (-217)))) (-15 -3821 ((-1224) $ (-745) (-912 (-217)))) (-15 -1480 ((-619 (-254)) $)) (-15 -1480 ($ $ (-619 (-254)))) (-15 -2805 ((-1224) $ (-745) (-745))) (-15 -1785 ((-1224) $ (-890) (-890))) (-15 -1589 ((-1224) $ (-1119))) (-15 -1687 ((-1224) $ (-745) (-745) (-890) (-890))) (-15 -1894 ((-1224) $ (-370) (-370) (-370) (-370) (-370))) (-15 -1894 ((-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))) $)) (-15 -1894 ((-1224) $ (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))) (-15 -1894 ((-1224) $ (-547) (-547) (-370) (-370) (-370))) (-15 -1894 ((-1224) $ (-370) (-370))) (-15 -1894 ((-1224) $ (-370) (-370) (-370))) (-15 -3524 ((-1224) $ (-1119))) (-15 -1373 ((-1224) $ (-1119))) (-15 -2821 ((-1224) $ (-1119))) (-15 -3364 ((-1224) $ (-1119))) (-15 -3077 ((-1224) $ (-1119))) (-15 -2467 ((-1224) $ (-370) (-370))) (-15 -2467 ((-1224) $ (-547) (-547))) (-15 -2474 ((-1224) $ (-370))) (-15 -2474 ((-1224) $ (-370) (-370) (-370))) (-15 -2776 ((-1224) $ (-370) (-370))) (-15 -3352 ((-1224) $ (-1119))) (-15 -2544 ((-1224) $ (-370))) (-15 -1550 ((-1224) $ (-370))) (-15 -1548 ((-1224) $ (-1119))) (-15 -3763 ((-1224) $ (-1119))) (-15 -3317 ((-1224) $ (-1119))) (-15 -4043 ((-1224) $ (-370) (-370) (-370))) (-15 -1699 ((-1224) $ (-370))) (-15 -2491 ((-1224) $)) (-15 -3107 ((-1224) $ (-154) (-154))) (-15 -2518 ((-1119) $ (-1119))) (-15 -2518 ((-1119) $ (-1119) (-1119))) (-15 -2518 ((-1119) $ (-1119) (-619 (-1119)))) (-15 -2674 ((-1224) $)) (-15 -3331 ((-547) $))))
-((-1774 (((-619 (-1119)) (-619 (-1119))) 94) (((-619 (-1119))) 90)) (-2828 (((-619 (-1119))) 88)) (-2001 (((-619 (-890)) (-619 (-890))) 63) (((-619 (-890))) 60)) (-3414 (((-619 (-745)) (-619 (-745))) 57) (((-619 (-745))) 53)) (-2646 (((-1224)) 65)) (-3172 (((-890) (-890)) 81) (((-890)) 80)) (-1638 (((-890) (-890)) 79) (((-890)) 78)) (-3822 (((-843) (-843)) 75) (((-843)) 74)) (-3925 (((-217)) 85) (((-217) (-370)) 87)) (-3927 (((-890)) 82) (((-890) (-890)) 83)) (-2985 (((-890) (-890)) 77) (((-890)) 76)) (-1912 (((-843) (-843)) 69) (((-843)) 67)) (-3779 (((-843) (-843)) 71) (((-843)) 70)) (-1398 (((-843) (-843)) 73) (((-843)) 72)))
-(((-1222) (-10 -7 (-15 -1912 ((-843))) (-15 -1912 ((-843) (-843))) (-15 -3779 ((-843))) (-15 -3779 ((-843) (-843))) (-15 -1398 ((-843))) (-15 -1398 ((-843) (-843))) (-15 -3822 ((-843))) (-15 -3822 ((-843) (-843))) (-15 -2985 ((-890))) (-15 -2985 ((-890) (-890))) (-15 -3414 ((-619 (-745)))) (-15 -3414 ((-619 (-745)) (-619 (-745)))) (-15 -2001 ((-619 (-890)))) (-15 -2001 ((-619 (-890)) (-619 (-890)))) (-15 -2646 ((-1224))) (-15 -1774 ((-619 (-1119)))) (-15 -1774 ((-619 (-1119)) (-619 (-1119)))) (-15 -2828 ((-619 (-1119)))) (-15 -1638 ((-890))) (-15 -3172 ((-890))) (-15 -1638 ((-890) (-890))) (-15 -3172 ((-890) (-890))) (-15 -3927 ((-890) (-890))) (-15 -3927 ((-890))) (-15 -3925 ((-217) (-370))) (-15 -3925 ((-217))))) (T -1222))
-((-3925 (*1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-1222)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-217)) (-5 *1 (-1222)))) (-3927 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222)))) (-3172 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222)))) (-1638 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222)))) (-3172 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222)))) (-1638 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222)))) (-2828 (*1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1222)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1222)))) (-1774 (*1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1222)))) (-2646 (*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1222)))) (-2001 (*1 *2 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1222)))) (-2001 (*1 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1222)))) (-3414 (*1 *2 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1222)))) (-3414 (*1 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1222)))) (-2985 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222)))) (-2985 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222)))) (-3822 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222)))) (-1398 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222)))) (-3779 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222)))) (-3779 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222)))) (-1912 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222)))) (-1912 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222)))))
-(-10 -7 (-15 -1912 ((-843))) (-15 -1912 ((-843) (-843))) (-15 -3779 ((-843))) (-15 -3779 ((-843) (-843))) (-15 -1398 ((-843))) (-15 -1398 ((-843) (-843))) (-15 -3822 ((-843))) (-15 -3822 ((-843) (-843))) (-15 -2985 ((-890))) (-15 -2985 ((-890) (-890))) (-15 -3414 ((-619 (-745)))) (-15 -3414 ((-619 (-745)) (-619 (-745)))) (-15 -2001 ((-619 (-890)))) (-15 -2001 ((-619 (-890)) (-619 (-890)))) (-15 -2646 ((-1224))) (-15 -1774 ((-619 (-1119)))) (-15 -1774 ((-619 (-1119)) (-619 (-1119)))) (-15 -2828 ((-619 (-1119)))) (-15 -1638 ((-890))) (-15 -3172 ((-890))) (-15 -1638 ((-890) (-890))) (-15 -3172 ((-890) (-890))) (-15 -3927 ((-890) (-890))) (-15 -3927 ((-890))) (-15 -3925 ((-217) (-370))) (-15 -3925 ((-217))))
-((-2615 (((-458) (-619 (-619 (-912 (-217)))) (-619 (-254))) 21) (((-458) (-619 (-619 (-912 (-217))))) 20) (((-458) (-619 (-619 (-912 (-217)))) (-843) (-843) (-890) (-619 (-254))) 19)) (-3666 (((-1220) (-619 (-619 (-912 (-217)))) (-619 (-254))) 27) (((-1220) (-619 (-619 (-912 (-217)))) (-843) (-843) (-890) (-619 (-254))) 26)) (-3838 (((-1220) (-458)) 38)))
-(((-1223) (-10 -7 (-15 -2615 ((-458) (-619 (-619 (-912 (-217)))) (-843) (-843) (-890) (-619 (-254)))) (-15 -2615 ((-458) (-619 (-619 (-912 (-217)))))) (-15 -2615 ((-458) (-619 (-619 (-912 (-217)))) (-619 (-254)))) (-15 -3666 ((-1220) (-619 (-619 (-912 (-217)))) (-843) (-843) (-890) (-619 (-254)))) (-15 -3666 ((-1220) (-619 (-619 (-912 (-217)))) (-619 (-254)))) (-15 -3838 ((-1220) (-458))))) (T -1223))
-((-3838 (*1 *2 *3) (-12 (-5 *3 (-458)) (-5 *2 (-1220)) (-5 *1 (-1223)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-1223)))) (-3666 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *6 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-1223)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-619 (-254))) (-5 *2 (-458)) (-5 *1 (-1223)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *2 (-458)) (-5 *1 (-1223)))) (-2615 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *6 (-619 (-254))) (-5 *2 (-458)) (-5 *1 (-1223)))))
-(-10 -7 (-15 -2615 ((-458) (-619 (-619 (-912 (-217)))) (-843) (-843) (-890) (-619 (-254)))) (-15 -2615 ((-458) (-619 (-619 (-912 (-217)))))) (-15 -2615 ((-458) (-619 (-619 (-912 (-217)))) (-619 (-254)))) (-15 -3666 ((-1220) (-619 (-619 (-912 (-217)))) (-843) (-843) (-890) (-619 (-254)))) (-15 -3666 ((-1220) (-619 (-619 (-912 (-217)))) (-619 (-254)))) (-15 -3838 ((-1220) (-458))))
-((-2896 (($) 7)) (-3838 (((-832) $) 10)))
-(((-1224) (-10 -8 (-15 -2896 ($)) (-15 -3838 ((-832) $)))) (T -1224))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1224)))) (-2896 (*1 *1) (-5 *1 (-1224))))
-(-10 -8 (-15 -2896 ($)) (-15 -3838 ((-832) $)))
-((-2506 (($ $ |#2|) 10)))
-(((-1225 |#1| |#2|) (-10 -8 (-15 -2506 (|#1| |#1| |#2|))) (-1226 |#2|) (-354)) (T -1225))
-NIL
-(-10 -8 (-15 -2506 (|#1| |#1| |#2|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3970 (((-133)) 28)) (-3838 (((-832) $) 11)) (-3269 (($) 18 T CONST)) (-2381 (((-112) $ $) 6)) (-2506 (($ $ |#1|) 29)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-1226 |#1|) (-138) (-354)) (T -1226))
-((-2506 (*1 *1 *1 *2) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-354)))) (-3970 (*1 *2) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-354)) (-5 *2 (-133)))))
-(-13 (-692 |t#1|) (-10 -8 (-15 -2506 ($ $ |t#1|)) (-15 -3970 ((-133)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-1022 |#1|) . T) ((-1063) . T))
-((-4176 (((-619 (-1167 |#1|)) (-1136) (-1167 |#1|)) 74)) (-4167 (((-1117 (-1117 (-921 |#1|))) (-1136) (-1117 (-921 |#1|))) 53)) (-2837 (((-1 (-1117 (-1167 |#1|)) (-1117 (-1167 |#1|))) (-745) (-1167 |#1|) (-1117 (-1167 |#1|))) 64)) (-4244 (((-1 (-1117 (-921 |#1|)) (-1117 (-921 |#1|))) (-745)) 55)) (-3907 (((-1 (-1132 (-921 |#1|)) (-921 |#1|)) (-1136)) 29)) (-2685 (((-1 (-1117 (-921 |#1|)) (-1117 (-921 |#1|))) (-745)) 54)))
-(((-1227 |#1|) (-10 -7 (-15 -4244 ((-1 (-1117 (-921 |#1|)) (-1117 (-921 |#1|))) (-745))) (-15 -2685 ((-1 (-1117 (-921 |#1|)) (-1117 (-921 |#1|))) (-745))) (-15 -4167 ((-1117 (-1117 (-921 |#1|))) (-1136) (-1117 (-921 |#1|)))) (-15 -3907 ((-1 (-1132 (-921 |#1|)) (-921 |#1|)) (-1136))) (-15 -4176 ((-619 (-1167 |#1|)) (-1136) (-1167 |#1|))) (-15 -2837 ((-1 (-1117 (-1167 |#1|)) (-1117 (-1167 |#1|))) (-745) (-1167 |#1|) (-1117 (-1167 |#1|))))) (-354)) (T -1227))
-((-2837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-745)) (-4 *6 (-354)) (-5 *4 (-1167 *6)) (-5 *2 (-1 (-1117 *4) (-1117 *4))) (-5 *1 (-1227 *6)) (-5 *5 (-1117 *4)))) (-4176 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-4 *5 (-354)) (-5 *2 (-619 (-1167 *5))) (-5 *1 (-1227 *5)) (-5 *4 (-1167 *5)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1 (-1132 (-921 *4)) (-921 *4))) (-5 *1 (-1227 *4)) (-4 *4 (-354)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-1136)) (-4 *5 (-354)) (-5 *2 (-1117 (-1117 (-921 *5)))) (-5 *1 (-1227 *5)) (-5 *4 (-1117 (-921 *5))))) (-2685 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1117 (-921 *4)) (-1117 (-921 *4)))) (-5 *1 (-1227 *4)) (-4 *4 (-354)))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1117 (-921 *4)) (-1117 (-921 *4)))) (-5 *1 (-1227 *4)) (-4 *4 (-354)))))
-(-10 -7 (-15 -4244 ((-1 (-1117 (-921 |#1|)) (-1117 (-921 |#1|))) (-745))) (-15 -2685 ((-1 (-1117 (-921 |#1|)) (-1117 (-921 |#1|))) (-745))) (-15 -4167 ((-1117 (-1117 (-921 |#1|))) (-1136) (-1117 (-921 |#1|)))) (-15 -3907 ((-1 (-1132 (-921 |#1|)) (-921 |#1|)) (-1136))) (-15 -4176 ((-619 (-1167 |#1|)) (-1136) (-1167 |#1|))) (-15 -2837 ((-1 (-1117 (-1167 |#1|)) (-1117 (-1167 |#1|))) (-745) (-1167 |#1|) (-1117 (-1167 |#1|)))))
-((-3213 (((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|) 75)) (-1380 (((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) 74)))
-(((-1228 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1380 ((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3213 ((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|))) (-340) (-1195 |#1|) (-1195 |#2|) (-400 |#2| |#3|)) (T -1228))
-((-3213 (*1 *2 *3) (-12 (-4 *4 (-340)) (-4 *3 (-1195 *4)) (-4 *5 (-1195 *3)) (-5 *2 (-2 (|:| -1917 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-1228 *4 *3 *5 *6)) (-4 *6 (-400 *3 *5)))) (-1380 (*1 *2) (-12 (-4 *3 (-340)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 *4)) (-5 *2 (-2 (|:| -1917 (-663 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-663 *4)))) (-5 *1 (-1228 *3 *4 *5 *6)) (-4 *6 (-400 *4 *5)))))
-(-10 -7 (-15 -1380 ((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3213 ((-2 (|:| -1917 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|)))
-((-3826 (((-112) $ $) NIL)) (-1604 (((-1141) $) 11)) (-4168 (((-1141) $) 9)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-1229) (-13 (-1047) (-10 -8 (-15 -4168 ((-1141) $)) (-15 -1604 ((-1141) $))))) (T -1229))
-((-4168 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1229)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1229)))))
-(-13 (-1047) (-10 -8 (-15 -4168 ((-1141) $)) (-15 -1604 ((-1141) $))))
-((-3826 (((-112) $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1920 (((-1141) $) 9)) (-3838 (((-832) $) NIL) (((-1141) $) NIL)) (-2381 (((-112) $ $) NIL)))
-(((-1230) (-13 (-1047) (-10 -8 (-15 -1920 ((-1141) $))))) (T -1230))
-((-1920 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1230)))))
-(-13 (-1047) (-10 -8 (-15 -1920 ((-1141) $))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 43)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3838 (((-832) $) 64) (($ (-547)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-169)))) (-2736 (((-745)) NIL)) (-2572 (((-1224) (-745)) 16)) (-3269 (($) 27 T CONST)) (-3281 (($) 67 T CONST)) (-2381 (((-112) $ $) 69)) (-2506 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2493 (($ $) 71) (($ $ $) NIL)) (-2479 (($ $ $) 47)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169)))))
-(((-1231 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3838 (|#4| $)) (IF (|has| |#1| (-354)) (-15 -2506 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3838 ($ |#4|)) (-15 -2572 ((-1224) (-745))))) (-1016) (-821) (-767) (-918 |#1| |#3| |#2|) (-619 |#2|) (-619 (-745)) (-745)) (T -1231))
-((-3838 (*1 *2 *1) (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-1231 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) (-2506 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-354)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-767)) (-14 *6 (-619 *3)) (-5 *1 (-1231 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-918 *2 *4 *3)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) (-3838 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4)) (-5 *1 (-1231 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-918 *3 *5 *4)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) (-2572 (*1 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) (-14 *8 (-619 *5)) (-5 *2 (-1224)) (-5 *1 (-1231 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-918 *4 *6 *5)) (-14 *9 (-619 *3)) (-14 *10 *3))))
-(-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3838 (|#4| $)) (IF (|has| |#1| (-354)) (-15 -2506 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3838 ($ |#4|)) (-15 -2572 ((-1224) (-745)))))
-((-3826 (((-112) $ $) NIL)) (-1320 (((-619 (-2 (|:| -2674 $) (|:| -1352 (-619 |#4|)))) (-619 |#4|)) NIL)) (-2128 (((-619 $) (-619 |#4|)) 88)) (-2267 (((-619 |#3|) $) NIL)) (-1474 (((-112) $) NIL)) (-1843 (((-112) $) NIL (|has| |#1| (-539)))) (-4151 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2081 ((|#4| |#4| $) NIL)) (-3185 (((-2 (|:| |under| $) (|:| -1276 $) (|:| |upper| $)) $ |#3|) NIL)) (-3899 (((-112) $ (-745)) NIL)) (-1482 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1948 (($) NIL T CONST)) (-1651 (((-112) $) NIL (|has| |#1| (-539)))) (-4230 (((-112) $ $) NIL (|has| |#1| (-539)))) (-2360 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1840 (((-112) $) NIL (|has| |#1| (-539)))) (-3805 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-4017 (((-619 |#4|) (-619 |#4|) $) 25 (|has| |#1| (-539)))) (-1900 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-2707 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2652 (($ (-619 |#4|)) NIL)) (-3649 (((-3 $ "failed") $) 70)) (-2584 ((|#4| |#4| $) 75)) (-3668 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-3803 (($ |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2916 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2173 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2442 ((|#4| |#4| $) NIL)) (-2552 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4329))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4329))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2951 (((-2 (|:| -2674 (-619 |#4|)) (|:| -1352 (-619 |#4|))) $) NIL)) (-2982 (((-619 |#4|) $) NIL (|has| $ (-6 -4329)))) (-1779 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#3| $) 76)) (-2763 (((-112) $ (-745)) NIL)) (-2284 (((-619 |#4|) $) 29 (|has| $ (-6 -4329)))) (-2132 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063))))) (-4190 (((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-619 |#4|)) 35)) (-1859 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4330)))) (-2790 (($ (-1 |#4| |#4|) $) NIL)) (-4138 (((-619 |#3|) $) NIL)) (-3758 (((-112) |#3| $) NIL)) (-3806 (((-112) $ (-745)) NIL)) (-1466 (((-1119) $) NIL)) (-3820 (((-3 |#4| "failed") $) NIL)) (-2498 (((-619 |#4|) $) 50)) (-3112 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3065 ((|#4| |#4| $) 74)) (-1458 (((-112) $ $) 85)) (-1770 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2012 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1772 ((|#4| |#4| $) NIL)) (-3979 (((-1082) $) NIL)) (-3638 (((-3 |#4| "failed") $) 69)) (-3650 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1362 (((-3 $ "failed") $ |#4|) NIL)) (-3708 (($ $ |#4|) NIL)) (-1598 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2679 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2052 (((-112) $ $) NIL)) (-2884 (((-112) $) 67)) (-2245 (($) 42)) (-3705 (((-745) $) NIL)) (-3992 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-2274 (($ $) NIL)) (-2838 (((-523) $) NIL (|has| |#4| (-592 (-523))))) (-3846 (($ (-619 |#4|)) NIL)) (-3461 (($ $ |#3|) NIL)) (-3007 (($ $ |#3|) NIL)) (-2553 (($ $) NIL)) (-3619 (($ $ |#3|) NIL)) (-3838 (((-832) $) NIL) (((-619 |#4|) $) 57)) (-2815 (((-745) $) NIL (|has| |#3| (-359)))) (-2358 (((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-619 |#4|)) 41)) (-2849 (((-619 $) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-619 $) (-619 |#4|)) 66)) (-2672 (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2312 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2636 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-2693 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4329)))) (-3463 (((-619 |#3|) $) NIL)) (-2593 (((-112) |#3| $) NIL)) (-2381 (((-112) $ $) NIL)) (-3767 (((-745) $) NIL (|has| $ (-6 -4329)))))
-(((-1232 |#1| |#2| |#3| |#4|) (-13 (-1166 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4190 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4190 ((-3 $ "failed") (-619 |#4|))) (-15 -2358 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2358 ((-3 $ "failed") (-619 |#4|))) (-15 -2849 ((-619 $) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2849 ((-619 $) (-619 |#4|))))) (-539) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -1232))
-((-4190 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1232 *5 *6 *7 *8)))) (-4190 (*1 *1 *2) (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1232 *3 *4 *5 *6)))) (-2358 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1232 *5 *6 *7 *8)))) (-2358 (*1 *1 *2) (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1232 *3 *4 *5 *6)))) (-2849 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-539)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-619 (-1232 *6 *7 *8 *9))) (-5 *1 (-1232 *6 *7 *8 *9)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-1232 *4 *5 *6 *7))) (-5 *1 (-1232 *4 *5 *6 *7)))))
-(-13 (-1166 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4190 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4190 ((-3 $ "failed") (-619 |#4|))) (-15 -2358 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2358 ((-3 $ "failed") (-619 |#4|))) (-15 -2849 ((-619 $) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2849 ((-619 $) (-619 |#4|)))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3672 (((-3 $ "failed") $ $) 19)) (-1948 (($) 17 T CONST)) (-3855 (((-3 $ "failed") $) 32)) (-2261 (((-112) $) 30)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 36)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37)))
-(((-1233 |#1|) (-138) (-1016)) (T -1233))
-((-3838 (*1 *1 *2) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1016)))))
-(-13 (-1016) (-111 |t#1| |t#1|) (-10 -8 (-15 -3838 ($ |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T))
-((-3826 (((-112) $ $) 60)) (-1499 (((-112) $) NIL)) (-3297 (((-619 |#1|) $) 45)) (-1813 (($ $ (-745)) 39)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3080 (($ $ (-745)) 18 (|has| |#2| (-169))) (($ $ $) 19 (|has| |#2| (-169)))) (-1948 (($) NIL T CONST)) (-3085 (($ $ $) 63) (($ $ (-793 |#1|)) 49) (($ $ |#1|) 53)) (-2707 (((-3 (-793 |#1|) "failed") $) NIL)) (-2652 (((-793 |#1|) $) NIL)) (-2063 (($ $) 32)) (-3855 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-3082 (($ $) NIL)) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-3518 (($ (-793 |#1|) |#2|) 31)) (-2961 (($ $) 33)) (-1394 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) 12)) (-1709 (((-793 |#1|) $) NIL)) (-2706 (((-793 |#1|) $) 34)) (-2790 (($ (-1 |#2| |#2|) $) NIL)) (-3982 (($ $ $) 62) (($ $ (-793 |#1|)) 51) (($ $ |#1|) 55)) (-3456 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2019 (((-793 |#1|) $) 28)) (-2037 ((|#2| $) 30)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-3705 (((-745) $) 36)) (-4281 (((-112) $) 40)) (-2582 ((|#2| $) NIL)) (-3838 (((-832) $) NIL) (($ (-793 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-547)) NIL)) (-1277 (((-619 |#2|) $) NIL)) (-2450 ((|#2| $ (-793 |#1|)) NIL)) (-1563 ((|#2| $ $) 65) ((|#2| $ (-793 |#1|)) NIL)) (-2736 (((-745)) NIL)) (-3269 (($) 13 T CONST)) (-3281 (($) 15 T CONST)) (-3721 (((-619 (-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2381 (((-112) $ $) 38)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 22)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-793 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1234 |#1| |#2|) (-13 (-373 |#2| (-793 |#1|)) (-1240 |#1| |#2|)) (-821) (-1016)) (T -1234))
-NIL
-(-13 (-373 |#2| (-793 |#1|)) (-1240 |#1| |#2|))
-((-3624 ((|#3| |#3| (-745)) 23)) (-2712 ((|#3| |#3| (-745)) 27)) (-2866 ((|#3| |#3| |#3| (-745)) 28)))
-(((-1235 |#1| |#2| |#3|) (-10 -7 (-15 -2712 (|#3| |#3| (-745))) (-15 -3624 (|#3| |#3| (-745))) (-15 -2866 (|#3| |#3| |#3| (-745)))) (-13 (-1016) (-692 (-398 (-547)))) (-821) (-1240 |#2| |#1|)) (T -1235))
-((-2866 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-398 (-547))))) (-4 *5 (-821)) (-5 *1 (-1235 *4 *5 *2)) (-4 *2 (-1240 *5 *4)))) (-3624 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-398 (-547))))) (-4 *5 (-821)) (-5 *1 (-1235 *4 *5 *2)) (-4 *2 (-1240 *5 *4)))) (-2712 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-398 (-547))))) (-4 *5 (-821)) (-5 *1 (-1235 *4 *5 *2)) (-4 *2 (-1240 *5 *4)))))
-(-10 -7 (-15 -2712 (|#3| |#3| (-745))) (-15 -3624 (|#3| |#3| (-745))) (-15 -2866 (|#3| |#3| |#3| (-745))))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3297 (((-619 |#1|) $) 38)) (-3672 (((-3 $ "failed") $ $) 19)) (-3080 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-745)) 40 (|has| |#2| (-169)))) (-1948 (($) 17 T CONST)) (-3085 (($ $ |#1|) 52) (($ $ (-793 |#1|)) 51) (($ $ $) 50)) (-2707 (((-3 (-793 |#1|) "failed") $) 62)) (-2652 (((-793 |#1|) $) 61)) (-3855 (((-3 $ "failed") $) 32)) (-1433 (((-112) $) 43)) (-3082 (($ $) 42)) (-2261 (((-112) $) 30)) (-1759 (((-112) $) 48)) (-3518 (($ (-793 |#1|) |#2|) 49)) (-2961 (($ $) 47)) (-1394 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) 58)) (-1709 (((-793 |#1|) $) 59)) (-2790 (($ (-1 |#2| |#2|) $) 39)) (-3982 (($ $ |#1|) 55) (($ $ (-793 |#1|)) 54) (($ $ $) 53)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-4281 (((-112) $) 45)) (-2582 ((|#2| $) 44)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#2|) 66) (($ (-793 |#1|)) 63) (($ |#1|) 46)) (-1563 ((|#2| $ (-793 |#1|)) 57) ((|#2| $ $) 56)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
-(((-1236 |#1| |#2|) (-138) (-821) (-1016)) (T -1236))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-793 *3)))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| |k| (-793 *3)) (|:| |c| *4))))) (-1563 (*1 *2 *1 *3) (-12 (-5 *3 (-793 *4)) (-4 *1 (-1236 *4 *2)) (-4 *4 (-821)) (-4 *2 (-1016)))) (-1563 (*1 *2 *1 *1) (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) (-3982 (*1 *1 *1 *2) (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3982 (*1 *1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-3982 (*1 *1 *1 *1) (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3085 (*1 *1 *1 *2) (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3085 (*1 *1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-3085 (*1 *1 *1 *1) (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3518 (*1 *1 *2 *3) (-12 (-5 *2 (-793 *4)) (-4 *4 (-821)) (-4 *1 (-1236 *4 *3)) (-4 *3 (-1016)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-112)))) (-2961 (*1 *1 *1) (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3838 (*1 *1 *2) (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-4281 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-112)))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-112)))) (-3082 (*1 *1 *1) (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3080 (*1 *1 *1 *1) (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)) (-4 *3 (-169)))) (-3080 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-4 *4 (-169)))) (-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-619 *3)))))
-(-13 (-1016) (-1233 |t#2|) (-1007 (-793 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1709 ((-793 |t#1|) $)) (-15 -1394 ((-2 (|:| |k| (-793 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1563 (|t#2| $ (-793 |t#1|))) (-15 -1563 (|t#2| $ $)) (-15 -3982 ($ $ |t#1|)) (-15 -3982 ($ $ (-793 |t#1|))) (-15 -3982 ($ $ $)) (-15 -3085 ($ $ |t#1|)) (-15 -3085 ($ $ (-793 |t#1|))) (-15 -3085 ($ $ $)) (-15 -3518 ($ (-793 |t#1|) |t#2|)) (-15 -1759 ((-112) $)) (-15 -2961 ($ $)) (-15 -3838 ($ |t#1|)) (-15 -4281 ((-112) $)) (-15 -2582 (|t#2| $)) (-15 -1433 ((-112) $)) (-15 -3082 ($ $)) (IF (|has| |t#2| (-169)) (PROGN (-15 -3080 ($ $ $)) (-15 -3080 ($ $ (-745)))) |%noBranch|) (-15 -2790 ($ (-1 |t#2| |t#2|) $)) (-15 -3297 ((-619 |t#1|) $)) (IF (|has| |t#2| (-6 -4322)) (-6 -4322) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#2|) . T) ((-622 $) . T) ((-692 |#2|) |has| |#2| (-169)) ((-701) . T) ((-1007 (-793 |#1|)) . T) ((-1022 |#2|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1233 |#2|) . T))
-((-1452 (((-112) $) 15)) (-2593 (((-112) $) 14)) (-1693 (($ $) 19) (($ $ (-745)) 20)))
-(((-1237 |#1| |#2|) (-10 -8 (-15 -1693 (|#1| |#1| (-745))) (-15 -1693 (|#1| |#1|)) (-15 -1452 ((-112) |#1|)) (-15 -2593 ((-112) |#1|))) (-1238 |#2|) (-354)) (T -1237))
-NIL
-(-10 -8 (-15 -1693 (|#1| |#1| (-745))) (-15 -1693 (|#1| |#1|)) (-15 -1452 ((-112) |#1|)) (-15 -2593 ((-112) |#1|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3049 (((-2 (|:| -3825 $) (|:| -4316 $) (|:| |associate| $)) $) 39)) (-3571 (($ $) 38)) (-3915 (((-112) $) 36)) (-1452 (((-112) $) 91)) (-1440 (((-745)) 87)) (-3672 (((-3 $ "failed") $ $) 19)) (-2555 (($ $) 70)) (-3299 (((-409 $) $) 69)) (-1547 (((-112) $ $) 57)) (-1948 (($) 17 T CONST)) (-2707 (((-3 |#1| "failed") $) 98)) (-2652 ((|#1| $) 97)) (-2089 (($ $ $) 53)) (-3855 (((-3 $ "failed") $) 32)) (-2061 (($ $ $) 54)) (-4203 (((-2 (|:| -1563 (-619 $)) (|:| -4238 $)) (-619 $)) 49)) (-1551 (($ $ (-745)) 84 (-1530 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) 83 (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-1791 (((-112) $) 68)) (-3275 (((-807 (-890)) $) 81 (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2261 (((-112) $) 30)) (-3561 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3689 (($ $ $) 44) (($ (-619 $)) 43)) (-1466 (((-1119) $) 9)) (-1984 (($ $) 67)) (-1290 (((-112) $) 90)) (-3979 (((-1082) $) 10)) (-2429 (((-1132 $) (-1132 $) (-1132 $)) 42)) (-3719 (($ $ $) 46) (($ (-619 $)) 45)) (-2115 (((-409 $) $) 71)) (-3327 (((-807 (-890))) 88)) (-3853 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4238 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2032 (((-3 $ "failed") $ $) 40)) (-2512 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2471 (((-745) $) 56)) (-4030 (((-2 (|:| -2235 $) (|:| -2916 $)) $ $) 55)) (-1422 (((-3 (-745) "failed") $ $) 82 (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3970 (((-133)) 96)) (-3705 (((-807 (-890)) $) 89)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63) (($ |#1|) 99)) (-2220 (((-3 $ "failed") $) 80 (-1530 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2736 (((-745)) 28)) (-3577 (((-112) $ $) 37)) (-2593 (((-112) $) 92)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-1693 (($ $) 86 (|has| |#1| (-359))) (($ $ (-745)) 85 (|has| |#1| (-359)))) (-2381 (((-112) $ $) 6)) (-2506 (($ $ $) 62) (($ $ |#1|) 95)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
-(((-1238 |#1|) (-138) (-354)) (T -1238))
-((-2593 (*1 *2 *1) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-5 *2 (-112)))) (-1452 (*1 *2 *1) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-5 *2 (-112)))) (-1290 (*1 *2 *1) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-5 *2 (-112)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-5 *2 (-807 (-890))))) (-3327 (*1 *2) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-5 *2 (-807 (-890))))) (-1440 (*1 *2) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-5 *2 (-745)))) (-1693 (*1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-354)) (-4 *2 (-359)))) (-1693 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-4 *3 (-359)))))
-(-13 (-354) (-1007 |t#1|) (-1226 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-393)) |%noBranch|) (-15 -2593 ((-112) $)) (-15 -1452 ((-112) $)) (-15 -1290 ((-112) $)) (-15 -3705 ((-807 (-890)) $)) (-15 -3327 ((-807 (-890)))) (-15 -1440 ((-745))) (IF (|has| |t#1| (-359)) (PROGN (-6 (-393)) (-15 -1693 ($ $)) (-15 -1693 ($ $ (-745)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1530 (|has| |#1| (-359)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-393) -1530 (|has| |#1| (-359)) (|has| |#1| (-143))) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 |#1|) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1177) . T) ((-1226 |#1|) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3297 (((-619 |#1|) $) 86)) (-1813 (($ $ (-745)) 89)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3080 (($ $ $) NIL (|has| |#2| (-169))) (($ $ (-745)) NIL (|has| |#2| (-169)))) (-1948 (($) NIL T CONST)) (-3085 (($ $ |#1|) NIL) (($ $ (-793 |#1|)) NIL) (($ $ $) NIL)) (-2707 (((-3 (-793 |#1|) "failed") $) NIL) (((-3 (-862 |#1|) "failed") $) NIL)) (-2652 (((-793 |#1|) $) NIL) (((-862 |#1|) $) NIL)) (-2063 (($ $) 88)) (-3855 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) 77)) (-3082 (($ $) 81)) (-4080 (($ $ $ (-745)) 90)) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-3518 (($ (-793 |#1|) |#2|) NIL) (($ (-862 |#1|) |#2|) 26)) (-2961 (($ $) 103)) (-1394 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1709 (((-793 |#1|) $) NIL)) (-2706 (((-793 |#1|) $) NIL)) (-2790 (($ (-1 |#2| |#2|) $) NIL)) (-3982 (($ $ |#1|) NIL) (($ $ (-793 |#1|)) NIL) (($ $ $) NIL)) (-3624 (($ $ (-745)) 97 (|has| |#2| (-692 (-398 (-547)))))) (-3456 (((-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2019 (((-862 |#1|) $) 70)) (-2037 ((|#2| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-2712 (($ $ (-745)) 94 (|has| |#2| (-692 (-398 (-547)))))) (-3705 (((-745) $) 87)) (-4281 (((-112) $) 71)) (-2582 ((|#2| $) 75)) (-3838 (((-832) $) 57) (($ (-547)) NIL) (($ |#2|) 51) (($ (-793 |#1|)) NIL) (($ |#1|) 59) (($ (-862 |#1|)) NIL) (($ (-638 |#1| |#2|)) 43) (((-1234 |#1| |#2|) $) 64) (((-1243 |#1| |#2|) $) 69)) (-1277 (((-619 |#2|) $) NIL)) (-2450 ((|#2| $ (-862 |#1|)) NIL)) (-1563 ((|#2| $ (-793 |#1|)) NIL) ((|#2| $ $) NIL)) (-2736 (((-745)) NIL)) (-3269 (($) 21 T CONST)) (-3281 (($) 25 T CONST)) (-3721 (((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4115 (((-3 (-638 |#1| |#2|) "failed") $) 102)) (-2381 (((-112) $ $) 65)) (-2493 (($ $) 96) (($ $ $) 95)) (-2479 (($ $ $) 20)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-862 |#1|)) NIL)))
-(((-1239 |#1| |#2|) (-13 (-1240 |#1| |#2|) (-373 |#2| (-862 |#1|)) (-10 -8 (-15 -3838 ($ (-638 |#1| |#2|))) (-15 -3838 ((-1234 |#1| |#2|) $)) (-15 -3838 ((-1243 |#1| |#2|) $)) (-15 -4115 ((-3 (-638 |#1| |#2|) "failed") $)) (-15 -4080 ($ $ $ (-745))) (IF (|has| |#2| (-692 (-398 (-547)))) (PROGN (-15 -2712 ($ $ (-745))) (-15 -3624 ($ $ (-745)))) |%noBranch|))) (-821) (-169)) (T -1239))
-((-3838 (*1 *1 *2) (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *1 (-1239 *3 *4)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-1234 *3 *4)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-1243 *3 *4)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-4115 (*1 *2 *1) (|partial| -12 (-5 *2 (-638 *3 *4)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-4080 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1239 *3 *4)) (-4 *4 (-692 (-398 (-547)))) (-4 *3 (-821)) (-4 *4 (-169)))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1239 *3 *4)) (-4 *4 (-692 (-398 (-547)))) (-4 *3 (-821)) (-4 *4 (-169)))))
-(-13 (-1240 |#1| |#2|) (-373 |#2| (-862 |#1|)) (-10 -8 (-15 -3838 ($ (-638 |#1| |#2|))) (-15 -3838 ((-1234 |#1| |#2|) $)) (-15 -3838 ((-1243 |#1| |#2|) $)) (-15 -4115 ((-3 (-638 |#1| |#2|) "failed") $)) (-15 -4080 ($ $ $ (-745))) (IF (|has| |#2| (-692 (-398 (-547)))) (PROGN (-15 -2712 ($ $ (-745))) (-15 -3624 ($ $ (-745)))) |%noBranch|)))
-((-3826 (((-112) $ $) 7)) (-1499 (((-112) $) 16)) (-3297 (((-619 |#1|) $) 38)) (-1813 (($ $ (-745)) 71)) (-3672 (((-3 $ "failed") $ $) 19)) (-3080 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-745)) 40 (|has| |#2| (-169)))) (-1948 (($) 17 T CONST)) (-3085 (($ $ |#1|) 52) (($ $ (-793 |#1|)) 51) (($ $ $) 50)) (-2707 (((-3 (-793 |#1|) "failed") $) 62)) (-2652 (((-793 |#1|) $) 61)) (-3855 (((-3 $ "failed") $) 32)) (-1433 (((-112) $) 43)) (-3082 (($ $) 42)) (-2261 (((-112) $) 30)) (-1759 (((-112) $) 48)) (-3518 (($ (-793 |#1|) |#2|) 49)) (-2961 (($ $) 47)) (-1394 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) 58)) (-1709 (((-793 |#1|) $) 59)) (-2706 (((-793 |#1|) $) 73)) (-2790 (($ (-1 |#2| |#2|) $) 39)) (-3982 (($ $ |#1|) 55) (($ $ (-793 |#1|)) 54) (($ $ $) 53)) (-1466 (((-1119) $) 9)) (-3979 (((-1082) $) 10)) (-3705 (((-745) $) 72)) (-4281 (((-112) $) 45)) (-2582 ((|#2| $) 44)) (-3838 (((-832) $) 11) (($ (-547)) 27) (($ |#2|) 66) (($ (-793 |#1|)) 63) (($ |#1|) 46)) (-1563 ((|#2| $ (-793 |#1|)) 57) ((|#2| $ $) 56)) (-2736 (((-745)) 28)) (-3269 (($) 18 T CONST)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 6)) (-2493 (($ $) 22) (($ $ $) 21)) (-2479 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
-(((-1240 |#1| |#2|) (-138) (-821) (-1016)) (T -1240))
-((-2706 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-793 *3)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-745)))) (-1813 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1240 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))))
-(-13 (-1236 |t#1| |t#2|) (-10 -8 (-15 -2706 ((-793 |t#1|) $)) (-15 -3705 ((-745) $)) (-15 -1813 ($ $ (-745)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#2|) . T) ((-622 $) . T) ((-692 |#2|) |has| |#2| (-169)) ((-701) . T) ((-1007 (-793 |#1|)) . T) ((-1022 |#2|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1233 |#2|) . T) ((-1236 |#1| |#2|) . T))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3297 (((-619 (-1136)) $) NIL)) (-2212 (($ (-1234 (-1136) |#1|)) NIL)) (-1813 (($ $ (-745)) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3080 (($ $ $) NIL (|has| |#1| (-169))) (($ $ (-745)) NIL (|has| |#1| (-169)))) (-1948 (($) NIL T CONST)) (-3085 (($ $ (-1136)) NIL) (($ $ (-793 (-1136))) NIL) (($ $ $) NIL)) (-2707 (((-3 (-793 (-1136)) "failed") $) NIL)) (-2652 (((-793 (-1136)) $) NIL)) (-3855 (((-3 $ "failed") $) NIL)) (-1433 (((-112) $) NIL)) (-3082 (($ $) NIL)) (-2261 (((-112) $) NIL)) (-1759 (((-112) $) NIL)) (-3518 (($ (-793 (-1136)) |#1|) NIL)) (-2961 (($ $) NIL)) (-1394 (((-2 (|:| |k| (-793 (-1136))) (|:| |c| |#1|)) $) NIL)) (-1709 (((-793 (-1136)) $) NIL)) (-2706 (((-793 (-1136)) $) NIL)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3982 (($ $ (-1136)) NIL) (($ $ (-793 (-1136))) NIL) (($ $ $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1442 (((-1234 (-1136) |#1|) $) NIL)) (-3705 (((-745) $) NIL)) (-4281 (((-112) $) NIL)) (-2582 ((|#1| $) NIL)) (-3838 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-793 (-1136))) NIL) (($ (-1136)) NIL)) (-1563 ((|#1| $ (-793 (-1136))) NIL) ((|#1| $ $) NIL)) (-2736 (((-745)) NIL)) (-3269 (($) NIL T CONST)) (-3946 (((-619 (-2 (|:| |k| (-1136)) (|:| |c| $))) $) NIL)) (-3281 (($) NIL T CONST)) (-2381 (((-112) $ $) NIL)) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1136) $) NIL)))
-(((-1241 |#1|) (-13 (-1240 (-1136) |#1|) (-10 -8 (-15 -1442 ((-1234 (-1136) |#1|) $)) (-15 -2212 ($ (-1234 (-1136) |#1|))) (-15 -3946 ((-619 (-2 (|:| |k| (-1136)) (|:| |c| $))) $)))) (-1016)) (T -1241))
-((-1442 (*1 *2 *1) (-12 (-5 *2 (-1234 (-1136) *3)) (-5 *1 (-1241 *3)) (-4 *3 (-1016)))) (-2212 (*1 *1 *2) (-12 (-5 *2 (-1234 (-1136) *3)) (-4 *3 (-1016)) (-5 *1 (-1241 *3)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| (-1136)) (|:| |c| (-1241 *3))))) (-5 *1 (-1241 *3)) (-4 *3 (-1016)))))
-(-13 (-1240 (-1136) |#1|) (-10 -8 (-15 -1442 ((-1234 (-1136) |#1|) $)) (-15 -2212 ($ (-1234 (-1136) |#1|))) (-15 -3946 ((-619 (-2 (|:| |k| (-1136)) (|:| |c| $))) $))))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) NIL)) (-3672 (((-3 $ "failed") $ $) NIL)) (-1948 (($) NIL T CONST)) (-2707 (((-3 |#2| "failed") $) NIL)) (-2652 ((|#2| $) NIL)) (-2063 (($ $) NIL)) (-3855 (((-3 $ "failed") $) 36)) (-1433 (((-112) $) 30)) (-3082 (($ $) 32)) (-2261 (((-112) $) NIL)) (-3376 (((-745) $) NIL)) (-4097 (((-619 $) $) NIL)) (-1759 (((-112) $) NIL)) (-3518 (($ |#2| |#1|) NIL)) (-1709 ((|#2| $) 19)) (-2706 ((|#2| $) 16)) (-2790 (($ (-1 |#1| |#1|) $) NIL)) (-3456 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2019 ((|#2| $) NIL)) (-2037 ((|#1| $) NIL)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-4281 (((-112) $) 27)) (-2582 ((|#1| $) 28)) (-3838 (((-832) $) 55) (($ (-547)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-1277 (((-619 |#1|) $) NIL)) (-2450 ((|#1| $ |#2|) NIL)) (-1563 ((|#1| $ |#2|) 24)) (-2736 (((-745)) 14)) (-3269 (($) 25 T CONST)) (-3281 (($) 11 T CONST)) (-3721 (((-619 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2381 (((-112) $ $) 26)) (-2506 (($ $ |#1|) 57 (|has| |#1| (-354)))) (-2493 (($ $) NIL) (($ $ $) NIL)) (-2479 (($ $ $) 44)) (** (($ $ (-890)) NIL) (($ $ (-745)) 46)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3767 (((-745) $) 15)))
-(((-1242 |#1| |#2|) (-13 (-1016) (-1233 |#1|) (-373 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3767 ((-745) $)) (-15 -3838 ($ |#2|)) (-15 -2706 (|#2| $)) (-15 -1709 (|#2| $)) (-15 -2063 ($ $)) (-15 -1563 (|#1| $ |#2|)) (-15 -4281 ((-112) $)) (-15 -2582 (|#1| $)) (-15 -1433 ((-112) $)) (-15 -3082 ($ $)) (-15 -2790 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-354)) (-15 -2506 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4322)) (-6 -4322) |%noBranch|) (IF (|has| |#1| (-6 -4326)) (-6 -4326) |%noBranch|) (IF (|has| |#1| (-6 -4327)) (-6 -4327) |%noBranch|))) (-1016) (-817)) (T -1242))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1242 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))) (-2063 (*1 *1 *1) (-12 (-5 *1 (-1242 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))) (-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-1242 *3 *4)) (-4 *4 (-817)))) (-3838 (*1 *1 *2) (-12 (-5 *1 (-1242 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-817)))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1242 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817)))) (-2706 (*1 *2 *1) (-12 (-4 *2 (-817)) (-5 *1 (-1242 *3 *2)) (-4 *3 (-1016)))) (-1709 (*1 *2 *1) (-12 (-4 *2 (-817)) (-5 *1 (-1242 *3 *2)) (-4 *3 (-1016)))) (-1563 (*1 *2 *1 *3) (-12 (-4 *2 (-1016)) (-5 *1 (-1242 *2 *3)) (-4 *3 (-817)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817)))) (-2582 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-1242 *2 *3)) (-4 *3 (-817)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817)))) (-3082 (*1 *1 *1) (-12 (-5 *1 (-1242 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))) (-2506 (*1 *1 *1 *2) (-12 (-5 *1 (-1242 *2 *3)) (-4 *2 (-354)) (-4 *2 (-1016)) (-4 *3 (-817)))))
-(-13 (-1016) (-1233 |#1|) (-373 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3767 ((-745) $)) (-15 -3838 ($ |#2|)) (-15 -2706 (|#2| $)) (-15 -1709 (|#2| $)) (-15 -2063 ($ $)) (-15 -1563 (|#1| $ |#2|)) (-15 -4281 ((-112) $)) (-15 -2582 (|#1| $)) (-15 -1433 ((-112) $)) (-15 -3082 ($ $)) (-15 -2790 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-354)) (-15 -2506 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4322)) (-6 -4322) |%noBranch|) (IF (|has| |#1| (-6 -4326)) (-6 -4326) |%noBranch|) (IF (|has| |#1| (-6 -4327)) (-6 -4327) |%noBranch|)))
-((-3826 (((-112) $ $) 26)) (-1499 (((-112) $) NIL)) (-3297 (((-619 |#1|) $) 120)) (-2212 (($ (-1234 |#1| |#2|)) 44)) (-1813 (($ $ (-745)) 32)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3080 (($ $ $) 48 (|has| |#2| (-169))) (($ $ (-745)) 46 (|has| |#2| (-169)))) (-1948 (($) NIL T CONST)) (-3085 (($ $ |#1|) 102) (($ $ (-793 |#1|)) 103) (($ $ $) 25)) (-2707 (((-3 (-793 |#1|) "failed") $) NIL)) (-2652 (((-793 |#1|) $) NIL)) (-3855 (((-3 $ "failed") $) 110)) (-1433 (((-112) $) 105)) (-3082 (($ $) 106)) (-2261 (((-112) $) NIL)) (-1759 (((-112) $) NIL)) (-3518 (($ (-793 |#1|) |#2|) 19)) (-2961 (($ $) NIL)) (-1394 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1709 (((-793 |#1|) $) 111)) (-2706 (((-793 |#1|) $) 114)) (-2790 (($ (-1 |#2| |#2|) $) 119)) (-3982 (($ $ |#1|) 100) (($ $ (-793 |#1|)) 101) (($ $ $) 56)) (-1466 (((-1119) $) NIL)) (-3979 (((-1082) $) NIL)) (-1442 (((-1234 |#1| |#2|) $) 84)) (-3705 (((-745) $) 117)) (-4281 (((-112) $) 70)) (-2582 ((|#2| $) 28)) (-3838 (((-832) $) 63) (($ (-547)) 77) (($ |#2|) 74) (($ (-793 |#1|)) 17) (($ |#1|) 73)) (-1563 ((|#2| $ (-793 |#1|)) 104) ((|#2| $ $) 27)) (-2736 (((-745)) 108)) (-3269 (($) 14 T CONST)) (-3946 (((-619 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3281 (($) 29 T CONST)) (-2381 (((-112) $ $) 13)) (-2493 (($ $) 88) (($ $ $) 91)) (-2479 (($ $ $) 55)) (** (($ $ (-890)) NIL) (($ $ (-745)) 49)) (* (($ (-890) $) NIL) (($ (-745) $) 47) (($ (-547) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1243 |#1| |#2|) (-13 (-1240 |#1| |#2|) (-10 -8 (-15 -1442 ((-1234 |#1| |#2|) $)) (-15 -2212 ($ (-1234 |#1| |#2|))) (-15 -3946 ((-619 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-821) (-1016)) (T -1243))
-((-1442 (*1 *2 *1) (-12 (-5 *2 (-1234 *3 *4)) (-5 *1 (-1243 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-2212 (*1 *1 *2) (-12 (-5 *2 (-1234 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *1 (-1243 *3 *4)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| *3) (|:| |c| (-1243 *3 *4))))) (-5 *1 (-1243 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))))
-(-13 (-1240 |#1| |#2|) (-10 -8 (-15 -1442 ((-1234 |#1| |#2|) $)) (-15 -2212 ($ (-1234 |#1| |#2|))) (-15 -3946 ((-619 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-2656 (((-619 (-1117 |#1|)) (-1 (-619 (-1117 |#1|)) (-619 (-1117 |#1|))) (-547)) 15) (((-1117 |#1|) (-1 (-1117 |#1|) (-1117 |#1|))) 11)))
-(((-1244 |#1|) (-10 -7 (-15 -2656 ((-1117 |#1|) (-1 (-1117 |#1|) (-1117 |#1|)))) (-15 -2656 ((-619 (-1117 |#1|)) (-1 (-619 (-1117 |#1|)) (-619 (-1117 |#1|))) (-547)))) (-1173)) (T -1244))
-((-2656 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-619 (-1117 *5)) (-619 (-1117 *5)))) (-5 *4 (-547)) (-5 *2 (-619 (-1117 *5))) (-5 *1 (-1244 *5)) (-4 *5 (-1173)))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-1 (-1117 *4) (-1117 *4))) (-5 *2 (-1117 *4)) (-5 *1 (-1244 *4)) (-4 *4 (-1173)))))
-(-10 -7 (-15 -2656 ((-1117 |#1|) (-1 (-1117 |#1|) (-1117 |#1|)))) (-15 -2656 ((-619 (-1117 |#1|)) (-1 (-619 (-1117 |#1|)) (-619 (-1117 |#1|))) (-547))))
-((-1343 (((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|))) 148) (((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112)) 147) (((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)) 146) (((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112) (-112)) 145) (((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-1013 |#1| |#2|)) 130)) (-2888 (((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|))) 72) (((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112)) 71) (((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112) (-112)) 70)) (-3299 (((-619 (-1107 |#1| (-519 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) (-1013 |#1| |#2|)) 61)) (-3412 (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|))) 115) (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112)) 114) (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112)) 113) (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112) (-112)) 112) (((-619 (-619 (-993 (-398 |#1|)))) (-1013 |#1| |#2|)) 107)) (-2575 (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|))) 120) (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112)) 119) (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112)) 118) (((-619 (-619 (-993 (-398 |#1|)))) (-1013 |#1| |#2|)) 117)) (-2838 (((-619 (-754 |#1| (-834 |#3|))) (-1107 |#1| (-519 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) 98) (((-1132 (-993 (-398 |#1|))) (-1132 |#1|)) 89) (((-921 (-993 (-398 |#1|))) (-754 |#1| (-834 |#3|))) 96) (((-921 (-993 (-398 |#1|))) (-921 |#1|)) 94) (((-754 |#1| (-834 |#3|)) (-754 |#1| (-834 |#2|))) 33)))
-(((-1245 |#1| |#2| |#3|) (-10 -7 (-15 -2888 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2888 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112))) (-15 -2888 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)))) (-15 -1343 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-1013 |#1| |#2|))) (-15 -1343 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -1343 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -1343 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -1343 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3412 ((-619 (-619 (-993 (-398 |#1|)))) (-1013 |#1| |#2|))) (-15 -3412 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -3412 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -3412 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -3412 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)))) (-15 -2575 ((-619 (-619 (-993 (-398 |#1|)))) (-1013 |#1| |#2|))) (-15 -2575 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2575 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -2575 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)))) (-15 -3299 ((-619 (-1107 |#1| (-519 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) (-1013 |#1| |#2|))) (-15 -2838 ((-754 |#1| (-834 |#3|)) (-754 |#1| (-834 |#2|)))) (-15 -2838 ((-921 (-993 (-398 |#1|))) (-921 |#1|))) (-15 -2838 ((-921 (-993 (-398 |#1|))) (-754 |#1| (-834 |#3|)))) (-15 -2838 ((-1132 (-993 (-398 |#1|))) (-1132 |#1|))) (-15 -2838 ((-619 (-754 |#1| (-834 |#3|))) (-1107 |#1| (-519 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))))) (-13 (-819) (-298) (-145) (-991)) (-619 (-1136)) (-619 (-1136))) (T -1245))
-((-2838 (*1 *2 *3) (-12 (-5 *3 (-1107 *4 (-519 (-834 *6)) (-834 *6) (-754 *4 (-834 *6)))) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *6 (-619 (-1136))) (-5 *2 (-619 (-754 *4 (-834 *6)))) (-5 *1 (-1245 *4 *5 *6)) (-14 *5 (-619 (-1136))))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-1132 *4)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-1132 (-993 (-398 *4)))) (-5 *1 (-1245 *4 *5 *6)) (-14 *5 (-619 (-1136))) (-14 *6 (-619 (-1136))))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-754 *4 (-834 *6))) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *6 (-619 (-1136))) (-5 *2 (-921 (-993 (-398 *4)))) (-5 *1 (-1245 *4 *5 *6)) (-14 *5 (-619 (-1136))))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-921 (-993 (-398 *4)))) (-5 *1 (-1245 *4 *5 *6)) (-14 *5 (-619 (-1136))) (-14 *6 (-619 (-1136))))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-754 *4 (-834 *5))) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *5 (-619 (-1136))) (-5 *2 (-754 *4 (-834 *6))) (-5 *1 (-1245 *4 *5 *6)) (-14 *6 (-619 (-1136))))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *5 (-619 (-1136))) (-5 *2 (-619 (-1107 *4 (-519 (-834 *6)) (-834 *6) (-754 *4 (-834 *6))))) (-5 *1 (-1245 *4 *5 *6)) (-14 *6 (-619 (-1136))))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *4))))) (-5 *1 (-1245 *4 *5 *6)) (-14 *5 (-619 (-1136))) (-14 *6 (-619 (-1136))))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1245 *5 *6 *7)) (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136))))) (-2575 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1245 *5 *6 *7)) (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136))))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *5 (-619 (-1136))) (-5 *2 (-619 (-619 (-993 (-398 *4))))) (-5 *1 (-1245 *4 *5 *6)) (-14 *6 (-619 (-1136))))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *4))))) (-5 *1 (-1245 *4 *5 *6)) (-14 *5 (-619 (-1136))) (-14 *6 (-619 (-1136))))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1245 *5 *6 *7)) (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136))))) (-3412 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1245 *5 *6 *7)) (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136))))) (-3412 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1245 *5 *6 *7)) (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136))))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *5 (-619 (-1136))) (-5 *2 (-619 (-619 (-993 (-398 *4))))) (-5 *1 (-1245 *4 *5 *6)) (-14 *6 (-619 (-1136))))) (-1343 (*1 *2 *3) (-12 (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -3117 (-1132 *4)) (|:| -3220 (-619 (-921 *4)))))) (-5 *1 (-1245 *4 *5 *6)) (-5 *3 (-619 (-921 *4))) (-14 *5 (-619 (-1136))) (-14 *6 (-619 (-1136))))) (-1343 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -3117 (-1132 *5)) (|:| -3220 (-619 (-921 *5)))))) (-5 *1 (-1245 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136))))) (-1343 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -3117 (-1132 *5)) (|:| -3220 (-619 (-921 *5)))))) (-5 *1 (-1245 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136))))) (-1343 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -3117 (-1132 *5)) (|:| -3220 (-619 (-921 *5)))))) (-5 *1 (-1245 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136))))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *5 (-619 (-1136))) (-5 *2 (-619 (-2 (|:| -3117 (-1132 *4)) (|:| -3220 (-619 (-921 *4)))))) (-5 *1 (-1245 *4 *5 *6)) (-14 *6 (-619 (-1136))))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-1013 *4 *5))) (-5 *1 (-1245 *4 *5 *6)) (-14 *5 (-619 (-1136))) (-14 *6 (-619 (-1136))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1245 *5 *6 *7)) (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136))))) (-2888 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1245 *5 *6 *7)) (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136))))))
-(-10 -7 (-15 -2888 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2888 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112))) (-15 -2888 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)))) (-15 -1343 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-1013 |#1| |#2|))) (-15 -1343 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -1343 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -1343 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -1343 ((-619 (-2 (|:| -3117 (-1132 |#1|)) (|:| -3220 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3412 ((-619 (-619 (-993 (-398 |#1|)))) (-1013 |#1| |#2|))) (-15 -3412 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -3412 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -3412 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -3412 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)))) (-15 -2575 ((-619 (-619 (-993 (-398 |#1|)))) (-1013 |#1| |#2|))) (-15 -2575 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2575 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -2575 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)))) (-15 -3299 ((-619 (-1107 |#1| (-519 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) (-1013 |#1| |#2|))) (-15 -2838 ((-754 |#1| (-834 |#3|)) (-754 |#1| (-834 |#2|)))) (-15 -2838 ((-921 (-993 (-398 |#1|))) (-921 |#1|))) (-15 -2838 ((-921 (-993 (-398 |#1|))) (-754 |#1| (-834 |#3|)))) (-15 -2838 ((-1132 (-993 (-398 |#1|))) (-1132 |#1|))) (-15 -2838 ((-619 (-754 |#1| (-834 |#3|))) (-1107 |#1| (-519 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|))))))
-((-2103 (((-3 (-1219 (-398 (-547))) "failed") (-1219 |#1|) |#1|) 21)) (-3512 (((-112) (-1219 |#1|)) 12)) (-3162 (((-3 (-1219 (-547)) "failed") (-1219 |#1|)) 16)))
-(((-1246 |#1|) (-10 -7 (-15 -3512 ((-112) (-1219 |#1|))) (-15 -3162 ((-3 (-1219 (-547)) "failed") (-1219 |#1|))) (-15 -2103 ((-3 (-1219 (-398 (-547))) "failed") (-1219 |#1|) |#1|))) (-615 (-547))) (T -1246))
-((-2103 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1219 *4)) (-4 *4 (-615 (-547))) (-5 *2 (-1219 (-398 (-547)))) (-5 *1 (-1246 *4)))) (-3162 (*1 *2 *3) (|partial| -12 (-5 *3 (-1219 *4)) (-4 *4 (-615 (-547))) (-5 *2 (-1219 (-547))) (-5 *1 (-1246 *4)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-1219 *4)) (-4 *4 (-615 (-547))) (-5 *2 (-112)) (-5 *1 (-1246 *4)))))
-(-10 -7 (-15 -3512 ((-112) (-1219 |#1|))) (-15 -3162 ((-3 (-1219 (-547)) "failed") (-1219 |#1|))) (-15 -2103 ((-3 (-1219 (-398 (-547))) "failed") (-1219 |#1|) |#1|)))
-((-3826 (((-112) $ $) NIL)) (-1499 (((-112) $) 11)) (-3672 (((-3 $ "failed") $ $) NIL)) (-3608 (((-745)) 8)) (-1948 (($) NIL T CONST)) (-3855 (((-3 $ "failed") $) 43)) (-3232 (($) 36)) (-2261 (((-112) $) NIL)) (-3477 (((-3 $ "failed") $) 29)) (-2402 (((-890) $) 15)) (-1466 (((-1119) $) NIL)) (-3054 (($) 25 T CONST)) (-3487 (($ (-890)) 37)) (-3979 (((-1082) $) NIL)) (-2838 (((-547) $) 13)) (-3838 (((-832) $) 22) (($ (-547)) 19)) (-2736 (((-745)) 9)) (-3269 (($) 23 T CONST)) (-3281 (($) 24 T CONST)) (-2381 (((-112) $ $) 27)) (-2493 (($ $) 38) (($ $ $) 35)) (-2479 (($ $ $) 26)) (** (($ $ (-890)) NIL) (($ $ (-745)) 40)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 32) (($ $ $) 31)))
-(((-1247 |#1|) (-13 (-169) (-359) (-592 (-547)) (-1112)) (-890)) (T -1247))
-NIL
-(-13 (-169) (-359) (-592 (-547)) (-1112))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3162922 3162927 3162932 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3162907 3162912 3162917 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3162892 3162897 3162902 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3162877 3162882 3162887 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1247 3162053 3162752 3162829 "ZMOD" 3162834 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1246 3161163 3161327 3161536 "ZLINDEP" 3161885 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1245 3150539 3152291 3154250 "ZDSOLVE" 3159305 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1244 3149785 3149926 3150115 "YSTREAM" 3150385 NIL YSTREAM (NIL T) -7 NIL NIL) (-1243 3147596 3149086 3149290 "XRPOLY" 3149628 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1242 3144088 3145371 3145955 "XPR" 3147059 NIL XPR (NIL T T) -8 NIL NIL) (-1241 3141844 3143419 3143623 "XPOLY" 3143919 NIL XPOLY (NIL T) -8 NIL NIL) (-1240 3139693 3141027 3141082 "XPOLYC" 3141370 NIL XPOLYC (NIL T T) -9 NIL 3141483) (-1239 3136111 3138210 3138598 "XPBWPOLY" 3139351 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1238 3132096 3134344 3134386 "XF" 3135007 NIL XF (NIL T) -9 NIL 3135407) (-1237 3131717 3131805 3131974 "XF-" 3131979 NIL XF- (NIL T T) -8 NIL NIL) (-1236 3127109 3128364 3128419 "XFALG" 3130591 NIL XFALG (NIL T T) -9 NIL 3131380) (-1235 3126242 3126346 3126551 "XEXPPKG" 3127001 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1234 3124386 3126092 3126188 "XDPOLY" 3126193 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1233 3123302 3123868 3123911 "XALG" 3123974 NIL XALG (NIL T) -9 NIL 3124094) (-1232 3116771 3121279 3121773 "WUTSET" 3122894 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1231 3114622 3115383 3115736 "WP" 3116552 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1230 3114268 3114444 3114514 "WHILEAST" 3114574 T WHILEAST (NIL) -8 NIL NIL) (-1229 3113784 3113985 3114079 "WHEREAST" 3114196 T WHEREAST (NIL) -8 NIL NIL) (-1228 3112670 3112868 3113163 "WFFINTBS" 3113581 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1227 3110574 3111001 3111463 "WEIER" 3112242 NIL WEIER (NIL T) -7 NIL NIL) (-1226 3109721 3110145 3110187 "VSPACE" 3110323 NIL VSPACE (NIL T) -9 NIL 3110397) (-1225 3109559 3109586 3109677 "VSPACE-" 3109682 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1224 3109305 3109348 3109419 "VOID" 3109510 T VOID (NIL) -8 NIL NIL) (-1223 3107441 3107800 3108206 "VIEW" 3108921 T VIEW (NIL) -7 NIL NIL) (-1222 3103866 3104504 3105241 "VIEWDEF" 3106726 T VIEWDEF (NIL) -7 NIL NIL) (-1221 3093204 3095414 3097587 "VIEW3D" 3101715 T VIEW3D (NIL) -8 NIL NIL) (-1220 3085486 3087115 3088694 "VIEW2D" 3091647 T VIEW2D (NIL) -8 NIL NIL) (-1219 3080890 3085256 3085348 "VECTOR" 3085429 NIL VECTOR (NIL T) -8 NIL NIL) (-1218 3079467 3079726 3080044 "VECTOR2" 3080620 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1217 3072994 3077251 3077294 "VECTCAT" 3078287 NIL VECTCAT (NIL T) -9 NIL 3078873) (-1216 3072008 3072262 3072652 "VECTCAT-" 3072657 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1215 3071489 3071659 3071779 "VARIABLE" 3071923 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1214 3071422 3071427 3071457 "UTYPE" 3071462 T UTYPE (NIL) -9 NIL NIL) (-1213 3070252 3070406 3070668 "UTSODETL" 3071248 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1212 3067692 3068152 3068676 "UTSODE" 3069793 NIL UTSODE (NIL T T) -7 NIL NIL) (-1211 3059568 3065318 3065807 "UTS" 3067261 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1210 3050941 3056260 3056303 "UTSCAT" 3057415 NIL UTSCAT (NIL T) -9 NIL 3058172) (-1209 3048295 3049011 3050000 "UTSCAT-" 3050005 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1208 3047922 3047965 3048098 "UTS2" 3048246 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1207 3042197 3044762 3044805 "URAGG" 3046875 NIL URAGG (NIL T) -9 NIL 3047597) (-1206 3039136 3039999 3041122 "URAGG-" 3041127 NIL URAGG- (NIL T T) -8 NIL NIL) (-1205 3034860 3037750 3038222 "UPXSSING" 3038800 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1204 3026830 3033975 3034257 "UPXS" 3034636 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1203 3019943 3026734 3026806 "UPXSCONS" 3026811 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1202 3010301 3017046 3017108 "UPXSCCA" 3017764 NIL UPXSCCA (NIL T T) -9 NIL 3018006) (-1201 3009939 3010024 3010198 "UPXSCCA-" 3010203 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1200 3000223 3006741 3006784 "UPXSCAT" 3007432 NIL UPXSCAT (NIL T) -9 NIL 3008040) (-1199 2999653 2999732 2999911 "UPXS2" 3000138 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1198 2998307 2998560 2998911 "UPSQFREE" 2999396 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1197 2992225 2995234 2995289 "UPSCAT" 2996450 NIL UPSCAT (NIL T T) -9 NIL 2997224) (-1196 2991429 2991636 2991963 "UPSCAT-" 2991968 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1195 2977520 2985516 2985559 "UPOLYC" 2987660 NIL UPOLYC (NIL T) -9 NIL 2988881) (-1194 2968849 2971274 2974421 "UPOLYC-" 2974426 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1193 2968476 2968519 2968652 "UPOLYC2" 2968800 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1192 2959933 2968042 2968180 "UP" 2968386 NIL UP (NIL NIL T) -8 NIL NIL) (-1191 2959272 2959379 2959543 "UPMP" 2959822 NIL UPMP (NIL T T) -7 NIL NIL) (-1190 2958825 2958906 2959045 "UPDIVP" 2959185 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1189 2957393 2957642 2957958 "UPDECOMP" 2958574 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1188 2956628 2956740 2956925 "UPCDEN" 2957277 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1187 2956147 2956216 2956365 "UP2" 2956553 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1186 2954664 2955351 2955628 "UNISEG" 2955905 NIL UNISEG (NIL T) -8 NIL NIL) (-1185 2953879 2954006 2954211 "UNISEG2" 2954507 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1184 2952939 2953119 2953345 "UNIFACT" 2953695 NIL UNIFACT (NIL T) -7 NIL NIL) (-1183 2936908 2952116 2952367 "ULS" 2952746 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1182 2924950 2936812 2936884 "ULSCONS" 2936889 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1181 2907754 2919689 2919751 "ULSCCAT" 2920471 NIL ULSCCAT (NIL T T) -9 NIL 2920768) (-1180 2906804 2907049 2907437 "ULSCCAT-" 2907442 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1179 2896865 2903297 2903340 "ULSCAT" 2904203 NIL ULSCAT (NIL T) -9 NIL 2904933) (-1178 2896295 2896374 2896553 "ULS2" 2896780 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1177 2894733 2895656 2895686 "UFD" 2895898 T UFD (NIL) -9 NIL 2896012) (-1176 2894527 2894573 2894668 "UFD-" 2894673 NIL UFD- (NIL T) -8 NIL NIL) (-1175 2893609 2893792 2894008 "UDVO" 2894333 T UDVO (NIL) -7 NIL NIL) (-1174 2891425 2891834 2892305 "UDPO" 2893173 NIL UDPO (NIL T) -7 NIL NIL) (-1173 2891358 2891363 2891393 "TYPE" 2891398 T TYPE (NIL) -9 NIL NIL) (-1172 2891012 2891180 2891250 "TYPEAST" 2891310 T TYPEAST (NIL) -8 NIL NIL) (-1171 2889983 2890185 2890425 "TWOFACT" 2890806 NIL TWOFACT (NIL T) -7 NIL NIL) (-1170 2888921 2889258 2889521 "TUPLE" 2889755 NIL TUPLE (NIL T) -8 NIL NIL) (-1169 2886612 2887131 2887670 "TUBETOOL" 2888404 T TUBETOOL (NIL) -7 NIL NIL) (-1168 2885461 2885666 2885907 "TUBE" 2886405 NIL TUBE (NIL T) -8 NIL NIL) (-1167 2880225 2884433 2884716 "TS" 2885213 NIL TS (NIL T) -8 NIL NIL) (-1166 2868892 2872984 2873081 "TSETCAT" 2878350 NIL TSETCAT (NIL T T T T) -9 NIL 2879881) (-1165 2863626 2865224 2867115 "TSETCAT-" 2867120 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1164 2857889 2858735 2859677 "TRMANIP" 2862762 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1163 2857330 2857393 2857556 "TRIMAT" 2857821 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1162 2855126 2855363 2855727 "TRIGMNIP" 2857079 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1161 2854646 2854759 2854789 "TRIGCAT" 2855002 T TRIGCAT (NIL) -9 NIL NIL) (-1160 2854315 2854394 2854535 "TRIGCAT-" 2854540 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1159 2851214 2853175 2853455 "TREE" 2854070 NIL TREE (NIL T) -8 NIL NIL) (-1158 2850488 2851016 2851046 "TRANFUN" 2851081 T TRANFUN (NIL) -9 NIL 2851147) (-1157 2849767 2849958 2850238 "TRANFUN-" 2850243 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1156 2849571 2849603 2849664 "TOPSP" 2849728 T TOPSP (NIL) -7 NIL NIL) (-1155 2848919 2849034 2849188 "TOOLSIGN" 2849452 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1154 2847580 2848096 2848335 "TEXTFILE" 2848702 T TEXTFILE (NIL) -8 NIL NIL) (-1153 2845445 2845959 2846397 "TEX" 2847164 T TEX (NIL) -8 NIL NIL) (-1152 2845226 2845257 2845329 "TEX1" 2845408 NIL TEX1 (NIL T) -7 NIL NIL) (-1151 2844874 2844937 2845027 "TEMUTL" 2845158 T TEMUTL (NIL) -7 NIL NIL) (-1150 2843028 2843308 2843633 "TBCMPPK" 2844597 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1149 2834916 2841188 2841244 "TBAGG" 2841644 NIL TBAGG (NIL T T) -9 NIL 2841855) (-1148 2829986 2831474 2833228 "TBAGG-" 2833233 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1147 2829370 2829477 2829622 "TANEXP" 2829875 NIL TANEXP (NIL T) -7 NIL NIL) (-1146 2822871 2829227 2829320 "TABLE" 2829325 NIL TABLE (NIL T T) -8 NIL NIL) (-1145 2822283 2822382 2822520 "TABLEAU" 2822768 NIL TABLEAU (NIL T) -8 NIL NIL) (-1144 2816891 2818111 2819359 "TABLBUMP" 2821069 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1143 2816319 2816419 2816547 "SYSTEM" 2816785 T SYSTEM (NIL) -7 NIL NIL) (-1142 2812782 2813477 2814260 "SYSSOLP" 2815570 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1141 2809073 2809781 2810515 "SYNTAX" 2812070 T SYNTAX (NIL) -8 NIL NIL) (-1140 2806231 2806833 2807465 "SYMTAB" 2808463 T SYMTAB (NIL) -8 NIL NIL) (-1139 2801480 2802382 2803365 "SYMS" 2805270 T SYMS (NIL) -8 NIL NIL) (-1138 2798752 2800938 2801168 "SYMPOLY" 2801285 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1137 2798269 2798344 2798467 "SYMFUNC" 2798664 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1136 2794246 2795506 2796328 "SYMBOL" 2797469 T SYMBOL (NIL) -8 NIL NIL) (-1135 2787785 2789474 2791194 "SWITCH" 2792548 T SWITCH (NIL) -8 NIL NIL) (-1134 2781055 2786606 2786909 "SUTS" 2787540 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1133 2773024 2780170 2780452 "SUPXS" 2780831 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1132 2764553 2772642 2772768 "SUP" 2772933 NIL SUP (NIL T) -8 NIL NIL) (-1131 2763712 2763839 2764056 "SUPFRACF" 2764421 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1130 2763333 2763392 2763505 "SUP2" 2763647 NIL SUP2 (NIL T T) -7 NIL NIL) (-1129 2761746 2762020 2762383 "SUMRF" 2763032 NIL SUMRF (NIL T) -7 NIL NIL) (-1128 2761060 2761126 2761325 "SUMFS" 2761667 NIL SUMFS (NIL T T) -7 NIL NIL) (-1127 2745069 2760237 2760488 "SULS" 2760867 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1126 2744391 2744594 2744734 "SUCH" 2744977 NIL SUCH (NIL T T) -8 NIL NIL) (-1125 2738285 2739297 2740256 "SUBSPACE" 2743479 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1124 2737715 2737805 2737969 "SUBRESP" 2738173 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1123 2731084 2732380 2733691 "STTF" 2736451 NIL STTF (NIL T) -7 NIL NIL) (-1122 2725257 2726377 2727524 "STTFNC" 2729984 NIL STTFNC (NIL T) -7 NIL NIL) (-1121 2716572 2718439 2720233 "STTAYLOR" 2723498 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1120 2709816 2716436 2716519 "STRTBL" 2716524 NIL STRTBL (NIL T) -8 NIL NIL) (-1119 2705207 2709771 2709802 "STRING" 2709807 T STRING (NIL) -8 NIL NIL) (-1118 2700095 2704580 2704610 "STRICAT" 2704669 T STRICAT (NIL) -9 NIL 2704731) (-1117 2692808 2697618 2698238 "STREAM" 2699510 NIL STREAM (NIL T) -8 NIL NIL) (-1116 2692318 2692395 2692539 "STREAM3" 2692725 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1115 2691300 2691483 2691718 "STREAM2" 2692131 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1114 2690988 2691040 2691133 "STREAM1" 2691242 NIL STREAM1 (NIL T) -7 NIL NIL) (-1113 2690004 2690185 2690416 "STINPROD" 2690804 NIL STINPROD (NIL T) -7 NIL NIL) (-1112 2689582 2689766 2689796 "STEP" 2689876 T STEP (NIL) -9 NIL 2689954) (-1111 2683125 2689481 2689558 "STBL" 2689563 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1110 2678300 2682347 2682390 "STAGG" 2682543 NIL STAGG (NIL T) -9 NIL 2682632) (-1109 2676002 2676604 2677476 "STAGG-" 2677481 NIL STAGG- (NIL T T) -8 NIL NIL) (-1108 2674197 2675772 2675864 "STACK" 2675945 NIL STACK (NIL T) -8 NIL NIL) (-1107 2666922 2672338 2672794 "SREGSET" 2673827 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1106 2659348 2660716 2662229 "SRDCMPK" 2665528 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1105 2652315 2656788 2656818 "SRAGG" 2658121 T SRAGG (NIL) -9 NIL 2658729) (-1104 2651332 2651587 2651966 "SRAGG-" 2651971 NIL SRAGG- (NIL T) -8 NIL NIL) (-1103 2645818 2650247 2650675 "SQMATRIX" 2650951 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1102 2639570 2642538 2643264 "SPLTREE" 2645164 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1101 2635560 2636226 2636872 "SPLNODE" 2638996 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1100 2634607 2634840 2634870 "SPFCAT" 2635314 T SPFCAT (NIL) -9 NIL NIL) (-1099 2633344 2633554 2633818 "SPECOUT" 2634365 T SPECOUT (NIL) -7 NIL NIL) (-1098 2630900 2631728 2631758 "SPADXPT" 2632517 T SPADXPT (NIL) -9 NIL 2633233) (-1097 2630661 2630701 2630770 "SPADPRSR" 2630853 T SPADPRSR (NIL) -7 NIL NIL) (-1096 2622632 2624379 2624422 "SPACEC" 2628795 NIL SPACEC (NIL T) -9 NIL 2630611) (-1095 2620803 2622564 2622613 "SPACE3" 2622618 NIL SPACE3 (NIL T) -8 NIL NIL) (-1094 2619555 2619726 2620017 "SORTPAK" 2620608 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1093 2617605 2617908 2618327 "SOLVETRA" 2619219 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1092 2616616 2616838 2617112 "SOLVESER" 2617378 NIL SOLVESER (NIL T) -7 NIL NIL) (-1091 2611836 2612717 2613719 "SOLVERAD" 2615668 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1090 2607651 2608260 2608989 "SOLVEFOR" 2611203 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1089 2601948 2607000 2607097 "SNTSCAT" 2607102 NIL SNTSCAT (NIL T T T T) -9 NIL 2607172) (-1088 2596091 2600271 2600662 "SMTS" 2601638 NIL SMTS (NIL T T T) -8 NIL NIL) (-1087 2590541 2595979 2596056 "SMP" 2596061 NIL SMP (NIL T T) -8 NIL NIL) (-1086 2588700 2589001 2589399 "SMITH" 2590238 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1085 2581683 2585838 2585941 "SMATCAT" 2587292 NIL SMATCAT (NIL NIL T T T) -9 NIL 2587842) (-1084 2578623 2579446 2580624 "SMATCAT-" 2580629 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1083 2576336 2577859 2577902 "SKAGG" 2578163 NIL SKAGG (NIL T) -9 NIL 2578298) (-1082 2572452 2575440 2575718 "SINT" 2576080 T SINT (NIL) -8 NIL NIL) (-1081 2572224 2572262 2572328 "SIMPAN" 2572408 T SIMPAN (NIL) -7 NIL NIL) (-1080 2571531 2571759 2571899 "SIG" 2572106 T SIG (NIL) -8 NIL NIL) (-1079 2570369 2570590 2570865 "SIGNRF" 2571290 NIL SIGNRF (NIL T) -7 NIL NIL) (-1078 2569174 2569325 2569616 "SIGNEF" 2570198 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1077 2566864 2567318 2567824 "SHP" 2568715 NIL SHP (NIL T NIL) -7 NIL NIL) (-1076 2560770 2566765 2566841 "SHDP" 2566846 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1075 2560369 2560535 2560565 "SGROUP" 2560658 T SGROUP (NIL) -9 NIL 2560720) (-1074 2560227 2560253 2560326 "SGROUP-" 2560331 NIL SGROUP- (NIL T) -8 NIL NIL) (-1073 2557063 2557760 2558483 "SGCF" 2559526 T SGCF (NIL) -7 NIL NIL) (-1072 2551458 2556510 2556607 "SFRTCAT" 2556612 NIL SFRTCAT (NIL T T T T) -9 NIL 2556651) (-1071 2544882 2545897 2547033 "SFRGCD" 2550441 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1070 2538010 2539081 2540267 "SFQCMPK" 2543815 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1069 2537632 2537721 2537831 "SFORT" 2537951 NIL SFORT (NIL T T) -8 NIL NIL) (-1068 2536777 2537472 2537593 "SEXOF" 2537598 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1067 2535911 2536658 2536726 "SEX" 2536731 T SEX (NIL) -8 NIL NIL) (-1066 2530687 2531376 2531471 "SEXCAT" 2535242 NIL SEXCAT (NIL T T T T T) -9 NIL 2535861) (-1065 2527867 2530621 2530669 "SET" 2530674 NIL SET (NIL T) -8 NIL NIL) (-1064 2526118 2526580 2526885 "SETMN" 2527608 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1063 2525724 2525850 2525880 "SETCAT" 2525997 T SETCAT (NIL) -9 NIL 2526082) (-1062 2525504 2525556 2525655 "SETCAT-" 2525660 NIL SETCAT- (NIL T) -8 NIL NIL) (-1061 2521891 2523965 2524008 "SETAGG" 2524878 NIL SETAGG (NIL T) -9 NIL 2525218) (-1060 2521349 2521465 2521702 "SETAGG-" 2521707 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1059 2520553 2520846 2520907 "SEGXCAT" 2521193 NIL SEGXCAT (NIL T T) -9 NIL 2521313) (-1058 2519609 2520219 2520401 "SEG" 2520406 NIL SEG (NIL T) -8 NIL NIL) (-1057 2518516 2518729 2518772 "SEGCAT" 2519354 NIL SEGCAT (NIL T) -9 NIL 2519592) (-1056 2517565 2517895 2518095 "SEGBIND" 2518351 NIL SEGBIND (NIL T) -8 NIL NIL) (-1055 2517186 2517245 2517358 "SEGBIND2" 2517500 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1054 2516804 2516987 2517064 "SEGAST" 2517131 T SEGAST (NIL) -8 NIL NIL) (-1053 2516023 2516149 2516353 "SEG2" 2516648 NIL SEG2 (NIL T T) -7 NIL NIL) (-1052 2515460 2515958 2516005 "SDVAR" 2516010 NIL SDVAR (NIL T) -8 NIL NIL) (-1051 2507750 2515230 2515360 "SDPOL" 2515365 NIL SDPOL (NIL T) -8 NIL NIL) (-1050 2506343 2506609 2506928 "SCPKG" 2507465 NIL SCPKG (NIL T) -7 NIL NIL) (-1049 2505479 2505659 2505859 "SCOPE" 2506165 T SCOPE (NIL) -8 NIL NIL) (-1048 2504700 2504833 2505012 "SCACHE" 2505334 NIL SCACHE (NIL T) -7 NIL NIL) (-1047 2504426 2504569 2504599 "SASTCAT" 2504604 T SASTCAT (NIL) -9 NIL 2504617) (-1046 2504215 2504260 2504358 "SASTCAT-" 2504363 NIL SASTCAT- (NIL T) -8 NIL NIL) (-1045 2503654 2503975 2504060 "SAOS" 2504152 T SAOS (NIL) -8 NIL NIL) (-1044 2503219 2503254 2503427 "SAERFFC" 2503613 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1043 2497193 2503116 2503196 "SAE" 2503201 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1042 2496786 2496821 2496980 "SAEFACT" 2497152 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1041 2495107 2495421 2495822 "RURPK" 2496452 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1040 2493743 2494022 2494334 "RULESET" 2494941 NIL RULESET (NIL T T T) -8 NIL NIL) (-1039 2490930 2491433 2491898 "RULE" 2493424 NIL RULE (NIL T T T) -8 NIL NIL) (-1038 2490569 2490724 2490807 "RULECOLD" 2490882 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1037 2485418 2486212 2487132 "RSETGCD" 2489768 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1036 2474675 2479727 2479824 "RSETCAT" 2483943 NIL RSETCAT (NIL T T T T) -9 NIL 2485040) (-1035 2472602 2473141 2473965 "RSETCAT-" 2473970 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1034 2464989 2466364 2467884 "RSDCMPK" 2471201 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1033 2462994 2463435 2463509 "RRCC" 2464595 NIL RRCC (NIL T T) -9 NIL 2464939) (-1032 2462345 2462519 2462798 "RRCC-" 2462803 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1031 2461832 2462041 2462142 "RPTAST" 2462266 T RPTAST (NIL) -8 NIL NIL) (-1030 2436060 2445645 2445712 "RPOLCAT" 2456376 NIL RPOLCAT (NIL T T T) -9 NIL 2459535) (-1029 2427560 2429898 2433020 "RPOLCAT-" 2433025 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1028 2418607 2425771 2426253 "ROUTINE" 2427100 T ROUTINE (NIL) -8 NIL NIL) (-1027 2415365 2418158 2418307 "ROMAN" 2418480 T ROMAN (NIL) -8 NIL NIL) (-1026 2413640 2414225 2414485 "ROIRC" 2415170 NIL ROIRC (NIL T T) -8 NIL NIL) (-1025 2410091 2412330 2412360 "RNS" 2412664 T RNS (NIL) -9 NIL 2412936) (-1024 2408600 2408983 2409517 "RNS-" 2409592 NIL RNS- (NIL T) -8 NIL NIL) (-1023 2408049 2408431 2408461 "RNG" 2408466 T RNG (NIL) -9 NIL 2408487) (-1022 2407441 2407803 2407846 "RMODULE" 2407908 NIL RMODULE (NIL T) -9 NIL 2407950) (-1021 2406277 2406371 2406707 "RMCAT2" 2407342 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1020 2402982 2405451 2405776 "RMATRIX" 2406011 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1019 2395924 2398158 2398273 "RMATCAT" 2401632 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2402614) (-1018 2395299 2395446 2395753 "RMATCAT-" 2395758 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1017 2394866 2394941 2395069 "RINTERP" 2395218 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1016 2393954 2394474 2394504 "RING" 2394616 T RING (NIL) -9 NIL 2394711) (-1015 2393746 2393790 2393887 "RING-" 2393892 NIL RING- (NIL T) -8 NIL NIL) (-1014 2392587 2392824 2393082 "RIDIST" 2393510 T RIDIST (NIL) -7 NIL NIL) (-1013 2383903 2392055 2392261 "RGCHAIN" 2392435 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1012 2380897 2381511 2382181 "RF" 2383267 NIL RF (NIL T) -7 NIL NIL) (-1011 2380543 2380606 2380709 "RFFACTOR" 2380828 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1010 2380268 2380303 2380400 "RFFACT" 2380502 NIL RFFACT (NIL T) -7 NIL NIL) (-1009 2378385 2378749 2379131 "RFDIST" 2379908 T RFDIST (NIL) -7 NIL NIL) (-1008 2377838 2377930 2378093 "RETSOL" 2378287 NIL RETSOL (NIL T T) -7 NIL NIL) (-1007 2377426 2377506 2377549 "RETRACT" 2377742 NIL RETRACT (NIL T) -9 NIL NIL) (-1006 2377275 2377300 2377387 "RETRACT-" 2377392 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1005 2376921 2377097 2377167 "RETAST" 2377227 T RETAST (NIL) -8 NIL NIL) (-1004 2369775 2376574 2376701 "RESULT" 2376816 T RESULT (NIL) -8 NIL NIL) (-1003 2368401 2369044 2369243 "RESRING" 2369678 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1002 2368037 2368086 2368184 "RESLATC" 2368338 NIL RESLATC (NIL T) -7 NIL NIL) (-1001 2367743 2367777 2367884 "REPSQ" 2367996 NIL REPSQ (NIL T) -7 NIL NIL) (-1000 2365165 2365745 2366347 "REP" 2367163 T REP (NIL) -7 NIL NIL) (-999 2364866 2364900 2365009 "REPDB" 2365124 NIL REPDB (NIL T) -7 NIL NIL) (-998 2358794 2360173 2361394 "REP2" 2363678 NIL REP2 (NIL T) -7 NIL NIL) (-997 2355186 2355867 2356673 "REP1" 2358021 NIL REP1 (NIL T) -7 NIL NIL) (-996 2347924 2353339 2353793 "REGSET" 2354816 NIL REGSET (NIL T T T T) -8 NIL NIL) (-995 2346745 2347080 2347328 "REF" 2347709 NIL REF (NIL T) -8 NIL NIL) (-994 2346126 2346229 2346394 "REDORDER" 2346629 NIL REDORDER (NIL T T) -7 NIL NIL) (-993 2342146 2345354 2345577 "RECLOS" 2345955 NIL RECLOS (NIL T) -8 NIL NIL) (-992 2341203 2341384 2341597 "REALSOLV" 2341953 T REALSOLV (NIL) -7 NIL NIL) (-991 2341051 2341092 2341120 "REAL" 2341125 T REAL (NIL) -9 NIL 2341160) (-990 2337542 2338344 2339226 "REAL0Q" 2340216 NIL REAL0Q (NIL T) -7 NIL NIL) (-989 2333153 2334141 2335200 "REAL0" 2336523 NIL REAL0 (NIL T) -7 NIL NIL) (-988 2332673 2332874 2332966 "RDUCEAST" 2333081 T RDUCEAST (NIL) -8 NIL NIL) (-987 2332081 2332153 2332358 "RDIV" 2332595 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-986 2331154 2331328 2331539 "RDIST" 2331903 NIL RDIST (NIL T) -7 NIL NIL) (-985 2329755 2330042 2330412 "RDETRS" 2330862 NIL RDETRS (NIL T T) -7 NIL NIL) (-984 2327572 2328026 2328562 "RDETR" 2329297 NIL RDETR (NIL T T) -7 NIL NIL) (-983 2326186 2326464 2326866 "RDEEFS" 2327288 NIL RDEEFS (NIL T T) -7 NIL NIL) (-982 2324684 2324990 2325420 "RDEEF" 2325874 NIL RDEEF (NIL T T) -7 NIL NIL) (-981 2319021 2321892 2321920 "RCFIELD" 2323197 T RCFIELD (NIL) -9 NIL 2323927) (-980 2317090 2317594 2318287 "RCFIELD-" 2318360 NIL RCFIELD- (NIL T) -8 NIL NIL) (-979 2313421 2315206 2315247 "RCAGG" 2316318 NIL RCAGG (NIL T) -9 NIL 2316783) (-978 2313052 2313146 2313306 "RCAGG-" 2313311 NIL RCAGG- (NIL T T) -8 NIL NIL) (-977 2312392 2312504 2312667 "RATRET" 2312936 NIL RATRET (NIL T) -7 NIL NIL) (-976 2311949 2312016 2312135 "RATFACT" 2312320 NIL RATFACT (NIL T) -7 NIL NIL) (-975 2311264 2311384 2311534 "RANDSRC" 2311819 T RANDSRC (NIL) -7 NIL NIL) (-974 2311001 2311045 2311116 "RADUTIL" 2311213 T RADUTIL (NIL) -7 NIL NIL) (-973 2304066 2309744 2310061 "RADIX" 2310716 NIL RADIX (NIL NIL) -8 NIL NIL) (-972 2295722 2303910 2304038 "RADFF" 2304043 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-971 2295374 2295449 2295477 "RADCAT" 2295634 T RADCAT (NIL) -9 NIL NIL) (-970 2295159 2295207 2295304 "RADCAT-" 2295309 NIL RADCAT- (NIL T) -8 NIL NIL) (-969 2293310 2294934 2295023 "QUEUE" 2295103 NIL QUEUE (NIL T) -8 NIL NIL) (-968 2289886 2293247 2293292 "QUAT" 2293297 NIL QUAT (NIL T) -8 NIL NIL) (-967 2289524 2289567 2289694 "QUATCT2" 2289837 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-966 2283384 2286685 2286725 "QUATCAT" 2287505 NIL QUATCAT (NIL T) -9 NIL 2288271) (-965 2279528 2280565 2281952 "QUATCAT-" 2282046 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-964 2277048 2278612 2278653 "QUAGG" 2279028 NIL QUAGG (NIL T) -9 NIL 2279203) (-963 2276697 2276873 2276941 "QQUTAST" 2277000 T QQUTAST (NIL) -8 NIL NIL) (-962 2275622 2276095 2276267 "QFORM" 2276569 NIL QFORM (NIL NIL T) -8 NIL NIL) (-961 2266955 2272158 2272198 "QFCAT" 2272856 NIL QFCAT (NIL T) -9 NIL 2273855) (-960 2262527 2263728 2265319 "QFCAT-" 2265413 NIL QFCAT- (NIL T T) -8 NIL NIL) (-959 2262165 2262208 2262335 "QFCAT2" 2262478 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-958 2261625 2261735 2261865 "QEQUAT" 2262055 T QEQUAT (NIL) -8 NIL NIL) (-957 2254773 2255844 2257028 "QCMPACK" 2260558 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-956 2252349 2252770 2253198 "QALGSET" 2254428 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-955 2251594 2251768 2252000 "QALGSET2" 2252169 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-954 2250285 2250508 2250825 "PWFFINTB" 2251367 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-953 2248467 2248635 2248989 "PUSHVAR" 2250099 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-952 2244385 2245439 2245480 "PTRANFN" 2247364 NIL PTRANFN (NIL T) -9 NIL NIL) (-951 2242787 2243078 2243400 "PTPACK" 2244096 NIL PTPACK (NIL T) -7 NIL NIL) (-950 2242419 2242476 2242585 "PTFUNC2" 2242724 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-949 2236885 2241230 2241271 "PTCAT" 2241644 NIL PTCAT (NIL T) -9 NIL 2241806) (-948 2236543 2236578 2236702 "PSQFR" 2236844 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-947 2235138 2235436 2235770 "PSEUDLIN" 2236241 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-946 2221907 2224272 2226596 "PSETPK" 2232898 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-945 2214951 2217665 2217761 "PSETCAT" 2220782 NIL PSETCAT (NIL T T T T) -9 NIL 2221596) (-944 2212787 2213421 2214242 "PSETCAT-" 2214247 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-943 2212136 2212301 2212329 "PSCURVE" 2212597 T PSCURVE (NIL) -9 NIL 2212764) (-942 2208617 2210099 2210164 "PSCAT" 2211008 NIL PSCAT (NIL T T T) -9 NIL 2211248) (-941 2207680 2207896 2208296 "PSCAT-" 2208301 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-940 2206332 2206965 2207179 "PRTITION" 2207486 T PRTITION (NIL) -8 NIL NIL) (-939 2205852 2206053 2206145 "PRTDAST" 2206260 T PRTDAST (NIL) -8 NIL NIL) (-938 2194950 2197156 2199344 "PRS" 2203714 NIL PRS (NIL T T) -7 NIL NIL) (-937 2192808 2194300 2194340 "PRQAGG" 2194523 NIL PRQAGG (NIL T) -9 NIL 2194625) (-936 2192194 2192423 2192451 "PROPLOG" 2192636 T PROPLOG (NIL) -9 NIL 2192758) (-935 2189364 2190008 2190472 "PROPFRML" 2191762 NIL PROPFRML (NIL T) -8 NIL NIL) (-934 2188824 2188934 2189064 "PROPERTY" 2189254 T PROPERTY (NIL) -8 NIL NIL) (-933 2182909 2186990 2187810 "PRODUCT" 2188050 NIL PRODUCT (NIL T T) -8 NIL NIL) (-932 2180222 2182367 2182601 "PR" 2182720 NIL PR (NIL T T) -8 NIL NIL) (-931 2180018 2180050 2180109 "PRINT" 2180183 T PRINT (NIL) -7 NIL NIL) (-930 2179358 2179475 2179627 "PRIMES" 2179898 NIL PRIMES (NIL T) -7 NIL NIL) (-929 2177423 2177824 2178290 "PRIMELT" 2178937 NIL PRIMELT (NIL T) -7 NIL NIL) (-928 2177152 2177201 2177229 "PRIMCAT" 2177353 T PRIMCAT (NIL) -9 NIL NIL) (-927 2173313 2177090 2177135 "PRIMARR" 2177140 NIL PRIMARR (NIL T) -8 NIL NIL) (-926 2172320 2172498 2172726 "PRIMARR2" 2173131 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-925 2171963 2172019 2172130 "PREASSOC" 2172258 NIL PREASSOC (NIL T T) -7 NIL NIL) (-924 2171438 2171571 2171599 "PPCURVE" 2171804 T PPCURVE (NIL) -9 NIL 2171940) (-923 2171060 2171233 2171316 "PORTNUM" 2171375 T PORTNUM (NIL) -8 NIL NIL) (-922 2168419 2168818 2169410 "POLYROOT" 2170641 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-921 2162364 2168023 2168183 "POLY" 2168292 NIL POLY (NIL T) -8 NIL NIL) (-920 2161747 2161805 2162039 "POLYLIFT" 2162300 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-919 2158022 2158471 2159100 "POLYCATQ" 2161292 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-918 2145061 2150417 2150482 "POLYCAT" 2153996 NIL POLYCAT (NIL T T T) -9 NIL 2155924) (-917 2138511 2140372 2142756 "POLYCAT-" 2142761 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-916 2138098 2138166 2138286 "POLY2UP" 2138437 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-915 2137730 2137787 2137896 "POLY2" 2138035 NIL POLY2 (NIL T T) -7 NIL NIL) (-914 2136415 2136654 2136930 "POLUTIL" 2137504 NIL POLUTIL (NIL T T) -7 NIL NIL) (-913 2134770 2135047 2135378 "POLTOPOL" 2136137 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-912 2130288 2134706 2134752 "POINT" 2134757 NIL POINT (NIL T) -8 NIL NIL) (-911 2128475 2128832 2129207 "PNTHEORY" 2129933 T PNTHEORY (NIL) -7 NIL NIL) (-910 2126894 2127191 2127603 "PMTOOLS" 2128173 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-909 2126487 2126565 2126682 "PMSYM" 2126810 NIL PMSYM (NIL T) -7 NIL NIL) (-908 2125997 2126066 2126240 "PMQFCAT" 2126412 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-907 2125352 2125462 2125618 "PMPRED" 2125874 NIL PMPRED (NIL T) -7 NIL NIL) (-906 2124748 2124834 2124995 "PMPREDFS" 2125253 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-905 2123391 2123599 2123984 "PMPLCAT" 2124510 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-904 2122923 2123002 2123154 "PMLSAGG" 2123306 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-903 2122398 2122474 2122655 "PMKERNEL" 2122841 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-902 2122015 2122090 2122203 "PMINS" 2122317 NIL PMINS (NIL T) -7 NIL NIL) (-901 2121443 2121512 2121728 "PMFS" 2121940 NIL PMFS (NIL T T T) -7 NIL NIL) (-900 2120671 2120789 2120994 "PMDOWN" 2121320 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-899 2119834 2119993 2120175 "PMASS" 2120509 T PMASS (NIL) -7 NIL NIL) (-898 2119108 2119219 2119382 "PMASSFS" 2119720 NIL PMASSFS (NIL T T) -7 NIL NIL) (-897 2118763 2118831 2118925 "PLOTTOOL" 2119034 T PLOTTOOL (NIL) -7 NIL NIL) (-896 2113385 2114574 2115722 "PLOT" 2117635 T PLOT (NIL) -8 NIL NIL) (-895 2109199 2110233 2111154 "PLOT3D" 2112484 T PLOT3D (NIL) -8 NIL NIL) (-894 2108111 2108288 2108523 "PLOT1" 2109003 NIL PLOT1 (NIL T) -7 NIL NIL) (-893 2083505 2088177 2093028 "PLEQN" 2103377 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-892 2082823 2082945 2083125 "PINTERP" 2083370 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-891 2082516 2082563 2082666 "PINTERPA" 2082770 NIL PINTERPA (NIL T T) -7 NIL NIL) (-890 2081801 2082322 2082409 "PI" 2082449 T PI (NIL) -8 NIL NIL) (-889 2080233 2081174 2081202 "PID" 2081384 T PID (NIL) -9 NIL 2081518) (-888 2079958 2079995 2080083 "PICOERCE" 2080190 NIL PICOERCE (NIL T) -7 NIL NIL) (-887 2079278 2079417 2079593 "PGROEB" 2079814 NIL PGROEB (NIL T) -7 NIL NIL) (-886 2074865 2075679 2076584 "PGE" 2078393 T PGE (NIL) -7 NIL NIL) (-885 2072989 2073235 2073601 "PGCD" 2074582 NIL PGCD (NIL T T T T) -7 NIL NIL) (-884 2072327 2072430 2072591 "PFRPAC" 2072873 NIL PFRPAC (NIL T) -7 NIL NIL) (-883 2069007 2070875 2071228 "PFR" 2072006 NIL PFR (NIL T) -8 NIL NIL) (-882 2067396 2067640 2067965 "PFOTOOLS" 2068754 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-881 2065929 2066168 2066519 "PFOQ" 2067153 NIL PFOQ (NIL T T T) -7 NIL NIL) (-880 2064402 2064614 2064977 "PFO" 2065713 NIL PFO (NIL T T T T T) -7 NIL NIL) (-879 2060990 2064291 2064360 "PF" 2064365 NIL PF (NIL NIL) -8 NIL NIL) (-878 2058459 2059696 2059724 "PFECAT" 2060309 T PFECAT (NIL) -9 NIL 2060693) (-877 2057904 2058058 2058272 "PFECAT-" 2058277 NIL PFECAT- (NIL T) -8 NIL NIL) (-876 2056508 2056759 2057060 "PFBRU" 2057653 NIL PFBRU (NIL T T) -7 NIL NIL) (-875 2054375 2054726 2055158 "PFBR" 2056159 NIL PFBR (NIL T T T T) -7 NIL NIL) (-874 2050291 2051751 2052427 "PERM" 2053732 NIL PERM (NIL T) -8 NIL NIL) (-873 2045557 2046498 2047368 "PERMGRP" 2049454 NIL PERMGRP (NIL T) -8 NIL NIL) (-872 2043689 2044620 2044661 "PERMCAT" 2045107 NIL PERMCAT (NIL T) -9 NIL 2045412) (-871 2043342 2043383 2043507 "PERMAN" 2043642 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-870 2040782 2042911 2043042 "PENDTREE" 2043244 NIL PENDTREE (NIL T) -8 NIL NIL) (-869 2038895 2039629 2039670 "PDRING" 2040327 NIL PDRING (NIL T) -9 NIL 2040613) (-868 2037998 2038216 2038578 "PDRING-" 2038583 NIL PDRING- (NIL T T) -8 NIL NIL) (-867 2035139 2035890 2036581 "PDEPROB" 2037327 T PDEPROB (NIL) -8 NIL NIL) (-866 2032686 2033188 2033743 "PDEPACK" 2034604 T PDEPACK (NIL) -7 NIL NIL) (-865 2031598 2031788 2032039 "PDECOMP" 2032485 NIL PDECOMP (NIL T T) -7 NIL NIL) (-864 2029203 2030020 2030048 "PDECAT" 2030835 T PDECAT (NIL) -9 NIL 2031548) (-863 2028954 2028987 2029077 "PCOMP" 2029164 NIL PCOMP (NIL T T) -7 NIL NIL) (-862 2027159 2027755 2028052 "PBWLB" 2028683 NIL PBWLB (NIL T) -8 NIL NIL) (-861 2019663 2021232 2022570 "PATTERN" 2025842 NIL PATTERN (NIL T) -8 NIL NIL) (-860 2019295 2019352 2019461 "PATTERN2" 2019600 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-859 2017052 2017440 2017897 "PATTERN1" 2018884 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-858 2014447 2015001 2015482 "PATRES" 2016617 NIL PATRES (NIL T T) -8 NIL NIL) (-857 2014011 2014078 2014210 "PATRES2" 2014374 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-856 2011894 2012299 2012706 "PATMATCH" 2013678 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-855 2011430 2011613 2011654 "PATMAB" 2011761 NIL PATMAB (NIL T) -9 NIL 2011844) (-854 2009975 2010284 2010542 "PATLRES" 2011235 NIL PATLRES (NIL T T T) -8 NIL NIL) (-853 2009521 2009644 2009685 "PATAB" 2009690 NIL PATAB (NIL T) -9 NIL 2009862) (-852 2007002 2007534 2008107 "PARTPERM" 2008968 T PARTPERM (NIL) -7 NIL NIL) (-851 2006623 2006686 2006788 "PARSURF" 2006933 NIL PARSURF (NIL T) -8 NIL NIL) (-850 2006255 2006312 2006421 "PARSU2" 2006560 NIL PARSU2 (NIL T T) -7 NIL NIL) (-849 2006019 2006059 2006126 "PARSER" 2006208 T PARSER (NIL) -7 NIL NIL) (-848 2005640 2005703 2005805 "PARSCURV" 2005950 NIL PARSCURV (NIL T) -8 NIL NIL) (-847 2005272 2005329 2005438 "PARSC2" 2005577 NIL PARSC2 (NIL T T) -7 NIL NIL) (-846 2004911 2004969 2005066 "PARPCURV" 2005208 NIL PARPCURV (NIL T) -8 NIL NIL) (-845 2004543 2004600 2004709 "PARPC2" 2004848 NIL PARPC2 (NIL T T) -7 NIL NIL) (-844 2004063 2004149 2004268 "PAN2EXPR" 2004444 T PAN2EXPR (NIL) -7 NIL NIL) (-843 2002869 2003184 2003412 "PALETTE" 2003855 T PALETTE (NIL) -8 NIL NIL) (-842 2001337 2001874 2002234 "PAIR" 2002555 NIL PAIR (NIL T T) -8 NIL NIL) (-841 1995245 2000596 2000790 "PADICRC" 2001192 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-840 1988511 1994591 1994775 "PADICRAT" 1995093 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-839 1986861 1988448 1988493 "PADIC" 1988498 NIL PADIC (NIL NIL) -8 NIL NIL) (-838 1984106 1985636 1985676 "PADICCT" 1986257 NIL PADICCT (NIL NIL) -9 NIL 1986539) (-837 1983063 1983263 1983531 "PADEPAC" 1983893 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-836 1982275 1982408 1982614 "PADE" 1982925 NIL PADE (NIL T T T) -7 NIL NIL) (-835 1980325 1981111 1981428 "OWP" 1982042 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-834 1979434 1979930 1980102 "OVAR" 1980193 NIL OVAR (NIL NIL) -8 NIL NIL) (-833 1978698 1978819 1978980 "OUT" 1979293 T OUT (NIL) -7 NIL NIL) (-832 1967752 1969923 1972093 "OUTFORM" 1976548 T OUTFORM (NIL) -8 NIL NIL) (-831 1967389 1967472 1967500 "OUTBCON" 1967651 T OUTBCON (NIL) -9 NIL 1967736) (-830 1967229 1967264 1967340 "OUTBCON-" 1967345 NIL OUTBCON- (NIL T) -8 NIL NIL) (-829 1966637 1966958 1967047 "OSI" 1967160 T OSI (NIL) -8 NIL NIL) (-828 1966193 1966505 1966533 "OSGROUP" 1966538 T OSGROUP (NIL) -9 NIL 1966560) (-827 1964938 1965165 1965450 "ORTHPOL" 1965940 NIL ORTHPOL (NIL T) -7 NIL NIL) (-826 1962348 1964597 1964736 "OREUP" 1964881 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-825 1959786 1962039 1962166 "ORESUP" 1962290 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-824 1957314 1957814 1958375 "OREPCTO" 1959275 NIL OREPCTO (NIL T T) -7 NIL NIL) (-823 1951225 1953392 1953433 "OREPCAT" 1955781 NIL OREPCAT (NIL T) -9 NIL 1956885) (-822 1948372 1949154 1950212 "OREPCAT-" 1950217 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-821 1947549 1947821 1947849 "ORDSET" 1948158 T ORDSET (NIL) -9 NIL 1948322) (-820 1947068 1947190 1947383 "ORDSET-" 1947388 NIL ORDSET- (NIL T) -8 NIL NIL) (-819 1945722 1946479 1946507 "ORDRING" 1946709 T ORDRING (NIL) -9 NIL 1946834) (-818 1945367 1945461 1945605 "ORDRING-" 1945610 NIL ORDRING- (NIL T) -8 NIL NIL) (-817 1944773 1945210 1945238 "ORDMON" 1945243 T ORDMON (NIL) -9 NIL 1945264) (-816 1943935 1944082 1944277 "ORDFUNS" 1944622 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-815 1943446 1943805 1943833 "ORDFIN" 1943838 T ORDFIN (NIL) -9 NIL 1943859) (-814 1940038 1942032 1942441 "ORDCOMP" 1943070 NIL ORDCOMP (NIL T) -8 NIL NIL) (-813 1939304 1939431 1939617 "ORDCOMP2" 1939898 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-812 1935811 1936694 1937531 "OPTPROB" 1938487 T OPTPROB (NIL) -8 NIL NIL) (-811 1932613 1933252 1933956 "OPTPACK" 1935127 T OPTPACK (NIL) -7 NIL NIL) (-810 1930326 1931066 1931094 "OPTCAT" 1931913 T OPTCAT (NIL) -9 NIL 1932563) (-809 1930094 1930133 1930199 "OPQUERY" 1930280 T OPQUERY (NIL) -7 NIL NIL) (-808 1927260 1928405 1928909 "OP" 1929623 NIL OP (NIL T) -8 NIL NIL) (-807 1924105 1926057 1926426 "ONECOMP" 1926924 NIL ONECOMP (NIL T) -8 NIL NIL) (-806 1923410 1923525 1923699 "ONECOMP2" 1923977 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-805 1922829 1922935 1923065 "OMSERVER" 1923300 T OMSERVER (NIL) -7 NIL NIL) (-804 1919717 1922269 1922309 "OMSAGG" 1922370 NIL OMSAGG (NIL T) -9 NIL 1922434) (-803 1918340 1918603 1918885 "OMPKG" 1919455 T OMPKG (NIL) -7 NIL NIL) (-802 1917770 1917873 1917901 "OM" 1918200 T OM (NIL) -9 NIL NIL) (-801 1916352 1917319 1917488 "OMLO" 1917651 NIL OMLO (NIL T T) -8 NIL NIL) (-800 1915277 1915424 1915651 "OMEXPR" 1916178 NIL OMEXPR (NIL T) -7 NIL NIL) (-799 1914595 1914823 1914959 "OMERR" 1915161 T OMERR (NIL) -8 NIL NIL) (-798 1913773 1914016 1914176 "OMERRK" 1914455 T OMERRK (NIL) -8 NIL NIL) (-797 1913251 1913450 1913558 "OMENC" 1913685 T OMENC (NIL) -8 NIL NIL) (-796 1907146 1908331 1909502 "OMDEV" 1912100 T OMDEV (NIL) -8 NIL NIL) (-795 1906215 1906386 1906580 "OMCONN" 1906972 T OMCONN (NIL) -8 NIL NIL) (-794 1904871 1905813 1905841 "OINTDOM" 1905846 T OINTDOM (NIL) -9 NIL 1905867) (-793 1900677 1901861 1902577 "OFMONOID" 1904187 NIL OFMONOID (NIL T) -8 NIL NIL) (-792 1900115 1900614 1900659 "ODVAR" 1900664 NIL ODVAR (NIL T) -8 NIL NIL) (-791 1897325 1899612 1899797 "ODR" 1899990 NIL ODR (NIL T T NIL) -8 NIL NIL) (-790 1889669 1897101 1897227 "ODPOL" 1897232 NIL ODPOL (NIL T) -8 NIL NIL) (-789 1883545 1889541 1889646 "ODP" 1889651 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-788 1882311 1882526 1882801 "ODETOOLS" 1883319 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-787 1879280 1879936 1880652 "ODESYS" 1881644 NIL ODESYS (NIL T T) -7 NIL NIL) (-786 1874162 1875070 1876095 "ODERTRIC" 1878355 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-785 1873588 1873670 1873864 "ODERED" 1874074 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-784 1870476 1871024 1871701 "ODERAT" 1873011 NIL ODERAT (NIL T T) -7 NIL NIL) (-783 1867436 1867900 1868497 "ODEPRRIC" 1870005 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-782 1865305 1865874 1866383 "ODEPROB" 1866947 T ODEPROB (NIL) -8 NIL NIL) (-781 1861827 1862310 1862957 "ODEPRIM" 1864784 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-780 1861076 1861178 1861438 "ODEPAL" 1861719 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-779 1857238 1858029 1858893 "ODEPACK" 1860232 T ODEPACK (NIL) -7 NIL NIL) (-778 1856271 1856378 1856607 "ODEINT" 1857127 NIL ODEINT (NIL T T) -7 NIL NIL) (-777 1850372 1851797 1853244 "ODEIFTBL" 1854844 T ODEIFTBL (NIL) -8 NIL NIL) (-776 1845707 1846493 1847452 "ODEEF" 1849531 NIL ODEEF (NIL T T) -7 NIL NIL) (-775 1845042 1845131 1845361 "ODECONST" 1845612 NIL ODECONST (NIL T T T) -7 NIL NIL) (-774 1843193 1843828 1843856 "ODECAT" 1844461 T ODECAT (NIL) -9 NIL 1844992) (-773 1840100 1842905 1843024 "OCT" 1843106 NIL OCT (NIL T) -8 NIL NIL) (-772 1839738 1839781 1839908 "OCTCT2" 1840051 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-771 1834599 1836999 1837039 "OC" 1838136 NIL OC (NIL T) -9 NIL 1838994) (-770 1831826 1832574 1833564 "OC-" 1833658 NIL OC- (NIL T T) -8 NIL NIL) (-769 1831204 1831646 1831674 "OCAMON" 1831679 T OCAMON (NIL) -9 NIL 1831700) (-768 1830761 1831076 1831104 "OASGP" 1831109 T OASGP (NIL) -9 NIL 1831129) (-767 1830048 1830511 1830539 "OAMONS" 1830579 T OAMONS (NIL) -9 NIL 1830622) (-766 1829488 1829895 1829923 "OAMON" 1829928 T OAMON (NIL) -9 NIL 1829948) (-765 1828792 1829284 1829312 "OAGROUP" 1829317 T OAGROUP (NIL) -9 NIL 1829337) (-764 1828482 1828532 1828620 "NUMTUBE" 1828736 NIL NUMTUBE (NIL T) -7 NIL NIL) (-763 1822055 1823573 1825109 "NUMQUAD" 1826966 T NUMQUAD (NIL) -7 NIL NIL) (-762 1817811 1818799 1819824 "NUMODE" 1821050 T NUMODE (NIL) -7 NIL NIL) (-761 1815192 1816046 1816074 "NUMINT" 1816997 T NUMINT (NIL) -9 NIL 1817761) (-760 1814140 1814337 1814555 "NUMFMT" 1814994 T NUMFMT (NIL) -7 NIL NIL) (-759 1800499 1803444 1805976 "NUMERIC" 1811647 NIL NUMERIC (NIL T) -7 NIL NIL) (-758 1794896 1799948 1800043 "NTSCAT" 1800048 NIL NTSCAT (NIL T T T T) -9 NIL 1800087) (-757 1794090 1794255 1794448 "NTPOLFN" 1794735 NIL NTPOLFN (NIL T) -7 NIL NIL) (-756 1781930 1790915 1791727 "NSUP" 1793311 NIL NSUP (NIL T) -8 NIL NIL) (-755 1781562 1781619 1781728 "NSUP2" 1781867 NIL NSUP2 (NIL T T) -7 NIL NIL) (-754 1771559 1781336 1781469 "NSMP" 1781474 NIL NSMP (NIL T T) -8 NIL NIL) (-753 1769991 1770292 1770649 "NREP" 1771247 NIL NREP (NIL T) -7 NIL NIL) (-752 1768582 1768834 1769192 "NPCOEF" 1769734 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-751 1767648 1767763 1767979 "NORMRETR" 1768463 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-750 1765689 1765979 1766388 "NORMPK" 1767356 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-749 1765374 1765402 1765526 "NORMMA" 1765655 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-748 1765201 1765331 1765360 "NONE" 1765365 T NONE (NIL) -8 NIL NIL) (-747 1764990 1765019 1765088 "NONE1" 1765165 NIL NONE1 (NIL T) -7 NIL NIL) (-746 1764473 1764535 1764721 "NODE1" 1764922 NIL NODE1 (NIL T T) -7 NIL NIL) (-745 1762813 1763636 1763891 "NNI" 1764238 T NNI (NIL) -8 NIL NIL) (-744 1761233 1761546 1761910 "NLINSOL" 1762481 NIL NLINSOL (NIL T) -7 NIL NIL) (-743 1757400 1758368 1759290 "NIPROB" 1760331 T NIPROB (NIL) -8 NIL NIL) (-742 1756157 1756391 1756693 "NFINTBAS" 1757162 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-741 1754865 1755096 1755377 "NCODIV" 1755925 NIL NCODIV (NIL T T) -7 NIL NIL) (-740 1754627 1754664 1754739 "NCNTFRAC" 1754822 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-739 1752807 1753171 1753591 "NCEP" 1754252 NIL NCEP (NIL T) -7 NIL NIL) (-738 1751718 1752457 1752485 "NASRING" 1752595 T NASRING (NIL) -9 NIL 1752669) (-737 1751513 1751557 1751651 "NASRING-" 1751656 NIL NASRING- (NIL T) -8 NIL NIL) (-736 1750666 1751165 1751193 "NARNG" 1751310 T NARNG (NIL) -9 NIL 1751401) (-735 1750358 1750425 1750559 "NARNG-" 1750564 NIL NARNG- (NIL T) -8 NIL NIL) (-734 1749237 1749444 1749679 "NAGSP" 1750143 T NAGSP (NIL) -7 NIL NIL) (-733 1740509 1742193 1743866 "NAGS" 1747584 T NAGS (NIL) -7 NIL NIL) (-732 1739057 1739365 1739696 "NAGF07" 1740198 T NAGF07 (NIL) -7 NIL NIL) (-731 1733595 1734886 1736193 "NAGF04" 1737770 T NAGF04 (NIL) -7 NIL NIL) (-730 1726563 1728177 1729810 "NAGF02" 1731982 T NAGF02 (NIL) -7 NIL NIL) (-729 1721787 1722887 1724004 "NAGF01" 1725466 T NAGF01 (NIL) -7 NIL NIL) (-728 1715415 1716981 1718566 "NAGE04" 1720222 T NAGE04 (NIL) -7 NIL NIL) (-727 1706584 1708705 1710835 "NAGE02" 1713305 T NAGE02 (NIL) -7 NIL NIL) (-726 1702537 1703484 1704448 "NAGE01" 1705640 T NAGE01 (NIL) -7 NIL NIL) (-725 1700332 1700866 1701424 "NAGD03" 1701999 T NAGD03 (NIL) -7 NIL NIL) (-724 1692082 1694010 1695964 "NAGD02" 1698398 T NAGD02 (NIL) -7 NIL NIL) (-723 1685893 1687318 1688758 "NAGD01" 1690662 T NAGD01 (NIL) -7 NIL NIL) (-722 1682102 1682924 1683761 "NAGC06" 1685076 T NAGC06 (NIL) -7 NIL NIL) (-721 1680567 1680899 1681255 "NAGC05" 1681766 T NAGC05 (NIL) -7 NIL NIL) (-720 1679943 1680062 1680206 "NAGC02" 1680443 T NAGC02 (NIL) -7 NIL NIL) (-719 1679003 1679560 1679600 "NAALG" 1679679 NIL NAALG (NIL T) -9 NIL 1679740) (-718 1678838 1678867 1678957 "NAALG-" 1678962 NIL NAALG- (NIL T T) -8 NIL NIL) (-717 1672788 1673896 1675083 "MULTSQFR" 1677734 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-716 1672107 1672182 1672366 "MULTFACT" 1672700 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-715 1665330 1669195 1669248 "MTSCAT" 1670318 NIL MTSCAT (NIL T T) -9 NIL 1670832) (-714 1665042 1665096 1665188 "MTHING" 1665270 NIL MTHING (NIL T) -7 NIL NIL) (-713 1664834 1664867 1664927 "MSYSCMD" 1665002 T MSYSCMD (NIL) -7 NIL NIL) (-712 1660946 1663589 1663909 "MSET" 1664547 NIL MSET (NIL T) -8 NIL NIL) (-711 1658041 1660507 1660548 "MSETAGG" 1660553 NIL MSETAGG (NIL T) -9 NIL 1660587) (-710 1653924 1655420 1656165 "MRING" 1657341 NIL MRING (NIL T T) -8 NIL NIL) (-709 1653490 1653557 1653688 "MRF2" 1653851 NIL MRF2 (NIL T T T) -7 NIL NIL) (-708 1653108 1653143 1653287 "MRATFAC" 1653449 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-707 1650720 1651015 1651446 "MPRFF" 1652813 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-706 1644780 1650574 1650671 "MPOLY" 1650676 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-705 1644270 1644305 1644513 "MPCPF" 1644739 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-704 1643784 1643827 1644011 "MPC3" 1644221 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-703 1642979 1643060 1643281 "MPC2" 1643699 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-702 1641280 1641617 1642007 "MONOTOOL" 1642639 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-701 1640531 1640822 1640850 "MONOID" 1641069 T MONOID (NIL) -9 NIL 1641216) (-700 1640077 1640196 1640377 "MONOID-" 1640382 NIL MONOID- (NIL T) -8 NIL NIL) (-699 1631127 1637033 1637092 "MONOGEN" 1637766 NIL MONOGEN (NIL T T) -9 NIL 1638222) (-698 1628345 1629080 1630080 "MONOGEN-" 1630199 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-697 1627204 1627624 1627652 "MONADWU" 1628044 T MONADWU (NIL) -9 NIL 1628282) (-696 1626576 1626735 1626983 "MONADWU-" 1626988 NIL MONADWU- (NIL T) -8 NIL NIL) (-695 1625961 1626179 1626207 "MONAD" 1626414 T MONAD (NIL) -9 NIL 1626526) (-694 1625646 1625724 1625856 "MONAD-" 1625861 NIL MONAD- (NIL T) -8 NIL NIL) (-693 1623962 1624559 1624838 "MOEBIUS" 1625399 NIL MOEBIUS (NIL T) -8 NIL NIL) (-692 1623354 1623732 1623772 "MODULE" 1623777 NIL MODULE (NIL T) -9 NIL 1623803) (-691 1622922 1623018 1623208 "MODULE-" 1623213 NIL MODULE- (NIL T T) -8 NIL NIL) (-690 1620637 1621286 1621613 "MODRING" 1622746 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-689 1617623 1618742 1619263 "MODOP" 1620166 NIL MODOP (NIL T T) -8 NIL NIL) (-688 1615810 1616262 1616603 "MODMONOM" 1617422 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-687 1605518 1614002 1614425 "MODMON" 1615438 NIL MODMON (NIL T T) -8 NIL NIL) (-686 1602709 1604362 1604638 "MODFIELD" 1605393 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-685 1601713 1601990 1602180 "MMLFORM" 1602539 T MMLFORM (NIL) -8 NIL NIL) (-684 1601239 1601282 1601461 "MMAP" 1601664 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-683 1599508 1600241 1600282 "MLO" 1600705 NIL MLO (NIL T) -9 NIL 1600947) (-682 1596875 1597390 1597992 "MLIFT" 1598989 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-681 1596266 1596350 1596504 "MKUCFUNC" 1596786 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-680 1595865 1595935 1596058 "MKRECORD" 1596189 NIL MKRECORD (NIL T T) -7 NIL NIL) (-679 1594913 1595074 1595302 "MKFUNC" 1595676 NIL MKFUNC (NIL T) -7 NIL NIL) (-678 1594301 1594405 1594561 "MKFLCFN" 1594796 NIL MKFLCFN (NIL T) -7 NIL NIL) (-677 1593727 1594094 1594183 "MKCHSET" 1594245 NIL MKCHSET (NIL T) -8 NIL NIL) (-676 1593004 1593106 1593291 "MKBCFUNC" 1593620 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-675 1589746 1592558 1592694 "MINT" 1592888 T MINT (NIL) -8 NIL NIL) (-674 1588558 1588801 1589078 "MHROWRED" 1589501 NIL MHROWRED (NIL T) -7 NIL NIL) (-673 1583890 1586999 1587425 "MFLOAT" 1588152 T MFLOAT (NIL) -8 NIL NIL) (-672 1583247 1583323 1583494 "MFINFACT" 1583802 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-671 1579562 1580410 1581294 "MESH" 1582383 T MESH (NIL) -7 NIL NIL) (-670 1577952 1578264 1578617 "MDDFACT" 1579249 NIL MDDFACT (NIL T) -7 NIL NIL) (-669 1574794 1577111 1577152 "MDAGG" 1577407 NIL MDAGG (NIL T) -9 NIL 1577550) (-668 1564574 1574087 1574294 "MCMPLX" 1574607 T MCMPLX (NIL) -8 NIL NIL) (-667 1563715 1563861 1564061 "MCDEN" 1564423 NIL MCDEN (NIL T T) -7 NIL NIL) (-666 1561605 1561875 1562255 "MCALCFN" 1563445 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-665 1560516 1560689 1560930 "MAYBE" 1561403 NIL MAYBE (NIL T) -8 NIL NIL) (-664 1558128 1558651 1559213 "MATSTOR" 1559987 NIL MATSTOR (NIL T) -7 NIL NIL) (-663 1554134 1557500 1557748 "MATRIX" 1557913 NIL MATRIX (NIL T) -8 NIL NIL) (-662 1549903 1550607 1551343 "MATLIN" 1553491 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-661 1540057 1543195 1543272 "MATCAT" 1548152 NIL MATCAT (NIL T T T) -9 NIL 1549569) (-660 1536421 1537434 1538790 "MATCAT-" 1538795 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-659 1535015 1535168 1535501 "MATCAT2" 1536256 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-658 1533127 1533451 1533835 "MAPPKG3" 1534690 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-657 1532108 1532281 1532503 "MAPPKG2" 1532951 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-656 1530607 1530891 1531218 "MAPPKG1" 1531814 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-655 1529730 1530013 1530190 "MAPPAST" 1530450 T MAPPAST (NIL) -8 NIL NIL) (-654 1529341 1529399 1529522 "MAPHACK3" 1529666 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-653 1528933 1528994 1529108 "MAPHACK2" 1529273 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-652 1528371 1528474 1528616 "MAPHACK1" 1528824 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-651 1526477 1527071 1527375 "MAGMA" 1528099 NIL MAGMA (NIL T) -8 NIL NIL) (-650 1525972 1526180 1526278 "MACROAST" 1526399 T MACROAST (NIL) -8 NIL NIL) (-649 1522439 1524211 1524672 "M3D" 1525544 NIL M3D (NIL T) -8 NIL NIL) (-648 1516594 1520809 1520850 "LZSTAGG" 1521632 NIL LZSTAGG (NIL T) -9 NIL 1521927) (-647 1512567 1513725 1515182 "LZSTAGG-" 1515187 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-646 1509681 1510458 1510945 "LWORD" 1512112 NIL LWORD (NIL T) -8 NIL NIL) (-645 1509301 1509485 1509560 "LSTAST" 1509626 T LSTAST (NIL) -8 NIL NIL) (-644 1502502 1509072 1509206 "LSQM" 1509211 NIL LSQM (NIL NIL T) -8 NIL NIL) (-643 1501726 1501865 1502093 "LSPP" 1502357 NIL LSPP (NIL T T T T) -7 NIL NIL) (-642 1499538 1499839 1500295 "LSMP" 1501415 NIL LSMP (NIL T T T T) -7 NIL NIL) (-641 1496317 1496991 1497721 "LSMP1" 1498840 NIL LSMP1 (NIL T) -7 NIL NIL) (-640 1490243 1495485 1495526 "LSAGG" 1495588 NIL LSAGG (NIL T) -9 NIL 1495666) (-639 1486938 1487862 1489075 "LSAGG-" 1489080 NIL LSAGG- (NIL T T) -8 NIL NIL) (-638 1484564 1486082 1486331 "LPOLY" 1486733 NIL LPOLY (NIL T T) -8 NIL NIL) (-637 1484146 1484231 1484354 "LPEFRAC" 1484473 NIL LPEFRAC (NIL T) -7 NIL NIL) (-636 1482493 1483240 1483493 "LO" 1483978 NIL LO (NIL T T T) -8 NIL NIL) (-635 1482145 1482257 1482285 "LOGIC" 1482396 T LOGIC (NIL) -9 NIL 1482477) (-634 1482007 1482030 1482101 "LOGIC-" 1482106 NIL LOGIC- (NIL T) -8 NIL NIL) (-633 1481200 1481340 1481533 "LODOOPS" 1481863 NIL LODOOPS (NIL T T) -7 NIL NIL) (-632 1478658 1481116 1481182 "LODO" 1481187 NIL LODO (NIL T NIL) -8 NIL NIL) (-631 1477196 1477431 1477784 "LODOF" 1478405 NIL LODOF (NIL T T) -7 NIL NIL) (-630 1473639 1476036 1476077 "LODOCAT" 1476515 NIL LODOCAT (NIL T) -9 NIL 1476726) (-629 1473372 1473430 1473557 "LODOCAT-" 1473562 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-628 1470727 1473213 1473331 "LODO2" 1473336 NIL LODO2 (NIL T T) -8 NIL NIL) (-627 1468197 1470664 1470709 "LODO1" 1470714 NIL LODO1 (NIL T) -8 NIL NIL) (-626 1467057 1467222 1467534 "LODEEF" 1468020 NIL LODEEF (NIL T T T) -7 NIL NIL) (-625 1462343 1465187 1465228 "LNAGG" 1466175 NIL LNAGG (NIL T) -9 NIL 1466619) (-624 1461490 1461704 1462046 "LNAGG-" 1462051 NIL LNAGG- (NIL T T) -8 NIL NIL) (-623 1457653 1458415 1459054 "LMOPS" 1460905 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-622 1457048 1457410 1457451 "LMODULE" 1457512 NIL LMODULE (NIL T) -9 NIL 1457554) (-621 1454294 1456693 1456816 "LMDICT" 1456958 NIL LMDICT (NIL T) -8 NIL NIL) (-620 1454038 1454202 1454262 "LITERAL" 1454267 NIL LITERAL (NIL T) -8 NIL NIL) (-619 1447265 1452984 1453282 "LIST" 1453773 NIL LIST (NIL T) -8 NIL NIL) (-618 1446790 1446864 1447003 "LIST3" 1447185 NIL LIST3 (NIL T T T) -7 NIL NIL) (-617 1445797 1445975 1446203 "LIST2" 1446608 NIL LIST2 (NIL T T) -7 NIL NIL) (-616 1443931 1444243 1444642 "LIST2MAP" 1445444 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-615 1442681 1443317 1443358 "LINEXP" 1443613 NIL LINEXP (NIL T) -9 NIL 1443762) (-614 1441328 1441588 1441885 "LINDEP" 1442433 NIL LINDEP (NIL T T) -7 NIL NIL) (-613 1438095 1438814 1439591 "LIMITRF" 1440583 NIL LIMITRF (NIL T) -7 NIL NIL) (-612 1436371 1436666 1437082 "LIMITPS" 1437790 NIL LIMITPS (NIL T T) -7 NIL NIL) (-611 1430826 1435882 1436110 "LIE" 1436192 NIL LIE (NIL T T) -8 NIL NIL) (-610 1429875 1430318 1430358 "LIECAT" 1430498 NIL LIECAT (NIL T) -9 NIL 1430649) (-609 1429716 1429743 1429831 "LIECAT-" 1429836 NIL LIECAT- (NIL T T) -8 NIL NIL) (-608 1422328 1429165 1429330 "LIB" 1429571 T LIB (NIL) -8 NIL NIL) (-607 1417965 1418846 1419781 "LGROBP" 1421445 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-606 1415831 1416105 1416467 "LF" 1417686 NIL LF (NIL T T) -7 NIL NIL) (-605 1414671 1415363 1415391 "LFCAT" 1415598 T LFCAT (NIL) -9 NIL 1415737) (-604 1411575 1412203 1412891 "LEXTRIPK" 1414035 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-603 1408346 1409145 1409648 "LEXP" 1411155 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-602 1407866 1408067 1408159 "LETAST" 1408274 T LETAST (NIL) -8 NIL NIL) (-601 1406264 1406577 1406978 "LEADCDET" 1407548 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-600 1405454 1405528 1405757 "LAZM3PK" 1406185 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-599 1400410 1403531 1404069 "LAUPOL" 1404966 NIL LAUPOL (NIL T T) -8 NIL NIL) (-598 1399975 1400019 1400187 "LAPLACE" 1400360 NIL LAPLACE (NIL T T) -7 NIL NIL) (-597 1397949 1399076 1399327 "LA" 1399808 NIL LA (NIL T T T) -8 NIL NIL) (-596 1397050 1397600 1397641 "LALG" 1397703 NIL LALG (NIL T) -9 NIL 1397762) (-595 1396764 1396823 1396959 "LALG-" 1396964 NIL LALG- (NIL T T) -8 NIL NIL) (-594 1395564 1395981 1396210 "KTVLOGIC" 1396555 T KTVLOGIC (NIL) -8 NIL NIL) (-593 1394468 1394655 1394954 "KOVACIC" 1395364 NIL KOVACIC (NIL T T) -7 NIL NIL) (-592 1394303 1394327 1394368 "KONVERT" 1394430 NIL KONVERT (NIL T) -9 NIL NIL) (-591 1394138 1394162 1394203 "KOERCE" 1394265 NIL KOERCE (NIL T) -9 NIL NIL) (-590 1391872 1392632 1393025 "KERNEL" 1393777 NIL KERNEL (NIL T) -8 NIL NIL) (-589 1391374 1391455 1391585 "KERNEL2" 1391786 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-588 1385225 1389913 1389967 "KDAGG" 1390344 NIL KDAGG (NIL T T) -9 NIL 1390550) (-587 1384754 1384878 1385083 "KDAGG-" 1385088 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-586 1377929 1384415 1384570 "KAFILE" 1384632 NIL KAFILE (NIL T) -8 NIL NIL) (-585 1372384 1377440 1377668 "JORDAN" 1377750 NIL JORDAN (NIL T T) -8 NIL NIL) (-584 1371808 1372033 1372154 "JOINAST" 1372283 T JOINAST (NIL) -8 NIL NIL) (-583 1371537 1371596 1371683 "JAVACODE" 1371741 T JAVACODE (NIL) -8 NIL NIL) (-582 1367836 1369742 1369796 "IXAGG" 1370725 NIL IXAGG (NIL T T) -9 NIL 1371184) (-581 1366755 1367061 1367480 "IXAGG-" 1367485 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-580 1362335 1366677 1366736 "IVECTOR" 1366741 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-579 1361101 1361338 1361604 "ITUPLE" 1362102 NIL ITUPLE (NIL T) -8 NIL NIL) (-578 1359537 1359714 1360020 "ITRIGMNP" 1360923 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-577 1358282 1358486 1358769 "ITFUN3" 1359313 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-576 1357914 1357971 1358080 "ITFUN2" 1358219 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-575 1355751 1356776 1357075 "ITAYLOR" 1357648 NIL ITAYLOR (NIL T) -8 NIL NIL) (-574 1344745 1349897 1351057 "ISUPS" 1354624 NIL ISUPS (NIL T) -8 NIL NIL) (-573 1343849 1343989 1344225 "ISUMP" 1344592 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-572 1339113 1343650 1343729 "ISTRING" 1343802 NIL ISTRING (NIL NIL) -8 NIL NIL) (-571 1338633 1338834 1338926 "ISAST" 1339041 T ISAST (NIL) -8 NIL NIL) (-570 1337843 1337924 1338140 "IRURPK" 1338547 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-569 1336779 1336980 1337220 "IRSN" 1337623 T IRSN (NIL) -7 NIL NIL) (-568 1334808 1335163 1335599 "IRRF2F" 1336417 NIL IRRF2F (NIL T) -7 NIL NIL) (-567 1334555 1334593 1334669 "IRREDFFX" 1334764 NIL IRREDFFX (NIL T) -7 NIL NIL) (-566 1333170 1333429 1333728 "IROOT" 1334288 NIL IROOT (NIL T) -7 NIL NIL) (-565 1329802 1330854 1331546 "IR" 1332510 NIL IR (NIL T) -8 NIL NIL) (-564 1327415 1327910 1328476 "IR2" 1329280 NIL IR2 (NIL T T) -7 NIL NIL) (-563 1326487 1326600 1326821 "IR2F" 1327298 NIL IR2F (NIL T T) -7 NIL NIL) (-562 1326278 1326312 1326372 "IPRNTPK" 1326447 T IPRNTPK (NIL) -7 NIL NIL) (-561 1322897 1326167 1326236 "IPF" 1326241 NIL IPF (NIL NIL) -8 NIL NIL) (-560 1321260 1322822 1322879 "IPADIC" 1322884 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-559 1321024 1321164 1321192 "IOBCON" 1321197 T IOBCON (NIL) -9 NIL 1321218) (-558 1320521 1320579 1320769 "INVLAPLA" 1320960 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-557 1310170 1312523 1314909 "INTTR" 1318185 NIL INTTR (NIL T T) -7 NIL NIL) (-556 1306514 1307256 1308120 "INTTOOLS" 1309355 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-555 1306100 1306191 1306308 "INTSLPE" 1306417 T INTSLPE (NIL) -7 NIL NIL) (-554 1304095 1306023 1306082 "INTRVL" 1306087 NIL INTRVL (NIL T) -8 NIL NIL) (-553 1301697 1302209 1302784 "INTRF" 1303580 NIL INTRF (NIL T) -7 NIL NIL) (-552 1301108 1301205 1301347 "INTRET" 1301595 NIL INTRET (NIL T) -7 NIL NIL) (-551 1299105 1299494 1299964 "INTRAT" 1300716 NIL INTRAT (NIL T T) -7 NIL NIL) (-550 1296333 1296916 1297542 "INTPM" 1298590 NIL INTPM (NIL T T) -7 NIL NIL) (-549 1293036 1293635 1294380 "INTPAF" 1295719 NIL INTPAF (NIL T T T) -7 NIL NIL) (-548 1288215 1289177 1290228 "INTPACK" 1292005 T INTPACK (NIL) -7 NIL NIL) (-547 1285127 1287944 1288071 "INT" 1288108 T INT (NIL) -8 NIL NIL) (-546 1284379 1284531 1284739 "INTHERTR" 1284969 NIL INTHERTR (NIL T T) -7 NIL NIL) (-545 1283818 1283898 1284086 "INTHERAL" 1284293 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-544 1281664 1282107 1282564 "INTHEORY" 1283381 T INTHEORY (NIL) -7 NIL NIL) (-543 1272972 1274593 1276372 "INTG0" 1280016 NIL INTG0 (NIL T T T) -7 NIL NIL) (-542 1253545 1258335 1263145 "INTFTBL" 1268182 T INTFTBL (NIL) -8 NIL NIL) (-541 1252794 1252932 1253105 "INTFACT" 1253404 NIL INTFACT (NIL T) -7 NIL NIL) (-540 1250179 1250625 1251189 "INTEF" 1252348 NIL INTEF (NIL T T) -7 NIL NIL) (-539 1248681 1249386 1249414 "INTDOM" 1249715 T INTDOM (NIL) -9 NIL 1249922) (-538 1248050 1248224 1248466 "INTDOM-" 1248471 NIL INTDOM- (NIL T) -8 NIL NIL) (-537 1244583 1246469 1246523 "INTCAT" 1247322 NIL INTCAT (NIL T) -9 NIL 1247642) (-536 1244056 1244158 1244286 "INTBIT" 1244475 T INTBIT (NIL) -7 NIL NIL) (-535 1242727 1242881 1243195 "INTALG" 1243901 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-534 1242184 1242274 1242444 "INTAF" 1242631 NIL INTAF (NIL T T) -7 NIL NIL) (-533 1235638 1241994 1242134 "INTABL" 1242139 NIL INTABL (NIL T T T) -8 NIL NIL) (-532 1230693 1233364 1233392 "INS" 1234326 T INS (NIL) -9 NIL 1234990) (-531 1227933 1228704 1229678 "INS-" 1229751 NIL INS- (NIL T) -8 NIL NIL) (-530 1226708 1226935 1227233 "INPSIGN" 1227686 NIL INPSIGN (NIL T T) -7 NIL NIL) (-529 1225826 1225943 1226140 "INPRODPF" 1226588 NIL INPRODPF (NIL T T) -7 NIL NIL) (-528 1224720 1224837 1225074 "INPRODFF" 1225706 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-527 1223720 1223872 1224132 "INNMFACT" 1224556 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-526 1222917 1223014 1223202 "INMODGCD" 1223619 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-525 1221426 1221670 1221994 "INFSP" 1222662 NIL INFSP (NIL T T T) -7 NIL NIL) (-524 1220610 1220727 1220910 "INFPROD0" 1221306 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-523 1217492 1218675 1219190 "INFORM" 1220103 T INFORM (NIL) -8 NIL NIL) (-522 1217102 1217162 1217260 "INFORM1" 1217427 NIL INFORM1 (NIL T) -7 NIL NIL) (-521 1216625 1216714 1216828 "INFINITY" 1217008 T INFINITY (NIL) -7 NIL NIL) (-520 1215242 1215491 1215812 "INEP" 1216373 NIL INEP (NIL T T T) -7 NIL NIL) (-519 1214518 1215139 1215204 "INDE" 1215209 NIL INDE (NIL T) -8 NIL NIL) (-518 1214082 1214150 1214267 "INCRMAPS" 1214445 NIL INCRMAPS (NIL T) -7 NIL NIL) (-517 1209393 1210318 1211262 "INBFF" 1213170 NIL INBFF (NIL T) -7 NIL NIL) (-516 1209062 1209138 1209166 "INBCON" 1209299 T INBCON (NIL) -9 NIL 1209377) (-515 1208902 1208937 1209013 "INBCON-" 1209018 NIL INBCON- (NIL T) -8 NIL NIL) (-514 1208421 1208623 1208715 "INAST" 1208830 T INAST (NIL) -8 NIL NIL) (-513 1207892 1208100 1208206 "IMPTAST" 1208335 T IMPTAST (NIL) -8 NIL NIL) (-512 1204386 1207736 1207840 "IMATRIX" 1207845 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-511 1203098 1203221 1203536 "IMATQF" 1204242 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-510 1201318 1201545 1201882 "IMATLIN" 1202854 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-509 1195944 1201242 1201300 "ILIST" 1201305 NIL ILIST (NIL T NIL) -8 NIL NIL) (-508 1193897 1195804 1195917 "IIARRAY2" 1195922 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-507 1189330 1193808 1193872 "IFF" 1193877 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-506 1188721 1188947 1189063 "IFAST" 1189234 T IFAST (NIL) -8 NIL NIL) (-505 1183764 1188013 1188201 "IFARRAY" 1188578 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-504 1182971 1183668 1183741 "IFAMON" 1183746 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-503 1182555 1182620 1182674 "IEVALAB" 1182881 NIL IEVALAB (NIL T T) -9 NIL NIL) (-502 1182230 1182298 1182458 "IEVALAB-" 1182463 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-501 1181888 1182144 1182207 "IDPO" 1182212 NIL IDPO (NIL T T) -8 NIL NIL) (-500 1181165 1181777 1181852 "IDPOAMS" 1181857 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-499 1180499 1181054 1181129 "IDPOAM" 1181134 NIL IDPOAM (NIL T T) -8 NIL NIL) (-498 1179584 1179834 1179887 "IDPC" 1180300 NIL IDPC (NIL T T) -9 NIL 1180449) (-497 1179080 1179476 1179549 "IDPAM" 1179554 NIL IDPAM (NIL T T) -8 NIL NIL) (-496 1178483 1178972 1179045 "IDPAG" 1179050 NIL IDPAG (NIL T T) -8 NIL NIL) (-495 1178231 1178398 1178448 "IDENT" 1178453 T IDENT (NIL) -8 NIL NIL) (-494 1174486 1175334 1176229 "IDECOMP" 1177388 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-493 1167359 1168409 1169456 "IDEAL" 1173522 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-492 1166523 1166635 1166834 "ICDEN" 1167243 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-491 1165622 1166003 1166150 "ICARD" 1166396 T ICARD (NIL) -8 NIL NIL) (-490 1163682 1163995 1164400 "IBPTOOLS" 1165299 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-489 1159316 1163302 1163415 "IBITS" 1163601 NIL IBITS (NIL NIL) -8 NIL NIL) (-488 1156039 1156615 1157310 "IBATOOL" 1158733 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-487 1153819 1154280 1154813 "IBACHIN" 1155574 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-486 1151696 1153665 1153768 "IARRAY2" 1153773 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-485 1147849 1151622 1151679 "IARRAY1" 1151684 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-484 1141844 1146263 1146743 "IAN" 1147389 T IAN (NIL) -8 NIL NIL) (-483 1141355 1141412 1141585 "IALGFACT" 1141781 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-482 1140883 1140996 1141024 "HYPCAT" 1141231 T HYPCAT (NIL) -9 NIL NIL) (-481 1140421 1140538 1140724 "HYPCAT-" 1140729 NIL HYPCAT- (NIL T) -8 NIL NIL) (-480 1140043 1140216 1140299 "HOSTNAME" 1140358 T HOSTNAME (NIL) -8 NIL NIL) (-479 1136722 1138053 1138094 "HOAGG" 1139075 NIL HOAGG (NIL T) -9 NIL 1139754) (-478 1135316 1135715 1136241 "HOAGG-" 1136246 NIL HOAGG- (NIL T T) -8 NIL NIL) (-477 1129204 1134757 1134923 "HEXADEC" 1135170 T HEXADEC (NIL) -8 NIL NIL) (-476 1127952 1128174 1128437 "HEUGCD" 1128981 NIL HEUGCD (NIL T) -7 NIL NIL) (-475 1127055 1127789 1127919 "HELLFDIV" 1127924 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-474 1125283 1126832 1126920 "HEAP" 1126999 NIL HEAP (NIL T) -8 NIL NIL) (-473 1124591 1124835 1124969 "HEADAST" 1125169 T HEADAST (NIL) -8 NIL NIL) (-472 1118511 1124506 1124568 "HDP" 1124573 NIL HDP (NIL NIL T) -8 NIL NIL) (-471 1112262 1118146 1118298 "HDMP" 1118412 NIL HDMP (NIL NIL T) -8 NIL NIL) (-470 1111587 1111726 1111890 "HB" 1112118 T HB (NIL) -7 NIL NIL) (-469 1105084 1111433 1111537 "HASHTBL" 1111542 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-468 1104604 1104805 1104897 "HASAST" 1105012 T HASAST (NIL) -8 NIL NIL) (-467 1102418 1104228 1104409 "HACKPI" 1104443 T HACKPI (NIL) -8 NIL NIL) (-466 1098113 1102271 1102384 "GTSET" 1102389 NIL GTSET (NIL T T T T) -8 NIL NIL) (-465 1091639 1097991 1098089 "GSTBL" 1098094 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-464 1083952 1090670 1090935 "GSERIES" 1091430 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-463 1083119 1083510 1083538 "GROUP" 1083741 T GROUP (NIL) -9 NIL 1083875) (-462 1082485 1082644 1082895 "GROUP-" 1082900 NIL GROUP- (NIL T) -8 NIL NIL) (-461 1080854 1081173 1081560 "GROEBSOL" 1082162 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-460 1079794 1080056 1080107 "GRMOD" 1080636 NIL GRMOD (NIL T T) -9 NIL 1080804) (-459 1079562 1079598 1079726 "GRMOD-" 1079731 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-458 1074887 1075916 1076916 "GRIMAGE" 1078582 T GRIMAGE (NIL) -8 NIL NIL) (-457 1073354 1073614 1073938 "GRDEF" 1074583 T GRDEF (NIL) -7 NIL NIL) (-456 1072798 1072914 1073055 "GRAY" 1073233 T GRAY (NIL) -7 NIL NIL) (-455 1072029 1072409 1072460 "GRALG" 1072613 NIL GRALG (NIL T T) -9 NIL 1072706) (-454 1071690 1071763 1071926 "GRALG-" 1071931 NIL GRALG- (NIL T T T) -8 NIL NIL) (-453 1068494 1071275 1071453 "GPOLSET" 1071597 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-452 1067848 1067905 1068163 "GOSPER" 1068431 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-451 1063607 1064286 1064812 "GMODPOL" 1067547 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-450 1062612 1062796 1063034 "GHENSEL" 1063419 NIL GHENSEL (NIL T T) -7 NIL NIL) (-449 1056663 1057506 1058533 "GENUPS" 1061696 NIL GENUPS (NIL T T) -7 NIL NIL) (-448 1056360 1056411 1056500 "GENUFACT" 1056606 NIL GENUFACT (NIL T) -7 NIL NIL) (-447 1055772 1055849 1056014 "GENPGCD" 1056278 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-446 1055246 1055281 1055494 "GENMFACT" 1055731 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-445 1053814 1054069 1054376 "GENEEZ" 1054989 NIL GENEEZ (NIL T T) -7 NIL NIL) (-444 1047727 1053425 1053587 "GDMP" 1053737 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-443 1037104 1041498 1042604 "GCNAALG" 1046710 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-442 1035566 1036394 1036422 "GCDDOM" 1036677 T GCDDOM (NIL) -9 NIL 1036834) (-441 1035036 1035163 1035378 "GCDDOM-" 1035383 NIL GCDDOM- (NIL T) -8 NIL NIL) (-440 1033708 1033893 1034197 "GB" 1034815 NIL GB (NIL T T T T) -7 NIL NIL) (-439 1022328 1024654 1027046 "GBINTERN" 1031399 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-438 1020165 1020457 1020878 "GBF" 1022003 NIL GBF (NIL T T T T) -7 NIL NIL) (-437 1018946 1019111 1019378 "GBEUCLID" 1019981 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-436 1018295 1018420 1018569 "GAUSSFAC" 1018817 T GAUSSFAC (NIL) -7 NIL NIL) (-435 1016662 1016964 1017278 "GALUTIL" 1018014 NIL GALUTIL (NIL T) -7 NIL NIL) (-434 1014970 1015244 1015568 "GALPOLYU" 1016389 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-433 1012335 1012625 1013032 "GALFACTU" 1014667 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-432 1004141 1005640 1007248 "GALFACT" 1010767 NIL GALFACT (NIL T) -7 NIL NIL) (-431 1001529 1002187 1002215 "FVFUN" 1003371 T FVFUN (NIL) -9 NIL 1004091) (-430 1000795 1000977 1001005 "FVC" 1001296 T FVC (NIL) -9 NIL 1001479) (-429 1000437 1000592 1000673 "FUNCTION" 1000747 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-428 998107 998658 999147 "FT" 999968 T FT (NIL) -8 NIL NIL) (-427 996925 997408 997611 "FTEM" 997924 T FTEM (NIL) -8 NIL NIL) (-426 995181 995470 995874 "FSUPFACT" 996616 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-425 993578 993867 994199 "FST" 994869 T FST (NIL) -8 NIL NIL) (-424 992749 992855 993050 "FSRED" 993460 NIL FSRED (NIL T T) -7 NIL NIL) (-423 991428 991683 992037 "FSPRMELT" 992464 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-422 988513 988951 989450 "FSPECF" 990991 NIL FSPECF (NIL T T) -7 NIL NIL) (-421 970955 979397 979437 "FS" 983285 NIL FS (NIL T) -9 NIL 985574) (-420 959605 962595 966651 "FS-" 966948 NIL FS- (NIL T T) -8 NIL NIL) (-419 959119 959173 959350 "FSINT" 959546 NIL FSINT (NIL T T) -7 NIL NIL) (-418 957446 958112 958415 "FSERIES" 958898 NIL FSERIES (NIL T T) -8 NIL NIL) (-417 956460 956576 956807 "FSCINT" 957326 NIL FSCINT (NIL T T) -7 NIL NIL) (-416 952694 955404 955445 "FSAGG" 955815 NIL FSAGG (NIL T) -9 NIL 956074) (-415 950456 951057 951853 "FSAGG-" 951948 NIL FSAGG- (NIL T T) -8 NIL NIL) (-414 949498 949641 949868 "FSAGG2" 950309 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-413 947153 947432 947986 "FS2UPS" 949216 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-412 946735 946778 946933 "FS2" 947104 NIL FS2 (NIL T T T T) -7 NIL NIL) (-411 945592 945763 946072 "FS2EXPXP" 946560 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-410 945018 945133 945285 "FRUTIL" 945472 NIL FRUTIL (NIL T) -7 NIL NIL) (-409 936479 940517 941873 "FR" 943694 NIL FR (NIL T) -8 NIL NIL) (-408 931554 934197 934237 "FRNAALG" 935633 NIL FRNAALG (NIL T) -9 NIL 936240) (-407 927232 928303 929578 "FRNAALG-" 930328 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-406 926870 926913 927040 "FRNAAF2" 927183 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-405 925277 925724 926019 "FRMOD" 926682 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-404 923056 923660 923977 "FRIDEAL" 925068 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-403 922251 922338 922627 "FRIDEAL2" 922963 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-402 921493 921907 921948 "FRETRCT" 921953 NIL FRETRCT (NIL T) -9 NIL 922129) (-401 920605 920836 921187 "FRETRCT-" 921192 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-400 917855 919031 919090 "FRAMALG" 919972 NIL FRAMALG (NIL T T) -9 NIL 920264) (-399 915989 916444 917074 "FRAMALG-" 917297 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-398 909949 915464 915740 "FRAC" 915745 NIL FRAC (NIL T) -8 NIL NIL) (-397 909585 909642 909749 "FRAC2" 909886 NIL FRAC2 (NIL T T) -7 NIL NIL) (-396 909221 909278 909385 "FR2" 909522 NIL FR2 (NIL T T) -7 NIL NIL) (-395 903951 906799 906827 "FPS" 907946 T FPS (NIL) -9 NIL 908503) (-394 903400 903509 903673 "FPS-" 903819 NIL FPS- (NIL T) -8 NIL NIL) (-393 900906 902541 902569 "FPC" 902794 T FPC (NIL) -9 NIL 902936) (-392 900699 900739 900836 "FPC-" 900841 NIL FPC- (NIL T) -8 NIL NIL) (-391 899577 900187 900228 "FPATMAB" 900233 NIL FPATMAB (NIL T) -9 NIL 900385) (-390 897277 897753 898179 "FPARFRAC" 899214 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-389 892670 893169 893851 "FORTRAN" 896709 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-388 890386 890886 891425 "FORT" 892151 T FORT (NIL) -7 NIL NIL) (-387 888062 888624 888652 "FORTFN" 889712 T FORTFN (NIL) -9 NIL 890336) (-386 887826 887876 887904 "FORTCAT" 887963 T FORTCAT (NIL) -9 NIL 888025) (-385 885886 886369 886768 "FORMULA" 887447 T FORMULA (NIL) -8 NIL NIL) (-384 885674 885704 885773 "FORMULA1" 885850 NIL FORMULA1 (NIL T) -7 NIL NIL) (-383 885197 885249 885422 "FORDER" 885616 NIL FORDER (NIL T T T T) -7 NIL NIL) (-382 884293 884457 884650 "FOP" 885024 T FOP (NIL) -7 NIL NIL) (-381 882901 883573 883747 "FNLA" 884175 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-380 881569 881958 881986 "FNCAT" 882558 T FNCAT (NIL) -9 NIL 882851) (-379 881135 881528 881556 "FNAME" 881561 T FNAME (NIL) -8 NIL NIL) (-378 879833 880762 880790 "FMTC" 880795 T FMTC (NIL) -9 NIL 880831) (-377 876195 877356 877985 "FMONOID" 879237 NIL FMONOID (NIL T) -8 NIL NIL) (-376 875414 875937 876086 "FM" 876091 NIL FM (NIL T T) -8 NIL NIL) (-375 872838 873484 873512 "FMFUN" 874656 T FMFUN (NIL) -9 NIL 875364) (-374 872107 872288 872316 "FMC" 872606 T FMC (NIL) -9 NIL 872788) (-373 869319 870153 870207 "FMCAT" 871402 NIL FMCAT (NIL T T) -9 NIL 871897) (-372 868212 869085 869185 "FM1" 869264 NIL FM1 (NIL T T) -8 NIL NIL) (-371 865986 866402 866896 "FLOATRP" 867763 NIL FLOATRP (NIL T) -7 NIL NIL) (-370 859537 863642 864272 "FLOAT" 865376 T FLOAT (NIL) -8 NIL NIL) (-369 856975 857475 858053 "FLOATCP" 859004 NIL FLOATCP (NIL T) -7 NIL NIL) (-368 855804 856608 856649 "FLINEXP" 856654 NIL FLINEXP (NIL T) -9 NIL 856747) (-367 854958 855193 855521 "FLINEXP-" 855526 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-366 854034 854178 854402 "FLASORT" 854810 NIL FLASORT (NIL T T) -7 NIL NIL) (-365 851251 852093 852145 "FLALG" 853372 NIL FLALG (NIL T T) -9 NIL 853839) (-364 845035 848737 848778 "FLAGG" 850040 NIL FLAGG (NIL T) -9 NIL 850692) (-363 843761 844100 844590 "FLAGG-" 844595 NIL FLAGG- (NIL T T) -8 NIL NIL) (-362 842803 842946 843173 "FLAGG2" 843614 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-361 839816 840790 840849 "FINRALG" 841977 NIL FINRALG (NIL T T) -9 NIL 842485) (-360 838976 839205 839544 "FINRALG-" 839549 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-359 838382 838595 838623 "FINITE" 838819 T FINITE (NIL) -9 NIL 838926) (-358 830840 833001 833041 "FINAALG" 836708 NIL FINAALG (NIL T) -9 NIL 838161) (-357 826181 827222 828366 "FINAALG-" 829745 NIL FINAALG- (NIL T T) -8 NIL NIL) (-356 825576 825936 826039 "FILE" 826111 NIL FILE (NIL T) -8 NIL NIL) (-355 824260 824572 824626 "FILECAT" 825310 NIL FILECAT (NIL T T) -9 NIL 825526) (-354 822180 823674 823702 "FIELD" 823742 T FIELD (NIL) -9 NIL 823822) (-353 820800 821185 821696 "FIELD-" 821701 NIL FIELD- (NIL T) -8 NIL NIL) (-352 818678 819435 819782 "FGROUP" 820486 NIL FGROUP (NIL T) -8 NIL NIL) (-351 817768 817932 818152 "FGLMICPK" 818510 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-350 813635 817693 817750 "FFX" 817755 NIL FFX (NIL T NIL) -8 NIL NIL) (-349 813236 813297 813432 "FFSLPE" 813568 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-348 809229 810008 810804 "FFPOLY" 812472 NIL FFPOLY (NIL T) -7 NIL NIL) (-347 808733 808769 808978 "FFPOLY2" 809187 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-346 804619 808652 808715 "FFP" 808720 NIL FFP (NIL T NIL) -8 NIL NIL) (-345 800052 804530 804594 "FF" 804599 NIL FF (NIL NIL NIL) -8 NIL NIL) (-344 795213 799395 799585 "FFNBX" 799906 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-343 790187 794348 794606 "FFNBP" 795067 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-342 784855 789471 789682 "FFNB" 790020 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-341 783687 783885 784200 "FFINTBAS" 784652 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-340 779971 782146 782174 "FFIELDC" 782794 T FFIELDC (NIL) -9 NIL 783170) (-339 778634 779004 779501 "FFIELDC-" 779506 NIL FFIELDC- (NIL T) -8 NIL NIL) (-338 778204 778249 778373 "FFHOM" 778576 NIL FFHOM (NIL T T T) -7 NIL NIL) (-337 775902 776386 776903 "FFF" 777719 NIL FFF (NIL T) -7 NIL NIL) (-336 771555 775644 775745 "FFCGX" 775845 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-335 767222 771287 771394 "FFCGP" 771498 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-334 762440 766949 767057 "FFCG" 767158 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-333 744498 753534 753620 "FFCAT" 758785 NIL FFCAT (NIL T T T) -9 NIL 760236) (-332 739696 740743 742057 "FFCAT-" 743287 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-331 739107 739150 739385 "FFCAT2" 739647 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-330 728319 732079 733299 "FEXPR" 737959 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-329 727319 727754 727795 "FEVALAB" 727879 NIL FEVALAB (NIL T) -9 NIL 728140) (-328 726478 726688 727026 "FEVALAB-" 727031 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-327 725071 725861 726064 "FDIV" 726377 NIL FDIV (NIL T T T T) -8 NIL NIL) (-326 722137 722852 722967 "FDIVCAT" 724535 NIL FDIVCAT (NIL T T T T) -9 NIL 724972) (-325 721899 721926 722096 "FDIVCAT-" 722101 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-324 721119 721206 721483 "FDIV2" 721806 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-323 719805 720064 720353 "FCPAK1" 720850 T FCPAK1 (NIL) -7 NIL NIL) (-322 718933 719305 719446 "FCOMP" 719696 NIL FCOMP (NIL T) -8 NIL NIL) (-321 702568 705982 709543 "FC" 715392 T FC (NIL) -8 NIL NIL) (-320 695221 699202 699242 "FAXF" 701044 NIL FAXF (NIL T) -9 NIL 701736) (-319 692500 693155 693980 "FAXF-" 694445 NIL FAXF- (NIL T T) -8 NIL NIL) (-318 687600 691876 692052 "FARRAY" 692357 NIL FARRAY (NIL T) -8 NIL NIL) (-317 683007 685039 685092 "FAMR" 686115 NIL FAMR (NIL T T) -9 NIL 686575) (-316 681897 682199 682634 "FAMR-" 682639 NIL FAMR- (NIL T T T) -8 NIL NIL) (-315 681093 681819 681872 "FAMONOID" 681877 NIL FAMONOID (NIL T) -8 NIL NIL) (-314 678923 679607 679660 "FAMONC" 680601 NIL FAMONC (NIL T T) -9 NIL 680987) (-313 677615 678677 678814 "FAGROUP" 678819 NIL FAGROUP (NIL T) -8 NIL NIL) (-312 675410 675729 676132 "FACUTIL" 677296 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-311 674509 674694 674916 "FACTFUNC" 675220 NIL FACTFUNC (NIL T) -7 NIL NIL) (-310 666914 673760 673972 "EXPUPXS" 674365 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-309 664397 664937 665523 "EXPRTUBE" 666348 T EXPRTUBE (NIL) -7 NIL NIL) (-308 660591 661183 661920 "EXPRODE" 663736 NIL EXPRODE (NIL T T) -7 NIL NIL) (-307 645965 659246 659674 "EXPR" 660195 NIL EXPR (NIL T) -8 NIL NIL) (-306 640372 640959 641772 "EXPR2UPS" 645263 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-305 640008 640065 640172 "EXPR2" 640309 NIL EXPR2 (NIL T T) -7 NIL NIL) (-304 631415 639140 639437 "EXPEXPAN" 639845 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-303 631242 631372 631401 "EXIT" 631406 T EXIT (NIL) -8 NIL NIL) (-302 630766 630966 631057 "EXITAST" 631171 T EXITAST (NIL) -8 NIL NIL) (-301 630393 630455 630568 "EVALCYC" 630698 NIL EVALCYC (NIL T) -7 NIL NIL) (-300 629934 630052 630093 "EVALAB" 630263 NIL EVALAB (NIL T) -9 NIL 630367) (-299 629415 629537 629758 "EVALAB-" 629763 NIL EVALAB- (NIL T T) -8 NIL NIL) (-298 626918 628186 628214 "EUCDOM" 628769 T EUCDOM (NIL) -9 NIL 629119) (-297 625323 625765 626355 "EUCDOM-" 626360 NIL EUCDOM- (NIL T) -8 NIL NIL) (-296 612863 615621 618371 "ESTOOLS" 622593 T ESTOOLS (NIL) -7 NIL NIL) (-295 612495 612552 612661 "ESTOOLS2" 612800 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-294 612246 612288 612368 "ESTOOLS1" 612447 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-293 606171 607899 607927 "ES" 610695 T ES (NIL) -9 NIL 612104) (-292 601118 602405 604222 "ES-" 604386 NIL ES- (NIL T) -8 NIL NIL) (-291 597493 598253 599033 "ESCONT" 600358 T ESCONT (NIL) -7 NIL NIL) (-290 597238 597270 597352 "ESCONT1" 597455 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-289 596913 596963 597063 "ES2" 597182 NIL ES2 (NIL T T) -7 NIL NIL) (-288 596543 596601 596710 "ES1" 596849 NIL ES1 (NIL T T) -7 NIL NIL) (-287 595759 595888 596064 "ERROR" 596387 T ERROR (NIL) -7 NIL NIL) (-286 589262 595618 595709 "EQTBL" 595714 NIL EQTBL (NIL T T) -8 NIL NIL) (-285 581819 584576 586025 "EQ" 587846 NIL -3900 (NIL T) -8 NIL NIL) (-284 581451 581508 581617 "EQ2" 581756 NIL EQ2 (NIL T T) -7 NIL NIL) (-283 576743 577789 578882 "EP" 580390 NIL EP (NIL T) -7 NIL NIL) (-282 575325 575626 575943 "ENV" 576446 T ENV (NIL) -8 NIL NIL) (-281 574524 575044 575072 "ENTIRER" 575077 T ENTIRER (NIL) -9 NIL 575123) (-280 571026 572479 572849 "EMR" 574323 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-279 570170 570355 570409 "ELTAGG" 570789 NIL ELTAGG (NIL T T) -9 NIL 571000) (-278 569889 569951 570092 "ELTAGG-" 570097 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-277 569678 569707 569761 "ELTAB" 569845 NIL ELTAB (NIL T T) -9 NIL NIL) (-276 568804 568950 569149 "ELFUTS" 569529 NIL ELFUTS (NIL T T) -7 NIL NIL) (-275 568546 568602 568630 "ELEMFUN" 568735 T ELEMFUN (NIL) -9 NIL NIL) (-274 568416 568437 568505 "ELEMFUN-" 568510 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-273 563307 566516 566557 "ELAGG" 567497 NIL ELAGG (NIL T) -9 NIL 567960) (-272 561592 562026 562689 "ELAGG-" 562694 NIL ELAGG- (NIL T T) -8 NIL NIL) (-271 560249 560529 560824 "ELABEXPR" 561317 T ELABEXPR (NIL) -8 NIL NIL) (-270 553115 554916 555743 "EFUPXS" 559525 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-269 546565 548366 549176 "EFULS" 552391 NIL EFULS (NIL T T T) -8 NIL NIL) (-268 543987 544345 544824 "EFSTRUC" 546197 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-267 533059 534624 536184 "EF" 542502 NIL EF (NIL T T) -7 NIL NIL) (-266 532160 532544 532693 "EAB" 532930 T EAB (NIL) -8 NIL NIL) (-265 531369 532119 532147 "E04UCFA" 532152 T E04UCFA (NIL) -8 NIL NIL) (-264 530578 531328 531356 "E04NAFA" 531361 T E04NAFA (NIL) -8 NIL NIL) (-263 529787 530537 530565 "E04MBFA" 530570 T E04MBFA (NIL) -8 NIL NIL) (-262 528996 529746 529774 "E04JAFA" 529779 T E04JAFA (NIL) -8 NIL NIL) (-261 528207 528955 528983 "E04GCFA" 528988 T E04GCFA (NIL) -8 NIL NIL) (-260 527418 528166 528194 "E04FDFA" 528199 T E04FDFA (NIL) -8 NIL NIL) (-259 526627 527377 527405 "E04DGFA" 527410 T E04DGFA (NIL) -8 NIL NIL) (-258 520805 522152 523516 "E04AGNT" 525283 T E04AGNT (NIL) -7 NIL NIL) (-257 519529 520009 520049 "DVARCAT" 520524 NIL DVARCAT (NIL T) -9 NIL 520723) (-256 518733 518945 519259 "DVARCAT-" 519264 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-255 511633 518532 518661 "DSMP" 518666 NIL DSMP (NIL T T T) -8 NIL NIL) (-254 506443 507578 508646 "DROPT" 510585 T DROPT (NIL) -8 NIL NIL) (-253 506108 506167 506265 "DROPT1" 506378 NIL DROPT1 (NIL T) -7 NIL NIL) (-252 501223 502349 503486 "DROPT0" 504991 T DROPT0 (NIL) -7 NIL NIL) (-251 499568 499893 500279 "DRAWPT" 500857 T DRAWPT (NIL) -7 NIL NIL) (-250 494155 495078 496157 "DRAW" 498542 NIL DRAW (NIL T) -7 NIL NIL) (-249 493788 493841 493959 "DRAWHACK" 494096 NIL DRAWHACK (NIL T) -7 NIL NIL) (-248 492519 492788 493079 "DRAWCX" 493517 T DRAWCX (NIL) -7 NIL NIL) (-247 492035 492103 492254 "DRAWCURV" 492445 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-246 482506 484465 486580 "DRAWCFUN" 489940 T DRAWCFUN (NIL) -7 NIL NIL) (-245 479319 481201 481242 "DQAGG" 481871 NIL DQAGG (NIL T) -9 NIL 482144) (-244 467838 474535 474618 "DPOLCAT" 476470 NIL DPOLCAT (NIL T T T T) -9 NIL 477015) (-243 462677 464023 465981 "DPOLCAT-" 465986 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-242 455832 462538 462636 "DPMO" 462641 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-241 448890 455612 455779 "DPMM" 455784 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-240 448310 448513 448627 "DOMAIN" 448796 T DOMAIN (NIL) -8 NIL NIL) (-239 442061 447945 448097 "DMP" 448211 NIL DMP (NIL NIL T) -8 NIL NIL) (-238 441661 441717 441861 "DLP" 441999 NIL DLP (NIL T) -7 NIL NIL) (-237 435305 440762 440989 "DLIST" 441466 NIL DLIST (NIL T) -8 NIL NIL) (-236 432151 434160 434201 "DLAGG" 434751 NIL DLAGG (NIL T) -9 NIL 434980) (-235 431001 431631 431659 "DIVRING" 431751 T DIVRING (NIL) -9 NIL 431834) (-234 430238 430428 430728 "DIVRING-" 430733 NIL DIVRING- (NIL T) -8 NIL NIL) (-233 428340 428697 429103 "DISPLAY" 429852 T DISPLAY (NIL) -7 NIL NIL) (-232 422282 428254 428317 "DIRPROD" 428322 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-231 421130 421333 421598 "DIRPROD2" 422075 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-230 410668 416620 416673 "DIRPCAT" 417083 NIL DIRPCAT (NIL NIL T) -9 NIL 417923) (-229 407994 408636 409517 "DIRPCAT-" 409854 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-228 407281 407441 407627 "DIOSP" 407828 T DIOSP (NIL) -7 NIL NIL) (-227 403983 406193 406234 "DIOPS" 406668 NIL DIOPS (NIL T) -9 NIL 406897) (-226 403532 403646 403837 "DIOPS-" 403842 NIL DIOPS- (NIL T T) -8 NIL NIL) (-225 402444 403038 403066 "DIFRING" 403253 T DIFRING (NIL) -9 NIL 403363) (-224 402090 402167 402319 "DIFRING-" 402324 NIL DIFRING- (NIL T) -8 NIL NIL) (-223 399915 401153 401194 "DIFEXT" 401557 NIL DIFEXT (NIL T) -9 NIL 401851) (-222 398200 398628 399294 "DIFEXT-" 399299 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-221 395522 397732 397773 "DIAGG" 397778 NIL DIAGG (NIL T) -9 NIL 397798) (-220 394906 395063 395315 "DIAGG-" 395320 NIL DIAGG- (NIL T T) -8 NIL NIL) (-219 390371 393865 394142 "DHMATRIX" 394675 NIL DHMATRIX (NIL T) -8 NIL NIL) (-218 385983 386892 387902 "DFSFUN" 389381 T DFSFUN (NIL) -7 NIL NIL) (-217 380951 384798 385140 "DFLOAT" 385661 T DFLOAT (NIL) -8 NIL NIL) (-216 379179 379460 379856 "DFINTTLS" 380659 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-215 376244 377200 377600 "DERHAM" 378845 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-214 374093 376019 376108 "DEQUEUE" 376188 NIL DEQUEUE (NIL T) -8 NIL NIL) (-213 373308 373441 373637 "DEGRED" 373955 NIL DEGRED (NIL T T) -7 NIL NIL) (-212 369703 370448 371301 "DEFINTRF" 372536 NIL DEFINTRF (NIL T) -7 NIL NIL) (-211 367230 367699 368298 "DEFINTEF" 369222 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-210 366596 366829 366951 "DEFAST" 367128 T DEFAST (NIL) -8 NIL NIL) (-209 360484 366037 366203 "DECIMAL" 366450 T DECIMAL (NIL) -8 NIL NIL) (-208 357996 358454 358960 "DDFACT" 360028 NIL DDFACT (NIL T T) -7 NIL NIL) (-207 357592 357635 357786 "DBLRESP" 357947 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-206 355302 355636 356005 "DBASE" 357350 NIL DBASE (NIL T) -8 NIL NIL) (-205 354571 354782 354928 "DATABUF" 355201 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-204 353704 354530 354558 "D03FAFA" 354563 T D03FAFA (NIL) -8 NIL NIL) (-203 352838 353663 353691 "D03EEFA" 353696 T D03EEFA (NIL) -8 NIL NIL) (-202 350788 351254 351743 "D03AGNT" 352369 T D03AGNT (NIL) -7 NIL NIL) (-201 350104 350747 350775 "D02EJFA" 350780 T D02EJFA (NIL) -8 NIL NIL) (-200 349420 350063 350091 "D02CJFA" 350096 T D02CJFA (NIL) -8 NIL NIL) (-199 348736 349379 349407 "D02BHFA" 349412 T D02BHFA (NIL) -8 NIL NIL) (-198 348052 348695 348723 "D02BBFA" 348728 T D02BBFA (NIL) -8 NIL NIL) (-197 341250 342838 344444 "D02AGNT" 346466 T D02AGNT (NIL) -7 NIL NIL) (-196 339019 339541 340087 "D01WGTS" 340724 T D01WGTS (NIL) -7 NIL NIL) (-195 338114 338978 339006 "D01TRNS" 339011 T D01TRNS (NIL) -8 NIL NIL) (-194 337209 338073 338101 "D01GBFA" 338106 T D01GBFA (NIL) -8 NIL NIL) (-193 336304 337168 337196 "D01FCFA" 337201 T D01FCFA (NIL) -8 NIL NIL) (-192 335399 336263 336291 "D01ASFA" 336296 T D01ASFA (NIL) -8 NIL NIL) (-191 334494 335358 335386 "D01AQFA" 335391 T D01AQFA (NIL) -8 NIL NIL) (-190 333589 334453 334481 "D01APFA" 334486 T D01APFA (NIL) -8 NIL NIL) (-189 332684 333548 333576 "D01ANFA" 333581 T D01ANFA (NIL) -8 NIL NIL) (-188 331779 332643 332671 "D01AMFA" 332676 T D01AMFA (NIL) -8 NIL NIL) (-187 330874 331738 331766 "D01ALFA" 331771 T D01ALFA (NIL) -8 NIL NIL) (-186 329969 330833 330861 "D01AKFA" 330866 T D01AKFA (NIL) -8 NIL NIL) (-185 329064 329928 329956 "D01AJFA" 329961 T D01AJFA (NIL) -8 NIL NIL) (-184 322361 323912 325473 "D01AGNT" 327523 T D01AGNT (NIL) -7 NIL NIL) (-183 321698 321826 321978 "CYCLOTOM" 322229 T CYCLOTOM (NIL) -7 NIL NIL) (-182 318433 319146 319873 "CYCLES" 320991 T CYCLES (NIL) -7 NIL NIL) (-181 317745 317879 318050 "CVMP" 318294 NIL CVMP (NIL T) -7 NIL NIL) (-180 315516 315774 316150 "CTRIGMNP" 317473 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-179 315027 315216 315315 "CTORCALL" 315437 T CTORCALL (NIL) -8 NIL NIL) (-178 314401 314500 314653 "CSTTOOLS" 314924 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-177 310200 310857 311615 "CRFP" 313713 NIL CRFP (NIL T T) -7 NIL NIL) (-176 309247 309432 309660 "CRAPACK" 310004 NIL CRAPACK (NIL T) -7 NIL NIL) (-175 308631 308732 308936 "CPMATCH" 309123 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-174 308356 308384 308490 "CPIMA" 308597 NIL CPIMA (NIL T T T) -7 NIL NIL) (-173 304720 305392 306110 "COORDSYS" 307691 NIL COORDSYS (NIL T) -7 NIL NIL) (-172 304104 304233 304383 "CONTOUR" 304590 T CONTOUR (NIL) -8 NIL NIL) (-171 300030 302107 302599 "CONTFRAC" 303644 NIL CONTFRAC (NIL T) -8 NIL NIL) (-170 299910 299931 299959 "CONDUIT" 299996 T CONDUIT (NIL) -9 NIL NIL) (-169 299103 299623 299651 "COMRING" 299656 T COMRING (NIL) -9 NIL 299708) (-168 298184 298461 298645 "COMPPROP" 298939 T COMPPROP (NIL) -8 NIL NIL) (-167 297845 297880 298008 "COMPLPAT" 298143 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-166 287904 297654 297763 "COMPLEX" 297768 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 287540 287597 287704 "COMPLEX2" 287841 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-164 287258 287293 287391 "COMPFACT" 287499 NIL COMPFACT (NIL T T) -7 NIL NIL) (-163 271656 281872 281912 "COMPCAT" 282916 NIL COMPCAT (NIL T) -9 NIL 284311) (-162 261171 264095 267722 "COMPCAT-" 268078 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-161 260900 260928 261031 "COMMUPC" 261137 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-160 260695 260728 260787 "COMMONOP" 260861 T COMMONOP (NIL) -7 NIL NIL) (-159 260278 260446 260533 "COMM" 260628 T COMM (NIL) -8 NIL NIL) (-158 259899 260082 260157 "COMMAAST" 260223 T COMMAAST (NIL) -8 NIL NIL) (-157 259148 259342 259370 "COMBOPC" 259708 T COMBOPC (NIL) -9 NIL 259883) (-156 258044 258254 258496 "COMBINAT" 258938 NIL COMBINAT (NIL T) -7 NIL NIL) (-155 254242 254815 255455 "COMBF" 257466 NIL COMBF (NIL T T) -7 NIL NIL) (-154 253028 253358 253593 "COLOR" 254027 T COLOR (NIL) -8 NIL NIL) (-153 252548 252749 252841 "COLONAST" 252956 T COLONAST (NIL) -8 NIL NIL) (-152 252188 252235 252360 "CMPLXRT" 252495 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-151 247690 248718 249798 "CLIP" 251128 T CLIP (NIL) -7 NIL NIL) (-150 246072 246796 247035 "CLIF" 247517 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242294 244218 244259 "CLAGG" 245188 NIL CLAGG (NIL T) -9 NIL 245724) (-148 240716 241173 241756 "CLAGG-" 241761 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240260 240345 240485 "CINTSLPE" 240625 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 237761 238232 238780 "CHVAR" 239788 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 237024 237544 237572 "CHARZ" 237577 T CHARZ (NIL) -9 NIL 237592) (-144 236778 236818 236896 "CHARPOL" 236978 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 235925 236478 236506 "CHARNZ" 236553 T CHARNZ (NIL) -9 NIL 236609) (-142 233950 234615 234950 "CHAR" 235610 T CHAR (NIL) -8 NIL NIL) (-141 233676 233737 233765 "CFCAT" 233876 T CFCAT (NIL) -9 NIL NIL) (-140 232921 233032 233214 "CDEN" 233560 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 228913 232074 232354 "CCLASS" 232661 T CCLASS (NIL) -8 NIL NIL) (-138 228832 228858 228893 "CATEGORY" 228898 T -10 (NIL) -8 NIL NIL) (-137 228323 228532 228631 "CATAST" 228753 T CATAST (NIL) -8 NIL NIL) (-136 227843 228044 228136 "CASEAST" 228251 T CASEAST (NIL) -8 NIL NIL) (-135 222895 223872 224625 "CARTEN" 227146 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222003 222151 222372 "CARTEN2" 222742 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220345 221153 221410 "CARD" 221766 T CARD (NIL) -8 NIL NIL) (-132 219965 220149 220224 "CAPSLAST" 220290 T CAPSLAST (NIL) -8 NIL NIL) (-131 219337 219665 219693 "CACHSET" 219825 T CACHSET (NIL) -9 NIL 219902) (-130 218833 219129 219157 "CABMON" 219207 T CABMON (NIL) -9 NIL 219263) (-129 218002 218380 218523 "BYTE" 218710 T BYTE (NIL) -8 NIL NIL) (-128 213950 217949 217983 "BYTEARY" 217988 T BYTEARY (NIL) -8 NIL NIL) (-127 211507 213642 213749 "BTREE" 213876 NIL BTREE (NIL T) -8 NIL NIL) (-126 209005 211155 211277 "BTOURN" 211417 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206423 208476 208517 "BTCAT" 208585 NIL BTCAT (NIL T) -9 NIL 208662) (-124 206090 206170 206319 "BTCAT-" 206324 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 201382 205233 205261 "BTAGG" 205483 T BTAGG (NIL) -9 NIL 205644) (-122 200872 200997 201203 "BTAGG-" 201208 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197916 200150 200365 "BSTREE" 200689 NIL BSTREE (NIL T) -8 NIL NIL) (-120 197054 197180 197364 "BRILL" 197772 NIL BRILL (NIL T) -7 NIL NIL) (-119 193755 195782 195823 "BRAGG" 196472 NIL BRAGG (NIL T) -9 NIL 196729) (-118 192284 192690 193245 "BRAGG-" 193250 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185550 191630 191814 "BPADICRT" 192132 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183900 185487 185532 "BPADIC" 185537 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183598 183628 183742 "BOUNDZRO" 183864 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 179113 180204 181071 "BOP" 182751 T BOP (NIL) -8 NIL NIL) (-113 176734 177178 177698 "BOP1" 178626 NIL BOP1 (NIL T) -7 NIL NIL) (-112 175472 176158 176351 "BOOLEAN" 176561 T BOOLEAN (NIL) -8 NIL NIL) (-111 174834 175212 175266 "BMODULE" 175271 NIL BMODULE (NIL T T) -9 NIL 175336) (-110 170664 174632 174705 "BITS" 174781 T BITS (NIL) -8 NIL NIL) (-109 169761 170196 170348 "BINFILE" 170532 T BINFILE (NIL) -8 NIL NIL) (-108 169173 169295 169437 "BINDING" 169639 T BINDING (NIL) -8 NIL NIL) (-107 163065 168617 168782 "BINARY" 169028 T BINARY (NIL) -8 NIL NIL) (-106 160892 162320 162361 "BGAGG" 162621 NIL BGAGG (NIL T) -9 NIL 162758) (-105 160723 160755 160846 "BGAGG-" 160851 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 159821 160107 160312 "BFUNCT" 160538 T BFUNCT (NIL) -8 NIL NIL) (-103 158511 158689 158977 "BEZOUT" 159645 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155028 157363 157693 "BBTREE" 158214 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154762 154815 154843 "BASTYPE" 154962 T BASTYPE (NIL) -9 NIL NIL) (-100 154614 154643 154716 "BASTYPE-" 154721 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154052 154128 154278 "BALFACT" 154525 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 152935 153467 153653 "AUTOMOR" 153897 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152661 152666 152692 "ATTREG" 152697 T ATTREG (NIL) -9 NIL NIL) (-96 150940 151358 151710 "ATTRBUT" 152327 T ATTRBUT (NIL) -8 NIL NIL) (-95 150592 150768 150834 "ATTRAST" 150892 T ATTRAST (NIL) -8 NIL NIL) (-94 150128 150241 150267 "ATRIG" 150468 T ATRIG (NIL) -9 NIL NIL) (-93 149937 149978 150065 "ATRIG-" 150070 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149662 149805 149831 "ASTCAT" 149836 T ASTCAT (NIL) -9 NIL 149866) (-91 149459 149502 149594 "ASTCAT-" 149599 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147656 149235 149323 "ASTACK" 149402 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146161 146458 146823 "ASSOCEQ" 147338 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145193 145820 145944 "ASP9" 146068 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144957 145141 145180 "ASP8" 145185 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143826 144562 144704 "ASP80" 144846 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142725 143461 143593 "ASP7" 143725 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141679 142402 142520 "ASP78" 142638 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140648 141359 141476 "ASP77" 141593 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139560 140286 140417 "ASP74" 140548 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138460 139195 139327 "ASP73" 139459 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137415 138137 138255 "ASP6" 138373 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136363 137092 137210 "ASP55" 137328 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135313 136037 136156 "ASP50" 136275 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134401 135014 135124 "ASP4" 135234 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133489 134102 134212 "ASP49" 134322 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132274 133028 133196 "ASP42" 133378 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131051 131807 131977 "ASP41" 132161 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130001 130728 130846 "ASP35" 130964 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129766 129949 129988 "ASP34" 129993 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129503 129570 129646 "ASP33" 129721 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128398 129138 129270 "ASP31" 129402 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128163 128346 128385 "ASP30" 128390 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127898 127967 128043 "ASP29" 128118 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127663 127846 127885 "ASP28" 127890 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127428 127611 127650 "ASP27" 127655 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126512 127126 127237 "ASP24" 127348 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125428 126153 126283 "ASP20" 126413 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124516 125129 125239 "ASP1" 125349 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123460 124190 124309 "ASP19" 124428 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123197 123264 123340 "ASP12" 123415 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122049 122796 122940 "ASP10" 123084 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119948 121893 121984 "ARRAY2" 121989 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115764 119596 119710 "ARRAY1" 119865 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114796 114969 115190 "ARRAY12" 115587 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109155 111026 111101 "ARR2CAT" 113731 NIL ARR2CAT (NIL T T T) -9 NIL 114489) (-55 106589 107333 108287 "ARR2CAT-" 108292 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105337 105489 105795 "APPRULE" 106425 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 104988 105036 105155 "APPLYORE" 105283 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103962 104253 104448 "ANY" 104811 T ANY (NIL) -8 NIL NIL) (-51 103240 103363 103520 "ANY1" 103836 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100805 101677 102004 "ANTISYM" 102964 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100320 100509 100606 "ANON" 100726 T ANON (NIL) -8 NIL NIL) (-48 94454 98861 99314 "AN" 99885 T AN (NIL) -8 NIL NIL) (-47 90835 92189 92240 "AMR" 92988 NIL AMR (NIL T T) -9 NIL 93588) (-46 89947 90168 90531 "AMR-" 90536 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74497 89864 89925 "ALIST" 89930 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71334 74091 74260 "ALGSC" 74415 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67890 68444 69051 "ALGPKG" 70774 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67167 67268 67452 "ALGMFACT" 67776 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62906 63591 64246 "ALGMANIP" 66690 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54312 62532 62682 "ALGFF" 62839 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53508 53639 53818 "ALGFACT" 54170 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52538 53104 53142 "ALGEBRA" 53202 NIL ALGEBRA (NIL T) -9 NIL 53261) (-37 52256 52315 52447 "ALGEBRA-" 52452 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34516 50259 50311 "ALAGG" 50447 NIL ALAGG (NIL T T) -9 NIL 50608) (-35 34052 34165 34191 "AHYP" 34392 T AHYP (NIL) -9 NIL NIL) (-34 32983 33231 33257 "AGG" 33756 T AGG (NIL) -9 NIL 34035) (-33 32417 32579 32793 "AGG-" 32798 NIL AGG- (NIL T) -8 NIL NIL) (-32 30094 30516 30934 "AF" 32059 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29819 29909 "ADDAST" 30022 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-3060 (*1 *1) (-4 *1 (-1118))) (-1681 (*1 *1 *1) (|partial| -4 *1 (-1118))))
+(-13 (-1067) (-10 -8 (-15 -3060 ($) -2589) (-15 -1681 ((-3 $ "failed") $))))
+(((-101) . T) ((-593 (-834)) . T) ((-1067) . T))
+((-1979 (((-1123 |#1|) (-1123 |#1|)) 17)) (-3753 (((-1123 |#1|) (-1123 |#1|)) 13)) (-2098 (((-1123 |#1|) (-1123 |#1|) (-549) (-549)) 20)) (-3131 (((-1123 |#1|) (-1123 |#1|)) 15)))
+(((-1119 |#1|) (-10 -7 (-15 -3753 ((-1123 |#1|) (-1123 |#1|))) (-15 -3131 ((-1123 |#1|) (-1123 |#1|))) (-15 -1979 ((-1123 |#1|) (-1123 |#1|))) (-15 -2098 ((-1123 |#1|) (-1123 |#1|) (-549) (-549)))) (-13 (-541) (-145))) (T -1119))
+((-2098 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1123 *4)) (-5 *3 (-549)) (-4 *4 (-13 (-541) (-145))) (-5 *1 (-1119 *4)))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-13 (-541) (-145))) (-5 *1 (-1119 *3)))) (-3131 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-13 (-541) (-145))) (-5 *1 (-1119 *3)))) (-3753 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-13 (-541) (-145))) (-5 *1 (-1119 *3)))))
+(-10 -7 (-15 -3753 ((-1123 |#1|) (-1123 |#1|))) (-15 -3131 ((-1123 |#1|) (-1123 |#1|))) (-15 -1979 ((-1123 |#1|) (-1123 |#1|))) (-15 -2098 ((-1123 |#1|) (-1123 |#1|) (-549) (-549))))
+((-1952 (((-1123 |#1|) (-1123 (-1123 |#1|))) 15)))
+(((-1120 |#1|) (-10 -7 (-15 -1952 ((-1123 |#1|) (-1123 (-1123 |#1|))))) (-1180)) (T -1120))
+((-1952 (*1 *2 *3) (-12 (-5 *3 (-1123 (-1123 *4))) (-5 *2 (-1123 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-1180)))))
+(-10 -7 (-15 -1952 ((-1123 |#1|) (-1123 (-1123 |#1|)))))
+((-3804 (((-1123 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1123 |#1|)) 25)) (-2557 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1123 |#1|)) 26)) (-2797 (((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|)) 16)))
+(((-1121 |#1| |#2|) (-10 -7 (-15 -2797 ((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|))) (-15 -3804 ((-1123 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1123 |#1|))) (-15 -2557 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1123 |#1|)))) (-1180) (-1180)) (T -1121))
+((-2557 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1123 *5)) (-4 *5 (-1180)) (-4 *2 (-1180)) (-5 *1 (-1121 *5 *2)))) (-3804 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1123 *6)) (-4 *6 (-1180)) (-4 *3 (-1180)) (-5 *2 (-1123 *3)) (-5 *1 (-1121 *6 *3)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1123 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-1123 *6)) (-5 *1 (-1121 *5 *6)))))
+(-10 -7 (-15 -2797 ((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|))) (-15 -3804 ((-1123 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1123 |#1|))) (-15 -2557 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1123 |#1|))))
+((-2797 (((-1123 |#3|) (-1 |#3| |#1| |#2|) (-1123 |#1|) (-1123 |#2|)) 21)))
+(((-1122 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-1123 |#3|) (-1 |#3| |#1| |#2|) (-1123 |#1|) (-1123 |#2|)))) (-1180) (-1180) (-1180)) (T -1122))
+((-2797 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1123 *6)) (-5 *5 (-1123 *7)) (-4 *6 (-1180)) (-4 *7 (-1180)) (-4 *8 (-1180)) (-5 *2 (-1123 *8)) (-5 *1 (-1122 *6 *7 *8)))))
+(-10 -7 (-15 -2797 ((-1123 |#3|) (-1 |#3| |#1| |#2|) (-1123 |#1|) (-1123 |#2|))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4161 ((|#1| $) NIL)) (-2839 ((|#1| $) NIL)) (-1343 (($ $) 52)) (-1535 (((-1231) $ (-549) (-549)) 77 (|has| $ (-6 -4338)))) (-3174 (($ $ (-549)) 111 (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) NIL)) (-3428 (((-834) $) 41 (|has| |#1| (-1067)))) (-3549 (((-112)) 40 (|has| |#1| (-1067)))) (-2838 ((|#1| $ |#1|) NIL (|has| $ (-6 -4338)))) (-4179 (($ $ $) 99 (|has| $ (-6 -4338))) (($ $ (-549) $) 123)) (-2780 ((|#1| $ |#1|) 108 (|has| $ (-6 -4338)))) (-4135 ((|#1| $ |#1|) 103 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4338))) (($ $ "rest" $) 107 (|has| $ (-6 -4338))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) 90 (|has| $ (-6 -4338))) ((|#1| $ (-549) |#1|) 56 (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) NIL (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) 59)) (-2830 ((|#1| $) NIL)) (-1682 (($) NIL T CONST)) (-2670 (($ $) 14)) (-3657 (($ $) 29) (($ $ (-747)) 89)) (-3905 (((-112) (-621 |#1|) $) 117 (|has| |#1| (-1067)))) (-2275 (($ (-621 |#1|)) 113)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) 58)) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1879 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) NIL)) (-3331 (((-112) $) NIL)) (-2989 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2075 (((-1231) (-549) $) 122 (|has| |#1| (-1067)))) (-1545 (((-747) $) 119)) (-3075 (((-621 $) $) NIL)) (-3895 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3743 (($ (-747) |#1|) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-1508 (((-112) $ (-747)) NIL)) (-3591 (((-621 |#1|) $) NIL)) (-2076 (((-112) $) NIL)) (-2948 (($ $) 91)) (-1558 (((-112) $) 13)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3829 ((|#1| $) NIL) (($ $ (-747)) NIL)) (-2616 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) 75)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1412 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-3217 ((|#1| $) 10)) (-3646 ((|#1| $) 28) (($ $ (-747)) 50)) (-2976 (((-2 (|:| |cycle?| (-112)) (|:| -1888 (-747)) (|:| |period| (-747))) (-747) $) 25)) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1460 (($ (-1 (-112) |#1|) $) 127)) (-1474 (($ (-1 (-112) |#1|) $) 128)) (-1642 (($ $ |#1|) 69 (|has| $ (-6 -4338)))) (-2763 (($ $ (-549)) 32)) (-3016 (((-112) $) 73)) (-1551 (((-112) $) 12)) (-2510 (((-112) $) 118)) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 20)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) 15)) (-3742 (($) 45)) (-3341 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1193 (-549))) NIL) ((|#1| $ (-549)) 55) ((|#1| $ (-549) |#1|) NIL)) (-3230 (((-549) $ $) 49)) (-2167 (($ $ (-1193 (-549))) NIL) (($ $ (-549)) NIL)) (-3576 (($ (-1 $)) 48)) (-3497 (((-112) $) 70)) (-1999 (($ $) 71)) (-2643 (($ $) 100 (|has| $ (-6 -4338)))) (-3798 (((-747) $) NIL)) (-3612 (($ $) NIL)) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) 44)) (-2845 (((-525) $) NIL (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 54)) (-3173 (($ |#1| $) 98)) (-3196 (($ $ $) 101 (|has| $ (-6 -4338))) (($ $ |#1|) 102 (|has| $ (-6 -4338)))) (-1952 (($ $ $) 79) (($ |#1| $) 46) (($ (-621 $)) 84) (($ $ |#1|) 78)) (-1977 (($ $) 51)) (-3846 (($ (-621 |#1|)) 112) (((-834) $) 42 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) NIL)) (-1987 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 115 (|has| |#1| (-1067)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1123 |#1|) (-13 (-650 |#1|) (-10 -8 (-6 -4338) (-15 -3846 ($ (-621 |#1|))) (-15 -2275 ($ (-621 |#1|))) (IF (|has| |#1| (-1067)) (-15 -3905 ((-112) (-621 |#1|) $)) |%noBranch|) (-15 -2976 ((-2 (|:| |cycle?| (-112)) (|:| -1888 (-747)) (|:| |period| (-747))) (-747) $)) (-15 -3576 ($ (-1 $))) (-15 -3173 ($ |#1| $)) (IF (|has| |#1| (-1067)) (PROGN (-15 -2075 ((-1231) (-549) $)) (-15 -3428 ((-834) $)) (-15 -3549 ((-112)))) |%noBranch|) (-15 -4179 ($ $ (-549) $)) (-15 -1412 ($ (-1 |#1|))) (-15 -1412 ($ (-1 |#1| |#1|) |#1|)) (-15 -1460 ($ (-1 (-112) |#1|) $)) (-15 -1474 ($ (-1 (-112) |#1|) $)))) (-1180)) (T -1123))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-1123 *3)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-1123 *3)))) (-3905 (*1 *2 *3 *1) (-12 (-5 *3 (-621 *4)) (-4 *4 (-1067)) (-4 *4 (-1180)) (-5 *2 (-112)) (-5 *1 (-1123 *4)))) (-2976 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1888 (-747)) (|:| |period| (-747)))) (-5 *1 (-1123 *4)) (-4 *4 (-1180)) (-5 *3 (-747)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1 (-1123 *3))) (-5 *1 (-1123 *3)) (-4 *3 (-1180)))) (-3173 (*1 *1 *2 *1) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-1180)))) (-2075 (*1 *2 *3 *1) (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-1123 *4)) (-4 *4 (-1067)) (-4 *4 (-1180)))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1123 *3)) (-4 *3 (-1067)) (-4 *3 (-1180)))) (-3549 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1123 *3)) (-4 *3 (-1067)) (-4 *3 (-1180)))) (-4179 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1123 *3)) (-4 *3 (-1180)))) (-1412 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1180)) (-5 *1 (-1123 *3)))) (-1412 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1180)) (-5 *1 (-1123 *3)))) (-1460 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1180)) (-5 *1 (-1123 *3)))) (-1474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1180)) (-5 *1 (-1123 *3)))))
+(-13 (-650 |#1|) (-10 -8 (-6 -4338) (-15 -3846 ($ (-621 |#1|))) (-15 -2275 ($ (-621 |#1|))) (IF (|has| |#1| (-1067)) (-15 -3905 ((-112) (-621 |#1|) $)) |%noBranch|) (-15 -2976 ((-2 (|:| |cycle?| (-112)) (|:| -1888 (-747)) (|:| |period| (-747))) (-747) $)) (-15 -3576 ($ (-1 $))) (-15 -3173 ($ |#1| $)) (IF (|has| |#1| (-1067)) (PROGN (-15 -2075 ((-1231) (-549) $)) (-15 -3428 ((-834) $)) (-15 -3549 ((-112)))) |%noBranch|) (-15 -4179 ($ $ (-549) $)) (-15 -1412 ($ (-1 |#1|))) (-15 -1412 ($ (-1 |#1| |#1|) |#1|)) (-15 -1460 ($ (-1 (-112) |#1|) $)) (-15 -1474 ($ (-1 (-112) |#1|) $))))
+((-3834 (((-112) $ $) 19)) (-2969 (($ $) 120)) (-2946 (($ $) 121)) (-1445 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-1535 (((-1231) $ (-549) (-549)) 40 (|has| $ (-6 -4338)))) (-2319 (((-112) $ $) 118)) (-2293 (((-112) $ $ (-549)) 117)) (-1525 (($ (-549)) 127)) (-3628 (((-621 $) $ (-142)) 110) (((-621 $) $ (-139)) 109)) (-4142 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-823)))) (-4311 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4338))) (($ $) 88 (-12 (|has| (-142) (-823)) (|has| $ (-6 -4338))))) (-3193 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-823)))) (-1584 (((-112) $ (-747)) 8)) (-2254 (((-142) $ (-549) (-142)) 52 (|has| $ (-6 -4338))) (((-142) $ (-1193 (-549)) (-142)) 58 (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-3590 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-1585 (($ $) 90 (|has| $ (-6 -4338)))) (-3064 (($ $) 100)) (-4126 (($ $ (-1193 (-549)) $) 114)) (-3676 (($ $) 78 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ (-142) $) 77 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4337)))) (-2557 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4337)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4337))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4337)))) (-1879 (((-142) $ (-549) (-142)) 53 (|has| $ (-6 -4338)))) (-1809 (((-142) $ (-549)) 51)) (-2349 (((-112) $ $) 119)) (-2883 (((-549) (-1 (-112) (-142)) $) 97) (((-549) (-142) $) 96 (|has| (-142) (-1067))) (((-549) (-142) $ (-549)) 95 (|has| (-142) (-1067))) (((-549) $ $ (-549)) 113) (((-549) (-139) $ (-549)) 112)) (-2989 (((-621 (-142)) $) 30 (|has| $ (-6 -4337)))) (-3743 (($ (-747) (-142)) 69)) (-3194 (((-112) $ (-747)) 9)) (-4031 (((-549) $) 43 (|has| (-549) (-823)))) (-2863 (($ $ $) 87 (|has| (-142) (-823)))) (-3890 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-823)))) (-1562 (((-621 (-142)) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 44 (|has| (-549) (-823)))) (-3575 (($ $ $) 86 (|has| (-142) (-823)))) (-2312 (((-112) $ $ (-142)) 115)) (-2475 (((-747) $ $ (-142)) 116)) (-1868 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-1555 (($ $) 122)) (-3408 (($ $) 123)) (-1508 (((-112) $ (-747)) 10)) (-3603 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3851 (((-1125) $) 22)) (-2616 (($ (-142) $ (-549)) 60) (($ $ $ (-549)) 59)) (-3303 (((-621 (-549)) $) 46)) (-3761 (((-112) (-549) $) 47)) (-3990 (((-1087) $) 21)) (-3646 (((-142) $) 42 (|has| (-549) (-823)))) (-3779 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-1642 (($ $ (-142)) 41 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-287 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-621 (-142)) (-621 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-2696 (((-621 (-142)) $) 48)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 (((-142) $ (-549) (-142)) 50) (((-142) $ (-549)) 49) (($ $ (-1193 (-549))) 63) (($ $ $) 102)) (-2167 (($ $ (-549)) 62) (($ $ (-1193 (-549))) 61)) (-4000 (((-747) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4337))) (((-747) (-142) $) 28 (-12 (|has| (-142) (-1067)) (|has| $ (-6 -4337))))) (-2730 (($ $ $ (-549)) 91 (|has| $ (-6 -4338)))) (-2281 (($ $) 13)) (-2845 (((-525) $) 79 (|has| (-142) (-594 (-525))))) (-3854 (($ (-621 (-142))) 70)) (-1952 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3846 (($ (-142)) 111) (((-834) $) 18)) (-3527 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4337)))) (-4245 (((-1125) $) 131) (((-1125) $ (-112)) 130) (((-1231) (-798) $) 129) (((-1231) (-798) $ (-112)) 128)) (-2448 (((-112) $ $) 84 (|has| (-142) (-823)))) (-2425 (((-112) $ $) 83 (|has| (-142) (-823)))) (-2389 (((-112) $ $) 20)) (-2438 (((-112) $ $) 85 (|has| (-142) (-823)))) (-2412 (((-112) $ $) 82 (|has| (-142) (-823)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-1124) (-138)) (T -1124))
+((-1525 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1124)))))
+(-13 (-1111) (-1067) (-804) (-10 -8 (-15 -1525 ($ (-549)))))
+(((-34) . T) ((-101) . T) ((-593 (-834)) . T) ((-149 #0=(-142)) . T) ((-594 (-525)) |has| (-142) (-594 (-525))) ((-279 #1=(-549) #0#) . T) ((-281 #1# #0#) . T) ((-302 #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))) ((-366 #0#) . T) ((-481 #0#) . T) ((-584 #1# #0#) . T) ((-505 #0# #0#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))) ((-627 #0#) . T) ((-19 #0#) . T) ((-804) . T) ((-823) |has| (-142) (-823)) ((-1067) . T) ((-1111) . T) ((-1180) . T))
+((-3834 (((-112) $ $) NIL)) (-2969 (($ $) NIL)) (-2946 (($ $) NIL)) (-1445 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-2319 (((-112) $ $) NIL)) (-2293 (((-112) $ $ (-549)) NIL)) (-1525 (($ (-549)) 7)) (-3628 (((-621 $) $ (-142)) NIL) (((-621 $) $ (-139)) NIL)) (-4142 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-823)))) (-4311 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4338))) (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| (-142) (-823))))) (-3193 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-823)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 (((-142) $ (-549) (-142)) NIL (|has| $ (-6 -4338))) (((-142) $ (-1193 (-549)) (-142)) NIL (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-3590 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-4126 (($ $ (-1193 (-549)) $) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-3812 (($ (-142) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4337))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4337)))) (-1879 (((-142) $ (-549) (-142)) NIL (|has| $ (-6 -4338)))) (-1809 (((-142) $ (-549)) NIL)) (-2349 (((-112) $ $) NIL)) (-2883 (((-549) (-1 (-112) (-142)) $) NIL) (((-549) (-142) $) NIL (|has| (-142) (-1067))) (((-549) (-142) $ (-549)) NIL (|has| (-142) (-1067))) (((-549) $ $ (-549)) NIL) (((-549) (-139) $ (-549)) NIL)) (-2989 (((-621 (-142)) $) NIL (|has| $ (-6 -4337)))) (-3743 (($ (-747) (-142)) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| (-142) (-823)))) (-3890 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-823)))) (-1562 (((-621 (-142)) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| (-142) (-823)))) (-2312 (((-112) $ $ (-142)) NIL)) (-2475 (((-747) $ $ (-142)) NIL)) (-1868 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-1555 (($ $) NIL)) (-3408 (($ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3603 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3851 (((-1125) $) NIL)) (-2616 (($ (-142) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL)) (-3646 (((-142) $) NIL (|has| (-549) (-823)))) (-3779 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-1642 (($ $ (-142)) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-287 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067)))) (($ $ (-621 (-142)) (-621 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-2696 (((-621 (-142)) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 (((-142) $ (-549) (-142)) NIL) (((-142) $ (-549)) NIL) (($ $ (-1193 (-549))) NIL) (($ $ $) NIL)) (-2167 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-4000 (((-747) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337))) (((-747) (-142) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-142) (-1067))))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-142) (-594 (-525))))) (-3854 (($ (-621 (-142))) NIL)) (-1952 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3846 (($ (-142)) NIL) (((-834) $) NIL)) (-3527 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4337)))) (-4245 (((-1125) $) 18) (((-1125) $ (-112)) 20) (((-1231) (-798) $) 21) (((-1231) (-798) $ (-112)) 22)) (-2448 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2425 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| (-142) (-823)))) (-2412 (((-112) $ $) NIL (|has| (-142) (-823)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1125) (-1124)) (T -1125))
+NIL
+(-1124)
+((-3834 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)) (|has| |#1| (-1067))))) (-3733 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) NIL)) (-1535 (((-1231) $ (-1125) (-1125)) NIL (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#1| $ (-1125) |#1|) NIL)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-3490 (((-3 |#1| "failed") (-1125) $) NIL)) (-1682 (($) NIL T CONST)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067))))) (-2129 (($ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337))) (((-3 |#1| "failed") (-1125) $) NIL)) (-3812 (($ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)))) (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-1125) |#1|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-1125)) NIL)) (-2989 (((-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-1125) $) NIL (|has| (-1125) (-823)))) (-1562 (((-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-1125) $) NIL (|has| (-1125) (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4338))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (-1536 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)) (|has| |#1| (-1067))))) (-3449 (((-621 (-1125)) $) NIL)) (-2427 (((-112) (-1125) $) NIL)) (-3504 (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL)) (-2751 (($ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL)) (-3303 (((-621 (-1125)) $) NIL)) (-3761 (((-112) (-1125) $) NIL)) (-3990 (((-1087) $) NIL (-1536 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)) (|has| |#1| (-1067))))) (-3646 ((|#1| $) NIL (|has| (-1125) (-823)))) (-3779 (((-3 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) "failed") (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL)) (-1642 (($ $ |#1|) NIL (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))))) NIL (-12 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) NIL (-12 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)))) (($ $ (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) NIL (-12 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)))) (($ $ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) NIL (-12 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-302 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ (-1125)) NIL) ((|#1| $ (-1125) |#1|) NIL)) (-2898 (($) NIL) (($ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) NIL)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) NIL)) (-3846 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-593 (-834))) (|has| |#1| (-593 (-834)))))) (-3624 (($ (-621 (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)))) NIL)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 (-1125)) (|:| -1793 |#1|)) (-1067)) (|has| |#1| (-1067))))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1126 |#1|) (-13 (-1156 (-1125) |#1|) (-10 -7 (-6 -4337))) (-1067)) (T -1126))
+NIL
+(-13 (-1156 (-1125) |#1|) (-10 -7 (-6 -4337)))
+((-1387 (((-1123 |#1|) (-1123 |#1|)) 77)) (-2114 (((-3 (-1123 |#1|) "failed") (-1123 |#1|)) 37)) (-3314 (((-1123 |#1|) (-400 (-549)) (-1123 |#1|)) 121 (|has| |#1| (-38 (-400 (-549)))))) (-3063 (((-1123 |#1|) |#1| (-1123 |#1|)) 127 (|has| |#1| (-356)))) (-4226 (((-1123 |#1|) (-1123 |#1|)) 90)) (-2606 (((-1123 (-549)) (-549)) 57)) (-4057 (((-1123 |#1|) (-1123 (-1123 |#1|))) 109 (|has| |#1| (-38 (-400 (-549)))))) (-1594 (((-1123 |#1|) (-549) (-549) (-1123 |#1|)) 95)) (-3526 (((-1123 |#1|) |#1| (-549)) 45)) (-1365 (((-1123 |#1|) (-1123 |#1|) (-1123 |#1|)) 60)) (-2020 (((-1123 |#1|) (-1123 |#1|) (-1123 |#1|)) 124 (|has| |#1| (-356)))) (-1595 (((-1123 |#1|) |#1| (-1 (-1123 |#1|))) 108 (|has| |#1| (-38 (-400 (-549)))))) (-4010 (((-1123 |#1|) (-1 |#1| (-549)) |#1| (-1 (-1123 |#1|))) 125 (|has| |#1| (-356)))) (-2848 (((-1123 |#1|) (-1123 |#1|)) 89)) (-1375 (((-1123 |#1|) (-1123 |#1|)) 76)) (-3498 (((-1123 |#1|) (-549) (-549) (-1123 |#1|)) 96)) (-3893 (((-1123 |#1|) |#1| (-1123 |#1|)) 105 (|has| |#1| (-38 (-400 (-549)))))) (-1732 (((-1123 (-549)) (-549)) 56)) (-4292 (((-1123 |#1|) |#1|) 59)) (-1629 (((-1123 |#1|) (-1123 |#1|) (-549) (-549)) 92)) (-1995 (((-1123 |#1|) (-1 |#1| (-549)) (-1123 |#1|)) 66)) (-2042 (((-3 (-1123 |#1|) "failed") (-1123 |#1|) (-1123 |#1|)) 35)) (-3184 (((-1123 |#1|) (-1123 |#1|)) 91)) (-2686 (((-1123 |#1|) (-1123 |#1|) |#1|) 71)) (-2236 (((-1123 |#1|) (-1123 |#1|)) 62)) (-1341 (((-1123 |#1|) (-1123 |#1|) (-1123 |#1|)) 72)) (-3846 (((-1123 |#1|) |#1|) 67)) (-2934 (((-1123 |#1|) (-1123 (-1123 |#1|))) 82)) (-2513 (((-1123 |#1|) (-1123 |#1|) (-1123 |#1|)) 36)) (-2500 (((-1123 |#1|) (-1123 |#1|)) 21) (((-1123 |#1|) (-1123 |#1|) (-1123 |#1|)) 23)) (-2486 (((-1123 |#1|) (-1123 |#1|) (-1123 |#1|)) 17)) (* (((-1123 |#1|) (-1123 |#1|) |#1|) 29) (((-1123 |#1|) |#1| (-1123 |#1|)) 26) (((-1123 |#1|) (-1123 |#1|) (-1123 |#1|)) 27)))
+(((-1127 |#1|) (-10 -7 (-15 -2486 ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -2500 ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -2500 ((-1123 |#1|) (-1123 |#1|))) (-15 * ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 * ((-1123 |#1|) |#1| (-1123 |#1|))) (-15 * ((-1123 |#1|) (-1123 |#1|) |#1|)) (-15 -2042 ((-3 (-1123 |#1|) "failed") (-1123 |#1|) (-1123 |#1|))) (-15 -2513 ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -2114 ((-3 (-1123 |#1|) "failed") (-1123 |#1|))) (-15 -3526 ((-1123 |#1|) |#1| (-549))) (-15 -1732 ((-1123 (-549)) (-549))) (-15 -2606 ((-1123 (-549)) (-549))) (-15 -4292 ((-1123 |#1|) |#1|)) (-15 -1365 ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -2236 ((-1123 |#1|) (-1123 |#1|))) (-15 -1995 ((-1123 |#1|) (-1 |#1| (-549)) (-1123 |#1|))) (-15 -3846 ((-1123 |#1|) |#1|)) (-15 -2686 ((-1123 |#1|) (-1123 |#1|) |#1|)) (-15 -1341 ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -1375 ((-1123 |#1|) (-1123 |#1|))) (-15 -1387 ((-1123 |#1|) (-1123 |#1|))) (-15 -2934 ((-1123 |#1|) (-1123 (-1123 |#1|)))) (-15 -2848 ((-1123 |#1|) (-1123 |#1|))) (-15 -4226 ((-1123 |#1|) (-1123 |#1|))) (-15 -3184 ((-1123 |#1|) (-1123 |#1|))) (-15 -1629 ((-1123 |#1|) (-1123 |#1|) (-549) (-549))) (-15 -1594 ((-1123 |#1|) (-549) (-549) (-1123 |#1|))) (-15 -3498 ((-1123 |#1|) (-549) (-549) (-1123 |#1|))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -3893 ((-1123 |#1|) |#1| (-1123 |#1|))) (-15 -1595 ((-1123 |#1|) |#1| (-1 (-1123 |#1|)))) (-15 -4057 ((-1123 |#1|) (-1123 (-1123 |#1|)))) (-15 -3314 ((-1123 |#1|) (-400 (-549)) (-1123 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2020 ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -4010 ((-1123 |#1|) (-1 |#1| (-549)) |#1| (-1 (-1123 |#1|)))) (-15 -3063 ((-1123 |#1|) |#1| (-1123 |#1|)))) |%noBranch|)) (-1018)) (T -1127))
+((-3063 (*1 *2 *3 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-4010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-549))) (-5 *5 (-1 (-1123 *4))) (-4 *4 (-356)) (-4 *4 (-1018)) (-5 *2 (-1123 *4)) (-5 *1 (-1127 *4)))) (-2020 (*1 *2 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-356)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-3314 (*1 *2 *3 *2) (-12 (-5 *2 (-1123 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1018)) (-5 *3 (-400 (-549))) (-5 *1 (-1127 *4)))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-1123 (-1123 *4))) (-5 *2 (-1123 *4)) (-5 *1 (-1127 *4)) (-4 *4 (-38 (-400 (-549)))) (-4 *4 (-1018)))) (-1595 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1123 *3))) (-5 *2 (-1123 *3)) (-5 *1 (-1127 *3)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)))) (-3893 (*1 *2 *3 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-3498 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1123 *4)) (-5 *3 (-549)) (-4 *4 (-1018)) (-5 *1 (-1127 *4)))) (-1594 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1123 *4)) (-5 *3 (-549)) (-4 *4 (-1018)) (-5 *1 (-1127 *4)))) (-1629 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1123 *4)) (-5 *3 (-549)) (-4 *4 (-1018)) (-5 *1 (-1127 *4)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-4226 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-2848 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-1123 (-1123 *4))) (-5 *2 (-1123 *4)) (-5 *1 (-1127 *4)) (-4 *4 (-1018)))) (-1387 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-1375 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-1341 (*1 *2 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-2686 (*1 *2 *2 *3) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-3846 (*1 *2 *3) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-1127 *3)) (-4 *3 (-1018)))) (-1995 (*1 *2 *3 *2) (-12 (-5 *2 (-1123 *4)) (-5 *3 (-1 *4 (-549))) (-4 *4 (-1018)) (-5 *1 (-1127 *4)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-1365 (*1 *2 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-4292 (*1 *2 *3) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-1127 *3)) (-4 *3 (-1018)))) (-2606 (*1 *2 *3) (-12 (-5 *2 (-1123 (-549))) (-5 *1 (-1127 *4)) (-4 *4 (-1018)) (-5 *3 (-549)))) (-1732 (*1 *2 *3) (-12 (-5 *2 (-1123 (-549))) (-5 *1 (-1127 *4)) (-4 *4 (-1018)) (-5 *3 (-549)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-5 *2 (-1123 *3)) (-5 *1 (-1127 *3)) (-4 *3 (-1018)))) (-2114 (*1 *2 *2) (|partial| -12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-2513 (*1 *2 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-2042 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-2500 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-2500 (*1 *2 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))) (-2486 (*1 *2 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))))
+(-10 -7 (-15 -2486 ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -2500 ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -2500 ((-1123 |#1|) (-1123 |#1|))) (-15 * ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 * ((-1123 |#1|) |#1| (-1123 |#1|))) (-15 * ((-1123 |#1|) (-1123 |#1|) |#1|)) (-15 -2042 ((-3 (-1123 |#1|) "failed") (-1123 |#1|) (-1123 |#1|))) (-15 -2513 ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -2114 ((-3 (-1123 |#1|) "failed") (-1123 |#1|))) (-15 -3526 ((-1123 |#1|) |#1| (-549))) (-15 -1732 ((-1123 (-549)) (-549))) (-15 -2606 ((-1123 (-549)) (-549))) (-15 -4292 ((-1123 |#1|) |#1|)) (-15 -1365 ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -2236 ((-1123 |#1|) (-1123 |#1|))) (-15 -1995 ((-1123 |#1|) (-1 |#1| (-549)) (-1123 |#1|))) (-15 -3846 ((-1123 |#1|) |#1|)) (-15 -2686 ((-1123 |#1|) (-1123 |#1|) |#1|)) (-15 -1341 ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -1375 ((-1123 |#1|) (-1123 |#1|))) (-15 -1387 ((-1123 |#1|) (-1123 |#1|))) (-15 -2934 ((-1123 |#1|) (-1123 (-1123 |#1|)))) (-15 -2848 ((-1123 |#1|) (-1123 |#1|))) (-15 -4226 ((-1123 |#1|) (-1123 |#1|))) (-15 -3184 ((-1123 |#1|) (-1123 |#1|))) (-15 -1629 ((-1123 |#1|) (-1123 |#1|) (-549) (-549))) (-15 -1594 ((-1123 |#1|) (-549) (-549) (-1123 |#1|))) (-15 -3498 ((-1123 |#1|) (-549) (-549) (-1123 |#1|))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -3893 ((-1123 |#1|) |#1| (-1123 |#1|))) (-15 -1595 ((-1123 |#1|) |#1| (-1 (-1123 |#1|)))) (-15 -4057 ((-1123 |#1|) (-1123 (-1123 |#1|)))) (-15 -3314 ((-1123 |#1|) (-400 (-549)) (-1123 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2020 ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -4010 ((-1123 |#1|) (-1 |#1| (-549)) |#1| (-1 (-1123 |#1|)))) (-15 -3063 ((-1123 |#1|) |#1| (-1123 |#1|)))) |%noBranch|))
+((-1664 (((-1123 |#1|) (-1123 |#1|)) 57)) (-1512 (((-1123 |#1|) (-1123 |#1|)) 39)) (-1640 (((-1123 |#1|) (-1123 |#1|)) 53)) (-1486 (((-1123 |#1|) (-1123 |#1|)) 35)) (-1685 (((-1123 |#1|) (-1123 |#1|)) 60)) (-1539 (((-1123 |#1|) (-1123 |#1|)) 42)) (-3632 (((-1123 |#1|) (-1123 |#1|)) 31)) (-2719 (((-1123 |#1|) (-1123 |#1|)) 27)) (-1698 (((-1123 |#1|) (-1123 |#1|)) 61)) (-1552 (((-1123 |#1|) (-1123 |#1|)) 43)) (-1675 (((-1123 |#1|) (-1123 |#1|)) 58)) (-1526 (((-1123 |#1|) (-1123 |#1|)) 40)) (-1651 (((-1123 |#1|) (-1123 |#1|)) 55)) (-1501 (((-1123 |#1|) (-1123 |#1|)) 37)) (-1733 (((-1123 |#1|) (-1123 |#1|)) 65)) (-1587 (((-1123 |#1|) (-1123 |#1|)) 47)) (-1710 (((-1123 |#1|) (-1123 |#1|)) 63)) (-1564 (((-1123 |#1|) (-1123 |#1|)) 45)) (-1758 (((-1123 |#1|) (-1123 |#1|)) 68)) (-1612 (((-1123 |#1|) (-1123 |#1|)) 50)) (-1934 (((-1123 |#1|) (-1123 |#1|)) 69)) (-1627 (((-1123 |#1|) (-1123 |#1|)) 51)) (-1745 (((-1123 |#1|) (-1123 |#1|)) 67)) (-1600 (((-1123 |#1|) (-1123 |#1|)) 49)) (-1722 (((-1123 |#1|) (-1123 |#1|)) 66)) (-1576 (((-1123 |#1|) (-1123 |#1|)) 48)) (** (((-1123 |#1|) (-1123 |#1|) (-1123 |#1|)) 33)))
+(((-1128 |#1|) (-10 -7 (-15 -2719 ((-1123 |#1|) (-1123 |#1|))) (-15 -3632 ((-1123 |#1|) (-1123 |#1|))) (-15 ** ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -1486 ((-1123 |#1|) (-1123 |#1|))) (-15 -1501 ((-1123 |#1|) (-1123 |#1|))) (-15 -1512 ((-1123 |#1|) (-1123 |#1|))) (-15 -1526 ((-1123 |#1|) (-1123 |#1|))) (-15 -1539 ((-1123 |#1|) (-1123 |#1|))) (-15 -1552 ((-1123 |#1|) (-1123 |#1|))) (-15 -1564 ((-1123 |#1|) (-1123 |#1|))) (-15 -1576 ((-1123 |#1|) (-1123 |#1|))) (-15 -1587 ((-1123 |#1|) (-1123 |#1|))) (-15 -1600 ((-1123 |#1|) (-1123 |#1|))) (-15 -1612 ((-1123 |#1|) (-1123 |#1|))) (-15 -1627 ((-1123 |#1|) (-1123 |#1|))) (-15 -1640 ((-1123 |#1|) (-1123 |#1|))) (-15 -1651 ((-1123 |#1|) (-1123 |#1|))) (-15 -1664 ((-1123 |#1|) (-1123 |#1|))) (-15 -1675 ((-1123 |#1|) (-1123 |#1|))) (-15 -1685 ((-1123 |#1|) (-1123 |#1|))) (-15 -1698 ((-1123 |#1|) (-1123 |#1|))) (-15 -1710 ((-1123 |#1|) (-1123 |#1|))) (-15 -1722 ((-1123 |#1|) (-1123 |#1|))) (-15 -1733 ((-1123 |#1|) (-1123 |#1|))) (-15 -1745 ((-1123 |#1|) (-1123 |#1|))) (-15 -1758 ((-1123 |#1|) (-1123 |#1|))) (-15 -1934 ((-1123 |#1|) (-1123 |#1|)))) (-38 (-400 (-549)))) (T -1128))
+((-1934 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1733 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1710 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1698 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1675 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1664 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1651 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1627 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1600 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1587 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1576 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1539 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1526 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-1486 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))) (-2719 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1128 *3)))))
+(-10 -7 (-15 -2719 ((-1123 |#1|) (-1123 |#1|))) (-15 -3632 ((-1123 |#1|) (-1123 |#1|))) (-15 ** ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -1486 ((-1123 |#1|) (-1123 |#1|))) (-15 -1501 ((-1123 |#1|) (-1123 |#1|))) (-15 -1512 ((-1123 |#1|) (-1123 |#1|))) (-15 -1526 ((-1123 |#1|) (-1123 |#1|))) (-15 -1539 ((-1123 |#1|) (-1123 |#1|))) (-15 -1552 ((-1123 |#1|) (-1123 |#1|))) (-15 -1564 ((-1123 |#1|) (-1123 |#1|))) (-15 -1576 ((-1123 |#1|) (-1123 |#1|))) (-15 -1587 ((-1123 |#1|) (-1123 |#1|))) (-15 -1600 ((-1123 |#1|) (-1123 |#1|))) (-15 -1612 ((-1123 |#1|) (-1123 |#1|))) (-15 -1627 ((-1123 |#1|) (-1123 |#1|))) (-15 -1640 ((-1123 |#1|) (-1123 |#1|))) (-15 -1651 ((-1123 |#1|) (-1123 |#1|))) (-15 -1664 ((-1123 |#1|) (-1123 |#1|))) (-15 -1675 ((-1123 |#1|) (-1123 |#1|))) (-15 -1685 ((-1123 |#1|) (-1123 |#1|))) (-15 -1698 ((-1123 |#1|) (-1123 |#1|))) (-15 -1710 ((-1123 |#1|) (-1123 |#1|))) (-15 -1722 ((-1123 |#1|) (-1123 |#1|))) (-15 -1733 ((-1123 |#1|) (-1123 |#1|))) (-15 -1745 ((-1123 |#1|) (-1123 |#1|))) (-15 -1758 ((-1123 |#1|) (-1123 |#1|))) (-15 -1934 ((-1123 |#1|) (-1123 |#1|))))
+((-1664 (((-1123 |#1|) (-1123 |#1|)) 100)) (-1512 (((-1123 |#1|) (-1123 |#1|)) 64)) (-2049 (((-2 (|:| -1640 (-1123 |#1|)) (|:| -1651 (-1123 |#1|))) (-1123 |#1|)) 96)) (-1640 (((-1123 |#1|) (-1123 |#1|)) 97)) (-3278 (((-2 (|:| -1486 (-1123 |#1|)) (|:| -1501 (-1123 |#1|))) (-1123 |#1|)) 53)) (-1486 (((-1123 |#1|) (-1123 |#1|)) 54)) (-1685 (((-1123 |#1|) (-1123 |#1|)) 102)) (-1539 (((-1123 |#1|) (-1123 |#1|)) 71)) (-3632 (((-1123 |#1|) (-1123 |#1|)) 39)) (-2719 (((-1123 |#1|) (-1123 |#1|)) 36)) (-1698 (((-1123 |#1|) (-1123 |#1|)) 103)) (-1552 (((-1123 |#1|) (-1123 |#1|)) 72)) (-1675 (((-1123 |#1|) (-1123 |#1|)) 101)) (-1526 (((-1123 |#1|) (-1123 |#1|)) 67)) (-1651 (((-1123 |#1|) (-1123 |#1|)) 98)) (-1501 (((-1123 |#1|) (-1123 |#1|)) 55)) (-1733 (((-1123 |#1|) (-1123 |#1|)) 111)) (-1587 (((-1123 |#1|) (-1123 |#1|)) 86)) (-1710 (((-1123 |#1|) (-1123 |#1|)) 105)) (-1564 (((-1123 |#1|) (-1123 |#1|)) 82)) (-1758 (((-1123 |#1|) (-1123 |#1|)) 115)) (-1612 (((-1123 |#1|) (-1123 |#1|)) 90)) (-1934 (((-1123 |#1|) (-1123 |#1|)) 117)) (-1627 (((-1123 |#1|) (-1123 |#1|)) 92)) (-1745 (((-1123 |#1|) (-1123 |#1|)) 113)) (-1600 (((-1123 |#1|) (-1123 |#1|)) 88)) (-1722 (((-1123 |#1|) (-1123 |#1|)) 107)) (-1576 (((-1123 |#1|) (-1123 |#1|)) 84)) (** (((-1123 |#1|) (-1123 |#1|) (-1123 |#1|)) 40)))
+(((-1129 |#1|) (-10 -7 (-15 -2719 ((-1123 |#1|) (-1123 |#1|))) (-15 -3632 ((-1123 |#1|) (-1123 |#1|))) (-15 ** ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -3278 ((-2 (|:| -1486 (-1123 |#1|)) (|:| -1501 (-1123 |#1|))) (-1123 |#1|))) (-15 -1486 ((-1123 |#1|) (-1123 |#1|))) (-15 -1501 ((-1123 |#1|) (-1123 |#1|))) (-15 -1512 ((-1123 |#1|) (-1123 |#1|))) (-15 -1526 ((-1123 |#1|) (-1123 |#1|))) (-15 -1539 ((-1123 |#1|) (-1123 |#1|))) (-15 -1552 ((-1123 |#1|) (-1123 |#1|))) (-15 -1564 ((-1123 |#1|) (-1123 |#1|))) (-15 -1576 ((-1123 |#1|) (-1123 |#1|))) (-15 -1587 ((-1123 |#1|) (-1123 |#1|))) (-15 -1600 ((-1123 |#1|) (-1123 |#1|))) (-15 -1612 ((-1123 |#1|) (-1123 |#1|))) (-15 -1627 ((-1123 |#1|) (-1123 |#1|))) (-15 -2049 ((-2 (|:| -1640 (-1123 |#1|)) (|:| -1651 (-1123 |#1|))) (-1123 |#1|))) (-15 -1640 ((-1123 |#1|) (-1123 |#1|))) (-15 -1651 ((-1123 |#1|) (-1123 |#1|))) (-15 -1664 ((-1123 |#1|) (-1123 |#1|))) (-15 -1675 ((-1123 |#1|) (-1123 |#1|))) (-15 -1685 ((-1123 |#1|) (-1123 |#1|))) (-15 -1698 ((-1123 |#1|) (-1123 |#1|))) (-15 -1710 ((-1123 |#1|) (-1123 |#1|))) (-15 -1722 ((-1123 |#1|) (-1123 |#1|))) (-15 -1733 ((-1123 |#1|) (-1123 |#1|))) (-15 -1745 ((-1123 |#1|) (-1123 |#1|))) (-15 -1758 ((-1123 |#1|) (-1123 |#1|))) (-15 -1934 ((-1123 |#1|) (-1123 |#1|)))) (-38 (-400 (-549)))) (T -1129))
+((-1934 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1733 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1710 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1698 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1675 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1664 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1651 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-2049 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-549)))) (-5 *2 (-2 (|:| -1640 (-1123 *4)) (|:| -1651 (-1123 *4)))) (-5 *1 (-1129 *4)) (-5 *3 (-1123 *4)))) (-1627 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1600 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1587 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1576 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1539 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1526 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-1486 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-3278 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-549)))) (-5 *2 (-2 (|:| -1486 (-1123 *4)) (|:| -1501 (-1123 *4)))) (-5 *1 (-1129 *4)) (-5 *3 (-1123 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))) (-2719 (*1 *2 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1129 *3)))))
+(-10 -7 (-15 -2719 ((-1123 |#1|) (-1123 |#1|))) (-15 -3632 ((-1123 |#1|) (-1123 |#1|))) (-15 ** ((-1123 |#1|) (-1123 |#1|) (-1123 |#1|))) (-15 -3278 ((-2 (|:| -1486 (-1123 |#1|)) (|:| -1501 (-1123 |#1|))) (-1123 |#1|))) (-15 -1486 ((-1123 |#1|) (-1123 |#1|))) (-15 -1501 ((-1123 |#1|) (-1123 |#1|))) (-15 -1512 ((-1123 |#1|) (-1123 |#1|))) (-15 -1526 ((-1123 |#1|) (-1123 |#1|))) (-15 -1539 ((-1123 |#1|) (-1123 |#1|))) (-15 -1552 ((-1123 |#1|) (-1123 |#1|))) (-15 -1564 ((-1123 |#1|) (-1123 |#1|))) (-15 -1576 ((-1123 |#1|) (-1123 |#1|))) (-15 -1587 ((-1123 |#1|) (-1123 |#1|))) (-15 -1600 ((-1123 |#1|) (-1123 |#1|))) (-15 -1612 ((-1123 |#1|) (-1123 |#1|))) (-15 -1627 ((-1123 |#1|) (-1123 |#1|))) (-15 -2049 ((-2 (|:| -1640 (-1123 |#1|)) (|:| -1651 (-1123 |#1|))) (-1123 |#1|))) (-15 -1640 ((-1123 |#1|) (-1123 |#1|))) (-15 -1651 ((-1123 |#1|) (-1123 |#1|))) (-15 -1664 ((-1123 |#1|) (-1123 |#1|))) (-15 -1675 ((-1123 |#1|) (-1123 |#1|))) (-15 -1685 ((-1123 |#1|) (-1123 |#1|))) (-15 -1698 ((-1123 |#1|) (-1123 |#1|))) (-15 -1710 ((-1123 |#1|) (-1123 |#1|))) (-15 -1722 ((-1123 |#1|) (-1123 |#1|))) (-15 -1733 ((-1123 |#1|) (-1123 |#1|))) (-15 -1745 ((-1123 |#1|) (-1123 |#1|))) (-15 -1758 ((-1123 |#1|) (-1123 |#1|))) (-15 -1934 ((-1123 |#1|) (-1123 |#1|))))
+((-2382 (((-929 |#2|) |#2| |#2|) 35)) (-1285 ((|#2| |#2| |#1|) 19 (|has| |#1| (-300)))))
+(((-1130 |#1| |#2|) (-10 -7 (-15 -2382 ((-929 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -1285 (|#2| |#2| |#1|)) |%noBranch|)) (-541) (-1202 |#1|)) (T -1130))
+((-1285 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-4 *3 (-541)) (-5 *1 (-1130 *3 *2)) (-4 *2 (-1202 *3)))) (-2382 (*1 *2 *3 *3) (-12 (-4 *4 (-541)) (-5 *2 (-929 *3)) (-5 *1 (-1130 *4 *3)) (-4 *3 (-1202 *4)))))
+(-10 -7 (-15 -2382 ((-929 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -1285 (|#2| |#2| |#1|)) |%noBranch|))
+((-3834 (((-112) $ $) NIL)) (-1686 (($ $ (-621 (-747))) 67)) (-3368 (($) 26)) (-1413 (($ $) 42)) (-1358 (((-621 $) $) 51)) (-3067 (((-112) $) 16)) (-1383 (((-621 (-914 |#2|)) $) 74)) (-2788 (($ $) 68)) (-1889 (((-747) $) 37)) (-3743 (($) 25)) (-2490 (($ $ (-621 (-747)) (-914 |#2|)) 60) (($ $ (-621 (-747)) (-747)) 61) (($ $ (-747) (-914 |#2|)) 63)) (-3890 (($ $ $) 48) (($ (-621 $)) 50)) (-1494 (((-747) $) 75)) (-2076 (((-112) $) 15)) (-3851 (((-1125) $) NIL)) (-1946 (((-112) $) 18)) (-3990 (((-1087) $) NIL)) (-3250 (((-169) $) 73)) (-4140 (((-914 |#2|) $) 69)) (-3730 (((-747) $) 70)) (-2069 (((-112) $) 72)) (-4129 (($ $ (-621 (-747)) (-169)) 66)) (-3394 (($ $) 43)) (-3846 (((-834) $) 86)) (-2085 (($ $ (-621 (-747)) (-112)) 65)) (-2742 (((-621 $) $) 11)) (-2727 (($ $ (-747)) 36)) (-2320 (($ $) 32)) (-3109 (($ $ $ (-914 |#2|) (-747)) 56)) (-1768 (($ $ (-914 |#2|)) 55)) (-2786 (($ $ (-621 (-747)) (-914 |#2|)) 54) (($ $ (-621 (-747)) (-747)) 58) (((-747) $ (-914 |#2|)) 59)) (-2389 (((-112) $ $) 80)))
+(((-1131 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -2076 ((-112) $)) (-15 -3067 ((-112) $)) (-15 -1946 ((-112) $)) (-15 -3743 ($)) (-15 -3368 ($)) (-15 -2320 ($ $)) (-15 -2727 ($ $ (-747))) (-15 -2742 ((-621 $) $)) (-15 -1889 ((-747) $)) (-15 -1413 ($ $)) (-15 -3394 ($ $)) (-15 -3890 ($ $ $)) (-15 -3890 ($ (-621 $))) (-15 -1358 ((-621 $) $)) (-15 -2786 ($ $ (-621 (-747)) (-914 |#2|))) (-15 -1768 ($ $ (-914 |#2|))) (-15 -3109 ($ $ $ (-914 |#2|) (-747))) (-15 -2490 ($ $ (-621 (-747)) (-914 |#2|))) (-15 -2786 ($ $ (-621 (-747)) (-747))) (-15 -2490 ($ $ (-621 (-747)) (-747))) (-15 -2786 ((-747) $ (-914 |#2|))) (-15 -2490 ($ $ (-747) (-914 |#2|))) (-15 -2085 ($ $ (-621 (-747)) (-112))) (-15 -4129 ($ $ (-621 (-747)) (-169))) (-15 -1686 ($ $ (-621 (-747)))) (-15 -4140 ((-914 |#2|) $)) (-15 -3730 ((-747) $)) (-15 -2069 ((-112) $)) (-15 -3250 ((-169) $)) (-15 -1494 ((-747) $)) (-15 -2788 ($ $)) (-15 -1383 ((-621 (-914 |#2|)) $)))) (-892) (-1018)) (T -1131))
+((-2076 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-3743 (*1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-3368 (*1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-2320 (*1 *1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-2727 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-2742 (*1 *2 *1) (-12 (-5 *2 (-621 (-1131 *3 *4))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-1413 (*1 *1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-3394 (*1 *1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-3890 (*1 *1 *1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-3890 (*1 *1 *2) (-12 (-5 *2 (-621 (-1131 *3 *4))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-621 (-1131 *3 *4))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-2786 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1131 *4 *5)) (-14 *4 (-892)))) (-1768 (*1 *1 *1 *2) (-12 (-5 *2 (-914 *4)) (-4 *4 (-1018)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)))) (-3109 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-914 *5)) (-5 *3 (-747)) (-4 *5 (-1018)) (-5 *1 (-1131 *4 *5)) (-14 *4 (-892)))) (-2490 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1131 *4 *5)) (-14 *4 (-892)))) (-2786 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-747))) (-5 *3 (-747)) (-5 *1 (-1131 *4 *5)) (-14 *4 (-892)) (-4 *5 (-1018)))) (-2490 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-747))) (-5 *3 (-747)) (-5 *1 (-1131 *4 *5)) (-14 *4 (-892)) (-4 *5 (-1018)))) (-2786 (*1 *2 *1 *3) (-12 (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *2 (-747)) (-5 *1 (-1131 *4 *5)) (-14 *4 (-892)))) (-2490 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *1 (-1131 *4 *5)) (-14 *4 (-892)))) (-2085 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-747))) (-5 *3 (-112)) (-5 *1 (-1131 *4 *5)) (-14 *4 (-892)) (-4 *5 (-1018)))) (-4129 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-621 (-747))) (-5 *3 (-169)) (-5 *1 (-1131 *4 *5)) (-14 *4 (-892)) (-4 *5 (-1018)))) (-1686 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-747))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-914 *4)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))) (-2788 (*1 *1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-621 (-914 *4))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892)) (-4 *4 (-1018)))))
+(-13 (-1067) (-10 -8 (-15 -2076 ((-112) $)) (-15 -3067 ((-112) $)) (-15 -1946 ((-112) $)) (-15 -3743 ($)) (-15 -3368 ($)) (-15 -2320 ($ $)) (-15 -2727 ($ $ (-747))) (-15 -2742 ((-621 $) $)) (-15 -1889 ((-747) $)) (-15 -1413 ($ $)) (-15 -3394 ($ $)) (-15 -3890 ($ $ $)) (-15 -3890 ($ (-621 $))) (-15 -1358 ((-621 $) $)) (-15 -2786 ($ $ (-621 (-747)) (-914 |#2|))) (-15 -1768 ($ $ (-914 |#2|))) (-15 -3109 ($ $ $ (-914 |#2|) (-747))) (-15 -2490 ($ $ (-621 (-747)) (-914 |#2|))) (-15 -2786 ($ $ (-621 (-747)) (-747))) (-15 -2490 ($ $ (-621 (-747)) (-747))) (-15 -2786 ((-747) $ (-914 |#2|))) (-15 -2490 ($ $ (-747) (-914 |#2|))) (-15 -2085 ($ $ (-621 (-747)) (-112))) (-15 -4129 ($ $ (-621 (-747)) (-169))) (-15 -1686 ($ $ (-621 (-747)))) (-15 -4140 ((-914 |#2|) $)) (-15 -3730 ((-747) $)) (-15 -2069 ((-112) $)) (-15 -3250 ((-169) $)) (-15 -1494 ((-747) $)) (-15 -2788 ($ $)) (-15 -1383 ((-621 (-914 |#2|)) $))))
+((-3834 (((-112) $ $) NIL)) (-2203 ((|#2| $) 11)) (-2190 ((|#1| $) 10)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3854 (($ |#1| |#2|) 9)) (-3846 (((-834) $) 16)) (-2389 (((-112) $ $) NIL)))
+(((-1132 |#1| |#2|) (-13 (-1067) (-10 -8 (-15 -3854 ($ |#1| |#2|)) (-15 -2190 (|#1| $)) (-15 -2203 (|#2| $)))) (-1067) (-1067)) (T -1132))
+((-3854 (*1 *1 *2 *3) (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-2190 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-1132 *2 *3)) (-4 *3 (-1067)))) (-2203 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-1132 *3 *2)) (-4 *3 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -3854 ($ |#1| |#2|)) (-15 -2190 (|#1| $)) (-15 -2203 (|#2| $))))
+((-3834 (((-112) $ $) NIL)) (-2824 (((-1148) $) 9)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-1133) (-13 (-1050) (-10 -8 (-15 -2824 ((-1148) $))))) (T -1133))
+((-2824 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1133)))))
+(-13 (-1050) (-10 -8 (-15 -2824 ((-1148) $))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3329 (((-1141 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-2272 (((-621 (-1048)) $) NIL)) (-3011 (((-1143) $) 11)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-2258 (($ $) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-2799 (((-112) $) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-3896 (($ $ (-549)) NIL) (($ $ (-549) (-549)) 66)) (-2212 (((-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) NIL)) (-3836 (((-1141 |#1| |#2| |#3|) $) 36)) (-3055 (((-3 (-1141 |#1| |#2| |#3|) "failed") $) 29)) (-2336 (((-1141 |#1| |#2| |#3|) $) 30)) (-1664 (($ $) 107 (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) 83 (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-3979 (($ $) NIL (|has| |#1| (-356)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1640 (($ $) 103 (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) 79 (|has| |#1| (-38 (-400 (-549)))))) (-1872 (((-549) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2826 (($ (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) NIL)) (-1685 (($ $) 111 (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) 87 (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-1141 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1143) "failed") $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-1009 (-1143))) (|has| |#1| (-356)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356)))) (((-3 (-549) "failed") $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356))))) (-2659 (((-1141 |#1| |#2| |#3|) $) 131) (((-1143) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-1009 (-1143))) (|has| |#1| (-356)))) (((-400 (-549)) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356)))) (((-549) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356))))) (-2294 (($ $) 34) (($ (-549) $) 35)) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-2070 (($ $) NIL)) (-3879 (((-665 (-1141 |#1| |#2| |#3|)) (-665 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -3521 (-665 (-1141 |#1| |#2| |#3|))) (|:| |vec| (-1226 (-1141 |#1| |#2| |#3|)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-617 (-549))) (|has| |#1| (-356)))) (((-665 (-549)) (-665 $)) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-617 (-549))) (|has| |#1| (-356))))) (-2114 (((-3 $ "failed") $) 48)) (-3906 (((-400 (-923 |#1|)) $ (-549)) 65 (|has| |#1| (-541))) (((-400 (-923 |#1|)) $ (-549) (-549)) 67 (|has| |#1| (-541)))) (-3239 (($) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-1420 (((-112) $) NIL (|has| |#1| (-356)))) (-2772 (((-112) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2871 (((-112) $) 25)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-857 (-549))) (|has| |#1| (-356)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-857 (-372))) (|has| |#1| (-356))))) (-2088 (((-549) $) NIL) (((-549) $ (-549)) 24)) (-2675 (((-112) $) NIL)) (-1726 (($ $) NIL (|has| |#1| (-356)))) (-1394 (((-1141 |#1| |#2| |#3|) $) 38 (|has| |#1| (-356)))) (-4187 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1681 (((-3 $ "failed") $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-1118)) (|has| |#1| (-356))))) (-2374 (((-112) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2992 (($ $ (-892)) NIL)) (-2876 (($ (-1 |#1| (-549)) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-549)) 18) (($ $ (-1048) (-549)) NIL) (($ $ (-621 (-1048)) (-621 (-549))) NIL)) (-2863 (($ $ $) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3575 (($ $ $) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1141 |#1| |#2| |#3|) (-1141 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-3632 (($ $) 72 (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2352 (($ (-549) (-1141 |#1| |#2| |#3|)) 33)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL (|has| |#1| (-356)))) (-3893 (($ $) 70 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) NIL (-1536 (-12 (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1165))))) (($ $ (-1222 |#2|)) 71 (|has| |#1| (-38 (-400 (-549)))))) (-3060 (($) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-1118)) (|has| |#1| (-356))) CONST)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-356)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2873 (($ $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3967 (((-1141 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-2121 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2763 (($ $ (-549)) 145)) (-2042 (((-3 $ "failed") $ $) 49 (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2719 (($ $) 73 (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1143) (-1141 |#1| |#2| |#3|)) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-505 (-1143) (-1141 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-621 (-1143)) (-621 (-1141 |#1| |#2| |#3|))) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-505 (-1143) (-1141 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-621 (-287 (-1141 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-302 (-1141 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-287 (-1141 |#1| |#2| |#3|))) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-302 (-1141 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1141 |#1| |#2| |#3|) (-1141 |#1| |#2| |#3|)) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-302 (-1141 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-621 (-1141 |#1| |#2| |#3|)) (-621 (-1141 |#1| |#2| |#3|))) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-302 (-1141 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3684 (((-747) $) NIL (|has| |#1| (-356)))) (-3341 ((|#1| $ (-549)) NIL) (($ $ $) 54 (|has| (-549) (-1079))) (($ $ (-1141 |#1| |#2| |#3|)) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-279 (-1141 |#1| |#2| |#3|) (-1141 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-3456 (($ $ (-1 (-1141 |#1| |#2| |#3|) (-1141 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1141 |#1| |#2| |#3|) (-1141 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1222 |#2|)) 51) (($ $ (-747)) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 50 (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-1143) (-747)) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-621 (-1143))) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-1143)) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))))) (-3939 (($ $) NIL (|has| |#1| (-356)))) (-1403 (((-1141 |#1| |#2| |#3|) $) 41 (|has| |#1| (-356)))) (-3701 (((-549) $) 37)) (-1698 (($ $) 113 (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) 89 (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) 109 (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) 85 (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) 105 (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) 81 (|has| |#1| (-38 (-400 (-549)))))) (-2845 (((-525) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-594 (-525))) (|has| |#1| (-356)))) (((-372) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-993)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-993)) (|has| |#1| (-356)))) (((-863 (-372)) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-594 (-863 (-372)))) (|has| |#1| (-356)))) (((-863 (-549)) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-594 (-863 (-549)))) (|has| |#1| (-356))))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-1141 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-1977 (($ $) NIL)) (-3846 (((-834) $) 149) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1141 |#1| |#2| |#3|)) 27) (($ (-1222 |#2|)) 23) (($ (-1143)) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-1009 (-1143))) (|has| |#1| (-356)))) (($ $) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541)))) (($ (-400 (-549))) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-549))))))) (-2152 ((|#1| $ (-549)) 68)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-1141 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-2082 (((-747)) NIL)) (-2597 ((|#1| $) 12)) (-2546 (((-1141 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-1733 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) 95 (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-1710 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) 91 (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 99 (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-549)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) 101 (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) 97 (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) 93 (|has| |#1| (-38 (-400 (-549)))))) (-3212 (($ $) NIL (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-3276 (($) 20 T CONST)) (-3287 (($) 16 T CONST)) (-1702 (($ $ (-1 (-1141 |#1| |#2| |#3|) (-1141 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1141 |#1| |#2| |#3|) (-1141 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-1143) (-747)) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-621 (-1143))) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-1143)) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))))) (-2448 (((-112) $ $) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2425 (((-112) $ $) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2412 (((-112) $ $) NIL (-1536 (-12 (|has| (-1141 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1141 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 44 (|has| |#1| (-356))) (($ (-1141 |#1| |#2| |#3|) (-1141 |#1| |#2| |#3|)) 45 (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 21)) (** (($ $ (-892)) NIL) (($ $ (-747)) 53) (($ $ (-549)) NIL (|has| |#1| (-356))) (($ $ $) 74 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 128 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1141 |#1| |#2| |#3|)) 43 (|has| |#1| (-356))) (($ (-1141 |#1| |#2| |#3|) $) 42 (|has| |#1| (-356))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-1134 |#1| |#2| |#3|) (-13 (-1188 |#1| (-1141 |#1| |#2| |#3|)) (-10 -8 (-15 -3846 ($ (-1222 |#2|))) (-15 -3456 ($ $ (-1222 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|))) (-1018) (-1143) |#1|) (T -1134))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1134 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1134 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1134 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1188 |#1| (-1141 |#1| |#2| |#3|)) (-10 -8 (-15 -3846 ($ (-1222 |#2|))) (-15 -3456 ($ $ (-1222 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|)))
+((-2821 ((|#2| |#2| (-1059 |#2|)) 26) ((|#2| |#2| (-1143)) 28)))
+(((-1135 |#1| |#2|) (-10 -7 (-15 -2821 (|#2| |#2| (-1143))) (-15 -2821 (|#2| |#2| (-1059 |#2|)))) (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-423 |#1|) (-158) (-27) (-1165))) (T -1135))
+((-2821 (*1 *2 *2 *3) (-12 (-5 *3 (-1059 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1165))) (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1135 *4 *2)))) (-2821 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1135 *4 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1165))))))
+(-10 -7 (-15 -2821 (|#2| |#2| (-1143))) (-15 -2821 (|#2| |#2| (-1059 |#2|))))
+((-2821 (((-3 (-400 (-923 |#1|)) (-309 |#1|)) (-400 (-923 |#1|)) (-1059 (-400 (-923 |#1|)))) 31) (((-400 (-923 |#1|)) (-923 |#1|) (-1059 (-923 |#1|))) 44) (((-3 (-400 (-923 |#1|)) (-309 |#1|)) (-400 (-923 |#1|)) (-1143)) 33) (((-400 (-923 |#1|)) (-923 |#1|) (-1143)) 36)))
+(((-1136 |#1|) (-10 -7 (-15 -2821 ((-400 (-923 |#1|)) (-923 |#1|) (-1143))) (-15 -2821 ((-3 (-400 (-923 |#1|)) (-309 |#1|)) (-400 (-923 |#1|)) (-1143))) (-15 -2821 ((-400 (-923 |#1|)) (-923 |#1|) (-1059 (-923 |#1|)))) (-15 -2821 ((-3 (-400 (-923 |#1|)) (-309 |#1|)) (-400 (-923 |#1|)) (-1059 (-400 (-923 |#1|)))))) (-13 (-541) (-823) (-1009 (-549)))) (T -1136))
+((-2821 (*1 *2 *3 *4) (-12 (-5 *4 (-1059 (-400 (-923 *5)))) (-5 *3 (-400 (-923 *5))) (-4 *5 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-3 *3 (-309 *5))) (-5 *1 (-1136 *5)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *4 (-1059 (-923 *5))) (-5 *3 (-923 *5)) (-4 *5 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-400 *3)) (-5 *1 (-1136 *5)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-3 (-400 (-923 *5)) (-309 *5))) (-5 *1 (-1136 *5)) (-5 *3 (-400 (-923 *5))))) (-2821 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-400 (-923 *5))) (-5 *1 (-1136 *5)) (-5 *3 (-923 *5)))))
+(-10 -7 (-15 -2821 ((-400 (-923 |#1|)) (-923 |#1|) (-1143))) (-15 -2821 ((-3 (-400 (-923 |#1|)) (-309 |#1|)) (-400 (-923 |#1|)) (-1143))) (-15 -2821 ((-400 (-923 |#1|)) (-923 |#1|) (-1059 (-923 |#1|)))) (-15 -2821 ((-3 (-400 (-923 |#1|)) (-309 |#1|)) (-400 (-923 |#1|)) (-1059 (-400 (-923 |#1|))))))
+((-2797 (((-1139 |#2|) (-1 |#2| |#1|) (-1139 |#1|)) 13)))
+(((-1137 |#1| |#2|) (-10 -7 (-15 -2797 ((-1139 |#2|) (-1 |#2| |#1|) (-1139 |#1|)))) (-1018) (-1018)) (T -1137))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-1139 *6)) (-5 *1 (-1137 *5 *6)))))
+(-10 -7 (-15 -2797 ((-1139 |#2|) (-1 |#2| |#1|) (-1139 |#1|))))
+((-2402 (((-411 (-1139 (-400 |#4|))) (-1139 (-400 |#4|))) 51)) (-2121 (((-411 (-1139 (-400 |#4|))) (-1139 (-400 |#4|))) 52)))
+(((-1138 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2121 ((-411 (-1139 (-400 |#4|))) (-1139 (-400 |#4|)))) (-15 -2402 ((-411 (-1139 (-400 |#4|))) (-1139 (-400 |#4|))))) (-769) (-823) (-444) (-920 |#3| |#1| |#2|)) (T -1138))
+((-2402 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-411 (-1139 (-400 *7)))) (-5 *1 (-1138 *4 *5 *6 *7)) (-5 *3 (-1139 (-400 *7))))) (-2121 (*1 *2 *3) (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444)) (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-411 (-1139 (-400 *7)))) (-5 *1 (-1138 *4 *5 *6 *7)) (-5 *3 (-1139 (-400 *7))))))
+(-10 -7 (-15 -2121 ((-411 (-1139 (-400 |#4|))) (-1139 (-400 |#4|)))) (-15 -2402 ((-411 (-1139 (-400 |#4|))) (-1139 (-400 |#4|)))))
+((-3834 (((-112) $ $) 137)) (-1763 (((-112) $) 27)) (-2432 (((-1226 |#1|) $ (-747)) NIL)) (-2272 (((-621 (-1048)) $) NIL)) (-3371 (($ (-1139 |#1|)) NIL)) (-2084 (((-1139 $) $ (-1048)) 58) (((-1139 |#1|) $) 47)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) 132 (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 (-1048))) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1910 (($ $ $) 126 (|has| |#1| (-541)))) (-3231 (((-411 (-1139 $)) (-1139 $)) 71 (|has| |#1| (-880)))) (-3979 (($ $) NIL (|has| |#1| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 91 (|has| |#1| (-880)))) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3154 (($ $ (-747)) 39)) (-2434 (($ $ (-747)) 40)) (-1358 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#1| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-1048) "failed") $) NIL)) (-2659 ((|#1| $) NIL) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-1048) $) NIL)) (-1353 (($ $ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-2070 (($ $) 56)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) NIL) (((-665 |#1|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-4289 (($ $ $) 104)) (-2290 (($ $ $) NIL (|has| |#1| (-541)))) (-3921 (((-2 (|:| -1570 |#1|) (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-541)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-1285 (($ $) 133 (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#1| (-880)))) (-2691 (($ $ |#1| (-747) $) 45)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1048) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1048) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2573 (((-834) $ (-834)) 117)) (-2088 (((-747) $ $) NIL (|has| |#1| (-541)))) (-2675 (((-112) $) 30)) (-3347 (((-747) $) NIL)) (-1681 (((-3 $ "failed") $) NIL (|has| |#1| (-1118)))) (-2261 (($ (-1139 |#1|) (-1048)) 49) (($ (-1139 $) (-1048)) 65)) (-2992 (($ $ (-747)) 32)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-747)) 63) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ (-1048)) NIL) (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 121)) (-3611 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-3705 (($ (-1 (-747) (-747)) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3598 (((-1139 |#1|) $) NIL)) (-1520 (((-3 (-1048) "failed") $) NIL)) (-2028 (($ $) NIL)) (-2043 ((|#1| $) 52)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3851 (((-1125) $) NIL)) (-3098 (((-2 (|:| -4013 $) (|:| -3675 $)) $ (-747)) 38)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| (-1048)) (|:| -3731 (-747))) "failed") $) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3060 (($) NIL (|has| |#1| (-1118)) CONST)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) 31)) (-2016 ((|#1| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 79 (|has| |#1| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-444))) (($ $ $) 135 (|has| |#1| (-444)))) (-1835 (($ $ (-747) |#1| $) 99)) (-2905 (((-411 (-1139 $)) (-1139 $)) 77 (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) 76 (|has| |#1| (-880)))) (-2121 (((-411 $) $) 84 (|has| |#1| (-880)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2042 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1048) |#1|) NIL) (($ $ (-621 (-1048)) (-621 |#1|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-621 (-1048)) (-621 $)) NIL)) (-3684 (((-747) $) NIL (|has| |#1| (-356)))) (-3341 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-541))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-541)))) (-3668 (((-3 $ "failed") $ (-747)) 35)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 138 (|has| |#1| (-356)))) (-3602 (($ $ (-1048)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-3456 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3701 (((-747) $) 54) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-1048) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-2216 ((|#1| $) 130 (|has| |#1| (-444))) (($ $ (-1048)) NIL (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-880))))) (-3033 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#1| (-541)))) (-3846 (((-834) $) 118) (($ (-549)) NIL) (($ |#1|) 53) (($ (-1048)) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#1| (-541)))) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) 25 (|has| |#1| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3276 (($) 15 T CONST)) (-3287 (($) 16 T CONST)) (-1702 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1143)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) 96)) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2513 (($ $ |#1|) 139 (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 66)) (** (($ $ (-892)) 14) (($ $ (-747)) 12)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 24) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1139 |#1|) (-13 (-1202 |#1|) (-10 -8 (-15 -2573 ((-834) $ (-834))) (-15 -1835 ($ $ (-747) |#1| $)))) (-1018)) (T -1139))
+((-2573 (*1 *2 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1139 *3)) (-4 *3 (-1018)))) (-1835 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1139 *3)) (-4 *3 (-1018)))))
+(-13 (-1202 |#1|) (-10 -8 (-15 -2573 ((-834) $ (-834))) (-15 -1835 ($ $ (-747) |#1| $))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2272 (((-621 (-1048)) $) NIL)) (-3011 (((-1143) $) 11)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3896 (($ $ (-400 (-549))) NIL) (($ $ (-400 (-549)) (-400 (-549))) NIL)) (-2212 (((-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) NIL)) (-1664 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL (|has| |#1| (-356)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1640 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2826 (($ (-747) (-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) NIL)) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-1134 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1141 |#1| |#2| |#3|) "failed") $) 36)) (-2659 (((-1134 |#1| |#2| |#3|) $) NIL) (((-1141 |#1| |#2| |#3|) $) NIL)) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3159 (((-400 (-549)) $) 55)) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-2366 (($ (-400 (-549)) (-1134 |#1| |#2| |#3|)) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-1420 (((-112) $) NIL (|has| |#1| (-356)))) (-2871 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-400 (-549)) $) NIL) (((-400 (-549)) $ (-400 (-549))) NIL)) (-2675 (((-112) $) NIL)) (-4187 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2992 (($ $ (-892)) NIL) (($ $ (-400 (-549))) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-400 (-549))) 20) (($ $ (-1048) (-400 (-549))) NIL) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3632 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4234 (((-1134 |#1| |#2| |#3|) $) 41)) (-1537 (((-3 (-1134 |#1| |#2| |#3|) "failed") $) NIL)) (-2352 (((-1134 |#1| |#2| |#3|) $) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL (|has| |#1| (-356)))) (-3893 (($ $) 39 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) NIL (-1536 (-12 (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1165))))) (($ $ (-1222 |#2|)) 40 (|has| |#1| (-38 (-400 (-549)))))) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-356)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2763 (($ $ (-400 (-549))) NIL)) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2719 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-3684 (((-747) $) NIL (|has| |#1| (-356)))) (-3341 ((|#1| $ (-400 (-549))) NIL) (($ $ $) NIL (|has| (-400 (-549)) (-1079)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $ (-1222 |#2|)) 38)) (-3701 (((-400 (-549)) $) NIL)) (-1698 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) NIL)) (-3846 (((-834) $) 58) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1134 |#1| |#2| |#3|)) 30) (($ (-1141 |#1| |#2| |#3|)) 31) (($ (-1222 |#2|)) 26) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541)))) (-2152 ((|#1| $ (-400 (-549))) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-2597 ((|#1| $) 12)) (-1733 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1710 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-400 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) 22 T CONST)) (-3287 (($) 16 T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 24)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-1140 |#1| |#2| |#3|) (-13 (-1209 |#1| (-1134 |#1| |#2| |#3|)) (-1009 (-1141 |#1| |#2| |#3|)) (-10 -8 (-15 -3846 ($ (-1222 |#2|))) (-15 -3456 ($ $ (-1222 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|))) (-1018) (-1143) |#1|) (T -1140))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1209 |#1| (-1134 |#1| |#2| |#3|)) (-1009 (-1141 |#1| |#2| |#3|)) (-10 -8 (-15 -3846 ($ (-1222 |#2|))) (-15 -3456 ($ $ (-1222 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 125)) (-2272 (((-621 (-1048)) $) NIL)) (-3011 (((-1143) $) 116)) (-3561 (((-1199 |#2| |#1|) $ (-747)) 63)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3896 (($ $ (-747)) 79) (($ $ (-747) (-747)) 76)) (-2212 (((-1123 (-2 (|:| |k| (-747)) (|:| |c| |#1|))) $) 102)) (-1664 (($ $) 169 (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) 145 (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1640 (($ $) 165 (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-2826 (($ (-1123 (-2 (|:| |k| (-747)) (|:| |c| |#1|)))) 115) (($ (-1123 |#1|)) 110)) (-1685 (($ $) 173 (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) 149 (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) NIL T CONST)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) 23)) (-3754 (($ $) 26)) (-1414 (((-923 |#1|) $ (-747)) 75) (((-923 |#1|) $ (-747) (-747)) 77)) (-2871 (((-112) $) 120)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-747) $) 122) (((-747) $ (-747)) 124)) (-2675 (((-112) $) NIL)) (-4187 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2992 (($ $ (-892)) NIL)) (-2876 (($ (-1 |#1| (-549)) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-747)) 13) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3632 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3893 (($ $) 129 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) NIL (-1536 (-12 (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1165))))) (($ $ (-1222 |#2|)) 130 (|has| |#1| (-38 (-400 (-549)))))) (-3990 (((-1087) $) NIL)) (-2763 (($ $ (-747)) 15)) (-2042 (((-3 $ "failed") $ $) 24 (|has| |#1| (-541)))) (-2719 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-747)))))) (-3341 ((|#1| $ (-747)) 119) (($ $ $) 128 (|has| (-747) (-1079)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $ (-1222 |#2|)) 29)) (-3701 (((-747) $) NIL)) (-1698 (($ $) 175 (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) 151 (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) 171 (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) 147 (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) 167 (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) 143 (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) NIL)) (-3846 (((-834) $) 201) (($ (-549)) NIL) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1199 |#2| |#1|)) 51) (($ (-1222 |#2|)) 32)) (-4141 (((-1123 |#1|) $) 98)) (-2152 ((|#1| $ (-747)) 118)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-2597 ((|#1| $) 54)) (-1733 (($ $) 181 (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) 157 (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1710 (($ $) 177 (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) 153 (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) 185 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 161 (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-747)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-747)))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) 187 (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) 163 (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) 183 (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) 159 (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) 179 (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) 155 (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) 17 T CONST)) (-3287 (($) 19 T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) 194)) (-2486 (($ $ $) 31)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ |#1|) 198 (|has| |#1| (-356))) (($ $ $) 134 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 137 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-1141 |#1| |#2| |#3|) (-13 (-1217 |#1|) (-10 -8 (-15 -3846 ($ (-1199 |#2| |#1|))) (-15 -3561 ((-1199 |#2| |#1|) $ (-747))) (-15 -3846 ($ (-1222 |#2|))) (-15 -3456 ($ $ (-1222 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|))) (-1018) (-1143) |#1|) (T -1141))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1199 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1143)) (-14 *5 *3) (-5 *1 (-1141 *3 *4 *5)))) (-3561 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1199 *5 *4)) (-5 *1 (-1141 *4 *5 *6)) (-4 *4 (-1018)) (-14 *5 (-1143)) (-14 *6 *4))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1217 |#1|) (-10 -8 (-15 -3846 ($ (-1199 |#2| |#1|))) (-15 -3561 ((-1199 |#2| |#1|) $ (-747))) (-15 -3846 ($ (-1222 |#2|))) (-15 -3456 ($ $ (-1222 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|)))
+((-3846 (((-834) $) 27) (($ (-1143)) 29)) (-1536 (($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 40)) (-1524 (($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 33) (($ $) 34)) (-3398 (($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 35)) (-3388 (($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 37)) (-3375 (($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 36)) (-3364 (($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 38)) (-3908 (($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $))) 39)))
+(((-1142) (-13 (-593 (-834)) (-10 -8 (-15 -3846 ($ (-1143))) (-15 -3398 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3375 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3388 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3364 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1536 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3908 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1524 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1524 ($ $))))) (T -1142))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1142)))) (-3398 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142)))) (-5 *1 (-1142)))) (-3375 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142)))) (-5 *1 (-1142)))) (-3388 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142)))) (-5 *1 (-1142)))) (-3364 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142)))) (-5 *1 (-1142)))) (-1536 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142)))) (-5 *1 (-1142)))) (-3908 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142)))) (-5 *1 (-1142)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142)))) (-5 *1 (-1142)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142)))) (-5 *1 (-1142)))) (-1524 (*1 *1 *1) (-5 *1 (-1142))))
+(-13 (-593 (-834)) (-10 -8 (-15 -3846 ($ (-1143))) (-15 -3398 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3375 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3388 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3364 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1536 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -3908 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)) (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1524 ($ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372))) (|:| CF (-309 (-167 (-372)))) (|:| |switch| $)))) (-15 -1524 ($ $))))
+((-3834 (((-112) $ $) NIL)) (-3855 (($ $ (-621 (-834))) 59)) (-2774 (($ $ (-621 (-834))) 57)) (-1525 (((-1125) $) 84)) (-4220 (((-2 (|:| -2895 (-621 (-834))) (|:| -2861 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -3395 (-621 (-834))) (|:| |args| (-621 (-834)))) $) 87)) (-1680 (((-112) $) 22)) (-1447 (($ $ (-621 (-621 (-834)))) 56) (($ $ (-2 (|:| -2895 (-621 (-834))) (|:| -2861 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -3395 (-621 (-834))) (|:| |args| (-621 (-834))))) 82)) (-1682 (($) 124 T CONST)) (-2570 (((-1231)) 106)) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 66) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 73)) (-3743 (($) 95) (($ $) 101)) (-2481 (($ $) 83)) (-2863 (($ $ $) NIL)) (-3575 (($ $ $) NIL)) (-3525 (((-621 $) $) 107)) (-3851 (((-1125) $) 90)) (-3990 (((-1087) $) NIL)) (-3341 (($ $ (-621 (-834))) 58)) (-2845 (((-525) $) 46) (((-1143) $) 47) (((-863 (-549)) $) 77) (((-863 (-372)) $) 75)) (-3846 (((-834) $) 53) (($ (-1125)) 48)) (-1882 (($ $ (-621 (-834))) 60)) (-4245 (((-1125) $) 33) (((-1125) $ (-112)) 34) (((-1231) (-798) $) 35) (((-1231) (-798) $ (-112)) 36)) (-2448 (((-112) $ $) NIL)) (-2425 (((-112) $ $) NIL)) (-2389 (((-112) $ $) 49)) (-2438 (((-112) $ $) NIL)) (-2412 (((-112) $ $) 50)))
+(((-1143) (-13 (-823) (-594 (-525)) (-804) (-594 (-1143)) (-594 (-863 (-549))) (-594 (-863 (-372))) (-857 (-549)) (-857 (-372)) (-10 -8 (-15 -3743 ($)) (-15 -3743 ($ $)) (-15 -2570 ((-1231))) (-15 -3846 ($ (-1125))) (-15 -2481 ($ $)) (-15 -1680 ((-112) $)) (-15 -4220 ((-2 (|:| -2895 (-621 (-834))) (|:| -2861 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -3395 (-621 (-834))) (|:| |args| (-621 (-834)))) $)) (-15 -1447 ($ $ (-621 (-621 (-834))))) (-15 -1447 ($ $ (-2 (|:| -2895 (-621 (-834))) (|:| -2861 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -3395 (-621 (-834))) (|:| |args| (-621 (-834)))))) (-15 -2774 ($ $ (-621 (-834)))) (-15 -3855 ($ $ (-621 (-834)))) (-15 -1882 ($ $ (-621 (-834)))) (-15 -3341 ($ $ (-621 (-834)))) (-15 -1525 ((-1125) $)) (-15 -3525 ((-621 $) $)) (-15 -1682 ($) -2589)))) (T -1143))
+((-3743 (*1 *1) (-5 *1 (-1143))) (-3743 (*1 *1 *1) (-5 *1 (-1143))) (-2570 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1143)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1143)))) (-2481 (*1 *1 *1) (-5 *1 (-1143))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1143)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2895 (-621 (-834))) (|:| -2861 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -3395 (-621 (-834))) (|:| |args| (-621 (-834))))) (-5 *1 (-1143)))) (-1447 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-621 (-834)))) (-5 *1 (-1143)))) (-1447 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2895 (-621 (-834))) (|:| -2861 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -3395 (-621 (-834))) (|:| |args| (-621 (-834))))) (-5 *1 (-1143)))) (-2774 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1143)))) (-3855 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1143)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1143)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1143)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1143)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-1143)))) (-1682 (*1 *1) (-5 *1 (-1143))))
+(-13 (-823) (-594 (-525)) (-804) (-594 (-1143)) (-594 (-863 (-549))) (-594 (-863 (-372))) (-857 (-549)) (-857 (-372)) (-10 -8 (-15 -3743 ($)) (-15 -3743 ($ $)) (-15 -2570 ((-1231))) (-15 -3846 ($ (-1125))) (-15 -2481 ($ $)) (-15 -1680 ((-112) $)) (-15 -4220 ((-2 (|:| -2895 (-621 (-834))) (|:| -2861 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -3395 (-621 (-834))) (|:| |args| (-621 (-834)))) $)) (-15 -1447 ($ $ (-621 (-621 (-834))))) (-15 -1447 ($ $ (-2 (|:| -2895 (-621 (-834))) (|:| -2861 (-621 (-834))) (|:| |presup| (-621 (-834))) (|:| -3395 (-621 (-834))) (|:| |args| (-621 (-834)))))) (-15 -2774 ($ $ (-621 (-834)))) (-15 -3855 ($ $ (-621 (-834)))) (-15 -1882 ($ $ (-621 (-834)))) (-15 -3341 ($ $ (-621 (-834)))) (-15 -1525 ((-1125) $)) (-15 -3525 ((-621 $) $)) (-15 -1682 ($) -2589)))
+((-1963 (((-1226 |#1|) |#1| (-892)) 16) (((-1226 |#1|) (-621 |#1|)) 20)))
+(((-1144 |#1|) (-10 -7 (-15 -1963 ((-1226 |#1|) (-621 |#1|))) (-15 -1963 ((-1226 |#1|) |#1| (-892)))) (-1018)) (T -1144))
+((-1963 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-5 *2 (-1226 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1018)))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-1018)) (-5 *2 (-1226 *4)) (-5 *1 (-1144 *4)))))
+(-10 -7 (-15 -1963 ((-1226 |#1|) (-621 |#1|))) (-15 -1963 ((-1226 |#1|) |#1| (-892))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (|has| |#1| (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#1| (-1009 (-400 (-549))))) (((-3 |#1| "failed") $) NIL)) (-2659 (((-549) $) NIL (|has| |#1| (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| |#1| (-1009 (-400 (-549))))) ((|#1| $) NIL)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1285 (($ $) NIL (|has| |#1| (-444)))) (-2691 (($ $ |#1| (-942) $) NIL)) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-942)) NIL)) (-3611 (((-942) $) NIL)) (-3705 (($ (-1 (-942) (-942)) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) NIL)) (-2016 ((|#1| $) NIL)) (-1835 (($ $ (-942) |#1| $) NIL (-12 (|has| (-942) (-130)) (|has| |#1| (-541))))) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-541)))) (-3701 (((-942) $) NIL)) (-2216 ((|#1| $) NIL (|has| |#1| (-444)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ $) NIL (|has| |#1| (-541))) (($ |#1|) NIL) (($ (-400 (-549))) NIL (-1536 (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-1009 (-400 (-549))))))) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ (-942)) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#1| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-3276 (($) 9 T CONST)) (-3287 (($) 14 T CONST)) (-2389 (((-112) $ $) 16)) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 19)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-1145 |#1|) (-13 (-319 |#1| (-942)) (-10 -8 (IF (|has| |#1| (-541)) (IF (|has| (-942) (-130)) (-15 -1835 ($ $ (-942) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4335)) (-6 -4335) |%noBranch|))) (-1018)) (T -1145))
+((-1835 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-942)) (-4 *2 (-130)) (-5 *1 (-1145 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))))
+(-13 (-319 |#1| (-942)) (-10 -8 (IF (|has| |#1| (-541)) (IF (|has| (-942) (-130)) (-15 -1835 ($ $ (-942) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4335)) (-6 -4335) |%noBranch|)))
+((-1908 (((-1147) (-1143) $) 25)) (-2620 (($) 29)) (-4074 (((-3 (|:| |fst| (-427)) (|:| -2903 "void")) (-1143) $) 22)) (-4017 (((-1231) (-1143) (-3 (|:| |fst| (-427)) (|:| -2903 "void")) $) 41) (((-1231) (-1143) (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) 42) (((-1231) (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) 43)) (-3741 (((-1231) (-1143)) 58)) (-1998 (((-1231) (-1143) $) 55) (((-1231) (-1143)) 56) (((-1231)) 57)) (-2688 (((-1231) (-1143)) 37)) (-3202 (((-1143)) 36)) (-3742 (($) 34)) (-4100 (((-430) (-1143) (-430) (-1143) $) 45) (((-430) (-621 (-1143)) (-430) (-1143) $) 49) (((-430) (-1143) (-430)) 46) (((-430) (-1143) (-430) (-1143)) 50)) (-3205 (((-1143)) 35)) (-3846 (((-834) $) 28)) (-3814 (((-1231)) 30) (((-1231) (-1143)) 33)) (-1401 (((-621 (-1143)) (-1143) $) 24)) (-2396 (((-1231) (-1143) (-621 (-1143)) $) 38) (((-1231) (-1143) (-621 (-1143))) 39) (((-1231) (-621 (-1143))) 40)))
+(((-1146) (-13 (-593 (-834)) (-10 -8 (-15 -2620 ($)) (-15 -3814 ((-1231))) (-15 -3814 ((-1231) (-1143))) (-15 -4100 ((-430) (-1143) (-430) (-1143) $)) (-15 -4100 ((-430) (-621 (-1143)) (-430) (-1143) $)) (-15 -4100 ((-430) (-1143) (-430))) (-15 -4100 ((-430) (-1143) (-430) (-1143))) (-15 -2688 ((-1231) (-1143))) (-15 -3205 ((-1143))) (-15 -3202 ((-1143))) (-15 -2396 ((-1231) (-1143) (-621 (-1143)) $)) (-15 -2396 ((-1231) (-1143) (-621 (-1143)))) (-15 -2396 ((-1231) (-621 (-1143)))) (-15 -4017 ((-1231) (-1143) (-3 (|:| |fst| (-427)) (|:| -2903 "void")) $)) (-15 -4017 ((-1231) (-1143) (-3 (|:| |fst| (-427)) (|:| -2903 "void")))) (-15 -4017 ((-1231) (-3 (|:| |fst| (-427)) (|:| -2903 "void")))) (-15 -1998 ((-1231) (-1143) $)) (-15 -1998 ((-1231) (-1143))) (-15 -1998 ((-1231))) (-15 -3741 ((-1231) (-1143))) (-15 -3742 ($)) (-15 -4074 ((-3 (|:| |fst| (-427)) (|:| -2903 "void")) (-1143) $)) (-15 -1401 ((-621 (-1143)) (-1143) $)) (-15 -1908 ((-1147) (-1143) $))))) (T -1146))
+((-2620 (*1 *1) (-5 *1 (-1146))) (-3814 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1146)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-1146)))) (-4100 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-430)) (-5 *3 (-1143)) (-5 *1 (-1146)))) (-4100 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-430)) (-5 *3 (-621 (-1143))) (-5 *4 (-1143)) (-5 *1 (-1146)))) (-4100 (*1 *2 *3 *2) (-12 (-5 *2 (-430)) (-5 *3 (-1143)) (-5 *1 (-1146)))) (-4100 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-430)) (-5 *3 (-1143)) (-5 *1 (-1146)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-1146)))) (-3205 (*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1146)))) (-3202 (*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1146)))) (-2396 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-621 (-1143))) (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-1146)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-1143))) (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-1146)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-621 (-1143))) (-5 *2 (-1231)) (-5 *1 (-1146)))) (-4017 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1143)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-5 *2 (-1231)) (-5 *1 (-1146)))) (-4017 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-5 *2 (-1231)) (-5 *1 (-1146)))) (-4017 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-5 *2 (-1231)) (-5 *1 (-1146)))) (-1998 (*1 *2 *3 *1) (-12 (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-1146)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-1146)))) (-1998 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1146)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-1146)))) (-3742 (*1 *1) (-5 *1 (-1146))) (-4074 (*1 *2 *3 *1) (-12 (-5 *3 (-1143)) (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-5 *1 (-1146)))) (-1401 (*1 *2 *3 *1) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-1146)) (-5 *3 (-1143)))) (-1908 (*1 *2 *3 *1) (-12 (-5 *3 (-1143)) (-5 *2 (-1147)) (-5 *1 (-1146)))))
+(-13 (-593 (-834)) (-10 -8 (-15 -2620 ($)) (-15 -3814 ((-1231))) (-15 -3814 ((-1231) (-1143))) (-15 -4100 ((-430) (-1143) (-430) (-1143) $)) (-15 -4100 ((-430) (-621 (-1143)) (-430) (-1143) $)) (-15 -4100 ((-430) (-1143) (-430))) (-15 -4100 ((-430) (-1143) (-430) (-1143))) (-15 -2688 ((-1231) (-1143))) (-15 -3205 ((-1143))) (-15 -3202 ((-1143))) (-15 -2396 ((-1231) (-1143) (-621 (-1143)) $)) (-15 -2396 ((-1231) (-1143) (-621 (-1143)))) (-15 -2396 ((-1231) (-621 (-1143)))) (-15 -4017 ((-1231) (-1143) (-3 (|:| |fst| (-427)) (|:| -2903 "void")) $)) (-15 -4017 ((-1231) (-1143) (-3 (|:| |fst| (-427)) (|:| -2903 "void")))) (-15 -4017 ((-1231) (-3 (|:| |fst| (-427)) (|:| -2903 "void")))) (-15 -1998 ((-1231) (-1143) $)) (-15 -1998 ((-1231) (-1143))) (-15 -1998 ((-1231))) (-15 -3741 ((-1231) (-1143))) (-15 -3742 ($)) (-15 -4074 ((-3 (|:| |fst| (-427)) (|:| -2903 "void")) (-1143) $)) (-15 -1401 ((-621 (-1143)) (-1143) $)) (-15 -1908 ((-1147) (-1143) $))))
+((-1543 (((-621 (-621 (-3 (|:| -2481 (-1143)) (|:| -3280 (-621 (-3 (|:| S (-1143)) (|:| P (-923 (-549))))))))) $) 59)) (-3594 (((-621 (-3 (|:| -2481 (-1143)) (|:| -3280 (-621 (-3 (|:| S (-1143)) (|:| P (-923 (-549)))))))) (-427) $) 43)) (-3272 (($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-430))))) 17)) (-3741 (((-1231) $) 67)) (-2588 (((-621 (-1143)) $) 22)) (-1874 (((-1071) $) 55)) (-2198 (((-430) (-1143) $) 27)) (-3728 (((-621 (-1143)) $) 30)) (-3742 (($) 19)) (-4100 (((-430) (-621 (-1143)) (-430) $) 25) (((-430) (-1143) (-430) $) 24)) (-3846 (((-834) $) 9) (((-1153 (-1143) (-430)) $) 13)))
+(((-1147) (-13 (-593 (-834)) (-10 -8 (-15 -3846 ((-1153 (-1143) (-430)) $)) (-15 -3742 ($)) (-15 -4100 ((-430) (-621 (-1143)) (-430) $)) (-15 -4100 ((-430) (-1143) (-430) $)) (-15 -2198 ((-430) (-1143) $)) (-15 -2588 ((-621 (-1143)) $)) (-15 -3594 ((-621 (-3 (|:| -2481 (-1143)) (|:| -3280 (-621 (-3 (|:| S (-1143)) (|:| P (-923 (-549)))))))) (-427) $)) (-15 -3728 ((-621 (-1143)) $)) (-15 -1543 ((-621 (-621 (-3 (|:| -2481 (-1143)) (|:| -3280 (-621 (-3 (|:| S (-1143)) (|:| P (-923 (-549))))))))) $)) (-15 -1874 ((-1071) $)) (-15 -3741 ((-1231) $)) (-15 -3272 ($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-430))))))))) (T -1147))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-1153 (-1143) (-430))) (-5 *1 (-1147)))) (-3742 (*1 *1) (-5 *1 (-1147))) (-4100 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-430)) (-5 *3 (-621 (-1143))) (-5 *1 (-1147)))) (-4100 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-430)) (-5 *3 (-1143)) (-5 *1 (-1147)))) (-2198 (*1 *2 *3 *1) (-12 (-5 *3 (-1143)) (-5 *2 (-430)) (-5 *1 (-1147)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-1147)))) (-3594 (*1 *2 *3 *1) (-12 (-5 *3 (-427)) (-5 *2 (-621 (-3 (|:| -2481 (-1143)) (|:| -3280 (-621 (-3 (|:| S (-1143)) (|:| P (-923 (-549))))))))) (-5 *1 (-1147)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-1147)))) (-1543 (*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-3 (|:| -2481 (-1143)) (|:| -3280 (-621 (-3 (|:| S (-1143)) (|:| P (-923 (-549)))))))))) (-5 *1 (-1147)))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1147)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-1147)))) (-3272 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-430))))) (-5 *1 (-1147)))))
+(-13 (-593 (-834)) (-10 -8 (-15 -3846 ((-1153 (-1143) (-430)) $)) (-15 -3742 ($)) (-15 -4100 ((-430) (-621 (-1143)) (-430) $)) (-15 -4100 ((-430) (-1143) (-430) $)) (-15 -2198 ((-430) (-1143) $)) (-15 -2588 ((-621 (-1143)) $)) (-15 -3594 ((-621 (-3 (|:| -2481 (-1143)) (|:| -3280 (-621 (-3 (|:| S (-1143)) (|:| P (-923 (-549)))))))) (-427) $)) (-15 -3728 ((-621 (-1143)) $)) (-15 -1543 ((-621 (-621 (-3 (|:| -2481 (-1143)) (|:| -3280 (-621 (-3 (|:| S (-1143)) (|:| P (-923 (-549))))))))) $)) (-15 -1874 ((-1071) $)) (-15 -3741 ((-1231) $)) (-15 -3272 ($ (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-430))))))))
+((-3834 (((-112) $ $) NIL)) (-3443 (((-112) $) 42)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-1783 (((-3 (-549) (-219) (-1143) (-1125) $) $) 50)) (-4284 (((-621 $) $) 55)) (-2845 (((-1071) $) 24) (($ (-1071)) 25)) (-1893 (((-112) $) 52)) (-3846 (((-834) $) NIL) (($ (-549)) 26) (((-549) $) 28) (($ (-219)) 29) (((-219) $) 31) (($ (-1143)) 32) (((-1143) $) 34) (($ (-1125)) 35) (((-1125) $) 37)) (-3264 (((-112) $ (|[\|\|]| (-549))) 11) (((-112) $ (|[\|\|]| (-219))) 15) (((-112) $ (|[\|\|]| (-1143))) 23) (((-112) $ (|[\|\|]| (-1125))) 19)) (-1465 (($ (-1143) (-621 $)) 39) (($ $ (-621 $)) 40)) (-2321 (((-549) $) 27) (((-219) $) 30) (((-1143) $) 33) (((-1125) $) 36)) (-2389 (((-112) $ $) 7)))
+(((-1148) (-13 (-1221) (-1067) (-10 -8 (-15 -2845 ((-1071) $)) (-15 -2845 ($ (-1071))) (-15 -3846 ($ (-549))) (-15 -3846 ((-549) $)) (-15 -2321 ((-549) $)) (-15 -3846 ($ (-219))) (-15 -3846 ((-219) $)) (-15 -2321 ((-219) $)) (-15 -3846 ($ (-1143))) (-15 -3846 ((-1143) $)) (-15 -2321 ((-1143) $)) (-15 -3846 ($ (-1125))) (-15 -3846 ((-1125) $)) (-15 -2321 ((-1125) $)) (-15 -1465 ($ (-1143) (-621 $))) (-15 -1465 ($ $ (-621 $))) (-15 -3443 ((-112) $)) (-15 -1783 ((-3 (-549) (-219) (-1143) (-1125) $) $)) (-15 -4284 ((-621 $) $)) (-15 -1893 ((-112) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-549)))) (-15 -3264 ((-112) $ (|[\|\|]| (-219)))) (-15 -3264 ((-112) $ (|[\|\|]| (-1143)))) (-15 -3264 ((-112) $ (|[\|\|]| (-1125))))))) (T -1148))
+((-2845 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1148)))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1148)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1148)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1148)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1148)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1148)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1148)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1148)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1148)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1148)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1148)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1148)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1148)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1148)))) (-1465 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-1148))) (-5 *1 (-1148)))) (-1465 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-1148)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1148)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-3 (-549) (-219) (-1143) (-1125) (-1148))) (-5 *1 (-1148)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-1148)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1148)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)) (-5 *1 (-1148)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1148)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1143))) (-5 *2 (-112)) (-5 *1 (-1148)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1125))) (-5 *2 (-112)) (-5 *1 (-1148)))))
+(-13 (-1221) (-1067) (-10 -8 (-15 -2845 ((-1071) $)) (-15 -2845 ($ (-1071))) (-15 -3846 ($ (-549))) (-15 -3846 ((-549) $)) (-15 -2321 ((-549) $)) (-15 -3846 ($ (-219))) (-15 -3846 ((-219) $)) (-15 -2321 ((-219) $)) (-15 -3846 ($ (-1143))) (-15 -3846 ((-1143) $)) (-15 -2321 ((-1143) $)) (-15 -3846 ($ (-1125))) (-15 -3846 ((-1125) $)) (-15 -2321 ((-1125) $)) (-15 -1465 ($ (-1143) (-621 $))) (-15 -1465 ($ $ (-621 $))) (-15 -3443 ((-112) $)) (-15 -1783 ((-3 (-549) (-219) (-1143) (-1125) $) $)) (-15 -4284 ((-621 $) $)) (-15 -1893 ((-112) $)) (-15 -3264 ((-112) $ (|[\|\|]| (-549)))) (-15 -3264 ((-112) $ (|[\|\|]| (-219)))) (-15 -3264 ((-112) $ (|[\|\|]| (-1143)))) (-15 -3264 ((-112) $ (|[\|\|]| (-1125))))))
+((-3200 (((-621 (-621 (-923 |#1|))) (-621 (-400 (-923 |#1|))) (-621 (-1143))) 57)) (-2227 (((-621 (-287 (-400 (-923 |#1|)))) (-287 (-400 (-923 |#1|)))) 69) (((-621 (-287 (-400 (-923 |#1|)))) (-400 (-923 |#1|))) 65) (((-621 (-287 (-400 (-923 |#1|)))) (-287 (-400 (-923 |#1|))) (-1143)) 70) (((-621 (-287 (-400 (-923 |#1|)))) (-400 (-923 |#1|)) (-1143)) 64) (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-287 (-400 (-923 |#1|))))) 93) (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-400 (-923 |#1|)))) 92) (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-287 (-400 (-923 |#1|)))) (-621 (-1143))) 94) (((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-400 (-923 |#1|))) (-621 (-1143))) 91)))
+(((-1149 |#1|) (-10 -7 (-15 -2227 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-400 (-923 |#1|))) (-621 (-1143)))) (-15 -2227 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-287 (-400 (-923 |#1|)))) (-621 (-1143)))) (-15 -2227 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-400 (-923 |#1|))))) (-15 -2227 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-287 (-400 (-923 |#1|)))))) (-15 -2227 ((-621 (-287 (-400 (-923 |#1|)))) (-400 (-923 |#1|)) (-1143))) (-15 -2227 ((-621 (-287 (-400 (-923 |#1|)))) (-287 (-400 (-923 |#1|))) (-1143))) (-15 -2227 ((-621 (-287 (-400 (-923 |#1|)))) (-400 (-923 |#1|)))) (-15 -2227 ((-621 (-287 (-400 (-923 |#1|)))) (-287 (-400 (-923 |#1|))))) (-15 -3200 ((-621 (-621 (-923 |#1|))) (-621 (-400 (-923 |#1|))) (-621 (-1143))))) (-541)) (T -1149))
+((-3200 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1143))) (-4 *5 (-541)) (-5 *2 (-621 (-621 (-923 *5)))) (-5 *1 (-1149 *5)))) (-2227 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 (-287 (-400 (-923 *4))))) (-5 *1 (-1149 *4)) (-5 *3 (-287 (-400 (-923 *4)))))) (-2227 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 (-287 (-400 (-923 *4))))) (-5 *1 (-1149 *4)) (-5 *3 (-400 (-923 *4))))) (-2227 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-541)) (-5 *2 (-621 (-287 (-400 (-923 *5))))) (-5 *1 (-1149 *5)) (-5 *3 (-287 (-400 (-923 *5)))))) (-2227 (*1 *2 *3 *4) (-12 (-5 *4 (-1143)) (-4 *5 (-541)) (-5 *2 (-621 (-287 (-400 (-923 *5))))) (-5 *1 (-1149 *5)) (-5 *3 (-400 (-923 *5))))) (-2227 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-1149 *4)) (-5 *3 (-621 (-287 (-400 (-923 *4))))))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-621 (-400 (-923 *4)))) (-4 *4 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-1149 *4)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-1143))) (-4 *5 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-1149 *5)) (-5 *3 (-621 (-287 (-400 (-923 *5))))))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1143))) (-4 *5 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-1149 *5)))))
+(-10 -7 (-15 -2227 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-400 (-923 |#1|))) (-621 (-1143)))) (-15 -2227 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-287 (-400 (-923 |#1|)))) (-621 (-1143)))) (-15 -2227 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-400 (-923 |#1|))))) (-15 -2227 ((-621 (-621 (-287 (-400 (-923 |#1|))))) (-621 (-287 (-400 (-923 |#1|)))))) (-15 -2227 ((-621 (-287 (-400 (-923 |#1|)))) (-400 (-923 |#1|)) (-1143))) (-15 -2227 ((-621 (-287 (-400 (-923 |#1|)))) (-287 (-400 (-923 |#1|))) (-1143))) (-15 -2227 ((-621 (-287 (-400 (-923 |#1|)))) (-400 (-923 |#1|)))) (-15 -2227 ((-621 (-287 (-400 (-923 |#1|)))) (-287 (-400 (-923 |#1|))))) (-15 -3200 ((-621 (-621 (-923 |#1|))) (-621 (-400 (-923 |#1|))) (-621 (-1143)))))
+((-1459 (((-1125)) 7)) (-4069 (((-1125)) 9)) (-3021 (((-1231) (-1125)) 11)) (-3094 (((-1125)) 8)))
+(((-1150) (-10 -7 (-15 -1459 ((-1125))) (-15 -3094 ((-1125))) (-15 -4069 ((-1125))) (-15 -3021 ((-1231) (-1125))))) (T -1150))
+((-3021 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1150)))) (-4069 (*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1150)))) (-3094 (*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1150)))) (-1459 (*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1150)))))
+(-10 -7 (-15 -1459 ((-1125))) (-15 -3094 ((-1125))) (-15 -4069 ((-1125))) (-15 -3021 ((-1231) (-1125))))
+((-2140 (((-621 (-621 |#1|)) (-621 (-621 |#1|)) (-621 (-621 (-621 |#1|)))) 38)) (-1656 (((-621 (-621 (-621 |#1|))) (-621 (-621 |#1|))) 24)) (-4221 (((-1152 (-621 |#1|)) (-621 |#1|)) 34)) (-3547 (((-621 (-621 |#1|)) (-621 |#1|)) 30)) (-3245 (((-2 (|:| |f1| (-621 |#1|)) (|:| |f2| (-621 (-621 (-621 |#1|)))) (|:| |f3| (-621 (-621 |#1|))) (|:| |f4| (-621 (-621 (-621 |#1|))))) (-621 (-621 (-621 |#1|)))) 37)) (-4275 (((-2 (|:| |f1| (-621 |#1|)) (|:| |f2| (-621 (-621 (-621 |#1|)))) (|:| |f3| (-621 (-621 |#1|))) (|:| |f4| (-621 (-621 (-621 |#1|))))) (-621 |#1|) (-621 (-621 (-621 |#1|))) (-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))) (-621 (-621 (-621 |#1|))) (-621 (-621 (-621 |#1|)))) 36)) (-1356 (((-621 (-621 |#1|)) (-621 (-621 |#1|))) 28)) (-3849 (((-621 |#1|) (-621 |#1|)) 31)) (-3129 (((-621 (-621 (-621 |#1|))) (-621 |#1|) (-621 (-621 (-621 |#1|)))) 18)) (-2890 (((-621 (-621 (-621 |#1|))) (-1 (-112) |#1| |#1|) (-621 |#1|) (-621 (-621 (-621 |#1|)))) 16)) (-3475 (((-2 (|:| |fs| (-112)) (|:| |sd| (-621 |#1|)) (|:| |td| (-621 (-621 |#1|)))) (-1 (-112) |#1| |#1|) (-621 |#1|) (-621 (-621 |#1|))) 14)) (-2655 (((-621 (-621 |#1|)) (-621 (-621 (-621 |#1|)))) 39)) (-3790 (((-621 (-621 |#1|)) (-1152 (-621 |#1|))) 41)))
+(((-1151 |#1|) (-10 -7 (-15 -3475 ((-2 (|:| |fs| (-112)) (|:| |sd| (-621 |#1|)) (|:| |td| (-621 (-621 |#1|)))) (-1 (-112) |#1| |#1|) (-621 |#1|) (-621 (-621 |#1|)))) (-15 -2890 ((-621 (-621 (-621 |#1|))) (-1 (-112) |#1| |#1|) (-621 |#1|) (-621 (-621 (-621 |#1|))))) (-15 -3129 ((-621 (-621 (-621 |#1|))) (-621 |#1|) (-621 (-621 (-621 |#1|))))) (-15 -2140 ((-621 (-621 |#1|)) (-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))))) (-15 -2655 ((-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))))) (-15 -3790 ((-621 (-621 |#1|)) (-1152 (-621 |#1|)))) (-15 -1656 ((-621 (-621 (-621 |#1|))) (-621 (-621 |#1|)))) (-15 -4221 ((-1152 (-621 |#1|)) (-621 |#1|))) (-15 -1356 ((-621 (-621 |#1|)) (-621 (-621 |#1|)))) (-15 -3547 ((-621 (-621 |#1|)) (-621 |#1|))) (-15 -3849 ((-621 |#1|) (-621 |#1|))) (-15 -4275 ((-2 (|:| |f1| (-621 |#1|)) (|:| |f2| (-621 (-621 (-621 |#1|)))) (|:| |f3| (-621 (-621 |#1|))) (|:| |f4| (-621 (-621 (-621 |#1|))))) (-621 |#1|) (-621 (-621 (-621 |#1|))) (-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))) (-621 (-621 (-621 |#1|))) (-621 (-621 (-621 |#1|))))) (-15 -3245 ((-2 (|:| |f1| (-621 |#1|)) (|:| |f2| (-621 (-621 (-621 |#1|)))) (|:| |f3| (-621 (-621 |#1|))) (|:| |f4| (-621 (-621 (-621 |#1|))))) (-621 (-621 (-621 |#1|)))))) (-823)) (T -1151))
+((-3245 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-2 (|:| |f1| (-621 *4)) (|:| |f2| (-621 (-621 (-621 *4)))) (|:| |f3| (-621 (-621 *4))) (|:| |f4| (-621 (-621 (-621 *4)))))) (-5 *1 (-1151 *4)) (-5 *3 (-621 (-621 (-621 *4)))))) (-4275 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-823)) (-5 *3 (-621 *6)) (-5 *5 (-621 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-621 *5)) (|:| |f3| *5) (|:| |f4| (-621 *5)))) (-5 *1 (-1151 *6)) (-5 *4 (-621 *5)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-1151 *3)))) (-3547 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-621 (-621 *4))) (-5 *1 (-1151 *4)) (-5 *3 (-621 *4)))) (-1356 (*1 *2 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-823)) (-5 *1 (-1151 *3)))) (-4221 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-1152 (-621 *4))) (-5 *1 (-1151 *4)) (-5 *3 (-621 *4)))) (-1656 (*1 *2 *3) (-12 (-4 *4 (-823)) (-5 *2 (-621 (-621 (-621 *4)))) (-5 *1 (-1151 *4)) (-5 *3 (-621 (-621 *4))))) (-3790 (*1 *2 *3) (-12 (-5 *3 (-1152 (-621 *4))) (-4 *4 (-823)) (-5 *2 (-621 (-621 *4))) (-5 *1 (-1151 *4)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-621 (-621 (-621 *4)))) (-5 *2 (-621 (-621 *4))) (-5 *1 (-1151 *4)) (-4 *4 (-823)))) (-2140 (*1 *2 *2 *3) (-12 (-5 *3 (-621 (-621 (-621 *4)))) (-5 *2 (-621 (-621 *4))) (-4 *4 (-823)) (-5 *1 (-1151 *4)))) (-3129 (*1 *2 *3 *2) (-12 (-5 *2 (-621 (-621 (-621 *4)))) (-5 *3 (-621 *4)) (-4 *4 (-823)) (-5 *1 (-1151 *4)))) (-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-621 (-621 (-621 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-621 *5)) (-4 *5 (-823)) (-5 *1 (-1151 *5)))) (-3475 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-823)) (-5 *4 (-621 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-621 *4)))) (-5 *1 (-1151 *6)) (-5 *5 (-621 *4)))))
+(-10 -7 (-15 -3475 ((-2 (|:| |fs| (-112)) (|:| |sd| (-621 |#1|)) (|:| |td| (-621 (-621 |#1|)))) (-1 (-112) |#1| |#1|) (-621 |#1|) (-621 (-621 |#1|)))) (-15 -2890 ((-621 (-621 (-621 |#1|))) (-1 (-112) |#1| |#1|) (-621 |#1|) (-621 (-621 (-621 |#1|))))) (-15 -3129 ((-621 (-621 (-621 |#1|))) (-621 |#1|) (-621 (-621 (-621 |#1|))))) (-15 -2140 ((-621 (-621 |#1|)) (-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))))) (-15 -2655 ((-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))))) (-15 -3790 ((-621 (-621 |#1|)) (-1152 (-621 |#1|)))) (-15 -1656 ((-621 (-621 (-621 |#1|))) (-621 (-621 |#1|)))) (-15 -4221 ((-1152 (-621 |#1|)) (-621 |#1|))) (-15 -1356 ((-621 (-621 |#1|)) (-621 (-621 |#1|)))) (-15 -3547 ((-621 (-621 |#1|)) (-621 |#1|))) (-15 -3849 ((-621 |#1|) (-621 |#1|))) (-15 -4275 ((-2 (|:| |f1| (-621 |#1|)) (|:| |f2| (-621 (-621 (-621 |#1|)))) (|:| |f3| (-621 (-621 |#1|))) (|:| |f4| (-621 (-621 (-621 |#1|))))) (-621 |#1|) (-621 (-621 (-621 |#1|))) (-621 (-621 |#1|)) (-621 (-621 (-621 |#1|))) (-621 (-621 (-621 |#1|))) (-621 (-621 (-621 |#1|))))) (-15 -3245 ((-2 (|:| |f1| (-621 |#1|)) (|:| |f2| (-621 (-621 (-621 |#1|)))) (|:| |f3| (-621 (-621 |#1|))) (|:| |f4| (-621 (-621 (-621 |#1|))))) (-621 (-621 (-621 |#1|))))))
+((-1820 (($ (-621 (-621 |#1|))) 10)) (-2913 (((-621 (-621 |#1|)) $) 11)) (-3846 (((-834) $) 26)))
+(((-1152 |#1|) (-10 -8 (-15 -1820 ($ (-621 (-621 |#1|)))) (-15 -2913 ((-621 (-621 |#1|)) $)) (-15 -3846 ((-834) $))) (-1067)) (T -1152))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1152 *3)) (-4 *3 (-1067)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-621 (-621 *3))) (-5 *1 (-1152 *3)) (-4 *3 (-1067)))) (-1820 (*1 *1 *2) (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1067)) (-5 *1 (-1152 *3)))))
+(-10 -8 (-15 -1820 ($ (-621 (-621 |#1|)))) (-15 -2913 ((-621 (-621 |#1|)) $)) (-15 -3846 ((-834) $)))
+((-3834 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3733 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-1535 (((-1231) $ |#1| |#1|) NIL (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#2| $ |#1| |#2|) NIL)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-3490 (((-3 |#2| "failed") |#1| $) NIL)) (-1682 (($) NIL T CONST)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-2129 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-3 |#2| "failed") |#1| $) NIL)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#2| $ |#1|) NIL)) (-2989 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) NIL)) (-4031 ((|#1| $) NIL (|has| |#1| (-823)))) (-1562 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-621 |#2|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-1569 ((|#1| $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4338))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3449 (((-621 |#1|) $) NIL)) (-2427 (((-112) |#1| $) NIL)) (-3504 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-2751 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-3303 (((-621 |#1|) $) NIL)) (-3761 (((-112) |#1| $) NIL)) (-3990 (((-1087) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3646 ((|#2| $) NIL (|has| |#1| (-823)))) (-3779 (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL)) (-1642 (($ $ |#2|) NIL (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2696 (((-621 |#2|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2898 (($) NIL) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) NIL (-12 (|has| $ (-6 -4337)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (((-747) |#2| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067)))) (((-747) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3846 (((-834) $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834))) (|has| |#2| (-593 (-834)))))) (-3624 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) NIL)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) NIL (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) NIL (-1536 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| |#2| (-1067))))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1153 |#1| |#2|) (-13 (-1156 |#1| |#2|) (-10 -7 (-6 -4337))) (-1067) (-1067)) (T -1153))
+NIL
+(-13 (-1156 |#1| |#2|) (-10 -7 (-6 -4337)))
+((-3078 ((|#1| (-621 |#1|)) 32)) (-2963 ((|#1| |#1| (-549)) 18)) (-2534 (((-1139 |#1|) |#1| (-892)) 15)))
+(((-1154 |#1|) (-10 -7 (-15 -3078 (|#1| (-621 |#1|))) (-15 -2534 ((-1139 |#1|) |#1| (-892))) (-15 -2963 (|#1| |#1| (-549)))) (-356)) (T -1154))
+((-2963 (*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-1154 *2)) (-4 *2 (-356)))) (-2534 (*1 *2 *3 *4) (-12 (-5 *4 (-892)) (-5 *2 (-1139 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-356)))) (-3078 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-5 *1 (-1154 *2)) (-4 *2 (-356)))))
+(-10 -7 (-15 -3078 (|#1| (-621 |#1|))) (-15 -2534 ((-1139 |#1|) |#1| (-892))) (-15 -2963 (|#1| |#1| (-549))))
+((-3733 (($) 10) (($ (-621 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)))) 14)) (-2129 (($ (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2989 (((-621 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) $) 39) (((-621 |#3|) $) 41)) (-1868 (($ (-1 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2797 (($ (-1 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3504 (((-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) $) 54)) (-2751 (($ (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) $) 16)) (-3303 (((-621 |#2|) $) 19)) (-3761 (((-112) |#2| $) 59)) (-3779 (((-3 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) "failed") (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) $) 58)) (-3325 (((-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) $) 63)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-2696 (((-621 |#3|) $) 43)) (-3341 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) $) NIL) (((-747) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) $) NIL) (((-747) |#3| $) NIL) (((-747) (-1 (-112) |#3|) $) 68)) (-3846 (((-834) $) 27)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-2389 (((-112) $ $) 49)))
+(((-1155 |#1| |#2| |#3|) (-10 -8 (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -2797 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3733 (|#1| (-621 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))))) (-15 -3733 (|#1|)) (-15 -2797 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1868 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3527 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1780 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4000 ((-747) (-1 (-112) |#3|) |#1|)) (-15 -2989 ((-621 |#3|) |#1|)) (-15 -4000 ((-747) |#3| |#1|)) (-15 -3341 (|#3| |#1| |#2| |#3|)) (-15 -3341 (|#3| |#1| |#2|)) (-15 -2696 ((-621 |#3|) |#1|)) (-15 -3761 ((-112) |#2| |#1|)) (-15 -3303 ((-621 |#2|) |#1|)) (-15 -2129 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2129 (|#1| (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -2129 (|#1| (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) |#1|)) (-15 -3779 ((-3 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) "failed") (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -3504 ((-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) |#1|)) (-15 -2751 (|#1| (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) |#1|)) (-15 -3325 ((-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) |#1|)) (-15 -4000 ((-747) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) |#1|)) (-15 -2989 ((-621 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -4000 ((-747) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -1780 ((-112) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -3527 ((-112) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -1868 (|#1| (-1 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -2797 (|#1| (-1 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|))) (-1156 |#2| |#3|) (-1067) (-1067)) (T -1155))
+NIL
+(-10 -8 (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -2797 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3733 (|#1| (-621 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))))) (-15 -3733 (|#1|)) (-15 -2797 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1868 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3527 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1780 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4000 ((-747) (-1 (-112) |#3|) |#1|)) (-15 -2989 ((-621 |#3|) |#1|)) (-15 -4000 ((-747) |#3| |#1|)) (-15 -3341 (|#3| |#1| |#2| |#3|)) (-15 -3341 (|#3| |#1| |#2|)) (-15 -2696 ((-621 |#3|) |#1|)) (-15 -3761 ((-112) |#2| |#1|)) (-15 -3303 ((-621 |#2|) |#1|)) (-15 -2129 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2129 (|#1| (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -2129 (|#1| (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) |#1|)) (-15 -3779 ((-3 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) "failed") (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -3504 ((-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) |#1|)) (-15 -2751 (|#1| (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) |#1|)) (-15 -3325 ((-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) |#1|)) (-15 -4000 ((-747) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) |#1|)) (-15 -2989 ((-621 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -4000 ((-747) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -1780 ((-112) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -3527 ((-112) (-1 (-112) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -1868 (|#1| (-1 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)) (-15 -2797 (|#1| (-1 (-2 (|:| -3337 |#2|) (|:| -1793 |#3|)) (-2 (|:| -3337 |#2|) (|:| -1793 |#3|))) |#1|)))
+((-3834 (((-112) $ $) 19 (-1536 (|has| |#2| (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-3733 (($) 72) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 71)) (-1535 (((-1231) $ |#1| |#1|) 99 (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) 8)) (-2254 ((|#2| $ |#1| |#2|) 73)) (-1717 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 45 (|has| $ (-6 -4337)))) (-1489 (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 55 (|has| $ (-6 -4337)))) (-3490 (((-3 |#2| "failed") |#1| $) 61)) (-1682 (($) 7 T CONST)) (-3676 (($ $) 58 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337))))) (-2129 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 47 (|has| $ (-6 -4337))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 46 (|has| $ (-6 -4337))) (((-3 |#2| "failed") |#1| $) 62)) (-3812 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 54 (|has| $ (-6 -4337)))) (-2557 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 56 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 53 (|has| $ (-6 -4337))) (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 52 (|has| $ (-6 -4337)))) (-1879 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4338)))) (-1809 ((|#2| $ |#1|) 88)) (-2989 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 30 (|has| $ (-6 -4337))) (((-621 |#2|) $) 79 (|has| $ (-6 -4337)))) (-3194 (((-112) $ (-747)) 9)) (-4031 ((|#1| $) 96 (|has| |#1| (-823)))) (-1562 (((-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 29 (|has| $ (-6 -4337))) (((-621 |#2|) $) 80 (|has| $ (-6 -4337)))) (-2090 (((-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4337))))) (-1569 ((|#1| $) 95 (|has| |#1| (-823)))) (-1868 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 34 (|has| $ (-6 -4338))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4338)))) (-2797 (($ (-1 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-1508 (((-112) $ (-747)) 10)) (-3851 (((-1125) $) 22 (-1536 (|has| |#2| (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-3449 (((-621 |#1|) $) 63)) (-2427 (((-112) |#1| $) 64)) (-3504 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 39)) (-2751 (($ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 40)) (-3303 (((-621 |#1|) $) 93)) (-3761 (((-112) |#1| $) 92)) (-3990 (((-1087) $) 21 (-1536 (|has| |#2| (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-3646 ((|#2| $) 97 (|has| |#1| (-823)))) (-3779 (((-3 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) "failed") (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 51)) (-1642 (($ $ |#2|) 98 (|has| $ (-6 -4338)))) (-3325 (((-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 41)) (-1780 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 32 (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))))) 26 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-287 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 25 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) 24 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 23 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)))) (($ $ (-621 |#2|) (-621 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-287 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067)))) (($ $ (-621 (-287 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4337)) (|has| |#2| (-1067))))) (-2696 (((-621 |#2|) $) 91)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2898 (($) 49) (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 48)) (-4000 (((-747) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 31 (|has| $ (-6 -4337))) (((-747) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| $ (-6 -4337)))) (((-747) |#2| $) 81 (-12 (|has| |#2| (-1067)) (|has| $ (-6 -4337)))) (((-747) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4337)))) (-2281 (($ $) 13)) (-2845 (((-525) $) 59 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))))) (-3854 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 50)) (-3846 (((-834) $) 18 (-1536 (|has| |#2| (-593 (-834))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834)))))) (-3624 (($ (-621 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) 42)) (-3527 (((-112) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) $) 33 (|has| $ (-6 -4337))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (-1536 (|has| |#2| (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-1156 |#1| |#2|) (-138) (-1067) (-1067)) (T -1156))
+((-2254 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))) (-3733 (*1 *1) (-12 (-4 *1 (-1156 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))) (-3733 (*1 *1 *2) (-12 (-5 *2 (-621 (-2 (|:| -3337 *3) (|:| -1793 *4)))) (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *1 (-1156 *3 *4)))) (-2797 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1156 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
+(-13 (-590 |t#1| |t#2|) (-584 |t#1| |t#2|) (-10 -8 (-15 -2254 (|t#2| $ |t#1| |t#2|)) (-15 -3733 ($)) (-15 -3733 ($ (-621 (-2 (|:| -3337 |t#1|) (|:| -1793 |t#2|))))) (-15 -2797 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-106 #0=(-2 (|:| -3337 |#1|) (|:| -1793 |#2|))) . T) ((-101) -1536 (|has| |#2| (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))) ((-593 (-834)) -1536 (|has| |#2| (-1067)) (|has| |#2| (-593 (-834))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-593 (-834)))) ((-149 #0#) . T) ((-594 (-525)) |has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-594 (-525))) ((-223 #0#) . T) ((-229 #0#) . T) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 #0#) -12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-481 #0#) . T) ((-481 |#2|) . T) ((-584 |#1| |#2|) . T) ((-505 #0# #0#) -12 (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-302 (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)))) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1067))) ((-590 |#1| |#2|) . T) ((-1067) -1536 (|has| |#2| (-1067)) (|has| (-2 (|:| -3337 |#1|) (|:| -1793 |#2|)) (-1067))) ((-1180) . T))
+((-4268 (((-112)) 24)) (-2844 (((-1231) (-1125)) 26)) (-1735 (((-112)) 36)) (-4202 (((-1231)) 34)) (-2942 (((-1231) (-1125) (-1125)) 25)) (-1286 (((-112)) 37)) (-2751 (((-1231) |#1| |#2|) 44)) (-1605 (((-1231)) 20)) (-1532 (((-3 |#2| "failed") |#1|) 42)) (-4105 (((-1231)) 35)))
+(((-1157 |#1| |#2|) (-10 -7 (-15 -1605 ((-1231))) (-15 -2942 ((-1231) (-1125) (-1125))) (-15 -2844 ((-1231) (-1125))) (-15 -4202 ((-1231))) (-15 -4105 ((-1231))) (-15 -4268 ((-112))) (-15 -1735 ((-112))) (-15 -1286 ((-112))) (-15 -1532 ((-3 |#2| "failed") |#1|)) (-15 -2751 ((-1231) |#1| |#2|))) (-1067) (-1067)) (T -1157))
+((-2751 (*1 *2 *3 *4) (-12 (-5 *2 (-1231)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-1532 (*1 *2 *3) (|partial| -12 (-4 *2 (-1067)) (-5 *1 (-1157 *3 *2)) (-4 *3 (-1067)))) (-1286 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-1735 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-4268 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-4105 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-4202 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1157 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)))) (-2942 (*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1157 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067)))) (-1605 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067)))))
+(-10 -7 (-15 -1605 ((-1231))) (-15 -2942 ((-1231) (-1125) (-1125))) (-15 -2844 ((-1231) (-1125))) (-15 -4202 ((-1231))) (-15 -4105 ((-1231))) (-15 -4268 ((-112))) (-15 -1735 ((-112))) (-15 -1286 ((-112))) (-15 -1532 ((-3 |#2| "failed") |#1|)) (-15 -2751 ((-1231) |#1| |#2|)))
+((-3903 (((-1125) (-1125)) 18)) (-1708 (((-52) (-1125)) 21)))
+(((-1158) (-10 -7 (-15 -1708 ((-52) (-1125))) (-15 -3903 ((-1125) (-1125))))) (T -1158))
+((-3903 (*1 *2 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1158)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-52)) (-5 *1 (-1158)))))
+(-10 -7 (-15 -1708 ((-52) (-1125))) (-15 -3903 ((-1125) (-1125))))
+((-3846 (((-1160) |#1|) 11)))
+(((-1159 |#1|) (-10 -7 (-15 -3846 ((-1160) |#1|))) (-1067)) (T -1159))
+((-3846 (*1 *2 *3) (-12 (-5 *2 (-1160)) (-5 *1 (-1159 *3)) (-4 *3 (-1067)))))
+(-10 -7 (-15 -3846 ((-1160) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1485 (((-621 (-1125)) $) 34)) (-3034 (((-621 (-1125)) $ (-621 (-1125))) 37)) (-4169 (((-621 (-1125)) $ (-621 (-1125))) 36)) (-1922 (((-621 (-1125)) $ (-621 (-1125))) 38)) (-2607 (((-621 (-1125)) $) 33)) (-3743 (($) 22)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2617 (((-621 (-1125)) $) 35)) (-2699 (((-1231) $ (-549)) 29) (((-1231) $) 30)) (-2845 (($ (-834) (-549)) 26) (($ (-834) (-549) (-834)) NIL)) (-3846 (((-834) $) 40) (($ (-834)) 24)) (-2389 (((-112) $ $) NIL)))
+(((-1160) (-13 (-1067) (-10 -8 (-15 -3846 ($ (-834))) (-15 -2845 ($ (-834) (-549))) (-15 -2845 ($ (-834) (-549) (-834))) (-15 -2699 ((-1231) $ (-549))) (-15 -2699 ((-1231) $)) (-15 -2617 ((-621 (-1125)) $)) (-15 -1485 ((-621 (-1125)) $)) (-15 -3743 ($)) (-15 -2607 ((-621 (-1125)) $)) (-15 -1922 ((-621 (-1125)) $ (-621 (-1125)))) (-15 -3034 ((-621 (-1125)) $ (-621 (-1125)))) (-15 -4169 ((-621 (-1125)) $ (-621 (-1125))))))) (T -1160))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1160)))) (-2845 (*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-549)) (-5 *1 (-1160)))) (-2845 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-834)) (-5 *3 (-549)) (-5 *1 (-1160)))) (-2699 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-1160)))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-1160)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1160)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1160)))) (-3743 (*1 *1) (-5 *1 (-1160))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1160)))) (-1922 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1160)))) (-3034 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1160)))) (-4169 (*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1160)))))
+(-13 (-1067) (-10 -8 (-15 -3846 ($ (-834))) (-15 -2845 ($ (-834) (-549))) (-15 -2845 ($ (-834) (-549) (-834))) (-15 -2699 ((-1231) $ (-549))) (-15 -2699 ((-1231) $)) (-15 -2617 ((-621 (-1125)) $)) (-15 -1485 ((-621 (-1125)) $)) (-15 -3743 ($)) (-15 -2607 ((-621 (-1125)) $)) (-15 -1922 ((-621 (-1125)) $ (-621 (-1125)))) (-15 -3034 ((-621 (-1125)) $ (-621 (-1125)))) (-15 -4169 ((-621 (-1125)) $ (-621 (-1125))))))
+((-3834 (((-112) $ $) NIL)) (-1371 (((-1125) $ (-1125)) 17) (((-1125) $) 16)) (-3113 (((-1125) $ (-1125)) 15)) (-2060 (($ $ (-1125)) NIL)) (-1636 (((-3 (-1125) "failed") $) 11)) (-1796 (((-1125) $) 8)) (-2023 (((-3 (-1125) "failed") $) 12)) (-3001 (((-1125) $) 9)) (-1359 (($ (-381)) NIL) (($ (-381) (-1125)) NIL)) (-2481 (((-381) $) NIL)) (-3851 (((-1125) $) NIL)) (-2646 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3039 (((-112) $) 18)) (-3846 (((-834) $) NIL)) (-3578 (($ $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-1161) (-13 (-357 (-381) (-1125)) (-10 -8 (-15 -1371 ((-1125) $ (-1125))) (-15 -1371 ((-1125) $)) (-15 -1796 ((-1125) $)) (-15 -1636 ((-3 (-1125) "failed") $)) (-15 -2023 ((-3 (-1125) "failed") $)) (-15 -3039 ((-112) $))))) (T -1161))
+((-1371 (*1 *2 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1161)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1161)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1161)))) (-1636 (*1 *2 *1) (|partial| -12 (-5 *2 (-1125)) (-5 *1 (-1161)))) (-2023 (*1 *2 *1) (|partial| -12 (-5 *2 (-1125)) (-5 *1 (-1161)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161)))))
+(-13 (-357 (-381) (-1125)) (-10 -8 (-15 -1371 ((-1125) $ (-1125))) (-15 -1371 ((-1125) $)) (-15 -1796 ((-1125) $)) (-15 -1636 ((-3 (-1125) "failed") $)) (-15 -2023 ((-3 (-1125) "failed") $)) (-15 -3039 ((-112) $))))
+((-1872 (((-3 (-549) "failed") |#1|) 19)) (-3520 (((-3 (-549) "failed") |#1|) 14)) (-2701 (((-549) (-1125)) 28)))
+(((-1162 |#1|) (-10 -7 (-15 -1872 ((-3 (-549) "failed") |#1|)) (-15 -3520 ((-3 (-549) "failed") |#1|)) (-15 -2701 ((-549) (-1125)))) (-1018)) (T -1162))
+((-2701 (*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-549)) (-5 *1 (-1162 *4)) (-4 *4 (-1018)))) (-3520 (*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1162 *3)) (-4 *3 (-1018)))) (-1872 (*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1162 *3)) (-4 *3 (-1018)))))
+(-10 -7 (-15 -1872 ((-3 (-549) "failed") |#1|)) (-15 -3520 ((-3 (-549) "failed") |#1|)) (-15 -2701 ((-549) (-1125))))
+((-1851 (((-1100 (-219))) 9)))
+(((-1163) (-10 -7 (-15 -1851 ((-1100 (-219)))))) (T -1163))
+((-1851 (*1 *2) (-12 (-5 *2 (-1100 (-219))) (-5 *1 (-1163)))))
+(-10 -7 (-15 -1851 ((-1100 (-219)))))
+((-1425 (($) 11)) (-1733 (($ $) 35)) (-1710 (($ $) 33)) (-1564 (($ $) 25)) (-1758 (($ $) 17)) (-1934 (($ $) 15)) (-1745 (($ $) 19)) (-1600 (($ $) 30)) (-1722 (($ $) 34)) (-1576 (($ $) 29)))
+(((-1164 |#1|) (-10 -8 (-15 -1425 (|#1|)) (-15 -1733 (|#1| |#1|)) (-15 -1710 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1934 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1600 (|#1| |#1|)) (-15 -1576 (|#1| |#1|))) (-1165)) (T -1164))
+NIL
+(-10 -8 (-15 -1425 (|#1|)) (-15 -1733 (|#1| |#1|)) (-15 -1710 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1934 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1600 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)))
+((-1664 (($ $) 26)) (-1512 (($ $) 11)) (-1640 (($ $) 27)) (-1486 (($ $) 10)) (-1685 (($ $) 28)) (-1539 (($ $) 9)) (-1425 (($) 16)) (-3632 (($ $) 19)) (-2719 (($ $) 18)) (-1698 (($ $) 29)) (-1552 (($ $) 8)) (-1675 (($ $) 30)) (-1526 (($ $) 7)) (-1651 (($ $) 31)) (-1501 (($ $) 6)) (-1733 (($ $) 20)) (-1587 (($ $) 32)) (-1710 (($ $) 21)) (-1564 (($ $) 33)) (-1758 (($ $) 22)) (-1612 (($ $) 34)) (-1934 (($ $) 23)) (-1627 (($ $) 35)) (-1745 (($ $) 24)) (-1600 (($ $) 36)) (-1722 (($ $) 25)) (-1576 (($ $) 37)) (** (($ $ $) 17)))
+(((-1165) (-138)) (T -1165))
+((-1425 (*1 *1) (-4 *1 (-1165))))
+(-13 (-1168) (-94) (-484) (-35) (-277) (-10 -8 (-15 -1425 ($))))
+(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-1168) . T))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-4161 ((|#1| $) 17)) (-1660 (($ |#1| (-621 $)) 23) (($ (-621 |#1|)) 27) (($ |#1|) 25)) (-1584 (((-112) $ (-747)) 48)) (-2838 ((|#1| $ |#1|) 14 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) 13 (|has| $ (-6 -4338)))) (-1682 (($) NIL T CONST)) (-2989 (((-621 |#1|) $) 52 (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) 43)) (-3895 (((-112) $ $) 33 (|has| |#1| (-1067)))) (-3194 (((-112) $ (-747)) 41)) (-1562 (((-621 |#1|) $) 53 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1868 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 22)) (-1508 (((-112) $ (-747)) 40)) (-3591 (((-621 |#1|) $) 37)) (-2076 (((-112) $) 36)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1780 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 74)) (-3670 (((-112) $) 9)) (-3742 (($) 10)) (-3341 ((|#1| $ "value") NIL)) (-3230 (((-549) $ $) 32)) (-4123 (((-621 $) $) 59)) (-2341 (((-112) $ $) 77)) (-1622 (((-621 $) $) 72)) (-4007 (($ $) 73)) (-3497 (((-112) $) 56)) (-4000 (((-747) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4337))) (((-747) |#1| $) 16 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2281 (($ $) 58)) (-3846 (((-834) $) 61 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) 12)) (-1987 (((-112) $ $) 29 (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 28 (|has| |#1| (-1067)))) (-3775 (((-747) $) 39 (|has| $ (-6 -4337)))))
+(((-1166 |#1|) (-13 (-981 |#1|) (-10 -8 (-6 -4337) (-6 -4338) (-15 -1660 ($ |#1| (-621 $))) (-15 -1660 ($ (-621 |#1|))) (-15 -1660 ($ |#1|)) (-15 -3497 ((-112) $)) (-15 -4007 ($ $)) (-15 -1622 ((-621 $) $)) (-15 -2341 ((-112) $ $)) (-15 -4123 ((-621 $) $)))) (-1067)) (T -1166))
+((-3497 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3)) (-4 *3 (-1067)))) (-1660 (*1 *1 *2 *3) (-12 (-5 *3 (-621 (-1166 *2))) (-5 *1 (-1166 *2)) (-4 *2 (-1067)))) (-1660 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-1166 *3)))) (-1660 (*1 *1 *2) (-12 (-5 *1 (-1166 *2)) (-4 *2 (-1067)))) (-4007 (*1 *1 *1) (-12 (-5 *1 (-1166 *2)) (-4 *2 (-1067)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-621 (-1166 *3))) (-5 *1 (-1166 *3)) (-4 *3 (-1067)))) (-2341 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3)) (-4 *3 (-1067)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-621 (-1166 *3))) (-5 *1 (-1166 *3)) (-4 *3 (-1067)))))
+(-13 (-981 |#1|) (-10 -8 (-6 -4337) (-6 -4338) (-15 -1660 ($ |#1| (-621 $))) (-15 -1660 ($ (-621 |#1|))) (-15 -1660 ($ |#1|)) (-15 -3497 ((-112) $)) (-15 -4007 ($ $)) (-15 -1622 ((-621 $) $)) (-15 -2341 ((-112) $ $)) (-15 -4123 ((-621 $) $))))
+((-1512 (($ $) 15)) (-1539 (($ $) 12)) (-1552 (($ $) 10)) (-1526 (($ $) 17)))
+(((-1167 |#1|) (-10 -8 (-15 -1526 (|#1| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -1512 (|#1| |#1|))) (-1168)) (T -1167))
+NIL
+(-10 -8 (-15 -1526 (|#1| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -1512 (|#1| |#1|)))
+((-1512 (($ $) 11)) (-1486 (($ $) 10)) (-1539 (($ $) 9)) (-1552 (($ $) 8)) (-1526 (($ $) 7)) (-1501 (($ $) 6)))
+(((-1168) (-138)) (T -1168))
+((-1512 (*1 *1 *1) (-4 *1 (-1168))) (-1486 (*1 *1 *1) (-4 *1 (-1168))) (-1539 (*1 *1 *1) (-4 *1 (-1168))) (-1552 (*1 *1 *1) (-4 *1 (-1168))) (-1526 (*1 *1 *1) (-4 *1 (-1168))) (-1501 (*1 *1 *1) (-4 *1 (-1168))))
+(-13 (-10 -8 (-15 -1501 ($ $)) (-15 -1526 ($ $)) (-15 -1552 ($ $)) (-15 -1539 ($ $)) (-15 -1486 ($ $)) (-15 -1512 ($ $))))
+((-3694 ((|#2| |#2|) 88)) (-3530 (((-112) |#2|) 26)) (-2145 ((|#2| |#2|) 30)) (-2160 ((|#2| |#2|) 32)) (-3953 ((|#2| |#2| (-1143)) 83) ((|#2| |#2|) 84)) (-3886 (((-167 |#2|) |#2|) 28)) (-2602 ((|#2| |#2| (-1143)) 85) ((|#2| |#2|) 86)))
+(((-1169 |#1| |#2|) (-10 -7 (-15 -3953 (|#2| |#2|)) (-15 -3953 (|#2| |#2| (-1143))) (-15 -2602 (|#2| |#2|)) (-15 -2602 (|#2| |#2| (-1143))) (-15 -3694 (|#2| |#2|)) (-15 -2145 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -3530 ((-112) |#2|)) (-15 -3886 ((-167 |#2|) |#2|))) (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))) (-13 (-27) (-1165) (-423 |#1|))) (T -1169))
+((-3886 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-167 *3)) (-5 *1 (-1169 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *4))))) (-3530 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *2 (-112)) (-5 *1 (-1169 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *4))))) (-2160 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1169 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3))))) (-2145 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1169 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3))))) (-3694 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1169 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3))))) (-2602 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1169 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4))))) (-2602 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1169 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3))))) (-3953 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1169 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4))))) (-3953 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549)))) (-5 *1 (-1169 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3))))))
+(-10 -7 (-15 -3953 (|#2| |#2|)) (-15 -3953 (|#2| |#2| (-1143))) (-15 -2602 (|#2| |#2|)) (-15 -2602 (|#2| |#2| (-1143))) (-15 -3694 (|#2| |#2|)) (-15 -2145 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -3530 ((-112) |#2|)) (-15 -3886 ((-167 |#2|) |#2|)))
+((-2803 ((|#4| |#4| |#1|) 27)) (-2147 ((|#4| |#4| |#1|) 28)))
+(((-1170 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#4| |#4| |#1|)) (-15 -2147 (|#4| |#4| |#1|))) (-541) (-366 |#1|) (-366 |#1|) (-663 |#1| |#2| |#3|)) (T -1170))
+((-2147 (*1 *2 *2 *3) (-12 (-4 *3 (-541)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1170 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))) (-2803 (*1 *2 *2 *3) (-12 (-4 *3 (-541)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-5 *1 (-1170 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
+(-10 -7 (-15 -2803 (|#4| |#4| |#1|)) (-15 -2147 (|#4| |#4| |#1|)))
+((-4230 ((|#2| |#2|) 133)) (-3036 ((|#2| |#2|) 130)) (-2365 ((|#2| |#2|) 121)) (-2230 ((|#2| |#2|) 118)) (-2638 ((|#2| |#2|) 126)) (-4043 ((|#2| |#2|) 114)) (-3661 ((|#2| |#2|) 43)) (-3899 ((|#2| |#2|) 94)) (-4038 ((|#2| |#2|) 74)) (-2755 ((|#2| |#2|) 128)) (-2809 ((|#2| |#2|) 116)) (-1557 ((|#2| |#2|) 138)) (-2829 ((|#2| |#2|) 136)) (-3783 ((|#2| |#2|) 137)) (-2339 ((|#2| |#2|) 135)) (-2832 ((|#2| |#2|) 148)) (-2692 ((|#2| |#2|) 30 (-12 (|has| |#2| (-594 (-863 |#1|))) (|has| |#2| (-857 |#1|)) (|has| |#1| (-594 (-863 |#1|))) (|has| |#1| (-857 |#1|))))) (-1668 ((|#2| |#2|) 75)) (-4045 ((|#2| |#2|) 139)) (-1449 ((|#2| |#2|) 140)) (-2338 ((|#2| |#2|) 127)) (-4182 ((|#2| |#2|) 115)) (-3736 ((|#2| |#2|) 134)) (-3025 ((|#2| |#2|) 132)) (-3803 ((|#2| |#2|) 122)) (-2267 ((|#2| |#2|) 120)) (-2704 ((|#2| |#2|) 124)) (-1834 ((|#2| |#2|) 112)))
+(((-1171 |#1| |#2|) (-10 -7 (-15 -1449 (|#2| |#2|)) (-15 -4038 (|#2| |#2|)) (-15 -2832 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -1668 (|#2| |#2|)) (-15 -4045 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -2704 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3736 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -2809 (|#2| |#2|)) (-15 -2755 (|#2| |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -2638 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -4230 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -3036 (|#2| |#2|)) (-15 -2267 (|#2| |#2|)) (-15 -3025 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2829 (|#2| |#2|)) (-15 -3783 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (IF (|has| |#1| (-857 |#1|)) (IF (|has| |#1| (-594 (-863 |#1|))) (IF (|has| |#2| (-594 (-863 |#1|))) (IF (|has| |#2| (-857 |#1|)) (-15 -2692 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-823) (-444)) (-13 (-423 |#1|) (-1165))) (T -1171))
+((-2692 (*1 *2 *2) (-12 (-4 *3 (-594 (-863 *3))) (-4 *3 (-857 *3)) (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-594 (-863 *3))) (-4 *2 (-857 *3)) (-4 *2 (-13 (-423 *3) (-1165))))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-3783 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-2829 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-3025 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-2267 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-3036 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-4230 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-2365 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-4043 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-2755 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-2809 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-2338 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-4182 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-3736 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-2704 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-1834 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-1668 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-4038 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))) (-1449 (*1 *2 *2) (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-13 (-423 *3) (-1165))))))
+(-10 -7 (-15 -1449 (|#2| |#2|)) (-15 -4038 (|#2| |#2|)) (-15 -2832 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -1668 (|#2| |#2|)) (-15 -4045 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -2704 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3736 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -2809 (|#2| |#2|)) (-15 -2755 (|#2| |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -2638 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -4230 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -3036 (|#2| |#2|)) (-15 -2267 (|#2| |#2|)) (-15 -3025 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2829 (|#2| |#2|)) (-15 -3783 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (IF (|has| |#1| (-857 |#1|)) (IF (|has| |#1| (-594 (-863 |#1|))) (IF (|has| |#2| (-594 (-863 |#1|))) (IF (|has| |#2| (-857 |#1|)) (-15 -2692 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3282 (((-112) |#5| $) 60) (((-112) $) 102)) (-2731 ((|#5| |#5| $) 75)) (-1489 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2737 (((-621 |#5|) (-621 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-2714 (((-3 $ "failed") (-621 |#5|)) 126)) (-3657 (((-3 $ "failed") $) 112)) (-1903 ((|#5| |#5| $) 94)) (-2217 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-3615 ((|#5| |#5| $) 98)) (-2557 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-1439 (((-2 (|:| -2681 (-621 |#5|)) (|:| -1359 (-621 |#5|))) $) 55)) (-2812 (((-112) |#5| $) 58) (((-112) $) 103)) (-2745 ((|#4| $) 108)) (-3829 (((-3 |#5| "failed") $) 110)) (-1638 (((-621 |#5|) $) 49)) (-2170 (((-112) |#5| $) 67) (((-112) $) 107)) (-3270 ((|#5| |#5| $) 81)) (-2473 (((-112) $ $) 27)) (-1335 (((-112) |#5| $) 63) (((-112) $) 105)) (-4298 ((|#5| |#5| $) 78)) (-3646 (((-3 |#5| "failed") $) 109)) (-2763 (($ $ |#5|) 127)) (-3701 (((-747) $) 52)) (-3854 (($ (-621 |#5|)) 124)) (-2858 (($ $ |#4|) 122)) (-3758 (($ $ |#4|) 121)) (-1962 (($ $) 120)) (-3846 (((-834) $) NIL) (((-621 |#5|) $) 113)) (-1824 (((-747) $) 130)) (-2574 (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#5|))) "failed") (-621 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#5|))) "failed") (-621 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-1716 (((-112) $ (-1 (-112) |#5| (-621 |#5|))) 100)) (-3002 (((-621 |#4|) $) 115)) (-1606 (((-112) |#4| $) 118)) (-2389 (((-112) $ $) 19)))
+(((-1172 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1824 ((-747) |#1|)) (-15 -2763 (|#1| |#1| |#5|)) (-15 -1489 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1606 ((-112) |#4| |#1|)) (-15 -3002 ((-621 |#4|) |#1|)) (-15 -3657 ((-3 |#1| "failed") |#1|)) (-15 -3829 ((-3 |#5| "failed") |#1|)) (-15 -3646 ((-3 |#5| "failed") |#1|)) (-15 -3615 (|#5| |#5| |#1|)) (-15 -1962 (|#1| |#1|)) (-15 -1903 (|#5| |#5| |#1|)) (-15 -3270 (|#5| |#5| |#1|)) (-15 -4298 (|#5| |#5| |#1|)) (-15 -2731 (|#5| |#5| |#1|)) (-15 -2737 ((-621 |#5|) (-621 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2557 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2170 ((-112) |#1|)) (-15 -1335 ((-112) |#1|)) (-15 -3282 ((-112) |#1|)) (-15 -1716 ((-112) |#1| (-1 (-112) |#5| (-621 |#5|)))) (-15 -2170 ((-112) |#5| |#1|)) (-15 -1335 ((-112) |#5| |#1|)) (-15 -3282 ((-112) |#5| |#1|)) (-15 -2217 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2812 ((-112) |#1|)) (-15 -2812 ((-112) |#5| |#1|)) (-15 -1439 ((-2 (|:| -2681 (-621 |#5|)) (|:| -1359 (-621 |#5|))) |#1|)) (-15 -3701 ((-747) |#1|)) (-15 -1638 ((-621 |#5|) |#1|)) (-15 -2574 ((-3 (-2 (|:| |bas| |#1|) (|:| -2317 (-621 |#5|))) "failed") (-621 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2574 ((-3 (-2 (|:| |bas| |#1|) (|:| -2317 (-621 |#5|))) "failed") (-621 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2473 ((-112) |#1| |#1|)) (-15 -2858 (|#1| |#1| |#4|)) (-15 -3758 (|#1| |#1| |#4|)) (-15 -2745 (|#4| |#1|)) (-15 -2714 ((-3 |#1| "failed") (-621 |#5|))) (-15 -3846 ((-621 |#5|) |#1|)) (-15 -3854 (|#1| (-621 |#5|))) (-15 -2557 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2557 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1489 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2557 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|))) (-1173 |#2| |#3| |#4| |#5|) (-541) (-769) (-823) (-1032 |#2| |#3| |#4|)) (T -1172))
+NIL
+(-10 -8 (-15 -1824 ((-747) |#1|)) (-15 -2763 (|#1| |#1| |#5|)) (-15 -1489 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1606 ((-112) |#4| |#1|)) (-15 -3002 ((-621 |#4|) |#1|)) (-15 -3657 ((-3 |#1| "failed") |#1|)) (-15 -3829 ((-3 |#5| "failed") |#1|)) (-15 -3646 ((-3 |#5| "failed") |#1|)) (-15 -3615 (|#5| |#5| |#1|)) (-15 -1962 (|#1| |#1|)) (-15 -1903 (|#5| |#5| |#1|)) (-15 -3270 (|#5| |#5| |#1|)) (-15 -4298 (|#5| |#5| |#1|)) (-15 -2731 (|#5| |#5| |#1|)) (-15 -2737 ((-621 |#5|) (-621 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2557 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2170 ((-112) |#1|)) (-15 -1335 ((-112) |#1|)) (-15 -3282 ((-112) |#1|)) (-15 -1716 ((-112) |#1| (-1 (-112) |#5| (-621 |#5|)))) (-15 -2170 ((-112) |#5| |#1|)) (-15 -1335 ((-112) |#5| |#1|)) (-15 -3282 ((-112) |#5| |#1|)) (-15 -2217 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2812 ((-112) |#1|)) (-15 -2812 ((-112) |#5| |#1|)) (-15 -1439 ((-2 (|:| -2681 (-621 |#5|)) (|:| -1359 (-621 |#5|))) |#1|)) (-15 -3701 ((-747) |#1|)) (-15 -1638 ((-621 |#5|) |#1|)) (-15 -2574 ((-3 (-2 (|:| |bas| |#1|) (|:| -2317 (-621 |#5|))) "failed") (-621 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2574 ((-3 (-2 (|:| |bas| |#1|) (|:| -2317 (-621 |#5|))) "failed") (-621 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2473 ((-112) |#1| |#1|)) (-15 -2858 (|#1| |#1| |#4|)) (-15 -3758 (|#1| |#1| |#4|)) (-15 -2745 (|#4| |#1|)) (-15 -2714 ((-3 |#1| "failed") (-621 |#5|))) (-15 -3846 ((-621 |#5|) |#1|)) (-15 -3854 (|#1| (-621 |#5|))) (-15 -2557 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2557 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1489 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2557 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3846 ((-834) |#1|)) (-15 -2389 ((-112) |#1| |#1|)))
+((-3834 (((-112) $ $) 7)) (-3514 (((-621 (-2 (|:| -2681 $) (|:| -1359 (-621 |#4|)))) (-621 |#4|)) 85)) (-2866 (((-621 $) (-621 |#4|)) 86)) (-2272 (((-621 |#3|) $) 33)) (-3422 (((-112) $) 26)) (-2527 (((-112) $) 17 (|has| |#1| (-541)))) (-3282 (((-112) |#4| $) 101) (((-112) $) 97)) (-2731 ((|#4| |#4| $) 92)) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |#3|) 27)) (-1584 (((-112) $ (-747)) 44)) (-1489 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4337))) (((-3 |#4| "failed") $ |#3|) 79)) (-1682 (($) 45 T CONST)) (-1433 (((-112) $) 22 (|has| |#1| (-541)))) (-2555 (((-112) $ $) 24 (|has| |#1| (-541)))) (-2595 (((-112) $ $) 23 (|has| |#1| (-541)))) (-2397 (((-112) $) 25 (|has| |#1| (-541)))) (-2737 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3269 (((-621 |#4|) (-621 |#4|) $) 18 (|has| |#1| (-541)))) (-2953 (((-621 |#4|) (-621 |#4|) $) 19 (|has| |#1| (-541)))) (-2714 (((-3 $ "failed") (-621 |#4|)) 36)) (-2659 (($ (-621 |#4|)) 35)) (-3657 (((-3 $ "failed") $) 82)) (-1903 ((|#4| |#4| $) 89)) (-3676 (($ $) 68 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#4| $) 67 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4337)))) (-3675 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-541)))) (-2217 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3615 ((|#4| |#4| $) 87)) (-2557 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4337))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4337))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1439 (((-2 (|:| -2681 (-621 |#4|)) (|:| -1359 (-621 |#4|))) $) 105)) (-2989 (((-621 |#4|) $) 52 (|has| $ (-6 -4337)))) (-2812 (((-112) |#4| $) 104) (((-112) $) 103)) (-2745 ((|#3| $) 34)) (-3194 (((-112) $ (-747)) 43)) (-1562 (((-621 |#4|) $) 53 (|has| $ (-6 -4337)))) (-2090 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#4| |#4|) $) 47)) (-2561 (((-621 |#3|) $) 32)) (-2378 (((-112) |#3| $) 31)) (-1508 (((-112) $ (-747)) 42)) (-3851 (((-1125) $) 9)) (-3829 (((-3 |#4| "failed") $) 83)) (-1638 (((-621 |#4|) $) 107)) (-2170 (((-112) |#4| $) 99) (((-112) $) 95)) (-3270 ((|#4| |#4| $) 90)) (-2473 (((-112) $ $) 110)) (-4203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-541)))) (-1335 (((-112) |#4| $) 100) (((-112) $) 96)) (-4298 ((|#4| |#4| $) 91)) (-3990 (((-1087) $) 10)) (-3646 (((-3 |#4| "failed") $) 84)) (-3779 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2640 (((-3 $ "failed") $ |#4|) 78)) (-2763 (($ $ |#4|) 77)) (-1780 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#4|) (-621 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-287 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-621 (-287 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-4144 (((-112) $ $) 38)) (-3670 (((-112) $) 41)) (-3742 (($) 40)) (-3701 (((-747) $) 106)) (-4000 (((-747) |#4| $) 54 (-12 (|has| |#4| (-1067)) (|has| $ (-6 -4337)))) (((-747) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4337)))) (-2281 (($ $) 39)) (-2845 (((-525) $) 69 (|has| |#4| (-594 (-525))))) (-3854 (($ (-621 |#4|)) 60)) (-2858 (($ $ |#3|) 28)) (-3758 (($ $ |#3|) 30)) (-1962 (($ $) 88)) (-4317 (($ $ |#3|) 29)) (-3846 (((-834) $) 11) (((-621 |#4|) $) 37)) (-1824 (((-747) $) 76 (|has| |#3| (-361)))) (-2574 (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1716 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) 98)) (-3527 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4337)))) (-3002 (((-621 |#3|) $) 81)) (-1606 (((-112) |#3| $) 80)) (-2389 (((-112) $ $) 6)) (-3775 (((-747) $) 46 (|has| $ (-6 -4337)))))
+(((-1173 |#1| |#2| |#3| |#4|) (-138) (-541) (-769) (-823) (-1032 |t#1| |t#2| |t#3|)) (T -1173))
+((-2473 (*1 *2 *1 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-2574 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2317 (-621 *8)))) (-5 *3 (-621 *8)) (-4 *1 (-1173 *5 *6 *7 *8)))) (-2574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-541)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2317 (-621 *9)))) (-5 *3 (-621 *9)) (-4 *1 (-1173 *6 *7 *8 *9)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *6)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-747)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-2 (|:| -2681 (-621 *6)) (|:| -1359 (-621 *6)))))) (-2812 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-2217 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1173 *5 *6 *7 *3)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)))) (-3282 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-1335 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-2170 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-1716 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-621 *7))) (-4 *1 (-1173 *4 *5 *6 *7)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-2170 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))) (-2557 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1173 *5 *6 *7 *2)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *2 (-1032 *5 *6 *7)))) (-2737 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-621 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1173 *5 *6 *7 *8)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)))) (-2731 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-4298 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-3270 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-1903 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-1962 (*1 *1 *1) (-12 (-4 *1 (-1173 *2 *3 *4 *5)) (-4 *2 (-541)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4)))) (-3615 (*1 *2 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1)) (-4 *1 (-1173 *4 *5 *6 *7)))) (-3514 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-621 (-2 (|:| -2681 *1) (|:| -1359 (-621 *7))))) (-5 *3 (-621 *7)) (-4 *1 (-1173 *4 *5 *6 *7)))) (-3646 (*1 *2 *1) (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-3829 (*1 *2 *1) (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-3657 (*1 *1 *1) (|partial| -12 (-4 *1 (-1173 *2 *3 *4 *5)) (-4 *2 (-541)) (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *5)))) (-1606 (*1 *2 *3 *1) (-12 (-4 *1 (-1173 *4 *5 *3 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112)))) (-1489 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1173 *4 *5 *3 *2)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *3 (-823)) (-4 *2 (-1032 *4 *5 *3)))) (-2640 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-2763 (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *5 (-361)) (-5 *2 (-747)))))
+(-13 (-947 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4337) (-6 -4338) (-15 -2473 ((-112) $ $)) (-15 -2574 ((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |t#4|))) "failed") (-621 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2574 ((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |t#4|))) "failed") (-621 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1638 ((-621 |t#4|) $)) (-15 -3701 ((-747) $)) (-15 -1439 ((-2 (|:| -2681 (-621 |t#4|)) (|:| -1359 (-621 |t#4|))) $)) (-15 -2812 ((-112) |t#4| $)) (-15 -2812 ((-112) $)) (-15 -2217 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3282 ((-112) |t#4| $)) (-15 -1335 ((-112) |t#4| $)) (-15 -2170 ((-112) |t#4| $)) (-15 -1716 ((-112) $ (-1 (-112) |t#4| (-621 |t#4|)))) (-15 -3282 ((-112) $)) (-15 -1335 ((-112) $)) (-15 -2170 ((-112) $)) (-15 -2557 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2737 ((-621 |t#4|) (-621 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2731 (|t#4| |t#4| $)) (-15 -4298 (|t#4| |t#4| $)) (-15 -3270 (|t#4| |t#4| $)) (-15 -1903 (|t#4| |t#4| $)) (-15 -1962 ($ $)) (-15 -3615 (|t#4| |t#4| $)) (-15 -2866 ((-621 $) (-621 |t#4|))) (-15 -3514 ((-621 (-2 (|:| -2681 $) (|:| -1359 (-621 |t#4|)))) (-621 |t#4|))) (-15 -3646 ((-3 |t#4| "failed") $)) (-15 -3829 ((-3 |t#4| "failed") $)) (-15 -3657 ((-3 $ "failed") $)) (-15 -3002 ((-621 |t#3|) $)) (-15 -1606 ((-112) |t#3| $)) (-15 -1489 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2640 ((-3 $ "failed") $ |t#4|)) (-15 -2763 ($ $ |t#4|)) (IF (|has| |t#3| (-361)) (-15 -1824 ((-747) $)) |%noBranch|)))
+(((-34) . T) ((-101) . T) ((-593 (-621 |#4|)) . T) ((-593 (-834)) . T) ((-149 |#4|) . T) ((-594 (-525)) |has| |#4| (-594 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))) ((-947 |#1| |#2| |#3| |#4|) . T) ((-1067) . T) ((-1180) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2272 (((-621 (-1143)) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-1664 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1640 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) NIL T CONST)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-1414 (((-923 |#1|) $ (-747)) 17) (((-923 |#1|) $ (-747) (-747)) NIL)) (-2871 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-747) $ (-1143)) NIL) (((-747) $ (-1143) (-747)) NIL)) (-2675 (((-112) $) NIL)) (-4187 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2205 (((-112) $) NIL)) (-2246 (($ $ (-621 (-1143)) (-621 (-521 (-1143)))) NIL) (($ $ (-1143) (-521 (-1143))) NIL) (($ |#1| (-521 (-1143))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3632 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3893 (($ $ (-1143)) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143) |#1|) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3990 (((-1087) $) NIL)) (-2238 (($ (-1 $) (-1143) |#1|) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2763 (($ $ (-747)) NIL)) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2719 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2686 (($ $ (-1143) $) NIL) (($ $ (-621 (-1143)) (-621 $)) NIL) (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL)) (-3456 (($ $ (-1143)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL)) (-3701 (((-521 (-1143)) $) NIL)) (-1698 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-541))) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-1143)) NIL) (($ (-923 |#1|)) NIL)) (-2152 ((|#1| $ (-521 (-1143))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL) (((-923 |#1|) $ (-747)) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-1733 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1710 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1934 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) NIL T CONST)) (-3287 (($) NIL T CONST)) (-1702 (($ $ (-1143)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL)) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1174 |#1|) (-13 (-717 |#1| (-1143)) (-10 -8 (-15 -2152 ((-923 |#1|) $ (-747))) (-15 -3846 ($ (-1143))) (-15 -3846 ($ (-923 |#1|))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -3893 ($ $ (-1143) |#1|)) (-15 -2238 ($ (-1 $) (-1143) |#1|))) |%noBranch|))) (-1018)) (T -1174))
+((-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-923 *4)) (-5 *1 (-1174 *4)) (-4 *4 (-1018)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1174 *3)) (-4 *3 (-1018)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-923 *3)) (-4 *3 (-1018)) (-5 *1 (-1174 *3)))) (-3893 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *1 (-1174 *3)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)))) (-2238 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1174 *4))) (-5 *3 (-1143)) (-5 *1 (-1174 *4)) (-4 *4 (-38 (-400 (-549)))) (-4 *4 (-1018)))))
+(-13 (-717 |#1| (-1143)) (-10 -8 (-15 -2152 ((-923 |#1|) $ (-747))) (-15 -3846 ($ (-1143))) (-15 -3846 ($ (-923 |#1|))) (IF (|has| |#1| (-38 (-400 (-549)))) (PROGN (-15 -3893 ($ $ (-1143) |#1|)) (-15 -2238 ($ (-1 $) (-1143) |#1|))) |%noBranch|)))
+((-3618 (($ |#1| (-621 (-621 (-914 (-219)))) (-112)) 19)) (-1912 (((-112) $ (-112)) 18)) (-1470 (((-112) $) 17)) (-1259 (((-621 (-621 (-914 (-219)))) $) 13)) (-2626 ((|#1| $) 8)) (-2757 (((-112) $) 15)))
+(((-1175 |#1|) (-10 -8 (-15 -2626 (|#1| $)) (-15 -1259 ((-621 (-621 (-914 (-219)))) $)) (-15 -2757 ((-112) $)) (-15 -1470 ((-112) $)) (-15 -1912 ((-112) $ (-112))) (-15 -3618 ($ |#1| (-621 (-621 (-914 (-219)))) (-112)))) (-945)) (T -1175))
+((-3618 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-112)) (-5 *1 (-1175 *2)) (-4 *2 (-945)))) (-1912 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1175 *3)) (-4 *3 (-945)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175 *3)) (-4 *3 (-945)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175 *3)) (-4 *3 (-945)))) (-1259 (*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-1175 *3)) (-4 *3 (-945)))) (-2626 (*1 *2 *1) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-945)))))
+(-10 -8 (-15 -2626 (|#1| $)) (-15 -1259 ((-621 (-621 (-914 (-219)))) $)) (-15 -2757 ((-112) $)) (-15 -1470 ((-112) $)) (-15 -1912 ((-112) $ (-112))) (-15 -3618 ($ |#1| (-621 (-621 (-914 (-219)))) (-112))))
+((-3956 (((-914 (-219)) (-914 (-219))) 25)) (-2798 (((-914 (-219)) (-219) (-219) (-219) (-219)) 10)) (-3873 (((-621 (-914 (-219))) (-914 (-219)) (-914 (-219)) (-914 (-219)) (-219) (-621 (-621 (-219)))) 37)) (-1706 (((-219) (-914 (-219)) (-914 (-219))) 21)) (-2168 (((-914 (-219)) (-914 (-219)) (-914 (-219))) 22)) (-4055 (((-621 (-621 (-219))) (-549)) 31)) (-2500 (((-914 (-219)) (-914 (-219)) (-914 (-219))) 20)) (-2486 (((-914 (-219)) (-914 (-219)) (-914 (-219))) 19)) (* (((-914 (-219)) (-219) (-914 (-219))) 18)))
+(((-1176) (-10 -7 (-15 -2798 ((-914 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-914 (-219)) (-219) (-914 (-219)))) (-15 -2486 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -2500 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -1706 ((-219) (-914 (-219)) (-914 (-219)))) (-15 -2168 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -3956 ((-914 (-219)) (-914 (-219)))) (-15 -4055 ((-621 (-621 (-219))) (-549))) (-15 -3873 ((-621 (-914 (-219))) (-914 (-219)) (-914 (-219)) (-914 (-219)) (-219) (-621 (-621 (-219))))))) (T -1176))
+((-3873 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-621 (-621 (-219)))) (-5 *4 (-219)) (-5 *2 (-621 (-914 *4))) (-5 *1 (-1176)) (-5 *3 (-914 *4)))) (-4055 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-621 (-621 (-219)))) (-5 *1 (-1176)))) (-3956 (*1 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1176)))) (-2168 (*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1176)))) (-1706 (*1 *2 *3 *3) (-12 (-5 *3 (-914 (-219))) (-5 *2 (-219)) (-5 *1 (-1176)))) (-2500 (*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1176)))) (-2486 (*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1176)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-914 (-219))) (-5 *3 (-219)) (-5 *1 (-1176)))) (-2798 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1176)) (-5 *3 (-219)))))
+(-10 -7 (-15 -2798 ((-914 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-914 (-219)) (-219) (-914 (-219)))) (-15 -2486 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -2500 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -1706 ((-219) (-914 (-219)) (-914 (-219)))) (-15 -2168 ((-914 (-219)) (-914 (-219)) (-914 (-219)))) (-15 -3956 ((-914 (-219)) (-914 (-219)))) (-15 -4055 ((-621 (-621 (-219))) (-549))) (-15 -3873 ((-621 (-914 (-219))) (-914 (-219)) (-914 (-219)) (-914 (-219)) (-219) (-621 (-621 (-219))))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-1489 ((|#1| $ (-747)) 13)) (-4210 (((-747) $) 12)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3846 (((-929 |#1|) $) 10) (($ (-929 |#1|)) 9) (((-834) $) 23 (|has| |#1| (-593 (-834))))) (-2389 (((-112) $ $) 16 (|has| |#1| (-1067)))))
+(((-1177 |#1|) (-13 (-593 (-929 |#1|)) (-10 -8 (-15 -3846 ($ (-929 |#1|))) (-15 -1489 (|#1| $ (-747))) (-15 -4210 ((-747) $)) (IF (|has| |#1| (-593 (-834))) (-6 (-593 (-834))) |%noBranch|) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|))) (-1180)) (T -1177))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-929 *3)) (-4 *3 (-1180)) (-5 *1 (-1177 *3)))) (-1489 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-1177 *2)) (-4 *2 (-1180)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1177 *3)) (-4 *3 (-1180)))))
+(-13 (-593 (-929 |#1|)) (-10 -8 (-15 -3846 ($ (-929 |#1|))) (-15 -1489 (|#1| $ (-747))) (-15 -4210 ((-747) $)) (IF (|has| |#1| (-593 (-834))) (-6 (-593 (-834))) |%noBranch|) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|)))
+((-3877 (((-411 (-1139 (-1139 |#1|))) (-1139 (-1139 |#1|)) (-549)) 80)) (-3343 (((-411 (-1139 (-1139 |#1|))) (-1139 (-1139 |#1|))) 74)) (-2221 (((-411 (-1139 (-1139 |#1|))) (-1139 (-1139 |#1|))) 59)))
+(((-1178 |#1|) (-10 -7 (-15 -3343 ((-411 (-1139 (-1139 |#1|))) (-1139 (-1139 |#1|)))) (-15 -2221 ((-411 (-1139 (-1139 |#1|))) (-1139 (-1139 |#1|)))) (-15 -3877 ((-411 (-1139 (-1139 |#1|))) (-1139 (-1139 |#1|)) (-549)))) (-342)) (T -1178))
+((-3877 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-4 *5 (-342)) (-5 *2 (-411 (-1139 (-1139 *5)))) (-5 *1 (-1178 *5)) (-5 *3 (-1139 (-1139 *5))))) (-2221 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1139 (-1139 *4)))) (-5 *1 (-1178 *4)) (-5 *3 (-1139 (-1139 *4))))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1139 (-1139 *4)))) (-5 *1 (-1178 *4)) (-5 *3 (-1139 (-1139 *4))))))
+(-10 -7 (-15 -3343 ((-411 (-1139 (-1139 |#1|))) (-1139 (-1139 |#1|)))) (-15 -2221 ((-411 (-1139 (-1139 |#1|))) (-1139 (-1139 |#1|)))) (-15 -3877 ((-411 (-1139 (-1139 |#1|))) (-1139 (-1139 |#1|)) (-549))))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL) (($ (-1148)) 8)) (-2389 (((-112) $ $) NIL)))
+(((-1179) (-13 (-1050) (-10 -8 (-15 -3846 ($ (-1148)))))) (T -1179))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1179)))))
+(-13 (-1050) (-10 -8 (-15 -3846 ($ (-1148)))))
+NIL
+(((-1180) (-138)) (T -1180))
+NIL
+(-13 (-10 -7 (-6 -2624)))
+((-3061 (((-112)) 15)) (-3740 (((-1231) (-621 |#1|) (-621 |#1|)) 19) (((-1231) (-621 |#1|)) 20)) (-3194 (((-112) |#1| |#1|) 32 (|has| |#1| (-823)))) (-1508 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-1299 ((|#1| (-621 |#1|)) 33 (|has| |#1| (-823))) ((|#1| (-621 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-2074 (((-2 (|:| -1578 (-621 |#1|)) (|:| -1667 (-621 |#1|)))) 17)))
+(((-1181 |#1|) (-10 -7 (-15 -3740 ((-1231) (-621 |#1|))) (-15 -3740 ((-1231) (-621 |#1|) (-621 |#1|))) (-15 -2074 ((-2 (|:| -1578 (-621 |#1|)) (|:| -1667 (-621 |#1|))))) (-15 -1508 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1508 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1299 (|#1| (-621 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3061 ((-112))) (IF (|has| |#1| (-823)) (PROGN (-15 -1299 (|#1| (-621 |#1|))) (-15 -3194 ((-112) |#1| |#1|))) |%noBranch|)) (-1067)) (T -1181))
+((-3194 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-823)) (-4 *3 (-1067)))) (-1299 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-1067)) (-4 *2 (-823)) (-5 *1 (-1181 *2)))) (-3061 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-1067)))) (-1299 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1181 *2)) (-4 *2 (-1067)))) (-1508 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1067)) (-5 *2 (-112)) (-5 *1 (-1181 *3)))) (-1508 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-1067)))) (-2074 (*1 *2) (-12 (-5 *2 (-2 (|:| -1578 (-621 *3)) (|:| -1667 (-621 *3)))) (-5 *1 (-1181 *3)) (-4 *3 (-1067)))) (-3740 (*1 *2 *3 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-1067)) (-5 *2 (-1231)) (-5 *1 (-1181 *4)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-1067)) (-5 *2 (-1231)) (-5 *1 (-1181 *4)))))
+(-10 -7 (-15 -3740 ((-1231) (-621 |#1|))) (-15 -3740 ((-1231) (-621 |#1|) (-621 |#1|))) (-15 -2074 ((-2 (|:| -1578 (-621 |#1|)) (|:| -1667 (-621 |#1|))))) (-15 -1508 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1508 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1299 (|#1| (-621 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3061 ((-112))) (IF (|has| |#1| (-823)) (PROGN (-15 -1299 (|#1| (-621 |#1|))) (-15 -3194 ((-112) |#1| |#1|))) |%noBranch|))
+((-2847 (((-1231) (-621 (-1143)) (-621 (-1143))) 13) (((-1231) (-621 (-1143))) 11)) (-2494 (((-1231)) 14)) (-2689 (((-2 (|:| -1667 (-621 (-1143))) (|:| -1578 (-621 (-1143))))) 18)))
+(((-1182) (-10 -7 (-15 -2847 ((-1231) (-621 (-1143)))) (-15 -2847 ((-1231) (-621 (-1143)) (-621 (-1143)))) (-15 -2689 ((-2 (|:| -1667 (-621 (-1143))) (|:| -1578 (-621 (-1143)))))) (-15 -2494 ((-1231))))) (T -1182))
+((-2494 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1182)))) (-2689 (*1 *2) (-12 (-5 *2 (-2 (|:| -1667 (-621 (-1143))) (|:| -1578 (-621 (-1143))))) (-5 *1 (-1182)))) (-2847 (*1 *2 *3 *3) (-12 (-5 *3 (-621 (-1143))) (-5 *2 (-1231)) (-5 *1 (-1182)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-621 (-1143))) (-5 *2 (-1231)) (-5 *1 (-1182)))))
+(-10 -7 (-15 -2847 ((-1231) (-621 (-1143)))) (-15 -2847 ((-1231) (-621 (-1143)) (-621 (-1143)))) (-15 -2689 ((-2 (|:| -1667 (-621 (-1143))) (|:| -1578 (-621 (-1143)))))) (-15 -2494 ((-1231))))
+((-3979 (($ $) 17)) (-1420 (((-112) $) 24)))
+(((-1183 |#1|) (-10 -8 (-15 -3979 (|#1| |#1|)) (-15 -1420 ((-112) |#1|))) (-1184)) (T -1183))
+NIL
+(-10 -8 (-15 -3979 (|#1| |#1|)) (-15 -1420 ((-112) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 49)) (-2402 (((-411 $) $) 50)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-1420 (((-112) $) 51)) (-2675 (((-112) $) 30)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2121 (((-411 $) $) 48)) (-2042 (((-3 $ "failed") $ $) 40)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41)) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24)))
+(((-1184) (-138)) (T -1184))
+((-1420 (*1 *2 *1) (-12 (-4 *1 (-1184)) (-5 *2 (-112)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1184)))) (-3979 (*1 *1 *1) (-4 *1 (-1184))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1184)))))
+(-13 (-444) (-10 -8 (-15 -1420 ((-112) $)) (-15 -2402 ((-411 $) $)) (-15 -3979 ($ $)) (-15 -2121 ((-411 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-593 (-834)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-541) . T) ((-624 $) . T) ((-694 $) . T) ((-703) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-2797 (((-1190 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1190 |#1| |#3| |#5|)) 23)))
+(((-1185 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2797 ((-1190 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1190 |#1| |#3| |#5|)))) (-1018) (-1018) (-1143) (-1143) |#1| |#2|) (T -1185))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1190 *5 *7 *9)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-14 *7 (-1143)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1190 *6 *8 *10)) (-5 *1 (-1185 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1143)))))
+(-10 -7 (-15 -2797 ((-1190 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1190 |#1| |#3| |#5|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2272 (((-621 (-1048)) $) 72)) (-3011 (((-1143) $) 101)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2258 (($ $) 50 (|has| |#1| (-541)))) (-2799 (((-112) $) 52 (|has| |#1| (-541)))) (-3896 (($ $ (-549)) 96) (($ $ (-549) (-549)) 95)) (-2212 (((-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 103)) (-1664 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) 116 (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 160 (|has| |#1| (-356)))) (-2402 (((-411 $) $) 161 (|has| |#1| (-356)))) (-2134 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-3866 (((-112) $ $) 151 (|has| |#1| (-356)))) (-1640 (($ $) 132 (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-2826 (($ (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 171)) (-1685 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) 118 (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) 17 T CONST)) (-2095 (($ $ $) 155 (|has| |#1| (-356)))) (-2070 (($ $) 58)) (-2114 (((-3 $ "failed") $) 32)) (-3906 (((-400 (-923 |#1|)) $ (-549)) 169 (|has| |#1| (-541))) (((-400 (-923 |#1|)) $ (-549) (-549)) 168 (|has| |#1| (-541)))) (-2067 (($ $ $) 154 (|has| |#1| (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 149 (|has| |#1| (-356)))) (-1420 (((-112) $) 162 (|has| |#1| (-356)))) (-2871 (((-112) $) 71)) (-1425 (($) 143 (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-549) $) 98) (((-549) $ (-549)) 97)) (-2675 (((-112) $) 30)) (-4187 (($ $ (-549)) 114 (|has| |#1| (-38 (-400 (-549)))))) (-2992 (($ $ (-892)) 99)) (-2876 (($ (-1 |#1| (-549)) $) 170)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 158 (|has| |#1| (-356)))) (-2205 (((-112) $) 60)) (-2246 (($ |#1| (-549)) 59) (($ $ (-1048) (-549)) 74) (($ $ (-621 (-1048)) (-621 (-549))) 73)) (-2797 (($ (-1 |#1| |#1|) $) 61)) (-3632 (($ $) 140 (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) 63)) (-2043 ((|#1| $) 64)) (-3697 (($ (-621 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-3851 (((-1125) $) 9)) (-1992 (($ $) 163 (|has| |#1| (-356)))) (-3893 (($ $) 167 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) 166 (-1536 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-930)) (|has| |#1| (-1165)) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-38 (-400 (-549)))))))) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 148 (|has| |#1| (-356)))) (-3727 (($ (-621 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-2121 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 156 (|has| |#1| (-356)))) (-2763 (($ $ (-549)) 93)) (-2042 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 150 (|has| |#1| (-356)))) (-2719 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-549)))))) (-3684 (((-747) $) 152 (|has| |#1| (-356)))) (-3341 ((|#1| $ (-549)) 102) (($ $ $) 79 (|has| (-549) (-1079)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 153 (|has| |#1| (-356)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) 87 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1143) (-747)) 86 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1143))) 85 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1143)) 84 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-3701 (((-549) $) 62)) (-1698 (($ $) 130 (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) 129 (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) 120 (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) 128 (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) 70)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541)))) (-2152 ((|#1| $ (-549)) 57)) (-2210 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2082 (((-747)) 28)) (-2597 ((|#1| $) 100)) (-1733 (($ $) 139 (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) 127 (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) 51 (|has| |#1| (-541)))) (-1710 (($ $) 138 (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) 126 (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) 137 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-549)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) 136 (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) 124 (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) 135 (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) 134 (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) 122 (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) 91 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1143) (-747)) 90 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1143))) 89 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1143)) 88 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 113 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+(((-1186 |#1|) (-138) (-1018)) (T -1186))
+((-2826 (*1 *1 *2) (-12 (-5 *2 (-1123 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-4 *3 (-1018)) (-4 *1 (-1186 *3)))) (-2876 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1186 *3)) (-4 *3 (-1018)))) (-3906 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1186 *4)) (-4 *4 (-1018)) (-4 *4 (-541)) (-5 *2 (-400 (-923 *4))))) (-3906 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1186 *4)) (-4 *4 (-1018)) (-4 *4 (-541)) (-5 *2 (-400 (-923 *4))))) (-3893 (*1 *1 *1) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549)))))) (-3893 (*1 *1 *1 *2) (-1536 (-12 (-5 *2 (-1143)) (-4 *1 (-1186 *3)) (-4 *3 (-1018)) (-12 (-4 *3 (-29 (-549))) (-4 *3 (-930)) (-4 *3 (-1165)) (-4 *3 (-38 (-400 (-549)))))) (-12 (-5 *2 (-1143)) (-4 *1 (-1186 *3)) (-4 *3 (-1018)) (-12 (|has| *3 (-15 -2272 ((-621 *2) *3))) (|has| *3 (-15 -3893 (*3 *3 *2))) (-4 *3 (-38 (-400 (-549)))))))))
+(-13 (-1204 |t#1| (-549)) (-10 -8 (-15 -2826 ($ (-1123 (-2 (|:| |k| (-549)) (|:| |c| |t#1|))))) (-15 -2876 ($ (-1 |t#1| (-549)) $)) (IF (|has| |t#1| (-541)) (PROGN (-15 -3906 ((-400 (-923 |t#1|)) $ (-549))) (-15 -3906 ((-400 (-923 |t#1|)) $ (-549) (-549)))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-549)))) (PROGN (-15 -3893 ($ $)) (IF (|has| |t#1| (-15 -3893 (|t#1| |t#1| (-1143)))) (IF (|has| |t#1| (-15 -2272 ((-621 (-1143)) |t#1|))) (-15 -3893 ($ $ (-1143))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1165)) (IF (|has| |t#1| (-930)) (IF (|has| |t#1| (-29 (-549))) (-15 -3893 ($ $ (-1143))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-973)) (-6 (-1165))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-549)) . T) ((-25) . T) ((-38 #1=(-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-549)))) ((-94) |has| |#1| (-38 (-400 (-549)))) ((-101) . T) ((-111 #1# #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-549) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-549)))) ((-279 $ $) |has| (-549) (-1079)) ((-283) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-549)))) ((-541) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-624 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1143)) -12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))) ((-944 |#1| #0# (-1048)) . T) ((-891) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-549)))) ((-1024 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1165) |has| |#1| (-38 (-400 (-549)))) ((-1168) |has| |#1| (-38 (-400 (-549)))) ((-1184) |has| |#1| (-356)) ((-1204 |#1| #0#) . T))
+((-1763 (((-112) $) 12)) (-2714 (((-3 |#3| "failed") $) 17) (((-3 (-1143) "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 (-549) "failed") $) NIL)) (-2659 ((|#3| $) 14) (((-1143) $) NIL) (((-400 (-549)) $) NIL) (((-549) $) NIL)))
+(((-1187 |#1| |#2| |#3|) (-10 -8 (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2659 ((-1143) |#1|)) (-15 -2714 ((-3 (-1143) "failed") |#1|)) (-15 -2659 (|#3| |#1|)) (-15 -2714 ((-3 |#3| "failed") |#1|)) (-15 -1763 ((-112) |#1|))) (-1188 |#2| |#3|) (-1018) (-1217 |#2|)) (T -1187))
+NIL
+(-10 -8 (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -2659 ((-1143) |#1|)) (-15 -2714 ((-3 (-1143) "failed") |#1|)) (-15 -2659 (|#3| |#1|)) (-15 -2714 ((-3 |#3| "failed") |#1|)) (-15 -1763 ((-112) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-3329 ((|#2| $) 228 (-1821 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-2272 (((-621 (-1048)) $) 72)) (-3011 (((-1143) $) 101)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2258 (($ $) 50 (|has| |#1| (-541)))) (-2799 (((-112) $) 52 (|has| |#1| (-541)))) (-3896 (($ $ (-549)) 96) (($ $ (-549) (-549)) 95)) (-2212 (((-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 103)) (-3836 ((|#2| $) 264)) (-3055 (((-3 |#2| "failed") $) 260)) (-2336 ((|#2| $) 261)) (-1664 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) 116 (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) 19)) (-3231 (((-411 (-1139 $)) (-1139 $)) 237 (-1821 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-3979 (($ $) 160 (|has| |#1| (-356)))) (-2402 (((-411 $) $) 161 (|has| |#1| (-356)))) (-2134 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 234 (-1821 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-3866 (((-112) $ $) 151 (|has| |#1| (-356)))) (-1640 (($ $) 132 (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-1872 (((-549) $) 246 (-1821 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-2826 (($ (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 171)) (-1685 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) 118 (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) 17 T CONST)) (-2714 (((-3 |#2| "failed") $) 267) (((-3 (-549) "failed") $) 256 (-1821 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-3 (-400 (-549)) "failed") $) 254 (-1821 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-3 (-1143) "failed") $) 239 (-1821 (|has| |#2| (-1009 (-1143))) (|has| |#1| (-356))))) (-2659 ((|#2| $) 266) (((-549) $) 257 (-1821 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-400 (-549)) $) 255 (-1821 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-1143) $) 240 (-1821 (|has| |#2| (-1009 (-1143))) (|has| |#1| (-356))))) (-2294 (($ $) 263) (($ (-549) $) 262)) (-2095 (($ $ $) 155 (|has| |#1| (-356)))) (-2070 (($ $) 58)) (-3879 (((-665 |#2|) (-665 $)) 218 (|has| |#1| (-356))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) 217 (|has| |#1| (-356))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 216 (-1821 (|has| |#2| (-617 (-549))) (|has| |#1| (-356)))) (((-665 (-549)) (-665 $)) 215 (-1821 (|has| |#2| (-617 (-549))) (|has| |#1| (-356))))) (-2114 (((-3 $ "failed") $) 32)) (-3906 (((-400 (-923 |#1|)) $ (-549)) 169 (|has| |#1| (-541))) (((-400 (-923 |#1|)) $ (-549) (-549)) 168 (|has| |#1| (-541)))) (-3239 (($) 230 (-1821 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-2067 (($ $ $) 154 (|has| |#1| (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 149 (|has| |#1| (-356)))) (-1420 (((-112) $) 162 (|has| |#1| (-356)))) (-2772 (((-112) $) 244 (-1821 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-2871 (((-112) $) 71)) (-1425 (($) 143 (|has| |#1| (-38 (-400 (-549)))))) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 222 (-1821 (|has| |#2| (-857 (-372))) (|has| |#1| (-356)))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 221 (-1821 (|has| |#2| (-857 (-549))) (|has| |#1| (-356))))) (-2088 (((-549) $) 98) (((-549) $ (-549)) 97)) (-2675 (((-112) $) 30)) (-1726 (($ $) 226 (|has| |#1| (-356)))) (-1394 ((|#2| $) 224 (|has| |#1| (-356)))) (-4187 (($ $ (-549)) 114 (|has| |#1| (-38 (-400 (-549)))))) (-1681 (((-3 $ "failed") $) 258 (-1821 (|has| |#2| (-1118)) (|has| |#1| (-356))))) (-2374 (((-112) $) 245 (-1821 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-2992 (($ $ (-892)) 99)) (-2876 (($ (-1 |#1| (-549)) $) 170)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 158 (|has| |#1| (-356)))) (-2205 (((-112) $) 60)) (-2246 (($ |#1| (-549)) 59) (($ $ (-1048) (-549)) 74) (($ $ (-621 (-1048)) (-621 (-549))) 73)) (-2863 (($ $ $) 248 (-1821 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-3575 (($ $ $) 249 (-1821 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2797 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-356)))) (-3632 (($ $) 140 (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) 63)) (-2043 ((|#1| $) 64)) (-3697 (($ (-621 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-2352 (($ (-549) |#2|) 265)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 163 (|has| |#1| (-356)))) (-3893 (($ $) 167 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) 166 (-1536 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-930)) (|has| |#1| (-1165)) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-38 (-400 (-549)))))))) (-3060 (($) 259 (-1821 (|has| |#2| (-1118)) (|has| |#1| (-356))) CONST)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 148 (|has| |#1| (-356)))) (-3727 (($ (-621 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-2873 (($ $) 229 (-1821 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3967 ((|#2| $) 232 (-1821 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-2905 (((-411 (-1139 $)) (-1139 $)) 235 (-1821 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-2413 (((-411 (-1139 $)) (-1139 $)) 236 (-1821 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-2121 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 156 (|has| |#1| (-356)))) (-2763 (($ $ (-549)) 93)) (-2042 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 150 (|has| |#1| (-356)))) (-2719 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1143) |#2|) 209 (-1821 (|has| |#2| (-505 (-1143) |#2|)) (|has| |#1| (-356)))) (($ $ (-621 (-1143)) (-621 |#2|)) 208 (-1821 (|has| |#2| (-505 (-1143) |#2|)) (|has| |#1| (-356)))) (($ $ (-621 (-287 |#2|))) 207 (-1821 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-287 |#2|)) 206 (-1821 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ |#2| |#2|) 205 (-1821 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-621 |#2|) (-621 |#2|)) 204 (-1821 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356))))) (-3684 (((-747) $) 152 (|has| |#1| (-356)))) (-3341 ((|#1| $ (-549)) 102) (($ $ $) 79 (|has| (-549) (-1079))) (($ $ |#2|) 203 (-1821 (|has| |#2| (-279 |#2| |#2|)) (|has| |#1| (-356))))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 153 (|has| |#1| (-356)))) (-3456 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) 213 (|has| |#1| (-356))) (($ $ (-747)) 82 (-1536 (-1821 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 80 (-1536 (-1821 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1143)) (-621 (-747))) 87 (-1536 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1143) (-747)) 86 (-1536 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-621 (-1143))) 85 (-1536 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1143)) 84 (-1536 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-3939 (($ $) 227 (|has| |#1| (-356)))) (-1403 ((|#2| $) 225 (|has| |#1| (-356)))) (-3701 (((-549) $) 62)) (-1698 (($ $) 130 (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) 129 (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) 120 (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) 128 (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-2845 (((-219) $) 243 (-1821 (|has| |#2| (-993)) (|has| |#1| (-356)))) (((-372) $) 242 (-1821 (|has| |#2| (-993)) (|has| |#1| (-356)))) (((-525) $) 241 (-1821 (|has| |#2| (-594 (-525))) (|has| |#1| (-356)))) (((-863 (-372)) $) 220 (-1821 (|has| |#2| (-594 (-863 (-372)))) (|has| |#1| (-356)))) (((-863 (-549)) $) 219 (-1821 (|has| |#2| (-594 (-863 (-549)))) (|has| |#1| (-356))))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 233 (-1821 (-1821 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#1| (-356))))) (-1977 (($ $) 70)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 268) (($ (-1143)) 238 (-1821 (|has| |#2| (-1009 (-1143))) (|has| |#1| (-356)))) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541)))) (-2152 ((|#1| $ (-549)) 57)) (-2210 (((-3 $ "failed") $) 46 (-1536 (-1821 (-1536 (|has| |#2| (-143)) (-1821 (|has| $ (-143)) (|has| |#2| (-880)))) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-2082 (((-747)) 28)) (-2597 ((|#1| $) 100)) (-2546 ((|#2| $) 231 (-1821 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-1733 (($ $) 139 (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) 127 (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) 51 (|has| |#1| (-541)))) (-1710 (($ $) 138 (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) 126 (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) 137 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-549)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) 136 (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) 124 (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) 135 (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) 134 (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) 122 (|has| |#1| (-38 (-400 (-549)))))) (-3212 (($ $) 247 (-1821 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) 211 (|has| |#1| (-356))) (($ $ (-747)) 83 (-1536 (-1821 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 81 (-1536 (-1821 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1143)) (-621 (-747))) 91 (-1536 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1143) (-747)) 90 (-1536 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-621 (-1143))) 89 (-1536 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1143)) 88 (-1536 (-1821 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-2448 (((-112) $ $) 251 (-1821 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2425 (((-112) $ $) 252 (-1821 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 250 (-1821 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2412 (((-112) $ $) 253 (-1821 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2513 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356))) (($ |#2| |#2|) 223 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 113 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-356))) (($ |#2| $) 201 (|has| |#1| (-356))) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+(((-1188 |#1| |#2|) (-138) (-1018) (-1217 |t#1|)) (T -1188))
+((-3701 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1217 *3)) (-5 *2 (-549)))) (-3846 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-1188 *3 *2)) (-4 *2 (-1217 *3)))) (-2352 (*1 *1 *2 *3) (-12 (-5 *2 (-549)) (-4 *4 (-1018)) (-4 *1 (-1188 *4 *3)) (-4 *3 (-1217 *4)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))) (-2294 (*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1217 *2)))) (-2294 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1217 *3)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))) (-3055 (*1 *2 *1) (|partial| -12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))))
+(-13 (-1186 |t#1|) (-1009 |t#2|) (-10 -8 (-15 -2352 ($ (-549) |t#2|)) (-15 -3701 ((-549) $)) (-15 -3836 (|t#2| $)) (-15 -2294 ($ $)) (-15 -2294 ($ (-549) $)) (-15 -3846 ($ |t#2|)) (-15 -2336 (|t#2| $)) (-15 -3055 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-356)) (-6 (-963 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-549)) . T) ((-25) . T) ((-38 #1=(-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-356)) ((-38 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-549)))) ((-94) |has| |#1| (-38 (-400 (-549)))) ((-101) . T) ((-111 #1# #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-356)) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) -1536 (-12 (|has| |#1| (-356)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -1536 (-12 (|has| |#1| (-356)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-594 (-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-993))) ((-594 (-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-993))) ((-594 (-525)) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-525)))) ((-594 (-863 (-372))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-863 (-372))))) ((-594 (-863 (-549))) -12 (|has| |#1| (-356)) (|has| |#2| (-594 (-863 (-549))))) ((-225 |#2|) |has| |#1| (-356)) ((-227) -1536 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-549)))) ((-279 |#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) ((-279 $ $) |has| (-549) (-1079)) ((-283) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-356) |has| |#1| (-356)) ((-331 |#2|) |has| |#1| (-356)) ((-370 |#2|) |has| |#1| (-356)) ((-393 |#2|) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-549)))) ((-505 (-1143) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1143) |#2|))) ((-505 |#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-541) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-624 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-624 |#1|) . T) ((-624 |#2|) |has| |#1| (-356)) ((-624 $) . T) ((-617 (-549)) -12 (|has| |#1| (-356)) (|has| |#2| (-617 (-549)))) ((-617 |#2|) |has| |#1| (-356)) ((-694 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 |#2|) |has| |#1| (-356)) ((-694 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-703) . T) ((-767) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-768) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-770) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-771) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-796) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-821) -12 (|has| |#1| (-356)) (|has| |#2| (-796))) ((-823) -1536 (-12 (|has| |#1| (-356)) (|has| |#2| (-823))) (-12 (|has| |#1| (-356)) (|has| |#2| (-796)))) ((-871 (-1143)) -1536 (-12 (|has| |#1| (-356)) (|has| |#2| (-871 (-1143)))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))) ((-857 (-372)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-372)))) ((-857 (-549)) -12 (|has| |#1| (-356)) (|has| |#2| (-857 (-549)))) ((-855 |#2|) |has| |#1| (-356)) ((-880) -12 (|has| |#1| (-356)) (|has| |#2| (-880))) ((-944 |#1| #0# (-1048)) . T) ((-891) |has| |#1| (-356)) ((-963 |#2|) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-549)))) ((-993) -12 (|has| |#1| (-356)) (|has| |#2| (-993))) ((-1009 (-400 (-549))) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-549)))) ((-1009 (-549)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-549)))) ((-1009 (-1143)) -12 (|has| |#1| (-356)) (|has| |#2| (-1009 (-1143)))) ((-1009 |#2|) . T) ((-1024 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-1024 |#1|) . T) ((-1024 |#2|) |has| |#1| (-356)) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1118) -12 (|has| |#1| (-356)) (|has| |#2| (-1118))) ((-1165) |has| |#1| (-38 (-400 (-549)))) ((-1168) |has| |#1| (-38 (-400 (-549)))) ((-1180) |has| |#1| (-356)) ((-1184) |has| |#1| (-356)) ((-1186 |#1|) . T) ((-1204 |#1| #0#) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 70)) (-3329 ((|#2| $) NIL (-12 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-2272 (((-621 (-1048)) $) NIL)) (-3011 (((-1143) $) 88)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3896 (($ $ (-549)) 97) (($ $ (-549) (-549)) 99)) (-2212 (((-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 47)) (-3836 ((|#2| $) 11)) (-3055 (((-3 |#2| "failed") $) 30)) (-2336 ((|#2| $) 31)) (-1664 (($ $) 192 (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) 168 (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-3979 (($ $) NIL (|has| |#1| (-356)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (-12 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1640 (($ $) 188 (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) 164 (|has| |#1| (-38 (-400 (-549)))))) (-1872 (((-549) $) NIL (-12 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-2826 (($ (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 57)) (-1685 (($ $) 196 (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) 172 (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#2| "failed") $) 144) (((-3 (-549) "failed") $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-3 (-1143) "failed") $) NIL (-12 (|has| |#2| (-1009 (-1143))) (|has| |#1| (-356))))) (-2659 ((|#2| $) 143) (((-549) $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-400 (-549)) $) NIL (-12 (|has| |#2| (-1009 (-549))) (|has| |#1| (-356)))) (((-1143) $) NIL (-12 (|has| |#2| (-1009 (-1143))) (|has| |#1| (-356))))) (-2294 (($ $) 61) (($ (-549) $) 24)) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-2070 (($ $) NIL)) (-3879 (((-665 |#2|) (-665 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#1| (-356)))) (((-665 (-549)) (-665 $)) NIL (-12 (|has| |#2| (-617 (-549))) (|has| |#1| (-356))))) (-2114 (((-3 $ "failed") $) 77)) (-3906 (((-400 (-923 |#1|)) $ (-549)) 112 (|has| |#1| (-541))) (((-400 (-923 |#1|)) $ (-549) (-549)) 114 (|has| |#1| (-541)))) (-3239 (($) NIL (-12 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-1420 (((-112) $) NIL (|has| |#1| (-356)))) (-2772 (((-112) $) NIL (-12 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-2871 (((-112) $) 64)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| |#2| (-857 (-372))) (|has| |#1| (-356)))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| |#2| (-857 (-549))) (|has| |#1| (-356))))) (-2088 (((-549) $) 93) (((-549) $ (-549)) 95)) (-2675 (((-112) $) NIL)) (-1726 (($ $) NIL (|has| |#1| (-356)))) (-1394 ((|#2| $) 151 (|has| |#1| (-356)))) (-4187 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1681 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1118)) (|has| |#1| (-356))))) (-2374 (((-112) $) NIL (-12 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-2992 (($ $ (-892)) 136)) (-2876 (($ (-1 |#1| (-549)) $) 132)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-549)) 19) (($ $ (-1048) (-549)) NIL) (($ $ (-621 (-1048)) (-621 (-549))) NIL)) (-2863 (($ $ $) NIL (-12 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-3575 (($ $ $) NIL (-12 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2797 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-356)))) (-3632 (($ $) 162 (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2352 (($ (-549) |#2|) 10)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 145 (|has| |#1| (-356)))) (-3893 (($ $) 214 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) 219 (-1536 (-12 (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1165)))))) (-3060 (($) NIL (-12 (|has| |#2| (-1118)) (|has| |#1| (-356))) CONST)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-356)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2873 (($ $) NIL (-12 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3967 ((|#2| $) NIL (-12 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| |#2| (-880)) (|has| |#1| (-356))))) (-2121 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2763 (($ $ (-549)) 126)) (-2042 (((-3 $ "failed") $ $) 116 (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2719 (($ $) 160 (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1143) |#2|) NIL (-12 (|has| |#2| (-505 (-1143) |#2|)) (|has| |#1| (-356)))) (($ $ (-621 (-1143)) (-621 |#2|)) NIL (-12 (|has| |#2| (-505 (-1143) |#2|)) (|has| |#1| (-356)))) (($ $ (-621 (-287 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-287 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-621 |#2|) (-621 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356))))) (-3684 (((-747) $) NIL (|has| |#1| (-356)))) (-3341 ((|#1| $ (-549)) 91) (($ $ $) 79 (|has| (-549) (-1079))) (($ $ |#2|) NIL (-12 (|has| |#2| (-279 |#2| |#2|)) (|has| |#1| (-356))))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-3456 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-1536 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 137 (-1536 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-1536 (-12 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-1143) (-747)) NIL (-1536 (-12 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-621 (-1143))) NIL (-1536 (-12 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-1143)) 140 (-1536 (-12 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))))) (-3939 (($ $) NIL (|has| |#1| (-356)))) (-1403 ((|#2| $) 152 (|has| |#1| (-356)))) (-3701 (((-549) $) 12)) (-1698 (($ $) 198 (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) 174 (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) 194 (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) 170 (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) 190 (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) 166 (|has| |#1| (-38 (-400 (-549)))))) (-2845 (((-219) $) NIL (-12 (|has| |#2| (-993)) (|has| |#1| (-356)))) (((-372) $) NIL (-12 (|has| |#2| (-993)) (|has| |#1| (-356)))) (((-525) $) NIL (-12 (|has| |#2| (-594 (-525))) (|has| |#1| (-356)))) (((-863 (-372)) $) NIL (-12 (|has| |#2| (-594 (-863 (-372)))) (|has| |#1| (-356)))) (((-863 (-549)) $) NIL (-12 (|has| |#2| (-594 (-863 (-549)))) (|has| |#1| (-356))))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880)) (|has| |#1| (-356))))) (-1977 (($ $) 124)) (-3846 (((-834) $) 245) (($ (-549)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1143)) NIL (-12 (|has| |#2| (-1009 (-1143))) (|has| |#1| (-356)))) (($ (-400 (-549))) 155 (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541)))) (-2152 ((|#1| $ (-549)) 74)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880)) (|has| |#1| (-356))) (-12 (|has| |#2| (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-2082 (((-747)) 142)) (-2597 ((|#1| $) 90)) (-2546 ((|#2| $) NIL (-12 (|has| |#2| (-534)) (|has| |#1| (-356))))) (-1733 (($ $) 204 (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) 180 (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1710 (($ $) 200 (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) 176 (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) 208 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 184 (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-549)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) 210 (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) 186 (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) 206 (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) 182 (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) 202 (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) 178 (|has| |#1| (-38 (-400 (-549)))))) (-3212 (($ $) NIL (-12 (|has| |#2| (-796)) (|has| |#1| (-356))))) (-3276 (($) 13 T CONST)) (-3287 (($) 17 T CONST)) (-1702 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-1536 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) NIL (-1536 (-12 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-1536 (-12 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-1143) (-747)) NIL (-1536 (-12 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-621 (-1143))) NIL (-1536 (-12 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-1143)) NIL (-1536 (-12 (|has| |#2| (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))))) (-2448 (((-112) $ $) NIL (-12 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2425 (((-112) $ $) NIL (-12 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2389 (((-112) $ $) 63)) (-2438 (((-112) $ $) NIL (-12 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2412 (((-112) $ $) NIL (-12 (|has| |#2| (-823)) (|has| |#1| (-356))))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 149 (|has| |#1| (-356))) (($ |#2| |#2|) 150 (|has| |#1| (-356)))) (-2500 (($ $) 213) (($ $ $) 68)) (-2486 (($ $ $) 66)) (** (($ $ (-892)) NIL) (($ $ (-747)) 73) (($ $ (-549)) 146 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 158 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-356))) (($ |#2| $) 147 (|has| |#1| (-356))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-1189 |#1| |#2|) (-1188 |#1| |#2|) (-1018) (-1217 |#1|)) (T -1189))
+NIL
+(-1188 |#1| |#2|)
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3329 (((-1218 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-2272 (((-621 (-1048)) $) NIL)) (-3011 (((-1143) $) 10)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-2258 (($ $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-2799 (((-112) $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-3896 (($ $ (-549)) NIL) (($ $ (-549) (-549)) NIL)) (-2212 (((-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) NIL)) (-3836 (((-1218 |#1| |#2| |#3|) $) NIL)) (-3055 (((-3 (-1218 |#1| |#2| |#3|) "failed") $) NIL)) (-2336 (((-1218 |#1| |#2| |#3|) $) NIL)) (-1664 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-3979 (($ $) NIL (|has| |#1| (-356)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1640 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1872 (((-549) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2826 (($ (-1123 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) NIL)) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-1218 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1143) "failed") $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-1009 (-1143))) (|has| |#1| (-356)))) (((-3 (-400 (-549)) "failed") $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356)))) (((-3 (-549) "failed") $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356))))) (-2659 (((-1218 |#1| |#2| |#3|) $) NIL) (((-1143) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-1009 (-1143))) (|has| |#1| (-356)))) (((-400 (-549)) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356)))) (((-549) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356))))) (-2294 (($ $) NIL) (($ (-549) $) NIL)) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-2070 (($ $) NIL)) (-3879 (((-665 (-1218 |#1| |#2| |#3|)) (-665 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -3521 (-665 (-1218 |#1| |#2| |#3|))) (|:| |vec| (-1226 (-1218 |#1| |#2| |#3|)))) (-665 $) (-1226 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-617 (-549))) (|has| |#1| (-356)))) (((-665 (-549)) (-665 $)) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-617 (-549))) (|has| |#1| (-356))))) (-2114 (((-3 $ "failed") $) NIL)) (-3906 (((-400 (-923 |#1|)) $ (-549)) NIL (|has| |#1| (-541))) (((-400 (-923 |#1|)) $ (-549) (-549)) NIL (|has| |#1| (-541)))) (-3239 (($) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-1420 (((-112) $) NIL (|has| |#1| (-356)))) (-2772 (((-112) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2871 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2932 (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-857 (-549))) (|has| |#1| (-356)))) (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-857 (-372))) (|has| |#1| (-356))))) (-2088 (((-549) $) NIL) (((-549) $ (-549)) NIL)) (-2675 (((-112) $) NIL)) (-1726 (($ $) NIL (|has| |#1| (-356)))) (-1394 (((-1218 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-4187 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1681 (((-3 $ "failed") $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-1118)) (|has| |#1| (-356))))) (-2374 (((-112) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-2992 (($ $ (-892)) NIL)) (-2876 (($ (-1 |#1| (-549)) $) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-549)) 17) (($ $ (-1048) (-549)) NIL) (($ $ (-621 (-1048)) (-621 (-549))) NIL)) (-2863 (($ $ $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-3575 (($ $ $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1218 |#1| |#2| |#3|) (-1218 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-3632 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2352 (($ (-549) (-1218 |#1| |#2| |#3|)) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL (|has| |#1| (-356)))) (-3893 (($ $) 25 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) NIL (-1536 (-12 (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1165))))) (($ $ (-1222 |#2|)) 26 (|has| |#1| (-38 (-400 (-549)))))) (-3060 (($) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-1118)) (|has| |#1| (-356))) CONST)) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-356)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2873 (($ $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3967 (((-1218 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-2121 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2763 (($ $ (-549)) NIL)) (-2042 (((-3 $ "failed") $ $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2719 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1143) (-1218 |#1| |#2| |#3|)) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-505 (-1143) (-1218 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-621 (-1143)) (-621 (-1218 |#1| |#2| |#3|))) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-505 (-1143) (-1218 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-621 (-287 (-1218 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-302 (-1218 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-287 (-1218 |#1| |#2| |#3|))) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-302 (-1218 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1218 |#1| |#2| |#3|) (-1218 |#1| |#2| |#3|)) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-302 (-1218 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-621 (-1218 |#1| |#2| |#3|)) (-621 (-1218 |#1| |#2| |#3|))) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-302 (-1218 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3684 (((-747) $) NIL (|has| |#1| (-356)))) (-3341 ((|#1| $ (-549)) NIL) (($ $ $) NIL (|has| (-549) (-1079))) (($ $ (-1218 |#1| |#2| |#3|)) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-279 (-1218 |#1| |#2| |#3|) (-1218 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-3456 (($ $ (-1 (-1218 |#1| |#2| |#3|) (-1218 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1218 |#1| |#2| |#3|) (-1218 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-1222 |#2|)) 24) (($ $ (-747)) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 23 (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-1143) (-747)) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-621 (-1143))) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-1143)) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))))) (-3939 (($ $) NIL (|has| |#1| (-356)))) (-1403 (((-1218 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-3701 (((-549) $) NIL)) (-1698 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2845 (((-525) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-594 (-525))) (|has| |#1| (-356)))) (((-372) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-993)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-993)) (|has| |#1| (-356)))) (((-863 (-372)) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-594 (-863 (-372)))) (|has| |#1| (-356)))) (((-863 (-549)) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-594 (-863 (-549)))) (|has| |#1| (-356))))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| (-1218 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))))) (-1977 (($ $) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1218 |#1| |#2| |#3|)) NIL) (($ (-1222 |#2|)) 22) (($ (-1143)) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-1009 (-1143))) (|has| |#1| (-356)))) (($ $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541)))) (($ (-400 (-549))) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-1009 (-549))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-549))))))) (-2152 ((|#1| $ (-549)) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| (-1218 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-2082 (((-747)) NIL)) (-2597 ((|#1| $) 11)) (-2546 (((-1218 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-534)) (|has| |#1| (-356))))) (-1733 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-880)) (|has| |#1| (-356))) (|has| |#1| (-541))))) (-1710 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-549)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3212 (($ $) NIL (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))))) (-3276 (($) 19 T CONST)) (-3287 (($) 15 T CONST)) (-1702 (($ $ (-1 (-1218 |#1| |#2| |#3|) (-1218 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1218 |#1| |#2| |#3|) (-1218 |#1| |#2| |#3|)) (-747)) NIL (|has| |#1| (-356))) (($ $ (-747)) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-1143) (-747)) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-621 (-1143))) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143)))))) (($ $ (-1143)) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-871 (-1143))) (|has| |#1| (-356))) (-12 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (|has| |#1| (-871 (-1143))))))) (-2448 (((-112) $ $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2425 (((-112) $ $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2412 (((-112) $ $) NIL (-1536 (-12 (|has| (-1218 |#1| |#2| |#3|) (-796)) (|has| |#1| (-356))) (-12 (|has| (-1218 |#1| |#2| |#3|) (-823)) (|has| |#1| (-356)))))) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356))) (($ (-1218 |#1| |#2| |#3|) (-1218 |#1| |#2| |#3|)) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 20)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1218 |#1| |#2| |#3|)) NIL (|has| |#1| (-356))) (($ (-1218 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356))) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-1190 |#1| |#2| |#3|) (-13 (-1188 |#1| (-1218 |#1| |#2| |#3|)) (-10 -8 (-15 -3846 ($ (-1222 |#2|))) (-15 -3456 ($ $ (-1222 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|))) (-1018) (-1143) |#1|) (T -1190))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1188 |#1| (-1218 |#1| |#2| |#3|)) (-10 -8 (-15 -3846 ($ (-1222 |#2|))) (-15 -3456 ($ $ (-1222 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|)))
+((-1448 (((-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| |#1|) (|:| -2495 (-549)))))) |#1| (-112)) 12)) (-2131 (((-411 |#1|) |#1|) 22)) (-2121 (((-411 |#1|) |#1|) 21)))
+(((-1191 |#1|) (-10 -7 (-15 -2121 ((-411 |#1|) |#1|)) (-15 -2131 ((-411 |#1|) |#1|)) (-15 -1448 ((-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| |#1|) (|:| -2495 (-549)))))) |#1| (-112)))) (-1202 (-549))) (T -1191))
+((-1448 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| *3) (|:| -2495 (-549))))))) (-5 *1 (-1191 *3)) (-4 *3 (-1202 (-549))))) (-2131 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1202 (-549))))) (-2121 (*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1202 (-549))))))
+(-10 -7 (-15 -2121 ((-411 |#1|) |#1|)) (-15 -2131 ((-411 |#1|) |#1|)) (-15 -1448 ((-2 (|:| |contp| (-549)) (|:| -4024 (-621 (-2 (|:| |irr| |#1|) (|:| -2495 (-549)))))) |#1| (-112))))
+((-2797 (((-1123 |#2|) (-1 |#2| |#1|) (-1193 |#1|)) 23 (|has| |#1| (-821))) (((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|)) 17)))
+(((-1192 |#1| |#2|) (-10 -7 (-15 -2797 ((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|))) (IF (|has| |#1| (-821)) (-15 -2797 ((-1123 |#2|) (-1 |#2| |#1|) (-1193 |#1|))) |%noBranch|)) (-1180) (-1180)) (T -1192))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1193 *5)) (-4 *5 (-821)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-1123 *6)) (-5 *1 (-1192 *5 *6)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1193 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-1193 *6)) (-5 *1 (-1192 *5 *6)))))
+(-10 -7 (-15 -2797 ((-1193 |#2|) (-1 |#2| |#1|) (-1193 |#1|))) (IF (|has| |#1| (-821)) (-15 -2797 ((-1123 |#2|) (-1 |#2| |#1|) (-1193 |#1|))) |%noBranch|))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3130 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2797 (((-1123 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-821)))) (-1578 ((|#1| $) 14)) (-1267 ((|#1| $) 10)) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-1276 (((-549) $) 18)) (-1667 ((|#1| $) 17)) (-1289 ((|#1| $) 11)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-1344 (((-112) $) 16)) (-1449 (((-1123 |#1|) $) 38 (|has| |#1| (-821))) (((-1123 |#1|) (-621 $)) 37 (|has| |#1| (-821)))) (-2845 (($ |#1|) 25)) (-3846 (($ (-1061 |#1|)) 24) (((-834) $) 34 (|has| |#1| (-1067)))) (-1854 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2123 (($ $ (-549)) 13)) (-2389 (((-112) $ $) 27 (|has| |#1| (-1067)))))
+(((-1193 |#1|) (-13 (-1060 |#1|) (-10 -8 (-15 -1854 ($ |#1|)) (-15 -3130 ($ |#1|)) (-15 -3846 ($ (-1061 |#1|))) (-15 -1344 ((-112) $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1062 |#1| (-1123 |#1|))) |%noBranch|))) (-1180)) (T -1193))
+((-1854 (*1 *1 *2) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1180)))) (-3130 (*1 *1 *2) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1180)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1061 *3)) (-4 *3 (-1180)) (-5 *1 (-1193 *3)))) (-1344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3)) (-4 *3 (-1180)))))
+(-13 (-1060 |#1|) (-10 -8 (-15 -1854 ($ |#1|)) (-15 -3130 ($ |#1|)) (-15 -3846 ($ (-1061 |#1|))) (-15 -1344 ((-112) $)) (IF (|has| |#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |#1| (-821)) (-6 (-1062 |#1| (-1123 |#1|))) |%noBranch|)))
+((-2797 (((-1199 |#3| |#4|) (-1 |#4| |#2|) (-1199 |#1| |#2|)) 15)))
+(((-1194 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2797 ((-1199 |#3| |#4|) (-1 |#4| |#2|) (-1199 |#1| |#2|)))) (-1143) (-1018) (-1143) (-1018)) (T -1194))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1199 *5 *6)) (-14 *5 (-1143)) (-4 *6 (-1018)) (-4 *8 (-1018)) (-5 *2 (-1199 *7 *8)) (-5 *1 (-1194 *5 *6 *7 *8)) (-14 *7 (-1143)))))
+(-10 -7 (-15 -2797 ((-1199 |#3| |#4|) (-1 |#4| |#2|) (-1199 |#1| |#2|))))
+((-2050 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2836 ((|#1| |#3|) 13)) (-1308 ((|#3| |#3|) 19)))
+(((-1195 |#1| |#2| |#3|) (-10 -7 (-15 -2836 (|#1| |#3|)) (-15 -1308 (|#3| |#3|)) (-15 -2050 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-541) (-963 |#1|) (-1202 |#2|)) (T -1195))
+((-2050 (*1 *2 *3) (-12 (-4 *4 (-541)) (-4 *5 (-963 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1195 *4 *5 *3)) (-4 *3 (-1202 *5)))) (-1308 (*1 *2 *2) (-12 (-4 *3 (-541)) (-4 *4 (-963 *3)) (-5 *1 (-1195 *3 *4 *2)) (-4 *2 (-1202 *4)))) (-2836 (*1 *2 *3) (-12 (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-1195 *2 *4 *3)) (-4 *3 (-1202 *4)))))
+(-10 -7 (-15 -2836 (|#1| |#3|)) (-15 -1308 (|#3| |#3|)) (-15 -2050 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3299 (((-3 |#2| "failed") |#2| (-747) |#1|) 29)) (-2139 (((-3 |#2| "failed") |#2| (-747)) 30)) (-1300 (((-3 (-2 (|:| -3838 |#2|) (|:| -3848 |#2|)) "failed") |#2|) 43)) (-2746 (((-621 |#2|) |#2|) 45)) (-3858 (((-3 |#2| "failed") |#2| |#2|) 40)))
+(((-1196 |#1| |#2|) (-10 -7 (-15 -2139 ((-3 |#2| "failed") |#2| (-747))) (-15 -3299 ((-3 |#2| "failed") |#2| (-747) |#1|)) (-15 -3858 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1300 ((-3 (-2 (|:| -3838 |#2|) (|:| -3848 |#2|)) "failed") |#2|)) (-15 -2746 ((-621 |#2|) |#2|))) (-13 (-541) (-145)) (-1202 |#1|)) (T -1196))
+((-2746 (*1 *2 *3) (-12 (-4 *4 (-13 (-541) (-145))) (-5 *2 (-621 *3)) (-5 *1 (-1196 *4 *3)) (-4 *3 (-1202 *4)))) (-1300 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-541) (-145))) (-5 *2 (-2 (|:| -3838 *3) (|:| -3848 *3))) (-5 *1 (-1196 *4 *3)) (-4 *3 (-1202 *4)))) (-3858 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-1202 *3)))) (-3299 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-541) (-145))) (-5 *1 (-1196 *4 *2)) (-4 *2 (-1202 *4)))) (-2139 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-541) (-145))) (-5 *1 (-1196 *4 *2)) (-4 *2 (-1202 *4)))))
+(-10 -7 (-15 -2139 ((-3 |#2| "failed") |#2| (-747))) (-15 -3299 ((-3 |#2| "failed") |#2| (-747) |#1|)) (-15 -3858 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1300 ((-3 (-2 (|:| -3838 |#2|) (|:| -3848 |#2|)) "failed") |#2|)) (-15 -2746 ((-621 |#2|) |#2|)))
+((-3014 (((-3 (-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) "failed") |#2| |#2|) 32)))
+(((-1197 |#1| |#2|) (-10 -7 (-15 -3014 ((-3 (-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) "failed") |#2| |#2|))) (-541) (-1202 |#1|)) (T -1197))
+((-3014 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-541)) (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-1197 *4 *3)) (-4 *3 (-1202 *4)))))
+(-10 -7 (-15 -3014 ((-3 (-2 (|:| -4013 |#2|) (|:| -3675 |#2|)) "failed") |#2| |#2|)))
+((-3964 ((|#2| |#2| |#2|) 19)) (-2363 ((|#2| |#2| |#2|) 30)) (-1923 ((|#2| |#2| |#2| (-747) (-747)) 36)))
+(((-1198 |#1| |#2|) (-10 -7 (-15 -3964 (|#2| |#2| |#2|)) (-15 -2363 (|#2| |#2| |#2|)) (-15 -1923 (|#2| |#2| |#2| (-747) (-747)))) (-1018) (-1202 |#1|)) (T -1198))
+((-1923 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-1198 *4 *2)) (-4 *2 (-1202 *4)))) (-2363 (*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1202 *3)))) (-3964 (*1 *2 *2 *2) (-12 (-4 *3 (-1018)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1202 *3)))))
+(-10 -7 (-15 -3964 (|#2| |#2| |#2|)) (-15 -2363 (|#2| |#2| |#2|)) (-15 -1923 (|#2| |#2| |#2| (-747) (-747))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2432 (((-1226 |#2|) $ (-747)) NIL)) (-2272 (((-621 (-1048)) $) NIL)) (-3371 (($ (-1139 |#2|)) NIL)) (-2084 (((-1139 $) $ (-1048)) NIL) (((-1139 |#2|) $) NIL)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#2| (-541)))) (-2258 (($ $) NIL (|has| |#2| (-541)))) (-2799 (((-112) $) NIL (|has| |#2| (-541)))) (-3186 (((-747) $) NIL) (((-747) $ (-621 (-1048))) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1910 (($ $ $) NIL (|has| |#2| (-541)))) (-3231 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-3979 (($ $) NIL (|has| |#2| (-444)))) (-2402 (((-411 $) $) NIL (|has| |#2| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-3866 (((-112) $ $) NIL (|has| |#2| (-356)))) (-3154 (($ $ (-747)) NIL)) (-2434 (($ $ (-747)) NIL)) (-1358 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-444)))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#2| "failed") $) NIL) (((-3 (-400 (-549)) "failed") $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) NIL (|has| |#2| (-1009 (-549)))) (((-3 (-1048) "failed") $) NIL)) (-2659 ((|#2| $) NIL) (((-400 (-549)) $) NIL (|has| |#2| (-1009 (-400 (-549))))) (((-549) $) NIL (|has| |#2| (-1009 (-549)))) (((-1048) $) NIL)) (-1353 (($ $ $ (-1048)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-2095 (($ $ $) NIL (|has| |#2| (-356)))) (-2070 (($ $) NIL)) (-3879 (((-665 (-549)) (-665 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) NIL (|has| |#2| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#2|)) (|:| |vec| (-1226 |#2|))) (-665 $) (-1226 $)) NIL) (((-665 |#2|) (-665 $)) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-2067 (($ $ $) NIL (|has| |#2| (-356)))) (-4289 (($ $ $) NIL)) (-2290 (($ $ $) NIL (|has| |#2| (-541)))) (-3921 (((-2 (|:| -1570 |#2|) (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#2| (-541)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#2| (-356)))) (-1285 (($ $) NIL (|has| |#2| (-444))) (($ $ (-1048)) NIL (|has| |#2| (-444)))) (-2058 (((-621 $) $) NIL)) (-1420 (((-112) $) NIL (|has| |#2| (-880)))) (-2691 (($ $ |#2| (-747) $) NIL)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) NIL (-12 (|has| (-1048) (-857 (-372))) (|has| |#2| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) NIL (-12 (|has| (-1048) (-857 (-549))) (|has| |#2| (-857 (-549)))))) (-2088 (((-747) $ $) NIL (|has| |#2| (-541)))) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-1681 (((-3 $ "failed") $) NIL (|has| |#2| (-1118)))) (-2261 (($ (-1139 |#2|) (-1048)) NIL) (($ (-1139 $) (-1048)) NIL)) (-2992 (($ $ (-747)) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#2| (-356)))) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-2246 (($ |#2| (-747)) 17) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ (-1048)) NIL) (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL)) (-3611 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2863 (($ $ $) NIL (|has| |#2| (-823)))) (-3575 (($ $ $) NIL (|has| |#2| (-823)))) (-3705 (($ (-1 (-747) (-747)) $) NIL)) (-2797 (($ (-1 |#2| |#2|) $) NIL)) (-3598 (((-1139 |#2|) $) NIL)) (-1520 (((-3 (-1048) "failed") $) NIL)) (-2028 (($ $) NIL)) (-2043 ((|#2| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3851 (((-1125) $) NIL)) (-3098 (((-2 (|:| -4013 $) (|:| -3675 $)) $ (-747)) NIL)) (-4266 (((-3 (-621 $) "failed") $) NIL)) (-2533 (((-3 (-621 $) "failed") $) NIL)) (-1503 (((-3 (-2 (|:| |var| (-1048)) (|:| -3731 (-747))) "failed") $) NIL)) (-3893 (($ $) NIL (|has| |#2| (-38 (-400 (-549)))))) (-3060 (($) NIL (|has| |#2| (-1118)) CONST)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) NIL)) (-2016 ((|#2| $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#2| (-444)))) (-3727 (($ (-621 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-1835 (($ $ (-747) |#2| $) NIL)) (-2905 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) NIL (|has| |#2| (-880)))) (-2121 (((-411 $) $) NIL (|has| |#2| (-880)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#2| (-356)))) (-2042 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-541))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#2| (-356)))) (-2686 (($ $ (-621 (-287 $))) NIL) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1048) |#2|) NIL) (($ $ (-621 (-1048)) (-621 |#2|)) NIL) (($ $ (-1048) $) NIL) (($ $ (-621 (-1048)) (-621 $)) NIL)) (-3684 (((-747) $) NIL (|has| |#2| (-356)))) (-3341 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#2| (-541))) ((|#2| (-400 $) |#2|) NIL (|has| |#2| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#2| (-541)))) (-3668 (((-3 $ "failed") $ (-747)) NIL)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#2| (-356)))) (-3602 (($ $ (-1048)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-3456 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1143)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3701 (((-747) $) NIL) (((-747) $ (-1048)) NIL) (((-621 (-747)) $ (-621 (-1048))) NIL)) (-2845 (((-863 (-372)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-372)))) (|has| |#2| (-594 (-863 (-372)))))) (((-863 (-549)) $) NIL (-12 (|has| (-1048) (-594 (-863 (-549)))) (|has| |#2| (-594 (-863 (-549)))))) (((-525) $) NIL (-12 (|has| (-1048) (-594 (-525))) (|has| |#2| (-594 (-525)))))) (-2216 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-1048)) NIL (|has| |#2| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-880))))) (-3033 (((-3 $ "failed") $ $) NIL (|has| |#2| (-541))) (((-3 (-400 $) "failed") (-400 $) $) NIL (|has| |#2| (-541)))) (-3846 (((-834) $) 13) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-1048)) NIL) (($ (-1222 |#1|)) 19) (($ (-400 (-549))) NIL (-1536 (|has| |#2| (-38 (-400 (-549)))) (|has| |#2| (-1009 (-400 (-549)))))) (($ $) NIL (|has| |#2| (-541)))) (-4141 (((-621 |#2|) $) NIL)) (-2152 ((|#2| $ (-747)) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-1536 (-12 (|has| $ (-143)) (|has| |#2| (-880))) (|has| |#2| (-143))))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| |#2| (-170)))) (-1498 (((-112) $ $) NIL (|has| |#2| (-541)))) (-3276 (($) NIL T CONST)) (-3287 (($) 14 T CONST)) (-1702 (($ $ (-1048)) NIL) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) NIL) (($ $ (-1143)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1143) (-747)) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) NIL (|has| |#2| (-871 (-1143)))) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2448 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2389 (((-112) $ $) NIL)) (-2438 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#2| (-823)))) (-2513 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-400 (-549))) NIL (|has| |#2| (-38 (-400 (-549))))) (($ (-400 (-549)) $) NIL (|has| |#2| (-38 (-400 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1199 |#1| |#2|) (-13 (-1202 |#2|) (-10 -8 (-15 -3846 ($ (-1222 |#1|))) (-15 -1835 ($ $ (-747) |#2| $)))) (-1143) (-1018)) (T -1199))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1222 *3)) (-14 *3 (-1143)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-1018)))) (-1835 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1199 *4 *3)) (-14 *4 (-1143)) (-4 *3 (-1018)))))
+(-13 (-1202 |#2|) (-10 -8 (-15 -3846 ($ (-1222 |#1|))) (-15 -1835 ($ $ (-747) |#2| $))))
+((-2797 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1200 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2797 (|#4| (-1 |#3| |#1|) |#2|))) (-1018) (-1202 |#1|) (-1018) (-1202 |#3|)) (T -1200))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1202 *6)) (-5 *1 (-1200 *5 *4 *6 *2)) (-4 *4 (-1202 *5)))))
+(-10 -7 (-15 -2797 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2432 (((-1226 |#2|) $ (-747)) 114)) (-2272 (((-621 (-1048)) $) 15)) (-3371 (($ (-1139 |#2|)) 67)) (-3186 (((-747) $) NIL) (((-747) $ (-621 (-1048))) 18)) (-3231 (((-411 (-1139 $)) (-1139 $)) 185)) (-3979 (($ $) 175)) (-2402 (((-411 $) $) 173)) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 82)) (-3154 (($ $ (-747)) 71)) (-2434 (($ $ (-747)) 73)) (-1358 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2714 (((-3 |#2| "failed") $) 117) (((-3 (-400 (-549)) "failed") $) NIL) (((-3 (-549) "failed") $) NIL) (((-3 (-1048) "failed") $) NIL)) (-2659 ((|#2| $) 115) (((-400 (-549)) $) NIL) (((-549) $) NIL) (((-1048) $) NIL)) (-2290 (($ $ $) 151)) (-3921 (((-2 (|:| -1570 |#2|) (|:| -4013 $) (|:| -3675 $)) $ $) 153)) (-2088 (((-747) $ $) 170)) (-1681 (((-3 $ "failed") $) 123)) (-2246 (($ |#2| (-747)) NIL) (($ $ (-1048) (-747)) 47) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-3611 (((-747) $) NIL) (((-747) $ (-1048)) 42) (((-621 (-747)) $ (-621 (-1048))) 43)) (-3598 (((-1139 |#2|) $) 59)) (-1520 (((-3 (-1048) "failed") $) 40)) (-3098 (((-2 (|:| -4013 $) (|:| -3675 $)) $ (-747)) 70)) (-3893 (($ $) 197)) (-3060 (($) 119)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 182)) (-2905 (((-411 (-1139 $)) (-1139 $)) 88)) (-2413 (((-411 (-1139 $)) (-1139 $)) 86)) (-2121 (((-411 $) $) 107)) (-2686 (($ $ (-621 (-287 $))) 39) (($ $ (-287 $)) NIL) (($ $ $ $) NIL) (($ $ (-621 $) (-621 $)) NIL) (($ $ (-1048) |#2|) 31) (($ $ (-621 (-1048)) (-621 |#2|)) 28) (($ $ (-1048) $) 25) (($ $ (-621 (-1048)) (-621 $)) 23)) (-3684 (((-747) $) 188)) (-3341 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) 147) ((|#2| (-400 $) |#2|) 187) (((-400 $) $ (-400 $)) 169)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 191)) (-3456 (($ $ (-1048)) 140) (($ $ (-621 (-1048))) NIL) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL) (($ $ (-747)) NIL) (($ $) 138) (($ $ (-1143)) NIL) (($ $ (-621 (-1143))) NIL) (($ $ (-1143) (-747)) NIL) (($ $ (-621 (-1143)) (-621 (-747))) NIL) (($ $ (-1 |#2| |#2|) (-747)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3701 (((-747) $) NIL) (((-747) $ (-1048)) 16) (((-621 (-747)) $ (-621 (-1048))) 20)) (-2216 ((|#2| $) NIL) (($ $ (-1048)) 125)) (-3033 (((-3 $ "failed") $ $) 161) (((-3 (-400 $) "failed") (-400 $) $) 157)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-1048)) 51) (($ (-400 (-549))) NIL) (($ $) NIL)))
+(((-1201 |#1| |#2|) (-10 -8 (-15 -3846 (|#1| |#1|)) (-15 -1721 ((-1139 |#1|) (-1139 |#1|) (-1139 |#1|))) (-15 -2402 ((-411 |#1|) |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3060 (|#1|)) (-15 -1681 ((-3 |#1| "failed") |#1|)) (-15 -3341 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -3684 ((-747) |#1|)) (-15 -3148 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3341 (|#2| (-400 |#1|) |#2|)) (-15 -1358 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3921 ((-2 (|:| -1570 |#2|) (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3033 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -3033 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2088 ((-747) |#1| |#1|)) (-15 -3341 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2434 (|#1| |#1| (-747))) (-15 -3154 (|#1| |#1| (-747))) (-15 -3098 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| (-747))) (-15 -3371 (|#1| (-1139 |#2|))) (-15 -3598 ((-1139 |#2|) |#1|)) (-15 -2432 ((-1226 |#2|) |#1| (-747))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3341 (|#1| |#1| |#1|)) (-15 -3341 (|#2| |#1| |#2|)) (-15 -2121 ((-411 |#1|) |#1|)) (-15 -3231 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -2413 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -2905 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -1348 ((-3 (-621 (-1139 |#1|)) "failed") (-621 (-1139 |#1|)) (-1139 |#1|))) (-15 -2216 (|#1| |#1| (-1048))) (-15 -2272 ((-621 (-1048)) |#1|)) (-15 -3186 ((-747) |#1| (-621 (-1048)))) (-15 -3186 ((-747) |#1|)) (-15 -2246 (|#1| |#1| (-621 (-1048)) (-621 (-747)))) (-15 -2246 (|#1| |#1| (-1048) (-747))) (-15 -3611 ((-621 (-747)) |#1| (-621 (-1048)))) (-15 -3611 ((-747) |#1| (-1048))) (-15 -1520 ((-3 (-1048) "failed") |#1|)) (-15 -3701 ((-621 (-747)) |#1| (-621 (-1048)))) (-15 -3701 ((-747) |#1| (-1048))) (-15 -2659 ((-1048) |#1|)) (-15 -2714 ((-3 (-1048) "failed") |#1|)) (-15 -3846 (|#1| (-1048))) (-15 -2686 (|#1| |#1| (-621 (-1048)) (-621 |#1|))) (-15 -2686 (|#1| |#1| (-1048) |#1|)) (-15 -2686 (|#1| |#1| (-621 (-1048)) (-621 |#2|))) (-15 -2686 (|#1| |#1| (-1048) |#2|)) (-15 -2686 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| (-287 |#1|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3701 ((-747) |#1|)) (-15 -2246 (|#1| |#2| (-747))) (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -3611 ((-747) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -3456 (|#1| |#1| (-621 (-1048)) (-621 (-747)))) (-15 -3456 (|#1| |#1| (-1048) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1048)))) (-15 -3456 (|#1| |#1| (-1048))) (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|))) (-1202 |#2|) (-1018)) (T -1201))
+NIL
+(-10 -8 (-15 -3846 (|#1| |#1|)) (-15 -1721 ((-1139 |#1|) (-1139 |#1|) (-1139 |#1|))) (-15 -2402 ((-411 |#1|) |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3060 (|#1|)) (-15 -1681 ((-3 |#1| "failed") |#1|)) (-15 -3341 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -3684 ((-747) |#1|)) (-15 -3148 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3341 (|#2| (-400 |#1|) |#2|)) (-15 -1358 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3921 ((-2 (|:| -1570 |#2|) (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3033 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -3033 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2088 ((-747) |#1| |#1|)) (-15 -3341 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2434 (|#1| |#1| (-747))) (-15 -3154 (|#1| |#1| (-747))) (-15 -3098 ((-2 (|:| -4013 |#1|) (|:| -3675 |#1|)) |#1| (-747))) (-15 -3371 (|#1| (-1139 |#2|))) (-15 -3598 ((-1139 |#2|) |#1|)) (-15 -2432 ((-1226 |#2|) |#1| (-747))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)) (-621 (-747)))) (-15 -3456 (|#1| |#1| (-1143) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1143)))) (-15 -3456 (|#1| |#1| (-1143))) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-747))) (-15 -3341 (|#1| |#1| |#1|)) (-15 -3341 (|#2| |#1| |#2|)) (-15 -2121 ((-411 |#1|) |#1|)) (-15 -3231 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -2413 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -2905 ((-411 (-1139 |#1|)) (-1139 |#1|))) (-15 -1348 ((-3 (-621 (-1139 |#1|)) "failed") (-621 (-1139 |#1|)) (-1139 |#1|))) (-15 -2216 (|#1| |#1| (-1048))) (-15 -2272 ((-621 (-1048)) |#1|)) (-15 -3186 ((-747) |#1| (-621 (-1048)))) (-15 -3186 ((-747) |#1|)) (-15 -2246 (|#1| |#1| (-621 (-1048)) (-621 (-747)))) (-15 -2246 (|#1| |#1| (-1048) (-747))) (-15 -3611 ((-621 (-747)) |#1| (-621 (-1048)))) (-15 -3611 ((-747) |#1| (-1048))) (-15 -1520 ((-3 (-1048) "failed") |#1|)) (-15 -3701 ((-621 (-747)) |#1| (-621 (-1048)))) (-15 -3701 ((-747) |#1| (-1048))) (-15 -2659 ((-1048) |#1|)) (-15 -2714 ((-3 (-1048) "failed") |#1|)) (-15 -3846 (|#1| (-1048))) (-15 -2686 (|#1| |#1| (-621 (-1048)) (-621 |#1|))) (-15 -2686 (|#1| |#1| (-1048) |#1|)) (-15 -2686 (|#1| |#1| (-621 (-1048)) (-621 |#2|))) (-15 -2686 (|#1| |#1| (-1048) |#2|)) (-15 -2686 (|#1| |#1| (-621 |#1|) (-621 |#1|))) (-15 -2686 (|#1| |#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| (-287 |#1|))) (-15 -2686 (|#1| |#1| (-621 (-287 |#1|)))) (-15 -3701 ((-747) |#1|)) (-15 -2246 (|#1| |#2| (-747))) (-15 -2659 ((-549) |#1|)) (-15 -2714 ((-3 (-549) "failed") |#1|)) (-15 -2659 ((-400 (-549)) |#1|)) (-15 -2714 ((-3 (-400 (-549)) "failed") |#1|)) (-15 -3846 (|#1| |#2|)) (-15 -2714 ((-3 |#2| "failed") |#1|)) (-15 -2659 (|#2| |#1|)) (-15 -3611 ((-747) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -3456 (|#1| |#1| (-621 (-1048)) (-621 (-747)))) (-15 -3456 (|#1| |#1| (-1048) (-747))) (-15 -3456 (|#1| |#1| (-621 (-1048)))) (-15 -3456 (|#1| |#1| (-1048))) (-15 -3846 (|#1| (-549))) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2432 (((-1226 |#1|) $ (-747)) 236)) (-2272 (((-621 (-1048)) $) 108)) (-3371 (($ (-1139 |#1|)) 234)) (-2084 (((-1139 $) $ (-1048)) 123) (((-1139 |#1|) $) 122)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 85 (|has| |#1| (-541)))) (-2258 (($ $) 86 (|has| |#1| (-541)))) (-2799 (((-112) $) 88 (|has| |#1| (-541)))) (-3186 (((-747) $) 110) (((-747) $ (-621 (-1048))) 109)) (-2001 (((-3 $ "failed") $ $) 19)) (-1910 (($ $ $) 221 (|has| |#1| (-541)))) (-3231 (((-411 (-1139 $)) (-1139 $)) 98 (|has| |#1| (-880)))) (-3979 (($ $) 96 (|has| |#1| (-444)))) (-2402 (((-411 $) $) 95 (|has| |#1| (-444)))) (-1348 (((-3 (-621 (-1139 $)) "failed") (-621 (-1139 $)) (-1139 $)) 101 (|has| |#1| (-880)))) (-3866 (((-112) $ $) 206 (|has| |#1| (-356)))) (-3154 (($ $ (-747)) 229)) (-2434 (($ $ (-747)) 228)) (-1358 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-444)))) (-1682 (($) 17 T CONST)) (-2714 (((-3 |#1| "failed") $) 162) (((-3 (-400 (-549)) "failed") $) 160 (|has| |#1| (-1009 (-400 (-549))))) (((-3 (-549) "failed") $) 158 (|has| |#1| (-1009 (-549)))) (((-3 (-1048) "failed") $) 134)) (-2659 ((|#1| $) 163) (((-400 (-549)) $) 159 (|has| |#1| (-1009 (-400 (-549))))) (((-549) $) 157 (|has| |#1| (-1009 (-549)))) (((-1048) $) 133)) (-1353 (($ $ $ (-1048)) 106 (|has| |#1| (-170))) ((|#1| $ $) 224 (|has| |#1| (-170)))) (-2095 (($ $ $) 210 (|has| |#1| (-356)))) (-2070 (($ $) 152)) (-3879 (((-665 (-549)) (-665 $)) 132 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 (-549))) (|:| |vec| (-1226 (-549)))) (-665 $) (-1226 $)) 131 (|has| |#1| (-617 (-549)))) (((-2 (|:| -3521 (-665 |#1|)) (|:| |vec| (-1226 |#1|))) (-665 $) (-1226 $)) 130) (((-665 |#1|) (-665 $)) 129)) (-2114 (((-3 $ "failed") $) 32)) (-2067 (($ $ $) 209 (|has| |#1| (-356)))) (-4289 (($ $ $) 227)) (-2290 (($ $ $) 218 (|has| |#1| (-541)))) (-3921 (((-2 (|:| -1570 |#1|) (|:| -4013 $) (|:| -3675 $)) $ $) 217 (|has| |#1| (-541)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 204 (|has| |#1| (-356)))) (-1285 (($ $) 174 (|has| |#1| (-444))) (($ $ (-1048)) 103 (|has| |#1| (-444)))) (-2058 (((-621 $) $) 107)) (-1420 (((-112) $) 94 (|has| |#1| (-880)))) (-2691 (($ $ |#1| (-747) $) 170)) (-2932 (((-860 (-372) $) $ (-863 (-372)) (-860 (-372) $)) 82 (-12 (|has| (-1048) (-857 (-372))) (|has| |#1| (-857 (-372))))) (((-860 (-549) $) $ (-863 (-549)) (-860 (-549) $)) 81 (-12 (|has| (-1048) (-857 (-549))) (|has| |#1| (-857 (-549)))))) (-2088 (((-747) $ $) 222 (|has| |#1| (-541)))) (-2675 (((-112) $) 30)) (-3347 (((-747) $) 167)) (-1681 (((-3 $ "failed") $) 202 (|has| |#1| (-1118)))) (-2261 (($ (-1139 |#1|) (-1048)) 115) (($ (-1139 $) (-1048)) 114)) (-2992 (($ $ (-747)) 233)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 213 (|has| |#1| (-356)))) (-3750 (((-621 $) $) 124)) (-2205 (((-112) $) 150)) (-2246 (($ |#1| (-747)) 151) (($ $ (-1048) (-747)) 117) (($ $ (-621 (-1048)) (-621 (-747))) 116)) (-3265 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $ (-1048)) 118) (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 231)) (-3611 (((-747) $) 168) (((-747) $ (-1048)) 120) (((-621 (-747)) $ (-621 (-1048))) 119)) (-2863 (($ $ $) 77 (|has| |#1| (-823)))) (-3575 (($ $ $) 76 (|has| |#1| (-823)))) (-3705 (($ (-1 (-747) (-747)) $) 169)) (-2797 (($ (-1 |#1| |#1|) $) 149)) (-3598 (((-1139 |#1|) $) 235)) (-1520 (((-3 (-1048) "failed") $) 121)) (-2028 (($ $) 147)) (-2043 ((|#1| $) 146)) (-3697 (($ (-621 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3851 (((-1125) $) 9)) (-3098 (((-2 (|:| -4013 $) (|:| -3675 $)) $ (-747)) 230)) (-4266 (((-3 (-621 $) "failed") $) 112)) (-2533 (((-3 (-621 $) "failed") $) 113)) (-1503 (((-3 (-2 (|:| |var| (-1048)) (|:| -3731 (-747))) "failed") $) 111)) (-3893 (($ $) 214 (|has| |#1| (-38 (-400 (-549)))))) (-3060 (($) 201 (|has| |#1| (-1118)) CONST)) (-3990 (((-1087) $) 10)) (-2004 (((-112) $) 164)) (-2016 ((|#1| $) 165)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 93 (|has| |#1| (-444)))) (-3727 (($ (-621 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-2905 (((-411 (-1139 $)) (-1139 $)) 100 (|has| |#1| (-880)))) (-2413 (((-411 (-1139 $)) (-1139 $)) 99 (|has| |#1| (-880)))) (-2121 (((-411 $) $) 97 (|has| |#1| (-880)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 211 (|has| |#1| (-356)))) (-2042 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-541))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 205 (|has| |#1| (-356)))) (-2686 (($ $ (-621 (-287 $))) 143) (($ $ (-287 $)) 142) (($ $ $ $) 141) (($ $ (-621 $) (-621 $)) 140) (($ $ (-1048) |#1|) 139) (($ $ (-621 (-1048)) (-621 |#1|)) 138) (($ $ (-1048) $) 137) (($ $ (-621 (-1048)) (-621 $)) 136)) (-3684 (((-747) $) 207 (|has| |#1| (-356)))) (-3341 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-400 $) (-400 $) (-400 $)) 223 (|has| |#1| (-541))) ((|#1| (-400 $) |#1|) 215 (|has| |#1| (-356))) (((-400 $) $ (-400 $)) 203 (|has| |#1| (-541)))) (-3668 (((-3 $ "failed") $ (-747)) 232)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 208 (|has| |#1| (-356)))) (-3602 (($ $ (-1048)) 105 (|has| |#1| (-170))) ((|#1| $) 225 (|has| |#1| (-170)))) (-3456 (($ $ (-1048)) 40) (($ $ (-621 (-1048))) 39) (($ $ (-1048) (-747)) 38) (($ $ (-621 (-1048)) (-621 (-747))) 37) (($ $ (-747)) 251) (($ $) 249) (($ $ (-1143)) 248 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) 247 (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) 246 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) 245 (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-3701 (((-747) $) 148) (((-747) $ (-1048)) 128) (((-621 (-747)) $ (-621 (-1048))) 127)) (-2845 (((-863 (-372)) $) 80 (-12 (|has| (-1048) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372)))))) (((-863 (-549)) $) 79 (-12 (|has| (-1048) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549)))))) (((-525) $) 78 (-12 (|has| (-1048) (-594 (-525))) (|has| |#1| (-594 (-525)))))) (-2216 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ (-1048)) 104 (|has| |#1| (-444)))) (-4186 (((-3 (-1226 $) "failed") (-665 $)) 102 (-1821 (|has| $ (-143)) (|has| |#1| (-880))))) (-3033 (((-3 $ "failed") $ $) 220 (|has| |#1| (-541))) (((-3 (-400 $) "failed") (-400 $) $) 219 (|has| |#1| (-541)))) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 161) (($ (-1048)) 135) (($ (-400 (-549))) 70 (-1536 (|has| |#1| (-1009 (-400 (-549)))) (|has| |#1| (-38 (-400 (-549)))))) (($ $) 83 (|has| |#1| (-541)))) (-4141 (((-621 |#1|) $) 166)) (-2152 ((|#1| $ (-747)) 153) (($ $ (-1048) (-747)) 126) (($ $ (-621 (-1048)) (-621 (-747))) 125)) (-2210 (((-3 $ "failed") $) 71 (-1536 (-1821 (|has| $ (-143)) (|has| |#1| (-880))) (|has| |#1| (-143))))) (-2082 (((-747)) 28)) (-1509 (($ $ $ (-747)) 171 (|has| |#1| (-170)))) (-1498 (((-112) $ $) 87 (|has| |#1| (-541)))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-1048)) 36) (($ $ (-621 (-1048))) 35) (($ $ (-1048) (-747)) 34) (($ $ (-621 (-1048)) (-621 (-747))) 33) (($ $ (-747)) 252) (($ $) 250) (($ $ (-1143)) 244 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143))) 243 (|has| |#1| (-871 (-1143)))) (($ $ (-1143) (-747)) 242 (|has| |#1| (-871 (-1143)))) (($ $ (-621 (-1143)) (-621 (-747))) 241 (|has| |#1| (-871 (-1143)))) (($ $ (-1 |#1| |#1|) (-747)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2448 (((-112) $ $) 74 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 73 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 6)) (-2438 (((-112) $ $) 75 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 72 (|has| |#1| (-823)))) (-2513 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 156 (|has| |#1| (-38 (-400 (-549))))) (($ (-400 (-549)) $) 155 (|has| |#1| (-38 (-400 (-549))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(((-1202 |#1|) (-138) (-1018)) (T -1202))
+((-2432 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-1202 *4)) (-4 *4 (-1018)) (-5 *2 (-1226 *4)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-1018)) (-5 *2 (-1139 *3)))) (-3371 (*1 *1 *2) (-12 (-5 *2 (-1139 *3)) (-4 *3 (-1018)) (-4 *1 (-1202 *3)))) (-2992 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1202 *3)) (-4 *3 (-1018)))) (-3668 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-747)) (-4 *1 (-1202 *3)) (-4 *3 (-1018)))) (-3265 (*1 *2 *1 *1) (-12 (-4 *3 (-1018)) (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-1202 *3)))) (-3098 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-1202 *4)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1202 *3)) (-4 *3 (-1018)))) (-2434 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1202 *3)) (-4 *3 (-1018)))) (-4289 (*1 *1 *1 *1) (-12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)))) (-3456 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1202 *3)) (-4 *3 (-1018)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))) (-1353 (*1 *2 *1 *1) (-12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))) (-3341 (*1 *2 *2 *2) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1202 *3)) (-4 *3 (-1018)) (-4 *3 (-541)))) (-2088 (*1 *2 *1 *1) (-12 (-4 *1 (-1202 *3)) (-4 *3 (-1018)) (-4 *3 (-541)) (-5 *2 (-747)))) (-1910 (*1 *1 *1 *1) (-12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))) (-3033 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))) (-3033 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1202 *3)) (-4 *3 (-1018)) (-4 *3 (-541)))) (-2290 (*1 *1 *1 *1) (-12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))) (-3921 (*1 *2 *1 *1) (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| -1570 *3) (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-1202 *3)))) (-1358 (*1 *2 *1 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1018)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1202 *3)))) (-3341 (*1 *2 *3 *2) (-12 (-5 *3 (-400 *1)) (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-3893 (*1 *1 *1) (-12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549)))))))
+(-13 (-920 |t#1| (-747) (-1048)) (-279 |t#1| |t#1|) (-279 $ $) (-227) (-225 |t#1|) (-10 -8 (-15 -2432 ((-1226 |t#1|) $ (-747))) (-15 -3598 ((-1139 |t#1|) $)) (-15 -3371 ($ (-1139 |t#1|))) (-15 -2992 ($ $ (-747))) (-15 -3668 ((-3 $ "failed") $ (-747))) (-15 -3265 ((-2 (|:| -4013 $) (|:| -3675 $)) $ $)) (-15 -3098 ((-2 (|:| -4013 $) (|:| -3675 $)) $ (-747))) (-15 -3154 ($ $ (-747))) (-15 -2434 ($ $ (-747))) (-15 -4289 ($ $ $)) (-15 -3456 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1118)) (-6 (-1118)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -3602 (|t#1| $)) (-15 -1353 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-541)) (PROGN (-6 (-279 (-400 $) (-400 $))) (-15 -3341 ((-400 $) (-400 $) (-400 $))) (-15 -2088 ((-747) $ $)) (-15 -1910 ($ $ $)) (-15 -3033 ((-3 $ "failed") $ $)) (-15 -3033 ((-3 (-400 $) "failed") (-400 $) $)) (-15 -2290 ($ $ $)) (-15 -3921 ((-2 (|:| -1570 |t#1|) (|:| -4013 $) (|:| -3675 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (-15 -1358 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-300)) (-6 -4333) (-15 -3341 (|t#1| (-400 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-549)))) (-15 -3893 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-747)) . T) ((-25) . T) ((-38 #1=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-594 (-525)) -12 (|has| (-1048) (-594 (-525))) (|has| |#1| (-594 (-525)))) ((-594 (-863 (-372))) -12 (|has| (-1048) (-594 (-863 (-372)))) (|has| |#1| (-594 (-863 (-372))))) ((-594 (-863 (-549))) -12 (|has| (-1048) (-594 (-863 (-549)))) (|has| |#1| (-594 (-863 (-549))))) ((-225 |#1|) . T) ((-227) . T) ((-279 (-400 $) (-400 $)) |has| |#1| (-541)) ((-279 |#1| |#1|) . T) ((-279 $ $) . T) ((-283) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 $) . T) ((-319 |#1| #0#) . T) ((-370 |#1|) . T) ((-404 |#1|) . T) ((-444) -1536 (|has| |#1| (-880)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-505 #2=(-1048) |#1|) . T) ((-505 #2# $) . T) ((-505 $ $) . T) ((-541) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-624 #1#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-617 (-549)) |has| |#1| (-617 (-549))) ((-617 |#1|) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-703) . T) ((-823) |has| |#1| (-823)) ((-871 #2#) . T) ((-871 (-1143)) |has| |#1| (-871 (-1143))) ((-857 (-372)) -12 (|has| (-1048) (-857 (-372))) (|has| |#1| (-857 (-372)))) ((-857 (-549)) -12 (|has| (-1048) (-857 (-549))) (|has| |#1| (-857 (-549)))) ((-920 |#1| #0# #2#) . T) ((-880) |has| |#1| (-880)) ((-891) |has| |#1| (-356)) ((-1009 (-400 (-549))) |has| |#1| (-1009 (-400 (-549)))) ((-1009 (-549)) |has| |#1| (-1009 (-549))) ((-1009 #2#) . T) ((-1009 |#1|) . T) ((-1024 #1#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-880)) (|has| |#1| (-541)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1118) |has| |#1| (-1118)) ((-1184) |has| |#1| (-880)))
+((-2272 (((-621 (-1048)) $) 28)) (-2070 (($ $) 25)) (-2246 (($ |#2| |#3|) NIL) (($ $ (-1048) |#3|) 22) (($ $ (-621 (-1048)) (-621 |#3|)) 21)) (-2028 (($ $) 14)) (-2043 ((|#2| $) 12)) (-3701 ((|#3| $) 10)))
+(((-1203 |#1| |#2| |#3|) (-10 -8 (-15 -2272 ((-621 (-1048)) |#1|)) (-15 -2246 (|#1| |#1| (-621 (-1048)) (-621 |#3|))) (-15 -2246 (|#1| |#1| (-1048) |#3|)) (-15 -2070 (|#1| |#1|)) (-15 -2246 (|#1| |#2| |#3|)) (-15 -3701 (|#3| |#1|)) (-15 -2028 (|#1| |#1|)) (-15 -2043 (|#2| |#1|))) (-1204 |#2| |#3|) (-1018) (-768)) (T -1203))
+NIL
+(-10 -8 (-15 -2272 ((-621 (-1048)) |#1|)) (-15 -2246 (|#1| |#1| (-621 (-1048)) (-621 |#3|))) (-15 -2246 (|#1| |#1| (-1048) |#3|)) (-15 -2070 (|#1| |#1|)) (-15 -2246 (|#1| |#2| |#3|)) (-15 -3701 (|#3| |#1|)) (-15 -2028 (|#1| |#1|)) (-15 -2043 (|#2| |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2272 (((-621 (-1048)) $) 72)) (-3011 (((-1143) $) 101)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2258 (($ $) 50 (|has| |#1| (-541)))) (-2799 (((-112) $) 52 (|has| |#1| (-541)))) (-3896 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-2212 (((-1123 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2070 (($ $) 58)) (-2114 (((-3 $ "failed") $) 32)) (-2871 (((-112) $) 71)) (-2088 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2675 (((-112) $) 30)) (-2992 (($ $ (-892)) 99)) (-2205 (((-112) $) 60)) (-2246 (($ |#1| |#2|) 59) (($ $ (-1048) |#2|) 74) (($ $ (-621 (-1048)) (-621 |#2|)) 73)) (-2797 (($ (-1 |#1| |#1|) $) 61)) (-2028 (($ $) 63)) (-2043 ((|#1| $) 64)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2763 (($ $ |#2|) 93)) (-2042 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-2686 (((-1123 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3341 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1079)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) 87 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1143) (-747)) 86 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-621 (-1143))) 85 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1143)) 84 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3701 ((|#2| $) 62)) (-1977 (($ $) 70)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541))) (($ |#1|) 45 (|has| |#1| (-170)))) (-2152 ((|#1| $ |#2|) 57)) (-2210 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2082 (((-747)) 28)) (-2597 ((|#1| $) 100)) (-1498 (((-112) $ $) 51 (|has| |#1| (-541)))) (-2661 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) 91 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1143) (-747)) 90 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-621 (-1143))) 89 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1143)) 88 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+(((-1204 |#1| |#2|) (-138) (-1018) (-768)) (T -1204))
+((-2212 (*1 *2 *1) (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-1123 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3341 (*1 *2 *1 *3) (-12 (-4 *1 (-1204 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (-5 *2 (-1143)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-1204 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))) (-2992 (*1 *1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-1204 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-1204 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-2088 (*1 *2 *1 *2) (-12 (-4 *1 (-1204 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-3896 (*1 *1 *1 *2) (-12 (-4 *1 (-1204 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-3896 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1204 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-2661 (*1 *2 *1 *3) (-12 (-4 *1 (-1204 *2 *3)) (-4 *3 (-768)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3846 (*2 (-1143)))) (-4 *2 (-1018)))) (-2763 (*1 *1 *1 *2) (-12 (-4 *1 (-1204 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))) (-2686 (*1 *2 *1 *3) (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1123 *3)))))
+(-13 (-944 |t#1| |t#2| (-1048)) (-10 -8 (-15 -2212 ((-1123 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3341 (|t#1| $ |t#2|)) (-15 -3011 ((-1143) $)) (-15 -2597 (|t#1| $)) (-15 -2992 ($ $ (-892))) (-15 -2088 (|t#2| $)) (-15 -2088 (|t#2| $ |t#2|)) (-15 -3896 ($ $ |t#2|)) (-15 -3896 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3846 (|t#1| (-1143)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2661 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2763 ($ $ |t#2|)) (IF (|has| |t#2| (-1079)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-227)) (IF (|has| |t#1| (-871 (-1143))) (-6 (-871 (-1143))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2686 ((-1123 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-279 $ $) |has| |#2| (-1079)) ((-283) |has| |#1| (-541)) ((-541) |has| |#1| (-541)) ((-624 #0#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #0#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) . T) ((-871 (-1143)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-871 (-1143)))) ((-944 |#1| |#2| (-1048)) . T) ((-1024 #0#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3979 ((|#2| |#2|) 12)) (-2402 (((-411 |#2|) |#2|) 14)) (-3315 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549)))) 30)))
+(((-1205 |#1| |#2|) (-10 -7 (-15 -2402 ((-411 |#2|) |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -3315 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549)))))) (-541) (-13 (-1202 |#1|) (-541) (-10 -8 (-15 -3727 ($ $ $))))) (T -1205))
+((-3315 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-549)))) (-4 *4 (-13 (-1202 *3) (-541) (-10 -8 (-15 -3727 ($ $ $))))) (-4 *3 (-541)) (-5 *1 (-1205 *3 *4)))) (-3979 (*1 *2 *2) (-12 (-4 *3 (-541)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-1202 *3) (-541) (-10 -8 (-15 -3727 ($ $ $))))))) (-2402 (*1 *2 *3) (-12 (-4 *4 (-541)) (-5 *2 (-411 *3)) (-5 *1 (-1205 *4 *3)) (-4 *3 (-13 (-1202 *4) (-541) (-10 -8 (-15 -3727 ($ $ $))))))))
+(-10 -7 (-15 -2402 ((-411 |#2|) |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -3315 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))))))
+((-2797 (((-1211 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1211 |#1| |#3| |#5|)) 24)))
+(((-1206 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2797 ((-1211 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1211 |#1| |#3| |#5|)))) (-1018) (-1018) (-1143) (-1143) |#1| |#2|) (T -1206))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1211 *5 *7 *9)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-14 *7 (-1143)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1211 *6 *8 *10)) (-5 *1 (-1206 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1143)))))
+(-10 -7 (-15 -2797 ((-1211 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1211 |#1| |#3| |#5|))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2272 (((-621 (-1048)) $) 72)) (-3011 (((-1143) $) 101)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2258 (($ $) 50 (|has| |#1| (-541)))) (-2799 (((-112) $) 52 (|has| |#1| (-541)))) (-3896 (($ $ (-400 (-549))) 96) (($ $ (-400 (-549)) (-400 (-549))) 95)) (-2212 (((-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) 103)) (-1664 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) 116 (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 160 (|has| |#1| (-356)))) (-2402 (((-411 $) $) 161 (|has| |#1| (-356)))) (-2134 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-3866 (((-112) $ $) 151 (|has| |#1| (-356)))) (-1640 (($ $) 132 (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-2826 (($ (-747) (-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) 169)) (-1685 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) 118 (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) 17 T CONST)) (-2095 (($ $ $) 155 (|has| |#1| (-356)))) (-2070 (($ $) 58)) (-2114 (((-3 $ "failed") $) 32)) (-2067 (($ $ $) 154 (|has| |#1| (-356)))) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 149 (|has| |#1| (-356)))) (-1420 (((-112) $) 162 (|has| |#1| (-356)))) (-2871 (((-112) $) 71)) (-1425 (($) 143 (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-400 (-549)) $) 98) (((-400 (-549)) $ (-400 (-549))) 97)) (-2675 (((-112) $) 30)) (-4187 (($ $ (-549)) 114 (|has| |#1| (-38 (-400 (-549)))))) (-2992 (($ $ (-892)) 99) (($ $ (-400 (-549))) 168)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 158 (|has| |#1| (-356)))) (-2205 (((-112) $) 60)) (-2246 (($ |#1| (-400 (-549))) 59) (($ $ (-1048) (-400 (-549))) 74) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) 73)) (-2797 (($ (-1 |#1| |#1|) $) 61)) (-3632 (($ $) 140 (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) 63)) (-2043 ((|#1| $) 64)) (-3697 (($ (-621 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-3851 (((-1125) $) 9)) (-1992 (($ $) 163 (|has| |#1| (-356)))) (-3893 (($ $) 167 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) 166 (-1536 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-930)) (|has| |#1| (-1165)) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-38 (-400 (-549)))))))) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 148 (|has| |#1| (-356)))) (-3727 (($ (-621 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-2121 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 156 (|has| |#1| (-356)))) (-2763 (($ $ (-400 (-549))) 93)) (-2042 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 150 (|has| |#1| (-356)))) (-2719 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-3684 (((-747) $) 152 (|has| |#1| (-356)))) (-3341 ((|#1| $ (-400 (-549))) 102) (($ $ $) 79 (|has| (-400 (-549)) (-1079)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 153 (|has| |#1| (-356)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) 87 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1143) (-747)) 86 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-621 (-1143))) 85 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1143)) 84 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-3701 (((-400 (-549)) $) 62)) (-1698 (($ $) 130 (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) 129 (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) 120 (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) 128 (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) 70)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541)))) (-2152 ((|#1| $ (-400 (-549))) 57)) (-2210 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2082 (((-747)) 28)) (-2597 ((|#1| $) 100)) (-1733 (($ $) 139 (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) 127 (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) 51 (|has| |#1| (-541)))) (-1710 (($ $) 138 (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) 126 (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) 137 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-400 (-549))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) 136 (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) 124 (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) 135 (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) 134 (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) 122 (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) 91 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1143) (-747)) 90 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-621 (-1143))) 89 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1143)) 88 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 113 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+(((-1207 |#1|) (-138) (-1018)) (T -1207))
+((-2826 (*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| *4)))) (-4 *4 (-1018)) (-4 *1 (-1207 *4)))) (-2992 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-4 *1 (-1207 *3)) (-4 *3 (-1018)))) (-3893 (*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549)))))) (-3893 (*1 *1 *1 *2) (-1536 (-12 (-5 *2 (-1143)) (-4 *1 (-1207 *3)) (-4 *3 (-1018)) (-12 (-4 *3 (-29 (-549))) (-4 *3 (-930)) (-4 *3 (-1165)) (-4 *3 (-38 (-400 (-549)))))) (-12 (-5 *2 (-1143)) (-4 *1 (-1207 *3)) (-4 *3 (-1018)) (-12 (|has| *3 (-15 -2272 ((-621 *2) *3))) (|has| *3 (-15 -3893 (*3 *3 *2))) (-4 *3 (-38 (-400 (-549)))))))))
+(-13 (-1204 |t#1| (-400 (-549))) (-10 -8 (-15 -2826 ($ (-747) (-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |t#1|))))) (-15 -2992 ($ $ (-400 (-549)))) (IF (|has| |t#1| (-38 (-400 (-549)))) (PROGN (-15 -3893 ($ $)) (IF (|has| |t#1| (-15 -3893 (|t#1| |t#1| (-1143)))) (IF (|has| |t#1| (-15 -2272 ((-621 (-1143)) |t#1|))) (-15 -3893 ($ $ (-1143))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1165)) (IF (|has| |t#1| (-930)) (IF (|has| |t#1| (-29 (-549))) (-15 -3893 ($ $ (-1143))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-973)) (-6 (-1165))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-400 (-549))) . T) ((-25) . T) ((-38 #1=(-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-549)))) ((-94) |has| |#1| (-38 (-400 (-549)))) ((-101) . T) ((-111 #1# #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-549)))) ((-279 $ $) |has| (-400 (-549)) (-1079)) ((-283) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-549)))) ((-541) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-624 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1143)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143)))) ((-944 |#1| #0# (-1048)) . T) ((-891) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-549)))) ((-1024 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1165) |has| |#1| (-38 (-400 (-549)))) ((-1168) |has| |#1| (-38 (-400 (-549)))) ((-1184) |has| |#1| (-356)) ((-1204 |#1| #0#) . T))
+((-1763 (((-112) $) 12)) (-2714 (((-3 |#3| "failed") $) 17)) (-2659 ((|#3| $) 14)))
+(((-1208 |#1| |#2| |#3|) (-10 -8 (-15 -2659 (|#3| |#1|)) (-15 -2714 ((-3 |#3| "failed") |#1|)) (-15 -1763 ((-112) |#1|))) (-1209 |#2| |#3|) (-1018) (-1186 |#2|)) (T -1208))
+NIL
+(-10 -8 (-15 -2659 (|#3| |#1|)) (-15 -2714 ((-3 |#3| "failed") |#1|)) (-15 -1763 ((-112) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2272 (((-621 (-1048)) $) 72)) (-3011 (((-1143) $) 101)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2258 (($ $) 50 (|has| |#1| (-541)))) (-2799 (((-112) $) 52 (|has| |#1| (-541)))) (-3896 (($ $ (-400 (-549))) 96) (($ $ (-400 (-549)) (-400 (-549))) 95)) (-2212 (((-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) 103)) (-1664 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) 116 (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 160 (|has| |#1| (-356)))) (-2402 (((-411 $) $) 161 (|has| |#1| (-356)))) (-2134 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-3866 (((-112) $ $) 151 (|has| |#1| (-356)))) (-1640 (($ $) 132 (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-2826 (($ (-747) (-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) 169)) (-1685 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) 118 (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) 17 T CONST)) (-2714 (((-3 |#2| "failed") $) 180)) (-2659 ((|#2| $) 179)) (-2095 (($ $ $) 155 (|has| |#1| (-356)))) (-2070 (($ $) 58)) (-2114 (((-3 $ "failed") $) 32)) (-3159 (((-400 (-549)) $) 177)) (-2067 (($ $ $) 154 (|has| |#1| (-356)))) (-2366 (($ (-400 (-549)) |#2|) 178)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 149 (|has| |#1| (-356)))) (-1420 (((-112) $) 162 (|has| |#1| (-356)))) (-2871 (((-112) $) 71)) (-1425 (($) 143 (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-400 (-549)) $) 98) (((-400 (-549)) $ (-400 (-549))) 97)) (-2675 (((-112) $) 30)) (-4187 (($ $ (-549)) 114 (|has| |#1| (-38 (-400 (-549)))))) (-2992 (($ $ (-892)) 99) (($ $ (-400 (-549))) 168)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 158 (|has| |#1| (-356)))) (-2205 (((-112) $) 60)) (-2246 (($ |#1| (-400 (-549))) 59) (($ $ (-1048) (-400 (-549))) 74) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) 73)) (-2797 (($ (-1 |#1| |#1|) $) 61)) (-3632 (($ $) 140 (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) 63)) (-2043 ((|#1| $) 64)) (-3697 (($ (-621 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-4234 ((|#2| $) 176)) (-1537 (((-3 |#2| "failed") $) 174)) (-2352 ((|#2| $) 175)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 163 (|has| |#1| (-356)))) (-3893 (($ $) 167 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) 166 (-1536 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-930)) (|has| |#1| (-1165)) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-38 (-400 (-549)))))))) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 148 (|has| |#1| (-356)))) (-3727 (($ (-621 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-2121 (((-411 $) $) 159 (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 156 (|has| |#1| (-356)))) (-2763 (($ $ (-400 (-549))) 93)) (-2042 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 150 (|has| |#1| (-356)))) (-2719 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-3684 (((-747) $) 152 (|has| |#1| (-356)))) (-3341 ((|#1| $ (-400 (-549))) 102) (($ $ $) 79 (|has| (-400 (-549)) (-1079)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 153 (|has| |#1| (-356)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) 87 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1143) (-747)) 86 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-621 (-1143))) 85 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1143)) 84 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-3701 (((-400 (-549)) $) 62)) (-1698 (($ $) 130 (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) 129 (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) 120 (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) 128 (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) 70)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 181) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541)))) (-2152 ((|#1| $ (-400 (-549))) 57)) (-2210 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2082 (((-747)) 28)) (-2597 ((|#1| $) 100)) (-1733 (($ $) 139 (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) 127 (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) 51 (|has| |#1| (-541)))) (-1710 (($ $) 138 (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) 126 (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) 137 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-400 (-549))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) 136 (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) 124 (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) 135 (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) 134 (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) 122 (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) 91 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1143) (-747)) 90 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-621 (-1143))) 89 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-1143)) 88 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 113 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+(((-1209 |#1| |#2|) (-138) (-1018) (-1186 |t#1|)) (T -1209))
+((-3701 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1186 *3)) (-5 *2 (-400 (-549))))) (-3846 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *1 (-1209 *3 *2)) (-4 *2 (-1186 *3)))) (-2366 (*1 *1 *2 *3) (-12 (-5 *2 (-400 (-549))) (-4 *4 (-1018)) (-4 *1 (-1209 *4 *3)) (-4 *3 (-1186 *4)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1186 *3)) (-5 *2 (-400 (-549))))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))) (-1537 (*1 *2 *1) (|partial| -12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))))
+(-13 (-1207 |t#1|) (-1009 |t#2|) (-10 -8 (-15 -2366 ($ (-400 (-549)) |t#2|)) (-15 -3159 ((-400 (-549)) $)) (-15 -4234 (|t#2| $)) (-15 -3701 ((-400 (-549)) $)) (-15 -3846 ($ |t#2|)) (-15 -2352 (|t#2| $)) (-15 -1537 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-400 (-549))) . T) ((-25) . T) ((-38 #1=(-400 (-549))) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-549)))) ((-94) |has| |#1| (-38 (-400 (-549)))) ((-101) . T) ((-111 #1# #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-549)))) ((-279 $ $) |has| (-400 (-549)) (-1079)) ((-283) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-549)))) ((-541) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-624 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356))) ((-703) . T) ((-871 (-1143)) -12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143)))) ((-944 |#1| #0# (-1048)) . T) ((-891) |has| |#1| (-356)) ((-973) |has| |#1| (-38 (-400 (-549)))) ((-1009 |#2|) . T) ((-1024 #1#) -1536 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-549))))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1165) |has| |#1| (-38 (-400 (-549)))) ((-1168) |has| |#1| (-38 (-400 (-549)))) ((-1184) |has| |#1| (-356)) ((-1204 |#1| #0#) . T) ((-1207 |#1|) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2272 (((-621 (-1048)) $) NIL)) (-3011 (((-1143) $) 96)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3896 (($ $ (-400 (-549))) 106) (($ $ (-400 (-549)) (-400 (-549))) 108)) (-2212 (((-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) 51)) (-1664 (($ $) 180 (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) 156 (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL (|has| |#1| (-356)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1640 (($ $) 176 (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) 152 (|has| |#1| (-38 (-400 (-549)))))) (-2826 (($ (-747) (-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) 61)) (-1685 (($ $) 184 (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) 160 (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#2| "failed") $) NIL)) (-2659 ((|#2| $) NIL)) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) 79)) (-3159 (((-400 (-549)) $) 13)) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-2366 (($ (-400 (-549)) |#2|) 11)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-1420 (((-112) $) NIL (|has| |#1| (-356)))) (-2871 (((-112) $) 68)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-400 (-549)) $) 103) (((-400 (-549)) $ (-400 (-549))) 104)) (-2675 (((-112) $) NIL)) (-4187 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2992 (($ $ (-892)) 120) (($ $ (-400 (-549))) 118)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-400 (-549))) 31) (($ $ (-1048) (-400 (-549))) NIL) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) NIL)) (-2797 (($ (-1 |#1| |#1|) $) 115)) (-3632 (($ $) 150 (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4234 ((|#2| $) 12)) (-1537 (((-3 |#2| "failed") $) 41)) (-2352 ((|#2| $) 42)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) 93 (|has| |#1| (-356)))) (-3893 (($ $) 135 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) 140 (-1536 (-12 (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1165)))))) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-356)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2763 (($ $ (-400 (-549))) 112)) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2719 (($ $) 148 (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-3684 (((-747) $) NIL (|has| |#1| (-356)))) (-3341 ((|#1| $ (-400 (-549))) 100) (($ $ $) 86 (|has| (-400 (-549)) (-1079)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) 127 (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-3701 (((-400 (-549)) $) 16)) (-1698 (($ $) 186 (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) 162 (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) 182 (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) 158 (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) 178 (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) 154 (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) 110)) (-3846 (((-834) $) NIL) (($ (-549)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-400 (-549))) 128 (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541)))) (-2152 ((|#1| $ (-400 (-549))) 99)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) 117)) (-2597 ((|#1| $) 98)) (-1733 (($ $) 192 (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) 168 (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1710 (($ $) 188 (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) 164 (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) 196 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 172 (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-400 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) 198 (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) 174 (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) 194 (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) 170 (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) 190 (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) 166 (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) 21 T CONST)) (-3287 (($) 17 T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2389 (((-112) $ $) 66)) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 92 (|has| |#1| (-356)))) (-2500 (($ $) 131) (($ $ $) 72)) (-2486 (($ $ $) 70)) (** (($ $ (-892)) NIL) (($ $ (-747)) 76) (($ $ (-549)) 145 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 146 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-1210 |#1| |#2|) (-1209 |#1| |#2|) (-1018) (-1186 |#1|)) (T -1210))
+NIL
+(-1209 |#1| |#2|)
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2272 (((-621 (-1048)) $) NIL)) (-3011 (((-1143) $) 11)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) NIL (|has| |#1| (-541)))) (-3896 (($ $ (-400 (-549))) NIL) (($ $ (-400 (-549)) (-400 (-549))) NIL)) (-2212 (((-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|))) $) NIL)) (-1664 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-3979 (($ $) NIL (|has| |#1| (-356)))) (-2402 (((-411 $) $) NIL (|has| |#1| (-356)))) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3866 (((-112) $ $) NIL (|has| |#1| (-356)))) (-1640 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2826 (($ (-747) (-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#1|)))) NIL)) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-1190 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1218 |#1| |#2| |#3|) "failed") $) 22)) (-2659 (((-1190 |#1| |#2| |#3|) $) NIL) (((-1218 |#1| |#2| |#3|) $) NIL)) (-2095 (($ $ $) NIL (|has| |#1| (-356)))) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3159 (((-400 (-549)) $) 57)) (-2067 (($ $ $) NIL (|has| |#1| (-356)))) (-2366 (($ (-400 (-549)) (-1190 |#1| |#2| |#3|)) NIL)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) NIL (|has| |#1| (-356)))) (-1420 (((-112) $) NIL (|has| |#1| (-356)))) (-2871 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-400 (-549)) $) NIL) (((-400 (-549)) $ (-400 (-549))) NIL)) (-2675 (((-112) $) NIL)) (-4187 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2992 (($ $ (-892)) NIL) (($ $ (-400 (-549))) NIL)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-400 (-549))) 30) (($ $ (-1048) (-400 (-549))) NIL) (($ $ (-621 (-1048)) (-621 (-400 (-549)))) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3632 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3697 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4234 (((-1190 |#1| |#2| |#3|) $) 60)) (-1537 (((-3 (-1190 |#1| |#2| |#3|) "failed") $) NIL)) (-2352 (((-1190 |#1| |#2| |#3|) $) NIL)) (-3851 (((-1125) $) NIL)) (-1992 (($ $) NIL (|has| |#1| (-356)))) (-3893 (($ $) 39 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) NIL (-1536 (-12 (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1165))))) (($ $ (-1222 |#2|)) 40 (|has| |#1| (-38 (-400 (-549)))))) (-3990 (((-1087) $) NIL)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) NIL (|has| |#1| (-356)))) (-3727 (($ (-621 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2121 (((-411 $) $) NIL (|has| |#1| (-356)))) (-3083 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) NIL (|has| |#1| (-356)))) (-2763 (($ $ (-400 (-549))) NIL)) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-3644 (((-3 (-621 $) "failed") (-621 $) $) NIL (|has| |#1| (-356)))) (-2719 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))))) (-3684 (((-747) $) NIL (|has| |#1| (-356)))) (-3341 ((|#1| $ (-400 (-549))) NIL) (($ $ $) NIL (|has| (-400 (-549)) (-1079)))) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) NIL (|has| |#1| (-356)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $ (-1222 |#2|)) 38)) (-3701 (((-400 (-549)) $) NIL)) (-1698 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) NIL)) (-3846 (((-834) $) 89) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1190 |#1| |#2| |#3|)) 16) (($ (-1218 |#1| |#2| |#3|)) 17) (($ (-1222 |#2|)) 36) (($ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541)))) (-2152 ((|#1| $ (-400 (-549))) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-2597 ((|#1| $) 12)) (-1733 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1710 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-400 (-549))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-549))))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) 32 T CONST)) (-3287 (($) 26 T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-549)) |#1|))))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 34)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ (-549)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-1211 |#1| |#2| |#3|) (-13 (-1209 |#1| (-1190 |#1| |#2| |#3|)) (-1009 (-1218 |#1| |#2| |#3|)) (-10 -8 (-15 -3846 ($ (-1222 |#2|))) (-15 -3456 ($ $ (-1222 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|))) (-1018) (-1143) |#1|) (T -1211))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1211 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1211 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1211 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1209 |#1| (-1190 |#1| |#2| |#3|)) (-1009 (-1218 |#1| |#2| |#3|)) (-10 -8 (-15 -3846 ($ (-1222 |#2|))) (-15 -3456 ($ $ (-1222 |#2|))) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 34)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL)) (-2258 (($ $) NIL)) (-2799 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 (-549) "failed") $) NIL (|has| (-1211 |#2| |#3| |#4|) (-1009 (-549)))) (((-3 (-400 (-549)) "failed") $) NIL (|has| (-1211 |#2| |#3| |#4|) (-1009 (-400 (-549))))) (((-3 (-1211 |#2| |#3| |#4|) "failed") $) 20)) (-2659 (((-549) $) NIL (|has| (-1211 |#2| |#3| |#4|) (-1009 (-549)))) (((-400 (-549)) $) NIL (|has| (-1211 |#2| |#3| |#4|) (-1009 (-400 (-549))))) (((-1211 |#2| |#3| |#4|) $) NIL)) (-2070 (($ $) 35)) (-2114 (((-3 $ "failed") $) 25)) (-1285 (($ $) NIL (|has| (-1211 |#2| |#3| |#4|) (-444)))) (-2691 (($ $ (-1211 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|) $) NIL)) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) 11)) (-2205 (((-112) $) NIL)) (-2246 (($ (-1211 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) 23)) (-3611 (((-312 |#2| |#3| |#4|) $) NIL)) (-3705 (($ (-1 (-312 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) $) NIL)) (-2797 (($ (-1 (-1211 |#2| |#3| |#4|) (-1211 |#2| |#3| |#4|)) $) NIL)) (-1914 (((-3 (-816 |#2|) "failed") $) 75)) (-2028 (($ $) NIL)) (-2043 (((-1211 |#2| |#3| |#4|) $) 18)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2004 (((-112) $) NIL)) (-2016 (((-1211 |#2| |#3| |#4|) $) NIL)) (-2042 (((-3 $ "failed") $ (-1211 |#2| |#3| |#4|)) NIL (|has| (-1211 |#2| |#3| |#4|) (-541))) (((-3 $ "failed") $ $) NIL)) (-2430 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1211 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-621 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#2|)))))) (|:| |%type| (-1125))) "failed") $) 58)) (-3701 (((-312 |#2| |#3| |#4|) $) 14)) (-2216 (((-1211 |#2| |#3| |#4|) $) NIL (|has| (-1211 |#2| |#3| |#4|) (-444)))) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ (-1211 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-400 (-549))) NIL (-1536 (|has| (-1211 |#2| |#3| |#4|) (-38 (-400 (-549)))) (|has| (-1211 |#2| |#3| |#4|) (-1009 (-400 (-549))))))) (-4141 (((-621 (-1211 |#2| |#3| |#4|)) $) NIL)) (-2152 (((-1211 |#2| |#3| |#4|) $ (-312 |#2| |#3| |#4|)) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| (-1211 |#2| |#3| |#4|) (-143)))) (-2082 (((-747)) NIL)) (-1509 (($ $ $ (-747)) NIL (|has| (-1211 |#2| |#3| |#4|) (-170)))) (-1498 (((-112) $ $) NIL)) (-3276 (($) 63 T CONST)) (-3287 (($) NIL T CONST)) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ (-1211 |#2| |#3| |#4|)) NIL (|has| (-1211 |#2| |#3| |#4|) (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-1211 |#2| |#3| |#4|)) NIL) (($ (-1211 |#2| |#3| |#4|) $) NIL) (($ (-400 (-549)) $) NIL (|has| (-1211 |#2| |#3| |#4|) (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| (-1211 |#2| |#3| |#4|) (-38 (-400 (-549)))))))
+(((-1212 |#1| |#2| |#3| |#4|) (-13 (-319 (-1211 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-541) (-10 -8 (-15 -1914 ((-3 (-816 |#2|) "failed") $)) (-15 -2430 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1211 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-621 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#2|)))))) (|:| |%type| (-1125))) "failed") $)))) (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444)) (-13 (-27) (-1165) (-423 |#1|)) (-1143) |#2|) (T -1212))
+((-1914 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444))) (-5 *2 (-816 *4)) (-5 *1 (-1212 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1165) (-423 *3))) (-14 *5 (-1143)) (-14 *6 *4))) (-2430 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1211 *4 *5 *6)) (|:| |%expon| (-312 *4 *5 *6)) (|:| |%expTerms| (-621 (-2 (|:| |k| (-400 (-549))) (|:| |c| *4)))))) (|:| |%type| (-1125)))) (-5 *1 (-1212 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1165) (-423 *3))) (-14 *5 (-1143)) (-14 *6 *4))))
+(-13 (-319 (-1211 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-541) (-10 -8 (-15 -1914 ((-3 (-816 |#2|) "failed") $)) (-15 -2430 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1211 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-621 (-2 (|:| |k| (-400 (-549))) (|:| |c| |#2|)))))) (|:| |%type| (-1125))) "failed") $))))
+((-4161 ((|#2| $) 29)) (-2839 ((|#2| $) 18)) (-1343 (($ $) 36)) (-3174 (($ $ (-549)) 64)) (-1584 (((-112) $ (-747)) 33)) (-2838 ((|#2| $ |#2|) 61)) (-2780 ((|#2| $ |#2|) 59)) (-2254 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-2722 (($ $ (-621 $)) 60)) (-2830 ((|#2| $) 17)) (-3657 (($ $) NIL) (($ $ (-747)) 42)) (-3075 (((-621 $) $) 26)) (-3895 (((-112) $ $) 50)) (-3194 (((-112) $ (-747)) 32)) (-1508 (((-112) $ (-747)) 31)) (-2076 (((-112) $) 28)) (-3829 ((|#2| $) 24) (($ $ (-747)) 46)) (-3341 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3497 (((-112) $) 22)) (-1999 (($ $) 39)) (-2643 (($ $) 65)) (-3798 (((-747) $) 41)) (-3612 (($ $) 40)) (-1952 (($ $ $) 58) (($ |#2| $) NIL)) (-2742 (((-621 $) $) 27)) (-2389 (((-112) $ $) 48)) (-3775 (((-747) $) 35)))
+(((-1213 |#1| |#2|) (-10 -8 (-15 -3174 (|#1| |#1| (-549))) (-15 -2254 (|#2| |#1| "last" |#2|)) (-15 -2780 (|#2| |#1| |#2|)) (-15 -2254 (|#1| |#1| "rest" |#1|)) (-15 -2254 (|#2| |#1| "first" |#2|)) (-15 -2643 (|#1| |#1|)) (-15 -1999 (|#1| |#1|)) (-15 -3798 ((-747) |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -2839 (|#2| |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -1343 (|#1| |#1|)) (-15 -3829 (|#1| |#1| (-747))) (-15 -3341 (|#2| |#1| "last")) (-15 -3829 (|#2| |#1|)) (-15 -3657 (|#1| |#1| (-747))) (-15 -3341 (|#1| |#1| "rest")) (-15 -3657 (|#1| |#1|)) (-15 -3341 (|#2| |#1| "first")) (-15 -1952 (|#1| |#2| |#1|)) (-15 -1952 (|#1| |#1| |#1|)) (-15 -2838 (|#2| |#1| |#2|)) (-15 -2254 (|#2| |#1| "value" |#2|)) (-15 -2722 (|#1| |#1| (-621 |#1|))) (-15 -3895 ((-112) |#1| |#1|)) (-15 -3497 ((-112) |#1|)) (-15 -3341 (|#2| |#1| "value")) (-15 -4161 (|#2| |#1|)) (-15 -2076 ((-112) |#1|)) (-15 -3075 ((-621 |#1|) |#1|)) (-15 -2742 ((-621 |#1|) |#1|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -3775 ((-747) |#1|)) (-15 -1584 ((-112) |#1| (-747))) (-15 -3194 ((-112) |#1| (-747))) (-15 -1508 ((-112) |#1| (-747)))) (-1214 |#2|) (-1180)) (T -1213))
+NIL
+(-10 -8 (-15 -3174 (|#1| |#1| (-549))) (-15 -2254 (|#2| |#1| "last" |#2|)) (-15 -2780 (|#2| |#1| |#2|)) (-15 -2254 (|#1| |#1| "rest" |#1|)) (-15 -2254 (|#2| |#1| "first" |#2|)) (-15 -2643 (|#1| |#1|)) (-15 -1999 (|#1| |#1|)) (-15 -3798 ((-747) |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -2839 (|#2| |#1|)) (-15 -2830 (|#2| |#1|)) (-15 -1343 (|#1| |#1|)) (-15 -3829 (|#1| |#1| (-747))) (-15 -3341 (|#2| |#1| "last")) (-15 -3829 (|#2| |#1|)) (-15 -3657 (|#1| |#1| (-747))) (-15 -3341 (|#1| |#1| "rest")) (-15 -3657 (|#1| |#1|)) (-15 -3341 (|#2| |#1| "first")) (-15 -1952 (|#1| |#2| |#1|)) (-15 -1952 (|#1| |#1| |#1|)) (-15 -2838 (|#2| |#1| |#2|)) (-15 -2254 (|#2| |#1| "value" |#2|)) (-15 -2722 (|#1| |#1| (-621 |#1|))) (-15 -3895 ((-112) |#1| |#1|)) (-15 -3497 ((-112) |#1|)) (-15 -3341 (|#2| |#1| "value")) (-15 -4161 (|#2| |#1|)) (-15 -2076 ((-112) |#1|)) (-15 -3075 ((-621 |#1|) |#1|)) (-15 -2742 ((-621 |#1|) |#1|)) (-15 -2389 ((-112) |#1| |#1|)) (-15 -3775 ((-747) |#1|)) (-15 -1584 ((-112) |#1| (-747))) (-15 -3194 ((-112) |#1| (-747))) (-15 -1508 ((-112) |#1| (-747))))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-4161 ((|#1| $) 48)) (-2839 ((|#1| $) 65)) (-1343 (($ $) 67)) (-3174 (($ $ (-549)) 52 (|has| $ (-6 -4338)))) (-1584 (((-112) $ (-747)) 8)) (-2838 ((|#1| $ |#1|) 39 (|has| $ (-6 -4338)))) (-4179 (($ $ $) 56 (|has| $ (-6 -4338)))) (-2780 ((|#1| $ |#1|) 54 (|has| $ (-6 -4338)))) (-4135 ((|#1| $ |#1|) 58 (|has| $ (-6 -4338)))) (-2254 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4338))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4338))) (($ $ "rest" $) 55 (|has| $ (-6 -4338))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4338)))) (-2722 (($ $ (-621 $)) 41 (|has| $ (-6 -4338)))) (-2830 ((|#1| $) 66)) (-1682 (($) 7 T CONST)) (-3657 (($ $) 73) (($ $ (-747)) 71)) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-3075 (((-621 $) $) 50)) (-3895 (((-112) $ $) 42 (|has| |#1| (-1067)))) (-3194 (((-112) $ (-747)) 9)) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35)) (-1508 (((-112) $ (-747)) 10)) (-3591 (((-621 |#1|) $) 45)) (-2076 (((-112) $) 49)) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-3829 ((|#1| $) 70) (($ $ (-747)) 68)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3646 ((|#1| $) 76) (($ $ (-747)) 74)) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3230 (((-549) $ $) 44)) (-3497 (((-112) $) 46)) (-1999 (($ $) 62)) (-2643 (($ $) 59 (|has| $ (-6 -4338)))) (-3798 (((-747) $) 63)) (-3612 (($ $) 64)) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2281 (($ $) 13)) (-3196 (($ $ $) 61 (|has| $ (-6 -4338))) (($ $ |#1|) 60 (|has| $ (-6 -4338)))) (-1952 (($ $ $) 78) (($ |#1| $) 77)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-2742 (((-621 $) $) 51)) (-1987 (((-112) $ $) 43 (|has| |#1| (-1067)))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-1214 |#1|) (-138) (-1180)) (T -1214))
+((-1952 (*1 *1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-1952 (*1 *1 *2 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-3646 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1214 *3)) (-4 *3 (-1180)))) (-3657 (*1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1214 *3)) (-4 *3 (-1180)))) (-3657 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1214 *3)) (-4 *3 (-1180)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1214 *3)) (-4 *3 (-1180)))) (-1343 (*1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-2830 (*1 *2 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-3612 (*1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1214 *3)) (-4 *3 (-1180)) (-5 *2 (-747)))) (-1999 (*1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-3196 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-3196 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-2643 (*1 *1 *1) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-4135 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-2254 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-4179 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-2254 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4338)) (-4 *1 (-1214 *3)) (-4 *3 (-1180)))) (-2780 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-2254 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))) (-3174 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (|has| *1 (-6 -4338)) (-4 *1 (-1214 *3)) (-4 *3 (-1180)))))
+(-13 (-981 |t#1|) (-10 -8 (-15 -1952 ($ $ $)) (-15 -1952 ($ |t#1| $)) (-15 -3646 (|t#1| $)) (-15 -3341 (|t#1| $ "first")) (-15 -3646 ($ $ (-747))) (-15 -3657 ($ $)) (-15 -3341 ($ $ "rest")) (-15 -3657 ($ $ (-747))) (-15 -3829 (|t#1| $)) (-15 -3341 (|t#1| $ "last")) (-15 -3829 ($ $ (-747))) (-15 -1343 ($ $)) (-15 -2830 (|t#1| $)) (-15 -2839 (|t#1| $)) (-15 -3612 ($ $)) (-15 -3798 ((-747) $)) (-15 -1999 ($ $)) (IF (|has| $ (-6 -4338)) (PROGN (-15 -3196 ($ $ $)) (-15 -3196 ($ $ |t#1|)) (-15 -2643 ($ $)) (-15 -4135 (|t#1| $ |t#1|)) (-15 -2254 (|t#1| $ "first" |t#1|)) (-15 -4179 ($ $ $)) (-15 -2254 ($ $ "rest" $)) (-15 -2780 (|t#1| $ |t#1|)) (-15 -2254 (|t#1| $ "last" |t#1|)) (-15 -3174 ($ $ (-549)))) |%noBranch|)))
+(((-34) . T) ((-101) |has| |#1| (-1067)) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-593 (-834)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-981 |#1|) . T) ((-1067) |has| |#1| (-1067)) ((-1180) . T))
+((-2797 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2797 (|#4| (-1 |#2| |#1|) |#3|))) (-1018) (-1018) (-1217 |#1|) (-1217 |#2|)) (T -1215))
+((-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1217 *6)) (-5 *1 (-1215 *5 *6 *4 *2)) (-4 *4 (-1217 *5)))))
+(-10 -7 (-15 -2797 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1763 (((-112) $) 15)) (-1664 (($ $) 92)) (-1512 (($ $) 68)) (-1640 (($ $) 88)) (-1486 (($ $) 64)) (-1685 (($ $) 96)) (-1539 (($ $) 72)) (-3632 (($ $) 62)) (-2719 (($ $) 60)) (-1698 (($ $) 98)) (-1552 (($ $) 74)) (-1675 (($ $) 94)) (-1526 (($ $) 70)) (-1651 (($ $) 90)) (-1501 (($ $) 66)) (-3846 (((-834) $) 48) (($ (-549)) NIL) (($ (-400 (-549))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1733 (($ $) 104)) (-1587 (($ $) 80)) (-1710 (($ $) 100)) (-1564 (($ $) 76)) (-1758 (($ $) 108)) (-1612 (($ $) 84)) (-1934 (($ $) 110)) (-1627 (($ $) 86)) (-1745 (($ $) 106)) (-1600 (($ $) 82)) (-1722 (($ $) 102)) (-1576 (($ $) 78)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-400 (-549))) 58)))
+(((-1216 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-400 (-549)))) (-15 -1512 (|#1| |#1|)) (-15 -1486 (|#1| |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -1526 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1600 (|#1| |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1651 (|#1| |#1|)) (-15 -1675 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1664 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1934 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1710 (|#1| |#1|)) (-15 -1733 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2719 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3846 (|#1| |#2|)) (-15 -3846 (|#1| |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 (|#1| (-549))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892))) (-15 -1763 ((-112) |#1|)) (-15 -3846 ((-834) |#1|))) (-1217 |#2|) (-1018)) (T -1216))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-400 (-549)))) (-15 -1512 (|#1| |#1|)) (-15 -1486 (|#1| |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -1526 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1600 (|#1| |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1651 (|#1| |#1|)) (-15 -1675 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1664 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1934 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1710 (|#1| |#1|)) (-15 -1733 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2719 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3846 (|#1| |#2|)) (-15 -3846 (|#1| |#1|)) (-15 -3846 (|#1| (-400 (-549)))) (-15 -3846 (|#1| (-549))) (-15 ** (|#1| |#1| (-747))) (-15 ** (|#1| |#1| (-892))) (-15 -1763 ((-112) |#1|)) (-15 -3846 ((-834) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2272 (((-621 (-1048)) $) 72)) (-3011 (((-1143) $) 101)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 49 (|has| |#1| (-541)))) (-2258 (($ $) 50 (|has| |#1| (-541)))) (-2799 (((-112) $) 52 (|has| |#1| (-541)))) (-3896 (($ $ (-747)) 96) (($ $ (-747) (-747)) 95)) (-2212 (((-1123 (-2 (|:| |k| (-747)) (|:| |c| |#1|))) $) 103)) (-1664 (($ $) 133 (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) 116 (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) 19)) (-2134 (($ $) 115 (|has| |#1| (-38 (-400 (-549)))))) (-1640 (($ $) 132 (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) 117 (|has| |#1| (-38 (-400 (-549)))))) (-2826 (($ (-1123 (-2 (|:| |k| (-747)) (|:| |c| |#1|)))) 153) (($ (-1123 |#1|)) 151)) (-1685 (($ $) 131 (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) 118 (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) 17 T CONST)) (-2070 (($ $) 58)) (-2114 (((-3 $ "failed") $) 32)) (-3754 (($ $) 150)) (-1414 (((-923 |#1|) $ (-747)) 148) (((-923 |#1|) $ (-747) (-747)) 147)) (-2871 (((-112) $) 71)) (-1425 (($) 143 (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-747) $) 98) (((-747) $ (-747)) 97)) (-2675 (((-112) $) 30)) (-4187 (($ $ (-549)) 114 (|has| |#1| (-38 (-400 (-549)))))) (-2992 (($ $ (-892)) 99)) (-2876 (($ (-1 |#1| (-549)) $) 149)) (-2205 (((-112) $) 60)) (-2246 (($ |#1| (-747)) 59) (($ $ (-1048) (-747)) 74) (($ $ (-621 (-1048)) (-621 (-747))) 73)) (-2797 (($ (-1 |#1| |#1|) $) 61)) (-3632 (($ $) 140 (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) 63)) (-2043 ((|#1| $) 64)) (-3851 (((-1125) $) 9)) (-3893 (($ $) 145 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) 144 (-1536 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-930)) (|has| |#1| (-1165)) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-38 (-400 (-549)))))))) (-3990 (((-1087) $) 10)) (-2763 (($ $ (-747)) 93)) (-2042 (((-3 $ "failed") $ $) 48 (|has| |#1| (-541)))) (-2719 (($ $) 141 (|has| |#1| (-38 (-400 (-549)))))) (-2686 (((-1123 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-747)))))) (-3341 ((|#1| $ (-747)) 102) (($ $ $) 79 (|has| (-747) (-1079)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) 87 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1143) (-747)) 86 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-621 (-1143))) 85 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1143)) 84 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) 82 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-3701 (((-747) $) 62)) (-1698 (($ $) 130 (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) 119 (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) 129 (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) 120 (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) 128 (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) 121 (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) 70)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ (-400 (-549))) 55 (|has| |#1| (-38 (-400 (-549))))) (($ $) 47 (|has| |#1| (-541))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4141 (((-1123 |#1|) $) 152)) (-2152 ((|#1| $ (-747)) 57)) (-2210 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2082 (((-747)) 28)) (-2597 ((|#1| $) 100)) (-1733 (($ $) 139 (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) 127 (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) 51 (|has| |#1| (-541)))) (-1710 (($ $) 138 (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) 126 (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) 137 (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) 125 (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-747)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-747)))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) 136 (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) 124 (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) 135 (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) 123 (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) 134 (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) 122 (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) 91 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1143) (-747)) 90 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-621 (-1143))) 89 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-1143)) 88 (-12 (|has| |#1| (-871 (-1143))) (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (($ $ (-747)) 83 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ |#1|) 146 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 113 (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-549)) $) 54 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) 53 (|has| |#1| (-38 (-400 (-549)))))))
+(((-1217 |#1|) (-138) (-1018)) (T -1217))
+((-2826 (*1 *1 *2) (-12 (-5 *2 (-1123 (-2 (|:| |k| (-747)) (|:| |c| *3)))) (-4 *3 (-1018)) (-4 *1 (-1217 *3)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1018)) (-5 *2 (-1123 *3)))) (-2826 (*1 *1 *2) (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-4 *1 (-1217 *3)))) (-3754 (*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)))) (-2876 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1217 *3)) (-4 *3 (-1018)))) (-1414 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-1217 *4)) (-4 *4 (-1018)) (-5 *2 (-923 *4)))) (-1414 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-4 *1 (-1217 *4)) (-4 *4 (-1018)) (-5 *2 (-923 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))) (-3893 (*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549)))))) (-3893 (*1 *1 *1 *2) (-1536 (-12 (-5 *2 (-1143)) (-4 *1 (-1217 *3)) (-4 *3 (-1018)) (-12 (-4 *3 (-29 (-549))) (-4 *3 (-930)) (-4 *3 (-1165)) (-4 *3 (-38 (-400 (-549)))))) (-12 (-5 *2 (-1143)) (-4 *1 (-1217 *3)) (-4 *3 (-1018)) (-12 (|has| *3 (-15 -2272 ((-621 *2) *3))) (|has| *3 (-15 -3893 (*3 *3 *2))) (-4 *3 (-38 (-400 (-549)))))))))
+(-13 (-1204 |t#1| (-747)) (-10 -8 (-15 -2826 ($ (-1123 (-2 (|:| |k| (-747)) (|:| |c| |t#1|))))) (-15 -4141 ((-1123 |t#1|) $)) (-15 -2826 ($ (-1123 |t#1|))) (-15 -3754 ($ $)) (-15 -2876 ($ (-1 |t#1| (-549)) $)) (-15 -1414 ((-923 |t#1|) $ (-747))) (-15 -1414 ((-923 |t#1|) $ (-747) (-747))) (IF (|has| |t#1| (-356)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-549)))) (PROGN (-15 -3893 ($ $)) (IF (|has| |t#1| (-15 -3893 (|t#1| |t#1| (-1143)))) (IF (|has| |t#1| (-15 -2272 ((-621 (-1143)) |t#1|))) (-15 -3893 ($ $ (-1143))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1165)) (IF (|has| |t#1| (-930)) (IF (|has| |t#1| (-29 (-549))) (-15 -3893 ($ $ (-1143))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-973)) (-6 (-1165))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-747)) . T) ((-25) . T) ((-38 #1=(-400 (-549))) |has| |#1| (-38 (-400 (-549)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-541)) ((-35) |has| |#1| (-38 (-400 (-549)))) ((-94) |has| |#1| (-38 (-400 (-549)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-747) |#1|))) ((-277) |has| |#1| (-38 (-400 (-549)))) ((-279 $ $) |has| (-747) (-1079)) ((-283) |has| |#1| (-541)) ((-484) |has| |#1| (-38 (-400 (-549)))) ((-541) |has| |#1| (-541)) ((-624 #1#) |has| |#1| (-38 (-400 (-549)))) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #1#) |has| |#1| (-38 (-400 (-549)))) ((-694 |#1|) |has| |#1| (-170)) ((-694 $) |has| |#1| (-541)) ((-703) . T) ((-871 (-1143)) -12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143)))) ((-944 |#1| #0# (-1048)) . T) ((-973) |has| |#1| (-38 (-400 (-549)))) ((-1024 #1#) |has| |#1| (-38 (-400 (-549)))) ((-1024 |#1|) . T) ((-1024 $) -1536 (|has| |#1| (-541)) (|has| |#1| (-170))) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1165) |has| |#1| (-38 (-400 (-549)))) ((-1168) |has| |#1| (-38 (-400 (-549)))) ((-1204 |#1| #0#) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2272 (((-621 (-1048)) $) NIL)) (-3011 (((-1143) $) 87)) (-3561 (((-1199 |#2| |#1|) $ (-747)) 73)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) NIL (|has| |#1| (-541)))) (-2258 (($ $) NIL (|has| |#1| (-541)))) (-2799 (((-112) $) 137 (|has| |#1| (-541)))) (-3896 (($ $ (-747)) 122) (($ $ (-747) (-747)) 124)) (-2212 (((-1123 (-2 (|:| |k| (-747)) (|:| |c| |#1|))) $) 42)) (-1664 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1512 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2001 (((-3 $ "failed") $ $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1640 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1486 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2826 (($ (-1123 (-2 (|:| |k| (-747)) (|:| |c| |#1|)))) 53) (($ (-1123 |#1|)) NIL)) (-1685 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1682 (($) NIL T CONST)) (-1387 (($ $) 128)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3754 (($ $) 135)) (-1414 (((-923 |#1|) $ (-747)) 63) (((-923 |#1|) $ (-747) (-747)) 65)) (-2871 (((-112) $) NIL)) (-1425 (($) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2088 (((-747) $) NIL) (((-747) $ (-747)) NIL)) (-2675 (((-112) $) NIL)) (-4226 (($ $) 112)) (-4187 (($ $ (-549)) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1594 (($ (-549) (-549) $) 130)) (-2992 (($ $ (-892)) 134)) (-2876 (($ (-1 |#1| (-549)) $) 106)) (-2205 (((-112) $) NIL)) (-2246 (($ |#1| (-747)) 15) (($ $ (-1048) (-747)) NIL) (($ $ (-621 (-1048)) (-621 (-747))) NIL)) (-2797 (($ (-1 |#1| |#1|) $) 94)) (-3632 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2028 (($ $) NIL)) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-2848 (($ $) 110)) (-1375 (($ $) 108)) (-3498 (($ (-549) (-549) $) 132)) (-3893 (($ $) 145 (|has| |#1| (-38 (-400 (-549))))) (($ $ (-1143)) 151 (-1536 (-12 (|has| |#1| (-15 -3893 (|#1| |#1| (-1143)))) (|has| |#1| (-15 -2272 ((-621 (-1143)) |#1|))) (|has| |#1| (-38 (-400 (-549))))) (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-38 (-400 (-549)))) (|has| |#1| (-930)) (|has| |#1| (-1165))))) (($ $ (-1222 |#2|)) 146 (|has| |#1| (-38 (-400 (-549)))))) (-3990 (((-1087) $) NIL)) (-1629 (($ $ (-549) (-549)) 116)) (-2763 (($ $ (-747)) 118)) (-2042 (((-3 $ "failed") $ $) NIL (|has| |#1| (-541)))) (-2719 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3184 (($ $) 114)) (-2686 (((-1123 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-747)))))) (-3341 ((|#1| $ (-747)) 91) (($ $ $) 126 (|has| (-747) (-1079)))) (-3456 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) 103 (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $ (-1222 |#2|)) 99)) (-3701 (((-747) $) NIL)) (-1698 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1552 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1675 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1651 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1977 (($ $) 120)) (-3846 (((-834) $) NIL) (($ (-549)) 24) (($ (-400 (-549))) 143 (|has| |#1| (-38 (-400 (-549))))) (($ $) NIL (|has| |#1| (-541))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1199 |#2| |#1|)) 80) (($ (-1222 |#2|)) 20)) (-4141 (((-1123 |#1|) $) NIL)) (-2152 ((|#1| $ (-747)) 90)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2082 (((-747)) NIL)) (-2597 ((|#1| $) 88)) (-1733 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1587 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1498 (((-112) $ $) NIL (|has| |#1| (-541)))) (-1710 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1564 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1758 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1612 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-2661 ((|#1| $ (-747)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-747)))) (|has| |#1| (-15 -3846 (|#1| (-1143))))))) (-1934 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1627 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1745 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1600 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-1576 (($ $) NIL (|has| |#1| (-38 (-400 (-549)))))) (-3276 (($) 17 T CONST)) (-3287 (($) 13 T CONST)) (-1702 (($ $ (-621 (-1143)) (-621 (-747))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143) (-747)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-621 (-1143))) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-1143)) NIL (-12 (|has| |#1| (-15 * (|#1| (-747) |#1|))) (|has| |#1| (-871 (-1143))))) (($ $ (-747)) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-747) |#1|))))) (-2389 (((-112) $ $) NIL)) (-2513 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) 102)) (-2486 (($ $ $) 18)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL) (($ $ |#1|) 140 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-400 (-549)) $) NIL (|has| |#1| (-38 (-400 (-549))))) (($ $ (-400 (-549))) NIL (|has| |#1| (-38 (-400 (-549)))))))
+(((-1218 |#1| |#2| |#3|) (-13 (-1217 |#1|) (-10 -8 (-15 -3846 ($ (-1199 |#2| |#1|))) (-15 -3561 ((-1199 |#2| |#1|) $ (-747))) (-15 -3846 ($ (-1222 |#2|))) (-15 -3456 ($ $ (-1222 |#2|))) (-15 -1375 ($ $)) (-15 -2848 ($ $)) (-15 -4226 ($ $)) (-15 -3184 ($ $)) (-15 -1629 ($ $ (-549) (-549))) (-15 -1387 ($ $)) (-15 -1594 ($ (-549) (-549) $)) (-15 -3498 ($ (-549) (-549) $)) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|))) (-1018) (-1143) |#1|) (T -1218))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-1199 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1143)) (-14 *5 *3) (-5 *1 (-1218 *3 *4 *5)))) (-3561 (*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1199 *5 *4)) (-5 *1 (-1218 *4 *5 *6)) (-4 *4 (-1018)) (-14 *5 (-1143)) (-14 *6 *4))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1218 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1218 *3 *4 *5)) (-4 *3 (-1018)) (-14 *5 *3))) (-1375 (*1 *1 *1) (-12 (-5 *1 (-1218 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1143)) (-14 *4 *2))) (-2848 (*1 *1 *1) (-12 (-5 *1 (-1218 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1143)) (-14 *4 *2))) (-4226 (*1 *1 *1) (-12 (-5 *1 (-1218 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1143)) (-14 *4 *2))) (-3184 (*1 *1 *1) (-12 (-5 *1 (-1218 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1143)) (-14 *4 *2))) (-1629 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1218 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1143)) (-14 *5 *3))) (-1387 (*1 *1 *1) (-12 (-5 *1 (-1218 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1143)) (-14 *4 *2))) (-1594 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1218 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1143)) (-14 *5 *3))) (-3498 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1218 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1143)) (-14 *5 *3))) (-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1218 *3 *4 *5)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(-13 (-1217 |#1|) (-10 -8 (-15 -3846 ($ (-1199 |#2| |#1|))) (-15 -3561 ((-1199 |#2| |#1|) $ (-747))) (-15 -3846 ($ (-1222 |#2|))) (-15 -3456 ($ $ (-1222 |#2|))) (-15 -1375 ($ $)) (-15 -2848 ($ $)) (-15 -4226 ($ $)) (-15 -3184 ($ $)) (-15 -1629 ($ $ (-549) (-549))) (-15 -1387 ($ $)) (-15 -1594 ($ (-549) (-549) $)) (-15 -3498 ($ (-549) (-549) $)) (IF (|has| |#1| (-38 (-400 (-549)))) (-15 -3893 ($ $ (-1222 |#2|))) |%noBranch|)))
+((-2978 (((-1 (-1123 |#1|) (-621 (-1123 |#1|))) (-1 |#2| (-621 |#2|))) 24)) (-2484 (((-1 (-1123 |#1|) (-1123 |#1|) (-1123 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3006 (((-1 (-1123 |#1|) (-1123 |#1|)) (-1 |#2| |#2|)) 13)) (-2732 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2579 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3884 ((|#2| (-1 |#2| (-621 |#2|)) (-621 |#1|)) 54)) (-2835 (((-621 |#2|) (-621 |#1|) (-621 (-1 |#2| (-621 |#2|)))) 61)) (-2760 ((|#2| |#2| |#2|) 43)))
+(((-1219 |#1| |#2|) (-10 -7 (-15 -3006 ((-1 (-1123 |#1|) (-1123 |#1|)) (-1 |#2| |#2|))) (-15 -2484 ((-1 (-1123 |#1|) (-1123 |#1|) (-1123 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2978 ((-1 (-1123 |#1|) (-621 (-1123 |#1|))) (-1 |#2| (-621 |#2|)))) (-15 -2760 (|#2| |#2| |#2|)) (-15 -2579 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2732 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3884 (|#2| (-1 |#2| (-621 |#2|)) (-621 |#1|))) (-15 -2835 ((-621 |#2|) (-621 |#1|) (-621 (-1 |#2| (-621 |#2|)))))) (-38 (-400 (-549))) (-1217 |#1|)) (T -1219))
+((-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 (-1 *6 (-621 *6)))) (-4 *5 (-38 (-400 (-549)))) (-4 *6 (-1217 *5)) (-5 *2 (-621 *6)) (-5 *1 (-1219 *5 *6)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-621 *2))) (-5 *4 (-621 *5)) (-4 *5 (-38 (-400 (-549)))) (-4 *2 (-1217 *5)) (-5 *1 (-1219 *5 *2)))) (-2732 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-1219 *4 *2)) (-4 *4 (-38 (-400 (-549)))))) (-2579 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-1219 *4 *2)) (-4 *4 (-38 (-400 (-549)))))) (-2760 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1219 *3 *2)) (-4 *2 (-1217 *3)))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-621 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-549)))) (-5 *2 (-1 (-1123 *4) (-621 (-1123 *4)))) (-5 *1 (-1219 *4 *5)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-549)))) (-5 *2 (-1 (-1123 *4) (-1123 *4) (-1123 *4))) (-5 *1 (-1219 *4 *5)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-38 (-400 (-549)))) (-5 *2 (-1 (-1123 *4) (-1123 *4))) (-5 *1 (-1219 *4 *5)))))
+(-10 -7 (-15 -3006 ((-1 (-1123 |#1|) (-1123 |#1|)) (-1 |#2| |#2|))) (-15 -2484 ((-1 (-1123 |#1|) (-1123 |#1|) (-1123 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2978 ((-1 (-1123 |#1|) (-621 (-1123 |#1|))) (-1 |#2| (-621 |#2|)))) (-15 -2760 (|#2| |#2| |#2|)) (-15 -2579 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2732 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3884 (|#2| (-1 |#2| (-621 |#2|)) (-621 |#1|))) (-15 -2835 ((-621 |#2|) (-621 |#1|) (-621 (-1 |#2| (-621 |#2|))))))
+((-2240 ((|#2| |#4| (-747)) 30)) (-2347 ((|#4| |#2|) 25)) (-3978 ((|#4| (-400 |#2|)) 52 (|has| |#1| (-541)))) (-1839 (((-1 |#4| (-621 |#4|)) |#3|) 46)))
+(((-1220 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2347 (|#4| |#2|)) (-15 -2240 (|#2| |#4| (-747))) (-15 -1839 ((-1 |#4| (-621 |#4|)) |#3|)) (IF (|has| |#1| (-541)) (-15 -3978 (|#4| (-400 |#2|))) |%noBranch|)) (-1018) (-1202 |#1|) (-632 |#2|) (-1217 |#1|)) (T -1220))
+((-3978 (*1 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *5 (-1202 *4)) (-4 *4 (-541)) (-4 *4 (-1018)) (-4 *2 (-1217 *4)) (-5 *1 (-1220 *4 *5 *6 *2)) (-4 *6 (-632 *5)))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *5 (-1202 *4)) (-5 *2 (-1 *6 (-621 *6))) (-5 *1 (-1220 *4 *5 *3 *6)) (-4 *3 (-632 *5)) (-4 *6 (-1217 *4)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-4 *2 (-1202 *5)) (-5 *1 (-1220 *5 *2 *6 *3)) (-4 *6 (-632 *2)) (-4 *3 (-1217 *5)))) (-2347 (*1 *2 *3) (-12 (-4 *4 (-1018)) (-4 *3 (-1202 *4)) (-4 *2 (-1217 *4)) (-5 *1 (-1220 *4 *3 *5 *2)) (-4 *5 (-632 *3)))))
+(-10 -7 (-15 -2347 (|#4| |#2|)) (-15 -2240 (|#2| |#4| (-747))) (-15 -1839 ((-1 |#4| (-621 |#4|)) |#3|)) (IF (|has| |#1| (-541)) (-15 -3978 (|#4| (-400 |#2|))) |%noBranch|))
+NIL
+(((-1221) (-138)) (T -1221))
+NIL
+(-13 (-10 -7 (-6 -2624)))
+((-3834 (((-112) $ $) NIL)) (-3011 (((-1143)) 12)) (-3851 (((-1125) $) 17)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 11) (((-1143) $) 8)) (-2389 (((-112) $ $) 14)))
+(((-1222 |#1|) (-13 (-1067) (-593 (-1143)) (-10 -8 (-15 -3846 ((-1143) $)) (-15 -3011 ((-1143))))) (-1143)) (T -1222))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1222 *3)) (-14 *3 *2))) (-3011 (*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1222 *3)) (-14 *3 *2))))
+(-13 (-1067) (-593 (-1143)) (-10 -8 (-15 -3846 ((-1143) $)) (-15 -3011 ((-1143)))))
+((-3769 (($ (-747)) 18)) (-4050 (((-665 |#2|) $ $) 40)) (-3359 ((|#2| $) 48)) (-4210 ((|#2| $) 47)) (-1706 ((|#2| $ $) 35)) (-2168 (($ $ $) 44)) (-2500 (($ $) 22) (($ $ $) 28)) (-2486 (($ $ $) 15)) (* (($ (-549) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
+(((-1223 |#1| |#2|) (-10 -8 (-15 -3359 (|#2| |#1|)) (-15 -4210 (|#2| |#1|)) (-15 -2168 (|#1| |#1| |#1|)) (-15 -4050 ((-665 |#2|) |#1| |#1|)) (-15 -1706 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -3769 (|#1| (-747))) (-15 -2486 (|#1| |#1| |#1|))) (-1224 |#2|) (-1180)) (T -1223))
+NIL
+(-10 -8 (-15 -3359 (|#2| |#1|)) (-15 -4210 (|#2| |#1|)) (-15 -2168 (|#1| |#1| |#1|)) (-15 -4050 ((-665 |#2|) |#1| |#1|)) (-15 -1706 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -3769 (|#1| (-747))) (-15 -2486 (|#1| |#1| |#1|)))
+((-3834 (((-112) $ $) 19 (|has| |#1| (-1067)))) (-3769 (($ (-747)) 112 (|has| |#1| (-23)))) (-1535 (((-1231) $ (-549) (-549)) 40 (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-823)))) (-4311 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4338))) (($ $) 88 (-12 (|has| |#1| (-823)) (|has| $ (-6 -4338))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-823)))) (-1584 (((-112) $ (-747)) 8)) (-2254 ((|#1| $ (-549) |#1|) 52 (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) 58 (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4337)))) (-1682 (($) 7 T CONST)) (-1585 (($ $) 90 (|has| $ (-6 -4338)))) (-3064 (($ $) 100)) (-3676 (($ $) 78 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-3812 (($ |#1| $) 77 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) 51)) (-2883 (((-549) (-1 (-112) |#1|) $) 97) (((-549) |#1| $) 96 (|has| |#1| (-1067))) (((-549) |#1| $ (-549)) 95 (|has| |#1| (-1067)))) (-2989 (((-621 |#1|) $) 30 (|has| $ (-6 -4337)))) (-4050 (((-665 |#1|) $ $) 105 (|has| |#1| (-1018)))) (-3743 (($ (-747) |#1|) 69)) (-3194 (((-112) $ (-747)) 9)) (-4031 (((-549) $) 43 (|has| (-549) (-823)))) (-2863 (($ $ $) 87 (|has| |#1| (-823)))) (-3890 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-1569 (((-549) $) 44 (|has| (-549) (-823)))) (-3575 (($ $ $) 86 (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3359 ((|#1| $) 102 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-1508 (((-112) $ (-747)) 10)) (-4210 ((|#1| $) 103 (-12 (|has| |#1| (-1018)) (|has| |#1| (-973))))) (-3851 (((-1125) $) 22 (|has| |#1| (-1067)))) (-2616 (($ |#1| $ (-549)) 60) (($ $ $ (-549)) 59)) (-3303 (((-621 (-549)) $) 46)) (-3761 (((-112) (-549) $) 47)) (-3990 (((-1087) $) 21 (|has| |#1| (-1067)))) (-3646 ((|#1| $) 42 (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-1642 (($ $ |#1|) 41 (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) 14)) (-2265 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) 48)) (-3670 (((-112) $) 11)) (-3742 (($) 12)) (-3341 ((|#1| $ (-549) |#1|) 50) ((|#1| $ (-549)) 49) (($ $ (-1193 (-549))) 63)) (-1706 ((|#1| $ $) 106 (|has| |#1| (-1018)))) (-2167 (($ $ (-549)) 62) (($ $ (-1193 (-549))) 61)) (-2168 (($ $ $) 104 (|has| |#1| (-1018)))) (-4000 (((-747) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4337))) (((-747) |#1| $) 28 (-12 (|has| |#1| (-1067)) (|has| $ (-6 -4337))))) (-2730 (($ $ $ (-549)) 91 (|has| $ (-6 -4338)))) (-2281 (($ $) 13)) (-2845 (((-525) $) 79 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 70)) (-1952 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-621 $)) 65)) (-3846 (((-834) $) 18 (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) 84 (|has| |#1| (-823)))) (-2425 (((-112) $ $) 83 (|has| |#1| (-823)))) (-2389 (((-112) $ $) 20 (|has| |#1| (-1067)))) (-2438 (((-112) $ $) 85 (|has| |#1| (-823)))) (-2412 (((-112) $ $) 82 (|has| |#1| (-823)))) (-2500 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2486 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-549) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-703))) (($ $ |#1|) 107 (|has| |#1| (-703)))) (-3775 (((-747) $) 6 (|has| $ (-6 -4337)))))
+(((-1224 |#1|) (-138) (-1180)) (T -1224))
+((-2486 (*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-25)))) (-3769 (*1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1224 *3)) (-4 *3 (-23)) (-4 *3 (-1180)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-21)))) (-2500 (*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-1224 *3)) (-4 *3 (-1180)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-703)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-703)))) (-1706 (*1 *2 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-1018)))) (-4050 (*1 *2 *1 *1) (-12 (-4 *1 (-1224 *3)) (-4 *3 (-1180)) (-4 *3 (-1018)) (-5 *2 (-665 *3)))) (-2168 (*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-1018)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-973)) (-4 *2 (-1018)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-973)) (-4 *2 (-1018)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2486 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3769 ($ (-747))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2500 ($ $)) (-15 -2500 ($ $ $)) (-15 * ($ (-549) $))) |%noBranch|) (IF (|has| |t#1| (-703)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-15 -1706 (|t#1| $ $)) (-15 -4050 ((-665 |t#1|) $ $)) (-15 -2168 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-973)) (IF (|has| |t#1| (-1018)) (PROGN (-15 -4210 (|t#1| $)) (-15 -3359 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-101) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-593 (-834)) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823)) (|has| |#1| (-593 (-834)))) ((-149 |#1|) . T) ((-594 (-525)) |has| |#1| (-594 (-525))) ((-279 #0=(-549) |#1|) . T) ((-281 #0# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-366 |#1|) . T) ((-481 |#1|) . T) ((-584 #0# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))) ((-627 |#1|) . T) ((-19 |#1|) . T) ((-823) |has| |#1| (-823)) ((-1067) -1536 (|has| |#1| (-1067)) (|has| |#1| (-823))) ((-1180) . T))
+((-3804 (((-1226 |#2|) (-1 |#2| |#1| |#2|) (-1226 |#1|) |#2|) 13)) (-2557 ((|#2| (-1 |#2| |#1| |#2|) (-1226 |#1|) |#2|) 15)) (-2797 (((-3 (-1226 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1226 |#1|)) 28) (((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 18)))
+(((-1225 |#1| |#2|) (-10 -7 (-15 -3804 ((-1226 |#2|) (-1 |#2| |#1| |#2|) (-1226 |#1|) |#2|)) (-15 -2557 (|#2| (-1 |#2| |#1| |#2|) (-1226 |#1|) |#2|)) (-15 -2797 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (-15 -2797 ((-3 (-1226 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1226 |#1|)))) (-1180) (-1180)) (T -1225))
+((-2797 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1226 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-1226 *6)) (-5 *1 (-1225 *5 *6)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-1226 *6)) (-5 *1 (-1225 *5 *6)))) (-2557 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1226 *5)) (-4 *5 (-1180)) (-4 *2 (-1180)) (-5 *1 (-1225 *5 *2)))) (-3804 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1226 *6)) (-4 *6 (-1180)) (-4 *5 (-1180)) (-5 *2 (-1226 *5)) (-5 *1 (-1225 *6 *5)))))
+(-10 -7 (-15 -3804 ((-1226 |#2|) (-1 |#2| |#1| |#2|) (-1226 |#1|) |#2|)) (-15 -2557 (|#2| (-1 |#2| |#1| |#2|) (-1226 |#1|) |#2|)) (-15 -2797 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (-15 -2797 ((-3 (-1226 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1226 |#1|))))
+((-3834 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-3769 (($ (-747)) NIL (|has| |#1| (-23)))) (-3445 (($ (-621 |#1|)) 9)) (-1535 (((-1231) $ (-549) (-549)) NIL (|has| $ (-6 -4338)))) (-4142 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-823)))) (-4311 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4338))) (($ $) NIL (-12 (|has| $ (-6 -4338)) (|has| |#1| (-823))))) (-3193 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-823)))) (-1584 (((-112) $ (-747)) NIL)) (-2254 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338))) ((|#1| $ (-1193 (-549)) |#1|) NIL (|has| $ (-6 -4338)))) (-1489 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-1682 (($) NIL T CONST)) (-1585 (($ $) NIL (|has| $ (-6 -4338)))) (-3064 (($ $) NIL)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-3812 (($ |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2557 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4337))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4337)))) (-1879 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4338)))) (-1809 ((|#1| $ (-549)) NIL)) (-2883 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1067))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1067)))) (-2989 (((-621 |#1|) $) 15 (|has| $ (-6 -4337)))) (-4050 (((-665 |#1|) $ $) NIL (|has| |#1| (-1018)))) (-3743 (($ (-747) |#1|) NIL)) (-3194 (((-112) $ (-747)) NIL)) (-4031 (((-549) $) NIL (|has| (-549) (-823)))) (-2863 (($ $ $) NIL (|has| |#1| (-823)))) (-3890 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-823)))) (-1562 (((-621 |#1|) $) NIL (|has| $ (-6 -4337)))) (-2090 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-1569 (((-549) $) NIL (|has| (-549) (-823)))) (-3575 (($ $ $) NIL (|has| |#1| (-823)))) (-1868 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3359 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-1508 (((-112) $ (-747)) NIL)) (-4210 ((|#1| $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1018))))) (-3851 (((-1125) $) NIL (|has| |#1| (-1067)))) (-2616 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-3303 (((-621 (-549)) $) NIL)) (-3761 (((-112) (-549) $) NIL)) (-3990 (((-1087) $) NIL (|has| |#1| (-1067)))) (-3646 ((|#1| $) NIL (|has| (-549) (-823)))) (-3779 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1642 (($ $ |#1|) NIL (|has| $ (-6 -4338)))) (-1780 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 (-287 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-287 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067)))) (($ $ (-621 |#1|) (-621 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1067))))) (-4144 (((-112) $ $) NIL)) (-2265 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2696 (((-621 |#1|) $) NIL)) (-3670 (((-112) $) NIL)) (-3742 (($) NIL)) (-3341 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-1706 ((|#1| $ $) NIL (|has| |#1| (-1018)))) (-2167 (($ $ (-549)) NIL) (($ $ (-1193 (-549))) NIL)) (-2168 (($ $ $) NIL (|has| |#1| (-1018)))) (-4000 (((-747) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337))) (((-747) |#1| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#1| (-1067))))) (-2730 (($ $ $ (-549)) NIL (|has| $ (-6 -4338)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) 19 (|has| |#1| (-594 (-525))))) (-3854 (($ (-621 |#1|)) 8)) (-1952 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-621 $)) NIL)) (-3846 (((-834) $) NIL (|has| |#1| (-593 (-834))))) (-3527 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4337)))) (-2448 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2425 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2389 (((-112) $ $) NIL (|has| |#1| (-1067)))) (-2438 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2412 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2500 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2486 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-549) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-703))) (($ $ |#1|) NIL (|has| |#1| (-703)))) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1226 |#1|) (-13 (-1224 |#1|) (-10 -8 (-15 -3445 ($ (-621 |#1|))))) (-1180)) (T -1226))
+((-3445 (*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-1226 *3)))))
+(-13 (-1224 |#1|) (-10 -8 (-15 -3445 ($ (-621 |#1|)))))
+((-3834 (((-112) $ $) NIL)) (-2525 (((-1125) $ (-1125)) 90) (((-1125) $ (-1125) (-1125)) 88) (((-1125) $ (-1125) (-621 (-1125))) 87)) (-2116 (($) 59)) (-2825 (((-1231) $ (-460) (-892)) 45)) (-2036 (((-1231) $ (-892) (-1125)) 73) (((-1231) $ (-892) (-845)) 74)) (-2783 (((-1231) $ (-892) (-372) (-372)) 48)) (-1596 (((-1231) $ (-1125)) 69)) (-2886 (((-1231) $ (-892) (-1125)) 78)) (-2945 (((-1231) $ (-892) (-372) (-372)) 49)) (-2120 (((-1231) $ (-892) (-892)) 46)) (-2498 (((-1231) $) 70)) (-1724 (((-1231) $ (-892) (-1125)) 77)) (-1727 (((-1231) $ (-460) (-892)) 31)) (-4115 (((-1231) $ (-892) (-1125)) 76)) (-1487 (((-621 (-256)) $) 23) (($ $ (-621 (-256))) 24)) (-2106 (((-1231) $ (-747) (-747)) 43)) (-1858 (($ $) 60) (($ (-460) (-621 (-256))) 61)) (-3851 (((-1125) $) NIL)) (-3337 (((-549) $) 38)) (-3990 (((-1087) $) NIL)) (-1857 (((-1226 (-3 (-460) "undefined")) $) 37)) (-1260 (((-1226 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4115 (-549)) (|:| -2791 (-549)) (|:| |spline| (-549)) (|:| -1669 (-549)) (|:| |axesColor| (-845)) (|:| -2036 (-549)) (|:| |unitsColor| (-845)) (|:| |showing| (-549)))) $) 36)) (-1816 (((-1231) $ (-892) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-845) (-549) (-845) (-549)) 68)) (-3538 (((-621 (-914 (-219))) $) NIL)) (-3057 (((-460) $ (-892)) 33)) (-1405 (((-1231) $ (-747) (-747) (-892) (-892)) 40)) (-2035 (((-1231) $ (-1125)) 79)) (-2791 (((-1231) $ (-892) (-1125)) 75)) (-3846 (((-834) $) 85)) (-2681 (((-1231) $) 80)) (-1669 (((-1231) $ (-892) (-1125)) 71) (((-1231) $ (-892) (-845)) 72)) (-2389 (((-112) $ $) NIL)))
+(((-1227) (-13 (-1067) (-10 -8 (-15 -3538 ((-621 (-914 (-219))) $)) (-15 -2116 ($)) (-15 -1858 ($ $)) (-15 -1487 ((-621 (-256)) $)) (-15 -1487 ($ $ (-621 (-256)))) (-15 -1858 ($ (-460) (-621 (-256)))) (-15 -1816 ((-1231) $ (-892) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-845) (-549) (-845) (-549))) (-15 -1260 ((-1226 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4115 (-549)) (|:| -2791 (-549)) (|:| |spline| (-549)) (|:| -1669 (-549)) (|:| |axesColor| (-845)) (|:| -2036 (-549)) (|:| |unitsColor| (-845)) (|:| |showing| (-549)))) $)) (-15 -1857 ((-1226 (-3 (-460) "undefined")) $)) (-15 -1596 ((-1231) $ (-1125))) (-15 -1727 ((-1231) $ (-460) (-892))) (-15 -3057 ((-460) $ (-892))) (-15 -1669 ((-1231) $ (-892) (-1125))) (-15 -1669 ((-1231) $ (-892) (-845))) (-15 -2036 ((-1231) $ (-892) (-1125))) (-15 -2036 ((-1231) $ (-892) (-845))) (-15 -4115 ((-1231) $ (-892) (-1125))) (-15 -1724 ((-1231) $ (-892) (-1125))) (-15 -2791 ((-1231) $ (-892) (-1125))) (-15 -2035 ((-1231) $ (-1125))) (-15 -2681 ((-1231) $)) (-15 -1405 ((-1231) $ (-747) (-747) (-892) (-892))) (-15 -2945 ((-1231) $ (-892) (-372) (-372))) (-15 -2783 ((-1231) $ (-892) (-372) (-372))) (-15 -2886 ((-1231) $ (-892) (-1125))) (-15 -2106 ((-1231) $ (-747) (-747))) (-15 -2825 ((-1231) $ (-460) (-892))) (-15 -2120 ((-1231) $ (-892) (-892))) (-15 -2525 ((-1125) $ (-1125))) (-15 -2525 ((-1125) $ (-1125) (-1125))) (-15 -2525 ((-1125) $ (-1125) (-621 (-1125)))) (-15 -2498 ((-1231) $)) (-15 -3337 ((-549) $)) (-15 -3846 ((-834) $))))) (T -1227))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1227)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-621 (-914 (-219)))) (-5 *1 (-1227)))) (-2116 (*1 *1) (-5 *1 (-1227))) (-1858 (*1 *1 *1) (-5 *1 (-1227))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1227)))) (-1487 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1227)))) (-1858 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-621 (-256))) (-5 *1 (-1227)))) (-1816 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-892)) (-5 *4 (-219)) (-5 *5 (-549)) (-5 *6 (-845)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-1260 (*1 *2 *1) (-12 (-5 *2 (-1226 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4115 (-549)) (|:| -2791 (-549)) (|:| |spline| (-549)) (|:| -1669 (-549)) (|:| |axesColor| (-845)) (|:| -2036 (-549)) (|:| |unitsColor| (-845)) (|:| |showing| (-549))))) (-5 *1 (-1227)))) (-1857 (*1 *2 *1) (-12 (-5 *2 (-1226 (-3 (-460) "undefined"))) (-5 *1 (-1227)))) (-1596 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-1727 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-892)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-3057 (*1 *2 *1 *3) (-12 (-5 *3 (-892)) (-5 *2 (-460)) (-5 *1 (-1227)))) (-1669 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-1669 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-845)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-2036 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-2036 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-845)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-4115 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-1724 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-2791 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-2035 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-1227)))) (-1405 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-747)) (-5 *4 (-892)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-2945 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-892)) (-5 *4 (-372)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-2783 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-892)) (-5 *4 (-372)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-2886 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-892)) (-5 *4 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-2106 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-2825 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-892)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-2120 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1231)) (-5 *1 (-1227)))) (-2525 (*1 *2 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1227)))) (-2525 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1227)))) (-2525 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-621 (-1125))) (-5 *2 (-1125)) (-5 *1 (-1227)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-1227)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1227)))))
+(-13 (-1067) (-10 -8 (-15 -3538 ((-621 (-914 (-219))) $)) (-15 -2116 ($)) (-15 -1858 ($ $)) (-15 -1487 ((-621 (-256)) $)) (-15 -1487 ($ $ (-621 (-256)))) (-15 -1858 ($ (-460) (-621 (-256)))) (-15 -1816 ((-1231) $ (-892) (-219) (-219) (-219) (-219) (-549) (-549) (-549) (-549) (-845) (-549) (-845) (-549))) (-15 -1260 ((-1226 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4115 (-549)) (|:| -2791 (-549)) (|:| |spline| (-549)) (|:| -1669 (-549)) (|:| |axesColor| (-845)) (|:| -2036 (-549)) (|:| |unitsColor| (-845)) (|:| |showing| (-549)))) $)) (-15 -1857 ((-1226 (-3 (-460) "undefined")) $)) (-15 -1596 ((-1231) $ (-1125))) (-15 -1727 ((-1231) $ (-460) (-892))) (-15 -3057 ((-460) $ (-892))) (-15 -1669 ((-1231) $ (-892) (-1125))) (-15 -1669 ((-1231) $ (-892) (-845))) (-15 -2036 ((-1231) $ (-892) (-1125))) (-15 -2036 ((-1231) $ (-892) (-845))) (-15 -4115 ((-1231) $ (-892) (-1125))) (-15 -1724 ((-1231) $ (-892) (-1125))) (-15 -2791 ((-1231) $ (-892) (-1125))) (-15 -2035 ((-1231) $ (-1125))) (-15 -2681 ((-1231) $)) (-15 -1405 ((-1231) $ (-747) (-747) (-892) (-892))) (-15 -2945 ((-1231) $ (-892) (-372) (-372))) (-15 -2783 ((-1231) $ (-892) (-372) (-372))) (-15 -2886 ((-1231) $ (-892) (-1125))) (-15 -2106 ((-1231) $ (-747) (-747))) (-15 -2825 ((-1231) $ (-460) (-892))) (-15 -2120 ((-1231) $ (-892) (-892))) (-15 -2525 ((-1125) $ (-1125))) (-15 -2525 ((-1125) $ (-1125) (-1125))) (-15 -2525 ((-1125) $ (-1125) (-621 (-1125)))) (-15 -2498 ((-1231) $)) (-15 -3337 ((-549) $)) (-15 -3846 ((-834) $))))
+((-3834 (((-112) $ $) NIL)) (-2740 (((-1231) $ (-372)) 140) (((-1231) $ (-372) (-372) (-372)) 141)) (-2525 (((-1125) $ (-1125)) 148) (((-1125) $ (-1125) (-1125)) 146) (((-1125) $ (-1125) (-621 (-1125))) 145)) (-1384 (($) 50)) (-1491 (((-1231) $ (-372) (-372) (-372) (-372) (-372)) 116) (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $) 114) (((-1231) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 115) (((-1231) $ (-549) (-549) (-372) (-372) (-372)) 117) (((-1231) $ (-372) (-372)) 118) (((-1231) $ (-372) (-372) (-372)) 125)) (-2012 (((-372)) 97) (((-372) (-372)) 98)) (-2444 (((-372)) 92) (((-372) (-372)) 94)) (-1960 (((-372)) 95) (((-372) (-372)) 96)) (-3616 (((-372)) 101) (((-372) (-372)) 102)) (-2271 (((-372)) 99) (((-372) (-372)) 100)) (-2783 (((-1231) $ (-372) (-372)) 142)) (-1596 (((-1231) $ (-1125)) 126)) (-3368 (((-1100 (-219)) $) 51) (($ $ (-1100 (-219))) 52)) (-3976 (((-1231) $ (-1125)) 154)) (-1389 (((-1231) $ (-1125)) 155)) (-3387 (((-1231) $ (-372) (-372)) 124) (((-1231) $ (-549) (-549)) 139)) (-2120 (((-1231) $ (-892) (-892)) 132)) (-2498 (((-1231) $) 112)) (-3243 (((-1231) $ (-1125)) 153)) (-1906 (((-1231) $ (-1125)) 109)) (-1487 (((-621 (-256)) $) 53) (($ $ (-621 (-256))) 54)) (-2106 (((-1231) $ (-747) (-747)) 131)) (-2986 (((-1231) $ (-747) (-914 (-219))) 160)) (-2614 (($ $) 56) (($ (-1100 (-219)) (-1125)) 57) (($ (-1100 (-219)) (-621 (-256))) 58)) (-1773 (((-1231) $ (-372) (-372) (-372)) 106)) (-3851 (((-1125) $) NIL)) (-3337 (((-549) $) 103)) (-4235 (((-1231) $ (-372)) 143)) (-4209 (((-1231) $ (-372)) 158)) (-3990 (((-1087) $) NIL)) (-2564 (((-1231) $ (-372)) 157)) (-2178 (((-1231) $ (-1125)) 111)) (-1405 (((-1231) $ (-747) (-747) (-892) (-892)) 130)) (-4019 (((-1231) $ (-1125)) 108)) (-2035 (((-1231) $ (-1125)) 110)) (-2148 (((-1231) $ (-155) (-155)) 129)) (-3846 (((-834) $) 137)) (-2681 (((-1231) $) 113)) (-3338 (((-1231) $ (-1125)) 156)) (-1669 (((-1231) $ (-1125)) 107)) (-2389 (((-112) $ $) NIL)))
+(((-1228) (-13 (-1067) (-10 -8 (-15 -2444 ((-372))) (-15 -2444 ((-372) (-372))) (-15 -1960 ((-372))) (-15 -1960 ((-372) (-372))) (-15 -2012 ((-372))) (-15 -2012 ((-372) (-372))) (-15 -2271 ((-372))) (-15 -2271 ((-372) (-372))) (-15 -3616 ((-372))) (-15 -3616 ((-372) (-372))) (-15 -1384 ($)) (-15 -2614 ($ $)) (-15 -2614 ($ (-1100 (-219)) (-1125))) (-15 -2614 ($ (-1100 (-219)) (-621 (-256)))) (-15 -3368 ((-1100 (-219)) $)) (-15 -3368 ($ $ (-1100 (-219)))) (-15 -2986 ((-1231) $ (-747) (-914 (-219)))) (-15 -1487 ((-621 (-256)) $)) (-15 -1487 ($ $ (-621 (-256)))) (-15 -2106 ((-1231) $ (-747) (-747))) (-15 -2120 ((-1231) $ (-892) (-892))) (-15 -1596 ((-1231) $ (-1125))) (-15 -1405 ((-1231) $ (-747) (-747) (-892) (-892))) (-15 -1491 ((-1231) $ (-372) (-372) (-372) (-372) (-372))) (-15 -1491 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -1491 ((-1231) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1491 ((-1231) $ (-549) (-549) (-372) (-372) (-372))) (-15 -1491 ((-1231) $ (-372) (-372))) (-15 -1491 ((-1231) $ (-372) (-372) (-372))) (-15 -2035 ((-1231) $ (-1125))) (-15 -1669 ((-1231) $ (-1125))) (-15 -4019 ((-1231) $ (-1125))) (-15 -1906 ((-1231) $ (-1125))) (-15 -2178 ((-1231) $ (-1125))) (-15 -3387 ((-1231) $ (-372) (-372))) (-15 -3387 ((-1231) $ (-549) (-549))) (-15 -2740 ((-1231) $ (-372))) (-15 -2740 ((-1231) $ (-372) (-372) (-372))) (-15 -2783 ((-1231) $ (-372) (-372))) (-15 -3243 ((-1231) $ (-1125))) (-15 -2564 ((-1231) $ (-372))) (-15 -4209 ((-1231) $ (-372))) (-15 -3976 ((-1231) $ (-1125))) (-15 -1389 ((-1231) $ (-1125))) (-15 -3338 ((-1231) $ (-1125))) (-15 -1773 ((-1231) $ (-372) (-372) (-372))) (-15 -4235 ((-1231) $ (-372))) (-15 -2498 ((-1231) $)) (-15 -2148 ((-1231) $ (-155) (-155))) (-15 -2525 ((-1125) $ (-1125))) (-15 -2525 ((-1125) $ (-1125) (-1125))) (-15 -2525 ((-1125) $ (-1125) (-621 (-1125)))) (-15 -2681 ((-1231) $)) (-15 -3337 ((-549) $))))) (T -1228))
+((-2444 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))) (-2444 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))) (-1960 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))) (-1960 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))) (-2012 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))) (-2012 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))) (-2271 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))) (-2271 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))) (-3616 (*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))) (-3616 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))) (-1384 (*1 *1) (-5 *1 (-1228))) (-2614 (*1 *1 *1) (-5 *1 (-1228))) (-2614 (*1 *1 *2 *3) (-12 (-5 *2 (-1100 (-219))) (-5 *3 (-1125)) (-5 *1 (-1228)))) (-2614 (*1 *1 *2 *3) (-12 (-5 *2 (-1100 (-219))) (-5 *3 (-621 (-256))) (-5 *1 (-1228)))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-1100 (-219))) (-5 *1 (-1228)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-219))) (-5 *1 (-1228)))) (-2986 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-914 (-219))) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1228)))) (-1487 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1228)))) (-2106 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-2120 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-1596 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-1405 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-747)) (-5 *4 (-892)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-1491 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-1228)))) (-1491 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-1491 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-549)) (-5 *4 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-1491 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-1491 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-2035 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-1669 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-4019 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-1906 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-2178 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-3387 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-3387 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-2740 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-2740 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-2783 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-3243 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-2564 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-4209 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-3976 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-1389 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-3338 (*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-1773 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-4235 (*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-1228)))) (-2148 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1231)) (-5 *1 (-1228)))) (-2525 (*1 *2 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1228)))) (-2525 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1228)))) (-2525 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-621 (-1125))) (-5 *2 (-1125)) (-5 *1 (-1228)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-1228)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1228)))))
+(-13 (-1067) (-10 -8 (-15 -2444 ((-372))) (-15 -2444 ((-372) (-372))) (-15 -1960 ((-372))) (-15 -1960 ((-372) (-372))) (-15 -2012 ((-372))) (-15 -2012 ((-372) (-372))) (-15 -2271 ((-372))) (-15 -2271 ((-372) (-372))) (-15 -3616 ((-372))) (-15 -3616 ((-372) (-372))) (-15 -1384 ($)) (-15 -2614 ($ $)) (-15 -2614 ($ (-1100 (-219)) (-1125))) (-15 -2614 ($ (-1100 (-219)) (-621 (-256)))) (-15 -3368 ((-1100 (-219)) $)) (-15 -3368 ($ $ (-1100 (-219)))) (-15 -2986 ((-1231) $ (-747) (-914 (-219)))) (-15 -1487 ((-621 (-256)) $)) (-15 -1487 ($ $ (-621 (-256)))) (-15 -2106 ((-1231) $ (-747) (-747))) (-15 -2120 ((-1231) $ (-892) (-892))) (-15 -1596 ((-1231) $ (-1125))) (-15 -1405 ((-1231) $ (-747) (-747) (-892) (-892))) (-15 -1491 ((-1231) $ (-372) (-372) (-372) (-372) (-372))) (-15 -1491 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -1491 ((-1231) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -1491 ((-1231) $ (-549) (-549) (-372) (-372) (-372))) (-15 -1491 ((-1231) $ (-372) (-372))) (-15 -1491 ((-1231) $ (-372) (-372) (-372))) (-15 -2035 ((-1231) $ (-1125))) (-15 -1669 ((-1231) $ (-1125))) (-15 -4019 ((-1231) $ (-1125))) (-15 -1906 ((-1231) $ (-1125))) (-15 -2178 ((-1231) $ (-1125))) (-15 -3387 ((-1231) $ (-372) (-372))) (-15 -3387 ((-1231) $ (-549) (-549))) (-15 -2740 ((-1231) $ (-372))) (-15 -2740 ((-1231) $ (-372) (-372) (-372))) (-15 -2783 ((-1231) $ (-372) (-372))) (-15 -3243 ((-1231) $ (-1125))) (-15 -2564 ((-1231) $ (-372))) (-15 -4209 ((-1231) $ (-372))) (-15 -3976 ((-1231) $ (-1125))) (-15 -1389 ((-1231) $ (-1125))) (-15 -3338 ((-1231) $ (-1125))) (-15 -1773 ((-1231) $ (-372) (-372) (-372))) (-15 -4235 ((-1231) $ (-372))) (-15 -2498 ((-1231) $)) (-15 -2148 ((-1231) $ (-155) (-155))) (-15 -2525 ((-1125) $ (-1125))) (-15 -2525 ((-1125) $ (-1125) (-1125))) (-15 -2525 ((-1125) $ (-1125) (-621 (-1125)))) (-15 -2681 ((-1231) $)) (-15 -3337 ((-549) $))))
+((-3361 (((-621 (-1125)) (-621 (-1125))) 94) (((-621 (-1125))) 90)) (-3512 (((-621 (-1125))) 88)) (-1593 (((-621 (-892)) (-621 (-892))) 63) (((-621 (-892))) 60)) (-3579 (((-621 (-747)) (-621 (-747))) 57) (((-621 (-747))) 53)) (-3279 (((-1231)) 65)) (-2677 (((-892) (-892)) 81) (((-892)) 80)) (-3966 (((-892) (-892)) 79) (((-892)) 78)) (-3087 (((-845) (-845)) 75) (((-845)) 74)) (-1363 (((-219)) 85) (((-219) (-372)) 87)) (-1604 (((-892)) 82) (((-892) (-892)) 83)) (-2541 (((-892) (-892)) 77) (((-892)) 76)) (-1421 (((-845) (-845)) 69) (((-845)) 67)) (-1342 (((-845) (-845)) 71) (((-845)) 70)) (-3756 (((-845) (-845)) 73) (((-845)) 72)))
+(((-1229) (-10 -7 (-15 -1421 ((-845))) (-15 -1421 ((-845) (-845))) (-15 -1342 ((-845))) (-15 -1342 ((-845) (-845))) (-15 -3756 ((-845))) (-15 -3756 ((-845) (-845))) (-15 -3087 ((-845))) (-15 -3087 ((-845) (-845))) (-15 -2541 ((-892))) (-15 -2541 ((-892) (-892))) (-15 -3579 ((-621 (-747)))) (-15 -3579 ((-621 (-747)) (-621 (-747)))) (-15 -1593 ((-621 (-892)))) (-15 -1593 ((-621 (-892)) (-621 (-892)))) (-15 -3279 ((-1231))) (-15 -3361 ((-621 (-1125)))) (-15 -3361 ((-621 (-1125)) (-621 (-1125)))) (-15 -3512 ((-621 (-1125)))) (-15 -3966 ((-892))) (-15 -2677 ((-892))) (-15 -3966 ((-892) (-892))) (-15 -2677 ((-892) (-892))) (-15 -1604 ((-892) (-892))) (-15 -1604 ((-892))) (-15 -1363 ((-219) (-372))) (-15 -1363 ((-219))))) (T -1229))
+((-1363 (*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1229)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-1229)))) (-1604 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229)))) (-1604 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229)))) (-2677 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229)))) (-3966 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229)))) (-2677 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229)))) (-3966 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229)))) (-3512 (*1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1229)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1229)))) (-3361 (*1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1229)))) (-3279 (*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1229)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1229)))) (-1593 (*1 *2) (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1229)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-621 (-747))) (-5 *1 (-1229)))) (-3579 (*1 *2) (-12 (-5 *2 (-621 (-747))) (-5 *1 (-1229)))) (-2541 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229)))) (-2541 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229)))) (-3087 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-3087 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-3756 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-3756 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-1342 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-1342 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-1421 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))) (-1421 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))))
+(-10 -7 (-15 -1421 ((-845))) (-15 -1421 ((-845) (-845))) (-15 -1342 ((-845))) (-15 -1342 ((-845) (-845))) (-15 -3756 ((-845))) (-15 -3756 ((-845) (-845))) (-15 -3087 ((-845))) (-15 -3087 ((-845) (-845))) (-15 -2541 ((-892))) (-15 -2541 ((-892) (-892))) (-15 -3579 ((-621 (-747)))) (-15 -3579 ((-621 (-747)) (-621 (-747)))) (-15 -1593 ((-621 (-892)))) (-15 -1593 ((-621 (-892)) (-621 (-892)))) (-15 -3279 ((-1231))) (-15 -3361 ((-621 (-1125)))) (-15 -3361 ((-621 (-1125)) (-621 (-1125)))) (-15 -3512 ((-621 (-1125)))) (-15 -3966 ((-892))) (-15 -2677 ((-892))) (-15 -3966 ((-892) (-892))) (-15 -2677 ((-892) (-892))) (-15 -1604 ((-892) (-892))) (-15 -1604 ((-892))) (-15 -1363 ((-219) (-372))) (-15 -1363 ((-219))))
+((-3606 (((-460) (-621 (-621 (-914 (-219)))) (-621 (-256))) 21) (((-460) (-621 (-621 (-914 (-219))))) 20) (((-460) (-621 (-621 (-914 (-219)))) (-845) (-845) (-892) (-621 (-256))) 19)) (-1481 (((-1227) (-621 (-621 (-914 (-219)))) (-621 (-256))) 27) (((-1227) (-621 (-621 (-914 (-219)))) (-845) (-845) (-892) (-621 (-256))) 26)) (-3846 (((-1227) (-460)) 38)))
+(((-1230) (-10 -7 (-15 -3606 ((-460) (-621 (-621 (-914 (-219)))) (-845) (-845) (-892) (-621 (-256)))) (-15 -3606 ((-460) (-621 (-621 (-914 (-219)))))) (-15 -3606 ((-460) (-621 (-621 (-914 (-219)))) (-621 (-256)))) (-15 -1481 ((-1227) (-621 (-621 (-914 (-219)))) (-845) (-845) (-892) (-621 (-256)))) (-15 -1481 ((-1227) (-621 (-621 (-914 (-219)))) (-621 (-256)))) (-15 -3846 ((-1227) (-460))))) (T -1230))
+((-3846 (*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1227)) (-5 *1 (-1230)))) (-1481 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-1230)))) (-1481 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-845)) (-5 *5 (-892)) (-5 *6 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-1230)))) (-3606 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-621 (-256))) (-5 *2 (-460)) (-5 *1 (-1230)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *2 (-460)) (-5 *1 (-1230)))) (-3606 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-845)) (-5 *5 (-892)) (-5 *6 (-621 (-256))) (-5 *2 (-460)) (-5 *1 (-1230)))))
+(-10 -7 (-15 -3606 ((-460) (-621 (-621 (-914 (-219)))) (-845) (-845) (-892) (-621 (-256)))) (-15 -3606 ((-460) (-621 (-621 (-914 (-219)))))) (-15 -3606 ((-460) (-621 (-621 (-914 (-219)))) (-621 (-256)))) (-15 -1481 ((-1227) (-621 (-621 (-914 (-219)))) (-845) (-845) (-892) (-621 (-256)))) (-15 -1481 ((-1227) (-621 (-621 (-914 (-219)))) (-621 (-256)))) (-15 -3846 ((-1227) (-460))))
+((-2903 (($) 7)) (-3846 (((-834) $) 10)))
+(((-1231) (-10 -8 (-15 -2903 ($)) (-15 -3846 ((-834) $)))) (T -1231))
+((-3846 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1231)))) (-2903 (*1 *1) (-5 *1 (-1231))))
+(-10 -8 (-15 -2903 ($)) (-15 -3846 ((-834) $)))
+((-2513 (($ $ |#2|) 10)))
+(((-1232 |#1| |#2|) (-10 -8 (-15 -2513 (|#1| |#1| |#2|))) (-1233 |#2|) (-356)) (T -1232))
+NIL
+(-10 -8 (-15 -2513 (|#1| |#1| |#2|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2985 (((-133)) 28)) (-3846 (((-834) $) 11)) (-3276 (($) 18 T CONST)) (-2389 (((-112) $ $) 6)) (-2513 (($ $ |#1|) 29)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-1233 |#1|) (-138) (-356)) (T -1233))
+((-2513 (*1 *1 *1 *2) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-356)))) (-2985 (*1 *2) (-12 (-4 *1 (-1233 *3)) (-4 *3 (-356)) (-5 *2 (-133)))))
+(-13 (-694 |t#1|) (-10 -8 (-15 -2513 ($ $ |t#1|)) (-15 -2985 ((-133)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-694 |#1|) . T) ((-1024 |#1|) . T) ((-1067) . T))
+((-4244 (((-621 (-1174 |#1|)) (-1143) (-1174 |#1|)) 74)) (-2674 (((-1123 (-1123 (-923 |#1|))) (-1143) (-1123 (-923 |#1|))) 53)) (-1984 (((-1 (-1123 (-1174 |#1|)) (-1123 (-1174 |#1|))) (-747) (-1174 |#1|) (-1123 (-1174 |#1|))) 64)) (-3296 (((-1 (-1123 (-923 |#1|)) (-1123 (-923 |#1|))) (-747)) 55)) (-4237 (((-1 (-1139 (-923 |#1|)) (-923 |#1|)) (-1143)) 29)) (-4076 (((-1 (-1123 (-923 |#1|)) (-1123 (-923 |#1|))) (-747)) 54)))
+(((-1234 |#1|) (-10 -7 (-15 -3296 ((-1 (-1123 (-923 |#1|)) (-1123 (-923 |#1|))) (-747))) (-15 -4076 ((-1 (-1123 (-923 |#1|)) (-1123 (-923 |#1|))) (-747))) (-15 -2674 ((-1123 (-1123 (-923 |#1|))) (-1143) (-1123 (-923 |#1|)))) (-15 -4237 ((-1 (-1139 (-923 |#1|)) (-923 |#1|)) (-1143))) (-15 -4244 ((-621 (-1174 |#1|)) (-1143) (-1174 |#1|))) (-15 -1984 ((-1 (-1123 (-1174 |#1|)) (-1123 (-1174 |#1|))) (-747) (-1174 |#1|) (-1123 (-1174 |#1|))))) (-356)) (T -1234))
+((-1984 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-747)) (-4 *6 (-356)) (-5 *4 (-1174 *6)) (-5 *2 (-1 (-1123 *4) (-1123 *4))) (-5 *1 (-1234 *6)) (-5 *5 (-1123 *4)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-4 *5 (-356)) (-5 *2 (-621 (-1174 *5))) (-5 *1 (-1234 *5)) (-5 *4 (-1174 *5)))) (-4237 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1 (-1139 (-923 *4)) (-923 *4))) (-5 *1 (-1234 *4)) (-4 *4 (-356)))) (-2674 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-4 *5 (-356)) (-5 *2 (-1123 (-1123 (-923 *5)))) (-5 *1 (-1234 *5)) (-5 *4 (-1123 (-923 *5))))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1123 (-923 *4)) (-1123 (-923 *4)))) (-5 *1 (-1234 *4)) (-4 *4 (-356)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1123 (-923 *4)) (-1123 (-923 *4)))) (-5 *1 (-1234 *4)) (-4 *4 (-356)))))
+(-10 -7 (-15 -3296 ((-1 (-1123 (-923 |#1|)) (-1123 (-923 |#1|))) (-747))) (-15 -4076 ((-1 (-1123 (-923 |#1|)) (-1123 (-923 |#1|))) (-747))) (-15 -2674 ((-1123 (-1123 (-923 |#1|))) (-1143) (-1123 (-923 |#1|)))) (-15 -4237 ((-1 (-1139 (-923 |#1|)) (-923 |#1|)) (-1143))) (-15 -4244 ((-621 (-1174 |#1|)) (-1143) (-1174 |#1|))) (-15 -1984 ((-1 (-1123 (-1174 |#1|)) (-1123 (-1174 |#1|))) (-747) (-1174 |#1|) (-1123 (-1174 |#1|)))))
+((-1784 (((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|) 75)) (-1613 (((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|)))) 74)))
+(((-1235 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1613 ((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -1784 ((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|))) (-342) (-1202 |#1|) (-1202 |#2|) (-402 |#2| |#3|)) (T -1235))
+((-1784 (*1 *2 *3) (-12 (-4 *4 (-342)) (-4 *3 (-1202 *4)) (-4 *5 (-1202 *3)) (-5 *2 (-2 (|:| -1949 (-665 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-665 *3)))) (-5 *1 (-1235 *4 *3 *5 *6)) (-4 *6 (-402 *3 *5)))) (-1613 (*1 *2) (-12 (-4 *3 (-342)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 *4)) (-5 *2 (-2 (|:| -1949 (-665 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-665 *4)))) (-5 *1 (-1235 *3 *4 *5 *6)) (-4 *6 (-402 *4 *5)))))
+(-10 -7 (-15 -1613 ((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))))) (-15 -1784 ((-2 (|:| -1949 (-665 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-665 |#2|))) |#2|)))
+((-3834 (((-112) $ $) NIL)) (-4193 (((-1148) $) 11)) (-1426 (((-1148) $) 9)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-1236) (-13 (-1050) (-10 -8 (-15 -1426 ((-1148) $)) (-15 -4193 ((-1148) $))))) (T -1236))
+((-1426 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1236)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1236)))))
+(-13 (-1050) (-10 -8 (-15 -1426 ((-1148) $)) (-15 -4193 ((-1148) $))))
+((-3834 (((-112) $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-1927 (((-1148) $) 9)) (-3846 (((-834) $) NIL) (((-1148) $) NIL)) (-2389 (((-112) $ $) NIL)))
+(((-1237) (-13 (-1050) (-10 -8 (-15 -1927 ((-1148) $))))) (T -1237))
+((-1927 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1237)))))
+(-13 (-1050) (-10 -8 (-15 -1927 ((-1148) $))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 43)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) NIL)) (-2675 (((-112) $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3846 (((-834) $) 64) (($ (-549)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-170)))) (-2082 (((-747)) NIL)) (-3261 (((-1231) (-747)) 16)) (-3276 (($) 27 T CONST)) (-3287 (($) 67 T CONST)) (-2389 (((-112) $ $) 69)) (-2513 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-2500 (($ $) 71) (($ $ $) NIL)) (-2486 (($ $ $) 47)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170)))))
+(((-1238 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3846 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -2513 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3846 ($ |#4|)) (-15 -3261 ((-1231) (-747))))) (-1018) (-823) (-769) (-920 |#1| |#3| |#2|) (-621 |#2|) (-621 (-747)) (-747)) (T -1238))
+((-3846 (*1 *2 *1) (-12 (-4 *2 (-920 *3 *5 *4)) (-5 *1 (-1238 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-621 *4)) (-14 *7 (-621 (-747))) (-14 *8 (-747)))) (-2513 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-823)) (-4 *4 (-769)) (-14 *6 (-621 *3)) (-5 *1 (-1238 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-920 *2 *4 *3)) (-14 *7 (-621 (-747))) (-14 *8 (-747)))) (-3846 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-621 *4)) (-5 *1 (-1238 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-920 *3 *5 *4)) (-14 *7 (-621 (-747))) (-14 *8 (-747)))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-4 *5 (-823)) (-4 *6 (-769)) (-14 *8 (-621 *5)) (-5 *2 (-1231)) (-5 *1 (-1238 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-920 *4 *6 *5)) (-14 *9 (-621 *3)) (-14 *10 *3))))
+(-13 (-1018) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3846 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -2513 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3846 ($ |#4|)) (-15 -3261 ((-1231) (-747)))))
+((-3834 (((-112) $ $) NIL)) (-3514 (((-621 (-2 (|:| -2681 $) (|:| -1359 (-621 |#4|)))) (-621 |#4|)) NIL)) (-2866 (((-621 $) (-621 |#4|)) 88)) (-2272 (((-621 |#3|) $) NIL)) (-3422 (((-112) $) NIL)) (-2527 (((-112) $) NIL (|has| |#1| (-541)))) (-3282 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2731 ((|#4| |#4| $) NIL)) (-3193 (((-2 (|:| |under| $) (|:| -3967 $) (|:| |upper| $)) $ |#3|) NIL)) (-1584 (((-112) $ (-747)) NIL)) (-1489 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1682 (($) NIL T CONST)) (-1433 (((-112) $) NIL (|has| |#1| (-541)))) (-2555 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2595 (((-112) $ $) NIL (|has| |#1| (-541)))) (-2397 (((-112) $) NIL (|has| |#1| (-541)))) (-2737 (((-621 |#4|) (-621 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3269 (((-621 |#4|) (-621 |#4|) $) 25 (|has| |#1| (-541)))) (-2953 (((-621 |#4|) (-621 |#4|) $) NIL (|has| |#1| (-541)))) (-2714 (((-3 $ "failed") (-621 |#4|)) NIL)) (-2659 (($ (-621 |#4|)) NIL)) (-3657 (((-3 $ "failed") $) 70)) (-1903 ((|#4| |#4| $) 75)) (-3676 (($ $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-3812 (($ |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-3675 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-2217 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3615 ((|#4| |#4| $) NIL)) (-2557 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4337))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4337))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1439 (((-2 (|:| -2681 (-621 |#4|)) (|:| -1359 (-621 |#4|))) $) NIL)) (-2989 (((-621 |#4|) $) NIL (|has| $ (-6 -4337)))) (-2812 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2745 ((|#3| $) 76)) (-3194 (((-112) $ (-747)) NIL)) (-1562 (((-621 |#4|) $) 29 (|has| $ (-6 -4337)))) (-2090 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067))))) (-3182 (((-3 $ "failed") (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-621 |#4|)) 35)) (-1868 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4338)))) (-2797 (($ (-1 |#4| |#4|) $) NIL)) (-2561 (((-621 |#3|) $) NIL)) (-2378 (((-112) |#3| $) NIL)) (-1508 (((-112) $ (-747)) NIL)) (-3851 (((-1125) $) NIL)) (-3829 (((-3 |#4| "failed") $) NIL)) (-1638 (((-621 |#4|) $) 50)) (-2170 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3270 ((|#4| |#4| $) 74)) (-2473 (((-112) $ $) 85)) (-4203 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-541)))) (-1335 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4298 ((|#4| |#4| $) NIL)) (-3990 (((-1087) $) NIL)) (-3646 (((-3 |#4| "failed") $) 69)) (-3779 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2640 (((-3 $ "failed") $ |#4|) NIL)) (-2763 (($ $ |#4|) NIL)) (-1780 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-2686 (($ $ (-621 |#4|) (-621 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-287 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067)))) (($ $ (-621 (-287 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1067))))) (-4144 (((-112) $ $) NIL)) (-3670 (((-112) $) 67)) (-3742 (($) 42)) (-3701 (((-747) $) NIL)) (-4000 (((-747) |#4| $) NIL (-12 (|has| $ (-6 -4337)) (|has| |#4| (-1067)))) (((-747) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-2281 (($ $) NIL)) (-2845 (((-525) $) NIL (|has| |#4| (-594 (-525))))) (-3854 (($ (-621 |#4|)) NIL)) (-2858 (($ $ |#3|) NIL)) (-3758 (($ $ |#3|) NIL)) (-1962 (($ $) NIL)) (-4317 (($ $ |#3|) NIL)) (-3846 (((-834) $) NIL) (((-621 |#4|) $) 57)) (-1824 (((-747) $) NIL (|has| |#3| (-361)))) (-2414 (((-3 $ "failed") (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-621 |#4|)) 41)) (-3800 (((-621 $) (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-621 $) (-621 |#4|)) 66)) (-2574 (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2317 (-621 |#4|))) "failed") (-621 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1716 (((-112) $ (-1 (-112) |#4| (-621 |#4|))) NIL)) (-3527 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4337)))) (-3002 (((-621 |#3|) $) NIL)) (-1606 (((-112) |#3| $) NIL)) (-2389 (((-112) $ $) NIL)) (-3775 (((-747) $) NIL (|has| $ (-6 -4337)))))
+(((-1239 |#1| |#2| |#3| |#4|) (-13 (-1173 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3182 ((-3 $ "failed") (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3182 ((-3 $ "failed") (-621 |#4|))) (-15 -2414 ((-3 $ "failed") (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2414 ((-3 $ "failed") (-621 |#4|))) (-15 -3800 ((-621 $) (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3800 ((-621 $) (-621 |#4|))))) (-541) (-769) (-823) (-1032 |#1| |#2| |#3|)) (T -1239))
+((-3182 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-621 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1239 *5 *6 *7 *8)))) (-3182 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1239 *3 *4 *5 *6)))) (-2414 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-621 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1239 *5 *6 *7 *8)))) (-2414 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1239 *3 *4 *5 *6)))) (-3800 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-541)) (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-621 (-1239 *6 *7 *8 *9))) (-5 *1 (-1239 *6 *7 *8 *9)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 (-1239 *4 *5 *6 *7))) (-5 *1 (-1239 *4 *5 *6 *7)))))
+(-13 (-1173 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3182 ((-3 $ "failed") (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3182 ((-3 $ "failed") (-621 |#4|))) (-15 -2414 ((-3 $ "failed") (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2414 ((-3 $ "failed") (-621 |#4|))) (-15 -3800 ((-621 $) (-621 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3800 ((-621 $) (-621 |#4|)))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2001 (((-3 $ "failed") $ $) 19)) (-1682 (($) 17 T CONST)) (-2114 (((-3 $ "failed") $) 32)) (-2675 (((-112) $) 30)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#1|) 36)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37)))
+(((-1240 |#1|) (-138) (-1018)) (T -1240))
+((-3846 (*1 *1 *2) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1018)))))
+(-13 (-1018) (-111 |t#1| |t#1|) (-10 -8 (-15 -3846 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 |#1|) |has| |#1| (-170)) ((-703) . T) ((-1024 |#1|) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T))
+((-3834 (((-112) $ $) 60)) (-1763 (((-112) $) NIL)) (-3304 (((-621 |#1|) $) 45)) (-3210 (($ $ (-747)) 39)) (-2001 (((-3 $ "failed") $ $) NIL)) (-2556 (($ $ (-747)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-1682 (($) NIL T CONST)) (-1869 (($ $ $) 63) (($ $ (-795 |#1|)) 49) (($ $ |#1|) 53)) (-2714 (((-3 (-795 |#1|) "failed") $) NIL)) (-2659 (((-795 |#1|) $) NIL)) (-2070 (($ $) 32)) (-2114 (((-3 $ "failed") $) NIL)) (-3863 (((-112) $) NIL)) (-1440 (($ $) NIL)) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-3526 (($ (-795 |#1|) |#2|) 31)) (-4273 (($ $) 33)) (-3473 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) 12)) (-3674 (((-795 |#1|) $) NIL)) (-2192 (((-795 |#1|) $) 34)) (-2797 (($ (-1 |#2| |#2|) $) NIL)) (-2694 (($ $ $) 62) (($ $ (-795 |#1|)) 51) (($ $ |#1|) 55)) (-3647 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2028 (((-795 |#1|) $) 28)) (-2043 ((|#2| $) 30)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-3701 (((-747) $) 36)) (-2645 (((-112) $) 40)) (-2589 ((|#2| $) NIL)) (-3846 (((-834) $) NIL) (($ (-795 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-549)) NIL)) (-4141 (((-621 |#2|) $) NIL)) (-2152 ((|#2| $ (-795 |#1|)) NIL)) (-1570 ((|#2| $ $) 65) ((|#2| $ (-795 |#1|)) NIL)) (-2082 (((-747)) NIL)) (-3276 (($) 13 T CONST)) (-3287 (($) 15 T CONST)) (-2631 (((-621 (-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2389 (((-112) $ $) 38)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 22)) (** (($ $ (-747)) NIL) (($ $ (-892)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-795 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1241 |#1| |#2|) (-13 (-375 |#2| (-795 |#1|)) (-1247 |#1| |#2|)) (-823) (-1018)) (T -1241))
+NIL
+(-13 (-375 |#2| (-795 |#1|)) (-1247 |#1| |#2|))
+((-3632 ((|#3| |#3| (-747)) 23)) (-2719 ((|#3| |#3| (-747)) 27)) (-1411 ((|#3| |#3| |#3| (-747)) 28)))
+(((-1242 |#1| |#2| |#3|) (-10 -7 (-15 -2719 (|#3| |#3| (-747))) (-15 -3632 (|#3| |#3| (-747))) (-15 -1411 (|#3| |#3| |#3| (-747)))) (-13 (-1018) (-694 (-400 (-549)))) (-823) (-1247 |#2| |#1|)) (T -1242))
+((-1411 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-549))))) (-4 *5 (-823)) (-5 *1 (-1242 *4 *5 *2)) (-4 *2 (-1247 *5 *4)))) (-3632 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-549))))) (-4 *5 (-823)) (-5 *1 (-1242 *4 *5 *2)) (-4 *2 (-1247 *5 *4)))) (-2719 (*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-549))))) (-4 *5 (-823)) (-5 *1 (-1242 *4 *5 *2)) (-4 *2 (-1247 *5 *4)))))
+(-10 -7 (-15 -2719 (|#3| |#3| (-747))) (-15 -3632 (|#3| |#3| (-747))) (-15 -1411 (|#3| |#3| |#3| (-747))))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-3304 (((-621 |#1|) $) 38)) (-2001 (((-3 $ "failed") $ $) 19)) (-2556 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-747)) 40 (|has| |#2| (-170)))) (-1682 (($) 17 T CONST)) (-1869 (($ $ |#1|) 52) (($ $ (-795 |#1|)) 51) (($ $ $) 50)) (-2714 (((-3 (-795 |#1|) "failed") $) 62)) (-2659 (((-795 |#1|) $) 61)) (-2114 (((-3 $ "failed") $) 32)) (-3863 (((-112) $) 43)) (-1440 (($ $) 42)) (-2675 (((-112) $) 30)) (-2205 (((-112) $) 48)) (-3526 (($ (-795 |#1|) |#2|) 49)) (-4273 (($ $) 47)) (-3473 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) 58)) (-3674 (((-795 |#1|) $) 59)) (-2797 (($ (-1 |#2| |#2|) $) 39)) (-2694 (($ $ |#1|) 55) (($ $ (-795 |#1|)) 54) (($ $ $) 53)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-2645 (((-112) $) 45)) (-2589 ((|#2| $) 44)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#2|) 66) (($ (-795 |#1|)) 63) (($ |#1|) 46)) (-1570 ((|#2| $ (-795 |#1|)) 57) ((|#2| $ $) 56)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
+(((-1243 |#1| |#2|) (-138) (-823) (-1018)) (T -1243))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-795 *3)))) (-3473 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-2 (|:| |k| (-795 *3)) (|:| |c| *4))))) (-1570 (*1 *2 *1 *3) (-12 (-5 *3 (-795 *4)) (-4 *1 (-1243 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1018)))) (-1570 (*1 *2 *1 *1) (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) (-2694 (*1 *1 *1 *2) (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-2694 (*1 *1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-2694 (*1 *1 *1 *1) (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-1869 (*1 *1 *1 *2) (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-1869 (*1 *1 *1 *1) (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-3526 (*1 *1 *2 *3) (-12 (-5 *2 (-795 *4)) (-4 *4 (-823)) (-4 *1 (-1243 *4 *3)) (-4 *3 (-1018)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) (-4273 (*1 *1 *1) (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-3846 (*1 *1 *2) (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-112)))) (-1440 (*1 *1 *1) (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))) (-2556 (*1 *1 *1 *1) (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)) (-4 *3 (-170)))) (-2556 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-4 *4 (-170)))) (-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-621 *3)))))
+(-13 (-1018) (-1240 |t#2|) (-1009 (-795 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3674 ((-795 |t#1|) $)) (-15 -3473 ((-2 (|:| |k| (-795 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1570 (|t#2| $ (-795 |t#1|))) (-15 -1570 (|t#2| $ $)) (-15 -2694 ($ $ |t#1|)) (-15 -2694 ($ $ (-795 |t#1|))) (-15 -2694 ($ $ $)) (-15 -1869 ($ $ |t#1|)) (-15 -1869 ($ $ (-795 |t#1|))) (-15 -1869 ($ $ $)) (-15 -3526 ($ (-795 |t#1|) |t#2|)) (-15 -2205 ((-112) $)) (-15 -4273 ($ $)) (-15 -3846 ($ |t#1|)) (-15 -2645 ((-112) $)) (-15 -2589 (|t#2| $)) (-15 -3863 ((-112) $)) (-15 -1440 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -2556 ($ $ $)) (-15 -2556 ($ $ (-747)))) |%noBranch|) (-15 -2797 ($ (-1 |t#2| |t#2|) $)) (-15 -3304 ((-621 |t#1|) $)) (IF (|has| |t#2| (-6 -4330)) (-6 -4330) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#2|) . T) ((-624 $) . T) ((-694 |#2|) |has| |#2| (-170)) ((-703) . T) ((-1009 (-795 |#1|)) . T) ((-1024 |#2|) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1240 |#2|) . T))
+((-2044 (((-112) $) 15)) (-1606 (((-112) $) 14)) (-1933 (($ $) 19) (($ $ (-747)) 20)))
+(((-1244 |#1| |#2|) (-10 -8 (-15 -1933 (|#1| |#1| (-747))) (-15 -1933 (|#1| |#1|)) (-15 -2044 ((-112) |#1|)) (-15 -1606 ((-112) |#1|))) (-1245 |#2|) (-356)) (T -1244))
+NIL
+(-10 -8 (-15 -1933 (|#1| |#1| (-747))) (-15 -1933 (|#1| |#1|)) (-15 -2044 ((-112) |#1|)) (-15 -1606 ((-112) |#1|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-2297 (((-2 (|:| -2207 $) (|:| -4324 $) (|:| |associate| $)) $) 39)) (-2258 (($ $) 38)) (-2799 (((-112) $) 36)) (-2044 (((-112) $) 91)) (-3214 (((-747)) 87)) (-2001 (((-3 $ "failed") $ $) 19)) (-3979 (($ $) 70)) (-2402 (((-411 $) $) 69)) (-3866 (((-112) $ $) 57)) (-1682 (($) 17 T CONST)) (-2714 (((-3 |#1| "failed") $) 98)) (-2659 ((|#1| $) 97)) (-2095 (($ $ $) 53)) (-2114 (((-3 $ "failed") $) 32)) (-2067 (($ $ $) 54)) (-1309 (((-2 (|:| -1570 (-621 $)) (|:| -4248 $)) (-621 $)) 49)) (-3165 (($ $ (-747)) 84 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-1420 (((-112) $) 68)) (-2088 (((-809 (-892)) $) 81 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2675 (((-112) $) 30)) (-2748 (((-3 (-621 $) "failed") (-621 $) $) 50)) (-3697 (($ $ $) 44) (($ (-621 $)) 43)) (-3851 (((-1125) $) 9)) (-1992 (($ $) 67)) (-3980 (((-112) $) 90)) (-3990 (((-1087) $) 10)) (-1721 (((-1139 $) (-1139 $) (-1139 $)) 42)) (-3727 (($ $ $) 46) (($ (-621 $)) 45)) (-2121 (((-411 $) $) 71)) (-3049 (((-809 (-892))) 88)) (-3083 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4248 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2042 (((-3 $ "failed") $ $) 40)) (-3644 (((-3 (-621 $) "failed") (-621 $) $) 48)) (-3684 (((-747) $) 56)) (-3148 (((-2 (|:| -4013 $) (|:| -3675 $)) $ $) 55)) (-3914 (((-3 (-747) "failed") $ $) 82 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2985 (((-133)) 96)) (-3701 (((-809 (-892)) $) 89)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ $) 41) (($ (-400 (-549))) 63) (($ |#1|) 99)) (-2210 (((-3 $ "failed") $) 80 (-1536 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2082 (((-747)) 28)) (-1498 (((-112) $ $) 37)) (-1606 (((-112) $) 92)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-1933 (($ $) 86 (|has| |#1| (-361))) (($ $ (-747)) 85 (|has| |#1| (-361)))) (-2389 (((-112) $ $) 6)) (-2513 (($ $ $) 62) (($ $ |#1|) 95)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31) (($ $ (-549)) 66)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ $ (-400 (-549))) 65) (($ (-400 (-549)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
+(((-1245 |#1|) (-138) (-356)) (T -1245))
+((-1606 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-3980 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-5 *2 (-809 (-892))))) (-3049 (*1 *2) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-5 *2 (-809 (-892))))) (-3214 (*1 *2) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-5 *2 (-747)))) (-1933 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-356)) (-4 *2 (-361)))) (-1933 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-4 *3 (-361)))))
+(-13 (-356) (-1009 |t#1|) (-1233 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-395)) |%noBranch|) (-15 -1606 ((-112) $)) (-15 -2044 ((-112) $)) (-15 -3980 ((-112) $)) (-15 -3701 ((-809 (-892)) $)) (-15 -3049 ((-809 (-892)))) (-15 -3214 ((-747))) (IF (|has| |t#1| (-361)) (PROGN (-6 (-395)) (-15 -1933 ($ $)) (-15 -1933 ($ $ (-747)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-400 (-549))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1536 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-593 (-834)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) -1536 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-444) . T) ((-541) . T) ((-624 #0#) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-694 #0#) . T) ((-694 |#1|) . T) ((-694 $) . T) ((-703) . T) ((-891) . T) ((-1009 |#1|) . T) ((-1024 #0#) . T) ((-1024 |#1|) . T) ((-1024 $) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1184) . T) ((-1233 |#1|) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3304 (((-621 |#1|) $) 86)) (-3210 (($ $ (-747)) 89)) (-2001 (((-3 $ "failed") $ $) NIL)) (-2556 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-747)) NIL (|has| |#2| (-170)))) (-1682 (($) NIL T CONST)) (-1869 (($ $ |#1|) NIL) (($ $ (-795 |#1|)) NIL) (($ $ $) NIL)) (-2714 (((-3 (-795 |#1|) "failed") $) NIL) (((-3 (-864 |#1|) "failed") $) NIL)) (-2659 (((-795 |#1|) $) NIL) (((-864 |#1|) $) NIL)) (-2070 (($ $) 88)) (-2114 (((-3 $ "failed") $) NIL)) (-3863 (((-112) $) 77)) (-1440 (($ $) 81)) (-1747 (($ $ $ (-747)) 90)) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-3526 (($ (-795 |#1|) |#2|) NIL) (($ (-864 |#1|) |#2|) 26)) (-4273 (($ $) 103)) (-3473 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3674 (((-795 |#1|) $) NIL)) (-2192 (((-795 |#1|) $) NIL)) (-2797 (($ (-1 |#2| |#2|) $) NIL)) (-2694 (($ $ |#1|) NIL) (($ $ (-795 |#1|)) NIL) (($ $ $) NIL)) (-3632 (($ $ (-747)) 97 (|has| |#2| (-694 (-400 (-549)))))) (-3647 (((-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2028 (((-864 |#1|) $) 70)) (-2043 ((|#2| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2719 (($ $ (-747)) 94 (|has| |#2| (-694 (-400 (-549)))))) (-3701 (((-747) $) 87)) (-2645 (((-112) $) 71)) (-2589 ((|#2| $) 75)) (-3846 (((-834) $) 57) (($ (-549)) NIL) (($ |#2|) 51) (($ (-795 |#1|)) NIL) (($ |#1|) 59) (($ (-864 |#1|)) NIL) (($ (-640 |#1| |#2|)) 43) (((-1241 |#1| |#2|) $) 64) (((-1250 |#1| |#2|) $) 69)) (-4141 (((-621 |#2|) $) NIL)) (-2152 ((|#2| $ (-864 |#1|)) NIL)) (-1570 ((|#2| $ (-795 |#1|)) NIL) ((|#2| $ $) NIL)) (-2082 (((-747)) NIL)) (-3276 (($) 21 T CONST)) (-3287 (($) 25 T CONST)) (-2631 (((-621 (-2 (|:| |k| (-864 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1467 (((-3 (-640 |#1| |#2|) "failed") $) 102)) (-2389 (((-112) $ $) 65)) (-2500 (($ $) 96) (($ $ $) 95)) (-2486 (($ $ $) 20)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-864 |#1|)) NIL)))
+(((-1246 |#1| |#2|) (-13 (-1247 |#1| |#2|) (-375 |#2| (-864 |#1|)) (-10 -8 (-15 -3846 ($ (-640 |#1| |#2|))) (-15 -3846 ((-1241 |#1| |#2|) $)) (-15 -3846 ((-1250 |#1| |#2|) $)) (-15 -1467 ((-3 (-640 |#1| |#2|) "failed") $)) (-15 -1747 ($ $ $ (-747))) (IF (|has| |#2| (-694 (-400 (-549)))) (PROGN (-15 -2719 ($ $ (-747))) (-15 -3632 ($ $ (-747)))) |%noBranch|))) (-823) (-170)) (T -1246))
+((-3846 (*1 *1 *2) (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)) (-5 *1 (-1246 *3 *4)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1241 *3 *4)) (-5 *1 (-1246 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-1246 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-1467 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 *3 *4)) (-5 *1 (-1246 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-1747 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1246 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170)))) (-2719 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1246 *3 *4)) (-4 *4 (-694 (-400 (-549)))) (-4 *3 (-823)) (-4 *4 (-170)))) (-3632 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1246 *3 *4)) (-4 *4 (-694 (-400 (-549)))) (-4 *3 (-823)) (-4 *4 (-170)))))
+(-13 (-1247 |#1| |#2|) (-375 |#2| (-864 |#1|)) (-10 -8 (-15 -3846 ($ (-640 |#1| |#2|))) (-15 -3846 ((-1241 |#1| |#2|) $)) (-15 -3846 ((-1250 |#1| |#2|) $)) (-15 -1467 ((-3 (-640 |#1| |#2|) "failed") $)) (-15 -1747 ($ $ $ (-747))) (IF (|has| |#2| (-694 (-400 (-549)))) (PROGN (-15 -2719 ($ $ (-747))) (-15 -3632 ($ $ (-747)))) |%noBranch|)))
+((-3834 (((-112) $ $) 7)) (-1763 (((-112) $) 16)) (-3304 (((-621 |#1|) $) 38)) (-3210 (($ $ (-747)) 71)) (-2001 (((-3 $ "failed") $ $) 19)) (-2556 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-747)) 40 (|has| |#2| (-170)))) (-1682 (($) 17 T CONST)) (-1869 (($ $ |#1|) 52) (($ $ (-795 |#1|)) 51) (($ $ $) 50)) (-2714 (((-3 (-795 |#1|) "failed") $) 62)) (-2659 (((-795 |#1|) $) 61)) (-2114 (((-3 $ "failed") $) 32)) (-3863 (((-112) $) 43)) (-1440 (($ $) 42)) (-2675 (((-112) $) 30)) (-2205 (((-112) $) 48)) (-3526 (($ (-795 |#1|) |#2|) 49)) (-4273 (($ $) 47)) (-3473 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) 58)) (-3674 (((-795 |#1|) $) 59)) (-2192 (((-795 |#1|) $) 73)) (-2797 (($ (-1 |#2| |#2|) $) 39)) (-2694 (($ $ |#1|) 55) (($ $ (-795 |#1|)) 54) (($ $ $) 53)) (-3851 (((-1125) $) 9)) (-3990 (((-1087) $) 10)) (-3701 (((-747) $) 72)) (-2645 (((-112) $) 45)) (-2589 ((|#2| $) 44)) (-3846 (((-834) $) 11) (($ (-549)) 27) (($ |#2|) 66) (($ (-795 |#1|)) 63) (($ |#1|) 46)) (-1570 ((|#2| $ (-795 |#1|)) 57) ((|#2| $ $) 56)) (-2082 (((-747)) 28)) (-3276 (($) 18 T CONST)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 6)) (-2500 (($ $) 22) (($ $ $) 21)) (-2486 (($ $ $) 14)) (** (($ $ (-892)) 25) (($ $ (-747)) 31)) (* (($ (-892) $) 13) (($ (-747) $) 15) (($ (-549) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
+(((-1247 |#1| |#2|) (-138) (-823) (-1018)) (T -1247))
+((-2192 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-795 *3)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *2 (-747)))) (-3210 (*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))))
+(-13 (-1243 |t#1| |t#2|) (-10 -8 (-15 -2192 ((-795 |t#1|) $)) (-15 -3701 ((-747) $)) (-15 -3210 ($ $ (-747)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-593 (-834)) . T) ((-624 |#2|) . T) ((-624 $) . T) ((-694 |#2|) |has| |#2| (-170)) ((-703) . T) ((-1009 (-795 |#1|)) . T) ((-1024 |#2|) . T) ((-1018) . T) ((-1025) . T) ((-1079) . T) ((-1067) . T) ((-1240 |#2|) . T) ((-1243 |#1| |#2|) . T))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-3304 (((-621 (-1143)) $) NIL)) (-1921 (($ (-1241 (-1143) |#1|)) NIL)) (-3210 (($ $ (-747)) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-2556 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-747)) NIL (|has| |#1| (-170)))) (-1682 (($) NIL T CONST)) (-1869 (($ $ (-1143)) NIL) (($ $ (-795 (-1143))) NIL) (($ $ $) NIL)) (-2714 (((-3 (-795 (-1143)) "failed") $) NIL)) (-2659 (((-795 (-1143)) $) NIL)) (-2114 (((-3 $ "failed") $) NIL)) (-3863 (((-112) $) NIL)) (-1440 (($ $) NIL)) (-2675 (((-112) $) NIL)) (-2205 (((-112) $) NIL)) (-3526 (($ (-795 (-1143)) |#1|) NIL)) (-4273 (($ $) NIL)) (-3473 (((-2 (|:| |k| (-795 (-1143))) (|:| |c| |#1|)) $) NIL)) (-3674 (((-795 (-1143)) $) NIL)) (-2192 (((-795 (-1143)) $) NIL)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-2694 (($ $ (-1143)) NIL) (($ $ (-795 (-1143))) NIL) (($ $ $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-1449 (((-1241 (-1143) |#1|) $) NIL)) (-3701 (((-747) $) NIL)) (-2645 (((-112) $) NIL)) (-2589 ((|#1| $) NIL)) (-3846 (((-834) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-795 (-1143))) NIL) (($ (-1143)) NIL)) (-1570 ((|#1| $ (-795 (-1143))) NIL) ((|#1| $ $) NIL)) (-2082 (((-747)) NIL)) (-3276 (($) NIL T CONST)) (-2679 (((-621 (-2 (|:| |k| (-1143)) (|:| |c| $))) $) NIL)) (-3287 (($) NIL T CONST)) (-2389 (((-112) $ $) NIL)) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) NIL)) (** (($ $ (-892)) NIL) (($ $ (-747)) NIL)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1143) $) NIL)))
+(((-1248 |#1|) (-13 (-1247 (-1143) |#1|) (-10 -8 (-15 -1449 ((-1241 (-1143) |#1|) $)) (-15 -1921 ($ (-1241 (-1143) |#1|))) (-15 -2679 ((-621 (-2 (|:| |k| (-1143)) (|:| |c| $))) $)))) (-1018)) (T -1248))
+((-1449 (*1 *2 *1) (-12 (-5 *2 (-1241 (-1143) *3)) (-5 *1 (-1248 *3)) (-4 *3 (-1018)))) (-1921 (*1 *1 *2) (-12 (-5 *2 (-1241 (-1143) *3)) (-4 *3 (-1018)) (-5 *1 (-1248 *3)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |k| (-1143)) (|:| |c| (-1248 *3))))) (-5 *1 (-1248 *3)) (-4 *3 (-1018)))))
+(-13 (-1247 (-1143) |#1|) (-10 -8 (-15 -1449 ((-1241 (-1143) |#1|) $)) (-15 -1921 ($ (-1241 (-1143) |#1|))) (-15 -2679 ((-621 (-2 (|:| |k| (-1143)) (|:| |c| $))) $))))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) NIL)) (-2001 (((-3 $ "failed") $ $) NIL)) (-1682 (($) NIL T CONST)) (-2714 (((-3 |#2| "failed") $) NIL)) (-2659 ((|#2| $) NIL)) (-2070 (($ $) NIL)) (-2114 (((-3 $ "failed") $) 36)) (-3863 (((-112) $) 30)) (-1440 (($ $) 32)) (-2675 (((-112) $) NIL)) (-3347 (((-747) $) NIL)) (-3750 (((-621 $) $) NIL)) (-2205 (((-112) $) NIL)) (-3526 (($ |#2| |#1|) NIL)) (-3674 ((|#2| $) 19)) (-2192 ((|#2| $) 16)) (-2797 (($ (-1 |#1| |#1|) $) NIL)) (-3647 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2028 ((|#2| $) NIL)) (-2043 ((|#1| $) NIL)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-2645 (((-112) $) 27)) (-2589 ((|#1| $) 28)) (-3846 (((-834) $) 55) (($ (-549)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-4141 (((-621 |#1|) $) NIL)) (-2152 ((|#1| $ |#2|) NIL)) (-1570 ((|#1| $ |#2|) 24)) (-2082 (((-747)) 14)) (-3276 (($) 25 T CONST)) (-3287 (($) 11 T CONST)) (-2631 (((-621 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2389 (((-112) $ $) 26)) (-2513 (($ $ |#1|) 57 (|has| |#1| (-356)))) (-2500 (($ $) NIL) (($ $ $) NIL)) (-2486 (($ $ $) 44)) (** (($ $ (-892)) NIL) (($ $ (-747)) 46)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3775 (((-747) $) 15)))
+(((-1249 |#1| |#2|) (-13 (-1018) (-1240 |#1|) (-375 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3775 ((-747) $)) (-15 -3846 ($ |#2|)) (-15 -2192 (|#2| $)) (-15 -3674 (|#2| $)) (-15 -2070 ($ $)) (-15 -1570 (|#1| $ |#2|)) (-15 -2645 ((-112) $)) (-15 -2589 (|#1| $)) (-15 -3863 ((-112) $)) (-15 -1440 ($ $)) (-15 -2797 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -2513 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4330)) (-6 -4330) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|) (IF (|has| |#1| (-6 -4335)) (-6 -4335) |%noBranch|))) (-1018) (-819)) (T -1249))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1249 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))) (-2070 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))) (-2797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-1249 *3 *4)) (-4 *4 (-819)))) (-3846 (*1 *1 *2) (-12 (-5 *1 (-1249 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-819)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1249 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))) (-2192 (*1 *2 *1) (-12 (-4 *2 (-819)) (-5 *1 (-1249 *3 *2)) (-4 *3 (-1018)))) (-3674 (*1 *2 *1) (-12 (-4 *2 (-819)) (-5 *1 (-1249 *3 *2)) (-4 *3 (-1018)))) (-1570 (*1 *2 *1 *3) (-12 (-4 *2 (-1018)) (-5 *1 (-1249 *2 *3)) (-4 *3 (-819)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1249 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))) (-2589 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-1249 *2 *3)) (-4 *3 (-819)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1249 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-819)))) (-1440 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))) (-2513 (*1 *1 *1 *2) (-12 (-5 *1 (-1249 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-819)))))
+(-13 (-1018) (-1240 |#1|) (-375 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3775 ((-747) $)) (-15 -3846 ($ |#2|)) (-15 -2192 (|#2| $)) (-15 -3674 (|#2| $)) (-15 -2070 ($ $)) (-15 -1570 (|#1| $ |#2|)) (-15 -2645 ((-112) $)) (-15 -2589 (|#1| $)) (-15 -3863 ((-112) $)) (-15 -1440 ($ $)) (-15 -2797 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -2513 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4330)) (-6 -4330) |%noBranch|) (IF (|has| |#1| (-6 -4334)) (-6 -4334) |%noBranch|) (IF (|has| |#1| (-6 -4335)) (-6 -4335) |%noBranch|)))
+((-3834 (((-112) $ $) 26)) (-1763 (((-112) $) NIL)) (-3304 (((-621 |#1|) $) 120)) (-1921 (($ (-1241 |#1| |#2|)) 44)) (-3210 (($ $ (-747)) 32)) (-2001 (((-3 $ "failed") $ $) NIL)) (-2556 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-747)) 46 (|has| |#2| (-170)))) (-1682 (($) NIL T CONST)) (-1869 (($ $ |#1|) 102) (($ $ (-795 |#1|)) 103) (($ $ $) 25)) (-2714 (((-3 (-795 |#1|) "failed") $) NIL)) (-2659 (((-795 |#1|) $) NIL)) (-2114 (((-3 $ "failed") $) 110)) (-3863 (((-112) $) 105)) (-1440 (($ $) 106)) (-2675 (((-112) $) NIL)) (-2205 (((-112) $) NIL)) (-3526 (($ (-795 |#1|) |#2|) 19)) (-4273 (($ $) NIL)) (-3473 (((-2 (|:| |k| (-795 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3674 (((-795 |#1|) $) 111)) (-2192 (((-795 |#1|) $) 114)) (-2797 (($ (-1 |#2| |#2|) $) 119)) (-2694 (($ $ |#1|) 100) (($ $ (-795 |#1|)) 101) (($ $ $) 56)) (-3851 (((-1125) $) NIL)) (-3990 (((-1087) $) NIL)) (-1449 (((-1241 |#1| |#2|) $) 84)) (-3701 (((-747) $) 117)) (-2645 (((-112) $) 70)) (-2589 ((|#2| $) 28)) (-3846 (((-834) $) 63) (($ (-549)) 77) (($ |#2|) 74) (($ (-795 |#1|)) 17) (($ |#1|) 73)) (-1570 ((|#2| $ (-795 |#1|)) 104) ((|#2| $ $) 27)) (-2082 (((-747)) 108)) (-3276 (($) 14 T CONST)) (-2679 (((-621 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3287 (($) 29 T CONST)) (-2389 (((-112) $ $) 13)) (-2500 (($ $) 88) (($ $ $) 91)) (-2486 (($ $ $) 55)) (** (($ $ (-892)) NIL) (($ $ (-747)) 49)) (* (($ (-892) $) NIL) (($ (-747) $) 47) (($ (-549) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1250 |#1| |#2|) (-13 (-1247 |#1| |#2|) (-10 -8 (-15 -1449 ((-1241 |#1| |#2|) $)) (-15 -1921 ($ (-1241 |#1| |#2|))) (-15 -2679 ((-621 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-823) (-1018)) (T -1250))
+((-1449 (*1 *2 *1) (-12 (-5 *2 (-1241 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))) (-1921 (*1 *1 *2) (-12 (-5 *2 (-1241 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)) (-5 *1 (-1250 *3 *4)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-621 (-2 (|:| |k| *3) (|:| |c| (-1250 *3 *4))))) (-5 *1 (-1250 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))))
+(-13 (-1247 |#1| |#2|) (-10 -8 (-15 -1449 ((-1241 |#1| |#2|) $)) (-15 -1921 ($ (-1241 |#1| |#2|))) (-15 -2679 ((-621 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-2663 (((-621 (-1123 |#1|)) (-1 (-621 (-1123 |#1|)) (-621 (-1123 |#1|))) (-549)) 15) (((-1123 |#1|) (-1 (-1123 |#1|) (-1123 |#1|))) 11)))
+(((-1251 |#1|) (-10 -7 (-15 -2663 ((-1123 |#1|) (-1 (-1123 |#1|) (-1123 |#1|)))) (-15 -2663 ((-621 (-1123 |#1|)) (-1 (-621 (-1123 |#1|)) (-621 (-1123 |#1|))) (-549)))) (-1180)) (T -1251))
+((-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-621 (-1123 *5)) (-621 (-1123 *5)))) (-5 *4 (-549)) (-5 *2 (-621 (-1123 *5))) (-5 *1 (-1251 *5)) (-4 *5 (-1180)))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-1 (-1123 *4) (-1123 *4))) (-5 *2 (-1123 *4)) (-5 *1 (-1251 *4)) (-4 *4 (-1180)))))
+(-10 -7 (-15 -2663 ((-1123 |#1|) (-1 (-1123 |#1|) (-1123 |#1|)))) (-15 -2663 ((-621 (-1123 |#1|)) (-1 (-621 (-1123 |#1|)) (-621 (-1123 |#1|))) (-549))))
+((-4061 (((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|))) 148) (((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112)) 147) (((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112)) 146) (((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112) (-112)) 145) (((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-1015 |#1| |#2|)) 130)) (-2910 (((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|))) 72) (((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)) (-112)) 71) (((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)) (-112) (-112)) 70)) (-2402 (((-621 (-1113 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) (-1015 |#1| |#2|)) 61)) (-3409 (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|))) 115) (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112)) 114) (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112)) 113) (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112) (-112)) 112) (((-621 (-621 (-995 (-400 |#1|)))) (-1015 |#1| |#2|)) 107)) (-2421 (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|))) 120) (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112)) 119) (((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112)) 118) (((-621 (-621 (-995 (-400 |#1|)))) (-1015 |#1| |#2|)) 117)) (-2845 (((-621 (-756 |#1| (-836 |#3|))) (-1113 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) 98) (((-1139 (-995 (-400 |#1|))) (-1139 |#1|)) 89) (((-923 (-995 (-400 |#1|))) (-756 |#1| (-836 |#3|))) 96) (((-923 (-995 (-400 |#1|))) (-923 |#1|)) 94) (((-756 |#1| (-836 |#3|)) (-756 |#1| (-836 |#2|))) 33)))
+(((-1252 |#1| |#2| |#3|) (-10 -7 (-15 -2910 ((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)) (-112) (-112))) (-15 -2910 ((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)) (-112))) (-15 -2910 ((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)))) (-15 -4061 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-1015 |#1| |#2|))) (-15 -4061 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112) (-112))) (-15 -4061 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112))) (-15 -4061 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112))) (-15 -4061 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)))) (-15 -3409 ((-621 (-621 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -3409 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112) (-112))) (-15 -3409 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112))) (-15 -3409 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112))) (-15 -3409 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)))) (-15 -2421 ((-621 (-621 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -2421 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112))) (-15 -2421 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112))) (-15 -2421 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)))) (-15 -2402 ((-621 (-1113 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) (-1015 |#1| |#2|))) (-15 -2845 ((-756 |#1| (-836 |#3|)) (-756 |#1| (-836 |#2|)))) (-15 -2845 ((-923 (-995 (-400 |#1|))) (-923 |#1|))) (-15 -2845 ((-923 (-995 (-400 |#1|))) (-756 |#1| (-836 |#3|)))) (-15 -2845 ((-1139 (-995 (-400 |#1|))) (-1139 |#1|))) (-15 -2845 ((-621 (-756 |#1| (-836 |#3|))) (-1113 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))))) (-13 (-821) (-300) (-145) (-993)) (-621 (-1143)) (-621 (-1143))) (T -1252))
+((-2845 (*1 *2 *3) (-12 (-5 *3 (-1113 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6)))) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *6 (-621 (-1143))) (-5 *2 (-621 (-756 *4 (-836 *6)))) (-5 *1 (-1252 *4 *5 *6)) (-14 *5 (-621 (-1143))))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-1139 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-1139 (-995 (-400 *4)))) (-5 *1 (-1252 *4 *5 *6)) (-14 *5 (-621 (-1143))) (-14 *6 (-621 (-1143))))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-756 *4 (-836 *6))) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *6 (-621 (-1143))) (-5 *2 (-923 (-995 (-400 *4)))) (-5 *1 (-1252 *4 *5 *6)) (-14 *5 (-621 (-1143))))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-923 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-923 (-995 (-400 *4)))) (-5 *1 (-1252 *4 *5 *6)) (-14 *5 (-621 (-1143))) (-14 *6 (-621 (-1143))))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-756 *4 (-836 *5))) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *5 (-621 (-1143))) (-5 *2 (-756 *4 (-836 *6))) (-5 *1 (-1252 *4 *5 *6)) (-14 *6 (-621 (-1143))))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *5 (-621 (-1143))) (-5 *2 (-621 (-1113 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6))))) (-5 *1 (-1252 *4 *5 *6)) (-14 *6 (-621 (-1143))))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *4))))) (-5 *1 (-1252 *4 *5 *6)) (-14 *5 (-621 (-1143))) (-14 *6 (-621 (-1143))))) (-2421 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1252 *5 *6 *7)) (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143))))) (-2421 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1252 *5 *6 *7)) (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143))))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *5 (-621 (-1143))) (-5 *2 (-621 (-621 (-995 (-400 *4))))) (-5 *1 (-1252 *4 *5 *6)) (-14 *6 (-621 (-1143))))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *4))))) (-5 *1 (-1252 *4 *5 *6)) (-14 *5 (-621 (-1143))) (-14 *6 (-621 (-1143))))) (-3409 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1252 *5 *6 *7)) (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143))))) (-3409 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1252 *5 *6 *7)) (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143))))) (-3409 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1252 *5 *6 *7)) (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143))))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *5 (-621 (-1143))) (-5 *2 (-621 (-621 (-995 (-400 *4))))) (-5 *1 (-1252 *4 *5 *6)) (-14 *6 (-621 (-1143))))) (-4061 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-2 (|:| -1298 (-1139 *4)) (|:| -4263 (-621 (-923 *4)))))) (-5 *1 (-1252 *4 *5 *6)) (-5 *3 (-621 (-923 *4))) (-14 *5 (-621 (-1143))) (-14 *6 (-621 (-1143))))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-2 (|:| -1298 (-1139 *5)) (|:| -4263 (-621 (-923 *5)))))) (-5 *1 (-1252 *5 *6 *7)) (-5 *3 (-621 (-923 *5))) (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143))))) (-4061 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-2 (|:| -1298 (-1139 *5)) (|:| -4263 (-621 (-923 *5)))))) (-5 *1 (-1252 *5 *6 *7)) (-5 *3 (-621 (-923 *5))) (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143))))) (-4061 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-2 (|:| -1298 (-1139 *5)) (|:| -4263 (-621 (-923 *5)))))) (-5 *1 (-1252 *5 *6 *7)) (-5 *3 (-621 (-923 *5))) (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143))))) (-4061 (*1 *2 *3) (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *5 (-621 (-1143))) (-5 *2 (-621 (-2 (|:| -1298 (-1139 *4)) (|:| -4263 (-621 (-923 *4)))))) (-5 *1 (-1252 *4 *5 *6)) (-14 *6 (-621 (-1143))))) (-2910 (*1 *2 *3) (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-1015 *4 *5))) (-5 *1 (-1252 *4 *5 *6)) (-14 *5 (-621 (-1143))) (-14 *6 (-621 (-1143))))) (-2910 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-1252 *5 *6 *7)) (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143))))) (-2910 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993))) (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-1252 *5 *6 *7)) (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143))))))
+(-10 -7 (-15 -2910 ((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)) (-112) (-112))) (-15 -2910 ((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)) (-112))) (-15 -2910 ((-621 (-1015 |#1| |#2|)) (-621 (-923 |#1|)))) (-15 -4061 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-1015 |#1| |#2|))) (-15 -4061 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112) (-112))) (-15 -4061 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112) (-112))) (-15 -4061 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)) (-112))) (-15 -4061 ((-621 (-2 (|:| -1298 (-1139 |#1|)) (|:| -4263 (-621 (-923 |#1|))))) (-621 (-923 |#1|)))) (-15 -3409 ((-621 (-621 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -3409 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112) (-112))) (-15 -3409 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112))) (-15 -3409 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112))) (-15 -3409 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)))) (-15 -2421 ((-621 (-621 (-995 (-400 |#1|)))) (-1015 |#1| |#2|))) (-15 -2421 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112) (-112))) (-15 -2421 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)) (-112))) (-15 -2421 ((-621 (-621 (-995 (-400 |#1|)))) (-621 (-923 |#1|)))) (-15 -2402 ((-621 (-1113 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|)))) (-1015 |#1| |#2|))) (-15 -2845 ((-756 |#1| (-836 |#3|)) (-756 |#1| (-836 |#2|)))) (-15 -2845 ((-923 (-995 (-400 |#1|))) (-923 |#1|))) (-15 -2845 ((-923 (-995 (-400 |#1|))) (-756 |#1| (-836 |#3|)))) (-15 -2845 ((-1139 (-995 (-400 |#1|))) (-1139 |#1|))) (-15 -2845 ((-621 (-756 |#1| (-836 |#3|))) (-1113 |#1| (-521 (-836 |#3|)) (-836 |#3|) (-756 |#1| (-836 |#3|))))))
+((-3180 (((-3 (-1226 (-400 (-549))) "failed") (-1226 |#1|) |#1|) 21)) (-3391 (((-112) (-1226 |#1|)) 12)) (-2765 (((-3 (-1226 (-549)) "failed") (-1226 |#1|)) 16)))
+(((-1253 |#1|) (-10 -7 (-15 -3391 ((-112) (-1226 |#1|))) (-15 -2765 ((-3 (-1226 (-549)) "failed") (-1226 |#1|))) (-15 -3180 ((-3 (-1226 (-400 (-549))) "failed") (-1226 |#1|) |#1|))) (-617 (-549))) (T -1253))
+((-3180 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1226 *4)) (-4 *4 (-617 (-549))) (-5 *2 (-1226 (-400 (-549)))) (-5 *1 (-1253 *4)))) (-2765 (*1 *2 *3) (|partial| -12 (-5 *3 (-1226 *4)) (-4 *4 (-617 (-549))) (-5 *2 (-1226 (-549))) (-5 *1 (-1253 *4)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-1226 *4)) (-4 *4 (-617 (-549))) (-5 *2 (-112)) (-5 *1 (-1253 *4)))))
+(-10 -7 (-15 -3391 ((-112) (-1226 |#1|))) (-15 -2765 ((-3 (-1226 (-549)) "failed") (-1226 |#1|))) (-15 -3180 ((-3 (-1226 (-400 (-549))) "failed") (-1226 |#1|) |#1|)))
+((-3834 (((-112) $ $) NIL)) (-1763 (((-112) $) 11)) (-2001 (((-3 $ "failed") $ $) NIL)) (-3614 (((-747)) 8)) (-1682 (($) NIL T CONST)) (-2114 (((-3 $ "failed") $) 43)) (-3239 (($) 36)) (-2675 (((-112) $) NIL)) (-1681 (((-3 $ "failed") $) 29)) (-1881 (((-892) $) 15)) (-3851 (((-1125) $) NIL)) (-3060 (($) 25 T CONST)) (-3493 (($ (-892)) 37)) (-3990 (((-1087) $) NIL)) (-2845 (((-549) $) 13)) (-3846 (((-834) $) 22) (($ (-549)) 19)) (-2082 (((-747)) 9)) (-3276 (($) 23 T CONST)) (-3287 (($) 24 T CONST)) (-2389 (((-112) $ $) 27)) (-2500 (($ $) 38) (($ $ $) 35)) (-2486 (($ $ $) 26)) (** (($ $ (-892)) NIL) (($ $ (-747)) 40)) (* (($ (-892) $) NIL) (($ (-747) $) NIL) (($ (-549) $) 32) (($ $ $) 31)))
+(((-1254 |#1|) (-13 (-170) (-361) (-594 (-549)) (-1118)) (-892)) (T -1254))
+NIL
+(-13 (-170) (-361) (-594 (-549)) (-1118))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3172652 3172657 3172662 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3172637 3172642 3172647 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3172622 3172627 3172632 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3172607 3172612 3172617 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1254 3171783 3172482 3172559 "ZMOD" 3172564 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1253 3170893 3171057 3171266 "ZLINDEP" 3171615 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1252 3160269 3162021 3163980 "ZDSOLVE" 3169035 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1251 3159515 3159656 3159845 "YSTREAM" 3160115 NIL YSTREAM (NIL T) -7 NIL NIL) (-1250 3157326 3158816 3159020 "XRPOLY" 3159358 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1249 3153818 3155101 3155685 "XPR" 3156789 NIL XPR (NIL T T) -8 NIL NIL) (-1248 3151574 3153149 3153353 "XPOLY" 3153649 NIL XPOLY (NIL T) -8 NIL NIL) (-1247 3149423 3150757 3150812 "XPOLYC" 3151100 NIL XPOLYC (NIL T T) -9 NIL 3151213) (-1246 3145841 3147940 3148328 "XPBWPOLY" 3149081 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1245 3141826 3144074 3144116 "XF" 3144737 NIL XF (NIL T) -9 NIL 3145137) (-1244 3141447 3141535 3141704 "XF-" 3141709 NIL XF- (NIL T T) -8 NIL NIL) (-1243 3136839 3138094 3138149 "XFALG" 3140321 NIL XFALG (NIL T T) -9 NIL 3141110) (-1242 3135972 3136076 3136281 "XEXPPKG" 3136731 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1241 3134116 3135822 3135918 "XDPOLY" 3135923 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1240 3133032 3133598 3133641 "XALG" 3133704 NIL XALG (NIL T) -9 NIL 3133824) (-1239 3126501 3131009 3131503 "WUTSET" 3132624 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1238 3124352 3125113 3125466 "WP" 3126282 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1237 3123998 3124174 3124244 "WHILEAST" 3124304 T WHILEAST (NIL) -8 NIL NIL) (-1236 3123514 3123715 3123809 "WHEREAST" 3123926 T WHEREAST (NIL) -8 NIL NIL) (-1235 3122400 3122598 3122893 "WFFINTBS" 3123311 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1234 3120304 3120731 3121193 "WEIER" 3121972 NIL WEIER (NIL T) -7 NIL NIL) (-1233 3119451 3119875 3119917 "VSPACE" 3120053 NIL VSPACE (NIL T) -9 NIL 3120127) (-1232 3119289 3119316 3119407 "VSPACE-" 3119412 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1231 3119035 3119078 3119149 "VOID" 3119240 T VOID (NIL) -8 NIL NIL) (-1230 3117171 3117530 3117936 "VIEW" 3118651 T VIEW (NIL) -7 NIL NIL) (-1229 3113596 3114234 3114971 "VIEWDEF" 3116456 T VIEWDEF (NIL) -7 NIL NIL) (-1228 3102934 3105144 3107317 "VIEW3D" 3111445 T VIEW3D (NIL) -8 NIL NIL) (-1227 3095216 3096845 3098424 "VIEW2D" 3101377 T VIEW2D (NIL) -8 NIL NIL) (-1226 3090620 3094986 3095078 "VECTOR" 3095159 NIL VECTOR (NIL T) -8 NIL NIL) (-1225 3089197 3089456 3089774 "VECTOR2" 3090350 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1224 3082724 3086981 3087024 "VECTCAT" 3088017 NIL VECTCAT (NIL T) -9 NIL 3088603) (-1223 3081738 3081992 3082382 "VECTCAT-" 3082387 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1222 3081219 3081389 3081509 "VARIABLE" 3081653 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1221 3081152 3081157 3081187 "UTYPE" 3081192 T UTYPE (NIL) -9 NIL NIL) (-1220 3079982 3080136 3080398 "UTSODETL" 3080978 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1219 3077422 3077882 3078406 "UTSODE" 3079523 NIL UTSODE (NIL T T) -7 NIL NIL) (-1218 3069298 3075048 3075537 "UTS" 3076991 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1217 3060671 3065990 3066033 "UTSCAT" 3067145 NIL UTSCAT (NIL T) -9 NIL 3067902) (-1216 3058025 3058741 3059730 "UTSCAT-" 3059735 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1215 3057652 3057695 3057828 "UTS2" 3057976 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1214 3051927 3054492 3054535 "URAGG" 3056605 NIL URAGG (NIL T) -9 NIL 3057327) (-1213 3048866 3049729 3050852 "URAGG-" 3050857 NIL URAGG- (NIL T T) -8 NIL NIL) (-1212 3044590 3047480 3047952 "UPXSSING" 3048530 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1211 3036560 3043705 3043987 "UPXS" 3044366 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1210 3029673 3036464 3036536 "UPXSCONS" 3036541 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1209 3020031 3026776 3026838 "UPXSCCA" 3027494 NIL UPXSCCA (NIL T T) -9 NIL 3027736) (-1208 3019669 3019754 3019928 "UPXSCCA-" 3019933 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1207 3009953 3016471 3016514 "UPXSCAT" 3017162 NIL UPXSCAT (NIL T) -9 NIL 3017770) (-1206 3009383 3009462 3009641 "UPXS2" 3009868 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1205 3008037 3008290 3008641 "UPSQFREE" 3009126 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1204 3001955 3004964 3005019 "UPSCAT" 3006180 NIL UPSCAT (NIL T T) -9 NIL 3006954) (-1203 3001159 3001366 3001693 "UPSCAT-" 3001698 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1202 2987250 2995246 2995289 "UPOLYC" 2997390 NIL UPOLYC (NIL T) -9 NIL 2998611) (-1201 2978579 2981004 2984151 "UPOLYC-" 2984156 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1200 2978206 2978249 2978382 "UPOLYC2" 2978530 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1199 2969663 2977772 2977910 "UP" 2978116 NIL UP (NIL NIL T) -8 NIL NIL) (-1198 2969002 2969109 2969273 "UPMP" 2969552 NIL UPMP (NIL T T) -7 NIL NIL) (-1197 2968555 2968636 2968775 "UPDIVP" 2968915 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1196 2967123 2967372 2967688 "UPDECOMP" 2968304 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1195 2966358 2966470 2966655 "UPCDEN" 2967007 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1194 2965877 2965946 2966095 "UP2" 2966283 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1193 2964394 2965081 2965358 "UNISEG" 2965635 NIL UNISEG (NIL T) -8 NIL NIL) (-1192 2963609 2963736 2963941 "UNISEG2" 2964237 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1191 2962669 2962849 2963075 "UNIFACT" 2963425 NIL UNIFACT (NIL T) -7 NIL NIL) (-1190 2946638 2961846 2962097 "ULS" 2962476 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1189 2934680 2946542 2946614 "ULSCONS" 2946619 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1188 2917484 2929419 2929481 "ULSCCAT" 2930201 NIL ULSCCAT (NIL T T) -9 NIL 2930498) (-1187 2916534 2916779 2917167 "ULSCCAT-" 2917172 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1186 2906595 2913027 2913070 "ULSCAT" 2913933 NIL ULSCAT (NIL T) -9 NIL 2914663) (-1185 2906025 2906104 2906283 "ULS2" 2906510 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1184 2904463 2905386 2905416 "UFD" 2905628 T UFD (NIL) -9 NIL 2905742) (-1183 2904257 2904303 2904398 "UFD-" 2904403 NIL UFD- (NIL T) -8 NIL NIL) (-1182 2903339 2903522 2903738 "UDVO" 2904063 T UDVO (NIL) -7 NIL NIL) (-1181 2901155 2901564 2902035 "UDPO" 2902903 NIL UDPO (NIL T) -7 NIL NIL) (-1180 2901088 2901093 2901123 "TYPE" 2901128 T TYPE (NIL) -9 NIL NIL) (-1179 2900742 2900910 2900980 "TYPEAST" 2901040 T TYPEAST (NIL) -8 NIL NIL) (-1178 2899713 2899915 2900155 "TWOFACT" 2900536 NIL TWOFACT (NIL T) -7 NIL NIL) (-1177 2898651 2898988 2899251 "TUPLE" 2899485 NIL TUPLE (NIL T) -8 NIL NIL) (-1176 2896342 2896861 2897400 "TUBETOOL" 2898134 T TUBETOOL (NIL) -7 NIL NIL) (-1175 2895191 2895396 2895637 "TUBE" 2896135 NIL TUBE (NIL T) -8 NIL NIL) (-1174 2889955 2894163 2894446 "TS" 2894943 NIL TS (NIL T) -8 NIL NIL) (-1173 2878622 2882714 2882811 "TSETCAT" 2888080 NIL TSETCAT (NIL T T T T) -9 NIL 2889611) (-1172 2873356 2874954 2876845 "TSETCAT-" 2876850 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1171 2867619 2868465 2869407 "TRMANIP" 2872492 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1170 2867060 2867123 2867286 "TRIMAT" 2867551 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1169 2864856 2865093 2865457 "TRIGMNIP" 2866809 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1168 2864376 2864489 2864519 "TRIGCAT" 2864732 T TRIGCAT (NIL) -9 NIL NIL) (-1167 2864045 2864124 2864265 "TRIGCAT-" 2864270 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1166 2860944 2862905 2863185 "TREE" 2863800 NIL TREE (NIL T) -8 NIL NIL) (-1165 2860218 2860746 2860776 "TRANFUN" 2860811 T TRANFUN (NIL) -9 NIL 2860877) (-1164 2859497 2859688 2859968 "TRANFUN-" 2859973 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1163 2859301 2859333 2859394 "TOPSP" 2859458 T TOPSP (NIL) -7 NIL NIL) (-1162 2858649 2858764 2858918 "TOOLSIGN" 2859182 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1161 2857310 2857826 2858065 "TEXTFILE" 2858432 T TEXTFILE (NIL) -8 NIL NIL) (-1160 2855175 2855689 2856127 "TEX" 2856894 T TEX (NIL) -8 NIL NIL) (-1159 2854956 2854987 2855059 "TEX1" 2855138 NIL TEX1 (NIL T) -7 NIL NIL) (-1158 2854604 2854667 2854757 "TEMUTL" 2854888 T TEMUTL (NIL) -7 NIL NIL) (-1157 2852758 2853038 2853363 "TBCMPPK" 2854327 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1156 2844646 2850918 2850974 "TBAGG" 2851374 NIL TBAGG (NIL T T) -9 NIL 2851585) (-1155 2839716 2841204 2842958 "TBAGG-" 2842963 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1154 2839100 2839207 2839352 "TANEXP" 2839605 NIL TANEXP (NIL T) -7 NIL NIL) (-1153 2832601 2838957 2839050 "TABLE" 2839055 NIL TABLE (NIL T T) -8 NIL NIL) (-1152 2832013 2832112 2832250 "TABLEAU" 2832498 NIL TABLEAU (NIL T) -8 NIL NIL) (-1151 2826621 2827841 2829089 "TABLBUMP" 2830799 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1150 2826049 2826149 2826277 "SYSTEM" 2826515 T SYSTEM (NIL) -7 NIL NIL) (-1149 2822512 2823207 2823990 "SYSSOLP" 2825300 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1148 2818803 2819511 2820245 "SYNTAX" 2821800 T SYNTAX (NIL) -8 NIL NIL) (-1147 2815961 2816563 2817195 "SYMTAB" 2818193 T SYMTAB (NIL) -8 NIL NIL) (-1146 2811210 2812112 2813095 "SYMS" 2815000 T SYMS (NIL) -8 NIL NIL) (-1145 2808482 2810668 2810898 "SYMPOLY" 2811015 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1144 2807999 2808074 2808197 "SYMFUNC" 2808394 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1143 2803976 2805236 2806058 "SYMBOL" 2807199 T SYMBOL (NIL) -8 NIL NIL) (-1142 2797515 2799204 2800924 "SWITCH" 2802278 T SWITCH (NIL) -8 NIL NIL) (-1141 2790785 2796336 2796639 "SUTS" 2797270 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1140 2782754 2789900 2790182 "SUPXS" 2790561 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1139 2774283 2782372 2782498 "SUP" 2782663 NIL SUP (NIL T) -8 NIL NIL) (-1138 2773442 2773569 2773786 "SUPFRACF" 2774151 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1137 2773063 2773122 2773235 "SUP2" 2773377 NIL SUP2 (NIL T T) -7 NIL NIL) (-1136 2771476 2771750 2772113 "SUMRF" 2772762 NIL SUMRF (NIL T) -7 NIL NIL) (-1135 2770790 2770856 2771055 "SUMFS" 2771397 NIL SUMFS (NIL T T) -7 NIL NIL) (-1134 2754799 2769967 2770218 "SULS" 2770597 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1133 2754445 2754621 2754691 "SUCHTAST" 2754751 T SUCHTAST (NIL) -8 NIL NIL) (-1132 2753767 2753970 2754110 "SUCH" 2754353 NIL SUCH (NIL T T) -8 NIL NIL) (-1131 2747661 2748673 2749632 "SUBSPACE" 2752855 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1130 2747091 2747181 2747345 "SUBRESP" 2747549 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1129 2740460 2741756 2743067 "STTF" 2745827 NIL STTF (NIL T) -7 NIL NIL) (-1128 2734633 2735753 2736900 "STTFNC" 2739360 NIL STTFNC (NIL T) -7 NIL NIL) (-1127 2725948 2727815 2729609 "STTAYLOR" 2732874 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1126 2719192 2725812 2725895 "STRTBL" 2725900 NIL STRTBL (NIL T) -8 NIL NIL) (-1125 2714583 2719147 2719178 "STRING" 2719183 T STRING (NIL) -8 NIL NIL) (-1124 2709471 2713956 2713986 "STRICAT" 2714045 T STRICAT (NIL) -9 NIL 2714107) (-1123 2702184 2706994 2707614 "STREAM" 2708886 NIL STREAM (NIL T) -8 NIL NIL) (-1122 2701694 2701771 2701915 "STREAM3" 2702101 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1121 2700676 2700859 2701094 "STREAM2" 2701507 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1120 2700364 2700416 2700509 "STREAM1" 2700618 NIL STREAM1 (NIL T) -7 NIL NIL) (-1119 2699380 2699561 2699792 "STINPROD" 2700180 NIL STINPROD (NIL T) -7 NIL NIL) (-1118 2698958 2699142 2699172 "STEP" 2699252 T STEP (NIL) -9 NIL 2699330) (-1117 2692501 2698857 2698934 "STBL" 2698939 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1116 2687676 2691723 2691766 "STAGG" 2691919 NIL STAGG (NIL T) -9 NIL 2692008) (-1115 2685378 2685980 2686852 "STAGG-" 2686857 NIL STAGG- (NIL T T) -8 NIL NIL) (-1114 2683573 2685148 2685240 "STACK" 2685321 NIL STACK (NIL T) -8 NIL NIL) (-1113 2676298 2681714 2682170 "SREGSET" 2683203 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1112 2668724 2670092 2671605 "SRDCMPK" 2674904 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1111 2661691 2666164 2666194 "SRAGG" 2667497 T SRAGG (NIL) -9 NIL 2668105) (-1110 2660708 2660963 2661342 "SRAGG-" 2661347 NIL SRAGG- (NIL T) -8 NIL NIL) (-1109 2655194 2659623 2660051 "SQMATRIX" 2660327 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1108 2648946 2651914 2652640 "SPLTREE" 2654540 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1107 2644936 2645602 2646248 "SPLNODE" 2648372 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1106 2643983 2644216 2644246 "SPFCAT" 2644690 T SPFCAT (NIL) -9 NIL NIL) (-1105 2642720 2642930 2643194 "SPECOUT" 2643741 T SPECOUT (NIL) -7 NIL NIL) (-1104 2635197 2636772 2636802 "SPADXPT" 2640769 T SPADXPT (NIL) -9 NIL 2642609) (-1103 2634958 2634998 2635067 "SPADPRSR" 2635150 T SPADPRSR (NIL) -7 NIL NIL) (-1102 2633317 2634913 2634944 "SPADAST" 2634949 T SPADAST (NIL) -8 NIL NIL) (-1101 2625288 2627035 2627078 "SPACEC" 2631451 NIL SPACEC (NIL T) -9 NIL 2633267) (-1100 2623459 2625220 2625269 "SPACE3" 2625274 NIL SPACE3 (NIL T) -8 NIL NIL) (-1099 2622211 2622382 2622673 "SORTPAK" 2623264 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1098 2620261 2620564 2620983 "SOLVETRA" 2621875 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1097 2619272 2619494 2619768 "SOLVESER" 2620034 NIL SOLVESER (NIL T) -7 NIL NIL) (-1096 2614492 2615373 2616375 "SOLVERAD" 2618324 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1095 2610307 2610916 2611645 "SOLVEFOR" 2613859 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1094 2604604 2609656 2609753 "SNTSCAT" 2609758 NIL SNTSCAT (NIL T T T T) -9 NIL 2609828) (-1093 2598747 2602927 2603318 "SMTS" 2604294 NIL SMTS (NIL T T T) -8 NIL NIL) (-1092 2593197 2598635 2598712 "SMP" 2598717 NIL SMP (NIL T T) -8 NIL NIL) (-1091 2591356 2591657 2592055 "SMITH" 2592894 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1090 2584339 2588494 2588597 "SMATCAT" 2589948 NIL SMATCAT (NIL NIL T T T) -9 NIL 2590498) (-1089 2581279 2582102 2583280 "SMATCAT-" 2583285 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1088 2578992 2580515 2580558 "SKAGG" 2580819 NIL SKAGG (NIL T) -9 NIL 2580954) (-1087 2575108 2578096 2578374 "SINT" 2578736 T SINT (NIL) -8 NIL NIL) (-1086 2574880 2574918 2574984 "SIMPAN" 2575064 T SIMPAN (NIL) -7 NIL NIL) (-1085 2574187 2574415 2574555 "SIG" 2574762 T SIG (NIL) -8 NIL NIL) (-1084 2573025 2573246 2573521 "SIGNRF" 2573946 NIL SIGNRF (NIL T) -7 NIL NIL) (-1083 2571830 2571981 2572272 "SIGNEF" 2572854 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1082 2571180 2571413 2571537 "SIGAST" 2571728 T SIGAST (NIL) -8 NIL NIL) (-1081 2568870 2569324 2569830 "SHP" 2570721 NIL SHP (NIL T NIL) -7 NIL NIL) (-1080 2562776 2568771 2568847 "SHDP" 2568852 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1079 2562375 2562541 2562571 "SGROUP" 2562664 T SGROUP (NIL) -9 NIL 2562726) (-1078 2562233 2562259 2562332 "SGROUP-" 2562337 NIL SGROUP- (NIL T) -8 NIL NIL) (-1077 2559069 2559766 2560489 "SGCF" 2561532 T SGCF (NIL) -7 NIL NIL) (-1076 2553464 2558516 2558613 "SFRTCAT" 2558618 NIL SFRTCAT (NIL T T T T) -9 NIL 2558657) (-1075 2546888 2547903 2549039 "SFRGCD" 2552447 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1074 2540016 2541087 2542273 "SFQCMPK" 2545821 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1073 2539638 2539727 2539837 "SFORT" 2539957 NIL SFORT (NIL T T) -8 NIL NIL) (-1072 2538783 2539478 2539599 "SEXOF" 2539604 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1071 2537917 2538664 2538732 "SEX" 2538737 T SEX (NIL) -8 NIL NIL) (-1070 2532693 2533382 2533477 "SEXCAT" 2537248 NIL SEXCAT (NIL T T T T T) -9 NIL 2537867) (-1069 2529873 2532627 2532675 "SET" 2532680 NIL SET (NIL T) -8 NIL NIL) (-1068 2528124 2528586 2528891 "SETMN" 2529614 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1067 2527730 2527856 2527886 "SETCAT" 2528003 T SETCAT (NIL) -9 NIL 2528088) (-1066 2527510 2527562 2527661 "SETCAT-" 2527666 NIL SETCAT- (NIL T) -8 NIL NIL) (-1065 2523897 2525971 2526014 "SETAGG" 2526884 NIL SETAGG (NIL T) -9 NIL 2527224) (-1064 2523355 2523471 2523708 "SETAGG-" 2523713 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1063 2522842 2523051 2523152 "SEQAST" 2523276 T SEQAST (NIL) -8 NIL NIL) (-1062 2522046 2522339 2522400 "SEGXCAT" 2522686 NIL SEGXCAT (NIL T T) -9 NIL 2522806) (-1061 2521102 2521712 2521894 "SEG" 2521899 NIL SEG (NIL T) -8 NIL NIL) (-1060 2520009 2520222 2520265 "SEGCAT" 2520847 NIL SEGCAT (NIL T) -9 NIL 2521085) (-1059 2519058 2519388 2519588 "SEGBIND" 2519844 NIL SEGBIND (NIL T) -8 NIL NIL) (-1058 2518679 2518738 2518851 "SEGBIND2" 2518993 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1057 2518297 2518480 2518557 "SEGAST" 2518624 T SEGAST (NIL) -8 NIL NIL) (-1056 2517516 2517642 2517846 "SEG2" 2518141 NIL SEG2 (NIL T T) -7 NIL NIL) (-1055 2516953 2517451 2517498 "SDVAR" 2517503 NIL SDVAR (NIL T) -8 NIL NIL) (-1054 2509243 2516723 2516853 "SDPOL" 2516858 NIL SDPOL (NIL T) -8 NIL NIL) (-1053 2507836 2508102 2508421 "SCPKG" 2508958 NIL SCPKG (NIL T) -7 NIL NIL) (-1052 2506972 2507152 2507352 "SCOPE" 2507658 T SCOPE (NIL) -8 NIL NIL) (-1051 2506193 2506326 2506505 "SCACHE" 2506827 NIL SCACHE (NIL T) -7 NIL NIL) (-1050 2505919 2506062 2506092 "SASTCAT" 2506097 T SASTCAT (NIL) -9 NIL 2506110) (-1049 2505708 2505753 2505851 "SASTCAT-" 2505856 NIL SASTCAT- (NIL T) -8 NIL NIL) (-1048 2505147 2505468 2505553 "SAOS" 2505645 T SAOS (NIL) -8 NIL NIL) (-1047 2504712 2504747 2504920 "SAERFFC" 2505106 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1046 2498686 2504609 2504689 "SAE" 2504694 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1045 2498279 2498314 2498473 "SAEFACT" 2498645 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1044 2496600 2496914 2497315 "RURPK" 2497945 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1043 2495236 2495515 2495827 "RULESET" 2496434 NIL RULESET (NIL T T T) -8 NIL NIL) (-1042 2492423 2492926 2493391 "RULE" 2494917 NIL RULE (NIL T T T) -8 NIL NIL) (-1041 2492062 2492217 2492300 "RULECOLD" 2492375 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1040 2491578 2491779 2491873 "RSTRCAST" 2491990 T RSTRCAST (NIL) -8 NIL NIL) (-1039 2486427 2487221 2488141 "RSETGCD" 2490777 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1038 2475684 2480736 2480833 "RSETCAT" 2484952 NIL RSETCAT (NIL T T T T) -9 NIL 2486049) (-1037 2473611 2474150 2474974 "RSETCAT-" 2474979 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1036 2465998 2467373 2468893 "RSDCMPK" 2472210 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1035 2464003 2464444 2464518 "RRCC" 2465604 NIL RRCC (NIL T T) -9 NIL 2465948) (-1034 2463354 2463528 2463807 "RRCC-" 2463812 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1033 2462841 2463050 2463151 "RPTAST" 2463275 T RPTAST (NIL) -8 NIL NIL) (-1032 2437069 2446654 2446721 "RPOLCAT" 2457385 NIL RPOLCAT (NIL T T T) -9 NIL 2460544) (-1031 2428569 2430907 2434029 "RPOLCAT-" 2434034 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1030 2419616 2426780 2427262 "ROUTINE" 2428109 T ROUTINE (NIL) -8 NIL NIL) (-1029 2416374 2419167 2419316 "ROMAN" 2419489 T ROMAN (NIL) -8 NIL NIL) (-1028 2414649 2415234 2415494 "ROIRC" 2416179 NIL ROIRC (NIL T T) -8 NIL NIL) (-1027 2411100 2413339 2413369 "RNS" 2413673 T RNS (NIL) -9 NIL 2413945) (-1026 2409609 2409992 2410526 "RNS-" 2410601 NIL RNS- (NIL T) -8 NIL NIL) (-1025 2409058 2409440 2409470 "RNG" 2409475 T RNG (NIL) -9 NIL 2409496) (-1024 2408450 2408812 2408855 "RMODULE" 2408917 NIL RMODULE (NIL T) -9 NIL 2408959) (-1023 2407286 2407380 2407716 "RMCAT2" 2408351 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1022 2403991 2406460 2406785 "RMATRIX" 2407020 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1021 2396933 2399167 2399282 "RMATCAT" 2402641 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2403623) (-1020 2396308 2396455 2396762 "RMATCAT-" 2396767 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1019 2395875 2395950 2396078 "RINTERP" 2396227 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1018 2394963 2395483 2395513 "RING" 2395625 T RING (NIL) -9 NIL 2395720) (-1017 2394755 2394799 2394896 "RING-" 2394901 NIL RING- (NIL T) -8 NIL NIL) (-1016 2393596 2393833 2394091 "RIDIST" 2394519 T RIDIST (NIL) -7 NIL NIL) (-1015 2384912 2393064 2393270 "RGCHAIN" 2393444 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1014 2381906 2382520 2383190 "RF" 2384276 NIL RF (NIL T) -7 NIL NIL) (-1013 2381552 2381615 2381718 "RFFACTOR" 2381837 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1012 2381277 2381312 2381409 "RFFACT" 2381511 NIL RFFACT (NIL T) -7 NIL NIL) (-1011 2379394 2379758 2380140 "RFDIST" 2380917 T RFDIST (NIL) -7 NIL NIL) (-1010 2378847 2378939 2379102 "RETSOL" 2379296 NIL RETSOL (NIL T T) -7 NIL NIL) (-1009 2378435 2378515 2378558 "RETRACT" 2378751 NIL RETRACT (NIL T) -9 NIL NIL) (-1008 2378284 2378309 2378396 "RETRACT-" 2378401 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1007 2377930 2378106 2378176 "RETAST" 2378236 T RETAST (NIL) -8 NIL NIL) (-1006 2370784 2377583 2377710 "RESULT" 2377825 T RESULT (NIL) -8 NIL NIL) (-1005 2369410 2370053 2370252 "RESRING" 2370687 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1004 2369046 2369095 2369193 "RESLATC" 2369347 NIL RESLATC (NIL T) -7 NIL NIL) (-1003 2368752 2368786 2368893 "REPSQ" 2369005 NIL REPSQ (NIL T) -7 NIL NIL) (-1002 2366174 2366754 2367356 "REP" 2368172 T REP (NIL) -7 NIL NIL) (-1001 2365872 2365906 2366017 "REPDB" 2366133 NIL REPDB (NIL T) -7 NIL NIL) (-1000 2359782 2361161 2362384 "REP2" 2364684 NIL REP2 (NIL T) -7 NIL NIL) (-999 2356174 2356855 2357661 "REP1" 2359009 NIL REP1 (NIL T) -7 NIL NIL) (-998 2348912 2354327 2354781 "REGSET" 2355804 NIL REGSET (NIL T T T T) -8 NIL NIL) (-997 2347733 2348068 2348316 "REF" 2348697 NIL REF (NIL T) -8 NIL NIL) (-996 2347114 2347217 2347382 "REDORDER" 2347617 NIL REDORDER (NIL T T) -7 NIL NIL) (-995 2343134 2346342 2346565 "RECLOS" 2346943 NIL RECLOS (NIL T) -8 NIL NIL) (-994 2342191 2342372 2342585 "REALSOLV" 2342941 T REALSOLV (NIL) -7 NIL NIL) (-993 2342039 2342080 2342108 "REAL" 2342113 T REAL (NIL) -9 NIL 2342148) (-992 2338530 2339332 2340214 "REAL0Q" 2341204 NIL REAL0Q (NIL T) -7 NIL NIL) (-991 2334141 2335129 2336188 "REAL0" 2337511 NIL REAL0 (NIL T) -7 NIL NIL) (-990 2333661 2333862 2333954 "RDUCEAST" 2334069 T RDUCEAST (NIL) -8 NIL NIL) (-989 2333069 2333141 2333346 "RDIV" 2333583 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-988 2332142 2332316 2332527 "RDIST" 2332891 NIL RDIST (NIL T) -7 NIL NIL) (-987 2330743 2331030 2331400 "RDETRS" 2331850 NIL RDETRS (NIL T T) -7 NIL NIL) (-986 2328560 2329014 2329550 "RDETR" 2330285 NIL RDETR (NIL T T) -7 NIL NIL) (-985 2327174 2327452 2327854 "RDEEFS" 2328276 NIL RDEEFS (NIL T T) -7 NIL NIL) (-984 2325672 2325978 2326408 "RDEEF" 2326862 NIL RDEEF (NIL T T) -7 NIL NIL) (-983 2320009 2322880 2322908 "RCFIELD" 2324185 T RCFIELD (NIL) -9 NIL 2324915) (-982 2318078 2318582 2319275 "RCFIELD-" 2319348 NIL RCFIELD- (NIL T) -8 NIL NIL) (-981 2314409 2316194 2316235 "RCAGG" 2317306 NIL RCAGG (NIL T) -9 NIL 2317771) (-980 2314040 2314134 2314294 "RCAGG-" 2314299 NIL RCAGG- (NIL T T) -8 NIL NIL) (-979 2313380 2313492 2313655 "RATRET" 2313924 NIL RATRET (NIL T) -7 NIL NIL) (-978 2312937 2313004 2313123 "RATFACT" 2313308 NIL RATFACT (NIL T) -7 NIL NIL) (-977 2312252 2312372 2312522 "RANDSRC" 2312807 T RANDSRC (NIL) -7 NIL NIL) (-976 2311989 2312033 2312104 "RADUTIL" 2312201 T RADUTIL (NIL) -7 NIL NIL) (-975 2305054 2310732 2311049 "RADIX" 2311704 NIL RADIX (NIL NIL) -8 NIL NIL) (-974 2296710 2304898 2305026 "RADFF" 2305031 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-973 2296362 2296437 2296465 "RADCAT" 2296622 T RADCAT (NIL) -9 NIL NIL) (-972 2296147 2296195 2296292 "RADCAT-" 2296297 NIL RADCAT- (NIL T) -8 NIL NIL) (-971 2294298 2295922 2296011 "QUEUE" 2296091 NIL QUEUE (NIL T) -8 NIL NIL) (-970 2290874 2294235 2294280 "QUAT" 2294285 NIL QUAT (NIL T) -8 NIL NIL) (-969 2290512 2290555 2290682 "QUATCT2" 2290825 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-968 2284372 2287673 2287713 "QUATCAT" 2288493 NIL QUATCAT (NIL T) -9 NIL 2289259) (-967 2280516 2281553 2282940 "QUATCAT-" 2283034 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-966 2278036 2279600 2279641 "QUAGG" 2280016 NIL QUAGG (NIL T) -9 NIL 2280191) (-965 2277685 2277861 2277929 "QQUTAST" 2277988 T QQUTAST (NIL) -8 NIL NIL) (-964 2276610 2277083 2277255 "QFORM" 2277557 NIL QFORM (NIL NIL T) -8 NIL NIL) (-963 2267943 2273146 2273186 "QFCAT" 2273844 NIL QFCAT (NIL T) -9 NIL 2274843) (-962 2263515 2264716 2266307 "QFCAT-" 2266401 NIL QFCAT- (NIL T T) -8 NIL NIL) (-961 2263153 2263196 2263323 "QFCAT2" 2263466 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-960 2262613 2262723 2262853 "QEQUAT" 2263043 T QEQUAT (NIL) -8 NIL NIL) (-959 2255761 2256832 2258016 "QCMPACK" 2261546 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-958 2253337 2253758 2254186 "QALGSET" 2255416 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-957 2252582 2252756 2252988 "QALGSET2" 2253157 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-956 2251273 2251496 2251813 "PWFFINTB" 2252355 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-955 2249455 2249623 2249977 "PUSHVAR" 2251087 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-954 2245373 2246427 2246468 "PTRANFN" 2248352 NIL PTRANFN (NIL T) -9 NIL NIL) (-953 2243775 2244066 2244388 "PTPACK" 2245084 NIL PTPACK (NIL T) -7 NIL NIL) (-952 2243407 2243464 2243573 "PTFUNC2" 2243712 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-951 2237873 2242218 2242259 "PTCAT" 2242632 NIL PTCAT (NIL T) -9 NIL 2242794) (-950 2237531 2237566 2237690 "PSQFR" 2237832 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-949 2236126 2236424 2236758 "PSEUDLIN" 2237229 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-948 2222895 2225260 2227584 "PSETPK" 2233886 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-947 2215939 2218653 2218749 "PSETCAT" 2221770 NIL PSETCAT (NIL T T T T) -9 NIL 2222584) (-946 2213775 2214409 2215230 "PSETCAT-" 2215235 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-945 2213124 2213289 2213317 "PSCURVE" 2213585 T PSCURVE (NIL) -9 NIL 2213752) (-944 2209605 2211087 2211152 "PSCAT" 2211996 NIL PSCAT (NIL T T T) -9 NIL 2212236) (-943 2208668 2208884 2209284 "PSCAT-" 2209289 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-942 2207320 2207953 2208167 "PRTITION" 2208474 T PRTITION (NIL) -8 NIL NIL) (-941 2206840 2207041 2207133 "PRTDAST" 2207248 T PRTDAST (NIL) -8 NIL NIL) (-940 2195938 2198144 2200332 "PRS" 2204702 NIL PRS (NIL T T) -7 NIL NIL) (-939 2193796 2195288 2195328 "PRQAGG" 2195511 NIL PRQAGG (NIL T) -9 NIL 2195613) (-938 2193182 2193411 2193439 "PROPLOG" 2193624 T PROPLOG (NIL) -9 NIL 2193746) (-937 2190352 2190996 2191460 "PROPFRML" 2192750 NIL PROPFRML (NIL T) -8 NIL NIL) (-936 2189812 2189922 2190052 "PROPERTY" 2190242 T PROPERTY (NIL) -8 NIL NIL) (-935 2183897 2187978 2188798 "PRODUCT" 2189038 NIL PRODUCT (NIL T T) -8 NIL NIL) (-934 2181210 2183355 2183589 "PR" 2183708 NIL PR (NIL T T) -8 NIL NIL) (-933 2181006 2181038 2181097 "PRINT" 2181171 T PRINT (NIL) -7 NIL NIL) (-932 2180346 2180463 2180615 "PRIMES" 2180886 NIL PRIMES (NIL T) -7 NIL NIL) (-931 2178411 2178812 2179278 "PRIMELT" 2179925 NIL PRIMELT (NIL T) -7 NIL NIL) (-930 2178140 2178189 2178217 "PRIMCAT" 2178341 T PRIMCAT (NIL) -9 NIL NIL) (-929 2174301 2178078 2178123 "PRIMARR" 2178128 NIL PRIMARR (NIL T) -8 NIL NIL) (-928 2173308 2173486 2173714 "PRIMARR2" 2174119 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-927 2172951 2173007 2173118 "PREASSOC" 2173246 NIL PREASSOC (NIL T T) -7 NIL NIL) (-926 2172426 2172559 2172587 "PPCURVE" 2172792 T PPCURVE (NIL) -9 NIL 2172928) (-925 2172048 2172221 2172304 "PORTNUM" 2172363 T PORTNUM (NIL) -8 NIL NIL) (-924 2169407 2169806 2170398 "POLYROOT" 2171629 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-923 2163352 2169011 2169171 "POLY" 2169280 NIL POLY (NIL T) -8 NIL NIL) (-922 2162735 2162793 2163027 "POLYLIFT" 2163288 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-921 2159010 2159459 2160088 "POLYCATQ" 2162280 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-920 2146049 2151405 2151470 "POLYCAT" 2154984 NIL POLYCAT (NIL T T T) -9 NIL 2156912) (-919 2139499 2141360 2143744 "POLYCAT-" 2143749 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-918 2139086 2139154 2139274 "POLY2UP" 2139425 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-917 2138718 2138775 2138884 "POLY2" 2139023 NIL POLY2 (NIL T T) -7 NIL NIL) (-916 2137403 2137642 2137918 "POLUTIL" 2138492 NIL POLUTIL (NIL T T) -7 NIL NIL) (-915 2135758 2136035 2136366 "POLTOPOL" 2137125 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-914 2131276 2135694 2135740 "POINT" 2135745 NIL POINT (NIL T) -8 NIL NIL) (-913 2129463 2129820 2130195 "PNTHEORY" 2130921 T PNTHEORY (NIL) -7 NIL NIL) (-912 2127882 2128179 2128591 "PMTOOLS" 2129161 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-911 2127475 2127553 2127670 "PMSYM" 2127798 NIL PMSYM (NIL T) -7 NIL NIL) (-910 2126985 2127054 2127228 "PMQFCAT" 2127400 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-909 2126340 2126450 2126606 "PMPRED" 2126862 NIL PMPRED (NIL T) -7 NIL NIL) (-908 2125736 2125822 2125983 "PMPREDFS" 2126241 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-907 2124379 2124587 2124972 "PMPLCAT" 2125498 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-906 2123911 2123990 2124142 "PMLSAGG" 2124294 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-905 2123386 2123462 2123643 "PMKERNEL" 2123829 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-904 2123003 2123078 2123191 "PMINS" 2123305 NIL PMINS (NIL T) -7 NIL NIL) (-903 2122431 2122500 2122716 "PMFS" 2122928 NIL PMFS (NIL T T T) -7 NIL NIL) (-902 2121659 2121777 2121982 "PMDOWN" 2122308 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-901 2120822 2120981 2121163 "PMASS" 2121497 T PMASS (NIL) -7 NIL NIL) (-900 2120096 2120207 2120370 "PMASSFS" 2120708 NIL PMASSFS (NIL T T) -7 NIL NIL) (-899 2119751 2119819 2119913 "PLOTTOOL" 2120022 T PLOTTOOL (NIL) -7 NIL NIL) (-898 2114373 2115562 2116710 "PLOT" 2118623 T PLOT (NIL) -8 NIL NIL) (-897 2110187 2111221 2112142 "PLOT3D" 2113472 T PLOT3D (NIL) -8 NIL NIL) (-896 2109099 2109276 2109511 "PLOT1" 2109991 NIL PLOT1 (NIL T) -7 NIL NIL) (-895 2084493 2089165 2094016 "PLEQN" 2104365 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-894 2083811 2083933 2084113 "PINTERP" 2084358 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-893 2083504 2083551 2083654 "PINTERPA" 2083758 NIL PINTERPA (NIL T T) -7 NIL NIL) (-892 2082789 2083310 2083397 "PI" 2083437 T PI (NIL) -8 NIL NIL) (-891 2081221 2082162 2082190 "PID" 2082372 T PID (NIL) -9 NIL 2082506) (-890 2080946 2080983 2081071 "PICOERCE" 2081178 NIL PICOERCE (NIL T) -7 NIL NIL) (-889 2080266 2080405 2080581 "PGROEB" 2080802 NIL PGROEB (NIL T) -7 NIL NIL) (-888 2075853 2076667 2077572 "PGE" 2079381 T PGE (NIL) -7 NIL NIL) (-887 2073977 2074223 2074589 "PGCD" 2075570 NIL PGCD (NIL T T T T) -7 NIL NIL) (-886 2073315 2073418 2073579 "PFRPAC" 2073861 NIL PFRPAC (NIL T) -7 NIL NIL) (-885 2069995 2071863 2072216 "PFR" 2072994 NIL PFR (NIL T) -8 NIL NIL) (-884 2068384 2068628 2068953 "PFOTOOLS" 2069742 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-883 2066917 2067156 2067507 "PFOQ" 2068141 NIL PFOQ (NIL T T T) -7 NIL NIL) (-882 2065390 2065602 2065965 "PFO" 2066701 NIL PFO (NIL T T T T T) -7 NIL NIL) (-881 2061978 2065279 2065348 "PF" 2065353 NIL PF (NIL NIL) -8 NIL NIL) (-880 2059447 2060684 2060712 "PFECAT" 2061297 T PFECAT (NIL) -9 NIL 2061681) (-879 2058892 2059046 2059260 "PFECAT-" 2059265 NIL PFECAT- (NIL T) -8 NIL NIL) (-878 2057496 2057747 2058048 "PFBRU" 2058641 NIL PFBRU (NIL T T) -7 NIL NIL) (-877 2055363 2055714 2056146 "PFBR" 2057147 NIL PFBR (NIL T T T T) -7 NIL NIL) (-876 2051279 2052739 2053415 "PERM" 2054720 NIL PERM (NIL T) -8 NIL NIL) (-875 2046545 2047486 2048356 "PERMGRP" 2050442 NIL PERMGRP (NIL T) -8 NIL NIL) (-874 2044677 2045608 2045649 "PERMCAT" 2046095 NIL PERMCAT (NIL T) -9 NIL 2046400) (-873 2044330 2044371 2044495 "PERMAN" 2044630 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-872 2041770 2043899 2044030 "PENDTREE" 2044232 NIL PENDTREE (NIL T) -8 NIL NIL) (-871 2039883 2040617 2040658 "PDRING" 2041315 NIL PDRING (NIL T) -9 NIL 2041601) (-870 2038986 2039204 2039566 "PDRING-" 2039571 NIL PDRING- (NIL T T) -8 NIL NIL) (-869 2036127 2036878 2037569 "PDEPROB" 2038315 T PDEPROB (NIL) -8 NIL NIL) (-868 2033674 2034176 2034731 "PDEPACK" 2035592 T PDEPACK (NIL) -7 NIL NIL) (-867 2032586 2032776 2033027 "PDECOMP" 2033473 NIL PDECOMP (NIL T T) -7 NIL NIL) (-866 2030191 2031008 2031036 "PDECAT" 2031823 T PDECAT (NIL) -9 NIL 2032536) (-865 2029942 2029975 2030065 "PCOMP" 2030152 NIL PCOMP (NIL T T) -7 NIL NIL) (-864 2028147 2028743 2029040 "PBWLB" 2029671 NIL PBWLB (NIL T) -8 NIL NIL) (-863 2020651 2022220 2023558 "PATTERN" 2026830 NIL PATTERN (NIL T) -8 NIL NIL) (-862 2020283 2020340 2020449 "PATTERN2" 2020588 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-861 2018040 2018428 2018885 "PATTERN1" 2019872 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-860 2015435 2015989 2016470 "PATRES" 2017605 NIL PATRES (NIL T T) -8 NIL NIL) (-859 2014999 2015066 2015198 "PATRES2" 2015362 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-858 2012882 2013287 2013694 "PATMATCH" 2014666 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-857 2012418 2012601 2012642 "PATMAB" 2012749 NIL PATMAB (NIL T) -9 NIL 2012832) (-856 2010963 2011272 2011530 "PATLRES" 2012223 NIL PATLRES (NIL T T T) -8 NIL NIL) (-855 2010509 2010632 2010673 "PATAB" 2010678 NIL PATAB (NIL T) -9 NIL 2010850) (-854 2007990 2008522 2009095 "PARTPERM" 2009956 T PARTPERM (NIL) -7 NIL NIL) (-853 2007611 2007674 2007776 "PARSURF" 2007921 NIL PARSURF (NIL T) -8 NIL NIL) (-852 2007243 2007300 2007409 "PARSU2" 2007548 NIL PARSU2 (NIL T T) -7 NIL NIL) (-851 2007007 2007047 2007114 "PARSER" 2007196 T PARSER (NIL) -7 NIL NIL) (-850 2006628 2006691 2006793 "PARSCURV" 2006938 NIL PARSCURV (NIL T) -8 NIL NIL) (-849 2006260 2006317 2006426 "PARSC2" 2006565 NIL PARSC2 (NIL T T) -7 NIL NIL) (-848 2005899 2005957 2006054 "PARPCURV" 2006196 NIL PARPCURV (NIL T) -8 NIL NIL) (-847 2005531 2005588 2005697 "PARPC2" 2005836 NIL PARPC2 (NIL T T) -7 NIL NIL) (-846 2005051 2005137 2005256 "PAN2EXPR" 2005432 T PAN2EXPR (NIL) -7 NIL NIL) (-845 2003857 2004172 2004400 "PALETTE" 2004843 T PALETTE (NIL) -8 NIL NIL) (-844 2002325 2002862 2003222 "PAIR" 2003543 NIL PAIR (NIL T T) -8 NIL NIL) (-843 1996233 2001584 2001778 "PADICRC" 2002180 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-842 1989499 1995579 1995763 "PADICRAT" 1996081 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-841 1987849 1989436 1989481 "PADIC" 1989486 NIL PADIC (NIL NIL) -8 NIL NIL) (-840 1985094 1986624 1986664 "PADICCT" 1987245 NIL PADICCT (NIL NIL) -9 NIL 1987527) (-839 1984051 1984251 1984519 "PADEPAC" 1984881 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-838 1983263 1983396 1983602 "PADE" 1983913 NIL PADE (NIL T T T) -7 NIL NIL) (-837 1981313 1982099 1982416 "OWP" 1983030 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-836 1980422 1980918 1981090 "OVAR" 1981181 NIL OVAR (NIL NIL) -8 NIL NIL) (-835 1979686 1979807 1979968 "OUT" 1980281 T OUT (NIL) -7 NIL NIL) (-834 1968740 1970911 1973081 "OUTFORM" 1977536 T OUTFORM (NIL) -8 NIL NIL) (-833 1968377 1968460 1968488 "OUTBCON" 1968639 T OUTBCON (NIL) -9 NIL 1968724) (-832 1968217 1968252 1968328 "OUTBCON-" 1968333 NIL OUTBCON- (NIL T) -8 NIL NIL) (-831 1967625 1967946 1968035 "OSI" 1968148 T OSI (NIL) -8 NIL NIL) (-830 1967181 1967493 1967521 "OSGROUP" 1967526 T OSGROUP (NIL) -9 NIL 1967548) (-829 1965926 1966153 1966438 "ORTHPOL" 1966928 NIL ORTHPOL (NIL T) -7 NIL NIL) (-828 1963336 1965585 1965724 "OREUP" 1965869 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-827 1960774 1963027 1963154 "ORESUP" 1963278 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-826 1958302 1958802 1959363 "OREPCTO" 1960263 NIL OREPCTO (NIL T T) -7 NIL NIL) (-825 1952213 1954380 1954421 "OREPCAT" 1956769 NIL OREPCAT (NIL T) -9 NIL 1957873) (-824 1949360 1950142 1951200 "OREPCAT-" 1951205 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-823 1948537 1948809 1948837 "ORDSET" 1949146 T ORDSET (NIL) -9 NIL 1949310) (-822 1948056 1948178 1948371 "ORDSET-" 1948376 NIL ORDSET- (NIL T) -8 NIL NIL) (-821 1946710 1947467 1947495 "ORDRING" 1947697 T ORDRING (NIL) -9 NIL 1947822) (-820 1946355 1946449 1946593 "ORDRING-" 1946598 NIL ORDRING- (NIL T) -8 NIL NIL) (-819 1945761 1946198 1946226 "ORDMON" 1946231 T ORDMON (NIL) -9 NIL 1946252) (-818 1944923 1945070 1945265 "ORDFUNS" 1945610 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-817 1944434 1944793 1944821 "ORDFIN" 1944826 T ORDFIN (NIL) -9 NIL 1944847) (-816 1941026 1943020 1943429 "ORDCOMP" 1944058 NIL ORDCOMP (NIL T) -8 NIL NIL) (-815 1940292 1940419 1940605 "ORDCOMP2" 1940886 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-814 1936799 1937682 1938519 "OPTPROB" 1939475 T OPTPROB (NIL) -8 NIL NIL) (-813 1933601 1934240 1934944 "OPTPACK" 1936115 T OPTPACK (NIL) -7 NIL NIL) (-812 1931314 1932054 1932082 "OPTCAT" 1932901 T OPTCAT (NIL) -9 NIL 1933551) (-811 1931082 1931121 1931187 "OPQUERY" 1931268 T OPQUERY (NIL) -7 NIL NIL) (-810 1928248 1929393 1929897 "OP" 1930611 NIL OP (NIL T) -8 NIL NIL) (-809 1925093 1927045 1927414 "ONECOMP" 1927912 NIL ONECOMP (NIL T) -8 NIL NIL) (-808 1924398 1924513 1924687 "ONECOMP2" 1924965 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-807 1923817 1923923 1924053 "OMSERVER" 1924288 T OMSERVER (NIL) -7 NIL NIL) (-806 1920705 1923257 1923297 "OMSAGG" 1923358 NIL OMSAGG (NIL T) -9 NIL 1923422) (-805 1919328 1919591 1919873 "OMPKG" 1920443 T OMPKG (NIL) -7 NIL NIL) (-804 1918758 1918861 1918889 "OM" 1919188 T OM (NIL) -9 NIL NIL) (-803 1917340 1918307 1918476 "OMLO" 1918639 NIL OMLO (NIL T T) -8 NIL NIL) (-802 1916265 1916412 1916639 "OMEXPR" 1917166 NIL OMEXPR (NIL T) -7 NIL NIL) (-801 1915583 1915811 1915947 "OMERR" 1916149 T OMERR (NIL) -8 NIL NIL) (-800 1914761 1915004 1915164 "OMERRK" 1915443 T OMERRK (NIL) -8 NIL NIL) (-799 1914239 1914438 1914546 "OMENC" 1914673 T OMENC (NIL) -8 NIL NIL) (-798 1908134 1909319 1910490 "OMDEV" 1913088 T OMDEV (NIL) -8 NIL NIL) (-797 1907203 1907374 1907568 "OMCONN" 1907960 T OMCONN (NIL) -8 NIL NIL) (-796 1905859 1906801 1906829 "OINTDOM" 1906834 T OINTDOM (NIL) -9 NIL 1906855) (-795 1901665 1902849 1903565 "OFMONOID" 1905175 NIL OFMONOID (NIL T) -8 NIL NIL) (-794 1901103 1901602 1901647 "ODVAR" 1901652 NIL ODVAR (NIL T) -8 NIL NIL) (-793 1898313 1900600 1900785 "ODR" 1900978 NIL ODR (NIL T T NIL) -8 NIL NIL) (-792 1890657 1898089 1898215 "ODPOL" 1898220 NIL ODPOL (NIL T) -8 NIL NIL) (-791 1884533 1890529 1890634 "ODP" 1890639 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-790 1883299 1883514 1883789 "ODETOOLS" 1884307 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-789 1880268 1880924 1881640 "ODESYS" 1882632 NIL ODESYS (NIL T T) -7 NIL NIL) (-788 1875150 1876058 1877083 "ODERTRIC" 1879343 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-787 1874576 1874658 1874852 "ODERED" 1875062 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-786 1871464 1872012 1872689 "ODERAT" 1873999 NIL ODERAT (NIL T T) -7 NIL NIL) (-785 1868424 1868888 1869485 "ODEPRRIC" 1870993 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-784 1866293 1866862 1867371 "ODEPROB" 1867935 T ODEPROB (NIL) -8 NIL NIL) (-783 1862815 1863298 1863945 "ODEPRIM" 1865772 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-782 1862064 1862166 1862426 "ODEPAL" 1862707 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-781 1858226 1859017 1859881 "ODEPACK" 1861220 T ODEPACK (NIL) -7 NIL NIL) (-780 1857259 1857366 1857595 "ODEINT" 1858115 NIL ODEINT (NIL T T) -7 NIL NIL) (-779 1851360 1852785 1854232 "ODEIFTBL" 1855832 T ODEIFTBL (NIL) -8 NIL NIL) (-778 1846695 1847481 1848440 "ODEEF" 1850519 NIL ODEEF (NIL T T) -7 NIL NIL) (-777 1846030 1846119 1846349 "ODECONST" 1846600 NIL ODECONST (NIL T T T) -7 NIL NIL) (-776 1844181 1844816 1844844 "ODECAT" 1845449 T ODECAT (NIL) -9 NIL 1845980) (-775 1841088 1843893 1844012 "OCT" 1844094 NIL OCT (NIL T) -8 NIL NIL) (-774 1840726 1840769 1840896 "OCTCT2" 1841039 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-773 1835587 1837987 1838027 "OC" 1839124 NIL OC (NIL T) -9 NIL 1839982) (-772 1832814 1833562 1834552 "OC-" 1834646 NIL OC- (NIL T T) -8 NIL NIL) (-771 1832192 1832634 1832662 "OCAMON" 1832667 T OCAMON (NIL) -9 NIL 1832688) (-770 1831749 1832064 1832092 "OASGP" 1832097 T OASGP (NIL) -9 NIL 1832117) (-769 1831036 1831499 1831527 "OAMONS" 1831567 T OAMONS (NIL) -9 NIL 1831610) (-768 1830476 1830883 1830911 "OAMON" 1830916 T OAMON (NIL) -9 NIL 1830936) (-767 1829780 1830272 1830300 "OAGROUP" 1830305 T OAGROUP (NIL) -9 NIL 1830325) (-766 1829470 1829520 1829608 "NUMTUBE" 1829724 NIL NUMTUBE (NIL T) -7 NIL NIL) (-765 1823043 1824561 1826097 "NUMQUAD" 1827954 T NUMQUAD (NIL) -7 NIL NIL) (-764 1818799 1819787 1820812 "NUMODE" 1822038 T NUMODE (NIL) -7 NIL NIL) (-763 1816180 1817034 1817062 "NUMINT" 1817985 T NUMINT (NIL) -9 NIL 1818749) (-762 1815128 1815325 1815543 "NUMFMT" 1815982 T NUMFMT (NIL) -7 NIL NIL) (-761 1801487 1804432 1806964 "NUMERIC" 1812635 NIL NUMERIC (NIL T) -7 NIL NIL) (-760 1795884 1800936 1801031 "NTSCAT" 1801036 NIL NTSCAT (NIL T T T T) -9 NIL 1801075) (-759 1795078 1795243 1795436 "NTPOLFN" 1795723 NIL NTPOLFN (NIL T) -7 NIL NIL) (-758 1782918 1791903 1792715 "NSUP" 1794299 NIL NSUP (NIL T) -8 NIL NIL) (-757 1782550 1782607 1782716 "NSUP2" 1782855 NIL NSUP2 (NIL T T) -7 NIL NIL) (-756 1772547 1782324 1782457 "NSMP" 1782462 NIL NSMP (NIL T T) -8 NIL NIL) (-755 1770979 1771280 1771637 "NREP" 1772235 NIL NREP (NIL T) -7 NIL NIL) (-754 1769570 1769822 1770180 "NPCOEF" 1770722 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-753 1768636 1768751 1768967 "NORMRETR" 1769451 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-752 1766677 1766967 1767376 "NORMPK" 1768344 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-751 1766362 1766390 1766514 "NORMMA" 1766643 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-750 1766189 1766319 1766348 "NONE" 1766353 T NONE (NIL) -8 NIL NIL) (-749 1765978 1766007 1766076 "NONE1" 1766153 NIL NONE1 (NIL T) -7 NIL NIL) (-748 1765461 1765523 1765709 "NODE1" 1765910 NIL NODE1 (NIL T T) -7 NIL NIL) (-747 1763801 1764624 1764879 "NNI" 1765226 T NNI (NIL) -8 NIL NIL) (-746 1762221 1762534 1762898 "NLINSOL" 1763469 NIL NLINSOL (NIL T) -7 NIL NIL) (-745 1758388 1759356 1760278 "NIPROB" 1761319 T NIPROB (NIL) -8 NIL NIL) (-744 1757145 1757379 1757681 "NFINTBAS" 1758150 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-743 1755853 1756084 1756365 "NCODIV" 1756913 NIL NCODIV (NIL T T) -7 NIL NIL) (-742 1755615 1755652 1755727 "NCNTFRAC" 1755810 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-741 1753795 1754159 1754579 "NCEP" 1755240 NIL NCEP (NIL T) -7 NIL NIL) (-740 1752706 1753445 1753473 "NASRING" 1753583 T NASRING (NIL) -9 NIL 1753657) (-739 1752501 1752545 1752639 "NASRING-" 1752644 NIL NASRING- (NIL T) -8 NIL NIL) (-738 1751654 1752153 1752181 "NARNG" 1752298 T NARNG (NIL) -9 NIL 1752389) (-737 1751346 1751413 1751547 "NARNG-" 1751552 NIL NARNG- (NIL T) -8 NIL NIL) (-736 1750225 1750432 1750667 "NAGSP" 1751131 T NAGSP (NIL) -7 NIL NIL) (-735 1741497 1743181 1744854 "NAGS" 1748572 T NAGS (NIL) -7 NIL NIL) (-734 1740045 1740353 1740684 "NAGF07" 1741186 T NAGF07 (NIL) -7 NIL NIL) (-733 1734583 1735874 1737181 "NAGF04" 1738758 T NAGF04 (NIL) -7 NIL NIL) (-732 1727551 1729165 1730798 "NAGF02" 1732970 T NAGF02 (NIL) -7 NIL NIL) (-731 1722775 1723875 1724992 "NAGF01" 1726454 T NAGF01 (NIL) -7 NIL NIL) (-730 1716403 1717969 1719554 "NAGE04" 1721210 T NAGE04 (NIL) -7 NIL NIL) (-729 1707572 1709693 1711823 "NAGE02" 1714293 T NAGE02 (NIL) -7 NIL NIL) (-728 1703525 1704472 1705436 "NAGE01" 1706628 T NAGE01 (NIL) -7 NIL NIL) (-727 1701320 1701854 1702412 "NAGD03" 1702987 T NAGD03 (NIL) -7 NIL NIL) (-726 1693070 1694998 1696952 "NAGD02" 1699386 T NAGD02 (NIL) -7 NIL NIL) (-725 1686881 1688306 1689746 "NAGD01" 1691650 T NAGD01 (NIL) -7 NIL NIL) (-724 1683090 1683912 1684749 "NAGC06" 1686064 T NAGC06 (NIL) -7 NIL NIL) (-723 1681555 1681887 1682243 "NAGC05" 1682754 T NAGC05 (NIL) -7 NIL NIL) (-722 1680931 1681050 1681194 "NAGC02" 1681431 T NAGC02 (NIL) -7 NIL NIL) (-721 1679991 1680548 1680588 "NAALG" 1680667 NIL NAALG (NIL T) -9 NIL 1680728) (-720 1679826 1679855 1679945 "NAALG-" 1679950 NIL NAALG- (NIL T T) -8 NIL NIL) (-719 1673776 1674884 1676071 "MULTSQFR" 1678722 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-718 1673095 1673170 1673354 "MULTFACT" 1673688 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-717 1666318 1670183 1670236 "MTSCAT" 1671306 NIL MTSCAT (NIL T T) -9 NIL 1671820) (-716 1666030 1666084 1666176 "MTHING" 1666258 NIL MTHING (NIL T) -7 NIL NIL) (-715 1665822 1665855 1665915 "MSYSCMD" 1665990 T MSYSCMD (NIL) -7 NIL NIL) (-714 1661934 1664577 1664897 "MSET" 1665535 NIL MSET (NIL T) -8 NIL NIL) (-713 1659029 1661495 1661536 "MSETAGG" 1661541 NIL MSETAGG (NIL T) -9 NIL 1661575) (-712 1654912 1656408 1657153 "MRING" 1658329 NIL MRING (NIL T T) -8 NIL NIL) (-711 1654478 1654545 1654676 "MRF2" 1654839 NIL MRF2 (NIL T T T) -7 NIL NIL) (-710 1654096 1654131 1654275 "MRATFAC" 1654437 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-709 1651708 1652003 1652434 "MPRFF" 1653801 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-708 1645768 1651562 1651659 "MPOLY" 1651664 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-707 1645258 1645293 1645501 "MPCPF" 1645727 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-706 1644772 1644815 1644999 "MPC3" 1645209 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-705 1643967 1644048 1644269 "MPC2" 1644687 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-704 1642268 1642605 1642995 "MONOTOOL" 1643627 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-703 1641519 1641810 1641838 "MONOID" 1642057 T MONOID (NIL) -9 NIL 1642204) (-702 1641065 1641184 1641365 "MONOID-" 1641370 NIL MONOID- (NIL T) -8 NIL NIL) (-701 1632115 1638021 1638080 "MONOGEN" 1638754 NIL MONOGEN (NIL T T) -9 NIL 1639210) (-700 1629333 1630068 1631068 "MONOGEN-" 1631187 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-699 1628192 1628612 1628640 "MONADWU" 1629032 T MONADWU (NIL) -9 NIL 1629270) (-698 1627564 1627723 1627971 "MONADWU-" 1627976 NIL MONADWU- (NIL T) -8 NIL NIL) (-697 1626949 1627167 1627195 "MONAD" 1627402 T MONAD (NIL) -9 NIL 1627514) (-696 1626634 1626712 1626844 "MONAD-" 1626849 NIL MONAD- (NIL T) -8 NIL NIL) (-695 1624950 1625547 1625826 "MOEBIUS" 1626387 NIL MOEBIUS (NIL T) -8 NIL NIL) (-694 1624342 1624720 1624760 "MODULE" 1624765 NIL MODULE (NIL T) -9 NIL 1624791) (-693 1623910 1624006 1624196 "MODULE-" 1624201 NIL MODULE- (NIL T T) -8 NIL NIL) (-692 1621625 1622274 1622601 "MODRING" 1623734 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-691 1618611 1619730 1620251 "MODOP" 1621154 NIL MODOP (NIL T T) -8 NIL NIL) (-690 1616798 1617250 1617591 "MODMONOM" 1618410 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-689 1606506 1614990 1615413 "MODMON" 1616426 NIL MODMON (NIL T T) -8 NIL NIL) (-688 1603697 1605350 1605626 "MODFIELD" 1606381 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-687 1602701 1602978 1603168 "MMLFORM" 1603527 T MMLFORM (NIL) -8 NIL NIL) (-686 1602227 1602270 1602449 "MMAP" 1602652 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-685 1600496 1601229 1601270 "MLO" 1601693 NIL MLO (NIL T) -9 NIL 1601935) (-684 1597863 1598378 1598980 "MLIFT" 1599977 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-683 1597254 1597338 1597492 "MKUCFUNC" 1597774 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-682 1596853 1596923 1597046 "MKRECORD" 1597177 NIL MKRECORD (NIL T T) -7 NIL NIL) (-681 1595901 1596062 1596290 "MKFUNC" 1596664 NIL MKFUNC (NIL T) -7 NIL NIL) (-680 1595289 1595393 1595549 "MKFLCFN" 1595784 NIL MKFLCFN (NIL T) -7 NIL NIL) (-679 1594715 1595082 1595171 "MKCHSET" 1595233 NIL MKCHSET (NIL T) -8 NIL NIL) (-678 1593992 1594094 1594279 "MKBCFUNC" 1594608 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-677 1590734 1593546 1593682 "MINT" 1593876 T MINT (NIL) -8 NIL NIL) (-676 1589546 1589789 1590066 "MHROWRED" 1590489 NIL MHROWRED (NIL T) -7 NIL NIL) (-675 1584878 1587987 1588413 "MFLOAT" 1589140 T MFLOAT (NIL) -8 NIL NIL) (-674 1584235 1584311 1584482 "MFINFACT" 1584790 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-673 1580550 1581398 1582282 "MESH" 1583371 T MESH (NIL) -7 NIL NIL) (-672 1578940 1579252 1579605 "MDDFACT" 1580237 NIL MDDFACT (NIL T) -7 NIL NIL) (-671 1575782 1578099 1578140 "MDAGG" 1578395 NIL MDAGG (NIL T) -9 NIL 1578538) (-670 1565562 1575075 1575282 "MCMPLX" 1575595 T MCMPLX (NIL) -8 NIL NIL) (-669 1564703 1564849 1565049 "MCDEN" 1565411 NIL MCDEN (NIL T T) -7 NIL NIL) (-668 1562593 1562863 1563243 "MCALCFN" 1564433 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-667 1561504 1561677 1561918 "MAYBE" 1562391 NIL MAYBE (NIL T) -8 NIL NIL) (-666 1559116 1559639 1560201 "MATSTOR" 1560975 NIL MATSTOR (NIL T) -7 NIL NIL) (-665 1555122 1558488 1558736 "MATRIX" 1558901 NIL MATRIX (NIL T) -8 NIL NIL) (-664 1550891 1551595 1552331 "MATLIN" 1554479 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-663 1541045 1544183 1544260 "MATCAT" 1549140 NIL MATCAT (NIL T T T) -9 NIL 1550557) (-662 1537409 1538422 1539778 "MATCAT-" 1539783 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-661 1536003 1536156 1536489 "MATCAT2" 1537244 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-660 1534115 1534439 1534823 "MAPPKG3" 1535678 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-659 1533096 1533269 1533491 "MAPPKG2" 1533939 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-658 1531595 1531879 1532206 "MAPPKG1" 1532802 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-657 1530718 1531001 1531178 "MAPPAST" 1531438 T MAPPAST (NIL) -8 NIL NIL) (-656 1530329 1530387 1530510 "MAPHACK3" 1530654 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-655 1529921 1529982 1530096 "MAPHACK2" 1530261 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-654 1529359 1529462 1529604 "MAPHACK1" 1529812 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-653 1527465 1528059 1528363 "MAGMA" 1529087 NIL MAGMA (NIL T) -8 NIL NIL) (-652 1526960 1527168 1527266 "MACROAST" 1527387 T MACROAST (NIL) -8 NIL NIL) (-651 1523427 1525199 1525660 "M3D" 1526532 NIL M3D (NIL T) -8 NIL NIL) (-650 1517582 1521797 1521838 "LZSTAGG" 1522620 NIL LZSTAGG (NIL T) -9 NIL 1522915) (-649 1513555 1514713 1516170 "LZSTAGG-" 1516175 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-648 1510669 1511446 1511933 "LWORD" 1513100 NIL LWORD (NIL T) -8 NIL NIL) (-647 1510289 1510473 1510548 "LSTAST" 1510614 T LSTAST (NIL) -8 NIL NIL) (-646 1503490 1510060 1510194 "LSQM" 1510199 NIL LSQM (NIL NIL T) -8 NIL NIL) (-645 1502714 1502853 1503081 "LSPP" 1503345 NIL LSPP (NIL T T T T) -7 NIL NIL) (-644 1500526 1500827 1501283 "LSMP" 1502403 NIL LSMP (NIL T T T T) -7 NIL NIL) (-643 1497305 1497979 1498709 "LSMP1" 1499828 NIL LSMP1 (NIL T) -7 NIL NIL) (-642 1491231 1496473 1496514 "LSAGG" 1496576 NIL LSAGG (NIL T) -9 NIL 1496654) (-641 1487926 1488850 1490063 "LSAGG-" 1490068 NIL LSAGG- (NIL T T) -8 NIL NIL) (-640 1485552 1487070 1487319 "LPOLY" 1487721 NIL LPOLY (NIL T T) -8 NIL NIL) (-639 1485134 1485219 1485342 "LPEFRAC" 1485461 NIL LPEFRAC (NIL T) -7 NIL NIL) (-638 1483481 1484228 1484481 "LO" 1484966 NIL LO (NIL T T T) -8 NIL NIL) (-637 1483133 1483245 1483273 "LOGIC" 1483384 T LOGIC (NIL) -9 NIL 1483465) (-636 1482995 1483018 1483089 "LOGIC-" 1483094 NIL LOGIC- (NIL T) -8 NIL NIL) (-635 1482188 1482328 1482521 "LODOOPS" 1482851 NIL LODOOPS (NIL T T) -7 NIL NIL) (-634 1479646 1482104 1482170 "LODO" 1482175 NIL LODO (NIL T NIL) -8 NIL NIL) (-633 1478184 1478419 1478772 "LODOF" 1479393 NIL LODOF (NIL T T) -7 NIL NIL) (-632 1474627 1477024 1477065 "LODOCAT" 1477503 NIL LODOCAT (NIL T) -9 NIL 1477714) (-631 1474360 1474418 1474545 "LODOCAT-" 1474550 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-630 1471715 1474201 1474319 "LODO2" 1474324 NIL LODO2 (NIL T T) -8 NIL NIL) (-629 1469185 1471652 1471697 "LODO1" 1471702 NIL LODO1 (NIL T) -8 NIL NIL) (-628 1468045 1468210 1468522 "LODEEF" 1469008 NIL LODEEF (NIL T T T) -7 NIL NIL) (-627 1463331 1466175 1466216 "LNAGG" 1467163 NIL LNAGG (NIL T) -9 NIL 1467607) (-626 1462478 1462692 1463034 "LNAGG-" 1463039 NIL LNAGG- (NIL T T) -8 NIL NIL) (-625 1458641 1459403 1460042 "LMOPS" 1461893 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-624 1458036 1458398 1458439 "LMODULE" 1458500 NIL LMODULE (NIL T) -9 NIL 1458542) (-623 1455282 1457681 1457804 "LMDICT" 1457946 NIL LMDICT (NIL T) -8 NIL NIL) (-622 1455026 1455190 1455250 "LITERAL" 1455255 NIL LITERAL (NIL T) -8 NIL NIL) (-621 1448253 1453972 1454270 "LIST" 1454761 NIL LIST (NIL T) -8 NIL NIL) (-620 1447778 1447852 1447991 "LIST3" 1448173 NIL LIST3 (NIL T T T) -7 NIL NIL) (-619 1446785 1446963 1447191 "LIST2" 1447596 NIL LIST2 (NIL T T) -7 NIL NIL) (-618 1444919 1445231 1445630 "LIST2MAP" 1446432 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-617 1443669 1444305 1444346 "LINEXP" 1444601 NIL LINEXP (NIL T) -9 NIL 1444750) (-616 1442316 1442576 1442873 "LINDEP" 1443421 NIL LINDEP (NIL T T) -7 NIL NIL) (-615 1439083 1439802 1440579 "LIMITRF" 1441571 NIL LIMITRF (NIL T) -7 NIL NIL) (-614 1437359 1437654 1438070 "LIMITPS" 1438778 NIL LIMITPS (NIL T T) -7 NIL NIL) (-613 1431814 1436870 1437098 "LIE" 1437180 NIL LIE (NIL T T) -8 NIL NIL) (-612 1430863 1431306 1431346 "LIECAT" 1431486 NIL LIECAT (NIL T) -9 NIL 1431637) (-611 1430704 1430731 1430819 "LIECAT-" 1430824 NIL LIECAT- (NIL T T) -8 NIL NIL) (-610 1423316 1430153 1430318 "LIB" 1430559 T LIB (NIL) -8 NIL NIL) (-609 1418953 1419834 1420769 "LGROBP" 1422433 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-608 1416819 1417093 1417455 "LF" 1418674 NIL LF (NIL T T) -7 NIL NIL) (-607 1415659 1416351 1416379 "LFCAT" 1416586 T LFCAT (NIL) -9 NIL 1416725) (-606 1412563 1413191 1413879 "LEXTRIPK" 1415023 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-605 1409334 1410133 1410636 "LEXP" 1412143 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-604 1408854 1409055 1409147 "LETAST" 1409262 T LETAST (NIL) -8 NIL NIL) (-603 1407252 1407565 1407966 "LEADCDET" 1408536 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-602 1406442 1406516 1406745 "LAZM3PK" 1407173 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-601 1401398 1404519 1405057 "LAUPOL" 1405954 NIL LAUPOL (NIL T T) -8 NIL NIL) (-600 1400963 1401007 1401175 "LAPLACE" 1401348 NIL LAPLACE (NIL T T) -7 NIL NIL) (-599 1398937 1400064 1400315 "LA" 1400796 NIL LA (NIL T T T) -8 NIL NIL) (-598 1398038 1398588 1398629 "LALG" 1398691 NIL LALG (NIL T) -9 NIL 1398750) (-597 1397752 1397811 1397947 "LALG-" 1397952 NIL LALG- (NIL T T) -8 NIL NIL) (-596 1396552 1396969 1397198 "KTVLOGIC" 1397543 T KTVLOGIC (NIL) -8 NIL NIL) (-595 1395456 1395643 1395942 "KOVACIC" 1396352 NIL KOVACIC (NIL T T) -7 NIL NIL) (-594 1395291 1395315 1395356 "KONVERT" 1395418 NIL KONVERT (NIL T) -9 NIL NIL) (-593 1395126 1395150 1395191 "KOERCE" 1395253 NIL KOERCE (NIL T) -9 NIL NIL) (-592 1392860 1393620 1394013 "KERNEL" 1394765 NIL KERNEL (NIL T) -8 NIL NIL) (-591 1392362 1392443 1392573 "KERNEL2" 1392774 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-590 1386213 1390901 1390955 "KDAGG" 1391332 NIL KDAGG (NIL T T) -9 NIL 1391538) (-589 1385742 1385866 1386071 "KDAGG-" 1386076 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-588 1378917 1385403 1385558 "KAFILE" 1385620 NIL KAFILE (NIL T) -8 NIL NIL) (-587 1373372 1378428 1378656 "JORDAN" 1378738 NIL JORDAN (NIL T T) -8 NIL NIL) (-586 1372796 1373021 1373142 "JOINAST" 1373271 T JOINAST (NIL) -8 NIL NIL) (-585 1372525 1372584 1372671 "JAVACODE" 1372729 T JAVACODE (NIL) -8 NIL NIL) (-584 1368824 1370730 1370784 "IXAGG" 1371713 NIL IXAGG (NIL T T) -9 NIL 1372172) (-583 1367743 1368049 1368468 "IXAGG-" 1368473 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-582 1363323 1367665 1367724 "IVECTOR" 1367729 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-581 1362089 1362326 1362592 "ITUPLE" 1363090 NIL ITUPLE (NIL T) -8 NIL NIL) (-580 1360525 1360702 1361008 "ITRIGMNP" 1361911 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-579 1359270 1359474 1359757 "ITFUN3" 1360301 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-578 1358902 1358959 1359068 "ITFUN2" 1359207 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-577 1356739 1357764 1358063 "ITAYLOR" 1358636 NIL ITAYLOR (NIL T) -8 NIL NIL) (-576 1345733 1350885 1352045 "ISUPS" 1355612 NIL ISUPS (NIL T) -8 NIL NIL) (-575 1344837 1344977 1345213 "ISUMP" 1345580 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-574 1340101 1344638 1344717 "ISTRING" 1344790 NIL ISTRING (NIL NIL) -8 NIL NIL) (-573 1339621 1339822 1339914 "ISAST" 1340029 T ISAST (NIL) -8 NIL NIL) (-572 1338831 1338912 1339128 "IRURPK" 1339535 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-571 1337767 1337968 1338208 "IRSN" 1338611 T IRSN (NIL) -7 NIL NIL) (-570 1335796 1336151 1336587 "IRRF2F" 1337405 NIL IRRF2F (NIL T) -7 NIL NIL) (-569 1335543 1335581 1335657 "IRREDFFX" 1335752 NIL IRREDFFX (NIL T) -7 NIL NIL) (-568 1334158 1334417 1334716 "IROOT" 1335276 NIL IROOT (NIL T) -7 NIL NIL) (-567 1330790 1331842 1332534 "IR" 1333498 NIL IR (NIL T) -8 NIL NIL) (-566 1328403 1328898 1329464 "IR2" 1330268 NIL IR2 (NIL T T) -7 NIL NIL) (-565 1327475 1327588 1327809 "IR2F" 1328286 NIL IR2F (NIL T T) -7 NIL NIL) (-564 1327266 1327300 1327360 "IPRNTPK" 1327435 T IPRNTPK (NIL) -7 NIL NIL) (-563 1323885 1327155 1327224 "IPF" 1327229 NIL IPF (NIL NIL) -8 NIL NIL) (-562 1322248 1323810 1323867 "IPADIC" 1323872 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-561 1322012 1322152 1322180 "IOBCON" 1322185 T IOBCON (NIL) -9 NIL 1322206) (-560 1321509 1321567 1321757 "INVLAPLA" 1321948 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-559 1311158 1313511 1315897 "INTTR" 1319173 NIL INTTR (NIL T T) -7 NIL NIL) (-558 1307502 1308244 1309108 "INTTOOLS" 1310343 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-557 1307088 1307179 1307296 "INTSLPE" 1307405 T INTSLPE (NIL) -7 NIL NIL) (-556 1305083 1307011 1307070 "INTRVL" 1307075 NIL INTRVL (NIL T) -8 NIL NIL) (-555 1302685 1303197 1303772 "INTRF" 1304568 NIL INTRF (NIL T) -7 NIL NIL) (-554 1302096 1302193 1302335 "INTRET" 1302583 NIL INTRET (NIL T) -7 NIL NIL) (-553 1300093 1300482 1300952 "INTRAT" 1301704 NIL INTRAT (NIL T T) -7 NIL NIL) (-552 1297321 1297904 1298530 "INTPM" 1299578 NIL INTPM (NIL T T) -7 NIL NIL) (-551 1294024 1294623 1295368 "INTPAF" 1296707 NIL INTPAF (NIL T T T) -7 NIL NIL) (-550 1289203 1290165 1291216 "INTPACK" 1292993 T INTPACK (NIL) -7 NIL NIL) (-549 1286115 1288932 1289059 "INT" 1289096 T INT (NIL) -8 NIL NIL) (-548 1285367 1285519 1285727 "INTHERTR" 1285957 NIL INTHERTR (NIL T T) -7 NIL NIL) (-547 1284806 1284886 1285074 "INTHERAL" 1285281 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-546 1282652 1283095 1283552 "INTHEORY" 1284369 T INTHEORY (NIL) -7 NIL NIL) (-545 1273960 1275581 1277360 "INTG0" 1281004 NIL INTG0 (NIL T T T) -7 NIL NIL) (-544 1254533 1259323 1264133 "INTFTBL" 1269170 T INTFTBL (NIL) -8 NIL NIL) (-543 1253782 1253920 1254093 "INTFACT" 1254392 NIL INTFACT (NIL T) -7 NIL NIL) (-542 1251167 1251613 1252177 "INTEF" 1253336 NIL INTEF (NIL T T) -7 NIL NIL) (-541 1249669 1250374 1250402 "INTDOM" 1250703 T INTDOM (NIL) -9 NIL 1250910) (-540 1249038 1249212 1249454 "INTDOM-" 1249459 NIL INTDOM- (NIL T) -8 NIL NIL) (-539 1245571 1247457 1247511 "INTCAT" 1248310 NIL INTCAT (NIL T) -9 NIL 1248630) (-538 1245044 1245146 1245274 "INTBIT" 1245463 T INTBIT (NIL) -7 NIL NIL) (-537 1243715 1243869 1244183 "INTALG" 1244889 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-536 1243172 1243262 1243432 "INTAF" 1243619 NIL INTAF (NIL T T) -7 NIL NIL) (-535 1236626 1242982 1243122 "INTABL" 1243127 NIL INTABL (NIL T T T) -8 NIL NIL) (-534 1231681 1234352 1234380 "INS" 1235314 T INS (NIL) -9 NIL 1235978) (-533 1228921 1229692 1230666 "INS-" 1230739 NIL INS- (NIL T) -8 NIL NIL) (-532 1227696 1227923 1228221 "INPSIGN" 1228674 NIL INPSIGN (NIL T T) -7 NIL NIL) (-531 1226814 1226931 1227128 "INPRODPF" 1227576 NIL INPRODPF (NIL T T) -7 NIL NIL) (-530 1225708 1225825 1226062 "INPRODFF" 1226694 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-529 1224708 1224860 1225120 "INNMFACT" 1225544 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-528 1223905 1224002 1224190 "INMODGCD" 1224607 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-527 1222414 1222658 1222982 "INFSP" 1223650 NIL INFSP (NIL T T T) -7 NIL NIL) (-526 1221598 1221715 1221898 "INFPROD0" 1222294 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-525 1218480 1219663 1220178 "INFORM" 1221091 T INFORM (NIL) -8 NIL NIL) (-524 1218090 1218150 1218248 "INFORM1" 1218415 NIL INFORM1 (NIL T) -7 NIL NIL) (-523 1217613 1217702 1217816 "INFINITY" 1217996 T INFINITY (NIL) -7 NIL NIL) (-522 1216230 1216479 1216800 "INEP" 1217361 NIL INEP (NIL T T T) -7 NIL NIL) (-521 1215506 1216127 1216192 "INDE" 1216197 NIL INDE (NIL T) -8 NIL NIL) (-520 1215070 1215138 1215255 "INCRMAPS" 1215433 NIL INCRMAPS (NIL T) -7 NIL NIL) (-519 1210381 1211306 1212250 "INBFF" 1214158 NIL INBFF (NIL T) -7 NIL NIL) (-518 1210050 1210126 1210154 "INBCON" 1210287 T INBCON (NIL) -9 NIL 1210365) (-517 1209890 1209925 1210001 "INBCON-" 1210006 NIL INBCON- (NIL T) -8 NIL NIL) (-516 1209409 1209611 1209703 "INAST" 1209818 T INAST (NIL) -8 NIL NIL) (-515 1208880 1209088 1209194 "IMPTAST" 1209323 T IMPTAST (NIL) -8 NIL NIL) (-514 1205374 1208724 1208828 "IMATRIX" 1208833 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-513 1204086 1204209 1204524 "IMATQF" 1205230 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-512 1202306 1202533 1202870 "IMATLIN" 1203842 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-511 1196932 1202230 1202288 "ILIST" 1202293 NIL ILIST (NIL T NIL) -8 NIL NIL) (-510 1194885 1196792 1196905 "IIARRAY2" 1196910 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-509 1190318 1194796 1194860 "IFF" 1194865 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-508 1189709 1189935 1190051 "IFAST" 1190222 T IFAST (NIL) -8 NIL NIL) (-507 1184752 1189001 1189189 "IFARRAY" 1189566 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-506 1183959 1184656 1184729 "IFAMON" 1184734 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-505 1183543 1183608 1183662 "IEVALAB" 1183869 NIL IEVALAB (NIL T T) -9 NIL NIL) (-504 1183218 1183286 1183446 "IEVALAB-" 1183451 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-503 1182876 1183132 1183195 "IDPO" 1183200 NIL IDPO (NIL T T) -8 NIL NIL) (-502 1182153 1182765 1182840 "IDPOAMS" 1182845 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-501 1181487 1182042 1182117 "IDPOAM" 1182122 NIL IDPOAM (NIL T T) -8 NIL NIL) (-500 1180572 1180822 1180875 "IDPC" 1181288 NIL IDPC (NIL T T) -9 NIL 1181437) (-499 1180068 1180464 1180537 "IDPAM" 1180542 NIL IDPAM (NIL T T) -8 NIL NIL) (-498 1179471 1179960 1180033 "IDPAG" 1180038 NIL IDPAG (NIL T T) -8 NIL NIL) (-497 1179219 1179386 1179436 "IDENT" 1179441 T IDENT (NIL) -8 NIL NIL) (-496 1175474 1176322 1177217 "IDECOMP" 1178376 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-495 1168347 1169397 1170444 "IDEAL" 1174510 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-494 1167511 1167623 1167822 "ICDEN" 1168231 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-493 1166610 1166991 1167138 "ICARD" 1167384 T ICARD (NIL) -8 NIL NIL) (-492 1164670 1164983 1165388 "IBPTOOLS" 1166287 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-491 1160304 1164290 1164403 "IBITS" 1164589 NIL IBITS (NIL NIL) -8 NIL NIL) (-490 1157027 1157603 1158298 "IBATOOL" 1159721 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-489 1154807 1155268 1155801 "IBACHIN" 1156562 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-488 1152684 1154653 1154756 "IARRAY2" 1154761 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-487 1148837 1152610 1152667 "IARRAY1" 1152672 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-486 1142832 1147251 1147731 "IAN" 1148377 T IAN (NIL) -8 NIL NIL) (-485 1142343 1142400 1142573 "IALGFACT" 1142769 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-484 1141871 1141984 1142012 "HYPCAT" 1142219 T HYPCAT (NIL) -9 NIL NIL) (-483 1141409 1141526 1141712 "HYPCAT-" 1141717 NIL HYPCAT- (NIL T) -8 NIL NIL) (-482 1141031 1141204 1141287 "HOSTNAME" 1141346 T HOSTNAME (NIL) -8 NIL NIL) (-481 1137710 1139041 1139082 "HOAGG" 1140063 NIL HOAGG (NIL T) -9 NIL 1140742) (-480 1136304 1136703 1137229 "HOAGG-" 1137234 NIL HOAGG- (NIL T T) -8 NIL NIL) (-479 1130192 1135745 1135911 "HEXADEC" 1136158 T HEXADEC (NIL) -8 NIL NIL) (-478 1128940 1129162 1129425 "HEUGCD" 1129969 NIL HEUGCD (NIL T) -7 NIL NIL) (-477 1128043 1128777 1128907 "HELLFDIV" 1128912 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-476 1126271 1127820 1127908 "HEAP" 1127987 NIL HEAP (NIL T) -8 NIL NIL) (-475 1125579 1125823 1125957 "HEADAST" 1126157 T HEADAST (NIL) -8 NIL NIL) (-474 1119499 1125494 1125556 "HDP" 1125561 NIL HDP (NIL NIL T) -8 NIL NIL) (-473 1113250 1119134 1119286 "HDMP" 1119400 NIL HDMP (NIL NIL T) -8 NIL NIL) (-472 1112575 1112714 1112878 "HB" 1113106 T HB (NIL) -7 NIL NIL) (-471 1106072 1112421 1112525 "HASHTBL" 1112530 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-470 1105592 1105793 1105885 "HASAST" 1106000 T HASAST (NIL) -8 NIL NIL) (-469 1103406 1105216 1105397 "HACKPI" 1105431 T HACKPI (NIL) -8 NIL NIL) (-468 1099101 1103259 1103372 "GTSET" 1103377 NIL GTSET (NIL T T T T) -8 NIL NIL) (-467 1092627 1098979 1099077 "GSTBL" 1099082 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-466 1084940 1091658 1091923 "GSERIES" 1092418 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-465 1084107 1084498 1084526 "GROUP" 1084729 T GROUP (NIL) -9 NIL 1084863) (-464 1083473 1083632 1083883 "GROUP-" 1083888 NIL GROUP- (NIL T) -8 NIL NIL) (-463 1081842 1082161 1082548 "GROEBSOL" 1083150 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-462 1080782 1081044 1081095 "GRMOD" 1081624 NIL GRMOD (NIL T T) -9 NIL 1081792) (-461 1080550 1080586 1080714 "GRMOD-" 1080719 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-460 1075875 1076904 1077904 "GRIMAGE" 1079570 T GRIMAGE (NIL) -8 NIL NIL) (-459 1074342 1074602 1074926 "GRDEF" 1075571 T GRDEF (NIL) -7 NIL NIL) (-458 1073786 1073902 1074043 "GRAY" 1074221 T GRAY (NIL) -7 NIL NIL) (-457 1073017 1073397 1073448 "GRALG" 1073601 NIL GRALG (NIL T T) -9 NIL 1073694) (-456 1072678 1072751 1072914 "GRALG-" 1072919 NIL GRALG- (NIL T T T) -8 NIL NIL) (-455 1069482 1072263 1072441 "GPOLSET" 1072585 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-454 1068836 1068893 1069151 "GOSPER" 1069419 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-453 1064595 1065274 1065800 "GMODPOL" 1068535 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-452 1063600 1063784 1064022 "GHENSEL" 1064407 NIL GHENSEL (NIL T T) -7 NIL NIL) (-451 1057651 1058494 1059521 "GENUPS" 1062684 NIL GENUPS (NIL T T) -7 NIL NIL) (-450 1057348 1057399 1057488 "GENUFACT" 1057594 NIL GENUFACT (NIL T) -7 NIL NIL) (-449 1056760 1056837 1057002 "GENPGCD" 1057266 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-448 1056234 1056269 1056482 "GENMFACT" 1056719 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-447 1054802 1055057 1055364 "GENEEZ" 1055977 NIL GENEEZ (NIL T T) -7 NIL NIL) (-446 1048715 1054413 1054575 "GDMP" 1054725 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-445 1038092 1042486 1043592 "GCNAALG" 1047698 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-444 1036554 1037382 1037410 "GCDDOM" 1037665 T GCDDOM (NIL) -9 NIL 1037822) (-443 1036024 1036151 1036366 "GCDDOM-" 1036371 NIL GCDDOM- (NIL T) -8 NIL NIL) (-442 1034696 1034881 1035185 "GB" 1035803 NIL GB (NIL T T T T) -7 NIL NIL) (-441 1023316 1025642 1028034 "GBINTERN" 1032387 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-440 1021153 1021445 1021866 "GBF" 1022991 NIL GBF (NIL T T T T) -7 NIL NIL) (-439 1019934 1020099 1020366 "GBEUCLID" 1020969 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-438 1019283 1019408 1019557 "GAUSSFAC" 1019805 T GAUSSFAC (NIL) -7 NIL NIL) (-437 1017650 1017952 1018266 "GALUTIL" 1019002 NIL GALUTIL (NIL T) -7 NIL NIL) (-436 1015958 1016232 1016556 "GALPOLYU" 1017377 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-435 1013323 1013613 1014020 "GALFACTU" 1015655 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-434 1005129 1006628 1008236 "GALFACT" 1011755 NIL GALFACT (NIL T) -7 NIL NIL) (-433 1002517 1003175 1003203 "FVFUN" 1004359 T FVFUN (NIL) -9 NIL 1005079) (-432 1001783 1001965 1001993 "FVC" 1002284 T FVC (NIL) -9 NIL 1002467) (-431 1001425 1001580 1001661 "FUNCTION" 1001735 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-430 999095 999646 1000135 "FT" 1000956 T FT (NIL) -8 NIL NIL) (-429 997913 998396 998599 "FTEM" 998912 T FTEM (NIL) -8 NIL NIL) (-428 996169 996458 996862 "FSUPFACT" 997604 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-427 994566 994855 995187 "FST" 995857 T FST (NIL) -8 NIL NIL) (-426 993737 993843 994038 "FSRED" 994448 NIL FSRED (NIL T T) -7 NIL NIL) (-425 992416 992671 993025 "FSPRMELT" 993452 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-424 989501 989939 990438 "FSPECF" 991979 NIL FSPECF (NIL T T) -7 NIL NIL) (-423 971943 980385 980425 "FS" 984273 NIL FS (NIL T) -9 NIL 986562) (-422 960593 963583 967639 "FS-" 967936 NIL FS- (NIL T T) -8 NIL NIL) (-421 960107 960161 960338 "FSINT" 960534 NIL FSINT (NIL T T) -7 NIL NIL) (-420 958434 959100 959403 "FSERIES" 959886 NIL FSERIES (NIL T T) -8 NIL NIL) (-419 957448 957564 957795 "FSCINT" 958314 NIL FSCINT (NIL T T) -7 NIL NIL) (-418 953682 956392 956433 "FSAGG" 956803 NIL FSAGG (NIL T) -9 NIL 957062) (-417 951444 952045 952841 "FSAGG-" 952936 NIL FSAGG- (NIL T T) -8 NIL NIL) (-416 950486 950629 950856 "FSAGG2" 951297 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-415 948141 948420 948974 "FS2UPS" 950204 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-414 947723 947766 947921 "FS2" 948092 NIL FS2 (NIL T T T T) -7 NIL NIL) (-413 946580 946751 947060 "FS2EXPXP" 947548 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-412 946006 946121 946273 "FRUTIL" 946460 NIL FRUTIL (NIL T) -7 NIL NIL) (-411 937467 941505 942861 "FR" 944682 NIL FR (NIL T) -8 NIL NIL) (-410 932542 935185 935225 "FRNAALG" 936621 NIL FRNAALG (NIL T) -9 NIL 937228) (-409 928220 929291 930566 "FRNAALG-" 931316 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-408 927858 927901 928028 "FRNAAF2" 928171 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-407 926265 926712 927007 "FRMOD" 927670 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-406 924044 924648 924965 "FRIDEAL" 926056 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-405 923239 923326 923615 "FRIDEAL2" 923951 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-404 922481 922895 922936 "FRETRCT" 922941 NIL FRETRCT (NIL T) -9 NIL 923117) (-403 921593 921824 922175 "FRETRCT-" 922180 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-402 918843 920019 920078 "FRAMALG" 920960 NIL FRAMALG (NIL T T) -9 NIL 921252) (-401 916977 917432 918062 "FRAMALG-" 918285 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-400 910937 916452 916728 "FRAC" 916733 NIL FRAC (NIL T) -8 NIL NIL) (-399 910573 910630 910737 "FRAC2" 910874 NIL FRAC2 (NIL T T) -7 NIL NIL) (-398 910209 910266 910373 "FR2" 910510 NIL FR2 (NIL T T) -7 NIL NIL) (-397 904939 907787 907815 "FPS" 908934 T FPS (NIL) -9 NIL 909491) (-396 904388 904497 904661 "FPS-" 904807 NIL FPS- (NIL T) -8 NIL NIL) (-395 901894 903529 903557 "FPC" 903782 T FPC (NIL) -9 NIL 903924) (-394 901687 901727 901824 "FPC-" 901829 NIL FPC- (NIL T) -8 NIL NIL) (-393 900565 901175 901216 "FPATMAB" 901221 NIL FPATMAB (NIL T) -9 NIL 901373) (-392 898265 898741 899167 "FPARFRAC" 900202 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-391 893658 894157 894839 "FORTRAN" 897697 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-390 891374 891874 892413 "FORT" 893139 T FORT (NIL) -7 NIL NIL) (-389 889050 889612 889640 "FORTFN" 890700 T FORTFN (NIL) -9 NIL 891324) (-388 888814 888864 888892 "FORTCAT" 888951 T FORTCAT (NIL) -9 NIL 889013) (-387 886874 887357 887756 "FORMULA" 888435 T FORMULA (NIL) -8 NIL NIL) (-386 886662 886692 886761 "FORMULA1" 886838 NIL FORMULA1 (NIL T) -7 NIL NIL) (-385 886185 886237 886410 "FORDER" 886604 NIL FORDER (NIL T T T T) -7 NIL NIL) (-384 885281 885445 885638 "FOP" 886012 T FOP (NIL) -7 NIL NIL) (-383 883889 884561 884735 "FNLA" 885163 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-382 882557 882946 882974 "FNCAT" 883546 T FNCAT (NIL) -9 NIL 883839) (-381 882123 882516 882544 "FNAME" 882549 T FNAME (NIL) -8 NIL NIL) (-380 880821 881750 881778 "FMTC" 881783 T FMTC (NIL) -9 NIL 881819) (-379 877183 878344 878973 "FMONOID" 880225 NIL FMONOID (NIL T) -8 NIL NIL) (-378 876402 876925 877074 "FM" 877079 NIL FM (NIL T T) -8 NIL NIL) (-377 873826 874472 874500 "FMFUN" 875644 T FMFUN (NIL) -9 NIL 876352) (-376 873095 873276 873304 "FMC" 873594 T FMC (NIL) -9 NIL 873776) (-375 870307 871141 871195 "FMCAT" 872390 NIL FMCAT (NIL T T) -9 NIL 872885) (-374 869200 870073 870173 "FM1" 870252 NIL FM1 (NIL T T) -8 NIL NIL) (-373 866974 867390 867884 "FLOATRP" 868751 NIL FLOATRP (NIL T) -7 NIL NIL) (-372 860525 864630 865260 "FLOAT" 866364 T FLOAT (NIL) -8 NIL NIL) (-371 857963 858463 859041 "FLOATCP" 859992 NIL FLOATCP (NIL T) -7 NIL NIL) (-370 856792 857596 857637 "FLINEXP" 857642 NIL FLINEXP (NIL T) -9 NIL 857735) (-369 855946 856181 856509 "FLINEXP-" 856514 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-368 855022 855166 855390 "FLASORT" 855798 NIL FLASORT (NIL T T) -7 NIL NIL) (-367 852239 853081 853133 "FLALG" 854360 NIL FLALG (NIL T T) -9 NIL 854827) (-366 846023 849725 849766 "FLAGG" 851028 NIL FLAGG (NIL T) -9 NIL 851680) (-365 844749 845088 845578 "FLAGG-" 845583 NIL FLAGG- (NIL T T) -8 NIL NIL) (-364 843791 843934 844161 "FLAGG2" 844602 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-363 840804 841778 841837 "FINRALG" 842965 NIL FINRALG (NIL T T) -9 NIL 843473) (-362 839964 840193 840532 "FINRALG-" 840537 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-361 839370 839583 839611 "FINITE" 839807 T FINITE (NIL) -9 NIL 839914) (-360 831828 833989 834029 "FINAALG" 837696 NIL FINAALG (NIL T) -9 NIL 839149) (-359 827169 828210 829354 "FINAALG-" 830733 NIL FINAALG- (NIL T T) -8 NIL NIL) (-358 826564 826924 827027 "FILE" 827099 NIL FILE (NIL T) -8 NIL NIL) (-357 825248 825560 825614 "FILECAT" 826298 NIL FILECAT (NIL T T) -9 NIL 826514) (-356 823168 824662 824690 "FIELD" 824730 T FIELD (NIL) -9 NIL 824810) (-355 821788 822173 822684 "FIELD-" 822689 NIL FIELD- (NIL T) -8 NIL NIL) (-354 819666 820423 820770 "FGROUP" 821474 NIL FGROUP (NIL T) -8 NIL NIL) (-353 818756 818920 819140 "FGLMICPK" 819498 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-352 814623 818681 818738 "FFX" 818743 NIL FFX (NIL T NIL) -8 NIL NIL) (-351 814224 814285 814420 "FFSLPE" 814556 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-350 810217 810996 811792 "FFPOLY" 813460 NIL FFPOLY (NIL T) -7 NIL NIL) (-349 809721 809757 809966 "FFPOLY2" 810175 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-348 805607 809640 809703 "FFP" 809708 NIL FFP (NIL T NIL) -8 NIL NIL) (-347 801040 805518 805582 "FF" 805587 NIL FF (NIL NIL NIL) -8 NIL NIL) (-346 796201 800383 800573 "FFNBX" 800894 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-345 791175 795336 795594 "FFNBP" 796055 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-344 785843 790459 790670 "FFNB" 791008 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-343 784675 784873 785188 "FFINTBAS" 785640 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-342 780959 783134 783162 "FFIELDC" 783782 T FFIELDC (NIL) -9 NIL 784158) (-341 779622 779992 780489 "FFIELDC-" 780494 NIL FFIELDC- (NIL T) -8 NIL NIL) (-340 779192 779237 779361 "FFHOM" 779564 NIL FFHOM (NIL T T T) -7 NIL NIL) (-339 776890 777374 777891 "FFF" 778707 NIL FFF (NIL T) -7 NIL NIL) (-338 772543 776632 776733 "FFCGX" 776833 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-337 768210 772275 772382 "FFCGP" 772486 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-336 763428 767937 768045 "FFCG" 768146 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-335 745486 754522 754608 "FFCAT" 759773 NIL FFCAT (NIL T T T) -9 NIL 761224) (-334 740684 741731 743045 "FFCAT-" 744275 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-333 740095 740138 740373 "FFCAT2" 740635 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-332 729307 733067 734287 "FEXPR" 738947 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-331 728307 728742 728783 "FEVALAB" 728867 NIL FEVALAB (NIL T) -9 NIL 729128) (-330 727466 727676 728014 "FEVALAB-" 728019 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-329 726059 726849 727052 "FDIV" 727365 NIL FDIV (NIL T T T T) -8 NIL NIL) (-328 723125 723840 723955 "FDIVCAT" 725523 NIL FDIVCAT (NIL T T T T) -9 NIL 725960) (-327 722887 722914 723084 "FDIVCAT-" 723089 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-326 722107 722194 722471 "FDIV2" 722794 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-325 720793 721052 721341 "FCPAK1" 721838 T FCPAK1 (NIL) -7 NIL NIL) (-324 719921 720293 720434 "FCOMP" 720684 NIL FCOMP (NIL T) -8 NIL NIL) (-323 703556 706970 710531 "FC" 716380 T FC (NIL) -8 NIL NIL) (-322 696209 700190 700230 "FAXF" 702032 NIL FAXF (NIL T) -9 NIL 702724) (-321 693488 694143 694968 "FAXF-" 695433 NIL FAXF- (NIL T T) -8 NIL NIL) (-320 688588 692864 693040 "FARRAY" 693345 NIL FARRAY (NIL T) -8 NIL NIL) (-319 683995 686027 686080 "FAMR" 687103 NIL FAMR (NIL T T) -9 NIL 687563) (-318 682885 683187 683622 "FAMR-" 683627 NIL FAMR- (NIL T T T) -8 NIL NIL) (-317 682081 682807 682860 "FAMONOID" 682865 NIL FAMONOID (NIL T) -8 NIL NIL) (-316 679911 680595 680648 "FAMONC" 681589 NIL FAMONC (NIL T T) -9 NIL 681975) (-315 678603 679665 679802 "FAGROUP" 679807 NIL FAGROUP (NIL T) -8 NIL NIL) (-314 676398 676717 677120 "FACUTIL" 678284 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-313 675497 675682 675904 "FACTFUNC" 676208 NIL FACTFUNC (NIL T) -7 NIL NIL) (-312 667902 674748 674960 "EXPUPXS" 675353 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-311 665385 665925 666511 "EXPRTUBE" 667336 T EXPRTUBE (NIL) -7 NIL NIL) (-310 661579 662171 662908 "EXPRODE" 664724 NIL EXPRODE (NIL T T) -7 NIL NIL) (-309 646953 660234 660662 "EXPR" 661183 NIL EXPR (NIL T) -8 NIL NIL) (-308 641360 641947 642760 "EXPR2UPS" 646251 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-307 640996 641053 641160 "EXPR2" 641297 NIL EXPR2 (NIL T T) -7 NIL NIL) (-306 632403 640128 640425 "EXPEXPAN" 640833 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-305 632230 632360 632389 "EXIT" 632394 T EXIT (NIL) -8 NIL NIL) (-304 631754 631954 632045 "EXITAST" 632159 T EXITAST (NIL) -8 NIL NIL) (-303 631381 631443 631556 "EVALCYC" 631686 NIL EVALCYC (NIL T) -7 NIL NIL) (-302 630922 631040 631081 "EVALAB" 631251 NIL EVALAB (NIL T) -9 NIL 631355) (-301 630403 630525 630746 "EVALAB-" 630751 NIL EVALAB- (NIL T T) -8 NIL NIL) (-300 627906 629174 629202 "EUCDOM" 629757 T EUCDOM (NIL) -9 NIL 630107) (-299 626311 626753 627343 "EUCDOM-" 627348 NIL EUCDOM- (NIL T) -8 NIL NIL) (-298 613851 616609 619359 "ESTOOLS" 623581 T ESTOOLS (NIL) -7 NIL NIL) (-297 613483 613540 613649 "ESTOOLS2" 613788 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-296 613234 613276 613356 "ESTOOLS1" 613435 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-295 607159 608887 608915 "ES" 611683 T ES (NIL) -9 NIL 613092) (-294 602106 603393 605210 "ES-" 605374 NIL ES- (NIL T) -8 NIL NIL) (-293 598481 599241 600021 "ESCONT" 601346 T ESCONT (NIL) -7 NIL NIL) (-292 598226 598258 598340 "ESCONT1" 598443 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-291 597901 597951 598051 "ES2" 598170 NIL ES2 (NIL T T) -7 NIL NIL) (-290 597531 597589 597698 "ES1" 597837 NIL ES1 (NIL T T) -7 NIL NIL) (-289 596747 596876 597052 "ERROR" 597375 T ERROR (NIL) -7 NIL NIL) (-288 590250 596606 596697 "EQTBL" 596702 NIL EQTBL (NIL T T) -8 NIL NIL) (-287 582807 585564 587013 "EQ" 588834 NIL -3908 (NIL T) -8 NIL NIL) (-286 582439 582496 582605 "EQ2" 582744 NIL EQ2 (NIL T T) -7 NIL NIL) (-285 577731 578777 579870 "EP" 581378 NIL EP (NIL T) -7 NIL NIL) (-284 576313 576614 576931 "ENV" 577434 T ENV (NIL) -8 NIL NIL) (-283 575512 576032 576060 "ENTIRER" 576065 T ENTIRER (NIL) -9 NIL 576111) (-282 572014 573467 573837 "EMR" 575311 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-281 571158 571343 571397 "ELTAGG" 571777 NIL ELTAGG (NIL T T) -9 NIL 571988) (-280 570877 570939 571080 "ELTAGG-" 571085 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-279 570666 570695 570749 "ELTAB" 570833 NIL ELTAB (NIL T T) -9 NIL NIL) (-278 569792 569938 570137 "ELFUTS" 570517 NIL ELFUTS (NIL T T) -7 NIL NIL) (-277 569534 569590 569618 "ELEMFUN" 569723 T ELEMFUN (NIL) -9 NIL NIL) (-276 569404 569425 569493 "ELEMFUN-" 569498 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-275 564295 567504 567545 "ELAGG" 568485 NIL ELAGG (NIL T) -9 NIL 568948) (-274 562580 563014 563677 "ELAGG-" 563682 NIL ELAGG- (NIL T T) -8 NIL NIL) (-273 561237 561517 561812 "ELABEXPR" 562305 T ELABEXPR (NIL) -8 NIL NIL) (-272 554103 555904 556731 "EFUPXS" 560513 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-271 547553 549354 550164 "EFULS" 553379 NIL EFULS (NIL T T T) -8 NIL NIL) (-270 544975 545333 545812 "EFSTRUC" 547185 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-269 534047 535612 537172 "EF" 543490 NIL EF (NIL T T) -7 NIL NIL) (-268 533148 533532 533681 "EAB" 533918 T EAB (NIL) -8 NIL NIL) (-267 532357 533107 533135 "E04UCFA" 533140 T E04UCFA (NIL) -8 NIL NIL) (-266 531566 532316 532344 "E04NAFA" 532349 T E04NAFA (NIL) -8 NIL NIL) (-265 530775 531525 531553 "E04MBFA" 531558 T E04MBFA (NIL) -8 NIL NIL) (-264 529984 530734 530762 "E04JAFA" 530767 T E04JAFA (NIL) -8 NIL NIL) (-263 529195 529943 529971 "E04GCFA" 529976 T E04GCFA (NIL) -8 NIL NIL) (-262 528406 529154 529182 "E04FDFA" 529187 T E04FDFA (NIL) -8 NIL NIL) (-261 527615 528365 528393 "E04DGFA" 528398 T E04DGFA (NIL) -8 NIL NIL) (-260 521793 523140 524504 "E04AGNT" 526271 T E04AGNT (NIL) -7 NIL NIL) (-259 520517 520997 521037 "DVARCAT" 521512 NIL DVARCAT (NIL T) -9 NIL 521711) (-258 519721 519933 520247 "DVARCAT-" 520252 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-257 512621 519520 519649 "DSMP" 519654 NIL DSMP (NIL T T T) -8 NIL NIL) (-256 507431 508566 509634 "DROPT" 511573 T DROPT (NIL) -8 NIL NIL) (-255 507096 507155 507253 "DROPT1" 507366 NIL DROPT1 (NIL T) -7 NIL NIL) (-254 502211 503337 504474 "DROPT0" 505979 T DROPT0 (NIL) -7 NIL NIL) (-253 500556 500881 501267 "DRAWPT" 501845 T DRAWPT (NIL) -7 NIL NIL) (-252 495143 496066 497145 "DRAW" 499530 NIL DRAW (NIL T) -7 NIL NIL) (-251 494776 494829 494947 "DRAWHACK" 495084 NIL DRAWHACK (NIL T) -7 NIL NIL) (-250 493507 493776 494067 "DRAWCX" 494505 T DRAWCX (NIL) -7 NIL NIL) (-249 493023 493091 493242 "DRAWCURV" 493433 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-248 483494 485453 487568 "DRAWCFUN" 490928 T DRAWCFUN (NIL) -7 NIL NIL) (-247 480307 482189 482230 "DQAGG" 482859 NIL DQAGG (NIL T) -9 NIL 483132) (-246 468826 475523 475606 "DPOLCAT" 477458 NIL DPOLCAT (NIL T T T T) -9 NIL 478003) (-245 463665 465011 466969 "DPOLCAT-" 466974 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-244 456820 463526 463624 "DPMO" 463629 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-243 449878 456600 456767 "DPMM" 456772 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-242 449298 449501 449615 "DOMAIN" 449784 T DOMAIN (NIL) -8 NIL NIL) (-241 443049 448933 449085 "DMP" 449199 NIL DMP (NIL NIL T) -8 NIL NIL) (-240 442649 442705 442849 "DLP" 442987 NIL DLP (NIL T) -7 NIL NIL) (-239 436293 441750 441977 "DLIST" 442454 NIL DLIST (NIL T) -8 NIL NIL) (-238 433139 435148 435189 "DLAGG" 435739 NIL DLAGG (NIL T) -9 NIL 435968) (-237 431989 432619 432647 "DIVRING" 432739 T DIVRING (NIL) -9 NIL 432822) (-236 431226 431416 431716 "DIVRING-" 431721 NIL DIVRING- (NIL T) -8 NIL NIL) (-235 429328 429685 430091 "DISPLAY" 430840 T DISPLAY (NIL) -7 NIL NIL) (-234 423270 429242 429305 "DIRPROD" 429310 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-233 422118 422321 422586 "DIRPROD2" 423063 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-232 411656 417608 417661 "DIRPCAT" 418071 NIL DIRPCAT (NIL NIL T) -9 NIL 418911) (-231 408982 409624 410505 "DIRPCAT-" 410842 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-230 408269 408429 408615 "DIOSP" 408816 T DIOSP (NIL) -7 NIL NIL) (-229 404971 407181 407222 "DIOPS" 407656 NIL DIOPS (NIL T) -9 NIL 407885) (-228 404520 404634 404825 "DIOPS-" 404830 NIL DIOPS- (NIL T T) -8 NIL NIL) (-227 403432 404026 404054 "DIFRING" 404241 T DIFRING (NIL) -9 NIL 404351) (-226 403078 403155 403307 "DIFRING-" 403312 NIL DIFRING- (NIL T) -8 NIL NIL) (-225 400903 402141 402182 "DIFEXT" 402545 NIL DIFEXT (NIL T) -9 NIL 402839) (-224 399188 399616 400282 "DIFEXT-" 400287 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-223 396510 398720 398761 "DIAGG" 398766 NIL DIAGG (NIL T) -9 NIL 398786) (-222 395894 396051 396303 "DIAGG-" 396308 NIL DIAGG- (NIL T T) -8 NIL NIL) (-221 391359 394853 395130 "DHMATRIX" 395663 NIL DHMATRIX (NIL T) -8 NIL NIL) (-220 386971 387880 388890 "DFSFUN" 390369 T DFSFUN (NIL) -7 NIL NIL) (-219 381939 385786 386128 "DFLOAT" 386649 T DFLOAT (NIL) -8 NIL NIL) (-218 380167 380448 380844 "DFINTTLS" 381647 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-217 377232 378188 378588 "DERHAM" 379833 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-216 375081 377007 377096 "DEQUEUE" 377176 NIL DEQUEUE (NIL T) -8 NIL NIL) (-215 374296 374429 374625 "DEGRED" 374943 NIL DEGRED (NIL T T) -7 NIL NIL) (-214 370691 371436 372289 "DEFINTRF" 373524 NIL DEFINTRF (NIL T) -7 NIL NIL) (-213 368218 368687 369286 "DEFINTEF" 370210 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-212 367584 367817 367939 "DEFAST" 368116 T DEFAST (NIL) -8 NIL NIL) (-211 361472 367025 367191 "DECIMAL" 367438 T DECIMAL (NIL) -8 NIL NIL) (-210 358984 359442 359948 "DDFACT" 361016 NIL DDFACT (NIL T T) -7 NIL NIL) (-209 358580 358623 358774 "DBLRESP" 358935 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-208 356290 356624 356993 "DBASE" 358338 NIL DBASE (NIL T) -8 NIL NIL) (-207 355559 355770 355916 "DATABUF" 356189 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-206 354692 355518 355546 "D03FAFA" 355551 T D03FAFA (NIL) -8 NIL NIL) (-205 353826 354651 354679 "D03EEFA" 354684 T D03EEFA (NIL) -8 NIL NIL) (-204 351776 352242 352731 "D03AGNT" 353357 T D03AGNT (NIL) -7 NIL NIL) (-203 351092 351735 351763 "D02EJFA" 351768 T D02EJFA (NIL) -8 NIL NIL) (-202 350408 351051 351079 "D02CJFA" 351084 T D02CJFA (NIL) -8 NIL NIL) (-201 349724 350367 350395 "D02BHFA" 350400 T D02BHFA (NIL) -8 NIL NIL) (-200 349040 349683 349711 "D02BBFA" 349716 T D02BBFA (NIL) -8 NIL NIL) (-199 342238 343826 345432 "D02AGNT" 347454 T D02AGNT (NIL) -7 NIL NIL) (-198 340007 340529 341075 "D01WGTS" 341712 T D01WGTS (NIL) -7 NIL NIL) (-197 339102 339966 339994 "D01TRNS" 339999 T D01TRNS (NIL) -8 NIL NIL) (-196 338197 339061 339089 "D01GBFA" 339094 T D01GBFA (NIL) -8 NIL NIL) (-195 337292 338156 338184 "D01FCFA" 338189 T D01FCFA (NIL) -8 NIL NIL) (-194 336387 337251 337279 "D01ASFA" 337284 T D01ASFA (NIL) -8 NIL NIL) (-193 335482 336346 336374 "D01AQFA" 336379 T D01AQFA (NIL) -8 NIL NIL) (-192 334577 335441 335469 "D01APFA" 335474 T D01APFA (NIL) -8 NIL NIL) (-191 333672 334536 334564 "D01ANFA" 334569 T D01ANFA (NIL) -8 NIL NIL) (-190 332767 333631 333659 "D01AMFA" 333664 T D01AMFA (NIL) -8 NIL NIL) (-189 331862 332726 332754 "D01ALFA" 332759 T D01ALFA (NIL) -8 NIL NIL) (-188 330957 331821 331849 "D01AKFA" 331854 T D01AKFA (NIL) -8 NIL NIL) (-187 330052 330916 330944 "D01AJFA" 330949 T D01AJFA (NIL) -8 NIL NIL) (-186 323349 324900 326461 "D01AGNT" 328511 T D01AGNT (NIL) -7 NIL NIL) (-185 322686 322814 322966 "CYCLOTOM" 323217 T CYCLOTOM (NIL) -7 NIL NIL) (-184 319421 320134 320861 "CYCLES" 321979 T CYCLES (NIL) -7 NIL NIL) (-183 318733 318867 319038 "CVMP" 319282 NIL CVMP (NIL T) -7 NIL NIL) (-182 316504 316762 317138 "CTRIGMNP" 318461 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-181 316015 316204 316303 "CTORCALL" 316425 T CTORCALL (NIL) -8 NIL NIL) (-180 315389 315488 315641 "CSTTOOLS" 315912 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 311188 311845 312603 "CRFP" 314701 NIL CRFP (NIL T T) -7 NIL NIL) (-178 310708 310909 311001 "CRCEAST" 311116 T CRCEAST (NIL) -8 NIL NIL) (-177 309755 309940 310168 "CRAPACK" 310512 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 309139 309240 309444 "CPMATCH" 309631 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 308864 308892 308998 "CPIMA" 309105 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 305228 305900 306618 "COORDSYS" 308199 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 304612 304741 304891 "CONTOUR" 305098 T CONTOUR (NIL) -8 NIL NIL) (-172 300538 302615 303107 "CONTFRAC" 304152 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 300418 300439 300467 "CONDUIT" 300504 T CONDUIT (NIL) -9 NIL NIL) (-170 299611 300131 300159 "COMRING" 300164 T COMRING (NIL) -9 NIL 300216) (-169 298692 298969 299153 "COMPPROP" 299447 T COMPPROP (NIL) -8 NIL NIL) (-168 298353 298388 298516 "COMPLPAT" 298651 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 288412 298162 298271 "COMPLEX" 298276 NIL COMPLEX (NIL T) -8 NIL NIL) (-166 288048 288105 288212 "COMPLEX2" 288349 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-165 287766 287801 287899 "COMPFACT" 288007 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 272164 282380 282420 "COMPCAT" 283424 NIL COMPCAT (NIL T) -9 NIL 284819) (-163 261679 264603 268230 "COMPCAT-" 268586 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261408 261436 261539 "COMMUPC" 261645 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 261203 261236 261295 "COMMONOP" 261369 T COMMONOP (NIL) -7 NIL NIL) (-160 260786 260954 261041 "COMM" 261136 T COMM (NIL) -8 NIL NIL) (-159 260407 260590 260665 "COMMAAST" 260731 T COMMAAST (NIL) -8 NIL NIL) (-158 259656 259850 259878 "COMBOPC" 260216 T COMBOPC (NIL) -9 NIL 260391) (-157 258552 258762 259004 "COMBINAT" 259446 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 254750 255323 255963 "COMBF" 257974 NIL COMBF (NIL T T) -7 NIL NIL) (-155 253536 253866 254101 "COLOR" 254535 T COLOR (NIL) -8 NIL NIL) (-154 253056 253257 253349 "COLONAST" 253464 T COLONAST (NIL) -8 NIL NIL) (-153 252696 252743 252868 "CMPLXRT" 253003 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 252188 252396 252495 "CLLCTAST" 252617 T CLLCTAST (NIL) -8 NIL NIL) (-151 247690 248718 249798 "CLIP" 251128 T CLIP (NIL) -7 NIL NIL) (-150 246072 246796 247035 "CLIF" 247517 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242294 244218 244259 "CLAGG" 245188 NIL CLAGG (NIL T) -9 NIL 245724) (-148 240716 241173 241756 "CLAGG-" 241761 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240260 240345 240485 "CINTSLPE" 240625 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 237761 238232 238780 "CHVAR" 239788 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 237024 237544 237572 "CHARZ" 237577 T CHARZ (NIL) -9 NIL 237592) (-144 236778 236818 236896 "CHARPOL" 236978 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 235925 236478 236506 "CHARNZ" 236553 T CHARNZ (NIL) -9 NIL 236609) (-142 233950 234615 234950 "CHAR" 235610 T CHAR (NIL) -8 NIL NIL) (-141 233676 233737 233765 "CFCAT" 233876 T CFCAT (NIL) -9 NIL NIL) (-140 232921 233032 233214 "CDEN" 233560 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 228913 232074 232354 "CCLASS" 232661 T CCLASS (NIL) -8 NIL NIL) (-138 228832 228858 228893 "CATEGORY" 228898 T -10 (NIL) -8 NIL NIL) (-137 228323 228532 228631 "CATAST" 228753 T CATAST (NIL) -8 NIL NIL) (-136 227843 228044 228136 "CASEAST" 228251 T CASEAST (NIL) -8 NIL NIL) (-135 222895 223872 224625 "CARTEN" 227146 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222003 222151 222372 "CARTEN2" 222742 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220345 221153 221410 "CARD" 221766 T CARD (NIL) -8 NIL NIL) (-132 219965 220149 220224 "CAPSLAST" 220290 T CAPSLAST (NIL) -8 NIL NIL) (-131 219337 219665 219693 "CACHSET" 219825 T CACHSET (NIL) -9 NIL 219902) (-130 218833 219129 219157 "CABMON" 219207 T CABMON (NIL) -9 NIL 219263) (-129 218002 218380 218523 "BYTE" 218710 T BYTE (NIL) -8 NIL NIL) (-128 213950 217949 217983 "BYTEARY" 217988 T BYTEARY (NIL) -8 NIL NIL) (-127 211507 213642 213749 "BTREE" 213876 NIL BTREE (NIL T) -8 NIL NIL) (-126 209005 211155 211277 "BTOURN" 211417 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206423 208476 208517 "BTCAT" 208585 NIL BTCAT (NIL T) -9 NIL 208662) (-124 206090 206170 206319 "BTCAT-" 206324 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 201382 205233 205261 "BTAGG" 205483 T BTAGG (NIL) -9 NIL 205644) (-122 200872 200997 201203 "BTAGG-" 201208 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197916 200150 200365 "BSTREE" 200689 NIL BSTREE (NIL T) -8 NIL NIL) (-120 197054 197180 197364 "BRILL" 197772 NIL BRILL (NIL T) -7 NIL NIL) (-119 193755 195782 195823 "BRAGG" 196472 NIL BRAGG (NIL T) -9 NIL 196729) (-118 192284 192690 193245 "BRAGG-" 193250 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185550 191630 191814 "BPADICRT" 192132 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183900 185487 185532 "BPADIC" 185537 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183598 183628 183742 "BOUNDZRO" 183864 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 179113 180204 181071 "BOP" 182751 T BOP (NIL) -8 NIL NIL) (-113 176734 177178 177698 "BOP1" 178626 NIL BOP1 (NIL T) -7 NIL NIL) (-112 175472 176158 176351 "BOOLEAN" 176561 T BOOLEAN (NIL) -8 NIL NIL) (-111 174834 175212 175266 "BMODULE" 175271 NIL BMODULE (NIL T T) -9 NIL 175336) (-110 170664 174632 174705 "BITS" 174781 T BITS (NIL) -8 NIL NIL) (-109 169761 170196 170348 "BINFILE" 170532 T BINFILE (NIL) -8 NIL NIL) (-108 169173 169295 169437 "BINDING" 169639 T BINDING (NIL) -8 NIL NIL) (-107 163065 168617 168782 "BINARY" 169028 T BINARY (NIL) -8 NIL NIL) (-106 160892 162320 162361 "BGAGG" 162621 NIL BGAGG (NIL T) -9 NIL 162758) (-105 160723 160755 160846 "BGAGG-" 160851 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 159821 160107 160312 "BFUNCT" 160538 T BFUNCT (NIL) -8 NIL NIL) (-103 158511 158689 158977 "BEZOUT" 159645 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155028 157363 157693 "BBTREE" 158214 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154762 154815 154843 "BASTYPE" 154962 T BASTYPE (NIL) -9 NIL NIL) (-100 154614 154643 154716 "BASTYPE-" 154721 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154052 154128 154278 "BALFACT" 154525 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 152935 153467 153653 "AUTOMOR" 153897 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152661 152666 152692 "ATTREG" 152697 T ATTREG (NIL) -9 NIL NIL) (-96 150940 151358 151710 "ATTRBUT" 152327 T ATTRBUT (NIL) -8 NIL NIL) (-95 150592 150768 150834 "ATTRAST" 150892 T ATTRAST (NIL) -8 NIL NIL) (-94 150128 150241 150267 "ATRIG" 150468 T ATRIG (NIL) -9 NIL NIL) (-93 149937 149978 150065 "ATRIG-" 150070 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149662 149805 149831 "ASTCAT" 149836 T ASTCAT (NIL) -9 NIL 149866) (-91 149459 149502 149594 "ASTCAT-" 149599 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147656 149235 149323 "ASTACK" 149402 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146161 146458 146823 "ASSOCEQ" 147338 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145193 145820 145944 "ASP9" 146068 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144957 145141 145180 "ASP8" 145185 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143826 144562 144704 "ASP80" 144846 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142725 143461 143593 "ASP7" 143725 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141679 142402 142520 "ASP78" 142638 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140648 141359 141476 "ASP77" 141593 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139560 140286 140417 "ASP74" 140548 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138460 139195 139327 "ASP73" 139459 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137415 138137 138255 "ASP6" 138373 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136363 137092 137210 "ASP55" 137328 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135313 136037 136156 "ASP50" 136275 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134401 135014 135124 "ASP4" 135234 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133489 134102 134212 "ASP49" 134322 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132274 133028 133196 "ASP42" 133378 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131051 131807 131977 "ASP41" 132161 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130001 130728 130846 "ASP35" 130964 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129766 129949 129988 "ASP34" 129993 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129503 129570 129646 "ASP33" 129721 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128398 129138 129270 "ASP31" 129402 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128163 128346 128385 "ASP30" 128390 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127898 127967 128043 "ASP29" 128118 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127663 127846 127885 "ASP28" 127890 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127428 127611 127650 "ASP27" 127655 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126512 127126 127237 "ASP24" 127348 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125428 126153 126283 "ASP20" 126413 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124516 125129 125239 "ASP1" 125349 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123460 124190 124309 "ASP19" 124428 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123197 123264 123340 "ASP12" 123415 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122049 122796 122940 "ASP10" 123084 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119948 121893 121984 "ARRAY2" 121989 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115764 119596 119710 "ARRAY1" 119865 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114796 114969 115190 "ARRAY12" 115587 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109155 111026 111101 "ARR2CAT" 113731 NIL ARR2CAT (NIL T T T) -9 NIL 114489) (-55 106589 107333 108287 "ARR2CAT-" 108292 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105337 105489 105795 "APPRULE" 106425 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 104988 105036 105155 "APPLYORE" 105283 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103962 104253 104448 "ANY" 104811 T ANY (NIL) -8 NIL NIL) (-51 103240 103363 103520 "ANY1" 103836 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100805 101677 102004 "ANTISYM" 102964 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100320 100509 100606 "ANON" 100726 T ANON (NIL) -8 NIL NIL) (-48 94454 98861 99314 "AN" 99885 T AN (NIL) -8 NIL NIL) (-47 90835 92189 92240 "AMR" 92988 NIL AMR (NIL T T) -9 NIL 93588) (-46 89947 90168 90531 "AMR-" 90536 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74497 89864 89925 "ALIST" 89930 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71334 74091 74260 "ALGSC" 74415 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67890 68444 69051 "ALGPKG" 70774 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67167 67268 67452 "ALGMFACT" 67776 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62906 63591 64246 "ALGMANIP" 66690 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54312 62532 62682 "ALGFF" 62839 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53508 53639 53818 "ALGFACT" 54170 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52538 53104 53142 "ALGEBRA" 53202 NIL ALGEBRA (NIL T) -9 NIL 53261) (-37 52256 52315 52447 "ALGEBRA-" 52452 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34516 50259 50311 "ALAGG" 50447 NIL ALAGG (NIL T T) -9 NIL 50608) (-35 34052 34165 34191 "AHYP" 34392 T AHYP (NIL) -9 NIL NIL) (-34 32983 33231 33257 "AGG" 33756 T AGG (NIL) -9 NIL 34035) (-33 32417 32579 32793 "AGG-" 32798 NIL AGG- (NIL T) -8 NIL NIL) (-32 30094 30516 30934 "AF" 32059 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29819 29909 "ADDAST" 30022 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 38334ce8..97b2552f 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,5317 +1,5168 @@
-(733842 . 3431009357)
-(((*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-819)) (-5 *1 (-294 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1219 *1)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177))
- (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-321)))))
-(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
- ((*1 *1 *1) (-4 *1 (-1105))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-398 (-547)))
- (-5 *1 (-424 *4 *3)) (-4 *3 (-421 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-590 *3)) (-4 *3 (-421 *5))
- (-4 *5 (-13 (-821) (-539) (-1007 (-547))))
- (-5 *2 (-1132 (-398 (-547)))) (-5 *1 (-424 *5 *3)))))
+(737354 . 3431018169)
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1067)) (-4 *2 (-871 *4)) (-5 *1 (-668 *4 *2 *5 *3))
+ (-4 *5 (-366 *2)) (-4 *3 (-13 (-366 *4) (-10 -7 (-6 -4337)))))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-621 (-1226 *4))) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-541))
+ (-5 *2 (-621 (-1226 *3))))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (-5 *2 (-2 (|:| -2714 (-114)) (|:| |w| (-217)))) (-5 *1 (-196)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -1917 (-663 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-663 *3))))
- (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $)))))
- (-4 *4 (-1195 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1119)) (-5 *1 (-685)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-217)) (-5 *4 (-547))
- (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))
- (-5 *2 (-1004)) (-5 *1 (-723)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1119)) (-5 *3 (-619 (-254))) (-5 *1 (-252))))
- ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-254)))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1016)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *7)) (-4 *7 (-821))
- (-4 *8 (-918 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1202 *5)) (-4 *5 (-356))
+ (-5 *2 (-2 (|:| -4041 (-411 *3)) (|:| |special| (-411 *3))))
+ (-5 *1 (-704 *5 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *7)) (-4 *7 (-823))
+ (-4 *8 (-920 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769))
(-5 *2
- (-2 (|:| |particular| (-3 (-1219 (-398 *8)) "failed"))
- (|:| -1917 (-619 (-1219 (-398 *8))))))
- (-5 *1 (-643 *5 *6 *7 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-619 (-307 (-217)))) (-5 *1 (-258)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)))))
+ (-2 (|:| |particular| (-3 (-1226 (-400 *8)) "failed"))
+ (|:| -1949 (-621 (-1226 (-400 *8))))))
+ (-5 *1 (-645 *5 *6 *7 *8)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-366 *2)) (-4 *2 (-1180))
+ (-4 *2 (-823))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4338))
+ (-4 *1 (-366 *3)) (-4 *3 (-1180)))))
(((*1 *1) (-5 *1 (-139))))
-(((*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-477)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
+ (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))
(-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-184)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-890)) (-4 *1 (-230 *3 *4)) (-4 *4 (-1016))
- (-4 *4 (-1173))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-619 (-1136))) (-4 *4 (-169))
- (-4 *5 (-230 (-3767 *3) (-745)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3487 *2) (|:| -3322 *5))
- (-2 (|:| -3487 *2) (|:| -3322 *5))))
- (-5 *1 (-451 *3 *4 *2 *5 *6 *7)) (-4 *2 (-821))
- (-4 *7 (-918 *4 *5 (-834 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1169)))))
-(((*1 *1 *1) (-4 *1 (-605)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971) (-1158))))))
-(((*1 *1 *1) (-5 *1 (-1028))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-619 (-1039 *4 *5 *2))) (-4 *4 (-1063))
- (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4))))
- (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-619 (-1039 *5 *6 *2))) (-5 *4 (-890)) (-4 *5 (-1063))
- (-4 *6 (-13 (-1016) (-855 *5) (-821) (-592 (-861 *5))))
- (-4 *2 (-13 (-421 *6) (-855 *5) (-592 (-861 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4329)) (-4 *1 (-227 *3))
- (-4 *3 (-1063))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-273 *3)) (-4 *3 (-1173)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-398 (-547))) (-4 *1 (-537 *3))
- (-4 *3 (-13 (-395) (-1158)))))
- ((*1 *1 *2) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1158)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1158))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-547)) (|has| *1 (-6 -4330)) (-4 *1 (-364 *3))
- (-4 *3 (-1173)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-271))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-817)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-112))
- (-5 *2 (-1004)) (-5 *1 (-728)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1195 *3)) (-4 *3 (-1016)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1136)) (-5 *1 (-565 *2)) (-4 *2 (-1007 *3))
- (-4 *2 (-354))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-565 *2)) (-4 *2 (-354))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-606 *4 *2))
- (-4 *2 (-13 (-421 *4) (-971) (-1158)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-421 *4) (-971) (-1158)))
- (-4 *4 (-13 (-821) (-539))) (-5 *1 (-606 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-1136))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-928)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-254))) (-5 *4 (-1136)) (-5 *2 (-112))
- (-5 *1 (-254)))))
-(((*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-745)) (-5 *1 (-569)))))
-(((*1 *1) (-5 *1 (-428))))
-(((*1 *2 *1) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1158))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1150 *4 *5))
- (-4 *4 (-1063)) (-4 *5 (-1063)))))
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1091 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1132 *7)) (-4 *5 (-1016))
- (-4 *7 (-1016)) (-4 *2 (-1195 *5)) (-5 *1 (-490 *5 *2 *6 *7))
- (-4 *6 (-1195 *2))))
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4))
+ (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-356)) (-5 *1 (-996 *3 *2)) (-4 *2 (-632 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016))
- (-4 *4 (-1195 *5)) (-5 *2 (-1132 *7)) (-5 *1 (-490 *5 *4 *6 *7))
- (-4 *6 (-1195 *4)))))
+ (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -2652 *3) (|:| -2721 (-621 *5))))
+ (-5 *1 (-996 *5 *3)) (-5 *4 (-621 *5)) (-4 *3 (-632 *5)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1143)) (-5 *2 (-1071)) (-5 *1 (-284)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1158))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354)))
- (-4 *3 (-1195 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1496 *4)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-382)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
+ (-14 *4 (-621 (-1143)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1180))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
+ (-14 *4 (-621 (-1143)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-823)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-217)) (-5 *5 (-547)) (-5 *2 (-1168 *3))
- (-5 *1 (-764 *3)) (-4 *3 (-943))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-112))
- (-5 *1 (-1168 *2)) (-4 *2 (-943)))))
-(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1173)))))
+ (-12 (-5 *4 (-1 (-621 *7) *7 (-1139 *7))) (-5 *5 (-1 (-411 *7) *7))
+ (-4 *7 (-1202 *6)) (-4 *6 (-13 (-356) (-145) (-1009 (-400 (-549)))))
+ (-5 *2 (-621 (-2 (|:| |frac| (-400 *7)) (|:| -2652 *3))))
+ (-5 *1 (-785 *6 *7 *3 *8)) (-4 *3 (-632 *7))
+ (-4 *8 (-632 (-400 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1202 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-5 *2
+ (-621 (-2 (|:| |frac| (-400 *6)) (|:| -2652 (-630 *6 (-400 *6))))))
+ (-5 *1 (-788 *5 *6)) (-5 *3 (-630 *6 (-400 *6))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-823) (-541))))))
+(((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-834)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3)))
+ (-5 *1 (-664 *3 *4 *5 *6)) (-4 *6 (-663 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-676 *3))
+ (-4 *3 (-300)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-665 (-1139 *8))) (-4 *5 (-1018)) (-4 *8 (-1018))
+ (-4 *6 (-1202 *5)) (-5 *2 (-665 *6)) (-5 *1 (-492 *5 *6 *7 *8))
+ (-4 *7 (-1202 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-621 (-621 (-549)))) (-5 *1 (-942))
+ (-5 *3 (-621 (-549))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-419 *4 *2)) (-4 *2 (-13 (-1165) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1143)) (-4 *5 (-145))
+ (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
+ (-5 *2 (-309 *5)) (-5 *1 (-570 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1165) (-930)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-834))) ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1) (-5 *1 (-834)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1123 *3)) (-5 *1 (-1127 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-769))
+ (-4 *5 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))) (-4 *6 (-541))
+ (-5 *2 (-2 (|:| -2861 (-923 *6)) (|:| -3019 (-923 *6))))
+ (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-920 (-400 (-923 *6)) *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-665 *4)) (-5 *3 (-892)) (-4 *4 (-1018))
+ (-5 *1 (-999 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-621 (-665 *4))) (-5 *3 (-892)) (-4 *4 (-1018))
+ (-5 *1 (-999 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1202 *5))
+ (-4 *5 (-13 (-27) (-423 *4)))
+ (-4 *4 (-13 (-823) (-541) (-1009 (-549))))
+ (-4 *7 (-1202 (-400 *6))) (-5 *1 (-537 *4 *5 *6 *7 *2))
+ (-4 *2 (-335 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1180)) (-5 *1 (-1099 *4 *2))
+ (-4 *2 (-13 (-584 (-549) *4) (-10 -7 (-6 -4337) (-6 -4338))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-823)) (-4 *3 (-1180)) (-5 *1 (-1099 *3 *2))
+ (-4 *2 (-13 (-584 (-549) *3) (-10 -7 (-6 -4337) (-6 -4338)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112))
+ (-5 *1 (-32 *4 *5)) (-4 *5 (-423 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112))
+ (-5 *1 (-156 *4 *5)) (-4 *5 (-423 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112))
+ (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-423 *4) (-973)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-294 *4)) (-4 *4 (-295))))
+ ((*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-422 *4 *5)) (-4 *4 (-423 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112))
+ (-5 *1 (-424 *4 *5)) (-4 *5 (-423 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112))
+ (-5 *1 (-608 *4 *5)) (-4 *5 (-13 (-423 *4) (-973) (-1165))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-621 (-273))) (-5 *1 (-273))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-1148)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-621 (-998 *5 *6 *7 *3))) (-5 *1 (-998 *5 *6 *7 *3))
+ (-4 *3 (-1032 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-621 *6)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-621 (-1113 *5 *6 *7 *3))) (-5 *1 (-1113 *5 *6 *7 *3))
+ (-4 *3 (-1032 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1074 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006))
+ (-5 *1 (-733)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-1125))) (-5 *2 (-1125)) (-5 *1 (-186))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-400 *4)) (-4 *4 (-1202 *3)) (-4 *3 (-13 (-356) (-145)))
+ (-5 *1 (-392 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
+ ((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-823)) (-5 *3 (-621 *6)) (-5 *5 (-621 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-621 *5)) (|:| |f3| *5)
+ (|:| |f4| (-621 *5))))
+ (-5 *1 (-1151 *6)) (-5 *4 (-621 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))
+ (-5 *1 (-991 *3)) (-4 *3 (-1202 (-549)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))
+ (-5 *1 (-991 *3)) (-4 *3 (-1202 (-549)))
+ (-5 *4 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))
+ (-5 *1 (-991 *3)) (-4 *3 (-1202 (-549))) (-5 *4 (-400 (-549)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-400 (-549)))
+ (-5 *2 (-621 (-2 (|:| -3838 *5) (|:| -3848 *5)))) (-5 *1 (-991 *3))
+ (-4 *3 (-1202 (-549))) (-5 *4 (-2 (|:| -3838 *5) (|:| -3848 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))
+ (-5 *1 (-992 *3)) (-4 *3 (-1202 (-400 (-549))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))
+ (-5 *1 (-992 *3)) (-4 *3 (-1202 (-400 (-549))))
+ (-5 *4 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-400 (-549)))
+ (-5 *2 (-621 (-2 (|:| -3838 *4) (|:| -3848 *4)))) (-5 *1 (-992 *3))
+ (-4 *3 (-1202 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-400 (-549)))
+ (-5 *2 (-621 (-2 (|:| -3838 *5) (|:| -3848 *5)))) (-5 *1 (-992 *3))
+ (-4 *3 (-1202 *5)) (-5 *4 (-2 (|:| -3838 *5) (|:| -3848 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-605 *2 *3 *4)) (-4 *2 (-823))
+ (-4 *3 (-13 (-170) (-694 (-400 (-549))))) (-14 *4 (-892))))
+ ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-738))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4))))
+ (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1067)))))
+(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-677))))
+ ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-677)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-532))
- (-5 *2 (-398 (-547)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-409 *3)) (-4 *3 (-532))
- (-4 *3 (-539))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-532)) (-5 *2 (-398 (-547)))))
+ (|partial| -12 (-4 *3 (-1079)) (-4 *3 (-823)) (-5 *2 (-621 *1))
+ (-4 *1 (-423 *3))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-532))
- (-5 *2 (-398 (-547)))))
+ (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3))
+ (-4 *3 (-1067))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-807 *3)) (-4 *3 (-532))
- (-4 *3 (-1063))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-814 *3)) (-4 *3 (-532))
- (-4 *3 (-1063))))
+ (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-621 *1)) (-4 *1 (-920 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
+ (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-621 *3))
+ (-5 *1 (-921 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $))
+ (-15 -1403 (*7 $))))))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422)))) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-725)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-256))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356))
+ (-5 *2 (-665 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1226 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
+ (-5 *2 (-665 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
+ (-5 *2 (-1226 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1202 *4)) (-5 *2 (-665 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1202 *4)) (-5 *2 (-1226 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-402 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1202 *4)) (-5 *2 (-665 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-532))
- (-5 *2 (-398 (-547)))))
+ (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1202 *3))
+ (-5 *2 (-1226 *3))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-977 *3))
- (-4 *3 (-1007 *2)))))
-(((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1136)) (-5 *2 (-108)) (-5 *1 (-172))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1136)) (-5 *2 (-108)) (-5 *1 (-1049)))))
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-410 *4)) (-4 *4 (-170))
+ (-5 *2 (-665 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1226 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 (-665 *5))) (-5 *3 (-665 *5)) (-4 *5 (-356))
+ (-5 *2 (-1226 *5)) (-5 *1 (-1053 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-250)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-794)) (-14 *5 (-1136)) (-5 *2 (-619 (-1192 *5 *4)))
- (-5 *1 (-1077 *4 *5)) (-5 *3 (-1192 *5 *4)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1119)) (-5 *3 (-748)) (-5 *1 (-114)))))
+ (-12 (-4 *4 (-796)) (-14 *5 (-1143)) (-5 *2 (-621 (-1199 *5 *4)))
+ (-5 *1 (-1081 *4 *5)) (-5 *3 (-1199 *5 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1974 *4))))
- (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1151)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-778 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1158) (-928))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-217)) (-5 *4 (-547))
- (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))
- (-5 *2 (-1004)) (-5 *1 (-723)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-1195 *4)) (-5 *1 (-526 *4 *2 *5 *6))
- (-4 *4 (-298)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745))))))
-(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1132 *4)) (-4 *4 (-340))
- (-5 *2 (-1219 (-619 (-2 (|:| -4153 *4) (|:| -3487 (-1082))))))
- (-5 *1 (-337 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
+ (-12 (-5 *3 (-400 (-549))) (-5 *4 (-549)) (-5 *2 (-52))
+ (-5 *1 (-976)))))
(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1195 *4)) (-5 *1 (-781 *4 *2 *3 *5))
- (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2))
- (-4 *5 (-630 (-398 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1195 *4)) (-5 *1 (-781 *4 *2 *5 *3))
- (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-630 *2))
- (-4 *3 (-630 (-398 *2))))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767))
- (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2644 (-619 *9)) (|:| -1974 *4) (|:| |ineq| (-619 *9))))
- (-5 *1 (-957 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9))
- (-4 *4 (-1036 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767))
- (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2644 (-619 *9)) (|:| -1974 *4) (|:| |ineq| (-619 *9))))
- (-5 *1 (-1070 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9))
- (-4 *4 (-1036 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-112))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 (-166 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-112)) (-5 *1 (-1162 *4 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *4))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-745)) (-4 *4 (-298)) (-4 *6 (-1195 *4))
- (-5 *2 (-1219 (-619 *6))) (-5 *1 (-445 *4 *6)) (-5 *5 (-619 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1117 (-921 *4)) (-1117 (-921 *4))))
- (-5 *1 (-1227 *4)) (-4 *4 (-354)))))
-(((*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1139)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1219 (-398 (-921 *4))))
- (|:| -1917 (-619 (-1219 (-398 (-921 *4)))))))
- (-5 *3 (-619 *7)) (-4 *4 (-13 (-298) (-145)))
- (-4 *7 (-918 *4 *6 *5)) (-4 *5 (-13 (-821) (-592 (-1136))))
- (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *3 *2))
- (-4 *2 (-13 (-27) (-1158) (-421 (-166 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-539) (-821) (-1007 (-547))))
- (-5 *1 (-180 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 (-166 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4))))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1101 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-621 *3))) (-4 *1 (-1101 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-914 *3))) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-300))
+ (-5 *2 (-400 (-411 (-923 *4)))) (-5 *1 (-1013 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-1009 (-400 *2)))) (-5 *2 (-549))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1139 *9)) (-5 *4 (-621 *7)) (-4 *7 (-823))
+ (-4 *9 (-920 *8 *6 *7)) (-4 *6 (-769)) (-4 *8 (-300))
+ (-5 *2 (-621 (-747))) (-5 *1 (-719 *6 *7 *8 *9)) (-5 *5 (-747)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-892)) (-5 *1 (-1068 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-621 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-621 (-1113 *5 *6 *7 *8))) (-5 *1 (-1113 *5 *6 *7 *8)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016))
- (-14 *4 (-619 (-1136)))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
+ (-14 *4 (-621 (-1143)))))
((*1 *1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821)))
- (-14 *4 (-619 (-1136)))))
- ((*1 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-359)) (-4 *2 (-354))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
+ (-14 *4 (-621 (-1143)))))
+ ((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-326 *3 *4 *5 *2)) (-4 *3 (-354))
- (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4)))
- (-4 *2 (-333 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-328 *3 *4 *5 *2)) (-4 *3 (-356))
+ (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4)))
+ (-4 *2 (-335 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-169))))
- ((*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-699 *2 *3)) (-4 *3 (-1195 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1136)))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-170))))
+ ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-701 *2 *3)) (-4 *3 (-1202 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-745)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-1016)))))
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-747)))))
+(((*1 *2 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-546)) (-5 *3 (-549)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-309 *4)) (-4 *4 (-13 (-804) (-823) (-1018)))
+ (-5 *2 (-1125)) (-5 *1 (-802 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-309 *5)) (-5 *4 (-112))
+ (-4 *5 (-13 (-804) (-823) (-1018))) (-5 *2 (-1125))
+ (-5 *1 (-802 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-798)) (-5 *4 (-309 *5))
+ (-4 *5 (-13 (-804) (-823) (-1018))) (-5 *2 (-1231))
+ (-5 *1 (-802 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-798)) (-5 *4 (-309 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-804) (-823) (-1018))) (-5 *2 (-1231))
+ (-5 *1 (-802 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-804)) (-5 *2 (-1125))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-804)) (-5 *3 (-112)) (-5 *2 (-1125))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-804)) (-5 *3 (-798)) (-5 *2 (-1231))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-804)) (-5 *3 (-798)) (-5 *4 (-112)) (-5 *2 (-1231)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-298)) (-4 *6 (-364 *5)) (-4 *4 (-364 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4))))
- (-5 *1 (-1086 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-619
- (-619
- (-3 (|:| -2473 (-1136))
- (|:| -2189 (-619 (-3 (|:| S (-1136)) (|:| P (-921 (-547))))))))))
- (-5 *1 (-1140)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-398 (-547))))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-254)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145))
- (-4 *3 (-298)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-946 *3 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539))
- (-5 *2 (-112)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1204 *4 *5 *6))
- (|:| |%expon| (-310 *4 *5 *6))
- (|:| |%expTerms|
- (-619 (-2 (|:| |k| (-398 (-547))) (|:| |c| *4))))))
- (|:| |%type| (-1119))))
- (-5 *1 (-1205 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1158) (-421 *3)))
- (-14 *5 (-1136)) (-14 *6 *4))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-398 (-921 *4)))) (-4 *4 (-442))
- (-5 *2 (-619 (-3 (-398 (-921 *4)) (-1126 (-1136) (-921 *4)))))
- (-5 *1 (-283 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-1119))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-81 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1004))
- (-5 *1 (-725)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1195 *4)) (-4 *4 (-1177))
- (-4 *6 (-1195 (-398 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-333 *4 *5 *6)))))
+ (-12 (-5 *3 (-1143)) (-4 *5 (-356)) (-5 *2 (-621 (-1174 *5)))
+ (-5 *1 (-1234 *5)) (-5 *4 (-1174 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1132 *4)) (-4 *4 (-340))
- (-4 *2
- (-13 (-393)
- (-10 -7 (-15 -3838 (*2 *4)) (-15 -2402 ((-890) *2))
- (-15 -1917 ((-1219 *2) (-890))) (-15 -1693 (*2 *2)))))
- (-5 *1 (-347 *2 *4)))))
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1165) (-973))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-549)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2)))))
+(((*1 *2)
+ (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-410 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1016))
- (-4 *2 (-1210 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)))))
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-823)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143)) (-5 *2 (-1 (-1139 (-923 *4)) (-923 *4)))
+ (-5 *1 (-1234 *4)) (-4 *4 (-356)))))
+(((*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-479)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821))
- (-5 *2 (-2 (|:| -1563 (-547)) (|:| |var| (-590 *1))))
- (-4 *1 (-421 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442))
- (-14 *6 (-619 (-1136)))
- (-5 *2
- (-619 (-1107 *5 (-519 (-834 *6)) (-834 *6) (-754 *5 (-834 *6)))))
- (-5 *1 (-604 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
+ (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-266)))))
-(((*1 *2)
- (-12 (-5 *2 (-1219 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4))
- (-14 *3 (-890)) (-14 *4 (-890)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1136))
- (-4 *5 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-2 (|:| -2510 *3) (|:| |coeff| *3))) (-5 *1 (-540 *5 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *5))))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-2 (|:| -2121 *4) (|:| -3701 (-549)))))
+ (-4 *4 (-1202 (-549))) (-5 *2 (-714 (-747))) (-5 *1 (-434 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-411 *5)) (-4 *5 (-1202 *4)) (-4 *4 (-1018))
+ (-5 *2 (-714 (-747))) (-5 *1 (-436 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))
+ (-5 *2 (-621 (-219))) (-5 *1 (-298)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-621 (-497))) (-5 *2 (-497)) (-5 *1 (-475)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1145 (-400 (-549)))) (-5 *2 (-400 (-549)))
+ (-5 *1 (-184)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1218 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1143))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-549))))
+ (-4 *5 (-1202 *4))
+ (-5 *2 (-2 (|:| -3440 (-400 *5)) (|:| |coeff| (-400 *5))))
+ (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1114 (-1125))) (-5 *1 (-384)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-2 (|:| -4161 *4) (|:| -1637 (-549)))))
+ (-4 *4 (-1067)) (-5 *2 (-1 *4)) (-5 *1 (-988 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-823)) (-5 *2 (-1152 (-621 *4))) (-5 *1 (-1151 *4))
+ (-5 *3 (-621 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -1278 (-619 (-832))) (|:| -2794 (-619 (-832)))
- (|:| |presup| (-619 (-832))) (|:| -2539 (-619 (-832)))
- (|:| |args| (-619 (-832)))))
- (-5 *1 (-1136)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-726)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-1189 *3 *2))
- (-4 *2 (-1195 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1210 *2)) (-4 *2 (-1016)))))
+ (-2 (|:| -2895 (-621 (-834))) (|:| -2861 (-621 (-834)))
+ (|:| |presup| (-621 (-834))) (|:| -3395 (-621 (-834)))
+ (|:| |args| (-621 (-834)))))
+ (-5 *1 (-1143)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-1219 *5))) (-5 *4 (-547)) (-5 *2 (-1219 *5))
- (-5 *1 (-998 *5)) (-4 *5 (-354)) (-4 *5 (-359)) (-4 *5 (-1016)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1202 *3 *2)) (-4 *3 (-1016))
- (-4 *2 (-1179 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1136))) (-4 *6 (-354))
- (-5 *2 (-619 (-285 (-921 *6)))) (-5 *1 (-525 *5 *6 *7))
- (-4 *5 (-442)) (-4 *7 (-13 (-354) (-819))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-889)) (-5 *2 (-2 (|:| -1563 (-619 *1)) (|:| -4238 *1)))
- (-5 *3 (-619 *1)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1016))
- (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1158) (-275)))
- (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1195 *4))))
- ((*1 *1 *1) (-4 *1 (-532)))
- ((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-646 *3)) (-4 *3 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-651 *3)) (-4 *3 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-862 *3)) (-4 *3 (-821))))
- ((*1 *2 *1) (-12 (-4 *1 (-964 *3)) (-4 *3 (-1173)) (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1170 *3)) (-4 *3 (-1173))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-971))
- (-4 *2 (-1016)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-619 (-254))) (-5 *1 (-252))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1 *1) (-4 *1 (-936))))
-(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-619 *3)) (-5 *5 (-890)) (-4 *3 (-1195 *4))
- (-4 *4 (-298)) (-5 *1 (-450 *4 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-217)) (-5 *1 (-296)))))
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7))))
- (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))))
+ (-12 (-4 *4 (-541)) (-5 *2 (-621 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-410 *4)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-892)) (-5 *1 (-675))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-665 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-356)) (-5 *1 (-949 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-801)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1195 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-821))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-565 *4)) (-4 *4 (-13 (-29 *3) (-1158)))
- (-4 *3 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547))))
- (-5 *1 (-563 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-565 (-398 (-921 *3))))
- (-4 *3 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547))))
- (-5 *1 (-568 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1195 *5)) (-4 *5 (-354))
- (-5 *2 (-2 (|:| -4032 *3) (|:| |special| *3))) (-5 *1 (-702 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1219 *5)) (-4 *5 (-354)) (-4 *5 (-1016))
- (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5))
- (-5 *3 (-619 (-663 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1219 (-1219 *5))) (-4 *5 (-354)) (-4 *5 (-1016))
- (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5))
- (-5 *3 (-619 (-663 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-619 *1)) (-4 *1 (-1105))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-619 *1)) (-4 *1 (-1105)))))
-(((*1 *1 *1) (-5 *1 (-1028))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-547)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-298))
- (-4 *9 (-918 *8 *6 *7))
- (-5 *2 (-2 (|:| -2447 (-1132 *9)) (|:| |polval| (-1132 *8))))
- (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1132 *9)) (-5 *4 (-1132 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5))
- (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-1232 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539))
- (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1232 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821))
- (-4 *3 (-1030 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-619 *4))
- (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))))
- (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3))))
+ (-12 (-4 *4 (-13 (-356) (-821)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -4024 (-411 *3))))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))))
+(((*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-736)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
+ (-5 *2 (-665 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-409 *3 *4))
+ (-4 *3 (-410 *4))))
+ ((*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1018))
+ (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1165) (-277)))
+ (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1202 *4))))
+ ((*1 *1 *1) (-4 *1 (-534)))
+ ((*1 *2 *1) (-12 (-5 *2 (-892)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-892)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-864 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-1180)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-1177 *3)) (-4 *3 (-1180))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-973))
+ (-4 *2 (-1018)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1 *1) (-4 *1 (-938))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-549)) (-5 *5 (-1125)) (-5 *6 (-665 (-219)))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))))
+ (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))
+ (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1226 (-309 (-219)))) (-5 *4 (-621 (-1143)))
+ (-5 *2 (-665 (-309 (-219)))) (-5 *1 (-199))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-619 *4))
- (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))))
- (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821))
- (-4 *3 (-1030 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-619 *4))
- (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))))
- (-5 *1 (-1106 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3))))
+ (-12 (-4 *5 (-1067)) (-4 *6 (-871 *5)) (-5 *2 (-665 *6))
+ (-5 *1 (-668 *5 *6 *3 *4)) (-4 *3 (-366 *6))
+ (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-541))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1231)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-219))) (-5 *2 (-1226 (-675))) (-5 *1 (-298)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-621 (-914 *4))) (-4 *1 (-1101 *4)) (-4 *4 (-1018))
+ (-5 *2 (-747)))))
+(((*1 *1) (-5 *1 (-430))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-936))) (-5 *1 (-284)))))
+(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-658 *2)) (-4 *2 (-1067))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
+ (-12 (-5 *3 (-1 (-621 *5) (-621 *5))) (-5 *4 (-549))
+ (-5 *2 (-621 *5)) (-5 *1 (-658 *5)) (-4 *5 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-287 (-923 (-549))))
(-5 *2
- (-2 (|:| |done| (-619 *4))
- (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))))
- (-5 *1 (-1106 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-398 *1)) (-4 *1 (-1195 *3)) (-4 *3 (-1016))
- (-4 *3 (-539))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-539)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))))
+ (-2 (|:| |varOrder| (-621 (-1143)))
+ (|:| |inhom| (-3 (-621 (-1226 (-747))) "failed"))
+ (|:| |hom| (-621 (-1226 (-747))))))
+ (-5 *1 (-230)))))
+(((*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1236)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-795 *3)) (-4 *3 (-823)))))
+(((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1011)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1202 (-549))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-166 (-398 (-547)))))
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-726)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-411 *5)) (-4 *5 (-541))
(-5 *2
- (-619
- (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-547))
- (|:| |outvect| (-619 (-663 (-166 *4)))))))
- (-5 *1 (-739 *4)) (-4 *4 (-13 (-354) (-819))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-32 *3 *4))
- (-4 *4 (-421 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-745)) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *4))
- (-4 *4 (-421 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-114)) (-5 *1 (-160))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *4))
- (-4 *4 (-13 (-421 *3) (-971)))))
- ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-292 *3)) (-4 *3 (-293))))
- ((*1 *2 *2) (-12 (-4 *1 (-293)) (-5 *2 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *4 (-821)) (-5 *1 (-420 *3 *4))
- (-4 *3 (-421 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *4))
- (-4 *4 (-421 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-590 *3)) (-4 *3 (-821))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *4))
- (-4 *4 (-13 (-421 *3) (-971) (-1158)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-988)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-663 *2)) (-5 *4 (-547))
- (-4 *2 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $)))))
- (-4 *5 (-1195 *2)) (-5 *1 (-488 *2 *5 *6)) (-4 *6 (-400 *2 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-766)))))
+ (-2 (|:| -3731 (-747)) (|:| -1570 *5) (|:| |radicand| (-621 *5))))
+ (-5 *1 (-313 *5)) (-5 *4 (-747))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-549)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-298)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))))
+ (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-342)) (-5 *2 (-1226 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-665 *1)) (-4 *1 (-143)) (-4 *1 (-880))
+ (-5 *2 (-1226 *1)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1219 (-1219 *4))) (-4 *4 (-1016)) (-5 *2 (-663 *4))
- (-5 *1 (-998 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-239 *5 *6))) (-4 *6 (-442))
- (-5 *2 (-239 *5 *6)) (-14 *5 (-619 (-1136))) (-5 *1 (-607 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1136)) (-4 *5 (-354)) (-5 *2 (-619 (-1167 *5)))
- (-5 *1 (-1227 *5)) (-5 *4 (-1167 *5)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-663 (-217))) (-5 *6 (-663 (-547))) (-5 *3 (-547))
- (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370))
+ (-12 (-5 *3 (-665 (-400 (-923 (-549)))))
+ (-5 *2 (-621 (-665 (-309 (-549))))) (-5 *1 (-1002)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6))
+ (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1981 *1))))
+ (-4 *1 (-1038 *4 *5 *6 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823)))
+ (-14 *3 (-621 (-1143))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *8 (-1032 *5 *6 *7))
(-5 *2
- (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547))
- (|:| |success| (-112))))
- (-5 *1 (-763)) (-5 *5 (-547)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1139))))
- ((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-1139))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-1139)))))
-(((*1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1173)))))
-(((*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)) (-4 *2 (-1016))))
- ((*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1229)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1136)) (-4 *5 (-354)) (-5 *2 (-1117 (-1117 (-921 *5))))
- (-5 *1 (-1227 *5)) (-5 *4 (-1117 (-921 *5))))))
-(((*1 *1 *1 *1) (-5 *1 (-159)))
- ((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-159)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-619 (-663 *6))) (-5 *4 (-112)) (-5 *5 (-547))
- (-5 *2 (-663 *6)) (-5 *1 (-998 *6)) (-4 *6 (-354)) (-4 *6 (-1016))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-5 *1 (-998 *4))
- (-4 *4 (-354)) (-4 *4 (-1016))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-547)) (-5 *2 (-663 *5))
- (-5 *1 (-998 *5)) (-4 *5 (-354)) (-4 *5 (-1016)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-217) (-217) (-217)))
- (-5 *4 (-1 (-217) (-217) (-217) (-217)))
- (-5 *2 (-1 (-912 (-217)) (-217) (-217))) (-5 *1 (-671)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-442)) (-4 *8 (-767))
- (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9))
+ (-2 (|:| |val| (-621 *8)) (|:| |towers| (-621 (-998 *5 *6 *7 *8)))))
+ (-5 *1 (-998 *5 *6 *7 *8)) (-5 *3 (-621 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *8 (-1032 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-619 *4))
- (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))))
- (-5 *1 (-1034 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821))
- (-4 *3 (-1030 *6 *7 *8))
+ (-2 (|:| |val| (-621 *8))
+ (|:| |towers| (-621 (-1113 *5 *6 *7 *8)))))
+ (-5 *1 (-1113 *5 *6 *7 *8)) (-5 *3 (-621 *8)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-441 *4 *5 *6 *2)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-549)) (-5 *1 (-1123 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-541)) (-4 *3 (-170)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2))
+ (-4 *2 (-663 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1143))
+ (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-567 *3)) (-5 *1 (-419 *5 *3))
+ (-4 *3 (-13 (-1165) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-541) (-1009 (-549)) (-145)))
+ (-5 *2 (-567 (-400 (-923 *5)))) (-5 *1 (-555 *5))
+ (-5 *3 (-400 (-923 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-750)) (-5 *1 (-114)))))
+(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977))))
+ ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-732)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-387))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1160)))))
+(((*1 *1) (-5 *1 (-284))))
+(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1125)) (-5 *1 (-52)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-411 *4) *4)) (-4 *4 (-541)) (-5 *2 (-411 *4))
+ (-5 *1 (-412 *4))))
+ ((*1 *1 *1) (-5 *1 (-897)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-897))))
+ ((*1 *1 *1) (-5 *1 (-898)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-898))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))
+ (-5 *4 (-400 (-549))) (-5 *1 (-991 *3)) (-4 *3 (-1202 (-549)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))
+ (-5 *1 (-991 *3)) (-4 *3 (-1202 (-549)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))
+ (-5 *4 (-400 (-549))) (-5 *1 (-992 *3)) (-4 *3 (-1202 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))
+ (-5 *1 (-992 *3)) (-4 *3 (-1202 (-400 (-549))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3))
+ (-4 *3 (-1202 *2)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1125)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1231))
+ (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1125)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1231))
+ (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (-12
(-5 *2
- (-2 (|:| |done| (-619 *4))
- (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))))
- (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
+ (-2 (|:| -1570 *3) (|:| |gap| (-747)) (|:| -4013 (-758 *3))
+ (|:| -3675 (-758 *3))))
+ (-5 *1 (-758 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
(-5 *2
- (-2 (|:| |done| (-619 *4))
- (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))))
- (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-442)) (-4 *8 (-767))
- (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9))
+ (-2 (|:| -1570 *1) (|:| |gap| (-747)) (|:| -4013 *1)
+ (|:| -3675 *1)))
+ (-4 *1 (-1032 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
(-5 *2
- (-2 (|:| |done| (-619 *4))
- (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))))
- (-5 *1 (-1106 *7 *8 *9 *3 *4)) (-4 *4 (-1072 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821))
- (-4 *3 (-1030 *6 *7 *8))
+ (-2 (|:| -1570 *1) (|:| |gap| (-747)) (|:| -4013 *1)
+ (|:| -3675 *1)))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-621 (-1143))) (-14 *5 (-747))
(-5 *2
- (-2 (|:| |done| (-619 *4))
- (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))))
- (-5 *1 (-1106 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3))))
+ (-621
+ (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4)
+ (-241 *4 (-400 (-549))))))
+ (-5 *1 (-496 *4 *5))
+ (-5 *3
+ (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4)
+ (-241 *4 (-400 (-549))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-831))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-936))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-960))))
+ ((*1 *2 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1067) (-34))) (-5 *1 (-1107 *2 *3))
+ (-4 *3 (-13 (-1067) (-34))))))
+(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-2 (|:| |goodPols| (-621 *8)) (|:| |badPols| (-621 *8))))
+ (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-621 *8)))))
+(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675))))
+ ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1226 *5)) (-4 *5 (-617 *4)) (-4 *4 (-541))
+ (-5 *2 (-1226 *4)) (-5 *1 (-616 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
+ (-5 *1 (-1091 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-549)) (-5 *1 (-372)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-665 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-170)) (-4 *2 (-1202 *4)) (-5 *1 (-175 *4 *2 *3))
+ (-4 *3 (-701 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-619 *4))
- (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))))
- (-5 *1 (-1106 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-370))))
- ((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-370)))))
+ (-12 (-5 *3 (-665 (-400 (-923 *5)))) (-5 *4 (-1143))
+ (-5 *2 (-923 *5)) (-5 *1 (-285 *5)) (-4 *5 (-444))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-400 (-923 *4)))) (-5 *2 (-923 *4))
+ (-5 *1 (-285 *4)) (-4 *4 (-444))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1202 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-167 (-400 (-549)))))
+ (-5 *2 (-923 (-167 (-400 (-549))))) (-5 *1 (-741 *4))
+ (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-167 (-400 (-549))))) (-5 *4 (-1143))
+ (-5 *2 (-923 (-167 (-400 (-549))))) (-5 *1 (-741 *5))
+ (-4 *5 (-13 (-356) (-821)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *2 (-923 (-400 (-549))))
+ (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *4 (-1143))
+ (-5 *2 (-923 (-400 (-549)))) (-5 *1 (-755 *5))
+ (-4 *5 (-13 (-356) (-821))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-769)) (-4 *2 (-920 *4 *5 *6)) (-5 *1 (-441 *4 *5 *6 *2))
+ (-4 *4 (-444)) (-4 *6 (-823)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-619 (-590 *5))) (-5 *3 (-1136)) (-4 *5 (-421 *4))
- (-4 *4 (-821)) (-5 *1 (-556 *4 *5)))))
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-441 *4 *5 *6 *2)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1067)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1067))
+ (-4 *4 (-642 *3))))
+ ((*1 *1) (-12 (-5 *1 (-860 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *1) (-5 *1 (-323))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-186)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-619 *6))
- (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *3 (-619 (-254)))
- (-5 *1 (-252))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-254))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-458))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-458)))))
-(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))))
+ (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2719 *4))))
+ (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-625 *3 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 (-239 *4 *5))) (-5 *2 (-239 *4 *5))
- (-14 *4 (-619 (-1136))) (-4 *5 (-442)) (-5 *1 (-607 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-354))
- (-5 *2 (-619 (-2 (|:| C (-663 *5)) (|:| |g| (-1219 *5)))))
- (-5 *1 (-947 *5)) (-5 *3 (-663 *5)) (-5 *4 (-1219 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-829))))
- ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-934))))
- ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-958))))
- ((*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-1173))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1101 *2 *3))
- (-4 *3 (-13 (-1063) (-34))))))
-(((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745))
- (-4 *4 (-169)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1226 (-400 (-923 *4))))
+ (|:| -1949 (-621 (-1226 (-400 (-923 *4)))))))
+ (-5 *3 (-621 *7)) (-4 *4 (-13 (-300) (-145)))
+ (-4 *7 (-920 *4 *6 *5)) (-4 *5 (-13 (-823) (-594 (-1143))))
+ (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-366 *3)) (-4 *3 (-1180)) (-4 *3 (-823)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1166 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767))
- (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1009)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-172))) (-5 *1 (-1049)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-727)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-217)) (-5 *4 (-547))
- (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))
- (-5 *2 (-1004)) (-5 *1 (-721)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886))))
- ((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
-(((*1 *1)
- (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063))
- (-4 *4 (-640 *3))))
- ((*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1100))))
-(((*1 *1) (-5 *1 (-321))))
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-366 *4)) (-4 *4 (-1180))
+ (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1063)) (-5 *1 (-933 *3 *2)) (-4 *3 (-1063)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-619 (-1132 *5))) (-5 *3 (-1132 *5))
- (-4 *5 (-163 *4)) (-4 *4 (-532)) (-5 *1 (-147 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-619 *3)) (-4 *3 (-1195 *5))
- (-4 *5 (-1195 *4)) (-4 *4 (-340)) (-5 *1 (-349 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-619 (-1132 (-547)))) (-5 *3 (-1132 (-547)))
- (-5 *1 (-555))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-619 (-1132 *1))) (-5 *3 (-1132 *1))
- (-4 *1 (-878)))))
+ (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
+ (-5 *2 (-621 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067))
+ (-5 *2 (-621 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1123 *3)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-621 *3)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-621 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1018)) (-5 *2 (-1123 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-1016))
- (-5 *1 (-998 *4)))))
+ (-12 (-5 *2 (-914 *4)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-1018)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-372)) (-5 *1 (-1030)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-892)) (-4 *5 (-541)) (-5 *2 (-665 *5))
+ (-5 *1 (-927 *5 *3)) (-4 *3 (-632 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-295))))
+ ((*1 *1 *1) (-4 *1 (-295))) ((*1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *2) (-12 (-5 *2 (-1061 (-816 (-219)))) (-5 *1 (-298)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1195 *3)) (-5 *1 (-390 *3 *2))
- (-4 *3 (-13 (-354) (-145))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-638 *4 *5)))
- (-5 *1 (-603 *4 *5 *6)) (-4 *5 (-13 (-169) (-692 (-398 (-547)))))
- (-14 *6 (-890)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-541 *2)) (-4 *2 (-532)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-442)) (-4 *3 (-821)) (-4 *3 (-1007 (-547)))
- (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3))
- (-4 *2
- (-13 (-354) (-293)
- (-10 -8 (-15 -1386 ((-1087 *3 (-590 $)) $))
- (-15 -1396 ((-1087 *3 (-590 $)) $))
- (-15 -3838 ($ (-1087 *3 (-590 $))))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-293))))
- ((*1 *1 *1) (-4 *1 (-293))) ((*1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-547)) (-5 *1 (-233))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-1119))) (-5 *2 (-547)) (-5 *1 (-233)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-796)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-619
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) (-4 *5 (-821))
- (-5 *1 (-439 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))))
+ (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018))
+ (-5 *2 (-621 (-621 (-621 (-747))))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1125)) (-5 *4 (-1087)) (-5 *2 (-112)) (-5 *1 (-797)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-821)) (-4 *5 (-878)) (-4 *6 (-767))
- (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-409 (-1132 *8)))
- (-5 *1 (-875 *5 *6 *7 *8)) (-5 *4 (-1132 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-878)) (-4 *5 (-1195 *4)) (-5 *2 (-409 (-1132 *5)))
- (-5 *1 (-876 *4 *5)) (-5 *3 (-1132 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 *1)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1219 *3)) (-4 *3 (-1016)) (-5 *1 (-663 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-619 *4)) (-4 *4 (-1016)) (-4 *1 (-1085 *3 *4 *5 *6))
- (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1119)) (-5 *4 (-166 (-217))) (-5 *5 (-547))
- (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-663 (-547))) (-5 *3 (-619 (-547))) (-5 *1 (-1073)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-1186 (-547))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1173)) (-4 *2 (-1016))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832))))
- ((*1 *1 *1) (-5 *1 (-832)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-912 (-217))) (-5 *2 (-217)) (-5 *1 (-1169))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-1016)))))
-(((*1 *1 *1 *1) (-4 *1 (-936))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1234 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169))
- (-5 *1 (-638 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-638 *3 *4)) (-5 *1 (-1239 *3 *4))
- (-4 *3 (-821)) (-4 *4 (-169)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1136)) (-5 *2 (-619 (-934))) (-5 *1 (-282)))))
+ (-12 (-5 *3 (-629 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1202 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4))))
+ (-5 *1 (-786 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-629 (-400 *6))) (-4 *6 (-1202 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-5 *2 (-2 (|:| -1949 (-621 (-400 *6))) (|:| -3521 (-665 *5))))
+ (-5 *1 (-786 *5 *6)) (-5 *4 (-621 (-400 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-630 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1202 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4))))
+ (-5 *1 (-786 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-630 *6 (-400 *6))) (-4 *6 (-1202 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-5 *2 (-2 (|:| -1949 (-621 (-400 *6))) (|:| -3521 (-665 *5))))
+ (-5 *1 (-786 *5 *6)) (-5 *4 (-621 (-400 *6))))))
(((*1 *2 *3)
(-12
(-5 *3
- (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))
- (-5 *2 (-619 (-398 (-547)))) (-5 *1 (-989 *4))
- (-4 *4 (-1195 (-547))))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))
- ((*1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3))))
- ((*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-217))
- (-5 *2
- (-2 (|:| |brans| (-619 (-619 (-912 *4))))
- (|:| |xValues| (-1058 *4)) (|:| |yValues| (-1058 *4))))
- (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 *4)))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-539)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-946 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-566 *2)) (-4 *2 (-532)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-539)) (-4 *3 (-169))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1917 (-619 *1))))
- (-4 *1 (-358 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-443 *3 *4 *5 *6))
- (|:| -1917 (-619 (-443 *3 *4 *5 *6)))))
- (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
+ (-621
+ (-2 (|:| -3123 (-747))
+ (|:| |eqns|
+ (-621
+ (-2 (|:| |det| *7) (|:| |rows| (-621 (-549)))
+ (|:| |cols| (-621 (-549))))))
+ (|:| |fgb| (-621 *7)))))
+ (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-747))
+ (-5 *1 (-895 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1030)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-621 (-747))) (-5 *3 (-169)) (-5 *1 (-1131 *4 *5))
+ (-14 *4 (-892)) (-4 *5 (-1018)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-665 (-219))) (-5 *6 (-665 (-549))) (-5 *3 (-549))
+ (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1180)) (-5 *1 (-1099 *4 *2))
+ (-4 *2 (-13 (-584 (-549) *4) (-10 -7 (-6 -4337) (-6 -4338))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-823)) (-4 *3 (-1180)) (-5 *1 (-1099 *3 *2))
+ (-4 *2 (-13 (-584 (-549) *3) (-10 -7 (-6 -4337) (-6 -4338)))))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-1193 (-549))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-861 *6)))
- (-5 *5 (-1 (-858 *6 *8) *8 (-861 *6) (-858 *6 *8))) (-4 *6 (-1063))
- (-4 *8 (-13 (-1016) (-592 (-861 *6)) (-1007 *7)))
- (-5 *2 (-858 *6 *8)) (-4 *7 (-13 (-1016) (-821)))
- (-5 *1 (-910 *6 *7 *8)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1132 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-466 *4 *5 *6 *7)) (|:| -2312 (-619 *7))))
- (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-321))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-321)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-442)))))
-(((*1 *2 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))))
+ (-12 (-5 *4 (-1143))
+ (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549))))
+ (-5 *2 (-2 (|:| -1759 *3) (|:| |nconst| *3))) (-5 *1 (-552 *5 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *5))))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 *1))
- (-4 *1 (-373 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-619 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-701))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1))
- (-4 *1 (-918 *3 *4 *5)))))
+ (-12 (-5 *2 (-621 (-1166 *3))) (-5 *1 (-1166 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1125)) (-5 *4 (-167 (-219))) (-5 *5 (-549))
+ (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
+ ((*1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-4 *1 (-1065 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1018))
+ (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1165) (-277)))
+ (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1202 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
+ (-12 (-5 *2 (-621 (-2 (|:| |val| (-621 *6)) (|:| -1981 *7))))
+ (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-959 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-621 (-2 (|:| |val| (-621 *6)) (|:| -1981 *7))))
+ (-4 *6 (-1032 *3 *4 *5)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-1074 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1143))
+ (-5 *5 (-1061 (-816 (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-186))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-309 (-219))) (-5 *4 (-1143))
+ (-5 *5 (-1061 (-816 (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-293)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1195 *3)) (-4 *3 (-1016)) (-5 *2 (-1132 *3)))))
+ (-12 (-5 *2 (-172 (-400 (-549)))) (-5 *1 (-117 *3)) (-14 *3 (-549))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1123 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-172 (-549))) (-5 *1 (-742 *3)) (-4 *3 (-397))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-172 (-400 (-549)))) (-5 *1 (-842 *3)) (-14 *3 (-549))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-549)) (-5 *2 (-172 (-400 (-549))))
+ (-5 *1 (-843 *3 *4)) (-4 *4 (-840 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-892)) (-5 *4 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))))
+(((*1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1) (-5 *1 (-610))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-665 *5))) (-5 *4 (-549)) (-4 *5 (-356))
+ (-4 *5 (-1018)) (-5 *2 (-112)) (-5 *1 (-1000 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-665 *4))) (-4 *4 (-356)) (-4 *4 (-1018))
+ (-5 *2 (-112)) (-5 *1 (-1000 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-541))
+ (-4 *8 (-920 *7 *5 *6))
+ (-5 *2 (-2 (|:| -3731 (-747)) (|:| -1570 *3) (|:| |radicand| *3)))
+ (-5 *1 (-924 *5 *6 *7 *8 *3)) (-5 *4 (-747))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -1394 (*8 $)) (-15 -1403 (*8 $)) (-15 -3846 ($ *8))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
+ (-5 *2 (-621 (-923 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-621 (-923 *4))) (-5 *1 (-409 *3 *4))
+ (-4 *3 (-410 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-621 (-923 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-621 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1226 (-445 *4 *5 *6 *7))) (-5 *2 (-621 (-923 *4)))
+ (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-541)) (-4 *4 (-170))
+ (-14 *5 (-892)) (-14 *6 (-621 (-1143))) (-14 *7 (-1226 (-665 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-323))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-323)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-592 *4)) (-4 *4 (-823)) (-4 *2 (-823))
+ (-5 *1 (-591 *2 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1180)) (-5 *2 (-747)) (-5 *1 (-180 *4 *3))
+ (-4 *3 (-650 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1231)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1067)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 *6)) (-5 *5 (-1 (-409 (-1132 *6)) (-1132 *6)))
- (-4 *6 (-354))
- (-5 *2
- (-619
- (-2 (|:| |outval| *7) (|:| |outmult| (-547))
- (|:| |outvect| (-619 (-663 *7))))))
- (-5 *1 (-520 *6 *7 *4)) (-4 *7 (-354)) (-4 *4 (-13 (-354) (-819))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-619 (-756 *3))) (-5 *1 (-756 *3)) (-4 *3 (-539))
- (-4 *3 (-1016)))))
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3848 *6) (|:| |sol?| (-112))) (-549)
+ *6))
+ (-4 *6 (-356)) (-4 *7 (-1202 *6))
+ (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6)))
+ (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *3 (-621 (-549)))
+ (-5 *1 (-854)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-733)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-541)) (-4 *2 (-170)))))
(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-428)) (-5 *3 (-1136)) (-5 *1 (-1139))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-428)) (-5 *3 (-1136)) (-5 *1 (-1139))))
+ (-12 (-5 *2 (-430)) (-5 *3 (-1143)) (-5 *1 (-1146))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-430)) (-5 *3 (-1143)) (-5 *1 (-1146))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-428)) (-5 *3 (-619 (-1136))) (-5 *4 (-1136))
- (-5 *1 (-1139))))
+ (-12 (-5 *2 (-430)) (-5 *3 (-621 (-1143))) (-5 *4 (-1143))
+ (-5 *1 (-1146))))
((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-428)) (-5 *3 (-1136)) (-5 *1 (-1139))))
+ (-12 (-5 *2 (-430)) (-5 *3 (-1143)) (-5 *1 (-1146))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-428)) (-5 *3 (-1136)) (-5 *1 (-1140))))
+ (-12 (-5 *2 (-430)) (-5 *3 (-1143)) (-5 *1 (-1147))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-428)) (-5 *3 (-619 (-1136))) (-5 *1 (-1140)))))
+ (-12 (-5 *2 (-430)) (-5 *3 (-621 (-1143))) (-5 *1 (-1147)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-168))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016))
- (-4 *3 (-1063)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-398 *4)) (-4 *4 (-1195 *3)) (-4 *3 (-13 (-354) (-145)))
- (-5 *1 (-390 *3 *4)))))
-(((*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-217))) (-5 *2 (-1219 (-673))) (-5 *1 (-296)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))
- (-5 *2 (-398 (-547))) (-5 *1 (-989 *4)) (-4 *4 (-1195 (-547))))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-722)))))
+ (-12 (-4 *3 (-1018)) (-5 *2 (-1226 *3)) (-5 *1 (-689 *3 *4))
+ (-4 *4 (-1202 *3)))))
+(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1165))))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
+(((*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1143))
+ (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *5))))
+ (-5 *1 (-1096 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-13 (-300) (-823) (-145)))
+ (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1096 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-287 (-400 (-923 *5)))) (-5 *4 (-1143))
+ (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *5))))
+ (-5 *1 (-1096 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-287 (-400 (-923 *4))))
+ (-4 *4 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-287 (-309 *4))))
+ (-5 *1 (-1096 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1143)))
+ (-4 *5 (-13 (-300) (-823) (-145)))
+ (-5 *2 (-621 (-621 (-287 (-309 *5))))) (-5 *1 (-1096 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-400 (-923 *4))))
+ (-4 *4 (-13 (-300) (-823) (-145)))
+ (-5 *2 (-621 (-621 (-287 (-309 *4))))) (-5 *1 (-1096 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-287 (-400 (-923 *5))))) (-5 *4 (-621 (-1143)))
+ (-4 *5 (-13 (-300) (-823) (-145)))
+ (-5 *2 (-621 (-621 (-287 (-309 *5))))) (-5 *1 (-1096 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-287 (-400 (-923 *4)))))
+ (-4 *4 (-13 (-300) (-823) (-145)))
+ (-5 *2 (-621 (-621 (-287 (-309 *4))))) (-5 *1 (-1096 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-516)))))
+(((*1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| |k| (-646 *3)) (|:| |c| *4))))
- (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821))
- (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-169)) (-4 *2 (-539))))
- ((*1 *1 *1) (|partial| -4 *1 (-697))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-471 *4 *5))
- (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1136))))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745))
- (-4 *4 (-169))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2))
- (-4 *2 (-421 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1056 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-821) (-539)))
- (-5 *1 (-155 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1136))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-169)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-539)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-354) (-293)
- (-10 -8 (-15 -1386 ((-1087 *3 (-590 $)) $))
- (-15 -1396 ((-1087 *3 (-590 $)) $))
- (-15 -3838 ($ (-1087 *3 (-590 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-539)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-354) (-293)
- (-10 -8 (-15 -1386 ((-1087 *3 (-590 $)) $))
- (-15 -1396 ((-1087 *3 (-590 $)) $))
- (-15 -3838 ($ (-1087 *3 (-590 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 *2))
- (-4 *2
- (-13 (-354) (-293)
- (-10 -8 (-15 -1386 ((-1087 *4 (-590 $)) $))
- (-15 -1396 ((-1087 *4 (-590 $)) $))
- (-15 -3838 ($ (-1087 *4 (-590 $)))))))
- (-4 *4 (-539)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 (-590 *2)))
- (-4 *2
- (-13 (-354) (-293)
- (-10 -8 (-15 -1386 ((-1087 *4 (-590 $)) $))
- (-15 -1396 ((-1087 *4 (-590 $)) $))
- (-15 -3838 ($ (-1087 *4 (-590 $)))))))
- (-4 *4 (-539)) (-5 *1 (-41 *4 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-307 (-217))) (-5 *1 (-258)))))
+ (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1139 *4)) (-4 *4 (-342)) (-5 *2 (-112))
+ (-5 *1 (-350 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1226 *4)) (-4 *4 (-342)) (-5 *2 (-112))
+ (-5 *1 (-519 *4)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-747))
+ (-4 *3 (-13 (-703) (-361) (-10 -7 (-15 ** (*3 *3 (-549))))))
+ (-5 *1 (-240 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3))
+ (-4 *3 (-938)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1131 3 *3)) (-4 *3 (-1018)) (-4 *1 (-1101 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1018)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-112))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
(-5 *2
- (-2 (|:| |contp| (-547))
- (|:| -2534 (-619 (-2 (|:| |irr| *3) (|:| -3038 (-547)))))))
- (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-547))
- (|:| -2534 (-619 (-2 (|:| |irr| *3) (|:| -3038 (-547)))))))
- (-5 *1 (-1184 *3)) (-4 *3 (-1195 (-547))))))
+ (-3 (|:| |%expansion| (-306 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125))))))
+ (-5 *1 (-413 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1165) (-423 *5)))
+ (-14 *6 (-1143)) (-14 *7 *3))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *1 *1 *1) (-5 *1 (-832))))
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1202 (-549))) (-5 *1 (-478 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1981 *4))))
+ (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-863 *4)) (-4 *4 (-1067)) (-5 *1 (-860 *4 *3))
+ (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1219 (-663 *4))) (-4 *4 (-169))
- (-5 *2 (-1219 (-663 (-921 *4)))) (-5 *1 (-181 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-552 *3)) (-4 *3 (-1007 (-547)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-823) (-541))))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-733)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-409 (-1132 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1132 *1))
- (-4 *4 (-442)) (-4 *4 (-539)) (-4 *4 (-821))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-878)) (-5 *2 (-409 (-1132 *1))) (-5 *3 (-1132 *1)))))
+ (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-410 *4)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-731)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *2 (-619 (-217)))
- (-5 *1 (-458)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-217)))
- (-5 *2 (-1004)) (-5 *1 (-732)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3))
- (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1123 (-923 *4)) (-1123 (-923 *4))))
+ (-5 *1 (-1234 *4)) (-4 *4 (-356)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1139 *9)) (-5 *4 (-621 *7)) (-5 *5 (-621 (-621 *8)))
+ (-4 *7 (-823)) (-4 *8 (-300)) (-4 *9 (-920 *8 *6 *7)) (-4 *6 (-769))
+ (-5 *2
+ (-2 (|:| |upol| (-1139 *8)) (|:| |Lval| (-621 *8))
+ (|:| |Lfact|
+ (-621 (-2 (|:| -2121 (-1139 *8)) (|:| -3731 (-549)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-719 *6 *7 *8 *9)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1143))
+ (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-5 *1 (-1146)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1219 (-619 (-2 (|:| -4153 *4) (|:| -3487 (-1082))))))
- (-4 *4 (-340)) (-5 *2 (-745)) (-5 *1 (-337 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-342 *3 *4)) (-14 *3 (-890))
- (-14 *4 (-890))))
- ((*1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-343 *3 *4)) (-4 *3 (-340))
- (-14 *4
- (-3 (-1132 *3)
- (-1219 (-619 (-2 (|:| -4153 *3) (|:| -3487 (-1082)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-344 *3 *4)) (-4 *3 (-340))
- (-14 *4 (-890)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-126 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-539))
- (-5 *2 (-2 (|:| -1877 (-663 *5)) (|:| |vec| (-1219 (-619 (-890))))))
- (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5)))))
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1231))
+ (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-892)) (-5 *1 (-1068 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1125)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-549)) (-4 *3 (-170)) (-4 *5 (-366 *3))
+ (-4 *6 (-366 *3)) (-5 *1 (-664 *3 *5 *6 *2))
+ (-4 *2 (-663 *3 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1150)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1119)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *2)) (-4 *2 (-169))))
- ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-407 *3 *2)) (-4 *3 (-408 *2))))
- ((*1 *2) (-12 (-4 *1 (-408 *2)) (-4 *2 (-169)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-442)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821))
- (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3))
- (-4 *3 (-1030 *4 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-129)) (-5 *2 (-1082)))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895)))))
-(((*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218))))
- ((*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))))
-(((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-361 *2 *4)) (-4 *4 (-1195 *2))
- (-4 *2 (-169))))
- ((*1 *2)
- (-12 (-4 *4 (-1195 *2)) (-4 *2 (-169)) (-5 *1 (-399 *3 *2 *4))
- (-4 *3 (-400 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-400 *2 *3)) (-4 *3 (-1195 *2)) (-4 *2 (-169))))
+ (-12 (-4 *3 (-1202 (-400 (-549)))) (-5 *1 (-884 *3 *2))
+ (-4 *2 (-1202 (-400 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1231))
+ (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-1195 *2)) (-5 *2 (-547)) (-5 *1 (-742 *3 *4))
- (-4 *4 (-400 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821)) (-4 *3 (-169))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-539)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1195 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-169)))))
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1231))
+ (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1139 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-823) (-541)))
+ (-5 *1 (-32 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-173))) (-5 *1 (-1052)))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-429)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1202 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1195 (-547)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1195 *9)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-298))
- (-4 *10 (-918 *9 *7 *8))
+ (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993)))
+ (-14 *5 (-621 (-1143)))
(-5 *2
- (-2 (|:| |deter| (-619 (-1132 *10)))
- (|:| |dterm|
- (-619 (-619 (-2 (|:| -1720 (-745)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-619 *6)) (|:| |nlead| (-619 *10))))
- (-5 *1 (-752 *6 *7 *8 *9 *10)) (-5 *3 (-1132 *10)) (-5 *4 (-619 *6))
- (-5 *5 (-619 *10)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-307 (-217)))) (-5 *4 (-745))
- (-5 *2 (-663 (-217))) (-5 *1 (-258)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1177)) (-4 *5 (-1195 (-398 *2)))
- (-4 *2 (-1195 *4)) (-5 *1 (-332 *3 *4 *2 *5))
- (-4 *3 (-333 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-333 *3 *2 *4)) (-4 *3 (-1177))
- (-4 *4 (-1195 (-398 *2))) (-4 *2 (-1195 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-731)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3))
- (-4 *3 (-13 (-354) (-1158) (-971))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-1179 *4)) (-4 *4 (-1016)) (-4 *4 (-539))
- (-5 *2 (-398 (-921 *4)))))
+ (-621 (-2 (|:| -1298 (-1139 *4)) (|:| -4263 (-621 (-923 *4))))))
+ (-5 *1 (-1252 *4 *5 *6)) (-14 *6 (-621 (-1143)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2
+ (-621 (-2 (|:| -1298 (-1139 *5)) (|:| -4263 (-621 (-923 *5))))))
+ (-5 *1 (-1252 *5 *6 *7)) (-5 *3 (-621 (-923 *5)))
+ (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2
+ (-621 (-2 (|:| -1298 (-1139 *5)) (|:| -4263 (-621 (-923 *5))))))
+ (-5 *1 (-1252 *5 *6 *7)) (-5 *3 (-621 (-923 *5)))
+ (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2
+ (-621 (-2 (|:| -1298 (-1139 *5)) (|:| -4263 (-621 (-923 *5))))))
+ (-5 *1 (-1252 *5 *6 *7)) (-5 *3 (-621 (-923 *5)))
+ (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2
+ (-621 (-2 (|:| -1298 (-1139 *4)) (|:| -4263 (-621 (-923 *4))))))
+ (-5 *1 (-1252 *4 *5 *6)) (-5 *3 (-621 (-923 *4)))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-621 (-1143))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1180))
+ (-4 *5 (-366 *4)) (-4 *2 (-366 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-1179 *4)) (-4 *4 (-1016)) (-4 *4 (-539))
- (-5 *2 (-398 (-921 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))))
+ (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *6 *2 *7)) (-4 *6 (-1018))
+ (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-942)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-516)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547)))))
- (-4 *4 (-1195 (-398 *2))) (-5 *2 (-547)) (-5 *1 (-882 *4 *5))
- (-4 *5 (-1195 (-398 *4))))))
+ (-12 (-5 *3 (-1123 (-1123 *4))) (-5 *2 (-1123 *4)) (-5 *1 (-1127 *4))
+ (-4 *4 (-38 (-400 (-549)))) (-4 *4 (-1018)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-549)) (-5 *2 (-621 (-621 (-219)))) (-5 *1 (-1176)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *2 (-1006)) (-5 *1 (-731)))))
+(((*1 *1) (-5 *1 (-430))))
(((*1 *2 *1)
- (-12 (-4 *1 (-244 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-821))
- (-4 *5 (-767)) (-4 *2 (-257 *4)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
+ (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-823))
+ (-4 *5 (-769)) (-4 *2 (-259 *4)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1173)) (-4 *3 (-1016))
- (-5 *2 (-663 *3)))))
+ (-12 (-4 *1 (-1224 *3)) (-4 *3 (-1180)) (-4 *3 (-1018))
+ (-5 *2 (-665 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-798)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-729)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 (-619 *4))))
- (-5 *1 (-1144 *4)) (-5 *3 (-619 (-619 *4))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-619 *3)) (|:| |image| (-619 *3))))
- (-5 *1 (-874 *3)) (-4 *3 (-1063)))))
+ (-12 (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-400 (-549)))
+ (-5 *1 (-426 *4 *3)) (-4 *3 (-423 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-423 *5))
+ (-4 *5 (-13 (-823) (-541) (-1009 (-549))))
+ (-5 *2 (-1139 (-400 (-549)))) (-5 *1 (-426 *5 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-592 (-861 *3))) (-4 *3 (-855 *3))
- (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-592 (-861 *3))) (-4 *2 (-855 *3))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-1132 (-921 *4))) (-5 *1 (-407 *3 *4))
- (-4 *3 (-408 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-4 *3 (-354))
- (-5 *2 (-1132 (-921 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1132 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-927 *3)) (-5 *1 (-1124 *4 *3))
- (-4 *3 (-1195 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-370))) (-5 *1 (-1009)) (-5 *3 (-370)))))
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549)))))
+ (-5 *2 (-400 (-549))) (-5 *1 (-991 *4)) (-4 *4 (-1202 (-549))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-619 (-471 *3 *4))) (-14 *3 (-619 (-1136)))
- (-4 *4 (-442)) (-5 *1 (-607 *3 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-298))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-377 *3)) (|:| |rm| (-377 *3))))
- (-5 *1 (-377 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2235 (-745)) (|:| -2916 (-745))))
- (-5 *1 (-745))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-1173)) (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-745))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1016))
- (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1158) (-275)))
- (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1195 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-590 *3)) (-4 *3 (-821))))
- ((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832))))
- ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832)))))
-(((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))))
-(((*1 *2)
- (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4))
- (-4 *4 (-1195 *3)))))
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-799)) (-5 *1 (-798)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1011)) (-5 *3 (-372)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1143)) (-5 *6 (-112))
+ (-4 *7 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-4 *3 (-13 (-1165) (-930) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-816 *3)) (|:| |f2| (-621 (-816 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-213 *7 *3)) (-5 *5 (-816 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1119)) (-5 *1 (-760)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-547) (-547))) (-5 *1 (-352 *3)) (-4 *3 (-1063))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-745) (-745))) (-5 *1 (-377 *3)) (-4 *3 (-1063))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)))))
+ (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-823))
+ (-4 *4 (-769)) (-5 *1 (-958 *2 *3 *4 *5)) (-4 *5 (-920 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-309 (-549))) (-5 *1 (-1086))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-166 (-398 (-547))))) (-5 *2 (-619 (-166 *4)))
- (-5 *1 (-739 *4)) (-4 *4 (-13 (-354) (-819))))))
+ (-12 (-5 *3 (-621 (-923 *6))) (-5 *4 (-621 (-1143)))
+ (-4 *6 (-13 (-541) (-1009 *5))) (-4 *5 (-541))
+ (-5 *2 (-621 (-621 (-287 (-400 (-923 *6)))))) (-5 *1 (-1010 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1180)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-747))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1018))
+ (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1165) (-277)))
+ (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1202 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-592 *3)) (-4 *3 (-823))))
+ ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834))))
+ ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1107 *3 *2)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *2 (-13 (-1067) (-34))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
+ (-5 *2
+ (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-549)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1353 *3) (|:| |coef2| (-758 *3))))
+ (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1180)) (-4 *2 (-1067))
+ (-4 *2 (-823)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-199))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-621 (-372))) (-5 *2 (-372)) (-5 *1 (-199)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1184)) (-4 *5 (-1202 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5))
+ (|:| |c2| (-400 *5)) (|:| |deg| (-747))))
+ (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1202 (-400 *5))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-890)) (-5 *1 (-999 *2))
- (-4 *2 (-13 (-1063) (-10 -8 (-15 -2479 ($ $ $))))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1974 *4))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-892)) (-5 *1 (-1001 *2))
+ (-4 *2 (-13 (-1067) (-10 -8 (-15 -2486 ($ $ $))))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1143)) (-5 *5 (-621 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *6)))
+ (-4 *6 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-542 *6 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
+ (-5 *2
+ (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-549)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-1125 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-1221))))
- ((*1 *2 *1) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-1221)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5))
- (-4 *3 (-539)))))
+ (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2719 (-549)))))
+ (-5 *1 (-354 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2719 (-747)))))
+ (-5 *1 (-379 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-2 (|:| -2121 *3) (|:| -3731 (-549)))))
+ (-5 *1 (-411 *3)) (-4 *3 (-541))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2719 (-747)))))
+ (-5 *1 (-795 *3)) (-4 *3 (-823)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-372)) (-5 *1 (-1030)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3848 *7) (|:| |sol?| (-112)))
+ (-549) *7))
+ (-5 *6 (-621 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1202 *7))
+ (-5 *3 (-400 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-559 *7 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-547))) (-5 *1 (-1014)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
+ (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372))
+ (|:| |expense| (-372)) (|:| |accuracy| (-372))
+ (|:| |intermediateResults| (-372))))
+ (-5 *1 (-779)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-665 *11)) (-5 *4 (-621 (-400 (-923 *8))))
+ (-5 *5 (-747)) (-5 *6 (-1125)) (-4 *8 (-13 (-300) (-145)))
+ (-4 *11 (-920 *8 *10 *9)) (-4 *9 (-13 (-823) (-594 (-1143))))
+ (-4 *10 (-769))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-621
+ (-2 (|:| |eqzro| (-621 *11)) (|:| |neqzro| (-621 *11))
+ (|:| |wcond| (-621 (-923 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1226 (-400 (-923 *8))))
+ (|:| -1949 (-621 (-1226 (-400 (-923 *8))))))))))
+ (|:| |rgsz| (-549))))
+ (-5 *1 (-895 *8 *9 *10 *11)) (-5 *7 (-549)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-5 *2 (-1145 (-619 *4))) (-5 *1 (-1144 *4))
- (-5 *3 (-619 *4)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217))
- (-5 *2 (-1004)) (-5 *1 (-731)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
+ (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-5 *2 (-1231)) (-5 *1 (-1146))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1143))
+ (-5 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-5 *2 (-1231))
+ (-5 *1 (-1146))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1143))
+ (-5 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void"))) (-5 *2 (-1231))
+ (-5 *1 (-1146)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 *3)) (-4 *3 (-1072 *5 *6 *7 *8))
- (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-570 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-843)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-619 (-1132 *7))) (-5 *3 (-1132 *7))
- (-4 *7 (-918 *5 *6 *4)) (-4 *5 (-878)) (-4 *6 (-767))
- (-4 *4 (-821)) (-5 *1 (-875 *5 *6 *4 *7)))))
+ (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 (-1123 *7))) (-4 *6 (-823))
+ (-4 *7 (-920 *5 (-521 *6) *6)) (-4 *5 (-1018))
+ (-5 *2 (-1 (-1123 *7) *7)) (-5 *1 (-1093 *5 *6 *7)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1143))
+ (-4 *5 (-13 (-541) (-1009 (-549)) (-145)))
+ (-5 *2
+ (-2 (|:| -3440 (-400 (-923 *5))) (|:| |coeff| (-400 (-923 *5)))))
+ (-5 *1 (-555 *5)) (-5 *3 (-400 (-923 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7))))
+ (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *6))
- (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-217)))) (-5 *1 (-895)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1136))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-619 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2510 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1158) (-27) (-421 *8)))
- (-4 *8 (-13 (-442) (-821) (-145) (-1007 *3) (-615 *3)))
- (-5 *3 (-547)) (-5 *2 (-619 *4)) (-5 *1 (-983 *8 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-713)))))
-(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1) (-4 *1 (-936))) ((*1 *1 *1) (-5 *1 (-1082))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-96))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-96)))))
-(((*1 *2 *3) (-12 (-5 *3 (-398 (-547))) (-5 *2 (-217)) (-5 *1 (-296)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-539)) (-4 *4 (-961 *3)) (-5 *1 (-140 *3 *4 *2))
- (-4 *2 (-364 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) (-4 *2 (-364 *4))
- (-5 *1 (-492 *4 *5 *2 *3)) (-4 *3 (-364 *5))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-920 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546))))
((*1 *2 *3)
- (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-539))
- (-5 *2 (-663 *4)) (-5 *1 (-667 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-539)) (-4 *4 (-961 *3)) (-5 *1 (-1188 *3 *4 *2))
- (-4 *2 (-1195 *4)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-821)) (-5 *3 (-619 *6)) (-5 *5 (-619 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-619 *5)) (|:| |f3| *5)
- (|:| |f4| (-619 *5))))
- (-5 *1 (-1144 *6)) (-5 *4 (-619 *5)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217)))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-83 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-217))
- (-5 *2 (-1004)) (-5 *1 (-724)))))
-(((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4329)) (-4 *1 (-479 *3)) (-4 *3 (-1173))
- (-4 *3 (-1063)) (-5 *2 (-745))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4329)) (-4 *1 (-479 *4))
- (-4 *4 (-1173)) (-5 *2 (-745)))))
+ (-12 (-5 *2 (-1139 (-400 (-549)))) (-5 *1 (-913)) (-5 *3 (-549)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1195 *2)) (-4 *2 (-1195 *4)) (-5 *1 (-954 *4 *2 *3 *5))
- (-4 *4 (-340)) (-4 *5 (-699 *2 *3)))))
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-549))) (-5 *5 (-1 (-1123 *4))) (-4 *4 (-356))
+ (-4 *4 (-1018)) (-5 *2 (-1123 *4)) (-5 *1 (-1127 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-715)))))
+(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1) (-4 *1 (-938))) ((*1 *1 *1) (-5 *1 (-1087))))
+(((*1 *1 *1) (-12 (-5 *1 (-1166 *2)) (-4 *2 (-1067)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-418 *3 *2)) (-4 *3 (-13 (-169) (-38 (-398 (-547)))))
- (-4 *2 (-13 (-821) (-21))))))
+ (-12 (-5 *2 (-997 (-816 (-549))))
+ (-5 *3 (-1123 (-2 (|:| |k| (-549)) (|:| |c| *4)))) (-4 *4 (-1018))
+ (-5 *1 (-576 *4)))))
+(((*1 *1 *1) (-4 *1 (-141)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-354)) (-5 *1 (-276 *3 *2)) (-4 *2 (-1210 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1136)))))
-(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-370)) (-5 *1 (-1009)))))
-(((*1 *2 *2) (-12 (-5 *1 (-566 *2)) (-4 *2 (-532)))))
-(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1173)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-267 *4 *3))
- (-4 *3 (-13 (-421 *4) (-971))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1243 *3 *4)) (-4 *1 (-365 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-169))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-793 *3)) (-4 *1 (-1236 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-1016))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))))
+ (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *3 (-621 (-845)))
+ (-5 *1 (-460)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-112)) (-5 *1 (-805)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1226 *5)) (-4 *5 (-617 *4)) (-4 *4 (-541))
+ (-5 *2 (-112)) (-5 *1 (-616 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-481 *3)) (-4 *3 (-1180))
+ (-4 *3 (-1067)) (-5 *2 (-747))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4337)) (-4 *1 (-481 *4))
+ (-4 *4 (-1180)) (-5 *2 (-747)))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-96)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1202 *2)) (-4 *2 (-1202 *4)) (-5 *1 (-956 *4 *2 *3 *5))
+ (-4 *4 (-342)) (-4 *5 (-701 *2 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))
+ (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-821) (-356))) (-5 *2 (-112)) (-5 *1 (-1028 *4 *3))
+ (-4 *3 (-1202 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
+(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-574 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1087)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *3 *2))
- (-4 *2 (-13 (-27) (-1158) (-421 (-166 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-539) (-821) (-1007 (-547))))
- (-5 *1 (-180 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 (-166 *4))))))
+ (-12 (-5 *2 (-621 (-923 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4))
+ (-14 *4 (-621 (-1143)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3)))))
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-442 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1102 *2 *3)) (-4 *2 (-13 (-1063) (-34)))
- (-4 *3 (-13 (-1063) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-572 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1082)))))
-(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-799)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-210))))
+ (-12 (-5 *2 (-621 *7)) (-5 *3 (-1125)) (-4 *7 (-920 *4 *5 *6))
+ (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *1 (-442 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-621 *7)) (-5 *3 (-1125)) (-4 *7 (-920 *4 *5 *6))
+ (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *1 (-442 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-621 (-756 *3 (-836 *4)))) (-4 *3 (-444))
+ (-14 *4 (-621 (-1143))) (-5 *1 (-606 *3 *4)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1231) (-1226 *5) (-1226 *5) (-372)))
+ (-5 *3 (-1226 (-372))) (-5 *5 (-372)) (-5 *2 (-1231))
+ (-5 *1 (-764)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-323)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1082))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-1141))) (-5 *3 (-1141)) (-5 *1 (-1080)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-217))) (-5 *1 (-296))))
+ (-12 (-5 *2 (-621 (-1148))) (-5 *3 (-1148)) (-5 *1 (-1085)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1143)) (-5 *4 (-923 (-549))) (-5 *2 (-323))
+ (-5 *1 (-325))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1143)) (-5 *4 (-1059 (-923 (-549)))) (-5 *2 (-323))
+ (-5 *1 (-325))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018))
+ (-4 *3 (-1067)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-298))))
((*1 *2 *1)
(|partial| -12
- (-5 *2 (-2 (|:| |num| (-861 *3)) (|:| |den| (-861 *3))))
- (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
+ (-5 *2 (-2 (|:| |num| (-863 *3)) (|:| |den| (-863 *3))))
+ (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1165) (-973))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-5 *2 (-112)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1136))) (-4 *4 (-442))
- (-5 *1 (-887 *4)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1219 *6)) (-5 *4 (-1219 (-547))) (-5 *5 (-547))
- (-4 *6 (-1063)) (-5 *2 (-1 *6)) (-5 *1 (-986 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-133)))))
-(((*1 *2)
- (-12 (-14 *4 (-745)) (-4 *5 (-1173)) (-5 *2 (-133))
- (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-354)) (-5 *2 (-133)) (-5 *1 (-319 *3 *4))
- (-4 *3 (-320 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-169))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-547))
- (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767))
- (-5 *2 (-547)) (-5 *1 (-493 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1016)) (-5 *2 (-890))))
- ((*1 *2) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-354)) (-5 *2 (-133)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-442)) (-5 *2 (-112))
- (-5 *1 (-351 *4 *5)) (-14 *5 (-619 (-1136)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-754 *4 (-834 *5)))) (-4 *4 (-442))
- (-14 *5 (-619 (-1136))) (-5 *2 (-112)) (-5 *1 (-604 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-359))
- (-4 *3 (-1063)))))
+ (-12 (-4 *1 (-920 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-444))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6))
+ (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *1))))
+ (-4 *1 (-1038 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1184)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-541)) (-5 *1 (-1205 *3 *2))
+ (-4 *2 (-13 (-1202 *3) (-541) (-10 -8 (-15 -3727 ($ $ $))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1136)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *4 *5 *6))
- (-4 *4 (-592 (-523))) (-4 *5 (-1173)) (-4 *6 (-1173)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-354) (-145)))
- (-5 *2 (-619 (-2 (|:| -3322 (-745)) (|:| -2591 *4) (|:| |num| *4))))
- (-5 *1 (-390 *3 *4)) (-4 *4 (-1195 *3)))))
+ (-12 (-5 *3 (-400 *5)) (-4 *5 (-1202 *4)) (-4 *4 (-541))
+ (-4 *4 (-1018)) (-4 *2 (-1217 *4)) (-5 *1 (-1220 *4 *5 *6 *2))
+ (-4 *6 (-632 *5)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-1192 *5 *4)) (-5 *1 (-1134 *4 *5 *6))
- (-4 *4 (-1016)) (-14 *5 (-1136)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-1192 *5 *4)) (-5 *1 (-1211 *4 *5 *6))
- (-4 *4 (-1016)) (-14 *5 (-1136)) (-14 *6 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-796)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-890)) (-4 *5 (-298)) (-4 *3 (-1195 *5))
- (-5 *2 (-2 (|:| |plist| (-619 *3)) (|:| |modulo| *5)))
- (-5 *1 (-450 *5 *3)) (-5 *4 (-619 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-883 *3)) (-4 *3 (-298)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-298)) (-4 *3 (-169)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3)))
- (-5 *1 (-662 *3 *4 *5 *6)) (-4 *6 (-661 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-674 *3))
- (-4 *3 (-298)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *2 *3) (-12 (-5 *2 (-547)) (-5 *1 (-552 *3)) (-4 *3 (-1007 *2))))
+ (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823))
+ (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-621 (-747)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))))
+ (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
+ (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-621 (-747))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-430))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
+ (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-372)) (-5 *1 (-199)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1018)) (-5 *2 (-621 *1)) (-4 *1 (-1101 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-816 *3)) (-4 *3 (-1067)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-890)) (-5 *4 (-409 *6)) (-4 *6 (-1195 *5))
- (-4 *5 (-1016)) (-5 *2 (-619 *6)) (-5 *1 (-434 *5 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-890)) (-5 *3 (-619 (-254))) (-5 *1 (-252))))
- ((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-142))) (-5 *1 (-139))))
- ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-139)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1132 *1)) (-5 *4 (-1136)) (-4 *1 (-27))
- (-5 *2 (-619 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1132 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-619 *1))
- (-4 *1 (-29 *4))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-534))))
+ ((*1 *1 *1) (-4 *1 (-1027))))
+(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229)))))
+(((*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-554 *3)) (-4 *3 (-1009 *2))))
((*1 *2 *1)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3)))))
+ (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1018)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1202 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-663 *3))
- (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-364 *3))
- (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-271)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1136)) (-4 *4 (-1016)) (-4 *4 (-821))
- (-5 *2 (-2 (|:| |var| (-590 *1)) (|:| -3322 (-547))))
- (-4 *1 (-421 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1016)) (-4 *4 (-821))
- (-5 *2 (-2 (|:| |var| (-590 *1)) (|:| -3322 (-547))))
- (-4 *1 (-421 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821))
- (-5 *2 (-2 (|:| |var| (-590 *1)) (|:| -3322 (-547))))
- (-4 *1 (-421 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -3322 (-745))))
- (-5 *1 (-861 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-2 (|:| |var| *5) (|:| -3322 (-745))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016))
- (-4 *7 (-918 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -3322 (-547))))
- (-5 *1 (-919 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-354)
- (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $))
- (-15 -1396 (*7 $))))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-1139)) (-5 *3 (-1136)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-302))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-939))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-963))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1005)))))
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4))
+ (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| |k| (-1136)) (|:| |c| (-1241 *3)))))
- (-5 *1 (-1241 *3)) (-4 *3 (-1016))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| |k| *3) (|:| |c| (-1243 *3 *4)))))
- (-5 *1 (-1243 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *4 (-354)) (-5 *1 (-865 *2 *4))
- (-4 *2 (-1195 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-370))))
- ((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-370)))))
+ (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1231))
+ (-5 *1 (-441 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-728)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-892)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1018))
+ (-4 *4 (-1180))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-621 (-1143))) (-4 *4 (-170))
+ (-4 *5 (-232 (-3775 *3) (-747)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3493 *2) (|:| -3731 *5))
+ (-2 (|:| -3493 *2) (|:| -3731 *5))))
+ (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-823))
+ (-4 *7 (-920 *4 *5 (-836 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1176)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-304))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-941))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-965))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1007))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1040)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-621 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9))
+ (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *9 (-1032 *6 *7 *8))
+ (-5 *2
+ (-621
+ (-2 (|:| -2652 (-621 *9)) (|:| -1981 *10) (|:| |ineq| (-621 *9)))))
+ (-5 *1 (-959 *6 *7 *8 *9 *10)) (-5 *3 (-621 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-621 *10)) (-5 *5 (-112)) (-4 *10 (-1038 *6 *7 *8 *9))
+ (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *9 (-1032 *6 *7 *8))
+ (-5 *2
+ (-621
+ (-2 (|:| -2652 (-621 *9)) (|:| -1981 *10) (|:| |ineq| (-621 *9)))))
+ (-5 *1 (-1074 *6 *7 *8 *9 *10)) (-5 *3 (-621 *9)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *3 *2))
- (-4 *2 (-13 (-27) (-1158) (-421 (-166 *3))))))
+ (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-13 (-27) (-1165) (-423 (-167 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-541) (-823) (-1009 (-549))))
+ (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 (-167 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-619 (-547))) (-5 *1 (-1073)) (-5 *3 (-547)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-669 *3)) (-4 *3 (-1063))
- (-5 *2 (-619 (-2 (|:| -1786 *3) (|:| -3992 (-745))))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-745)) (-5 *1 (-566 *2)) (-4 *2 (-532))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1856 *3) (|:| -3322 (-745)))) (-5 *1 (-566 *3))
- (-4 *3 (-532)))))
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-1169 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-1169 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-590 *5))) (-4 *4 (-821)) (-5 *2 (-590 *5))
- (-5 *1 (-556 *4 *5)) (-4 *5 (-421 *4)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1202 (-48))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1107 *4 *5)) (-4 *4 (-13 (-1067) (-34)))
+ (-4 *5 (-13 (-1067) (-34))) (-5 *2 (-112)) (-5 *1 (-1108 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-892)) (-5 *4 (-411 *6)) (-4 *6 (-1202 *5))
+ (-4 *5 (-1018)) (-5 *2 (-621 *6)) (-5 *1 (-436 *5 *6)))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-592 *6))) (-5 *4 (-1143)) (-5 *2 (-592 *6))
+ (-4 *6 (-423 *5)) (-4 *5 (-823)) (-5 *1 (-558 *5 *6)))))
+(((*1 *1 *1 *1) (-4 *1 (-534))))
(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-832))))
+ (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-834)))) (-5 *1 (-834))))
((*1 *2 *1)
- (-12 (-5 *2 (-1103 *3 *4)) (-5 *1 (-962 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-354))))
+ (-12 (-5 *2 (-1109 *3 *4)) (-5 *1 (-964 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-356))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 (-619 *5))) (-4 *5 (-1016))
- (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *6 (-230 *4 *5))
- (-4 *7 (-230 *3 *5)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004))
- (-5 *1 (-731)))))
+ (-12 (-5 *2 (-621 (-621 *5))) (-4 *5 (-1018))
+ (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *6 (-232 *4 *5))
+ (-4 *7 (-232 *3 *5)))))
+(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1226 *1)) (-4 *1 (-360 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))))
-(((*1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))))
-(((*1 *1 *1) (-5 *1 (-523))))
-(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))))
-(((*1 *1 *1) (-4 *1 (-1025)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1145 (-619 *4))) (-4 *4 (-821))
- (-5 *2 (-619 (-619 *4))) (-5 *1 (-1144 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-217)) (-5 *2 (-112)) (-5 *1 (-290 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1058 (-814 (-217)))) (-5 *3 (-217)) (-5 *2 (-112))
- (-5 *1 (-296))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112))
- (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-619 (-1132 (-547)))) (-5 *1 (-183)) (-5 *3 (-547)))))
-(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222))))
- ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-506)))))
-(((*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-217)) (-5 *1 (-1222))))
- ((*1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-1222)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-745)) (-5 *3 (-912 *5)) (-4 *5 (-1016))
- (-5 *1 (-1125 *4 *5)) (-14 *4 (-890))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1125 *4 *5))
- (-14 *4 (-890)) (-4 *5 (-1016))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016))
- (-5 *1 (-1125 *4 *5)) (-14 *4 (-890)))))
-(((*1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-547))) (-5 *1 (-1014)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-354))
+ (-12 (-4 *1 (-1070 *3 *2 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(((*1 *1 *1) (-5 *1 (-525))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-892))
+ (-5 *2 (-1226 (-621 (-2 (|:| -4161 *4) (|:| -3493 (-1087))))))
+ (-5 *1 (-339 *4)) (-4 *4 (-342)))))
+(((*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)) (-4 *2 (-541))))
+ ((*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-733)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-863 *4)) (-4 *4 (-1067)) (-5 *1 (-860 *4 *3))
+ (-4 *3 (-1067)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-665 *2)) (-5 *4 (-747))
+ (-4 *2 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $)))))
+ (-4 *5 (-1202 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-112))
+ (-5 *6 (-219)) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))
+ (-5 *2 (-1006)) (-5 *1 (-733)))))
+(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1231)) (-5 *1 (-1105))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-834))) (-5 *2 (-1231)) (-5 *1 (-1105)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-724)))))
+(((*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-621 (-621 (-914 (-219)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-621 (-621 (-914 (-219))))))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-736)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-4 *3 (-13 (-27) (-1165) (-423 *6) (-10 -8 (-15 -3846 ($ *7)))))
+ (-4 *7 (-821))
+ (-4 *8
+ (-13 (-1204 *3 *7) (-356) (-1165)
+ (-10 -8 (-15 -3456 ($ $)) (-15 -3893 ($ $)))))
(-5 *2
- (-2 (|:| A (-663 *5))
- (|:| |eqs|
- (-619
- (-2 (|:| C (-663 *5)) (|:| |g| (-1219 *5)) (|:| -2644 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *5)) (-5 *4 (-1219 *5))
- (-4 *6 (-630 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-354)) (-4 *6 (-630 *5))
- (-5 *2 (-2 (|:| -1877 (-663 *6)) (|:| |vec| (-1219 *5))))
- (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *6)) (-5 *4 (-1219 *5)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-303)) (-5 *1 (-803)))))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125))))))
+ (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1125)) (-4 *9 (-954 *8))
+ (-14 *10 (-1143)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-5 *1 (-430)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-621 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-541)) (-4 *7 (-769))
+ (-4 *8 (-823)) (-5 *1 (-948 *6 *7 *8 *9)))))
+(((*1 *1) (-5 *1 (-139))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-997 (-816 (-549)))) (-5 *1 (-576 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541))
+ (-5 *2 (-2 (|:| -1570 *4) (|:| -4013 *3) (|:| -3675 *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-1032 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-541)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| -1570 *3) (|:| -4013 *1) (|:| -3675 *1)))
+ (-4 *1 (-1202 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823))
+ (-4 *4 (-259 *3)) (-4 *5 (-769)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1210 *4))
- (-4 *4 (-38 (-398 (-547)))) (-5 *2 (-1 (-1117 *4) (-1117 *4)))
- (-5 *1 (-1212 *4 *5)))))
+ (-12 (-4 *1 (-776))
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
+ (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-1006)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-398 (-921 (-547)))))
- (-5 *2 (-619 (-663 (-307 (-547))))) (-5 *1 (-1000))
- (-5 *3 (-307 (-547))))))
-(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))))
+ (-12 (-5 *4 (-621 *3)) (-4 *3 (-1076 *5 *6 *7 *8))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-572 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1199 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796))
+ (-14 *5 (-1143)) (-5 *2 (-549)) (-5 *1 (-1081 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-418 *3)) (-4 *3 (-1067)) (-5 *2 (-747)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1353 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-747))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-747)))))
+(((*1 *1) (-5 *1 (-430))))
+(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-621 (-1139 *11))) (-5 *3 (-1139 *11))
+ (-5 *4 (-621 *10)) (-5 *5 (-621 *8)) (-5 *6 (-621 (-747)))
+ (-5 *7 (-1226 (-621 (-1139 *8)))) (-4 *10 (-823))
+ (-4 *8 (-300)) (-4 *11 (-920 *8 *9 *10)) (-4 *9 (-769))
+ (-5 *1 (-684 *9 *10 *8 *11)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1132 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-1140)))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-398 (-547))))
- (-5 *2
- (-619
- (-2 (|:| |outval| *4) (|:| |outmult| (-547))
- (|:| |outvect| (-619 (-663 *4))))))
- (-5 *1 (-753 *4)) (-4 *4 (-13 (-354) (-819))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-354)) (-5 *1 (-633 *4 *2))
- (-4 *2 (-630 *4)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-619 (-1136))) (-4 *5 (-442))
+ (-12
(-5 *2
- (-2 (|:| |glbase| (-619 (-239 *4 *5))) (|:| |glval| (-619 (-547)))))
- (-5 *1 (-607 *4 *5)) (-5 *3 (-619 (-239 *4 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1136)))
- (-4 *5 (-539)) (-5 *2 (-619 (-619 (-921 *5)))) (-5 *1 (-1142 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1136)) (-5 *2 (-1 (-1132 (-921 *4)) (-921 *4)))
- (-5 *1 (-1227 *4)) (-4 *4 (-354)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169))
- (-5 *2 (-619 (-921 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-619 (-921 *4))) (-5 *1 (-407 *3 *4))
- (-4 *3 (-408 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-619 (-921 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-619 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1219 (-443 *4 *5 *6 *7))) (-5 *2 (-619 (-921 *4)))
- (-5 *1 (-443 *4 *5 *6 *7)) (-4 *4 (-539)) (-4 *4 (-169))
- (-14 *5 (-890)) (-14 *6 (-619 (-1136))) (-14 *7 (-1219 (-663 *4))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-547))) (-5 *5 (-1 (-1117 *4))) (-4 *4 (-354))
- (-4 *4 (-1016)) (-5 *2 (-1117 *4)) (-5 *1 (-1121 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-598 *4 *2)) (-4 *2 (-13 (-1158) (-928) (-29 *4))))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-745)) (-5 *1 (-756 *3)) (-4 *3 (-1016))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-932 *3 *2)) (-4 *2 (-130)) (-4 *3 (-539))
- (-4 *3 (-1016)) (-4 *2 (-766))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-745)) (-5 *1 (-1132 *3)) (-4 *3 (-1016))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-940)) (-4 *2 (-130)) (-5 *1 (-1138 *3)) (-4 *3 (-539))
- (-4 *3 (-1016))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-745)) (-5 *1 (-1192 *4 *3)) (-14 *4 (-1136))
- (-4 *3 (-1016)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-730)))))
+ (-621
+ (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1139 *3))
+ (|:| |logand| (-1139 *3)))))
+ (-5 *1 (-567 *3)) (-4 *3 (-356)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-665 *3))
+ (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $)))))
+ (-4 *4 (-1202 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370)))
- (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135))))
- (-5 *1 (-1135)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-943)))))
+ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372)))
+ (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142))))
+ (-5 *1 (-1142)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-114)) (-5 *4 (-747)) (-4 *5 (-444)) (-4 *5 (-823))
+ (-4 *5 (-1009 (-549))) (-4 *5 (-541)) (-5 *1 (-41 *5 *2))
+ (-4 *2 (-423 *5))
+ (-4 *2
+ (-13 (-356) (-295)
+ (-10 -8 (-15 -1394 ((-1092 *5 (-592 $)) $))
+ (-15 -1403 ((-1092 *5 (-592 $)) $))
+ (-15 -3846 ($ (-1092 *5 (-592 $))))))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-549)) (-4 *1 (-1186 *4)) (-4 *4 (-1018)) (-4 *4 (-541))
+ (-5 *2 (-400 (-923 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-4 *1 (-1186 *4)) (-4 *4 (-1018)) (-4 *4 (-541))
+ (-5 *2 (-400 (-923 *4))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-621 *4)) (-4 *4 (-1067)) (-4 *4 (-1180)) (-5 *2 (-112))
+ (-5 *1 (-1123 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-130)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1158)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-621 (-621 *7)))
+ (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-621 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769))
+ (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-621 (-621 *8)))
+ (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-621 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-621 (-621 *7)))
+ (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-621 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769))
+ (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-621 (-621 *8)))
+ (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-621 *8)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))
+ (-5 *2 (-1006)) (-5 *1 (-725)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-816 (-219)))) (-5 *4 (-219)) (-5 *2 (-621 *4))
+ (-5 *1 (-260)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-821)) (-5 *1 (-1144 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2))
- (-4 *4 (-13 (-821) (-539))))))
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-621 *3)) (-5 *6 (-1139 *3))
+ (-4 *3 (-13 (-423 *7) (-27) (-1165)))
+ (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-545 *7 *3 *8)) (-4 *8 (-1067))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-621 *3))
+ (-5 *6 (-400 (-1139 *3))) (-4 *3 (-13 (-423 *7) (-27) (-1165)))
+ (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-545 *7 *3 *8)) (-4 *8 (-1067)))))
+(((*1 *1 *1) (-4 *1 (-1027)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1204 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1204 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-981 *3)) (-4 *3 (-1180)) (-4 *3 (-1067))
+ (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1210 *4))
- (-4 *4 (-38 (-398 (-547))))
- (-5 *2 (-1 (-1117 *4) (-1117 *4) (-1117 *4))) (-5 *1 (-1212 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1016)) (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2))
- (-4 *5 (-230 *3 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-760)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-547)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-745)) (-4 *5 (-169))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745))
- (-4 *4 (-169))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *2 *4)) (-4 *2 (-364 *3))
- (-4 *4 (-364 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1103 *2 *3)) (-14 *2 (-745)) (-4 *3 (-1016)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-565 *3)) (-4 *3 (-354)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-532)) (-5 *1 (-156 *2)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2510 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-354)) (-4 *7 (-1195 *6))
- (-5 *2 (-2 (|:| |answer| (-565 (-398 *7))) (|:| |a0| *6)))
- (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217))
- (-5 *2 (-1004)) (-5 *1 (-727)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1136)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-619 (-1136))) (-4 *4 (-169))
- (-14 *6
- (-1 (-112) (-2 (|:| -3487 *5) (|:| -3322 *2))
- (-2 (|:| -3487 *5) (|:| -3322 *2))))
- (-4 *2 (-230 (-3767 *3) (-745))) (-5 *1 (-451 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-821)) (-4 *7 (-918 *4 *2 (-834 *3))))))
+ (-12 (-5 *3 (-1125)) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769))
+ (-5 *2
+ (-621
+ (-2 (|:| |eqzro| (-621 *7)) (|:| |neqzro| (-621 *7))
+ (|:| |wcond| (-621 (-923 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1226 (-400 (-923 *4))))
+ (|:| -1949 (-621 (-1226 (-400 (-923 *4))))))))))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 *5)) (-4 *5 (-1195 *3)) (-4 *3 (-298))
- (-5 *2 (-112)) (-5 *1 (-445 *3 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *2 (-745))
- (-5 *1 (-1125 *4 *5)) (-14 *4 (-890))))
+ (-12 (-5 *4 (-1059 (-816 *3))) (-4 *3 (-13 (-1165) (-930) (-29 *5)))
+ (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2
+ (-3 (|:| |f1| (-816 *3)) (|:| |f2| (-621 (-816 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-213 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1059 (-816 *3))) (-5 *5 (-1125))
+ (-4 *3 (-13 (-1165) (-930) (-29 *6)))
+ (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2
+ (-3 (|:| |f1| (-816 *3)) (|:| |f2| (-621 (-816 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-213 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1059 (-816 (-309 *5))))
+ (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2
+ (-3 (|:| |f1| (-816 (-309 *5))) (|:| |f2| (-621 (-816 (-309 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-214 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-400 (-923 *6))) (-5 *4 (-1059 (-816 (-309 *6))))
+ (-5 *5 (-1125))
+ (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2
+ (-3 (|:| |f1| (-816 (-309 *6))) (|:| |f2| (-621 (-816 (-309 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-214 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1059 (-816 (-400 (-923 *5))))) (-5 *3 (-400 (-923 *5)))
+ (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2
+ (-3 (|:| |f1| (-816 (-309 *5))) (|:| |f2| (-621 (-816 (-309 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-214 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1059 (-816 (-400 (-923 *6))))) (-5 *5 (-1125))
+ (-5 *3 (-400 (-923 *6)))
+ (-4 *6 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2
+ (-3 (|:| |f1| (-816 (-309 *6))) (|:| |f2| (-621 (-816 (-309 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-214 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1143))
+ (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-3 *3 (-621 *3))) (-5 *1 (-421 *5 *3))
+ (-4 *3 (-13 (-1165) (-930) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-466 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1061 (-816 (-372))))
+ (-5 *5 (-372)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1061 (-816 (-372))))
+ (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1061 (-816 (-372))))
+ (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-309 (-372))) (-5 *4 (-1061 (-816 (-372))))
+ (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1061 (-816 (-372)))))
+ (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1061 (-816 (-372)))))
+ (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1061 (-816 (-372)))))
+ (-5 *5 (-372)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-1061 (-816 (-372)))))
+ (-5 *5 (-372)) (-5 *6 (-1030)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1059 (-816 (-372))))
+ (-5 *5 (-1125)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-309 (-372))) (-5 *4 (-1059 (-816 (-372))))
+ (-5 *5 (-1143)) (-5 *2 (-1006)) (-5 *1 (-550))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-549)))) (-4 *5 (-1202 *4))
+ (-5 *2 (-567 (-400 *5))) (-5 *1 (-553 *4 *5)) (-5 *3 (-400 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1143)) (-4 *5 (-145))
+ (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
+ (-5 *2 (-3 (-309 *5) (-621 (-309 *5)))) (-5 *1 (-570 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-717 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823))
+ (-4 *3 (-38 (-400 (-549))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1143)) (-5 *1 (-923 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-4 *3 (-1018))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1125 *4 *5))
- (-14 *4 (-890)) (-4 *5 (-1016))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-4 *2 (-823))
+ (-5 *1 (-1093 *3 *2 *4)) (-4 *4 (-920 *3 (-521 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018))
+ (-5 *1 (-1127 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1134 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1140 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1141 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016))
- (-5 *1 (-1125 *4 *5)) (-14 *4 (-890)))))
+ (-12 (-5 *2 (-1143)) (-5 *1 (-1174 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-1536
+ (-12 (-5 *2 (-1143)) (-4 *1 (-1186 *3)) (-4 *3 (-1018))
+ (-12 (-4 *3 (-29 (-549))) (-4 *3 (-930)) (-4 *3 (-1165))
+ (-4 *3 (-38 (-400 (-549))))))
+ (-12 (-5 *2 (-1143)) (-4 *1 (-1186 *3)) (-4 *3 (-1018))
+ (-12 (|has| *3 (-15 -2272 ((-621 *2) *3)))
+ (|has| *3 (-15 -3893 (*3 *3 *2))) (-4 *3 (-38 (-400 (-549))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1186 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1190 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549))))))
+ ((*1 *1 *1 *2)
+ (-1536
+ (-12 (-5 *2 (-1143)) (-4 *1 (-1207 *3)) (-4 *3 (-1018))
+ (-12 (-4 *3 (-29 (-549))) (-4 *3 (-930)) (-4 *3 (-1165))
+ (-4 *3 (-38 (-400 (-549))))))
+ (-12 (-5 *2 (-1143)) (-4 *1 (-1207 *3)) (-4 *3 (-1018))
+ (-12 (|has| *3 (-15 -2272 ((-621 *2) *3)))
+ (|has| *3 (-15 -3893 (*3 *3 *2))) (-4 *3 (-38 (-400 (-549))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1211 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-1536
+ (-12 (-5 *2 (-1143)) (-4 *1 (-1217 *3)) (-4 *3 (-1018))
+ (-12 (-4 *3 (-29 (-549))) (-4 *3 (-930)) (-4 *3 (-1165))
+ (-4 *3 (-38 (-400 (-549))))))
+ (-12 (-5 *2 (-1143)) (-4 *1 (-1217 *3)) (-4 *3 (-1018))
+ (-12 (|has| *3 (-15 -2272 ((-621 *2) *3)))
+ (|has| *3 (-15 -3893 (*3 *3 *2))) (-4 *3 (-38 (-400 (-549))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)) (-4 *2 (-38 (-400 (-549))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1218 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)) (-14 *5 *3))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-58 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-58 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1180)) (-4 *2 (-823))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-621 *1)) (-4 *1 (-1101 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-1131 *3 *4))) (-5 *1 (-1131 *3 *4))
+ (-14 *3 (-892)) (-4 *4 (-1018))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))))
+(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-273)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-398 (-547))) (-4 *4 (-1007 (-547)))
- (-4 *4 (-13 (-821) (-539))) (-5 *1 (-32 *4 *2)) (-4 *2 (-421 *4))))
+ (-12 (-5 *3 (-400 (-549))) (-4 *4 (-1009 (-549)))
+ (-4 *4 (-13 (-823) (-541))) (-5 *1 (-32 *4 *2)) (-4 *2 (-423 *4))))
((*1 *1 *1 *1) (-5 *1 (-133)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-217)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-235)) (-5 *2 (-547))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-219)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-549))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-398 (-547))) (-4 *4 (-354)) (-4 *4 (-38 *3))
- (-4 *5 (-1210 *4)) (-5 *1 (-269 *4 *5 *2)) (-4 *2 (-1181 *4 *5))))
+ (-12 (-5 *3 (-400 (-549))) (-4 *4 (-356)) (-4 *4 (-38 *3))
+ (-4 *5 (-1217 *4)) (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1188 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-398 (-547))) (-4 *4 (-354)) (-4 *4 (-38 *3))
- (-4 *5 (-1179 *4)) (-5 *1 (-270 *4 *5 *2 *6)) (-4 *2 (-1202 *4 *5))
- (-4 *6 (-952 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-275)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-352 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1 *1) (-5 *1 (-370)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-377 *2)) (-4 *2 (-1063))))
+ (-12 (-5 *3 (-400 (-549))) (-4 *4 (-356)) (-4 *4 (-38 *3))
+ (-4 *5 (-1186 *4)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1209 *4 *5))
+ (-4 *6 (-954 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-277)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-354 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *1) (-5 *1 (-372)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-379 *2)) (-4 *2 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-421 *3)) (-4 *3 (-821)) (-4 *3 (-1075))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-463)) (-5 *2 (-547))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-423 *3)) (-4 *3 (-823)) (-4 *3 (-1079))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-549))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))
+ (-12 (-5 *2 (-747)) (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1219 *4)) (-5 *3 (-547)) (-4 *4 (-340))
- (-5 *1 (-517 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-523))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-523))))
+ (-12 (-5 *2 (-1226 *4)) (-5 *3 (-549)) (-4 *4 (-342))
+ (-5 *1 (-519 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-525))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-525))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *4 (-1063))
- (-5 *1 (-656 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *4 (-1067))
+ (-5 *1 (-658 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-4 *3 (-354))))
+ (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3)) (-4 *3 (-356))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016))
- (-5 *1 (-664 *4))))
+ (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018))
+ (-5 *1 (-666 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-547)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4))
- (-4 *4 (-622 *3))))
+ (-12 (-5 *2 (-549)) (-4 *3 (-1018)) (-5 *1 (-691 *3 *4))
+ (-4 *4 (-624 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-547)) (-4 *4 (-1016))
- (-5 *1 (-689 *4 *5)) (-4 *5 (-622 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-745))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-793 *2)) (-4 *2 (-821))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-808 *3)) (-4 *3 (-1016))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-549)) (-4 *4 (-1018))
+ (-5 *1 (-691 *4 *5)) (-4 *5 (-624 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-892))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-747))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-810 *3)) (-4 *3 (-1018))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-547)) (-5 *1 (-808 *4)) (-4 *4 (-1016))))
- ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-398 (-547)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1075)) (-5 *2 (-890))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-549)) (-5 *1 (-810 *4)) (-4 *4 (-1018))))
+ ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-863 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-400 (-549)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1079)) (-5 *2 (-892))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-547)) (-4 *1 (-1085 *3 *4 *5 *6)) (-4 *4 (-1016))
- (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *3 *4)) (-4 *4 (-354))))
+ (-12 (-5 *2 (-549)) (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1210 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-872 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-408 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-859 *4 *3))
- (-4 *3 (-1173))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-921 (-398 (-547)))) (-5 *4 (-1136))
- (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-291)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1007 (-547))) (-4 *1 (-293)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))))
+ (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549))))
+ (-5 *2 (-167 (-309 *4))) (-5 *1 (-182 *4 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 (-167 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-167 *3)) (-5 *1 (-1169 *4 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-920 *4 *6 *5)) (-4 *4 (-444))
+ (-4 *5 (-823)) (-4 *6 (-769)) (-5 *1 (-958 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-621 *2))) (-5 *4 (-621 *5))
+ (-4 *5 (-38 (-400 (-549)))) (-4 *2 (-1217 *5))
+ (-5 *1 (-1219 *5 *2)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-592 *3)) (-5 *5 (-1139 *3))
+ (-4 *3 (-13 (-423 *6) (-27) (-1165)))
+ (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2 (-567 *3)) (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1067))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-592 *3)) (-5 *5 (-400 (-1139 *3)))
+ (-4 *3 (-13 (-423 *6) (-27) (-1165)))
+ (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2 (-567 *3)) (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-547))
- (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169))
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549))
+ (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170))
(-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *9)) (-4 *9 (-1016)) (-4 *5 (-821)) (-4 *6 (-767))
- (-4 *8 (-1016)) (-4 *2 (-918 *9 *7 *5))
- (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767))
- (-4 *4 (-918 *8 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-340)) (-5 *2 (-409 (-1132 (-1132 *4))))
- (-5 *1 (-1171 *4)) (-5 *3 (-1132 (-1132 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-627 (-398 *2))) (-4 *2 (-1195 *4)) (-5 *1 (-784 *4 *2))
- (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))))
+ (-12 (-5 *3 (-621 *9)) (-4 *9 (-1018)) (-4 *5 (-823)) (-4 *6 (-769))
+ (-4 *8 (-1018)) (-4 *2 (-920 *9 *7 *5))
+ (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-769))
+ (-4 *4 (-920 *8 *6 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1123 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 *1)) (-5 *4 (-1226 *1)) (-4 *1 (-617 *5))
+ (-4 *5 (-1018))
+ (-5 *2 (-2 (|:| -3521 (-665 *5)) (|:| |vec| (-1226 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-628 *2 (-398 *2))) (-4 *2 (-1195 *4))
- (-5 *1 (-784 *4 *2))
- (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-665 *1)) (-4 *1 (-617 *4)) (-4 *4 (-1018))
+ (-5 *2 (-665 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 *5)) (-4 *5 (-539))
- (-5 *2
- (-2 (|:| -3322 (-745)) (|:| -1563 *5) (|:| |radicand| (-619 *5))))
- (-5 *1 (-311 *5)) (-5 *4 (-745))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-547)))))
+ (-12 (-5 *4 (-549)) (-4 *5 (-342)) (-5 *2 (-411 (-1139 (-1139 *5))))
+ (-5 *1 (-1178 *5)) (-5 *3 (-1139 (-1139 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-408 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4))
+ (-4 *4 (-342)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-621 (-923 *6))) (-5 *4 (-621 (-1143))) (-4 *6 (-444))
+ (-5 *2 (-621 (-621 *7))) (-5 *1 (-527 *6 *7 *5)) (-4 *7 (-356))
+ (-4 *5 (-13 (-356) (-821))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-619 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547))
- (-14 *4 (-745)) (-4 *5 (-169)))))
+ (-12 (-5 *2 (-621 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549))
+ (-14 *4 (-747)) (-4 *5 (-170)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-621 (-621 (-219)))) (-5 *4 (-219))
+ (-5 *2 (-621 (-914 *4))) (-5 *1 (-1176)) (-5 *3 (-914 *4)))))
+(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1165))))))
+(((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-621
+ (-2
+ (|:| -3337
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219))))
+ (|:| |yinit| (-621 (-219))) (|:| |intvals| (-621 (-219)))
+ (|:| |g| (-309 (-219))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (|:| -1793
+ (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372))
+ (|:| |expense| (-372)) (|:| |accuracy| (-372))
+ (|:| |intermediateResults| (-372)))))))
+ (-5 *1 (-779)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-119 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-763)) (-5 *2 (-1006))
+ (-5 *3
+ (-2 (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-763)) (-5 *2 (-1006))
+ (-5 *3
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219)))))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-724)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-897))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-898)))))
+(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1125)) (-5 *1 (-687)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1117 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-727)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1154)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1136))
- (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-307 *5)))
- (-5 *1 (-1091 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1136)))
- (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-619 (-307 *5))))
- (-5 *1 (-1091 *5)))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4330)) (-4 *4 (-354)) (-4 *5 (-364 *4))
- (-4 *6 (-364 *4)) (-5 *2 (-619 *6)) (-5 *1 (-510 *4 *5 *6 *3))
- (-4 *3 (-661 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4330)) (-4 *4 (-539)) (-4 *5 (-364 *4))
- (-4 *6 (-364 *4)) (-4 *7 (-961 *4)) (-4 *8 (-364 *7))
- (-4 *9 (-364 *7)) (-5 *2 (-619 *6))
- (-5 *1 (-511 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-661 *4 *5 *6))
- (-4 *10 (-661 *7 *8 *9))))
+ (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-4 *3 (-539)) (-5 *2 (-619 *5))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1249 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-819)))))
+(((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-396 *3)) (-4 *3 (-397))))
+ ((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-396 *3)) (-4 *3 (-397))))
+ ((*1 *2 *2) (-12 (-5 *2 (-892)) (|has| *1 (-6 -4328)) (-4 *1 (-397))))
+ ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892))))
+ ((*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-5 *2 (-1123 (-549))))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-621
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-549)))))
+ (-4 *2 (-541)) (-5 *1 (-411 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4))
- (-4 *6 (-364 *4)) (-5 *2 (-619 *6)) (-5 *1 (-662 *4 *5 *6 *3))
- (-4 *3 (-661 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-539))
- (-5 *2 (-619 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1211 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1136))
- (-14 *4 *2))))
-(((*1 *1) (-5 *1 (-1139))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *5)) (-5 *4 (-1219 *5)) (-4 *5 (-354))
- (-5 *2 (-112)) (-5 *1 (-641 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4330))))
- (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4330)))) (-5 *2 (-112))
- (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821))
- (-5 *2 (-58 (-619 (-646 *5)))) (-5 *1 (-646 *5)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-890)) (-4 *3 (-354))
- (-14 *4 (-962 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-169)) (-5 *1 (-280 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1195 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-169)) (-4 *2 (-539))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354))))
- ((*1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354))))
- ((*1 *1 *1) (|partial| -4 *1 (-697)))
- ((*1 *1 *1) (|partial| -4 *1 (-701)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-354)))
- (-4 *2 (-1195 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-777)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-298))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4238 *1)))
- (-4 *1 (-298)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1195 *3)) (-4 *3 (-1016))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-890)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-766))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-398 (-547))) (-4 *1 (-1200 *3)) (-4 *3 (-1016)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-890)) (-5 *4 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-536)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2))
- (-4 *2 (-421 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063))
- (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-4 *1 (-149 *3))))
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-549))
+ (|:| -4024 (-621 (-2 (|:| |irr| *4) (|:| -2495 (-549)))))))
+ (-4 *4 (-1202 (-549))) (-5 *2 (-411 *4)) (-5 *1 (-434 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-845)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-1196 *3 *2))
+ (-4 *2 (-1202 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
+ ((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-549))))
+ (-4 *2 (-170)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1143)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-4 *1 (-149 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-619 (-2 (|:| -3322 (-745)) (|:| -2591 *4) (|:| |num| *4))))
- (-4 *4 (-1195 *3)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4))))
+ (-5 *2 (-621 (-2 (|:| -3731 (-747)) (|:| -2597 *4) (|:| |num| *4))))
+ (-4 *4 (-1202 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-112)) (-5 *1 (-428))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-112)) (-5 *1 (-430))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-5 *3 (-619 (-1136))) (-5 *4 (-112)) (-5 *1 (-428))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-5 *3 (-621 (-1143))) (-5 *4 (-112)) (-5 *1 (-430))))
((*1 *2 *1)
- (-12 (-5 *2 (-1117 *3)) (-5 *1 (-579 *3)) (-4 *3 (-1173))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169))))
+ (-12 (-5 *2 (-1123 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-170))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4))
- (-4 *4 (-169))))
+ (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4))
+ (-4 *4 (-170))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4))
- (-4 *4 (-169))))
+ (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4))
+ (-4 *4 (-170))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4))
- (-4 *4 (-169))))
+ (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-5 *1 (-640 *3 *4))
+ (-4 *4 (-170))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 (-619 (-619 *3)))) (-4 *3 (-1063))
- (-5 *1 (-649 *3))))
+ (-12 (-5 *2 (-621 (-621 (-621 *3)))) (-4 *3 (-1067))
+ (-5 *1 (-651 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-688 *2 *3 *4)) (-4 *2 (-821)) (-4 *3 (-1063))
+ (-12 (-5 *1 (-690 *2 *3 *4)) (-4 *2 (-823)) (-4 *3 (-1067))
(-14 *4
- (-1 (-112) (-2 (|:| -3487 *2) (|:| -3322 *3))
- (-2 (|:| -3487 *2) (|:| -3322 *3))))))
+ (-1 (-112) (-2 (|:| -3493 *2) (|:| -3731 *3))
+ (-2 (|:| -3493 *2) (|:| -3731 *3))))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1173)) (-4 *3 (-1173))))
+ (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1180)) (-4 *3 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 *4))))
- (-4 *4 (-1063)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063))))
+ (-12 (-5 *2 (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 *4))))
+ (-4 *4 (-1067)) (-5 *1 (-860 *3 *4)) (-4 *3 (-1067))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 *5)) (-4 *5 (-13 (-1063) (-34)))
- (-5 *2 (-619 (-1101 *3 *5))) (-5 *1 (-1101 *3 *5))
- (-4 *3 (-13 (-1063) (-34)))))
+ (-12 (-5 *4 (-621 *5)) (-4 *5 (-13 (-1067) (-34)))
+ (-5 *2 (-621 (-1107 *3 *5))) (-5 *1 (-1107 *3 *5))
+ (-4 *3 (-13 (-1067) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-2 (|:| |val| *4) (|:| -1974 *5))))
- (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34)))
- (-5 *2 (-619 (-1101 *4 *5))) (-5 *1 (-1101 *4 *5))))
+ (-12 (-5 *3 (-621 (-2 (|:| |val| *4) (|:| -1981 *5))))
+ (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34)))
+ (-5 *2 (-621 (-1107 *4 *5))) (-5 *1 (-1107 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1974 *4)))
- (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34)))
- (-5 *1 (-1101 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1981 *4)))
+ (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34)))
+ (-5 *1 (-1107 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34)))
- (-4 *3 (-13 (-1063) (-34)))))
+ (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34)))
- (-4 *3 (-13 (-1063) (-34)))))
+ (-12 (-5 *4 (-112)) (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-619 *3)) (-4 *3 (-13 (-1063) (-34)))
- (-5 *1 (-1102 *2 *3)) (-4 *2 (-13 (-1063) (-34)))))
+ (-12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-1067) (-34)))
+ (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1067) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-1101 *2 *3))) (-4 *2 (-13 (-1063) (-34)))
- (-4 *3 (-13 (-1063) (-34))) (-5 *1 (-1102 *2 *3))))
+ (-12 (-5 *4 (-621 (-1107 *2 *3))) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34))) (-5 *1 (-1108 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-1102 *2 *3))) (-5 *1 (-1102 *2 *3))
- (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34)))))
+ (-12 (-5 *4 (-621 (-1108 *2 *3))) (-5 *1 (-1108 *2 *3))
+ (-4 *2 (-13 (-1067) (-34))) (-4 *3 (-13 (-1067) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34)))
- (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1102 *3 *4))))
+ (-12 (-5 *2 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1108 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1126 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-619 (-307 (-217)))) (-5 *3 (-217)) (-5 *2 (-112))
- (-5 *1 (-202)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1177)) (-4 *5 (-1195 *4))
- (-5 *2 (-2 (|:| -1563 (-398 *5)) (|:| |poly| *3)))
- (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1195 (-398 *5))))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-539) (-145)))
- (-5 *2 (-2 (|:| -3830 *3) (|:| -3840 *3))) (-5 *1 (-1189 *4 *3))
- (-4 *3 (-1195 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-544)) (-5 *3 (-547)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1132 *4)) (-4 *4 (-340)) (-5 *2 (-112))
- (-5 *1 (-348 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1219 *4)) (-4 *4 (-340)) (-5 *2 (-112))
- (-5 *1 (-517 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821))))
- ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821))))
- ((*1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3))
- (-4 *3 (-1195 *2)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821))
- (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-619 (-745)))))
+ (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-534)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4)))
+ (-5 *2 (-1226 *1)) (-4 *1 (-335 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1067)) (-5 *2 (-1125)))))
+(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
+ (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-541)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))
+ (-4 *7 (-963 *4)) (-4 *2 (-663 *7 *8 *9))
+ (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-663 *4 *5 *6))
+ (-4 *8 (-366 *7)) (-4 *9 (-366 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018))
+ (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-356))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2))
+ (-4 *2 (-663 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-665 *2)) (-4 *2 (-356)) (-4 *2 (-1018))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1090 *2 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356))))
+ ((*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-1151 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834))))
((*1 *2 *1)
- (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821))
- (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-619 (-745))))))
-(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169))))
+ (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3))
+ (-4 *3 (-1202 *2)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1125)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1231))
+ (-5 *1 (-1039 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1125)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1231))
+ (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 *3)) (-4 *3 (-354)) (-14 *6 (-1219 (-663 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-619 (-1136)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1087 (-547) (-590 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1173))))
+ (-12 (-5 *2 (-1226 *3)) (-4 *3 (-356)) (-14 *6 (-1226 (-665 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-892)) (-14 *5 (-621 (-1143)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092 (-549) (-592 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-330 (-3846 'JINT 'X 'ELAM) (-3846) (-673))))
- (-5 *1 (-60 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-1226 (-332 (-3854 'JINT 'X 'ELAM) (-3854) (-675))))
+ (-5 *1 (-60 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-330 (-3846) (-3846 'XC) (-673))))
- (-5 *1 (-62 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-1226 (-332 (-3854) (-3854 'XC) (-675))))
+ (-5 *1 (-62 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-330 (-3846 'X) (-3846) (-673))) (-5 *1 (-63 *3))
- (-14 *3 (-1136))))
+ (-12 (-5 *2 (-332 (-3854 'X) (-3854) (-675))) (-5 *1 (-63 *3))
+ (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-663 (-330 (-3846) (-3846 'X 'HESS) (-673))))
- (-5 *1 (-64 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-665 (-332 (-3854) (-3854 'X 'HESS) (-675))))
+ (-5 *1 (-64 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-330 (-3846) (-3846 'XC) (-673))) (-5 *1 (-65 *3))
- (-14 *3 (-1136))))
+ (-12 (-5 *2 (-332 (-3854) (-3854 'XC) (-675))) (-5 *1 (-65 *3))
+ (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-330 (-3846 'X) (-3846 '-2656) (-673))))
- (-5 *1 (-70 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-1226 (-332 (-3854 'X) (-3854 '-2663) (-675))))
+ (-5 *1 (-70 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-330 (-3846) (-3846 'X) (-673))))
- (-5 *1 (-73 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-1226 (-332 (-3854) (-3854 'X) (-675))))
+ (-5 *1 (-73 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-330 (-3846 'X 'EPS) (-3846 '-2656) (-673))))
- (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1136)) (-14 *4 (-1136))
- (-14 *5 (-1136))))
+ (-12 (-5 *2 (-1226 (-332 (-3854 'X 'EPS) (-3854 '-2663) (-675))))
+ (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1143)) (-14 *4 (-1143))
+ (-14 *5 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-330 (-3846 'EPS) (-3846 'YA 'YB) (-673))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1136)) (-14 *4 (-1136))
- (-14 *5 (-1136))))
+ (-12 (-5 *2 (-1226 (-332 (-3854 'EPS) (-3854 'YA 'YB) (-675))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1143)) (-14 *4 (-1143))
+ (-14 *5 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-330 (-3846) (-3846 'X) (-673))) (-5 *1 (-76 *3))
- (-14 *3 (-1136))))
+ (-12 (-5 *2 (-332 (-3854) (-3854 'X) (-675))) (-5 *1 (-76 *3))
+ (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-330 (-3846) (-3846 'X) (-673))) (-5 *1 (-77 *3))
- (-14 *3 (-1136))))
+ (-12 (-5 *2 (-332 (-3854) (-3854 'X) (-675))) (-5 *1 (-77 *3))
+ (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-330 (-3846) (-3846 'XC) (-673))))
- (-5 *1 (-78 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-1226 (-332 (-3854) (-3854 'XC) (-675))))
+ (-5 *1 (-78 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-330 (-3846) (-3846 'X) (-673))))
- (-5 *1 (-79 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-1226 (-332 (-3854) (-3854 'X) (-675))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-330 (-3846) (-3846 'X) (-673))))
- (-5 *1 (-80 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-1226 (-332 (-3854) (-3854 'X) (-675))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-330 (-3846 'X '-2656) (-3846) (-673))))
- (-5 *1 (-81 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-1226 (-332 (-3854 'X '-2663) (-3854) (-675))))
+ (-5 *1 (-81 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-663 (-330 (-3846 'X '-2656) (-3846) (-673))))
- (-5 *1 (-82 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-665 (-332 (-3854 'X '-2663) (-3854) (-675))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-663 (-330 (-3846 'X) (-3846) (-673)))) (-5 *1 (-83 *3))
- (-14 *3 (-1136))))
+ (-12 (-5 *2 (-665 (-332 (-3854 'X) (-3854) (-675)))) (-5 *1 (-83 *3))
+ (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-330 (-3846 'X) (-3846) (-673))))
- (-5 *1 (-84 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-1226 (-332 (-3854 'X) (-3854) (-675))))
+ (-5 *1 (-84 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-330 (-3846 'X) (-3846 '-2656) (-673))))
- (-5 *1 (-85 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-1226 (-332 (-3854 'X) (-3854 '-2663) (-675))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-663 (-330 (-3846 'XL 'XR 'ELAM) (-3846) (-673))))
- (-5 *1 (-86 *3)) (-14 *3 (-1136))))
+ (-12 (-5 *2 (-665 (-332 (-3854 'XL 'XR 'ELAM) (-3854) (-675))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1143))))
((*1 *1 *2)
- (-12 (-5 *2 (-330 (-3846 'X) (-3846 '-2656) (-673))) (-5 *1 (-88 *3))
- (-14 *3 (-1136))))
- ((*1 *2 *1) (-12 (-5 *2 (-973 2)) (-5 *1 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-107))))
- ((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129))))
+ (-12 (-5 *2 (-332 (-3854 'X) (-3854 '-2663) (-675))) (-5 *1 (-88 *3))
+ (-14 *3 (-1143))))
+ ((*1 *2 *1) (-12 (-5 *2 (-975 2)) (-5 *1 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-107))))
+ ((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-129))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-547)) (-14 *4 (-745)) (-4 *5 (-169))))
+ (-12 (-5 *2 (-621 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5))
+ (-14 *3 (-549)) (-14 *4 (-747)) (-4 *5 (-170))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-547)) (-14 *4 (-745))))
+ (-12 (-5 *2 (-621 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5))
+ (-14 *3 (-549)) (-14 *4 (-747))))
((*1 *1 *2)
- (-12 (-5 *2 (-1103 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169))
- (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547))))
+ (-12 (-5 *2 (-1109 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170))
+ (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549))))
((*1 *1 *2)
- (-12 (-5 *2 (-232 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169))
- (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547))))
+ (-12 (-5 *2 (-234 *4 *5)) (-14 *4 (-747)) (-4 *5 (-170))
+ (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549))))
((*1 *2 *3)
- (-12 (-5 *3 (-1219 (-663 *4))) (-4 *4 (-169))
- (-5 *2 (-1219 (-663 (-398 (-921 *4))))) (-5 *1 (-181 *4))))
+ (-12 (-5 *3 (-1226 (-665 *4))) (-4 *4 (-170))
+ (-5 *2 (-1226 (-665 (-400 (-923 *4))))) (-5 *1 (-183 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 *3))
+ (-12 (-5 *2 (-621 *3))
(-4 *3
- (-13 (-821)
- (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 ((-1224) $))
- (-15 -1764 ((-1224) $)))))
- (-5 *1 (-206 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-973 10)) (-5 *1 (-209))))
- ((*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-209))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-237 *3)) (-4 *3 (-821))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-237 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1056 (-307 *4)))
- (-4 *4 (-13 (-821) (-539) (-592 (-370)))) (-5 *2 (-1056 (-370)))
- (-5 *1 (-249 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-257 *2)) (-4 *2 (-821))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-266))))
+ (-13 (-823)
+ (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 ((-1231) $))
+ (-15 -2684 ((-1231) $)))))
+ (-5 *1 (-208 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-975 10)) (-5 *1 (-211))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-211))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-239 *3)) (-4 *3 (-823))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1059 (-309 *4)))
+ (-4 *4 (-13 (-823) (-541) (-594 (-372)))) (-5 *2 (-1059 (-372)))
+ (-5 *1 (-251 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-268))))
((*1 *2 *1)
- (-12 (-4 *2 (-1195 *3)) (-5 *1 (-280 *3 *2 *4 *5 *6 *7))
- (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-12 (-4 *2 (-1202 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7))
+ (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1204 *4 *5 *6)) (-4 *4 (-13 (-27) (-1158) (-421 *3)))
- (-14 *5 (-1136)) (-14 *6 *4)
- (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442)))
- (-5 *1 (-304 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-321))))
+ (-12 (-5 *2 (-1211 *4 *5 *6)) (-4 *4 (-13 (-27) (-1165) (-423 *3)))
+ (-14 *5 (-1143)) (-14 *6 *4)
+ (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444)))
+ (-5 *1 (-306 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-323))))
((*1 *2 *1)
- (-12 (-5 *2 (-307 *5)) (-5 *1 (-330 *3 *4 *5))
- (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (-12 (-5 *2 (-309 *5)) (-5 *1 (-332 *3 *4 *5))
+ (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *2 *3)
- (-12 (-4 *4 (-340)) (-4 *2 (-320 *4)) (-5 *1 (-338 *3 *4 *2))
- (-4 *3 (-320 *4))))
+ (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *3 *4 *2))
+ (-4 *3 (-322 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-340)) (-4 *2 (-320 *4)) (-5 *1 (-338 *2 *4 *3))
- (-4 *3 (-320 *4))))
+ (-12 (-4 *4 (-342)) (-4 *2 (-322 *4)) (-5 *1 (-340 *2 *4 *3))
+ (-4 *3 (-322 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169))
- (-5 *2 (-1243 *3 *4))))
+ (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))
+ (-5 *2 (-1250 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169))
- (-5 *2 (-1234 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169))))
+ (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))
+ (-5 *2 (-1241 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321)))))
- (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-673))) (-4 *1 (-374))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323)))))
+ (-4 *1 (-376))))
+ ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-376))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-675))) (-4 *1 (-376))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321)))))
- (-4 *1 (-375))))
- ((*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-375))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-375))))
- ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1119))))
- ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-4 *1 (-380))))
- ((*1 *2 *3) (-12 (-5 *2 (-385)) (-5 *1 (-384 *3)) (-4 *3 (-1063))))
- ((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-385))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323)))))
+ (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-377))))
+ ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1125))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-4 *1 (-382))))
+ ((*1 *2 *3) (-12 (-5 *2 (-387)) (-5 *1 (-386 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-387))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321)))))
- (-4 *1 (-387))))
- ((*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-387))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-387))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323)))))
+ (-4 *1 (-389))))
+ ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-389))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-389))))
((*1 *1 *2)
- (-12 (-5 *2 (-285 (-307 (-166 (-370))))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-287 (-309 (-167 (-372))))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-285 (-307 (-370)))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-287 (-309 (-372)))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-285 (-307 (-547)))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-287 (-309 (-549)))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-307 (-166 (-370)))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-307 (-370))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-309 (-372))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-307 (-547))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-309 (-549))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-285 (-307 (-668)))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-287 (-309 (-670)))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-285 (-307 (-673)))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-287 (-309 (-675)))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-285 (-307 (-675)))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-287 (-309 (-677)))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-307 (-668))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-309 (-670))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-307 (-673))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-309 (-675))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-307 (-675))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-309 (-677))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321)))))
- (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136))
- (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323)))))
+ (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 (-321))) (-5 *1 (-389 *3 *4 *5 *6))
- (-14 *3 (-1136)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-621 (-323))) (-5 *1 (-391 *3 *4 *5 *6))
+ (-14 *3 (-1143)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-321)) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1136))
- (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1140))))
+ (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1143))
+ (-14 *4 (-3 (|:| |fst| (-427)) (|:| -2903 "void")))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1147))))
((*1 *1 *2)
- (-12 (-5 *2 (-322 *4)) (-4 *4 (-13 (-821) (-21)))
- (-5 *1 (-418 *3 *4)) (-4 *3 (-13 (-169) (-38 (-398 (-547)))))))
+ (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-823) (-21)))
+ (-5 *1 (-420 *3 *4)) (-4 *3 (-13 (-170) (-38 (-400 (-549)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-418 *2 *3)) (-4 *2 (-13 (-169) (-38 (-398 (-547)))))
- (-4 *3 (-13 (-821) (-21)))))
+ (-12 (-5 *1 (-420 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-549)))))
+ (-4 *3 (-13 (-823) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-398 (-921 (-398 *3)))) (-4 *3 (-539)) (-4 *3 (-821))
- (-4 *1 (-421 *3))))
+ (-12 (-5 *2 (-400 (-923 (-400 *3)))) (-4 *3 (-541)) (-4 *3 (-823))
+ (-4 *1 (-423 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-921 (-398 *3))) (-4 *3 (-539)) (-4 *3 (-821))
- (-4 *1 (-421 *3))))
+ (-12 (-5 *2 (-923 (-400 *3))) (-4 *3 (-541)) (-4 *3 (-823))
+ (-4 *1 (-423 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-398 *3)) (-4 *3 (-539)) (-4 *3 (-821))
- (-4 *1 (-421 *3))))
+ (-12 (-5 *2 (-400 *3)) (-4 *3 (-541)) (-4 *3 (-823))
+ (-4 *1 (-423 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1087 *3 (-590 *1))) (-4 *3 (-1016)) (-4 *3 (-821))
- (-4 *1 (-421 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-425))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-425))))
- ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-425))))
- ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-425))))
- ((*1 *1 *2) (-12 (-5 *2 (-425)) (-5 *1 (-428))))
- ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-428))))
+ (-12 (-5 *2 (-1092 *3 (-592 *1))) (-4 *3 (-1018)) (-4 *3 (-823))
+ (-4 *1 (-423 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-427))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-427))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-427))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-427))))
+ ((*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-430))))
+ ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-430))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321)))))
- (-4 *1 (-430))))
- ((*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-430))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-430))))
- ((*1 *1 *2) (-12 (-5 *2 (-1219 (-673))) (-4 *1 (-430))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323)))))
+ (-4 *1 (-432))))
+ ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-432))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1226 (-675))) (-4 *1 (-432))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1140)) (|:| -2096 (-619 (-321)))))
- (-4 *1 (-431))))
- ((*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-431))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-431))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1147)) (|:| -2103 (-621 (-323)))))
+ (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-4 *1 (-433))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-398 (-921 *3)))) (-4 *3 (-169))
- (-14 *6 (-1219 (-663 *3))) (-5 *1 (-443 *3 *4 *5 *6))
- (-14 *4 (-890)) (-14 *5 (-619 (-1136)))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-458))))
- ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-458))))
+ (-12 (-5 *2 (-1226 (-400 (-923 *3)))) (-4 *3 (-170))
+ (-14 *6 (-1226 (-665 *3))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-14 *4 (-892)) (-14 *5 (-621 (-1143)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-460))))
+ ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-460))))
((*1 *1 *2)
- (-12 (-5 *2 (-1204 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1136))
- (-14 *5 *3) (-5 *1 (-464 *3 *4 *5))))
+ (-12 (-5 *2 (-1211 *3 *4 *5)) (-4 *3 (-1018)) (-14 *4 (-1143))
+ (-14 *5 *3) (-5 *1 (-466 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-464 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-5 *2 (-973 16)) (-5 *1 (-477))))
- ((*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-477))))
- ((*1 *1 *2) (-12 (-5 *2 (-1087 (-547) (-590 (-484)))) (-5 *1 (-484))))
- ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-491))))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-466 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-5 *2 (-975 16)) (-5 *1 (-479))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-479))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092 (-549) (-592 (-486)))) (-5 *1 (-486))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-493))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-354))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-1172))) (-5 *1 (-513))))
- ((*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-583))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-1172))) (-5 *1 (-584))))
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-356))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-1179))) (-5 *1 (-515))))
+ ((*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-585))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-1179))) (-5 *1 (-586))))
((*1 *1 *2)
- (-12 (-4 *3 (-169)) (-5 *1 (-585 *3 *2)) (-4 *2 (-719 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-591 *2)) (-4 *2 (-1173))))
- ((*1 *1 *2) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1016))))
+ (-12 (-4 *3 (-170)) (-5 *1 (-587 *3 *2)) (-4 *2 (-721 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *2) (-12 (-4 *1 (-598 *2)) (-4 *2 (-1018))))
((*1 *2 *1)
- (-12 (-5 *2 (-1239 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821))
- (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890))))
+ (-12 (-5 *2 (-1246 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892))))
((*1 *2 *1)
- (-12 (-5 *2 (-1234 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821))
- (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890))))
+ (-12 (-5 *2 (-1241 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892))))
((*1 *1 *2)
- (-12 (-4 *3 (-169)) (-5 *1 (-611 *3 *2)) (-4 *2 (-719 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-651 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821))))
+ (-12 (-4 *3 (-170)) (-5 *1 (-613 *3 *2)) (-4 *2 (-721 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
((*1 *2 *1)
- (-12 (-5 *2 (-927 (-927 (-927 *3)))) (-5 *1 (-649 *3))
- (-4 *3 (-1063))))
+ (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-5 *1 (-651 *3))
+ (-4 *3 (-1067))))
((*1 *1 *2)
- (-12 (-5 *2 (-927 (-927 (-927 *3)))) (-4 *3 (-1063))
- (-5 *1 (-649 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821))))
- ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-655))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063))))
+ (-12 (-5 *2 (-929 (-929 (-929 *3)))) (-4 *3 (-1067))
+ (-5 *1 (-651 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-657))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1067))))
((*1 *1 *2)
- (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *2)) (-4 *4 (-364 *3))
- (-4 *2 (-364 *3))))
- ((*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832)))))
- ((*1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832)))))
- ((*1 *2 *1) (-12 (-5 *2 (-166 (-370))) (-5 *1 (-668))))
- ((*1 *1 *2) (-12 (-5 *2 (-166 (-675))) (-5 *1 (-668))))
- ((*1 *1 *2) (-12 (-5 *2 (-166 (-673))) (-5 *1 (-668))))
- ((*1 *1 *2) (-12 (-5 *2 (-166 (-547))) (-5 *1 (-668))))
- ((*1 *1 *2) (-12 (-5 *2 (-166 (-370))) (-5 *1 (-668))))
- ((*1 *1 *2) (-12 (-5 *2 (-675)) (-5 *1 (-673))))
- ((*1 *2 *1) (-12 (-5 *2 (-370)) (-5 *1 (-673))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-307 (-547))) (-5 *2 (-307 (-675))) (-5 *1 (-675))))
- ((*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1063))))
- ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1119)) (-5 *1 (-685))))
+ (-12 (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *2)) (-4 *4 (-366 *3))
+ (-4 *2 (-366 *3))))
+ ((*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834)))))
+ ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-670))))
+ ((*1 *1 *2) (-12 (-5 *2 (-167 (-677))) (-5 *1 (-670))))
+ ((*1 *1 *2) (-12 (-5 *2 (-167 (-675))) (-5 *1 (-670))))
+ ((*1 *1 *2) (-12 (-5 *2 (-167 (-549))) (-5 *1 (-670))))
+ ((*1 *1 *2) (-12 (-5 *2 (-167 (-372))) (-5 *1 (-670))))
+ ((*1 *1 *2) (-12 (-5 *2 (-677)) (-5 *1 (-675))))
+ ((*1 *2 *1) (-12 (-5 *2 (-372)) (-5 *1 (-675))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-309 (-549))) (-5 *2 (-309 (-677))) (-5 *1 (-677))))
+ ((*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1125)) (-5 *1 (-687))))
((*1 *2 *1)
- (-12 (-4 *2 (-169)) (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-170)) (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1195 *3))))
+ (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1202 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -3487 *3) (|:| -3322 *4)))
- (-5 *1 (-688 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-1063))
+ (-12 (-5 *2 (-2 (|:| -3493 *3) (|:| -3731 *4)))
+ (-5 *1 (-690 *3 *4 *5)) (-4 *3 (-823)) (-4 *4 (-1067))
(-14 *5 (-1 (-112) *2 *2))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| -3487 *3) (|:| -3322 *4))) (-4 *3 (-821))
- (-4 *4 (-1063)) (-5 *1 (-688 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2))))
+ (-12 (-5 *2 (-2 (|:| -3493 *3) (|:| -3731 *4))) (-4 *3 (-823))
+ (-4 *4 (-1067)) (-5 *1 (-690 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2))))
((*1 *2 *1)
- (-12 (-4 *2 (-169)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 (-2 (|:| -1563 *3) (|:| -3518 *4))))
- (-4 *3 (-1016)) (-4 *4 (-701)) (-5 *1 (-710 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-738))))
+ (-12 (-5 *2 (-621 (-2 (|:| -1570 *3) (|:| -3526 *4))))
+ (-4 *3 (-1018)) (-4 *4 (-703)) (-5 *1 (-712 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-740))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
(|:| |mdnia|
- (-2 (|:| |fn| (-307 (-217)))
- (|:| -4232 (-619 (-1058 (-814 (-217)))))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))))
- (-5 *1 (-743))))
+ (-2 (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-621 (-1061 (-816 (-219)))))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
+ (-5 *1 (-745))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-307 (-217)))
- (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (-5 *1 (-743))))
+ (-2 (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *1 (-745))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (-5 *1 (-743))))
- ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-743))))
- ((*1 *2 *3) (-12 (-5 *2 (-748)) (-5 *1 (-747 *3)) (-4 *3 (-1173))))
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *1 (-745))))
+ ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-745))))
+ ((*1 *2 *3) (-12 (-5 *2 (-750)) (-5 *1 (-749 *3)) (-4 *3 (-1180))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217)))
- (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217)))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))
- (-5 *1 (-782))))
- ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-782))))
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
+ (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *1 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-784))))
((*1 *2 *1)
- (-12 (-4 *2 (-869 *3)) (-5 *1 (-791 *3 *2 *4)) (-4 *3 (-1063))
+ (-12 (-4 *2 (-871 *3)) (-5 *1 (-793 *3 *2 *4)) (-4 *3 (-1067))
(-14 *4 *3)))
((*1 *1 *2)
- (-12 (-4 *3 (-1063)) (-14 *4 *3) (-5 *1 (-791 *3 *2 *4))
- (-4 *2 (-869 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-798))))
+ (-12 (-4 *3 (-1067)) (-14 *4 *3) (-5 *1 (-793 *3 *2 *4))
+ (-4 *2 (-871 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-800))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217)))
- (|:| |lb| (-619 (-814 (-217))))
- (|:| |cf| (-619 (-307 (-217))))
- (|:| |ub| (-619 (-814 (-217))))))
+ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
+ (|:| |lb| (-621 (-816 (-219))))
+ (|:| |cf| (-621 (-309 (-219))))
+ (|:| |ub| (-621 (-816 (-219))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-619 (-307 (-217))))
- (|:| -3054 (-619 (-217)))))))
- (-5 *1 (-812))))
+ (-2 (|:| |lfn| (-621 (-309 (-219))))
+ (|:| -3060 (-621 (-219)))))))
+ (-5 *1 (-814))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))
- (-5 *1 (-812))))
+ (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))
+ (-5 *1 (-814))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217)))
- (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217))))
- (|:| |ub| (-619 (-814 (-217))))))
- (-5 *1 (-812))))
- ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-812))))
+ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
+ (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219))))
+ (|:| |ub| (-621 (-816 (-219))))))
+ (-5 *1 (-814))))
+ ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-814))))
((*1 *1 *2)
- (-12 (-5 *2 (-1215 *3)) (-14 *3 (-1136)) (-5 *1 (-826 *3 *4 *5 *6))
- (-4 *4 (-1016)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-829))))
+ (-12 (-5 *2 (-1222 *3)) (-14 *3 (-1143)) (-5 *1 (-828 *3 *4 *5 *6))
+ (-4 *4 (-1018)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-831))))
((*1 *1 *2)
- (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-835 *3 *4 *5 *6))
- (-14 *4 (-619 (-1136))) (-14 *5 (-619 (-745))) (-14 *6 (-745))))
+ (-12 (-5 *2 (-923 *3)) (-4 *3 (-1018)) (-5 *1 (-837 *3 *4 *5 *6))
+ (-14 *4 (-621 (-1143))) (-14 *5 (-621 (-747))) (-14 *6 (-747))))
((*1 *2 *1)
- (-12 (-5 *2 (-921 *3)) (-5 *1 (-835 *3 *4 *5 *6)) (-4 *3 (-1016))
- (-14 *4 (-619 (-1136))) (-14 *5 (-619 (-745))) (-14 *6 (-745))))
- ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))
+ (-12 (-5 *2 (-923 *3)) (-5 *1 (-837 *3 *4 *5 *6)) (-4 *3 (-1018))
+ (-14 *4 (-621 (-1143))) (-14 *5 (-621 (-747))) (-14 *6 (-747))))
+ ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845))))
((*1 *2 *3)
- (-12 (-5 *3 (-921 (-48))) (-5 *2 (-307 (-547))) (-5 *1 (-844))))
+ (-12 (-5 *3 (-923 (-48))) (-5 *2 (-309 (-549))) (-5 *1 (-846))))
((*1 *2 *3)
- (-12 (-5 *3 (-398 (-921 (-48)))) (-5 *2 (-307 (-547)))
- (-5 *1 (-844))))
- ((*1 *1 *2) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821))))
+ (-12 (-5 *3 (-400 (-923 (-48)))) (-5 *2 (-309 (-549)))
+ (-5 *1 (-846))))
+ ((*1 *1 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-795 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-619 (-307 (-217))))
+ (-2 (|:| |pde| (-621 (-309 (-219))))
(|:| |constraints|
- (-619
- (-2 (|:| |start| (-217)) (|:| |finish| (-217))
- (|:| |grid| (-745)) (|:| |boundaryType| (-547))
- (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217))))))
- (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119))
- (|:| |tol| (-217))))
- (-5 *1 (-867))))
- ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-867))))
+ (-621
+ (-2 (|:| |start| (-219)) (|:| |finish| (-219))
+ (|:| |grid| (-747)) (|:| |boundaryType| (-549))
+ (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219))))))
+ (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125))
+ (|:| |tol| (-219))))
+ (-5 *1 (-869))))
+ ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-869))))
((*1 *2 *1)
- (-12 (-5 *2 (-1159 *3)) (-5 *1 (-870 *3)) (-4 *3 (-1063))))
+ (-12 (-5 *2 (-1166 *3)) (-5 *1 (-872 *3)) (-4 *3 (-1067))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3))))
+ (-12 (-5 *2 (-621 (-876 *3))) (-4 *3 (-1067)) (-5 *1 (-875 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3))))
+ (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-876 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3))))
+ (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-398 (-409 *3))) (-4 *3 (-298)) (-5 *1 (-883 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-883 *3)) (-4 *3 (-298))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-467)) (-5 *2 (-307 *4)) (-5 *1 (-888 *4))
- (-4 *4 (-13 (-821) (-539)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-935 *3)) (-4 *3 (-936))))
- ((*1 *1 *2) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-940))))
+ (-12 (-5 *2 (-400 (-411 *3))) (-4 *3 (-300)) (-5 *1 (-885 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-469)) (-5 *2 (-309 *4)) (-5 *1 (-890 *4))
+ (-4 *4 (-13 (-823) (-541)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-937 *3)) (-4 *3 (-938))))
+ ((*1 *1 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-942))))
((*1 *2 *1)
- (-12 (-5 *2 (-398 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547))))
- ((*1 *2 *3) (-12 (-5 *2 (-1224)) (-5 *1 (-1002 *3)) (-4 *3 (-1173))))
- ((*1 *2 *3) (-12 (-5 *3 (-303)) (-5 *1 (-1002 *2)) (-4 *2 (-1173))))
+ (-12 (-5 *2 (-400 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1231)) (-5 *1 (-1004 *3)) (-4 *3 (-1180))))
+ ((*1 *2 *3) (-12 (-5 *3 (-305)) (-5 *1 (-1004 *2)) (-4 *2 (-1180))))
((*1 *1 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5))
- (-14 *6 (-619 *2))))
- ((*1 *1 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1173))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-920 *3 *4 *5))
+ (-14 *6 (-621 *2))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1180))))
((*1 *2 *3)
- (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-1012 *3)) (-4 *3 (-539))))
- ((*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1016))))
+ (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-1014 *3)) (-4 *3 (-541))))
+ ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1018))))
((*1 *2 *1)
- (-12 (-5 *2 (-663 *5)) (-5 *1 (-1020 *3 *4 *5)) (-14 *3 (-745))
- (-14 *4 (-745)) (-4 *5 (-1016))))
+ (-12 (-5 *2 (-665 *5)) (-5 *1 (-1022 *3 *4 *5)) (-14 *3 (-747))
+ (-14 *4 (-747)) (-4 *5 (-1018))))
((*1 *1 *2)
- (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2))
- (-4 *2 (-918 *3 (-519 *4) *4))))
+ (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1093 *3 *4 *2))
+ (-4 *2 (-920 *3 (-521 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-1016)) (-4 *2 (-821)) (-5 *1 (-1088 *3 *2 *4))
- (-4 *4 (-918 *3 (-519 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-832))))
+ (-12 (-4 *3 (-1018)) (-4 *2 (-823)) (-5 *1 (-1093 *3 *2 *4))
+ (-4 *4 (-920 *3 (-521 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-834))))
((*1 *2 *1)
- (-12 (-5 *2 (-663 *4)) (-5 *1 (-1103 *3 *4)) (-14 *3 (-745))
- (-4 *4 (-1016))))
- ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1105))))
+ (-12 (-5 *2 (-665 *4)) (-5 *1 (-1109 *3 *4)) (-14 *3 (-747))
+ (-4 *4 (-1018))))
+ ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1111))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-1117 *3))))
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-1123 *3))))
((*1 *2 *3)
- (-12 (-5 *2 (-1117 *3)) (-5 *1 (-1121 *3)) (-4 *3 (-1016))))
+ (-12 (-5 *2 (-1123 *3)) (-5 *1 (-1127 *3)) (-4 *3 (-1018))))
((*1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1127 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1134 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1133 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1140 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1134 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1141 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1192 *4 *3)) (-4 *3 (-1016)) (-14 *4 (-1136))
- (-14 *5 *3) (-5 *1 (-1134 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1135))))
- ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146 (-1136) (-428))) (-5 *1 (-1140))))
- ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1141))))
- ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1141))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1141))))
- ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1141))))
- ((*1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-1141))))
- ((*1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-1141))))
- ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1141))))
- ((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1141))))
- ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1145 *3)) (-4 *3 (-1063))))
- ((*1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *1 (-1152 *3)) (-4 *3 (-1063))))
- ((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1153))))
+ (-12 (-5 *2 (-1199 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1143))
+ (-14 *5 *3) (-5 *1 (-1141 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1142))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1143))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153 (-1143) (-430))) (-5 *1 (-1147))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1148))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1148))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1148))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1148))))
+ ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1148))))
+ ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1148))))
+ ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1148))))
+ ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1148))))
+ ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1152 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1160)) (-5 *1 (-1159 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-834)) (-5 *1 (-1160))))
((*1 *1 *2)
- (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-1167 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1167 *3)) (-4 *3 (-1016))))
+ (-12 (-5 *2 (-923 *3)) (-4 *3 (-1018)) (-5 *1 (-1174 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1174 *3)) (-4 *3 (-1018))))
((*1 *1 *2)
- (-12 (-5 *2 (-927 *3)) (-4 *3 (-1173)) (-5 *1 (-1170 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-1172))))
+ (-12 (-5 *2 (-929 *3)) (-4 *3 (-1180)) (-5 *1 (-1177 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1179))))
((*1 *1 *2)
- (-12 (-4 *3 (-1016)) (-4 *1 (-1181 *3 *2)) (-4 *2 (-1210 *3))))
+ (-12 (-4 *3 (-1018)) (-4 *1 (-1188 *3 *2)) (-4 *2 (-1217 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1183 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1190 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1058 *3)) (-4 *3 (-1173)) (-5 *1 (-1186 *3))))
+ (-12 (-5 *2 (-1061 *3)) (-4 *3 (-1180)) (-5 *1 (-1193 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1215 *3)) (-14 *3 (-1136)) (-5 *1 (-1192 *3 *4))
- (-4 *4 (-1016))))
+ (-12 (-5 *2 (-1222 *3)) (-14 *3 (-1143)) (-5 *1 (-1199 *3 *4))
+ (-4 *4 (-1018))))
((*1 *1 *2)
- (-12 (-4 *3 (-1016)) (-4 *1 (-1202 *3 *2)) (-4 *2 (-1179 *3))))
+ (-12 (-4 *3 (-1018)) (-4 *1 (-1209 *3 *2)) (-4 *2 (-1186 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1204 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1211 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1211 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1218 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1192 *4 *3)) (-4 *3 (-1016)) (-14 *4 (-1136))
- (-14 *5 *3) (-5 *1 (-1211 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1215 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1220))))
- ((*1 *2 *3) (-12 (-5 *3 (-458)) (-5 *2 (-1220)) (-5 *1 (-1223))))
- ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1224))))
+ (-12 (-5 *2 (-1199 *4 *3)) (-4 *3 (-1018)) (-14 *4 (-1143))
+ (-14 *5 *3) (-5 *1 (-1218 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1222 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1227))))
+ ((*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1227)) (-5 *1 (-1230))))
+ ((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-1231))))
((*1 *1 *2)
- (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4))
- (-5 *1 (-1231 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-918 *3 *5 *4))
- (-14 *7 (-619 (-745))) (-14 *8 (-745))))
+ (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-621 *4))
+ (-5 *1 (-1238 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-920 *3 *5 *4))
+ (-14 *7 (-621 (-747))) (-14 *8 (-747))))
((*1 *2 *1)
- (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-1231 *3 *4 *5 *2 *6 *7 *8))
- (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4))
- (-14 *7 (-619 (-745))) (-14 *8 (-745))))
- ((*1 *1 *2) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1016))))
+ (-12 (-4 *2 (-920 *3 *5 *4)) (-5 *1 (-1238 *3 *4 *5 *2 *6 *7 *8))
+ (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-769)) (-14 *6 (-621 *4))
+ (-14 *7 (-621 (-747))) (-14 *8 (-747))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1018))))
((*1 *1 *2)
- (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))
+ (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
((*1 *2 *1)
- (-12 (-5 *2 (-1243 *3 *4)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-169))))
+ (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-1246 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-170))))
((*1 *2 *1)
- (-12 (-5 *2 (-1234 *3 *4)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-169))))
+ (-12 (-5 *2 (-1241 *3 *4)) (-5 *1 (-1246 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-170))))
((*1 *1 *2)
- (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169))
- (-5 *1 (-1239 *3 *4))))
+ (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))
+ (-5 *1 (-1246 *3 *4))))
((*1 *1 *2)
- (-12 (-5 *1 (-1242 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-817)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-619 *2))) (-5 *4 (-619 *5))
- (-4 *5 (-38 (-398 (-547)))) (-4 *2 (-1210 *5))
- (-5 *1 (-1212 *5 *2)))))
+ (-12 (-5 *1 (-1249 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-819)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1069 *3)) (-5 *1 (-876 *3)) (-4 *3 (-361))
+ (-4 *3 (-1067)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-250)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
+ (-5 *2 (-665 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2))
- (|has| *2 (-6 (-4331 "*"))) (-4 *2 (-1016))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-169))
- (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2))
- (-4 *5 (-230 *3 *2)) (|has| *2 (-6 (-4331 "*"))) (-4 *2 (-1016)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1219 *5)) (-4 *5 (-766)) (-5 *2 (-112))
- (-5 *1 (-816 *4 *5)) (-14 *4 (-745)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))))
-(((*1 *1 *1) (-4 *1 (-838 *2))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1496 *4)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *1 *2)
(-12
(-5 *2
- (-619
- (-2
- (|:| -3331
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (|:| -1786
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1117 (-217)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4232
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-542)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821))))
- ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821))))
- ((*1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832))))
+ (-621
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-549)))))
+ (-5 *1 (-411 *3)) (-4 *3 (-541))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-747)) (-4 *3 (-342)) (-4 *5 (-1202 *3))
+ (-5 *2 (-621 (-1139 *3))) (-5 *1 (-489 *3 *5 *6))
+ (-4 *6 (-1202 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-823)) (-4 *3 (-1067)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3))
- (-4 *3 (-1195 *2)))))
+ (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3))
+ (-4 *3 (-1202 *2)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-5 *2 (-2 (|:| -3331 *3) (|:| -1786 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1173)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-5 *2 (-2 (|:| -3337 *3) (|:| -1793 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-370))) (-5 *1 (-254))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-539)) (-4 *2 (-169))))
- ((*1 *2 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-539)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-547)) (-4 *4 (-13 (-539) (-145))) (-5 *1 (-524 *4 *2))
- (-4 *2 (-1210 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-547)) (-4 *4 (-13 (-354) (-359) (-592 *3)))
- (-4 *5 (-1195 *4)) (-4 *6 (-699 *4 *5)) (-5 *1 (-528 *4 *5 *6 *2))
- (-4 *2 (-1210 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-547)) (-4 *4 (-13 (-354) (-359) (-592 *3)))
- (-5 *1 (-529 *4 *2)) (-4 *2 (-1210 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1117 *4)) (-5 *3 (-547)) (-4 *4 (-13 (-539) (-145)))
- (-5 *1 (-1113 *4)))))
-(((*1 *1) (-4 *1 (-340))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222))))
- ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-745)) (-5 *3 (-912 *4)) (-4 *1 (-1096 *4))
- (-4 *4 (-1016))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-745)) (-5 *4 (-912 (-217))) (-5 *2 (-1224))
- (-5 *1 (-1221)))))
-(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1173))))
+ ((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-665 *4)) (-5 *3 (-747)) (-4 *4 (-1018))
+ (-5 *1 (-666 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1063))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1207 *3)) (-4 *3 (-1173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-5 *2 (-1119)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1026 (-993 *4) (-1132 (-993 *4)))) (-5 *3 (-832))
- (-5 *1 (-993 *4)) (-4 *4 (-13 (-819) (-354) (-991))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-404 *3 *4 *5 *6)) (-4 *6 (-1007 *4)) (-4 *3 (-298))
- (-4 *4 (-961 *3)) (-4 *5 (-1195 *4)) (-4 *6 (-400 *4 *5))
- (-14 *7 (-1219 *6)) (-5 *1 (-405 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1219 *6)) (-4 *6 (-400 *4 *5)) (-4 *4 (-961 *3))
- (-4 *5 (-1195 *4)) (-4 *3 (-298)) (-5 *1 (-405 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-794)) (-14 *5 (-1136)) (-5 *2 (-619 (-1192 *5 *4)))
- (-5 *1 (-1077 *4 *5)) (-5 *3 (-1192 *5 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-427)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-409 *4)) (-4 *4 (-539)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-539)) (-4 *3 (-1016))
- (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-823 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-98 *5)) (-4 *5 (-539)) (-4 *5 (-1016))
- (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-824 *5 *3))
- (-4 *3 (-823 *5)))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-1214 *3)) (-4 *3 (-1180))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-271))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 *2))
- (-5 *2 (-370)) (-5 *1 (-759 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016))
- (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539))
- (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539))
- (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821))
- (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539))
- (-4 *5 (-821)) (-4 *5 (-592 *2)) (-5 *2 (-370))
- (-5 *1 (-759 *5)))))
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
+ (-12 (-4 *6 (-541)) (-4 *2 (-920 *3 *5 *4))
+ (-5 *1 (-709 *5 *4 *6 *2)) (-5 *3 (-400 (-923 *6))) (-4 *5 (-769))
+ (-4 *4 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))
+ (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1125)) (-5 *5 (-665 (-219))) (-5 *6 (-219))
+ (-5 *7 (-665 (-549))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
+(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-52)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-4 *1 (-874 *3)))))
+(((*1 *1) (-5 *1 (-139))))
(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-1159 *3))) (-5 *1 (-1159 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-1063))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1063)) (-5 *2 (-112))
- (-5 *1 (-1174 *3)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1166 *5 *6 *7 *8)) (-4 *5 (-539))
- (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)))))
+ (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-4 *6 (-335 *3 *4 *5))
+ (-5 *2 (-406 *4 (-400 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1226 *6)) (-4 *6 (-13 (-402 *4 *5) (-1009 *4)))
+ (-4 *4 (-963 *3)) (-4 *5 (-1202 *4)) (-4 *3 (-300))
+ (-5 *1 (-406 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-356))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-621 *11))
+ (|:| |todo| (-621 (-2 (|:| |val| *3) (|:| -1981 *11))))))
+ (-5 *6 (-747))
+ (-5 *2 (-621 (-2 (|:| |val| (-621 *10)) (|:| -1981 *11))))
+ (-5 *3 (-621 *10)) (-5 *4 (-621 *11)) (-4 *10 (-1032 *7 *8 *9))
+ (-4 *11 (-1038 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769))
+ (-4 *9 (-823)) (-5 *1 (-1036 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-621 *11))
+ (|:| |todo| (-621 (-2 (|:| |val| *3) (|:| -1981 *11))))))
+ (-5 *6 (-747))
+ (-5 *2 (-621 (-2 (|:| |val| (-621 *10)) (|:| -1981 *11))))
+ (-5 *3 (-621 *10)) (-5 *4 (-621 *11)) (-4 *10 (-1032 *7 *8 *9))
+ (-4 *11 (-1076 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-769))
+ (-4 *9 (-823)) (-5 *1 (-1112 *7 *8 *9 *10 *11)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-549)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1180))
+ (-4 *5 (-366 *4)) (-4 *3 (-366 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-1146))))
+ ((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1146)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-1108 *3)))))
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-1114 *3)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4329)) (-4 *1 (-149 *2)) (-4 *2 (-1173))
- (-4 *2 (-1063))))
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-149 *2)) (-4 *2 (-1180))
+ (-4 *2 (-1067))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4329)) (-4 *1 (-149 *3))
- (-4 *3 (-1173))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4337)) (-4 *1 (-149 *3))
+ (-4 *3 (-1180))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1173))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1180))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-547)) (-4 *4 (-1063))
- (-5 *1 (-712 *4))))
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1067))
+ (-5 *1 (-714 *4))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-5 *1 (-712 *2)) (-4 *2 (-1063))))
+ (-12 (-5 *3 (-549)) (-5 *1 (-714 *2)) (-4 *2 (-1067))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34)))
- (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1102 *3 *4)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN))))
- (-5 *2 (-1004)) (-5 *1 (-723)))))
-(((*1 *1 *1) (-12 (-5 *1 (-489 *2)) (-14 *2 (-547))))
- ((*1 *1 *1) (-5 *1 (-1082))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547))
- (-5 *2 (-1004)) (-5 *1 (-731)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-619 (-547))) (-5 *3 (-112)) (-5 *1 (-1073)))))
+ (-12 (-5 *2 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1108 *3 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-119 *2)) (-4 *2 (-1180)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4)
- (-239 *4 (-398 (-547)))))
- (-14 *4 (-619 (-1136))) (-14 *5 (-745)) (-5 *2 (-112))
- (-5 *1 (-494 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136)) (-4 *4 (-442)) (-4 *4 (-821))
- (-5 *1 (-556 *4 *2)) (-4 *2 (-275)) (-4 *2 (-421 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-236 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *5)) (-4 *5 (-421 *4)) (-4 *4 (-13 (-821) (-539)))
- (-5 *2 (-832)) (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-489 *2)) (-14 *2 (-547))))
- ((*1 *1 *1 *1) (-5 *1 (-1082))))
+ (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372))
+ (|:| |expense| (-372)) (|:| |accuracy| (-372))
+ (|:| |intermediateResults| (-372))))
+ (-5 *2 (-1006)) (-5 *1 (-298)))))
+(((*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-549))))
+ ((*1 *1 *1) (-5 *1 (-1087))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-809 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-534))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-621
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-747)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-769)) (-4 *6 (-920 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-823))
+ (-5 *1 (-441 *4 *3 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1180))
+ (-4 *5 (-1180)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-234 *6 *7)) (-14 *6 (-747))
+ (-4 *7 (-1180)) (-4 *5 (-1180)) (-5 *2 (-234 *6 *5))
+ (-5 *1 (-233 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1180)) (-4 *5 (-1180))
+ (-4 *2 (-366 *5)) (-5 *1 (-364 *6 *4 *5 *2)) (-4 *4 (-366 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1067)) (-4 *5 (-1067))
+ (-4 *2 (-418 *5)) (-5 *1 (-416 *6 *4 *5 *2)) (-4 *4 (-418 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-621 *6)) (-4 *6 (-1180))
+ (-4 *5 (-1180)) (-5 *2 (-621 *5)) (-5 *1 (-619 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-929 *6)) (-4 *6 (-1180))
+ (-4 *5 (-1180)) (-5 *2 (-929 *5)) (-5 *1 (-928 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1123 *6)) (-4 *6 (-1180))
+ (-4 *3 (-1180)) (-5 *2 (-1123 *3)) (-5 *1 (-1121 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1226 *6)) (-4 *6 (-1180))
+ (-4 *5 (-1180)) (-5 *2 (-1226 *5)) (-5 *1 (-1225 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-219) (-219) (-219)))
+ (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined"))
+ (-5 *5 (-1061 (-219))) (-5 *6 (-621 (-256))) (-5 *2 (-1100 (-219)))
+ (-5 *1 (-673)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 (-1239 *4 *5 *6 *7)))
+ (-5 *1 (-1239 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-621 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-541))
+ (-4 *7 (-769)) (-4 *8 (-823)) (-5 *2 (-621 (-1239 *6 *7 *8 *9)))
+ (-5 *1 (-1239 *6 *7 *8 *9)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-549))))
+ ((*1 *1 *1 *1) (-5 *1 (-1087))))
+(((*1 *2 *1) (-12 (-4 *1 (-1214 *3)) (-4 *3 (-1180)) (-5 *2 (-747)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3719 *3)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1119))
- (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-458)))))
-(((*1 *2)
- (-12 (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4)))
- (-5 *2 (-1219 *1)) (-4 *1 (-333 *3 *4 *5)))))
+ (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1353 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-747)) (-5 *1 (-220))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-167 (-219))) (-5 *3 (-747)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1106))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-4 *5 (-1202 *4)) (-5 *2 (-1231))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1202 (-400 *5))) (-14 *7 *6))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-600 *4 *2)) (-4 *2 (-13 (-1165) (-930) (-29 *4))))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1152 (-621 *4))) (-4 *4 (-823))
+ (-5 *2 (-621 (-621 *4))) (-5 *1 (-1151 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-549))))
+ ((*1 *1 *1 *1) (-5 *1 (-1087))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-890)) (-4 *4 (-359)) (-4 *4 (-354)) (-5 *2 (-1132 *1))
- (-4 *1 (-320 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-1132 *3))))
+ (-12 (-5 *3 (-892)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1139 *1))
+ (-4 *1 (-322 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1139 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-361 *3 *2)) (-4 *3 (-169)) (-4 *3 (-354))
- (-4 *2 (-1195 *3))))
+ (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356))
+ (-4 *2 (-1202 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1219 *4)) (-4 *4 (-340)) (-5 *2 (-1132 *4))
- (-5 *1 (-517 *4)))))
+ (-12 (-5 *3 (-1226 *4)) (-4 *4 (-342)) (-5 *2 (-1139 *4))
+ (-5 *1 (-519 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-408 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34)))
- (-4 *4 (-13 (-1063) (-34))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-439 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-745)) (-4 *3 (-539)) (-5 *1 (-938 *3 *2))
- (-4 *2 (-1195 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-489 *2)) (-14 *2 (-547))))
- ((*1 *1 *1 *1) (-5 *1 (-1082))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-532))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222))))
- ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222)))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-619 (-1219 *4))) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-4 *3 (-539))
- (-5 *2 (-619 (-1219 *3))))))
+ (-12 (-5 *3 (-1226 *4)) (-4 *4 (-1018)) (-4 *2 (-1202 *4))
+ (-5 *1 (-436 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-400 (-1139 (-309 *5)))) (-5 *3 (-1226 (-309 *5)))
+ (-5 *4 (-549)) (-4 *5 (-13 (-541) (-823))) (-5 *1 (-1097 *5)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-356))
+ (-5 *2 (-2 (|:| -3440 (-400 *6)) (|:| |coeff| (-400 *6))))
+ (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-372)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))
- (-5 *2 (-619 (-217))) (-5 *1 (-296)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2)
- (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821))
- (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1224))
- (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821))
- (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1224))
- (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *1 *1) (-4 *1 (-532))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547))))
- (-5 *2 (-166 (-307 *4))) (-5 *1 (-180 *4 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 (-166 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-166 *3)) (-5 *1 (-1162 *4 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1117 (-398 *3))) (-5 *1 (-171 *3)) (-4 *3 (-298)))))
+ (-12 (-5 *3 (-665 (-400 (-923 (-549))))) (-5 *2 (-621 (-309 (-549))))
+ (-5 *1 (-1002)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *1 *1) (-4 *1 (-534))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1))
- (-4 *1 (-1030 *3 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
+ (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2))
+ (-4 *2 (-1180)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1125))
+ (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1063)) (-4 *2 (-821))
- (-5 *1 (-113 *2)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-34)) (-5 *2 (-745))))
+ (-12 (-5 *3 (-665 *4)) (-4 *4 (-356)) (-5 *2 (-1139 *4))
+ (-5 *1 (-522 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-821))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1202 *6))
+ (-4 *6 (-13 (-27) (-423 *5)))
+ (-4 *5 (-13 (-823) (-541) (-1009 (-549)))) (-4 *8 (-1202 (-400 *7)))
+ (-5 *2 (-567 *3)) (-5 *1 (-537 *5 *6 *7 *8 *3))
+ (-4 *3 (-335 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4337)) (-4 *1 (-34)) (-5 *2 (-747))))
((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-547))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-549))))
((*1 *2 *1)
- (-12 (-5 *2 (-745)) (-5 *1 (-1242 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-817)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821))
- (-4 *3 (-1030 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-619 *4))
- (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))))
- (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-619 *4))
- (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))))
- (-5 *1 (-1106 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852))
- (-5 *3 (-619 (-547)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852))
- (-5 *3 (-619 (-547))))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-1249 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-819)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063))
- (-4 *6 (-1063)) (-4 *2 (-1063)) (-5 *1 (-654 *5 *6 *2)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-340))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -2534 (-619 (-2 (|:| |irr| *3) (|:| -3038 (-547)))))))
- (-5 *1 (-208 *5 *3)) (-4 *3 (-1195 *5)))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-4 *2 (-1067)) (-5 *1 (-656 *5 *6 *2)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-728)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-112))
+ (-5 *1 (-648 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-541)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-825 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-98 *5)) (-4 *5 (-541)) (-4 *5 (-1018))
+ (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-826 *5 *3))
+ (-4 *3 (-825 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-410 *4)))))
(((*1 *1 *2 *2)
- (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
+ (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1217 *3)) (-4 *3 (-23)) (-4 *3 (-1173)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *4 (-539)) (-5 *1 (-938 *4 *2))
- (-4 *2 (-1195 *4)))))
-(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457))))
- ((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457))))
- ((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-945 *4 *5 *3 *6)) (-4 *4 (-1016)) (-4 *5 (-767))
- (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-745)) (-5 *1 (-114)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1136)) (-5 *2 (-428)) (-5 *1 (-1140)))))
-(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1974 *9))))
- (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8))
- (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1224))
- (-5 *1 (-1034 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1974 *9))))
- (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8))
- (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1224))
- (-5 *1 (-1106 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1136))
- (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-4 *4 (-13 (-29 *6) (-1158) (-928)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1917 (-619 *4))))
- (-5 *1 (-775 *6 *4 *3)) (-4 *3 (-630 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-663 (-921 *4))) (-5 *1 (-997 *4))
- (-4 *4 (-1016)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-166 (-217))))
- (-5 *2 (-1004)) (-5 *1 (-729)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
-(((*1 *1 *1 *1) (-5 *1 (-832))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-1224 *3)) (-4 *3 (-23)) (-4 *3 (-1180)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-38 (-400 (-549))))
+ (-4 *2 (-170)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1192 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1136))
- (-5 *2 (-547)) (-5 *1 (-1077 *4 *5)))))
+ (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *2 (-621 *4)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1202 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *2 (-621 *3)) (-5 *1 (-1095 *4 *3)) (-4 *4 (-1202 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *1 *1) (-5 *1 (-112))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1119)) (-5 *2 (-206 (-491))) (-5 *1 (-809)))))
+ (-12 (-4 *4 (-541)) (-5 *2 (-1139 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-356) (-295)
+ (-10 -8 (-15 -1394 ((-1092 *4 (-592 $)) $))
+ (-15 -1403 ((-1092 *4 (-592 $)) $))
+ (-15 -3846 ($ (-1092 *4 (-592 $))))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1132 *5)) (-4 *5 (-442)) (-5 *2 (-619 *6))
- (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-354)) (-4 *4 (-13 (-354) (-819)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-921 *5)) (-4 *5 (-442)) (-5 *2 (-619 *6))
- (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-354)) (-4 *4 (-13 (-354) (-819))))))
+ (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1981 *9))))
+ (-5 *4 (-747)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8))
+ (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1231))
+ (-5 *1 (-1036 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1981 *9))))
+ (-5 *4 (-747)) (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1076 *5 *6 *7 *8))
+ (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-1231))
+ (-5 *1 (-1112 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1180))
+ (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 (-1 *6 (-619 *6))))
- (-4 *5 (-38 (-398 (-547)))) (-4 *6 (-1210 *5)) (-5 *2 (-619 *6))
- (-5 *1 (-1212 *5 *6)))))
-(((*1 *2 *1)
- (-12
+ (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *7 (-541))
+ (-4 *3 (-920 *7 *5 *6))
(-5 *2
- (-619
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-547)))))
- (-5 *1 (-409 *3)) (-4 *3 (-539))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-745)) (-4 *3 (-340)) (-4 *5 (-1195 *3))
- (-5 *2 (-619 (-1132 *3))) (-5 *1 (-487 *3 *5 *6))
- (-4 *6 (-1195 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-408 *4)))))
+ (-2 (|:| -3731 (-747)) (|:| -1570 *3) (|:| |radicand| (-621 *3))))
+ (-5 *1 (-924 *5 *6 *7 *3 *8)) (-5 *4 (-747))
+ (-4 *8
+ (-13 (-356)
+ (-10 -8 (-15 -1394 (*3 $)) (-15 -1403 (*3 $)) (-15 -3846 ($ *3))))))))
(((*1 *2 *3)
- (-12 (-4 *2 (-354)) (-4 *2 (-819)) (-5 *1 (-914 *2 *3))
- (-4 *3 (-1195 *2)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-398 (-921 *4))) (-5 *3 (-1136))
- (-4 *4 (-13 (-539) (-1007 (-547)) (-145))) (-5 *1 (-553 *4)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-1082)))))
+ (-12 (-4 *4 (-1018))
+ (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1165) (-277)))
+ (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1202 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-892)) (-4 *5 (-1018))
+ (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1165) (-277)))
+ (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1202 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *4 *5 *6))
+ (-4 *4 (-594 (-525))) (-4 *5 (-1180)) (-4 *6 (-1180)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-538)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-526 *3 *2))
+ (-4 *2 (-1217 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-4 *4 (-1202 *3))
+ (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-5 *1 (-531 *3 *2))
+ (-4 *2 (-1217 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-13 (-541) (-145)))
+ (-5 *1 (-1119 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-897)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769))
+ (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2652 (-621 *9)) (|:| -1981 *4) (|:| |ineq| (-621 *9))))
+ (-5 *1 (-959 *6 *7 *8 *9 *4)) (-5 *3 (-621 *9))
+ (-4 *4 (-1038 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769))
+ (-4 *8 (-823)) (-4 *9 (-1032 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2652 (-621 *9)) (|:| -1981 *4) (|:| |ineq| (-621 *9))))
+ (-5 *1 (-1074 *6 *7 *8 *9 *4)) (-5 *3 (-621 *9))
+ (-4 *4 (-1038 *6 *7 *8 *9)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-890))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-298)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4))
+ (-12 (-4 *3 (-1018)) (-4 *4 (-1067)) (-5 *2 (-621 *1))
+ (-4 *1 (-375 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1))
+ (-4 *1 (-920 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-549)))
+ (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3))
+ (-4 *2
+ (-13 (-356) (-295)
+ (-10 -8 (-15 -1394 ((-1092 *3 (-592 $)) $))
+ (-15 -1403 ((-1092 *3 (-592 $)) $))
+ (-15 -3846 ($ (-1092 *3 (-592 $))))))))))
+(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
+(((*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1125)) (-5 *1 (-762)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1006))
+ (-5 *1 (-723)))))
+(((*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1180)) (-4 *2 (-1067))))
+ ((*1 *1 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
(-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))))
+ (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-549)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-745)) (-4 *3 (-1173)) (-4 *1 (-56 *3 *4 *5))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
- ((*1 *1) (-5 *1 (-168)))
- ((*1 *1) (-12 (-5 *1 (-205 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1063))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1119)) (-4 *1 (-380))))
- ((*1 *1) (-5 *1 (-385)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-4 *1 (-625 *3)) (-4 *3 (-1173))))
+ (-12 (-5 *2 (-747)) (-4 *3 (-1180)) (-4 *1 (-56 *3 *4 *5))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
+ ((*1 *1) (-5 *1 (-169)))
+ ((*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1067))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1125)) (-4 *1 (-382))))
+ ((*1 *1) (-5 *1 (-387)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-4 *1 (-627 *3)) (-4 *3 (-1180))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1067)) (-5 *1 (-856 *2 *3 *4)) (-4 *2 (-1067))
+ (-4 *4 (-642 *3))))
+ ((*1 *1) (-12 (-5 *1 (-860 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067))))
+ ((*1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018))))
+ ((*1 *1 *1) (-5 *1 (-1143))) ((*1 *1) (-5 *1 (-1143)))
+ ((*1 *1) (-5 *1 (-1160))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-284)))
+ ((*1 *1) (-5 *1 (-834)))
+ ((*1 *1)
+ (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769))
+ (-5 *1 (-958 *2 *3 *4 *5)) (-4 *5 (-920 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1052)))
((*1 *1)
- (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063))
- (-4 *4 (-640 *3))))
- ((*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))
- ((*1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))
- ((*1 *1 *1) (-5 *1 (-1136))) ((*1 *1) (-5 *1 (-1136)))
- ((*1 *1) (-5 *1 (-1153))))
+ (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34)))))
+ ((*1 *1) (-5 *1 (-1146))) ((*1 *1) (-5 *1 (-1147))))
+(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-1146))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-1147)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 *4)) (-4 *4 (-1067)) (-5 *2 (-1231))
+ (-5 *1 (-1181 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 *4)) (-4 *4 (-1067)) (-5 *2 (-1231))
+ (-5 *1 (-1181 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1219 (-307 (-217)))) (-5 *4 (-619 (-1136)))
- (-5 *2 (-663 (-307 (-217)))) (-5 *1 (-197))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1063)) (-4 *6 (-869 *5)) (-5 *2 (-663 *6))
- (-5 *1 (-666 *5 *6 *3 *4)) (-4 *3 (-364 *6))
- (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1173)) (-5 *2 (-745)) (-5 *1 (-178 *4 *3))
- (-4 *3 (-648 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-663 *2)) (-5 *4 (-745))
- (-4 *2 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $)))))
- (-4 *5 (-1195 *2)) (-5 *1 (-488 *2 *5 *6)) (-4 *6 (-400 *2 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886))))
- ((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-594))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-385))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1153)))))
-(((*1 *1 *1 *1) (-5 *1 (-832))))
+ (-12 (-5 *3 (-3 (-400 (-923 *5)) (-1132 (-1143) (-923 *5))))
+ (-4 *5 (-444)) (-5 *2 (-621 (-665 (-400 (-923 *5)))))
+ (-5 *1 (-285 *5)) (-5 *4 (-665 (-400 (-923 *5)))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-2 (|:| -3331 *3) (|:| -1786 *4))))
- (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *1 (-1149 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1149 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547))
- (-5 *2 (-1004)) (-5 *1 (-731)))))
-(((*1 *2)
- (-12 (-5 *2 (-1224)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-1063)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))))
+ (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1067)) (-5 *1 (-876 *3)))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-596))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-199)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-925)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1204 *3 *4 *5)) (-4 *3 (-13 (-354) (-821)))
- (-14 *4 (-1136)) (-14 *5 *3) (-5 *1 (-310 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-370))) (-5 *1 (-1009)) (-5 *3 (-370)))))
+ (-12 (-5 *2 (-621 (-2 (|:| -3337 *3) (|:| -1793 *4))))
+ (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *1 (-1156 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1156 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063))
- (-5 *2 (-619 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-5 *2 (-1211 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5))
+ (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1143)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-549))))
+ ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-411 *3)) (-4 *3 (-541))))
+ ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-675))))
((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| |k| (-862 *3)) (|:| |c| *4))))
- (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821))
- (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-619 (-646 *3))) (-5 *1 (-862 *3)) (-4 *3 (-821)))))
-(((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-532))))
- ((*1 *1 *1) (-4 *1 (-1025))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-442))))
- ((*1 *1 *1 *1) (-4 *1 (-442)))
+ (-12 (-4 *2 (-1067)) (-5 *1 (-690 *3 *2 *4)) (-4 *3 (-823))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -3493 *3) (|:| -3731 *2))
+ (-2 (|:| -3493 *3) (|:| -3731 *2)))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-1018)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
+ (-5 *2
+ (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-549)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-1147)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-444))))
+ ((*1 *1 *1 *1) (-4 *1 (-444)))
((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-5 *1 (-476 *2)) (-4 *2 (-1195 (-547)))))
+ (-12 (-5 *3 (-621 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1202 (-549)))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-547)) (-5 *1 (-670 *2)) (-4 *2 (-1195 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-745)))
+ (-12 (-5 *3 (-549)) (-5 *1 (-672 *2)) (-4 *2 (-1202 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-747)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-298))
- (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4))))
+ (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300))
+ (-5 *1 (-887 *3 *4 *5 *2)) (-4 *2 (-920 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5))
- (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821))
- (-4 *6 (-298))))
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *6 *4 *5))
+ (-5 *1 (-887 *4 *5 *6 *2)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-300))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1132 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1139 *6)) (-4 *6 (-920 *5 *3 *4)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-1132 *7))) (-4 *4 (-767)) (-4 *5 (-821))
- (-4 *6 (-298)) (-5 *2 (-1132 *7)) (-5 *1 (-885 *4 *5 *6 *7))
- (-4 *7 (-918 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-890)))
+ (-12 (-5 *3 (-621 (-1139 *7))) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-300)) (-5 *2 (-1139 *7)) (-5 *1 (-887 *4 *5 *6 *7))
+ (-4 *7 (-920 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-892)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-442)) (-4 *3 (-539)) (-5 *1 (-938 *3 *2))
- (-4 *2 (-1195 *3))))
+ (-12 (-4 *3 (-444)) (-4 *3 (-541)) (-5 *1 (-940 *3 *2))
+ (-4 *2 (-1202 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-442)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1102 *2 *3)) (-4 *2 (-13 (-1063) (-34)))
- (-4 *3 (-13 (-1063) (-34))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *4 (-1063)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-370)) (-5 *1 (-1028)))))
-(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-619 (-547))) (-5 *1 (-1073)) (-5 *3 (-547)))))
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-444)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-1231)) (-5 *1 (-807)))))
+(((*1 *2)
+ (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-410 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-795)) (-5 *4 (-52)) (-5 *2 (-1224)) (-5 *1 (-805)))))
+ (-12 (-5 *4 (-621 (-621 *8))) (-5 *3 (-621 *8))
+ (-4 *8 (-920 *5 *7 *6)) (-4 *5 (-13 (-300) (-145)))
+ (-4 *6 (-13 (-823) (-594 (-1143)))) (-4 *7 (-769)) (-5 *2 (-112))
+ (-5 *1 (-895 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-658 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
+(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1139 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3))
+ (-4 *3 (-356)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-356)) (-4 *2 (-821)) (-5 *1 (-916 *2 *3))
+ (-4 *3 (-1202 *2)))))
+(((*1 *1) (-5 *1 (-219))) ((*1 *1) (-5 *1 (-372))))
+(((*1 *2 *2) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-309 (-372))) (-5 *1 (-298)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1125)) (-5 *5 (-665 (-219))) (-5 *6 (-219))
+ (-5 *7 (-665 (-549))) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-384)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1132 *2)) (-4 *2 (-918 (-398 (-921 *6)) *5 *4))
- (-5 *1 (-707 *5 *4 *6 *2)) (-4 *5 (-767))
- (-4 *4 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $)))))
- (-4 *6 (-539)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1211 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1136))
- (-14 *4 *2))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-171 *3)) (-4 *3 (-298))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-648 *3)) (-4 *3 (-1173))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-715 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-821))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *1 (-949 *3)) (-4 *3 (-1016))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7))
- (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1))
- (-4 *1 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1))
- (-4 *1 (-1036 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))))
-(((*1 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-354))
- (-5 *2 (-2 (|:| -2510 (-398 *6)) (|:| |coeff| (-398 *6))))
- (-5 *1 (-557 *5 *6)) (-5 *3 (-398 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1184)) (-4 *3 (-1202 *4))
+ (-4 *5 (-1202 (-400 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016))
- (-14 *4 (-619 (-1136)))))
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-400 *6))
+ (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1217 *5)) (-4 *6 (-1202 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1218 *5 *6 *7)) (-4 *5 (-356))
+ (-14 *6 (-1143)) (-14 *7 *5) (-5 *2 (-400 (-1199 *6 *5)))
+ (-5 *1 (-839 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-747)) (-5 *4 (-1218 *5 *6 *7)) (-4 *5 (-356))
+ (-14 *6 (-1143)) (-14 *7 *5) (-5 *2 (-400 (-1199 *6 *5)))
+ (-5 *1 (-839 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-4 *1 (-637))) ((*1 *1 *1 *1) (-5 *1 (-1087))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-356))
+ (-4 *7 (-1202 (-400 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -3910 *3)))
+ (-5 *1 (-547 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-356))
+ (-5 *2
+ (-2 (|:| |answer| (-400 *6)) (|:| -3910 (-400 *6))
+ (|:| |specpart| (-400 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-548 *5 *6)) (-5 *3 (-400 *6)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *3 (-541)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-768)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1353 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-892)) (-5 *1 (-762)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-410 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
+ (-14 *4 (-621 (-1143)))))
((*1 *2 *1)
- (-12 (-5 *2 (-547)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821)))
- (-14 *4 (-619 (-1136)))))
+ (-12 (-5 *2 (-549)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
+ (-14 *4 (-621 (-1143)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821))
- (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-266))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1132 *8)) (-5 *4 (-619 *6)) (-4 *6 (-821))
- (-4 *8 (-918 *7 *5 *6)) (-4 *5 (-767)) (-4 *7 (-1016))
- (-5 *2 (-619 (-745))) (-5 *1 (-312 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-890))))
+ (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823))
+ (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-268))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1139 *8)) (-5 *4 (-621 *6)) (-4 *6 (-823))
+ (-4 *8 (-920 *7 *5 *6)) (-4 *5 (-769)) (-4 *7 (-1018))
+ (-5 *2 (-621 (-747))) (-5 *1 (-314 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-892))))
((*1 *2 *1)
- (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169))
- (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-4 *1 (-460 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23))))
+ (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))
+ (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23))))
((*1 *2 *1)
- (-12 (-4 *3 (-539)) (-5 *2 (-547)) (-5 *1 (-599 *3 *4))
- (-4 *4 (-1195 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))
+ (-12 (-4 *3 (-541)) (-5 *2 (-549)) (-5 *1 (-601 *3 *4))
+ (-4 *4 (-1202 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-875 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745)))))
+ (-12 (-5 *3 (-621 *6)) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 (-747)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767))
- (-4 *3 (-821)) (-5 *2 (-745))))
+ (-12 (-4 *1 (-920 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *3 (-823)) (-5 *2 (-747))))
((*1 *2 *1)
- (-12 (-4 *1 (-942 *3 *2 *4)) (-4 *3 (-1016)) (-4 *4 (-821))
- (-4 *2 (-766))))
+ (-12 (-4 *1 (-944 *3 *2 *4)) (-4 *3 (-1018)) (-4 *4 (-823))
+ (-4 *2 (-768))))
((*1 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-745))))
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-747))))
((*1 *2 *1)
- (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1210 *3))
- (-5 *2 (-547))))
+ (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1217 *3))
+ (-5 *2 (-549))))
((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1179 *3))
- (-5 *2 (-398 (-547)))))
+ (-12 (-4 *1 (-1209 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1186 *3))
+ (-5 *2 (-400 (-549)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-5 *2 (-807 (-890)))))
+ (-12 (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-5 *2 (-809 (-892)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))
- (-5 *2 (-745)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-1119)) (-5 *5 (-663 (-217)))
- (-5 *2 (-1004)) (-5 *1 (-722)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1117 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1016))
- (-5 *3 (-398 (-547))) (-5 *1 (-1121 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-635))) ((*1 *1 *1 *1) (-5 *1 (-1082))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1174 *2))
- (-4 *2 (-1063))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-821))
- (-5 *1 (-1174 *2)))))
+ (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
+ (-5 *2 (-747)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-834)))))
+(((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1011)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-823) (-541))))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-444))))
+ ((*1 *1 *1 *1) (-4 *1 (-444))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *1 *1 *1) (-4 *1 (-637))) ((*1 *1 *1 *1) (-5 *1 (-1087))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-13 (-27) (-1165) (-423 (-167 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-1169 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-410 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1052))) (-5 *1 (-284)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-1063)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-730)))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-427))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-427)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-398 *5)) (-4 *5 (-1195 *4)) (-4 *4 (-539))
- (-4 *4 (-1016)) (-4 *2 (-1210 *4)) (-5 *1 (-1213 *4 *5 *6 *2))
- (-4 *6 (-630 *5)))))
+ (-12 (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5)))
+ (-5 *2 (-621 (-621 *4))) (-5 *1 (-334 *3 *4 *5 *6))
+ (-4 *3 (-335 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-621 (-621 *3))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1))
+ (-4 *1 (-1038 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2715 (-549)) (|:| -4024 (-621 *3))))
+ (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1056 (-814 *3))) (-4 *3 (-13 (-1158) (-928) (-29 *5)))
- (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2
- (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-211 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1056 (-814 *3))) (-5 *5 (-1119))
- (-4 *3 (-13 (-1158) (-928) (-29 *6)))
- (-4 *6 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2
- (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-211 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1056 (-814 (-307 *5))))
- (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2
- (-3 (|:| |f1| (-814 (-307 *5))) (|:| |f2| (-619 (-814 (-307 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-212 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-398 (-921 *6))) (-5 *4 (-1056 (-814 (-307 *6))))
- (-5 *5 (-1119))
- (-4 *6 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2
- (-3 (|:| |f1| (-814 (-307 *6))) (|:| |f2| (-619 (-814 (-307 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-212 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1056 (-814 (-398 (-921 *5))))) (-5 *3 (-398 (-921 *5)))
- (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2
- (-3 (|:| |f1| (-814 (-307 *5))) (|:| |f2| (-619 (-814 (-307 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-212 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1056 (-814 (-398 (-921 *6))))) (-5 *5 (-1119))
- (-5 *3 (-398 (-921 *6)))
- (-4 *6 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2
- (-3 (|:| |f1| (-814 (-307 *6))) (|:| |f2| (-619 (-814 (-307 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-212 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136))
- (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-3 *3 (-619 *3))) (-5 *1 (-419 *5 *3))
- (-4 *3 (-13 (-1158) (-928) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-464 *3 *4 *5))
- (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370))))
- (-5 *5 (-370)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-548))))
- ((*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-1004)) (-5 *1 (-548))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370))))
- (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370))))
- (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370))))
- (-5 *2 (-1004)) (-5 *1 (-548))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370)))))
- (-5 *2 (-1004)) (-5 *1 (-548))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370)))))
- (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370)))))
- (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370)))))
- (-5 *5 (-370)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-548))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-307 (-370))) (-5 *4 (-1056 (-814 (-370))))
- (-5 *5 (-1119)) (-5 *2 (-1004)) (-5 *1 (-548))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-307 (-370))) (-5 *4 (-1056 (-814 (-370))))
- (-5 *5 (-1136)) (-5 *2 (-1004)) (-5 *1 (-548))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-621 *2)) (-5 *1 (-113 *2))
+ (-4 *2 (-1067))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-621 *4))) (-4 *4 (-1067))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1067))
+ (-5 *1 (-113 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) (-4 *5 (-1195 *4))
- (-5 *2 (-565 (-398 *5))) (-5 *1 (-551 *4 *5)) (-5 *3 (-398 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1136)) (-4 *5 (-145))
- (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547))))
- (-5 *2 (-3 (-307 *5) (-619 (-307 *5)))) (-5 *1 (-568 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821))
- (-4 *3 (-38 (-398 (-547))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1136)) (-5 *1 (-921 *3)) (-4 *3 (-38 (-398 (-547))))
- (-4 *3 (-1016))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-4 *2 (-821))
- (-5 *1 (-1088 *3 *2 *4)) (-4 *4 (-918 *3 (-519 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016))
- (-5 *1 (-1121 *3))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-621 *4)))
+ (-5 *1 (-113 *4)) (-4 *4 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1127 *3 *4 *5))
- (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018))
+ (-5 *1 (-691 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1133 *3 *4 *5))
- (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1134 *3 *4 *5))
- (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *1 (-1167 *3)) (-4 *3 (-38 (-398 (-547))))
- (-4 *3 (-1016))))
- ((*1 *1 *1 *2)
- (-1530
- (-12 (-5 *2 (-1136)) (-4 *1 (-1179 *3)) (-4 *3 (-1016))
- (-12 (-4 *3 (-29 (-547))) (-4 *3 (-928)) (-4 *3 (-1158))
- (-4 *3 (-38 (-398 (-547))))))
- (-12 (-5 *2 (-1136)) (-4 *1 (-1179 *3)) (-4 *3 (-1016))
- (-12 (|has| *3 (-15 -2267 ((-619 *2) *3)))
- (|has| *3 (-15 -3694 (*3 *3 *2))) (-4 *3 (-38 (-398 (-547))))))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-728)))))
+(((*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-747)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-747)) (-4 *5 (-170))))
((*1 *1 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1183 *3 *4 *5))
- (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747))
+ (-4 *4 (-170))))
((*1 *1 *1)
- (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547))))))
- ((*1 *1 *1 *2)
- (-1530
- (-12 (-5 *2 (-1136)) (-4 *1 (-1200 *3)) (-4 *3 (-1016))
- (-12 (-4 *3 (-29 (-547))) (-4 *3 (-928)) (-4 *3 (-1158))
- (-4 *3 (-38 (-398 (-547))))))
- (-12 (-5 *2 (-1136)) (-4 *1 (-1200 *3)) (-4 *3 (-1016))
- (-12 (|has| *3 (-15 -2267 ((-619 *2) *3)))
- (|has| *3 (-15 -3694 (*3 *3 *2))) (-4 *3 (-38 (-398 (-547))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1200 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1204 *3 *4 *5))
- (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-1530
- (-12 (-5 *2 (-1136)) (-4 *1 (-1210 *3)) (-4 *3 (-1016))
- (-12 (-4 *3 (-29 (-547))) (-4 *3 (-928)) (-4 *3 (-1158))
- (-4 *3 (-38 (-398 (-547))))))
- (-12 (-5 *2 (-1136)) (-4 *1 (-1210 *3)) (-4 *3 (-1016))
- (-12 (|has| *3 (-15 -2267 ((-619 *2) *3)))
- (|has| *3 (-15 -3694 (*3 *3 *2))) (-4 *3 (-38 (-398 (-547))))))))
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1018)) (-4 *1 (-663 *3 *2 *4)) (-4 *2 (-366 *3))
+ (-4 *4 (-366 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-1210 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1211 *3 *4 *5))
- (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221))))
- ((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1140)))))
+ (-12 (-5 *1 (-1109 *2 *3)) (-14 *2 (-747)) (-4 *3 (-1018)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-876 (-549))) (-5 *4 (-549)) (-5 *2 (-665 *4))
+ (-5 *1 (-999 *5)) (-4 *5 (-1018))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-999 *4))
+ (-4 *4 (-1018))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-876 (-549)))) (-5 *4 (-549))
+ (-5 *2 (-621 (-665 *4))) (-5 *1 (-999 *5)) (-4 *5 (-1018))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-621 (-549)))) (-5 *2 (-621 (-665 (-549))))
+ (-5 *1 (-999 *4)) (-4 *4 (-1018)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-714 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-1067))))
+ ((*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-1067)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-832)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-442))))
- ((*1 *1 *1 *1) (-4 *1 (-442))))
-(((*1 *1 *1 *1) (-4 *1 (-635))) ((*1 *1 *1 *1) (-5 *1 (-1082))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-912 (-217))) (-5 *2 (-1224)) (-5 *1 (-458)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-4 *3 (-539))
- (-5 *2 (-1132 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-168)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-209))))
- ((*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-477))))
- ((*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-298))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-411 *3)) (-4 *3 (-534)) (-4 *3 (-541))))
+ ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-398 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547))))
- ((*1 *1 *1) (-4 *1 (-1025))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-217))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL))))
- (-5 *2 (-1004)) (-5 *1 (-724))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-217))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL))))
- (-5 *8 (-379)) (-5 *2 (-1004)) (-5 *1 (-724)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *6)) (-5 *4 (-1136)) (-4 *6 (-421 *5))
- (-4 *5 (-821)) (-5 *2 (-619 (-590 *6))) (-5 *1 (-556 *5 *6)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1117 *4)) (-5 *3 (-547)) (-4 *4 (-1016))
- (-5 *1 (-1121 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-547)) (-5 *1 (-1211 *3 *4 *5)) (-4 *3 (-1016))
- (-14 *4 (-1136)) (-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-734)))))
-(((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-408 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1028)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1136)) (-5 *5 (-619 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *6)))
- (-4 *6 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-540 *6 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-5 *1 (-428)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-130))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442)))
- (-5 *2 (-814 *4)) (-5 *1 (-304 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1158) (-421 *3))) (-14 *5 (-1136))
- (-14 *6 *4)))
+ (-12 (-4 *1 (-773 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112))))
((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442)))
- (-5 *2 (-814 *4)) (-5 *1 (-1205 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1158) (-421 *3))) (-14 *5 (-1136))
- (-14 *6 *4))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))
- ((*1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1132 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-1132 *6))
- (-5 *1 (-312 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-809 *3)) (-4 *3 (-534)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-534)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-968 *3)) (-4 *3 (-170)) (-4 *3 (-534)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-979 *3)) (-4 *3 (-1009 (-400 (-549)))))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-549)) (-5 *5 (-1125)) (-5 *6 (-665 (-219)))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))))
+ (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))
+ (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4329)) (-4 *1 (-149 *2)) (-4 *2 (-1173))
- (-4 *2 (-1063)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7)))
- (-5 *1 (-438 *4 *5 *6 *7)) (-5 *3 (-619 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767))
- (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8)))
- (-5 *1 (-438 *5 *6 *7 *8)) (-5 *3 (-619 *8)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-843))
- (-5 *5 (-890)) (-5 *6 (-619 (-254))) (-5 *2 (-1220))
- (-5 *1 (-1223))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-619 (-254)))
- (-5 *2 (-1220)) (-5 *1 (-1223)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-547)) (-4 *3 (-169)) (-4 *5 (-364 *3))
- (-4 *6 (-364 *3)) (-5 *1 (-662 *3 *5 *6 *2))
- (-4 *2 (-661 *3 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-663 (-217))) (-5 *5 (-112)) (-5 *6 (-217))
- (-5 *7 (-663 (-547)))
- (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-79 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN))))
- (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-728)))))
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-149 *2)) (-4 *2 (-1180))
+ (-4 *2 (-1067)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-947 *4 *5 *6 *3)) (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-541))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) (-5 *2 (-619 *1))
- (-4 *1 (-421 *3))))
+ (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
+ (-5 *2 (-795 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3))
- (-4 *3 (-1063))))
+ (-12 (-4 *2 (-819)) (-5 *1 (-1249 *3 *2)) (-4 *3 (-1018)))))
+(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220)))))
+(((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4)) (-4 *6 (-1202 *5))
+ (-4 *7 (-1202 (-400 *6))) (-4 *8 (-335 *5 *6 *7))
+ (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-112))
+ (-5 *1 (-882 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-329 (-400 (-549)) *4 *5 *6))
+ (-4 *4 (-1202 (-400 (-549)))) (-4 *5 (-1202 (-400 *4)))
+ (-4 *6 (-335 (-400 (-549)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-883 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016))
- (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3))
- (-5 *1 (-919 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-354)
- (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $))
- (-15 -1396 (*7 $))))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))))
+ (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-112))
+ (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-747)) (-4 *1 (-1202 *3)) (-4 *3 (-1018)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -3440 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-356)) (-4 *7 (-1202 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6))
+ (-2 (|:| -3440 (-400 *7)) (|:| |coeff| (-400 *7))) "failed"))
+ (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-539))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-539)))))
-(((*1 *1 *1) (-4 *1 (-1025))))
-(((*1 *1 *1 *1) (-4 *1 (-141)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532))))
- ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-547))) (-5 *1 (-1014))
- (-5 *3 (-547)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1063)))))
+ (-12 (-5 *2 (-665 (-881 *3))) (-5 *1 (-344 *3 *4)) (-14 *3 (-892))
+ (-14 *4 (-892))))
+ ((*1 *2)
+ (-12 (-5 *2 (-665 *3)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342))
+ (-14 *4
+ (-3 (-1139 *3)
+ (-1226 (-621 (-2 (|:| -4161 *3) (|:| -3493 (-1087)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-665 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342))
+ (-14 *4 (-892)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-863 *4)) (-4 *4 (-1067)) (-5 *1 (-861 *4 *3))
+ (-4 *3 (-1180))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1 *1) (-5 *1 (-834))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-619 (-1136))) (-4 *4 (-1063))
- (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4))))
- (-5 *1 (-1039 *4 *5 *2))
- (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4))))))
+ (-12 (-5 *3 (-621 (-1143))) (-4 *4 (-1067))
+ (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4))))
+ (-5 *1 (-1042 *4 *5 *2))
+ (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4))))))
((*1 *1 *2 *2)
- (-12 (-4 *3 (-1063))
- (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3))))
- (-5 *1 (-1039 *3 *4 *2))
- (-4 *2 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-539) (-821))) (-5 *2 (-166 *5))
- (-5 *1 (-578 *4 *5 *3)) (-4 *5 (-13 (-421 *4) (-971) (-1158)))
- (-4 *3 (-13 (-421 (-166 *4)) (-971) (-1158))))))
+ (-12 (-4 *3 (-1067))
+ (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3))))
+ (-5 *1 (-1042 *3 *4 *2))
+ (-4 *2 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-619
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-547)))))
- (-4 *2 (-539)) (-5 *1 (-409 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-547))
- (|:| -2534 (-619 (-2 (|:| |irr| *4) (|:| -3038 (-547)))))))
- (-4 *4 (-1195 (-547))) (-5 *2 (-409 *4)) (-5 *1 (-432 *4)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2))
- (-4 *2 (-1173)))))
-(((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821))))
- ((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821))))
- ((*1 *1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821))))
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6))
+ (|:| -2632 *6)))
+ (-5 *1 (-986 *5 *6)) (-5 *3 (-400 *6)))))
+(((*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-543 *3)) (-4 *3 (-534)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-356) (-145)))
+ (-5 *2 (-621 (-2 (|:| -3731 (-747)) (|:| -2597 *4) (|:| |num| *4))))
+ (-5 *1 (-392 *3 *4)) (-4 *4 (-1202 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1166 *2 *3 *4 *5)) (-4 *2 (-539))
- (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4))))
+ (|partial| -12 (-4 *1 (-1173 *2 *3 *4 *5)) (-4 *2 (-541))
+ (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1207 *3)) (-4 *3 (-1173))))
- ((*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-1214 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 *2)))
- (-5 *2 (-861 *3)) (-5 *1 (-1039 *3 *4 *5))
- (-4 *5 (-13 (-421 *4) (-855 *3) (-592 *2))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-890)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-217)) (-5 *4 (-547))
- (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004))
- (-5 *1 (-723)))))
-(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1119)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1173)) (-5 *1 (-366 *4 *2))
- (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4330)))))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1224) (-1219 *5) (-1219 *5) (-370)))
- (-5 *3 (-1219 (-370))) (-5 *5 (-370)) (-5 *2 (-1224))
- (-5 *1 (-762)))))
-(((*1 *2)
- (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-408 *3)))))
-(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1132 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-821) (-539)))
- (-5 *1 (-32 *4 *2)))))
+ (-12 (-4 *3 (-1067)) (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 *2)))
+ (-5 *2 (-863 *3)) (-5 *1 (-1042 *3 *4 *5))
+ (-4 *5 (-13 (-423 *4) (-857 *3) (-594 *2))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-621 *1)) (-5 *3 (-621 *7)) (-4 *1 (-1038 *4 *5 *6 *7))
+ (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1))
+ (-4 *1 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1))
+ (-4 *1 (-1038 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459))))
+ ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459))))
+ ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-549) (-549))) (-5 *1 (-354 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-747) (-747))) (-5 *1 (-379 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-732)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-747))
+ (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $)))))
+ (-4 *4 (-1202 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-546)) (-5 *3 (-549))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1139 (-400 (-549)))) (-5 *1 (-913)) (-5 *3 (-549)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-300))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-439 *4 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *5 *6)) (-4 *6 (-594 (-1143)))
+ (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *2 (-1132 (-621 (-923 *4)) (-621 (-287 (-923 *4)))))
+ (-5 *1 (-495 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-582 *3 *2)) (-4 *3 (-1063)) (-4 *3 (-821))
- (-4 *2 (-1173))))
- ((*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821))))
- ((*1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821))))
+ (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-584 *3 *2)) (-4 *3 (-1067)) (-4 *3 (-823))
+ (-4 *2 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
+ ((*1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
((*1 *2 *1)
- (-12 (-4 *2 (-1173)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821))))
+ (-12 (-4 *2 (-1180)) (-5 *1 (-844 *2 *3)) (-4 *3 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-648 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1207 *3)) (-4 *3 (-1173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-1214 *3)) (-4 *3 (-1180))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1226 *4)) (-5 *3 (-1087)) (-4 *4 (-342))
+ (-5 *1 (-519 *4)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-621 *1)) (-4 *1 (-891)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-298))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-437 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-619 *7)) (-5 *3 (-1119)) (-4 *7 (-918 *4 *5 *6))
- (-4 *4 (-298)) (-4 *5 (-767)) (-4 *6 (-821))
- (-5 *1 (-437 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-619 *7)) (-5 *3 (-1119)) (-4 *7 (-918 *4 *5 *6))
- (-4 *4 (-298)) (-4 *5 (-767)) (-4 *6 (-821))
- (-5 *1 (-437 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-408 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1073)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1014)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2))
+ (-4 *2 (-423 *3)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1006)) (-5 *3 (-1143)) (-5 *1 (-186)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1173)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-582 *3 *2)) (-4 *3 (-1063))
- (-4 *2 (-1173)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-139))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-142)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1063))
- (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3))))
- (-5 *2 (-619 (-1039 *3 *4 *5))) (-5 *1 (-1040 *3 *4 *5))
- (-4 *5 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-547))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547)))))
+ (-12 (-5 *2 (-621 (-549))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549))
+ (-14 *4 (-747)) (-4 *5 (-170)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1195 *5)) (-4 *5 (-354))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-557 *5 *3)))))
+ (-12 (-5 *3 (-1143)) (-5 *4 (-923 (-549))) (-5 *2 (-323))
+ (-5 *1 (-325)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1195 (-398 *2))) (-5 *2 (-547)) (-5 *1 (-882 *4 *3))
- (-4 *3 (-1195 (-398 *4))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2 (-1123 (-219))) (-5 *1 (-186))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-309 (-219))) (-5 *4 (-621 (-1143)))
+ (-5 *5 (-1061 (-816 (-219)))) (-5 *2 (-1123 (-219))) (-5 *1 (-293))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1226 (-309 (-219)))) (-5 *4 (-621 (-1143)))
+ (-5 *5 (-1061 (-816 (-219)))) (-5 *2 (-1123 (-219))) (-5 *1 (-293)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1067))
+ (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3))))
+ (-5 *2 (-621 (-1042 *3 *4 *5))) (-5 *1 (-1043 *3 *4 *5))
+ (-4 *5 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143))))
+ (-4 *6 (-769)) (-5 *2 (-621 (-621 (-549))))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-549)) (-4 *7 (-920 *4 *6 *5)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *2 (-1006)) (-5 *1 (-734)))))
+(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *1 *1) (-4 *1 (-1106))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
- ((*1 *1 *1) (-4 *1 (-275)))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1) (-4 *1 (-277)))
((*1 *2 *3)
- (-12 (-5 *3 (-409 *4)) (-4 *4 (-539))
- (-5 *2 (-619 (-2 (|:| -1563 (-745)) (|:| |logand| *4))))
- (-5 *1 (-311 *4))))
+ (-12 (-5 *3 (-411 *4)) (-4 *4 (-541))
+ (-5 *2 (-621 (-2 (|:| -1570 (-747)) (|:| |logand| *4))))
+ (-5 *1 (-313 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
((*1 *2 *1)
- (-12 (-5 *2 (-638 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821))
- (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890))))
+ (-12 (-5 *2 (-640 *3 *4)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-398 (-547)))))
- (-4 *5 (-821)) (-5 *1 (-1235 *4 *5 *2)) (-4 *2 (-1240 *5 *4))))
+ (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-549)))))
+ (-4 *5 (-823)) (-5 *1 (-1242 *4 *5 *2)) (-4 *2 (-1247 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-1239 *3 *4))
- (-4 *4 (-692 (-398 (-547)))) (-4 *3 (-821)) (-4 *4 (-169)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-547)) (-5 *3 (-745)) (-5 *1 (-544)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169))
- (-5 *2 (-1219 (-663 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-1219 (-663 *4))) (-5 *1 (-407 *3 *4))
- (-4 *3 (-408 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-1219 (-663 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-1136))) (-4 *5 (-354))
- (-5 *2 (-1219 (-663 (-398 (-921 *5))))) (-5 *1 (-1050 *5))
- (-5 *4 (-663 (-398 (-921 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-1136))) (-4 *5 (-354))
- (-5 *2 (-1219 (-663 (-921 *5)))) (-5 *1 (-1050 *5))
- (-5 *4 (-663 (-921 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-354))
- (-5 *2 (-1219 (-663 *4))) (-5 *1 (-1050 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-819)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -2534 (-409 *3))))
- (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-171 (-398 (-547)))) (-5 *1 (-117 *3)) (-14 *3 (-547))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1117 *2)) (-4 *2 (-298)) (-5 *1 (-171 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-298)) (-5 *1 (-171 *3))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-1246 *3 *4))
+ (-4 *4 (-694 (-400 (-549)))) (-4 *3 (-823)) (-4 *4 (-170)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-400 (-923 *4))) (-5 *3 (-1143))
+ (-4 *4 (-13 (-541) (-1009 (-549)) (-145))) (-5 *1 (-555 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-592 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1139 (-48))) (-5 *3 (-621 (-592 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1139 (-48))) (-5 *3 (-592 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
((*1 *2 *3)
- (-12 (-5 *2 (-171 (-547))) (-5 *1 (-740 *3)) (-4 *3 (-395))))
+ (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3))
+ (-4 *3 (-1202 (-167 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-892)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356))))
((*1 *2 *1)
- (-12 (-5 *2 (-171 (-398 (-547)))) (-5 *1 (-840 *3)) (-14 *3 (-547))))
+ (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1202 *2)) (-4 *2 (-170))))
((*1 *2 *1)
- (-12 (-14 *3 (-547)) (-5 *2 (-171 (-398 (-547))))
- (-5 *1 (-841 *3 *4)) (-4 *4 (-838 *3)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1136))
- (-4 *5 (-13 (-539) (-1007 (-547)) (-145)))
- (-5 *2
- (-2 (|:| -2510 (-398 (-921 *5))) (|:| |coeff| (-398 (-921 *5)))))
- (-5 *1 (-553 *5)) (-5 *3 (-398 (-921 *5))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-995 (-814 (-547)))) (-5 *1 (-574 *3)) (-4 *3 (-1016)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1210 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7))))
- (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-547))))
+ (-12 (-4 *4 (-1202 *2)) (-4 *2 (-963 *3)) (-5 *1 (-406 *3 *2 *4 *5))
+ (-4 *3 (-300)) (-4 *5 (-13 (-402 *2 *4) (-1009 *2)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1100))))
+ (-12 (-4 *4 (-1202 *2)) (-4 *2 (-963 *3))
+ (-5 *1 (-407 *3 *2 *4 *5 *6)) (-4 *3 (-300)) (-4 *5 (-402 *2 *4))
+ (-14 *6 (-1226 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-892)) (-4 *5 (-1018))
+ (-4 *2 (-13 (-397) (-1009 *5) (-356) (-1165) (-277)))
+ (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1202 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-592 (-486)))) (-5 *1 (-486))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-486))) (-5 *1 (-486))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1139 (-486))) (-5 *3 (-621 (-592 (-486))))
+ (-5 *1 (-486))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1139 (-486))) (-5 *3 (-592 (-486))) (-5 *1 (-486))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1226 *4)) (-5 *3 (-892)) (-4 *4 (-342))
+ (-5 *1 (-519 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-701 *4 *2)) (-4 *2 (-1202 *4))
+ (-5 *1 (-751 *4 *2 *5 *3)) (-4 *3 (-1202 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170))))
+ ((*1 *1 *1) (-4 *1 (-1027))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-1145 (-400 (-549))))
+ (-5 *1 (-184)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1202 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-823))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-567 *4)) (-4 *4 (-13 (-29 *3) (-1165)))
+ (-4 *3 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
+ (-5 *1 (-565 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-567 (-400 (-923 *3))))
+ (-4 *3 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
+ (-5 *1 (-570 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1202 *5)) (-4 *5 (-356))
+ (-5 *2 (-2 (|:| -4041 *3) (|:| |special| *3))) (-5 *1 (-704 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1226 *5)) (-4 *5 (-356)) (-4 *5 (-1018))
+ (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5))
+ (-5 *3 (-621 (-665 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1226 (-1226 *5))) (-4 *5 (-356)) (-4 *5 (-1018))
+ (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5))
+ (-5 *3 (-621 (-665 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-621 *1)) (-4 *1 (-1111))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-621 *1)) (-4 *1 (-1111)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1199 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1143))
+ (-5 *2 (-621 *4)) (-5 *1 (-1081 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-621 (-241 *4 *5))) (-5 *2 (-241 *4 *5))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-4 *1 (-106 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-300)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1091 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1184))
+ (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5)))
+ (-5 *2 (-2 (|:| |num| (-665 *5)) (|:| |den| *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-797)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767))
- (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767))
- (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1106 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))))
+ (|partial| -12 (-5 *4 (-1143)) (-4 *5 (-594 (-863 (-549))))
+ (-4 *5 (-857 (-549)))
+ (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-552 *5 *3)) (-4 *3 (-607))
+ (-4 *3 (-13 (-27) (-1165) (-423 *5))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-219)) (-5 *5 (-549)) (-5 *2 (-1175 *3))
+ (-5 *1 (-766 *3)) (-4 *3 (-945))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-112))
+ (-5 *1 (-1175 *2)) (-4 *2 (-945)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2719 *4))))
+ (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228))))
+ ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1173)) (-5 *2 (-745))
- (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5))))
+ (-12 (-14 *4 *2) (-4 *5 (-1180)) (-5 *2 (-747))
+ (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130))
- (-5 *2 (-745))))
+ (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130))
+ (-5 *2 (-747))))
((*1 *2)
- (-12 (-4 *4 (-354)) (-5 *2 (-745)) (-5 *1 (-319 *3 *4))
- (-4 *3 (-320 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-352 *3)) (-4 *3 (-1063))))
- ((*1 *2) (-12 (-4 *1 (-359)) (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-377 *3)) (-4 *3 (-1063))))
+ (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4))
+ (-4 *3 (-322 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-354 *3)) (-4 *3 (-1067))))
+ ((*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-379 *3)) (-4 *3 (-1067))))
((*1 *2)
- (-12 (-4 *4 (-1063)) (-5 *2 (-745)) (-5 *1 (-415 *3 *4))
- (-4 *3 (-416 *4))))
+ (-12 (-4 *4 (-1067)) (-5 *2 (-747)) (-5 *1 (-417 *3 *4))
+ (-4 *3 (-418 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-745)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063))
+ (-12 (-5 *2 (-747)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067))
(-4 *4 (-23)) (-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-169)) (-4 *5 (-1195 *4)) (-5 *2 (-745))
- (-5 *1 (-698 *3 *4 *5)) (-4 *3 (-699 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821))))
- ((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975))))
+ (-12 (-4 *4 (-170)) (-4 *5 (-1202 *4)) (-5 *2 (-747))
+ (-5 *1 (-700 *3 *4 *5)) (-4 *3 (-701 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-795 *3)) (-4 *3 (-823))))
+ ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-977))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3))
- (-4 *3 (-1195 *2)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-722)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172)))))
+ (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3))
+ (-4 *3 (-1202 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-442)) (-4 *3 (-821)) (-4 *3 (-1007 (-547)))
- (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3))
- (-4 *2
- (-13 (-354) (-293)
- (-10 -8 (-15 -1386 ((-1087 *3 (-590 $)) $))
- (-15 -1396 ((-1087 *3 (-590 $)) $))
- (-15 -3838 ($ (-1087 *3 (-590 $))))))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *2)) (-5 *1 (-176 *2)) (-4 *2 (-298))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-619 (-619 *4))) (-5 *2 (-619 *4)) (-4 *4 (-298))
- (-5 *1 (-176 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-619 *8))
- (-5 *4
- (-619
- (-2 (|:| -1917 (-663 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-663 *7)))))
- (-5 *5 (-745)) (-4 *8 (-1195 *7)) (-4 *7 (-1195 *6)) (-4 *6 (-340))
- (-5 *2
- (-2 (|:| -1917 (-663 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-663 *7))))
- (-5 *1 (-487 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-352 *3)) (-4 *3 (-1063))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))
+ ((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1018)) (-5 *2 (-747))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-5 *2 (-745)) (-5 *1 (-377 *4)) (-4 *4 (-1063))))
+ (-12 (-5 *3 (-621 *6)) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 (-747)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *2 (-23)) (-5 *1 (-623 *4 *2 *5))
- (-4 *4 (-1063)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-5 *2 (-745)) (-5 *1 (-793 *4)) (-4 *4 (-821)))))
+ (-12 (-4 *1 (-920 *4 *5 *3)) (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *3 (-823)) (-5 *2 (-747)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-534))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1006))
+ (-5 *1 (-726)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112))
- (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1153)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-539)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-140 *2 *4 *3))
- (-4 *3 (-364 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-492 *2 *4 *5 *3))
- (-4 *5 (-364 *2)) (-4 *3 (-364 *4))))
+ (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3))
+ (-4 *3 (-938)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-845))
+ (-5 *5 (-892)) (-5 *6 (-621 (-256))) (-5 *2 (-460)) (-5 *1 (-1230))))
((*1 *2 *3)
- (-12 (-5 *3 (-663 *4)) (-4 *4 (-961 *2)) (-4 *2 (-539))
- (-5 *1 (-667 *2 *4))))
+ (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *2 (-460))
+ (-5 *1 (-1230))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-621 (-256)))
+ (-5 *2 (-460)) (-5 *1 (-1230)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-730)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-892)) (-5 *1 (-434 *2))
+ (-4 *2 (-1202 (-549)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-892)) (-5 *4 (-747)) (-5 *1 (-434 *2))
+ (-4 *2 (-1202 (-549)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-892)) (-5 *4 (-621 (-747))) (-5 *1 (-434 *2))
+ (-4 *2 (-1202 (-549)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-892)) (-5 *4 (-621 (-747))) (-5 *5 (-747))
+ (-5 *1 (-434 *2)) (-4 *2 (-1202 (-549)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-892)) (-5 *4 (-621 (-747))) (-5 *5 (-747))
+ (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1202 (-549)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-892)) (-5 *4 (-411 *2)) (-4 *2 (-1202 *5))
+ (-5 *1 (-436 *5 *2)) (-4 *5 (-1018)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-139))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-142)))))
+(((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-1188 *2 *4 *3))
- (-4 *3 (-1195 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (-5 *2 (-547)) (-5 *1 (-196)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-139))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-142)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-493 *3 *4 *5 *6))) (-4 *3 (-354)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821))
- (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7))
- (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1))
- (-4 *1 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1))
- (-4 *1 (-1036 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-547)) (-5 *5 (-112)) (-5 *6 (-663 (-217)))
- (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-730)))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1202 *2))
+ (-4 *2 (-170))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1202 *2)) (-4 *2 (-170)) (-5 *1 (-401 *3 *2 *4))
+ (-4 *3 (-402 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-402 *2 *3)) (-4 *3 (-1202 *2)) (-4 *2 (-170))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1202 *2)) (-5 *2 (-549)) (-5 *1 (-744 *3 *4))
+ (-4 *4 (-402 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823)) (-4 *3 (-170))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-541)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1202 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))))
+(((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-798)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-293))))
- ((*1 *1 *1) (-4 *1 (-293)))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))
- ((*1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))))
+ (-12 (-4 *1 (-1202 *3)) (-4 *3 (-1018)) (-5 *2 (-1139 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1074 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-622 *5)) (-4 *5 (-1016))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-823 *5))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-624 *5)) (-4 *5 (-1018))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-825 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-663 *3)) (-4 *1 (-408 *3)) (-4 *3 (-169))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016))))
+ (-12 (-5 *2 (-665 *3)) (-4 *1 (-410 *3)) (-4 *3 (-170))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1016))
- (-5 *1 (-824 *2 *3)) (-4 *3 (-823 *2)))))
-(((*1 *1) (-5 *1 (-428))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-114)) (-5 *4 (-745)) (-4 *5 (-442)) (-4 *5 (-821))
- (-4 *5 (-1007 (-547))) (-4 *5 (-539)) (-5 *1 (-41 *5 *2))
- (-4 *2 (-421 *5))
- (-4 *2
- (-13 (-354) (-293)
- (-10 -8 (-15 -1386 ((-1087 *5 (-590 $)) $))
- (-15 -1396 ((-1087 *5 (-590 $)) $))
- (-15 -3838 ($ (-1087 *5 (-590 $))))))))))
+ (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1018))
+ (-5 *1 (-826 *2 *3)) (-4 *3 (-825 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-427))
+ (-5 *2
+ (-621
+ (-3 (|:| -2481 (-1143))
+ (|:| -3280 (-621 (-3 (|:| S (-1143)) (|:| P (-923 (-549)))))))))
+ (-5 *1 (-1147)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *6 (-219))
+ (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-729)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-619 *4)) (-5 *1 (-1102 *3 *4))
- (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))))
-(((*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1173)) (-5 *2 (-619 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-354)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3))
- (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-539)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4))
- (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9))
- (-5 *1 (-511 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6))
- (-4 *8 (-364 *7)) (-4 *9 (-364 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016))
- (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (-4 *2 (-354))))
+ (-12 (-5 *2 (-621 *4)) (-5 *1 (-1108 *3 *4))
+ (-4 *3 (-13 (-1067) (-34))) (-4 *4 (-13 (-1067) (-34))))))
+(((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1180)) (-5 *2 (-621 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-139))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-142)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-112))
+ (-5 *2 (-1006)) (-5 *1 (-722)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-621 (-549))) (-5 *1 (-1077)) (-5 *3 (-549)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1123 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-999 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-621 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-999 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-999 *3))))
((*1 *2 *2)
- (|partial| -12 (-4 *3 (-354)) (-4 *3 (-169)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2))
- (-4 *2 (-661 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-663 *2)) (-4 *2 (-354)) (-4 *2 (-1016))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1085 *2 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-230 *2 *3)) (-4 *5 (-230 *2 *3)) (-4 *3 (-354))))
- ((*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-1144 *3)))))
+ (-12 (-5 *2 (-621 (-665 *3))) (-4 *3 (-1018)) (-5 *1 (-999 *3)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-716 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-621 *2)) (-4 *2 (-1067)) (-4 *2 (-1180)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3))
- (-4 *3 (-1063)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-139))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-142)))))
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4)))
+ (-5 *2 (-2 (|:| |num| (-1226 *4)) (|:| |den| *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-90 *3)))))
+(((*1 *2) (-12 (-5 *2 (-621 (-747))) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-621 (-747))) (-5 *1 (-1229)))))
+(((*1 *1 *1) (-4 *1 (-171)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1165) (-973))))))
(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-663 *3)) (|:| |invmval| (-663 *3))
- (|:| |genIdeal| (-493 *3 *4 *5 *6))))
- (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016))
- (-5 *2 (-619 (-619 (-619 (-912 *3))))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-442)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112))
- (-5 *1 (-439 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-1063)))))
-(((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145))
- (-4 *3 (-298)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-946 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1173)))))
-(((*1 *1 *1) (-4 *1 (-539))))
-(((*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-107))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-523))) (-5 *1 (-523)))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-1132 (-921 *4))) (-5 *1 (-407 *3 *4))
- (-4 *3 (-408 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-4 *3 (-354))
- (-5 *2 (-1132 (-921 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1132 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-398 *2)) (-4 *2 (-1195 *5))
- (-5 *1 (-781 *5 *2 *3 *6))
- (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547)))))
- (-4 *3 (-630 *2)) (-4 *6 (-630 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-398 *2))) (-4 *2 (-1195 *5))
- (-5 *1 (-781 *5 *2 *3 *6))
- (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2))
- (-4 *6 (-630 (-398 *2))))))
+ (-12 (-5 *2 (-1 (-1123 *3))) (-5 *1 (-1123 *3)) (-4 *3 (-1180)))))
(((*1 *1)
- (-12 (-4 *1 (-395)) (-4000 (|has| *1 (-6 -4320)))
- (-4000 (|has| *1 (-6 -4312)))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-1063)) (-4 *2 (-821))))
- ((*1 *1 *1 *1) (-4 *1 (-821)))
- ((*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821))))
- ((*1 *1) (-5 *1 (-1082))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169))
- (-4 *5 (-1195 *4)) (-5 *2 (-663 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1195 *3))
- (-5 *2 (-663 *3)))))
+ (-12 (-4 *1 (-397)) (-4008 (|has| *1 (-6 -4328)))
+ (-4008 (|has| *1 (-6 -4320)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1067)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (-4 *1 (-823)))
+ ((*1 *2 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823))))
+ ((*1 *1) (-5 *1 (-1087))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1202 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1202 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-747)))
+ (-5 *1 (-528 *3 *2 *4 *5)) (-4 *2 (-1202 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-411 *3)) (-4 *3 (-541)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1125)) (-5 *5 (-665 (-219))) (-5 *6 (-665 (-549)))
+ (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-734)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1173)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-409 *3)) (-4 *3 (-539)) (-5 *1 (-410 *3)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-298)))))
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-621 *2)) (-4 *2 (-1067)) (-4 *2 (-1180)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1226 *3)) (-4 *3 (-1202 *4)) (-4 *4 (-1184))
+ (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1202 (-400 *3))))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-1136)) (-5 *1 (-523))))
+ (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-1143)) (-5 *1 (-525))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1136)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523)))))
+ (-12 (-5 *2 (-1143)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1136)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523)))))
+ (-12 (-5 *2 (-1143)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1136)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523)))))
+ (-12 (-5 *2 (-1143)) (-5 *1 (-681 *3)) (-4 *3 (-594 (-525)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-619 (-1136))) (-5 *2 (-1136)) (-5 *1 (-679 *3))
- (-4 *3 (-592 (-523))))))
+ (-12 (-5 *4 (-621 (-1143))) (-5 *2 (-1143)) (-5 *1 (-681 *3))
+ (-4 *3 (-594 (-525))))))
(((*1 *2 *3 *2)
- (-12 (-5 *1 (-653 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -2534 (-619 (-2 (|:| |irr| *10) (|:| -3038 (-547)))))))
- (-5 *6 (-619 *3)) (-5 *7 (-619 *8)) (-4 *8 (-821)) (-4 *3 (-298))
- (-4 *10 (-918 *3 *9 *8)) (-4 *9 (-767))
- (-5 *2
- (-2 (|:| |polfac| (-619 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-619 (-1132 *3)))))
- (-5 *1 (-601 *8 *9 *3 *10)) (-5 *4 (-619 (-1132 *3))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-484)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *1 (-1090 *3 *2)) (-4 *3 (-1195 *2)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-734)))))
-(((*1 *2 *2) (-12 (-5 *2 (-663 (-307 (-547)))) (-5 *1 (-1000)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-821)) (-4 *3 (-1063)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1173)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
+ (-12 (-5 *1 (-655 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-619 (-1136))) (-5 *2 (-1136)) (-5 *1 (-321)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1117 (-398 *3))) (-5 *1 (-171 *3)) (-4 *3 (-298)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-653 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))))
+ (-12 (-5 *3 (-354 (-114))) (-4 *2 (-1018)) (-5 *1 (-691 *2 *4))
+ (-4 *4 (-624 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-354 (-114))) (-5 *1 (-810 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1139 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-736)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-356)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-1199 *5 *4)) (-5 *1 (-1141 *4 *5 *6))
+ (-4 *4 (-1018)) (-14 *5 (-1143)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-1199 *5 *4)) (-5 *1 (-1218 *4 *5 *6))
+ (-4 *4 (-1018)) (-14 *5 (-1143)) (-14 *6 *4))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1173)) (-5 *1 (-366 *4 *2))
- (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4330)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-1132 *3)))))
+ (-12 (-5 *2 (-892)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-256)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-1168 *3))
- (-4 *3 (-943)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1211 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1136))
- (-14 *4 *2))))
+ (-12 (-4 *1 (-1009 (-549))) (-4 *1 (-295)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *4 *5 *6)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-621 *2)) (-4 *2 (-1067)) (-4 *2 (-1180)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-621 (-1143))) (-5 *2 (-1143)) (-5 *1 (-323)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1974 *7))))
- (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-957 *3 *4 *5 *6 *7))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-655 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *1 *1) (-5 *1 (-219)))
+ ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
((*1 *2 *2)
- (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1974 *7))))
- (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *1 *1) (-4 *1 (-1106))) ((*1 *1 *1 *1) (-4 *1 (-1106))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-923 (-400 (-549)))) (-5 *4 (-1143))
+ (-5 *5 (-1061 (-816 (-219)))) (-5 *2 (-621 (-219))) (-5 *1 (-293)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1165))))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-541)) (-4 *2 (-170)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1123 *3)) (-4 *3 (-1067))
+ (-4 *3 (-1180)))))
+(((*1 *1) (-5 *1 (-1052))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-425)) (|:| -2896 "void")))
- (-5 *2 (-1224)) (-5 *1 (-1139))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1136))
- (-5 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-5 *2 (-1224))
- (-5 *1 (-1139))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1136))
- (-5 *4 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-5 *2 (-1224))
- (-5 *1 (-1139)))))
+ (-12 (-4 *4 (-823)) (-5 *2 (-621 (-621 *4))) (-5 *1 (-1151 *4))
+ (-5 *3 (-621 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063))
- (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1496 *4)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-523))) (-5 *2 (-1136)) (-5 *1 (-523)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-883 *3)) (-4 *3 (-298)))))
+ (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136))
- (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-619 (-590 *3)))
- (|:| |vals| (-619 *3))))
- (-5 *1 (-268 *5 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5))))))
-(((*1 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-359)) (-4 *2 (-354)))))
+ (-12 (-5 *3 (-665 (-167 (-400 (-549))))) (-5 *2 (-621 (-167 *4)))
+ (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-665 (-219)))
+ (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-896))
- (-5 *2
- (-2 (|:| |brans| (-619 (-619 (-912 (-217)))))
- (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))))
- (-5 *1 (-151))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-896)) (-5 *4 (-398 (-547)))
- (-5 *2
- (-2 (|:| |brans| (-619 (-619 (-912 (-217)))))
- (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))))
- (-5 *1 (-151)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-442)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-354))
- (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-5 *1 (-440 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-354))
- (-5 *2
- (-2 (|:| R (-663 *6)) (|:| A (-663 *6)) (|:| |Ainv| (-663 *6))))
- (-5 *1 (-947 *6)) (-5 *3 (-663 *6)))))
+ (-12 (-5 *3 (-621 (-525))) (-5 *2 (-1143)) (-5 *1 (-525)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3727 (-758 *3)) (|:| |coef2| (-758 *3))))
+ (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-2 (|:| -3727 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *1) (-5 *1 (-155))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-914 (-219)))) (-5 *1 (-1227)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-549)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1180))
+ (-4 *3 (-366 *4)) (-4 *5 (-366 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063))
- (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))))
-(((*1 *1) (-4 *1 (-340)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 *5)) (-4 *5 (-421 *4))
- (-4 *4 (-13 (-539) (-821) (-145)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-619 (-1132 *5)))
- (|:| |prim| (-1132 *5))))
- (-5 *1 (-423 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-539) (-821) (-145)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1132 *3))
- (|:| |pol2| (-1132 *3)) (|:| |prim| (-1132 *3))))
- (-5 *1 (-423 *4 *3)) (-4 *3 (-27)) (-4 *3 (-421 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-921 *5)) (-5 *4 (-1136)) (-4 *5 (-13 (-354) (-145)))
- (-5 *2
- (-2 (|:| |coef1| (-547)) (|:| |coef2| (-547))
- (|:| |prim| (-1132 *5))))
- (-5 *1 (-929 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1136)))
- (-4 *5 (-13 (-354) (-145)))
- (-5 *2
- (-2 (|:| -1563 (-619 (-547))) (|:| |poly| (-619 (-1132 *5)))
- (|:| |prim| (-1132 *5))))
- (-5 *1 (-929 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1136))) (-5 *5 (-1136))
- (-4 *6 (-13 (-354) (-145)))
- (-5 *2
- (-2 (|:| -1563 (-619 (-547))) (|:| |poly| (-619 (-1132 *6)))
- (|:| |prim| (-1132 *6))))
- (-5 *1 (-929 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1065 (-745))) (-5 *6 (-745))
- (-5 *2
- (-2 (|:| |contp| (-547))
- (|:| -2534 (-619 (-2 (|:| |irr| *3) (|:| -3038 (-547)))))))
- (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-409 *3)) (-4 *3 (-539))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-2 (|:| -2115 *4) (|:| -3705 (-547)))))
- (-4 *4 (-1195 (-547))) (-5 *2 (-745)) (-5 *1 (-432 *4)))))
-(((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745))
- (-4 *4 (-169)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-858 *5 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063))
- (-4 *3 (-163 *6)) (-4 (-921 *6) (-855 *5))
- (-4 *6 (-13 (-855 *5) (-169))) (-5 *1 (-175 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-858 *4 *1)) (-5 *3 (-861 *4)) (-4 *1 (-855 *4))
- (-4 *4 (-1063))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-858 *5 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063))
- (-4 *6 (-13 (-1063) (-1007 *3))) (-4 *3 (-855 *5))
- (-5 *1 (-900 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063))
- (-4 *3 (-13 (-421 *6) (-592 *4) (-855 *5) (-1007 (-590 $))))
- (-5 *4 (-861 *5)) (-4 *6 (-13 (-539) (-821) (-855 *5)))
- (-5 *1 (-901 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-858 (-547) *3)) (-5 *4 (-861 (-547))) (-4 *3 (-532))
- (-5 *1 (-902 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-858 *5 *6)) (-5 *3 (-590 *6)) (-4 *5 (-1063))
- (-4 *6 (-13 (-821) (-1007 (-590 $)) (-592 *4) (-855 *5)))
- (-5 *4 (-861 *5)) (-5 *1 (-903 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-854 *5 *6 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063))
- (-4 *6 (-855 *5)) (-4 *3 (-640 *6)) (-5 *1 (-904 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-858 *6 *3) *8 (-861 *6) (-858 *6 *3)))
- (-4 *8 (-821)) (-5 *2 (-858 *6 *3)) (-5 *4 (-861 *6))
- (-4 *6 (-1063)) (-4 *3 (-13 (-918 *9 *7 *8) (-592 *4)))
- (-4 *7 (-767)) (-4 *9 (-13 (-1016) (-821) (-855 *6)))
- (-5 *1 (-905 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063))
- (-4 *3 (-13 (-918 *8 *6 *7) (-592 *4))) (-5 *4 (-861 *5))
- (-4 *7 (-855 *5)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *8 (-13 (-1016) (-821) (-855 *5)))
- (-5 *1 (-905 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-961 *6))
- (-4 *6 (-13 (-539) (-855 *5) (-592 *4))) (-5 *4 (-861 *5))
- (-5 *1 (-908 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-858 *5 (-1136))) (-5 *3 (-1136)) (-5 *4 (-861 *5))
- (-4 *5 (-1063)) (-5 *1 (-909 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-619 (-861 *7))) (-5 *5 (-1 *9 (-619 *9)))
- (-5 *6 (-1 (-858 *7 *9) *9 (-861 *7) (-858 *7 *9))) (-4 *7 (-1063))
- (-4 *9 (-13 (-1016) (-592 (-861 *7)) (-1007 *8)))
- (-5 *2 (-858 *7 *9)) (-5 *3 (-619 *9)) (-4 *8 (-13 (-1016) (-821)))
- (-5 *1 (-910 *7 *8 *9)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1173)) (-4 *3 (-1173)))))
+ (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-541))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-541)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4))
+ (-4 *4 (-342)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-356)) (-4 *3 (-1202 *4)) (-4 *5 (-1202 (-400 *3)))
+ (-4 *1 (-328 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-549)) (-4 *2 (-356)) (-4 *4 (-1202 *2))
+ (-4 *5 (-1202 (-400 *4))) (-4 *1 (-328 *2 *4 *5 *6))
+ (-4 *6 (-335 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-356)) (-4 *3 (-1202 *2)) (-4 *4 (-1202 (-400 *3)))
+ (-4 *1 (-328 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-356)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4)))
+ (-4 *1 (-328 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356))
+ (-4 *1 (-328 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3))
- (-4 *3 (-622 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))))
+ (|partial| -12 (-5 *2 (-621 (-923 *3))) (-4 *3 (-444))
+ (-5 *1 (-353 *3 *4)) (-14 *4 (-621 (-1143)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-621 (-756 *3 (-836 *4)))) (-4 *3 (-444))
+ (-14 *4 (-621 (-1143))) (-5 *1 (-606 *3 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1193 (-549))) (-4 *1 (-275 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-275 *3)) (-4 *3 (-1180)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-112))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 (-167 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-112)) (-5 *1 (-1169 *4 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-96))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-96)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-844 *2 *3)) (-4 *2 (-1180)) (-4 *3 (-1180)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4337)) (-4 *1 (-481 *4))
+ (-4 *4 (-1180)) (-5 *2 (-112)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063))))
+ (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1067))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-547)) (-5 *2 (-1117 *3)) (-5 *1 (-1121 *3))
- (-4 *3 (-1016))))
+ (-12 (-5 *4 (-549)) (-5 *2 (-1123 *3)) (-5 *1 (-1127 *3))
+ (-4 *3 (-1018))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-793 *4)) (-4 *4 (-821)) (-4 *1 (-1236 *4 *3))
- (-4 *3 (-1016)))))
-(((*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-1136)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))))
+ (-12 (-5 *2 (-795 *4)) (-4 *4 (-823)) (-4 *1 (-1243 *4 *3))
+ (-4 *3 (-1018)))))
+(((*1 *1 *2) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-1143)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370))
+ (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
(-5 *2
- (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547))
+ (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549))
(|:| |success| (-112))))
- (-5 *1 (-763)) (-5 *5 (-547)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217))
- (-5 *2 (-1004)) (-5 *1 (-728)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-130))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-352 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-377 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-623 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
+ (-5 *1 (-765)) (-5 *5 (-549)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1219 *4)) (-4 *4 (-615 (-547))) (-5 *2 (-112))
- (-5 *1 (-1246 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-354) (-819))) (-5 *1 (-177 *3 *2))
- (-4 *2 (-1195 (-166 *3))))))
-(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675))))
- ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))))
-(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975))))
- ((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1119)) (-5 *3 (-797)) (-5 *1 (-796)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 *3))
- (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $)))))
- (-4 *4 (-1195 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-217)) (-5 *4 (-547))
- (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004))
- (-5 *1 (-723)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-321)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-619 (-471 *4 *5))) (-5 *3 (-834 *4))
- (-14 *4 (-619 (-1136))) (-4 *5 (-442)) (-5 *1 (-607 *4 *5)))))
+ (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4))
+ (-4 *4 (-342)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-619 (-254))) (-5 *4 (-1136))
- (-5 *1 (-253 *2)) (-4 *2 (-1173))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-619 (-254))) (-5 *4 (-1136)) (-5 *2 (-52))
- (-5 *1 (-254)))))
+ (-12 (-5 *3 (-621 (-219))) (-5 *4 (-747)) (-5 *2 (-665 (-219)))
+ (-5 *1 (-298)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217)))
- (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217)))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))
- (-5 *2 (-370)) (-5 *1 (-197)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-895))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-895))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-896))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-896)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-619
- (-2 (|:| -3116 (-745))
- (|:| |eqns|
- (-619
- (-2 (|:| |det| *7) (|:| |rows| (-619 (-547)))
- (|:| |cols| (-619 (-547))))))
- (|:| |fgb| (-619 *7)))))
- (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145)))
- (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-745))
- (-5 *1 (-893 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217)))
- (-5 *5 (-1058 (-217))) (-5 *6 (-619 (-254))) (-5 *2 (-1095 (-217)))
- (-5 *1 (-671)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1195 (-547)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1195 (-547))))))
+ (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1162 *3)) (-4 *3 (-1018)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3))
- (-4 *3 (-1195 (-166 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3))
- (-4 *3 (-1195 (-166 *2))))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-724)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-747)) (-5 *4 (-1226 *2)) (-4 *5 (-300))
+ (-4 *6 (-963 *5)) (-4 *2 (-13 (-402 *6 *7) (-1009 *6)))
+ (-5 *1 (-406 *5 *6 *7 *2)) (-4 *7 (-1202 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-470)))))
-(((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-254)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-217)) (-5 *4 (-547))
- (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004))
- (-5 *1 (-723)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 *1)) (|has| *1 (-6 -4330)) (-4 *1 (-979 *3))
- (-4 *3 (-1173)))))
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-441 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-621 (-2 (|:| -2681 *1) (|:| -1359 (-621 *7)))))
+ (-5 *3 (-621 *7)) (-4 *1 (-1173 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-660 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1229)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-323)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8))
- (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145)))
- (-4 *6 (-13 (-821) (-592 (-1136)))) (-4 *7 (-767)) (-5 *2 (-112))
- (-5 *1 (-893 *5 *6 *7 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-359))))
+ (|partial| -12 (-5 *3 (-621 (-256))) (-5 *4 (-1143))
+ (-5 *1 (-255 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-621 (-256))) (-5 *4 (-1143)) (-5 *2 (-52))
+ (-5 *1 (-256)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1226 (-1226 *4))) (-4 *4 (-1018)) (-5 *2 (-665 *4))
+ (-5 *1 (-1000 *4)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-549))
+ (-5 *6
+ (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3043 (-372))))
+ (-5 *7 (-1 (-1231) (-1226 *5) (-1226 *5) (-372)))
+ (-5 *3 (-1226 (-372))) (-5 *5 (-372)) (-5 *2 (-1231))
+ (-5 *1 (-764))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-549))
+ (-5 *6
+ (-2 (|:| |try| (-372)) (|:| |did| (-372)) (|:| -3043 (-372))))
+ (-5 *7 (-1 (-1231) (-1226 *5) (-1226 *5) (-372)))
+ (-5 *3 (-1226 (-372))) (-5 *5 (-372)) (-5 *2 (-1231))
+ (-5 *1 (-764)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
+ (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-747)) (|:| -3675 *1)))
+ (-4 *1 (-1032 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-747)) (|:| -3675 *1)))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1202 *4)) (-5 *2 (-665 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1202 *3))
+ (-5 *2 (-665 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-273)))))
+(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356))
+ (-5 *2 (-621 (-2 (|:| C (-665 *5)) (|:| |g| (-1226 *5)))))
+ (-5 *1 (-949 *5)) (-5 *3 (-665 *5)) (-5 *4 (-1226 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-400 (-549))))
+ (-5 *2
+ (-621
+ (-2 (|:| |outval| *4) (|:| |outmult| (-549))
+ (|:| |outvect| (-621 (-665 *4))))))
+ (-5 *1 (-755 *4)) (-4 *4 (-13 (-356) (-821))))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1202 (-549)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1202 (-549))))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1123 *4)) (-5 *3 (-549)) (-4 *4 (-1018))
+ (-5 *1 (-1127 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-549)) (-5 *1 (-1218 *3 *4 *5)) (-4 *3 (-1018))
+ (-14 *4 (-1143)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1180)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *1 (-1095 *3 *2)) (-4 *3 (-1202 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549)))))
+ (-4 *5 (-1202 *4))
+ (-5 *2 (-621 (-2 (|:| |deg| (-747)) (|:| -2652 *5))))
+ (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-632 *5))
+ (-4 *6 (-632 (-400 *5))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-361))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1219 *4)) (-5 *1 (-517 *4))
- (-4 *4 (-340))))
+ (-12 (-5 *3 (-892)) (-5 *2 (-1226 *4)) (-5 *1 (-519 *4))
+ (-4 *4 (-342))))
((*1 *2 *1)
- (-12 (-4 *2 (-821)) (-5 *1 (-688 *2 *3 *4)) (-4 *3 (-1063))
+ (-12 (-4 *2 (-823)) (-5 *1 (-690 *2 *3 *4)) (-4 *3 (-1067))
(-14 *4
- (-1 (-112) (-2 (|:| -3487 *2) (|:| -3322 *3))
- (-2 (|:| -3487 *2) (|:| -3322 *3)))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-798)) (-5 *3 (-619 (-1136))) (-5 *1 (-799)))))
-(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-128)) (-5 *2 (-1082)))))
+ (-1 (-112) (-2 (|:| -3493 *2) (|:| -3731 *3))
+ (-2 (|:| -3493 *2) (|:| -3731 *3)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1226 *3)) (-4 *3 (-1202 *4)) (-4 *4 (-1184))
+ (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1202 (-400 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1226 *4)) (-5 *3 (-1226 *1)) (-4 *4 (-170))
+ (-4 *1 (-360 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1226 *4)) (-5 *3 (-1226 *1)) (-4 *4 (-170))
+ (-4 *1 (-363 *4 *5)) (-4 *5 (-1202 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1226 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4))
+ (-4 *4 (-1202 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-307 (-217))) (-5 *2 (-307 (-370))) (-5 *1 (-296)))))
+ (-12 (-5 *3 (-1139 *4)) (-4 *4 (-342)) (-5 *2 (-929 (-1087)))
+ (-5 *1 (-339 *4)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442))
- (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-946 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-539)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1195 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-354)) (-5 *1 (-276 *3 *2)) (-4 *2 (-1210 *3)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1112))))
-(((*1 *2)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-663 (-398 *4))))))
+ (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1067)) (-4 *1 (-874 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
+(((*1 *1) (-5 *1 (-799))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-635 *4 *2))
+ (-4 *2 (-632 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-665 *6)) (-5 *5 (-1 (-411 (-1139 *6)) (-1139 *6)))
+ (-4 *6 (-356))
+ (-5 *2
+ (-621
+ (-2 (|:| |outval| *7) (|:| |outmult| (-549))
+ (|:| |outvect| (-621 (-665 *7))))))
+ (-5 *1 (-522 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-821))))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1016))
- (-5 *1 (-824 *5 *2)) (-4 *2 (-823 *5)))))
+ (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1018))
+ (-5 *1 (-826 *5 *2)) (-4 *2 (-825 *5)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-130))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-354 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-379 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-625 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-621 (-400 *6))) (-5 *3 (-400 *6))
+ (-4 *6 (-1202 *5)) (-4 *5 (-13 (-356) (-145) (-1009 (-549))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-553 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1016))
- (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1158) (-275)))
- (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-1202 *4)) (-5 *1 (-528 *4 *2 *5 *6))
+ (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-814 (-370))) (-5 *2 (-814 (-217))) (-5 *1 (-296)))))
+ (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4))
+ (-4 *4 (-342)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-287 *3))) (-5 *1 (-287 *3)) (-4 *3 (-541))
+ (-4 *3 (-1180)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-497))) (-5 *1 (-212))))
+ ((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-497))) (-5 *1 (-652))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-890)) (-5 *2 (-1132 *3)) (-5 *1 (-1147 *3))
- (-4 *3 (-354)))))
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541))
+ (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-2 (|:| |goodPols| (-621 *8)) (|:| |badPols| (-621 *8))))
+ (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-621 *8)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-823)) (-5 *4 (-621 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-621 *4))))
+ (-5 *1 (-1151 *6)) (-5 *5 (-621 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1125)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
+ (-5 *2 (-2 (|:| |k| (-795 *3)) (|:| |c| *4))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1067))
+ (-4 *2 (-130)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-892)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-256)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-547)) (|has| *1 (-6 -4320)) (-4 *1 (-395))
- (-5 *2 (-890)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-166 (-217)) (-166 (-217)))) (-5 *4 (-1058 (-217)))
- (-5 *2 (-1221)) (-5 *1 (-248)))))
+ (-12 (-4 *4 (-541))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3602 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1123 (-2 (|:| |k| (-549)) (|:| |c| *6))))
+ (-5 *4 (-997 (-816 (-549)))) (-5 *5 (-1143)) (-5 *7 (-400 (-549)))
+ (-4 *6 (-1018)) (-5 *2 (-834)) (-5 *1 (-576 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-845)) (-5 *3 (-621 (-256))) (-5 *1 (-254)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-398 (-921 (-547)))))
- (-5 *2 (-619 (-619 (-285 (-921 *4))))) (-5 *1 (-371 *4))
- (-4 *4 (-13 (-819) (-354)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-285 (-398 (-921 (-547))))))
- (-5 *2 (-619 (-619 (-285 (-921 *4))))) (-5 *1 (-371 *4))
- (-4 *4 (-13 (-819) (-354)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 (-547)))) (-5 *2 (-619 (-285 (-921 *4))))
- (-5 *1 (-371 *4)) (-4 *4 (-13 (-819) (-354)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-285 (-398 (-921 (-547)))))
- (-5 *2 (-619 (-285 (-921 *4)))) (-5 *1 (-371 *4))
- (-4 *4 (-13 (-819) (-354)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1136))
- (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-4 *4 (-13 (-29 *6) (-1158) (-928)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1917 (-619 *4))))
- (-5 *1 (-626 *6 *4 *3)) (-4 *3 (-630 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1136)) (-5 *5 (-619 *2))
- (-4 *2 (-13 (-29 *6) (-1158) (-928)))
- (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *1 (-626 *6 *2 *3)) (-4 *3 (-630 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *5)) (-4 *5 (-354))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1219 *5) "failed"))
- (|:| -1917 (-619 (-1219 *5)))))
- (-5 *1 (-641 *5)) (-5 *4 (-1219 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-354))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1219 *5) "failed"))
- (|:| -1917 (-619 (-1219 *5)))))
- (-5 *1 (-641 *5)) (-5 *4 (-1219 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *5)) (-4 *5 (-354))
- (-5 *2
- (-619
- (-2 (|:| |particular| (-3 (-1219 *5) "failed"))
- (|:| -1917 (-619 (-1219 *5))))))
- (-5 *1 (-641 *5)) (-5 *4 (-619 (-1219 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-354))
- (-5 *2
- (-619
- (-2 (|:| |particular| (-3 (-1219 *5) "failed"))
- (|:| -1917 (-619 (-1219 *5))))))
- (-5 *1 (-641 *5)) (-5 *4 (-619 (-1219 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4330))))
- (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4330))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4))))
- (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4330))))
- (-4 *7 (-13 (-364 *5) (-10 -7 (-6 -4330))))
- (-5 *2
- (-619
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1917 (-619 *7)))))
- (-5 *1 (-642 *5 *6 *7 *3)) (-5 *4 (-619 *7))
- (-4 *3 (-661 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1136))) (-4 *5 (-539))
- (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-744 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-539))
- (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-744 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1136))
- (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *1 (-746 *5 *2)) (-4 *2 (-13 (-29 *5) (-1158) (-928)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-663 *7)) (-5 *5 (-1136))
- (-4 *7 (-13 (-29 *6) (-1158) (-928)))
- (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *2
- (-2 (|:| |particular| (-1219 *7)) (|:| -1917 (-619 (-1219 *7)))))
- (-5 *1 (-776 *6 *7)) (-5 *4 (-1219 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-663 *6)) (-5 *4 (-1136))
- (-4 *6 (-13 (-29 *5) (-1158) (-928)))
- (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *2 (-619 (-1219 *6))) (-5 *1 (-776 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-619 (-285 *7))) (-5 *4 (-619 (-114)))
- (-5 *5 (-1136)) (-4 *7 (-13 (-29 *6) (-1158) (-928)))
- (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *2
- (-2 (|:| |particular| (-1219 *7)) (|:| -1917 (-619 (-1219 *7)))))
- (-5 *1 (-776 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114)))
- (-5 *5 (-1136)) (-4 *7 (-13 (-29 *6) (-1158) (-928)))
- (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *2
- (-2 (|:| |particular| (-1219 *7)) (|:| -1917 (-619 (-1219 *7)))))
- (-5 *1 (-776 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-285 *7)) (-5 *4 (-114)) (-5 *5 (-1136))
- (-4 *7 (-13 (-29 *6) (-1158) (-928)))
- (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -1917 (-619 *7))) *7 "failed"))
- (-5 *1 (-776 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-1136))
- (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -1917 (-619 *3))) *3 "failed"))
- (-5 *1 (-776 *6 *3)) (-4 *3 (-13 (-29 *6) (-1158) (-928)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-285 *2)) (-5 *4 (-114)) (-5 *5 (-619 *2))
- (-4 *2 (-13 (-29 *6) (-1158) (-928))) (-5 *1 (-776 *6 *2))
- (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-285 *2)) (-5 *5 (-619 *2))
- (-4 *2 (-13 (-29 *6) (-1158) (-928)))
- (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *1 (-776 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1004)) (-5 *1 (-779))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-782)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-779))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1219 (-307 (-370)))) (-5 *4 (-370)) (-5 *5 (-619 *4))
- (-5 *2 (-1004)) (-5 *1 (-779))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1219 (-307 (-370)))) (-5 *4 (-370)) (-5 *5 (-619 *4))
- (-5 *2 (-1004)) (-5 *1 (-779))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1219 (-307 *4))) (-5 *5 (-619 (-370)))
- (-5 *6 (-307 (-370))) (-5 *4 (-370)) (-5 *2 (-1004)) (-5 *1 (-779))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1219 (-307 (-370)))) (-5 *4 (-370)) (-5 *5 (-619 *4))
- (-5 *2 (-1004)) (-5 *1 (-779))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1219 (-307 *4))) (-5 *5 (-619 (-370)))
- (-5 *6 (-307 (-370))) (-5 *4 (-370)) (-5 *2 (-1004)) (-5 *1 (-779))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1219 (-307 *4))) (-5 *5 (-619 (-370)))
- (-5 *6 (-307 (-370))) (-5 *4 (-370)) (-5 *2 (-1004)) (-5 *1 (-779))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -1917 (-619 *6))) "failed")
- *7 *6))
- (-4 *6 (-354)) (-4 *7 (-630 *6))
- (-5 *2 (-2 (|:| |particular| (-1219 *6)) (|:| -1917 (-663 *6))))
- (-5 *1 (-787 *6 *7)) (-5 *3 (-663 *6)) (-5 *4 (-1219 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1004)) (-5 *1 (-866))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-867)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-866))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-307 *3)))) (-5 *7 (-1119))
- (-5 *8 (-217)) (-5 *5 (-619 (-307 (-370)))) (-5 *3 (-370))
- (-5 *2 (-1004)) (-5 *1 (-866))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-307 *3)))) (-5 *7 (-1119))
- (-5 *5 (-619 (-307 (-370)))) (-5 *3 (-370)) (-5 *2 (-1004))
- (-5 *1 (-866))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-921 (-398 (-547)))) (-5 *2 (-619 (-370)))
- (-5 *1 (-992)) (-5 *4 (-370))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-921 (-547))) (-5 *2 (-619 (-370))) (-5 *1 (-992))
- (-5 *4 (-370))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1195 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1093 *4))
- (-5 *3 (-307 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1093 *4))
- (-5 *3 (-285 (-307 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136))
- (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *2 (-619 (-285 (-307 *5)))) (-5 *1 (-1093 *5))
- (-5 *3 (-285 (-307 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136))
- (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *2 (-619 (-285 (-307 *5)))) (-5 *1 (-1093 *5))
- (-5 *3 (-307 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-1136)))
- (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *2 (-619 (-619 (-285 (-307 *5))))) (-5 *1 (-1093 *5))
- (-5 *3 (-619 (-285 (-307 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1136)))
- (-4 *5 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *5))))))
- (-5 *1 (-1142 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-1136))) (-4 *5 (-539))
- (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-1142 *5))
- (-5 *3 (-619 (-285 (-398 (-921 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-398 (-921 *4)))) (-4 *4 (-539))
- (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-1142 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *4))))))
- (-5 *1 (-1142 *4)) (-5 *3 (-619 (-285 (-398 (-921 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136)) (-4 *5 (-539))
- (-5 *2 (-619 (-285 (-398 (-921 *5))))) (-5 *1 (-1142 *5))
- (-5 *3 (-398 (-921 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136)) (-4 *5 (-539))
- (-5 *2 (-619 (-285 (-398 (-921 *5))))) (-5 *1 (-1142 *5))
- (-5 *3 (-285 (-398 (-921 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-619 (-285 (-398 (-921 *4)))))
- (-5 *1 (-1142 *4)) (-5 *3 (-398 (-921 *4)))))
+ (-12 (-5 *3 (-621 (-665 *5))) (-4 *5 (-300)) (-4 *5 (-1018))
+ (-5 *2 (-1226 (-1226 *5))) (-5 *1 (-1000 *5)) (-5 *4 (-1226 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1184)) (-4 *5 (-1202 *3)) (-4 *6 (-1202 (-400 *5)))
+ (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1981 *4))))
+ (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *1) (-5 *1 (-284))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-549)) (-4 *4 (-170)) (-4 *5 (-366 *4))
+ (-4 *6 (-366 *4)) (-5 *1 (-664 *4 *5 *6 *2))
+ (-4 *2 (-663 *4 *5 *6)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1125)) (-5 *3 (-549)) (-5 *1 (-235)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
+ (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-619 (-285 (-398 (-921 *4)))))
- (-5 *1 (-1142 *4)) (-5 *3 (-285 (-398 (-921 *4)))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-354)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4)))
- (-5 *2 (-1219 *6)) (-5 *1 (-327 *3 *4 *5 *6))
- (-4 *6 (-333 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767))
- (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-541)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))
+ (-4 *7 (-963 *4)) (-4 *2 (-663 *7 *8 *9))
+ (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-663 *4 *5 *6))
+ (-4 *8 (-366 *7)) (-4 *9 (-366 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2)) (-4 *2 (-300))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2))
+ (-4 *2 (-663 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *2 *4)) (-4 *4 (-300)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-745)) (-4 *5 (-539))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-938 *5 *3)) (-4 *3 (-1195 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-5 *4 (-747)) (-4 *5 (-541))
(-5 *2
- (-2 (|:| |polnum| (-756 *3)) (|:| |polden| *3) (|:| -1368 (-745))))
- (-5 *1 (-756 *3)) (-4 *3 (-1016))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1368 (-745))))
- (-4 *1 (-1030 *3 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-119 *2)) (-4 *2 (-1173)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-532))))
-(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-1139))))
- ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1140)))))
-(((*1 *1) (-5 *1 (-282))))
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-940 *5 *3)) (-4 *3 (-1202 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-890)) (-5 *3 (-619 (-254))) (-5 *1 (-252))))
- ((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1177)) (-4 *5 (-1195 *3)) (-4 *6 (-1195 (-398 *5)))
- (-5 *2 (-112)) (-5 *1 (-332 *4 *3 *5 *6)) (-4 *4 (-333 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-767))
- (-4 *3 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))) (-4 *5 (-539))
- (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-398 (-921 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1016)) (-4 *5 (-767))
- (-4 *3
- (-13 (-821)
- (-10 -8 (-15 -2838 ((-1136) $))
- (-15 -3004 ((-3 $ "failed") (-1136))))))
- (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 *6))
- (-4 *6
- (-13 (-821)
- (-10 -8 (-15 -2838 ((-1136) $))
- (-15 -3004 ((-3 $ "failed") (-1136))))))
- (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2))
- (-4 *2 (-918 (-921 *4) *5 *6)))))
-(((*1 *2)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-547))) (-5 *4 (-547)) (-5 *2 (-52))
- (-5 *1 (-974)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-793 *3)) (-4 *3 (-821)))))
+ (-12 (-4 *1 (-671 *3)) (-4 *3 (-1067))
+ (-5 *2 (-621 (-2 (|:| -1793 *3) (|:| -4000 (-747))))))))
+(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-942)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-223 *4))
- (-4 *4 (-1016))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4))
+ (-4 *4 (-1018))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1016))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-745))))
- ((*1 *1 *1) (-4 *1 (-225)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-257 *3)) (-4 *3 (-821))))
- ((*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-821))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747))))
+ ((*1 *1 *1) (-4 *1 (-227)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-4 *1 (-259 *3)) (-4 *3 (-823))))
+ ((*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177))
- (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184))
+ (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4))
- (-4 *4 (-1195 *3))))
+ (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4))
+ (-4 *4 (-1202 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-354) (-145))) (-5 *1 (-390 *2 *3))
- (-4 *3 (-1195 *2))))
+ (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3))
+ (-4 *3 (-1202 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-464 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-466 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-354)) (-4 *2 (-869 *3)) (-5 *1 (-565 *2))
- (-5 *3 (-1136))))
+ (-12 (-4 *2 (-356)) (-4 *2 (-871 *3)) (-5 *1 (-567 *2))
+ (-5 *3 (-1143))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-565 *2)) (-4 *2 (-354))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-567 *2)) (-4 *2 (-356))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-834))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4))
- (-4 *4 (-1063))))
+ (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 (-747))) (-4 *1 (-871 *4))
+ (-4 *4 (-1067))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063))))
+ (-12 (-5 *2 (-621 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1127 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1134 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1133 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1140 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1134 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1141 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1183 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1190 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1195 *3)) (-4 *3 (-1016))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1202 *3)) (-4 *3 (-1018))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1204 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1211 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1215 *4)) (-14 *4 (-1136)) (-5 *1 (-1211 *3 *4 *5))
- (-4 *3 (-1016)) (-14 *5 *3))))
-(((*1 *2)
- (-12 (-5 *2 (-1224)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-1063)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-803)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539))
- (-5 *2 (-2 (|:| -1563 *4) (|:| -2235 *3) (|:| -2916 *3)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-1030 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-539)) (-4 *3 (-1016))
- (-5 *2 (-2 (|:| -1563 *3) (|:| -2235 *1) (|:| -2916 *1)))
- (-4 *1 (-1195 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1117 *4)) (-5 *3 (-1 *4 (-547))) (-4 *4 (-1016))
- (-5 *1 (-1121 *4)))))
+ (-12 (-5 *2 (-1222 *4)) (-14 *4 (-1143)) (-5 *1 (-1218 *3 *4 *5))
+ (-4 *3 (-1018)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-798)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-167 (-219))))
+ (-5 *2 (-1006)) (-5 *1 (-731)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769))
+ (-5 *2
+ (-2 (|:| |mval| (-665 *4)) (|:| |invmval| (-665 *4))
+ (|:| |genIdeal| (-495 *4 *5 *6 *7))))
+ (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-268)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-621 (-309 (-219)))) (-5 *3 (-219)) (-5 *2 (-112))
+ (-5 *1 (-204)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-590 *3)) (-4 *3 (-821)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-890)) (-5 *4 (-217)) (-5 *5 (-547)) (-5 *6 (-843))
- (-5 *2 (-1224)) (-5 *1 (-1220)))))
+ (-12 (-4 *1 (-1009 (-549))) (-4 *1 (-295)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-619
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217)))))
- (-5 *1 (-542))))
+ (-621
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219)))))
+ (-5 *1 (-544))))
((*1 *2 *1)
- (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-5 *2 (-619 *3))))
+ (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-5 *2 (-621 *3))))
((*1 *2 *1)
(-12
(-5 *2
- (-619
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217)))
- (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217)))
- (|:| |abserr| (-217)) (|:| |relerr| (-217)))))
- (-5 *1 (-777)))))
+ (-621
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
+ (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219)))))
+ (-5 *1 (-779)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1195 *5))
- (-5 *1 (-702 *5 *2)) (-4 *5 (-354)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1173)) (-5 *1 (-178 *3 *2))
- (-4 *2 (-648 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
+ (-12 (-4 *5 (-1067)) (-4 *2 (-871 *5)) (-5 *1 (-668 *5 *2 *3 *4))
+ (-4 *3 (-366 *2)) (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1087)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-534)) (-5 *1 (-157 *2)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-1219 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1173)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -4234 (-619 (-1136))) (|:| -2677 (-619 (-1136)))))
- (-5 *1 (-1175)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1117 (-547))) (-5 *1 (-1121 *4)) (-4 *4 (-1016))
- (-5 *3 (-547)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217))
- (-5 *2 (-1004)) (-5 *1 (-727)))))
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-1226 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-665 (-549))) (-5 *5 (-112)) (-5 *7 (-665 (-219)))
+ (-5 *3 (-549)) (-5 *6 (-219)) (-5 *2 (-1006)) (-5 *1 (-731)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1148)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23))
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23))
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-649 *2)) (-4 *2 (-1016)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1136)))))
- (-5 *6 (-619 (-1136))) (-5 *3 (-1136)) (-5 *2 (-1067))
- (-5 *1 (-388))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1136)))))
- (-5 *6 (-619 (-1136))) (-5 *3 (-1136)) (-5 *2 (-1067))
- (-5 *1 (-388))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-619 (-1136))) (-5 *5 (-1139)) (-5 *3 (-1136))
- (-5 *2 (-1067)) (-5 *1 (-388)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1101 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1102 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *2 (-619 *4)) (-5 *1 (-753 *4))
- (-4 *4 (-13 (-354) (-819))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1192 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1136))
- (-5 *2 (-547)) (-5 *1 (-1077 *4 *5)))))
+ (-12 (-5 *1 (-651 *2)) (-4 *2 (-1018)) (-4 *2 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-354)) (-4 *3 (-1016))
- (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-823 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-98 *5)) (-4 *5 (-354)) (-4 *5 (-1016))
- (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-824 *5 *3))
- (-4 *3 (-823 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-619 (-1132 *7))) (-5 *3 (-1132 *7))
- (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-878)) (-4 *5 (-767))
- (-4 *6 (-821)) (-5 *1 (-875 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-619 (-1132 *5))) (-5 *3 (-1132 *5))
- (-4 *5 (-1195 *4)) (-4 *4 (-878)) (-5 *1 (-876 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-471 *4 *5))) (-14 *4 (-619 (-1136)))
- (-4 *5 (-442))
+ (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))))
+(((*1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |gblist| (-619 (-239 *4 *5)))
- (|:| |gvlist| (-619 (-547)))))
- (-5 *1 (-607 *4 *5)))))
-(((*1 *1) (-5 *1 (-1028))))
-(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1119)) (-5 *1 (-760)))))
-(((*1 *1) (-5 *1 (-154))))
+ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
+ (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219))))
+ (|:| |ub| (-621 (-816 (-219))))))
+ (-5 *1 (-260)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1139 *1)) (-4 *1 (-983)))))
+(((*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-821)) (-5 *1 (-296 *3)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1009 (-549))))
+ (-4 *5 (-1202 *4)) (-5 *2 (-621 (-400 *5))) (-5 *1 (-987 *4 *5))
+ (-5 *3 (-400 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-295))) ((*1 *1 *1) (-4 *1 (-295))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-621 (-112))) (-5 *5 (-665 (-219)))
+ (-5 *6 (-665 (-549))) (-5 *7 (-219)) (-5 *3 (-549)) (-5 *2 (-1006))
+ (-5 *1 (-731)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1061 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-186))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1061 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-293))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1061 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-298)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-834)) (-5 *1 (-1123 *3)) (-4 *3 (-1067))
+ (-4 *3 (-1180)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-112)) (-5 *1 (-805)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-108))) (-5 *1 (-173)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-592 *3))
+ (-4 *3 (-13 (-423 *5) (-27) (-1165)))
+ (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2 (-2 (|:| -3440 *3) (|:| |coeff| *3)))
+ (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1067)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-747)) (-4 *3 (-541)) (-5 *1 (-940 *3 *2))
+ (-4 *2 (-1202 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-268)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-112)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1143)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1143)) (-5 *2 (-112)) (-5 *1 (-592 *4)) (-4 *4 (-823))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-592 *4)) (-4 *4 (-823))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-858 *5 *3 *4))
+ (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *6)) (-4 *6 (-857 *5)) (-4 *5 (-1067))
+ (-5 *2 (-112)) (-5 *1 (-858 *5 *6 *4)) (-4 *4 (-594 (-863 *5))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1202 *9)) (-4 *7 (-769)) (-4 *8 (-823)) (-4 *9 (-300))
+ (-4 *10 (-920 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-621 (-1139 *10)))
+ (|:| |dterm|
+ (-621 (-621 (-2 (|:| -2099 (-747)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-621 *6)) (|:| |nlead| (-621 *10))))
+ (-5 *1 (-754 *6 *7 *8 *9 *10)) (-5 *3 (-1139 *10)) (-5 *4 (-621 *6))
+ (-5 *5 (-621 *10)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-821)))
+ (-5 *2 (-621 (-2 (|:| -4024 (-621 *3)) (|:| -3042 *5))))
+ (-5 *1 (-179 *5 *3)) (-4 *3 (-1202 (-167 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-356) (-821)))
+ (-5 *2 (-621 (-2 (|:| -4024 (-621 *3)) (|:| -3042 *4))))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1219 *5)) (-4 *5 (-766)) (-5 *2 (-112))
- (-5 *1 (-816 *4 *5)) (-14 *4 (-745)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1177)) (-4 *5 (-1195 *4))
- (-5 *2 (-2 (|:| |radicand| (-398 *5)) (|:| |deg| (-745))))
- (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1195 (-398 *5))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-1016)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-217) (-217) (-217)))
- (-5 *4 (-3 (-1 (-217) (-217) (-217) (-217)) "undefined"))
- (-5 *5 (-1058 (-217))) (-5 *6 (-619 (-254))) (-5 *2 (-1095 (-217)))
- (-5 *1 (-671)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1224)) (-5 *1 (-805)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-730)))))
-(((*1 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1222))))
- ((*1 *2 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1222)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4))
- (-4 *4 (-340)))))
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-959 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1074 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 *3)) (-4 *3 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1074 *5 *6 *7 *8 *3)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1067) (-34))) (-4 *6 (-13 (-1067) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1107 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-400 (-549))) (-5 *1 (-576 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1018)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-747)) (-4 *5 (-170))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-747)) (-4 *5 (-170))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4)
+ (-241 *4 (-400 (-549)))))
+ (-5 *3 (-621 (-836 *4))) (-14 *4 (-621 (-1143))) (-14 *5 (-747))
+ (-5 *1 (-496 *4 *5)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))
+ (-5 *2 (-1006)) (-5 *1 (-725)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-114)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018)) (-4 *2 (-356))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-635 *4 *2))
+ (-4 *2 (-632 *4)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-619 (-1136)))
- (-5 *2 (-619 (-619 (-370)))) (-5 *1 (-992)) (-5 *5 (-370))))
+ (-12 (-5 *3 (-621 (-923 (-549)))) (-5 *4 (-621 (-1143)))
+ (-5 *2 (-621 (-621 (-372)))) (-5 *1 (-994)) (-5 *5 (-372))))
((*1 *2 *3)
- (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991)))
- (-14 *5 (-619 (-1136))) (-5 *2 (-619 (-619 (-993 (-398 *4)))))
- (-5 *1 (-1245 *4 *5 *6)) (-14 *6 (-619 (-1136)))))
+ (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993)))
+ (-14 *5 (-621 (-1143))) (-5 *2 (-621 (-621 (-995 (-400 *4)))))
+ (-5 *1 (-1252 *4 *5 *6)) (-14 *6 (-621 (-1143)))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-819) (-298) (-145) (-991)))
- (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1245 *5 *6 *7))
- (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136)))))
+ (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1252 *5 *6 *7))
+ (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-819) (-298) (-145) (-991)))
- (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1245 *5 *6 *7))
- (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-819) (-298) (-145) (-991)))
- (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1245 *5 *6 *7))
- (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-921 *4)))
- (-4 *4 (-13 (-819) (-298) (-145) (-991)))
- (-5 *2 (-619 (-619 (-993 (-398 *4))))) (-5 *1 (-1245 *4 *5 *6))
- (-14 *5 (-619 (-1136))) (-14 *6 (-619 (-1136))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3))
- (-4 *3 (-13 (-354) (-1158) (-971))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2712 *4))))
- (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-623 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217))
- (-5 *2 (-1004)) (-5 *1 (-727)))))
-(((*1 *1) (-5 *1 (-428))))
-(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975)))))
-(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))
- ((*1 *1 *1 *1) (-4 *1 (-463)))
- ((*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))
- ((*1 *2 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-852))))
- ((*1 *1 *1) (-5 *1 (-940)))
- ((*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169))
- (-4 *5 (-1195 *4)) (-5 *2 (-663 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-169)) (-4 *5 (-1195 *4)) (-5 *2 (-663 *4))
- (-5 *1 (-399 *3 *4 *5)) (-4 *3 (-400 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1195 *3))
- (-5 *2 (-663 *3)))))
-(((*1 *2)
- (-12
- (-5 *2
- (-1219 (-619 (-2 (|:| -4153 (-879 *3)) (|:| -3487 (-1082))))))
- (-5 *1 (-342 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890))))
- ((*1 *2)
- (-12 (-5 *2 (-1219 (-619 (-2 (|:| -4153 *3) (|:| -3487 (-1082))))))
- (-5 *1 (-343 *3 *4)) (-4 *3 (-340)) (-14 *4 (-3 (-1132 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1219 (-619 (-2 (|:| -4153 *3) (|:| -3487 (-1082))))))
- (-5 *1 (-344 *3 *4)) (-4 *3 (-340)) (-14 *4 (-890)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1063)) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1063)))))
-(((*1 *1 *1) (-5 *1 (-217))) ((*1 *1 *1) (-5 *1 (-370)))
- ((*1 *1) (-5 *1 (-370))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-96)))))
+ (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1252 *5 *6 *7))
+ (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1252 *5 *6 *7))
+ (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-923 *4)))
+ (-4 *4 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2 (-621 (-621 (-995 (-400 *4))))) (-5 *1 (-1252 *4 *5 *6))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-621 (-1143))))))
+(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
+ ((*1 *1 *1) (-4 *1 (-1111))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1132 (-547))) (-5 *2 (-547)) (-5 *1 (-911)))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-1139 *4)) (-5 *1 (-519 *4))
+ (-4 *4 (-342)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534))
+ (-5 *2 (-400 (-549)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-411 *3)) (-4 *3 (-534))
+ (-4 *3 (-541))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-534)) (-5 *2 (-400 (-549)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-773 *3)) (-4 *3 (-170)) (-4 *3 (-534))
+ (-5 *2 (-400 (-549)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-809 *3)) (-4 *3 (-534))
+ (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-816 *3)) (-4 *3 (-534))
+ (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-968 *3)) (-4 *3 (-170)) (-4 *3 (-534))
+ (-5 *2 (-400 (-549)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-400 (-549))) (-5 *1 (-979 *3))
+ (-4 *3 (-1009 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-621 (-758 *3))) (-5 *1 (-758 *3)) (-4 *3 (-541))
+ (-4 *3 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3))
+ (-4 *3 (-938)))))
+(((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *3) (-12 (-5 *3 (-621 (-52))) (-5 *2 (-1231)) (-5 *1 (-835)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-1125)) (-5 *5 (-665 (-219)))
+ (-5 *2 (-1006)) (-5 *1 (-724)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1119)) (-5 *2 (-619 (-1141))) (-5 *1 (-849)))))
-(((*1 *2 *3) (-12 (-5 *3 (-619 (-52))) (-5 *2 (-1224)) (-5 *1 (-833)))))
-(((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-370)) (-5 *3 (-619 (-254))) (-5 *1 (-252))))
- ((*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-254)))))
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1123 (-219)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1372
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1006)) (-5 *1 (-298)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370)))
- (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135))))
- (-5 *1 (-1135)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-532)))))
-(((*1 *1) (-5 *1 (-142)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-252))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-254)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2)
- (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-408 *3)))))
-(((*1 *1 *1) (-5 *1 (-1028))))
+ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372)))
+ (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142))))
+ (-5 *1 (-1142)))))
+(((*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -1353 *3) (|:| |coef1| (-758 *3)) (|:| |coef2| (-758 *3))))
+ (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))))
+(((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-892)) (-5 *1 (-762)))))
+(((*1 *1) (-5 *1 (-430))))
(((*1 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *4 (-354)) (-4 *5 (-1195 *4)) (-5 *2 (-1224))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1195 (-398 *5))) (-14 *7 *6))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-745)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-1016)))))
+ (-12 (-5 *3 (-1226 *4)) (-4 *4 (-617 (-549))) (-5 *2 (-112))
+ (-5 *1 (-1253 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-863 *4)) (-4 *4 (-1067)) (-5 *1 (-860 *4 *3))
+ (-4 *3 (-1067)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370)))
- (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135))))
- (-5 *1 (-1135)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-217)))
- (-5 *2 (-1004)) (-5 *1 (-732)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063))
- (-4 *6 (-1063)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-658 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-184))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-291))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-296)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766))
- (-5 *2 (-745))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063))
- (-5 *2 (-745))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-745)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-701)))))
+ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372)))
+ (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142))))
+ (-5 *1 (-1142)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-1228))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1125)) (-5 *1 (-687)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-747)) (-5 *1 (-546)))))
+(((*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1180)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1119)) (-5 *2 (-619 (-1141))) (-5 *1 (-1097)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-619 *7) *7 (-1132 *7))) (-5 *5 (-1 (-409 *7) *7))
- (-4 *7 (-1195 *6)) (-4 *6 (-13 (-354) (-145) (-1007 (-398 (-547)))))
- (-5 *2 (-619 (-2 (|:| |frac| (-398 *7)) (|:| -2644 *3))))
- (-5 *1 (-783 *6 *7 *3 *8)) (-4 *3 (-630 *7))
- (-4 *8 (-630 (-398 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1195 *5))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-5 *2
- (-619 (-2 (|:| |frac| (-398 *6)) (|:| -2644 (-628 *6 (-398 *6))))))
- (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-398 *6))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1119)) (-5 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-795)))))
+ (-12 (-5 *3 (-1125)) (-5 *2 (-621 (-1148))) (-5 *1 (-1103)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217)))
- (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217)))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))
- (-5 *2
- (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370))
- (|:| |expense| (-370)) (|:| |accuracy| (-370))
- (|:| |intermediateResults| (-370))))
- (-5 *1 (-777)))))
+ (-12 (-4 *2 (-1202 *4)) (-5 *1 (-785 *4 *2 *3 *5))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2))
+ (-4 *5 (-632 (-400 *2))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-525)))))
(((*1 *2 *1)
(-12
(-5 *2
@@ -5323,3552 +5174,3293 @@
(|:| |Continue| "continue")
(|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
(|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-321)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-748)) (-5 *1 (-52)))))
+ (-5 *1 (-323)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *1) (-5 *1 (-155))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1071)) (-5 *3 (-750)) (-5 *1 (-52)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370)))
- (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135))))
- (-5 *1 (-1135)))))
+ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372)))
+ (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142))))
+ (-5 *1 (-1142)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-619
- (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1132 *3))
- (|:| |logand| (-1132 *3)))))
- (-5 *1 (-565 *3)) (-4 *3 (-354)))))
-(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1180)) (-5 *1 (-368 *4 *2))
+ (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4338)))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-747)) (-4 *4 (-300)) (-4 *6 (-1202 *4))
+ (-5 *2 (-1226 (-621 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-621 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1139 *3)) (-4 *3 (-1018)) (-4 *1 (-1202 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1136)) (-4 *5 (-1177)) (-4 *6 (-1195 *5))
- (-4 *7 (-1195 (-398 *6))) (-5 *2 (-619 (-921 *5)))
- (-5 *1 (-332 *4 *5 *6 *7)) (-4 *4 (-333 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1136)) (-4 *1 (-333 *4 *5 *6)) (-4 *4 (-1177))
- (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5))) (-4 *4 (-354))
- (-5 *2 (-619 (-921 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1173)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))))
+ (-12 (-5 *3 (-621 (-2 (|:| |deg| (-747)) (|:| -1968 *5))))
+ (-4 *5 (-1202 *4)) (-4 *4 (-342)) (-5 *2 (-621 *5))
+ (-5 *1 (-210 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-2 (|:| -2121 *5) (|:| -3701 (-549)))))
+ (-5 *4 (-549)) (-4 *5 (-1202 *4)) (-5 *2 (-621 *5))
+ (-5 *1 (-672 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-1131 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-219))) (-5 *1 (-1228))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1100 (-219))) (-5 *1 (-1228)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1139 (-549))) (-5 *1 (-913)) (-5 *3 (-549))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-300)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
+ (-5 *1 (-1091 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-112)) (-5 *1 (-114)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1132 *1)) (-5 *4 (-1136)) (-4 *1 (-27))
- (-5 *2 (-619 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1132 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-619 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-307 (-217))) (-5 *4 (-619 (-1136)))
- (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-1117 (-217))) (-5 *1 (-291)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-217))) (-5 *1 (-258)))))
+ (-12 (-4 *5 (-356)) (-4 *5 (-541))
+ (-5 *2
+ (-2 (|:| |minor| (-621 (-892))) (|:| -2652 *3)
+ (|:| |minors| (-621 (-621 (-892)))) (|:| |ops| (-621 *3))))
+ (-5 *1 (-89 *5 *3)) (-5 *4 (-892)) (-4 *3 (-632 *5)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370)))
- (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135))))
- (-5 *1 (-1135)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-109))))
- ((*1 *2 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1063))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1119)) (-5 *1 (-1154)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-732)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-1065 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-619 *4))) (-5 *1 (-873 *4))
- (-5 *3 (-619 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-1065 *4))) (-5 *1 (-873 *4))
- (-5 *3 (-1065 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *1) (-5 *1 (-1221))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766))
- (-4 *2 (-442))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-333 *2 *3 *4)) (-4 *2 (-1177)) (-4 *3 (-1195 *2))
- (-4 *4 (-1195 (-398 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-442))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821)) (-4 *3 (-442))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-442))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-298)) (-4 *3 (-539)) (-5 *1 (-1124 *3 *2))
- (-4 *2 (-1195 *3)))))
+ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372)))
+ (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142))))
+ (-5 *1 (-1142)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-52)) (-5 *1 (-863 *4))
+ (-4 *4 (-1067)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *1 (-780 *4 *2)) (-4 *2 (-13 (-29 *4) (-1165) (-930))))))
+(((*1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1229)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1119)) (-4 *1 (-380)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971)))
- (-5 *1 (-173 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2))
- (-4 *4 (-13 (-821) (-539))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1136)) (-5 *4 (-921 (-547))) (-5 *2 (-321))
- (-5 *1 (-323))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1136)) (-5 *4 (-1056 (-921 (-547)))) (-5 *2 (-321))
- (-5 *1 (-323))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016))
- (-4 *3 (-1063)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-619 *3))
- (-4 *3 (-13 (-421 *6) (-27) (-1158)))
- (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1063)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-590 *3)) (-4 *3 (-13 (-421 *5) (-27) (-1158)))
- (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2 (-565 *3)) (-5 *1 (-549 *5 *3 *6)) (-4 *6 (-1063)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-458)) (-5 *3 (-619 (-254))) (-5 *1 (-1220))))
- ((*1 *1 *1) (-5 *1 (-1220))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-208 *4 *2))
- (-4 *2 (-1195 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1063)))))
+ (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-973))
+ (-4 *2 (-1018)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-592 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1143)))
+ (-4 *2 (-13 (-423 *5) (-27) (-1165)))
+ (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *1 (-551 *5 *2 *6)) (-4 *6 (-1067)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-876 *4)) (-4 *4 (-1067)) (-5 *2 (-621 (-747)))
+ (-5 *1 (-875 *4)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1125)) (-4 *1 (-382)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1226 (-1068 *3 *4))) (-5 *1 (-1068 *3 *4))
+ (-14 *3 (-892)) (-14 *4 (-892)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1071)) (-5 *1 (-284)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-285 (-398 (-921 *5)))) (-5 *4 (-1136))
- (-4 *5 (-13 (-298) (-821) (-145)))
- (-5 *2 (-1126 (-619 (-307 *5)) (-619 (-285 (-307 *5)))))
- (-5 *1 (-1091 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1136))
- (-4 *5 (-13 (-298) (-821) (-145)))
- (-5 *2 (-1126 (-619 (-307 *5)) (-619 (-285 (-307 *5)))))
- (-5 *1 (-1091 *5)))))
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4))))
+ (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-948 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-592 *4)) (-5 *1 (-591 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-823)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3)))
+ (-5 *1 (-743 *3 *4)) (-4 *3 (-685 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-356)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-825 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018))
+ (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-826 *5 *3))
+ (-4 *3 (-825 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444))
+ (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-892)) (-4 *5 (-300)) (-4 *3 (-1202 *5))
+ (-5 *2 (-2 (|:| |plist| (-621 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-452 *5 *3)) (-5 *4 (-621 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-1030 *3 *4 *2)) (-4 *2 (-821))))
+ (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
+ (-5 *2 (-747))))
((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1219 *4)) (-5 *3 (-547)) (-4 *4 (-340))
- (-5 *1 (-517 *4)))))
+ (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067))
+ (-5 *2 (-747))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-703)))))
+(((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747))
+ (-4 *4 (-170)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1210 *4)) (-5 *1 (-1212 *4 *2))
- (-4 *4 (-38 (-398 (-547)))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1119) (-748))) (-5 *1 (-114)))))
+ (|partial| -12 (-5 *4 (-1143)) (-4 *5 (-594 (-863 (-549))))
+ (-4 *5 (-857 (-549)))
+ (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-552 *5 *3)) (-4 *3 (-607))
+ (-4 *3 (-13 (-27) (-1165) (-423 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1143)) (-5 *4 (-816 *2)) (-4 *2 (-1106))
+ (-4 *2 (-13 (-27) (-1165) (-423 *5)))
+ (-4 *5 (-594 (-863 (-549)))) (-4 *5 (-857 (-549)))
+ (-4 *5 (-13 (-823) (-1009 (-549)) (-444) (-617 (-549))))
+ (-5 *1 (-552 *5 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
+ ((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1139 (-1139 *4))))
+ (-5 *1 (-1178 *4)) (-5 *3 (-1139 (-1139 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-923 (-549)))) (-5 *1 (-430))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1143)) (-5 *4 (-665 (-219))) (-5 *2 (-1071))
+ (-5 *1 (-736))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1143)) (-5 *4 (-665 (-549))) (-5 *2 (-1071))
+ (-5 *1 (-736)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1173))
- (-4 *4 (-364 *2)) (-4 *5 (-364 *2))))
+ (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1180))
+ (-4 *4 (-366 *2)) (-4 *5 (-366 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-364 *2))
- (-4 *5 (-364 *2)) (-4 *2 (-1173))))
+ (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2))
+ (-4 *5 (-366 *2)) (-4 *2 (-1180))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1173))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1173))))
+ (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1180))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 (-547))) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 (-547)) (-14 *5 (-745))))
+ (-12 (-5 *3 (-621 (-549))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 (-549)) (-14 *5 (-747))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-745))))
+ (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-747))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-745))))
+ (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-747))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-745))))
+ (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-747))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-745))))
+ (-12 (-5 *3 (-549)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-747))))
((*1 *2 *1)
- (-12 (-4 *2 (-169)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-547))
- (-14 *4 (-745))))
+ (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-549))
+ (-14 *4 (-747))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-4 *2 (-1063)) (-5 *1 (-205 *4 *2))
- (-14 *4 (-890))))
+ (-12 (-5 *3 (-747)) (-4 *2 (-1067)) (-5 *1 (-207 *4 *2))
+ (-14 *4 (-892))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1136)) (-5 *2 (-237 (-1119))) (-5 *1 (-206 *4))
+ (-12 (-5 *3 (-1143)) (-5 *2 (-239 (-1125))) (-5 *1 (-208 *4))
(-4 *4
- (-13 (-821)
- (-10 -8 (-15 -3334 ((-1119) $ *3)) (-15 -2692 ((-1224) $))
- (-15 -1764 ((-1224) $)))))))
+ (-13 (-823)
+ (-10 -8 (-15 -3341 ((-1125) $ *3)) (-15 -2699 ((-1231) $))
+ (-15 -2684 ((-1231) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-958)) (-5 *1 (-206 *3))
+ (-12 (-5 *2 (-960)) (-5 *1 (-208 *3))
(-4 *3
- (-13 (-821)
- (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 ((-1224) $))
- (-15 -1764 ((-1224) $)))))))
+ (-13 (-823)
+ (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 ((-1231) $))
+ (-15 -2684 ((-1231) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-745)) (-5 *1 (-237 *4)) (-4 *4 (-821))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-237 *3)) (-4 *3 (-821))))
+ (-12 (-5 *3 "count") (-5 *2 (-747)) (-5 *1 (-239 *4)) (-4 *4 (-823))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-823))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-237 *3)) (-4 *3 (-821))))
+ (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-823))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1173))))
+ (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1180))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1173))))
+ (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1180))))
((*1 *2 *1 *2)
- (-12 (-4 *3 (-169)) (-5 *1 (-280 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1195 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7))
+ (-4 *2 (-1202 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-293))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-621 *1)) (-4 *1 (-295))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-333 *2 *3 *4)) (-4 *2 (-1177)) (-4 *3 (-1195 *2))
- (-4 *4 (-1195 (-398 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-408 *2)) (-4 *2 (-169))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1119)) (-5 *1 (-491))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-52)) (-5 *1 (-608))))
+ (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1184)) (-4 *3 (-1202 *2))
+ (-4 *4 (-1202 (-400 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-410 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1125)) (-5 *1 (-493))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-52)) (-5 *1 (-610))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1186 (-547))) (-4 *1 (-625 *3)) (-4 *3 (-1173))))
+ (-12 (-5 *2 (-1193 (-549))) (-4 *1 (-627 *3)) (-4 *3 (-1180))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063))))
+ (-12 (-5 *3 (-747)) (-5 *1 (-651 *2)) (-4 *2 (-1067))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-619 (-547))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))
+ (-12 (-5 *2 (-621 (-549))) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-619 (-861 *4))) (-5 *1 (-861 *4))
- (-4 *4 (-1063))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-621 (-863 *4))) (-5 *1 (-863 *4))
+ (-4 *4 (-1067))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1067))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4))
- (-4 *4 (-1063))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-876 *4)) (-5 *1 (-875 *4))
+ (-4 *4 (-1067))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-232 *4 *2)) (-14 *4 (-890)) (-4 *2 (-354))
- (-5 *1 (-962 *4 *2))))
+ (-12 (-5 *3 (-234 *4 *2)) (-14 *4 (-892)) (-4 *2 (-356))
+ (-5 *1 (-964 *4 *2))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-979 *2)) (-4 *2 (-1173))))
- ((*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1173))))
+ (-12 (-5 *3 "value") (-4 *1 (-981 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1180))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *2 (-1016))
- (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2))))
+ (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *2 *6 *7)) (-4 *2 (-1018))
+ (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *2 *6 *7))
- (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)) (-4 *2 (-1016))))
+ (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *2 *6 *7))
+ (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1018))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-890)) (-4 *4 (-1063))
- (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4))))
- (-5 *1 (-1039 *4 *5 *2))
- (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4))))))
+ (-12 (-5 *3 (-892)) (-4 *4 (-1067))
+ (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4))))
+ (-5 *1 (-1042 *4 *5 *2))
+ (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-890)) (-4 *4 (-1063))
- (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4))))
- (-5 *1 (-1040 *4 *5 *2))
- (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4))))))
+ (-12 (-5 *3 (-892)) (-4 *4 (-1067))
+ (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4))))
+ (-5 *1 (-1043 *4 *5 *2))
+ (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-547))) (-4 *1 (-1066 *3 *4 *5 *6 *7))
- (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063))
- (-4 *7 (-1063))))
+ (-12 (-5 *2 (-621 (-549))) (-4 *1 (-1070 *3 *4 *5 *6 *7))
+ (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-4 *7 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-547)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063))
- (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063))))
- ((*1 *1 *1 *1) (-4 *1 (-1105)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1136))))
+ (-12 (-5 *2 (-549)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067))))
+ ((*1 *1 *1 *1) (-4 *1 (-1111)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1143))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-398 *1)) (-4 *1 (-1195 *2)) (-4 *2 (-1016))
- (-4 *2 (-354))))
+ (-12 (-5 *3 (-400 *1)) (-4 *1 (-1202 *2)) (-4 *2 (-1018))
+ (-4 *2 (-356))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-398 *1)) (-4 *1 (-1195 *3)) (-4 *3 (-1016))
- (-4 *3 (-539))))
+ (-12 (-5 *2 (-400 *1)) (-4 *1 (-1202 *3)) (-4 *3 (-1018))
+ (-4 *3 (-541))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1197 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016))))
+ (-12 (-4 *1 (-1204 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1207 *2)) (-4 *2 (-1173))))
+ (-12 (-5 *3 "last") (-4 *1 (-1214 *2)) (-4 *2 (-1180))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1207 *3)) (-4 *3 (-1173))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1214 *3)) (-4 *3 (-1180))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886))))
- ((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-1173))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1173))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))))
-(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-458))))
- ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1220))))
- ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1221)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-354)) (-5 *2 (-619 (-1117 *4))) (-5 *1 (-276 *4 *5))
- (-5 *3 (-1117 *4)) (-4 *5 (-1210 *4)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-619 *4)) (-4 *4 (-821))
- (-5 *1 (-1144 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-354)) (-5 *2 (-890)) (-5 *1 (-319 *3 *4))
- (-4 *3 (-320 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-354)) (-5 *2 (-807 (-890))) (-5 *1 (-319 *3 *4))
- (-4 *3 (-320 *4))))
- ((*1 *2) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-890))))
- ((*1 *2)
- (-12 (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-5 *2 (-807 (-890))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-619 (-254))) (-5 *1 (-252))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))))
-(((*1 *2)
- (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-408 *3)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-539)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3))
- (-5 *1 (-1163 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))
- (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
+ (|partial| -12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -1864 *3) (|:| -3731 (-747)))) (-5 *1 (-568 *3))
+ (-4 *3 (-534)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1226 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184))
+ (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-460))))
+ ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1227))))
+ ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1228)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1204 *3 *4 *5)) (-5 *1 (-310 *3 *4 *5))
- (-4 *3 (-13 (-354) (-821))) (-14 *4 (-1136)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-547))))
- ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-409 *3)) (-4 *3 (-539))))
- ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-673))))
+ (-12 (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-856 *3 *4 *5))
+ (-4 *3 (-1067)) (-4 *5 (-642 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-1063)) (-5 *1 (-688 *3 *2 *4)) (-4 *3 (-821))
- (-14 *4
- (-1 (-112) (-2 (|:| -3487 *3) (|:| -3322 *2))
- (-2 (|:| -3487 *3) (|:| -3322 *2)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1172))) (-5 *1 (-584)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-912 (-217)))) (-5 *1 (-1220)))))
-(((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-266)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-860 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1067)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-733)))))
+(((*1 *2 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-534)))))
+(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1125)) (-5 *1 (-687)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-534))))
+(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1180)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-728)))))
+(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))
+ ((*1 *2 *1) (-12 (-5 *1 (-885 *2)) (-4 *2 (-300))))
+ ((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-300))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-549)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1179))) (-5 *1 (-586)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4))
- (-5 *2 (-745)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-4 *3 (-539)) (-5 *2 (-745))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4))
- (-4 *6 (-364 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3))
- (-4 *3 (-661 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-539))
- (-5 *2 (-745)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)))))
-(((*1 *2)
- (-12 (-5 *2 (-1224)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-1063)))))
-(((*1 *1 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1) (-5 *1 (-608))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3840 *7) (|:| |sol?| (-112)))
- (-547) *7))
- (-5 *6 (-619 (-398 *8))) (-4 *7 (-354)) (-4 *8 (-1195 *7))
- (-5 *3 (-398 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-557 *7 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1224)) (-5 *1 (-1099))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1224)) (-5 *1 (-1099)))))
-(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009)))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-61 *3)) (-14 *3 (-1136))))
- ((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-68 *3)) (-14 *3 (-1136))))
- ((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-71 *3)) (-14 *3 (-1136))))
- ((*1 *2 *1) (-12 (-4 *1 (-386)) (-5 *2 (-1224))))
- ((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1224)) (-5 *1 (-388))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-769)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823))
+ (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-219)))))
+(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1180)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-876 *3))) (-4 *3 (-1067)) (-5 *1 (-875 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2 (-112)) (-5 *1 (-293)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1184)) (-4 *5 (-1202 *4))
+ (-5 *2 (-2 (|:| -1570 (-400 *5)) (|:| |poly| *3)))
+ (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1202 (-400 *5))))))
+(((*1 *1 *1) (-4 *1 (-607)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973) (-1165))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-309 (-219)))) (-5 *4 (-747))
+ (-5 *2 (-665 (-219))) (-5 *1 (-260)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))
+ (-5 *2 (-1139 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-411 *3)) (-4 *3 (-541)) (-5 *1 (-412 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-61 *3)) (-14 *3 (-1143))))
+ ((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-68 *3)) (-14 *3 (-1143))))
+ ((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-71 *3)) (-14 *3 (-1143))))
+ ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1231))))
+ ((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1231)) (-5 *1 (-390))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1119)) (-5 *4 (-832)) (-5 *2 (-1224)) (-5 *1 (-1099))))
- ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1224)) (-5 *1 (-1099))))
+ (-12 (-5 *3 (-1125)) (-5 *4 (-834)) (-5 *2 (-1231)) (-5 *1 (-1105))))
+ ((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1231)) (-5 *1 (-1105))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1224)) (-5 *1 (-1099)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886))))
- ((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (-5 *2 (-619 (-217))) (-5 *1 (-196)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1177)) (-4 *3 (-1195 *4))
- (-4 *5 (-1195 (-398 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1119)) (-5 *1 (-184))))
- ((*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1119)) (-5 *1 (-291))))
- ((*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1119)) (-5 *1 (-296)))))
+ (-12 (-5 *3 (-621 (-834))) (-5 *2 (-1231)) (-5 *1 (-1105)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-549))))
+ (-4 *4 (-13 (-1202 *3) (-541) (-10 -8 (-15 -3727 ($ $ $)))))
+ (-4 *3 (-541)) (-5 *1 (-1205 *3 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1123 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1018))
+ (-5 *3 (-400 (-549))) (-5 *1 (-1127 *4)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-541)) (-5 *1 (-940 *4 *2))
+ (-4 *2 (-1202 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-747)) (-5 *2 (-1231)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
+ (-12 (-5 *4 (-1143)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-680 *3))
+ (-4 *3 (-594 (-525)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1143)) (-5 *2 (-1 (-219) (-219) (-219)))
+ (-5 *1 (-680 *3)) (-4 *3 (-594 (-525))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-169))))))
+(((*1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-547))) (-5 *4 (-874 (-547)))
- (-5 *2 (-663 (-547))) (-5 *1 (-569))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-619 (-663 (-547))))
- (-5 *1 (-569))))
+ (-12 (-5 *4 (-747)) (-5 *2 (-621 (-1143))) (-5 *1 (-204))
+ (-5 *3 (-1143))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-547))) (-5 *4 (-619 (-874 (-547))))
- (-5 *2 (-619 (-663 (-547)))) (-5 *1 (-569)))))
-(((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-541 *3)) (-4 *3 (-532))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-5 *2 (-409 *3))
- (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298))
- (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-409 (-1132 *7)))
- (-5 *1 (-717 *4 *5 *6 *7)) (-5 *3 (-1132 *7))))
+ (-12 (-5 *3 (-309 (-219))) (-5 *4 (-747)) (-5 *2 (-621 (-1143)))
+ (-5 *1 (-260))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))
+ (-5 *2 (-621 *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-442)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *2 (-409 *1)) (-4 *1 (-918 *3 *4 *5))))
+ (-12 (-5 *2 (-621 *3)) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-648 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-653 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-795 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-864 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
+ (-5 *2 (-621 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1180))
+ (-5 *2 (-621 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-923 (-549))) (-5 *2 (-621 *1)) (-4 *1 (-983))))
((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-442)) (-5 *2 (-409 *3))
- (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4))))
+ (-12 (-5 *3 (-923 (-400 (-549)))) (-5 *2 (-621 *1)) (-4 *1 (-983))))
+ ((*1 *2 *3) (-12 (-5 *3 (-923 *1)) (-4 *1 (-983)) (-5 *2 (-621 *1))))
((*1 *2 *3)
- (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-442))
- (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-409 (-1132 (-398 *7))))
- (-5 *1 (-1131 *4 *5 *6 *7)) (-5 *3 (-1132 (-398 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1177))))
+ (-12 (-5 *3 (-1139 (-549))) (-5 *2 (-621 *1)) (-4 *1 (-983))))
((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-409 *3)) (-5 *1 (-1198 *4 *3))
- (-4 *3 (-13 (-1195 *4) (-539) (-10 -8 (-15 -3719 ($ $ $)))))))
+ (-12 (-5 *3 (-1139 (-400 (-549)))) (-5 *2 (-621 *1)) (-4 *1 (-983))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1139 *1)) (-4 *1 (-983)) (-5 *2 (-621 *1))))
((*1 *2 *3)
- (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991)))
- (-14 *5 (-619 (-1136)))
+ (-12 (-4 *4 (-13 (-821) (-356))) (-4 *3 (-1202 *4)) (-5 *2 (-621 *1))
+ (-4 *1 (-1035 *4 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1139 *5)) (-4 *5 (-356)) (-5 *2 (-621 *6))
+ (-5 *1 (-522 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-384)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-541) (-145)))
+ (-5 *1 (-1196 *4 *2)) (-4 *2 (-1202 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-114)) (-4 *4 (-1018)) (-5 *1 (-691 *4 *2))
+ (-4 *2 (-624 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-810 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-1 (-1123 (-923 *4)) (-1123 (-923 *4))))
+ (-5 *1 (-1234 *4)) (-4 *4 (-356)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-323)))))
+(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1231)) (-5 *1 (-384))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-384)))))
+(((*1 *1 *1 *1) (-4 *1 (-465))) ((*1 *1 *1 *1) (-4 *1 (-738))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1018)) (-4 *2 (-663 *4 *5 *6))
+ (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1202 *4)) (-4 *5 (-366 *4))
+ (-4 *6 (-366 *4)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-621 (-1143))) (-4 *5 (-444))
(-5 *2
- (-619 (-1107 *4 (-519 (-834 *6)) (-834 *6) (-754 *4 (-834 *6)))))
- (-5 *1 (-1245 *4 *5 *6)) (-14 *6 (-619 (-1136))))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-382)))))
+ (-2 (|:| |glbase| (-621 (-241 *4 *5))) (|:| |glval| (-621 (-549)))))
+ (-5 *1 (-609 *4 *5)) (-5 *3 (-621 (-241 *4 *5))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1226 (-747))) (-5 *1 (-651 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1139 *1)) (-5 *3 (-1143)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1139 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-923 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1143)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-541)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-541))))))
+(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-155))))
+ ((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-525))) ((*1 *1) (-4 *1 (-699)))
+ ((*1 *1) (-4 *1 (-703)))
+ ((*1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067))))
+ ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-823)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-745)) (-5 *2 (-619 (-1136))) (-5 *1 (-202))
- (-5 *3 (-1136))))
+ (-12 (-4 *5 (-1067)) (-4 *6 (-857 *5)) (-5 *2 (-856 *5 *6 (-621 *6)))
+ (-5 *1 (-858 *5 *6 *4)) (-5 *3 (-621 *6)) (-4 *4 (-594 (-863 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-307 (-217))) (-5 *4 (-745)) (-5 *2 (-619 (-1136)))
- (-5 *1 (-258))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169))
- (-5 *2 (-619 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-619 *3)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821))
- (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-793 *3)) (-4 *3 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))
- (-5 *2 (-619 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1063)) (-4 *5 (-1063))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5)))))
+ (-12 (-4 *5 (-1067)) (-5 *2 (-621 (-287 *3))) (-5 *1 (-858 *5 *3 *4))
+ (-4 *3 (-1009 (-1143))) (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1067)) (-5 *2 (-621 (-287 (-923 *3))))
+ (-5 *1 (-858 *5 *3 *4)) (-4 *3 (-1018))
+ (-4008 (-4 *3 (-1009 (-1143)))) (-4 *3 (-857 *5))
+ (-4 *4 (-594 (-863 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1067)) (-5 *2 (-860 *5 *3)) (-5 *1 (-858 *5 *3 *4))
+ (-4008 (-4 *3 (-1009 (-1143)))) (-4008 (-4 *3 (-1018)))
+ (-4 *3 (-857 *5)) (-4 *4 (-594 (-863 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *6)) (-5 *4 (-1143)) (-4 *6 (-423 *5))
+ (-4 *5 (-823)) (-5 *2 (-621 (-592 *6))) (-5 *1 (-558 *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-356)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4)))
+ (-5 *2 (-1226 *6)) (-5 *1 (-329 *3 *4 *5 *6))
+ (-4 *6 (-335 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769))
+ (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-920 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-920 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-1057)))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1229)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-340)) (-5 *2 (-409 (-1132 (-1132 *4))))
- (-5 *1 (-1171 *4)) (-5 *3 (-1132 (-1132 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-248)))))
-(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1119)) (-5 *1 (-52)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-729)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1224)) (-5 *1 (-382))))
- ((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-382)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1195 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-539))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-539)))))
-(((*1 *1 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-539)))))
+ (-12 (-4 *4 (-38 (-400 (-549))))
+ (-5 *2 (-2 (|:| -1486 (-1123 *4)) (|:| -1501 (-1123 *4))))
+ (-5 *1 (-1129 *4)) (-5 *3 (-1123 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217))
- (-5 *2 (-1004)) (-5 *1 (-727)))))
-(((*1 *1) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-523))) ((*1 *1) (-4 *1 (-697)))
- ((*1 *1) (-4 *1 (-701)))
- ((*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063))))
- ((*1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-619 *5))
- (-5 *1 (-859 *4 *5)) (-4 *5 (-1173)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4056 *4)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1219 *1)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177))
- (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1063) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1101 *4 *5)) (-4 *4 (-13 (-1063) (-34))))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821))
- (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-745))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821))
- (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-821)) (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-890))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-327 *4 *5 *6 *7)) (-4 *4 (-13 (-359) (-354)))
- (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5))) (-4 *7 (-333 *4 *5 *6))
- (-5 *2 (-745)) (-5 *1 (-383 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-807 (-890)))))
- ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-547))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-575 *3)) (-4 *3 (-1016))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-575 *3)) (-4 *3 (-1016))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-539)) (-5 *2 (-547)) (-5 *1 (-599 *3 *4))
- (-4 *4 (-1195 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-715 *4 *3)) (-4 *4 (-1016))
- (-4 *3 (-821))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-821))
- (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-327 *5 *6 *7 *8)) (-4 *5 (-421 *4))
- (-4 *6 (-1195 *5)) (-4 *7 (-1195 (-398 *6)))
- (-4 *8 (-333 *5 *6 *7))
- (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-745))
- (-5 *1 (-880 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-327 (-398 (-547)) *4 *5 *6))
- (-4 *4 (-1195 (-398 (-547)))) (-4 *5 (-1195 (-398 *4)))
- (-4 *6 (-333 (-398 (-547)) *4 *5)) (-5 *2 (-745))
- (-5 *1 (-881 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-327 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-354))
- (-4 *7 (-1195 *6)) (-4 *4 (-1195 (-398 *7))) (-4 *8 (-333 *6 *7 *4))
- (-4 *9 (-13 (-359) (-354))) (-5 *2 (-745))
- (-5 *1 (-987 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1195 *3)) (-4 *3 (-1016)) (-4 *3 (-539))
- (-5 *2 (-745))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34)))
- (-4 *3 (-13 (-1063) (-34))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1100))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))))
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
+ (-5 *2 (-1226 (-665 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-1226 (-665 *4))) (-5 *1 (-409 *3 *4))
+ (-4 *3 (-410 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1226 (-665 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-1143))) (-4 *5 (-356))
+ (-5 *2 (-1226 (-665 (-400 (-923 *5))))) (-5 *1 (-1053 *5))
+ (-5 *4 (-665 (-400 (-923 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-1143))) (-4 *5 (-356))
+ (-5 *2 (-1226 (-665 (-923 *5)))) (-5 *1 (-1053 *5))
+ (-5 *4 (-665 (-923 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-665 *4))) (-4 *4 (-356))
+ (-5 *2 (-1226 (-665 *4))) (-5 *1 (-1053 *4)))))
(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-523)))
- ((*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-428)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-233)) (-5 *3 (-1119))))
- ((*1 *2 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-233))))
- ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
+ ((*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-525)))
+ ((*1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -3440 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-356)) (-4 *7 (-1202 *6))
+ (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6)))
+ (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-235)) (-5 *3 (-1125))))
+ ((*1 *2 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-235))))
+ ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-476 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 (-428)))))
- (-5 *1 (-1140)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-90 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-890)) (-5 *3 (-619 (-254))) (-5 *1 (-252))))
- ((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))))
+ (-12 (-5 *2 (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 (-430)))))
+ (-5 *1 (-1147)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-354)) (-4 *5 (-539))
- (-5 *2
- (-2 (|:| |minor| (-619 (-890))) (|:| -2644 *3)
- (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 *3))))
- (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1173)) (-5 *1 (-366 *4 *2))
- (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4330)))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1211 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1136))
- (-14 *4 *2))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
+ (-12 (-5 *3 (-621 (-256))) (-5 *4 (-1143)) (-5 *2 (-112))
+ (-5 *1 (-256)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-621 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-4 *3 (-541)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-592 *3)) (-5 *5 (-1 (-1139 *3) (-1139 *3)))
+ (-4 *3 (-13 (-27) (-423 *6))) (-4 *6 (-13 (-823) (-541)))
+ (-5 *2 (-567 *3)) (-5 *1 (-536 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-892))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1139 *3)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
+ (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-920 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1018)) (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1)))
+ (-4 *1 (-1202 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1798)) (-5 *2 (-112)) (-5 *1 (-594))))
+ (-12 (-5 *3 (|[\|\|]| -1805)) (-5 *2 (-112)) (-5 *1 (-596))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1744)) (-5 *2 (-112)) (-5 *1 (-594))))
+ (-12 (-5 *3 (|[\|\|]| -1750)) (-5 *2 (-112)) (-5 *1 (-596))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3729)) (-5 *2 (-112)) (-5 *1 (-594))))
+ (-12 (-5 *3 (|[\|\|]| -3737)) (-5 *2 (-112)) (-5 *1 (-596))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -4088)) (-5 *2 (-112)) (-5 *1 (-665 *4))
- (-4 *4 (-591 (-832)))))
+ (-12 (-5 *3 (|[\|\|]| -4095)) (-5 *2 (-112)) (-5 *1 (-667 *4))
+ (-4 *4 (-593 (-834)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-591 (-832))) (-5 *2 (-112))
- (-5 *1 (-665 *4))))
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-593 (-834))) (-5 *2 (-112))
+ (-5 *1 (-667 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-513))
- (-5 *2
- (-112
- (SEQ (-1 (-112) *1 (-210)) (-1 (-112) *1 (-650))
- (-1 (-112) *1 (-1229)) (-1 (-112) *1 (-137))
- (-1 (-112) *1 (-132)) (-1 (-112) *1 (|SignatureAst|))
- (-1 (-112) *1 (-95)) (-1 (-112) *1 (-655))
- (-1 (-112) *1 (-506)) (-1 (-112) *1 (-1031))
- (-1 (-112) *1 (-1230)) (-1 (-112) *1 (-514))
- (-1 (-112) *1 (|CollectAst|)) (-1 (-112) *1 (-645))
- (-1 (-112) *1 (-302)) (-1 (-112) *1 (-1005))
- (-1 (-112) *1 (|CoerceAst|)) (-1 (-112) *1 (-939))
- (-1 (-112) *1 (|RestrictAst|)) (-1 (-112) *1 (-1054))
- (-1 (-112) *1 (|SequenceAst|)) (-1 (-112) *1 (-602))
- (-1 (-112) *1 (|SuchThatAst|)) (-1 (-112) *1 (-153))
- (-1 (-112) *1 (-136)) (-1 (-112) *1 (-468))
- (-1 (-112) *1 (-571)) (|exit| 1 (-1 (-571) *1)))))
- (-4 *1 (-1098))))
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1119))) (-5 *2 (-112)) (-5 *1 (-1141))))
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-112)) (-5 *1 (-1141))))
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)) (-5 *1 (-1141))))
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-547))) (-5 *2 (-112)) (-5 *1 (-1141)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1119)) (-5 *4 (-166 (-217))) (-5 *5 (-547))
- (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *1 *1) (-5 *1 (-1028))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1136))) (-4 *6 (-442))
- (-5 *2 (-619 (-619 *7))) (-5 *1 (-525 *6 *7 *5)) (-4 *7 (-354))
- (-4 *5 (-13 (-354) (-819))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1195 *6))
- (-4 *6 (-13 (-27) (-421 *5)))
- (-4 *5 (-13 (-821) (-539) (-1007 (-547)))) (-4 *8 (-1195 (-398 *7)))
- (-5 *2 (-565 *3)) (-5 *1 (-535 *5 *6 *7 *8 *3))
- (-4 *3 (-333 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 *6)) (-4 *5 (-1177)) (-4 *6 (-1195 *5))
- (-5 *2 (-2 (|:| -3322 (-745)) (|:| -1563 *3) (|:| |radicand| *6)))
- (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-745)) (-4 *7 (-1195 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-52)) (-5 *1 (-1151)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217)))
- (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-78 LSFUN1))))
- (-5 *2 (-1004)) (-5 *1 (-728)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -3719 (-756 *3)) (|:| |coef1| (-756 *3))
- (|:| |coef2| (-756 *3))))
- (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *2 (-2 (|:| -3719 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1030 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-619 *3)) (-4 *3 (-1173)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-318 *3)) (-4 *3 (-1173))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-547)) (-5 *1 (-505 *3 *4)) (-4 *3 (-1173)) (-14 *4 *2))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-307 *3)) (-4 *3 (-13 (-1016) (-821)))
- (-5 *1 (-215 *3 *4)) (-14 *4 (-619 (-1136))))))
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1133))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-941))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-304))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-647))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1237))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-657))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-1236))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-652))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1104)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1125))) (-5 *2 (-112)) (-5 *1 (-1148))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1143))) (-5 *2 (-112)) (-5 *1 (-1148))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1148))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)) (-5 *1 (-1148)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-400 (-549))) (-5 *2 (-219)) (-5 *1 (-298)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-745)) (-4 *5 (-354)) (-5 *2 (-171 *6))
- (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1210 *5)) (-4 *6 (-1195 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 *4)) (-4 *4 (-333 *5 *6 *7))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-4 *6 (-1195 *5)) (-4 *7 (-1195 (-398 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4))))
- (-5 *1 (-780 *5 *6 *7 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-217)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009))))
- ((*1 *1 *1 *1) (-4 *1 (-1100))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-398 *6)) (|:| |c| (-398 *6))
- (|:| -2625 *6)))
- (-5 *1 (-984 *5 *6)) (-5 *3 (-398 *6)))))
-(((*1 *1) (-5 *1 (-154))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539))
- (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8))))
- (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-837 *4 *5 *6 *7))
+ (-4 *4 (-1018)) (-14 *5 (-621 (-1143))) (-14 *6 (-621 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-4 *5 (-823)) (-4 *6 (-769))
+ (-14 *8 (-621 *5)) (-5 *2 (-1231))
+ (-5 *1 (-1238 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-920 *4 *6 *5))
+ (-14 *9 (-621 *3)) (-14 *10 *3))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -3440 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-356)) (-5 *1 (-559 *4 *2)) (-4 *2 (-1202 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1180)) (-5 *1 (-368 *4 *2))
+ (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4338)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-621 *3)) (-4 *3 (-1180)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-423 *4) (-973) (-1165)))
+ (-4 *4 (-13 (-541) (-823)))
+ (-4 *2 (-13 (-423 (-167 *4)) (-973) (-1165)))
+ (-5 *1 (-580 *4 *5 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-923 (-219))) (-5 *2 (-219)) (-5 *1 (-298)))))
+(((*1 *1 *1) (-4 *1 (-1027))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2))
+ (-4 *2 (-423 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1143))))
+ ((*1 *1 *1) (-4 *1 (-158))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-169)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-444)) (-4 *3 (-823)) (-4 *4 (-769))
+ (-5 *1 (-958 *2 *3 *4 *5)) (-4 *5 (-920 *2 *4 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-821))
+ (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *2 (-621 *4)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1202 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *2 (-621 *3)) (-5 *1 (-1095 *4 *3)) (-4 *4 (-1202 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-823))
(-5 *2
- (-2 (|:| |f1| (-619 *4)) (|:| |f2| (-619 (-619 (-619 *4))))
- (|:| |f3| (-619 (-619 *4))) (|:| |f4| (-619 (-619 (-619 *4))))))
- (-5 *1 (-1144 *4)) (-5 *3 (-619 (-619 (-619 *4)))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821)))))
+ (-2 (|:| |f1| (-621 *4)) (|:| |f2| (-621 (-621 (-621 *4))))
+ (|:| |f3| (-621 (-621 *4))) (|:| |f4| (-621 (-621 (-621 *4))))))
+ (-5 *1 (-1151 *4)) (-5 *3 (-621 (-621 (-621 *4)))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1))
- (-4 *1 (-1030 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 (-1136))) (-4 *4 (-1063))
- (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-619 *11)) (-5 *5 (-619 (-1132 *9)))
- (-5 *6 (-619 *9)) (-5 *7 (-619 *12)) (-5 *8 (-619 (-745)))
- (-4 *11 (-821)) (-4 *9 (-298)) (-4 *12 (-918 *9 *10 *11))
- (-4 *10 (-767)) (-5 *2 (-619 (-1132 *12)))
- (-5 *1 (-682 *10 *11 *9 *12)) (-5 *3 (-1132 *12)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-547)) (-5 *2 (-112)) (-5 *1 (-536)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4))
- (-4 *4 (-340))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4))
- (-4 *4 (-340))))
- ((*1 *1) (-4 *1 (-359)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1219 *4)) (-5 *1 (-517 *4))
- (-4 *4 (-340))))
- ((*1 *1 *1) (-4 *1 (-532))) ((*1 *1) (-4 *1 (-532)))
- ((*1 *1 *1) (-5 *1 (-547))) ((*1 *1 *1) (-5 *1 (-745)))
- ((*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4))
- (-4 *4 (-1063))))
- ((*1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-532)) (-4 *2 (-539)))))
+ (-12 (-5 *2 (-400 (-549))) (-5 *1 (-312 *3 *4 *5))
+ (-4 *3 (-13 (-356) (-823))) (-14 *4 (-1143)) (-14 *5 *3))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
+ (-5 *2
+ (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-549)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-168)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-1016)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004))
- (-5 *1 (-730)))))
-(((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4320)) (-4 *1 (-395))))
- ((*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890))))
- ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673))))
- ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-921 *6)) (-5 *4 (-1136))
- (-5 *5 (-814 *7))
- (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-4 *7 (-13 (-1158) (-29 *6))) (-5 *1 (-216 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1132 *6)) (-5 *4 (-814 *6))
- (-4 *6 (-13 (-1158) (-29 *5)))
- (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-216 *5 *6)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1004))
- (-5 *1 (-721)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1004)) (-5 *3 (-1136)) (-5 *1 (-184)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3719 (-756 *3)) (|:| |coef2| (-756 *3))))
- (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *2 (-2 (|:| -3719 *1) (|:| |coef2| *1)))
- (-4 *1 (-1030 *3 *4 *5)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-803)))))
-(((*1 *1 *1) (-4 *1 (-605)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971) (-1158))))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1172))) (-5 *1 (-513)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-912 (-217)) (-912 (-217)))) (-5 *1 (-254))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-320 *4)) (-4 *4 (-354))
- (-5 *2 (-663 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-1219 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169))
- (-5 *2 (-663 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169))
- (-5 *2 (-1219 *4))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-309 *3)) (-4 *3 (-541)) (-4 *3 (-823)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4))
+ (-4 *4 (-342))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169))
- (-4 *5 (-1195 *4)) (-5 *2 (-663 *4))))
+ (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4))
+ (-4 *4 (-342))))
+ ((*1 *1) (-4 *1 (-361)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-892)) (-5 *2 (-1226 *4)) (-5 *1 (-519 *4))
+ (-4 *4 (-342))))
+ ((*1 *1 *1) (-4 *1 (-534))) ((*1 *1) (-4 *1 (-534)))
+ ((*1 *1 *1) (-5 *1 (-549))) ((*1 *1 *1) (-5 *1 (-747)))
+ ((*1 *2 *1) (-12 (-5 *2 (-876 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1067))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169))
- (-4 *5 (-1195 *4)) (-5 *2 (-1219 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-400 *4 *5)) (-4 *4 (-169))
- (-4 *5 (-1195 *4)) (-5 *2 (-663 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1195 *3))
- (-5 *2 (-1219 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-408 *4)) (-4 *4 (-169))
- (-5 *2 (-663 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-1219 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-663 *5))) (-5 *3 (-663 *5)) (-4 *5 (-354))
- (-5 *2 (-1219 *5)) (-5 *1 (-1050 *5)))))
+ (-12 (-5 *3 (-549)) (-5 *2 (-876 *4)) (-5 *1 (-875 *4))
+ (-4 *4 (-1067))))
+ ((*1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-534)) (-4 *2 (-541)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7))
- (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8))))
- (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))))
-(((*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1143)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1016)) (-5 *1 (-1191 *3 *2)) (-4 *2 (-1195 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-619 (-619 (-217)))) (-5 *4 (-217))
- (-5 *2 (-619 (-912 *4))) (-5 *1 (-1169)) (-5 *3 (-912 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1172))) (-5 *1 (-655))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-1080)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-1191 *4 *2))
- (-4 *2 (-1195 *4)))))
+ (-12 (-5 *3 (-1139 (-923 *6))) (-4 *6 (-541))
+ (-4 *2 (-920 (-400 (-923 *6)) *5 *4)) (-5 *1 (-709 *5 *4 *6 *2))
+ (-4 *5 (-769))
+ (-4 *4 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-892)) (|has| *1 (-6 -4328)) (-4 *1 (-397))))
+ ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892))))
+ ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675))))
+ ((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143)) (-4 *4 (-541)) (-4 *4 (-823))
+ (-5 *1 (-558 *4 *2)) (-4 *2 (-423 *4)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1143))
+ (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-2 (|:| -3440 *3) (|:| |coeff| *3))) (-5 *1 (-542 *5 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *5))))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $)))))
- (-4 *4 (-1195 *3))
- (-5 *2
- (-2 (|:| -1917 (-663 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-663 *3))))
- (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-400 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-547)) (-4 *4 (-1195 *3))
- (-5 *2
- (-2 (|:| -1917 (-663 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-663 *3))))
- (-5 *1 (-742 *4 *5)) (-4 *5 (-400 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-340)) (-4 *3 (-1195 *4)) (-4 *5 (-1195 *3))
- (-5 *2
- (-2 (|:| -1917 (-663 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-663 *3))))
- (-5 *1 (-954 *4 *3 *5 *6)) (-4 *6 (-699 *3 *5))))
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1067) (-1009 *5)))
+ (-4 *5 (-857 *4)) (-4 *4 (-1067)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-902 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-411 (-1139 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1139 *1))
+ (-4 *4 (-444)) (-4 *4 (-541)) (-4 *4 (-823))))
((*1 *2 *3)
- (-12 (-4 *4 (-340)) (-4 *3 (-1195 *4)) (-4 *5 (-1195 *3))
- (-5 *2
- (-2 (|:| -1917 (-663 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-663 *3))))
- (-5 *1 (-1228 *4 *3 *5 *6)) (-4 *6 (-400 *3 *5)))))
+ (-12 (-4 *1 (-880)) (-5 *2 (-411 (-1139 *1))) (-5 *3 (-1139 *1)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1180)) (-5 *2 (-549)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1132 *3)) (-5 *1 (-883 *3)) (-4 *3 (-298)))))
-(((*1 *2) (-12 (-5 *2 (-1108 (-1119))) (-5 *1 (-382)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))))
-(((*1 *2)
- (-12 (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5)))
- (-5 *2 (-745)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6))))
+ (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1353 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459))))
+ ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459))))
+ ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2))
+ (-4 *2 (-1202 (-167 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-823) (-541))))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-295))))
+ ((*1 *1 *1) (-4 *1 (-295)))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
+ ((*1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1179))) (-5 *1 (-657))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-1085)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1226 (-621 (-2 (|:| -4161 *4) (|:| -3493 (-1087))))))
+ (-4 *4 (-342)) (-5 *2 (-747)) (-5 *1 (-339 *4))))
((*1 *2)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))))
-(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-348 *3)) (-4 *3 (-340)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-1219 *5)) (-4 *5 (-298))
- (-4 *5 (-1016)) (-5 *2 (-663 *5)) (-5 *1 (-998 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-398 (-547))))
- (-4 *2 (-169)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217))
- (-5 *2 (-1004)) (-5 *1 (-725)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-442) (-145))) (-5 *2 (-409 *3))
- (-5 *1 (-99 *4 *3)) (-4 *3 (-1195 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 *3)) (-4 *3 (-1195 *5)) (-4 *5 (-13 (-442) (-145)))
- (-5 *2 (-409 *3)) (-5 *1 (-99 *5 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1173)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217))
- (-5 *2 (-1004)) (-5 *1 (-727)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-547))) (-4 *3 (-1016)) (-5 *1 (-574 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-547))) (-4 *1 (-1179 *3)) (-4 *3 (-1016))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-547))) (-4 *1 (-1210 *3)) (-4 *3 (-1016)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1219 *4)) (-4 *4 (-1016)) (-4 *2 (-1195 *4))
- (-5 *1 (-434 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-398 (-1132 (-307 *5)))) (-5 *3 (-1219 (-307 *5)))
- (-5 *4 (-547)) (-4 *5 (-13 (-539) (-821))) (-5 *1 (-1092 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-409 *3)) (-4 *3 (-532)) (-4 *3 (-539))))
- ((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-532)) (-4 *3 (-1063))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-532)) (-4 *3 (-1063))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-977 *3)) (-4 *3 (-1007 (-398 (-547)))))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-344 *3 *4)) (-14 *3 (-892))
+ (-14 *4 (-892))))
+ ((*1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-345 *3 *4)) (-4 *3 (-342))
+ (-14 *4
+ (-3 (-1139 *3)
+ (-1226 (-621 (-2 (|:| -4161 *3) (|:| -3493 (-1087)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-346 *3 *4)) (-4 *3 (-342))
+ (-14 *4 (-892)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1144 *4))
- (-5 *3 (-619 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1141)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *4 (-539)) (-5 *1 (-938 *4 *2))
- (-4 *2 (-1195 *4)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217))
- (-5 *2 (-1004)) (-5 *1 (-726)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1))
- (-4 *1 (-1030 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-1159 *3))) (-5 *1 (-1159 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-442)) (-5 *1 (-351 *3 *4))
- (-14 *4 (-619 (-1136)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-619 *7)) (-5 *3 (-1119)) (-4 *7 (-918 *4 *5 *6))
- (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-5 *1 (-440 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-619 *7)) (-5 *3 (-1119)) (-4 *7 (-918 *4 *5 *6))
- (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-5 *1 (-440 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821))
- (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-442))
- (-14 *4 (-619 (-1136))) (-5 *1 (-604 *3 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-761)) (-5 *2 (-1004))
- (-5 *3
- (-2 (|:| |fn| (-307 (-217)))
- (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-761)) (-5 *2 (-1004))
+ (-12
(-5 *3
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1496 *3) (|:| |coef1| (-756 *3))))
- (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))))
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
+ (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-372)) (-5 *1 (-199)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7))))
+ (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-592 *5))) (-4 *4 (-823)) (-5 *2 (-592 *5))
+ (-5 *1 (-558 *4 *5)) (-4 *5 (-423 *4)))))
(((*1 *2)
- (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821))
- (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1224))
- (-5 *1 (-957 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6))))
+ (|partial| -12 (-4 *3 (-541)) (-4 *3 (-170))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -1949 (-621 *1))))
+ (-4 *1 (-360 *3))))
((*1 *2)
- (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821))
- (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1224))
- (-5 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547)))))
- (-4 *5 (-1195 *4)) (-5 *2 (-619 (-2 (|:| -2591 *5) (|:| -2384 *5))))
- (-5 *1 (-781 *4 *5 *3 *6)) (-4 *3 (-630 *5))
- (-4 *6 (-630 (-398 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547)))))
- (-4 *4 (-1195 *5)) (-5 *2 (-619 (-2 (|:| -2591 *4) (|:| -2384 *4))))
- (-5 *1 (-781 *5 *4 *3 *6)) (-4 *3 (-630 *4))
- (-4 *6 (-630 (-398 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547)))))
- (-4 *5 (-1195 *4)) (-5 *2 (-619 (-2 (|:| -2591 *5) (|:| -2384 *5))))
- (-5 *1 (-781 *4 *5 *6 *3)) (-4 *6 (-630 *5))
- (-4 *3 (-630 (-398 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547)))))
- (-4 *4 (-1195 *5)) (-5 *2 (-619 (-2 (|:| -2591 *4) (|:| -2384 *4))))
- (-5 *1 (-781 *5 *4 *6 *3)) (-4 *6 (-630 *4))
- (-4 *3 (-630 (-398 *4))))))
-(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1173)) (-4 *2 (-821))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-364 *3)) (-4 *3 (-1173))))
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-445 *3 *4 *5 *6))
+ (|:| -1949 (-621 (-445 *3 *4 *5 *6)))))
+ (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-356)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-825 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1018))
+ (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-826 *5 *3))
+ (-4 *3 (-825 *5)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN)))) (-5 *3 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-726)))))
+(((*1 *2)
+ (-12 (-4 *4 (-356)) (-5 *2 (-747)) (-5 *1 (-321 *3 *4))
+ (-4 *3 (-322 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-5 *2 (-747)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219)))
+ (-5 *5 (-1061 (-219))) (-5 *6 (-549)) (-5 *2 (-1175 (-897)))
+ (-5 *1 (-311))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219)))
+ (-5 *5 (-1061 (-219))) (-5 *6 (-549)) (-5 *7 (-1125))
+ (-5 *2 (-1175 (-897))) (-5 *1 (-311))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219)))
+ (-5 *5 (-1061 (-219))) (-5 *6 (-219)) (-5 *7 (-549))
+ (-5 *2 (-1175 (-897))) (-5 *1 (-311))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219)))
+ (-5 *5 (-1061 (-219))) (-5 *6 (-219)) (-5 *7 (-549)) (-5 *8 (-1125))
+ (-5 *2 (-1175 (-897))) (-5 *1 (-311)))))
+(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1027))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
((*1 *2 *2)
- (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821))
- (-4 *6 (-1030 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -1276 *1) (|:| |upper| *1)))
- (-4 *1 (-945 *4 *5 *3 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-1016))))
- ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-1016)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-354)) (-5 *1 (-865 *2 *3))
- (-4 *2 (-1195 *3)))))
-(((*1 *1) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1158))))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)) (-4 *2 (-1027))))
+ ((*1 *1 *1) (-4 *1 (-821)))
+ ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)) (-4 *2 (-1027))))
+ ((*1 *1 *1) (-4 *1 (-1027))) ((*1 *1 *1) (-4 *1 (-1106))))
+(((*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-170))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-1018)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-370)) (-5 *3 (-1119)) (-5 *1 (-96))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-370)) (-5 *3 (-1119)) (-5 *1 (-96)))))
-(((*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-1147 *2)) (-4 *2 (-354)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *5)) (-5 *1 (-854 *3 *4 *5))
- (-4 *3 (-1063)) (-4 *5 (-640 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) (-4 *5 (-1195 *4))
- (-5 *2 (-2 (|:| |ans| (-398 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-984 *4 *5)) (-5 *3 (-398 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1119)) (|:| -2473 (-1119))))
- (-5 *1 (-796)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-745)) (-5 *4 (-547)) (-5 *1 (-435 *2)) (-4 *2 (-1016)))))
-(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222))))
- ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222)))))
-(((*1 *2 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-544)) (-5 *3 (-547))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1132 (-398 (-547)))) (-5 *1 (-911)) (-5 *3 (-547)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1063)) (-4 *2 (-869 *5)) (-5 *1 (-666 *5 *2 *3 *4))
- (-4 *3 (-364 *2)) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359))
- (-5 *2 (-1132 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-96)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1173))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1173)))))
+ (-12 (-5 *2 (-621 (-473 *3 *4))) (-14 *3 (-621 (-1143)))
+ (-4 *4 (-444)) (-5 *1 (-609 *3 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-238 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -3440 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-621 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1202 *7))
+ (-5 *3 (-400 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-559 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1146)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1146)))))
(((*1 *2)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1195 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-298)))))
+ (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1143)))
+ (-4 *5 (-541)) (-5 *2 (-621 (-621 (-923 *5)))) (-5 *1 (-1149 *5)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-970 *3)) (-4 *3 (-170)) (-5 *1 (-775 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1219 *4)) (-4 *4 (-615 (-547)))
- (-5 *2 (-1219 (-547))) (-5 *1 (-1246 *4)))))
+ (-12 (-5 *3 (-898))
+ (-5 *2
+ (-2 (|:| |brans| (-621 (-621 (-914 (-219)))))
+ (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))))
+ (-5 *1 (-151))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-898)) (-5 *4 (-400 (-549)))
+ (-5 *2
+ (-2 (|:| |brans| (-621 (-621 (-914 (-219)))))
+ (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))))
+ (-5 *1 (-151))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-621 (-621 (-914 (-219)))))
+ (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))))
+ (-5 *1 (-151)) (-5 *3 (-621 (-914 (-219))))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-621 (-621 (-914 (-219)))))
+ (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))))
+ (-5 *1 (-151)) (-5 *3 (-621 (-621 (-914 (-219)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-1061 (-372)))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370))
+ (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
(-5 *2
- (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547))
+ (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549))
(|:| |success| (-112))))
- (-5 *1 (-763)) (-5 *5 (-547)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-590 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-590 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1132 (-48))) (-5 *3 (-619 (-590 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1132 (-48))) (-5 *3 (-590 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3))
- (-4 *3 (-1195 (-166 *2)))))
+ (-5 *1 (-765)) (-5 *5 (-549)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-238 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1180))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-890)) (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359))))
- ((*1 *2 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-354))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-361 *2 *3)) (-4 *3 (-1195 *2)) (-4 *2 (-169))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1195 *2)) (-4 *2 (-961 *3)) (-5 *1 (-404 *3 *2 *4 *5))
- (-4 *3 (-298)) (-4 *5 (-13 (-400 *2 *4) (-1007 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1195 *2)) (-4 *2 (-961 *3))
- (-5 *1 (-405 *3 *2 *4 *5 *6)) (-4 *3 (-298)) (-4 *5 (-400 *2 *4))
- (-14 *6 (-1219 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-890)) (-4 *5 (-1016))
- (-4 *2 (-13 (-395) (-1007 *5) (-354) (-1158) (-275)))
- (-5 *1 (-433 *5 *3 *2)) (-4 *3 (-1195 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-590 (-484)))) (-5 *1 (-484))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-590 (-484))) (-5 *1 (-484))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1132 (-484))) (-5 *3 (-619 (-590 (-484))))
- (-5 *1 (-484))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1132 (-484))) (-5 *3 (-590 (-484))) (-5 *1 (-484))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1219 *4)) (-5 *3 (-890)) (-4 *4 (-340))
- (-5 *1 (-517 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-699 *4 *2)) (-4 *2 (-1195 *4))
- (-5 *1 (-749 *4 *2 *5 *3)) (-4 *3 (-1195 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))
- ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))
- ((*1 *1 *1) (-4 *1 (-1025))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-722)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-442))
- (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-957 *5 *6 *7 *8 *3))))
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-809 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-442))
- (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1070 *5 *6 *7 *8 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-154))))
- ((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-823))
+ (-4 *3 (-1067)))))
+(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1180)) (-4 *2 (-823))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-366 *3)) (-4 *3 (-1180))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823))
+ (-4 *6 (-1032 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3967 *1) (|:| |upper| *1)))
+ (-4 *1 (-947 *4 *5 *3 *6)))))
+(((*1 *1) (-5 *1 (-142)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1100 (-219))) (-5 *1 (-256)))))
+(((*1 *2 *3) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-546)) (-5 *3 (-549)))))
+(((*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-621 (-549))) (-5 *2 (-747)) (-5 *1 (-571)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-747)) (|:| -3028 *4))) (-5 *5 (-747))
+ (-4 *4 (-920 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
(-5 *2
- (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547))
- (|:| |success| (-112))))
- (-5 *1 (-763)) (-5 *5 (-547)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1058 (-814 (-217)))) (-5 *1 (-296)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-796)))))
-(((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-441 *6 *7 *8 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-621 *6)) (-4 *1 (-920 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-747)))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-779)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1218 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1143))
+ (-14 *4 *2))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-860 *3 *5)) (-5 *1 (-856 *3 *4 *5))
+ (-4 *3 (-1067)) (-4 *5 (-642 *4)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5))
+ (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-1239 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-621 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1239 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
(((*1 *2 *3 *4)
- (-12 (-4 *6 (-539)) (-4 *2 (-918 *3 *5 *4))
- (-5 *1 (-707 *5 *4 *6 *2)) (-5 *3 (-398 (-921 *6))) (-4 *5 (-767))
- (-4 *4 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 *3 (-619 *1)))
- (-4 *1 (-1036 *4 *5 *6 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-536)))))
+ (|partial| -12 (-5 *3 (-1226 *4)) (-4 *4 (-617 (-549)))
+ (-5 *2 (-1226 (-400 (-549)))) (-5 *1 (-1253 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-141)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534))))
+ ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1016))
+ (-5 *3 (-549)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-956 *3 *4 *5 *2))
- (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1173)) (-4 *2 (-821))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1173))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))))
+ (-12 (-4 *4 (-1067)) (-5 *2 (-860 *3 *4)) (-5 *1 (-856 *3 *4 *5))
+ (-4 *3 (-1067)) (-4 *5 (-642 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-621
+ (-2 (|:| |scalar| (-400 (-549))) (|:| |coeff| (-1139 *2))
+ (|:| |logand| (-1139 *2)))))
+ (-5 *4 (-621 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-356)) (-5 *1 (-567 *2)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-732)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-549)) (|has| *1 (-6 -4338)) (-4 *1 (-1214 *3))
+ (-4 *3 (-1180)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-1180)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-29 *4) (-1158)))
- (-5 *1 (-563 *4 *2))
- (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547))))))
+ (-12 (-4 *3 (-1202 (-400 (-549))))
+ (-5 *2 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))))
+ (-5 *1 (-884 *3 *4)) (-4 *4 (-1202 (-400 *3)))))
((*1 *2 *3)
- (-12 (-5 *3 (-565 (-398 (-921 *4))))
- (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547))))
- (-5 *2 (-307 *4)) (-5 *1 (-568 *4)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-112)) (-5 *5 (-663 (-217)))
- (-5 *2 (-1004)) (-5 *1 (-730)))))
+ (-12 (-4 *4 (-1202 (-400 *2))) (-5 *2 (-549)) (-5 *1 (-884 *4 *3))
+ (-4 *3 (-1202 (-400 *4))))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *1) (-4 *1 (-342))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4))
+ (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-167 (-219)))) (-5 *2 (-1006))
+ (-5 *1 (-733)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-632 *3)) (-4 *3 (-1018)) (-4 *3 (-356))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-747)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356))
+ (-5 *1 (-635 *5 *2)) (-4 *2 (-632 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-920 *4 *3 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-747))))
+ ((*1 *1 *1) (-4 *1 (-395))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-621 (-1143))) (-4 *4 (-1067))
+ (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1219 (-1219 (-547)))) (-5 *1 (-456)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 *5)) (-4 *5 (-1016)) (-5 *1 (-1020 *3 *4 *5))
- (-14 *3 (-745)) (-14 *4 (-745)))))
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *6 *5))
+ (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143))))
+ (-4 *6 (-769)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-112))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-112)) (-5 *1 (-863 *4))
+ (-4 *4 (-1067)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1186 *3))
+ (-5 *2 (-400 (-549))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-860 *4 *5)) (-5 *3 (-860 *4 *6)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-642 *5)) (-5 *1 (-856 *4 *5 *6)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *4 *3 *5))
+ (-4 *3 (-1202 *4))
+ (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1165) (-277))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-411 *3))
+ (-5 *1 (-99 *4 *3)) (-4 *3 (-1202 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 *3)) (-4 *3 (-1202 *5)) (-4 *5 (-13 (-444) (-145)))
+ (-5 *2 (-411 *3)) (-5 *1 (-99 *5 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-1202 *3)) (-4 *3 (-1018)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547)))))
- (-4 *3 (-1195 *4)) (-5 *1 (-783 *4 *3 *2 *5)) (-4 *2 (-630 *3))
- (-4 *5 (-630 (-398 *3)))))
+ (|partial| -12 (-5 *2 (-621 (-1139 *7))) (-5 *3 (-1139 *7))
+ (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-880)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *1 (-877 *4 *5 *6 *7))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-398 *5))
- (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-1195 *4))
- (-5 *1 (-783 *4 *5 *2 *6)) (-4 *2 (-630 *5)) (-4 *6 (-630 *3)))))
+ (|partial| -12 (-5 *2 (-621 (-1139 *5))) (-5 *3 (-1139 *5))
+ (-4 *5 (-1202 *4)) (-4 *4 (-880)) (-5 *1 (-878 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-126 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1226 *6)) (-5 *4 (-1226 (-549))) (-5 *5 (-549))
+ (-4 *6 (-1067)) (-5 *2 (-1 *6)) (-5 *1 (-988 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-300))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3))))
+ (-5 *1 (-379 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4013 (-747)) (|:| -3675 (-747))))
+ (-5 *1 (-747))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1202 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-912 (-217))) (-5 *4 (-843)) (-5 *5 (-890))
- (-5 *2 (-1224)) (-5 *1 (-458))))
+ (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *5 (-892))
+ (-5 *2 (-1231)) (-5 *1 (-460))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-912 (-217))) (-5 *2 (-1224)) (-5 *1 (-458))))
+ (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1231)) (-5 *1 (-460))))
((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-619 (-912 (-217)))) (-5 *4 (-843)) (-5 *5 (-890))
- (-5 *2 (-1224)) (-5 *1 (-458)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-619 (-1136))) (-4 *2 (-169))
- (-4 *4 (-230 (-3767 *5) (-745)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3487 *3) (|:| -3322 *4))
- (-2 (|:| -3487 *3) (|:| -3322 *4))))
- (-5 *1 (-451 *5 *2 *3 *4 *6 *7)) (-4 *3 (-821))
- (-4 *7 (-918 *2 *4 (-834 *5))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3)))))
+ (-12 (-5 *3 (-621 (-914 (-219)))) (-5 *4 (-845)) (-5 *5 (-892))
+ (-5 *2 (-1231)) (-5 *1 (-460)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-323)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-96))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-96)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *4 (-541))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2558 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886))))
- ((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-248)))))
-(((*1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-359)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2510 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-354)) (-4 *7 (-1195 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-398 *7)) (|:| |a0| *6))
- (-2 (|:| -2510 (-398 *7)) (|:| |coeff| (-398 *7))) "failed"))
- (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1219 *3)) (-4 *3 (-1195 *4)) (-4 *4 (-1177))
- (-4 *1 (-333 *4 *3 *5)) (-4 *5 (-1195 (-398 *3))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-547)) (-4 *4 (-169)) (-4 *5 (-364 *4))
- (-4 *6 (-364 *4)) (-5 *1 (-662 *4 *5 *6 *2))
- (-4 *2 (-661 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1136)) (-4 *5 (-592 (-861 (-547))))
- (-4 *5 (-855 (-547)))
- (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-550 *5 *3)) (-4 *3 (-605))
- (-4 *3 (-13 (-27) (-1158) (-421 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1136)) (-5 *4 (-814 *2)) (-4 *2 (-1100))
- (-4 *2 (-13 (-27) (-1158) (-421 *5)))
- (-4 *5 (-592 (-861 (-547)))) (-4 *5 (-855 (-547)))
- (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547))))
- (-5 *1 (-550 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1195 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1195 *3)))))
+ (-12 (-4 *4 (-342))
+ (-5 *2 (-621 (-2 (|:| |deg| (-747)) (|:| -1968 *3))))
+ (-5 *1 (-210 *4 *3)) (-4 *3 (-1202 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112))
- (-5 *1 (-32 *4 *5)) (-4 *5 (-421 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112))
- (-5 *1 (-155 *4 *5)) (-4 *5 (-421 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112))
- (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-421 *4) (-971)))))
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1067)) (-4 *6 (-1067))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-660 *4 *5 *6)) (-4 *5 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-292 *4)) (-4 *4 (-293))))
- ((*1 *2 *3) (-12 (-4 *1 (-293)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *5 (-821)) (-5 *2 (-112))
- (-5 *1 (-420 *4 *5)) (-4 *4 (-421 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112))
- (-5 *1 (-422 *4 *5)) (-4 *5 (-421 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112))
- (-5 *1 (-606 *4 *5)) (-4 *5 (-13 (-421 *4) (-971) (-1158))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-439 *4 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-532))))
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-799)) (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-747)) (-4 *5 (-541))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-940 *5 *3)) (-4 *3 (-1202 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-665 *2)) (-4 *4 (-1202 *2))
+ (-4 *2 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $)))))
+ (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-402 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2))
+ (-4 *5 (-232 *3 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1139 *4)) (-4 *4 (-342))
+ (-4 *2
+ (-13 (-395)
+ (-10 -7 (-15 -3846 (*2 *4)) (-15 -1881 ((-892) *2))
+ (-15 -1949 ((-1226 *2) (-892))) (-15 -1933 (*2 *2)))))
+ (-5 *1 (-349 *2 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-729)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
+ (-12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-526 *3 *2))
+ (-4 *2 (-1217 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-4 *4 (-1202 *3))
+ (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-5 *1 (-531 *3 *2))
+ (-4 *2 (-1217 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-13 (-541) (-145)))
+ (-5 *1 (-1119 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1056 *3)) (-4 *3 (-1173))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173))))
- ((*1 *1 *2) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-1173)))))
-(((*1 *1) (-5 *1 (-797))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-542)))))
+ (-12 (-5 *2 (-1061 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-621 (-621 (-621 *4)))) (-5 *3 (-621 *4)) (-4 *4 (-823))
+ (-5 *1 (-1151 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-547))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 *3)) (-4 *3 (-1195 *5)) (-4 *5 (-298))
- (-5 *2 (-745)) (-5 *1 (-445 *5 *3)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-619 (-2 (|:| |totdeg| (-745)) (|:| -2447 *3))))
- (-5 *4 (-745)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767))
- (-4 *7 (-821)) (-5 *1 (-439 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 (-166 (-547))))) (-5 *2 (-619 (-166 *4)))
- (-5 *1 (-369 *4)) (-4 *4 (-13 (-354) (-819)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-619 (-398 (-921 (-166 (-547))))))
- (-5 *4 (-619 (-1136))) (-5 *2 (-619 (-619 (-166 *5))))
- (-5 *1 (-369 *5)) (-4 *5 (-13 (-354) (-819))))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-897)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143))))
+ (-4 *6 (-769)) (-5 *2 (-621 *3)) (-5 *1 (-895 *4 *5 *6 *3))
+ (-4 *3 (-920 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300))
+ (-5 *2 (-621 (-747))) (-5 *1 (-754 *3 *4 *5 *6 *7))
+ (-4 *3 (-1202 *6)) (-4 *7 (-920 *6 *4 *5)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-733)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-745)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547))
- (-14 *4 *2) (-4 *5 (-169))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549))
+ (-14 *4 *2) (-4 *5 (-170))))
((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-890)) (-5 *1 (-162 *3 *4))
- (-4 *3 (-163 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-890))))
+ (-12 (-4 *4 (-170)) (-5 *2 (-892)) (-5 *1 (-163 *3 *4))
+ (-4 *3 (-164 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-892))))
((*1 *2)
- (-12 (-4 *1 (-361 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1195 *3))
- (-5 *2 (-890))))
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1202 *3))
+ (-5 *2 (-892))))
((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4))
- (-5 *2 (-745)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6))))
+ (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))
+ (-5 *2 (-747)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *5)) (-5 *4 (-1219 *5)) (-4 *5 (-354))
- (-5 *2 (-745)) (-5 *1 (-641 *5))))
+ (-12 (-5 *3 (-665 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-356))
+ (-5 *2 (-747)) (-5 *1 (-643 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4330))))
- (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4330)))) (-5 *2 (-745))
- (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4))))
+ (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4338))))
+ (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4338)))) (-5 *2 (-747))
+ (-5 *1 (-644 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-4 *3 (-539)) (-5 *2 (-745))))
+ (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-4 *3 (-541)) (-5 *2 (-747))))
((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4))
- (-4 *6 (-364 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3))
- (-4 *3 (-661 *4 *5 *6))))
+ (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4))
+ (-4 *6 (-366 *4)) (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3))
+ (-4 *3 (-663 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-539))
- (-5 *2 (-745)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1136)) (-5 *5 (-619 (-398 (-921 *6))))
- (-5 *3 (-398 (-921 *6)))
- (-4 *6 (-13 (-539) (-1007 (-547)) (-145)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-553 *6)))))
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-541))
+ (-5 *2 (-747)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-665 (-219)))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))
+ (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))))
+(((*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-211)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-539)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-354) (-293)
- (-10 -8 (-15 -1386 ((-1087 *3 (-590 $)) $))
- (-15 -1396 ((-1087 *3 (-590 $)) $))
- (-15 -3838 ($ (-1087 *3 (-590 $))))))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-385)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1166 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767))
- (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-547)) (-5 *2 (-112)) (-5 *1 (-470)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1496 *4)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1136)) (-4 *5 (-592 (-861 (-547))))
- (-4 *5 (-855 (-547)))
- (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-550 *5 *3)) (-4 *3 (-605))
- (-4 *3 (-13 (-27) (-1158) (-421 *5))))))
-(((*1 *2)
- (-12 (-4 *3 (-539)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-408 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-154)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217)))
- (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217)))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))
- (-5 *2 (-370)) (-5 *1 (-197)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1195 (-398 (-547))))
- (-5 *2 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547))))
- (-5 *1 (-882 *3 *4)) (-4 *4 (-1195 (-398 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1195 (-398 *2))) (-5 *2 (-547)) (-5 *1 (-882 *4 *3))
- (-4 *3 (-1195 (-398 *4))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 (-2 (|:| -2115 (-1132 *6)) (|:| -3322 (-547)))))
- (-4 *6 (-298)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112))
- (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-1147 *2)) (-4 *2 (-354)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1219 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-354))
- (-4 *1 (-699 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1195 *5))
- (-5 *2 (-663 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-271)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-398 (-547)))
- (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1212 *3 *2))
- (-4 *2 (-1210 *3)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-726)))))
-(((*1 *1) (-5 *1 (-217))) ((*1 *1) (-5 *1 (-370))))
-(((*1 *2 *1) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))
- ((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767))
- (-4 *3 (-821)) (-5 *2 (-745)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))))
-(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
- ((*1 *1 *1) (-4 *1 (-1105))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1219 (-745))) (-5 *1 (-649 *3)) (-4 *3 (-1063)))))
-(((*1 *1 *1 *1) (-4 *1 (-141)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))))
+ (-12 (-5 *3 (-923 *5)) (-4 *5 (-1018)) (-5 *2 (-241 *4 *5))
+ (-5 *1 (-915 *4 *5)) (-14 *4 (-621 (-1143))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-892))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))))
+(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-411 *3)) (-4 *3 (-541))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-2 (|:| -2121 *4) (|:| -3701 (-549)))))
+ (-4 *4 (-1202 (-549))) (-5 *2 (-747)) (-5 *1 (-434 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1179 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-370)) (-5 *1 (-1028)))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-145)) (-4 *2 (-298)) (-4 *2 (-442)) (-4 *3 (-821))
- (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-307 (-547))) (-5 *1 (-1081))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-619 *3)) (-5 *6 (-1132 *3))
- (-4 *3 (-13 (-421 *7) (-27) (-1158)))
- (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-543 *7 *3 *8)) (-4 *8 (-1063))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-619 *3))
- (-5 *6 (-398 (-1132 *3))) (-4 *3 (-13 (-421 *7) (-27) (-1158)))
- (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-543 *7 *3 *8)) (-4 *8 (-1063)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-418 *3 *2)) (-4 *3 (-13 (-169) (-38 (-398 (-547)))))
- (-4 *2 (-13 (-821) (-21))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1243 *3 *4)) (-4 *1 (-365 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-169))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-793 *3)) (-4 *1 (-1236 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-1016))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))))
+ (-12 (-4 *2 (-342)) (-4 *2 (-1018)) (-5 *1 (-689 *2 *3))
+ (-4 *3 (-1202 *2)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-914 *5)) (-5 *3 (-747)) (-4 *5 (-1018))
+ (-5 *1 (-1131 *4 *5)) (-14 *4 (-892)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-547))
- (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-408 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1242 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1236 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-1016)) (-4 *4 (-169))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))
- (-4 *3 (-169)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-4 *1 (-1195 *4)) (-4 *4 (-1016))
- (-5 *2 (-1219 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1132 *4)) (-4 *4 (-340)) (-5 *2 (-112))
- (-5 *1 (-348 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
+ (-12 (-4 *4 (-13 (-541) (-823)))
+ (-4 *2 (-13 (-423 *4) (-973) (-1165))) (-5 *1 (-580 *4 *2 *3))
+ (-4 *3 (-13 (-423 (-167 *4)) (-973) (-1165))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1202 *2)) (-4 *2 (-1184)) (-5 *1 (-146 *2 *4 *3))
+ (-4 *3 (-1202 (-400 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-961 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3))
- (-4 *3 (-364 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-961 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-492 *4 *5 *6 *3)) (-4 *6 (-364 *4)) (-4 *3 (-364 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-539))
- (-5 *2 (-2 (|:| |num| (-663 *4)) (|:| |den| *4)))
- (-5 *1 (-667 *4 *5))))
+ (-12 (-5 *3 (-621 *5)) (-4 *5 (-423 *4)) (-4 *4 (-13 (-823) (-541)))
+ (-5 *2 (-834)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-621 *4))
+ (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))))
+ (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547)))))
- (-4 *6 (-1195 *5))
- (-5 *2 (-2 (|:| -2644 *7) (|:| |rh| (-619 (-398 *6)))))
- (-5 *1 (-781 *5 *6 *7 *3)) (-5 *4 (-619 (-398 *6)))
- (-4 *7 (-630 *6)) (-4 *3 (-630 (-398 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-961 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1188 *4 *5 *3))
- (-4 *3 (-1195 *5)))))
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-621 *4))
+ (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))))
+ (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-621 *4))
+ (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))))
+ (-5 *1 (-1112 *6 *7 *8 *3 *4)) (-4 *4 (-1076 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-621 *4))
+ (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))))
+ (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1076 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-549)) (-4 *4 (-1202 (-400 *3))) (-5 *2 (-892))
+ (-5 *1 (-884 *4 *5)) (-4 *5 (-1202 (-400 *4))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-96)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *1) (-5 *1 (-430))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-621 (-549))) (-5 *1 (-1077)) (-5 *3 (-549)))))
(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-285 *6)) (-5 *4 (-114)) (-4 *6 (-421 *5))
- (-4 *5 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52))
- (-5 *1 (-308 *5 *6))))
+ (-12 (-5 *3 (-287 *6)) (-5 *4 (-114)) (-4 *6 (-423 *5))
+ (-4 *5 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52))
+ (-5 *1 (-310 *5 *6))))
((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-285 *7)) (-5 *4 (-114)) (-5 *5 (-619 *7))
- (-4 *7 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523))))
- (-5 *2 (-52)) (-5 *1 (-308 *6 *7))))
+ (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-621 *7))
+ (-4 *7 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525))))
+ (-5 *2 (-52)) (-5 *1 (-310 *6 *7))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-619 (-285 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-285 *7))
- (-4 *7 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523))))
- (-5 *2 (-52)) (-5 *1 (-308 *6 *7))))
+ (-12 (-5 *3 (-621 (-287 *7))) (-5 *4 (-621 (-114))) (-5 *5 (-287 *7))
+ (-4 *7 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525))))
+ (-5 *2 (-52)) (-5 *1 (-310 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-619 (-285 *8))) (-5 *4 (-619 (-114))) (-5 *5 (-285 *8))
- (-5 *6 (-619 *8)) (-4 *8 (-421 *7))
- (-4 *7 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52))
- (-5 *1 (-308 *7 *8))))
+ (-12 (-5 *3 (-621 (-287 *8))) (-5 *4 (-621 (-114))) (-5 *5 (-287 *8))
+ (-5 *6 (-621 *8)) (-4 *8 (-423 *7))
+ (-4 *7 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52))
+ (-5 *1 (-310 *7 *8))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-285 *7))
- (-4 *7 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523))))
- (-5 *2 (-52)) (-5 *1 (-308 *6 *7))))
+ (-12 (-5 *3 (-621 *7)) (-5 *4 (-621 (-114))) (-5 *5 (-287 *7))
+ (-4 *7 (-423 *6)) (-4 *6 (-13 (-823) (-541) (-594 (-525))))
+ (-5 *2 (-52)) (-5 *1 (-310 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-114))) (-5 *6 (-619 (-285 *8)))
- (-4 *8 (-421 *7)) (-5 *5 (-285 *8))
- (-4 *7 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52))
- (-5 *1 (-308 *7 *8))))
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 (-114))) (-5 *6 (-621 (-287 *8)))
+ (-4 *8 (-423 *7)) (-5 *5 (-287 *8))
+ (-4 *7 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52))
+ (-5 *1 (-310 *7 *8))))
((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-285 *5)) (-5 *4 (-114)) (-4 *5 (-421 *6))
- (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52))
- (-5 *1 (-308 *6 *5))))
+ (-12 (-5 *3 (-287 *5)) (-5 *4 (-114)) (-4 *5 (-423 *6))
+ (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52))
+ (-5 *1 (-310 *6 *5))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-114)) (-5 *5 (-285 *3)) (-4 *3 (-421 *6))
- (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52))
- (-5 *1 (-308 *6 *3))))
+ (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6))
+ (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52))
+ (-5 *1 (-310 *6 *3))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-285 *3)) (-4 *3 (-421 *6))
- (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52))
- (-5 *1 (-308 *6 *3))))
+ (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-4 *3 (-423 *6))
+ (-4 *6 (-13 (-823) (-541) (-594 (-525)))) (-5 *2 (-52))
+ (-5 *1 (-310 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-114)) (-5 *5 (-285 *3)) (-5 *6 (-619 *3))
- (-4 *3 (-421 *7)) (-4 *7 (-13 (-821) (-539) (-592 (-523))))
- (-5 *2 (-52)) (-5 *1 (-308 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-237 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-1136))) (-5 *2 (-1224)) (-5 *1 (-1175))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 (-1136))) (-5 *2 (-1224)) (-5 *1 (-1175)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *1 (-1090 *3 *2)) (-4 *3 (-1195 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2))
- (-4 *4 (-13 (-821) (-539))))))
+ (-12 (-5 *4 (-114)) (-5 *5 (-287 *3)) (-5 *6 (-621 *3))
+ (-4 *3 (-423 *7)) (-4 *7 (-13 (-823) (-541) (-594 (-525))))
+ (-5 *2 (-52)) (-5 *1 (-310 *7 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-1018))
+ (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-1202 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136))))
- (-4 *6 (-767)) (-5 *2 (-619 (-619 (-547))))
- (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-547)) (-4 *7 (-918 *4 *6 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1119)) (-5 *3 (-547)) (-5 *1 (-233)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1067)) (-5 *1 (-282)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))))
+ (-12 (-5 *3 (-621 (-2 (|:| -2121 (-1139 *6)) (|:| -3731 (-549)))))
+ (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-1125)) (-5 *1 (-762)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1125)) (-5 *1 (-96))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1125)) (-5 *1 (-96)))))
+(((*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1150)))))
+(((*1 *1) (-5 *1 (-779))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 (-621 *8))) (-5 *3 (-621 *8))
+ (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541)) (-4 *6 (-769))
+ (-4 *7 (-823)) (-5 *2 (-112)) (-5 *1 (-948 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1069 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1069 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-305)) (-5 *1 (-805)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-619 (-619 (-547)))) (-5 *1 (-940))
- (-5 *3 (-619 (-547))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 (-912 *4))) (-4 *1 (-1096 *4)) (-4 *4 (-1016))
- (-5 *2 (-745)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1136))
- (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2896 "void"))) (-5 *1 (-1139)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-621 (-473 *4 *5))) (-14 *4 (-621 (-1143)))
+ (-4 *5 (-444))
+ (-5 *2
+ (-2 (|:| |gblist| (-621 (-241 *4 *5)))
+ (|:| |gvlist| (-621 (-549)))))
+ (-5 *1 (-609 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886))))
- ((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-298))
- (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-186)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 (-863 *6)))
+ (-5 *5 (-1 (-860 *6 *8) *8 (-863 *6) (-860 *6 *8))) (-4 *6 (-1067))
+ (-4 *8 (-13 (-1018) (-594 (-863 *6)) (-1009 *7)))
+ (-5 *2 (-860 *6 *8)) (-4 *7 (-13 (-1018) (-823)))
+ (-5 *1 (-912 *6 *7 *8)))))
+(((*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1139 *7))
+ (-4 *5 (-1018)) (-4 *7 (-1018)) (-4 *2 (-1202 *5))
+ (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1202 *2)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-300))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4248 *1)))
+ (-4 *1 (-300)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34))))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-239 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-834)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747))
+ (-14 *4 (-747)) (-4 *5 (-170)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-541))
+ (-5 *2 (-2 (|:| -3521 (-665 *5)) (|:| |vec| (-1226 (-621 (-892))))))
+ (-5 *1 (-89 *5 *3)) (-5 *4 (-892)) (-4 *3 (-632 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-5 *1 (-1154 *2)) (-4 *2 (-356)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-747)) (-4 *5 (-541))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-940 *5 *3)) (-4 *3 (-1202 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170))))
+ ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2))))
+ ((*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1180)) (-5 *2 (-621 *1)) (-4 *1 (-981 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1109 *4 *2)) (-14 *4 (-892))
+ (-4 *2 (-13 (-1018) (-10 -7 (-6 (-4339 "*")))))
+ (-5 *1 (-873 *4 *2)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-541)) (-4 *2 (-1018))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1132 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5))
- (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821))
- (-4 *6 (-298)))))
-(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1173))))
+ (-12 (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1202 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-541))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6))
+ (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *1))))
+ (-4 *1 (-1038 *4 *5 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-429)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1125))
+ (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-1018)))))
+(((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-350 *3)) (-4 *3 (-342)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-410 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1180))))
((*1 *2 *2)
- (-12 (-4 *3 (-1016)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1195 *3))))
+ (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1202 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23))
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23))
(-14 *4 *3))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-547))) (-5 *1 (-239 *3 *4))
- (-14 *3 (-619 (-1136))) (-4 *4 (-1016))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-547))) (-14 *3 (-619 (-1136)))
- (-5 *1 (-444 *3 *4 *5)) (-4 *4 (-1016))
- (-4 *5 (-230 (-3767 *3) (-745)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-547))) (-5 *1 (-471 *3 *4))
- (-14 *3 (-619 (-1136))) (-4 *4 (-1016)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-356)) (-4 *3 (-1018))
+ (-5 *1 (-1127 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-342)) (-5 *3 (-549)) (-5 *2 (-1153 (-892) (-747))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-1067)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821))))
- ((*1 *1) (-4 *1 (-1112))))
-(((*1 *1) (-5 *1 (-797))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-619 (-663 (-547))))
- (-5 *1 (-1073)))))
-(((*1 *2) (-12 (-5 *2 (-814 (-547))) (-5 *1 (-521))))
- ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-727)))))
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823))))
+ ((*1 *1) (-4 *1 (-1118))))
+(((*1 *2) (-12 (-5 *2 (-816 (-549))) (-5 *1 (-523))))
+ ((*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-892)) (-5 *2 (-460)) (-5 *1 (-1227)))))
+(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -3825 *1) (|:| -4316 *1) (|:| |associate| *1)))
- (-4 *1 (-539)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-619 (-1132 *13))) (-5 *3 (-1132 *13))
- (-5 *4 (-619 *12)) (-5 *5 (-619 *10)) (-5 *6 (-619 *13))
- (-5 *7 (-619 (-619 (-2 (|:| -1720 (-745)) (|:| |pcoef| *13)))))
- (-5 *8 (-619 (-745))) (-5 *9 (-1219 (-619 (-1132 *10))))
- (-4 *12 (-821)) (-4 *10 (-298)) (-4 *13 (-918 *10 *11 *12))
- (-4 *11 (-767)) (-5 *1 (-682 *11 *12 *10 *13)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1132 *6)) (-4 *6 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *2 (-1132 *7)) (-5 *1 (-312 *4 *5 *6 *7))
- (-4 *7 (-918 *6 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-114))))
+ (|partial| -12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018))
+ (-4 *2 (-1217 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-133)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-114))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1119)) (-4 *4 (-821)) (-5 *1 (-898 *4 *2))
- (-4 *2 (-421 *4))))
+ (-12 (-5 *3 (-1125)) (-4 *4 (-823)) (-5 *1 (-900 *4 *2))
+ (-4 *2 (-423 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1136)) (-5 *4 (-1119)) (-5 *2 (-307 (-547)))
- (-5 *1 (-899)))))
-(((*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4))
- (-4 *6 (-364 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3))
- (-4 *3 (-622 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3))
- (-4 *3 (-622 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016))))
- ((*1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))))
-(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-364 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12 (-5 *3 (-1143)) (-5 *4 (-1125)) (-5 *2 (-309 (-549)))
+ (-5 *1 (-901)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1101 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-621 *3))) (-4 *1 (-1101 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-914 *3))) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1063)) (-4 *4 (-1063))
- (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *5 *4 *6)))))
-(((*1 *2) (-12 (-5 *2 (-814 (-547))) (-5 *1 (-521))))
- ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-285 *2)) (-4 *2 (-701)) (-4 *2 (-1173)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095 (-217))) (-5 *3 (-619 (-254))) (-5 *1 (-1221))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095 (-217))) (-5 *3 (-1119)) (-5 *1 (-1221))))
- ((*1 *1 *1) (-5 *1 (-1221))))
-(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1173)))))
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
(((*1 *2)
- (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4))
- (-4 *4 (-1195 *3)))))
+ (-12 (-4 *4 (-356)) (-5 *2 (-892)) (-5 *1 (-321 *3 *4))
+ (-4 *3 (-322 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-356)) (-5 *2 (-809 (-892))) (-5 *1 (-321 *3 *4))
+ (-4 *3 (-322 *4))))
+ ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-892))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-5 *2 (-809 (-892))))))
+(((*1 *2) (-12 (-5 *2 (-816 (-549))) (-5 *1 (-523))))
+ ((*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1143))))
+ (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-920 *3 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-621 (-1143))) (-4 *2 (-170))
+ (-4 *4 (-232 (-3775 *5) (-747)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3493 *3) (|:| -3731 *4))
+ (-2 (|:| -3493 *3) (|:| -3731 *4))))
+ (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-823))
+ (-4 *7 (-920 *2 *4 (-836 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-305)) (-5 *1 (-289))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-1125))) (-5 *2 (-305)) (-5 *1 (-289))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-305)) (-5 *1 (-289))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 (-1125))) (-5 *3 (-1125)) (-5 *2 (-305))
+ (-5 *1 (-289)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217)))
- (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217)))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))
- (-5 *2 (-370)) (-5 *1 (-197)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6))
- (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1195 *4)) (-4 *5 (-364 *4))
- (-4 *6 (-364 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-303)) (-5 *1 (-287))))
+ (-12 (-5 *3 (-1199 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1143))
+ (-5 *2 (-549)) (-5 *1 (-1081 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-227)) (-4 *3 (-1018)) (-4 *4 (-823)) (-4 *5 (-259 *4))
+ (-4 *6 (-769)) (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-1119))) (-5 *2 (-303)) (-5 *1 (-287))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-303)) (-5 *1 (-287))))
+ (-12 (-4 *4 (-1018)) (-4 *3 (-823)) (-4 *5 (-259 *3)) (-4 *6 (-769))
+ (-5 *2 (-1 *1 (-747))) (-4 *1 (-246 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-259 *2)) (-4 *2 (-823)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1161)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-541))))
+ ((*1 *1 *1) (|partial| -4 *1 (-699))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-648 *3)) (-4 *3 (-823)) (-4 *1 (-367 *3 *4))
+ (-4 *4 (-170)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-473 *4 *5))) (-14 *4 (-621 (-1143)))
+ (-4 *5 (-444)) (-5 *2 (-621 (-241 *4 *5))) (-5 *1 (-609 *4 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1160)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 *1)) (-4 *1 (-1101 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1202 *3)) (-4 *3 (-1018))
+ (-4 *3 (-541))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))))
+(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-845))))
+ ((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-534))))
+(((*1 *1 *2) (-12 (-5 *2 (-309 (-167 (-372)))) (-5 *1 (-323))))
+ ((*1 *1 *2) (-12 (-5 *2 (-309 (-549))) (-5 *1 (-323))))
+ ((*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-5 *1 (-323))))
+ ((*1 *1 *2) (-12 (-5 *2 (-309 (-670))) (-5 *1 (-323))))
+ ((*1 *1 *2) (-12 (-5 *2 (-309 (-677))) (-5 *1 (-323))))
+ ((*1 *1 *2) (-12 (-5 *2 (-309 (-675))) (-5 *1 (-323))))
+ ((*1 *1) (-5 *1 (-323))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1226 *4)) (-4 *4 (-342)) (-5 *2 (-1139 *4))
+ (-5 *1 (-519 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-1226 (-665 *4))) (-5 *1 (-89 *4 *5))
+ (-5 *3 (-665 *4)) (-4 *5 (-632 *4)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-863 *4)) (-4 *4 (-1067)) (-5 *2 (-112))
+ (-5 *1 (-860 *4 *5)) (-4 *5 (-1067))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-1119))) (-5 *3 (-1119)) (-5 *2 (-303))
- (-5 *1 (-287)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-318 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-505 *3 *4))
- (-14 *4 (-547)))))
-(((*1 *1) (-5 *1 (-139))))
+ (-12 (-5 *4 (-863 *5)) (-4 *5 (-1067)) (-5 *2 (-112))
+ (-5 *1 (-861 *5 *3)) (-4 *3 (-1180))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *6)) (-5 *4 (-863 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1180)) (-5 *2 (-112)) (-5 *1 (-861 *5 *6)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1139 (-400 (-549))))
+ (|:| |overan| (-1139 (-48))) (|:| -4151 (-112))))
+ (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1202 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-152))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-1033)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1150)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1139 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1165))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1195 *6))
- (-4 *6 (-13 (-27) (-421 *5)))
- (-4 *5 (-13 (-821) (-539) (-1007 (-547)))) (-4 *8 (-1195 (-398 *7)))
- (-5 *2 (-565 *3)) (-5 *1 (-535 *5 *6 *7 *8 *3))
- (-4 *3 (-333 *6 *7 *8)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-722)))))
+ (-12 (-5 *3 (-797)) (-5 *4 (-52)) (-5 *2 (-1231)) (-5 *1 (-807)))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-372))))
+ ((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-372)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1180)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-295)) (-4 *2 (-1180))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-621 (-592 *1))) (-5 *3 (-621 *1)) (-4 *1 (-295))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-287 *1))) (-4 *1 (-295))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-287 *1)) (-4 *1 (-295)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-541))
+ (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-1197 *4 *3))
+ (-4 *3 (-1202 *4)))))
+(((*1 *1) (-5 *1 (-1030))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))))
+(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-823))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-836 *3)) (-14 *3 (-621 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-937 *3)) (-4 *3 (-938))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-960))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1059 *3)) (-4 *3 (-1180))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
+ (-5 *2 (-1143))))
+ ((*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1222 *3)) (-14 *3 *2))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-541) (-823))) (-5 *2 (-167 *5))
+ (-5 *1 (-580 *4 *5 *3)) (-4 *5 (-13 (-423 *4) (-973) (-1165)))
+ (-4 *3 (-13 (-423 (-167 *4)) (-973) (-1165))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1226 *5)) (-5 *3 (-747)) (-5 *4 (-1087)) (-4 *5 (-342))
+ (-5 *1 (-519 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-621 (-287 *4))) (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1158))))
- ((*1 *2 *1) (-12 (-5 *1 (-322 *2)) (-4 *2 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-590 *3)) (-4 *3 (-821)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1056 (-921 (-547)))) (-5 *3 (-921 (-547)))
- (-5 *1 (-321))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1056 (-921 (-547)))) (-5 *1 (-321)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-590 *1)) (-4 *1 (-293)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1219 (-547))) (-5 *3 (-547)) (-5 *1 (-1073))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1219 (-547))) (-5 *3 (-619 (-547))) (-5 *4 (-547))
- (-5 *1 (-1073)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-599 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3840 *4) (|:| |sol?| (-112)))
- (-547) *4))
- (-4 *4 (-354)) (-4 *5 (-1195 *4)) (-5 *1 (-557 *4 *5)))))
+ (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1202 *3))
+ (-4 *3 (-13 (-356) (-145) (-1009 (-549)))) (-5 *1 (-553 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1192 *5 *4)) (-4 *4 (-442)) (-4 *4 (-794))
- (-14 *5 (-1136)) (-5 *2 (-547)) (-5 *1 (-1077 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1217 *4))
+ (-4 *4 (-38 (-400 (-549)))) (-5 *2 (-1 (-1123 *4) (-1123 *4)))
+ (-5 *1 (-1219 *4 *5)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-145) (-27) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-4 *5 (-1202 *4)) (-5 *2 (-1139 (-400 *5))) (-5 *1 (-595 *4 *5))
+ (-5 *3 (-400 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1202 *5))
+ (-4 *5 (-13 (-145) (-27) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-5 *2 (-1139 (-400 *6))) (-5 *1 (-595 *5 *6)) (-5 *3 (-400 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-549)) (-5 *1 (-478 *4))
+ (-4 *4 (-1202 *2)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2))
+ (-4 *2 (-1202 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-549)) (-5 *1 (-672 *2)) (-4 *2 (-1202 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1016)) (-5 *2 (-1219 *3)) (-5 *1 (-687 *3 *4))
- (-4 *4 (-1195 *3)))))
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067)))))
+(((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *1 *1) (-4 *1 (-1106))))
+(((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747))
+ (-4 *4 (-170)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-875 *4))
+ (-4 *4 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-858 *4 *5)) (-5 *3 (-858 *4 *6)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-640 *5)) (-5 *1 (-854 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1143)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-1031)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1143)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1219 *5)) (-5 *3 (-745)) (-5 *4 (-1082)) (-4 *5 (-340))
- (-5 *1 (-517 *5)))))
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1165) (-973))))))
+(((*1 *1) (-5 *1 (-155))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-472)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1177)) (-4 *3 (-1195 *4))
- (-4 *5 (-1195 (-398 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-439 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1119)) (-5 *1 (-296)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1119)) (-5 *5 (-663 (-217))) (-5 *6 (-217))
- (-5 *7 (-663 (-547))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-727)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-293)) (-4 *2 (-1173))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-590 *1))) (-5 *3 (-619 *1)) (-4 *1 (-293))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-285 *1))) (-4 *1 (-293))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-285 *1)) (-4 *1 (-293)))))
+ (-12 (-5 *3 (-621 *4)) (-4 *4 (-821)) (-4 *4 (-356)) (-5 *2 (-747))
+ (-5 *1 (-916 *4 *5)) (-4 *5 (-1202 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-309 (-219))) (-5 *2 (-400 (-549))) (-5 *1 (-298)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-712 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063))))
- ((*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063)))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-1202 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-892)) (-4 *1 (-1204 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-768))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-400 (-549))) (-4 *1 (-1207 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-821))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-834 *3)) (-14 *3 (-619 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-935 *3)) (-4 *3 (-936))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-958))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1056 *3)) (-4 *3 (-1173))))
+ (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-621 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766))
- (-5 *2 (-1136))))
- ((*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1215 *3)) (-14 *3 *2))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547)))))
- (-4 *5 (-1195 *4))
- (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -2644 *5))))
- (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-630 *5))
- (-4 *6 (-630 (-398 *5))))))
-(((*1 *1) (-5 *1 (-428))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-547))))
- (-4 *4 (-13 (-1195 *3) (-539) (-10 -8 (-15 -3719 ($ $ $)))))
- (-4 *3 (-539)) (-5 *1 (-1198 *3 *4)))))
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-481 *3)) (-4 *3 (-1180))
+ (-5 *2 (-621 *3)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549))
+ (-5 *2 (-1006)) (-5 *1 (-733)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-619 (-1136))) (|:| |pred| (-52))))
- (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1195 *5))
- (-4 *5 (-13 (-27) (-421 *4)))
- (-4 *4 (-13 (-821) (-539) (-1007 (-547))))
- (-4 *7 (-1195 (-398 *6))) (-5 *1 (-535 *4 *5 *6 *7 *2))
- (-4 *2 (-333 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-734)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136))
- (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547))))
- (-5 *2 (-2 (|:| -1510 *3) (|:| |nconst| *3))) (-5 *1 (-550 *5 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *5))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1496 *3) (|:| |coef2| (-756 *3))))
- (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))))
-(((*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)) (-4 *2 (-539))))
- ((*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1224) (-1219 *5) (-1219 *5) (-370)))
- (-5 *3 (-1219 (-370))) (-5 *5 (-370)) (-5 *2 (-1224))
- (-5 *1 (-762))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1224) (-1219 *5) (-1219 *5) (-370)))
- (-5 *3 (-1219 (-370))) (-5 *5 (-370)) (-5 *2 (-1224))
- (-5 *1 (-762)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4)))
+ (-5 *2 (-1226 *6)) (-5 *1 (-329 *3 *4 *5 *6))
+ (-4 *6 (-335 *3 *4 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-747)) (-5 *3 (-914 *4)) (-4 *1 (-1101 *4))
+ (-4 *4 (-1018))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-747)) (-5 *4 (-914 (-219))) (-5 *2 (-1231))
+ (-5 *1 (-1228)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-1063)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-722)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-298)) (-4 *3 (-961 *2)) (-4 *4 (-1195 *3))
- (-5 *1 (-404 *2 *3 *4 *5)) (-4 *5 (-13 (-400 *3 *4) (-1007 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-619 (-663 (-307 (-547))))) (-5 *1 (-1000)))))
+ (-12 (-14 *4 (-747)) (-4 *5 (-1180)) (-5 *2 (-133))
+ (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4))
+ (-4 *3 (-322 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-170))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-549))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769))
+ (-5 *2 (-549)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1018)) (-5 *2 (-892))))
+ ((*1 *2) (-12 (-4 *1 (-1233 *3)) (-4 *3 (-356)) (-5 *2 (-133)))))
+(((*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4))
+ (-4 *4 (-1202 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1106))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1061 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-186))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1061 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-293))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1061 (-816 (-219)))) (-5 *2 (-219)) (-5 *1 (-298)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-295)) (-5 *3 (-1143)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-295)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-621 *5))) (-4 *5 (-1217 *4))
+ (-4 *4 (-38 (-400 (-549))))
+ (-5 *2 (-1 (-1123 *4) (-621 (-1123 *4)))) (-5 *1 (-1219 *4 *5)))))
(((*1 *2 *1)
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *2)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *1)
(-12
(-5 *2
- (-619
- (-2
- (|:| -3331
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (|:| -1786
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1117 (-217)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4232
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-542))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1173))
- (-5 *2 (-619 *4)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-590 *4)) (-5 *6 (-1136))
- (-4 *4 (-13 (-421 *7) (-27) (-1158)))
- (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4))))
- (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))))
-(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222))))
- ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))))
-(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))))
+ (-2 (|:| |cycle?| (-112)) (|:| -1888 (-747)) (|:| |period| (-747))))
+ (-5 *1 (-1123 *4)) (-4 *4 (-1180)) (-5 *3 (-747)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-762)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-619 *3))))
+ (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4329)) (-4 *1 (-479 *3)) (-4 *3 (-1173))
- (-5 *2 (-619 *3)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1119)) (-5 *3 (-547)) (-5 *1 (-1028)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217)))
- (|:| |lb| (-619 (-814 (-217))))
- (|:| |cf| (-619 (-307 (-217))))
- (|:| |ub| (-619 (-814 (-217))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-619 (-307 (-217))))
- (|:| -3054 (-619 (-217)))))))
- (-5 *2 (-619 (-1119))) (-5 *1 (-258)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-166 (-217)) (-166 (-217)))) (-5 *4 (-1058 (-217)))
- (-5 *5 (-112)) (-5 *2 (-1221)) (-5 *1 (-248)))))
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-539)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3))
- (-5 *1 (-1163 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))))
+ (-12 (-5 *2 (-1226 *4)) (-5 *3 (-747)) (-4 *4 (-342))
+ (-5 *1 (-519 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-880))
+ (-5 *1 (-449 *3 *4 *2 *5)) (-4 *5 (-920 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *2 (-880))
+ (-5 *1 (-877 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-880)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1202 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1063) (-1007 *5)))
- (-4 *5 (-855 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-900 *4 *5 *6)))))
+ (-12 (-5 *3 (-1125)) (-5 *2 (-208 (-493))) (-5 *1 (-811)))))
+(((*1 *1 *1) (-4 *1 (-1111))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3727 *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *1 (-602 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *2 (-1076 *3 *4 *5 *6)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1085)) (-5 *1 (-1082)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5))
- (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136))))
- (-4 *6 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-621 (-219))) (-5 *2 (-621 (-1125))) (-5 *1 (-186))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-298) (-145)))
- (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-112))
- (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-547)) (-4 *4 (-1195 (-398 *3))) (-5 *2 (-890))
- (-5 *1 (-882 *4 *5)) (-4 *5 (-1195 (-398 *4))))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-145) (-27) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-4 *5 (-1195 *4)) (-5 *2 (-1132 (-398 *5))) (-5 *1 (-593 *4 *5))
- (-5 *3 (-398 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1195 *5))
- (-4 *5 (-13 (-145) (-27) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-5 *2 (-1132 (-398 *6))) (-5 *1 (-593 *5 *6)) (-5 *3 (-398 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886))))
+ (-12 (-5 *3 (-621 (-219))) (-5 *2 (-621 (-1125))) (-5 *1 (-293))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
+ (-12 (-5 *3 (-621 (-219))) (-5 *2 (-621 (-1125))) (-5 *1 (-298)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169))
- (-5 *2 (-663 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-407 *3 *4))
- (-4 *3 (-408 *4))))
- ((*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))))
-(((*1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1173)) (-4 *2 (-1063))))
- ((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217))
- (-5 *2 (-1004)) (-5 *1 (-726)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-112))
- (-5 *2 (-1004)) (-5 *1 (-720)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-547))
- (-5 *6
- (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3039 (-370))))
- (-5 *7 (-1 (-1224) (-1219 *5) (-1219 *5) (-370)))
- (-5 *3 (-1219 (-370))) (-5 *5 (-370)) (-5 *2 (-1224))
- (-5 *1 (-762))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-547))
- (-5 *6
- (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3039 (-370))))
- (-5 *7 (-1 (-1224) (-1219 *5) (-1219 *5) (-370)))
- (-5 *3 (-1219 (-370))) (-5 *5 (-370)) (-5 *2 (-1224))
- (-5 *1 (-762)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-832)) (-5 *1 (-1117 *3)) (-4 *3 (-1063))
- (-4 *3 (-1173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1173)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-104)))))
-(((*1 *1 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-603 *2 *3 *4)) (-4 *2 (-821))
- (-4 *3 (-13 (-169) (-692 (-398 (-547))))) (-14 *4 (-890))))
- ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821))))
- ((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))))
-(((*1 *1) (-5 *1 (-282))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1125 3 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3))))
- ((*1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1974 *4))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1158))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-421 *3) (-971))) (-5 *1 (-267 *3 *2))
- (-4 *3 (-13 (-821) (-539))))))
+ (-12 (-5 *3 (-1226 (-621 (-2 (|:| -4161 *4) (|:| -3493 (-1087))))))
+ (-4 *4 (-342)) (-5 *2 (-665 *4)) (-5 *1 (-339 *4)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-1154 *2)) (-4 *2 (-356)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-549)))) (-4 *5 (-1202 *4))
+ (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-986 *4 *5)) (-5 *3 (-400 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6)
+ (|:| |c1| (-400 *6)) (|:| |c2| (-400 *6)) (|:| -2632 *6)))
+ (-5 *1 (-987 *5 *6)) (-5 *3 (-400 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-130))
+ (-4 *3 (-768)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2))
- (-4 *4 (-13 (-821) (-539))))))
+ (-12 (-4 *4 (-444))
+ (-5 *2
+ (-621
+ (-2 (|:| |eigval| (-3 (-400 (-923 *4)) (-1132 (-1143) (-923 *4))))
+ (|:| |geneigvec| (-621 (-665 (-400 (-923 *4))))))))
+ (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-923 *4)))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-102 *3)))))
(((*1 *2)
- (-12 (-4 *1 (-340))
- (-5 *2 (-619 (-2 (|:| -2115 (-547)) (|:| -3322 (-547))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1173)) (-5 *2 (-745)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5))
- (-5 *2 (-2 (|:| -2674 (-619 *6)) (|:| -1352 (-619 *6)))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-547)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-409 *2)) (-4 *2 (-539)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971)))
- (-5 *1 (-173 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-665 (-400 *4))))))
(((*1 *2 *3 *3)
- (-12 (-4 *2 (-539)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1195 *2)))))
-(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))))
-(((*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1158))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-539))
- (-4 *7 (-918 *3 *5 *6))
- (-5 *2 (-2 (|:| -3322 (-745)) (|:| -1563 *8) (|:| |radicand| *8)))
- (-5 *1 (-922 *5 *6 *3 *7 *8)) (-5 *4 (-745))
- (-4 *8
- (-13 (-354)
- (-10 -8 (-15 -1386 (*7 $)) (-15 -1396 (*7 $)) (-15 -3838 ($ *7))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-1016)))))
-(((*1 *2)
- (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136))
- (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-565 *3)) (-5 *1 (-417 *5 *3))
- (-4 *3 (-13 (-1158) (-29 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *4 *3 *5))
- (-4 *3 (-1195 *4))
- (-4 *5 (-13 (-395) (-1007 *4) (-354) (-1158) (-275))))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-398 (-921 *5)) (-1126 (-1136) (-921 *5))))
- (-4 *5 (-442)) (-5 *2 (-619 (-663 (-398 (-921 *5)))))
- (-5 *1 (-283 *5)) (-5 *4 (-663 (-398 (-921 *5)))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1219 *4)) (-5 *3 (-1082)) (-4 *4 (-340))
- (-5 *1 (-517 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1007 (-547))) (-4 *1 (-293)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-166 (-217))))
- (-5 *2 (-1004)) (-5 *1 (-729)))))
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1074 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-621 *6)) (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-4 *3 (-541)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1202 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (-5 *2 (-112)) (-5 *1 (-291)))))
+ (|partial| -12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -2317 (-621 *7))))
+ (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
+(((*1 *1 *1 *1) (-4 *1 (-534))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-665 (-167 (-219))))
+ (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-52)))))
+(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142)))
+ ((*1 *1 *1) (-4 *1 (-1111))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1165)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-892)) (-5 *4 (-372)) (-5 *2 (-1231)) (-5 *1 (-1227)))))
+(((*1 *2 *3) (-12 (-5 *3 (-892)) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-892)) (-4 *1 (-721 *3)) (-4 *3 (-170)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1157 *4 *5))
+ (-4 *4 (-1067)) (-4 *5 (-1067)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2))
- (-4 *4 (-13 (-821) (-539))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
+ (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1184)) (-4 *3 (-1202 *4))
+ (-4 *5 (-1202 (-400 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-621 (-592 *5))) (-5 *3 (-1143)) (-4 *5 (-423 *4))
+ (-4 *4 (-823)) (-5 *1 (-558 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-197))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 (-370))) (-5 *2 (-370)) (-5 *1 (-197)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217)))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-69 APROD)))) (-5 *4 (-217))
- (-5 *2 (-1004)) (-5 *1 (-731)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-912 *4))) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-1016)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *3 (-541)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-541)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821))
- (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-619 *4)))))
+ (-12 (-14 *3 (-621 (-1143))) (-4 *4 (-170))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3493 *5) (|:| -3731 *2))
+ (-2 (|:| -3493 *5) (|:| -3731 *2))))
+ (-4 *2 (-232 (-3775 *3) (-747))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-823)) (-4 *7 (-920 *4 *2 (-836 *3))))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-1139 *4)) (-4 *4 (-342))
+ (-5 *2 (-1226 (-621 (-2 (|:| -4161 *4) (|:| -3493 (-1087))))))
+ (-5 *1 (-339 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1123 (-1123 *4))) (-5 *2 (-1123 *4)) (-5 *1 (-1127 *4))
+ (-4 *4 (-1018)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-621 (-592 *2))) (-5 *4 (-1143))
+ (-4 *2 (-13 (-27) (-1165) (-423 *5)))
+ (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-270 *5 *2)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-860 *5 *3)) (-5 *4 (-863 *5)) (-4 *5 (-1067))
+ (-4 *3 (-164 *6)) (-4 (-923 *6) (-857 *5))
+ (-4 *6 (-13 (-857 *5) (-170))) (-5 *1 (-176 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-860 *4 *1)) (-5 *3 (-863 *4)) (-4 *1 (-857 *4))
+ (-4 *4 (-1067))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-860 *5 *6)) (-5 *4 (-863 *5)) (-4 *5 (-1067))
+ (-4 *6 (-13 (-1067) (-1009 *3))) (-4 *3 (-857 *5))
+ (-5 *1 (-902 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-860 *5 *3)) (-4 *5 (-1067))
+ (-4 *3 (-13 (-423 *6) (-594 *4) (-857 *5) (-1009 (-592 $))))
+ (-5 *4 (-863 *5)) (-4 *6 (-13 (-541) (-823) (-857 *5)))
+ (-5 *1 (-903 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-860 (-549) *3)) (-5 *4 (-863 (-549))) (-4 *3 (-534))
+ (-5 *1 (-904 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-860 *5 *6)) (-5 *3 (-592 *6)) (-4 *5 (-1067))
+ (-4 *6 (-13 (-823) (-1009 (-592 $)) (-594 *4) (-857 *5)))
+ (-5 *4 (-863 *5)) (-5 *1 (-905 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-856 *5 *6 *3)) (-5 *4 (-863 *5)) (-4 *5 (-1067))
+ (-4 *6 (-857 *5)) (-4 *3 (-642 *6)) (-5 *1 (-906 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-860 *6 *3) *8 (-863 *6) (-860 *6 *3)))
+ (-4 *8 (-823)) (-5 *2 (-860 *6 *3)) (-5 *4 (-863 *6))
+ (-4 *6 (-1067)) (-4 *3 (-13 (-920 *9 *7 *8) (-594 *4)))
+ (-4 *7 (-769)) (-4 *9 (-13 (-1018) (-823) (-857 *6)))
+ (-5 *1 (-907 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-860 *5 *3)) (-4 *5 (-1067))
+ (-4 *3 (-13 (-920 *8 *6 *7) (-594 *4))) (-5 *4 (-863 *5))
+ (-4 *7 (-857 *5)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *8 (-13 (-1018) (-823) (-857 *5)))
+ (-5 *1 (-907 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-860 *5 *3)) (-4 *5 (-1067)) (-4 *3 (-963 *6))
+ (-4 *6 (-13 (-541) (-857 *5) (-594 *4))) (-5 *4 (-863 *5))
+ (-5 *1 (-910 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-860 *5 (-1143))) (-5 *3 (-1143)) (-5 *4 (-863 *5))
+ (-4 *5 (-1067)) (-5 *1 (-911 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-621 (-863 *7))) (-5 *5 (-1 *9 (-621 *9)))
+ (-5 *6 (-1 (-860 *7 *9) *9 (-863 *7) (-860 *7 *9))) (-4 *7 (-1067))
+ (-4 *9 (-13 (-1018) (-594 (-863 *7)) (-1009 *8)))
+ (-5 *2 (-860 *7 *9)) (-5 *3 (-621 *9)) (-4 *8 (-13 (-1018) (-823)))
+ (-5 *1 (-912 *7 *8 *9)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1226 *5)) (-4 *5 (-768)) (-5 *2 (-112))
+ (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-621 (-1143)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823)))
+ (-14 *3 (-621 (-1143))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1180))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1180))
+ (-14 *4 (-549)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))
- (-5 *1 (-989 *3)) (-4 *3 (-1195 (-547)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))
- (-5 *1 (-989 *3)) (-4 *3 (-1195 (-547)))
- (-5 *4 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))
- (-5 *1 (-989 *3)) (-4 *3 (-1195 (-547))) (-5 *4 (-398 (-547)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-398 (-547)))
- (-5 *2 (-619 (-2 (|:| -3830 *5) (|:| -3840 *5)))) (-5 *1 (-989 *3))
- (-4 *3 (-1195 (-547))) (-5 *4 (-2 (|:| -3830 *5) (|:| -3840 *5)))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))
- (-5 *1 (-990 *3)) (-4 *3 (-1195 (-398 (-547))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-619 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547))))))
- (-5 *1 (-990 *3)) (-4 *3 (-1195 (-398 (-547))))
- (-5 *4 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-398 (-547)))
- (-5 *2 (-619 (-2 (|:| -3830 *4) (|:| -3840 *4)))) (-5 *1 (-990 *3))
- (-4 *3 (-1195 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-398 (-547)))
- (-5 *2 (-619 (-2 (|:| -3830 *5) (|:| -3840 *5)))) (-5 *1 (-990 *3))
- (-4 *3 (-1195 *5)) (-5 *4 (-2 (|:| -3830 *5) (|:| -3840 *5))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-154)))))
-(((*1 *1) (-5 *1 (-1045))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-1030 *4 *5 *6)) (-4 *4 (-539))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (|has| *4 (-6 (-4331 "*")))
- (-4 *4 (-1016)) (-5 *1 (-997 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890))
- (|has| *4 (-6 (-4331 "*"))) (-4 *4 (-1016)) (-5 *1 (-997 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767))
- (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-539))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-921 (-217))) (-5 *2 (-217)) (-5 *1 (-296)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370))
- (-5 *2
- (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547))
- (|:| |success| (-112))))
- (-5 *1 (-763)) (-5 *5 (-547)))))
+ (-2 (|:| |polnum| (-758 *3)) (|:| |polden| *3) (|:| -3063 (-747))))
+ (-5 *1 (-758 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3063 (-747))))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-285 (-814 *3))) (-4 *3 (-13 (-27) (-1158) (-421 *5)))
- (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2
- (-3 (-814 *3)
- (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-814 *3) "failed")))
- "failed"))
- (-5 *1 (-612 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-285 *3)) (-5 *5 (-1119))
- (-4 *3 (-13 (-27) (-1158) (-421 *6)))
- (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-814 *3)) (-5 *1 (-612 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-285 (-814 (-921 *5)))) (-4 *5 (-442))
+ (-12 (-5 *3 (-1139 *2)) (-4 *2 (-920 (-400 (-923 *6)) *5 *4))
+ (-5 *1 (-709 *5 *4 *6 *2)) (-4 *5 (-769))
+ (-4 *4 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $)))))
+ (-4 *6 (-541)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1226 (-621 *3))) (-4 *4 (-300))
+ (-5 *2 (-621 *3)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-747)) (-4 *5 (-342)) (-4 *6 (-1202 *5))
(-5 *2
- (-3 (-814 (-398 (-921 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-814 (-398 (-921 *5))) "failed")))
- "failed"))
- (-5 *1 (-613 *5)) (-5 *3 (-398 (-921 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-285 (-398 (-921 *5)))) (-5 *3 (-398 (-921 *5)))
- (-4 *5 (-442))
+ (-621
+ (-2 (|:| -1949 (-665 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-665 *6)))))
+ (-5 *1 (-489 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -1949 (-665 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-665 *6))))
+ (-4 *7 (-1202 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170))))
+ ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-409 *3 *2)) (-4 *3 (-410 *2))))
+ ((*1 *2) (-12 (-4 *1 (-410 *2)) (-4 *2 (-170)))))
+(((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-621 (-1143))) (-4 *5 (-1018))
+ (-5 *2 (-923 *5)) (-5 *1 (-915 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 (-836 *5))) (-14 *5 (-621 (-1143))) (-4 *6 (-444))
(-5 *2
- (-3 (-814 *3)
- (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-814 *3) "failed")))
- "failed"))
- (-5 *1 (-613 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-285 (-398 (-921 *6)))) (-5 *5 (-1119))
- (-5 *3 (-398 (-921 *6))) (-4 *6 (-442)) (-5 *2 (-814 *3))
- (-5 *1 (-613 *6)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217)))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415)))) (-5 *3 (-217))
- (-5 *2 (-1004)) (-5 *1 (-723)))))
-(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *1 *1) (-12 (-5 *1 (-1159 *2)) (-4 *2 (-1063)))))
-(((*1 *2)
- (-12 (-4 *3 (-539)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-408 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-1138 (-398 (-547))))
- (-5 *1 (-182)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-327 *5 *6 *7 *8)) (-4 *5 (-421 *4))
- (-4 *6 (-1195 *5)) (-4 *7 (-1195 (-398 *6)))
- (-4 *8 (-333 *5 *6 *7))
- (-4 *4 (-13 (-821) (-539) (-1007 (-547))))
- (-5 *2 (-2 (|:| -3275 (-745)) (|:| -3560 *8)))
- (-5 *1 (-880 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-327 (-398 (-547)) *4 *5 *6))
- (-4 *4 (-1195 (-398 (-547)))) (-4 *5 (-1195 (-398 *4)))
- (-4 *6 (-333 (-398 (-547)) *4 *5))
- (-5 *2 (-2 (|:| -3275 (-745)) (|:| -3560 *6)))
- (-5 *1 (-881 *4 *5 *6)))))
+ (-2 (|:| |dpolys| (-621 (-241 *5 *6)))
+ (|:| |coords| (-621 (-549)))))
+ (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-621 (-241 *5 *6))) (-4 *7 (-444)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1136))) (-4 *5 (-539))
- (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-744 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-539))
- (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-744 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1917 (-619 *6)))
- *7 *6))
- (-4 *6 (-354)) (-4 *7 (-630 *6))
+ (-12 (-5 *4 (-665 (-400 (-923 (-549)))))
+ (-5 *2 (-621 (-665 (-309 (-549))))) (-5 *1 (-1002))
+ (-5 *3 (-309 (-549))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-621 (-621 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-621 (-621 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-621 *3))) (-5 *1 (-1152 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-167 (-400 (-549)))))
(-5 *2
- (-2 (|:| |particular| (-3 (-1219 *6) "failed"))
- (|:| -1917 (-619 (-1219 *6)))))
- (-5 *1 (-787 *6 *7)) (-5 *4 (-1219 *6)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-354)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-493 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-427)))))
+ (-621
+ (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-549))
+ (|:| |outvect| (-621 (-665 (-167 *4)))))))
+ (-5 *1 (-741 *4)) (-4 *4 (-13 (-356) (-821))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1051 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-549) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1051 *2)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-1252 *5 *6 *7))
+ (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2 (-621 (-1015 *5 *6))) (-5 *1 (-1252 *5 *6 *7))
+ (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-923 *4)))
+ (-4 *4 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2 (-621 (-1015 *4 *5))) (-5 *1 (-1252 *4 *5 *6))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-621 (-1143))))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1125))
+ (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-890)) (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359))))
- ((*1 *2 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-354))))
+ (-12 (-5 *2 (-892)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356))))
((*1 *2 *1)
- (-12 (-4 *1 (-361 *2 *3)) (-4 *3 (-1195 *2)) (-4 *2 (-169))))
+ (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1202 *2)) (-4 *2 (-170))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1219 *4)) (-5 *3 (-890)) (-4 *4 (-340))
- (-5 *1 (-517 *4))))
+ (-12 (-5 *2 (-1226 *4)) (-5 *3 (-892)) (-4 *4 (-342))
+ (-5 *1 (-519 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2))
- (-4 *5 (-230 *3 *2)) (-4 *2 (-1016)))))
-(((*1 *2)
- (-12 (-4 *3 (-539)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-408 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-495))) (-5 *1 (-473)))))
-(((*1 *1) (-5 *1 (-1224))))
-(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))))
+ (-12 (-4 *1 (-1090 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2))
+ (-4 *5 (-232 *3 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-880)) (-5 *2 (-411 (-1139 *1))) (-5 *3 (-1139 *1)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-497))) (-5 *1 (-475)))))
+(((*1 *1) (-5 *1 (-1231))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4))))
+ (-5 *1 (-1039 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-1219 *3))
- (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-364 *3))
- (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))))))
+ (-12 (-5 *3 (-1226 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356))
+ (-4 *1 (-701 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1202 *5))
+ (-5 *2 (-665 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-876 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-4 *1 (-229 *3))))
+ ((*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-747)) (-4 *5 (-541))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-940 *5 *3)) (-4 *3 (-1202 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2 (-2 (|:| -2721 (-114)) (|:| |w| (-219)))) (-5 *1 (-198)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *1 (-1095 *3 *2)) (-4 *3 (-1202 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1139 *5)) (-4 *5 (-444)) (-5 *2 (-621 *6))
+ (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-923 *5)) (-4 *5 (-444)) (-5 *2 (-621 *6))
+ (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-821))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1117 (-2 (|:| |k| (-547)) (|:| |c| *3))))
- (-5 *1 (-574 *3)) (-4 *3 (-1016)))))
-(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457))))
- ((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457))))
- ((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))))
-(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
+ (-12 (-5 *2 (-2 (|:| |cd| (-1125)) (|:| -2481 (-1125))))
+ (-5 *1 (-798)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-621 (-621 (-621 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-621 *5)) (-4 *5 (-823)) (-5 *1 (-1151 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-323)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-1143))) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769))
+ (-5 *2 (-621 (-400 (-923 *4)))) (-5 *1 (-895 *4 *5 *6 *7))
+ (-4 *7 (-920 *4 *6 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-892)) (-5 *4 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3727 *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-892))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-747)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-747))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-549)) (-4 *1 (-366 *3)) (-4 *3 (-1180))
+ (-4 *3 (-1067))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-366 *3)) (-4 *3 (-1180)) (-4 *3 (-1067))
+ (-5 *2 (-549))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-366 *4)) (-4 *4 (-1180))
+ (-5 *2 (-549))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-549)) (-5 *3 (-139))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-549)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-760)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-819) (-298) (-145) (-991)))
- (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1245 *5 *6 *7))
- (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-819) (-298) (-145) (-991)))
- (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1245 *5 *6 *7))
- (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-921 *4)))
- (-4 *4 (-13 (-819) (-298) (-145) (-991)))
- (-5 *2 (-619 (-1013 *4 *5))) (-5 *1 (-1245 *4 *5 *6))
- (-14 *5 (-619 (-1136))) (-14 *6 (-619 (-1136))))))
+ (-12 (-4 *4 (-444)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *2 (-621 *3)) (-5 *1 (-948 *4 *5 *6 *3))
+ (-4 *3 (-1032 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-444)))))
(((*1 *2)
- (-12 (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5)))
- (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-442)) (-4 *3 (-821)) (-4 *3 (-1007 (-547)))
- (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3))
- (-4 *2
- (-13 (-354) (-293)
- (-10 -8 (-15 -1386 ((-1087 *3 (-590 $)) $))
- (-15 -1396 ((-1087 *3 (-590 $)) $))
- (-15 -3838 ($ (-1087 *3 (-590 $))))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-410 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-549))) (-4 *3 (-1018)) (-5 *1 (-576 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1186 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1217 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1143))
+ (-4 *5 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-567 *3)) (-5 *1 (-419 *5 *3))
+ (-4 *3 (-13 (-1165) (-29 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4))
+ (-5 *2 (-411 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1202 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-211))))
+ ((*1 *2 *1) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-479))))
+ ((*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-300))))
((*1 *2 *1)
- (-12 (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-112))
- (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4))))
+ (-12 (-5 *2 (-400 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549))))
+ ((*1 *1 *1) (-4 *1 (-1027))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-181)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34)))
- (-4 *4 (-13 (-1063) (-34))))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1117 *3)) (-4 *3 (-1063))
- (-4 *3 (-1173)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-971))
- (-4 *2 (-1016)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1016)) (-5 *1 (-863 *2 *3)) (-4 *2 (-1195 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-354)) (-5 *1 (-994 *3 *2)) (-4 *2 (-630 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-354)) (-5 *2 (-2 (|:| -2644 *3) (|:| -2714 (-619 *5))))
- (-5 *1 (-994 *5 *3)) (-5 *4 (-619 *5)) (-4 *3 (-630 *5)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-890)) (-5 *4 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))))
+ (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768))
+ (-4 *5 (-823)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169))
- (-5 *2 (-663 *4))))
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
+ (-5 *2 (-665 *4))))
((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-407 *3 *4))
- (-4 *3 (-408 *4))))
- ((*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-745))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-547)) (-4 *1 (-364 *3)) (-4 *3 (-1173))
- (-4 *3 (-1063))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-364 *3)) (-4 *3 (-1173)) (-4 *3 (-1063))
- (-5 *2 (-547))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-364 *4)) (-4 *4 (-1173))
- (-5 *2 (-547))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-547)) (-5 *3 (-139))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-547)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016))
- (-5 *2 (-619 (-619 (-619 (-745))))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370))
- (-5 *2
- (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547))
- (|:| |success| (-112))))
- (-5 *1 (-763)) (-5 *5 (-547)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))))
+ (-12 (-4 *4 (-170)) (-5 *2 (-665 *4)) (-5 *1 (-409 *3 *4))
+ (-4 *3 (-410 *4))))
+ ((*1 *2) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442))
- (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-946 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6))
- (-4 *4 (-442)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821))
- (-5 *1 (-946 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-1224))
- (-5 *1 (-424 *3 *4)) (-4 *4 (-421 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-240)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1049)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136))))
- (-4 *6 (-767)) (-4 *7 (-918 *4 *6 *5))
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-920 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 *10))
+ (-5 *1 (-602 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1038 *5 *6 *7 *8))
+ (-4 *10 (-1076 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
+ (-14 *6 (-621 (-1143))) (-5 *2 (-621 (-1015 *5 *6)))
+ (-5 *1 (-606 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
+ (-14 *6 (-621 (-1143)))
(-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-619 *7)) (|:| |n0| (-619 *7))))
- (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-619 *7)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 (-112) (-619 *1)))
- (-4 *1 (-1036 *4 *5 *6 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-398 (-547)))))
- (-4 *5 (-821)) (-5 *1 (-1235 *4 *5 *2)) (-4 *2 (-1240 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-179)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811))))
+ (-621 (-1113 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6)))))
+ (-5 *1 (-606 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-621 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-621 (-998 *5 *6 *7 *8))) (-5 *1 (-998 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
+ (-14 *6 (-621 (-1143))) (-5 *2 (-621 (-1015 *5 *6)))
+ (-5 *1 (-1015 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-307 (-370)))) (-5 *4 (-619 (-370)))
- (-5 *2 (-1004)) (-5 *1 (-811)))))
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823)) (-5 *2 (-621 *1))
+ (-4 *1 (-1038 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-621 (-1113 *5 *6 *7 *8))) (-5 *1 (-1113 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-112)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-621 (-1113 *5 *6 *7 *8))) (-5 *1 (-1113 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1))
+ (-4 *1 (-1173 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018)))))
(((*1 *2)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3))
- (-4 *3 (-13 (-354) (-1158) (-971))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-590 *4)) (-5 *1 (-589 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-821)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1173)) (-5 *2 (-547)))))
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
(((*1 *1)
- (-12 (-4 *1 (-395)) (-4000 (|has| *1 (-6 -4320)))
- (-4000 (|has| *1 (-6 -4312)))))
- ((*1 *2 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-1063)) (-4 *2 (-821))))
- ((*1 *2 *1) (-12 (-4 *1 (-804 *2)) (-4 *2 (-821))))
- ((*1 *1 *1 *1) (-4 *1 (-821))) ((*1 *1) (-5 *1 (-1082))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (-4 *4 (-1016))
- (-5 *1 (-997 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) (-4 *4 (-1016))
- (-5 *1 (-997 *4)))))
+ (-12 (-4 *1 (-397)) (-4008 (|has| *1 (-6 -4328)))
+ (-4008 (|has| *1 (-6 -4320)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1067)) (-4 *2 (-823))))
+ ((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (-4 *1 (-823))) ((*1 *1) (-5 *1 (-1087))))
+(((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1011)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1165)))))
+ ((*1 *1 *1 *1) (-4 *1 (-769))))
+(((*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-524 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-525)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136))
- (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-565 *3)) (-5 *1 (-417 *5 *3))
- (-4 *3 (-13 (-1158) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-539) (-1007 (-547)) (-145)))
- (-5 *2 (-565 (-398 (-921 *5)))) (-5 *1 (-553 *5))
- (-5 *3 (-398 (-921 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-522 *2)) (-4 *2 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-523)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1195 (-547))) (-5 *1 (-476 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *3 (-619 (-843)))
- (-5 *1 (-458)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-271)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-1232 *4 *5 *6 *7)))
- (-5 *1 (-1232 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-619 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-539))
- (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-619 (-1232 *6 *7 *8 *9)))
- (-5 *1 (-1232 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018))
+ (-4 *6 (-1202 *5)) (-5 *2 (-1139 (-1139 *7)))
+ (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1202 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823)) (-4 *5 (-1032 *3 *4 *2)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1219 *4)) (-4 *4 (-615 *5)) (-4 *5 (-354))
- (-4 *5 (-539)) (-5 *2 (-1219 *5)) (-5 *1 (-614 *5 *4))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1139 *7)) (-4 *5 (-1018))
+ (-4 *7 (-1018)) (-4 *2 (-1202 *5)) (-5 *1 (-492 *5 *2 *6 *7))
+ (-4 *6 (-1202 *2))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1219 *4)) (-4 *4 (-615 *5))
- (-4000 (-4 *5 (-354))) (-4 *5 (-539)) (-5 *2 (-1219 (-398 *5)))
- (-5 *1 (-614 *5 *4)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1018)) (-4 *7 (-1018))
+ (-4 *4 (-1202 *5)) (-5 *2 (-1139 *7)) (-5 *1 (-492 *5 *4 *6 *7))
+ (-4 *6 (-1202 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3))
- (-4 *3 (-13 (-354) (-1158) (-971))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3))
- (-4 *3 (-1195 *2)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-745) *2)) (-5 *4 (-745)) (-4 *2 (-1063))
- (-5 *1 (-652 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-745) *3)) (-4 *3 (-1063)) (-5 *1 (-656 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136))))
- (-4 *6 (-767)) (-5 *2 (-398 (-921 *4))) (-5 *1 (-893 *4 *5 *6 *3))
- (-4 *3 (-918 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5))
- (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136))))
- (-4 *6 (-767)) (-5 *2 (-663 (-398 (-921 *4))))
- (-5 *1 (-893 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5))
- (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136))))
- (-4 *6 (-767)) (-5 *2 (-619 (-398 (-921 *4))))
- (-5 *1 (-893 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-385))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1153)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-619 (-1132 *4))) (-5 *3 (-1132 *4))
- (-4 *4 (-878)) (-5 *1 (-637 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-547)) (-5 *1 (-307 *3)) (-4 *3 (-539)) (-4 *3 (-821)))))
+ (-12 (-5 *2 (-1139 (-549))) (-5 *1 (-185)) (-5 *3 (-549))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1139 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))))
+(((*1 *2)
+ (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-410 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 *5)) (-4 *5 (-1202 *3)) (-4 *3 (-300))
+ (-5 *2 (-112)) (-5 *1 (-447 *3 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-890))
- (-5 *2
- (-3 (-1132 *4)
- (-1219 (-619 (-2 (|:| -4153 *4) (|:| -3487 (-1082)))))))
- (-5 *1 (-337 *4)) (-4 *4 (-340)))))
+ (|partial| -12 (-4 *4 (-1184)) (-4 *5 (-1202 *4))
+ (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-747))))
+ (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1202 (-400 *5))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1180))
+ (-4 *5 (-366 *4)) (-4 *2 (-366 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *6 *7 *2)) (-4 *6 (-1018))
+ (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-592 *2) (-169))) (-5 *2 (-861 *4))
- (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1063)) (-4 *3 (-163 *5))))
+ (-12 (-4 *1 (-812))
+ (-5 *3
+ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
+ (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219))))
+ (|:| |ub| (-621 (-816 (-219))))))
+ (-5 *2 (-1006))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-1058 (-814 (-370)))))
- (-5 *2 (-619 (-1058 (-814 (-217))))) (-5 *1 (-296))))
- ((*1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-370))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-547)) (-5 *1 (-385))))
+ (-12 (-4 *1 (-812))
+ (-5 *3
+ (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))
+ (-5 *2 (-1006)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-109)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1218 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1143))
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-1143))) (-5 *2 (-1231)) (-5 *1 (-1182))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 (-1143))) (-5 *2 (-1231)) (-5 *1 (-1182)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
+ ((*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(((*1 *2 *3)
+ (-12 (-4 *5 (-13 (-594 *2) (-170))) (-5 *2 (-863 *4))
+ (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1067)) (-4 *3 (-164 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-1061 (-816 (-372)))))
+ (-5 *2 (-621 (-1061 (-816 (-219))))) (-5 *1 (-298))))
+ ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-372))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-549)) (-5 *1 (-387))))
((*1 *1 *2)
- (-12 (-5 *2 (-1219 *3)) (-4 *3 (-169)) (-4 *1 (-400 *3 *4))
- (-4 *4 (-1195 *3))))
+ (-12 (-5 *2 (-1226 *3)) (-4 *3 (-170)) (-4 *1 (-402 *3 *4))
+ (-4 *4 (-1202 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1195 *3))
- (-5 *2 (-1219 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-169)) (-4 *1 (-408 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-1219 *3))))
+ (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1202 *3))
+ (-5 *2 (-1226 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-170)) (-4 *1 (-410 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-1226 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-409 *1)) (-4 *1 (-421 *3)) (-4 *3 (-539))
- (-4 *3 (-821))))
+ (-12 (-5 *2 (-411 *1)) (-4 *1 (-423 *3)) (-4 *3 (-541))
+ (-4 *3 (-823))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-453 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-523))))
- ((*1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1173))))
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-455 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-525))))
+ ((*1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1180))))
((*1 *1 *2)
- (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1195 *3))))
+ (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1202 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1027))))
+ (-12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1029))))
((*1 *1 *2)
- (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5))
- (-4 *5 (-592 (-1136))) (-4 *4 (-767)) (-4 *5 (-821))))
+ (-12 (-5 *2 (-923 *3)) (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5))
+ (-4 *5 (-594 (-1143))) (-4 *4 (-769)) (-4 *5 (-823))))
((*1 *1 *2)
- (-1530
- (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5))
- (-12 (-4000 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547)))
- (-4 *5 (-592 (-1136))))
- (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))
- (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5))
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136))))
- (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))))
+ (-1536
+ (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5))
+ (-12 (-4008 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549)))
+ (-4 *5 (-594 (-1143))))
+ (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))
+ (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143))))
+ (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))))
((*1 *1 *2)
- (-12 (-5 *2 (-921 (-398 (-547)))) (-4 *1 (-1030 *3 *4 *5))
- (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136))) (-4 *3 (-1016))
- (-4 *4 (-767)) (-4 *5 (-821))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1974 *8)))
- (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1119))
- (-5 *1 (-1034 *4 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1045))))
- ((*1 *1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173))))
+ (-12 (-5 *2 (-923 (-400 (-549)))) (-4 *1 (-1032 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143))) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1981 *8)))
+ (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1125))
+ (-5 *1 (-1036 *4 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1048))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180))))
((*1 *1 *2)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *2)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067))))
((*1 *1 *2)
- (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *2 (-1063)) (-4 *6 (-1063))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *2 *6)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *2 (-1067)) (-4 *6 (-1067))))
((*1 *1 *2)
- (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *2 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063))))
+ (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *2 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))))
((*1 *1 *2)
- (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *2 (-1063))
- (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063))))
+ (-12 (-4 *1 (-1070 *3 *2 *4 *5 *6)) (-4 *3 (-1067)) (-4 *2 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))))
((*1 *1 *2)
- (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063))
- (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063))))
+ (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *2 (-1067)) (-4 *3 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063))
- (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1974 *8)))
- (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1119))
- (-5 *1 (-1106 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1141))))
- ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1141))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-547)) (-5 *1 (-1153))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-547)) (-5 *1 (-1153))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-754 *4 (-834 *5)))
- (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *5 (-619 (-1136)))
- (-5 *2 (-754 *4 (-834 *6))) (-5 *1 (-1245 *4 *5 *6))
- (-14 *6 (-619 (-1136)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-819) (-298) (-145) (-991)))
- (-5 *2 (-921 (-993 (-398 *4)))) (-5 *1 (-1245 *4 *5 *6))
- (-14 *5 (-619 (-1136))) (-14 *6 (-619 (-1136)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-754 *4 (-834 *6)))
- (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *6 (-619 (-1136)))
- (-5 *2 (-921 (-993 (-398 *4)))) (-5 *1 (-1245 *4 *5 *6))
- (-14 *5 (-619 (-1136)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1132 *4)) (-4 *4 (-13 (-819) (-298) (-145) (-991)))
- (-5 *2 (-1132 (-993 (-398 *4)))) (-5 *1 (-1245 *4 *5 *6))
- (-14 *5 (-619 (-1136))) (-14 *6 (-619 (-1136)))))
+ (-12 (-5 *2 (-621 *1)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067))
+ (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1981 *8)))
+ (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1076 *4 *5 *6 *7)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-1125))
+ (-5 *1 (-1112 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1148))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1148))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-834)) (-5 *3 (-549)) (-5 *1 (-1160))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-549)) (-5 *1 (-1160))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-756 *4 (-836 *5)))
+ (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *5 (-621 (-1143)))
+ (-5 *2 (-756 *4 (-836 *6))) (-5 *1 (-1252 *4 *5 *6))
+ (-14 *6 (-621 (-1143)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-923 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2 (-923 (-995 (-400 *4)))) (-5 *1 (-1252 *4 *5 *6))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-621 (-1143)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-756 *4 (-836 *6)))
+ (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *6 (-621 (-1143)))
+ (-5 *2 (-923 (-995 (-400 *4)))) (-5 *1 (-1252 *4 *5 *6))
+ (-14 *5 (-621 (-1143)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1139 *4)) (-4 *4 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2 (-1139 (-995 (-400 *4)))) (-5 *1 (-1252 *4 *5 *6))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-621 (-1143)))))
((*1 *2 *3)
(-12
- (-5 *3 (-1107 *4 (-519 (-834 *6)) (-834 *6) (-754 *4 (-834 *6))))
- (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *6 (-619 (-1136)))
- (-5 *2 (-619 (-754 *4 (-834 *6)))) (-5 *1 (-1245 *4 *5 *6))
- (-14 *5 (-619 (-1136))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-745)) (-4 *6 (-354)) (-5 *4 (-1167 *6))
- (-5 *2 (-1 (-1117 *4) (-1117 *4))) (-5 *1 (-1227 *6))
- (-5 *5 (-1117 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-4 *4 (-1016))
- (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-1195 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
+ (-5 *3 (-1113 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6))))
+ (-4 *4 (-13 (-821) (-300) (-145) (-993))) (-14 *6 (-621 (-1143)))
+ (-5 *2 (-621 (-756 *4 (-836 *6)))) (-5 *1 (-1252 *4 *5 *6))
+ (-14 *5 (-621 (-1143))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-878)) (-5 *2 (-409 (-1132 *1))) (-5 *3 (-1132 *1)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832))))
- ((*1 *1 *1) (-5 *1 (-832))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1132 *3)) (-4 *3 (-359)) (-4 *1 (-320 *3))
- (-4 *3 (-354)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1222)))))
+ (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1157 *4 *5))
+ (-4 *4 (-1067)) (-4 *5 (-1067)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1117 (-217)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4232
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1004)) (-5 *1 (-296)))))
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2 (-372)) (-5 *1 (-186)))))
+(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-885 *3)) (-4 *3 (-300)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-981 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)) (-5 *2 (-621 *6))
+ (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-921 (-547))) (-5 *2 (-619 *1)) (-4 *1 (-981))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-921 (-398 (-547)))) (-5 *2 (-619 *1)) (-4 *1 (-981))))
- ((*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1))))
+ (-12 (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-140 *2 *4 *3))
+ (-4 *3 (-366 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1132 (-547))) (-5 *2 (-619 *1)) (-4 *1 (-981))))
+ (-12 (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-494 *2 *4 *5 *3))
+ (-4 *5 (-366 *2)) (-4 *3 (-366 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1132 (-398 (-547)))) (-5 *2 (-619 *1)) (-4 *1 (-981))))
- ((*1 *2 *3) (-12 (-5 *3 (-1132 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1))))
+ (-12 (-5 *3 (-665 *4)) (-4 *4 (-963 *2)) (-4 *2 (-541))
+ (-5 *1 (-669 *2 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-819) (-354))) (-4 *3 (-1195 *4)) (-5 *2 (-619 *1))
- (-4 *1 (-1033 *4 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-544)) (-5 *3 (-547)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1138 (-398 (-547)))) (-5 *2 (-398 (-547)))
- (-5 *1 (-182)))))
+ (-12 (-4 *4 (-963 *2)) (-4 *2 (-541)) (-5 *1 (-1195 *2 *4 *3))
+ (-4 *3 (-1202 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 (-1 *6 (-621 *6))))
+ (-4 *5 (-38 (-400 (-549)))) (-4 *6 (-1217 *5)) (-5 *2 (-621 *6))
+ (-5 *1 (-1219 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-423 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-747)) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *4))
+ (-4 *4 (-423 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-114)) (-5 *1 (-161))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *4))
+ (-4 *4 (-13 (-423 *3) (-973)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-294 *3)) (-4 *3 (-295))))
+ ((*1 *2 *2) (-12 (-4 *1 (-295)) (-5 *2 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *4 (-823)) (-5 *1 (-422 *3 *4))
+ (-4 *3 (-423 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *4))
+ (-4 *4 (-423 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-592 *3)) (-4 *3 (-823))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *4))
+ (-4 *4 (-13 (-423 *3) (-973) (-1165)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-990)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 G)))) (-5 *2 (-1006))
+ (-5 *1 (-725)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *1 *1 *1) (-4 *1 (-534))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1173)) (-5 *1 (-842 *3 *2)) (-4 *3 (-1173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
+ (-12 (-4 *2 (-1180)) (-5 *1 (-844 *3 *2)) (-4 *3 (-1180))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-747)) (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-356))
+ (-5 *2
+ (-2 (|:| |ir| (-567 (-400 *6))) (|:| |specpart| (-400 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-559 *5 *6)) (-5 *3 (-400 *6)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-619
- (-2 (|:| -3116 (-745))
- (|:| |eqns|
- (-619
- (-2 (|:| |det| *7) (|:| |rows| (-619 (-547)))
- (|:| |cols| (-619 (-547))))))
- (|:| |fgb| (-619 *7)))))
- (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145)))
- (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)) (-5 *2 (-745))
- (-5 *1 (-893 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-58 *3)) (-4 *3 (-1173))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-58 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *4 *5))
- (-4 *5 (-13 (-27) (-1158) (-421 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *4 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-398 (-547)))
- (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *5 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5)))
- (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *5 *3))))
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *4 *5))
+ (-4 *5 (-13 (-27) (-1165) (-423 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *4 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-400 (-549)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *5 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-285 *3)) (-5 *5 (-398 (-547)))
- (-4 *3 (-13 (-27) (-1158) (-421 *6)))
- (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-547))) (-5 *4 (-285 *6))
- (-4 *6 (-13 (-27) (-1158) (-421 *5)))
- (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *5 *6))))
+ (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-549)))
+ (-4 *3 (-13 (-27) (-1165) (-423 *6)))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-287 *6))
+ (-4 *6 (-13 (-27) (-1165) (-423 *5)))
+ (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *6)))
- (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *6 *3))))
+ (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *6)))
+ (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-547))) (-5 *4 (-285 *7)) (-5 *5 (-1186 (-547)))
- (-4 *7 (-13 (-27) (-1158) (-421 *6)))
- (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-287 *7)) (-5 *5 (-1193 (-549)))
+ (-4 *7 (-13 (-27) (-1165) (-423 *6)))
+ (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3)) (-5 *6 (-1186 (-547)))
- (-4 *3 (-13 (-27) (-1158) (-421 *7)))
- (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *7 *3))))
+ (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3)) (-5 *6 (-1193 (-549)))
+ (-4 *3 (-13 (-27) (-1165) (-423 *7)))
+ (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-398 (-547)))) (-5 *4 (-285 *8))
- (-5 *5 (-1186 (-398 (-547)))) (-5 *6 (-398 (-547)))
- (-4 *8 (-13 (-27) (-1158) (-421 *7)))
- (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-400 (-549)))) (-5 *4 (-287 *8))
+ (-5 *5 (-1193 (-400 (-549)))) (-5 *6 (-400 (-549)))
+ (-4 *8 (-13 (-27) (-1165) (-423 *7)))
+ (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3)) (-5 *6 (-1186 (-398 (-547))))
- (-5 *7 (-398 (-547))) (-4 *3 (-13 (-27) (-1158) (-421 *8)))
- (-4 *8 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *8 *3))))
+ (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3)) (-5 *6 (-1193 (-400 (-549))))
+ (-5 *7 (-400 (-549))) (-4 *3 (-13 (-27) (-1165) (-423 *8)))
+ (-4 *8 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1117 (-2 (|:| |k| (-547)) (|:| |c| *3))))
- (-4 *3 (-1016)) (-5 *1 (-574 *3))))
+ (-12 (-5 *2 (-1123 (-2 (|:| |k| (-549)) (|:| |c| *3))))
+ (-4 *3 (-1018)) (-5 *1 (-576 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-575 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-577 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1117 (-2 (|:| |k| (-547)) (|:| |c| *3))))
- (-4 *3 (-1016)) (-4 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1123 (-2 (|:| |k| (-549)) (|:| |c| *3))))
+ (-4 *3 (-1018)) (-4 *1 (-1186 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-745))
- (-5 *3 (-1117 (-2 (|:| |k| (-398 (-547))) (|:| |c| *4))))
- (-4 *4 (-1016)) (-4 *1 (-1200 *4))))
+ (-12 (-5 *2 (-747))
+ (-5 *3 (-1123 (-2 (|:| |k| (-400 (-549))) (|:| |c| *4))))
+ (-4 *4 (-1018)) (-4 *1 (-1207 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-4 *1 (-1210 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-4 *1 (-1217 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1117 (-2 (|:| |k| (-745)) (|:| |c| *3))))
- (-4 *3 (-1016)) (-4 *1 (-1210 *3)))))
+ (-12 (-5 *2 (-1123 (-2 (|:| |k| (-747)) (|:| |c| *3))))
+ (-4 *3 (-1018)) (-4 *1 (-1217 *3)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-458)) (-5 *4 (-890)) (-5 *2 (-1224)) (-5 *1 (-1220)))))
+ (-12 (-5 *3 (-460)) (-5 *4 (-892)) (-5 *2 (-1231)) (-5 *1 (-1227)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-859 *4 *5)) (-4 *5 (-1173)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1173))
- (-4 *5 (-1173)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-232 *6 *7)) (-14 *6 (-745))
- (-4 *7 (-1173)) (-4 *5 (-1173)) (-5 *2 (-232 *6 *5))
- (-5 *1 (-231 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1173)) (-4 *5 (-1173))
- (-4 *2 (-364 *5)) (-5 *1 (-362 *6 *4 *5 *2)) (-4 *4 (-364 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1063)) (-4 *5 (-1063))
- (-4 *2 (-416 *5)) (-5 *1 (-414 *6 *4 *5 *2)) (-4 *4 (-416 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-619 *6)) (-4 *6 (-1173))
- (-4 *5 (-1173)) (-5 *2 (-619 *5)) (-5 *1 (-617 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-927 *6)) (-4 *6 (-1173))
- (-4 *5 (-1173)) (-5 *2 (-927 *5)) (-5 *1 (-926 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1117 *6)) (-4 *6 (-1173))
- (-4 *3 (-1173)) (-5 *2 (-1117 *3)) (-5 *1 (-1115 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1219 *6)) (-4 *6 (-1173))
- (-4 *5 (-1173)) (-5 *2 (-1219 *5)) (-5 *1 (-1218 *6 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *5 (-359))
- (-5 *2 (-745)))))
+ (-12 (-5 *3 (-863 *4)) (-4 *4 (-1067)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-861 *4 *5)) (-4 *5 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1133)))))
+(((*1 *2 *2) (-12 (-5 *2 (-665 (-309 (-549)))) (-5 *1 (-1002)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *2 (-1006)) (-5 *1 (-731)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1058 *3)) (-4 *3 (-918 *7 *6 *4)) (-4 *6 (-767))
- (-4 *4 (-821)) (-4 *7 (-539))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-547))))
- (-5 *1 (-573 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-539))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-547))))
- (-5 *1 (-573 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1) (-5 *1 (-832)))
+ (-12 (-5 *5 (-1061 *3)) (-4 *3 (-920 *7 *6 *4)) (-4 *6 (-769))
+ (-4 *4 (-823)) (-4 *7 (-541))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549))))
+ (-5 *1 (-575 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-541))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549))))
+ (-5 *1 (-575 *5 *4 *6 *3)) (-4 *3 (-920 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-834))) ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1) (-5 *1 (-834)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-1128 *4 *2)) (-4 *2 (-13 (-421 *4) (-157) (-27) (-1158)))))
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-1135 *4 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1165)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-421 *4) (-157) (-27) (-1158)))
- (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-1128 *4 *2))))
+ (-12 (-5 *3 (-1059 *2)) (-4 *2 (-13 (-423 *4) (-158) (-27) (-1165)))
+ (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-1135 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-539) (-821) (-1007 (-547))))
- (-5 *2 (-398 (-921 *5))) (-5 *1 (-1129 *5)) (-5 *3 (-921 *5))))
+ (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-541) (-823) (-1009 (-549))))
+ (-5 *2 (-400 (-923 *5))) (-5 *1 (-1136 *5)) (-5 *3 (-923 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136)) (-4 *5 (-13 (-539) (-821) (-1007 (-547))))
- (-5 *2 (-3 (-398 (-921 *5)) (-307 *5))) (-5 *1 (-1129 *5))
- (-5 *3 (-398 (-921 *5)))))
+ (-12 (-5 *4 (-1143)) (-4 *5 (-13 (-541) (-823) (-1009 (-549))))
+ (-5 *2 (-3 (-400 (-923 *5)) (-309 *5))) (-5 *1 (-1136 *5))
+ (-5 *3 (-400 (-923 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1056 (-921 *5))) (-5 *3 (-921 *5))
- (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-398 *3))
- (-5 *1 (-1129 *5))))
+ (-12 (-5 *4 (-1059 (-923 *5))) (-5 *3 (-923 *5))
+ (-4 *5 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-400 *3))
+ (-5 *1 (-1136 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1056 (-398 (-921 *5)))) (-5 *3 (-398 (-921 *5)))
- (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-3 *3 (-307 *5)))
- (-5 *1 (-1129 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1974 *8)))
- (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-957 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1974 *8)))
- (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-1070 *4 *5 *6 *7 *8)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-364 *2)) (-4 *2 (-1173))
- (-4 *2 (-821))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4330))
- (-4 *1 (-364 *3)) (-4 *3 (-1173)))))
+ (-12 (-5 *4 (-1059 (-400 (-923 *5)))) (-5 *3 (-400 (-923 *5)))
+ (-4 *5 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-3 *3 (-309 *5)))
+ (-5 *1 (-1136 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-398 (-921 (-547)))))
- (-5 *2
- (-619
- (-2 (|:| |radval| (-307 (-547))) (|:| |radmult| (-547))
- (|:| |radvect| (-619 (-663 (-307 (-547))))))))
- (-5 *1 (-1000)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1016)) (-5 *1 (-1191 *3 *2)) (-4 *2 (-1195 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))
- ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-1220))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-298))))
+ (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-444)) (-5 *2 (-112))
+ (-5 *1 (-353 *4 *5)) (-14 *5 (-621 (-1143)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547))))
- ((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1) (-4 *1 (-838 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766))
- (-4 *4 (-821)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-327 *5 *6 *7 *8)) (-4 *5 (-421 *4)) (-4 *6 (-1195 *5))
- (-4 *7 (-1195 (-398 *6))) (-4 *8 (-333 *5 *6 *7))
- (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-112))
- (-5 *1 (-880 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-327 (-398 (-547)) *4 *5 *6))
- (-4 *4 (-1195 (-398 (-547)))) (-4 *5 (-1195 (-398 *4)))
- (-4 *6 (-333 (-398 (-547)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-881 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1173)))))
-(((*1 *1) (-5 *1 (-797))))
-(((*1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1173)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1063)) (-4 *6 (-855 *5)) (-5 *2 (-854 *5 *6 (-619 *6)))
- (-5 *1 (-856 *5 *6 *4)) (-5 *3 (-619 *6)) (-4 *4 (-592 (-861 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-285 *3))) (-5 *1 (-856 *5 *3 *4))
- (-4 *3 (-1007 (-1136))) (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-285 (-921 *3))))
- (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-1016))
- (-4000 (-4 *3 (-1007 (-1136)))) (-4 *3 (-855 *5))
- (-4 *4 (-592 (-861 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1063)) (-5 *2 (-858 *5 *3)) (-5 *1 (-856 *5 *3 *4))
- (-4000 (-4 *3 (-1007 (-1136)))) (-4000 (-4 *3 (-1016)))
- (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-209)))))
+ (-12 (-5 *3 (-621 (-756 *4 (-836 *5)))) (-4 *4 (-444))
+ (-14 *5 (-621 (-1143))) (-5 *2 (-112)) (-5 *1 (-606 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-460)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3))
+ (-4 *3 (-624 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-340)) (-5 *3 (-547)) (-5 *2 (-1146 (-890) (-745))))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547))
- (-5 *2 (-1004)) (-5 *1 (-731)))))
+ (-12 (-4 *4 (-342)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3))
+ (-4 *3 (-1202 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1009 (-549))) (-4 *3 (-13 (-823) (-541)))
+ (-5 *1 (-32 *3 *2)) (-4 *2 (-423 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-1139 *4)) (-5 *1 (-163 *3 *4))
+ (-4 *3 (-164 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1018)) (-4 *1 (-295))))
+ ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1139 *3))))
+ ((*1 *2) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1202 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356)))
+ (-4 *2 (-1202 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145))
+ (-4 *3 (-300)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 *3)) (-4 *3 (-920 *5 *6 *7)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-441 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-52)) (-5 *1 (-805)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5)))
+ (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-971 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1136)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-215 *2 *3)) (-4 *2 (-13 (-1016) (-821)))
- (-14 *3 (-619 (-1136))))))
-(((*1 *2 *1) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1158)))))
- ((*1 *1 *1 *1) (-4 *1 (-767))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4331 "*"))) (-4 *5 (-364 *2)) (-4 *6 (-364 *2))
- (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1195 *2))
- (-4 *4 (-661 *2 *5 *6)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-119 *2)) (-4 *2 (-1173)))))
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-400 (-549)))
+ (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-356)) (-5 *1 (-867 *2 *4))
+ (-4 *2 (-1202 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-541)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
+ (-5 *1 (-1170 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-938)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-112)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-912 (-217))) (-5 *4 (-843)) (-5 *2 (-1224))
- (-5 *1 (-458))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3))))
+ (-12 (-5 *3 (-914 (-219))) (-5 *4 (-845)) (-5 *2 (-1231))
+ (-5 *1 (-460))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1018)) (-4 *1 (-951 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-912 *3))))
+ (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-914 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-912 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3))))
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-1018)) (-4 *1 (-1101 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-1101 *3)) (-4 *3 (-1018))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))
+ (-12 (-5 *2 (-621 *3)) (-4 *1 (-1101 *3)) (-4 *3 (-1018))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-912 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))
+ (-12 (-5 *2 (-914 *3)) (-4 *1 (-1101 *3)) (-4 *3 (-1018))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1169)) (-5 *3 (-217)))))
+ (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1176)) (-5 *3 (-219)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-766))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-768))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-619 (-1136)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-621 (-1143)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-547))
- (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549))
+ (-14 *6 (-747)) (-4 *7 (-170)) (-4 *8 (-170))
(-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169))
- (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170))
+ (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-307 *3) (-307 *3))) (-4 *3 (-13 (-1016) (-821)))
- (-5 *1 (-215 *3 *4)) (-14 *4 (-619 (-1136)))))
+ (-12 (-5 *2 (-1 (-309 *3) (-309 *3))) (-4 *3 (-13 (-1018) (-823)))
+ (-5 *1 (-217 *3 *4)) (-14 *4 (-621 (-1143)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-232 *5 *6)) (-14 *5 (-745))
- (-4 *6 (-1173)) (-4 *7 (-1173)) (-5 *2 (-232 *5 *7))
- (-5 *1 (-231 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-234 *5 *6)) (-14 *5 (-747))
+ (-4 *6 (-1180)) (-4 *7 (-1180)) (-5 *2 (-234 *5 *7))
+ (-5 *1 (-233 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-285 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-285 *6)) (-5 *1 (-284 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-287 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-287 *6)) (-5 *1 (-286 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1173)) (-5 *1 (-285 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1180)) (-5 *1 (-287 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1119)) (-5 *5 (-590 *6))
- (-4 *6 (-293)) (-4 *2 (-1173)) (-5 *1 (-288 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1125)) (-5 *5 (-592 *6))
+ (-4 *6 (-295)) (-4 *2 (-1180)) (-5 *1 (-290 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-590 *5)) (-4 *5 (-293))
- (-4 *2 (-293)) (-5 *1 (-289 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-592 *5)) (-4 *5 (-295))
+ (-4 *2 (-295)) (-5 *1 (-291 *5 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-590 *1)) (-4 *1 (-293))))
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-592 *1)) (-4 *1 (-295))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1016))
- (-4 *6 (-1016)) (-5 *2 (-663 *6)) (-5 *1 (-295 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-665 *5)) (-4 *5 (-1018))
+ (-4 *6 (-1018)) (-5 *2 (-665 *6)) (-5 *1 (-297 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-307 *5)) (-4 *5 (-821))
- (-4 *6 (-821)) (-5 *2 (-307 *6)) (-5 *1 (-305 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-309 *5)) (-4 *5 (-823))
+ (-4 *6 (-823)) (-5 *2 (-309 *6)) (-5 *1 (-307 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-327 *5 *6 *7 *8)) (-4 *5 (-354))
- (-4 *6 (-1195 *5)) (-4 *7 (-1195 (-398 *6))) (-4 *8 (-333 *5 *6 *7))
- (-4 *9 (-354)) (-4 *10 (-1195 *9)) (-4 *11 (-1195 (-398 *10)))
- (-5 *2 (-327 *9 *10 *11 *12))
- (-5 *1 (-324 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-333 *9 *10 *11))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-329 *5 *6 *7 *8)) (-4 *5 (-356))
+ (-4 *6 (-1202 *5)) (-4 *7 (-1202 (-400 *6))) (-4 *8 (-335 *5 *6 *7))
+ (-4 *9 (-356)) (-4 *10 (-1202 *9)) (-4 *11 (-1202 (-400 *10)))
+ (-5 *2 (-329 *9 *10 *11 *12))
+ (-5 *1 (-326 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-335 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3)) (-4 *3 (-1063))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1067))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1177)) (-4 *8 (-1177))
- (-4 *6 (-1195 *5)) (-4 *7 (-1195 (-398 *6))) (-4 *9 (-1195 *8))
- (-4 *2 (-333 *8 *9 *10)) (-5 *1 (-331 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-333 *5 *6 *7)) (-4 *10 (-1195 (-398 *9)))))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1184)) (-4 *8 (-1184))
+ (-4 *6 (-1202 *5)) (-4 *7 (-1202 (-400 *6))) (-4 *9 (-1202 *8))
+ (-4 *2 (-335 *8 *9 *10)) (-5 *1 (-333 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-335 *5 *6 *7)) (-4 *10 (-1202 (-400 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1173)) (-4 *6 (-1173))
- (-4 *2 (-364 *6)) (-5 *1 (-362 *5 *4 *6 *2)) (-4 *4 (-364 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1180)) (-4 *6 (-1180))
+ (-4 *2 (-366 *6)) (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-366 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-1063))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-1067))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-539))
- (-4 *6 (-539)) (-5 *2 (-409 *6)) (-5 *1 (-396 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-411 *5)) (-4 *5 (-541))
+ (-4 *6 (-541)) (-5 *2 (-411 *6)) (-5 *1 (-398 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-539))
- (-4 *6 (-539)) (-5 *2 (-398 *6)) (-5 *1 (-397 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-541))
+ (-4 *6 (-541)) (-5 *2 (-400 *6)) (-5 *1 (-399 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-404 *5 *6 *7 *8)) (-4 *5 (-298))
- (-4 *6 (-961 *5)) (-4 *7 (-1195 *6))
- (-4 *8 (-13 (-400 *6 *7) (-1007 *6))) (-4 *9 (-298))
- (-4 *10 (-961 *9)) (-4 *11 (-1195 *10))
- (-5 *2 (-404 *9 *10 *11 *12))
- (-5 *1 (-403 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-400 *10 *11) (-1007 *10)))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300))
+ (-4 *6 (-963 *5)) (-4 *7 (-1202 *6))
+ (-4 *8 (-13 (-402 *6 *7) (-1009 *6))) (-4 *9 (-300))
+ (-4 *10 (-963 *9)) (-4 *11 (-1202 *10))
+ (-5 *2 (-406 *9 *10 *11 *12))
+ (-5 *1 (-405 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-402 *10 *11) (-1009 *10)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169))
- (-4 *2 (-408 *6)) (-5 *1 (-406 *4 *5 *2 *6)) (-4 *4 (-408 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170))
+ (-4 *2 (-410 *6)) (-5 *1 (-408 *4 *5 *2 *6)) (-4 *4 (-410 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-539)) (-5 *1 (-409 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-541)) (-5 *1 (-411 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1016) (-821)))
- (-4 *6 (-13 (-1016) (-821))) (-4 *2 (-421 *6))
- (-5 *1 (-412 *5 *4 *6 *2)) (-4 *4 (-421 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1018) (-823)))
+ (-4 *6 (-13 (-1018) (-823))) (-4 *2 (-423 *6))
+ (-5 *1 (-414 *5 *4 *6 *2)) (-4 *4 (-423 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063))
- (-4 *2 (-416 *6)) (-5 *1 (-414 *5 *4 *6 *2)) (-4 *4 (-416 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-4 *2 (-418 *6)) (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-418 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-479 *3)) (-4 *3 (-1173))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1180))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-498 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-821))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-823))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-565 *5)) (-4 *5 (-354))
- (-4 *6 (-354)) (-5 *2 (-565 *6)) (-5 *1 (-564 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-567 *5)) (-4 *5 (-356))
+ (-4 *6 (-356)) (-5 *2 (-567 *6)) (-5 *1 (-566 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2510 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-354)) (-4 *6 (-354))
- (-5 *2 (-2 (|:| -2510 *6) (|:| |coeff| *6)))
- (-5 *1 (-564 *5 *6))))
+ (-5 *4 (-3 (-2 (|:| -3440 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-356)) (-4 *6 (-356))
+ (-5 *2 (-2 (|:| -3440 *6) (|:| |coeff| *6)))
+ (-5 *1 (-566 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-354)) (-4 *2 (-354)) (-5 *1 (-564 *5 *2))))
+ (-4 *5 (-356)) (-4 *2 (-356)) (-5 *1 (-566 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
(|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (-621 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
- (-4 *5 (-354)) (-4 *6 (-354))
+ (-4 *5 (-356)) (-4 *6 (-356))
(-5 *2
(-2 (|:| |mainpart| *6)
(|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-564 *5 *6))))
+ (-621 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-566 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-579 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-579 *6)) (-5 *1 (-576 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-581 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-581 *6)) (-5 *1 (-578 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-579 *6)) (-5 *5 (-579 *7))
- (-4 *6 (-1173)) (-4 *7 (-1173)) (-4 *8 (-1173)) (-5 *2 (-579 *8))
- (-5 *1 (-577 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-581 *7))
+ (-4 *6 (-1180)) (-4 *7 (-1180)) (-4 *8 (-1180)) (-5 *2 (-581 *8))
+ (-5 *1 (-579 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1117 *6)) (-5 *5 (-579 *7))
- (-4 *6 (-1173)) (-4 *7 (-1173)) (-4 *8 (-1173)) (-5 *2 (-1117 *8))
- (-5 *1 (-577 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1123 *6)) (-5 *5 (-581 *7))
+ (-4 *6 (-1180)) (-4 *7 (-1180)) (-4 *8 (-1180)) (-5 *2 (-1123 *8))
+ (-5 *1 (-579 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-579 *6)) (-5 *5 (-1117 *7))
- (-4 *6 (-1173)) (-4 *7 (-1173)) (-4 *8 (-1173)) (-5 *2 (-1117 *8))
- (-5 *1 (-577 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-581 *6)) (-5 *5 (-1123 *7))
+ (-4 *6 (-1180)) (-4 *7 (-1180)) (-4 *8 (-1180)) (-5 *2 (-1123 *8))
+ (-5 *1 (-579 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1173)) (-5 *1 (-579 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1180)) (-5 *1 (-581 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-619 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-619 *6)) (-5 *1 (-617 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-621 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-621 *6)) (-5 *1 (-619 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-619 *6)) (-5 *5 (-619 *7))
- (-4 *6 (-1173)) (-4 *7 (-1173)) (-4 *8 (-1173)) (-5 *2 (-619 *8))
- (-5 *1 (-618 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-621 *6)) (-5 *5 (-621 *7))
+ (-4 *6 (-1180)) (-4 *7 (-1180)) (-4 *8 (-1180)) (-5 *2 (-621 *8))
+ (-5 *1 (-620 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-625 *3)) (-4 *3 (-1173))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1016)) (-4 *8 (-1016))
- (-4 *6 (-364 *5)) (-4 *7 (-364 *5)) (-4 *2 (-661 *8 *9 *10))
- (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-661 *5 *6 *7))
- (-4 *9 (-364 *8)) (-4 *10 (-364 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1016))
- (-4 *8 (-1016)) (-4 *6 (-364 *5)) (-4 *7 (-364 *5))
- (-4 *2 (-661 *8 *9 *10)) (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-661 *5 *6 *7)) (-4 *9 (-364 *8)) (-4 *10 (-364 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-539)) (-4 *7 (-539))
- (-4 *6 (-1195 *5)) (-4 *2 (-1195 (-398 *8)))
- (-5 *1 (-684 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1195 (-398 *6)))
- (-4 *8 (-1195 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1016)) (-4 *9 (-1016))
- (-4 *5 (-821)) (-4 *6 (-767)) (-4 *2 (-918 *9 *7 *5))
- (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767))
- (-4 *4 (-918 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-821)) (-4 *6 (-821)) (-4 *7 (-767))
- (-4 *9 (-1016)) (-4 *2 (-918 *9 *8 *6))
- (-5 *1 (-704 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-767))
- (-4 *4 (-918 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-710 *5 *7)) (-4 *5 (-1016))
- (-4 *6 (-1016)) (-4 *7 (-701)) (-5 *2 (-710 *6 *7))
- (-5 *1 (-709 *5 *6 *7))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-627 *3)) (-4 *3 (-1180))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1018)) (-4 *8 (-1018))
+ (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *2 (-663 *8 *9 *10))
+ (-5 *1 (-661 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-663 *5 *6 *7))
+ (-4 *9 (-366 *8)) (-4 *10 (-366 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1018))
+ (-4 *8 (-1018)) (-4 *6 (-366 *5)) (-4 *7 (-366 *5))
+ (-4 *2 (-663 *8 *9 *10)) (-5 *1 (-661 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-663 *5 *6 *7)) (-4 *9 (-366 *8)) (-4 *10 (-366 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-541)) (-4 *7 (-541))
+ (-4 *6 (-1202 *5)) (-4 *2 (-1202 (-400 *8)))
+ (-5 *1 (-686 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1202 (-400 *6)))
+ (-4 *8 (-1202 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1018)) (-4 *9 (-1018))
+ (-4 *5 (-823)) (-4 *6 (-769)) (-4 *2 (-920 *9 *7 *5))
+ (-5 *1 (-705 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-769))
+ (-4 *4 (-920 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-823)) (-4 *6 (-823)) (-4 *7 (-769))
+ (-4 *9 (-1018)) (-4 *2 (-920 *9 *8 *6))
+ (-5 *1 (-706 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-769))
+ (-4 *4 (-920 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-712 *5 *7)) (-4 *5 (-1018))
+ (-4 *6 (-1018)) (-4 *7 (-703)) (-5 *2 (-712 *6 *7))
+ (-5 *1 (-711 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-710 *3 *4))
- (-4 *4 (-701))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-712 *3 *4))
+ (-4 *4 (-703))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-756 *5)) (-4 *5 (-1016))
- (-4 *6 (-1016)) (-5 *2 (-756 *6)) (-5 *1 (-755 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-758 *5)) (-4 *5 (-1018))
+ (-4 *6 (-1018)) (-5 *2 (-758 *6)) (-5 *1 (-757 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169))
- (-4 *2 (-771 *6)) (-5 *1 (-772 *4 *5 *2 *6)) (-4 *4 (-771 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170))
+ (-4 *2 (-773 *6)) (-5 *1 (-774 *4 *5 *2 *6)) (-4 *4 (-773 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1063))
- (-4 *6 (-1063)) (-5 *2 (-807 *6)) (-5 *1 (-806 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-809 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-5 *2 (-809 *6)) (-5 *1 (-808 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-807 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *1 (-806 *5 *6))))
+ (-12 (-5 *2 (-809 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-809 *5))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *1 (-808 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1063))
- (-4 *6 (-1063)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-814 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *1 (-813 *5 *6))))
+ (-12 (-5 *2 (-816 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *1 (-815 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-846 *6)) (-5 *1 (-845 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-850 *6)) (-5 *1 (-849 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-858 *5 *6)) (-4 *5 (-1063))
- (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-858 *5 *7))
- (-5 *1 (-857 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-860 *5 *6)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-860 *5 *7))
+ (-5 *1 (-859 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1063))
- (-4 *6 (-1063)) (-5 *2 (-861 *6)) (-5 *1 (-860 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-863 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-5 *2 (-863 *6)) (-5 *1 (-862 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-921 *5)) (-4 *5 (-1016))
- (-4 *6 (-1016)) (-5 *2 (-921 *6)) (-5 *1 (-915 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-923 *5)) (-4 *5 (-1018))
+ (-4 *6 (-1018)) (-5 *2 (-923 *6)) (-5 *1 (-917 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-821))
- (-4 *8 (-1016)) (-4 *6 (-767))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-823))
+ (-4 *8 (-1018)) (-4 *6 (-769))
(-4 *2
- (-13 (-1063)
- (-10 -8 (-15 -2479 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745))))))
- (-5 *1 (-920 *6 *7 *8 *5 *2)) (-4 *5 (-918 *8 *6 *7))))
+ (-13 (-1067)
+ (-10 -8 (-15 -2486 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-747))))))
+ (-5 *1 (-922 *6 *7 *8 *5 *2)) (-4 *5 (-920 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-927 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-927 *6)) (-5 *1 (-926 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-929 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-929 *6)) (-5 *1 (-928 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-912 *5)) (-4 *5 (-1016))
- (-4 *6 (-1016)) (-5 *2 (-912 *6)) (-5 *1 (-950 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-914 *5)) (-4 *5 (-1018))
+ (-4 *6 (-1018)) (-5 *2 (-914 *6)) (-5 *1 (-952 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-921 *4))) (-4 *4 (-1016))
- (-4 *2 (-918 (-921 *4) *5 *6)) (-4 *5 (-767))
+ (-12 (-5 *3 (-1 *2 (-923 *4))) (-4 *4 (-1018))
+ (-4 *2 (-920 (-923 *4) *5 *6)) (-4 *5 (-769))
(-4 *6
- (-13 (-821)
- (-10 -8 (-15 -2838 ((-1136) $))
- (-15 -3004 ((-3 $ "failed") (-1136))))))
- (-5 *1 (-953 *4 *5 *6 *2))))
+ (-13 (-823)
+ (-10 -8 (-15 -2845 ((-1143) $))
+ (-15 -3011 ((-3 $ "failed") (-1143))))))
+ (-5 *1 (-955 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-539)) (-4 *6 (-539))
- (-4 *2 (-961 *6)) (-5 *1 (-959 *5 *6 *4 *2)) (-4 *4 (-961 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-541)) (-4 *6 (-541))
+ (-4 *2 (-963 *6)) (-5 *1 (-961 *5 *6 *4 *2)) (-4 *4 (-963 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169))
- (-4 *2 (-966 *6)) (-5 *1 (-967 *4 *5 *2 *6)) (-4 *4 (-966 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170))
+ (-4 *2 (-968 *6)) (-5 *1 (-969 *4 *5 *2 *6)) (-4 *4 (-968 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7))
- (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7))
+ (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7))
- (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1021 *3 *4 *5 *6 *7))
+ (-4 *5 (-1018)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1016)) (-4 *10 (-1016))
- (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-230 *6 *7))
- (-4 *9 (-230 *5 *7)) (-4 *2 (-1019 *5 *6 *10 *11 *12))
- (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *11 (-230 *6 *10))
- (-4 *12 (-230 *5 *10))))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1018)) (-4 *10 (-1018))
+ (-14 *5 (-747)) (-14 *6 (-747)) (-4 *8 (-232 *6 *7))
+ (-4 *9 (-232 *5 *7)) (-4 *2 (-1021 *5 *6 *10 *11 *12))
+ (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10))
+ (-4 *12 (-232 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-1058 *6)) (-5 *1 (-1053 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1061 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-1061 *6)) (-5 *1 (-1056 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-819))
- (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-619 *6))
- (-5 *1 (-1053 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1061 *5)) (-4 *5 (-821))
+ (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-621 *6))
+ (-5 *1 (-1056 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1056 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-1056 *6)) (-5 *1 (-1055 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1059 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-1059 *6)) (-5 *1 (-1058 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819))
- (-4 *2 (-1110 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1062 *4 *2)) (-4 *4 (-821))
+ (-4 *2 (-1116 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1117 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-1117 *6)) (-5 *1 (-1115 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1123 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-1123 *6)) (-5 *1 (-1121 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1117 *6)) (-5 *5 (-1117 *7))
- (-4 *6 (-1173)) (-4 *7 (-1173)) (-4 *8 (-1173)) (-5 *2 (-1117 *8))
- (-5 *1 (-1116 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1123 *6)) (-5 *5 (-1123 *7))
+ (-4 *6 (-1180)) (-4 *7 (-1180)) (-4 *8 (-1180)) (-5 *2 (-1123 *8))
+ (-5 *1 (-1122 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-1016))
- (-4 *6 (-1016)) (-5 *2 (-1132 *6)) (-5 *1 (-1130 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5)) (-4 *5 (-1018))
+ (-4 *6 (-1018)) (-5 *2 (-1139 *6)) (-5 *1 (-1137 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1149 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-1063))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1156 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1067))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1183 *5 *7 *9)) (-4 *5 (-1016))
- (-4 *6 (-1016)) (-14 *7 (-1136)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1183 *6 *8 *10)) (-5 *1 (-1178 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1136))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1190 *5 *7 *9)) (-4 *5 (-1018))
+ (-4 *6 (-1018)) (-14 *7 (-1143)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1190 *6 *8 *10)) (-5 *1 (-1185 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1143))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1186 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-1186 *6)) (-5 *1 (-1185 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1193 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-1193 *6)) (-5 *1 (-1192 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1186 *5)) (-4 *5 (-819))
- (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-1117 *6))
- (-5 *1 (-1185 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1193 *5)) (-4 *5 (-821))
+ (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-1123 *6))
+ (-5 *1 (-1192 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1192 *5 *6)) (-14 *5 (-1136))
- (-4 *6 (-1016)) (-4 *8 (-1016)) (-5 *2 (-1192 *7 *8))
- (-5 *1 (-1187 *5 *6 *7 *8)) (-14 *7 (-1136))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1199 *5 *6)) (-14 *5 (-1143))
+ (-4 *6 (-1018)) (-4 *8 (-1018)) (-5 *2 (-1199 *7 *8))
+ (-5 *1 (-1194 *5 *6 *7 *8)) (-14 *7 (-1143))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016))
- (-4 *2 (-1195 *6)) (-5 *1 (-1193 *5 *4 *6 *2)) (-4 *4 (-1195 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018))
+ (-4 *2 (-1202 *6)) (-5 *1 (-1200 *5 *4 *6 *2)) (-4 *4 (-1202 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1204 *5 *7 *9)) (-4 *5 (-1016))
- (-4 *6 (-1016)) (-14 *7 (-1136)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1204 *6 *8 *10)) (-5 *1 (-1199 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1136))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1211 *5 *7 *9)) (-4 *5 (-1018))
+ (-4 *6 (-1018)) (-14 *7 (-1143)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1211 *6 *8 *10)) (-5 *1 (-1206 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1143))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016))
- (-4 *2 (-1210 *6)) (-5 *1 (-1208 *5 *6 *4 *2)) (-4 *4 (-1210 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018))
+ (-4 *2 (-1217 *6)) (-5 *1 (-1215 *5 *6 *4 *2)) (-4 *4 (-1217 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1219 *5)) (-4 *5 (-1173))
- (-4 *6 (-1173)) (-5 *2 (-1219 *6)) (-5 *1 (-1218 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-1180))
+ (-4 *6 (-1180)) (-5 *2 (-1226 *6)) (-5 *1 (-1225 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1219 *5))
- (-4 *5 (-1173)) (-4 *6 (-1173)) (-5 *2 (-1219 *6))
- (-5 *1 (-1218 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1226 *5))
+ (-4 *5 (-1180)) (-4 *6 (-1180)) (-5 *2 (-1226 *6))
+ (-5 *1 (-1225 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1236 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-1016))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-1018))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-1242 *3 *4))
- (-4 *4 (-817)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-524 *3 *2))
- (-4 *2 (-1210 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-4 *4 (-1195 *3))
- (-4 *5 (-699 *3 *4)) (-5 *1 (-528 *3 *4 *5 *2)) (-4 *2 (-1210 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-5 *1 (-529 *3 *2))
- (-4 *2 (-1210 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-13 (-539) (-145)))
- (-5 *1 (-1113 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-745))
- (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $)))))
- (-4 *4 (-1195 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-745)) (-4 *5 (-539))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-938 *5 *3)) (-4 *3 (-1195 *5)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-726)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-1249 *3 *4))
+ (-4 *4 (-819)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-129)) (-5 *2 (-1087)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-323)))))
+(((*1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1125)) (-5 *1 (-298)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
+ (-12 (-5 *2 (-621 (-167 *4))) (-5 *1 (-153 *3 *4))
+ (-4 *3 (-1202 (-167 (-549)))) (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-621 (-167 *4)))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-621 (-167 *4)))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-892)) (-5 *4 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3))))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3))))
- ((*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-736))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-539)) (-4 *3 (-169)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2))
- (-4 *2 (-661 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2
- (-3 (|:| |%expansion| (-304 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119))))))
- (-5 *1 (-411 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1158) (-421 *5)))
- (-14 *6 (-1136)) (-14 *7 *3))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217)))
- (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217)))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))
- (-5 *2 (-370)) (-5 *1 (-197)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1173)) (-4 *2 (-821))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-364 *3)) (-4 *3 (-1173))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-619 (-1125 *3 *4))) (-5 *1 (-1125 *3 *4))
- (-14 *3 (-890)) (-4 *4 (-1016))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1125 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))))
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-4 *1 (-1065 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-914 *5)) (-4 *5 (-1018)) (-5 *2 (-747))
+ (-5 *1 (-1131 *4 *5)) (-14 *4 (-892))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-621 (-747))) (-5 *3 (-747)) (-5 *1 (-1131 *4 *5))
+ (-14 *4 (-892)) (-4 *5 (-1018))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-621 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018))
+ (-5 *1 (-1131 *4 *5)) (-14 *4 (-892)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1139 *1)) (-4 *1 (-983)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-1139 *3))
+ (-4 *3 (-13 (-423 *6) (-27) (-1165)))
+ (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2 (-2 (|:| -3440 *3) (|:| |coeff| *3)))
+ (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1067))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-400 (-1139 *3)))
+ (-4 *3 (-13 (-423 *6) (-27) (-1165)))
+ (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2 (-2 (|:| -3440 *3) (|:| |coeff| *3)))
+ (-5 *1 (-545 *6 *3 *7)) (-4 *7 (-1067)))))
(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1158)))))
+ (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1165)))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-890)) (-5 *4 (-370)) (-5 *2 (-1224)) (-5 *1 (-1220))))
+ (-12 (-5 *3 (-892)) (-5 *4 (-372)) (-5 *2 (-1231)) (-5 *1 (-1227))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1219 (-307 (-217)))) (-5 *2 (-1219 (-307 (-370))))
- (-5 *1 (-296)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-354)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-4 *6 (-333 *3 *4 *5))
- (-5 *2
- (-2 (|:| -3707 (-404 *4 (-398 *4) *5 *6)) (|:| |principalPart| *6)))))
+ (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769))
+ (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)) (-5 *2 (-621 *3))
+ (-5 *1 (-572 *5 *6 *7 *8 *3)) (-4 *3 (-1076 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-354))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145)))
(-5 *2
- (-2 (|:| |poly| *6) (|:| -4032 (-398 *6))
- (|:| |special| (-398 *6))))
- (-5 *1 (-702 *5 *6)) (-5 *3 (-398 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-619 *3)) (-5 *1 (-865 *3 *4))
- (-4 *3 (-1195 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-745)) (-4 *5 (-354))
- (-5 *2 (-2 (|:| -3830 *3) (|:| -3840 *3))) (-5 *1 (-865 *3 *5))
- (-4 *3 (-1195 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112))
- (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442))
- (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112))
- (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442))
- (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112))
- (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442))
- (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1106 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112))
- (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442))
- (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1106 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063))))
- ((*1 *1 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1016)) (-5 *2 (-112)) (-5 *1 (-434 *4 *3))
- (-4 *3 (-1195 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-814 *4)) (-5 *3 (-590 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1158) (-29 *6)))
- (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-216 *6 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-934))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1119) (-748))) (-5 *1 (-114)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-1073)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-619 (-1 *4 (-619 *4)))) (-4 *4 (-1063))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063))
- (-5 *1 (-113 *4))))
+ (-621 (-2 (|:| -1298 (-1139 *5)) (|:| -4263 (-621 (-923 *5))))))
+ (-5 *1 (-1044 *5 *6)) (-5 *3 (-621 (-923 *5)))
+ (-14 *6 (-621 (-1143)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-1 *4 (-619 *4))))
- (-5 *1 (-113 *4)) (-4 *4 (-1063)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-821))
- (-4 *3 (-1063)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8))
- (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767))
- (-4 *7 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-442))
+ (-12 (-4 *4 (-13 (-300) (-145)))
(-5 *2
- (-619
- (-2 (|:| |eigval| (-3 (-398 (-921 *4)) (-1126 (-1136) (-921 *4))))
- (|:| |geneigvec| (-619 (-663 (-398 (-921 *4))))))))
- (-5 *1 (-283 *4)) (-5 *3 (-663 (-398 (-921 *4)))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-745)) (-4 *5 (-539))
+ (-621 (-2 (|:| -1298 (-1139 *4)) (|:| -4263 (-621 (-923 *4))))))
+ (-5 *1 (-1044 *4 *5)) (-5 *3 (-621 (-923 *4)))
+ (-14 *5 (-621 (-1143)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145)))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-938 *5 *3)) (-4 *3 (-1195 *5)))))
+ (-621 (-2 (|:| -1298 (-1139 *5)) (|:| -4263 (-621 (-923 *5))))))
+ (-5 *1 (-1044 *5 *6)) (-5 *3 (-621 (-923 *5)))
+ (-14 *6 (-621 (-1143))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-935 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-621 (-747)))) (-5 *1 (-875 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-542 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4339 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2))
+ (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1202 *2))
+ (-4 *4 (-663 *2 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1143)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-936))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1125) (-750))) (-5 *1 (-114)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1165))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356)))
+ (-4 *3 (-1202 *4)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1143))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-621 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-621 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -3440 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1165) (-27) (-423 *8)))
+ (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3)))
+ (-5 *3 (-549))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3848 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-984 *8 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *4 *3 *5))
+ (-4 *3 (-1202 *4))
+ (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1165) (-277))))))
(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-217)) (-5 *3 (-745)) (-5 *1 (-218))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-166 (-217))) (-5 *3 (-745)) (-5 *1 (-218))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1100))))
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-665 (-400 *4))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1226 *4)) (-4 *4 (-617 (-549)))
+ (-5 *2 (-1226 (-549))) (-5 *1 (-1253 *4)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
(-5 *2
(-2
(|:| |endPointContinuity|
@@ -8882,5688 +8474,5806 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1117 (-217)))
+ (-3 (|:| |str| (-1123 (-219)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -4232
+ (|:| -1372
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-542)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1))
- (-4 *1 (-1036 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-114)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-731)))))
+ (-5 *1 (-544)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-172 *3)) (-4 *3 (-300))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-650 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-717 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-823))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 *3)) (-4 *1 (-951 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-621 *1)) (-5 *3 (-621 *7)) (-4 *1 (-1038 *4 *5 *6 *7))
+ (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1))
+ (-4 *1 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1))
+ (-4 *1 (-1038 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1204 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1069 (-1069 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823))
+ (-5 *2 (-2 (|:| -1570 (-549)) (|:| |var| (-592 *1))))
+ (-4 *1 (-423 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-5 *1 (-1219 *3 *2))
+ (-4 *2 (-1217 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143)) (-5 *2 (-525)) (-5 *1 (-524 *4))
+ (-4 *4 (-1180)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-298)) (-5 *2 (-409 *3))
- (-5 *1 (-717 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4)))))
+ (-12 (-4 *2 (-1202 *4)) (-5 *1 (-783 *4 *2 *3 *5))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2))
+ (-4 *5 (-632 (-400 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1202 *4)) (-5 *1 (-783 *4 *2 *5 *3))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-632 *2))
+ (-4 *3 (-632 (-400 *2))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175 *3)) (-4 *3 (-945)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1125))
+ (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1165) (-29 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971)))
- (-5 *1 (-173 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 (-398 *6))) (-5 *4 (-398 *6)) (-4 *6 (-1195 *5))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-610)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-250)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-823))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-549)) (-4 *1 (-275 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-4 *1 (-275 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4))))
- (-5 *1 (-784 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 (-398 *6))) (-4 *6 (-1195 *5))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-5 *2 (-2 (|:| -1917 (-619 (-398 *6))) (|:| -1877 (-663 *5))))
- (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-398 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-628 *6 (-398 *6))) (-5 *4 (-398 *6)) (-4 *6 (-1195 *5))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
+ (-2
+ (|:| -3337
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (|:| -1793
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1123 (-219)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1372
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-544))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-4 *1 (-671 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4))))
- (-5 *1 (-784 *5 *6))))
+ (-2
+ (|:| -3337
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
+ (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (|:| -1793
+ (-2 (|:| |stiffness| (-372)) (|:| |stability| (-372))
+ (|:| |expense| (-372)) (|:| |accuracy| (-372))
+ (|:| |intermediateResults| (-372))))))
+ (-5 *1 (-779))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-628 *6 (-398 *6))) (-4 *6 (-1195 *5))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-5 *2 (-2 (|:| -1917 (-619 (-398 *6))) (|:| -1877 (-663 *5))))
- (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-398 *6))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1219 *5)) (-4 *5 (-615 *4)) (-4 *4 (-539))
- (-5 *2 (-112)) (-5 *1 (-614 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-547)) (-4 *5 (-340)) (-5 *2 (-409 (-1132 (-1132 *5))))
- (-5 *1 (-1171 *5)) (-5 *3 (-1132 (-1132 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-5 *1 (-476 *2)) (-4 *2 (-1195 (-547))))))
-(((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-608)))))
+ (-12 (-5 *2 (-1231)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1067)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-665 *2)) (-5 *4 (-549))
+ (-4 *2 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $)))))
+ (-4 *5 (-1202 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-402 *2 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-398 (-921 (-166 (-547))))))
- (-5 *2 (-619 (-619 (-285 (-921 (-166 *4)))))) (-5 *1 (-369 *4))
- (-4 *4 (-13 (-354) (-819)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-285 (-398 (-921 (-166 (-547)))))))
- (-5 *2 (-619 (-619 (-285 (-921 (-166 *4)))))) (-5 *1 (-369 *4))
- (-4 *4 (-13 (-354) (-819)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 (-166 (-547)))))
- (-5 *2 (-619 (-285 (-921 (-166 *4))))) (-5 *1 (-369 *4))
- (-4 *4 (-13 (-354) (-819)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-285 (-398 (-921 (-166 (-547))))))
- (-5 *2 (-619 (-285 (-921 (-166 *4))))) (-5 *1 (-369 *4))
- (-4 *4 (-13 (-354) (-819))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-442)) (-4 *4 (-539))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -1628 *4))) (-5 *1 (-938 *4 *3))
- (-4 *3 (-1195 *4)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-726)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-730)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-619
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-767)) (-4 *3 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *6 (-821))
- (-5 *1 (-439 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-240)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1219 (-1219 (-547)))) (-5 *3 (-890)) (-5 *1 (-456)))))
+ (-12 (-5 *3 (-747)) (-5 *4 (-549)) (-5 *1 (-437 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-621 *1)) (-4 *1 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-242)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-547)) (|has| *1 (-6 -4320)) (-4 *1 (-395))
- (-5 *2 (-890)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-162 *3 *4))
- (-4 *3 (-163 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1173)) (-5 *2 (-745))
- (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-821)) (-5 *2 (-745)) (-5 *1 (-420 *3 *4))
- (-4 *3 (-421 *4))))
- ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-531 *3)) (-4 *3 (-532))))
- ((*1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-745))))
- ((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-770 *3 *4))
- (-4 *3 (-771 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-960 *3 *4))
- (-4 *3 (-961 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-965 *3 *4))
- (-4 *3 (-966 *4))))
- ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-980 *3)) (-4 *3 (-981))))
- ((*1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-745))))
- ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1024 *3)) (-4 *3 (-1025)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-524 *3 *2))
- (-4 *2 (-1210 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-4 *4 (-1195 *3))
- (-4 *5 (-699 *3 *4)) (-5 *1 (-528 *3 *4 *5 *2)) (-4 *2 (-1210 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-5 *1 (-529 *3 *2))
- (-4 *2 (-1210 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-13 (-539) (-145)))
- (-5 *1 (-1113 *3)))))
+ (-12 (-4 *4 (-13 (-541) (-145))) (-5 *2 (-621 *3))
+ (-5 *1 (-1196 *4 *3)) (-4 *3 (-1202 *4)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-523) (-619 (-523)))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-523) (-619 (-523)))) (-5 *1 (-114)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-52)) (-5 *1 (-805)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852))
- (-5 *3 (-619 (-547))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-619 *5)) (-5 *4 (-547)) (-4 *5 (-819)) (-4 *5 (-354))
- (-5 *2 (-745)) (-5 *1 (-914 *5 *6)) (-4 *6 (-1195 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))))
+ (-12 (-4 *1 (-947 *3 *4 *2 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-1032 *3 *4 *2)) (-4 *2 (-823))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *1 (-1095 *3 *2)) (-4 *3 (-1202 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1180)) (-5 *2 (-621 *1)) (-4 *1 (-981 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-1131 *3 *4))) (-5 *1 (-1131 *3 *4))
+ (-14 *3 (-892)) (-4 *4 (-1018)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-525) (-621 (-525)))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-525) (-621 (-525)))) (-5 *1 (-114)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-897))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-898))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-898))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-356)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4248 *1)))
+ (-4 *1 (-825 *3)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1016)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1195 *3)))))
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-621 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1173 *5 *6 *7 *8)) (-4 *5 (-541))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-1032 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-567 *3) *3 (-1143)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1143)))
+ (-4 *3 (-277)) (-4 *3 (-607)) (-4 *3 (-1009 *4)) (-4 *3 (-423 *7))
+ (-5 *4 (-1143)) (-4 *7 (-594 (-863 (-549)))) (-4 *7 (-444))
+ (-4 *7 (-857 (-549))) (-4 *7 (-823)) (-5 *2 (-567 *3))
+ (-5 *1 (-558 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-621 (-1061 (-372)))) (-5 *3 (-621 (-256)))
+ (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-1061 (-372)))) (-5 *1 (-256))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1061 (-372)))) (-5 *1 (-460))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-1061 (-372)))) (-5 *1 (-460)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))
- (-5 *2 (-370)) (-5 *1 (-258))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1219 (-307 (-217)))) (-5 *2 (-370)) (-5 *1 (-296)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-1016)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1219 *4)) (-5 *3 (-663 *4)) (-4 *4 (-354))
- (-5 *1 (-641 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-354))
- (-4 *5 (-13 (-364 *4) (-10 -7 (-6 -4330))))
- (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4330))))
- (-5 *1 (-642 *4 *5 *2 *3)) (-4 *3 (-661 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-619 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-354))
- (-5 *1 (-788 *2 *3)) (-4 *3 (-630 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *1 (-1090 *3 *2)) (-4 *3 (-1195 *2)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-547)) (-4 *6 (-354)) (-4 *6 (-359))
- (-4 *6 (-1016)) (-5 *2 (-619 (-619 (-663 *6)))) (-5 *1 (-998 *6))
- (-5 *3 (-619 (-663 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *4 (-359)) (-4 *4 (-1016))
- (-5 *2 (-619 (-619 (-663 *4)))) (-5 *1 (-998 *4))
- (-5 *3 (-619 (-663 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-354)) (-4 *5 (-359)) (-4 *5 (-1016))
- (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5))
- (-5 *3 (-619 (-663 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-890)) (-4 *5 (-354)) (-4 *5 (-359)) (-4 *5 (-1016))
- (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5))
- (-5 *3 (-619 (-663 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1219 (-3 (-458) "undefined"))) (-5 *1 (-1220)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-307 (-217))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))))
- (-5 *1 (-197)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-523)))))
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2 (-549)) (-5 *1 (-198)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-1219 *4 *2))
+ (-4 *4 (-38 (-400 (-549)))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-549)) (|has| *1 (-6 -4338)) (-4 *1 (-366 *3))
+ (-4 *3 (-1180)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-1018)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-525)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-354)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4)))
+ (-5 *2 (-2 (|:| |num| (-1226 *4)) (|:| |den| *4))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-409 (-1132 (-547)))) (-5 *1 (-183)) (-5 *3 (-547)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-539) (-145))) (-5 *2 (-619 *3))
- (-5 *1 (-1189 *4 *3)) (-4 *3 (-1195 *4)))))
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1165) (-973))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 *1)) (|has| *1 (-6 -4338)) (-4 *1 (-981 *3))
+ (-4 *3 (-1180)))))
(((*1 *1 *2)
- (-12 (-4 *3 (-1016)) (-5 *1 (-801 *2 *3)) (-4 *2 (-683 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-1119)) (-5 *5 (-663 (-217)))
- (-5 *2 (-1004)) (-5 *1 (-722)))))
+ (-12 (-4 *3 (-1018)) (-5 *1 (-803 *2 *3)) (-4 *2 (-685 *3)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-549)) (-4 *3 (-170)) (-4 *5 (-366 *3))
+ (-4 *6 (-366 *3)) (-5 *1 (-664 *3 *5 *6 *2))
+ (-4 *2 (-663 *3 *5 *6)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-547))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016))
- (-14 *4 (-619 (-1136)))))
+ (-12 (-5 *2 (-621 (-549))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
+ (-14 *4 (-621 (-1143)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
- ((*1 *1 *1) (-4 *1 (-275)))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1) (-4 *1 (-277)))
((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-5 *1 (-603 *3 *4 *5))
- (-14 *5 (-890))))
+ (-12 (-5 *2 (-640 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-5 *1 (-605 *3 *4 *5))
+ (-14 *5 (-892))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-398 (-547)))))
- (-4 *5 (-821)) (-5 *1 (-1235 *4 *5 *2)) (-4 *2 (-1240 *5 *4))))
+ (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-549)))))
+ (-4 *5 (-823)) (-5 *1 (-1242 *4 *5 *2)) (-4 *2 (-1247 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-1239 *3 *4))
- (-4 *4 (-692 (-398 (-547)))) (-4 *3 (-821)) (-4 *4 (-169)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-354) (-819))) (-5 *1 (-177 *3 *2))
- (-4 *2 (-1195 (-166 *3))))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1175)))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-1246 *3 *4))
+ (-4 *4 (-694 (-400 (-549)))) (-4 *3 (-823)) (-4 *4 (-170)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1059 (-923 (-549)))) (-5 *3 (-923 (-549)))
+ (-5 *1 (-323))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1059 (-923 (-549)))) (-5 *1 (-323)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-1136))) (-5 *2 (-1224)) (-5 *1 (-1139))))
+ (-12 (-5 *3 (-621 *4)) (-4 *4 (-356)) (-5 *2 (-665 *4))
+ (-5 *1 (-790 *4 *5)) (-4 *5 (-632 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-1136))) (-5 *3 (-1136)) (-5 *2 (-1224))
- (-5 *1 (-1139))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-619 (-1136))) (-5 *3 (-1136)) (-5 *2 (-1224))
- (-5 *1 (-1139)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-547))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-840 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-14 *2 (-547))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-547)) (-14 *3 *2) (-5 *1 (-841 *3 *4))
- (-4 *4 (-838 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-547)) (-5 *1 (-841 *2 *3)) (-4 *3 (-838 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-547)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-1210 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1210 *2)))))
+ (-12 (-5 *3 (-621 *5)) (-5 *4 (-747)) (-4 *5 (-356))
+ (-5 *2 (-665 *5)) (-5 *1 (-790 *5 *6)) (-4 *6 (-632 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-834))))
+ ((*1 *1 *1) (-5 *1 (-834))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1173))))
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1180))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-921 (-370))) (-5 *1 (-330 *3 *4 *5))
- (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (|partial| -12 (-5 *2 (-923 (-372))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-398 (-921 (-370)))) (-5 *1 (-330 *3 *4 *5))
- (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (|partial| -12 (-5 *2 (-400 (-923 (-372)))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-307 (-370))) (-5 *1 (-330 *3 *4 *5))
- (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (|partial| -12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-921 (-547))) (-5 *1 (-330 *3 *4 *5))
- (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (|partial| -12 (-5 *2 (-923 (-549))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-398 (-921 (-547)))) (-5 *1 (-330 *3 *4 *5))
- (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (|partial| -12 (-5 *2 (-400 (-923 (-549)))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-307 (-547))) (-5 *1 (-330 *3 *4 *5))
- (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (|partial| -12 (-5 *2 (-309 (-549))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-330 *3 *4 *5))
- (-14 *3 (-619 *2)) (-14 *4 (-619 *2)) (-4 *5 (-378))))
+ (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-332 *3 *4 *5))
+ (-14 *3 (-621 *2)) (-14 *4 (-621 *2)) (-4 *5 (-380))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-307 *5)) (-4 *5 (-378))
- (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136)))))
+ (|partial| -12 (-5 *2 (-309 *5)) (-4 *5 (-380))
+ (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-663 (-398 (-921 (-547))))) (-4 *1 (-375))))
+ (|partial| -12 (-5 *2 (-665 (-400 (-923 (-549))))) (-4 *1 (-377))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-663 (-398 (-921 (-370))))) (-4 *1 (-375))))
+ (|partial| -12 (-5 *2 (-665 (-400 (-923 (-372))))) (-4 *1 (-377))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-663 (-921 (-547)))) (-4 *1 (-375))))
+ (|partial| -12 (-5 *2 (-665 (-923 (-549)))) (-4 *1 (-377))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-663 (-921 (-370)))) (-4 *1 (-375))))
+ (|partial| -12 (-5 *2 (-665 (-923 (-372)))) (-4 *1 (-377))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-663 (-307 (-547)))) (-4 *1 (-375))))
+ (|partial| -12 (-5 *2 (-665 (-309 (-549)))) (-4 *1 (-377))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-663 (-307 (-370)))) (-4 *1 (-375))))
+ (|partial| -12 (-5 *2 (-665 (-309 (-372)))) (-4 *1 (-377))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-398 (-921 (-547)))) (-4 *1 (-387))))
+ (|partial| -12 (-5 *2 (-400 (-923 (-549)))) (-4 *1 (-389))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-398 (-921 (-370)))) (-4 *1 (-387))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-547))) (-4 *1 (-387))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-370))) (-4 *1 (-387))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-547))) (-4 *1 (-387))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-370))) (-4 *1 (-387))))
+ (|partial| -12 (-5 *2 (-400 (-923 (-372)))) (-4 *1 (-389))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-549))) (-4 *1 (-389))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-923 (-372))) (-4 *1 (-389))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-549))) (-4 *1 (-389))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-372))) (-4 *1 (-389))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1219 (-398 (-921 (-547))))) (-4 *1 (-431))))
+ (|partial| -12 (-5 *2 (-1226 (-400 (-923 (-549))))) (-4 *1 (-433))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1219 (-398 (-921 (-370))))) (-4 *1 (-431))))
+ (|partial| -12 (-5 *2 (-1226 (-400 (-923 (-372))))) (-4 *1 (-433))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1219 (-921 (-547)))) (-4 *1 (-431))))
+ (|partial| -12 (-5 *2 (-1226 (-923 (-549)))) (-4 *1 (-433))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1219 (-921 (-370)))) (-4 *1 (-431))))
+ (|partial| -12 (-5 *2 (-1226 (-923 (-372)))) (-4 *1 (-433))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1219 (-307 (-547)))) (-4 *1 (-431))))
+ (|partial| -12 (-5 *2 (-1226 (-309 (-549)))) (-4 *1 (-433))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1219 (-307 (-370)))) (-4 *1 (-431))))
+ (|partial| -12 (-5 *2 (-1226 (-309 (-372)))) (-4 *1 (-433))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-340)) (-4 *5 (-320 *4)) (-4 *6 (-1195 *5))
- (-5 *2 (-1132 (-1132 *4))) (-5 *1 (-751 *4 *5 *6 *3 *7))
- (-4 *3 (-1195 *6)) (-14 *7 (-890))))
+ (|partial| -12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1202 *5))
+ (-5 *2 (-1139 (-1139 *4))) (-5 *1 (-753 *4 *5 *6 *3 *7))
+ (-4 *3 (-1202 *6)) (-14 *7 (-892))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5))
- (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-4 *1 (-945 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1007 *2)) (-4 *2 (-1173))))
+ (|partial| -12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5))
+ (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *1 (-947 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1009 *2)) (-4 *2 (-1180))))
((*1 *1 *2)
- (|partial| -1530
- (-12 (-5 *2 (-921 *3))
- (-12 (-4000 (-4 *3 (-38 (-398 (-547)))))
- (-4000 (-4 *3 (-38 (-547)))) (-4 *5 (-592 (-1136))))
- (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767))
- (-4 *5 (-821)))
- (-12 (-5 *2 (-921 *3))
- (-12 (-4000 (-4 *3 (-532))) (-4000 (-4 *3 (-38 (-398 (-547)))))
- (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1136))))
- (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767))
- (-4 *5 (-821)))
- (-12 (-5 *2 (-921 *3))
- (-12 (-4000 (-4 *3 (-961 (-547)))) (-4 *3 (-38 (-398 (-547))))
- (-4 *5 (-592 (-1136))))
- (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767))
- (-4 *5 (-821)))))
+ (|partial| -1536
+ (-12 (-5 *2 (-923 *3))
+ (-12 (-4008 (-4 *3 (-38 (-400 (-549)))))
+ (-4008 (-4 *3 (-38 (-549)))) (-4 *5 (-594 (-1143))))
+ (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769))
+ (-4 *5 (-823)))
+ (-12 (-5 *2 (-923 *3))
+ (-12 (-4008 (-4 *3 (-534))) (-4008 (-4 *3 (-38 (-400 (-549)))))
+ (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1143))))
+ (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769))
+ (-4 *5 (-823)))
+ (-12 (-5 *2 (-923 *3))
+ (-12 (-4008 (-4 *3 (-963 (-549)))) (-4 *3 (-38 (-400 (-549))))
+ (-4 *5 (-594 (-1143))))
+ (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769))
+ (-4 *5 (-823)))))
((*1 *1 *2)
- (|partial| -1530
- (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5))
- (-12 (-4000 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547)))
- (-4 *5 (-592 (-1136))))
- (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))
- (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5))
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136))))
- (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))))
+ (|partial| -1536
+ (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5))
+ (-12 (-4008 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549)))
+ (-4 *5 (-594 (-1143))))
+ (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))
+ (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143))))
+ (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-921 (-398 (-547)))) (-4 *1 (-1030 *3 *4 *5))
- (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136)))
- (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))
- (-5 *2 (-793 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-817)) (-5 *1 (-1242 *3 *2)) (-4 *3 (-1016)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-474 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-745)) (|:| -2447 *4))) (-5 *5 (-745))
- (-4 *4 (-918 *6 *7 *8)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-439 *6 *7 *8 *4)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-169)) (-4 *2 (-539))))
- ((*1 *1 *1) (|partial| -4 *1 (-697))))
-(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-137)))))
-(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *2 (-923 (-400 (-549)))) (-4 *1 (-1032 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143)))
+ (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-400 (-1139 (-309 *3)))) (-4 *3 (-13 (-541) (-823)))
+ (-5 *1 (-1097 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-923 (-549))))
+ (-5 *4 (-309 (-167 (-372)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-923 (-549))))
+ (-5 *4 (-309 (-372))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-923 (-549))))
+ (-5 *4 (-309 (-549))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-309 (-167 (-372)))))
+ (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-309 (-372)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-309 (-549)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-309 (-167 (-372)))))
+ (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-309 (-372)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-309 (-549)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-309 (-167 (-372)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-309 (-372))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-309 (-549))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-923 (-549))))
+ (-5 *4 (-309 (-670))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-923 (-549))))
+ (-5 *4 (-309 (-675))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-923 (-549))))
+ (-5 *4 (-309 (-677))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-309 (-670)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-309 (-675)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-309 (-677)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-309 (-670)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-309 (-675)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-309 (-677)))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-670))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-675))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-677))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-670))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-675))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-665 (-677))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-309 (-670))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-309 (-675))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-309 (-677))) (-5 *1 (-323))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1125)) (-5 *1 (-323))))
+ ((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -1881 (-745)) (|:| |period| (-745))))
- (-5 *1 (-1117 *4)) (-4 *4 (-1173)) (-5 *3 (-745)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-227 *3))))
- ((*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-394 *3)) (-4 *3 (-395))))
- ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-394 *3)) (-4 *3 (-395))))
- ((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4320)) (-4 *1 (-395))))
- ((*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890))))
- ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-1117 (-547))))))
+ (-621
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-769)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823))
+ (-5 *1 (-441 *3 *4 *5 *6)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1143)) (-5 *2 (-621 (-936))) (-5 *1 (-284)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1119)) (-5 *5 (-663 (-217))) (-5 *6 (-217))
- (-5 *7 (-663 (-547))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-727)))))
+ (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
+ (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-137)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2712 *4))))
- (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4329)) (-4 *1 (-479 *4))
- (-4 *4 (-1173)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-832))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-621 *6)) (-4 *6 (-823)) (-4 *4 (-356)) (-4 *5 (-769))
+ (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1202 (-400 *2)))
+ (-4 *2 (-1202 *5)) (-5 *1 (-209 *5 *2 *6 *3))
+ (-4 *3 (-335 *5 *2 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1139 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-549))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114))))
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))))
+(((*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-309 (-372)))) (-5 *4 (-621 (-372)))
+ (-5 *2 (-1006)) (-5 *1 (-813)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1125)) (-5 *2 (-549)) (-5 *1 (-1162 *4))
+ (-4 *4 (-1018)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-621 (-400 *7)))
+ (-4 *7 (-1202 *6)) (-5 *3 (-400 *7)) (-4 *6 (-356))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-559 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-834) (-834))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-834) (-621 (-834)))) (-5 *1 (-114))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-834) (-621 (-834)))) (-5 *1 (-114))))
((*1 *2 *1)
- (-12 (-5 *2 (-1224)) (-5 *1 (-206 *3))
+ (-12 (-5 *2 (-1231)) (-5 *1 (-208 *3))
(-4 *3
- (-13 (-821)
- (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 (*2 $))
- (-15 -1764 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-385))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-385))))
- ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-491))))
- ((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-685))))
- ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1153))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-1153)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-354) (-145) (-1007 (-547))))
- (-4 *5 (-1195 *4)) (-5 *2 (-619 (-398 *5))) (-5 *1 (-985 *4 *5))
- (-5 *3 (-398 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442))
- (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-946 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1136)) (-5 *2 (-1067)) (-5 *1 (-282)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-547)) (-5 *1 (-552 *3)) (-4 *3 (-1007 *2)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-547)) (-5 *1 (-370)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1117 (-921 *4)) (-1117 (-921 *4))))
- (-5 *1 (-1227 *4)) (-4 *4 (-354)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1224))
- (-5 *1 (-439 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-547))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *7 (-821))
- (-5 *1 (-439 *5 *6 *7 *4)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))))
+ (-13 (-823)
+ (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 (*2 $))
+ (-15 -2684 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-387))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-387))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-493))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-687))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-1160))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-1160)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-621
+ (-2
+ (|:| -3337
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (|:| -1793
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1123 (-219)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1372
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-544))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-584 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1180))
+ (-5 *2 (-621 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1250 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-170))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-795 *3)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-594 (-863 *3))) (-4 *3 (-857 *3))
+ (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-594 (-863 *3))) (-4 *2 (-857 *3))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34))))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -1667 (-621 (-1143))) (|:| -1578 (-621 (-1143)))))
+ (-5 *1 (-1182)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-1146)))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-372))))
+ ((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-372)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-398 *5)) (-4 *4 (-1177)) (-4 *5 (-1195 *4))
- (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1195 *3))))
+ (-12 (-5 *3 (-400 *5)) (-4 *4 (-1184)) (-4 *5 (-1202 *4))
+ (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1202 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1138 (-398 (-547)))) (-5 *2 (-398 (-547)))
- (-5 *1 (-182))))
+ (-12 (-5 *3 (-1145 (-400 (-549)))) (-5 *2 (-400 (-549)))
+ (-5 *1 (-184))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-663 (-307 (-217)))) (-5 *3 (-619 (-1136)))
- (-5 *4 (-1219 (-307 (-217)))) (-5 *1 (-197))))
+ (-12 (-5 *2 (-665 (-309 (-219)))) (-5 *3 (-621 (-1143)))
+ (-5 *4 (-1226 (-309 (-219)))) (-5 *1 (-199))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-285 *3))) (-4 *3 (-300 *3)) (-4 *3 (-1063))
- (-4 *3 (-1173)) (-5 *1 (-285 *3))))
+ (-12 (-5 *2 (-621 (-287 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1067))
+ (-4 *3 (-1180)) (-5 *1 (-287 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-300 *2)) (-4 *2 (-1063)) (-4 *2 (-1173))
- (-5 *1 (-285 *2))))
+ (-12 (-4 *2 (-302 *2)) (-4 *2 (-1067)) (-4 *2 (-1180))
+ (-5 *1 (-287 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-293))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-621 *1))) (-4 *1 (-295))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 (-619 *1))))
- (-4 *1 (-293))))
+ (-12 (-5 *2 (-621 (-114))) (-5 *3 (-621 (-1 *1 (-621 *1))))
+ (-4 *1 (-295))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-293))))
+ (-12 (-5 *2 (-621 (-114))) (-5 *3 (-621 (-1 *1 *1))) (-4 *1 (-295))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293))))
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1 *1 *1)) (-4 *1 (-295))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-293))))
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1 *1 (-621 *1))) (-4 *1 (-295))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-619 (-1 *1 (-619 *1))))
- (-4 *1 (-293))))
+ (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-621 (-1 *1 (-621 *1))))
+ (-4 *1 (-295))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-293))))
+ (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-621 (-1 *1 *1))) (-4 *1 (-295))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-285 *3))) (-4 *1 (-300 *3)) (-4 *3 (-1063))))
+ (-12 (-5 *2 (-621 (-287 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-285 *3)) (-4 *1 (-300 *3)) (-4 *3 (-1063))))
+ (-12 (-5 *2 (-287 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1067))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-547))) (-5 *4 (-1138 (-398 (-547))))
- (-5 *1 (-301 *2)) (-4 *2 (-38 (-398 (-547))))))
+ (-12 (-5 *3 (-1 *2 (-549))) (-5 *4 (-1145 (-400 (-549))))
+ (-5 *1 (-303 *2)) (-4 *2 (-38 (-400 (-549))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *1)) (-4 *1 (-365 *4 *5))
- (-4 *4 (-821)) (-4 *5 (-169))))
+ (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 *1)) (-4 *1 (-367 *4 *5))
+ (-4 *4 (-823)) (-4 *5 (-170))))
((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169))))
+ (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-823)) (-4 *3 (-170))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1136)) (-5 *3 (-745)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-1016))))
+ (-12 (-5 *2 (-1143)) (-5 *3 (-747)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-1018))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1136)) (-5 *3 (-745)) (-5 *4 (-1 *1 (-619 *1)))
- (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-1016))))
+ (-12 (-5 *2 (-1143)) (-5 *3 (-747)) (-5 *4 (-1 *1 (-621 *1)))
+ (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-1018))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-619 (-745)))
- (-5 *4 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-421 *5)) (-4 *5 (-821))
- (-4 *5 (-1016))))
+ (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-621 (-747)))
+ (-5 *4 (-621 (-1 *1 (-621 *1)))) (-4 *1 (-423 *5)) (-4 *5 (-823))
+ (-4 *5 (-1018))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-619 (-745)))
- (-5 *4 (-619 (-1 *1 *1))) (-4 *1 (-421 *5)) (-4 *5 (-821))
- (-4 *5 (-1016))))
+ (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-621 (-747)))
+ (-5 *4 (-621 (-1 *1 *1))) (-4 *1 (-423 *5)) (-4 *5 (-823))
+ (-4 *5 (-1018))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 *1)) (-5 *4 (-1136))
- (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-592 (-523)))))
+ (-12 (-5 *2 (-621 (-114))) (-5 *3 (-621 *1)) (-5 *4 (-1143))
+ (-4 *1 (-423 *5)) (-4 *5 (-823)) (-4 *5 (-594 (-525)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1136)) (-4 *1 (-421 *4)) (-4 *4 (-821))
- (-4 *4 (-592 (-523)))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1143)) (-4 *1 (-423 *4)) (-4 *4 (-823))
+ (-4 *4 (-594 (-525)))))
((*1 *1 *1)
- (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)) (-4 *2 (-592 (-523)))))
+ (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)) (-4 *2 (-594 (-525)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-1136))) (-4 *1 (-421 *3)) (-4 *3 (-821))
- (-4 *3 (-592 (-523)))))
+ (-12 (-5 *2 (-621 (-1143))) (-4 *1 (-423 *3)) (-4 *3 (-823))
+ (-4 *3 (-594 (-525)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1136)) (-4 *1 (-421 *3)) (-4 *3 (-821))
- (-4 *3 (-592 (-523)))))
+ (-12 (-5 *2 (-1143)) (-4 *1 (-423 *3)) (-4 *3 (-823))
+ (-4 *3 (-594 (-525)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-503 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1173))))
+ (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1180))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *5)) (-4 *1 (-503 *4 *5))
- (-4 *4 (-1063)) (-4 *5 (-1173))))
+ (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 *5)) (-4 *1 (-505 *4 *5))
+ (-4 *4 (-1067)) (-4 *5 (-1180))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-807 *3)) (-4 *3 (-354)) (-5 *1 (-693 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063))))
+ (-12 (-5 *2 (-809 *3)) (-4 *3 (-356)) (-5 *1 (-695 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1067))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-398 (-921 *4))) (-5 *3 (-1136)) (-4 *4 (-539))
- (-5 *1 (-1012 *4))))
+ (-12 (-5 *2 (-400 (-923 *4))) (-5 *3 (-1143)) (-4 *4 (-541))
+ (-5 *1 (-1014 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-619 (-1136))) (-5 *4 (-619 (-398 (-921 *5))))
- (-5 *2 (-398 (-921 *5))) (-4 *5 (-539)) (-5 *1 (-1012 *5))))
+ (-12 (-5 *3 (-621 (-1143))) (-5 *4 (-621 (-400 (-923 *5))))
+ (-5 *2 (-400 (-923 *5))) (-4 *5 (-541)) (-5 *1 (-1014 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-285 (-398 (-921 *4)))) (-5 *2 (-398 (-921 *4)))
- (-4 *4 (-539)) (-5 *1 (-1012 *4))))
+ (-12 (-5 *3 (-287 (-400 (-923 *4)))) (-5 *2 (-400 (-923 *4)))
+ (-4 *4 (-541)) (-5 *1 (-1014 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 (-285 (-398 (-921 *4))))) (-5 *2 (-398 (-921 *4)))
- (-4 *4 (-539)) (-5 *1 (-1012 *4))))
+ (-12 (-5 *3 (-621 (-287 (-400 (-923 *4))))) (-5 *2 (-400 (-923 *4)))
+ (-4 *4 (-541)) (-5 *1 (-1014 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1117 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-354))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-619 (-912 (-217)))))
- (-5 *2 (-619 (-1058 (-217)))) (-5 *1 (-897)))))
+ (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1123 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-892)) (-5 *2 (-1231)) (-5 *1 (-208 *4))
+ (-4 *4
+ (-13 (-823)
+ (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 (*2 $))
+ (-15 -2684 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1231)) (-5 *1 (-208 *3))
+ (-4 *3
+ (-13 (-823)
+ (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 (*2 $))
+ (-15 -2684 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-493)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-549)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-411 *2)) (-4 *2 (-541)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-1227))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-2 (|:| |k| (-1143)) (|:| |c| (-1248 *3)))))
+ (-5 *1 (-1248 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-2 (|:| |k| *3) (|:| |c| (-1250 *3 *4)))))
+ (-5 *1 (-1250 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018)))))
+(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-675)) (-5 *1 (-298)))))
+(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 FUNCTN))))
+ (-5 *2 (-1006)) (-5 *1 (-725)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4)))
- (-5 *2 (-2 (|:| |num| (-1219 *4)) (|:| |den| *4))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168))))
- ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1220))))
- ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1221)))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-699)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-619 *5) *6))
- (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *6 (-1195 *5))
- (-5 *2 (-619 (-2 (|:| -2582 *5) (|:| -2644 *3))))
- (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6))
- (-4 *7 (-630 (-398 *6))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-539)) (-4 *7 (-767))
- (-4 *8 (-821)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2312 (-619 *9))))
- (-5 *3 (-619 *9)) (-4 *1 (-1166 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -2312 (-619 *8))))
- (-5 *3 (-619 *8)) (-4 *1 (-1166 *5 *6 *7 *8)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *2) (-12 (-5 *2 (-307 (-217))) (-5 *1 (-202)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1132 *7)) (-5 *3 (-547)) (-4 *7 (-918 *6 *4 *5))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016))
- (-5 *1 (-312 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1143)) (-4 *5 (-356)) (-5 *2 (-1123 (-1123 (-923 *5))))
+ (-5 *1 (-1234 *5)) (-5 *4 (-1123 (-923 *5))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
+ (-14 *6 (-621 (-1143)))
+ (-5 *2
+ (-621 (-1113 *5 (-521 (-836 *6)) (-836 *6) (-756 *5 (-836 *6)))))
+ (-5 *1 (-606 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016))
- (-14 *4 (-619 (-1136)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821)))
- (-14 *4 (-619 (-1136))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-745))) (-5 *3 (-112)) (-5 *1 (-1125 *4 *5))
- (-14 *4 (-890)) (-4 *5 (-1016)))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-1125)) (-5 *5 (-665 (-219)))
+ (-5 *2 (-1006)) (-5 *1 (-724)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-912 (-217)) (-217) (-217)))
- (-5 *3 (-1 (-217) (-217) (-217) (-217))) (-5 *1 (-246)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-547)) (-5 *5 (-112)) (-5 *6 (-663 (-217)))
- (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN))))
- (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-728)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4))))
- (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-217)))
- (-5 *2 (-1004)) (-5 *1 (-729)))))
+ (-12 (-5 *2 (-1226 *4)) (-5 *3 (-549)) (-4 *4 (-342))
+ (-5 *1 (-519 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-724)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-745)) (-4 *2 (-1063))
- (-5 *1 (-652 *2)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1173))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-821))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-547)) (-4 *1 (-273 *3)) (-4 *3 (-1173))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-273 *2)) (-4 *2 (-1173))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -3331
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (|:| -1786
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1117 (-217)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4232
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-542))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-4 *1 (-669 *2)) (-4 *2 (-1063))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -3331
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217)))
- (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217)))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))
- (|:| -1786
- (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370))
- (|:| |expense| (-370)) (|:| |accuracy| (-370))
- (|:| |intermediateResults| (-370))))))
- (-5 *1 (-777))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1224)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-1063)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1117 *4) (-1117 *4))) (-5 *2 (-1117 *4))
- (-5 *1 (-1244 *4)) (-4 *4 (-1173))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-619 (-1117 *5)) (-619 (-1117 *5)))) (-5 *4 (-547))
- (-5 *2 (-619 (-1117 *5))) (-5 *1 (-1244 *5)) (-4 *5 (-1173)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-747)) (-4 *2 (-1067))
+ (-5 *1 (-654 *2)))))
+(((*1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-361)) (-4 *2 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1123 *4) (-1123 *4))) (-5 *2 (-1123 *4))
+ (-5 *1 (-1251 *4)) (-4 *4 (-1180))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-621 (-1123 *5)) (-621 (-1123 *5)))) (-5 *4 (-549))
+ (-5 *2 (-621 (-1123 *5))) (-5 *1 (-1251 *5)) (-4 *5 (-1180)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-745)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-892)) (-5 *2 (-747)) (-5 *1 (-1068 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-398 (-547))) (-5 *1 (-117 *4)) (-14 *4 *3)
- (-5 *3 (-547))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547))))
+ (-12 (-5 *2 (-400 (-549))) (-5 *1 (-117 *4)) (-14 *4 *3)
+ (-5 *3 (-549))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-398 (-547))) (-5 *1 (-840 *4)) (-14 *4 *3)
- (-5 *3 (-547))))
+ (-12 (-5 *2 (-400 (-549))) (-5 *1 (-842 *4)) (-14 *4 *3)
+ (-5 *3 (-549))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-398 (-547))) (-5 *1 (-841 *4 *5))
- (-5 *3 (-547)) (-4 *5 (-838 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-981)) (-5 *2 (-398 (-547)))))
+ (-12 (-14 *4 *3) (-5 *2 (-400 (-549))) (-5 *1 (-843 *4 *5))
+ (-5 *3 (-549)) (-4 *5 (-840 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-983)) (-5 *2 (-400 (-549)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-354)))
- (-4 *3 (-1195 *2))))
+ (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356)))
+ (-4 *3 (-1202 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1197 *2 *3)) (-4 *3 (-766))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3838 (*2 (-1136))))
- (-4 *2 (-1016)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1173))))
+ (-12 (-4 *1 (-1204 *2 *3)) (-4 *3 (-768))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3846 (*2 (-1143))))
+ (-4 *2 (-1018)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854))
+ (-5 *3 (-621 (-549))))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-921 (-370))) (-5 *1 (-330 *3 *4 *5))
- (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (-12 (-5 *2 (-923 (-372))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-398 (-921 (-370)))) (-5 *1 (-330 *3 *4 *5))
- (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (-12 (-5 *2 (-400 (-923 (-372)))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-307 (-370))) (-5 *1 (-330 *3 *4 *5))
- (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (-12 (-5 *2 (-309 (-372))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-372))) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-921 (-547))) (-5 *1 (-330 *3 *4 *5))
- (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (-12 (-5 *2 (-923 (-549))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-398 (-921 (-547)))) (-5 *1 (-330 *3 *4 *5))
- (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (-12 (-5 *2 (-400 (-923 (-549)))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-307 (-547))) (-5 *1 (-330 *3 *4 *5))
- (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1136)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-378))))
+ (-12 (-5 *2 (-309 (-549))) (-5 *1 (-332 *3 *4 *5))
+ (-4 *5 (-1009 (-549))) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-1136)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 *2))
- (-14 *4 (-619 *2)) (-4 *5 (-378))))
+ (-12 (-5 *2 (-1143)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 *2))
+ (-14 *4 (-621 *2)) (-4 *5 (-380))))
((*1 *1 *2)
- (-12 (-5 *2 (-307 *5)) (-4 *5 (-378)) (-5 *1 (-330 *3 *4 *5))
- (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-1136)))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-398 (-921 (-547))))) (-4 *1 (-375))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-398 (-921 (-370))))) (-4 *1 (-375))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-547)))) (-4 *1 (-375))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-370)))) (-4 *1 (-375))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-307 (-547)))) (-4 *1 (-375))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-307 (-370)))) (-4 *1 (-375))))
- ((*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-547)))) (-4 *1 (-387))))
- ((*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-370)))) (-4 *1 (-387))))
- ((*1 *1 *2) (-12 (-5 *2 (-921 (-547))) (-4 *1 (-387))))
- ((*1 *1 *2) (-12 (-5 *2 (-921 (-370))) (-4 *1 (-387))))
- ((*1 *1 *2) (-12 (-5 *2 (-307 (-547))) (-4 *1 (-387))))
- ((*1 *1 *2) (-12 (-5 *2 (-307 (-370))) (-4 *1 (-387))))
- ((*1 *1 *2) (-12 (-5 *2 (-1219 (-398 (-921 (-547))))) (-4 *1 (-431))))
- ((*1 *1 *2) (-12 (-5 *2 (-1219 (-398 (-921 (-370))))) (-4 *1 (-431))))
- ((*1 *1 *2) (-12 (-5 *2 (-1219 (-921 (-547)))) (-4 *1 (-431))))
- ((*1 *1 *2) (-12 (-5 *2 (-1219 (-921 (-370)))) (-4 *1 (-431))))
- ((*1 *1 *2) (-12 (-5 *2 (-1219 (-307 (-547)))) (-4 *1 (-431))))
- ((*1 *1 *2) (-12 (-5 *2 (-1219 (-307 (-370)))) (-4 *1 (-431))))
+ (-12 (-5 *2 (-309 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5))
+ (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-1143)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-923 (-549))))) (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-400 (-923 (-372))))) (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-923 (-549)))) (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-923 (-372)))) (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-309 (-549)))) (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-665 (-309 (-372)))) (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-549)))) (-4 *1 (-389))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400 (-923 (-372)))) (-4 *1 (-389))))
+ ((*1 *1 *2) (-12 (-5 *2 (-923 (-549))) (-4 *1 (-389))))
+ ((*1 *1 *2) (-12 (-5 *2 (-923 (-372))) (-4 *1 (-389))))
+ ((*1 *1 *2) (-12 (-5 *2 (-309 (-549))) (-4 *1 (-389))))
+ ((*1 *1 *2) (-12 (-5 *2 (-309 (-372))) (-4 *1 (-389))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1226 (-400 (-923 (-549))))) (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1226 (-400 (-923 (-372))))) (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1226 (-923 (-549)))) (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1226 (-923 (-372)))) (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1226 (-309 (-549)))) (-4 *1 (-433))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1226 (-309 (-372)))) (-4 *1 (-433))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
(|:| |mdnia|
- (-2 (|:| |fn| (-307 (-217)))
- (|:| -4232 (-619 (-1058 (-814 (-217)))))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))))
- (-5 *1 (-743))))
+ (-2 (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-621 (-1061 (-816 (-219)))))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))))
+ (-5 *1 (-745))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217)))
- (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217)))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))
- (-5 *1 (-782))))
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
+ (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *1 (-784))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217)))
- (|:| |lb| (-619 (-814 (-217))))
- (|:| |cf| (-619 (-307 (-217))))
- (|:| |ub| (-619 (-814 (-217))))))
+ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
+ (|:| |lb| (-621 (-816 (-219))))
+ (|:| |cf| (-621 (-309 (-219))))
+ (|:| |ub| (-621 (-816 (-219))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-619 (-307 (-217))))
- (|:| -3054 (-619 (-217)))))))
- (-5 *1 (-812))))
+ (-2 (|:| |lfn| (-621 (-309 (-219))))
+ (|:| -3060 (-621 (-219)))))))
+ (-5 *1 (-814))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-619 (-307 (-217))))
+ (-2 (|:| |pde| (-621 (-309 (-219))))
(|:| |constraints|
- (-619
- (-2 (|:| |start| (-217)) (|:| |finish| (-217))
- (|:| |grid| (-745)) (|:| |boundaryType| (-547))
- (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217))))))
- (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119))
- (|:| |tol| (-217))))
- (-5 *1 (-867))))
+ (-621
+ (-2 (|:| |start| (-219)) (|:| |finish| (-219))
+ (|:| |grid| (-747)) (|:| |boundaryType| (-549))
+ (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219))))))
+ (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125))
+ (|:| |tol| (-219))))
+ (-5 *1 (-869))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *1 (-945 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1173))))
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *1 (-947 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1180))))
((*1 *1 *2)
- (-1530
- (-12 (-5 *2 (-921 *3))
- (-12 (-4000 (-4 *3 (-38 (-398 (-547)))))
- (-4000 (-4 *3 (-38 (-547)))) (-4 *5 (-592 (-1136))))
- (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767))
- (-4 *5 (-821)))
- (-12 (-5 *2 (-921 *3))
- (-12 (-4000 (-4 *3 (-532))) (-4000 (-4 *3 (-38 (-398 (-547)))))
- (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1136))))
- (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767))
- (-4 *5 (-821)))
- (-12 (-5 *2 (-921 *3))
- (-12 (-4000 (-4 *3 (-961 (-547)))) (-4 *3 (-38 (-398 (-547))))
- (-4 *5 (-592 (-1136))))
- (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767))
- (-4 *5 (-821)))))
+ (-1536
+ (-12 (-5 *2 (-923 *3))
+ (-12 (-4008 (-4 *3 (-38 (-400 (-549)))))
+ (-4008 (-4 *3 (-38 (-549)))) (-4 *5 (-594 (-1143))))
+ (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769))
+ (-4 *5 (-823)))
+ (-12 (-5 *2 (-923 *3))
+ (-12 (-4008 (-4 *3 (-534))) (-4008 (-4 *3 (-38 (-400 (-549)))))
+ (-4 *3 (-38 (-549))) (-4 *5 (-594 (-1143))))
+ (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769))
+ (-4 *5 (-823)))
+ (-12 (-5 *2 (-923 *3))
+ (-12 (-4008 (-4 *3 (-963 (-549)))) (-4 *3 (-38 (-400 (-549))))
+ (-4 *5 (-594 (-1143))))
+ (-4 *3 (-1018)) (-4 *1 (-1032 *3 *4 *5)) (-4 *4 (-769))
+ (-4 *5 (-823)))))
((*1 *1 *2)
- (-1530
- (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5))
- (-12 (-4000 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547)))
- (-4 *5 (-592 (-1136))))
- (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))
- (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5))
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136))))
- (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))))
+ (-1536
+ (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5))
+ (-12 (-4008 (-4 *3 (-38 (-400 (-549))))) (-4 *3 (-38 (-549)))
+ (-4 *5 (-594 (-1143))))
+ (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))
+ (-12 (-5 *2 (-923 (-549))) (-4 *1 (-1032 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143))))
+ (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)))))
((*1 *1 *2)
- (-12 (-5 *2 (-921 (-398 (-547)))) (-4 *1 (-1030 *3 *4 *5))
- (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1136))) (-4 *3 (-1016))
- (-4 *4 (-767)) (-4 *5 (-821)))))
+ (-12 (-5 *2 (-923 (-400 (-549)))) (-4 *1 (-1032 *3 *4 *5))
+ (-4 *3 (-38 (-400 (-549)))) (-4 *5 (-594 (-1143))) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-354))
- (-4 *7 (-1195 (-398 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -3366 *3)))
- (-5 *1 (-545 *5 *6 *7 *3)) (-4 *3 (-333 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-354))
- (-5 *2
- (-2 (|:| |answer| (-398 *6)) (|:| -3366 (-398 *6))
- (|:| |specpart| (-398 *6)) (|:| |polypart| *6)))
- (-5 *1 (-546 *5 *6)) (-5 *3 (-398 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-333 *4 *5 *6)) (-4 *4 (-1177))
- (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5)))
- (-5 *2 (-2 (|:| |num| (-663 *5)) (|:| |den| *5))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1186 (-547))) (-4 *1 (-273 *3)) (-4 *3 (-1173))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-273 *3)) (-4 *3 (-1173)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3))
- (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4))
- (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9))
- (-5 *1 (-511 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6))
- (-4 *8 (-364 *7)) (-4 *9 (-364 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2)) (-4 *2 (-298))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-298)) (-4 *3 (-169)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2))
- (-4 *2 (-661 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *4 (-1016))
- (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *2 *4)) (-4 *4 (-298)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-946 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1222)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-799)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-745))) (-5 *3 (-168)) (-5 *1 (-1125 *4 *5))
- (-14 *4 (-890)) (-4 *5 (-1016)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1136)))
- (-4 *6 (-13 (-539) (-1007 *5))) (-4 *5 (-539))
- (-5 *2 (-619 (-619 (-285 (-398 (-921 *6)))))) (-5 *1 (-1008 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895))))
- ((*1 *2 *1) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))))
+ (-12 (-5 *4 (-1 (-621 *5) *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *6 (-1202 *5))
+ (-5 *2 (-621 (-2 (|:| -2589 *5) (|:| -2652 *3))))
+ (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-632 *6))
+ (-4 *7 (-632 (-400 *6))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-307 (-217))) (-5 *2 (-307 (-398 (-547))))
- (-5 *1 (-296)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-619 *7))) (-4 *1 (-1166 *4 *5 *6 *7))
- (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5))
- (-5 *1 (-957 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5))
- (-5 *1 (-1070 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-621 (-621 (-621 *4)))) (-5 *2 (-621 (-621 *4)))
+ (-5 *1 (-1151 *4)) (-4 *4 (-823)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))))
(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-444)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-621 (-1143))) (-4 *5 (-444))
+ (-5 *2 (-473 *4 *5)) (-5 *1 (-609 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1125)) (-5 *1 (-186))))
+ ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1125)) (-5 *1 (-293))))
+ ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1125)) (-5 *1 (-298)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-342))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -4024 (-621 (-2 (|:| |irr| *3) (|:| -2495 (-549)))))))
+ (-5 *1 (-210 *5 *3)) (-4 *3 (-1202 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-5 *2 (-1125)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1249 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-819)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-864))
+ (-12
(-5 *3
- (-2 (|:| |pde| (-619 (-307 (-217))))
- (|:| |constraints|
- (-619
- (-2 (|:| |start| (-217)) (|:| |finish| (-217))
- (|:| |grid| (-745)) (|:| |boundaryType| (-547))
- (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217))))))
- (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119))
- (|:| |tol| (-217))))
- (-5 *2 (-1004)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-340)) (-4 *5 (-320 *4)) (-4 *6 (-1195 *5))
- (-5 *2 (-619 *3)) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1195 *6))
- (-14 *7 (-890)))))
+ (-621 (-2 (|:| -3838 (-400 (-549))) (|:| -3848 (-400 (-549))))))
+ (-5 *2 (-621 (-400 (-549)))) (-5 *1 (-991 *4))
+ (-4 *4 (-1202 (-549))))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8))
+ (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4))))
+ (-5 *1 (-1039 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1981 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8))
+ (-4 *6 (-444)) (-4 *7 (-769)) (-4 *4 (-823))
+ (-5 *2 (-621 (-2 (|:| |val| *8) (|:| -1981 *9))))
+ (-5 *1 (-1039 *6 *7 *4 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971)))
- (-5 *1 (-173 *3)))))
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-621
+ (-2
+ (|:| -3337
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (|:| -1793
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1123 (-219)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1372
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-544)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-112)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-295)))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1051 *3)) (-4 *3 (-131)))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1132 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *1) (-5 *1 (-428))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1048 *3)) (-4 *3 (-131)))))
-(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745))))
+ (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067))
+ (-5 *2 (-621 (-2 (|:| |k| *4) (|:| |c| *3))))))
((*1 *2 *1)
- (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-745)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))
+ (-12 (-5 *2 (-621 (-2 (|:| |k| (-864 *3)) (|:| |c| *4))))
+ (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892))))
((*1 *2 *1)
- (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-619 (-285 *4))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821))
- (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-745)) (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-532)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1173)))))
+ (-12 (-5 *2 (-621 (-648 *3))) (-5 *1 (-864 *3)) (-4 *3 (-823)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-624 *3)) (-4 *3 (-1018))
+ (-5 *1 (-691 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-810 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-621 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-948 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *1) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-945)))))
+(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1029))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1029)))))
+(((*1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1180)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-621 (-1143))) (-4 *2 (-170))
+ (-4 *3 (-232 (-3775 *4) (-747)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3493 *5) (|:| -3731 *3))
+ (-2 (|:| -3493 *5) (|:| -3731 *3))))
+ (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-823))
+ (-4 *7 (-920 *2 *3 (-836 *4))))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-112)) (-5 *6 (-219))
+ (-5 *7 (-665 (-549)))
+ (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 OBJFUN))))
+ (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-730)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 *4)) (-4 *4 (-354)) (-5 *2 (-1132 *4))
- (-5 *1 (-520 *4 *5 *6)) (-4 *5 (-354)) (-4 *6 (-13 (-354) (-819))))))
+ (-12 (-5 *3 (-816 (-372))) (-5 *2 (-816 (-219))) (-5 *1 (-298)))))
+(((*1 *1) (-5 *1 (-1146))))
(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2831 (-547)) (|:| -2534 (-619 *3))))
- (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-843))
- (-5 *5 (-890)) (-5 *6 (-619 (-254))) (-5 *2 (-458)) (-5 *1 (-1223))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *2 (-458))
- (-5 *1 (-1223))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-619 (-254)))
- (-5 *2 (-458)) (-5 *1 (-1223)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-354)) (-4 *1 (-320 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1219 *3)) (-4 *3 (-1195 *4)) (-4 *4 (-1177))
- (-4 *1 (-333 *4 *3 *5)) (-4 *5 (-1195 (-398 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1219 *4)) (-5 *3 (-1219 *1)) (-4 *4 (-169))
- (-4 *1 (-358 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1219 *4)) (-5 *3 (-1219 *1)) (-4 *4 (-169))
- (-4 *1 (-361 *4 *5)) (-4 *5 (-1195 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1219 *3)) (-4 *3 (-169)) (-4 *1 (-400 *3 *4))
- (-4 *4 (-1195 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-169)) (-4 *1 (-408 *3)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN))))
- (-5 *2 (-1004)) (-5 *1 (-723)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1132 *5)) (-4 *5 (-354)) (-5 *2 (-619 *6))
- (-5 *1 (-520 *5 *6 *4)) (-4 *6 (-354)) (-4 *4 (-13 (-354) (-819))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-619 (-547))) (-5 *1 (-1073)) (-5 *3 (-547)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))))
+ (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *2 (-621 *4)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1202 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *2 (-621 *3)) (-5 *1 (-1095 *4 *3)) (-4 *4 (-1202 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-128)) (-5 *2 (-1087)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-387))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1160)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-547)) (-4 *1 (-625 *3)) (-4 *3 (-1173))))
+ (-12 (-5 *2 (-549)) (-4 *1 (-627 *3)) (-4 *3 (-1180))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-625 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-590 *3)) (-5 *5 (-1132 *3))
- (-4 *3 (-13 (-421 *6) (-27) (-1158)))
- (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2 (-565 *3)) (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-590 *3)) (-5 *5 (-398 (-1132 *3)))
- (-4 *3 (-13 (-421 *6) (-27) (-1158)))
- (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2 (-565 *3)) (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063)))))
+ (-12 (-5 *3 (-549)) (-4 *1 (-627 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1202 *5)) (-4 *5 (-356))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-559 *5 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1100 (-219))) (-5 *3 (-621 (-256))) (-5 *1 (-1228))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1100 (-219))) (-5 *3 (-1125)) (-5 *1 (-1228))))
+ ((*1 *1 *1) (-5 *1 (-1228))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-356)) (-5 *1 (-867 *2 *3))
+ (-4 *2 (-1202 *3)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-592 *4)) (-5 *6 (-1143))
+ (-4 *4 (-13 (-423 *7) (-27) (-1165)))
+ (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4))))
+ (-5 *1 (-551 *7 *4 *3)) (-4 *3 (-632 *4)) (-4 *3 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-834)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5)))
+ (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-747)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1165))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-387))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1160)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1065 *4)) (-4 *4 (-1063)) (-5 *2 (-1 *4))
- (-5 *1 (-986 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-370))) (-5 *1 (-1009)) (-5 *3 (-370))))
+ (-12 (-5 *2 (-1123 (-549))) (-5 *1 (-1127 *4)) (-4 *4 (-1018))
+ (-5 *3 (-549)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-923 *4)) (-4 *4 (-13 (-300) (-145)))
+ (-4 *2 (-920 *4 *6 *5)) (-5 *1 (-895 *4 *5 *6 *2))
+ (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-309 (-219)))) (-5 *2 (-112)) (-5 *1 (-260))))
+ ((*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-112)) (-5 *1 (-260))))
((*1 *2 *3)
- (-12 (-5 *3 (-1058 (-547))) (-5 *2 (-1 (-547))) (-5 *1 (-1014)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *6 (-217))
- (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-726)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-547)) (-5 *1 (-670 *2)) (-4 *2 (-1195 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821))
- (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-745))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821))
- (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-745))))
- ((*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-821)) (-5 *2 (-745)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1119)) (-5 *3 (-797)) (-5 *1 (-796)))))
+ (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-549)) (-5 *1 (-235))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-1125))) (-5 *2 (-549)) (-5 *1 (-235)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)))) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-13 (-27) (-1165) (-423 (-167 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-541) (-823) (-1009 (-549))))
+ (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 (-167 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-1169 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-1169 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-112))))
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3))
+ (-4 *3 (-1202 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-619 (-1136))) (-4 *2 (-169))
- (-4 *3 (-230 (-3767 *4) (-745)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3487 *5) (|:| -3322 *3))
- (-2 (|:| -3487 *5) (|:| -3322 *3))))
- (-5 *1 (-451 *4 *2 *5 *3 *6 *7)) (-4 *5 (-821))
- (-4 *7 (-918 *2 *3 (-834 *4))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1117 *4)) (-5 *3 (-547)) (-4 *4 (-1016))
- (-5 *1 (-1121 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-547)) (-5 *1 (-1211 *3 *4 *5)) (-4 *3 (-1016))
- (-14 *4 (-1136)) (-14 *5 *3))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-114)) (-4 *4 (-1016)) (-5 *1 (-689 *4 *2))
- (-4 *2 (-622 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-808 *2)) (-4 *2 (-1016)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1166 *4 *5 *3 *6)) (-4 *4 (-539)) (-4 *5 (-767))
- (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-398 (-547))) (-5 *1 (-993 *3))
- (-4 *3 (-13 (-819) (-354) (-991)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3))
- (-4 *3 (-1195 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-354)))
- (-4 *3 (-1195 *2)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1119)) (-5 *3 (-547)) (-5 *1 (-233))))
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-795 *3)) (-4 *3 (-823)) (-5 *1 (-648 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854)) (-5 *3 (-549)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1125)) (-5 *3 (-549)) (-5 *1 (-235))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-619 (-1119))) (-5 *3 (-547)) (-5 *4 (-1119))
- (-5 *1 (-233))))
- ((*1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832))))
+ (-12 (-5 *2 (-621 (-1125))) (-5 *3 (-549)) (-5 *4 (-1125))
+ (-5 *1 (-235))))
+ ((*1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834))))
((*1 *2 *1)
- (-12 (-4 *1 (-1197 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-912 *4)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-1016)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3))
- (-4 *3 (-1063)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-547)) (-5 *5 (-166 (-217))) (-5 *6 (-1119))
- (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1136)) (-5 *5 (-1058 (-217))) (-5 *2 (-896))
- (-5 *1 (-894 *3)) (-4 *3 (-592 (-523)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136)) (-5 *2 (-896)) (-5 *1 (-894 *3))
- (-4 *3 (-592 (-523)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *1 (-896))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-896)))))
+ (-12 (-4 *1 (-1204 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-621
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-769)) (-4 *3 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823))
+ (-5 *1 (-441 *4 *5 *6 *3)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-219))) (-5 *1 (-260)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549))
+ (-5 *2 (-1006)) (-5 *1 (-733)))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-429)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1063)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-657 *4 *5)) (-4 *4 (-1063))))
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1067)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-659 *4 *5)) (-4 *4 (-1067))))
((*1 *2 *2)
- (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-421 *3))))
+ (-12 (-4 *3 (-823)) (-5 *1 (-900 *3 *2)) (-4 *2 (-423 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1136)) (-5 *2 (-307 (-547))) (-5 *1 (-899))))
+ (-12 (-5 *3 (-1143)) (-5 *2 (-309 (-549))) (-5 *1 (-901))))
((*1 *2 *1)
- (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016))))
+ (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018))))
((*1 *2 *1)
- (-12 (-4 *2 (-1016)) (-5 *1 (-1242 *2 *3)) (-4 *3 (-817)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-280 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1195 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-686 *3 *2 *4 *5 *6)) (-4 *3 (-169))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1195 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-169))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))))
+ (-12 (-4 *2 (-1018)) (-5 *1 (-1249 *2 *3)) (-4 *3 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-1147)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *1 (-959 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *1 (-1074 *3 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675))))
+ ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-675)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -1949 (-665 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-665 *3))))
+ (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $)))))
+ (-4 *4 (-1202 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-541)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-4 *5 (-1195 *4)) (-5 *2 (-619 (-627 (-398 *5))))
- (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-398 *5))))))
+ (-12 (-4 *4 (-541)) (-5 *2 (-621 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-410 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821))
- (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
+ (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018))
+ (-5 *2 (-621 (-621 (-914 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-621 (-621 (-914 *4)))) (-5 *3 (-112)) (-4 *4 (-1018))
+ (-4 *1 (-1101 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-621 (-914 *3)))) (-4 *3 (-1018))
+ (-4 *1 (-1101 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-621 (-621 (-621 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1101 *4)) (-4 *4 (-1018))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-621 (-621 (-914 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1101 *4)) (-4 *4 (-1018))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-621 (-621 (-621 *5)))) (-5 *3 (-621 (-169)))
+ (-5 *4 (-169)) (-4 *1 (-1101 *5)) (-4 *5 (-1018))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-621 (-621 (-914 *5)))) (-5 *3 (-621 (-169)))
+ (-5 *4 (-169)) (-4 *1 (-1101 *5)) (-4 *5 (-1018)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-1219 *4 *2))
+ (-4 *4 (-38 (-400 (-549)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-821))) (-5 *1 (-179 *3 *2))
+ (-4 *2 (-1202 (-167 *3))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *2 (-1032 *4 *5 *6)) (-5 *1 (-752 *4 *5 *6 *2 *3))
+ (-4 *3 (-1038 *4 *5 *6 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1139 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991)))
- (-14 *5 (-619 (-1136))) (-5 *2 (-619 (-619 (-993 (-398 *4)))))
- (-5 *1 (-1245 *4 *5 *6)) (-14 *6 (-619 (-1136)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-819) (-298) (-145) (-991)))
- (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1245 *5 *6 *7))
- (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-819) (-298) (-145) (-991)))
- (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1245 *5 *6 *7))
- (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-921 *4)))
- (-4 *4 (-13 (-819) (-298) (-145) (-991)))
- (-5 *2 (-619 (-619 (-993 (-398 *4))))) (-5 *1 (-1245 *4 *5 *6))
- (-14 *5 (-619 (-1136))) (-14 *6 (-619 (-1136))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169))
- (-5 *2 (-663 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))))
+ (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3602 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1032 *6 *7 *8)) (-4 *6 (-541)) (-4 *7 (-769))
+ (-4 *8 (-823)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2317 (-621 *9))))
+ (-5 *3 (-621 *9)) (-4 *1 (-1173 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2317 (-621 *8))))
+ (-5 *3 (-621 *8)) (-4 *1 (-1173 *5 *6 *7 *8)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-834) (-834) (-834))) (-5 *4 (-549)) (-5 *2 (-834))
+ (-5 *1 (-625 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-834)) (-5 *1 (-827 *3 *4 *5)) (-4 *3 (-1018))
+ (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-834))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-834))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-834))))
+ ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-834)) (-5 *1 (-1139 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-621 (-665 (-549))))
+ (-5 *1 (-1077)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1143)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-619 *5) *6))
- (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *6 (-1195 *5))
- (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2644 *3))))
- (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6))
- (-4 *7 (-630 (-398 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-619 *5) *6))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-4 *6 (-1195 *5))
- (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2644 (-628 *6 (-398 *6))))))
- (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-398 *6))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-835 *4 *5 *6 *7))
- (-4 *4 (-1016)) (-14 *5 (-619 (-1136))) (-14 *6 (-619 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-4 *5 (-821)) (-4 *6 (-767))
- (-14 *8 (-619 *5)) (-5 *2 (-1224))
- (-5 *1 (-1231 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-918 *4 *6 *5))
- (-14 *9 (-619 *3)) (-14 *10 *3))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-166 (-217)))) (-5 *2 (-1004))
- (-5 *1 (-731)))))
-(((*1 *1) (-5 *1 (-777))))
+ (-12 (-5 *4 (-549)) (-4 *2 (-423 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1009 *4)) (-4 *3 (-13 (-823) (-541))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1139 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-400 (-923 *3))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-541)) (-5 *1 (-940 *4 *2))
+ (-4 *2 (-1202 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1028 (-995 *4) (-1139 (-995 *4)))) (-5 *3 (-834))
+ (-5 *1 (-995 *4)) (-4 *4 (-13 (-821) (-356) (-993))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-619 (-590 *2))) (-5 *4 (-1136))
- (-4 *2 (-13 (-27) (-1158) (-421 *5)))
- (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-268 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-810))
- (-5 *3
- (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217)))
- (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217))))
- (|:| |ub| (-619 (-814 (-217))))))
- (-5 *2 (-1004))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-810))
- (-5 *3
- (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))
- (-5 *2 (-1004)))))
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *5)))))
(((*1 *1 *2)
- (-12
- (-5 *2
- (-619
- (-2
- (|:| -3331
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217))))
- (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217)))
- (|:| |g| (-307 (-217))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (|:| -1786
- (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370))
- (|:| |expense| (-370)) (|:| |accuracy| (-370))
- (|:| |intermediateResults| (-370)))))))
- (-5 *1 (-777)))))
-(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-370)))))
-(((*1 *2)
- (-12 (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5)))
- (-5 *2 (-619 (-619 *4))) (-5 *1 (-332 *3 *4 *5 *6))
- (-4 *3 (-333 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-4 *3 (-359)) (-5 *2 (-619 (-619 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *1 (-1090 *3 *2)) (-4 *3 (-1195 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-890)) (-5 *1 (-760)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1100))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-5 *2 (-547))
- (-5 *1 (-433 *5 *3 *6)) (-4 *3 (-1195 *5))
- (-4 *6 (-13 (-395) (-1007 *5) (-354) (-1158) (-275)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *4 *3 *5))
- (-4 *3 (-1195 *4))
- (-4 *5 (-13 (-395) (-1007 *4) (-354) (-1158) (-275))))))
-(((*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-409 *4) *4)) (-4 *4 (-539)) (-5 *2 (-409 *4))
- (-5 *1 (-410 *4))))
- ((*1 *1 *1) (-5 *1 (-895)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895))))
- ((*1 *1 *1) (-5 *1 (-896)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))
- (-5 *4 (-398 (-547))) (-5 *1 (-989 *3)) (-4 *3 (-1195 (-547)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))
- (-5 *1 (-989 *3)) (-4 *3 (-1195 (-547)))))
+ (-12 (-5 *2 (-309 *3)) (-4 *3 (-13 (-1018) (-823)))
+ (-5 *1 (-217 *3 *4)) (-14 *4 (-621 (-1143))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1226 (-549))) (-5 *3 (-549)) (-5 *1 (-1077))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))
- (-5 *4 (-398 (-547))) (-5 *1 (-990 *3)) (-4 *3 (-1195 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3830 (-398 (-547))) (|:| -3840 (-398 (-547)))))
- (-5 *1 (-990 *3)) (-4 *3 (-1195 (-398 (-547))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3))
- (-4 *3 (-1195 *2)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1132 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8)))
- (-4 *7 (-821)) (-4 *8 (-298)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767))
- (-5 *2
- (-2 (|:| |upol| (-1132 *8)) (|:| |Lval| (-619 *8))
- (|:| |Lfact|
- (-619 (-2 (|:| -2115 (-1132 *8)) (|:| -3322 (-547)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-717 *6 *7 *8 *9)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-442))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *3 (-1030 *4 *5 *6))
- (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *1))))
- (-4 *1 (-1036 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1177)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-539)) (-5 *1 (-1198 *3 *2))
- (-4 *2 (-13 (-1195 *3) (-539) (-10 -8 (-15 -3719 ($ $ $))))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-979 *3)) (-4 *3 (-1173)) (-4 *3 (-1063))
- (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1166 *2 *3 *4 *5)) (-4 *2 (-539)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4)))))
+ (-12 (-5 *2 (-1226 (-549))) (-5 *3 (-621 (-549))) (-5 *4 (-549))
+ (-5 *1 (-1077)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-541)) (-4 *2 (-444)) (-5 *1 (-940 *2 *3))
+ (-4 *3 (-1202 *2)))))
(((*1 *1 *1) (-5 *1 (-48)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1173))
- (-4 *2 (-1173)) (-5 *1 (-57 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1180))
+ (-4 *2 (-1180)) (-5 *1 (-57 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (|has| *1 (-6 -4329))
- (-4 *1 (-149 *2)) (-4 *2 (-1173))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1067)) (|has| *1 (-6 -4337))
+ (-4 *1 (-149 *2)) (-4 *2 (-1180))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4329)) (-4 *1 (-149 *2))
- (-4 *2 (-1173))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4337)) (-4 *1 (-149 *2))
+ (-4 *2 (-1180))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4329)) (-4 *1 (-149 *2))
- (-4 *2 (-1173))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4337)) (-4 *1 (-149 *2))
+ (-4 *2 (-1180))))
((*1 *2 *3)
- (-12 (-4 *4 (-1016))
- (-5 *2 (-2 (|:| -2447 (-1132 *4)) (|:| |deg| (-890))))
- (-5 *1 (-213 *4 *5)) (-5 *3 (-1132 *4)) (-4 *5 (-13 (-539) (-821)))))
+ (-12 (-4 *4 (-1018))
+ (-5 *2 (-2 (|:| -3028 (-1139 *4)) (|:| |deg| (-892))))
+ (-5 *1 (-215 *4 *5)) (-5 *3 (-1139 *4)) (-4 *5 (-13 (-541) (-823)))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-232 *5 *6)) (-14 *5 (-745))
- (-4 *6 (-1173)) (-4 *2 (-1173)) (-5 *1 (-231 *5 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-234 *5 *6)) (-14 *5 (-747))
+ (-4 *6 (-1180)) (-4 *2 (-1180)) (-5 *1 (-233 *5 *6 *2))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-169)) (-5 *1 (-280 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1195 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1202 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
(-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-539)) (-4 *2 (-821))))
+ ((*1 *1 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-541)) (-4 *2 (-823))))
((*1 *1 *1)
- (-12 (-4 *1 (-326 *2 *3 *4 *5)) (-4 *2 (-354)) (-4 *3 (-1195 *2))
- (-4 *4 (-1195 (-398 *3))) (-4 *5 (-333 *2 *3 *4))))
+ (-12 (-4 *1 (-328 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1202 *2))
+ (-4 *4 (-1202 (-400 *3))) (-4 *5 (-335 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1173)) (-4 *2 (-1173))
- (-5 *1 (-362 *5 *4 *2 *6)) (-4 *4 (-364 *5)) (-4 *6 (-364 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1180)) (-4 *2 (-1180))
+ (-5 *1 (-364 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1063)) (-4 *2 (-1063))
- (-5 *1 (-414 *5 *4 *2 *6)) (-4 *4 (-416 *5)) (-4 *6 (-416 *2))))
- ((*1 *1 *1) (-5 *1 (-484)))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1067)) (-4 *2 (-1067))
+ (-5 *1 (-416 *5 *4 *2 *6)) (-4 *4 (-418 *5)) (-4 *6 (-418 *2))))
+ ((*1 *1 *1) (-5 *1 (-486)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-619 *5)) (-4 *5 (-1173))
- (-4 *2 (-1173)) (-5 *1 (-617 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-621 *5)) (-4 *5 (-1180))
+ (-4 *2 (-1180)) (-5 *1 (-619 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016))
- (-4 *6 (-364 *5)) (-4 *7 (-364 *5)) (-4 *8 (-364 *2))
- (-4 *9 (-364 *2)) (-5 *1 (-659 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-661 *5 *6 *7)) (-4 *10 (-661 *2 *8 *9))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1018)) (-4 *2 (-1018))
+ (-4 *6 (-366 *5)) (-4 *7 (-366 *5)) (-4 *8 (-366 *2))
+ (-4 *9 (-366 *2)) (-5 *1 (-661 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-663 *5 *6 *7)) (-4 *10 (-663 *2 *8 *9))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23))
+ (-12 (-5 *1 (-688 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1195 *3))))
+ (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1202 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23))
+ (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-398 *4)) (-4 *4 (-1195 *3)) (-4 *3 (-354))
- (-4 *3 (-169)) (-4 *1 (-699 *3 *4))))
+ (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1202 *3)) (-4 *3 (-356))
+ (-4 *3 (-170)) (-4 *1 (-701 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1195 *3))))
+ (-12 (-4 *3 (-170)) (-4 *1 (-701 *3 *2)) (-4 *2 (-1202 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-927 *5)) (-4 *5 (-1173))
- (-4 *2 (-1173)) (-5 *1 (-926 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-929 *5)) (-4 *5 (-1180))
+ (-4 *2 (-1180)) (-5 *1 (-928 *5 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5))
- (-14 *6 (-619 *2))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-1005 *3 *4 *5 *2 *6)) (-4 *2 (-920 *3 *4 *5))
+ (-14 *6 (-621 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1016)) (-4 *2 (-1016))
- (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-230 *6 *7))
- (-4 *9 (-230 *5 *7)) (-4 *10 (-230 *6 *2)) (-4 *11 (-230 *5 *2))
- (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *12 (-1019 *5 *6 *2 *10 *11))))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1018)) (-4 *2 (-1018))
+ (-14 *5 (-747)) (-14 *6 (-747)) (-4 *8 (-232 *6 *7))
+ (-4 *9 (-232 *5 *7)) (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2))
+ (-5 *1 (-1023 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1021 *5 *6 *7 *8 *9)) (-4 *12 (-1021 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1117 *5)) (-4 *5 (-1173))
- (-4 *2 (-1173)) (-5 *1 (-1115 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1123 *5)) (-4 *5 (-1180))
+ (-4 *2 (-1180)) (-5 *1 (-1121 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1166 *5 *6 *7 *2)) (-4 *5 (-539)) (-4 *6 (-767))
- (-4 *7 (-821)) (-4 *2 (-1030 *5 *6 *7))))
+ (-4 *1 (-1173 *5 *6 *7 *2)) (-4 *5 (-541)) (-4 *6 (-769))
+ (-4 *7 (-823)) (-4 *2 (-1032 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1219 *5)) (-4 *5 (-1173))
- (-4 *2 (-1173)) (-5 *1 (-1218 *5 *2)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-722)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890))
- (-14 *4 (-890)))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1226 *5)) (-4 *5 (-1180))
+ (-4 *2 (-1180)) (-5 *1 (-1225 *5 *2)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1136)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *4 *5 *6 *7))
- (-4 *4 (-592 (-523))) (-4 *5 (-1173)) (-4 *6 (-1173))
- (-4 *7 (-1173)))))
-(((*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))))
-(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))
- ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539))
- (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-946 *5 *6 *7 *8)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-4 *2 (-1063))
- (-5 *1 (-858 *4 *2)))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-1018)) (-4 *4 (-170))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))
+ (-4 *3 (-170)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-354)) (-4 *3 (-1016))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4238 *1)))
- (-4 *1 (-823 *3)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1117 *4)) (-5 *3 (-547)) (-4 *4 (-1016))
- (-5 *1 (-1121 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-547)) (-5 *1 (-1211 *3 *4 *5)) (-4 *3 (-1016))
- (-14 *4 (-1136)) (-14 *5 *3))))
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
+ (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-96)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1202 (-400 *2))) (-5 *2 (-549)) (-5 *1 (-884 *4 *3))
+ (-4 *3 (-1202 (-400 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-309 (-549))) (-5 *4 (-1 (-219) (-219)))
+ (-5 *5 (-1061 (-219))) (-5 *6 (-621 (-256))) (-5 *2 (-1100 (-219)))
+ (-5 *1 (-673)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1006)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-590 *6)) (-4 *6 (-13 (-421 *5) (-27) (-1158)))
- (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2 (-1132 (-398 (-1132 *6)))) (-5 *1 (-543 *5 *6 *7))
- (-5 *3 (-1132 *6)) (-4 *7 (-1063))))
+ (-12 (-5 *4 (-592 *6)) (-4 *6 (-13 (-423 *5) (-27) (-1165)))
+ (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2 (-1139 (-400 (-1139 *6)))) (-5 *1 (-545 *5 *6 *7))
+ (-5 *3 (-1139 *6)) (-4 *7 (-1067))))
((*1 *2 *1)
- (-12 (-4 *2 (-1195 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016))))
+ (-12 (-4 *2 (-1202 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018))))
((*1 *2 *1)
- (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1195 *3))))
+ (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1202 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1132 *11)) (-5 *6 (-619 *10))
- (-5 *7 (-619 (-745))) (-5 *8 (-619 *11)) (-4 *10 (-821))
- (-4 *11 (-298)) (-4 *9 (-767)) (-4 *5 (-918 *11 *9 *10))
- (-5 *2 (-619 (-1132 *5))) (-5 *1 (-717 *9 *10 *11 *5))
- (-5 *3 (-1132 *5))))
+ (|partial| -12 (-5 *4 (-1139 *11)) (-5 *6 (-621 *10))
+ (-5 *7 (-621 (-747))) (-5 *8 (-621 *11)) (-4 *10 (-823))
+ (-4 *11 (-300)) (-4 *9 (-769)) (-4 *5 (-920 *11 *9 *10))
+ (-5 *2 (-621 (-1139 *5))) (-5 *1 (-719 *9 *10 *11 *5))
+ (-5 *3 (-1139 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-918 *3 *4 *5)) (-5 *1 (-1003 *3 *4 *5 *2 *6))
- (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-14 *6 (-619 *2)))))
-(((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-421 *4) (-971) (-1158)))
- (-4 *4 (-13 (-539) (-821)))
- (-4 *2 (-13 (-421 (-166 *4)) (-971) (-1158)))
- (-5 *1 (-578 *4 *5 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))))
-(((*1 *2) (-12 (-5 *2 (-1108 (-1119))) (-5 *1 (-382)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1173)) (-5 *1 (-1094 *4 *2))
- (-4 *2 (-13 (-582 (-547) *4) (-10 -7 (-6 -4329) (-6 -4330))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-821)) (-4 *3 (-1173)) (-5 *1 (-1094 *3 *2))
- (-4 *2 (-13 (-582 (-547) *3) (-10 -7 (-6 -4329) (-6 -4330)))))))
+ (-12 (-4 *2 (-920 *3 *4 *5)) (-5 *1 (-1005 *3 *4 *5 *2 *6))
+ (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-14 *6 (-621 *2)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-112))
+ (-5 *2 (-1006)) (-5 *1 (-730)))))
+(((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)) (-4 *2 (-534))))
+ ((*1 *1 *1) (-4 *1 (-1027))))
+(((*1 *1 *1 *1) (-5 *1 (-160)))
+ ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-160)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-567 *2)) (-4 *2 (-13 (-29 *4) (-1165)))
+ (-5 *1 (-565 *4 *2))
+ (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-567 (-400 (-923 *4))))
+ (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
+ (-5 *2 (-309 *4)) (-5 *1 (-570 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-219))
+ (-5 *2
+ (-2 (|:| |brans| (-621 (-621 (-914 *4))))
+ (|:| |xValues| (-1061 *4)) (|:| |yValues| (-1061 *4))))
+ (-5 *1 (-151)) (-5 *3 (-621 (-621 (-914 *4)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-621 *3)) (-5 *1 (-932 *3)) (-4 *3 (-534)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1143)) (-5 *5 (-621 (-400 (-923 *6))))
+ (-5 *3 (-400 (-923 *6)))
+ (-4 *6 (-13 (-541) (-1009 (-549)) (-145)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-555 *6)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486)))))
+(((*1 *1) (-5 *1 (-323))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-892)) (-5 *2 (-1139 *3)) (-5 *1 (-1154 *3))
+ (-4 *3 (-356)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2712 (-547)))))
- (-5 *1 (-352 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2712 (-745)))))
- (-5 *1 (-377 *3)) (-4 *3 (-1063))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-823)) (-5 *2 (-621 *1))
+ (-4 *1 (-423 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| -2115 *3) (|:| -3322 (-547)))))
- (-5 *1 (-409 *3)) (-4 *3 (-539))))
+ (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3))
+ (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2712 (-745)))))
- (-5 *1 (-793 *3)) (-4 *3 (-821)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-112))
- (-5 *6 (-217)) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-67 APROD))))
- (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-72 MSOLVE))))
- (-5 *2 (-1004)) (-5 *1 (-731)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-354)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-4 *6 (-333 *3 *4 *5))
- (-5 *2 (-404 *4 (-398 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1219 *6)) (-4 *6 (-13 (-400 *4 *5) (-1007 *4)))
- (-4 *4 (-961 *3)) (-4 *5 (-1195 *4)) (-4 *3 (-298))
- (-5 *1 (-404 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-354))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-683 *3)) (-5 *1 (-801 *2 *3)) (-4 *3 (-1016)))))
-(((*1 *1) (-5 *1 (-321))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-354)) (-5 *1 (-276 *3 *2)) (-4 *2 (-1210 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971)))
- (-5 *1 (-173 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1974 *4))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-743))
- (-5 *2
- (-2 (|:| -2526 (-370)) (|:| -2473 (-1119))
- (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004))))
- (-5 *1 (-548))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-743)) (-5 *4 (-1028))
- (-5 *2
- (-2 (|:| -2526 (-370)) (|:| -2473 (-1119))
- (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004))))
- (-5 *1 (-548))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-761)) (-5 *3 (-1028))
- (-5 *4
- (-2 (|:| |fn| (-307 (-217)))
- (|:| -4232 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (-5 *2
- (-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))
- (|:| |extra| (-1004))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-761)) (-5 *3 (-1028))
- (-5 *4
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (-5 *2
- (-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))
- (|:| |extra| (-1004))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-774)) (-5 *3 (-1028))
- (-5 *4
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217)))
- (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217)))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))
- (-5 *2 (-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))))))
+ (|partial| -12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-621 *1)) (-4 *1 (-920 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-782))
- (-5 *2
- (-2 (|:| -2526 (-370)) (|:| -2473 (-1119))
- (|:| |explanations| (-619 (-1119)))))
- (-5 *1 (-779))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-782)) (-5 *4 (-1028))
- (-5 *2
- (-2 (|:| -2526 (-370)) (|:| -2473 (-1119))
- (|:| |explanations| (-619 (-1119)))))
- (-5 *1 (-779))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-810)) (-5 *3 (-1028))
- (-5 *4
- (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))
- (-5 *2 (-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-810)) (-5 *3 (-1028))
- (-5 *4
- (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217)))
- (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217))))
- (|:| |ub| (-619 (-814 (-217))))))
- (-5 *2 (-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))))))
+ (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
+ (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-621 *3))
+ (-5 *1 (-921 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $))
+ (-15 -1403 (*7 $))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-534))
+ (-5 *2 (-400 (-549)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-549))) (-5 *1 (-411 *3)) (-4 *3 (-534))
+ (-4 *3 (-541))))
+ ((*1 *2 *1) (-12 (-4 *1 (-534)) (-5 *2 (-400 (-549)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-773 *3)) (-4 *3 (-170)) (-4 *3 (-534))
+ (-5 *2 (-400 (-549)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-549))) (-5 *1 (-809 *3)) (-4 *3 (-534))
+ (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-400 (-549))) (-5 *1 (-816 *3)) (-4 *3 (-534))
+ (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-968 *3)) (-4 *3 (-170)) (-4 *3 (-534))
+ (-5 *2 (-400 (-549)))))
((*1 *2 *3)
- (-12 (-5 *3 (-812))
- (-5 *2
- (-2 (|:| -2526 (-370)) (|:| -2473 (-1119))
- (|:| |explanations| (-619 (-1119)))))
- (-5 *1 (-811))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-812)) (-5 *4 (-1028))
- (-5 *2
- (-2 (|:| -2526 (-370)) (|:| -2473 (-1119))
- (|:| |explanations| (-619 (-1119)))))
- (-5 *1 (-811))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-864)) (-5 *3 (-1028))
- (-5 *4
- (-2 (|:| |pde| (-619 (-307 (-217))))
+ (-12 (-5 *2 (-400 (-549))) (-5 *1 (-979 *3)) (-4 *3 (-1009 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-866))
+ (-5 *3
+ (-2 (|:| |pde| (-621 (-309 (-219))))
(|:| |constraints|
- (-619
- (-2 (|:| |start| (-217)) (|:| |finish| (-217))
- (|:| |grid| (-745)) (|:| |boundaryType| (-547))
- (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217))))))
- (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119))
- (|:| |tol| (-217))))
- (-5 *2 (-2 (|:| -2526 (-370)) (|:| |explanations| (-1119))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-867))
- (-5 *2
- (-2 (|:| -2526 (-370)) (|:| -2473 (-1119))
- (|:| |explanations| (-619 (-1119)))))
- (-5 *1 (-866))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-867)) (-5 *4 (-1028))
- (-5 *2
- (-2 (|:| -2526 (-370)) (|:| -2473 (-1119))
- (|:| |explanations| (-619 (-1119)))))
- (-5 *1 (-866)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 *7)) (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5))
- (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136))))
- (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7)))))
+ (-621
+ (-2 (|:| |start| (-219)) (|:| |finish| (-219))
+ (|:| |grid| (-747)) (|:| |boundaryType| (-549))
+ (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219))))))
+ (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125))
+ (|:| |tol| (-219))))
+ (-5 *2 (-1006)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1136)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *3 *5 *6 *7))
- (-4 *3 (-592 (-523))) (-4 *5 (-1173)) (-4 *6 (-1173))
- (-4 *7 (-1173))))
+ (-12 (-5 *4 (-1143)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *3 *5 *6 *7))
+ (-4 *3 (-594 (-525))) (-4 *5 (-1180)) (-4 *6 (-1180))
+ (-4 *7 (-1180))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *3 *5 *6))
- (-4 *3 (-592 (-523))) (-4 *5 (-1173)) (-4 *6 (-1173)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821))
- (-5 *2 (-619 (-646 *5))) (-5 *1 (-646 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-539)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-619 (-547))) (-5 *3 (-663 (-547))) (-5 *1 (-1073)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-354)) (-4 *3 (-1016))
- (-5 *1 (-1121 *3)))))
+ (-12 (-5 *4 (-1143)) (-5 *2 (-1 *6 *5)) (-5 *1 (-683 *3 *5 *6))
+ (-4 *3 (-594 (-525))) (-4 *5 (-1180)) (-4 *6 (-1180)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-665 *4)) (-5 *3 (-892)) (|has| *4 (-6 (-4339 "*")))
+ (-4 *4 (-1018)) (-5 *1 (-999 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-621 (-665 *4))) (-5 *3 (-892))
+ (|has| *4 (-6 (-4339 "*"))) (-4 *4 (-1018)) (-5 *1 (-999 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-554 *3)) (-4 *3 (-1009 (-549)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
+ (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298))
- (-5 *2 (-619 (-745))) (-5 *1 (-752 *3 *4 *5 *6 *7))
- (-4 *3 (-1195 *6)) (-4 *7 (-918 *6 *4 *5)))))
+ (-12 (-5 *2 (-549)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-619 (-1119))) (-5 *2 (-1119)) (-5 *1 (-1220))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1220))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1220))))
+ (-12 (-5 *3 (-621 (-1125))) (-5 *2 (-1125)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1227))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-619 (-1119))) (-5 *2 (-1119)) (-5 *1 (-1221))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1221))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1221)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-112))
- (-5 *1 (-858 *4 *5)) (-4 *5 (-1063))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-5 *2 (-112))
- (-5 *1 (-859 *5 *3)) (-4 *3 (-1173))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063))
- (-4 *6 (-1173)) (-5 *2 (-112)) (-5 *1 (-859 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-621 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5)) (-4 *5 (-354))
+ (-12 (-5 *3 (-621 (-1125))) (-5 *2 (-1125)) (-5 *1 (-1228))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1228))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1228)))))
+(((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2)
+ (-12 (-4 *1 (-342))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1226 (-665 *4))) (-4 *4 (-170))
+ (-5 *2 (-1226 (-665 (-923 *4)))) (-5 *1 (-183 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1139 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *4 *5 *6)) (-4 *4 (-356))
+ (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *1 (-442 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356))
(-5 *2
- (-2 (|:| |ir| (-565 (-398 *6))) (|:| |specpart| (-398 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-557 *5 *6)) (-5 *3 (-398 *6)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1173)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-619 (-1125 *3 *4))) (-5 *1 (-1125 *3 *4))
- (-14 *3 (-890)) (-4 *4 (-1016)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-889)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4))
- (-4 *4 (-340)))))
-(((*1 *2 *1) (-12 (-5 *1 (-565 *2)) (-4 *2 (-354)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-179)))))
-(((*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-532)))))
-(((*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1173)))))
+ (-2 (|:| R (-665 *6)) (|:| A (-665 *6)) (|:| |Ainv| (-665 *6))))
+ (-5 *1 (-949 *6)) (-5 *3 (-665 *6)))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1139 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-181)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1143))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-621 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-621 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -3440 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1165) (-27) (-423 *8)))
+ (-4 *8 (-13 (-444) (-823) (-145) (-1009 *3) (-617 *3)))
+ (-5 *3 (-549)) (-5 *2 (-621 *4)) (-5 *1 (-985 *8 *4)))))
+(((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-621
+ (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8))
+ (|:| |wcond| (-621 (-923 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1226 (-400 (-923 *5))))
+ (|:| -1949 (-621 (-1226 (-400 (-923 *5))))))))))
+ (-5 *4 (-1125)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-920 *5 *7 *6))
+ (-4 *6 (-13 (-823) (-594 (-1143)))) (-4 *7 (-769)) (-5 *2 (-549))
+ (-5 *1 (-895 *5 *6 *7 *8)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766))
- (-4 *2 (-354))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-217))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))
+ (-4 *2 (-356))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-219))))
((*1 *1 *1 *1)
- (-1530 (-12 (-5 *1 (-285 *2)) (-4 *2 (-354)) (-4 *2 (-1173)))
- (-12 (-5 *1 (-285 *2)) (-4 *2 (-463)) (-4 *2 (-1173)))))
- ((*1 *1 *1 *1) (-4 *1 (-354)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-370))))
+ (-1536 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1180)))
+ (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1180)))))
+ ((*1 *1 *1 *1) (-4 *1 (-356)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-372))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1087 *3 (-590 *1))) (-4 *3 (-539)) (-4 *3 (-821))
- (-4 *1 (-421 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-463)))
+ (-12 (-5 *2 (-1092 *3 (-592 *1))) (-4 *3 (-541)) (-4 *3 (-823))
+ (-4 *1 (-423 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-465)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1219 *3)) (-4 *3 (-340)) (-5 *1 (-517 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-523)))
+ (-12 (-5 *2 (-1226 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-525)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-169)) (-5 *1 (-597 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-701) *4))))
+ (-12 (-4 *4 (-170)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-703) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-169)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-701) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)) (-4 *2 (-354))))
+ (-12 (-4 *4 (-170)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-703) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-170)) (-4 *2 (-356))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-169)) (-5 *1 (-636 *2 *4 *3)) (-4 *2 (-692 *4))
- (-4 *3 (|SubsetCategory| (-701) *4))))
+ (-12 (-4 *4 (-170)) (-5 *1 (-638 *2 *4 *3)) (-4 *2 (-694 *4))
+ (-4 *3 (|SubsetCategory| (-703) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-169)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4))
- (-4 *2 (|SubsetCategory| (-701) *4))))
+ (-12 (-4 *4 (-170)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-694 *4))
+ (-4 *2 (|SubsetCategory| (-703) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2)) (-4 *2 (-354))))
- ((*1 *1 *1 *1) (-5 *1 (-832)))
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2)) (-4 *2 (-356))))
+ ((*1 *1 *1 *1) (-5 *1 (-834)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-835 *2 *3 *4 *5)) (-4 *2 (-354))
- (-4 *2 (-1016)) (-14 *3 (-619 (-1136))) (-14 *4 (-619 (-745)))
- (-14 *5 (-745))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539))))
+ (|partial| -12 (-5 *1 (-837 *2 *3 *4 *5)) (-4 *2 (-356))
+ (-4 *2 (-1018)) (-14 *3 (-621 (-1143))) (-14 *4 (-621 (-747)))
+ (-14 *5 (-747))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016))
- (-4 *5 (-230 *4 *2)) (-4 *6 (-230 *3 *2)) (-4 *2 (-354))))
+ (-12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018))
+ (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-356))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-354))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-356))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-354)) (-4 *2 (-1016)) (-4 *3 (-821))
- (-4 *4 (-767)) (-14 *6 (-619 *3))
- (-5 *1 (-1231 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-918 *2 *4 *3))
- (-14 *7 (-619 (-745))) (-14 *8 (-745))))
+ (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1018)) (-4 *3 (-823))
+ (-4 *4 (-769)) (-14 *6 (-621 *3))
+ (-5 *1 (-1238 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-920 *2 *4 *3))
+ (-14 *7 (-621 (-747))) (-14 *8 (-747))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1242 *2 *3)) (-4 *2 (-354)) (-4 *2 (-1016))
- (-4 *3 (-817)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) (-5 *2 (-619 *1))
- (-4 *1 (-421 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3))
- (-4 *3 (-1063))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016))
- (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3))
- (-5 *1 (-919 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-354)
- (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $))
- (-15 -1396 (*7 $))))))))
+ (-12 (-5 *1 (-1249 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1018))
+ (-4 *3 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-798)))))
+(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1180)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-541) (-823) (-1009 (-549))))
+ (-4 *5 (-423 *4)) (-5 *2 (-411 (-1139 (-400 (-549)))))
+ (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1202 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3))
+ (-4 *4 (-13 (-356) (-821))) (-4 *3 (-1202 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-621 *7)) (-5 *3 (-549)) (-4 *7 (-920 *4 *5 *6))
+ (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *1 (-441 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-356)) (-5 *2 (-621 *3)) (-5 *1 (-916 *4 *3))
+ (-4 *3 (-1202 *4)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-619 (-1136))) (-14 *5 (-745))
- (-5 *2
- (-619
- (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4)
- (-239 *4 (-398 (-547))))))
- (-5 *1 (-494 *4 *5))
- (-5 *3
- (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4)
- (-239 *4 (-398 (-547))))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1016)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1195 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-4 *3 (-13 (-27) (-1158) (-421 *6) (-10 -8 (-15 -3838 ($ *7)))))
- (-4 *7 (-819))
- (-4 *8
- (-13 (-1197 *3 *7) (-354) (-1158)
- (-10 -8 (-15 -3448 ($ $)) (-15 -3694 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119))))))
- (-5 *1 (-413 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1119)) (-4 *9 (-952 *8))
- (-14 *10 (-1136)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-547)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1173))
- (-4 *5 (-364 *4)) (-4 *3 (-364 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-547))))
- ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354)))
- (-4 *3 (-1195 *4)) (-5 *2 (-547))))
- ((*1 *2 *3)
- (|partial| -12
- (-4 *4 (-13 (-539) (-821) (-1007 *2) (-615 *2) (-442)))
- (-5 *2 (-547)) (-5 *1 (-1078 *4 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1136)) (-5 *5 (-814 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *6)))
- (-4 *6 (-13 (-539) (-821) (-1007 *2) (-615 *2) (-442)))
- (-5 *2 (-547)) (-5 *1 (-1078 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1136)) (-5 *5 (-1119))
- (-4 *6 (-13 (-539) (-821) (-1007 *2) (-615 *2) (-442)))
- (-5 *2 (-547)) (-5 *1 (-1078 *6 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-442)) (-5 *2 (-547))
- (-5 *1 (-1079 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1136)) (-5 *5 (-814 (-398 (-921 *6))))
- (-5 *3 (-398 (-921 *6))) (-4 *6 (-442)) (-5 *2 (-547))
- (-5 *1 (-1079 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-398 (-921 *6))) (-5 *4 (-1136))
- (-5 *5 (-1119)) (-4 *6 (-442)) (-5 *2 (-547)) (-5 *1 (-1079 *6))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-547)) (-5 *1 (-1155 *3)) (-4 *3 (-1016)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-539)) (-4 *3 (-169))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1917 (-619 *1))))
- (-4 *1 (-358 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-443 *3 *4 *5 *6))
- (|:| -1917 (-619 (-443 *3 *4 *5 *6)))))
- (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *6)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217)))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))))
- (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))
- (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))))
-(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))))
-(((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-52)) (-5 *1 (-803)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-166 *4)) (-5 *1 (-177 *4 *3))
- (-4 *4 (-13 (-354) (-819))) (-4 *3 (-1195 *2)))))
+ (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-621 (-1143))) (-4 *5 (-1018))
+ (-5 *2 (-241 *4 *5)) (-5 *1 (-915 *4 *5)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-133)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-206 *2))
+ (-12 (-5 *1 (-208 *2))
(-4 *2
- (-13 (-821)
- (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 ((-1224) $))
- (-15 -1764 ((-1224) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1173))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1173))))
+ (-13 (-823)
+ (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 ((-1231) $))
+ (-15 -2684 ((-1231) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1180))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1180))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2))))
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2))))
- ((*1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832)))
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2))))
+ ((*1 *1 *1) (-5 *1 (-834))) ((*1 *1 *1 *1) (-5 *1 (-834)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1169))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-21)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1028)) (-5 *3 (-1119)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1220))))
- ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *2)
- (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821))
- (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1224))
- (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821))
- (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1224))
- (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1176))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-21)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3727 *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-1227))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1139 (-400 (-549)))) (-5 *1 (-913)) (-5 *3 (-549)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1139 *6)) (-5 *3 (-549)) (-4 *6 (-300)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))))
(((*1 *2)
- (-12 (-4 *4 (-1177)) (-4 *5 (-1195 *4)) (-4 *6 (-1195 (-398 *5)))
- (-5 *2 (-745)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-745)))))
-(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-142)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-132))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-158))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-210))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-650))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-988))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1031)))))
+ (-12 (-4 *3 (-1018)) (-5 *2 (-929 (-689 *3 *4))) (-5 *1 (-689 *3 *4))
+ (-4 *4 (-1202 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1182)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-442)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-217))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1004))
- (-5 *1 (-724)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-745)) (-5 *4 (-1219 *2)) (-4 *5 (-298))
- (-4 *6 (-961 *5)) (-4 *2 (-13 (-400 *6 *7) (-1007 *6)))
- (-5 *1 (-404 *5 *6 *7 *2)) (-4 *7 (-1195 *6)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-590 *3))
- (-4 *3 (-13 (-421 *5) (-27) (-1158)))
- (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2 (-2 (|:| -2510 *3) (|:| |coeff| *3)))
- (-5 *1 (-549 *5 *3 *6)) (-4 *6 (-1063)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-321)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136))))
- (-4 *6 (-767)) (-5 *2 (-619 *3)) (-5 *1 (-893 *4 *5 *6 *3))
- (-4 *3 (-918 *4 *6 *5)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-217)))
- (-5 *6 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))))
-(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-154)))
+ (-12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-132))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-152))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-159))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-652))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-990))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1033))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-1063)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-747)) (-5 *3 (-914 *5)) (-4 *5 (-1018))
+ (-5 *1 (-1131 *4 *5)) (-14 *4 (-892))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-621 (-747))) (-5 *3 (-747)) (-5 *1 (-1131 *4 *5))
+ (-14 *4 (-892)) (-4 *5 (-1018))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-621 (-747))) (-5 *3 (-914 *5)) (-4 *5 (-1018))
+ (-5 *1 (-1131 *4 *5)) (-14 *4 (-892)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-734)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-206 *2))
+ (-12 (-5 *1 (-208 *2))
(-4 *2
- (-13 (-821)
- (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 ((-1224) $))
- (-15 -1764 ((-1224) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-25)) (-4 *2 (-1173))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-25)) (-4 *2 (-1173))))
+ (-13 (-823)
+ (-10 -8 (-15 -3341 ((-1125) $ (-1143))) (-15 -2699 ((-1231) $))
+ (-15 -2684 ((-1231) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1180))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-25)) (-4 *2 (-1180))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130))))
+ (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-130))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *2))
- (-4 *2 (-1195 *3))))
+ (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2))
+ (-4 *2 (-1202 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821))
- (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-523)))
+ (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-525)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063))))
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1169))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-25)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1101 *3 *2)) (-4 *3 (-13 (-1063) (-34)))
- (-4 *2 (-13 (-1063) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1176))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-25)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 *3)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-442))
- (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-439 *5 *6 *7 *3)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-95))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-114))))
+ (-12 (-5 *3 (-621 (-549))) (-5 *4 (-876 (-549)))
+ (-5 *2 (-665 (-549))) (-5 *1 (-571))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-621 (-665 (-549))))
+ (-5 *1 (-571))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-549))) (-5 *4 (-621 (-876 (-549))))
+ (-5 *2 (-621 (-665 (-549)))) (-5 *1 (-571)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1217 *4))
+ (-4 *4 (-38 (-400 (-549))))
+ (-5 *2 (-1 (-1123 *4) (-1123 *4) (-1123 *4))) (-5 *1 (-1219 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1226 (-1226 (-549)))) (-5 *3 (-892)) (-5 *1 (-458)))))
+(((*1 *2)
+ (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-410 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-95))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-114))))
((*1 *2 *1)
- (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1063))))
- ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1119))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-429 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-473))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-590 *3)) (-4 *3 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-934))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1038 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-5 *1 (-1136))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-726)))))
-(((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-745)))))
-(((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-285 *3))) (-5 *1 (-285 *3)) (-4 *3 (-539))
- (-4 *3 (-1173)))))
+ (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1125))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-431 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-592 *3)) (-4 *3 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-936))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1041 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1082))))
+ ((*1 *1 *1) (-5 *1 (-1143))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-621 (-549))) (-5 *3 (-112)) (-5 *1 (-1077)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) (-4 *5 (-1063))
- (-4 *6 (-1173)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *5 *6))))
+ (-12 (-5 *3 (-665 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-356))
+ (-5 *2 (-112)) (-5 *1 (-643 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4338))))
+ (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4338)))) (-5 *2 (-112))
+ (-5 *1 (-644 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-1139 (-923 *4))) (-5 *1 (-409 *3 *4))
+ (-4 *3 (-410 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356))
+ (-5 *2 (-1139 (-923 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1139 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-621 (-1139 *4))) (-5 *3 (-1139 *4))
+ (-4 *4 (-880)) (-5 *1 (-639 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-541)) (-5 *2 (-621 (-665 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-410 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *6)) (-4 *5 (-1067))
+ (-4 *6 (-1180)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063))
- (-4 *2 (-1173)) (-5 *1 (-616 *5 *2))))
+ (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *2)) (-4 *5 (-1067))
+ (-4 *2 (-1180)) (-5 *1 (-618 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 *5)) (-4 *6 (-1063))
- (-4 *5 (-1173)) (-5 *2 (-1 *5 *6)) (-5 *1 (-616 *6 *5))))
+ (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 *5)) (-4 *6 (-1067))
+ (-4 *5 (-1180)) (-5 *2 (-1 *5 *6)) (-5 *1 (-618 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063))
- (-4 *2 (-1173)) (-5 *1 (-616 *5 *2))))
+ (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *2)) (-4 *5 (-1067))
+ (-4 *2 (-1180)) (-5 *1 (-618 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-619 *5)) (-5 *4 (-619 *6))
- (-4 *5 (-1063)) (-4 *6 (-1173)) (-5 *1 (-616 *5 *6))))
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-621 *5)) (-5 *4 (-621 *6))
+ (-4 *5 (-1067)) (-4 *6 (-1180)) (-5 *1 (-618 *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1063)) (-4 *2 (-1173)) (-5 *1 (-616 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (-142)) (-5 *2 (-745)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-1221))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
+ (-12 (-5 *3 (-621 *5)) (-5 *4 (-621 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1067)) (-4 *2 (-1180)) (-5 *1 (-618 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1111)) (-5 *3 (-142)) (-5 *2 (-747)))))
+(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459))))
+ ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-459))))
+ ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-621 *5)) (-5 *4 (-549)) (-4 *5 (-821)) (-4 *5 (-356))
+ (-5 *2 (-747)) (-5 *1 (-916 *5 *6)) (-4 *6 (-1202 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-398 (-547))))
- (-5 *2 (-2 (|:| -1479 (-1117 *4)) (|:| -1493 (-1117 *4))))
- (-5 *1 (-1123 *4)) (-5 *3 (-1117 *4)))))
+ (-12 (-5 *3 (-665 (-400 (-923 (-549)))))
+ (-5 *2
+ (-621
+ (-2 (|:| |radval| (-309 (-549))) (|:| |radmult| (-549))
+ (|:| |radvect| (-621 (-665 (-309 (-549))))))))
+ (-5 *1 (-1002)))))
+(((*1 *2 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-390)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1165) (-973))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1027)) (-4 *3 (-1165))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-767))
- (-4 *5 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))) (-4 *6 (-539))
- (-5 *2 (-2 (|:| -2794 (-921 *6)) (|:| -4273 (-921 *6))))
- (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-918 (-398 (-921 *6)) *4 *5)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-547)) (-5 *5 (-1119)) (-5 *6 (-663 (-217)))
- (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))))
- (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))))
- (-5 *9 (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))
- (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-590 *4)) (-4 *4 (-821)) (-4 *2 (-821))
- (-5 *1 (-589 *2 *4)))))
-(((*1 *1 *1) (-4 *1 (-141)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-619 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-539)) (-4 *7 (-767))
- (-4 *8 (-821)) (-5 *1 (-946 *6 *7 *8 *9)))))
-(((*1 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-359)) (-4 *2 (-354))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1219 *4)) (-5 *1 (-517 *4))
- (-4 *4 (-340)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1192 *4 *5)) (-5 *3 (-619 *5)) (-14 *4 (-1136))
- (-4 *5 (-354)) (-5 *1 (-892 *4 *5))))
+ (-12 (-5 *3 (-1139 (-549))) (-5 *2 (-549)) (-5 *1 (-913)))))
+(((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-350 *3)) (-4 *3 (-342)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
+ ((*1 *1 *1 *1) (-5 *1 (-1087))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-725)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-863 *4)) (-4 *4 (-1067)) (-4 *2 (-1067))
+ (-5 *1 (-860 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1009 *4)) (-4 *3 (-300))
+ (-4 *4 (-963 *3)) (-4 *5 (-1202 *4)) (-4 *6 (-402 *4 *5))
+ (-14 *7 (-1226 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1226 *6)) (-4 *6 (-402 *4 *5)) (-4 *4 (-963 *3))
+ (-4 *5 (-1202 *4)) (-4 *3 (-300)) (-5 *1 (-407 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1165))))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-621 (-549)))
+ (|:| |cols| (-621 (-549)))))
+ (-5 *4 (-665 *12)) (-5 *5 (-621 (-400 (-923 *9))))
+ (-5 *6 (-621 (-621 *12))) (-5 *7 (-747)) (-5 *8 (-549))
+ (-4 *9 (-13 (-300) (-145))) (-4 *12 (-920 *9 *11 *10))
+ (-4 *10 (-13 (-823) (-594 (-1143)))) (-4 *11 (-769))
+ (-5 *2
+ (-2 (|:| |eqzro| (-621 *12)) (|:| |neqzro| (-621 *12))
+ (|:| |wcond| (-621 (-923 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1226 (-400 (-923 *9))))
+ (|:| -1949 (-621 (-1226 (-400 (-923 *9)))))))))
+ (-5 *1 (-895 *9 *10 *11 *12)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-959 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *5)) (-4 *5 (-354)) (-5 *2 (-1132 *5))
- (-5 *1 (-892 *4 *5)) (-14 *4 (-1136))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-619 *6)) (-5 *4 (-745)) (-4 *6 (-354))
- (-5 *2 (-398 (-921 *6))) (-5 *1 (-1017 *5 *6)) (-14 *5 (-1136)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1117 *2)) (-4 *2 (-298)) (-5 *1 (-171 *2)))))
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1125) (-750))) (-5 *1 (-114)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-592 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1143))) (-5 *5 (-1139 *2))
+ (-4 *2 (-13 (-423 *6) (-27) (-1165)))
+ (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *1 (-545 *6 *2 *7)) (-4 *7 (-1067))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-592 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1143)))
+ (-5 *5 (-400 (-1139 *2))) (-4 *2 (-13 (-423 *6) (-27) (-1165)))
+ (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *1 (-545 *6 *2 *7)) (-4 *7 (-1067)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1082))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-409 (-1132 *7)))
- (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1132 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-878)) (-4 *5 (-1195 *4)) (-5 *2 (-409 (-1132 *5)))
- (-5 *1 (-876 *4 *5)) (-5 *3 (-1132 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016))
- (-5 *1 (-689 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-532))
- (-5 *2 (-398 (-547)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-398 (-547))) (-5 *1 (-409 *3)) (-4 *3 (-532))
- (-4 *3 (-539))))
- ((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-398 (-547)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-532))
- (-5 *2 (-398 (-547)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-398 (-547))) (-5 *1 (-807 *3)) (-4 *3 (-532))
- (-4 *3 (-1063))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-398 (-547))) (-5 *1 (-814 *3)) (-4 *3 (-532))
- (-4 *3 (-1063))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-532))
- (-5 *2 (-398 (-547)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-398 (-547))) (-5 *1 (-977 *3)) (-4 *3 (-1007 *2)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-217))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-217))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-370))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-370)))))
+ (-12 (-5 *2 (-1226 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184))
+ (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1202 *6))
+ (-4 *6 (-13 (-356) (-145) (-1009 *4))) (-5 *4 (-549))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -2652
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-986 *6 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1219 *1)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177))
- (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1136)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 (-890))) (-4 *2 (-354)) (-5 *1 (-150 *4 *2 *5))
- (-14 *4 (-890)) (-14 *5 (-962 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-307 *3)) (-5 *1 (-215 *3 *4))
- (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1136)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *2 (-539)) (-5 *1 (-599 *2 *4))
- (-4 *4 (-1195 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-701))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5))
- (-4 *4 (-1016)) (-4 *5 (-821))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016))
- (-4 *2 (-821))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6))
- (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016))
- (-4 *5 (-767)) (-4 *2 (-821))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-4 *2 (-918 *4 (-519 *5) *5))
- (-5 *1 (-1088 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-821))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-921 *4)) (-5 *1 (-1167 *4))
- (-4 *4 (-1016)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-621 (-665 *4))) (-5 *2 (-665 *4)) (-4 *4 (-1018))
+ (-5 *1 (-1000 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-848 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-850 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-5 *1 (-853 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-834))))
(((*1 *2)
- (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1219 *4)) (-4 *4 (-340)) (-5 *2 (-1132 *4))
- (-5 *1 (-517 *4)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1219 (-619 *3))) (-4 *4 (-298))
- (-5 *2 (-619 *3)) (-5 *1 (-445 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *4)) (-4 *4 (-354)) (-5 *2 (-663 *4))
- (-5 *1 (-788 *4 *5)) (-4 *5 (-630 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-354))
- (-5 *2 (-663 *5)) (-5 *1 (-788 *5 *6)) (-4 *6 (-630 *5)))))
+ (-12 (-5 *2 (-929 (-1087))) (-5 *1 (-336 *3 *4)) (-14 *3 (-892))
+ (-14 *4 (-892))))
+ ((*1 *2)
+ (-12 (-5 *2 (-929 (-1087))) (-5 *1 (-337 *3 *4)) (-4 *3 (-342))
+ (-14 *4 (-1139 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-929 (-1087))) (-5 *1 (-338 *3 *4)) (-4 *3 (-342))
+ (-14 *4 (-892)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1981 *4))))
+ (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-601 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3848 *4) (|:| |sol?| (-112)))
+ (-549) *4))
+ (-4 *4 (-356)) (-4 *5 (-1202 *4)) (-5 *1 (-559 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228))))
+ ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1139 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-938))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2))
+ (-4 *2 (-423 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1059 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-823) (-541)))
+ (-5 *1 (-156 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1059 *1)) (-4 *1 (-158))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1143)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-977)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
+(((*1 *1)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1224))
- (-5 *1 (-1174 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1224))
- (-5 *1 (-1174 *4)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-832))))
+ (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-1202 *3)) (-4 *3 (-1018)))))
+(((*1 *1 *1) (-4 *1 (-534))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-314 *4 *2)) (-4 *4 (-1063))
- (-4 *2 (-130)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1195 *4)) (-5 *1 (-783 *4 *2 *3 *5))
- (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2))
- (-4 *5 (-630 (-398 *2))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136)) (-4 *4 (-539)) (-4 *4 (-821))
- (-5 *1 (-556 *4 *2)) (-4 *2 (-421 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-364 *3)) (-4 *3 (-1173)) (-4 *3 (-821)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-364 *4)) (-4 *4 (-1173))
- (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-936))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-1202 *4)) (-4 *4 (-1018))
+ (-5 *2 (-1226 *4)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1108 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-582 *2 *3)) (-4 *3 (-1173)) (-4 *2 (-1063))
- (-4 *2 (-821)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-774))
- (-5 *3
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217)))
- (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217)))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))
- (-5 *2 (-1004)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1007 (-48)))
- (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4))
- (-5 *2 (-409 (-1132 (-48)))) (-5 *1 (-426 *4 *5 *3))
- (-4 *3 (-1195 *5)))))
-(((*1 *1 *1) (-5 *1 (-1028))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1132 *1)) (-4 *1 (-442))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1132 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *5 (-878)) (-5 *1 (-447 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1132 *1)) (-4 *1 (-878)))))
+ (|partial| -12
+ (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1211 *4 *5 *6))
+ (|:| |%expon| (-312 *4 *5 *6))
+ (|:| |%expTerms|
+ (-621 (-2 (|:| |k| (-400 (-549))) (|:| |c| *4))))))
+ (|:| |%type| (-1125))))
+ (-5 *1 (-1212 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1165) (-423 *3)))
+ (-14 *5 (-1143)) (-14 *6 *4))))
(((*1 *2 *3)
- (-12 (-5 *3 (-590 *5)) (-4 *5 (-421 *4)) (-4 *4 (-1007 (-547)))
- (-4 *4 (-13 (-821) (-539))) (-5 *2 (-1132 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-590 *1)) (-4 *1 (-1016)) (-4 *1 (-293))
- (-5 *2 (-1132 *1)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-354)) (-4 *7 (-1195 *5)) (-4 *4 (-699 *5 *7))
- (-5 *2 (-2 (|:| -1877 (-663 *6)) (|:| |vec| (-1219 *5))))
- (-5 *1 (-785 *5 *6 *7 *4 *3)) (-4 *6 (-630 *5)) (-4 *3 (-630 *4)))))
-(((*1 *1 *1) (-4 *1 (-532))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2)
- (-12 (-4 *1 (-340))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1219 *5)) (-4 *5 (-766)) (-5 *2 (-112))
- (-5 *1 (-816 *4 *5)) (-14 *4 (-745)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1132 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 *8))
- (-4 *7 (-821)) (-4 *8 (-1016)) (-4 *9 (-918 *8 *6 *7))
- (-4 *6 (-767)) (-5 *2 (-1132 *8)) (-5 *1 (-312 *6 *7 *8 *9)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-52)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-524 *3 *2))
- (-4 *2 (-1210 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-4 *4 (-1195 *3))
- (-4 *5 (-699 *3 *4)) (-5 *1 (-528 *3 *4 *5 *2)) (-4 *2 (-1210 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-5 *1 (-529 *3 *2))
- (-4 *2 (-1210 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-13 (-539) (-145)))
- (-5 *1 (-1113 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-518 *3)) (-4 *3 (-13 (-701) (-25))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-318 *3)) (-4 *3 (-1173))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-505 *3 *4)) (-4 *3 (-1173))
- (-14 *4 (-547)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-233))))
+ (-12 (-5 *3 (-549)) (|has| *1 (-6 -4328)) (-4 *1 (-397))
+ (-5 *2 (-892)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1125)) (-5 *3 (-549)) (-5 *1 (-1030)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-5 *2 (-112)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-621
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-747)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-769)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-823))
+ (-5 *1 (-441 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-235))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-1119))) (-5 *2 (-1224)) (-5 *1 (-233)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1210 *4)) (-5 *1 (-1212 *4 *2))
- (-4 *4 (-38 (-398 (-547)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-307 (-370))) (-5 *1 (-296)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1136))
- (-4 *4 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-558 *4 *2))
- (-4 *2 (-13 (-1158) (-928) (-1100) (-29 *4))))))
+ (-12 (-5 *3 (-621 (-1125))) (-5 *2 (-1231)) (-5 *1 (-235)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1058 (-814 (-370)))) (-5 *2 (-1058 (-814 (-217))))
- (-5 *1 (-296)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-421 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1136)) (-5 *2 (-307 (-547))) (-5 *1 (-899)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *2
- (-2 (|:| |solns| (-619 *5))
- (|:| |maps| (-619 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1090 *3 *5)) (-4 *3 (-1195 *5)))))
+ (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993)))
+ (-14 *5 (-621 (-1143))) (-5 *2 (-621 (-621 (-995 (-400 *4)))))
+ (-5 *1 (-1252 *4 *5 *6)) (-14 *6 (-621 (-1143)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1252 *5 *6 *7))
+ (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2 (-621 (-621 (-995 (-400 *5))))) (-5 *1 (-1252 *5 *6 *7))
+ (-14 *6 (-621 (-1143))) (-14 *7 (-621 (-1143)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-923 *4)))
+ (-4 *4 (-13 (-821) (-300) (-145) (-993)))
+ (-5 *2 (-621 (-621 (-995 (-400 *4))))) (-5 *1 (-1252 *4 *5 *6))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-621 (-1143))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))))
(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1119)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821))
- (-4 *4 (-1030 *6 *7 *8)) (-5 *2 (-1224))
- (-5 *1 (-750 *6 *7 *8 *4 *5)) (-4 *5 (-1036 *6 *7 *8 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
-(((*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221))))
- ((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-890))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1219 *4)) (-4 *4 (-340)) (-5 *2 (-890))
- (-5 *1 (-517 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745)))
- (-5 *1 (-873 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-565 *3)) (-4 *3 (-354)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))
+ (-12 (-5 *3 (-621 (-665 *6))) (-5 *4 (-112)) (-5 *5 (-549))
+ (-5 *2 (-665 *6)) (-5 *1 (-1000 *6)) (-4 *6 (-356)) (-4 *6 (-1018))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3))
- (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-539))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-619 *7) (-619 *7))) (-5 *2 (-619 *7))
- (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767))
- (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016))))
- ((*1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016)))))
+ (-12 (-5 *3 (-621 (-665 *4))) (-5 *2 (-665 *4)) (-5 *1 (-1000 *4))
+ (-4 *4 (-356)) (-4 *4 (-1018))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-621 (-665 *5))) (-5 *4 (-549)) (-5 *2 (-665 *5))
+ (-5 *1 (-1000 *5)) (-4 *5 (-356)) (-4 *5 (-1018)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1119)) (-5 *2 (-547)) (-5 *1 (-1155 *4))
- (-4 *4 (-1016)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))))
+ (-12 (-4 *4 (-342)) (-4 *5 (-322 *4)) (-4 *6 (-1202 *5))
+ (-5 *2 (-621 *3)) (-5 *1 (-753 *4 *5 *6 *3 *7)) (-4 *3 (-1202 *6))
+ (-14 *7 (-892)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-665 (-219)))
+ (-5 *2 (-1006)) (-5 *1 (-732)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
-(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-317 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016))
- (-4 *2 (-442))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-823)) (-5 *1 (-900 *3 *2)) (-4 *2 (-423 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 *4)) (-4 *4 (-1195 (-547))) (-5 *2 (-619 (-547)))
- (-5 *1 (-476 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-442))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821)) (-4 *3 (-442)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4)))
- (-4 *4 (-821)) (-5 *1 (-1144 *4)))))
+ (-12 (-5 *3 (-1143)) (-5 *2 (-309 (-549))) (-5 *1 (-901)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5))
+ (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-1239 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-621 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1032 *5 *6 *7)) (-4 *5 (-541))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1239 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-411 (-1139 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1139 *1))
+ (-4 *4 (-444)) (-4 *4 (-541)) (-4 *4 (-823))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-880)) (-5 *2 (-411 (-1139 *1))) (-5 *3 (-1139 *1)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-874 *3)) (-4 *3 (-1067)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1496 *4)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1119))
- (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))))
+ (-12 (-5 *3 (-1226 *5)) (-4 *5 (-768)) (-5 *2 (-112))
+ (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-307 (-217))) (-5 *2 (-398 (-547))) (-5 *1 (-296)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1117 (-1117 *4))) (-5 *2 (-1117 *4)) (-5 *1 (-1121 *4))
- (-4 *4 (-1016)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-109)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1173))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1119)) (-5 *1 (-958))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1058 *4)) (-4 *4 (-1173))
- (-5 *1 (-1056 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767))
- (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-619 *3))
- (-5 *1 (-570 *5 *6 *7 *8 *3)) (-4 *3 (-1072 *5 *6 *7 *8))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
+ (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-372)) (-5 *1 (-199)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-541)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-356) (-295)
+ (-10 -8 (-15 -1394 ((-1092 *3 (-592 $)) $))
+ (-15 -1403 ((-1092 *3 (-592 $)) $))
+ (-15 -3846 ($ (-1092 *3 (-592 $))))))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1067))
+ (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3))))
+ (-5 *2 (-621 (-1143))) (-5 *1 (-1042 *3 *4 *5))
+ (-4 *5 (-13 (-423 *4) (-857 *3) (-594 (-863 *3)))))))
+(((*1 *1) (-4 *1 (-342)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 *5)) (-4 *5 (-423 *4))
+ (-4 *4 (-13 (-541) (-823) (-145)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-621 (-1139 *5)))
+ (|:| |prim| (-1139 *5))))
+ (-5 *1 (-425 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-541) (-823) (-145)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1139 *3))
+ (|:| |pol2| (-1139 *3)) (|:| |prim| (-1139 *3))))
+ (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-423 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-923 *5)) (-5 *4 (-1143)) (-4 *5 (-13 (-356) (-145)))
+ (-5 *2
+ (-2 (|:| |coef1| (-549)) (|:| |coef2| (-549))
+ (|:| |prim| (-1139 *5))))
+ (-5 *1 (-931 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145)))
+ (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-621 (-1143)))
+ (-4 *5 (-13 (-356) (-145)))
(-5 *2
- (-619 (-2 (|:| -3117 (-1132 *5)) (|:| -3220 (-619 (-921 *5))))))
- (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5)))
- (-14 *6 (-619 (-1136)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-298) (-145)))
+ (-2 (|:| -1570 (-621 (-549))) (|:| |poly| (-621 (-1139 *5)))
+ (|:| |prim| (-1139 *5))))
+ (-5 *1 (-931 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-621 (-923 *6))) (-5 *4 (-621 (-1143))) (-5 *5 (-1143))
+ (-4 *6 (-13 (-356) (-145)))
(-5 *2
- (-619 (-2 (|:| -3117 (-1132 *4)) (|:| -3220 (-619 (-921 *4))))))
- (-5 *1 (-1041 *4 *5)) (-5 *3 (-619 (-921 *4)))
- (-14 *5 (-619 (-1136)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145)))
+ (-2 (|:| -1570 (-621 (-549))) (|:| |poly| (-621 (-1139 *6)))
+ (|:| |prim| (-1139 *6))))
+ (-5 *1 (-931 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *5)) (-5 *4 (-892)) (-4 *5 (-823))
+ (-5 *2 (-621 (-648 *5))) (-5 *1 (-648 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-914 (-219))) (-5 *2 (-1231)) (-5 *1 (-460)))))
+(((*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-543 *3)) (-4 *3 (-534))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-411 *3))
+ (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-920 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300))
+ (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-411 (-1139 *7)))
+ (-5 *1 (-719 *4 *5 *6 *7)) (-5 *3 (-1139 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-444)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-411 *1)) (-4 *1 (-920 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-444)) (-5 *2 (-411 *3))
+ (-5 *1 (-950 *4 *5 *6 *3)) (-4 *3 (-920 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444))
+ (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-411 (-1139 (-400 *7))))
+ (-5 *1 (-1138 *4 *5 *6 *7)) (-5 *3 (-1139 (-400 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1184))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-411 *3)) (-5 *1 (-1205 *4 *3))
+ (-4 *3 (-13 (-1202 *4) (-541) (-10 -8 (-15 -3727 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1015 *4 *5)) (-4 *4 (-13 (-821) (-300) (-145) (-993)))
+ (-14 *5 (-621 (-1143)))
(-5 *2
- (-619 (-2 (|:| -3117 (-1132 *5)) (|:| -3220 (-619 (-921 *5))))))
- (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5)))
- (-14 *6 (-619 (-1136))))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-619 *11))
- (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1974 *11))))))
- (-5 *6 (-745))
- (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1974 *11))))
- (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9))
- (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-442)) (-4 *8 (-767))
- (-4 *9 (-821)) (-5 *1 (-1034 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
+ (-621 (-1113 *4 (-521 (-836 *6)) (-836 *6) (-756 *4 (-836 *6)))))
+ (-5 *1 (-1252 *4 *5 *6)) (-14 *6 (-621 (-1143))))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-621 (-621 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-621 (-3 (|:| |array| (-621 *3)) (|:| |scalar| (-1143)))))
+ (-5 *6 (-621 (-1143))) (-5 *3 (-1143)) (-5 *2 (-1071))
+ (-5 *1 (-390))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-621 (-621 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-621 (-3 (|:| |array| (-621 *3)) (|:| |scalar| (-1143)))))
+ (-5 *6 (-621 (-1143))) (-5 *3 (-1143)) (-5 *2 (-1071))
+ (-5 *1 (-390))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-621 (-1143))) (-5 *5 (-1146)) (-5 *3 (-1143))
+ (-5 *2 (-1071)) (-5 *1 (-390)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-800)) (-5 *3 (-621 (-1143))) (-5 *1 (-801)))))
+(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-320 *3)) (-4 *3 (-1180))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1180))
+ (-14 *4 (-549)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1030)) (-5 *3 (-1125)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
+ (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-1143))) (-5 *2 (-1231)) (-5 *1 (-1146))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 (-1143))) (-5 *3 (-1143)) (-5 *2 (-1231))
+ (-5 *1 (-1146))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-621 (-1143))) (-5 *3 (-1143)) (-5 *2 (-1231))
+ (-5 *1 (-1146)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-549) "failed") *5)) (-4 *5 (-1018))
+ (-5 *2 (-549)) (-5 *1 (-532 *5 *3)) (-4 *3 (-1202 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-549) "failed") *4)) (-4 *4 (-1018))
+ (-5 *2 (-549)) (-5 *1 (-532 *4 *3)) (-4 *3 (-1202 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-549) "failed") *4)) (-4 *4 (-1018))
+ (-5 *2 (-549)) (-5 *1 (-532 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1226 (-1143))) (-5 *3 (-1226 (-445 *4 *5 *6 *7)))
+ (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-892))
+ (-14 *6 (-621 (-1143))) (-14 *7 (-1226 (-665 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1226 (-445 *4 *5 *6 *7)))
+ (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-892))
+ (-14 *6 (-621 *2)) (-14 *7 (-1226 (-665 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1226 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143)))
+ (-14 *6 (-1226 (-665 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1226 (-1143))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-170)) (-14 *4 (-892)) (-14 *5 (-621 (-1143)))
+ (-14 *6 (-1226 (-665 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1143)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170))
+ (-14 *4 (-892)) (-14 *5 (-621 *2)) (-14 *6 (-1226 (-665 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-892))
+ (-14 *4 (-621 (-1143))) (-14 *5 (-1226 (-665 *2))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-219))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-219))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-372))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-400 (-549))) (-5 *1 (-372)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1125)) (-5 *1 (-960))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-1061 *4)) (-4 *4 (-1180))
+ (-5 *1 (-1059 *4)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-400 (-923 *6)) (-1132 (-1143) (-923 *6))))
+ (-5 *5 (-747)) (-4 *6 (-444)) (-5 *2 (-621 (-665 (-400 (-923 *6)))))
+ (-5 *1 (-285 *6)) (-5 *4 (-665 (-400 (-923 *6))))))
+ ((*1 *2 *3 *4)
(-12
- (-5 *5
- (-2 (|:| |done| (-619 *11))
- (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1974 *11))))))
- (-5 *6 (-745))
- (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1974 *11))))
- (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9))
- (-4 *11 (-1072 *7 *8 *9 *10)) (-4 *7 (-442)) (-4 *8 (-767))
- (-4 *9 (-821)) (-5 *1 (-1106 *7 *8 *9 *10 *11)))))
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-400 (-923 *5)) (-1132 (-1143) (-923 *5))))
+ (|:| |eigmult| (-747)) (|:| |eigvec| (-621 *4))))
+ (-4 *5 (-444)) (-5 *2 (-621 (-665 (-400 (-923 *5)))))
+ (-5 *1 (-285 *5)) (-5 *4 (-665 (-400 (-923 *5)))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1173))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425))))
- ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-995 *3)) (-4 *3 (-1173)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-727)))))
-(((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-541 *3)) (-4 *3 (-532)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-298)) (-5 *1 (-445 *3 *2)) (-4 *2 (-1195 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-298)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1195 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-298)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-745)))
- (-5 *1 (-526 *3 *2 *4 *5)) (-4 *2 (-1195 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-821)) (-5 *4 (-619 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-619 *4))))
- (-5 *1 (-1144 *6)) (-5 *5 (-619 *4)))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))
+ ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-997 *3)) (-4 *3 (-1180)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-300) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-560 *4 *2))
+ (-4 *2 (-13 (-1165) (-930) (-1106) (-29 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1154))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1154)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-821)) (-4 *5 (-767))
- (-4 *6 (-539)) (-4 *7 (-918 *6 *5 *3))
- (-5 *1 (-452 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1007 (-398 (-547))) (-354)
- (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $))
- (-15 -1396 (*7 $))))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4))))
- (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145))
+ (-4 *3 (-300)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-948 *3 *4 *5 *6)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-215 *2 *3)) (-4 *2 (-13 (-1016) (-821)))
- (-14 *3 (-619 (-1136))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-890)) (-5 *4 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7))))
- (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-217)) (-5 *1 (-296)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-547))) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-539)) (-4 *8 (-918 *7 *5 *6))
- (-5 *2 (-2 (|:| -3322 (-745)) (|:| -1563 *9) (|:| |radicand| *9)))
- (-5 *1 (-922 *5 *6 *7 *8 *9)) (-5 *4 (-745))
- (-4 *9
- (-13 (-354)
- (-10 -8 (-15 -1386 (*8 $)) (-15 -1396 (*8 $)) (-15 -3838 ($ *8))))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3))
- (-4 *3 (-1063)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-890)) (-5 *4 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))))
-(((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795)))))
-(((*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-532)))))
+ (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-703)) (-4 *2 (-1180)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2))
+ (-4 *2 (-1202 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))))
-(((*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-673)) (-5 *1 (-296)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *6))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-876 *3))) (-5 *1 (-875 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-929 *3)) (-5 *1 (-1130 *4 *3))
+ (-4 *3 (-1202 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-619
- (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8))
- (|:| |wcond| (-619 (-921 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1219 (-398 (-921 *5))))
- (|:| -1917 (-619 (-1219 (-398 (-921 *5))))))))))
- (-5 *4 (-1119)) (-4 *5 (-13 (-298) (-145))) (-4 *8 (-918 *5 *7 *6))
- (-4 *6 (-13 (-821) (-592 (-1136)))) (-4 *7 (-767)) (-5 *2 (-547))
- (-5 *1 (-893 *5 *6 *7 *8)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5))
- (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-1232 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539))
- (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1232 *5 *6 *7 *8)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *4 *5))
- (-4 *5 (-13 (-27) (-1158) (-421 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *4 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-398 (-547)))
- (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *5 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *5)))))
+ (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4)
+ (-241 *4 (-400 (-549)))))
+ (-14 *4 (-621 (-1143))) (-14 *5 (-747)) (-5 *2 (-112))
+ (-5 *1 (-496 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-549)))
+ (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3))
+ (-4 *2
+ (-13 (-356) (-295)
+ (-10 -8 (-15 -1394 ((-1092 *3 (-592 $)) $))
+ (-15 -1403 ((-1092 *3 (-592 $)) $))
+ (-15 -3846 ($ (-1092 *3 (-592 $))))))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-947 *4 *5 *3 *6)) (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-411 *2)) (-4 *2 (-300)) (-5 *1 (-885 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5)))
- (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *5 *3))))
+ (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1143))
+ (-4 *5 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-886 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-285 *3)) (-5 *5 (-398 (-547)))
- (-4 *3 (-13 (-27) (-1158) (-421 *6)))
- (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *6 *3))))
+ (-12 (-5 *4 (-411 (-923 *6))) (-5 *5 (-1143)) (-5 *3 (-923 *6))
+ (-4 *6 (-13 (-300) (-145))) (-5 *2 (-52)) (-5 *1 (-886 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-621 (-1143))) (-4 *4 (-170))
+ (-4 *5 (-232 (-3775 *3) (-747)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3493 *2) (|:| -3731 *5))
+ (-2 (|:| -3493 *2) (|:| -3731 *5))))
+ (-4 *2 (-823)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-920 *4 *5 (-836 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-539 *3)) (-4 *3 (-13 (-397) (-1165))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356)))
+ (-4 *3 (-1202 *4)) (-5 *2 (-112)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-983)) (-5 *2 (-834)))))
+(((*1 *2 *1) (-12 (-5 *2 (-800)) (-5 *1 (-801)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-541)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1202 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-52))) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-155)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-356)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4248 *1)))
+ (-4 *1 (-825 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *4 *5))
+ (-4 *5 (-13 (-27) (-1165) (-423 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *4 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-400 (-549)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *5 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-287 *3)) (-5 *5 (-400 (-549)))
+ (-4 *3 (-13 (-27) (-1165) (-423 *6)))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-398 (-547)))) (-5 *4 (-285 *8))
- (-5 *5 (-1186 (-398 (-547)))) (-5 *6 (-398 (-547)))
- (-4 *8 (-13 (-27) (-1158) (-421 *7)))
- (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-400 (-549)))) (-5 *4 (-287 *8))
+ (-5 *5 (-1193 (-400 (-549)))) (-5 *6 (-400 (-549)))
+ (-4 *8 (-13 (-27) (-1165) (-423 *7)))
+ (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3)) (-5 *6 (-1186 (-398 (-547))))
- (-5 *7 (-398 (-547))) (-4 *3 (-13 (-27) (-1158) (-421 *8)))
- (-4 *8 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *8 *3))))
+ (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3)) (-5 *6 (-1193 (-400 (-549))))
+ (-5 *7 (-400 (-549))) (-4 *3 (-13 (-27) (-1165) (-423 *8)))
+ (-4 *8 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-398 (-547))) (-4 *4 (-1016)) (-4 *1 (-1202 *4 *3))
- (-4 *3 (-1179 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442))
- (-14 *6 (-619 (-1136))) (-5 *2 (-619 (-1013 *5 *6)))
- (-5 *1 (-604 *5 *6)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-619 (-590 *2))) (-5 *4 (-619 (-1136)))
- (-4 *2 (-13 (-421 (-166 *5)) (-971) (-1158)))
- (-4 *5 (-13 (-539) (-821))) (-5 *1 (-578 *5 *6 *2))
- (-4 *6 (-13 (-421 *5) (-971) (-1158))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2510 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-619 (-398 *8))) (-4 *7 (-354)) (-4 *8 (-1195 *7))
- (-5 *3 (-398 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-557 *7 *8)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-832)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 (-745))
- (-14 *4 (-745)) (-4 *5 (-169)))))
+ (-12 (-5 *2 (-400 (-549))) (-4 *4 (-1018)) (-4 *1 (-1209 *4 *3))
+ (-4 *3 (-1186 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-796)) (-14 *5 (-1143)) (-5 *2 (-621 (-1199 *5 *4)))
+ (-5 *1 (-1081 *4 *5)) (-5 *3 (-1199 *5 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1018)) (-5 *1 (-1198 *3 *2)) (-4 *2 (-1202 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-204)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-547)) (-5 *1 (-476 *4))
- (-4 *4 (-1195 *2)))))
+ (-12 (-5 *3 (-1199 *5 *4)) (-4 *4 (-444)) (-4 *4 (-796))
+ (-14 *5 (-1143)) (-5 *2 (-549)) (-5 *1 (-1081 *4 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-184)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-539))
- (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-1190 *4 *3))
- (-4 *3 (-1195 *4)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-539)))))
-(((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1009)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1132 *1)) (-4 *1 (-981)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-1139))))
- ((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1139)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *4 *5))
- (-4 *5 (-13 (-27) (-1158) (-421 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *4 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-547)) (-4 *5 (-13 (-442) (-821) (-1007 *4) (-615 *4)))
- (-5 *2 (-52)) (-5 *1 (-306 *5 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5)))
- (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *5 *3))))
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
+ ((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006))
+ (-5 *1 (-732)))))
+(((*1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-805)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-816 *4)) (-5 *3 (-592 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1165) (-29 *6)))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-218 *6 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2721 (-114)) (|:| |arg| (-621 (-863 *3)))))
+ (-5 *1 (-863 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-621 (-863 *4)))
+ (-5 *1 (-863 *4)) (-4 *4 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *4 *5))
+ (-4 *5 (-13 (-27) (-1165) (-423 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *4 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-549)) (-4 *5 (-13 (-444) (-823) (-1009 *4) (-617 *4)))
+ (-5 *2 (-52)) (-5 *1 (-308 *5 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *6)))
- (-4 *6 (-13 (-442) (-821) (-1007 *5) (-615 *5))) (-5 *5 (-547))
- (-5 *2 (-52)) (-5 *1 (-306 *6 *3))))
+ (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *6)))
+ (-4 *6 (-13 (-444) (-823) (-1009 *5) (-617 *5))) (-5 *5 (-549))
+ (-5 *2 (-52)) (-5 *1 (-308 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-547))) (-5 *4 (-285 *7)) (-5 *5 (-1186 (-547)))
- (-4 *7 (-13 (-27) (-1158) (-421 *6)))
- (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-287 *7)) (-5 *5 (-1193 (-549)))
+ (-4 *7 (-13 (-27) (-1165) (-423 *6)))
+ (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3)) (-5 *6 (-1186 (-547)))
- (-4 *3 (-13 (-27) (-1158) (-421 *7)))
- (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *7 *3))))
+ (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3)) (-5 *6 (-1193 (-549)))
+ (-4 *3 (-13 (-27) (-1165) (-423 *7)))
+ (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-547)) (-4 *4 (-1016)) (-4 *1 (-1181 *4 *3))
- (-4 *3 (-1210 *4))))
+ (-12 (-5 *2 (-549)) (-4 *4 (-1018)) (-4 *1 (-1188 *4 *3))
+ (-4 *3 (-1217 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1179 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-352 (-114))) (-4 *2 (-1016)) (-5 *1 (-689 *2 *4))
- (-4 *4 (-622 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-352 (-114))) (-5 *1 (-808 *2)) (-4 *2 (-1016)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-4 *1 (-872 *3)))))
+ (-12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1186 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-897)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-541)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-4 *3 (-1202 *4)) (-4 *2 (-1217 *4))
+ (-5 *1 (-1220 *4 *3 *5 *2)) (-4 *5 (-632 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1125)) (-5 *2 (-621 (-1148))) (-5 *1 (-851)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1067) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-13 (-1067) (-34))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219)))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-62 LSFUN2))))
+ (-5 *2 (-1006)) (-5 *1 (-730)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1143)) (-5 *6 (-621 (-592 *3)))
+ (-5 *5 (-592 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *7)))
+ (-4 *7 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-2 (|:| -3440 *3) (|:| |coeff| *3)))
+ (-5 *1 (-542 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1165)))))
+ ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-834))))
+ ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-834)))))
(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1496 *3) (|:| |coef1| (-756 *3)) (|:| |coef2| (-756 *3))))
- (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1132 *1)) (-5 *3 (-1136)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1132 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1136)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-539)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-539))))))
-(((*1 *2 *1) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1158)))))
- ((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832))))
- ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *4 *5))
- (-4 *5 (-13 (-27) (-1158) (-421 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *4 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-745))
- (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *5 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *5)))
- (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *5 *3))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-747)) (-4 *5 (-356)) (-5 *2 (-172 *6))
+ (-5 *1 (-838 *5 *4 *6)) (-4 *4 (-1217 *5)) (-4 *6 (-1202 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *4 *5))
+ (-4 *5 (-13 (-27) (-1165) (-423 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *4 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-747))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *5 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-287 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-285 *3)) (-5 *5 (-745))
- (-4 *3 (-13 (-27) (-1158) (-421 *6)))
- (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-306 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-547))) (-5 *4 (-285 *6))
- (-4 *6 (-13 (-27) (-1158) (-421 *5)))
- (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *5 *6))))
+ (-12 (-5 *4 (-287 *3)) (-5 *5 (-747))
+ (-4 *3 (-13 (-27) (-1165) (-423 *6)))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-308 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-287 *6))
+ (-4 *6 (-13 (-27) (-1165) (-423 *5)))
+ (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *6)))
- (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *6 *3))))
+ (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *6)))
+ (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-547))) (-5 *4 (-285 *7)) (-5 *5 (-1186 (-745)))
- (-4 *7 (-13 (-27) (-1158) (-421 *6)))
- (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-287 *7)) (-5 *5 (-1193 (-747)))
+ (-4 *7 (-13 (-27) (-1165) (-423 *6)))
+ (-4 *6 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1136)) (-5 *5 (-285 *3)) (-5 *6 (-1186 (-745)))
- (-4 *3 (-13 (-27) (-1158) (-421 *7)))
- (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-52)) (-5 *1 (-449 *7 *3))))
+ (-12 (-5 *4 (-1143)) (-5 *5 (-287 *3)) (-5 *6 (-1193 (-747)))
+ (-4 *3 (-13 (-27) (-1165) (-423 *7)))
+ (-4 *7 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-52)) (-5 *1 (-451 *7 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1210 *3)))))
+ (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1217 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-747)) (-5 *1 (-829 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1139 (-549))) (-5 *1 (-913)) (-5 *3 (-549)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136))
- (-4 *5 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-565 *3)) (-5 *1 (-540 *5 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-298))
- (-5 *2 (-398 (-409 (-921 *4)))) (-5 *1 (-1011 *4)))))
-(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673))))
- ((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1173))
- (-4 *5 (-364 *4)) (-4 *2 (-364 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *6 *2 *7)) (-4 *6 (-1016))
- (-4 *7 (-230 *4 *6)) (-4 *2 (-230 *5 *6)))))
+ (-12 (-5 *3 (-621 (-665 *5))) (-5 *4 (-1226 *5)) (-4 *5 (-300))
+ (-4 *5 (-1018)) (-5 *2 (-665 *5)) (-5 *1 (-1000 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-665 (-219))) (-5 *6 (-112)) (-5 *7 (-665 (-549)))
+ (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))
+ (-5 *3 (-549)) (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-730)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1195 (-48))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-166 (-217)))) (-5 *2 (-1004))
- (-5 *1 (-729)))))
-(((*1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-796)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *1) (-5 *1 (-797))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-321)))))
-(((*1 *1 *1 *1) (-5 *1 (-129))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217))
- (-5 *2 (-1004)) (-5 *1 (-730)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-722)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-1140)))))
-(((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-1132 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1141))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1141))))
- ((*1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-1141))))
- ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1141)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1105)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-745)) (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-731)))))
+ (-12 (-4 *4 (-13 (-541) (-823)))
+ (-4 *2 (-13 (-423 (-167 *4)) (-973) (-1165)))
+ (-5 *1 (-580 *4 *3 *2)) (-4 *3 (-13 (-423 *4) (-973) (-1165))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-471 *4 *5))) (-14 *4 (-619 (-1136)))
- (-4 *5 (-442)) (-5 *2 (-619 (-239 *4 *5))) (-5 *1 (-607 *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130))
- (-4 *3 (-766)))))
+ (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1184)) (-4 *3 (-1202 *4))
+ (-4 *5 (-1202 (-400 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-323)))))
(((*1 *1 *1 *1) (-5 *1 (-129))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (-142)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1107 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1067) (-34))) (-4 *6 (-13 (-1067) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1108 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *2 (-621 (-219)))
+ (-5 *1 (-460)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-1136))) (-4 *4 (-13 (-298) (-145)))
- (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767))
- (-5 *2 (-619 (-398 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7))
- (-4 *7 (-918 *4 *6 *5)))))
+ (-12 (-5 *3 (-549)) (|has| *1 (-6 -4328)) (-4 *1 (-397))
+ (-5 *2 (-892)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-354)) (-4 *6 (-1195 (-398 *2)))
- (-4 *2 (-1195 *5)) (-5 *1 (-207 *5 *2 *6 *3))
- (-4 *3 (-333 *5 *2 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-4 *1 (-106 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-539))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-539)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745)))
- (-5 *1 (-873 *4)))))
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-593 (-834)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-573))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-470))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-136))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1133))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-604))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1063))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1057))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1040))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-941))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-178))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1007))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-304))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-647))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-152))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-516))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1237))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1033))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-508))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-657))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-95))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1082))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-132))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1236))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-652))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-212))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-515))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1148))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1148))))
+ ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1148))))
+ ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1148)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-417 *4 *2)) (-4 *2 (-13 (-1158) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1136)) (-4 *5 (-145))
- (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547))))
- (-5 *2 (-307 *5)) (-5 *1 (-568 *5)))))
-(((*1 *1) (-5 *1 (-428))))
-(((*1 *1 *1) (-5 *1 (-217)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
- ((*1 *1 *1) (-5 *1 (-370))) ((*1 *1) (-5 *1 (-370))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))))
-(((*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-619 (-619 (-912 (-217)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-619 (-619 (-912 (-217))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-745)) (-4 *8 (-918 *5 *7 *6))
- (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136))))
- (-4 *7 (-767))
- (-5 *2
- (-619
- (-2 (|:| |det| *8) (|:| |rows| (-619 (-547)))
- (|:| |cols| (-619 (-547))))))
- (-5 *1 (-893 *5 *6 *7 *8)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1105)) (-5 *3 (-547)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1103 *3 *4)) (-14 *3 (-890)) (-4 *4 (-354))
- (-5 *1 (-962 *3 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-1016)))))
+ (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1180)))))
(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4329)) (-4 *1 (-479 *3)) (-4 *3 (-1173))
- (-5 *2 (-619 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-712 *3)) (-4 *3 (-1063)))))
-(((*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-1063)) (-4 *2 (-359)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-411 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1158) (-421 *3)))
- (-14 *4 (-1136)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-4 *2 (-13 (-27) (-1158) (-421 *3) (-10 -8 (-15 -3838 ($ *4)))))
- (-4 *4 (-819))
- (-4 *5
- (-13 (-1197 *2 *4) (-354) (-1158)
- (-10 -8 (-15 -3448 ($ $)) (-15 -3694 ($ $)))))
- (-5 *1 (-413 *3 *2 *4 *5 *6 *7)) (-4 *6 (-952 *5)) (-14 *7 (-1136)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-408 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1061 (-219)))
+ (-5 *2 (-1228)) (-5 *1 (-250)))))
+(((*1 *1 *1 *1) (-5 *1 (-129))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1111)) (-5 *3 (-142)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-747)) (-4 *6 (-1067)) (-4 *3 (-871 *6))
+ (-5 *2 (-665 *3)) (-5 *1 (-668 *6 *3 *7 *4)) (-4 *7 (-366 *3))
+ (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4337)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-621 *6) "failed") (-549) *6 *6)) (-4 *6 (-356))
+ (-4 *7 (-1202 *6))
+ (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6)))
+ (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *4 (-1195 *2))
- (-4 *2 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $)))))
- (-5 *1 (-488 *2 *4 *5)) (-4 *5 (-400 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2))
- (-4 *5 (-230 *3 *2)) (-4 *2 (-1016)))))
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
+ (|:| |lb| (-621 (-816 (-219))))
+ (|:| |cf| (-621 (-309 (-219))))
+ (|:| |ub| (-621 (-816 (-219))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-621 (-309 (-219))))
+ (|:| -3060 (-621 (-219)))))))
+ (-5 *2 (-621 (-1125))) (-5 *1 (-260)))))
+(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1018)) (-4 *2 (-663 *4 *5 *6))
+ (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1202 *4)) (-4 *5 (-366 *4))
+ (-4 *6 (-366 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1125)) (-5 *3 (-799)) (-5 *1 (-798)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-621 (-1179))) (-5 *3 (-1179)) (-5 *1 (-657)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-219) (-219) (-219)))
+ (-5 *4 (-1 (-219) (-219) (-219) (-219)))
+ (-5 *2 (-1 (-914 (-219)) (-219) (-219))) (-5 *1 (-673)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170))
+ (-5 *2 (-665 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-5 *2 (-665 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-409 (-1132 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1132 *1))
- (-4 *4 (-442)) (-4 *4 (-539)) (-4 *4 (-821))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-878)) (-5 *2 (-409 (-1132 *1))) (-5 *3 (-1132 *1)))))
+ (-12 (-5 *3 (-892)) (-5 *2 (-1226 (-1226 (-549)))) (-5 *1 (-458)))))
+(((*1 *1 *1) (-5 *1 (-219)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
+ ((*1 *1 *1) (-5 *1 (-372))) ((*1 *1) (-5 *1 (-372))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-958 (-400 (-549)) (-836 *3) (-234 *4 (-747))
+ (-241 *3 (-400 (-549)))))
+ (-14 *3 (-621 (-1143))) (-14 *4 (-747)) (-5 *1 (-957 *3 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1139 *7)) (-5 *3 (-549)) (-4 *7 (-920 *6 *4 *5))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
+ (-5 *1 (-314 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1063)) (-5 *1 (-933 *2 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218))))
- ((*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *1 *1) (-4 *1 (-1100))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
- ((*1 *1 *1) (-5 *1 (-168))) ((*1 *1 *1) (-4 *1 (-532)))
- ((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016))))
+ (-12 (-5 *2 (-2 (|:| -2207 *1) (|:| -4324 *1) (|:| |associate| *1)))
+ (-4 *1 (-541)))))
+(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-549))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-842 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-14 *2 (-549))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-549)) (-14 *3 *2) (-5 *1 (-843 *3 *4))
+ (-4 *4 (-840 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-549)) (-5 *1 (-843 *2 *3)) (-4 *3 (-840 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-549)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-1217 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34)))
- (-4 *3 (-13 (-1063) (-34))))))
+ (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1217 *2)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1111)) (-5 *3 (-549)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-112))
+ (-5 *2 (-1006)) (-5 *1 (-722)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-541))
+ (-5 *2 (-1139 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1139 *4)) (-4 *4 (-342)) (-5 *2 (-112))
+ (-5 *1 (-350 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-307 *4)) (-4 *4 (-13 (-802) (-821) (-1016)))
- (-5 *2 (-1119)) (-5 *1 (-800 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-307 *5)) (-5 *4 (-112))
- (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1119))
- (-5 *1 (-800 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-796)) (-5 *4 (-307 *5))
- (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1224))
- (-5 *1 (-800 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-796)) (-5 *4 (-307 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-802) (-821) (-1016))) (-5 *2 (-1224))
- (-5 *1 (-800 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-802)) (-5 *2 (-1119))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-802)) (-5 *3 (-112)) (-5 *2 (-1119))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *2 (-1224))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *4 (-112)) (-5 *2 (-1224)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-547)) (-5 *1 (-1117 *3)) (-4 *3 (-1173))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1067)) (-4 *5 (-1067))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-659 *4 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-747)) (-5 *1 (-114)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3))
- (-4 *3 (-936)))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
+ (-12 (-4 *2 (-1202 *3)) (-5 *1 (-392 *3 *2))
+ (-4 *3 (-13 (-356) (-145))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1219 (-307 (-217))))
- (-5 *2
- (-2 (|:| |additions| (-547)) (|:| |multiplications| (-547))
- (|:| |exponentiations| (-547)) (|:| |functionCalls| (-547))))
- (-5 *1 (-296)))))
-(((*1 *1) (-5 *1 (-1049))))
+ (-12 (-5 *3 (-1061 (-816 (-372)))) (-5 *2 (-1061 (-816 (-219))))
+ (-5 *1 (-298)))))
+(((*1 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1231))
+ (-5 *1 (-1039 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1231))
+ (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
+ ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-534)))
+ ((*1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-13 (-1067) (-34)))
+ (-4 *3 (-13 (-1067) (-34))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-444)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-1077)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-129)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-1123 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-823))
+ (-4 *5 (-769)) (-5 *1 (-958 *3 *4 *5 *6)) (-4 *6 (-920 *3 *5 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3054 (-619 (-217)))))
- (-5 *2 (-619 (-1136))) (-5 *1 (-258))))
+ (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))
+ (-5 *2 (-621 (-1143))) (-5 *1 (-260))))
((*1 *2 *3)
- (-12 (-5 *3 (-1132 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-619 *5))
- (-5 *1 (-312 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1139 *7)) (-4 *7 (-920 *6 *4 *5)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *2 (-621 *5))
+ (-5 *1 (-314 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-619 (-1136))) (-5 *1 (-330 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-378))))
+ (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-380))))
((*1 *2 *1)
- (-12 (-4 *1 (-421 *3)) (-4 *3 (-821)) (-5 *2 (-619 (-1136)))))
+ (-12 (-4 *1 (-423 *3)) (-4 *3 (-823)) (-5 *2 (-621 (-1143)))))
((*1 *2 *1)
- (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))
+ (-12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3)) (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-619 *5))))
+ (-12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-621 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016))
- (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *5))
- (-5 *1 (-919 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
+ (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-621 *5))
+ (-5 *1 (-921 *4 *5 *6 *7 *3))
(-4 *3
- (-13 (-354)
- (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $)))))))
+ (-13 (-356)
+ (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-1065 (-1136))) (-5 *1 (-935 *3)) (-4 *3 (-936))))
+ (-12 (-5 *2 (-1069 (-1143))) (-5 *1 (-937 *3)) (-4 *3 (-938))))
((*1 *2 *1)
- (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766))
- (-4 *5 (-821)) (-5 *2 (-619 *5))))
+ (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-768))
+ (-4 *5 (-823)) (-5 *2 (-621 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5))))
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-5 *2 (-619 (-1136)))
- (-5 *1 (-1012 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-645))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890))
- (-14 *4 (-890)))))
+ (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-5 *2 (-621 (-1143)))
+ (-5 *1 (-1014 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228))))
+ ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1139 *9)) (-5 *4 (-621 *7)) (-5 *5 (-621 *8))
+ (-4 *7 (-823)) (-4 *8 (-1018)) (-4 *9 (-920 *8 *6 *7))
+ (-4 *6 (-769)) (-5 *2 (-1139 *8)) (-5 *1 (-314 *6 *7 *8 *9)))))
+(((*1 *1) (-5 *1 (-1048))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7))
- (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8))))
- (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-619 (-112))) (-5 *7 (-663 (-217)))
- (-5 *8 (-663 (-547))) (-5 *3 (-547)) (-5 *4 (-217)) (-5 *5 (-112))
- (-5 *2 (-1004)) (-5 *1 (-729)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-943)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112))
- (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-697)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217)))
- (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-62 LSFUN2))))
- (-5 *2 (-1004)) (-5 *1 (-728)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))))
+ (-12 (-4 *5 (-1067)) (-4 *3 (-871 *5)) (-5 *2 (-1226 *3))
+ (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-366 *3))
+ (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1025))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-1025))))
- ((*1 *1 *1) (-4 *1 (-819)))
- ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)) (-4 *2 (-1025))))
- ((*1 *1 *1) (-4 *1 (-1025))) ((*1 *1 *1) (-4 *1 (-1100))))
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-584 *4 *3)) (-4 *4 (-1067))
+ (-4 *3 (-1180)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-621 (-621 *4))) (-5 *2 (-621 *4)) (-4 *4 (-300))
+ (-5 *1 (-177 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-621 *8))
+ (-5 *4
+ (-621
+ (-2 (|:| -1949 (-665 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-665 *7)))))
+ (-5 *5 (-747)) (-4 *8 (-1202 *7)) (-4 *7 (-1202 *6)) (-4 *6 (-342))
+ (-5 *2
+ (-2 (|:| -1949 (-665 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-665 *7))))
+ (-5 *1 (-489 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1226 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184))
+ (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4))))))
+(((*1 *1 *1) (-5 *1 (-1030))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1132 (-398 (-1132 *2)))) (-5 *4 (-590 *2))
- (-4 *2 (-13 (-421 *5) (-27) (-1158)))
- (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *1 (-543 *5 *2 *6)) (-4 *6 (-1063))))
+ (-12 (-5 *3 (-1139 (-400 (-1139 *2)))) (-5 *4 (-592 *2))
+ (-4 *2 (-13 (-423 *5) (-27) (-1165)))
+ (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *1 (-545 *5 *2 *6)) (-4 *6 (-1067))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1132 *1)) (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016))
- (-4 *5 (-767)) (-4 *3 (-821))))
+ (-12 (-5 *2 (-1139 *1)) (-4 *1 (-920 *4 *5 *3)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *3 (-823))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1132 *4)) (-4 *4 (-1016)) (-4 *1 (-918 *4 *5 *3))
- (-4 *5 (-767)) (-4 *3 (-821))))
+ (-12 (-5 *2 (-1139 *4)) (-4 *4 (-1018)) (-4 *1 (-920 *4 *5 *3))
+ (-4 *5 (-769)) (-4 *3 (-823))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-1132 *2))) (-4 *5 (-767)) (-4 *4 (-821))
- (-4 *6 (-1016))
+ (-12 (-5 *3 (-400 (-1139 *2))) (-4 *5 (-769)) (-4 *4 (-823))
+ (-4 *6 (-1018))
(-4 *2
- (-13 (-354)
- (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $)))))
- (-5 *1 (-919 *5 *4 *6 *7 *2)) (-4 *7 (-918 *6 *5 *4))))
+ (-13 (-356)
+ (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $)))))
+ (-5 *1 (-921 *5 *4 *6 *7 *2)) (-4 *7 (-920 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-1132 (-398 (-921 *5))))) (-5 *4 (-1136))
- (-5 *2 (-398 (-921 *5))) (-5 *1 (-1012 *5)) (-4 *5 (-539)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-239 *4 *5))
- (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1136))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-4 *1 (-365 *3 *4))
- (-4 *4 (-169)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821))
- (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-600 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *2 (-1072 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-400 (-1139 (-400 (-923 *5))))) (-5 *4 (-1143))
+ (-5 *2 (-400 (-923 *5))) (-5 *1 (-1014 *5)) (-4 *5 (-541)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-1125)) (-5 *5 (-665 (-219)))
+ (-5 *2 (-1006)) (-5 *1 (-724)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1018)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1202 *3)))))
+(((*1 *1 *1) (-4 *1 (-541))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -4024 (-621 (-2 (|:| |irr| *10) (|:| -2495 (-549)))))))
+ (-5 *6 (-621 *3)) (-5 *7 (-621 *8)) (-4 *8 (-823)) (-4 *3 (-300))
+ (-4 *10 (-920 *3 *9 *8)) (-4 *9 (-769))
+ (-5 *2
+ (-2 (|:| |polfac| (-621 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-621 (-1139 *3)))))
+ (-5 *1 (-603 *8 *9 *3 *10)) (-5 *4 (-621 (-1139 *3))))))
(((*1 *1 *1)
- (-12 (-4 *1 (-244 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821))
- (-4 *4 (-257 *3)) (-4 *5 (-767)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-321)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-619 (-166 *4))) (-5 *1 (-152 *3 *4))
- (-4 *3 (-1195 (-166 (-547)))) (-4 *4 (-13 (-354) (-819)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-619 (-166 *4)))
- (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-619 (-166 *4)))
- (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))))
+ (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1018)) (-4 *3 (-823))
+ (-4 *4 (-259 *3)) (-4 *5 (-769)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1173))
- (-4 *4 (-364 *2)) (-4 *5 (-364 *2))))
+ (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1180))
+ (-4 *4 (-366 *2)) (-4 *5 (-366 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4330)) (-4 *1 (-119 *3))
- (-4 *3 (-1173))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4338)) (-4 *1 (-119 *3))
+ (-4 *3 (-1180))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4330)) (-4 *1 (-119 *3))
- (-4 *3 (-1173))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4338)) (-4 *1 (-119 *3))
+ (-4 *3 (-1180))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-745)) (-5 *1 (-205 *4 *2)) (-14 *4 (-890))
- (-4 *2 (-1063))))
+ (-12 (-5 *3 (-747)) (-5 *1 (-207 *4 *2)) (-14 *4 (-892))
+ (-4 *2 (-1067))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-279 *3 *2)) (-4 *3 (-1063))
- (-4 *2 (-1173))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1136)) (-5 *1 (-608))))
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1067))
+ (-4 *2 (-1180))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1143)) (-5 *1 (-610))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1186 (-547))) (|has| *1 (-6 -4330)) (-4 *1 (-625 *2))
- (-4 *2 (-1173))))
+ (-12 (-5 *3 (-1193 (-549))) (|has| *1 (-6 -4338)) (-4 *1 (-627 *2))
+ (-4 *2 (-1180))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-619 (-547))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
+ (-12 (-5 *2 (-621 (-549))) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4330)) (-4 *1 (-979 *2))
- (-4 *2 (-1173))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1173))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4338)) (-4 *1 (-981 *2))
+ (-4 *2 (-1180))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1180))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))
+ (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2))
- (-4 *2 (-1173))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2))
+ (-4 *2 (-1180))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4330)) (-4 *1 (-1207 *3))
- (-4 *3 (-1173))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4338)) (-4 *1 (-1214 *3))
+ (-4 *3 (-1180))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4330)) (-4 *1 (-1207 *2))
- (-4 *2 (-1173)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-282)))
- ((*1 *1) (-5 *1 (-832)))
- ((*1 *1)
- (-12 (-4 *2 (-442)) (-4 *3 (-821)) (-4 *4 (-767))
- (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1049)))
- ((*1 *1)
- (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34)))
- (-4 *3 (-13 (-1063) (-34)))))
- ((*1 *1) (-5 *1 (-1139))) ((*1 *1) (-5 *1 (-1140))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *6 (-592 (-1136)))
- (-4 *4 (-354)) (-4 *5 (-767)) (-4 *6 (-821))
- (-5 *2 (-1126 (-619 (-921 *4)) (-619 (-285 (-921 *4)))))
- (-5 *1 (-493 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4))
- (-4 *4 (-340)))))
-(((*1 *1 *1 *1) (-4 *1 (-293))) ((*1 *1 *1) (-4 *1 (-293))))
-(((*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-217)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-547))) (-4 *3 (-1016)) (-5 *1 (-98 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4338)) (-4 *1 (-1214 *2))
+ (-4 *2 (-1180)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-948 *4 *5 *6 *7)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-629 (-400 *6))) (-5 *4 (-1 (-621 *5) *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-4 *6 (-1202 *5)) (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-629 (-400 *7))) (-5 *4 (-1 (-621 *6) *7))
+ (-5 *5 (-1 (-411 *7) *7))
+ (-4 *6 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-4 *7 (-1202 *6)) (-5 *2 (-621 (-400 *7))) (-5 *1 (-788 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-630 *6 (-400 *6))) (-5 *4 (-1 (-621 *5) *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-4 *6 (-1202 *5)) (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-630 *7 (-400 *7))) (-5 *4 (-1 (-621 *6) *7))
+ (-5 *5 (-1 (-411 *7) *7))
+ (-4 *6 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-4 *7 (-1202 *6)) (-5 *2 (-621 (-400 *7))) (-5 *1 (-788 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-629 (-400 *5))) (-4 *5 (-1202 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-5 *2 (-621 (-400 *5))) (-5 *1 (-788 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-629 (-400 *6))) (-5 *4 (-1 (-411 *6) *6))
+ (-4 *6 (-1202 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-630 *5 (-400 *5))) (-4 *5 (-1202 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-5 *2 (-621 (-400 *5))) (-5 *1 (-788 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-630 *6 (-400 *6))) (-5 *4 (-1 (-411 *6) *6))
+ (-4 *6 (-1202 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-5 *2 (-621 (-400 *6))) (-5 *1 (-788 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-1119))) (-5 *2 (-1119)) (-5 *1 (-184))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))))
+ (-12 (-5 *3 (-665 (-400 (-923 *4)))) (-4 *4 (-444))
+ (-5 *2 (-621 (-3 (-400 (-923 *4)) (-1132 (-1143) (-923 *4)))))
+ (-5 *1 (-285 *4)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-619 (-890))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890))
- (-4 *2 (-354)) (-14 *5 (-962 *4 *2))))
+ (-12 (-5 *3 (-621 (-892))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-892))
+ (-4 *2 (-356)) (-14 *5 (-964 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-688 *5 *6 *7)) (-4 *5 (-821))
- (-4 *6 (-230 (-3767 *4) (-745)))
+ (-12 (-5 *3 (-690 *5 *6 *7)) (-4 *5 (-823))
+ (-4 *6 (-232 (-3775 *4) (-747)))
(-14 *7
- (-1 (-112) (-2 (|:| -3487 *5) (|:| -3322 *6))
- (-2 (|:| -3487 *5) (|:| -3322 *6))))
- (-14 *4 (-619 (-1136))) (-4 *2 (-169))
- (-5 *1 (-451 *4 *2 *5 *6 *7 *8)) (-4 *8 (-918 *2 *6 (-834 *4)))))
+ (-1 (-112) (-2 (|:| -3493 *5) (|:| -3731 *6))
+ (-2 (|:| -3493 *5) (|:| -3731 *6))))
+ (-14 *4 (-621 (-1143))) (-4 *2 (-170))
+ (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) (-4 *8 (-920 *2 *6 (-836 *4)))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-498 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821))))
+ (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-823))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-547)) (-4 *2 (-539)) (-5 *1 (-599 *2 *4))
- (-4 *4 (-1195 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016))))
+ (-12 (-5 *3 (-549)) (-4 *2 (-541)) (-5 *1 (-601 *2 *4))
+ (-4 *4 (-1202 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-710 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-701))))
+ (-12 (-5 *1 (-712 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-703))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5))
- (-4 *4 (-1016)) (-4 *5 (-821))))
+ (-12 (-5 *2 (-621 *5)) (-5 *3 (-621 (-747))) (-4 *1 (-717 *4 *5))
+ (-4 *4 (-1018)) (-4 *5 (-823))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016))
- (-4 *2 (-821))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018))
+ (-4 *2 (-823))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6))
- (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821))))
+ (-12 (-5 *2 (-621 *6)) (-5 *3 (-621 (-747))) (-4 *1 (-920 *4 *5 *6))
+ (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016))
- (-4 *5 (-767)) (-4 *2 (-821))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-920 *4 *5 *2)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *2 (-823))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 *5)) (-4 *1 (-942 *4 *5 *6))
- (-4 *4 (-1016)) (-4 *5 (-766)) (-4 *6 (-821))))
+ (-12 (-5 *2 (-621 *6)) (-5 *3 (-621 *5)) (-4 *1 (-944 *4 *5 *6))
+ (-4 *4 (-1018)) (-4 *5 (-768)) (-4 *6 (-823))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-942 *4 *3 *2)) (-4 *4 (-1016)) (-4 *3 (-766))
- (-4 *2 (-821)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767))
- (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *3 (-1030 *4 *5 *6))
- (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1974 *1))))
- (-4 *1 (-1036 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3840 *6) (|:| |sol?| (-112))) (-547)
- *6))
- (-4 *6 (-354)) (-4 *7 (-1195 *6))
- (-5 *2 (-2 (|:| |answer| (-565 (-398 *7))) (|:| |a0| *6)))
- (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-493 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821))
- (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-244 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821))
- (-4 *4 (-257 *3)) (-4 *5 (-767)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-912 (-217)) (-912 (-217)))) (-5 *3 (-619 (-254)))
- (-5 *1 (-252))))
+ (-12 (-4 *1 (-944 *4 *3 *2)) (-4 *4 (-1018)) (-4 *3 (-768))
+ (-4 *2 (-823)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *2 (-1006)) (-5 *1 (-734)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-429)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-387)))))
+(((*1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1202 (-549)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-120 *3)) (-4 *3 (-1202 (-549))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-4 *2 (-1202 *5))
+ (-5 *1 (-1220 *5 *2 *6 *3)) (-4 *6 (-632 *2)) (-4 *3 (-1217 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-541)) (-5 *2 (-621 (-665 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-410 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1093 *4 *3 *5))) (-4 *4 (-38 (-400 (-549))))
+ (-4 *4 (-1018)) (-4 *3 (-823)) (-5 *1 (-1093 *4 *3 *5))
+ (-4 *5 (-920 *4 (-521 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1174 *4))) (-5 *3 (-1143)) (-5 *1 (-1174 *4))
+ (-4 *4 (-38 (-400 (-549)))) (-4 *4 (-1018)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-850 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-914 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1 (-912 (-217)) (-912 (-217)))) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-471 *5 *6))) (-5 *3 (-471 *5 *6))
- (-14 *5 (-619 (-1136))) (-4 *6 (-442)) (-5 *2 (-1219 *6))
- (-5 *1 (-607 *5 *6)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1136)) (-5 *2 (-1140)) (-5 *1 (-1139)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-2 (|:| -2115 (-1132 *6)) (|:| -3322 (-547)))))
- (-4 *6 (-298)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-547))
- (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-619 (-398 (-921 (-547))))) (-5 *4 (-619 (-1136)))
- (-5 *2 (-619 (-619 *5))) (-5 *1 (-371 *5))
- (-4 *5 (-13 (-819) (-354)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 (-547)))) (-5 *2 (-619 *4)) (-5 *1 (-371 *4))
- (-4 *4 (-13 (-819) (-354))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3))
- (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3))
- (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3))
- (-4 *3 (-13 (-354) (-1158) (-971))))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-435 *3)) (-4 *3 (-1016)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1132 *6)) (-5 *3 (-547)) (-4 *6 (-298)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-208 *4 *2))
- (-4 *2 (-1195 *4)))))
+ (-12 (-5 *2 (-621 (-914 *3))) (-4 *3 (-1018)) (-4 *1 (-1101 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-621 *3))) (-4 *1 (-1101 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-914 *3))) (-4 *1 (-1101 *3)) (-4 *3 (-1018)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-956 (-398 (-547)) (-834 *3) (-232 *4 (-745))
- (-239 *3 (-398 (-547)))))
- (-14 *3 (-619 (-1136))) (-14 *4 (-745)) (-5 *1 (-955 *3 *4)))))
-(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-340)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-878)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-665 (-549))) (-5 *1 (-1077)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1018)) (-5 *2 (-1226 *3)) (-5 *1 (-689 *3 *4))
+ (-4 *4 (-1202 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-166 (-217))) (-5 *4 (-547)) (-5 *2 (-1004))
- (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217)))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))))
- (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *3 (-217))
- (-5 *2 (-1004)) (-5 *1 (-724)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3)))))
+ (-12 (-5 *3 (-665 (-400 (-549)))) (-5 *2 (-621 *4)) (-5 *1 (-755 *4))
+ (-4 *4 (-13 (-356) (-821))))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-167 (-219)) (-167 (-219)))) (-5 *4 (-1061 (-219)))
+ (-5 *5 (-112)) (-5 *2 (-1228)) (-5 *1 (-250)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-398 (-921 (-547)))))
- (-5 *2 (-619 (-663 (-307 (-547))))) (-5 *1 (-1000)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-254)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1234 (-1136) *3)) (-4 *3 (-1016)) (-5 *1 (-1241 *3))))
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-823) (-541))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-747)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1234 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))
- (-5 *1 (-1243 *3 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6))
- (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821))
- (-5 *1 (-946 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547))
- (-5 *2 (-1004)) (-5 *1 (-729)))))
-(((*1 *1) (-5 *1 (-1028))))
+ (-12 (-4 *2 (-1018)) (-4 *1 (-1090 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2))
+ (-4 *5 (-232 *3 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-547)) (-5 *4 (-409 *2)) (-4 *2 (-918 *7 *5 *6))
- (-5 *1 (-717 *5 *6 *7 *2)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-298)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3)) (-4 *3 (-1173)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5))
- (-5 *1 (-957 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5))
- (-5 *1 (-1070 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-723)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1177)) (-4 *3 (-1195 *4))
- (-4 *5 (-1195 (-398 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130))
- (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2712 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| -1563 *3) (|:| -3518 *4))))
- (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766))
- (-5 *2 (-1117 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2677 (-619 *3)) (|:| -4234 (-619 *3))))
- (-5 *1 (-1174 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *4)) (-4 *4 (-1016)) (-5 *2 (-1219 *4))
- (-5 *1 (-1137 *4))))
+ (-12 (-5 *3 (-621 (-400 (-923 (-549)))))
+ (-5 *2 (-621 (-621 (-287 (-923 *4))))) (-5 *1 (-373 *4))
+ (-4 *4 (-13 (-821) (-356)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-890)) (-5 *2 (-1219 *3)) (-5 *1 (-1137 *3))
- (-4 *3 (-1016)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1103 *4 *2)) (-14 *4 (-890))
- (-4 *2 (-13 (-1016) (-10 -7 (-6 (-4331 "*")))))
- (-5 *1 (-871 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1219 (-619 (-2 (|:| -4153 *4) (|:| -3487 (-1082))))))
- (-4 *4 (-340)) (-5 *2 (-663 *4)) (-5 *1 (-337 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3719 *3)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1136))
- (-4 *4 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-540 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-153))))
- ((*1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-571))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-602))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1063))
- (-4 *2 (-13 (-421 *4) (-855 *3) (-592 (-861 *3))))
- (-5 *1 (-1039 *3 *4 *2))
- (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1063)) (-5 *1 (-1126 *3 *2)) (-4 *3 (-1063)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-745)) (-4 *5 (-354)) (-5 *2 (-398 *6))
- (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1210 *5)) (-4 *6 (-1195 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1211 *5 *6 *7)) (-4 *5 (-354))
- (-14 *6 (-1136)) (-14 *7 *5) (-5 *2 (-398 (-1192 *6 *5)))
- (-5 *1 (-837 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1211 *5 *6 *7)) (-4 *5 (-354))
- (-14 *6 (-1136)) (-14 *7 *5) (-5 *2 (-398 (-1192 *6 *5)))
- (-5 *1 (-837 *5 *6 *7)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-890)) (-5 *1 (-432 *2))
- (-4 *2 (-1195 (-547)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-890)) (-5 *4 (-745)) (-5 *1 (-432 *2))
- (-4 *2 (-1195 (-547)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *1 (-432 *2))
- (-4 *2 (-1195 (-547)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745))
- (-5 *1 (-432 *2)) (-4 *2 (-1195 (-547)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745))
- (-5 *6 (-112)) (-5 *1 (-432 *2)) (-4 *2 (-1195 (-547)))))
+ (-12 (-5 *3 (-621 (-287 (-400 (-923 (-549))))))
+ (-5 *2 (-621 (-621 (-287 (-923 *4))))) (-5 *1 (-373 *4))
+ (-4 *4 (-13 (-821) (-356)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-890)) (-5 *4 (-409 *2)) (-4 *2 (-1195 *5))
- (-5 *1 (-434 *5 *2)) (-4 *5 (-1016)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1132 *4)) (-4 *4 (-340)) (-5 *2 (-927 (-1082)))
- (-5 *1 (-337 *4)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3))
- (-4 *3 (-1063)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| -3331 (-1136)) (|:| -1786 *4))))
- (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063))
- (-4 *7 (-1063)) (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-1054)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-730)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-934))) (-5 *1 (-282)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-745))
- (-4 *3 (-13 (-701) (-359) (-10 -7 (-15 ** (*3 *3 (-547))))))
- (-5 *1 (-238 *3)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1224) (-1219 *5) (-1219 *5) (-370)))
- (-5 *3 (-1219 (-370))) (-5 *5 (-370)) (-5 *2 (-1224))
- (-5 *1 (-762)))))
-(((*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-153))))
- ((*1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-571))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-602))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1063))
- (-4 *2 (-13 (-421 *4) (-855 *3) (-592 (-861 *3))))
- (-5 *1 (-1039 *3 *4 *2))
- (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1063)) (-5 *1 (-1126 *2 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-398 (-921 (-547))))) (-5 *2 (-619 (-307 (-547))))
- (-5 *1 (-1000)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3))
- (-4 *3 (-936)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442))
- (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-946 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-121 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6))
- (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136))))
- (-4 *7 (-767))
+ (-12 (-5 *3 (-400 (-923 (-549)))) (-5 *2 (-621 (-287 (-923 *4))))
+ (-5 *1 (-373 *4)) (-4 *4 (-13 (-821) (-356)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-287 (-400 (-923 (-549)))))
+ (-5 *2 (-621 (-287 (-923 *4)))) (-5 *1 (-373 *4))
+ (-4 *4 (-13 (-821) (-356)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1143))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-4 *4 (-13 (-29 *6) (-1165) (-930)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -1949 (-621 *4))))
+ (-5 *1 (-628 *6 *4 *3)) (-4 *3 (-632 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1143)) (-5 *5 (-621 *2))
+ (-4 *2 (-13 (-29 *6) (-1165) (-930)))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *1 (-628 *6 *2 *3)) (-4 *3 (-632 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 *5)) (-4 *5 (-356))
(-5 *2
- (-619
- (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8))
- (|:| |wcond| (-619 (-921 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1219 (-398 (-921 *5))))
- (|:| -1917 (-619 (-1219 (-398 (-921 *5))))))))))
- (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-619 *8))))
+ (-2 (|:| |particular| (-3 (-1226 *5) "failed"))
+ (|:| -1949 (-621 (-1226 *5)))))
+ (-5 *1 (-643 *5)) (-5 *4 (-1226 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-619 (-1136))) (-4 *8 (-918 *5 *7 *6))
- (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136))))
- (-4 *7 (-767))
+ (-12 (-5 *3 (-621 (-621 *5))) (-4 *5 (-356))
(-5 *2
- (-619
- (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8))
- (|:| |wcond| (-619 (-921 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1219 (-398 (-921 *5))))
- (|:| -1917 (-619 (-1219 (-398 (-921 *5))))))))))
- (-5 *1 (-893 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5))
- (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136))))
- (-4 *6 (-767))
+ (-2 (|:| |particular| (-3 (-1226 *5) "failed"))
+ (|:| -1949 (-621 (-1226 *5)))))
+ (-5 *1 (-643 *5)) (-5 *4 (-1226 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 *5)) (-4 *5 (-356))
(-5 *2
- (-619
- (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7))
- (|:| |wcond| (-619 (-921 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1219 (-398 (-921 *4))))
- (|:| -1917 (-619 (-1219 (-398 (-921 *4))))))))))
- (-5 *1 (-893 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 *9)) (-5 *5 (-890)) (-4 *9 (-918 *6 *8 *7))
- (-4 *6 (-13 (-298) (-145))) (-4 *7 (-13 (-821) (-592 (-1136))))
- (-4 *8 (-767))
+ (-621
+ (-2 (|:| |particular| (-3 (-1226 *5) "failed"))
+ (|:| -1949 (-621 (-1226 *5))))))
+ (-5 *1 (-643 *5)) (-5 *4 (-621 (-1226 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-621 *5))) (-4 *5 (-356))
(-5 *2
- (-619
- (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9))
- (|:| |wcond| (-619 (-921 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1219 (-398 (-921 *6))))
- (|:| -1917 (-619 (-1219 (-398 (-921 *6))))))))))
- (-5 *1 (-893 *6 *7 *8 *9)) (-5 *4 (-619 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1136))) (-5 *5 (-890))
- (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145)))
- (-4 *7 (-13 (-821) (-592 (-1136)))) (-4 *8 (-767))
+ (-621
+ (-2 (|:| |particular| (-3 (-1226 *5) "failed"))
+ (|:| -1949 (-621 (-1226 *5))))))
+ (-5 *1 (-643 *5)) (-5 *4 (-621 (-1226 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4338))))
+ (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4338))))
(-5 *2
- (-619
- (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9))
- (|:| |wcond| (-619 (-921 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1219 (-398 (-921 *6))))
- (|:| -1917 (-619 (-1219 (-398 (-921 *6))))))))))
- (-5 *1 (-893 *6 *7 *8 *9))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4))))
+ (-5 *1 (-644 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-890)) (-4 *8 (-918 *5 *7 *6))
- (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136))))
- (-4 *7 (-767))
+ (-12 (-4 *5 (-356)) (-4 *6 (-13 (-366 *5) (-10 -7 (-6 -4338))))
+ (-4 *7 (-13 (-366 *5) (-10 -7 (-6 -4338))))
(-5 *2
- (-619
- (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8))
- (|:| |wcond| (-619 (-921 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1219 (-398 (-921 *5))))
- (|:| -1917 (-619 (-1219 (-398 (-921 *5))))))))))
- (-5 *1 (-893 *5 *6 *7 *8))))
+ (-621
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1949 (-621 *7)))))
+ (-5 *1 (-644 *5 *6 *7 *3)) (-5 *4 (-621 *7))
+ (-4 *3 (-663 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-621 (-1143))) (-4 *5 (-541))
+ (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-746 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-541))
+ (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-746 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1143))
+ (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *1 (-748 *5 *2)) (-4 *2 (-13 (-29 *5) (-1165) (-930)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 *9)) (-5 *5 (-1119))
- (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145)))
- (-4 *7 (-13 (-821) (-592 (-1136)))) (-4 *8 (-767)) (-5 *2 (-547))
- (-5 *1 (-893 *6 *7 *8 *9))))
+ (|partial| -12 (-5 *3 (-665 *7)) (-5 *5 (-1143))
+ (-4 *7 (-13 (-29 *6) (-1165) (-930)))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *2
+ (-2 (|:| |particular| (-1226 *7)) (|:| -1949 (-621 (-1226 *7)))))
+ (-5 *1 (-778 *6 *7)) (-5 *4 (-1226 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-665 *6)) (-5 *4 (-1143))
+ (-4 *6 (-13 (-29 *5) (-1165) (-930)))
+ (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *2 (-621 (-1226 *6))) (-5 *1 (-778 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1136))) (-5 *5 (-1119))
- (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145)))
- (-4 *7 (-13 (-821) (-592 (-1136)))) (-4 *8 (-767)) (-5 *2 (-547))
- (-5 *1 (-893 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-1119)) (-4 *8 (-918 *5 *7 *6))
- (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136))))
- (-4 *7 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 *10)) (-5 *5 (-890))
- (-5 *6 (-1119)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-298) (-145)))
- (-4 *8 (-13 (-821) (-592 (-1136)))) (-4 *9 (-767)) (-5 *2 (-547))
- (-5 *1 (-893 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 (-1136))) (-5 *5 (-890))
- (-5 *6 (-1119)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-298) (-145)))
- (-4 *8 (-13 (-821) (-592 (-1136)))) (-4 *9 (-767)) (-5 *2 (-547))
- (-5 *1 (-893 *7 *8 *9 *10))))
+ (|partial| -12 (-5 *3 (-621 (-287 *7))) (-5 *4 (-621 (-114)))
+ (-5 *5 (-1143)) (-4 *7 (-13 (-29 *6) (-1165) (-930)))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *2
+ (-2 (|:| |particular| (-1226 *7)) (|:| -1949 (-621 (-1226 *7)))))
+ (-5 *1 (-778 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 *9)) (-5 *4 (-890)) (-5 *5 (-1119))
- (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145)))
- (-4 *7 (-13 (-821) (-592 (-1136)))) (-4 *8 (-767)) (-5 *2 (-547))
- (-5 *1 (-893 *6 *7 *8 *9)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1173)) (-5 *1 (-178 *3 *2)) (-4 *2 (-648 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016))
- (-5 *2 (-619 (-619 (-912 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-619 (-619 (-912 *4)))) (-5 *3 (-112)) (-4 *4 (-1016))
- (-4 *1 (-1096 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-619 (-619 (-912 *3)))) (-4 *3 (-1016))
- (-4 *1 (-1096 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-112))
- (-4 *1 (-1096 *4)) (-4 *4 (-1016))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-619 (-619 (-912 *4)))) (-5 *3 (-112))
- (-4 *1 (-1096 *4)) (-4 *4 (-1016))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-619 (-168)))
- (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-619 (-619 (-912 *5)))) (-5 *3 (-619 (-168)))
- (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-619 (-547)))
- (|:| |cols| (-619 (-547)))))
- (-5 *4 (-663 *12)) (-5 *5 (-619 (-398 (-921 *9))))
- (-5 *6 (-619 (-619 *12))) (-5 *7 (-745)) (-5 *8 (-547))
- (-4 *9 (-13 (-298) (-145))) (-4 *12 (-918 *9 *11 *10))
- (-4 *10 (-13 (-821) (-592 (-1136)))) (-4 *11 (-767))
+ (|partial| -12 (-5 *3 (-621 *7)) (-5 *4 (-621 (-114)))
+ (-5 *5 (-1143)) (-4 *7 (-13 (-29 *6) (-1165) (-930)))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *2
+ (-2 (|:| |particular| (-1226 *7)) (|:| -1949 (-621 (-1226 *7)))))
+ (-5 *1 (-778 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-287 *7)) (-5 *4 (-114)) (-5 *5 (-1143))
+ (-4 *7 (-13 (-29 *6) (-1165) (-930)))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
(-5 *2
- (-2 (|:| |eqzro| (-619 *12)) (|:| |neqzro| (-619 *12))
- (|:| |wcond| (-619 (-921 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1219 (-398 (-921 *9))))
- (|:| -1917 (-619 (-1219 (-398 (-921 *9)))))))))
- (-5 *1 (-893 *9 *10 *11 *12)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895)))))
+ (-3 (-2 (|:| |particular| *7) (|:| -1949 (-621 *7))) *7 "failed"))
+ (-5 *1 (-778 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-1143))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -1949 (-621 *3))) *3 "failed"))
+ (-5 *1 (-778 *6 *3)) (-4 *3 (-13 (-29 *6) (-1165) (-930)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-287 *2)) (-5 *4 (-114)) (-5 *5 (-621 *2))
+ (-4 *2 (-13 (-29 *6) (-1165) (-930))) (-5 *1 (-778 *6 *2))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-287 *2)) (-5 *5 (-621 *2))
+ (-4 *2 (-13 (-29 *6) (-1165) (-930)))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *1 (-778 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1006)) (-5 *1 (-781))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-784)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-781))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1226 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-621 *4))
+ (-5 *2 (-1006)) (-5 *1 (-781))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1226 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-621 *4))
+ (-5 *2 (-1006)) (-5 *1 (-781))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1226 (-309 *4))) (-5 *5 (-621 (-372)))
+ (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1006)) (-5 *1 (-781))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1226 (-309 (-372)))) (-5 *4 (-372)) (-5 *5 (-621 *4))
+ (-5 *2 (-1006)) (-5 *1 (-781))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1226 (-309 *4))) (-5 *5 (-621 (-372)))
+ (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1006)) (-5 *1 (-781))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1226 (-309 *4))) (-5 *5 (-621 (-372)))
+ (-5 *6 (-309 (-372))) (-5 *4 (-372)) (-5 *2 (-1006)) (-5 *1 (-781))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -1949 (-621 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-356)) (-4 *7 (-632 *6))
+ (-5 *2 (-2 (|:| |particular| (-1226 *6)) (|:| -1949 (-665 *6))))
+ (-5 *1 (-789 *6 *7)) (-5 *3 (-665 *6)) (-5 *4 (-1226 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-869)) (-5 *2 (-1006)) (-5 *1 (-868))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-869)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-868))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-747)) (-5 *6 (-621 (-621 (-309 *3)))) (-5 *7 (-1125))
+ (-5 *8 (-219)) (-5 *5 (-621 (-309 (-372)))) (-5 *3 (-372))
+ (-5 *2 (-1006)) (-5 *1 (-868))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-747)) (-5 *6 (-621 (-621 (-309 *3)))) (-5 *7 (-1125))
+ (-5 *5 (-621 (-309 (-372)))) (-5 *3 (-372)) (-5 *2 (-1006))
+ (-5 *1 (-868))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-923 (-400 (-549)))) (-5 *2 (-621 (-372)))
+ (-5 *1 (-994)) (-5 *4 (-372))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-923 (-549))) (-5 *2 (-621 (-372))) (-5 *1 (-994))
+ (-5 *4 (-372))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *2 (-621 *4)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1202 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1098 *4))
+ (-5 *3 (-309 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *2 (-621 (-287 (-309 *4)))) (-5 *1 (-1098 *4))
+ (-5 *3 (-287 (-309 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1143))
+ (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *2 (-621 (-287 (-309 *5)))) (-5 *1 (-1098 *5))
+ (-5 *3 (-287 (-309 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1143))
+ (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *2 (-621 (-287 (-309 *5)))) (-5 *1 (-1098 *5))
+ (-5 *3 (-309 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 (-1143)))
+ (-4 *5 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *2 (-621 (-621 (-287 (-309 *5))))) (-5 *1 (-1098 *5))
+ (-5 *3 (-621 (-287 (-309 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1143)))
+ (-4 *5 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *5))))))
+ (-5 *1 (-1149 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 (-1143))) (-4 *5 (-541))
+ (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-1149 *5))
+ (-5 *3 (-621 (-287 (-400 (-923 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-400 (-923 *4)))) (-4 *4 (-541))
+ (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-1149 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-621 (-621 (-287 (-400 (-923 *4))))))
+ (-5 *1 (-1149 *4)) (-5 *3 (-621 (-287 (-400 (-923 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1143)) (-4 *5 (-541))
+ (-5 *2 (-621 (-287 (-400 (-923 *5))))) (-5 *1 (-1149 *5))
+ (-5 *3 (-400 (-923 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1143)) (-4 *5 (-541))
+ (-5 *2 (-621 (-287 (-400 (-923 *5))))) (-5 *1 (-1149 *5))
+ (-5 *3 (-287 (-400 (-923 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-621 (-287 (-400 (-923 *4)))))
+ (-5 *1 (-1149 *4)) (-5 *3 (-400 (-923 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-621 (-287 (-400 (-923 *4)))))
+ (-5 *1 (-1149 *4)) (-5 *3 (-287 (-400 (-923 *4)))))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 *4)) (-4 *4 (-356)) (-4 *2 (-1202 *4))
+ (-5 *1 (-893 *4 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *5)) (-5 *4 (-892)) (-4 *5 (-823))
+ (-5 *2 (-58 (-621 (-648 *5)))) (-5 *1 (-648 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-549)) (-5 *1 (-309 *3)) (-4 *3 (-541)) (-4 *3 (-823)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-444))
+ (-5 *2
+ (-621
+ (-2 (|:| |eigval| (-3 (-400 (-923 *4)) (-1132 (-1143) (-923 *4))))
+ (|:| |eigmult| (-747))
+ (|:| |eigvec| (-621 (-665 (-400 (-923 *4))))))))
+ (-5 *1 (-285 *4)) (-5 *3 (-665 (-400 (-923 *4)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-342)) (-5 *2 (-411 (-1139 (-1139 *4))))
+ (-5 *1 (-1178 *4)) (-5 *3 (-1139 (-1139 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-756 *5 (-836 *6)))) (-5 *4 (-112)) (-4 *5 (-444))
+ (-14 *6 (-621 (-1143))) (-5 *2 (-621 (-1015 *5 *6)))
+ (-5 *1 (-606 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-823)) (-4 *5 (-880)) (-4 *6 (-769))
+ (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-411 (-1139 *8)))
+ (-5 *1 (-877 *5 *6 *7 *8)) (-5 *4 (-1139 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-880)) (-4 *5 (-1202 *4)) (-5 *2 (-411 (-1139 *5)))
+ (-5 *1 (-878 *4 *5)) (-5 *3 (-1139 *5)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-112))))
((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1166 *5 *6 *7 *3))
- (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)))))
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1173 *5 *6 *7 *3))
+ (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *5 (-230 *3 *4))
- (-4 *2 (-230 *3 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-619 (-471 *4 *5))) (-5 *3 (-619 (-834 *4)))
- (-14 *4 (-619 (-1136))) (-4 *5 (-442)) (-5 *1 (-461 *4 *5 *6))
- (-4 *6 (-442)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (-5 *2 (-1117 (-217))) (-5 *1 (-184))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-307 (-217))) (-5 *4 (-619 (-1136)))
- (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-1117 (-217))) (-5 *1 (-291))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1219 (-307 (-217)))) (-5 *4 (-619 (-1136)))
- (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-1117 (-217))) (-5 *1 (-291)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-539)) (-4 *2 (-169)))))
+ (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))
+ (-4 *2 (-444))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 *4)) (-4 *4 (-1202 (-549))) (-5 *2 (-621 (-549)))
+ (-5 *1 (-478 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823)) (-4 *3 (-444)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))
+ (-5 *2 (-1006)) (-5 *1 (-725)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3727 (-758 *3)) (|:| |coef1| (-758 *3))))
+ (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-2 (|:| -3727 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *3 (-621 (-845)))
+ (-5 *4 (-621 (-892))) (-5 *5 (-621 (-256))) (-5 *1 (-460))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *3 (-621 (-845)))
+ (-5 *4 (-621 (-892))) (-5 *1 (-460))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-460))))
+ ((*1 *1 *1) (-5 *1 (-460))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-130))
+ (-5 *2 (-621 (-2 (|:| |gen| *3) (|:| -2719 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-2 (|:| -1570 *3) (|:| -3526 *4))))
+ (-5 *1 (-712 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1204 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
+ (-5 *2 (-1123 (-2 (|:| |k| *4) (|:| |c| *3)))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-843)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))))
+ (-12 (-5 *2 (-372)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-256)))))
+(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-342)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-880)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 (-836 *5))) (-14 *5 (-621 (-1143))) (-4 *6 (-444))
+ (-5 *2 (-621 (-621 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7))
+ (-5 *3 (-621 (-241 *5 *6))) (-4 *7 (-444)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-320 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-5 *1 (-507 *3 *4))
+ (-14 *4 (-549)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-372))) (-5 *1 (-256))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-541)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-541)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-629 *4)) (-4 *4 (-335 *5 *6 *7))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-4 *6 (-1202 *5)) (-4 *7 (-1202 (-400 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4))))
+ (-5 *1 (-782 *5 *6 *7 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1067))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-541)) (-5 *2 (-112)) (-5 *1 (-601 *3 *4))
+ (-4 *4 (-1202 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-712 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
+ (-5 *2 (-112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1143)) (-5 *1 (-567 *2)) (-4 *2 (-1009 *3))
+ (-4 *2 (-356))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-608 *4 *2))
+ (-4 *2 (-13 (-423 *4) (-973) (-1165)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1059 *2)) (-4 *2 (-13 (-423 *4) (-973) (-1165)))
+ (-4 *4 (-13 (-823) (-541))) (-5 *1 (-608 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-930)) (-5 *2 (-1143))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1059 *1)) (-4 *1 (-930)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-470))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-573))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-604))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1067))
+ (-4 *2 (-13 (-423 *4) (-857 *3) (-594 (-863 *3))))
+ (-5 *1 (-1042 *3 *4 *2))
+ (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1067)) (-5 *1 (-1132 *3 *2)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-747)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-400 (-549))))
+ (-4 *2 (-170)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-660 *4 *5 *6)) (-4 *4 (-1067)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-923 *6)) (-5 *4 (-1143))
+ (-5 *5 (-816 *7))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-4 *7 (-13 (-1165) (-29 *6))) (-5 *1 (-218 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1139 *6)) (-5 *4 (-816 *6))
+ (-4 *6 (-13 (-1165) (-29 *5)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-218 *5 *6)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1143)) (-5 *2 (-430)) (-5 *1 (-1147)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-2 (|:| -3337 (-1143)) (|:| -1793 *4))))
+ (-5 *1 (-860 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1067)) (-4 *4 (-1067)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-4 *7 (-1067)) (-5 *2 (-621 *1)) (-4 *1 (-1070 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-621 *5))
+ (|:| |maps| (-621 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1095 *3 *5)) (-4 *3 (-1202 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-508)))))
+(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-4 *3 (-13 (-27) (-1165) (-423 *6) (-10 -8 (-15 -3846 ($ *7)))))
+ (-4 *7 (-821))
+ (-4 *8
+ (-13 (-1204 *3 *7) (-356) (-1165)
+ (-10 -8 (-15 -3456 ($ $)) (-15 -3893 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1125)) (|:| |prob| (-1125))))))
+ (-5 *1 (-415 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1125)) (-4 *9 (-954 *8))
+ (-14 *10 (-1143)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
+ (-5 *2 (-795 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-819)) (-5 *1 (-1249 *3 *2)) (-4 *3 (-1018)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-541))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-541)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-470))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-573))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-604))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1067))
+ (-4 *2 (-13 (-423 *4) (-857 *3) (-594 (-863 *3))))
+ (-5 *1 (-1042 *3 *4 *2))
+ (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1067)) (-5 *1 (-1132 *2 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-747)) (-4 *6 (-1067)) (-4 *7 (-871 *6))
+ (-5 *2 (-665 *7)) (-5 *1 (-668 *6 *7 *3 *4)) (-4 *3 (-366 *7))
+ (-4 *4 (-13 (-366 *6) (-10 -7 (-6 -4337)))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1139 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-323)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-665 (-923 *4))) (-5 *1 (-999 *4))
+ (-4 *4 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-350 *4))
+ (-4 *4 (-342)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-128)) (-5 *2 (-1087)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-621 *5) *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *6 (-1202 *5))
+ (-5 *2 (-621 (-2 (|:| |poly| *6) (|:| -2652 *3))))
+ (-5 *1 (-785 *5 *6 *3 *7)) (-4 *3 (-632 *6))
+ (-4 *7 (-632 (-400 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-621 *5) *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-4 *6 (-1202 *5))
+ (-5 *2 (-621 (-2 (|:| |poly| *6) (|:| -2652 (-630 *6 (-400 *6))))))
+ (-5 *1 (-788 *5 *6)) (-5 *3 (-630 *6 (-400 *6))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1016)) (-4 *1 (-1195 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-547)) (|has| *1 (-6 -4330)) (-4 *1 (-1207 *3))
- (-4 *3 (-1173)))))
+ (-12 (-5 *2 (-665 *5)) (-4 *5 (-1018)) (-5 *1 (-1022 *3 *4 *5))
+ (-14 *3 (-747)) (-14 *4 (-747)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143)) (-4 *4 (-444)) (-4 *4 (-823))
+ (-5 *1 (-558 *4 *2)) (-4 *2 (-277)) (-4 *2 (-423 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-738))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-219) (-219)))
+ (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-248)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-619 (-745))) (-5 *1 (-938 *4 *3))
- (-4 *3 (-1195 *4)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-1101 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34)))
- (-5 *1 (-1102 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-1101 *3 *4))) (-4 *3 (-13 (-1063) (-34)))
- (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1102 *3 *4)))))
+ (-12 (-4 *4 (-541)) (-5 *2 (-621 *3)) (-5 *1 (-940 *4 *3))
+ (-4 *3 (-1202 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-216 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-1180)) (-4 *1 (-247 *3))))
+ ((*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1219 *4)) (-4 *4 (-1173)) (-4 *1 (-230 *3 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1195 *3)) (-4 *3 (-1016)))))
+ (-12 (-5 *2 (-1226 *4)) (-4 *4 (-1180)) (-4 *1 (-232 *3 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1018))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-914 (-219))) (-5 *1 (-1176))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-1018)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1186 (-547))) (-4 *1 (-625 *3)) (-4 *3 (-1173))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-625 *3)) (-4 *3 (-1173)))))
+ (-12 (-5 *2 (-1193 (-549))) (-4 *1 (-627 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-627 *3)) (-4 *3 (-1180)))))
(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1136)) (-5 *6 (-619 (-590 *3)))
- (-5 *5 (-590 *3)) (-4 *3 (-13 (-27) (-1158) (-421 *7)))
- (-4 *7 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-2 (|:| -2510 *3) (|:| |coeff| *3)))
- (-5 *1 (-540 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-442))
+ (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769))
+ (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9))
(-5 *2
- (-619
- (-2 (|:| |eigval| (-3 (-398 (-921 *4)) (-1126 (-1136) (-921 *4))))
- (|:| |eigmult| (-745))
- (|:| |eigvec| (-619 (-663 (-398 (-921 *4))))))))
- (-5 *1 (-283 *4)) (-5 *3 (-663 (-398 (-921 *4)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-307 (-217)))) (-5 *2 (-370)) (-5 *1 (-197)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-1138 (-398 (-547))))
- (-5 *1 (-182)))))
-(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-307 *4))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 (-166 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-442))
- (-5 *1 (-351 *3 *4)) (-14 *4 (-619 (-1136)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-442))
- (-14 *4 (-619 (-1136))) (-5 *1 (-604 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-745)) (-5 *2 (-1224)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-795)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-1007 (-398 *2)))) (-5 *2 (-547))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-745))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-745)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-385))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1153)))))
-(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-940)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9))
- (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821))
- (-4 *9 (-1030 *6 *7 *8))
+ (-2 (|:| |done| (-621 *4))
+ (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))))
+ (-5 *1 (-1036 *7 *8 *9 *3 *4)) (-4 *4 (-1038 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8))
(-5 *2
- (-619
- (-2 (|:| -2644 (-619 *9)) (|:| -1974 *10) (|:| |ineq| (-619 *9)))))
- (-5 *1 (-957 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9))
- (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821))
- (-4 *9 (-1030 *6 *7 *8))
+ (-2 (|:| |done| (-621 *4))
+ (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))))
+ (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-621 *4))
+ (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))))
+ (-5 *1 (-1036 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-747)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-769))
+ (-4 *9 (-823)) (-4 *3 (-1032 *7 *8 *9))
(-5 *2
- (-619
- (-2 (|:| -2644 (-619 *9)) (|:| -1974 *10) (|:| |ineq| (-619 *9)))))
- (-5 *1 (-1070 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9)))))
-(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1119)) (-5 *1 (-685)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-943)))))
+ (-2 (|:| |done| (-621 *4))
+ (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))))
+ (-5 *1 (-1112 *7 *8 *9 *3 *4)) (-4 *4 (-1076 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-747)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-621 *4))
+ (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))))
+ (-5 *1 (-1112 *6 *7 *8 *3 *4)) (-4 *4 (-1076 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-621 *4))
+ (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))))
+ (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1076 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1143)) (-5 *4 (-923 (-549))) (-5 *2 (-323))
+ (-5 *1 (-325)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *5 (-1125))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1006))
+ (-5 *1 (-727)))))
+(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-549))) (-5 *1 (-298)))))
+(((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-621 (-114))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2526 (-370)) (|:| -2473 (-1119))
- (|:| |explanations| (-619 (-1119)))))
- (-5 *2 (-1004)) (-5 *1 (-296))))
+ (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-621 (-1143))) (-4 *5 (-1018))
+ (-5 *2 (-923 *5)) (-5 *1 (-915 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2526 (-370)) (|:| -2473 (-1119))
- (|:| |explanations| (-619 (-1119))) (|:| |extra| (-1004))))
- (-5 *2 (-1004)) (-5 *1 (-296)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1136)) (-5 *5 (-1058 (-217))) (-5 *2 (-896))
- (-5 *1 (-894 *3)) (-4 *3 (-592 (-523)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1136)) (-5 *5 (-1058 (-217))) (-5 *2 (-896))
- (-5 *1 (-894 *3)) (-4 *3 (-592 (-523)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-895))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-895))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-896))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-896))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-619 (-1 (-217) (-217)))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-896))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-1 (-217) (-217)))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-896))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-896))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217)))
- (-5 *1 (-896)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-619 *4)) (-4 *4 (-354)) (-5 *2 (-1219 *4))
- (-5 *1 (-788 *4 *3)) (-4 *3 (-630 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-307 *4))
- (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1158) (-421 (-166 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))
- ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))
+ (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-309 *4))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 (-167 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))))
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-1169 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3))))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-621 (-1139 *13))) (-5 *3 (-1139 *13))
+ (-5 *4 (-621 *12)) (-5 *5 (-621 *10)) (-5 *6 (-621 *13))
+ (-5 *7 (-621 (-621 (-2 (|:| -2099 (-747)) (|:| |pcoef| *13)))))
+ (-5 *8 (-621 (-747))) (-5 *9 (-1226 (-621 (-1139 *10))))
+ (-4 *12 (-823)) (-4 *10 (-300)) (-4 *13 (-920 *10 *11 *12))
+ (-4 *11 (-769)) (-5 *1 (-684 *11 *12 *10 *13)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-411 *4)) (-4 *4 (-541)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-621 *3)) (-5 *5 (-892)) (-4 *3 (-1202 *4))
+ (-4 *4 (-300)) (-5 *1 (-452 *4 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-745))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1018))
+ (-14 *4 (-621 (-1143)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-745)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1016)) (-4 *3 (-1195 *4)) (-4 *2 (-1210 *4))
- (-5 *1 (-1213 *4 *3 *5 *2)) (-4 *5 (-630 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3719 (-756 *3)) (|:| |coef1| (-756 *3))))
- (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1018) (-823)))
+ (-14 *4 (-621 (-1143))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-747))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-621 (-923 *4))) (-5 *3 (-621 (-1143))) (-4 *4 (-444))
+ (-5 *1 (-889 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *2 (-2 (|:| -3719 *1) (|:| |coef1| *1)))
- (-4 *1 (-1030 *3 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4329)) (-4 *1 (-479 *3)) (-4 *3 (-1173))
- (-4 *3 (-1063)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-112))
- (-5 *1 (-873 *4))))
+ (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-621 (-1143)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-621 (-892))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5))
+ (-14 *4 (-892)) (-14 *5 (-964 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4))
+ (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1143)))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-890)) (-5 *2 (-112)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *1 *2 *3 *4)
+ (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-130))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1018))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-4 *2 (-541)) (-5 *1 (-601 *2 *4))
+ (-4 *4 (-1202 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-685 *2)) (-4 *2 (-1018))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-703))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-621 *5)) (-5 *3 (-621 (-747))) (-4 *1 (-717 *4 *5))
+ (-4 *4 (-1018)) (-4 *5 (-823))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *2)) (-4 *4 (-1018))
+ (-4 *2 (-823))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-747)) (-4 *1 (-825 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-621 *6)) (-5 *3 (-621 (-747))) (-4 *1 (-920 *4 *5 *6))
+ (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *6 (-823))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *1 (-920 *4 *5 *2)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *2 (-823))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-4 *2 (-920 *4 (-521 *5) *5))
+ (-5 *1 (-1093 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-823))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-923 *4)) (-5 *1 (-1174 *4))
+ (-4 *4 (-1018)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-621 *4))
+ (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-621 (-549))) (-5 *3 (-665 (-549))) (-5 *1 (-1077)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-747)) (-5 *1 (-568 *2)) (-4 *2 (-534)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-155)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-541)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
+ (-5 *1 (-1170 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-52)) (-5 *1 (-805)))))
+(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-5 *2 (-309 *4))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1165) (-423 (-167 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-1169 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3))))))
+(((*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-5 *1 (-107))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-525))) (-5 *1 (-525)))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-619
- (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1132 *2))
- (|:| |logand| (-1132 *2)))))
- (-5 *4 (-619 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-354)) (-5 *1 (-565 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-348 *3)) (-4 *3 (-340)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-217))) (-5 *2 (-619 (-1119))) (-5 *1 (-184))))
+ (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))
+ (-5 *2 (-372)) (-5 *1 (-260))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-217))) (-5 *2 (-619 (-1119))) (-5 *1 (-291))))
+ (-12 (-5 *3 (-1226 (-309 (-219)))) (-5 *2 (-372)) (-5 *1 (-298)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-747))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-747)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-621 (-621 (-621 *4)))) (-5 *2 (-621 (-621 *4)))
+ (-4 *4 (-823)) (-5 *1 (-1151 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-747)) (-4 *4 (-13 (-541) (-145)))
+ (-5 *1 (-1196 *4 *2)) (-4 *2 (-1202 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1123 (-2 (|:| |k| (-549)) (|:| |c| *3))))
+ (-5 *1 (-576 *3)) (-4 *3 (-1018)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541)))))
+(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1165))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *3))
+ (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549))))
+ ((*1 *1 *1) (-4 *1 (-973)))
+ ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-983))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400 (-549))) (-4 *1 (-983))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-892))))
+ ((*1 *1 *1) (-4 *1 (-983))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 *1)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1018)) (-4 *1 (-663 *3 *4 *5))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1226 *3)) (-4 *3 (-1018)) (-5 *1 (-665 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-621 *4)) (-4 *4 (-1018)) (-4 *1 (-1090 *3 *4 *5 *6))
+ (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-549)) (-4 *6 (-769)) (-4 *7 (-823)) (-4 *8 (-300))
+ (-4 *9 (-920 *8 *6 *7))
+ (-5 *2 (-2 (|:| -3028 (-1139 *9)) (|:| |polval| (-1139 *8))))
+ (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1139 *9)) (-5 *4 (-1139 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3))
+ (-4 *3 (-1202 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-217))) (-5 *2 (-619 (-1119))) (-5 *1 (-296)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *10))
- (-5 *1 (-600 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1036 *5 *6 *7 *8))
- (-4 *10 (-1072 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442))
- (-14 *6 (-619 (-1136))) (-5 *2 (-619 (-1013 *5 *6)))
- (-5 *1 (-604 *5 *6))))
+ (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442))
- (-14 *6 (-619 (-1136)))
- (-5 *2
- (-619 (-1107 *5 (-519 (-834 *6)) (-834 *6) (-754 *5 (-834 *6)))))
- (-5 *1 (-604 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442))
- (-14 *6 (-619 (-1136))) (-5 *2 (-619 (-1013 *5 *6)))
- (-5 *1 (-1013 *5 *6))))
+ (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1202 (-549)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *1))
- (-4 *1 (-1036 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-619 (-1107 *5 *6 *7 *8))) (-5 *1 (-1107 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-621 (-747))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1202 (-549)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-621 (-747))) (-5 *5 (-747)) (-5 *2 (-411 *3))
+ (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-619 (-1107 *5 *6 *7 *8))) (-5 *1 (-1107 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1202 (-549)))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1))
- (-4 *1 (-1166 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547))))
- ((*1 *1 *1) (-4 *1 (-971)))
- ((*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-981))))
- ((*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-4 *1 (-981))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-890))))
- ((*1 *1 *1) (-4 *1 (-981))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1136))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-619 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2510 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1158) (-27) (-421 *8)))
- (-4 *8 (-13 (-442) (-821) (-145) (-1007 *3) (-615 *3)))
- (-5 *3 (-547))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3840 *4) (|:| |sol?| (-112))))
- (-5 *1 (-982 *8 *4)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1119))
- (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2)
- (-12 (-5 *2 (-663 (-879 *3))) (-5 *1 (-342 *3 *4)) (-14 *3 (-890))
- (-14 *4 (-890))))
- ((*1 *2)
- (-12 (-5 *2 (-663 *3)) (-5 *1 (-343 *3 *4)) (-4 *3 (-340))
- (-14 *4
- (-3 (-1132 *3)
- (-1219 (-619 (-2 (|:| -4153 *3) (|:| -3487 (-1082)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-663 *3)) (-5 *1 (-344 *3 *4)) (-4 *3 (-340))
- (-14 *4 (-890)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-354)) (-4 *3 (-1195 *4)) (-4 *5 (-1195 (-398 *3)))
- (-4 *1 (-326 *4 *3 *5 *2)) (-4 *2 (-333 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-547)) (-4 *2 (-354)) (-4 *4 (-1195 *2))
- (-4 *5 (-1195 (-398 *4))) (-4 *1 (-326 *2 *4 *5 *6))
- (-4 *6 (-333 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-354)) (-4 *3 (-1195 *2)) (-4 *4 (-1195 (-398 *3)))
- (-4 *1 (-326 *2 *3 *4 *5)) (-4 *5 (-333 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4)))
- (-4 *1 (-326 *3 *4 *5 *2)) (-4 *2 (-333 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-404 *4 (-398 *4) *5 *6)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) (-4 *3 (-354))
- (-4 *1 (-326 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-619 (-112))) (-5 *5 (-663 (-217)))
- (-5 *6 (-663 (-547))) (-5 *7 (-217)) (-5 *3 (-547)) (-5 *2 (-1004))
- (-5 *1 (-729)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1173))
- (-5 *2 (-619 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *1 (-1090 *3 *2)) (-4 *3 (-1195 *2)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-619 (-495))) (-5 *2 (-495)) (-5 *1 (-473)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-547)) (-4 *5 (-354))
- (-4 *5 (-1016)) (-5 *2 (-112)) (-5 *1 (-998 *5))))
+ (-12 (-5 *2 (-411 *3)) (-5 *1 (-978 *3))
+ (-4 *3 (-1202 (-400 (-549))))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-354)) (-4 *4 (-1016))
- (-5 *2 (-112)) (-5 *1 (-998 *4)))))
+ (-12 (-5 *2 (-411 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1202 (-549))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 *4)) (-4 *4 (-823)) (-5 *2 (-621 (-640 *4 *5)))
+ (-5 *1 (-605 *4 *5 *6)) (-4 *5 (-13 (-170) (-694 (-400 (-549)))))
+ (-14 *6 (-892)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4337)) (-4 *1 (-229 *3))
+ (-4 *3 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-229 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-275 *2)) (-4 *2 (-1180)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1180))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1067))
+ (-5 *1 (-714 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-5 *1 (-714 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1108 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1069 (-747))) (-5 *6 (-747))
+ (-5 *2
+ (-2 (|:| |contp| (-549))
+ (|:| -4024 (-621 (-2 (|:| |irr| *3) (|:| -2495 (-549)))))))
+ (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971)))
- (-5 *1 (-173 *3)))))
+ (-12 (-4 *3 (-541)) (-4 *3 (-170)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *1 (-664 *3 *4 *5 *2))
+ (-4 *2 (-663 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-356)) (-5 *2 (-621 (-1123 *4))) (-5 *1 (-278 *4 *5))
+ (-5 *3 (-1123 *4)) (-4 *5 (-1217 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-547)) (-4 *1 (-1057 *3)) (-4 *3 (-1173)))))
+ (-12 (-5 *2 (-549)) (-4 *1 (-1060 *3)) (-4 *3 (-1180)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1199 *5 *4)) (-4 *4 (-796)) (-14 *5 (-1143))
+ (-5 *2 (-549)) (-5 *1 (-1081 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-48))) (-5 *2 (-409 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1195 (-48)))))
+ (-12 (-5 *4 (-621 (-48))) (-5 *2 (-411 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1202 (-48)))))
((*1 *2 *3)
- (-12 (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1195 (-48)))))
+ (-12 (-5 *2 (-411 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1202 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767))
- (-5 *2 (-409 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-918 (-48) *6 *5))))
+ (-12 (-5 *4 (-621 (-48))) (-4 *5 (-823)) (-4 *6 (-769))
+ (-5 *2 (-411 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-920 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767))
- (-4 *7 (-918 (-48) *6 *5)) (-5 *2 (-409 (-1132 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1132 *7))))
+ (-12 (-5 *4 (-621 (-48))) (-4 *5 (-823)) (-4 *6 (-769))
+ (-4 *7 (-920 (-48) *6 *5)) (-5 *2 (-411 (-1139 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1139 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-164 *4 *3))
- (-4 *3 (-1195 (-166 *4)))))
+ (-12 (-4 *4 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-165 *4 *3))
+ (-4 *3 (-1202 (-167 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3))
- (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4)))))
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3))
- (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4)))))
+ (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3))
- (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4)))))
+ (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-340)) (-5 *2 (-409 *3)) (-5 *1 (-208 *4 *3))
- (-4 *3 (-1195 *4))))
+ (-12 (-4 *4 (-342)) (-5 *2 (-411 *3)) (-5 *1 (-210 *4 *3))
+ (-4 *3 (-1202 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547)))))
+ (-12 (-5 *2 (-411 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3))
- (-4 *3 (-1195 (-547)))))
+ (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1202 (-549)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-745))) (-5 *2 (-409 *3)) (-5 *1 (-432 *3))
- (-4 *3 (-1195 (-547)))))
+ (-12 (-5 *4 (-621 (-747))) (-5 *2 (-411 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1202 (-549)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-409 *3))
- (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547)))))
+ (-12 (-5 *4 (-621 (-747))) (-5 *5 (-747)) (-5 *2 (-411 *3))
+ (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3))
- (-4 *3 (-1195 (-547)))))
+ (-12 (-5 *4 (-747)) (-5 *2 (-411 *3)) (-5 *1 (-434 *3))
+ (-4 *3 (-1202 (-549)))))
((*1 *2 *3)
- (-12 (-5 *2 (-409 (-166 (-547)))) (-5 *1 (-436))
- (-5 *3 (-166 (-547)))))
+ (-12 (-5 *2 (-411 (-167 (-549)))) (-5 *1 (-438))
+ (-5 *3 (-167 (-549)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-821)
- (-10 -8 (-15 -2838 ((-1136) $))
- (-15 -3004 ((-3 $ "failed") (-1136))))))
- (-4 *5 (-767)) (-4 *7 (-539)) (-5 *2 (-409 *3))
- (-5 *1 (-446 *4 *5 *6 *7 *3)) (-4 *6 (-539))
- (-4 *3 (-918 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-298)) (-5 *2 (-409 (-1132 *4))) (-5 *1 (-448 *4))
- (-5 *3 (-1132 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1195 *5)) (-4 *5 (-354))
- (-4 *7 (-13 (-354) (-145) (-699 *5 *6))) (-5 *2 (-409 *3))
- (-5 *1 (-483 *5 *6 *7 *3)) (-4 *3 (-1195 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-409 (-1132 *7)) (-1132 *7)))
- (-4 *7 (-13 (-298) (-145))) (-4 *5 (-821)) (-4 *6 (-767))
- (-5 *2 (-409 *3)) (-5 *1 (-527 *5 *6 *7 *3))
- (-4 *3 (-918 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-409 (-1132 *7)) (-1132 *7)))
- (-4 *7 (-13 (-298) (-145))) (-4 *5 (-821)) (-4 *6 (-767))
- (-4 *8 (-918 *7 *6 *5)) (-5 *2 (-409 (-1132 *8)))
- (-5 *1 (-527 *5 *6 *7 *8)) (-5 *3 (-1132 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-541 *3)) (-4 *3 (-532))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-619 *5) *6))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-4 *6 (-1195 *5)) (-5 *2 (-619 (-627 (-398 *6))))
- (-5 *1 (-631 *5 *6)) (-5 *3 (-627 (-398 *6)))))
+ (-13 (-823)
+ (-10 -8 (-15 -2845 ((-1143) $))
+ (-15 -3011 ((-3 $ "failed") (-1143))))))
+ (-4 *5 (-769)) (-4 *7 (-541)) (-5 *2 (-411 *3))
+ (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-541))
+ (-4 *3 (-920 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-300)) (-5 *2 (-411 (-1139 *4))) (-5 *1 (-450 *4))
+ (-5 *3 (-1139 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-411 *6) *6)) (-4 *6 (-1202 *5)) (-4 *5 (-356))
+ (-4 *7 (-13 (-356) (-145) (-701 *5 *6))) (-5 *2 (-411 *3))
+ (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1202 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-411 (-1139 *7)) (-1139 *7)))
+ (-4 *7 (-13 (-300) (-145))) (-4 *5 (-823)) (-4 *6 (-769))
+ (-5 *2 (-411 *3)) (-5 *1 (-529 *5 *6 *7 *3))
+ (-4 *3 (-920 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-411 (-1139 *7)) (-1139 *7)))
+ (-4 *7 (-13 (-300) (-145))) (-4 *5 (-823)) (-4 *6 (-769))
+ (-4 *8 (-920 *7 *6 *5)) (-5 *2 (-411 (-1139 *8)))
+ (-5 *1 (-529 *5 *6 *7 *8)) (-5 *3 (-1139 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-411 *3)) (-5 *1 (-543 *3)) (-4 *3 (-534))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-621 *5) *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-4 *6 (-1202 *5)) (-5 *2 (-621 (-629 (-400 *6))))
+ (-5 *1 (-633 *5 *6)) (-5 *3 (-629 (-400 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-4 *5 (-1195 *4)) (-5 *2 (-619 (-627 (-398 *5))))
- (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-398 *5)))))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-4 *5 (-1202 *4)) (-5 *2 (-621 (-629 (-400 *5))))
+ (-5 *1 (-633 *4 *5)) (-5 *3 (-629 (-400 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-646 *4)))
- (-5 *1 (-646 *4))))
+ (-12 (-5 *3 (-795 *4)) (-4 *4 (-823)) (-5 *2 (-621 (-648 *4)))
+ (-5 *1 (-648 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-547)) (-5 *2 (-619 *3)) (-5 *1 (-670 *3))
- (-4 *3 (-1195 *4))))
+ (-12 (-5 *4 (-549)) (-5 *2 (-621 *3)) (-5 *1 (-672 *3))
+ (-4 *3 (-1202 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-340)) (-5 *2 (-409 *3))
- (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4))))
+ (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-342)) (-5 *2 (-411 *3))
+ (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-920 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-340))
- (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-409 (-1132 *7)))
- (-5 *1 (-672 *4 *5 *6 *7)) (-5 *3 (-1132 *7))))
+ (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-342))
+ (-4 *7 (-920 *6 *5 *4)) (-5 *2 (-411 (-1139 *7)))
+ (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1139 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-767))
+ (-12 (-4 *4 (-769))
(-4 *5
- (-13 (-821)
- (-10 -8 (-15 -2838 ((-1136) $))
- (-15 -3004 ((-3 $ "failed") (-1136))))))
- (-4 *6 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-705 *4 *5 *6 *3))
- (-4 *3 (-918 (-921 *6) *4 *5))))
+ (-13 (-823)
+ (-10 -8 (-15 -2845 ((-1143) $))
+ (-15 -3011 ((-3 $ "failed") (-1143))))))
+ (-4 *6 (-300)) (-5 *2 (-411 *3)) (-5 *1 (-707 *4 *5 *6 *3))
+ (-4 *3 (-920 (-923 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-767))
- (-4 *5 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))) (-4 *6 (-539))
- (-5 *2 (-409 *3)) (-5 *1 (-707 *4 *5 *6 *3))
- (-4 *3 (-918 (-398 (-921 *6)) *4 *5))))
+ (-12 (-4 *4 (-769))
+ (-4 *5 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))) (-4 *6 (-541))
+ (-5 *2 (-411 *3)) (-5 *1 (-709 *4 *5 *6 *3))
+ (-4 *3 (-920 (-400 (-923 *6)) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-13 (-298) (-145)))
- (-5 *2 (-409 *3)) (-5 *1 (-708 *4 *5 *6 *3))
- (-4 *3 (-918 (-398 *6) *4 *5))))
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-13 (-300) (-145)))
+ (-5 *2 (-411 *3)) (-5 *1 (-710 *4 *5 *6 *3))
+ (-4 *3 (-920 (-400 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-298) (-145)))
- (-5 *2 (-409 *3)) (-5 *1 (-716 *4 *5 *6 *3))
- (-4 *3 (-918 *6 *5 *4))))
+ (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145)))
+ (-5 *2 (-411 *3)) (-5 *1 (-718 *4 *5 *6 *3))
+ (-4 *3 (-920 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-298) (-145)))
- (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-409 (-1132 *7)))
- (-5 *1 (-716 *4 *5 *6 *7)) (-5 *3 (-1132 *7))))
+ (-12 (-4 *4 (-823)) (-4 *5 (-769)) (-4 *6 (-13 (-300) (-145)))
+ (-4 *7 (-920 *6 *5 *4)) (-5 *2 (-411 (-1139 *7)))
+ (-5 *1 (-718 *4 *5 *6 *7)) (-5 *3 (-1139 *7))))
((*1 *2 *3)
- (-12 (-5 *2 (-409 *3)) (-5 *1 (-976 *3))
- (-4 *3 (-1195 (-398 (-547))))))
+ (-12 (-5 *2 (-411 *3)) (-5 *1 (-978 *3))
+ (-4 *3 (-1202 (-400 (-549))))))
((*1 *2 *3)
- (-12 (-5 *2 (-409 *3)) (-5 *1 (-1010 *3))
- (-4 *3 (-1195 (-398 (-921 (-547)))))))
+ (-12 (-5 *2 (-411 *3)) (-5 *1 (-1012 *3))
+ (-4 *3 (-1202 (-400 (-923 (-549)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-1195 (-398 (-547))))
- (-4 *5 (-13 (-354) (-145) (-699 (-398 (-547)) *4)))
- (-5 *2 (-409 *3)) (-5 *1 (-1042 *4 *5 *3)) (-4 *3 (-1195 *5))))
+ (-12 (-4 *4 (-1202 (-400 (-549))))
+ (-4 *5 (-13 (-356) (-145) (-701 (-400 (-549)) *4)))
+ (-5 *2 (-411 *3)) (-5 *1 (-1045 *4 *5 *3)) (-4 *3 (-1202 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1195 (-398 (-921 (-547)))))
- (-4 *5 (-13 (-354) (-145) (-699 (-398 (-921 (-547))) *4)))
- (-5 *2 (-409 *3)) (-5 *1 (-1044 *4 *5 *3)) (-4 *3 (-1195 *5))))
+ (-12 (-4 *4 (-1202 (-400 (-923 (-549)))))
+ (-4 *5 (-13 (-356) (-145) (-701 (-400 (-923 (-549))) *4)))
+ (-5 *2 (-411 *3)) (-5 *1 (-1047 *4 *5 *3)) (-4 *3 (-1202 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-442))
- (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-409 (-1132 (-398 *7))))
- (-5 *1 (-1131 *4 *5 *6 *7)) (-5 *3 (-1132 (-398 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1177))))
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-444))
+ (-4 *7 (-920 *6 *4 *5)) (-5 *2 (-411 (-1139 (-400 *7))))
+ (-5 *1 (-1138 *4 *5 *6 *7)) (-5 *3 (-1139 (-400 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-411 *1)) (-4 *1 (-1184))))
((*1 *2 *3)
- (-12 (-5 *2 (-409 *3)) (-5 *1 (-1184 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1195 (-547))) (-5 *1 (-476 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-436)) (-5 *3 (-547)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))))
-(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1224)) (-5 *1 (-370))))
- ((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-370)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-663 (-398 (-921 (-547)))))
- (-5 *2 (-663 (-307 (-547)))) (-5 *1 (-1000)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1168 *2)) (-4 *2 (-943)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3719 *3)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -2714 (-114)) (|:| |arg| (-619 (-861 *3)))))
- (-5 *1 (-861 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-861 *4)))
- (-5 *1 (-861 *4)) (-4 *4 (-1063)))))
-(((*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169)))))
-(((*1 *1) (-5 *1 (-142))))
+ (-12 (-5 *2 (-411 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1202 (-549))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-892)) (-5 *2 (-1231)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-892)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1219 *4)) (-4 *4 (-615 (-547)))
- (-5 *2 (-1219 (-398 (-547)))) (-5 *1 (-1246 *4)))))
+ (-12 (-5 *3 (-167 (-219))) (-5 *4 (-549)) (-5 *2 (-1006))
+ (-5 *1 (-735)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1184)) (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5)))
+ (-5 *2 (-747)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-747)))))
+(((*1 *1) (-5 *1 (-139))))
+(((*1 *1) (-5 *1 (-1227))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)))))
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-892)) (-4 *3 (-356))
+ (-14 *4 (-964 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1202 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-541))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *1 *1) (|partial| -4 *1 (-699)))
+ ((*1 *1 *1) (|partial| -4 *1 (-703)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1035 *3 *2)) (-4 *3 (-13 (-821) (-356)))
+ (-4 *2 (-1202 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-534)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-619 *5))) (-4 *5 (-1210 *4))
- (-4 *4 (-38 (-398 (-547))))
- (-5 *2 (-1 (-1117 *4) (-619 (-1117 *4)))) (-5 *1 (-1212 *4 *5)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217))
- (-5 *2 (-1004)) (-5 *1 (-727)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-1132 *3))
- (-4 *3 (-13 (-421 *6) (-27) (-1158)))
- (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2 (-2 (|:| -2510 *3) (|:| |coeff| *3)))
- (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-398 (-1132 *3)))
- (-4 *3 (-13 (-421 *6) (-27) (-1158)))
- (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2 (-2 (|:| -2510 *3) (|:| |coeff| *3)))
- (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-539))
- (-4 *3 (-918 *7 *5 *6))
- (-5 *2
- (-2 (|:| -3322 (-745)) (|:| -1563 *3) (|:| |radicand| (-619 *3))))
- (-5 *1 (-922 *5 *6 *7 *3 *8)) (-5 *4 (-745))
- (-4 *8
- (-13 (-354)
- (-10 -8 (-15 -1386 (*3 $)) (-15 -1396 (*3 $)) (-15 -3838 ($ *3))))))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1016)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-592 *2))) (-5 *4 (-621 (-1143)))
+ (-4 *2 (-13 (-423 (-167 *5)) (-973) (-1165)))
+ (-4 *5 (-13 (-541) (-823))) (-5 *1 (-580 *5 *6 *2))
+ (-4 *6 (-13 (-423 *5) (-973) (-1165))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1125)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *4 (-1032 *6 *7 *8)) (-5 *2 (-1231))
+ (-5 *1 (-752 *6 *7 *8 *4 *5)) (-4 *5 (-1038 *6 *7 *8 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-621 (-1143)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-380)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-621 (-621 (-169)))))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-747)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-769)) (-4 *7 (-920 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-823))
+ (-5 *2 (-112)) (-5 *1 (-441 *4 *5 *6 *7)))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1136))
- (|:| |arrayIndex| (-619 (-921 (-547))))
+ (-2 (|:| |var| (-1143))
+ (|:| |arrayIndex| (-621 (-923 (-549))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -2970 (-832))))))
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -2977 (-834))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1136)) (|:| |rand| (-832))
+ (-2 (|:| |var| (-1143)) (|:| |rand| (-834))
(|:| |ints2Floats?| (-112))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1135)) (|:| |thenClause| (-321))
- (|:| |elseClause| (-321))))
+ (-2 (|:| |switch| (-1142)) (|:| |thenClause| (-323))
+ (|:| |elseClause| (-323))))
(|:| |returnBranch|
- (-2 (|:| -2884 (-112))
- (|:| -4153
- (-2 (|:| |ints2Floats?| (-112)) (|:| -2970 (-832))))))
- (|:| |blockBranch| (-619 (-321)))
- (|:| |commentBranch| (-619 (-1119))) (|:| |callBranch| (-1119))
+ (-2 (|:| -3670 (-112))
+ (|:| -4161
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -2977 (-834))))))
+ (|:| |blockBranch| (-621 (-323)))
+ (|:| |commentBranch| (-621 (-1125))) (|:| |callBranch| (-1125))
(|:| |forBranch|
- (-2 (|:| -4232 (-1056 (-921 (-547))))
- (|:| |span| (-921 (-547))) (|:| -2487 (-321))))
- (|:| |labelBranch| (-1082))
- (|:| |loopBranch| (-2 (|:| |switch| (-1135)) (|:| -2487 (-321))))
+ (-2 (|:| -1372 (-1059 (-923 (-549))))
+ (|:| |span| (-923 (-549))) (|:| -2492 (-323))))
+ (|:| |labelBranch| (-1087))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1142)) (|:| -2492 (-323))))
(|:| |commonBranch|
- (-2 (|:| -2473 (-1136)) (|:| |contents| (-619 (-1136)))))
- (|:| |printBranch| (-619 (-832)))))
- (-5 *1 (-321)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1158))))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-108))) (-5 *1 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-655))))
- ((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-939))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-298))))
- ((*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298))))
- ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-298))))
- ((*1 *2 *1) (-12 (-4 *1 (-1025)) (-5 *2 (-547)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-285 (-807 *3)))
- (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-807 *3)) (-5 *1 (-612 *5 *3))
- (-4 *3 (-13 (-27) (-1158) (-421 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-285 (-807 (-921 *5)))) (-4 *5 (-442))
- (-5 *2 (-807 (-398 (-921 *5)))) (-5 *1 (-613 *5))
- (-5 *3 (-398 (-921 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-285 (-398 (-921 *5)))) (-5 *3 (-398 (-921 *5)))
- (-4 *5 (-442)) (-5 *2 (-807 *3)) (-5 *1 (-613 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1016)) (-4 *4 (-1195 *3)) (-5 *1 (-161 *3 *4 *2))
- (-4 *2 (-1195 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1173)))))
-(((*1 *1 *1 *1) (-4 *1 (-298))) ((*1 *1 *1 *1) (-5 *1 (-745)))
- ((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-745)) (-5 *5 (-619 *3)) (-4 *3 (-298)) (-4 *6 (-821))
- (-4 *7 (-767)) (-5 *2 (-112)) (-5 *1 (-601 *6 *7 *3 *8))
- (-4 *8 (-918 *3 *7 *6)))))
+ (-2 (|:| -2481 (-1143)) (|:| |contents| (-621 (-1143)))))
+ (|:| |printBranch| (-621 (-834)))))
+ (-5 *1 (-323)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-892))
+ (-5 *2
+ (-3 (-1139 *4)
+ (-1226 (-621 (-2 (|:| -4161 *4) (|:| -3493 (-1087)))))))
+ (-5 *1 (-339 *4)) (-4 *4 (-342)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-621 (-1 *4 (-621 *4)))) (-4 *4 (-1067))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1067))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-621 (-1 *4 (-621 *4))))
+ (-5 *1 (-113 *4)) (-4 *4 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-657))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-941))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1040))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1085)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-892)) (-5 *1 (-1003 *2))
+ (-4 *2 (-13 (-1067) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-549)) (-4 *4 (-13 (-541) (-145))) (-5 *1 (-526 *4 *2))
+ (-4 *2 (-1217 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-549)) (-4 *4 (-13 (-356) (-361) (-594 *3)))
+ (-4 *5 (-1202 *4)) (-4 *6 (-701 *4 *5)) (-5 *1 (-530 *4 *5 *6 *2))
+ (-4 *2 (-1217 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-549)) (-4 *4 (-13 (-356) (-361) (-594 *3)))
+ (-5 *1 (-531 *4 *2)) (-4 *2 (-1217 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1123 *4)) (-5 *3 (-549)) (-4 *4 (-13 (-541) (-145)))
+ (-5 *1 (-1119 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-747))
+ (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-219)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011))))
+ ((*1 *1 *1 *1) (-4 *1 (-1106))))
+(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-747)))
+ ((*1 *1 *1 *1) (-5 *1 (-834))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821))
- (-4 *3 (-1030 *6 *7 *8))
- (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4))))
- (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1974 *9))))
- (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8))
- (-4 *6 (-442)) (-4 *7 (-767)) (-4 *4 (-821))
- (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1974 *9))))
- (-5 *1 (-1071 *6 *7 *4 *8 *9)))))
+ (-12 (-4 *3 (-1018)) (-5 *1 (-689 *3 *2)) (-4 *2 (-1202 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-523))) (-5 *1 (-523)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-385)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1117 *3))) (-5 *2 (-1117 *3)) (-5 *1 (-1121 *3))
- (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)))))
+ (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-525))) (-5 *1 (-525)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-549)))))
+ (-4 *2 (-13 (-823) (-21))))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-481 *3)) (-4 *3 (-1180))
+ (-4 *3 (-1067)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-876 *4)) (-4 *4 (-1067)) (-5 *2 (-112))
+ (-5 *1 (-875 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-892)) (-5 *2 (-112)) (-5 *1 (-1068 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-372)) (-5 *1 (-1030)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
+ (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823))
+ (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-892))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-329 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356)))
+ (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5))) (-4 *7 (-335 *4 *5 *6))
+ (-5 *2 (-747)) (-5 *1 (-385 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-809 (-892)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-549))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-541)) (-5 *2 (-549)) (-5 *1 (-601 *3 *4))
+ (-4 *4 (-1202 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-717 *4 *3)) (-4 *4 (-1018))
+ (-4 *3 (-823))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-717 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-823))
+ (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-875 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-876 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4))
+ (-4 *6 (-1202 *5)) (-4 *7 (-1202 (-400 *6)))
+ (-4 *8 (-335 *5 *6 *7))
+ (-4 *4 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-747))
+ (-5 *1 (-882 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-329 (-400 (-549)) *4 *5 *6))
+ (-4 *4 (-1202 (-400 (-549)))) (-4 *5 (-1202 (-400 *4)))
+ (-4 *6 (-335 (-400 (-549)) *4 *5)) (-5 *2 (-747))
+ (-5 *1 (-883 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-329 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356))
+ (-4 *7 (-1202 *6)) (-4 *4 (-1202 (-400 *7))) (-4 *8 (-335 *6 *7 *4))
+ (-4 *9 (-13 (-361) (-356))) (-5 *2 (-747))
+ (-5 *1 (-989 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1202 *3)) (-4 *3 (-1018)) (-4 *3 (-541))
+ (-5 *2 (-747))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1204 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1204 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-768)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-387)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-409 (-1132 *7)))
- (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1132 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-878)) (-4 *5 (-1195 *4)) (-5 *2 (-409 (-1132 *5)))
- (-5 *1 (-876 *4 *5)) (-5 *3 (-1132 *5)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-547)) (-4 *2 (-421 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1007 *4)) (-4 *3 (-13 (-821) (-539))))))
+ (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-621 (-747))) (-5 *3 (-112)) (-5 *1 (-1131 *4 *5))
+ (-14 *4 (-892)) (-4 *5 (-1018)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-590 *1)) (-4 *1 (-421 *4)) (-4 *4 (-821))
- (-4 *4 (-539)) (-5 *2 (-398 (-1132 *1)))))
+ (-12 (-5 *3 (-592 *1)) (-4 *1 (-423 *4)) (-4 *4 (-823))
+ (-4 *4 (-541)) (-5 *2 (-400 (-1139 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-590 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1158)))
- (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2 (-1132 (-398 (-1132 *3)))) (-5 *1 (-543 *6 *3 *7))
- (-5 *5 (-1132 *3)) (-4 *7 (-1063))))
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-423 *6) (-27) (-1165)))
+ (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2 (-1139 (-400 (-1139 *3)))) (-5 *1 (-545 *6 *3 *7))
+ (-5 *5 (-1139 *3)) (-4 *7 (-1067))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1215 *5)) (-14 *5 (-1136)) (-4 *6 (-1016))
- (-5 *2 (-1192 *5 (-921 *6))) (-5 *1 (-916 *5 *6)) (-5 *3 (-921 *6))))
+ (-12 (-5 *4 (-1222 *5)) (-14 *5 (-1143)) (-4 *6 (-1018))
+ (-5 *2 (-1199 *5 (-923 *6))) (-5 *1 (-918 *5 *6)) (-5 *3 (-923 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-1132 *3))))
+ (-12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-1139 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-1132 *1))
- (-4 *1 (-918 *4 *5 *3))))
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769)) (-4 *3 (-823)) (-5 *2 (-1139 *1))
+ (-4 *1 (-920 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016))
- (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-398 (-1132 *3)))
- (-5 *1 (-919 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-1018))
+ (-4 *7 (-920 *6 *5 *4)) (-5 *2 (-400 (-1139 *3)))
+ (-5 *1 (-921 *5 *4 *6 *7 *3))
(-4 *3
- (-13 (-354)
- (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $)))))))
+ (-13 (-356)
+ (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1132 *3))
+ (-12 (-5 *2 (-1139 *3))
(-4 *3
- (-13 (-354)
- (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $)) (-15 -1396 (*7 $)))))
- (-4 *7 (-918 *6 *5 *4)) (-4 *5 (-767)) (-4 *4 (-821))
- (-4 *6 (-1016)) (-5 *1 (-919 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136)) (-4 *5 (-539))
- (-5 *2 (-398 (-1132 (-398 (-921 *5))))) (-5 *1 (-1012 *5))
- (-5 *3 (-398 (-921 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1025)) (-4 *3 (-1158))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-981)) (-5 *2 (-832)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4329)) (-4 *1 (-582 *4 *3)) (-4 *4 (-1063))
- (-4 *3 (-1173)) (-4 *3 (-1063)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-398 (-547))) (-5 *1 (-296)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2))
- (-4 *2 (-421 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1136))))
- ((*1 *1 *1) (-4 *1 (-157))))
+ (-13 (-356)
+ (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $)) (-15 -1403 (*7 $)))))
+ (-4 *7 (-920 *6 *5 *4)) (-4 *5 (-769)) (-4 *4 (-823))
+ (-4 *6 (-1018)) (-5 *1 (-921 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1143)) (-4 *5 (-541))
+ (-5 *2 (-400 (-1139 (-400 (-923 *5))))) (-5 *1 (-1014 *5))
+ (-5 *3 (-400 (-923 *5))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-163 *3 *4))
+ (-4 *3 (-164 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1180)) (-5 *2 (-747))
+ (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-823)) (-5 *2 (-747)) (-5 *1 (-422 *3 *4))
+ (-4 *3 (-423 *4))))
+ ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-533 *3)) (-4 *3 (-534))))
+ ((*1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-747))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-772 *3 *4))
+ (-4 *3 (-773 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-541)) (-5 *2 (-747)) (-5 *1 (-962 *3 *4))
+ (-4 *3 (-963 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-747)) (-5 *1 (-967 *3 *4))
+ (-4 *3 (-968 *4))))
+ ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-982 *3)) (-4 *3 (-983))))
+ ((*1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-747))))
+ ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-1026 *3)) (-4 *3 (-1027)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *4)) (-5 *1 (-854 *3 *4 *5))
- (-4 *3 (-1063)) (-4 *5 (-640 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-370)))) (-5 *1 (-321))))
- ((*1 *1 *2) (-12 (-5 *2 (-307 (-547))) (-5 *1 (-321))))
- ((*1 *1 *2) (-12 (-5 *2 (-307 (-370))) (-5 *1 (-321))))
- ((*1 *1 *2) (-12 (-5 *2 (-307 (-668))) (-5 *1 (-321))))
- ((*1 *1 *2) (-12 (-5 *2 (-307 (-675))) (-5 *1 (-321))))
- ((*1 *1 *2) (-12 (-5 *2 (-307 (-673))) (-5 *1 (-321))))
- ((*1 *1) (-5 *1 (-321))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-833))))
- ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1224)) (-5 *1 (-833))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1119)) (-5 *4 (-832)) (-5 *2 (-1224)) (-5 *1 (-833))))
+ (-12 (-4 *1 (-1090 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4))
+ (-4 *2 (-232 *3 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1125)) (-5 *4 (-549)) (-5 *5 (-665 (-167 (-219))))
+ (-5 *2 (-1006)) (-5 *1 (-731)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1226 *4)) (-5 *3 (-665 *4)) (-4 *4 (-356))
+ (-5 *1 (-643 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-356))
+ (-4 *5 (-13 (-366 *4) (-10 -7 (-6 -4338))))
+ (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4338))))
+ (-5 *1 (-644 *4 *5 *2 *3)) (-4 *3 (-663 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-621 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356))
+ (-5 *1 (-790 *2 *3)) (-4 *3 (-632 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *1 (-1095 *3 *2)) (-4 *3 (-1202 *2)))))
+(((*1 *2)
+ (-12 (-4 *3 (-541)) (-5 *2 (-621 (-665 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-410 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4)
+ (-241 *4 (-400 (-549)))))
+ (-14 *4 (-621 (-1143))) (-14 *5 (-747)) (-5 *2 (-112))
+ (-5 *1 (-496 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1180)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-1018)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-835))))
+ ((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1231)) (-5 *1 (-835))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1125)) (-5 *4 (-834)) (-5 *2 (-1231)) (-5 *1 (-835))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-1117 *4))
- (-4 *4 (-1063)) (-4 *4 (-1173)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1195 *5))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-398 *6)) (|:| |h| *6)
- (|:| |c1| (-398 *6)) (|:| |c2| (-398 *6)) (|:| -2625 *6)))
- (-5 *1 (-985 *5 *6)) (-5 *3 (-398 *6)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-619 *5)) (-4 *5 (-821)) (-5 *1 (-1144 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-52)) (-5 *1 (-803)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-590 *1))) (-4 *1 (-293)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-248)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766))))
+ (-12 (-5 *3 (-549)) (-5 *2 (-1231)) (-5 *1 (-1123 *4))
+ (-4 *4 (-1067)) (-4 *4 (-1180)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -1578 (-621 *3)) (|:| -1667 (-621 *3))))
+ (-5 *1 (-1181 *3)) (-4 *3 (-1067)))))
+(((*1 *1) (-5 *1 (-430))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1143))
+ (-4 *6 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-4 *4 (-13 (-29 *6) (-1165) (-930)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -1949 (-621 *4))))
+ (-5 *1 (-777 *6 *4 *3)) (-4 *3 (-632 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-592 *1))) (-4 *1 (-295)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))))
((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1136)))))
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1018)) (-14 *3 (-621 (-1143)))))
((*1 *1 *1)
- (-12 (-5 *1 (-215 *2 *3)) (-4 *2 (-13 (-1016) (-821)))
- (-14 *3 (-619 (-1136)))))
+ (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1018) (-823)))
+ (-14 *3 (-621 (-1143)))))
((*1 *1 *1)
- (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063))))
+ (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1067))))
((*1 *1 *1)
- (-12 (-14 *2 (-619 (-1136))) (-4 *3 (-169))
- (-4 *5 (-230 (-3767 *2) (-745)))
+ (-12 (-14 *2 (-621 (-1143))) (-4 *3 (-170))
+ (-4 *5 (-232 (-3775 *2) (-747)))
(-14 *6
- (-1 (-112) (-2 (|:| -3487 *4) (|:| -3322 *5))
- (-2 (|:| -3487 *4) (|:| -3322 *5))))
- (-5 *1 (-451 *2 *3 *4 *5 *6 *7)) (-4 *4 (-821))
- (-4 *7 (-918 *3 *5 (-834 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-498 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821))))
+ (-1 (-112) (-2 (|:| -3493 *4) (|:| -3731 *5))
+ (-2 (|:| -3493 *4) (|:| -3731 *5))))
+ (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-823))
+ (-4 *7 (-920 *3 *5 (-836 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-823))))
((*1 *1 *1)
- (-12 (-4 *2 (-539)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1195 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016))))
+ (-12 (-4 *2 (-541)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1202 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018))))
((*1 *1 *1)
- (-12 (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1016))
- (-4 *3 (-701))))
- ((*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016))))
+ (-12 (-5 *1 (-712 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1018))
+ (-4 *3 (-703))))
+ ((*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821))))
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823))))
((*1 *1 *1)
- (-12 (-5 *1 (-1242 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-38 (-398 (-547))))
- (-4 *2 (-169)))))
-(((*1 *1 *1 *1) (-4 *1 (-298))) ((*1 *1 *1 *1) (-5 *1 (-745)))
- ((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))))
+ (-12 (-5 *1 (-1249 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3))
- (-4 *3 (-936)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-271)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-547)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-745)) (-4 *5 (-169))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-547)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-745)) (-4 *5 (-169))))
- ((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4)
- (-239 *4 (-398 (-547)))))
- (-5 *3 (-619 (-834 *4))) (-14 *4 (-619 (-1136))) (-14 *5 (-745))
- (-5 *1 (-494 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1173)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))))
+(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-747)))
+ ((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-592 *3)) (-5 *5 (-621 *3))
+ (-4 *3 (-13 (-423 *6) (-27) (-1165)))
+ (-4 *6 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-621 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-551 *6 *3 *7)) (-4 *7 (-1067)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-549))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-769)) (-4 *4 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823))
+ (-5 *1 (-441 *5 *6 *7 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-727)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1006))
+ (-5 *1 (-723)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1125)) (-4 *1 (-357 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1067)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4)))))
- ((*1 *1 *1) (-5 *1 (-370)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4))))
- (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-663 (-1132 *8))) (-4 *5 (-1016)) (-4 *8 (-1016))
- (-4 *6 (-1195 *5)) (-5 *2 (-663 *6)) (-5 *1 (-490 *5 *6 *7 *8))
- (-4 *7 (-1195 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-2 (|:| -4153 *4) (|:| -2601 (-547)))))
- (-4 *4 (-1063)) (-5 *2 (-1 *4)) (-5 *1 (-986 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1117 (-1117 *4))) (-5 *2 (-1117 *4)) (-5 *1 (-1121 *4))
- (-4 *4 (-38 (-398 (-547)))) (-4 *4 (-1016)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1101 *4 *5)) (-4 *4 (-13 (-1063) (-34)))
- (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1102 *4 *5)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1))
- (-4 *1 (-918 *3 *4 *5)))))
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1))
+ (-4 *1 (-920 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-793 *3)) (|:| |rm| (-793 *3))))
- (-5 *1 (-793 *3)) (-4 *3 (-821))))
- ((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-649 (-217)))
- (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-725)))))
+ (-12 (-4 *3 (-541)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| -4013 *1) (|:| -3675 *1))) (-4 *1 (-825 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-98 *5)) (-4 *5 (-541)) (-4 *5 (-1018))
+ (-5 *2 (-2 (|:| -4013 *3) (|:| -3675 *3))) (-5 *1 (-826 *5 *3))
+ (-4 *3 (-825 *5)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-795 *3)) (|:| |rm| (-795 *3))))
+ (-5 *1 (-795 *3)) (-4 *3 (-823))))
+ ((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-5 *2 (-409 *3))
- (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-1156)))))
-(((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-1016)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821))
- (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))))
+ (-12 (-5 *3 (-1226 (-309 (-219))))
+ (-5 *2
+ (-2 (|:| |additions| (-549)) (|:| |multiplications| (-549))
+ (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))))
+ (-5 *1 (-298)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1018)) (-4 *4 (-1202 *3)) (-5 *1 (-162 *3 *4 *2))
+ (-4 *2 (-1202 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-1032 *4 *5 *6)) (-4 *4 (-541))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *2)))))
+(((*1 *1) (-5 *1 (-142))))
(((*1 *2 *3)
- (-12 (-5 *2 (-547)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-398 (-1132 (-307 *3)))) (-4 *3 (-13 (-539) (-821)))
- (-5 *1 (-1092 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
+ (-12 (-4 *4 (-541)) (-4 *5 (-963 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3))
+ (-4 *3 (-366 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *5 (-963 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-494 *4 *5 *6 *3)) (-4 *6 (-366 *4)) (-4 *3 (-366 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-665 *5)) (-4 *5 (-963 *4)) (-4 *4 (-541))
+ (-5 *2 (-2 (|:| |num| (-665 *4)) (|:| |den| *4)))
+ (-5 *1 (-669 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549)))))
+ (-4 *6 (-1202 *5))
+ (-5 *2 (-2 (|:| -2652 *7) (|:| |rh| (-621 (-400 *6)))))
+ (-5 *1 (-783 *5 *6 *7 *3)) (-5 *4 (-621 (-400 *6)))
+ (-4 *7 (-632 *6)) (-4 *3 (-632 (-400 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *5 (-963 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1195 *4 *5 *3))
+ (-4 *3 (-1202 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-400 (-549))))
+ (-5 *2 (-2 (|:| -1640 (-1123 *4)) (|:| -1651 (-1123 *4))))
+ (-5 *1 (-1129 *4)) (-5 *3 (-1123 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549)))))
+ (-4 *3 (-1202 *4)) (-5 *1 (-785 *4 *3 *2 *5)) (-4 *2 (-632 *3))
+ (-4 *5 (-632 (-400 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-400 *5))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *5 (-1202 *4))
+ (-5 *1 (-785 *4 *5 *2 *6)) (-4 *2 (-632 *5)) (-4 *6 (-632 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-300))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-439 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-621 *7)) (-5 *3 (-1125)) (-4 *7 (-920 *4 *5 *6))
+ (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *1 (-439 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-621 *7)) (-5 *3 (-1125)) (-4 *7 (-920 *4 *5 *6))
+ (-4 *4 (-300)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *1 (-439 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-166 (-370))) (-5 *1 (-759 *3)) (-4 *3 (-592 (-370)))))
+ (-12 (-5 *2 (-167 (-372))) (-5 *1 (-761 *3)) (-4 *3 (-594 (-372)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-890)) (-5 *2 (-166 (-370))) (-5 *1 (-759 *3))
- (-4 *3 (-592 (-370)))))
+ (-12 (-5 *4 (-892)) (-5 *2 (-167 (-372))) (-5 *1 (-761 *3))
+ (-4 *3 (-594 (-372)))))
((*1 *2 *3)
- (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-592 (-370)))
- (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
+ (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-594 (-372)))
+ (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-166 *5)) (-5 *4 (-890)) (-4 *5 (-169))
- (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5))))
+ (-12 (-5 *3 (-167 *5)) (-5 *4 (-892)) (-4 *5 (-170))
+ (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-592 (-370)))
- (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
+ (-12 (-5 *3 (-923 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-594 (-372)))
+ (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169))
- (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5))))
+ (-12 (-5 *3 (-923 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-170))
+ (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 (-370)))
- (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
+ (-12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 (-372)))
+ (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016))
- (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5))))
+ (-12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018))
+ (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-4 *4 (-592 (-370)))
- (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
+ (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-4 *4 (-594 (-372)))
+ (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539))
- (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5))))
+ (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541))
+ (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-398 (-921 (-166 *4)))) (-4 *4 (-539))
- (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
+ (-12 (-5 *3 (-400 (-923 (-167 *4)))) (-4 *4 (-541))
+ (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-539))
- (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5))))
+ (-12 (-5 *3 (-400 (-923 (-167 *5)))) (-5 *4 (-892)) (-4 *5 (-541))
+ (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821))
- (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
+ (-12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823))
+ (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821))
- (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5))))
+ (-12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823))
+ (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-539)) (-4 *4 (-821))
- (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
+ (-12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-541)) (-4 *4 (-823))
+ (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-539))
- (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370)))
- (-5 *1 (-759 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016))))
+ (-12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-541))
+ (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372)))
+ (-5 *1 (-761 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))
((*1 *2 *1)
- (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1136)))))
+ (-12 (-4 *2 (-1018)) (-5 *1 (-50 *2 *3)) (-14 *3 (-621 (-1143)))))
((*1 *2 *1)
- (-12 (-5 *2 (-307 *3)) (-5 *1 (-215 *3 *4))
- (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1136)))))
+ (-12 (-5 *2 (-309 *3)) (-5 *1 (-217 *3 *4))
+ (-4 *3 (-13 (-1018) (-823))) (-14 *4 (-621 (-1143)))))
((*1 *2 *1)
- (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016))))
+ (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1067)) (-4 *2 (-1018))))
((*1 *2 *1)
- (-12 (-14 *3 (-619 (-1136))) (-4 *5 (-230 (-3767 *3) (-745)))
+ (-12 (-14 *3 (-621 (-1143))) (-4 *5 (-232 (-3775 *3) (-747)))
(-14 *6
- (-1 (-112) (-2 (|:| -3487 *4) (|:| -3322 *5))
- (-2 (|:| -3487 *4) (|:| -3322 *5))))
- (-4 *2 (-169)) (-5 *1 (-451 *3 *2 *4 *5 *6 *7)) (-4 *4 (-821))
- (-4 *7 (-918 *2 *5 (-834 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-498 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1063))))
+ (-1 (-112) (-2 (|:| -3493 *4) (|:| -3731 *5))
+ (-2 (|:| -3493 *4) (|:| -3731 *5))))
+ (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-823))
+ (-4 *7 (-920 *2 *5 (-836 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-823)) (-4 *2 (-1067))))
((*1 *2 *1)
- (-12 (-4 *2 (-539)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1195 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016))))
+ (-12 (-4 *2 (-541)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1202 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1018))))
((*1 *2 *1)
- (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-821))
- (-4 *3 (-701))))
- ((*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016))))
+ (-12 (-4 *2 (-1018)) (-5 *1 (-712 *2 *3)) (-4 *3 (-823))
+ (-4 *3 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018))))
((*1 *2 *1)
- (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *3 (-766)) (-4 *4 (-821))
- (-4 *2 (-1016))))
+ (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *3 (-768)) (-4 *4 (-823))
+ (-4 *2 (-1018))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1195 *6))
- (-4 *6 (-13 (-354) (-145) (-1007 *4))) (-5 *4 (-547))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -2644
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-984 *6 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-5 *1 (-1117 *3)))))
+ (-12 (-4 *1 (-1032 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-539))))
+ (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-541))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766))
- (-4 *2 (-539))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-539)))
+ (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))
+ (-4 *2 (-541))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-541)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016))
- (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (-4 *2 (-539))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-745)))
+ (|partial| -12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018))
+ (-4 *3 (-366 *2)) (-4 *4 (-366 *2)) (-4 *2 (-541))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-747)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-539))))
- ((*1 *1 *1 *1) (-5 *1 (-832)))
+ (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-541))))
+ ((*1 *1 *1 *1) (-5 *1 (-834)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1219 *4)) (-4 *4 (-1195 *3)) (-4 *3 (-539))
- (-5 *1 (-938 *3 *4))))
+ (-12 (-5 *2 (-1226 *4)) (-4 *4 (-1202 *3)) (-4 *3 (-541))
+ (-5 *1 (-940 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016))
- (-4 *5 (-230 *4 *2)) (-4 *6 (-230 *3 *2)) (-4 *2 (-539))))
+ (|partial| -12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *2 (-1018))
+ (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-541))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-736))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-398 (-547))) (-5 *1 (-310 *3 *4 *5))
- (-4 *3 (-13 (-354) (-821))) (-14 *4 (-1136)) (-14 *5 *3))))
+ (|partial| -12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-287 (-809 *3)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-809 *3)) (-5 *1 (-614 *5 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-287 (-809 (-923 *5)))) (-4 *5 (-444))
+ (-5 *2 (-809 (-400 (-923 *5)))) (-5 *1 (-615 *5))
+ (-5 *3 (-400 (-923 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-287 (-400 (-923 *5)))) (-5 *3 (-400 (-923 *5)))
+ (-4 *5 (-444)) (-5 *2 (-809 *3)) (-5 *1 (-615 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-665 *4)) (-4 *4 (-1018)) (-5 *1 (-1109 *3 *4))
+ (-14 *3 (-747)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-621 (-219)))) (-5 *1 (-897)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-472)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-619 (-370))) (-5 *3 (-619 (-254))) (-5 *1 (-252))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-370))) (-5 *1 (-458))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-370))) (-5 *1 (-458))))
+ (-12 (-5 *2 (-621 (-372))) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-372))) (-5 *1 (-460))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-372))) (-5 *1 (-460))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1224)) (-5 *1 (-1220))))
+ (-12 (-5 *3 (-892)) (-5 *4 (-845)) (-5 *2 (-1231)) (-5 *1 (-1227))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-890)) (-5 *4 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220)))))
-(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-225)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4))
- (-4 *6 (-767)) (-5 *2 (-1 *1 (-745))) (-4 *1 (-244 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-257 *3)) (-4 *6 (-767))
- (-5 *2 (-1 *1 (-745))) (-4 *1 (-244 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-257 *2)) (-4 *2 (-821)))))
-(((*1 *2)
- (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878))
- (-5 *1 (-447 *3 *4 *2 *5)) (-4 *5 (-918 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878))
- (-5 *1 (-875 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-878)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1195 *2)))))
+ (-12 (-5 *3 (-892)) (-5 *4 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
- (-5 *2 (-370)) (-5 *1 (-184)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
+ (-12 (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-541))
+ (-4 *7 (-920 *3 *5 *6))
+ (-5 *2 (-2 (|:| -3731 (-747)) (|:| -1570 *8) (|:| |radicand| *8)))
+ (-5 *1 (-924 *5 *6 *3 *7 *8)) (-5 *4 (-747))
+ (-4 *8
+ (-13 (-356)
+ (-10 -8 (-15 -1394 (*7 $)) (-15 -1403 (*7 $)) (-15 -3846 ($ *7))))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1202 *4)) (-4 *4 (-1184))
+ (-4 *6 (-1202 (-400 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-335 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145))
- (-4 *3 (-298)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-946 *3 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-354)) (-4 *3 (-1016))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4238 *1)))
- (-4 *1 (-823 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766))))
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444))
+ (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-948 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-621 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6))
+ (-4 *4 (-444)) (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *1 (-948 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219))) (-5 *6 (-651 (-219)))
+ (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-727)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-621 *11)) (-5 *5 (-621 (-1139 *9)))
+ (-5 *6 (-621 *9)) (-5 *7 (-621 *12)) (-5 *8 (-621 (-747)))
+ (-4 *11 (-823)) (-4 *9 (-300)) (-4 *12 (-920 *9 *10 *11))
+ (-4 *10 (-769)) (-5 *2 (-621 (-1139 *12)))
+ (-5 *1 (-684 *10 *11 *9 *12)) (-5 *3 (-1139 *12)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-356))
+ (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-663 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063))))
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2))
+ (|has| *2 (-6 (-4339 "*"))) (-4 *2 (-1018))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170))
+ (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-663 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-14 *3 (-619 (-1136))) (-4 *4 (-169))
- (-4 *6 (-230 (-3767 *3) (-745)))
+ (-12 (-4 *1 (-1090 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2))
+ (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4339 "*"))) (-4 *2 (-1018)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-621 (-1143))) (-4 *4 (-170))
+ (-4 *6 (-232 (-3775 *3) (-747)))
(-14 *7
- (-1 (-112) (-2 (|:| -3487 *5) (|:| -3322 *6))
- (-2 (|:| -3487 *5) (|:| -3322 *6))))
- (-5 *2 (-688 *5 *6 *7)) (-5 *1 (-451 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-821)) (-4 *8 (-918 *4 *6 (-834 *3)))))
+ (-1 (-112) (-2 (|:| -3493 *5) (|:| -3731 *6))
+ (-2 (|:| -3493 *5) (|:| -3731 *6))))
+ (-5 *2 (-690 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-823)) (-4 *8 (-920 *4 *6 (-836 *3)))))
((*1 *2 *1)
- (-12 (-4 *2 (-701)) (-4 *2 (-821)) (-5 *1 (-710 *3 *2))
- (-4 *3 (-1016))))
+ (-12 (-4 *2 (-703)) (-4 *2 (-823)) (-5 *1 (-712 *3 *2))
+ (-4 *3 (-1018))))
((*1 *1 *1)
- (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766))
- (-4 *4 (-821)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1173))
- (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-408 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-547)) (-5 *1 (-1155 *3)) (-4 *3 (-1016)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-307 (-217))) (|:| -3054 (-619 (-217)))
- (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217))))
- (|:| |ub| (-619 (-814 (-217))))))
- (-5 *1 (-258)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1158) (-928))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1166 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767))
- (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768))
+ (-4 *4 (-823)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *3) (-12 (-5 *3 (-309 (-219))) (-5 *2 (-219)) (-5 *1 (-298)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1125)) (-5 *4 (-167 (-219))) (-5 *5 (-549))
+ (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *1 *1) (-4 *1 (-607)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973) (-1165))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087)) (-5 *1 (-109))))
+ ((*1 *2 *1) (|partial| -12 (-5 *1 (-358 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1125)) (-5 *1 (-1161)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)))
- (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1158) (-928)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1) (-5 *1 (-832)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1117 *3)) (-5 *1 (-1121 *3)) (-4 *3 (-1016)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-656 *2)) (-4 *2 (-1063))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-619 *5) (-619 *5))) (-5 *4 (-547))
- (-5 *2 (-619 *5)) (-5 *1 (-656 *5)) (-4 *5 (-1063)))))
-(((*1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016))))
- ((*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-307 (-217))) (-5 *4 (-1136))
- (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-184))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-307 (-217))) (-5 *4 (-1136))
- (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-291)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1117 *7))) (-4 *6 (-821))
- (-4 *7 (-918 *5 (-519 *6) *6)) (-4 *5 (-1016))
- (-5 *2 (-1 (-1117 *7) *7)) (-5 *1 (-1088 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-139))))
-(((*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
+ (|partial| -12 (-5 *3 (-747)) (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-356)) (-4 *3 (-1018))
+ (-5 *1 (-1127 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
+ ((*1 *1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-2 (|:| |k| (-648 *3)) (|:| |c| *4))))
+ (-5 *1 (-605 *3 *4 *5)) (-4 *3 (-823))
+ (-4 *4 (-13 (-170) (-694 (-400 (-549))))) (-14 *5 (-892)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-892)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-256)))))
+(((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-768)) (-4 *2 (-1018))))
+ ((*1 *2 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1139 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))))
(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-5 *1 (-321)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1219 *3)) (-4 *3 (-1016)) (-5 *1 (-687 *3 *4))
- (-4 *4 (-1195 *3)))))
-(((*1 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1222))))
- ((*1 *2 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1222)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-1141))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-1141))) (-5 *1 (-1141)))))
+ (-12 (-4 *4 (-170)) (-5 *2 (-1139 (-923 *4))) (-5 *1 (-409 *3 *4))
+ (-4 *3 (-410 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-410 *3)) (-4 *3 (-170)) (-4 *3 (-356))
+ (-5 *2 (-1139 (-923 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1139 (-400 (-923 *3)))) (-5 *1 (-445 *3 *4 *5 *6))
+ (-4 *3 (-541)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3))
+ (-4 *3 (-1202 (-167 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3))
+ (-4 *3 (-1202 (-167 *2))))))
+(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228))))
+ ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-549)) (-5 *5 (-167 (-219))) (-5 *6 (-1125))
+ (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-354 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-5 *2 (-747)) (-5 *1 (-379 *4)) (-4 *4 (-1067))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-4 *2 (-23)) (-5 *1 (-625 *4 *2 *5))
+ (-4 *4 (-1067)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-5 *2 (-747)) (-5 *1 (-795 *4)) (-4 *4 (-823)))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))))
+(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1231)) (-5 *1 (-1105))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-834))) (-5 *2 (-1231)) (-5 *1 (-1105)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1195 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1195 *3)))))
-(((*1 *1) (-5 *1 (-542))))
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444))
+ (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-948 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766))
+ (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-768))
(-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-821)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1063))
- (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3))))
- (-5 *2 (-619 (-1136))) (-5 *1 (-1039 *3 *4 *5))
- (-4 *5 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-112))
- (-5 *2 (-1004)) (-5 *1 (-720)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1004))
- (-5 *1 (-721)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-823)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-142)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-130))))
+(((*1 *1 *2) (-12 (-5 *2 (-1087)) (-5 *1 (-797)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-1146))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-1146))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1143)) (-5 *2 (-1231)) (-5 *1 (-1146)))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1119)) (-5 *2 (-748)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1067)) (-5 *1 (-934)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-630 *3)) (-4 *3 (-1016)) (-4 *3 (-354))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-745)) (-5 *4 (-1 *5 *5)) (-4 *5 (-354))
- (-5 *1 (-633 *5 *2)) (-4 *2 (-630 *5)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1132 *7))
- (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *2 (-1195 *5))
- (-5 *1 (-490 *5 *2 *6 *7)) (-4 *6 (-1195 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218))))
- ((*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *1 *1) (-4 *1 (-1100))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1136))) (-4 *6 (-442))
- (-5 *2
- (-2 (|:| |dpolys| (-619 (-239 *5 *6)))
- (|:| |coords| (-619 (-547)))))
- (-5 *1 (-461 *5 *6 *7)) (-5 *3 (-619 (-239 *5 *6))) (-4 *7 (-442)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-979 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *1 *1) (-4 *1 (-235)))
+ (|partial| -12 (-5 *3 (-1125)) (-5 *2 (-750)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-1071)) (-5 *1 (-936)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-564)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1123 *4)) (-5 *3 (-1 *4 (-549))) (-4 *4 (-1018))
+ (-5 *1 (-1127 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *3 (-621 (-256)))
+ (-5 *1 (-254))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-914 (-219)))) (-5 *1 (-256))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 (-473 *5 *6))) (-5 *3 (-473 *5 *6))
+ (-14 *5 (-621 (-1143))) (-4 *6 (-444)) (-5 *2 (-1226 *6))
+ (-5 *1 (-609 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *1 *1) (-4 *1 (-237)))
((*1 *1 *1)
- (-12 (-4 *2 (-169)) (-5 *1 (-280 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1195 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1202 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-1530 (-12 (-5 *1 (-285 *2)) (-4 *2 (-354)) (-4 *2 (-1173)))
- (-12 (-5 *1 (-285 *2)) (-4 *2 (-463)) (-4 *2 (-1173)))))
- ((*1 *1 *1) (-4 *1 (-463)))
- ((*1 *2 *2) (-12 (-5 *2 (-1219 *3)) (-4 *3 (-340)) (-5 *1 (-517 *3))))
+ (-1536 (-12 (-5 *1 (-287 *2)) (-4 *2 (-356)) (-4 *2 (-1180)))
+ (-12 (-5 *1 (-287 *2)) (-4 *2 (-465)) (-4 *2 (-1180)))))
+ ((*1 *1 *1) (-4 *1 (-465)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1226 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23))
+ (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-354)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)) (-4 *2 (-356)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-547)) (-5 *5 (-1119)) (-5 *6 (-663 (-217)))
- (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))))
- (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))))
- (-5 *9 (-3 (|:| |fn| (-379)) (|:| |fp| (-70 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))
- (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-714 *3)))))
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4))))
+ (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-1125)) (-5 *5 (-665 (-219)))
+ (-5 *2 (-1006)) (-5 *1 (-724)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-981 *3)) (-4 *3 (-1180)) (-4 *3 (-1067))
+ (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-619 (-398 *6))) (-5 *3 (-398 *6))
- (-4 *6 (-1195 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-551 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6))
- (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1195 *4)) (-4 *5 (-364 *4))
- (-4 *6 (-364 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1136))) (-4 *4 (-442))
- (-5 *1 (-887 *4)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-619 (-1107 *5 *6 *7 *8))) (-5 *1 (-1107 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1119)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1224))
- (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1119)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1224))
- (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-590 *1))) (-4 *1 (-293)))))
-(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1224))
- (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4))
- (-4 *4 (-340)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217)))
- (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-65 FUNCT1))))
- (-5 *2 (-1004)) (-5 *1 (-728)))))
-(((*1 *2 *1) (-12 (-4 *1 (-498 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-821)))))
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1117 (-547))) (-5 *1 (-1121 *4)) (-4 *4 (-1016))
- (-5 *3 (-547)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
+ (-12 (-4 *4 (-342)) (-5 *2 (-929 (-1139 *4))) (-5 *1 (-350 *4))
+ (-5 *3 (-1139 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-747)) (-4 *6 (-356)) (-5 *4 (-1174 *6))
+ (-5 *2 (-1 (-1123 *4) (-1123 *4))) (-5 *1 (-1234 *6))
+ (-5 *5 (-1123 *4)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))
+ (-5 *2 (-1139 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361))
+ (-5 *2 (-1139 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-298)))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-592 *1))) (-4 *1 (-295)))))
+(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-541) (-145))) (-5 *1 (-526 *3 *2))
+ (-4 *2 (-1217 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-4 *4 (-1202 *3))
+ (-4 *5 (-701 *3 *4)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-1217 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-356) (-361) (-594 (-549)))) (-5 *1 (-531 *3 *2))
+ (-4 *2 (-1217 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-13 (-541) (-145)))
+ (-5 *1 (-1119 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549))))
+ ((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *1) (-4 *1 (-840 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-768))
+ (-4 *4 (-823)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-621 (-1139 *7))) (-5 *3 (-1139 *7))
+ (-4 *7 (-920 *5 *6 *4)) (-4 *5 (-880)) (-4 *6 (-769))
+ (-4 *4 (-823)) (-5 *1 (-877 *5 *6 *4 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))))
+(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-892)) (-5 *2 (-1226 *4)) (-5 *1 (-519 *4))
+ (-4 *4 (-342)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-217)) (|:| |xend| (-217))
- (|:| |fn| (-1219 (-307 (-217)))) (|:| |yinit| (-619 (-217)))
- (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217)))
- (|:| |abserr| (-217)) (|:| |relerr| (-217))))
+ (-12 (-5 *3 (-1123 (-219))) (-5 *2 (-621 (-1125))) (-5 *1 (-186))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1123 (-219))) (-5 *2 (-621 (-1125))) (-5 *1 (-293))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1123 (-219))) (-5 *2 (-621 (-1125))) (-5 *1 (-298)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356))
(-5 *2
- (-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))))
- (-5 *1 (-197)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-4 *3 (-539))
- (-5 *2 (-1132 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1027))))
- ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1027)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-619 *3)) (-5 *1 (-930 *3)) (-4 *3 (-532)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-846 *2)) (-4 *2 (-1173))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-848 *2)) (-4 *2 (-1173))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-851 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
+ (-2 (|:| A (-665 *5))
+ (|:| |eqs|
+ (-621
+ (-2 (|:| C (-665 *5)) (|:| |g| (-1226 *5)) (|:| -2652 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *5)) (-5 *4 (-1226 *5))
+ (-4 *6 (-632 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356)) (-4 *6 (-632 *5))
+ (-5 *2 (-2 (|:| -3521 (-665 *6)) (|:| |vec| (-1226 *5))))
+ (-5 *1 (-789 *5 *6)) (-5 *3 (-665 *6)) (-5 *4 (-1226 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2))
- (-4 *4 (-13 (-821) (-539))))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))
- ((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-298)) (-5 *1 (-176 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-271))) (-5 *1 (-271))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-1141))) (-5 *1 (-1141)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))))
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1165) (-973)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1184)) (-4 *5 (-1202 (-400 *2)))
+ (-4 *2 (-1202 *4)) (-5 *1 (-334 *3 *4 *2 *5))
+ (-4 *3 (-335 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1184))
+ (-4 *4 (-1202 (-400 *2))) (-4 *2 (-1202 *3)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-834))) ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4)))
+ (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-270 *4 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1016))
- (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1158) (-275)))
- (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-663 *11)) (-5 *4 (-619 (-398 (-921 *8))))
- (-5 *5 (-745)) (-5 *6 (-1119)) (-4 *8 (-13 (-298) (-145)))
- (-4 *11 (-918 *8 *10 *9)) (-4 *9 (-13 (-821) (-592 (-1136))))
- (-4 *10 (-767))
- (-5 *2
- (-2
- (|:| |rgl|
- (-619
- (-2 (|:| |eqzro| (-619 *11)) (|:| |neqzro| (-619 *11))
- (|:| |wcond| (-619 (-921 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1219 (-398 (-921 *8))))
- (|:| -1917 (-619 (-1219 (-398 (-921 *8))))))))))
- (|:| |rgsz| (-547))))
- (-5 *1 (-893 *8 *9 *10 *11)) (-5 *7 (-547)))))
-(((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-1063)) (-5 *2 (-745)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-354)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-493 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1141)))))
-(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745))
- (-4 *4 (-169))))
- ((*1 *1) (-4 *1 (-701))) ((*1 *1) (-5 *1 (-1136))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3))
- (-4 *3 (-1195 (-166 *2))))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-217) (-217) (-217)))
- (-5 *4 (-3 (-1 (-217) (-217) (-217) (-217)) "undefined"))
- (-5 *5 (-1058 (-217))) (-5 *6 (-619 (-254))) (-5 *2 (-1095 (-217)))
- (-5 *1 (-671))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-217)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-671))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1095 (-217))) (-5 *3 (-1 (-912 (-217)) (-217) (-217)))
- (-5 *4 (-1058 (-217))) (-5 *5 (-619 (-254))) (-5 *1 (-671)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1004)) (-5 *1 (-296))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-1004))) (-5 *2 (-1004)) (-5 *1 (-296))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-625 *3)) (-4 *3 (-1173))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1173))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1 *1) (-5 *1 (-1028)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1117 (-1117 *4))) (-5 *2 (-1117 *4)) (-5 *1 (-1114 *4))
- (-4 *4 (-1173))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-619 (-398 *7)))
- (-4 *7 (-1195 *6)) (-5 *3 (-398 *7)) (-4 *6 (-354))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-557 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-832)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-547) "failed") *5)) (-4 *5 (-1016))
- (-5 *2 (-547)) (-5 *1 (-530 *5 *3)) (-4 *3 (-1195 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-547) "failed") *4)) (-4 *4 (-1016))
- (-5 *2 (-547)) (-5 *1 (-530 *4 *3)) (-4 *3 (-1195 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-547) "failed") *4)) (-4 *4 (-1016))
- (-5 *2 (-547)) (-5 *1 (-530 *4 *3)) (-4 *3 (-1195 *4)))))
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-1145 (-400 (-549))))
+ (-5 *1 (-184)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-423 *3) (-973))) (-5 *1 (-269 *3 *2))
+ (-4 *3 (-13 (-823) (-541))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 *4)) (-4 *4 (-1018)) (-5 *2 (-1226 *4))
+ (-5 *1 (-1144 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-892)) (-5 *2 (-1226 *3)) (-5 *1 (-1144 *3))
+ (-4 *3 (-1018)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-442)))))
+ (-12 (-4 *1 (-1173 *2 *3 *4 *5)) (-4 *2 (-541)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *5 (-1032 *2 *3 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1136)) (-5 *4 (-921 (-547))) (-5 *2 (-321))
- (-5 *1 (-323)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-307 *3)) (-4 *3 (-539)) (-4 *3 (-821)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1179 *3))
- (-5 *2 (-398 (-547))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *2)) (-4 *2 (-169))))
- ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-407 *3 *2)) (-4 *3 (-408 *2))))
- ((*1 *2) (-12 (-4 *1 (-408 *2)) (-4 *2 (-169)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *4)) (-4 *4 (-819)) (-4 *4 (-354)) (-5 *2 (-745))
- (-5 *1 (-914 *4 *5)) (-4 *5 (-1195 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-471 *4 *5)) (-14 *4 (-619 (-1136))) (-4 *5 (-1016))
- (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-532))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-566 *2)) (-4 *2 (-532)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-874 (-547))) (-5 *4 (-547)) (-5 *2 (-663 *4))
- (-5 *1 (-997 *5)) (-4 *5 (-1016))))
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228))))
+ ((*1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-1228)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-1009 (-48)))
+ (-4 *4 (-13 (-541) (-823) (-1009 (-549)))) (-4 *5 (-423 *4))
+ (-5 *2 (-411 (-1139 (-48)))) (-5 *1 (-428 *4 *5 *3))
+ (-4 *3 (-1202 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-372)) (-5 *1 (-762)))))
+(((*1 *1) (-5 *1 (-1052))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-549)) (-4 *6 (-356)) (-4 *6 (-361))
+ (-4 *6 (-1018)) (-5 *2 (-621 (-621 (-665 *6)))) (-5 *1 (-1000 *6))
+ (-5 *3 (-621 (-665 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1018))
+ (-5 *2 (-621 (-621 (-665 *4)))) (-5 *1 (-1000 *4))
+ (-5 *3 (-621 (-665 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018))
+ (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5))
+ (-5 *3 (-621 (-665 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-892)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018))
+ (-5 *2 (-621 (-621 (-665 *5)))) (-5 *1 (-1000 *5))
+ (-5 *3 (-621 (-665 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))
+ ((*1 *1 *1 *1) (-4 *1 (-465)))
+ ((*1 *1 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170))))
+ ((*1 *2 *2) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-854))))
+ ((*1 *1 *1) (-5 *1 (-942)))
+ ((*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-170)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-420 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-549)))))
+ (-4 *2 (-13 (-823) (-21))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1087)) (-5 *2 (-112)) (-5 *1 (-797)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1006)) (-5 *1 (-298))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-1006))) (-5 *2 (-1006)) (-5 *1 (-298))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 *1)) (-4 *1 (-627 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *1 *1) (-5 *1 (-1030)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1123 (-1123 *4))) (-5 *2 (-1123 *4)) (-5 *1 (-1120 *4))
+ (-4 *4 (-1180))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-300)) (-5 *2 (-411 *3))
+ (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-920 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1069 *4)) (-4 *4 (-1067)) (-5 *2 (-1 *4))
+ (-5 *1 (-988 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1011)) (-5 *3 (-372))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-997 *4))
- (-4 *4 (-1016))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-874 (-547)))) (-5 *4 (-547))
- (-5 *2 (-619 (-663 *4))) (-5 *1 (-997 *5)) (-4 *5 (-1016))))
+ (-12 (-5 *3 (-1061 (-549))) (-5 *2 (-1 (-549))) (-5 *1 (-1016)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1226 *4)) (-4 *4 (-410 *3)) (-4 *3 (-300))
+ (-4 *3 (-541)) (-5 *1 (-43 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-619 (-547)))) (-5 *2 (-619 (-663 (-547))))
- (-5 *1 (-997 *4)) (-4 *4 (-1016)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-354)) (-5 *1 (-633 *4 *2))
- (-4 *2 (-630 *4)))))
+ (-12 (-5 *3 (-892)) (-4 *4 (-356)) (-5 *2 (-1226 *1))
+ (-4 *1 (-322 *4))))
+ ((*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1226 *1)) (-4 *1 (-322 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-170)) (-4 *4 (-1202 *3)) (-5 *2 (-1226 *1))
+ (-4 *1 (-402 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1202 *4))
+ (-5 *2 (-1226 *6)) (-5 *1 (-406 *3 *4 *5 *6))
+ (-4 *6 (-13 (-402 *4 *5) (-1009 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1202 *4))
+ (-5 *2 (-1226 *6)) (-5 *1 (-407 *3 *4 *5 *6 *7))
+ (-4 *6 (-402 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1226 *1)) (-4 *1 (-410 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-892)) (-5 *2 (-1226 (-1226 *4))) (-5 *1 (-519 *4))
+ (-4 *4 (-342)))))
+(((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-665 (-400 *4))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1139 *1)) (-5 *3 (-1143)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1139 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-923 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1143)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-823) (-541)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-823) (-541)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1139 *2)) (-5 *4 (-1143)) (-4 *2 (-423 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-823) (-541)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1139 *1)) (-5 *3 (-892)) (-4 *1 (-983))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1139 *1)) (-5 *3 (-892)) (-5 *4 (-834))
+ (-4 *1 (-983))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-892)) (-4 *4 (-13 (-821) (-356)))
+ (-4 *1 (-1035 *4 *2)) (-4 *2 (-1202 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-1018)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-356)) (-5 *1 (-743 *2 *3)) (-4 *2 (-685 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-167 (-219)))) (-5 *2 (-1006))
+ (-5 *1 (-731)))))
+(((*1 *2)
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1123 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *2)
+ (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-410 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-621 (-621 *6))) (-4 *6 (-920 *3 *5 *4))
+ (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-823) (-594 (-1143))))
+ (-4 *5 (-769)) (-5 *1 (-895 *3 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-621 (-309 (-219)))) (-5 *1 (-260)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-621 (-473 *4 *5))) (-5 *3 (-621 (-836 *4)))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6))
+ (-4 *6 (-444)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-747)) (-5 *5 (-621 *3)) (-4 *3 (-300)) (-4 *6 (-823))
+ (-4 *7 (-769)) (-5 *2 (-112)) (-5 *1 (-603 *6 *7 *3 *8))
+ (-4 *8 (-920 *3 *7 *6)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-423 *5) (-27) (-1165)))
+ (-4 *5 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2 (-567 *3)) (-5 *1 (-551 *5 *3 *6)) (-4 *6 (-1067)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-2 (|:| |deg| (-745)) (|:| -3242 *5))))
- (-4 *5 (-1195 *4)) (-4 *4 (-340)) (-5 *2 (-619 *5))
- (-5 *1 (-208 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-2 (|:| -2115 *5) (|:| -3705 (-547)))))
- (-5 *4 (-547)) (-4 *5 (-1195 *4)) (-5 *2 (-619 *5))
- (-5 *1 (-670 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-547)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1016))
- (-5 *1 (-312 *4 *5 *2 *6)) (-4 *6 (-918 *2 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1063)) (-4 *2 (-869 *4)) (-5 *1 (-666 *4 *2 *5 *3))
- (-4 *5 (-364 *2)) (-4 *3 (-13 (-364 *4) (-10 -7 (-6 -4329)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-2 (|:| -2115 *4) (|:| -3705 (-547)))))
- (-4 *4 (-1195 (-547))) (-5 *2 (-712 (-745))) (-5 *1 (-432 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-409 *5)) (-4 *5 (-1195 *4)) (-4 *4 (-1016))
- (-5 *2 (-712 (-745))) (-5 *1 (-434 *4 *5)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-298)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3))
- (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-506))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *2))
- (-4 *3 (-13 (-1063) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1230)))))
+ (-12 (-4 *3 (-342)) (-4 *4 (-322 *3)) (-4 *5 (-1202 *4))
+ (-5 *1 (-753 *3 *4 *5 *2 *6)) (-4 *2 (-1202 *5)) (-14 *6 (-892))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-4 *3 (-361))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-356)) (-4 *2 (-361)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1231) (-1226 *5) (-1226 *5) (-372)))
+ (-5 *3 (-1226 (-372))) (-5 *5 (-372)) (-5 *2 (-1231))
+ (-5 *1 (-764))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1231) (-1226 *5) (-1226 *5) (-372)))
+ (-5 *3 (-1226 (-372))) (-5 *5 (-372)) (-5 *2 (-1231))
+ (-5 *1 (-764)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-823) (-541) (-1009 (-549)))) (-5 *2 (-1231))
+ (-5 *1 (-426 *3 *4)) (-4 *4 (-423 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-918 *4 *6 *5)) (-4 *4 (-442))
- (-4 *5 (-821)) (-4 *6 (-767)) (-5 *1 (-956 *4 *5 *6 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1219 *4)) (-4 *4 (-408 *3)) (-4 *3 (-298))
- (-4 *3 (-539)) (-5 *1 (-43 *3 *4))))
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *3 (-366 *2)) (-4 *4 (-366 *2))
+ (|has| *2 (-6 (-4339 "*"))) (-4 *2 (-1018))))
((*1 *2 *3)
- (-12 (-5 *3 (-890)) (-4 *4 (-354)) (-5 *2 (-1219 *1))
- (-4 *1 (-320 *4))))
- ((*1 *2) (-12 (-4 *3 (-354)) (-5 *2 (-1219 *1)) (-4 *1 (-320 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-169)) (-4 *4 (-1195 *3)) (-5 *2 (-1219 *1))
- (-4 *1 (-400 *3 *4))))
+ (-12 (-4 *4 (-366 *2)) (-4 *5 (-366 *2)) (-4 *2 (-170))
+ (-5 *1 (-664 *2 *4 *5 *3)) (-4 *3 (-663 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1195 *4))
- (-5 *2 (-1219 *6)) (-5 *1 (-404 *3 *4 *5 *6))
- (-4 *6 (-13 (-400 *4 *5) (-1007 *4)))))
+ (-12 (-4 *1 (-1090 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2))
+ (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4339 "*"))) (-4 *2 (-1018)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219)))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))
+ (-5 *2 (-1006)) (-5 *1 (-730)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-508))))
((*1 *2 *1)
- (-12 (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1195 *4))
- (-5 *2 (-1219 *6)) (-5 *1 (-405 *3 *4 *5 *6 *7))
- (-4 *6 (-400 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1219 *1)) (-4 *1 (-408 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1219 (-1219 *4))) (-5 *1 (-517 *4))
- (-4 *4 (-340)))))
+ (-12 (-4 *2 (-13 (-1067) (-34))) (-5 *1 (-1107 *3 *2))
+ (-4 *3 (-13 (-1067) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1237)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7))))
+ (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1202 *6))
+ (-4 *6 (-13 (-27) (-423 *5)))
+ (-4 *5 (-13 (-823) (-541) (-1009 (-549)))) (-4 *8 (-1202 (-400 *7)))
+ (-5 *2 (-567 *3)) (-5 *1 (-537 *5 *6 *7 *8 *3))
+ (-4 *3 (-335 *6 *7 *8)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-1018)) (-5 *1 (-1198 *4 *2))
+ (-4 *2 (-1202 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-387))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1160)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1241 (-1143) *3)) (-4 *3 (-1018)) (-5 *1 (-1248 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1241 *3 *4)) (-4 *3 (-823)) (-4 *4 (-1018))
+ (-5 *1 (-1250 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
+ (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-621 *4)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-541))))
+ ((*1 *1 *1) (|partial| -4 *1 (-699))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-142))) (-5 *1 (-139))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-139)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3848 *6) (|:| |sol?| (-112))) (-549)
+ *6))
+ (-4 *6 (-356)) (-4 *7 (-1202 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6))
+ (-2 (|:| -3440 (-400 *7)) (|:| |coeff| (-400 *7))) "failed"))
+ (-5 *1 (-559 *6 *7)) (-5 *3 (-400 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1016)) (-4 *5 (-1195 *4)) (-5 *2 (-1 *6 (-619 *6)))
- (-5 *1 (-1213 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-1210 *4)))))
+ (-12 (-5 *3 (-621 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1202 (-549))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4331 "*"))) (-4 *5 (-364 *2)) (-4 *6 (-364 *2))
- (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1195 *2))
- (-4 *4 (-661 *2 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222))))
- ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1224)) (-5 *1 (-1139)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-298) (-145)))
- (-4 *2 (-918 *4 *6 *5)) (-5 *1 (-893 *4 *5 *6 *2))
- (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-975)))))
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-444)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-112))))
+ (|partial| -12
+ (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444)))
+ (-5 *2 (-816 *4)) (-5 *1 (-306 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1165) (-423 *3))) (-14 *5 (-1143))
+ (-14 *6 *4)))
((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-1119)) (-5 *5 (-663 (-217)))
- (-5 *2 (-1004)) (-5 *1 (-722)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-239 *4 *5)) (-14 *4 (-619 (-1136))) (-4 *5 (-1016))
- (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217))
- (-5 *2 (-1004)) (-5 *1 (-727)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-340)) (-4 *2 (-1016)) (-5 *1 (-687 *2 *3))
- (-4 *3 (-1195 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-843))))
- ((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5))
- (-4 *3 (-539)))))
-(((*1 *1) (-5 *1 (-428))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370))
- (|:| |expense| (-370)) (|:| |accuracy| (-370))
- (|:| |intermediateResults| (-370))))
- (-5 *2 (-1004)) (-5 *1 (-296)))))
+ (|partial| -12
+ (-4 *3 (-13 (-823) (-1009 (-549)) (-617 (-549)) (-444)))
+ (-5 *2 (-816 *4)) (-5 *1 (-1212 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1165) (-423 *3))) (-14 *5 (-1143))
+ (-14 *6 *4))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-621 (-1107 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1067) (-34))) (-4 *5 (-13 (-1067) (-34)))
+ (-5 *1 (-1108 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-1107 *3 *4))) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))) (-5 *1 (-1108 *3 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1175 *3)) (-4 *3 (-945)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6))
- (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1136))))
- (-4 *7 (-767))
- (-5 *2
- (-619
- (-2 (|:| -3116 (-745))
- (|:| |eqns|
- (-619
- (-2 (|:| |det| *8) (|:| |rows| (-619 (-547)))
- (|:| |cols| (-619 (-547))))))
- (|:| |fgb| (-619 *8)))))
- (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-745)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *2 (-539)) (-5 *1 (-938 *2 *4))
- (-4 *4 (-1195 *2)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217))
- (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217))
- (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))
- (-5 *3 (-619 (-254))) (-5 *1 (-252))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217))
- (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217))
- (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))
- (-5 *1 (-254))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-547)) (-5 *4 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221))))
- ((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217))
- (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217))
- (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))
- (-5 *2 (-1224)) (-5 *1 (-1221))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -1715 (-217))
- (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217))
- (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))
- (-5 *1 (-1221))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1119))
- (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *1 *1) (-4 *1 (-532))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-516)) (-5 *3 (-128)) (-5 *2 (-1082)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1132 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))))
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-541)) (-5 *1 (-940 *3 *2)) (-4 *2 (-1202 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-541))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-541)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1143)) (-5 *2 (-1147)) (-5 *1 (-1146)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-549))) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-541)) (-4 *8 (-920 *7 *5 *6))
+ (-5 *2 (-2 (|:| -3731 (-747)) (|:| -1570 *9) (|:| |radicand| *9)))
+ (-5 *1 (-924 *5 *6 *7 *8 *9)) (-5 *4 (-747))
+ (-4 *9
+ (-13 (-356)
+ (-10 -8 (-15 -1394 (*8 $)) (-15 -1403 (*8 $)) (-15 -3846 ($ *8))))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *1) (-12 (-5 *2 (-942)) (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1202 *5))
+ (-5 *1 (-783 *5 *2 *3 *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549)))))
+ (-4 *3 (-632 *2)) (-4 *6 (-632 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 (-400 *2))) (-4 *2 (-1202 *5))
+ (-5 *1 (-783 *5 *2 *3 *6))
+ (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549))))) (-4 *3 (-632 *2))
+ (-4 *6 (-632 (-400 *2))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *2)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *2 (-1032 *3 *4 *5)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-300)) (-5 *1 (-676 *3)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
+(((*1 *1 *1) (-4 *1 (-534))))
+(((*1 *1 *1) (-5 *1 (-1030))))
(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-539)) (-4 *3 (-169)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2))
- (-4 *2 (-661 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-562)))))
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1195 *2)) (-4 *2 (-1177)) (-5 *1 (-146 *2 *4 *3))
- (-4 *3 (-1195 (-398 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1173)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-745)) (-4 *5 (-340)) (-4 *6 (-1195 *5))
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1074 *4 *5 *6 *7 *3)) (-4 *3 (-1038 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-592 *3)) (-4 *3 (-823)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 *8)) (-5 *4 (-747)) (-4 *8 (-920 *5 *7 *6))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143))))
+ (-4 *7 (-769))
(-5 *2
- (-619
- (-2 (|:| -1917 (-663 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-663 *6)))))
- (-5 *1 (-487 *5 *6 *7))
- (-5 *3
- (-2 (|:| -1917 (-663 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-663 *6))))
- (-4 *7 (-1195 *6)))))
+ (-621
+ (-2 (|:| |det| *8) (|:| |rows| (-621 (-549)))
+ (|:| |cols| (-621 (-549))))))
+ (-5 *1 (-895 *5 *6 *7 *8)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1007 (-547))) (-4 *3 (-13 (-821) (-539)))
- (-5 *1 (-32 *3 *2)) (-4 *2 (-421 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-1132 *4)) (-5 *1 (-162 *3 *4))
- (-4 *3 (-163 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1016)) (-4 *1 (-293))))
- ((*1 *2) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-1132 *3))))
- ((*1 *2) (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1195 *3))))
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1202 (-549))) (-5 *1 (-478 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1148)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-541)) (-5 *1 (-601 *2 *3)) (-4 *3 (-1202 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-923 (-219))) (-5 *2 (-309 (-372))) (-5 *1 (-298)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-1018)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-549))))
((*1 *2 *1)
- (-12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-354)))
- (-4 *2 (-1195 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-1016)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218))))
- ((*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *1 *1) (-4 *1 (-1100))))
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))))
+(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-845))))
+ ((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *1 *1 *1) (-5 *1 (-834))) ((*1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1139 (-549))) (-5 *3 (-549)) (-4 *1 (-840 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-217))) (-5 *4 (-745)) (-5 *2 (-663 (-217)))
- (-5 *1 (-296)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-236 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-745)))))
+ (-12 (-5 *4 (-549)) (-5 *2 (-621 (-2 (|:| -2121 *3) (|:| -3701 *4))))
+ (-5 *1 (-672 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *1) (-5 *1 (-799))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-1143)))))
+(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-892))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1226 *4)) (-4 *4 (-342)) (-5 *2 (-892))
+ (-5 *1 (-519 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))))
+ (-4 *4 (-1202 (-400 *2))) (-5 *2 (-549)) (-5 *1 (-884 *4 *5))
+ (-4 *5 (-1202 (-400 *4))))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1173))
- (-4 *4 (-364 *2)) (-4 *5 (-364 *2))))
+ (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1180))
+ (-4 *4 (-366 *2)) (-4 *5 (-366 *2))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-279 *3 *2)) (-4 *3 (-1063))
- (-4 *2 (-1173)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-439 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1136)) (-5 *6 (-112))
- (-4 *7 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))))
- (-4 *3 (-13 (-1158) (-928) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-211 *7 *3)) (-5 *5 (-814 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1192 *5 *4)) (-4 *4 (-442)) (-4 *4 (-794))
- (-14 *5 (-1136)) (-5 *2 (-547)) (-5 *1 (-1077 *4 *5)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016))
- (-5 *1 (-664 *4)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1026 (-993 *3) (-1132 (-993 *3))))
- (-5 *1 (-993 *3)) (-4 *3 (-13 (-819) (-354) (-991))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136))
- (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1063)) (-4 *5 (-1063))
- (-5 *2 (-1 *5)) (-5 *1 (-657 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 *3))
- (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $)))))
- (-4 *4 (-1195 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-663 *3))
- (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $)))))
- (-4 *4 (-1195 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1132 (-398 (-547)))) (-5 *1 (-911)) (-5 *3 (-547)))))
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1067))
+ (-4 *2 (-1180)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-3 *3 (-621 *1)))
+ (-4 *1 (-1038 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1158))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112))))
+ (-12 (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-621 *1))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-823) (-300) (-1009 (-549)) (-617 (-549)) (-145)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-780 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1165) (-930))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1147)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
+ ((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(((*1 *2 *1) (-12 (-4 *1 (-821)) (-5 *2 (-549))))
+ ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-876 *3)) (-4 *3 (-1067))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354)))
- (-4 *3 (-1195 *4)) (-5 *2 (-112)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4330)) (-4 *1 (-479 *3))
- (-4 *3 (-1173)))))
-(((*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221))))
- ((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-340)) (-5 *2 (-409 *3)) (-5 *1 (-208 *4 *3))
- (-4 *3 (-1195 *4))))
+ (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356)))
+ (-4 *3 (-1202 *4)) (-5 *2 (-549))))
((*1 *2 *3)
- (-12 (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3))
- (-4 *3 (-1195 (-547)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-745))) (-5 *2 (-409 *3)) (-5 *1 (-432 *3))
- (-4 *3 (-1195 (-547)))))
+ (|partial| -12
+ (-4 *4 (-13 (-541) (-823) (-1009 *2) (-617 *2) (-444)))
+ (-5 *2 (-549)) (-5 *1 (-1083 *4 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-409 *3))
- (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3))
- (-4 *3 (-1195 (-547)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-409 *3)) (-5 *1 (-976 *3))
- (-4 *3 (-1195 (-398 (-547))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-409 *3)) (-5 *1 (-1184 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))) ((*1 *1) (-4 *1 (-532)))
- ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673))))
- ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
+ (|partial| -12 (-5 *4 (-1143)) (-5 *5 (-816 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *6)))
+ (-4 *6 (-13 (-541) (-823) (-1009 *2) (-617 *2) (-444)))
+ (-5 *2 (-549)) (-5 *1 (-1083 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1143)) (-5 *5 (-1125))
+ (-4 *6 (-13 (-541) (-823) (-1009 *2) (-617 *2) (-444)))
+ (-5 *2 (-549)) (-5 *1 (-1083 *6 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-444)) (-5 *2 (-549))
+ (-5 *1 (-1084 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1143)) (-5 *5 (-816 (-400 (-923 *6))))
+ (-5 *3 (-400 (-923 *6))) (-4 *6 (-444)) (-5 *2 (-549))
+ (-5 *1 (-1084 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-400 (-923 *6))) (-5 *4 (-1143))
+ (-5 *5 (-1125)) (-4 *6 (-444)) (-5 *2 (-549)) (-5 *1 (-1084 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1162 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-728)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1250 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-170))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-795 *3)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4338)) (-4 *1 (-481 *3))
+ (-4 *3 (-1180)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-621 *7)) (|:| |badPols| (-621 *7))))
+ (-5 *1 (-948 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-423 *4)) (-5 *1 (-156 *4 *2))
+ (-4 *4 (-13 (-823) (-541))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1077)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892)))) ((*1 *1) (-4 *1 (-534)))
+ ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675))))
+ ((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-675))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-861 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1063))
- (-4 *5 (-1173)) (-5 *1 (-859 *4 *5))))
+ (-12 (-5 *2 (-863 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1067))
+ (-4 *5 (-1180)) (-5 *1 (-861 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-861 *4)) (-5 *3 (-619 (-1 (-112) *5))) (-4 *4 (-1063))
- (-4 *5 (-1173)) (-5 *1 (-859 *4 *5))))
+ (-12 (-5 *2 (-863 *4)) (-5 *3 (-621 (-1 (-112) *5))) (-4 *4 (-1067))
+ (-4 *5 (-1180)) (-5 *1 (-861 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-861 *5)) (-5 *3 (-619 (-1136)))
- (-5 *4 (-1 (-112) (-619 *6))) (-4 *5 (-1063)) (-4 *6 (-1173))
- (-5 *1 (-859 *5 *6))))
+ (-12 (-5 *2 (-863 *5)) (-5 *3 (-621 (-1143)))
+ (-5 *4 (-1 (-112) (-621 *6))) (-4 *5 (-1067)) (-4 *6 (-1180))
+ (-5 *1 (-861 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1173)) (-4 *4 (-821))
- (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-421 *4))))
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1180)) (-4 *4 (-823))
+ (-5 *1 (-908 *4 *2 *5)) (-4 *2 (-423 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 (-1 (-112) *5))) (-4 *5 (-1173)) (-4 *4 (-821))
- (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-421 *4))))
+ (-12 (-5 *3 (-621 (-1 (-112) *5))) (-4 *5 (-1180)) (-4 *4 (-823))
+ (-5 *1 (-908 *4 *2 *5)) (-4 *2 (-423 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1136)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1173))
- (-5 *2 (-307 (-547))) (-5 *1 (-907 *5))))
+ (-12 (-5 *3 (-1143)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1180))
+ (-5 *2 (-309 (-549))) (-5 *1 (-909 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1136)) (-5 *4 (-619 (-1 (-112) *5))) (-4 *5 (-1173))
- (-5 *2 (-307 (-547))) (-5 *1 (-907 *5))))
+ (-12 (-5 *3 (-1143)) (-5 *4 (-621 (-1 (-112) *5))) (-4 *5 (-1180))
+ (-5 *2 (-309 (-549))) (-5 *1 (-909 *5))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-1 (-112) (-619 *6)))
- (-4 *6 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))) (-4 *4 (-1063))
- (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4))))
- (-5 *1 (-1039 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1049))) (-5 *1 (-282)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))))
-(((*1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173))))
- ((*1 *1 *2) (-12 (-5 *1 (-1186 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1173)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-217))))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1101 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1136)) (-5 *2 (-1 (-217) (-217))) (-5 *1 (-678 *3))
- (-4 *3 (-592 (-523)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1136)) (-5 *2 (-1 (-217) (-217) (-217)))
- (-5 *1 (-678 *3)) (-4 *3 (-592 (-523))))))
+ (-12 (-5 *2 (-621 (-1143))) (-5 *3 (-1 (-112) (-621 *6)))
+ (-4 *6 (-13 (-423 *5) (-857 *4) (-594 (-863 *4)))) (-4 *4 (-1067))
+ (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4))))
+ (-5 *1 (-1042 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-732)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3))
+ (-4 *3 (-1067)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *6 (-219))
+ (-5 *3 (-549)) (-5 *2 (-1006)) (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-549))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-747)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-769)) (-4 *4 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-823))
+ (-5 *1 (-441 *5 *6 *7 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-460)) (-5 *3 (-621 (-256))) (-5 *1 (-1227))))
+ ((*1 *1 *1) (-5 *1 (-1227))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-539) (-821) (-1007 (-547))))
- (-4 *5 (-421 *4)) (-5 *2 (-409 (-1132 (-398 (-547)))))
- (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1195 *5)))))
-(((*1 *1) (-5 *1 (-154))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-4 *2 (-1195 *5))
- (-5 *1 (-1213 *5 *2 *6 *3)) (-4 *6 (-630 *2)) (-4 *3 (-1210 *5)))))
+ (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1226 (-3 (-460) "undefined"))) (-5 *1 (-1227)))))
+(((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1061 (-219))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4))))
+ (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-5 *1 (-834))) ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1180)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539))
- (-5 *2 (-112)))))
+ (-12 (-4 *2 (-685 *3)) (-5 *1 (-803 *2 *3)) (-4 *3 (-1018)))))
+(((*1 *1 *1) (-12 (-5 *1 (-287 *2)) (-4 *2 (-21)) (-4 *2 (-1180)))))
+(((*1 *2) (-12 (-5 *2 (-1100 (-219))) (-5 *1 (-1163)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016))
+ (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018))
(-5 *2
- (-2 (|:| -2371 (-745)) (|:| |curves| (-745))
- (|:| |polygons| (-745)) (|:| |constructs| (-745)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1016))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1169))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-1016)))))
+ (-2 (|:| -4115 (-747)) (|:| |curves| (-747))
+ (|:| |polygons| (-747)) (|:| |constructs| (-747)))))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-724)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767))
- (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-217)))))
- ((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-217))))))
+ (|partial| -12 (-5 *2 (-1028 (-995 *3) (-1139 (-995 *3))))
+ (-5 *1 (-995 *3)) (-4 *3 (-13 (-821) (-356) (-993))))))
+(((*1 *1 *1) (-4 *1 (-607)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973) (-1165))))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-647))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-892))
+ (-14 *4 (-892)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-619 *2)) (-5 *1 (-113 *2))
- (-4 *2 (-1063))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-619 *4))) (-4 *4 (-1063))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063))
- (-5 *1 (-113 *4))))
+ (|partial| -12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2))
+ (-5 *2 (-372)) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018))
+ (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-619 *4)))
- (-5 *1 (-113 *4)) (-4 *4 (-1063))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016))
- (-5 *1 (-689 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-1136))) (-5 *3 (-52)) (-5 *1 (-861 *4))
- (-4 *4 (-1063)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-217)) (-5 *4 (-547))
- (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004))
- (-5 *1 (-723)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-547)) (-5 *3 (-890)) (-5 *1 (-673))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-663 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-354)) (-5 *1 (-947 *5)))))
-(((*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1158))))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-4 *4 (-1173)) (-5 *2 (-112))
- (-5 *1 (-1117 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))))
-(((*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-217)))))
- ((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-217))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-1145 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-480)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-619 (-307 (-217))))
- (|:| |constraints|
- (-619
- (-2 (|:| |start| (-217)) (|:| |finish| (-217))
- (|:| |grid| (-745)) (|:| |boundaryType| (-547))
- (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217))))))
- (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1119))
- (|:| |tol| (-217))))
- (-5 *2 (-112)) (-5 *1 (-202)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821))
- (-4 *3 (-1030 *6 *7 *8))
- (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4))))
- (-5 *1 (-1037 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1974 *9))))
- (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8))
- (-4 *6 (-442)) (-4 *7 (-767)) (-4 *4 (-821))
- (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1974 *9))))
- (-5 *1 (-1037 *6 *7 *4 *8 *9)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-1039 *3 *4 *5))) (-4 *3 (-1063))
- (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3))))
- (-4 *5 (-13 (-421 *4) (-855 *3) (-592 (-861 *3))))
- (-5 *1 (-1040 *3 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3))
- (-4 *3 (-1195 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
+ (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541))
+ (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541))
+ (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823))
+ (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541))
+ (-4 *5 (-823)) (-4 *5 (-594 *2)) (-5 *2 (-372))
+ (-5 *1 (-761 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1061 (-219)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1061 (-219))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1199 *4 *5)) (-5 *3 (-621 *5)) (-14 *4 (-1143))
+ (-4 *5 (-356)) (-5 *1 (-894 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-621 *5)) (-4 *5 (-356)) (-5 *2 (-1139 *5))
+ (-5 *1 (-894 *4 *5)) (-14 *4 (-1143))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-621 *6)) (-5 *4 (-747)) (-4 *6 (-356))
+ (-5 *2 (-400 (-923 *6))) (-5 *1 (-1019 *5 *6)) (-14 *5 (-1143)))))
+(((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-798)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 (-398 *6))) (-5 *4 (-1 (-619 *5) *6))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-4 *6 (-1195 *5)) (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-627 (-398 *7))) (-5 *4 (-1 (-619 *6) *7))
- (-5 *5 (-1 (-409 *7) *7))
- (-4 *6 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-4 *7 (-1195 *6)) (-5 *2 (-619 (-398 *7))) (-5 *1 (-786 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-628 *6 (-398 *6))) (-5 *4 (-1 (-619 *5) *6))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-4 *6 (-1195 *5)) (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-628 *7 (-398 *7))) (-5 *4 (-1 (-619 *6) *7))
- (-5 *5 (-1 (-409 *7) *7))
- (-4 *6 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-4 *7 (-1195 *6)) (-5 *2 (-619 (-398 *7))) (-5 *1 (-786 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-627 (-398 *5))) (-4 *5 (-1195 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-5 *2 (-619 (-398 *5))) (-5 *1 (-786 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 (-398 *6))) (-5 *4 (-1 (-409 *6) *6))
- (-4 *6 (-1195 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-628 *5 (-398 *5))) (-4 *5 (-1195 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-5 *2 (-619 (-398 *5))) (-5 *1 (-786 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-628 *6 (-398 *6))) (-5 *4 (-1 (-409 *6) *6))
- (-4 *6 (-1195 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))
- (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-539) (-145)))
- (-5 *1 (-1189 *4 *2)) (-4 *2 (-1195 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1 *1) (-4 *1 (-936))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-365 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-169))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1240 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-1016)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-912 *5)) (-5 *3 (-745)) (-4 *5 (-1016))
- (-5 *1 (-1125 *4 *5)) (-14 *4 (-890)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-398 *4)) (-4 *4 (-1195 *3))
- (-4 *3 (-13 (-354) (-145) (-1007 (-547)))) (-5 *1 (-551 *3 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-969 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112))
- (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767))
- (-5 *2 (-112)) (-5 *1 (-493 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *6 (-217))
- (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-727)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
+ (-12 (-5 *3 (-665 *8)) (-4 *8 (-920 *5 *7 *6))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143))))
+ (-4 *7 (-769))
+ (-5 *2
+ (-621
+ (-2 (|:| -3123 (-747))
+ (|:| |eqns|
+ (-621
+ (-2 (|:| |det| *8) (|:| |rows| (-621 (-549)))
+ (|:| |cols| (-621 (-549))))))
+ (|:| |fgb| (-621 *8)))))
+ (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-747)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1132 (-547))) (-5 *1 (-911)) (-5 *3 (-547))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-298)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3))
- (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-442)) (-4 *3 (-821)) (-4 *4 (-767))
- (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-364 *2))
- (-4 *5 (-364 *2)) (-4 *2 (-1173))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1173))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *2 *6 *7))
- (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)) (-4 *2 (-1016)))))
+ (-12 (-4 *4 (-1018)) (-4 *5 (-1202 *4)) (-5 *2 (-1 *6 (-621 *6)))
+ (-5 *1 (-1220 *4 *5 *3 *6)) (-4 *3 (-632 *5)) (-4 *6 (-1217 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886))))
- ((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1563 *3) (|:| |gap| (-745)) (|:| -2235 (-756 *3))
- (|:| -2916 (-756 *3))))
- (-5 *1 (-756 *3)) (-4 *3 (-1016))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821))
- (-5 *2
- (-2 (|:| -1563 *1) (|:| |gap| (-745)) (|:| -2235 *1)
- (|:| -2916 *1)))
- (-4 *1 (-1030 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *2
- (-2 (|:| -1563 *1) (|:| |gap| (-745)) (|:| -2235 *1)
- (|:| -2916 *1)))
- (-4 *1 (-1030 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-832))))
- ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1224)) (-5 *1 (-931)))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-594))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-217) (-217))) (-5 *1 (-309)) (-5 *3 (-217)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-217)) (-5 *4 (-547))
- (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1415))))
- (-5 *2 (-1004)) (-5 *1 (-723)))))
-(((*1 *2 *2) (-12 (-5 *2 (-619 (-307 (-217)))) (-5 *1 (-258)))))
+ (-12 (-5 *3 (-923 *5)) (-4 *5 (-1018)) (-5 *2 (-473 *4 *5))
+ (-5 *1 (-915 *4 *5)) (-14 *4 (-621 (-1143))))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))
+ (-5 *2 (-1006)) (-5 *1 (-723)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-525)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-758 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-934 *3 *2)) (-4 *2 (-130)) (-4 *3 (-541))
+ (-4 *3 (-1018)) (-4 *2 (-768))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1139 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-942)) (-4 *2 (-130)) (-5 *1 (-1145 *3)) (-4 *3 (-541))
+ (-4 *3 (-1018))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1199 *4 *3)) (-14 *4 (-1143))
+ (-4 *3 (-1018)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-729)))))
+(((*1 *2 *1) (-12 (-4 *1 (-926)) (-5 *2 (-1061 (-219)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-945)) (-5 *2 (-1061 (-219))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-885 *3)) (-4 *3 (-300)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1226 *4)) (-4 *4 (-617 *5)) (-4 *5 (-356))
+ (-4 *5 (-541)) (-5 *2 (-1226 *5)) (-5 *1 (-616 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1226 *4)) (-4 *4 (-617 *5))
+ (-4008 (-4 *5 (-356))) (-4 *5 (-541)) (-5 *2 (-1226 (-400 *5)))
+ (-5 *1 (-616 *5 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1125)) (-5 *1 (-298)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-1042 *3 *4 *5))) (-4 *3 (-1067))
+ (-4 *4 (-13 (-1018) (-857 *3) (-823) (-594 (-863 *3))))
+ (-4 *5 (-13 (-423 *4) (-857 *3) (-594 (-863 *3))))
+ (-5 *1 (-1043 *3 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-767))
- (-4 *3 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))) (-4 *5 (-539))
- (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-398 (-921 *5)) *4 *3))))
+ (-12 (-4 *4 (-769))
+ (-4 *3 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))) (-4 *5 (-541))
+ (-5 *1 (-709 *4 *3 *5 *2)) (-4 *2 (-920 (-400 (-923 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *4 (-1016)) (-4 *5 (-767))
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769))
(-4 *3
- (-13 (-821)
- (-10 -8 (-15 -2838 ((-1136) $))
- (-15 -3004 ((-3 $ "failed") (-1136))))))
- (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3))))
+ (-13 (-823)
+ (-10 -8 (-15 -2845 ((-1143) $))
+ (-15 -3011 ((-3 $ "failed") (-1143))))))
+ (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-920 (-923 *4) *5 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 *6))
+ (-12 (-5 *3 (-621 *6))
(-4 *6
- (-13 (-821)
- (-10 -8 (-15 -2838 ((-1136) $))
- (-15 -3004 ((-3 $ "failed") (-1136))))))
- (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2))
- (-4 *2 (-918 (-921 *4) *5 *6)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-377 *3)) (|:| |mm| (-377 *3)) (|:| |rm| (-377 *3))))
- (-5 *1 (-377 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-793 *3)) (|:| |mm| (-793 *3)) (|:| |rm| (-793 *3))))
- (-5 *1 (-793 *3)) (-4 *3 (-821)))))
+ (-13 (-823)
+ (-10 -8 (-15 -2845 ((-1143) $))
+ (-15 -3011 ((-3 $ "failed") (-1143))))))
+ (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2))
+ (-4 *2 (-920 (-923 *4) *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *5 (-361))
+ (-5 *2 (-747)))))
+(((*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-823)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-665 (-549))) (-5 *3 (-621 (-549))) (-5 *1 (-1077)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1 *1) (-4 *1 (-938))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-1067)) (-5 *1 (-1152 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-834))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169))
- (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169))
- (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016))
- (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016))
- (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539))
- (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539))
- (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-398 (-921 (-166 *4)))) (-4 *4 (-539))
- (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-398 (-921 (-166 *5)))) (-5 *4 (-890))
- (-4 *5 (-539)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370)))
- (-5 *1 (-759 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821))
- (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
+ (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-292 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539))
- (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370)))
- (-5 *1 (-759 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-539)) (-4 *4 (-821))
- (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4))))
+ (-12 (-5 *4 (-1061 (-816 (-219)))) (-5 *3 (-219)) (-5 *2 (-112))
+ (-5 *1 (-298))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-621 (-1042 *4 *5 *2))) (-4 *4 (-1067))
+ (-4 *5 (-13 (-1018) (-857 *4) (-823) (-594 (-863 *4))))
+ (-4 *2 (-13 (-423 *5) (-857 *4) (-594 (-863 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-621 (-1042 *5 *6 *2))) (-5 *4 (-892)) (-4 *5 (-1067))
+ (-4 *6 (-13 (-1018) (-857 *5) (-823) (-594 (-863 *5))))
+ (-4 *2 (-13 (-423 *6) (-857 *5) (-594 (-863 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-892)) (-5 *4 (-219)) (-5 *5 (-549)) (-5 *6 (-845))
+ (-5 *2 (-1231)) (-5 *1 (-1227)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1139 *1)) (-5 *4 (-1143)) (-4 *1 (-27))
+ (-5 *2 (-621 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1139 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-923 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-621 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *2 (-621 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-621 (-473 *4 *5))) (-5 *3 (-836 *4))
+ (-14 *4 (-621 (-1143))) (-4 *5 (-444)) (-5 *1 (-609 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-534)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-844 (-937 *3) (-937 *3))) (-5 *1 (-937 *3))
+ (-4 *3 (-938)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1143)) (-5 *5 (-1061 (-219))) (-5 *2 (-898))
+ (-5 *1 (-896 *3)) (-4 *3 (-594 (-525)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-539))
- (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370)))
- (-5 *1 (-759 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-166 (-547))) (-5 *2 (-112)) (-5 *1 (-436))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4)
- (-239 *4 (-398 (-547)))))
- (-14 *4 (-619 (-1136))) (-14 *5 (-745)) (-5 *2 (-112))
- (-5 *1 (-494 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-930 *3)) (-4 *3 (-532))))
- ((*1 *2 *1) (-12 (-4 *1 (-1177)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4))
- (-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-285 *2)) (-4 *2 (-701)) (-4 *2 (-1173)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))))
+ (-12 (-5 *4 (-1143)) (-5 *2 (-898)) (-5 *1 (-896 *3))
+ (-4 *3 (-594 (-525)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-898))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-898)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-724)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-549)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-366 *2))
+ (-4 *5 (-366 *2)) (-4 *2 (-1180))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1180))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-549)) (-4 *1 (-1021 *4 *5 *2 *6 *7))
+ (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-356)) (-5 *2 (-621 *3)) (-5 *1 (-916 *4 *3))
+ (-4 *3 (-1202 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-621 *7)) (-5 *3 (-112)) (-4 *7 (-1032 *4 *5 *6))
+ (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *1 (-948 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-834))))
+ ((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1231)) (-5 *1 (-933)))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-596))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-309 (-219))) (-5 *2 (-309 (-400 (-549))))
+ (-5 *1 (-298)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4))))
+ (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-621 (-863 *3))) (-5 *1 (-863 *3))
+ (-4 *3 (-1067)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1226 *5)) (-4 *5 (-768)) (-5 *2 (-112))
+ (-5 *1 (-818 *4 *5)) (-14 *4 (-747)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1139 *6)) (-4 *6 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-1139 *7)) (-5 *1 (-314 *4 *5 *6 *7))
+ (-4 *7 (-920 *6 *4 *5)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *2 (-1006))
+ (-5 *1 (-732)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-876 *4)) (-4 *4 (-1067)) (-5 *2 (-621 (-747)))
+ (-5 *1 (-875 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-834))) (-5 *1 (-834))))
+ ((*1 *1 *1) (-5 *1 (-834))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1161)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-323))) (-5 *1 (-323)))))
+(((*1 *1 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-541)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1136)) (|:| |fn| (-307 (-217)))
- (|:| -4232 (-1058 (-814 (-217)))) (|:| |abserr| (-217))
- (|:| |relerr| (-217))))
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
(-5 *2
(-2
(|:| |endPointContinuity|
@@ -14577,3742 +14287,4109 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1117 (-217)))
+ (-3 (|:| |str| (-1123 (-219)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -4232
+ (|:| -1372
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-542)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1224)) (-5 *1 (-1220))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1224)) (-5 *1 (-1099))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1224)) (-5 *1 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-208 *4 *2))
- (-4 *2 (-1195 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-547)) (-5 *1 (-670 *2)) (-4 *2 (-1195 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-547) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2)))))
+ (-5 *1 (-544)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1180)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1143)) (-5 *1 (-651 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1109 *3 *4)) (-14 *3 (-892)) (-4 *4 (-356))
+ (-5 *1 (-964 *3 *4)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-619 *1)) (-4 *1 (-421 *4))
- (-4 *4 (-821))))
+ (-12 (-5 *2 (-1143)) (-5 *3 (-621 *1)) (-4 *1 (-423 *4))
+ (-4 *4 (-823))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1136)) (-4 *1 (-421 *3)) (-4 *3 (-821))))
+ (-12 (-5 *2 (-1143)) (-4 *1 (-423 *3)) (-4 *3 (-823))))
((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1136)) (-4 *1 (-421 *3)) (-4 *3 (-821))))
+ (-12 (-5 *2 (-1143)) (-4 *1 (-423 *3)) (-4 *3 (-823))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1136)) (-4 *1 (-421 *3)) (-4 *3 (-821))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1136)) (-4 *1 (-421 *3)) (-4 *3 (-821)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1166 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767))
- (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12
+ (-12 (-5 *2 (-1143)) (-4 *1 (-423 *3)) (-4 *3 (-823))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1143)) (-4 *1 (-423 *3)) (-4 *3 (-823)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-400 (-923 (-167 (-549))))))
+ (-5 *2 (-621 (-621 (-287 (-923 (-167 *4)))))) (-5 *1 (-371 *4))
+ (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-287 (-400 (-923 (-167 (-549)))))))
+ (-5 *2 (-621 (-621 (-287 (-923 (-167 *4)))))) (-5 *1 (-371 *4))
+ (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-923 (-167 (-549)))))
+ (-5 *2 (-621 (-287 (-923 (-167 *4))))) (-5 *1 (-371 *4))
+ (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-287 (-400 (-923 (-167 (-549))))))
+ (-5 *2 (-621 (-287 (-923 (-167 *4))))) (-5 *1 (-371 *4))
+ (-4 *4 (-13 (-356) (-821))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 *6)) (-4 *5 (-1184)) (-4 *6 (-1202 *5))
+ (-5 *2 (-2 (|:| -3731 (-747)) (|:| -1570 *3) (|:| |radicand| *6)))
+ (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-747)) (-4 *7 (-1202 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $)))))
+ (-4 *4 (-1202 *3))
(-5 *2
- (-619
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) (-4 *5 (-821))
- (-5 *1 (-439 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-539)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-796)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-495))) (-5 *1 (-210))))
- ((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-495))) (-5 *1 (-650))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)))))
-(((*1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1222))))
- ((*1 *2 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1222)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370))
+ (-2 (|:| -1949 (-665 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-665 *3))))
+ (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-549)) (-4 *4 (-1202 *3))
(-5 *2
- (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547))
- (|:| |success| (-112))))
- (-5 *1 (-763)) (-5 *5 (-547)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-421 *3))))
+ (-2 (|:| -1949 (-665 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-665 *3))))
+ (-5 *1 (-744 *4 *5)) (-4 *5 (-402 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1136)) (-5 *2 (-307 (-547))) (-5 *1 (-899)))))
+ (-12 (-4 *4 (-342)) (-4 *3 (-1202 *4)) (-4 *5 (-1202 *3))
+ (-5 *2
+ (-2 (|:| -1949 (-665 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-665 *3))))
+ (-5 *1 (-956 *4 *3 *5 *6)) (-4 *6 (-701 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-342)) (-4 *3 (-1202 *4)) (-4 *5 (-1202 *3))
+ (-5 *2
+ (-2 (|:| -1949 (-665 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-665 *3))))
+ (-5 *1 (-1235 *4 *3 *5 *6)) (-4 *6 (-402 *3 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-273))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-549) (-219) (-1143) (-1125) (-1148)))
+ (-5 *1 (-1148)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-300)) (-4 *6 (-366 *5)) (-4 *4 (-366 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4))))
+ (-5 *1 (-1091 *5 *6 *4 *3)) (-4 *3 (-663 *5 *6 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767))
- (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-539))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298)))))
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4337)) (-4 *1 (-481 *4))
+ (-4 *4 (-1180)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-823)) (-5 *1 (-900 *3 *2)) (-4 *2 (-423 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1143)) (-5 *2 (-309 (-549))) (-5 *1 (-901)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1353 *3) (|:| |coef1| (-758 *3))))
+ (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-803)) (-5 *3 (-1119)))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-372)) (-5 *1 (-1011)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1119))
- (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *2 (-112)) (-5 *1 (-216 *4 *5)) (-4 *5 (-13 (-1158) (-29 *4))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1224)) (-5 *1 (-206 *4))
- (-4 *4
- (-13 (-821)
- (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 (*2 $))
- (-15 -1764 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1224)) (-5 *1 (-206 *3))
- (-4 *3
- (-13 (-821)
- (-10 -8 (-15 -3334 ((-1119) $ (-1136))) (-15 -2692 (*2 $))
- (-15 -1764 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-491)))))
+ (-12
+ (-5 *3
+ (-2 (|:| -1391 (-372)) (|:| -2481 (-1125))
+ (|:| |explanations| (-621 (-1125)))))
+ (-5 *2 (-1006)) (-5 *1 (-298))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1391 (-372)) (|:| -2481 (-1125))
+ (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006))))
+ (-5 *2 (-1006)) (-5 *1 (-298)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-619 *7)) (-5 *3 (-547)) (-4 *7 (-918 *4 *5 *6))
- (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-5 *1 (-439 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-619 (-1172))) (-5 *3 (-1172)) (-5 *1 (-655)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1016))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-539)) (-5 *2 (-112)) (-5 *1 (-599 *3 *4))
- (-4 *4 (-1195 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-701))))
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 -1422))))
+ (-5 *2 (-1006)) (-5 *1 (-725)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-914 *4)) (-4 *4 (-1018)) (-5 *1 (-1131 *3 *4))
+ (-14 *3 (-892)))))
+(((*1 *2 *3) (-12 (-5 *2 (-621 (-549))) (-5 *1 (-438)) (-5 *3 (-549)))))
+(((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-544)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-329 *5 *6 *7 *8)) (-4 *5 (-423 *4))
+ (-4 *6 (-1202 *5)) (-4 *7 (-1202 (-400 *6)))
+ (-4 *8 (-335 *5 *6 *7))
+ (-4 *4 (-13 (-823) (-541) (-1009 (-549))))
+ (-5 *2 (-2 (|:| -2088 (-747)) (|:| -3568 *8)))
+ (-5 *1 (-882 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-329 (-400 (-549)) *4 *5 *6))
+ (-4 *4 (-1202 (-400 (-549)))) (-4 *5 (-1202 (-400 *4)))
+ (-4 *6 (-335 (-400 (-549)) *4 *5))
+ (-5 *2 (-2 (|:| -2088 (-747)) (|:| -3568 *6)))
+ (-5 *1 (-883 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))
- (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-1220))))
-(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))))
+ (-12 (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1035 *4 *3)) (-4 *4 (-13 (-821) (-356)))
+ (-4 *3 (-1202 *4)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-342))
+ (-5 *2 (-621 (-2 (|:| -2121 (-549)) (|:| -3731 (-549))))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))))
-(((*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-112)) (-5 *1 (-258)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-883 *3)) (-4 *3 (-298)))))
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-549))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1068 *3 *4)) (-14 *3 (-892))
+ (-14 *4 (-892)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-659 *4 *3)) (-4 *4 (-1067))
+ (-4 *3 (-1067)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1207 *3)) (-4 *3 (-1173)) (-5 *2 (-745)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *1) (-5 *1 (-1049))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))))
+(((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |mval| (-663 *4)) (|:| |invmval| (-663 *4))
- (|:| |genIdeal| (-493 *4 *5 *6 *7))))
- (-5 *1 (-493 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))))
-(((*1 *1) (-5 *1 (-594))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-590 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1136)))
- (-4 *2 (-13 (-421 *5) (-27) (-1158)))
- (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *1 (-549 *5 *2 *6)) (-4 *6 (-1063)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-321)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
+ (-2 (|:| |mval| (-665 *3)) (|:| |invmval| (-665 *3))
+ (|:| |genIdeal| (-495 *3 *4 *5 *6))))
+ (-4 *3 (-356)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-920 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-1 (-112) *8))) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *5 (-541)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-5 *2 (-2 (|:| |goodPols| (-621 *8)) (|:| |badPols| (-621 *8))))
+ (-5 *1 (-948 *5 *6 *7 *8)) (-5 *4 (-621 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143))
+ (-5 *2
+ (-2 (|:| |zeros| (-1123 (-219))) (|:| |ones| (-1123 (-219)))
+ (|:| |singularities| (-1123 (-219)))))
+ (-5 *1 (-104)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *1) (-5 *1 (-596))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1226 (-309 (-219)))) (-5 *2 (-1226 (-309 (-372))))
+ (-5 *1 (-298)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1217 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747))
+ (-4 *4 (-170))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-541))) (-5 *1 (-156 *4 *2))
+ (-4 *2 (-423 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1059 *2)) (-4 *2 (-423 *4)) (-4 *4 (-13 (-823) (-541)))
+ (-5 *1 (-156 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1059 *1)) (-4 *1 (-158))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1143))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-1246 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-170)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1016)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
+ ((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-549)) (-5 *1 (-672 *2)) (-4 *2 (-1202 *3)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-541)) (-4 *3 (-170))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -1949 (-621 *1))))
+ (-4 *1 (-360 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-445 *3 *4 *5 *6))
+ (|:| -1949 (-621 (-445 *3 *4 *5 *6)))))
+ (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-892))
+ (-14 *5 (-621 (-1143))) (-14 *6 (-1226 (-665 *3))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1125)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-256)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1136))
- (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *5))))
- (-5 *1 (-1091 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-13 (-298) (-821) (-145)))
- (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1091 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-285 (-398 (-921 *5)))) (-5 *4 (-1136))
- (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *5))))
- (-5 *1 (-1091 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-285 (-398 (-921 *4))))
- (-4 *4 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *4))))
- (-5 *1 (-1091 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1136)))
- (-4 *5 (-13 (-298) (-821) (-145)))
- (-5 *2 (-619 (-619 (-285 (-307 *5))))) (-5 *1 (-1091 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-398 (-921 *4))))
- (-4 *4 (-13 (-298) (-821) (-145)))
- (-5 *2 (-619 (-619 (-285 (-307 *4))))) (-5 *1 (-1091 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-285 (-398 (-921 *5))))) (-5 *4 (-619 (-1136)))
- (-4 *5 (-13 (-298) (-821) (-145)))
- (-5 *2 (-619 (-619 (-285 (-307 *5))))) (-5 *1 (-1091 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-619 (-285 (-398 (-921 *4)))))
- (-4 *4 (-13 (-298) (-821) (-145)))
- (-5 *2 (-619 (-619 (-285 (-307 *4))))) (-5 *1 (-1091 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-819) (-354))) (-5 *2 (-112)) (-5 *1 (-1026 *4 *3))
- (-4 *3 (-1195 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7)))
- (-5 *1 (-438 *4 *5 *6 *7)) (-5 *3 (-619 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767))
- (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8)))
- (-5 *1 (-438 *5 *6 *7 *8)) (-5 *3 (-619 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7)))
- (-5 *1 (-438 *4 *5 *6 *7)) (-5 *3 (-619 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767))
- (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8)))
- (-5 *1 (-438 *5 *6 *7 *8)) (-5 *3 (-619 *8)))))
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-747)) (-4 *4 (-342)) (-5 *1 (-210 *4 *2))
+ (-4 *2 (-1202 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3))
- (-4 *3 (-13 (-354) (-1158) (-971)))))
+ (-12 (-5 *3 (-1226 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170))
+ (-4 *5 (-1202 *4)) (-5 *2 (-665 *4))))
((*1 *2)
- (|partial| -12 (-4 *4 (-1177)) (-4 *5 (-1195 (-398 *2)))
- (-4 *2 (-1195 *4)) (-5 *1 (-332 *3 *4 *2 *5))
- (-4 *3 (-333 *4 *2 *5))))
+ (-12 (-4 *4 (-170)) (-4 *5 (-1202 *4)) (-5 *2 (-665 *4))
+ (-5 *1 (-401 *3 *4 *5)) (-4 *3 (-402 *4 *5))))
((*1 *2)
- (|partial| -12 (-4 *1 (-333 *3 *2 *4)) (-4 *3 (-1177))
- (-4 *4 (-1195 (-398 *2))) (-4 *2 (-1195 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-843))))
- ((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1136)) (-5 *1 (-649 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217)))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))))
- (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-217))
- (-5 *2 (-1004)) (-5 *1 (-730))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217)))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))))
- (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-379))
- (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-730)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4320)) (-4 *1 (-395))))
- ((*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))))
-(((*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-734)))))
-(((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1173)))))
+ (-12 (-4 *1 (-402 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1202 *3))
+ (-5 *2 (-665 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-309 (-372))) (-5 *2 (-309 (-219))) (-5 *1 (-298)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1067)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-398 (-921 *6)) (-1126 (-1136) (-921 *6))))
- (-5 *5 (-745)) (-4 *6 (-442)) (-5 *2 (-619 (-663 (-398 (-921 *6)))))
- (-5 *1 (-283 *6)) (-5 *4 (-663 (-398 (-921 *6))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-398 (-921 *5)) (-1126 (-1136) (-921 *5))))
- (|:| |eigmult| (-745)) (|:| |eigvec| (-619 *4))))
- (-4 *5 (-442)) (-5 *2 (-619 (-663 (-398 (-921 *5)))))
- (-5 *1 (-283 *5)) (-5 *4 (-663 (-398 (-921 *5)))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *3 (-869 *6))
- (-5 *2 (-663 *3)) (-5 *1 (-666 *6 *3 *7 *4)) (-4 *7 (-364 *3))
- (-4 *4 (-13 (-364 *6) (-10 -7 (-6 -4329)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1136))) (-4 *6 (-442))
- (-5 *2 (-619 (-619 (-239 *5 *6)))) (-5 *1 (-461 *5 *6 *7))
- (-5 *3 (-619 (-239 *5 *6))) (-4 *7 (-442)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-890)) (-5 *1 (-1001 *2))
- (-4 *2 (-13 (-1063) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-968 *3)) (-4 *3 (-169)) (-5 *1 (-773 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-442)) (-4 *4 (-539))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1628 *4)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-539)) (-4 *2 (-1016))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1123 (-549))) (-5 *1 (-1127 *4)) (-4 *4 (-1018))
+ (-5 *3 (-549)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-769)) (-4 *4 (-823)) (-4 *5 (-300))
+ (-5 *1 (-887 *3 *4 *5 *2)) (-4 *2 (-920 *5 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1195 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-539))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *3 (-1030 *4 *5 *6))
- (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *1))))
- (-4 *1 (-1036 *4 *5 *6 *3)))))
+ (-12 (-5 *2 (-1139 *6)) (-4 *6 (-920 *5 *3 *4)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *5 (-300)) (-5 *1 (-887 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-920 *6 *4 *5))
+ (-5 *1 (-887 *4 *5 *6 *2)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-300)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4))))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-592 *4)) (-5 *6 (-1139 *4))
+ (-4 *4 (-13 (-423 *7) (-27) (-1165)))
+ (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4))))
+ (-5 *1 (-545 *7 *4 *3)) (-4 *3 (-632 *4)) (-4 *3 (-1067))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-592 *4)) (-5 *6 (-400 (-1139 *4)))
+ (-4 *4 (-13 (-423 *7) (-27) (-1165)))
+ (-4 *7 (-13 (-444) (-1009 (-549)) (-823) (-145) (-617 (-549))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1949 (-621 *4))))
+ (-5 *1 (-545 *7 *4 *3)) (-4 *3 (-632 *4)) (-4 *3 (-1067)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3))
- (-4 *3 (-13 (-354) (-1158) (-971))))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1158)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354))))
- ((*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-890)) (-5 *4 (-370)) (-5 *2 (-1224)) (-5 *1 (-1220)))))
+ (-12 (-5 *3 (-665 (-309 (-219))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))))
+ (-5 *1 (-199)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-460)) (-5 *4 (-892)) (-5 *2 (-1231)) (-5 *1 (-1227)))))
+(((*1 *1 *1) (-12 (-4 *1 (-423 *2)) (-4 *2 (-823)) (-4 *2 (-1018))))
+ ((*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-621 (-1139 (-549)))) (-5 *1 (-185)) (-5 *3 (-549)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-892)) (-5 *4 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1052)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1016))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766))
- (-4 *5 (-821)) (-5 *2 (-112)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-321)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1139 *1)) (-4 *1 (-444))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1139 *6)) (-4 *6 (-920 *5 *3 *4)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *5 (-880)) (-5 *1 (-449 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1139 *1)) (-4 *1 (-880)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-732)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1226 (-621 (-2 (|:| -4161 *4) (|:| -3493 (-1087))))))
+ (-4 *4 (-342)) (-5 *2 (-1231)) (-5 *1 (-519 *4)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8))
+ (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4))))
+ (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-621 (-2 (|:| |val| (-621 *8)) (|:| -1981 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1032 *6 *7 *4)) (-4 *9 (-1038 *6 *7 *4 *8))
+ (-4 *6 (-444)) (-4 *7 (-769)) (-4 *4 (-823))
+ (-5 *2 (-621 (-2 (|:| |val| *8) (|:| -1981 *9))))
+ (-5 *1 (-1075 *6 *7 *4 *8 *9)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4337)) (-4 *1 (-229 *3))
+ (-4 *3 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1180)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-621 *7))) (-4 *1 (-1173 *4 *5 *6 *7))
+ (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1016))
- (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1158) (-275)))
- (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1195 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-890)) (-4 *5 (-1016))
- (-4 *2 (-13 (-395) (-1007 *5) (-354) (-1158) (-275)))
- (-5 *1 (-433 *5 *3 *2)) (-4 *3 (-1195 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))
- (-5 *2 (-793 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-817)) (-5 *1 (-1242 *3 *2)) (-4 *3 (-1016)))))
-(((*1 *1 *1) (-4 *1 (-170)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))))
-(((*1 *1 *1) (-4 *1 (-605)))
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-549))
+ (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))))
+(((*1 *1 *1) (-4 *1 (-607)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971) (-1158))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 (-547))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547))
- (-14 *4 (-745)) (-4 *5 (-169)))))
-(((*1 *1 *1) (-5 *1 (-217)))
- ((*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218))))
- ((*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2))
- (-4 *2 (-421 *3))))
- ((*1 *1 *1) (-4 *1 (-1100))) ((*1 *1 *1 *1) (-4 *1 (-1100))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973) (-1165))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-539))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4056 *4)))
- (-5 *1 (-938 *4 *3)) (-4 *3 (-1195 *4)))))
+ (-12 (-5 *2 (-1 (-914 *3) (-914 *3))) (-5 *1 (-174 *3))
+ (-4 *3 (-13 (-356) (-1165) (-973))))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1067)) (-4 *3 (-871 *5)) (-5 *2 (-665 *3))
+ (-5 *1 (-668 *5 *3 *6 *4)) (-4 *6 (-366 *3))
+ (-4 *4 (-13 (-366 *5) (-10 -7 (-6 -4337)))))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1119)) (-5 *1 (-685)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-539) (-145)))
- (-5 *1 (-1189 *4 *2)) (-4 *2 (-1195 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-348 *3)) (-4 *3 (-340)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4))
+ (-4 *6 (-366 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3))
+ (-4 *3 (-624 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-170)) (-4 *2 (-1018)) (-5 *1 (-691 *2 *3))
+ (-4 *3 (-624 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018))))
+ ((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-170)) (-4 *2 (-1018)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-52)) (-5 *1 (-1158)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3))))
+ (-5 *1 (-379 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-795 *3)) (|:| |mm| (-795 *3)) (|:| |rm| (-795 *3))))
+ (-5 *1 (-795 *3)) (-4 *3 (-823)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1180)) (-4 *2 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-834))))
+ ((*1 *1 *1) (-5 *1 (-834)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-914 (-219))) (-5 *2 (-219)) (-5 *1 (-1176))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-1018)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549))
+ (-5 *2 (-1006)) (-5 *1 (-733)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-890)) (-4 *5 (-539)) (-5 *2 (-663 *5))
- (-5 *1 (-925 *5 *3)) (-4 *3 (-630 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1195 (-398 (-547)))) (-5 *1 (-882 *3 *2))
- (-4 *2 (-1195 (-398 *3))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))))
+ (-12 (-5 *4 (-1143))
+ (-4 *5 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-621 (-592 *3)))
+ (|:| |vals| (-621 *3))))
+ (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1165) (-423 *5))))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-223 *4))
- (-4 *4 (-1016))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-747)) (-4 *1 (-225 *4))
+ (-4 *4 (-1018))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1016))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-745))))
- ((*1 *1 *1) (-4 *1 (-225)))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-747))))
+ ((*1 *1 *1) (-4 *1 (-227)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4))
- (-4 *4 (-1195 *3))))
+ (-12 (-5 *2 (-747)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4))
+ (-4 *4 (-1202 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-354) (-145))) (-5 *1 (-390 *2 *3))
- (-4 *3 (-1195 *2))))
- ((*1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016))))
+ (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3))
+ (-4 *3 (-1202 *2))))
+ ((*1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1018))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4))
- (-4 *4 (-1063))))
+ (-12 (-5 *2 (-621 *4)) (-5 *3 (-621 (-747))) (-4 *1 (-871 *4))
+ (-4 *4 (-1067))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-871 *2)) (-4 *2 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063)))))
+ (-12 (-5 *2 (-621 *3)) (-4 *1 (-871 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-665 (-219))) (-5 *5 (-665 (-549))) (-5 *3 (-549))
+ (-5 *2 (-1006)) (-5 *1 (-731)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-549))) (-5 *2 (-875 (-549))) (-5 *1 (-888))))
+ ((*1 *2) (-12 (-5 *2 (-875 (-549))) (-5 *1 (-888)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *1)) (-5 *4 (-1219 *1)) (-4 *1 (-615 *5))
- (-4 *5 (-1016))
- (-5 *2 (-2 (|:| -1877 (-663 *5)) (|:| |vec| (-1219 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 *1)) (-4 *1 (-615 *4)) (-4 *4 (-1016))
- (-5 *2 (-663 *4)))))
+ (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1202 *5))
+ (-5 *1 (-704 *5 *2)) (-4 *5 (-356)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-340)) (-4 *4 (-320 *3)) (-4 *5 (-1195 *4))
- (-5 *1 (-751 *3 *4 *5 *2 *6)) (-4 *2 (-1195 *5)) (-14 *6 (-890))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-4 *3 (-359))))
- ((*1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-354)) (-4 *2 (-359)))))
-(((*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1119)) (-5 *1 (-296)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-458)) (-5 *4 (-890)) (-5 *2 (-1224)) (-5 *1 (-1220)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
- ((*1 *1 *1) (-4 *1 (-482)))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1) (-4 *1 (-484)))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-236 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1224)) (-5 *1 (-1220))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-444))
+ (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1006)) (-5 *3 (-1143)) (-5 *1 (-260)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1139 *3)) (-4 *3 (-342)) (-5 *1 (-350 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-239 *4 *5)) (-14 *4 (-619 (-1136))) (-4 *5 (-442))
- (-5 *2 (-471 *4 *5)) (-5 *1 (-607 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *2 (-1030 *4 *5 *6)) (-5 *1 (-750 *4 *5 *6 *2 *3))
- (-4 *3 (-1036 *4 *5 *6 *2)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-590 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1136))) (-5 *5 (-1132 *2))
- (-4 *2 (-13 (-421 *6) (-27) (-1158)))
- (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *1 (-543 *6 *2 *7)) (-4 *7 (-1063))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-590 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1136)))
- (-5 *5 (-398 (-1132 *2))) (-4 *2 (-13 (-421 *6) (-27) (-1158)))
- (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *1 (-543 *6 *2 *7)) (-4 *7 (-1063)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-539) (-821)))
- (-4 *2 (-13 (-421 (-166 *4)) (-971) (-1158)))
- (-5 *1 (-578 *4 *3 *2)) (-4 *3 (-13 (-421 *4) (-971) (-1158))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *4)) (-4 *4 (-354)) (-4 *2 (-1195 *4))
- (-5 *1 (-891 *4 *2)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *6 (-821))
- (-5 *2 (-112)) (-5 *1 (-439 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-1139)))))
+ (-12 (-5 *3 (-1139 *7)) (-4 *7 (-920 *6 *4 *5)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1018)) (-5 *2 (-1139 *6))
+ (-5 *1 (-314 *4 *5 *6 *7)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1226 *3)) (-4 *3 (-1018)) (-5 *1 (-689 *3 *4))
+ (-4 *4 (-1202 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1123 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-898)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)) (-5 *3 (-549)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-2 (|:| -2121 (-1139 *6)) (|:| -3731 (-549)))))
+ (-4 *6 (-300)) (-4 *4 (-769)) (-4 *5 (-823)) (-5 *2 (-549))
+ (-5 *1 (-719 *4 *5 *6 *7)) (-4 *7 (-920 *6 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-920 *3 *4 *5)) (-4 *3 (-356))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-495 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-747))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-1018)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
- ((*1 *1 *1) (-4 *1 (-482)))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1) (-4 *1 (-484)))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 G JACOBG JACGEP))))
+ (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-539) (-821)))
- (-4 *2 (-13 (-421 *4) (-971) (-1158))) (-5 *1 (-578 *4 *2 *3))
- (-4 *3 (-13 (-421 (-166 *4)) (-971) (-1158))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
+ (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-372)) (-5 *1 (-199)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1)
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747))
+ (-4 *4 (-170))))
+ ((*1 *1) (-4 *1 (-703))) ((*1 *1) (-5 *1 (-1143))))
+(((*1 *1 *1) (|partial| -4 *1 (-1118))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1143)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-482)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-549)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-5 *2 (-1231)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-920 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-892)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-1219 (-663 *4))) (-5 *1 (-89 *4 *5))
- (-5 *3 (-663 *4)) (-4 *5 (-630 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1173)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1016)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-619 (-745)))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221))))
- ((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767))
- (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1067)) (-4 *2 (-823))
+ (-5 *1 (-113 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
- ((*1 *1 *1) (-4 *1 (-482)))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *1) (-4 *1 (-484)))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-112)) (-5 *1 (-114))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1136)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1136)) (-5 *2 (-112)) (-5 *1 (-590 *4)) (-4 *4 (-821))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-590 *4)) (-4 *4 (-821))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-856 *5 *3 *4))
- (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *6)) (-4 *6 (-855 *5)) (-4 *5 (-1063))
- (-5 *2 (-112)) (-5 *1 (-856 *5 *6 *4)) (-4 *4 (-592 (-861 *5))))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *4 (-541))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2558 *4))) (-5 *1 (-940 *4 *3))
+ (-4 *3 (-1202 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143)) (-4 *5 (-1184)) (-4 *6 (-1202 *5))
+ (-4 *7 (-1202 (-400 *6))) (-5 *2 (-621 (-923 *5)))
+ (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1143)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1184))
+ (-4 *5 (-1202 *4)) (-4 *6 (-1202 (-400 *5))) (-4 *4 (-356))
+ (-5 *2 (-621 (-923 *4))))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-854 *3 *4 *5))
- (-4 *3 (-1063)) (-4 *5 (-640 *4))))
+ (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-823))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -3731 (-549)))) (-4 *1 (-423 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-1063)))))
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-863 *3)) (|:| -3731 (-863 *3))))
+ (-5 *1 (-863 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
+ (-4 *7 (-920 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -3731 (-549))))
+ (-5 *1 (-921 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $))
+ (-15 -1403 (*7 $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1132 (-921 *6))) (-4 *6 (-539))
- (-4 *2 (-918 (-398 (-921 *6)) *5 *4)) (-5 *1 (-707 *5 *4 *6 *2))
- (-4 *5 (-767))
- (-4 *4 (-13 (-821) (-10 -8 (-15 -2838 ((-1136) $))))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1173)) (-5 *1 (-1094 *4 *2))
- (-4 *2 (-13 (-582 (-547) *4) (-10 -7 (-6 -4329) (-6 -4330))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-821)) (-4 *3 (-1173)) (-5 *1 (-1094 *3 *2))
- (-4 *2 (-13 (-582 (-547) *3) (-10 -7 (-6 -4329) (-6 -4330)))))))
+ (-12 (-5 *3 (-621 (-923 *5))) (-5 *4 (-621 (-1143))) (-4 *5 (-541))
+ (-5 *2 (-621 (-621 (-287 (-400 (-923 *5)))))) (-5 *1 (-746 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-923 *4))) (-4 *4 (-541))
+ (-5 *2 (-621 (-621 (-287 (-400 (-923 *4)))))) (-5 *1 (-746 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-665 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1949 (-621 *6)))
+ *7 *6))
+ (-4 *6 (-356)) (-4 *7 (-632 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1226 *6) "failed"))
+ (|:| -1949 (-621 (-1226 *6)))))
+ (-5 *1 (-789 *6 *7)) (-5 *4 (-1226 *6)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-892)) (-5 *4 (-845)) (-5 *2 (-1231)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-892)) (-5 *4 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-1016)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-321)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-814 (-217)))) (-5 *4 (-217)) (-5 *2 (-619 *4))
- (-5 *1 (-258)))))
-(((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-547)) (-5 *2 (-619 (-2 (|:| -2115 *3) (|:| -3705 *4))))
- (-5 *1 (-670 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-912 *4)) (-4 *4 (-1016)) (-5 *1 (-1125 *3 *4))
- (-14 *3 (-890)))))
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-1202 *4)) (-5 *1 (-528 *4 *2 *5 *6))
+ (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-747))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
- ((*1 *1 *1) (-4 *1 (-482)))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
+ ((*1 *1 *1) (-4 *1 (-484)))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-547))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-745))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-890))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1231))
+ (-5 *1 (-959 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-444)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-1231))
+ (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1038 *3 *4 *5 *6)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-549))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-747))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-892))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745))
- (-4 *4 (-169))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-154))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-154))))
+ (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-747))
+ (-4 *4 (-170))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-892)) (-5 *1 (-155))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158)))
- (-5 *1 (-219 *3))))
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165)))
+ (-5 *1 (-221 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1173)) (-4 *2 (-701))))
+ (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1180)) (-4 *2 (-703))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1173)) (-4 *2 (-701))))
+ (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1180)) (-4 *2 (-703))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-285 *2)) (-4 *2 (-1075)) (-4 *2 (-1173))))
+ (-12 (-5 *1 (-287 *2)) (-4 *2 (-1079)) (-4 *2 (-1180))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-285 *2)) (-4 *2 (-1075)) (-4 *2 (-1173))))
+ (-12 (-5 *1 (-287 *2)) (-4 *2 (-1079)) (-4 *2 (-1180))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-352 *2)) (-4 *2 (-1063))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-352 *2)) (-4 *2 (-1063))))
+ (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-130))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1067))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821))))
+ (-12 (-5 *1 (-374 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-823))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063))))
+ (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1067))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-619 (-1136))) (-4 *4 (-169))
- (-4 *6 (-230 (-3767 *3) (-745)))
+ (-12 (-14 *3 (-621 (-1143))) (-4 *4 (-170))
+ (-4 *6 (-232 (-3775 *3) (-747)))
(-14 *7
- (-1 (-112) (-2 (|:| -3487 *5) (|:| -3322 *6))
- (-2 (|:| -3487 *5) (|:| -3322 *6))))
- (-5 *1 (-451 *3 *4 *5 *6 *7 *2)) (-4 *5 (-821))
- (-4 *2 (-918 *4 *6 (-834 *3)))))
+ (-1 (-112) (-2 (|:| -3493 *5) (|:| -3731 *6))
+ (-2 (|:| -3493 *5) (|:| -3731 *6))))
+ (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-823))
+ (-4 *2 (-920 *4 *6 (-836 *3)))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821))
- (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4))))
+ (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1219 *3)) (-4 *3 (-340)) (-5 *1 (-517 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-523)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-575 *3)) (-4 *3 (-1016))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063))
- (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-658 *5 *6 *7))))
+ (-12 (-5 *2 (-1226 *3)) (-4 *3 (-342)) (-5 *1 (-519 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-525)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-577 *3)) (-4 *3 (-1018))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-577 *2)) (-4 *2 (-1018))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-823))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-660 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-661 *3 *2 *4)) (-4 *3 (-1016)) (-4 *2 (-364 *3))
- (-4 *4 (-364 *3))))
+ (-12 (-4 *1 (-663 *3 *2 *4)) (-4 *3 (-1018)) (-4 *2 (-366 *3))
+ (-4 *4 (-366 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-661 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-364 *3))
- (-4 *2 (-364 *3))))
+ (-12 (-4 *1 (-663 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
+ (-4 *2 (-366 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))
+ (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2))))
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2))))
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-695)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821))))
- ((*1 *1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063))))
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-697)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-823))))
+ ((*1 *1 *1 *1) (-5 *1 (-834)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-863 *2)) (-4 *2 (-1067))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1219 *4)) (-4 *4 (-1195 *3)) (-4 *3 (-539))
- (-5 *1 (-938 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1023))))
- ((*1 *1 *1 *1) (-4 *1 (-1075)))
+ (-12 (-5 *2 (-1226 *4)) (-4 *4 (-1202 *3)) (-4 *3 (-541))
+ (-5 *1 (-940 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *1) (-4 *1 (-1079)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *2 (-230 *3 *4))
- (-4 *5 (-230 *3 *4))))
+ (-12 (-4 *1 (-1090 *3 *4 *2 *5)) (-4 *4 (-1018)) (-4 *2 (-232 *3 *4))
+ (-4 *5 (-232 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1085 *3 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-230 *3 *4))
- (-4 *2 (-230 *3 *4))))
+ (-12 (-4 *1 (-1090 *3 *4 *5 *2)) (-4 *4 (-1018)) (-4 *5 (-232 *3 *4))
+ (-4 *2 (-232 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2))
- (-4 *2 (-918 *3 (-519 *4) *4))))
+ (-12 (-4 *3 (-1018)) (-4 *4 (-823)) (-5 *1 (-1093 *3 *4 *2))
+ (-4 *2 (-920 *3 (-521 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-912 (-217))) (-5 *3 (-217)) (-5 *1 (-1169))))
+ (-12 (-5 *2 (-914 (-219))) (-5 *3 (-219)) (-5 *1 (-1176))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-701))))
+ (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-703))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1173)) (-4 *2 (-701))))
+ (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1180)) (-4 *2 (-703))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-547)) (-4 *1 (-1217 *3)) (-4 *3 (-1173)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-549)) (-4 *1 (-1224 *3)) (-4 *3 (-1180)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1236 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))
+ (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016))))
+ (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1242 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1159 *2)) (-4 *2 (-1063))))
+ (-12 (-5 *1 (-1249 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1180)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-5 *2 (-549))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-549)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1166 *2)) (-4 *2 (-1067))))
((*1 *1 *2)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-1159 *3))))
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1067)) (-5 *1 (-1166 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-619 (-1159 *2))) (-5 *1 (-1159 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4330)) (-4 *1 (-582 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-1173)) (-5 *2 (-1224)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539))
- (-5 *2 (-112)))))
+ (-12 (-5 *3 (-621 (-1166 *2))) (-5 *1 (-1166 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-5 *1 (-997 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *2) (-12 (-5 *1 (-568 *2)) (-4 *2 (-534)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-239 *4 *5)) (-14 *4 (-619 (-1136))) (-4 *5 (-1016))
- (-5 *2 (-471 *4 *5)) (-5 *1 (-913 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2)
- (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-408 *3)))))
+ (-12 (-4 *4 (-823)) (-5 *2 (-621 (-621 (-621 *4))))
+ (-5 *1 (-1151 *4)) (-5 *3 (-621 (-621 *4))))))
(((*1 *2 *1)
- (-12 (-14 *3 (-619 (-1136))) (-4 *4 (-169))
- (-4 *5 (-230 (-3767 *3) (-745)))
- (-14 *6
- (-1 (-112) (-2 (|:| -3487 *2) (|:| -3322 *5))
- (-2 (|:| -3487 *2) (|:| -3322 *5))))
- (-4 *2 (-821)) (-5 *1 (-451 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-918 *4 *5 (-834 *3))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-214 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1173)) (-4 *1 (-245 *3))))
- ((*1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1173)))))
+ (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-4 *6 (-335 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -3715 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1202 *5)) (-4 *5 (-356))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -4041 (-400 *6))
+ (|:| |special| (-400 *6))))
+ (-5 *1 (-704 *5 *6)) (-5 *3 (-400 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-356)) (-5 *2 (-621 *3)) (-5 *1 (-867 *3 *4))
+ (-4 *3 (-1202 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-747)) (-4 *5 (-356))
+ (-5 *2 (-2 (|:| -3838 *3) (|:| -3848 *3))) (-5 *1 (-867 *3 *5))
+ (-4 *3 (-1202 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112))
+ (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112))
+ (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112))
+ (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1076 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1112 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-621 *9)) (-5 *3 (-621 *8)) (-5 *4 (-112))
+ (-4 *8 (-1032 *5 *6 *7)) (-4 *9 (-1076 *5 *6 *7 *8)) (-4 *5 (-444))
+ (-4 *6 (-769)) (-4 *7 (-823)) (-5 *1 (-1112 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-538)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-724)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
- ((*1 *1 *1) (-4 *1 (-482)))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
+ ((*1 *1 *1) (-4 *1 (-484)))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-340)) (-5 *2 (-927 (-1132 *4))) (-5 *1 (-348 *4))
- (-5 *3 (-1132 *4)))))
-(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-547)) (-4 *3 (-169)) (-4 *5 (-364 *3))
- (-4 *6 (-364 *3)) (-5 *1 (-662 *3 *5 *6 *2))
- (-4 *2 (-661 *3 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222))))
- ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1222)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 *4)) (-4 *4 (-1016)) (-5 *1 (-1103 *3 *4))
- (-14 *3 (-745)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-1016)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-727)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-590 *4)) (-5 *6 (-1132 *4))
- (-4 *4 (-13 (-421 *7) (-27) (-1158)))
- (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4))))
- (-5 *1 (-543 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-590 *4)) (-5 *6 (-398 (-1132 *4)))
- (-4 *4 (-13 (-421 *7) (-27) (-1158)))
- (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1917 (-619 *4))))
- (-5 *1 (-543 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1119)) (-5 *1 (-1154)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-800)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-1226 *5))) (-5 *4 (-549)) (-5 *2 (-1226 *5))
+ (-5 *1 (-1000 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1018)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-663 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-621 (-112))) (-5 *7 (-665 (-219)))
+ (-5 *8 (-665 (-549))) (-5 *3 (-549)) (-5 *4 (-219)) (-5 *5 (-112))
+ (-5 *2 (-1006)) (-5 *1 (-731)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-621 (-473 *5 *6))) (-5 *4 (-836 *5))
+ (-14 *5 (-621 (-1143))) (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6))
+ (-4 *6 (-444))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-473 *5 *6))) (-5 *4 (-836 *5))
+ (-14 *5 (-621 (-1143))) (-5 *2 (-473 *5 *6)) (-5 *1 (-609 *5 *6))
+ (-4 *6 (-444)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1143)) (-5 *5 (-1061 (-219))) (-5 *2 (-898))
+ (-5 *1 (-896 *3)) (-4 *3 (-594 (-525)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1143)) (-5 *5 (-1061 (-219))) (-5 *2 (-898))
+ (-5 *1 (-896 *3)) (-4 *3 (-594 (-525)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-897))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-897))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-897))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1061 (-219))) (-5 *1 (-898))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-898))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-898))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-621 (-1 (-219) (-219)))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-898))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-621 (-1 (-219) (-219)))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-898))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-898))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-898)))))
+(((*1 *1) (-5 *1 (-799))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1106))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1180)) (-4 *3 (-366 *2))
+ (-4 *4 (-366 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-584 *3 *2)) (-4 *3 (-1067))
+ (-4 *2 (-1180)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-541)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-356) (-295)
+ (-10 -8 (-15 -1394 ((-1092 *3 (-592 $)) $))
+ (-15 -1403 ((-1092 *3 (-592 $)) $))
+ (-15 -3846 ($ (-1092 *3 (-592 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-541)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-356) (-295)
+ (-10 -8 (-15 -1394 ((-1092 *3 (-592 $)) $))
+ (-15 -1403 ((-1092 *3 (-592 $)) $))
+ (-15 -3846 ($ (-1092 *3 (-592 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-621 *2))
+ (-4 *2
+ (-13 (-356) (-295)
+ (-10 -8 (-15 -1394 ((-1092 *4 (-592 $)) $))
+ (-15 -1403 ((-1092 *4 (-592 $)) $))
+ (-15 -3846 ($ (-1092 *4 (-592 $)))))))
+ (-4 *4 (-541)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-621 (-592 *2)))
+ (-4 *2
+ (-13 (-356) (-295)
+ (-10 -8 (-15 -1394 ((-1092 *4 (-592 $)) $))
+ (-15 -1403 ((-1092 *4 (-592 $)) $))
+ (-15 -3846 ($ (-1092 *4 (-592 $)))))))
+ (-4 *4 (-541)) (-5 *1 (-41 *4 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
- ((*1 *1 *1) (-4 *1 (-482)))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
+ ((*1 *1 *1) (-4 *1 (-484)))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1018)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-767)) (-4 *5 (-1016)) (-4 *6 (-918 *5 *4 *2))
- (-4 *2 (-821)) (-5 *1 (-919 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-354)
- (-10 -8 (-15 -3838 ($ *6)) (-15 -1386 (*6 $))
- (-15 -1396 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539))
- (-5 *2 (-1136)) (-5 *1 (-1012 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-565 *3) *3 (-1136)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1136)))
- (-4 *3 (-275)) (-4 *3 (-605)) (-4 *3 (-1007 *4)) (-4 *3 (-421 *7))
- (-5 *4 (-1136)) (-4 *7 (-592 (-861 (-547)))) (-4 *7 (-442))
- (-4 *7 (-855 (-547))) (-4 *7 (-821)) (-5 *2 (-565 *3))
- (-5 *1 (-556 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4)))
- (-5 *1 (-1144 *4)) (-4 *4 (-821)))))
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-621 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1018)) (-4 *3 (-823))
+ (-4 *5 (-259 *3)) (-4 *6 (-769)) (-5 *2 (-747))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-823))
+ (-4 *5 (-259 *4)) (-4 *6 (-769)) (-5 *2 (-747))))
+ ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-823)) (-5 *2 (-747)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1125)) (-5 *1 (-1161)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-567 *3)) (-4 *3 (-356)))))
(((*1 *2 *3 *3)
- (-12 (-4 *2 (-539)) (-4 *2 (-442)) (-5 *1 (-938 *2 *3))
- (-4 *3 (-1195 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1974 *4))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-663 (-217))) (-5 *6 (-112)) (-5 *7 (-663 (-547)))
- (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-64 QPHESS))))
- (-5 *3 (-547)) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-728)))))
+ (-12 (-5 *2 (-1139 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))))
+(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *2 (-541)) (-5 *1 (-940 *2 *4))
+ (-4 *4 (-1202 *2)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-493 (-398 (-547)) (-232 *4 (-745)) (-834 *3)
- (-239 *3 (-398 (-547)))))
- (-14 *3 (-619 (-1136))) (-14 *4 (-745)) (-5 *1 (-494 *3 *4)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *3 (-619 (-843)))
- (-5 *4 (-619 (-890))) (-5 *5 (-619 (-254))) (-5 *1 (-458))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *3 (-619 (-843)))
- (-5 *4 (-619 (-890))) (-5 *1 (-458))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-458))))
- ((*1 *1 *1) (-5 *1 (-458))))
+ (-495 (-400 (-549)) (-234 *4 (-747)) (-836 *3)
+ (-241 *3 (-400 (-549)))))
+ (-14 *3 (-621 (-1143))) (-14 *4 (-747)) (-5 *1 (-496 *3 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-890)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-354)) (-14 *5 (-962 *3 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1158)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))))
+ (-12 (-5 *2 (-892)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-356)) (-14 *5 (-964 *3 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1123 *4)) (-5 *3 (-549)) (-4 *4 (-1018))
+ (-5 *1 (-1127 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-549)) (-5 *1 (-1218 *3 *4 *5)) (-4 *3 (-1018))
+ (-14 *4 (-1143)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-797)))))
(((*1 *1 *1) (-4 *1 (-94)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-532))))
-(((*1 *1 *1 *1) (-4 *1 (-532))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-307 (-217)))) (-5 *2 (-112)) (-5 *1 (-258)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-933 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1192 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1136))
- (-5 *2 (-619 *4)) (-5 *1 (-1077 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767))
- (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *2 (-370)) (-5 *1 (-759 *3)) (-4 *3 (-592 *2))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1018))
+ (-5 *2 (-621 (-621 (-621 (-914 *3))))))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-549)) (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018))
+ (-4 *4 (-366 *3)) (-4 *5 (-366 *3)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-423 *3) (-973))) (-5 *1 (-269 *3 *2))
+ (-4 *3 (-13 (-823) (-541))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-1166 *3))) (-5 *1 (-1166 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-102 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1143))
+ (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-309 *5)))
+ (-5 *1 (-1096 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-400 (-923 *5)))) (-5 *4 (-621 (-1143)))
+ (-4 *5 (-13 (-300) (-823) (-145))) (-5 *2 (-621 (-621 (-309 *5))))
+ (-5 *1 (-1096 *5)))))
+(((*1 *2)
+ (-12
+ (-5 *2
+ (-1226 (-621 (-2 (|:| -4161 (-881 *3)) (|:| -3493 (-1087))))))
+ (-5 *1 (-344 *3 *4)) (-14 *3 (-892)) (-14 *4 (-892))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1226 (-621 (-2 (|:| -4161 *3) (|:| -3493 (-1087))))))
+ (-5 *1 (-345 *3 *4)) (-4 *3 (-342)) (-14 *4 (-3 (-1139 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1226 (-621 (-2 (|:| -4161 *3) (|:| -3493 (-1087))))))
+ (-5 *1 (-346 *3 *4)) (-4 *3 (-342)) (-14 *4 (-892)))))
+(((*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-761 *3)) (-4 *3 (-594 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-890)) (-5 *2 (-370)) (-5 *1 (-759 *3))
- (-4 *3 (-592 *2))))
+ (-12 (-5 *4 (-892)) (-5 *2 (-372)) (-5 *1 (-761 *3))
+ (-4 *3 (-594 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 *2))
- (-5 *2 (-370)) (-5 *1 (-759 *4))))
+ (-12 (-5 *3 (-923 *4)) (-4 *4 (-1018)) (-4 *4 (-594 *2))
+ (-5 *2 (-372)) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016))
- (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5))))
+ (-12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018))
+ (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-4 *4 (-592 *2))
- (-5 *2 (-370)) (-5 *1 (-759 *4))))
+ (-12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541)) (-4 *4 (-594 *2))
+ (-5 *2 (-372)) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539))
- (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5))))
+ (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541))
+ (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821))
- (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4))))
+ (-12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823))
+ (-4 *4 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821))
- (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-398 (-547))) (-5 *1 (-574 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1016)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-314 *2 *4)) (-4 *4 (-130))
- (-4 *2 (-1063))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-352 *2)) (-4 *2 (-1063))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-377 *2)) (-4 *2 (-1063))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *2 (-1063)) (-5 *1 (-623 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-793 *2)) (-4 *2 (-821)))))
+ (-12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541)) (-4 *5 (-823))
+ (-4 *5 (-594 *2)) (-5 *2 (-372)) (-5 *1 (-761 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-621 (-309 (-219)))) (-5 *1 (-260)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-914 *3)) (-4 *3 (-13 (-356) (-1165) (-973)))
+ (-5 *1 (-174 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143))))
+ (-4 *6 (-769)) (-4 *7 (-920 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-621 *7)) (|:| |n0| (-621 *7))))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-621 *7)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-732))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381))
+ (-5 *4 (-219)) (-5 *2 (-1006)) (-5 *1 (-732)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1184)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 (-400 *4)))
+ (-5 *2 (-1226 *1)) (-4 *1 (-335 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $)))))
+ (-4 *4 (-1202 *3))
+ (-5 *2
+ (-2 (|:| -1949 (-665 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-665 *3))))
+ (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-402 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1202 (-549)))
+ (-5 *2
+ (-2 (|:| -1949 (-665 (-549))) (|:| |basisDen| (-549))
+ (|:| |basisInv| (-665 (-549)))))
+ (-5 *1 (-744 *3 *4)) (-4 *4 (-402 (-549) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-342)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 *4))
+ (-5 *2
+ (-2 (|:| -1949 (-665 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-665 *4))))
+ (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-701 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-342)) (-4 *4 (-1202 *3)) (-4 *5 (-1202 *4))
+ (-5 *2
+ (-2 (|:| -1949 (-665 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-665 *4))))
+ (-5 *1 (-1235 *3 *4 *5 *6)) (-4 *6 (-402 *4 *5)))))
(((*1 *1 *1) (-4 *1 (-94)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1229)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-514)))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-96)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-619 (-1132 *11))) (-5 *3 (-1132 *11))
- (-5 *4 (-619 *10)) (-5 *5 (-619 *8)) (-5 *6 (-619 (-745)))
- (-5 *7 (-1219 (-619 (-1132 *8)))) (-4 *10 (-821))
- (-4 *8 (-298)) (-4 *11 (-918 *8 *9 *10)) (-4 *9 (-767))
- (-5 *1 (-682 *9 *10 *8 *11)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359))
- (-5 *2 (-1132 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359))
- (-5 *2 (-1132 *3)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1106))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))))
+ (-5 *2 (-1006)) (-5 *1 (-726))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-665 (-219))) (-5 *4 (-549)) (-5 *5 (-219))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 BDYVAL))))
+ (-5 *8 (-381)) (-5 *2 (-1006)) (-5 *1 (-726)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1067)) (-4 *5 (-1067))
+ (-5 *2 (-1 *5)) (-5 *1 (-659 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1173)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-547))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547)))))
+ (-12 (-4 *1 (-328 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4329)) (-4 *1 (-479 *4))
- (-4 *4 (-1173)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1173 *4 *5 *3 *6)) (-4 *4 (-541)) (-4 *5 (-769))
+ (-4 *3 (-823)) (-4 *6 (-1032 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-356)) (-5 *2 (-112)))))
(((*1 *2)
- (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1195 (-547))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-934))) (-5 *1 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-1143)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-921 (-547))))
- (-5 *4 (-307 (-166 (-370)))) (-5 *1 (-321))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-921 (-547))))
- (-5 *4 (-307 (-370))) (-5 *1 (-321))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-921 (-547))))
- (-5 *4 (-307 (-547))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-307 (-166 (-370)))))
- (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-307 (-370)))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-307 (-547)))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-307 (-166 (-370)))))
- (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-307 (-370)))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-307 (-547)))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-307 (-166 (-370)))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-307 (-370))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-307 (-547))) (-5 *1 (-321))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-921 (-547))))
- (-5 *4 (-307 (-668))) (-5 *1 (-321))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-921 (-547))))
- (-5 *4 (-307 (-673))) (-5 *1 (-321))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1136)) (-5 *3 (-619 (-921 (-547))))
- (-5 *4 (-307 (-675))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-307 (-668)))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-307 (-673)))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-307 (-675)))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-307 (-668)))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-307 (-673)))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-307 (-675)))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-668))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-673))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-675))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-668))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-673))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-663 (-675))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-307 (-668))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-307 (-673))) (-5 *1 (-321))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-307 (-675))) (-5 *1 (-321))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1136)) (-5 *3 (-1119)) (-5 *1 (-321))))
- ((*1 *1 *1 *1) (-5 *1 (-832))))
+ (-12 (-5 *2 (-1231)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1067)))))
+(((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229))))
+ ((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1229)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-732)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1180)) (-5 *1 (-180 *3 *2))
+ (-4 *2 (-650 *3)))))
(((*1 *1 *1) (-4 *1 (-94)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-832) (-832) (-832))) (-5 *4 (-547)) (-5 *2 (-832))
- (-5 *1 (-623 *5 *6 *7)) (-4 *5 (-1063)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-832)) (-5 *1 (-825 *3 *4 *5)) (-4 *3 (-1016))
- (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-832))))
- ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-832))))
- ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-832))))
- ((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-832)) (-5 *1 (-1132 *3)) (-4 *3 (-1016)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3))
- (-4 *3 (-13 (-354) (-1158) (-971))))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-356)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-732)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1119)) (-5 *3 (-619 (-254))) (-5 *1 (-252))))
- ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-254))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-409 *2)) (-4 *2 (-298)) (-5 *1 (-883 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1136))
- (-4 *5 (-13 (-298) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-409 (-921 *6))) (-5 *5 (-1136)) (-5 *3 (-921 *6))
- (-4 *6 (-13 (-298) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-442)) (-4 *4 (-821))
- (-4 *5 (-767)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-506)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745))
- (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-896))
- (-5 *2
- (-2 (|:| |brans| (-619 (-619 (-912 (-217)))))
- (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))))
- (-5 *1 (-151))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-896)) (-5 *4 (-398 (-547)))
- (-5 *2
- (-2 (|:| |brans| (-619 (-619 (-912 (-217)))))
- (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))))
- (-5 *1 (-151))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-619 (-619 (-912 (-217)))))
- (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))))
- (-5 *1 (-151)) (-5 *3 (-619 (-912 (-217))))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-619 (-619 (-912 (-217)))))
- (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))))
- (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 (-217)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-340))
- (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -3242 *3))))
- (-5 *1 (-208 *4 *3)) (-4 *3 (-1195 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-427)))))
+ (-12 (-5 *2 (-1125)) (-5 *3 (-621 (-256))) (-5 *1 (-254))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-256))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1123 *3))) (-5 *2 (-1123 *3)) (-5 *1 (-1127 *3))
+ (-4 *3 (-38 (-400 (-549)))) (-4 *3 (-1018)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1123 *4)) (-5 *3 (-549)) (-4 *4 (-1018))
+ (-5 *1 (-1127 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-549)) (-5 *1 (-1218 *3 *4 *5)) (-4 *3 (-1018))
+ (-14 *4 (-1143)) (-14 *5 *3))))
+(((*1 *2) (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-621 (-892))) (-5 *1 (-1229)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-354)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4)))
- (-5 *2 (-1219 *6)) (-5 *1 (-327 *3 *4 *5 *6))
- (-4 *6 (-333 *3 *4 *5)))))
+ (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3))
+ (-4 *3 (-1202 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-619 (-619 *3)))))
+ (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1202 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-619 (-619 *5)))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-688 *3 *2 *4 *5 *6)) (-4 *3 (-170))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1202 *3)) (-5 *1 (-689 *3 *2)) (-4 *3 (-1018))))
((*1 *2 *1)
- (-12 (-5 *2 (-619 (-619 *3))) (-5 *1 (-1145 *3)) (-4 *3 (-1063)))))
-(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-217)))
+ (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-840 *3)) (-5 *2 (-549)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-923 (-549))) (-5 *3 (-1143))
+ (-5 *4 (-1061 (-400 (-549)))) (-5 *1 (-30)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-769)) (-4 *8 (-823))
+ (-4 *3 (-1032 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-621 *4))
+ (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))))
+ (-5 *1 (-1036 *6 *7 *8 *3 *4)) (-4 *4 (-1038 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-621 *4))
+ (|:| |todo| (-621 (-2 (|:| |val| (-621 *3)) (|:| -1981 *4))))))
+ (-5 *1 (-1112 *5 *6 *7 *3 *4)) (-4 *4 (-1076 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-621 (-400 (-923 (-549))))) (-5 *4 (-621 (-1143)))
+ (-5 *2 (-621 (-621 *5))) (-5 *1 (-373 *5))
+ (-4 *5 (-13 (-821) (-356)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-923 (-549)))) (-5 *2 (-621 *4)) (-5 *1 (-373 *4))
+ (-4 *4 (-13 (-821) (-356))))))
+(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-219)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
- ((*1 *1 *1 *1) (-5 *1 (-370)))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
+ ((*1 *1 *1 *1) (-5 *1 (-372)))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1150 *4 *5))
- (-4 *4 (-1063)) (-4 *5 (-1063)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-897))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-897))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-898))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-914 (-219)) (-219))) (-5 *3 (-1061 (-219)))
+ (-5 *1 (-898)))))
+(((*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-366 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-4 *1 (-938))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1136)) (-5 *2 (-523)) (-5 *1 (-522 *4))
- (-4 *4 (-1173)))))
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-621 (-621 *7)))
+ (-5 *1 (-440 *4 *5 *6 *7)) (-5 *3 (-621 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-769))
+ (-4 *7 (-823)) (-4 *8 (-920 *5 *6 *7)) (-5 *2 (-621 (-621 *8)))
+ (-5 *1 (-440 *5 *6 *7 *8)) (-5 *3 (-621 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-547)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-5 *2 (-1224)) (-5 *1 (-439 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-1105))))
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *1) (-5 *1 (-1030))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-567 *4))
- (-4 *4 (-340)))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))))
-(((*1 *2)
- (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1136)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2))
- (-4 *2 (-421 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1056 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-821) (-539)))
- (-5 *1 (-155 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1136)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
+ (-5 *2 (-621 (-219))) (-5 *1 (-198)))))
(((*1 *1 *1) (-4 *1 (-94)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))
- ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *7 (-869 *6))
- (-5 *2 (-663 *7)) (-5 *1 (-666 *6 *7 *3 *4)) (-4 *3 (-364 *7))
- (-4 *4 (-13 (-364 *6) (-10 -7 (-6 -4329)))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1119)) (-4 *1 (-355 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-1063)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-112)) (-5 *1 (-795)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-408 *4)))))
+ (|partial| -12 (-5 *3 (-923 (-167 *4))) (-4 *4 (-170))
+ (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-923 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-170))
+ (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-923 *4)) (-4 *4 (-1018))
+ (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-923 *5)) (-5 *4 (-892)) (-4 *5 (-1018))
+ (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541))
+ (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-892)) (-4 *5 (-541))
+ (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-400 (-923 (-167 *4)))) (-4 *4 (-541))
+ (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-400 (-923 (-167 *5)))) (-5 *4 (-892))
+ (-4 *5 (-541)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372)))
+ (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-541)) (-4 *4 (-823))
+ (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-892)) (-4 *5 (-541))
+ (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372)))
+ (-5 *1 (-761 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-309 (-167 *4))) (-4 *4 (-541)) (-4 *4 (-823))
+ (-4 *4 (-594 (-372))) (-5 *2 (-167 (-372))) (-5 *1 (-761 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-309 (-167 *5))) (-5 *4 (-892)) (-4 *5 (-541))
+ (-4 *5 (-823)) (-4 *5 (-594 (-372))) (-5 *2 (-167 (-372)))
+ (-5 *1 (-761 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219)))
+ (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))
+ (-5 *2 (-1006)) (-5 *1 (-730)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-444)) (-4 *3 (-823)) (-4 *3 (-1009 (-549)))
+ (-4 *3 (-541)) (-5 *1 (-41 *3 *2)) (-4 *2 (-423 *3))
+ (-4 *2
+ (-13 (-356) (-295)
+ (-10 -8 (-15 -1394 ((-1092 *3 (-592 $)) $))
+ (-15 -1403 ((-1092 *3 (-592 $)) $))
+ (-15 -3846 ($ (-1092 *3 (-592 $))))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1165))))
+ ((*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-592 *3)) (-4 *3 (-823)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-356) (-821))) (-5 *1 (-179 *2 *3))
+ (-4 *3 (-1202 (-167 *2))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1243 *4 *2)) (-4 *1 (-365 *4 *2)) (-4 *4 (-821))
- (-4 *2 (-169))))
+ (-12 (-5 *3 (-1250 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-823))
+ (-4 *2 (-170))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1236 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016))))
+ (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1018))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-793 *4)) (-4 *1 (-1236 *4 *2)) (-4 *4 (-821))
- (-4 *2 (-1016))))
+ (-12 (-5 *3 (-795 *4)) (-4 *1 (-1243 *4 *2)) (-4 *4 (-823))
+ (-4 *2 (-1018))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-1016)) (-5 *1 (-1242 *2 *3)) (-4 *3 (-817)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1219 *4)) (-5 *3 (-745)) (-4 *4 (-340))
- (-5 *1 (-517 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4))
- (-5 *2 (-409 *3)) (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1195 *5)))))
+ (-12 (-4 *2 (-1018)) (-5 *1 (-1249 *2 *3)) (-4 *3 (-819)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-584 *2 *3)) (-4 *3 (-1180)) (-4 *2 (-1067))
+ (-4 *2 (-823)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
(((*1 *2)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-663 (-398 *4))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34)))
- (-4 *3 (-13 (-1063) (-34))))))
+ (-12 (-4 *3 (-541)) (-5 *2 (-621 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-410 *3)))))
(((*1 *2 *3 *4)
(-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-680 *3 *4)) (-4 *3 (-1173)) (-4 *4 (-1173)))))
+ (-5 *1 (-682 *3 *4)) (-4 *3 (-1180)) (-4 *4 (-1180)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-356)) (-4 *3 (-769)) (-4 *4 (-823))
+ (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-920 *2 *3 *4)))))
(((*1 *1 *1) (-4 *1 (-94)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3)))))
-(((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1009)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-425))
- (-5 *2
- (-619
- (-3 (|:| -2473 (-1136))
- (|:| -2189 (-619 (-3 (|:| S (-1136)) (|:| P (-921 (-547)))))))))
- (-5 *1 (-1140)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-1195 *4)) (-5 *1 (-526 *4 *2 *5 *6))
- (-4 *4 (-298)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745))))))
-(((*1 *1) (-5 *1 (-154))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-590 *3)) (-5 *5 (-1 (-1132 *3) (-1132 *3)))
- (-4 *3 (-13 (-27) (-421 *6))) (-4 *6 (-13 (-821) (-539)))
- (-5 *2 (-565 *3)) (-5 *1 (-534 *6 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-393)) (-5 *2 (-745))))
- ((*1 *1 *1) (-4 *1 (-393))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-539)) (-4 *2 (-169)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-298)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-1132 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-354) (-293)
- (-10 -8 (-15 -1386 ((-1087 *4 (-590 $)) $))
- (-15 -1396 ((-1087 *4 (-590 $)) $))
- (-15 -3838 ($ (-1087 *4 (-590 $))))))))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1981 *4))))
+ (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4337)) (-4 *1 (-481 *3)) (-4 *3 (-1180))
+ (-5 *2 (-621 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-714 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-356)) (-4 *4 (-366 *3)) (-4 *5 (-366 *3))
+ (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-663 *3 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-936))) (-5 *1 (-108)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *3))
+ (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-1032 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-1032 *4 *5 *6)) (-4 *4 (-541))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-621 *7) (-621 *7))) (-5 *2 (-621 *7))
+ (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-541)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-5 *1 (-948 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1180)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *1 *1) (-4 *1 (-1111))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-300)) (-4 *3 (-963 *2)) (-4 *4 (-1202 *3))
+ (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1009 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3))))
- ((*1 *1 *1) (-4 *1 (-1161))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004))
- (-5 *1 (-730)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3))))
+ ((*1 *1 *1) (-4 *1 (-1168))))
+(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1180)) (-5 *2 (-112)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370)))
- (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135))))
- (-5 *1 (-1135)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217)))
- (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-74 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-75 G JACOBG JACGEP))))
- (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3))
- (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1119)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1224))
- (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1119)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1224))
- (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))))
+ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372)))
+ (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142))))
+ (-5 *1 (-1142)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *5)) (-4 *5 (-423 *4)) (-4 *4 (-1009 (-549)))
+ (-4 *4 (-13 (-823) (-541))) (-5 *2 (-1139 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *1)) (-4 *1 (-1018)) (-4 *1 (-295))
+ (-5 *2 (-1139 *1)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-823)) (-5 *1 (-121 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-356)) (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-920 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-460))))
+(((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-1180)) (-5 *2 (-747)))))
+(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-832)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 (-745))
- (-14 *4 (-745)) (-4 *5 (-169)))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-1136)))))
-(((*1 *2)
- (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-334 *3 *4)) (-14 *3 (-890))
- (-14 *4 (-890))))
- ((*1 *2)
- (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-335 *3 *4)) (-4 *3 (-340))
- (-14 *4 (-1132 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-336 *3 *4)) (-4 *3 (-340))
- (-14 *4 (-890)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))))
+ (-12
+ (-5 *2
+ (-621
+ (-621
+ (-3 (|:| -2481 (-1143))
+ (|:| -3280 (-621 (-3 (|:| S (-1143)) (|:| P (-923 (-549))))))))))
+ (-5 *1 (-1147)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246))))
+ (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1061 (-372)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-248))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370)))
- (-5 *2 (-1095 (-217))) (-5 *1 (-246))))
+ (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1061 (-372)))
+ (-5 *2 (-1100 (-219))) (-5 *1 (-248))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-248))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *2 (-1095 (-217))) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *2 (-1100 (-219))) (-5 *1 (-248))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-248))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *2 (-1095 (-217))) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *2 (-1100 (-219))) (-5 *1 (-248))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-248))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *2 (-1095 (-217))) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *2 (-1100 (-219))) (-5 *1 (-248))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246))))
+ (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1061 (-372)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-248))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370)))
- (-5 *2 (-1095 (-217))) (-5 *1 (-246))))
+ (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1061 (-372)))
+ (-5 *2 (-1100 (-219))) (-5 *1 (-248))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254)))
- (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217)))
- (-5 *1 (-250 *6))))
+ (-12 (-5 *3 (-850 *6)) (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256)))
+ (-4 *6 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1100 (-219)))
+ (-5 *1 (-252 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-370)))
- (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217)))
- (-5 *1 (-250 *5))))
+ (-12 (-5 *3 (-850 *5)) (-5 *4 (-1059 (-372)))
+ (-4 *5 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1100 (-219)))
+ (-5 *1 (-252 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254)))
- (-5 *2 (-1095 (-217))) (-5 *1 (-250 *3))
- (-4 *3 (-13 (-592 (-523)) (-1063)))))
+ (-12 (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256)))
+ (-5 *2 (-1100 (-219))) (-5 *1 (-252 *3))
+ (-4 *3 (-13 (-594 (-525)) (-1067)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1056 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *3))
- (-4 *3 (-13 (-592 (-523)) (-1063)))))
+ (-12 (-5 *4 (-1059 (-372))) (-5 *2 (-1100 (-219))) (-5 *1 (-252 *3))
+ (-4 *3 (-13 (-594 (-525)) (-1067)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254)))
- (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217)))
- (-5 *1 (-250 *6))))
+ (-12 (-5 *3 (-853 *6)) (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256)))
+ (-4 *6 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1100 (-219)))
+ (-5 *1 (-252 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-370)))
- (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217)))
- (-5 *1 (-250 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-547))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *7 (-821))
- (-5 *1 (-439 *5 *6 *7 *4)))))
+ (-12 (-5 *3 (-853 *5)) (-5 *4 (-1059 (-372)))
+ (-4 *5 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1100 (-219)))
+ (-5 *1 (-252 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-678 *4 *5 *6 *7))
+ (-4 *4 (-594 (-525))) (-4 *5 (-1180)) (-4 *6 (-1180))
+ (-4 *7 (-1180)))))
+(((*1 *2 *2) (-12 (-5 *2 (-309 (-219))) (-5 *1 (-260)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3))))
- ((*1 *1 *1) (-4 *1 (-1161))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1132 *1)) (-5 *3 (-1136)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1132 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1136)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-539)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-539)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1132 *2)) (-5 *4 (-1136)) (-4 *2 (-421 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-821) (-539)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1132 *1)) (-5 *3 (-890)) (-4 *1 (-981))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1132 *1)) (-5 *3 (-890)) (-5 *4 (-832))
- (-4 *1 (-981))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-890)) (-4 *4 (-13 (-819) (-354)))
- (-4 *1 (-1033 *4 *2)) (-4 *2 (-1195 *4)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3))))
+ ((*1 *1 *1) (-4 *1 (-1168))))
+(((*1 *1 *1) (-4 *1 (-840 *2))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1209 *3 *2)) (-4 *3 (-1018))
+ (-4 *2 (-1186 *3)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370)))
- (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135))))
- (-5 *1 (-1135)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-298))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-437 *4 *5 *6 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-96))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-370)) (-5 *1 (-96)))))
-(((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532))))
- ((*1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-940)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3)))
- (-5 *1 (-741 *3 *4)) (-4 *3 (-683 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-354)) (-4 *3 (-1016))
- (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-823 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-98 *5)) (-4 *5 (-354)) (-4 *5 (-1016))
- (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-824 *5 *3))
- (-4 *3 (-823 *5)))))
+ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372)))
+ (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142))))
+ (-5 *1 (-1142)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-663 (-398 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))
- ((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-52)))))
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-584 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1180)) (-5 *2 (-1231)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767))
- (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-287 (-400 (-923 *5)))) (-5 *4 (-1143))
+ (-4 *5 (-13 (-300) (-823) (-145)))
+ (-5 *2 (-1132 (-621 (-309 *5)) (-621 (-287 (-309 *5)))))
+ (-5 *1 (-1096 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7))
- (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767))
- (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1106 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+ (-12 (-5 *3 (-400 (-923 *5))) (-5 *4 (-1143))
+ (-4 *5 (-13 (-300) (-823) (-145)))
+ (-5 *2 (-1132 (-621 (-309 *5)) (-621 (-287 (-309 *5)))))
+ (-5 *1 (-1096 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-805)) (-5 *3 (-1125)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1067)) (-5 *1 (-1157 *3 *2)) (-4 *3 (-1067)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-621 (-309 (-219))))
+ (|:| |constraints|
+ (-621
+ (-2 (|:| |start| (-219)) (|:| |finish| (-219))
+ (|:| |grid| (-747)) (|:| |boundaryType| (-549))
+ (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219))))))
+ (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125))
+ (|:| |tol| (-219))))
+ (-5 *2 (-112)) (-5 *1 (-204)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-920 *3 *5 *4)) (-5 *1 (-958 *3 *4 *5 *2))
+ (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-52)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4339 "*"))) (-4 *5 (-366 *2)) (-4 *6 (-366 *2))
+ (-4 *2 (-1018)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1202 *2))
+ (-4 *4 (-663 *2 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3))))
- ((*1 *1 *1) (-4 *1 (-1161))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-385))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1153)))))
-(((*1 *1 *1) (-5 *1 (-832)))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3))))
+ ((*1 *1 *1) (-4 *1 (-1168))))
+(((*1 *1 *1) (-5 *1 (-834)))
((*1 *2 *1)
- (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))
- ((*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1118))))
- ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-1136)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1132 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1088 *4 *3 *5))) (-4 *4 (-38 (-398 (-547))))
- (-4 *4 (-1016)) (-4 *3 (-821)) (-5 *1 (-1088 *4 *3 *5))
- (-4 *5 (-918 *4 (-519 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1167 *4))) (-5 *3 (-1136)) (-5 *1 (-1167 *4))
- (-4 *4 (-38 (-398 (-547)))) (-4 *4 (-1016)))))
-(((*1 *1 *1) (-5 *1 (-1135)))
+ (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1124))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1143)))))
+(((*1 *1 *1) (-5 *1 (-1142)))
((*1 *1 *2)
(-12
(-5 *2
- (-3 (|:| I (-307 (-547))) (|:| -1415 (-307 (-370)))
- (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1135))))
- (-5 *1 (-1135)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4329)) (-4 *1 (-227 *3))
- (-4 *3 (-1063))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4329)) (-4 *1 (-227 *2)) (-4 *2 (-1063))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-273 *2)) (-4 *2 (-1173)) (-4 *2 (-1063))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-273 *3)) (-4 *3 (-1173))))
+ (-3 (|:| I (-309 (-549))) (|:| -1422 (-309 (-372)))
+ (|:| CF (-309 (-167 (-372)))) (|:| |switch| (-1142))))
+ (-5 *1 (-1142)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-728)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-621 *3)) (-4 *3 (-1202 *5)) (-4 *5 (-300))
+ (-5 *2 (-747)) (-5 *1 (-447 *5 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-235)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-769)) (-4 *5 (-1018)) (-4 *6 (-920 *5 *4 *2))
+ (-4 *2 (-823)) (-5 *1 (-921 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -3846 ($ *6)) (-15 -1394 (*6 $))
+ (-15 -1403 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-400 (-923 *4))) (-4 *4 (-541))
+ (-5 *2 (-1143)) (-5 *1 (-1014 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-665 (-400 *4))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-621 *1)) (-5 *3 (-621 *7)) (-4 *1 (-1038 *4 *5 *6 *7))
+ (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6))))
((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-547)) (-4 *4 (-1063))
- (-5 *1 (-712 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-5 *1 (-712 *2)) (-4 *2 (-1063))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34)))
- (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1102 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-795)))))
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-1032 *4 *5 *6)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-621 *1))
+ (-4 *1 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-621 *1)) (-4 *1 (-1038 *4 *5 *6 *3)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-621 *1))
+ (-4 *1 (-1038 *4 *5 *6 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-812)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-811))))
- ((*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811))))
+ (-12 (-5 *3 (-814)) (-5 *4 (-1030)) (-5 *2 (-1006)) (-5 *1 (-813))))
+ ((*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1006)) (-5 *1 (-813))))
((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-619 (-370))) (-5 *5 (-619 (-814 (-370))))
- (-5 *6 (-619 (-307 (-370)))) (-5 *3 (-307 (-370))) (-5 *2 (-1004))
- (-5 *1 (-811))))
+ (-12 (-5 *4 (-621 (-372))) (-5 *5 (-621 (-816 (-372))))
+ (-5 *6 (-621 (-309 (-372)))) (-5 *3 (-309 (-372))) (-5 *2 (-1006))
+ (-5 *1 (-813))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-370)))
- (-5 *5 (-619 (-814 (-370)))) (-5 *2 (-1004)) (-5 *1 (-811))))
+ (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-372)))
+ (-5 *5 (-621 (-816 (-372)))) (-5 *2 (-1006)) (-5 *1 (-813))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-370))) (-5 *2 (-1004))
- (-5 *1 (-811))))
+ (-12 (-5 *3 (-309 (-372))) (-5 *4 (-621 (-372))) (-5 *2 (-1006))
+ (-5 *1 (-813))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-307 (-370)))) (-5 *4 (-619 (-370)))
- (-5 *2 (-1004)) (-5 *1 (-811)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-657 *4 *3)) (-4 *4 (-1063))
- (-4 *3 (-1063)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217)))
- (-5 *5 (-1058 (-217))) (-5 *6 (-547)) (-5 *2 (-1168 (-895)))
- (-5 *1 (-309))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217)))
- (-5 *5 (-1058 (-217))) (-5 *6 (-547)) (-5 *7 (-1119))
- (-5 *2 (-1168 (-895))) (-5 *1 (-309))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217)))
- (-5 *5 (-1058 (-217))) (-5 *6 (-217)) (-5 *7 (-547))
- (-5 *2 (-1168 (-895))) (-5 *1 (-309))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217)))
- (-5 *5 (-1058 (-217))) (-5 *6 (-217)) (-5 *7 (-547)) (-5 *8 (-1119))
- (-5 *2 (-1168 (-895))) (-5 *1 (-309)))))
-(((*1 *1 *1) (-5 *1 (-1028))))
+ (-12 (-5 *3 (-621 (-309 (-372)))) (-5 *4 (-621 (-372)))
+ (-5 *2 (-1006)) (-5 *1 (-813)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1136)) (-5 *4 (-921 (-547))) (-5 *2 (-321))
- (-5 *1 (-323)))))
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769))
+ (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *9 (-1076 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769))
+ (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1112 *5 *6 *7 *8 *9)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-3 (-112) (-621 *1)))
+ (-4 *1 (-1038 *4 *5 *6 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-534)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3))))
- ((*1 *1 *1) (-4 *1 (-1161))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))))
-(((*1 *1 *1 *1) (-5 *1 (-832))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-890))
- (-5 *2 (-1219 (-619 (-2 (|:| -4153 *4) (|:| -3487 (-1082))))))
- (-5 *1 (-337 *4)) (-4 *4 (-340)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-398 (-547))))
- (-4 *2 (-169)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-921 (-217))) (-5 *2 (-307 (-370))) (-5 *1 (-296)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112))
- (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354)))
- (-4 *3 (-1195 *4)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-921 (-547))) (-5 *3 (-1136))
- (-5 *4 (-1058 (-398 (-547)))) (-5 *1 (-30)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370))
- (-5 *2
- (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547))
- (|:| |success| (-112))))
- (-5 *1 (-763)) (-5 *5 (-547)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3))))
+ ((*1 *1 *1) (-4 *1 (-1168))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549)))))
+ (-4 *5 (-1202 *4)) (-5 *2 (-621 (-2 (|:| -2597 *5) (|:| -2391 *5))))
+ (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-632 *5))
+ (-4 *6 (-632 (-400 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549)))))
+ (-4 *4 (-1202 *5)) (-5 *2 (-621 (-2 (|:| -2597 *4) (|:| -2391 *4))))
+ (-5 *1 (-783 *5 *4 *3 *6)) (-4 *3 (-632 *4))
+ (-4 *6 (-632 (-400 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-145) (-1009 (-400 (-549)))))
+ (-4 *5 (-1202 *4)) (-5 *2 (-621 (-2 (|:| -2597 *5) (|:| -2391 *5))))
+ (-5 *1 (-783 *4 *5 *6 *3)) (-4 *6 (-632 *5))
+ (-4 *3 (-632 (-400 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-356) (-145) (-1009 (-400 (-549)))))
+ (-4 *4 (-1202 *5)) (-5 *2 (-621 (-2 (|:| -2597 *4) (|:| -2391 *4))))
+ (-5 *1 (-783 *5 *4 *6 *3)) (-4 *6 (-632 *4))
+ (-4 *3 (-632 (-400 *4))))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-549)) (-5 *5 (-665 (-219)))
+ (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 OUTPUT))))
+ (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-726)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *2 (-821)) (-4 *3 (-169))))
+ (-12 (-5 *2 (-747)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1018))
+ (-4 *4 (-768)) (-4 *3 (-170)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-747)) (-5 *2 (-112))))
((*1 *2 *3 *3)
- (-12 (-4 *2 (-539)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1195 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-539))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1016)) (-4 *2 (-169)))))
-(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673))))
- ((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673)))))
-(((*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221))))
- ((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1221)))))
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1067)) (-5 *2 (-112))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1145 (-400 (-549)))) (-5 *1 (-184)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-621 *1)) (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4338)) (-4 *1 (-238 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| (-112)) (|:| -1981 *4))))
+ (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1143)) (-4 *4 (-1018)) (-4 *4 (-823))
+ (-5 *2 (-2 (|:| |var| (-592 *1)) (|:| -3731 (-549))))
+ (-4 *1 (-423 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1018)) (-4 *4 (-823))
+ (-5 *2 (-2 (|:| |var| (-592 *1)) (|:| -3731 (-549))))
+ (-4 *1 (-423 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1079)) (-4 *3 (-823))
+ (-5 *2 (-2 (|:| |var| (-592 *1)) (|:| -3731 (-549))))
+ (-4 *1 (-423 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-863 *3)) (|:| -3731 (-747))))
+ (-5 *1 (-863 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-920 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-2 (|:| |var| *5) (|:| -3731 (-747))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1018))
+ (-4 *7 (-920 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -3731 (-549))))
+ (-5 *1 (-921 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-356)
+ (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $))
+ (-15 -1403 (*7 $))))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-892)) (|has| *1 (-6 -4328)) (-4 *1 (-397))))
+ ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-892)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-322 *2)) (-4 *2 (-821))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823))))
((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3))))
- ((*1 *1 *1) (-4 *1 (-1161))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3))))
+ ((*1 *1 *1) (-4 *1 (-1168))))
+(((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1231)) (-5 *1 (-372))))
+ ((*1 *2) (-12 (-5 *2 (-1231)) (-5 *1 (-372)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4))))
- (-5 *1 (-1102 *3 *4)) (-4 *3 (-13 (-1063) (-34)))
- (-4 *4 (-13 (-1063) (-34))))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-726)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-321)))))
-(((*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1173)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-1016)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-442)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112))
- (-5 *1 (-439 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-5 *2 (-458)) (-5 *1 (-1220)))))
-(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-302))))
+ (-12 (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4))))
+ (-5 *1 (-1108 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-541)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
+ (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-372)) (|:| |stabilityFactor| (-372))))
+ (-5 *1 (-199)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-400 (-549))) (-4 *1 (-539 *3))
+ (-4 *3 (-13 (-397) (-1165)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1165)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-539 *2)) (-4 *2 (-13 (-397) (-1165))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-411 (-1139 (-549)))) (-5 *1 (-185)) (-5 *3 (-549)))))
+(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-304))))
((*1 *2 *1)
- (-12 (-5 *2 (-745)) (-5 *1 (-1125 *3 *4)) (-14 *3 (-890))
- (-4 *4 (-1016)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3))
- (-4 *5 (-364 *3)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-747)) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-1018)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-621 *4)) (-4 *4 (-356)) (-5 *2 (-1226 *4))
+ (-5 *1 (-790 *4 *3)) (-4 *3 (-632 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-773 *2)) (-4 *2 (-170)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219))
+ (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219))
+ (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))
+ (-5 *3 (-621 (-256))) (-5 *1 (-254))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219))
+ (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219))
+ (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))
+ (-5 *1 (-256))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-549)) (-5 *4 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219))
+ (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219))
+ (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))
+ (-5 *2 (-1231)) (-5 *1 (-1228))))
((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016))
- (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1132 (-547))) (-5 *1 (-183)) (-5 *3 (-547))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-169))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1132 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -2945 (-219))
+ (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219))
+ (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))
+ (-5 *1 (-1228))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-372)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-217) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-217) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *2 (-1220)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *2 (-1227)) (-5 *1 (-248))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-846 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1061 (-372)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1227)) (-5 *1 (-248))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-846 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370)))
- (-5 *2 (-1220)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-848 (-1 (-219) (-219)))) (-5 *4 (-1061 (-372)))
+ (-5 *2 (-1227)) (-5 *1 (-248))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1221)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1061 (-372)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1228)) (-5 *1 (-248))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370)))
- (-5 *2 (-1221)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-850 (-1 (-219) (-219)))) (-5 *4 (-1061 (-372)))
+ (-5 *2 (-1228)) (-5 *1 (-248))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1221)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1228)) (-5 *1 (-248))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *2 (-1221)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *2 (-1228)) (-5 *1 (-248))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1221)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1228)) (-5 *1 (-248))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *2 (-1221)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *2 (-1228)) (-5 *1 (-248))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1221)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1228)) (-5 *1 (-248))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370)))
- (-5 *2 (-1221)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1061 (-372)))
+ (-5 *2 (-1228)) (-5 *1 (-248))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370)))
- (-5 *5 (-619 (-254))) (-5 *2 (-1221)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1061 (-372)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1228)) (-5 *1 (-248))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370)))
- (-5 *2 (-1221)) (-5 *1 (-246))))
+ (-12 (-5 *3 (-853 (-1 (-219) (-219) (-219)))) (-5 *4 (-1061 (-372)))
+ (-5 *2 (-1228)) (-5 *1 (-248))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-285 *7)) (-5 *4 (-1136)) (-5 *5 (-619 (-254)))
- (-4 *7 (-421 *6)) (-4 *6 (-13 (-539) (-821) (-1007 (-547))))
- (-5 *2 (-1220)) (-5 *1 (-247 *6 *7))))
+ (-12 (-5 *3 (-287 *7)) (-5 *4 (-1143)) (-5 *5 (-621 (-256)))
+ (-4 *7 (-423 *6)) (-4 *6 (-13 (-541) (-823) (-1009 (-549))))
+ (-5 *2 (-1227)) (-5 *1 (-249 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1220))
- (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063)))))
+ (-12 (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1227))
+ (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1067)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1056 (-370))) (-5 *2 (-1220)) (-5 *1 (-250 *3))
- (-4 *3 (-13 (-592 (-523)) (-1063)))))
+ (-12 (-5 *4 (-1059 (-372))) (-5 *2 (-1227)) (-5 *1 (-252 *3))
+ (-4 *3 (-13 (-594 (-525)) (-1067)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-846 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254)))
- (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1220))
- (-5 *1 (-250 *6))))
+ (-12 (-5 *3 (-848 *6)) (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256)))
+ (-4 *6 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1227))
+ (-5 *1 (-252 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-846 *5)) (-5 *4 (-1056 (-370)))
- (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1220))
- (-5 *1 (-250 *5))))
+ (-12 (-5 *3 (-848 *5)) (-5 *4 (-1059 (-372)))
+ (-4 *5 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1227))
+ (-5 *1 (-252 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254)))
- (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1221))
- (-5 *1 (-250 *6))))
+ (-12 (-5 *3 (-850 *6)) (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256)))
+ (-4 *6 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1228))
+ (-5 *1 (-252 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-370)))
- (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1221))
- (-5 *1 (-250 *5))))
+ (-12 (-5 *3 (-850 *5)) (-5 *4 (-1059 (-372)))
+ (-4 *5 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1228))
+ (-5 *1 (-252 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1221))
- (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063)))))
+ (-12 (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256))) (-5 *2 (-1228))
+ (-5 *1 (-252 *3)) (-4 *3 (-13 (-594 (-525)) (-1067)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1056 (-370))) (-5 *2 (-1221)) (-5 *1 (-250 *3))
- (-4 *3 (-13 (-592 (-523)) (-1063)))))
+ (-12 (-5 *4 (-1059 (-372))) (-5 *2 (-1228)) (-5 *1 (-252 *3))
+ (-4 *3 (-13 (-594 (-525)) (-1067)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254)))
- (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1221))
- (-5 *1 (-250 *6))))
+ (-12 (-5 *3 (-853 *6)) (-5 *4 (-1059 (-372))) (-5 *5 (-621 (-256)))
+ (-4 *6 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1228))
+ (-5 *1 (-252 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-370)))
- (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1221))
- (-5 *1 (-250 *5))))
+ (-12 (-5 *3 (-853 *5)) (-5 *4 (-1059 (-372)))
+ (-4 *5 (-13 (-594 (-525)) (-1067))) (-5 *2 (-1228))
+ (-5 *1 (-252 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 (-217))) (-5 *2 (-1220)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-621 (-219))) (-5 *2 (-1227)) (-5 *1 (-253))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-619 (-217))) (-5 *4 (-619 (-254))) (-5 *2 (-1220))
- (-5 *1 (-251))))
+ (-12 (-5 *3 (-621 (-219))) (-5 *4 (-621 (-256))) (-5 *2 (-1227))
+ (-5 *1 (-253))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 (-912 (-217)))) (-5 *2 (-1220)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-621 (-914 (-219)))) (-5 *2 (-1227)) (-5 *1 (-253))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-912 (-217)))) (-5 *4 (-619 (-254)))
- (-5 *2 (-1220)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-621 (-914 (-219)))) (-5 *4 (-621 (-256)))
+ (-5 *2 (-1227)) (-5 *1 (-253))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-619 (-217))) (-5 *2 (-1221)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-621 (-219))) (-5 *2 (-1228)) (-5 *1 (-253))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-619 (-217))) (-5 *4 (-619 (-254))) (-5 *2 (-1221))
- (-5 *1 (-251)))))
+ (-12 (-5 *3 (-621 (-219))) (-5 *4 (-621 (-256))) (-5 *2 (-1228))
+ (-5 *1 (-253)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4329)) (-4 *1 (-149 *3))
- (-4 *3 (-1173))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4337)) (-4 *1 (-149 *3))
+ (-4 *3 (-1180))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1173)) (-5 *1 (-579 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1180)) (-5 *1 (-581 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1173))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-650 *3)) (-4 *3 (-1180))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1166 *4 *5 *3 *2)) (-4 *4 (-539))
- (-4 *5 (-767)) (-4 *3 (-821)) (-4 *2 (-1030 *4 *5 *3))))
+ (|partial| -12 (-4 *1 (-1173 *4 *5 *3 *2)) (-4 *4 (-541))
+ (-4 *5 (-769)) (-4 *3 (-823)) (-4 *2 (-1032 *4 *5 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-5 *1 (-1170 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1065 (-1065 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1220))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1220))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1221))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1221)))))
+ (-12 (-5 *3 (-747)) (-5 *1 (-1177 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-621 (-621 (-914 (-219)))))
+ (-5 *2 (-621 (-1061 (-219)))) (-5 *1 (-899)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1227))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1227))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1228))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 (-256))) (-5 *1 (-1228)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1210 *3))
- (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1181 *3 *4))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1217 *3))
+ (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1188 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1179 *3))
- (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1202 *3 *4)) (-4 *5 (-952 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-322 *2)) (-4 *2 (-821))))
+ (-12 (-4 *3 (-38 (-400 (-549)))) (-4 *4 (-1186 *3))
+ (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1209 *3 *4)) (-4 *5 (-954 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-823))))
((*1 *1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1122 *3))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1128 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-38 (-398 (-547))))
- (-5 *1 (-1123 *3))))
- ((*1 *1 *1) (-4 *1 (-1161))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-1153)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1195 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1195 *3)))))
-(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457))))
- ((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457))))
- ((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370))
- (-5 *2
- (-2 (|:| -4153 *4) (|:| -3035 *4) (|:| |totalpts| (-547))
- (|:| |success| (-112))))
- (-5 *1 (-763)) (-5 *5 (-547)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-463))) ((*1 *1 *1 *1) (-4 *1 (-736))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1195 *5)) (-4 *5 (-354))
- (-5 *2 (-2 (|:| -4032 (-409 *3)) (|:| |special| (-409 *3))))
- (-5 *1 (-702 *5 *3)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-38 (-400 (-549))))
+ (-5 *1 (-1129 *3))))
+ ((*1 *1 *1) (-4 *1 (-1168))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-1160)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2))
- (-4 *4 (-364 *2)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *3 (-619 (-547)))
- (-5 *1 (-852)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-293))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-590 *3)) (-4 *3 (-821))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-114)) (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-821))
- (-5 *1 (-590 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1173)) (-5 *1 (-579 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1173)) (-5 *1 (-1117 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1119)))))
-(((*1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1) (-5 *1 (-832)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1132 (-547))) (-5 *3 (-547)) (-4 *1 (-838 *4)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016))
- (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))))
-(((*1 *1 *1) (-4 *1 (-605)))
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-356) (-821))) (-5 *2 (-411 *3))
+ (-5 *1 (-179 *4 *3)) (-4 *3 (-1202 (-167 *4))))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-845))
+ (-5 *5 (-892)) (-5 *6 (-621 (-256))) (-5 *2 (-1227))
+ (-5 *1 (-1230))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 (-621 (-914 (-219))))) (-5 *4 (-621 (-256)))
+ (-5 *2 (-1227)) (-5 *1 (-1230)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-880)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-411 (-1139 *7)))
+ (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-1139 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-880)) (-4 *5 (-1202 *4)) (-5 *2 (-411 (-1139 *5)))
+ (-5 *1 (-878 *4 *5)) (-5 *3 (-1139 *5)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4338)) (-4 *4 (-356)) (-4 *5 (-366 *4))
+ (-4 *6 (-366 *4)) (-5 *2 (-621 *6)) (-5 *1 (-512 *4 *5 *6 *3))
+ (-4 *3 (-663 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4338)) (-4 *4 (-541)) (-4 *5 (-366 *4))
+ (-4 *6 (-366 *4)) (-4 *7 (-963 *4)) (-4 *8 (-366 *7))
+ (-4 *9 (-366 *7)) (-5 *2 (-621 *6))
+ (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-663 *4 *5 *6))
+ (-4 *10 (-663 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-4 *3 (-541)) (-5 *2 (-621 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4))
+ (-4 *6 (-366 *4)) (-5 *2 (-621 *6)) (-5 *1 (-664 *4 *5 *6 *3))
+ (-4 *3 (-663 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-541))
+ (-5 *2 (-621 *7)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-747) *2)) (-5 *4 (-747)) (-4 *2 (-1067))
+ (-5 *1 (-654 *2))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971) (-1158))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-421 *3) (-971))) (-5 *1 (-267 *3 *2))
- (-4 *3 (-13 (-821) (-539))))))
+ (-12 (-5 *2 (-1 *3 (-747) *3)) (-4 *3 (-1067)) (-5 *1 (-658 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-621 *1)) (-4 *1 (-295))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-592 *3)) (-4 *3 (-823))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-114)) (-5 *3 (-621 *5)) (-5 *4 (-747)) (-4 *5 (-823))
+ (-5 *1 (-592 *5)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-619 *2) *2 *2 *2)) (-4 *2 (-1063))
+ (-12 (-5 *3 (-1 (-621 *2) *2 *2 *2)) (-4 *2 (-1067))
(-5 *1 (-102 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (-5 *1 (-102 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *4 (-539)) (-4 *5 (-1195 *4))
- (-5 *2 (-2 (|:| -4136 (-599 *4 *5)) (|:| -3965 (-398 *5))))
- (-5 *1 (-599 *4 *5)) (-5 *3 (-398 *5))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-102 *2)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1180)) (-5 *1 (-581 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1180)) (-5 *1 (-1123 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854))
+ (-5 *3 (-621 (-549)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1123 (-621 (-549)))) (-5 *1 (-854))
+ (-5 *3 (-621 (-549))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1067)) (-5 *1 (-935 *3 *2)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1067)) (-4 *4 (-1067))
+ (-4 *6 (-1067)) (-5 *2 (-1 *6 *5)) (-5 *1 (-660 *5 *4 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175 *3)) (-4 *3 (-945)))))
+(((*1 *1 *1) (-4 *1 (-607)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973) (-1165))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1123 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1241 *3 *4)) (-4 *3 (-823)) (-4 *4 (-170))
+ (-5 *1 (-640 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-619 (-1125 *3 *4))) (-5 *1 (-1125 *3 *4))
- (-14 *3 (-890)) (-4 *4 (-1016))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-442)) (-4 *3 (-1016))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1195 *3)))))
+ (|partial| -12 (-5 *2 (-640 *3 *4)) (-5 *1 (-1246 *3 *4))
+ (-4 *3 (-823)) (-4 *4 (-170)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-619 (-307 (-217)))) (-5 *2 (-112)) (-5 *1 (-258))))
- ((*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-112)) (-5 *1 (-258))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767))
- (-4 *5 (-821)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112))
- (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1166 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))
+ (-4 *5 (-1202 *4)) (-5 *2 (-621 (-629 (-400 *5))))
+ (-5 *1 (-633 *4 *5)) (-5 *3 (-629 (-400 *5))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-1148))) (-5 *1 (-1148))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-621 (-1148))) (-5 *1 (-1148)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767))
- (-5 *2 (-112)) (-5 *1 (-956 *3 *4 *5 *6))
- (-4 *6 (-918 *3 *5 *4))))
+ (|partial| -12 (-4 *3 (-444)) (-4 *4 (-823)) (-4 *5 (-769))
+ (-5 *2 (-112)) (-5 *1 (-958 *3 *4 *5 *6))
+ (-4 *6 (-920 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34)))
- (-4 *4 (-13 (-1063) (-34))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))))
- (-4 *3 (-13 (-27) (-1158) (-421 *6) (-10 -8 (-15 -3838 ($ *7)))))
- (-4 *7 (-819))
- (-4 *8
- (-13 (-1197 *3 *7) (-354) (-1158)
- (-10 -8 (-15 -3448 ($ $)) (-15 -3694 ($ $)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-13 (-1067) (-34)))
+ (-4 *4 (-13 (-1067) (-34))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1119)) (|:| |prob| (-1119))))))
- (-5 *1 (-413 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1119)) (-4 *9 (-952 *8))
- (-14 *10 (-1136)))))
-(((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-547))))
- ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-673)))))
+ (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-549)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-729)))))
+(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-549))))
+ ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-675)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1173)) (-5 *1 (-579 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1180)) (-5 *1 (-581 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1173)) (-5 *1 (-1117 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-112)) (-5 *1 (-861 *4))
- (-4 *4 (-1063)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-1063)))))
-(((*1 *1 *1) (-4 *1 (-1105))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016))
- (-4 *6 (-1195 *5)) (-5 *2 (-1132 (-1132 *7)))
- (-5 *1 (-490 *5 *6 *4 *7)) (-4 *4 (-1195 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1136)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-539)) (-4 *3 (-1016))
- (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-823 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-98 *5)) (-4 *5 (-539)) (-4 *5 (-1016))
- (-5 *2 (-2 (|:| -2235 *3) (|:| -2916 *3))) (-5 *1 (-824 *5 *3))
- (-4 *3 (-823 *5)))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1180)) (-5 *1 (-1123 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1150)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3521 (-665 (-400 (-923 *4))))
+ (|:| |vec| (-621 (-400 (-923 *4)))) (|:| -3123 (-747))
+ (|:| |rows| (-621 (-549))) (|:| |cols| (-621 (-549)))))
+ (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143))))
+ (-4 *6 (-769))
+ (-5 *2
+ (-2 (|:| |partsol| (-1226 (-400 (-923 *4))))
+ (|:| -1949 (-621 (-1226 (-400 (-923 *4)))))))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-920 *4 *6 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-549))) (-5 *1 (-241 *3 *4))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-1018))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-549))) (-14 *3 (-621 (-1143)))
+ (-5 *1 (-446 *3 *4 *5)) (-4 *4 (-1018))
+ (-4 *5 (-232 (-3775 *3) (-747)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-621 (-549))) (-5 *1 (-473 *3 *4))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-1018)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-549)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-219) (-219) (-219)))
+ (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined"))
+ (-5 *5 (-1061 (-219))) (-5 *6 (-621 (-256))) (-5 *2 (-1100 (-219)))
+ (-5 *1 (-673))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-914 (-219)) (-219) (-219))) (-5 *4 (-1061 (-219)))
+ (-5 *5 (-621 (-256))) (-5 *2 (-1100 (-219))) (-5 *1 (-673))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1100 (-219))) (-5 *3 (-1 (-914 (-219)) (-219) (-219)))
+ (-5 *4 (-1061 (-219))) (-5 *5 (-621 (-256))) (-5 *1 (-673)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-665 *3)) (-4 *3 (-1018)) (-5 *1 (-666 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2) (-12 (-5 *2 (-1114 (-1125))) (-5 *1 (-384)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1136)) (-5 *4 (-921 (-547))) (-5 *2 (-321))
- (-5 *1 (-323)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1158) (-971)))
- (-5 *1 (-173 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1132 *1)) (-4 *1 (-981)))))
+ (-12 (-5 *3 (-549)) (-5 *4 (-411 *2)) (-4 *2 (-920 *7 *5 *6))
+ (-5 *1 (-719 *5 *6 *7 *2)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-300)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-890)) (-4 *6 (-13 (-539) (-821)))
- (-5 *2 (-619 (-307 *6))) (-5 *1 (-213 *5 *6)) (-5 *3 (-307 *6))
- (-4 *5 (-1016))))
- ((*1 *2 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-539))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-565 *5)) (-4 *5 (-13 (-29 *4) (-1158)))
- (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547))))
- (-5 *2 (-619 *5)) (-5 *1 (-563 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-565 (-398 (-921 *4))))
- (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547))))
- (-5 *2 (-619 (-307 *4))) (-5 *1 (-568 *4))))
+ (-12 (-5 *4 (-892)) (-4 *6 (-13 (-541) (-823)))
+ (-5 *2 (-621 (-309 *6))) (-5 *1 (-215 *5 *6)) (-5 *3 (-309 *6))
+ (-4 *5 (-1018))))
+ ((*1 *2 *1) (-12 (-5 *1 (-411 *2)) (-4 *2 (-541))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-567 *5)) (-4 *5 (-13 (-29 *4) (-1165)))
+ (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
+ (-5 *2 (-621 *5)) (-5 *1 (-565 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-567 (-400 (-923 *4))))
+ (-4 *4 (-13 (-444) (-1009 (-549)) (-823) (-617 (-549))))
+ (-5 *2 (-621 (-309 *4))) (-5 *1 (-570 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-819)) (-4 *2 (-1110 *3))))
+ (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1116 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-619 *1)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819))
- (-4 *2 (-1110 *4))))
+ (-12 (-5 *3 (-621 *1)) (-4 *1 (-1062 *4 *2)) (-4 *4 (-821))
+ (-4 *2 (-1116 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158)))))
+ (-12 (-4 *3 (-13 (-823) (-444))) (-5 *1 (-1171 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-1165)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1234 (-1136) *3)) (-5 *1 (-1241 *3)) (-4 *3 (-1016))))
+ (-12 (-5 *2 (-1241 (-1143) *3)) (-5 *1 (-1248 *3)) (-4 *3 (-1018))))
((*1 *2 *1)
- (-12 (-5 *2 (-1234 *3 *4)) (-5 *1 (-1243 *3 *4)) (-4 *3 (-821))
- (-4 *4 (-1016)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))))
-(((*1 *2)
- (-12 (-4 *4 (-354)) (-5 *2 (-745)) (-5 *1 (-319 *3 *4))
- (-4 *3 (-320 *4))))
- ((*1 *2) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-5 *2 (-745)))))
+ (-12 (-5 *2 (-1241 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-823))
+ (-4 *4 (-1018)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-549))
+ (|:| -4024 (-621 (-2 (|:| |irr| *3) (|:| -2495 (-549)))))))
+ (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-549))
+ (|:| -4024 (-621 (-2 (|:| |irr| *3) (|:| -2495 (-549)))))))
+ (-5 *1 (-1191 *3)) (-4 *3 (-1202 (-549))))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -1278 (-619 (-832))) (|:| -2794 (-619 (-832)))
- (|:| |presup| (-619 (-832))) (|:| -2539 (-619 (-832)))
- (|:| |args| (-619 (-832)))))
- (-5 *1 (-1136))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-1136)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1132 *9)) (-5 *4 (-619 *7)) (-4 *7 (-821))
- (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-4 *8 (-298))
- (-5 *2 (-619 (-745))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *5 (-745)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1219 *5)) (-4 *5 (-615 *4)) (-4 *4 (-539))
- (-5 *2 (-1219 *4)) (-5 *1 (-614 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-514)))))
+ (-2 (|:| -2895 (-621 (-834))) (|:| -2861 (-621 (-834)))
+ (|:| |presup| (-621 (-834))) (|:| -3395 (-621 (-834)))
+ (|:| |args| (-621 (-834)))))
+ (-5 *1 (-1143))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-621 (-834)))) (-5 *1 (-1143)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-897)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-139))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-142)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3727 (-758 *3)) (|:| |coef1| (-758 *3))
+ (|:| |coef2| (-758 *3))))
+ (-5 *1 (-758 *3)) (-4 *3 (-541)) (-4 *3 (-1018))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-541)) (-4 *3 (-1018)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *2 (-2 (|:| -3727 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1032 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-546)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-619 (-590 *4))) (-4 *4 (-421 *3)) (-4 *3 (-821))
- (-5 *1 (-556 *3 *4))))
+ (-12 (-5 *2 (-621 (-592 *4))) (-4 *4 (-423 *3)) (-4 *3 (-823))
+ (-5 *1 (-558 *3 *4))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4))
- (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
+ (-12 (-5 *1 (-860 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018))))
+ ((*1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1018)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-823)) (-4 *3 (-1018))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1249 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-819)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-817)))))
-(((*1 *1 *1) (-5 *1 (-1028))))
-(((*1 *2) (-12 (-5 *2 (-807 (-547))) (-5 *1 (-521))))
- ((*1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1063)))))
-(((*1 *2 *1) (-12 (-5 *2 (-619 (-921 (-547)))) (-5 *1 (-428))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1136)) (-5 *4 (-663 (-217))) (-5 *2 (-1067))
- (-5 *1 (-734))))
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *2 (-2 (|:| -2681 (-621 *6)) (|:| -1359 (-621 *6)))))))
+(((*1 *2) (-12 (-5 *2 (-809 (-549))) (-5 *1 (-523))))
+ ((*1 *1) (-12 (-5 *1 (-809 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-892)) (-5 *2 (-1139 *4)) (-5 *1 (-569 *4))
+ (-4 *4 (-342)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-823) (-541))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3))
+ (-4 *3 (-13 (-423 *4) (-973))))))
+(((*1 *2 *2) (-12 (-5 *2 (-621 (-665 (-309 (-549))))) (-5 *1 (-1002)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-520 *3)) (-4 *3 (-13 (-703) (-25))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-947 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-541))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-356)) (-4 *7 (-1202 *5)) (-4 *4 (-701 *5 *7))
+ (-5 *2 (-2 (|:| -3521 (-665 *6)) (|:| |vec| (-1226 *5))))
+ (-5 *1 (-787 *5 *6 *7 *4 *3)) (-4 *6 (-632 *5)) (-4 *3 (-632 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 *8)) (-4 *8 (-920 *5 *7 *6))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143))))
+ (-4 *7 (-769))
+ (-5 *2
+ (-621
+ (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8))
+ (|:| |wcond| (-621 (-923 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1226 (-400 (-923 *5))))
+ (|:| -1949 (-621 (-1226 (-400 (-923 *5))))))))))
+ (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-621 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1136)) (-5 *4 (-663 (-547))) (-5 *2 (-1067))
- (-5 *1 (-734)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) (-4 *7 (-821))
- (-4 *8 (-298)) (-4 *6 (-767)) (-4 *9 (-918 *8 *6 *7))
+ (-12 (-5 *3 (-665 *8)) (-5 *4 (-621 (-1143))) (-4 *8 (-920 *5 *7 *6))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143))))
+ (-4 *7 (-769))
(-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-619 (-2 (|:| -2115 (-1132 *9)) (|:| -3322 (-547)))))))
- (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1132 *9)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-619 (-996 *5 *6 *7 *3))) (-5 *1 (-996 *5 *6 *7 *3))
- (-4 *3 (-1030 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-619 *6)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-442))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *3 (-442)) (-4 *4 (-767))
- (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-5 *2 (-619 (-1107 *5 *6 *7 *3))) (-5 *1 (-1107 *5 *6 *7 *3))
- (-4 *3 (-1030 *5 *6 *7)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-340)) (-5 *2 (-1219 *1))))
+ (-621
+ (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8))
+ (|:| |wcond| (-621 (-923 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1226 (-400 (-923 *5))))
+ (|:| -1949 (-621 (-1226 (-400 (-923 *5))))))))))
+ (-5 *1 (-895 *5 *6 *7 *8))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-143)) (-4 *1 (-878))
- (-5 *2 (-1219 *1)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1016)) (-5 *2 (-1219 *3)) (-5 *1 (-687 *3 *4))
- (-4 *4 (-1195 *3)))))
-(((*1 *1 *1) (-4 *1 (-605)))
+ (-12 (-5 *3 (-665 *7)) (-4 *7 (-920 *4 *6 *5))
+ (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143))))
+ (-4 *6 (-769))
+ (-5 *2
+ (-621
+ (-2 (|:| |eqzro| (-621 *7)) (|:| |neqzro| (-621 *7))
+ (|:| |wcond| (-621 (-923 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1226 (-400 (-923 *4))))
+ (|:| -1949 (-621 (-1226 (-400 (-923 *4))))))))))
+ (-5 *1 (-895 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-665 *9)) (-5 *5 (-892)) (-4 *9 (-920 *6 *8 *7))
+ (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-823) (-594 (-1143))))
+ (-4 *8 (-769))
+ (-5 *2
+ (-621
+ (-2 (|:| |eqzro| (-621 *9)) (|:| |neqzro| (-621 *9))
+ (|:| |wcond| (-621 (-923 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1226 (-400 (-923 *6))))
+ (|:| -1949 (-621 (-1226 (-400 (-923 *6))))))))))
+ (-5 *1 (-895 *6 *7 *8 *9)) (-5 *4 (-621 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-665 *9)) (-5 *4 (-621 (-1143))) (-5 *5 (-892))
+ (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145)))
+ (-4 *7 (-13 (-823) (-594 (-1143)))) (-4 *8 (-769))
+ (-5 *2
+ (-621
+ (-2 (|:| |eqzro| (-621 *9)) (|:| |neqzro| (-621 *9))
+ (|:| |wcond| (-621 (-923 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1226 (-400 (-923 *6))))
+ (|:| -1949 (-621 (-1226 (-400 (-923 *6))))))))))
+ (-5 *1 (-895 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 *8)) (-5 *4 (-892)) (-4 *8 (-920 *5 *7 *6))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143))))
+ (-4 *7 (-769))
+ (-5 *2
+ (-621
+ (-2 (|:| |eqzro| (-621 *8)) (|:| |neqzro| (-621 *8))
+ (|:| |wcond| (-621 (-923 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1226 (-400 (-923 *5))))
+ (|:| -1949 (-621 (-1226 (-400 (-923 *5))))))))))
+ (-5 *1 (-895 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-665 *9)) (-5 *4 (-621 *9)) (-5 *5 (-1125))
+ (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145)))
+ (-4 *7 (-13 (-823) (-594 (-1143)))) (-4 *8 (-769)) (-5 *2 (-549))
+ (-5 *1 (-895 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-665 *9)) (-5 *4 (-621 (-1143))) (-5 *5 (-1125))
+ (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145)))
+ (-4 *7 (-13 (-823) (-594 (-1143)))) (-4 *8 (-769)) (-5 *2 (-549))
+ (-5 *1 (-895 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 *8)) (-5 *4 (-1125)) (-4 *8 (-920 *5 *7 *6))
+ (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-823) (-594 (-1143))))
+ (-4 *7 (-769)) (-5 *2 (-549)) (-5 *1 (-895 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-665 *10)) (-5 *4 (-621 *10)) (-5 *5 (-892))
+ (-5 *6 (-1125)) (-4 *10 (-920 *7 *9 *8)) (-4 *7 (-13 (-300) (-145)))
+ (-4 *8 (-13 (-823) (-594 (-1143)))) (-4 *9 (-769)) (-5 *2 (-549))
+ (-5 *1 (-895 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-665 *10)) (-5 *4 (-621 (-1143))) (-5 *5 (-892))
+ (-5 *6 (-1125)) (-4 *10 (-920 *7 *9 *8)) (-4 *7 (-13 (-300) (-145)))
+ (-4 *8 (-13 (-823) (-594 (-1143)))) (-4 *9 (-769)) (-5 *2 (-549))
+ (-5 *1 (-895 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-665 *9)) (-5 *4 (-892)) (-5 *5 (-1125))
+ (-4 *9 (-920 *6 *8 *7)) (-4 *6 (-13 (-300) (-145)))
+ (-4 *7 (-13 (-823) (-594 (-1143)))) (-4 *8 (-769)) (-5 *2 (-549))
+ (-5 *1 (-895 *6 *7 *8 *9)))))
+(((*1 *1 *1) (-4 *1 (-607)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971) (-1158))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-995 (-814 (-547))))
- (-5 *3 (-1117 (-2 (|:| |k| (-547)) (|:| |c| *4)))) (-4 *4 (-1016))
- (-5 *1 (-574 *4)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-608 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973) (-1165))))))
+(((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-518 *3)) (-4 *3 (-13 (-701) (-25))))))
-(((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-745))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-393)) (-5 *2 (-745)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-979 *3)) (-4 *3 (-1173)) (-4 *3 (-1063))
- (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))))
+ (-12 (-4 *4 (-1018))
+ (-4 *2 (-13 (-397) (-1009 *4) (-356) (-1165) (-277)))
+ (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-269 *3 *2))
+ (-4 *2 (-13 (-423 *3) (-973))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1236)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-421 *3) (-971))) (-5 *1 (-267 *3 *2))
- (-4 *3 (-13 (-821) (-539)))))
+ (-12 (-4 *2 (-13 (-423 *3) (-973))) (-5 *1 (-269 *3 *2))
+ (-4 *3 (-13 (-823) (-541)))))
((*1 *1)
- (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1136)))
- (-14 *3 (-619 (-1136))) (-4 *4 (-378))))
- ((*1 *1) (-5 *1 (-467))) ((*1 *1) (-4 *1 (-1158))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1136)) (-5 *1 (-271))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-547) (-217) (-1136) (-1119) (-1141)))
- (-5 *1 (-1141)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1136)))))
+ (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-621 (-1143)))
+ (-14 *3 (-621 (-1143))) (-4 *4 (-380))))
+ ((*1 *1) (-5 *1 (-469))) ((*1 *1) (-4 *1 (-1165))))
(((*1 *2 *1)
- (-12 (-4 *1 (-582 *2 *3)) (-4 *3 (-1173)) (-4 *2 (-1063))
- (-4 *2 (-821)))))
+ (-12 (-5 *2 (-2 (|:| |preimage| (-621 *3)) (|:| |image| (-621 *3))))
+ (-5 *1 (-876 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-508)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1158))) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-1 (-372))) (-5 *1 (-1011)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))))
+(((*1 *2 *3) (-12 (-5 *3 (-167 (-549))) (-5 *2 (-112)) (-5 *1 (-438))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-495 (-400 (-549)) (-234 *5 (-747)) (-836 *4)
+ (-241 *4 (-400 (-549)))))
+ (-14 *4 (-621 (-1143))) (-14 *5 (-747)) (-5 *2 (-112))
+ (-5 *1 (-496 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-932 *3)) (-4 *3 (-534))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1184)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1125)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1231))
+ (-5 *1 (-1039 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1125)) (-4 *4 (-444)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-1032 *4 *5 *6)) (-5 *2 (-1231))
+ (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1038 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-12 (-4 *1 (-418 *2)) (-4 *2 (-1067)) (-4 *2 (-361)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-471 *4 *5)) (-14 *4 (-619 (-1136))) (-4 *5 (-1016))
- (-5 *2 (-239 *4 *5)) (-5 *1 (-913 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1219 (-1136))) (-5 *3 (-1219 (-443 *4 *5 *6 *7)))
- (-5 *1 (-443 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890))
- (-14 *6 (-619 (-1136))) (-14 *7 (-1219 (-663 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-1219 (-443 *4 *5 *6 *7)))
- (-5 *1 (-443 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890))
- (-14 *6 (-619 *2)) (-14 *7 (-1219 (-663 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-443 *3 *4 *5 *6))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136)))
- (-14 *6 (-1219 (-663 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1219 (-1136))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1136)))
- (-14 *6 (-1219 (-663 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1136)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169))
- (-14 *4 (-890)) (-14 *5 (-619 *2)) (-14 *6 (-1219 (-663 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-443 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-890))
- (-14 *4 (-619 (-1136))) (-14 *5 (-1219 (-663 *2))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-619 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-1073)))))
-(((*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-619 (-114))))))
+ (-12 (-4 *4 (-880)) (-4 *5 (-769)) (-4 *6 (-823))
+ (-4 *7 (-920 *4 *5 *6)) (-5 *2 (-411 (-1139 *7)))
+ (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-1139 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-880)) (-4 *5 (-1202 *4)) (-5 *2 (-411 (-1139 *5)))
+ (-5 *1 (-878 *4 *5)) (-5 *3 (-1139 *5)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *5 (-665 (-219))) (-5 *4 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-732)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016))
- (-4 *5 (-821)) (-5 *2 (-921 *4))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018))
+ (-4 *5 (-823)) (-5 *2 (-923 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016))
- (-4 *5 (-821)) (-5 *2 (-921 *4))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-717 *4 *5)) (-4 *4 (-1018))
+ (-4 *5 (-823)) (-5 *2 (-923 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-745)) (-4 *1 (-1210 *4)) (-4 *4 (-1016))
- (-5 *2 (-921 *4))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-1217 *4)) (-4 *4 (-1018))
+ (-5 *2 (-923 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-745)) (-4 *1 (-1210 *4)) (-4 *4 (-1016))
- (-5 *2 (-921 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-398 (-547))))
- (-5 *2 (-2 (|:| -1632 (-1117 *4)) (|:| -1644 (-1117 *4))))
- (-5 *1 (-1123 *4)) (-5 *3 (-1117 *4)))))
+ (-12 (-5 *3 (-747)) (-4 *1 (-1217 *4)) (-4 *4 (-1018))
+ (-5 *2 (-923 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1131 *2 *3)) (-14 *2 (-892)) (-4 *3 (-1018)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-1219 (-619 (-547)))) (-5 *1 (-470))))
+ (-12 (-5 *3 (-747)) (-5 *2 (-1226 (-621 (-549)))) (-5 *1 (-472))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1173)) (-5 *1 (-579 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1180)) (-5 *1 (-581 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1173)) (-5 *1 (-1117 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1173)) (-5 *1 (-1117 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *4 *3 *5))
- (-4 *3 (-1195 *4))
- (-4 *5 (-13 (-395) (-1007 *4) (-354) (-1158) (-275))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004))
- (-5 *1 (-723)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-340)) (-5 *2 (-112)) (-5 *1 (-208 *4 *3))
- (-4 *3 (-1195 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1117 (-619 (-547)))) (-5 *1 (-852)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222))))
- ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1222)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-745)) (-4 *1 (-1195 *3)) (-4 *3 (-1016)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-48)))) (-5 *1 (-48))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1180)) (-5 *1 (-1123 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1180)) (-5 *1 (-1123 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-747)) (-4 *4 (-13 (-1018) (-694 (-400 (-549)))))
+ (-4 *5 (-823)) (-5 *1 (-1242 *4 *5 *2)) (-4 *2 (-1247 *5 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1180)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 (-1143))) (-4 *6 (-356))
+ (-5 *2 (-621 (-287 (-923 *6)))) (-5 *1 (-527 *5 *6 *7))
+ (-4 *5 (-444)) (-4 *7 (-13 (-356) (-821))))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-621 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-423 *4) (-973))) (-4 *4 (-13 (-823) (-541)))
+ (-5 *1 (-269 *4 *2)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-372) (-372))) (-5 *4 (-372))
+ (-5 *2
+ (-2 (|:| -4161 *4) (|:| -3042 *4) (|:| |totalpts| (-549))
+ (|:| |success| (-112))))
+ (-5 *1 (-765)) (-5 *5 (-549)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-747)) (-5 *4 (-892)) (-5 *2 (-1231)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-747)) (-5 *4 (-892)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863 *3)) (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-4 *3 (-961 *2)) (-4 *4 (-1195 *3)) (-4 *2 (-298))
- (-5 *1 (-404 *2 *3 *4 *5)) (-4 *5 (-13 (-400 *3 *4) (-1007 *3)))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1092 (-549) (-592 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-539)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-590 *1)))
- (-4 *1 (-421 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-484)))) (-5 *1 (-484))))
+ (-12 (-4 *3 (-963 *2)) (-4 *4 (-1202 *3)) (-4 *2 (-300))
+ (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-402 *3 *4) (-1009 *3)))))
((*1 *2 *1)
- (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4))
- (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (-12 (-4 *3 (-541)) (-4 *3 (-823)) (-5 *2 (-1092 *3 (-592 *1)))
+ (-4 *1 (-423 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092 (-549) (-592 (-486)))) (-5 *1 (-486))))
((*1 *2 *1)
- (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4))
- (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1119)) (-5 *5 (-663 (-217))) (-5 *6 (-663 (-547)))
- (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-732)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1236 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))
- (-5 *2 (-2 (|:| |k| (-793 *3)) (|:| |c| *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-523)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767))
- (-5 *1 (-493 *4 *5 *6 *2)) (-4 *2 (-918 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *1 (-493 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-217) (-217) (-217) (-217))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217) (-217))) (-5 *1 (-254))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *1 (-254)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-821)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-767)) (-4 *2 (-918 *4 *5 *6)) (-5 *1 (-439 *4 *5 *6 *2))
- (-4 *4 (-442)) (-4 *6 (-821)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1119)) (-5 *4 (-547)) (-5 *5 (-663 (-217)))
- (-5 *2 (-1004)) (-5 *1 (-729)))))
-(((*1 *1 *1) (-5 *1 (-1028))))
-(((*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-48)))) (-5 *1 (-48))))
+ (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4))
+ (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-703) *4))
+ (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-694 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))))
+(((*1 *2 *3) (-12 (-5 *3 (-914 *2)) (-5 *1 (-953 *2)) (-4 *2 (-1018)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-1146)) (-5 *3 (-1143)))))
+(((*1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-736)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1353 *4)))
+ (-5 *1 (-940 *4 *3)) (-4 *3 (-1202 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-52)) (-5 *1 (-807)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-621 (-2 (|:| |totdeg| (-747)) (|:| -3028 *3))))
+ (-5 *4 (-747)) (-4 *3 (-920 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-769))
+ (-4 *7 (-823)) (-5 *1 (-441 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *1) (-5 *1 (-155))))
+(((*1 *2 *1) (-12 (-5 *2 (-1092 (-549) (-592 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1195 *4))
- (-5 *2 (-1219 *6)) (-5 *1 (-404 *3 *4 *5 *6))
- (-4 *6 (-13 (-400 *4 *5) (-1007 *4)))))
+ (-12 (-4 *3 (-300)) (-4 *4 (-963 *3)) (-4 *5 (-1202 *4))
+ (-5 *2 (-1226 *6)) (-5 *1 (-406 *3 *4 *5 *6))
+ (-4 *6 (-13 (-402 *4 *5) (-1009 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-1016)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-590 *1)))
- (-4 *1 (-421 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-484)))) (-5 *1 (-484))))
+ (-12 (-4 *3 (-1018)) (-4 *3 (-823)) (-5 *2 (-1092 *3 (-592 *1)))
+ (-4 *1 (-423 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092 (-549) (-592 (-486)))) (-5 *1 (-486))))
((*1 *2 *1)
- (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-597 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-701) *3))))
+ (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-599 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-703) *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-169)) (-4 *2 (-692 *3)) (-5 *1 (-636 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-701) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1195 *4))))
+ (-12 (-4 *3 (-170)) (-4 *2 (-694 *3)) (-5 *1 (-638 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-703) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-541)))))
+(((*1 *1 *1) (-5 *1 (-219))) ((*1 *1 *1) (-5 *1 (-372)))
+ ((*1 *1) (-5 *1 (-372))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *2 (-621 *4)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1202 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547)))))))
- (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1195 *3)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-722)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3840 *6) (|:| |sol?| (-112))) (-547)
- *6))
- (-4 *6 (-354)) (-4 *7 (-1195 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-398 *7)) (|:| |a0| *6))
- (-2 (|:| -2510 (-398 *7)) (|:| |coeff| (-398 *7))) "failed"))
- (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-523)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1219 (-619 (-2 (|:| -4153 *4) (|:| -3487 (-1082))))))
- (-4 *4 (-340)) (-5 *2 (-1224)) (-5 *1 (-517 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-1177)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 (-398 *4)))
- (-5 *2 (-1219 *1)) (-4 *1 (-333 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-298) (-10 -8 (-15 -3299 ((-409 $) $)))))
- (-4 *4 (-1195 *3))
+ (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *2 (-621 *3)) (-5 *1 (-1095 *4 *3)) (-4 *4 (-1202 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-745))
(-5 *2
- (-2 (|:| -1917 (-663 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-663 *3))))
- (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-400 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1195 (-547)))
+ (-2 (|:| -1391 (-372)) (|:| -2481 (-1125))
+ (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006))))
+ (-5 *1 (-550))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-745)) (-5 *4 (-1030))
(-5 *2
- (-2 (|:| -1917 (-663 (-547))) (|:| |basisDen| (-547))
- (|:| |basisInv| (-663 (-547)))))
- (-5 *1 (-742 *3 *4)) (-4 *4 (-400 (-547) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-340)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 *4))
+ (-2 (|:| -1391 (-372)) (|:| -2481 (-1125))
+ (|:| |explanations| (-621 (-1125))) (|:| |extra| (-1006))))
+ (-5 *1 (-550))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-763)) (-5 *3 (-1030))
+ (-5 *4
+ (-2 (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-621 (-1061 (-816 (-219))))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
(-5 *2
- (-2 (|:| -1917 (-663 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-663 *4))))
- (-5 *1 (-954 *3 *4 *5 *6)) (-4 *6 (-699 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-340)) (-4 *4 (-1195 *3)) (-4 *5 (-1195 *4))
+ (-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))
+ (|:| |extra| (-1006))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-763)) (-5 *3 (-1030))
+ (-5 *4
+ (-2 (|:| |var| (-1143)) (|:| |fn| (-309 (-219)))
+ (|:| -1372 (-1061 (-816 (-219)))) (|:| |abserr| (-219))
+ (|:| |relerr| (-219))))
(-5 *2
- (-2 (|:| -1917 (-663 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-663 *4))))
- (-5 *1 (-1228 *3 *4 *5 *6)) (-4 *6 (-400 *4 *5)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-745)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-766)) (-4 *3 (-169)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-240)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-821))
- (-5 *2 (-2 (|:| |val| *1) (|:| -3322 (-547)))) (-4 *1 (-421 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -3322 (-861 *3))))
- (-5 *1 (-861 *3)) (-4 *3 (-1063))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016))
- (-4 *7 (-918 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -3322 (-547))))
- (-5 *1 (-919 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-354)
- (-10 -8 (-15 -3838 ($ *7)) (-15 -1386 (*7 $))
- (-15 -1396 (*7 $))))))))
-(((*1 *1) (-5 *1 (-458))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-890)) (-5 *2 (-1132 *4)) (-5 *1 (-348 *4))
- (-4 *4 (-340)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1224)) (-5 *1 (-1220))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-890)) (-5 *4 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1220))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-1221)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1195 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-590 *2)) (-4 *2 (-13 (-27) (-1158) (-421 *4)))
- (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))))
- (-5 *1 (-268 *4 *2)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-547)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1173))
- (-4 *3 (-364 *4)) (-4 *5 (-364 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-663 (-547))) (-5 *5 (-112)) (-5 *7 (-663 (-217)))
- (-5 *3 (-547)) (-5 *6 (-217)) (-5 *2 (-1004)) (-5 *1 (-729)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-354)) (-4 *3 (-1016))
- (-5 *1 (-1121 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-184))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-291))))
+ (-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))
+ (|:| |extra| (-1006))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-776)) (-5 *3 (-1030))
+ (-5 *4
+ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219))
+ (|:| |fn| (-1226 (-309 (-219)))) (|:| |yinit| (-621 (-219)))
+ (|:| |intvals| (-621 (-219))) (|:| |g| (-309 (-219)))
+ (|:| |abserr| (-219)) (|:| |relerr| (-219))))
+ (-5 *2 (-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))))))
((*1 *2 *3)
- (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-296)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *6 (-821))
- (-5 *2 (-112)) (-5 *1 (-439 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-745)) (-4 *5 (-539))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-938 *5 *3)) (-4 *3 (-1195 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4)
- (-239 *4 (-398 (-547)))))
- (-14 *4 (-619 (-1136))) (-14 *5 (-745)) (-5 *2 (-112))
- (-5 *1 (-494 *4 *5)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1166 *3 *4 *5 *2)) (-4 *3 (-539))
- (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1224)) (-5 *1 (-796)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-409 *3)) (-4 *3 (-539)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-663 *5))) (-4 *5 (-298)) (-4 *5 (-1016))
- (-5 *2 (-1219 (-1219 *5))) (-5 *1 (-998 *5)) (-5 *4 (-1219 *5)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3))
- (-4 *3 (-1063)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-619 (-590 *6))) (-5 *4 (-1136)) (-5 *2 (-590 *6))
- (-4 *6 (-421 *5)) (-4 *5 (-821)) (-5 *1 (-556 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-745)) (-5 *2 (-1132 *4)) (-5 *1 (-517 *4))
- (-4 *4 (-340)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821))
- (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1))) (-4 *1 (-918 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2235 *1) (|:| -2916 *1)))
- (-4 *1 (-1195 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1063))
- (-4 *4 (-130)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1119)) (-4 *1 (-355 *2 *4)) (-4 *2 (-1063))
- (-4 *4 (-1063))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1119)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1224))
- (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1119)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1224))
- (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-112))
- (-5 *1 (-646 *4)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-1119)) (-5 *5 (-663 (-217)))
- (-5 *2 (-1004)) (-5 *1 (-722)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-547)) (-5 *3 (-890)) (-4 *1 (-395))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-547)) (-4 *1 (-395))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063))
- (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1136)) (-5 *3 (-370)) (-5 *1 (-1028)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1138 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-307 (-370))) (-5 *2 (-307 (-217))) (-5 *1 (-296)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991)))
- (-14 *5 (-619 (-1136)))
+ (-12 (-5 *3 (-784))
(-5 *2
- (-619 (-2 (|:| -3117 (-1132 *4)) (|:| -3220 (-619 (-921 *4))))))
- (-5 *1 (-1245 *4 *5 *6)) (-14 *6 (-619 (-1136)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991)))
+ (-2 (|:| -1391 (-372)) (|:| -2481 (-1125))
+ (|:| |explanations| (-621 (-1125)))))
+ (-5 *1 (-781))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-784)) (-5 *4 (-1030))
(-5 *2
- (-619 (-2 (|:| -3117 (-1132 *5)) (|:| -3220 (-619 (-921 *5))))))
- (-5 *1 (-1245 *5 *6 *7)) (-5 *3 (-619 (-921 *5)))
- (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991)))
+ (-2 (|:| -1391 (-372)) (|:| -2481 (-1125))
+ (|:| |explanations| (-621 (-1125)))))
+ (-5 *1 (-781))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-812)) (-5 *3 (-1030))
+ (-5 *4
+ (-2 (|:| |lfn| (-621 (-309 (-219)))) (|:| -3060 (-621 (-219)))))
+ (-5 *2 (-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-812)) (-5 *3 (-1030))
+ (-5 *4
+ (-2 (|:| |fn| (-309 (-219))) (|:| -3060 (-621 (-219)))
+ (|:| |lb| (-621 (-816 (-219)))) (|:| |cf| (-621 (-309 (-219))))
+ (|:| |ub| (-621 (-816 (-219))))))
+ (-5 *2 (-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-814))
(-5 *2
- (-619 (-2 (|:| -3117 (-1132 *5)) (|:| -3220 (-619 (-921 *5))))))
- (-5 *1 (-1245 *5 *6 *7)) (-5 *3 (-619 (-921 *5)))
- (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136)))))
+ (-2 (|:| -1391 (-372)) (|:| -2481 (-1125))
+ (|:| |explanations| (-621 (-1125)))))
+ (-5 *1 (-813))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991)))
+ (-12 (-5 *3 (-814)) (-5 *4 (-1030))
(-5 *2
- (-619 (-2 (|:| -3117 (-1132 *5)) (|:| -3220 (-619 (-921 *5))))))
- (-5 *1 (-1245 *5 *6 *7)) (-5 *3 (-619 (-921 *5)))
- (-14 *6 (-619 (-1136))) (-14 *7 (-619 (-1136)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-819) (-298) (-145) (-991)))
+ (-2 (|:| -1391 (-372)) (|:| -2481 (-1125))
+ (|:| |explanations| (-621 (-1125)))))
+ (-5 *1 (-813))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-866)) (-5 *3 (-1030))
+ (-5 *4
+ (-2 (|:| |pde| (-621 (-309 (-219))))
+ (|:| |constraints|
+ (-621
+ (-2 (|:| |start| (-219)) (|:| |finish| (-219))
+ (|:| |grid| (-747)) (|:| |boundaryType| (-549))
+ (|:| |dStart| (-665 (-219))) (|:| |dFinish| (-665 (-219))))))
+ (|:| |f| (-621 (-621 (-309 (-219))))) (|:| |st| (-1125))
+ (|:| |tol| (-219))))
+ (-5 *2 (-2 (|:| -1391 (-372)) (|:| |explanations| (-1125))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-869))
(-5 *2
- (-619 (-2 (|:| -3117 (-1132 *4)) (|:| -3220 (-619 (-921 *4))))))
- (-5 *1 (-1245 *4 *5 *6)) (-5 *3 (-619 (-921 *4)))
- (-14 *5 (-619 (-1136))) (-14 *6 (-619 (-1136))))))
-(((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1219 *1)) (-4 *1 (-358 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1877 (-663 (-398 (-921 *4))))
- (|:| |vec| (-619 (-398 (-921 *4)))) (|:| -3116 (-745))
- (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))
- (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1136))))
- (-4 *6 (-767))
+ (-2 (|:| -1391 (-372)) (|:| -2481 (-1125))
+ (|:| |explanations| (-621 (-1125)))))
+ (-5 *1 (-868))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-869)) (-5 *4 (-1030))
(-5 *2
- (-2 (|:| |partsol| (-1219 (-398 (-921 *4))))
- (|:| -1917 (-619 (-1219 (-398 (-921 *4)))))))
- (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5))
- (-14 *3 (-547)) (-14 *4 (-745)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
+ (-2 (|:| -1391 (-372)) (|:| -2481 (-1125))
+ (|:| |explanations| (-621 (-1125)))))
+ (-5 *1 (-868)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-285 (-921 (-547))))
- (-5 *2
- (-2 (|:| |varOrder| (-619 (-1136)))
- (|:| |inhom| (-3 (-619 (-1219 (-745))) "failed"))
- (|:| |hom| (-619 (-1219 (-745))))))
- (-5 *1 (-228)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *8 (-1030 *5 *6 *7))
+ (-12 (-5 *3 (-898))
(-5 *2
- (-2 (|:| |val| (-619 *8)) (|:| |towers| (-619 (-996 *5 *6 *7 *8)))))
- (-5 *1 (-996 *5 *6 *7 *8)) (-5 *3 (-619 *8))))
+ (-2 (|:| |brans| (-621 (-621 (-914 (-219)))))
+ (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))))
+ (-5 *1 (-151))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *8 (-1030 *5 *6 *7))
+ (-12 (-5 *3 (-898)) (-5 *4 (-400 (-549)))
(-5 *2
- (-2 (|:| |val| (-619 *8))
- (|:| |towers| (-619 (-1107 *5 *6 *7 *8)))))
- (-5 *1 (-1107 *5 *6 *7 *8)) (-5 *3 (-619 *8)))))
-(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1173))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821))))
- ((*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-547)) (-5 *2 (-619 (-619 (-217)))) (-5 *1 (-1169)))))
+ (-2 (|:| |brans| (-621 (-621 (-914 (-219)))))
+ (|:| |xValues| (-1061 (-219))) (|:| |yValues| (-1061 (-219)))))
+ (-5 *1 (-151)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1125)) (-5 *2 (-1231)) (-5 *1 (-1228)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1117 (-217))) (-5 *2 (-619 (-1119))) (-5 *1 (-184))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1117 (-217))) (-5 *2 (-619 (-1119))) (-5 *1 (-291))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1117 (-217))) (-5 *2 (-619 (-1119))) (-5 *1 (-296)))))
-(((*1 *1 *1) (-4 *1 (-635))) ((*1 *1 *1) (-5 *1 (-1082))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217))
- (-5 *2 (-1004)) (-5 *1 (-726)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1117 (-2 (|:| |k| (-547)) (|:| |c| *6))))
- (-5 *4 (-995 (-814 (-547)))) (-5 *5 (-1136)) (-5 *7 (-398 (-547)))
- (-4 *6 (-1016)) (-5 *2 (-832)) (-5 *1 (-574 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1974 *4))))
- (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-539))
- (-4 *8 (-918 *7 *5 *6))
- (-5 *2 (-2 (|:| -3322 (-745)) (|:| -1563 *3) (|:| |radicand| *3)))
- (-5 *1 (-922 *5 *6 *7 *8 *3)) (-5 *4 (-745))
- (-4 *3
- (-13 (-354)
- (-10 -8 (-15 -1386 (*8 $)) (-15 -1396 (*8 $)) (-15 -3838 ($ *8))))))))
-(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544))))
+ (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1184)) (-4 *3 (-1202 *4))
+ (-4 *5 (-1202 (-400 *3))) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *2 (-1132 (-398 (-547)))) (-5 *1 (-911)) (-5 *3 (-547)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-169)) (-5 *1 (-280 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1195 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-298) (-145))) (-4 *4 (-13 (-821) (-592 (-1136))))
- (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *2)) (-4 *2 (-918 *3 *5 *4)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-112)) (-5 *5 (-663 (-166 (-217))))
- (-5 *2 (-1004)) (-5 *1 (-730)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-619
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-745)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-767)) (-4 *6 (-918 *4 *3 *5)) (-4 *4 (-442)) (-4 *5 (-821))
- (-5 *1 (-439 *4 *3 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1177)) (-4 *3 (-1195 *4))
- (-4 *5 (-1195 (-398 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1218 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1143))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-732)))))
+(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-845)))))
+(((*1 *1) (-5 *1 (-1228))))
(((*1 *2 *1)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4)))
- (-5 *2 (-2 (|:| |num| (-1219 *4)) (|:| |den| *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6))
- (-5 *2 (-619 (-2 (|:| -2674 *1) (|:| -1352 (-619 *7)))))
- (-5 *3 (-619 *7)) (-4 *1 (-1166 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-621 (-914 *4))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-892))
+ (-4 *4 (-1018)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *1 (-959 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-621 *7)) (-4 *7 (-1038 *3 *4 *5 *6)) (-4 *3 (-444))
+ (-4 *4 (-769)) (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5))
+ (-5 *1 (-1074 *3 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3))
- (-4 *3 (-936)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -2510 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-354)) (-5 *1 (-557 *4 *2)) (-4 *2 (-1195 *4)))))
+ (-12 (-5 *2 (-621 (-549))) (-5 *1 (-975 *3)) (-14 *3 (-549)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-167 (-219))) (-5 *5 (-549)) (-5 *6 (-1125))
+ (-5 *3 (-219)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-665 (-400 (-923 (-549)))))
+ (-5 *2 (-665 (-309 (-549)))) (-5 *1 (-1002)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016))
- (-14 *4 (-619 (-1136)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1173))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821)))
- (-14 *4 (-619 (-1136)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862 *3)) (-4 *3 (-821)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-169)) (-5 *1 (-144 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-169)) (-4 *2 (-1195 *4)) (-5 *1 (-174 *4 *2 *3))
- (-4 *3 (-699 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-398 (-921 *5)))) (-5 *4 (-1136))
- (-5 *2 (-921 *5)) (-5 *1 (-283 *5)) (-4 *5 (-442))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-398 (-921 *4)))) (-5 *2 (-921 *4))
- (-5 *1 (-283 *4)) (-4 *4 (-442))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-361 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1195 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-166 (-398 (-547)))))
- (-5 *2 (-921 (-166 (-398 (-547))))) (-5 *1 (-739 *4))
- (-4 *4 (-13 (-354) (-819)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-166 (-398 (-547))))) (-5 *4 (-1136))
- (-5 *2 (-921 (-166 (-398 (-547))))) (-5 *1 (-739 *5))
- (-4 *5 (-13 (-354) (-819)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *2 (-921 (-398 (-547))))
- (-5 *1 (-753 *4)) (-4 *4 (-13 (-354) (-819)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *4 (-1136))
- (-5 *2 (-921 (-398 (-547)))) (-5 *1 (-753 *5))
- (-4 *5 (-13 (-354) (-819))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6))
- (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890))
- (-14 *5 (-619 (-1136))) (-14 *6 (-1219 (-663 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))
- ((*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1173)) (-5 *2 (-745)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1136)) (-5 *3 (-425)) (-4 *5 (-821))
- (-5 *1 (-1069 *5 *4)) (-4 *4 (-421 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1224)) (-5 *1 (-734)))))
+ (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-541))
+ (-5 *2 (-1139 *3)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-444)) (-4 *3 (-769)) (-4 *5 (-823)) (-5 *2 (-112))
+ (-5 *1 (-441 *4 *3 *5 *6)) (-4 *6 (-920 *4 *3 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1067)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1218 *2 *3 *4)) (-4 *2 (-1018)) (-14 *3 (-1143))
+ (-14 *4 *2))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1211 *3 *4 *5)) (-4 *3 (-13 (-356) (-823)))
+ (-14 *4 (-1143)) (-14 *5 *3) (-5 *1 (-312 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-372))) (-5 *1 (-1011)) (-5 *3 (-372)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-538)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-1061 (-400 (-549))))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-621 (-1061 (-372)))) (-5 *1 (-256)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1161))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-1161)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1106))))
+(((*1 *2 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018))))
+ ((*1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-437 *3)) (-4 *3 (-1018)))))
(((*1 *2)
- (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1177)) (-4 *4 (-1195 *3))
- (-4 *5 (-1195 (-398 *4))) (-5 *2 (-663 (-398 *4))))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-730)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1004)) (-5 *3 (-1136)) (-5 *1 (-258)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821))
- (-4 *3 (-1030 *5 *6 *7))
- (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1974 *4))))
- (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-619 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-421 *4) (-971))) (-4 *4 (-13 (-821) (-539)))
- (-5 *1 (-267 *4 *2)))))
+ (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4))
+ (-4 *3 (-360 *4))))
+ ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-665 *3))
+ (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $)))))
+ (-4 *4 (-1202 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-665 *3))
+ (-4 *3 (-13 (-300) (-10 -8 (-15 -2402 ((-411 $) $)))))
+ (-4 *4 (-1202 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-402 *3 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767))
- (-4 *4 (-821)) (-4 *2 (-539)))))
-(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-318 *3)) (-4 *3 (-1173))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-745)) (-5 *1 (-505 *3 *4)) (-4 *3 (-1173))
- (-14 *4 (-547)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-370))))
- ((*1 *1 *1 *1) (-4 *1 (-532)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354))))
- ((*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-745)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-619 *6) "failed") (-547) *6 *6)) (-4 *6 (-354))
- (-4 *7 (-1195 *6))
- (-5 *2 (-2 (|:| |answer| (-565 (-398 *7))) (|:| |a0| *6)))
- (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-539)) (-5 *2 (-619 *3)) (-5 *1 (-938 *4 *3))
- (-4 *3 (-1195 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-142))))
- ((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-142)))))
+ (-12 (-5 *1 (-576 *2)) (-4 *2 (-38 (-400 (-549)))) (-4 *2 (-1018)))))
+(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-219)) (-5 *1 (-1229))))
+ ((*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1229)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *9 (-1038 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769))
+ (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1036 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *8)) (-5 *4 (-621 *9)) (-4 *8 (-1032 *5 *6 *7))
+ (-4 *9 (-1076 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-769))
+ (-4 *7 (-823)) (-5 *2 (-747)) (-5 *1 (-1112 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-769))
+ (-4 *3 (-13 (-823) (-10 -8 (-15 -2845 ((-1143) $))))) (-4 *5 (-541))
+ (-5 *1 (-709 *4 *3 *5 *2)) (-4 *2 (-920 (-400 (-923 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1018)) (-4 *5 (-769))
+ (-4 *3
+ (-13 (-823)
+ (-10 -8 (-15 -2845 ((-1143) $))
+ (-15 -3011 ((-3 $ "failed") (-1143))))))
+ (-5 *1 (-955 *4 *5 *3 *2)) (-4 *2 (-920 (-923 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-621 *6))
+ (-4 *6
+ (-13 (-823)
+ (-10 -8 (-15 -2845 ((-1143) $))
+ (-15 -3011 ((-3 $ "failed") (-1143))))))
+ (-4 *4 (-1018)) (-4 *5 (-769)) (-5 *1 (-955 *4 *5 *6 *2))
+ (-4 *2 (-920 (-923 *4) *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1180)) (-5 *1 (-368 *4 *2))
+ (-4 *2 (-13 (-366 *4) (-10 -7 (-6 -4338)))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1125)) (-4 *1 (-357 *2 *4)) (-4 *2 (-1067))
+ (-4 *4 (-1067))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1067)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-354))
- (-5 *1 (-510 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5))))
+ (-12 (-4 *4 (-356)) (-4 *4 (-541)) (-4 *5 (-1202 *4))
+ (-5 *2 (-2 (|:| -2285 (-601 *4 *5)) (|:| -3658 (-400 *5))))
+ (-5 *1 (-601 *4 *5)) (-5 *3 (-400 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2))
- (|has| *2 (-6 (-4331 "*"))) (-4 *2 (-1016))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-169))
- (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5))))
+ (-12 (-5 *2 (-621 (-1131 *3 *4))) (-5 *1 (-1131 *3 *4))
+ (-14 *3 (-892)) (-4 *4 (-1018))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-444)) (-4 *3 (-1018))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1202 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-287 *2)) (-4 *2 (-703)) (-4 *2 (-1180)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-621 (-621 *3))) (-4 *3 (-823)) (-5 *1 (-1151 *3)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-892)) (-4 *1 (-397))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-397))))
((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2))
- (-4 *5 (-230 *3 *2)) (|has| *2 (-6 (-4331 "*"))) (-4 *2 (-1016)))))
+ (-12 (-4 *1 (-1070 *3 *4 *5 *2 *6)) (-4 *3 (-1067)) (-4 *4 (-1067))
+ (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1067)))))
+(((*1 *1 *1) (-5 *1 (-1030))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823)) (-4 *3 (-170))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-541)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1202 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-541))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1202 *2)) (-4 *2 (-1018)) (-4 *2 (-170)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1063)) (-4 *6 (-1063))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *5 (-1063)))))
+ (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143))))
+ (-4 *6 (-769)) (-5 *2 (-400 (-923 *4))) (-5 *1 (-895 *4 *5 *6 *3))
+ (-4 *3 (-920 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-665 *7)) (-4 *7 (-920 *4 *6 *5))
+ (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143))))
+ (-4 *6 (-769)) (-5 *2 (-665 (-400 (-923 *4))))
+ (-5 *1 (-895 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *6 *5))
+ (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143))))
+ (-4 *6 (-769)) (-5 *2 (-621 (-400 (-923 *4))))
+ (-5 *1 (-895 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1088 *2)) (-4 *2 (-1180)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4))
- (-5 *2
- (-3 (|:| |overq| (-1132 (-398 (-547))))
- (|:| |overan| (-1132 (-48))) (|:| -4143 (-112))))
- (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1195 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-719 *3)) (-4 *3 (-169)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1173))
- (-4 *5 (-364 *4)) (-4 *2 (-364 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *6 *7 *2)) (-4 *6 (-1016))
- (-4 *7 (-230 *5 *6)) (-4 *2 (-230 *4 *6)))))
+ (-12 (-5 *3 (-549)) (-4 *4 (-769)) (-4 *5 (-823)) (-4 *2 (-1018))
+ (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-920 *2 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-619 *3)) (-4 *3 (-298)) (-5 *1 (-176 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-923)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-532))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821))
- (-5 *2 (-2 (|:| -1563 *1) (|:| |gap| (-745)) (|:| -2916 *1)))
- (-4 *1 (-1030 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))
- (-5 *2 (-2 (|:| -1563 *1) (|:| |gap| (-745)) (|:| -2916 *1)))
- (-4 *1 (-1030 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1238 *3)) (-4 *3 (-354)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1119)) (-4 *4 (-13 (-298) (-145)))
- (-4 *5 (-13 (-821) (-592 (-1136)))) (-4 *6 (-767))
- (-5 *2
- (-619
- (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7))
- (|:| |wcond| (-619 (-921 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1219 (-398 (-921 *4))))
- (|:| -1917 (-619 (-1219 (-398 (-921 *4))))))))))
- (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))))
+ (|partial| -12 (-5 *2 (-621 (-1139 *5))) (-5 *3 (-1139 *5))
+ (-4 *5 (-164 *4)) (-4 *4 (-534)) (-5 *1 (-147 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-621 *3)) (-4 *3 (-1202 *5))
+ (-4 *5 (-1202 *4)) (-4 *4 (-342)) (-5 *1 (-351 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-621 (-1139 (-549)))) (-5 *3 (-1139 (-549)))
+ (-5 *1 (-557))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-621 (-1139 *1))) (-5 *3 (-1139 *1))
+ (-4 *1 (-880)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-354) (-819)))
- (-5 *2 (-619 (-2 (|:| -2534 (-619 *3)) (|:| -3035 *5))))
- (-5 *1 (-177 *5 *3)) (-4 *3 (-1195 (-166 *5)))))
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-413 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1165) (-423 *3)))
+ (-14 *4 (-1143)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-4 *2 (-13 (-27) (-1165) (-423 *3) (-10 -8 (-15 -3846 ($ *4)))))
+ (-4 *4 (-821))
+ (-4 *5
+ (-13 (-1204 *2 *4) (-356) (-1165)
+ (-10 -8 (-15 -3456 ($ $)) (-15 -3893 ($ $)))))
+ (-5 *1 (-415 *3 *2 *4 *5 *6 *7)) (-4 *6 (-954 *5)) (-14 *7 (-1143)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1981 *8)))
+ (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-959 *4 *5 *6 *7 *8))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-354) (-819)))
- (-5 *2 (-619 (-2 (|:| -2534 (-619 *3)) (|:| -3035 *4))))
- (-5 *1 (-177 *4 *3)) (-4 *3 (-1195 (-166 *4))))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-727)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3))
- (-4 *3 (-1195 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-730)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7))
- (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1))
- (-4 *1 (-1036 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442))
- (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1))
- (-4 *1 (-1036 *4 *5 *6 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-547)) (-5 *2 (-1224)) (-5 *1 (-873 *4))
- (-4 *4 (-1063))))
- ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))))
-(((*1 *1 *1 *1) (-5 *1 (-832))))
+ (-12 (-5 *3 (-2 (|:| |val| (-621 *7)) (|:| -1981 *8)))
+ (-4 *7 (-1032 *4 *5 *6)) (-4 *8 (-1038 *4 *5 *6 *7)) (-4 *4 (-444))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))
+ (-5 *1 (-1074 *4 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766))
- (-5 *2 (-619 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063))
- (-5 *2 (-619 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1117 *3)) (-5 *1 (-575 *3)) (-4 *3 (-1016))))
+ (-12 (-4 *3 (-1018)) (-5 *2 (-621 *1)) (-4 *1 (-1101 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3)) (-4 *3 (-1180)))))
+(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1180))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1032 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1180)))))
+(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229))))
+ ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1229)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1018)) (-5 *1 (-865 *2 *3)) (-4 *2 (-1202 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1123 *3)) (-4 *3 (-1018)) (-5 *1 (-1127 *3)))))
+(((*1 *1 *1) (-4 *1 (-637))) ((*1 *1 *1) (-5 *1 (-1087))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-621 (-1143))) (-4 *5 (-1018))
+ (-5 *2 (-473 *4 *5)) (-5 *1 (-915 *4 *5)))))
+(((*1 *1) (-5 *1 (-799))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-320 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-549)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1180)) (-14 *4 *2))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-400 (-549))) (-5 *1 (-995 *3))
+ (-4 *3 (-13 (-821) (-356) (-993)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-821) (-356))) (-5 *1 (-1028 *2 *3))
+ (-4 *3 (-1202 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1035 *2 *3)) (-4 *2 (-13 (-821) (-356)))
+ (-4 *3 (-1202 *2)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-621 *1)) (-4 *1 (-1032 *4 *5 *6)) (-4 *4 (-1018))
+ (-4 *5 (-769)) (-4 *6 (-823)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1032 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-619 *3)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016))
- (-4 *4 (-701))))
- ((*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-619 *3))))
+ (-12 (-4 *1 (-1173 *3 *4 *5 *6)) (-4 *3 (-541)) (-4 *4 (-769))
+ (-4 *5 (-823)) (-4 *6 (-1032 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1173 *4 *5 *6 *3)) (-4 *4 (-541)) (-4 *5 (-769))
+ (-4 *6 (-823)) (-4 *3 (-1032 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-898)))))
+(((*1 *2 *1) (-12 (-5 *2 (-411 *3)) (-5 *1 (-885 *3)) (-4 *3 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-621
+ (-2 (|:| -3123 (-747))
+ (|:| |eqns|
+ (-621
+ (-2 (|:| |det| *7) (|:| |rows| (-621 (-549)))
+ (|:| |cols| (-621 (-549))))))
+ (|:| |fgb| (-621 *7)))))
+ (-4 *7 (-920 *4 *6 *5)) (-4 *4 (-13 (-300) (-145)))
+ (-4 *5 (-13 (-823) (-594 (-1143)))) (-4 *6 (-769)) (-5 *2 (-747))
+ (-5 *1 (-895 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1139 *1)) (-5 *4 (-1143)) (-4 *1 (-27))
+ (-5 *2 (-621 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1139 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-923 *1)) (-4 *1 (-27)) (-5 *2 (-621 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-823) (-541))) (-5 *2 (-621 *1))
+ (-4 *1 (-29 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1210 *3)) (-4 *3 (-1016)) (-5 *2 (-1117 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-532))))
- ((*1 *1 *1) (-4 *1 (-1025))))
-(((*1 *2) (-12 (-5 *2 (-619 *3)) (-5 *1 (-1048 *3)) (-4 *3 (-131)))))
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *2 (-621 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-309 (-219))) (-5 *4 (-621 (-1143)))
+ (-5 *5 (-1061 (-816 (-219)))) (-5 *2 (-1123 (-219))) (-5 *1 (-293)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-1219
- (-2 (|:| |scaleX| (-217)) (|:| |scaleY| (-217))
- (|:| |deltaX| (-217)) (|:| |deltaY| (-217)) (|:| -2371 (-547))
- (|:| -3850 (-547)) (|:| |spline| (-547)) (|:| -1373 (-547))
- (|:| |axesColor| (-843)) (|:| -2029 (-547))
- (|:| |unitsColor| (-843)) (|:| |showing| (-547)))))
- (-5 *1 (-1220)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-354) (-145) (-1007 (-547))))
- (-4 *5 (-1195 *4))
- (-5 *2 (-2 (|:| -2510 (-398 *5)) (|:| |coeff| (-398 *5))))
- (-5 *1 (-551 *4 *5)) (-5 *3 (-398 *5)))))
+ (-12 (-5 *2 (-834)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-747))
+ (-14 *4 (-747)) (-4 *5 (-170)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-736)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1136))
+ (-12 (-5 *3 (-629 (-400 *2))) (-4 *2 (-1202 *4)) (-5 *1 (-786 *4 *2))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-630 *2 (-400 *2))) (-4 *2 (-1202 *4))
+ (-5 *1 (-786 *4 *2))
+ (-4 *4 (-13 (-356) (-145) (-1009 (-549)) (-1009 (-400 (-549))))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-621 *7)) (-5 *5 (-621 (-621 *8))) (-4 *7 (-823))
+ (-4 *8 (-300)) (-4 *6 (-769)) (-4 *9 (-920 *8 *6 *7))
(-5 *2
- (-2 (|:| |zeros| (-1117 (-217))) (|:| |ones| (-1117 (-217)))
- (|:| |singularities| (-1117 (-217)))))
- (-5 *1 (-104)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1173)) (-5 *2 (-547)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-619 (-471 *5 *6))) (-5 *4 (-834 *5))
- (-14 *5 (-619 (-1136))) (-5 *2 (-471 *5 *6)) (-5 *1 (-607 *5 *6))
- (-4 *6 (-442))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-619 (-471 *5 *6))) (-5 *4 (-834 *5))
- (-14 *5 (-619 (-1136))) (-5 *2 (-471 *5 *6)) (-5 *1 (-607 *5 *6))
- (-4 *6 (-442)))))
-(((*1 *2 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-388)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-102 *3)) (-4 *3 (-1063)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821))
- (-4 *7 (-1030 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7))))
- (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))))
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-621 (-2 (|:| -2121 (-1139 *9)) (|:| -3731 (-549)))))))
+ (-5 *1 (-719 *6 *7 *8 *9)) (-5 *3 (-1139 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-863 *4)) (-4 *4 (-1067)) (-5 *2 (-621 *5))
+ (-5 *1 (-861 *4 *5)) (-4 *5 (-1180)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-356)) (-4 *5 (-366 *4)) (-4 *6 (-366 *4))
+ (-5 *2 (-747)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-663 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-663 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-366 *3))
+ (-4 *5 (-366 *3)) (-4 *3 (-541)) (-5 *2 (-747))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *4 (-170)) (-4 *5 (-366 *4))
+ (-4 *6 (-366 *4)) (-5 *2 (-747)) (-5 *1 (-664 *4 *5 *6 *3))
+ (-4 *3 (-663 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *5 (-1018))
+ (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-541))
+ (-5 *2 (-747)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1143))
+ (-4 *4 (-13 (-541) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1165) (-423 *4)))))
+ ((*1 *1 *1) (-5 *1 (-372)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-444)) (-4 *6 (-769)) (-4 *7 (-823))
+ (-4 *3 (-1032 *5 *6 *7))
+ (-5 *2 (-621 (-2 (|:| |val| *3) (|:| -1981 *4))))
+ (-5 *1 (-752 *5 *6 *7 *3 *4)) (-4 *4 (-1038 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-747)) (-5 *1 (-863 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1088 *3)) (-4 *3 (-1180)) (-5 *2 (-747)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1143)) (-5 *3 (-427)) (-4 *5 (-823))
+ (-5 *1 (-1073 *5 *4)) (-4 *4 (-423 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-798)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1180)) (-5 *1 (-180 *3 *2)) (-4 *2 (-650 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-621 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-621 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5))
+ (-14 *3 (-549)) (-14 *4 (-747)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))))
+ (-12 (-5 *3 (-219)) (-5 *4 (-549)) (-5 *2 (-1006)) (-5 *1 (-735)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1184)) (-4 *5 (-1202 (-400 *2)))
+ (-4 *2 (-1202 *4)) (-5 *1 (-334 *3 *4 *2 *5))
+ (-4 *3 (-335 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1184))
+ (-4 *4 (-1202 (-400 *2))) (-4 *2 (-1202 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-621 *6)) (-4 *6 (-1032 *3 *4 *5)) (-4 *3 (-145))
+ (-4 *3 (-300)) (-4 *3 (-541)) (-4 *4 (-769)) (-4 *5 (-823))
+ (-5 *1 (-948 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-621 (-1143))) (|:| |pred| (-52))))
+ (-5 *1 (-863 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-549))) (-4 *3 (-1018)) (-5 *1 (-98 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-372))))
+ ((*1 *1 *1 *1) (-4 *1 (-534)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *1 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-356))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-747)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-891)) (-5 *2 (-2 (|:| -1570 (-621 *1)) (|:| -4248 *1)))
+ (-5 *3 (-621 *1)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-619 (-619 *6))) (-4 *6 (-918 *3 *5 *4))
- (-4 *3 (-13 (-298) (-145))) (-4 *4 (-13 (-821) (-592 (-1136))))
- (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-605)))
+ (-12 (-4 *3 (-541)) (-4 *4 (-963 *3)) (-5 *1 (-140 *3 *4 *2))
+ (-4 *2 (-366 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-541)) (-4 *5 (-963 *4)) (-4 *2 (-366 *4))
+ (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-366 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-665 *5)) (-4 *5 (-963 *4)) (-4 *4 (-541))
+ (-5 *2 (-665 *4)) (-5 *1 (-669 *4 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2))
- (-4 *2 (-13 (-421 *3) (-971) (-1158))))))
-(((*1 *2 *1) (-12 (-5 *2 (-748)) (-5 *1 (-52)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004))
- (-5 *1 (-730)))))
-(((*1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-233)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1117 *3)) (-4 *3 (-1016)) (-5 *1 (-1121 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1211 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1136))
- (-14 *4 *2))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1164 *3 *2))
- (-4 *2 (-13 (-421 *3) (-1158))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1173)))))
+ (-12 (-4 *3 (-541)) (-4 *4 (-963 *3)) (-5 *1 (-1195 *3 *4 *2))
+ (-4 *2 (-1202 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-142))))
+ ((*1 *1 *2) (-12 (-5 *2 (-747)) (-5 *1 (-142)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-797)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))))
+(((*1 *2) (-12 (-5 *2 (-621 (-1143))) (-5 *1 (-104)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1180)) (-4 *2 (-823))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1180))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-939 *2)) (-4 *2 (-823)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130))
+ (-4 *2 (-1067))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-354 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-379 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-411 *2)) (-4 *2 (-541))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-549)) (-4 *2 (-1067)) (-5 *1 (-625 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-795 *2)) (-4 *2 (-823)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-747)) (-5 *1 (-651 *3)) (-4 *3 (-1018))
+ (-4 *3 (-1067)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-547)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016)))))
-(((*1 *1)
- (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *2) (-12 (-5 *2 (-619 (-1119))) (-5 *1 (-321))))
- ((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-321)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1177)) (-4 *5 (-1195 *4))
+ (|partial| -12 (-4 *4 (-13 (-541) (-145)))
+ (-5 *2 (-2 (|:| -3838 *3) (|:| -3848 *3))) (-5 *1 (-1196 *4 *3))
+ (-4 *3 (-1202 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-621 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1181 *2))
+ (-4 *2 (-1067))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-621 *2)) (-4 *2 (-1067)) (-4 *2 (-823))
+ (-5 *1 (-1181 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-400 (-923 (-167 (-549))))) (-5 *2 (-621 (-167 *4)))
+ (-5 *1 (-371 *4)) (-4 *4 (-13 (-356) (-821)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-621 (-400 (-923 (-167 (-549))))))
+ (-5 *4 (-621 (-1143))) (-5 *2 (-621 (-621 (-167 *5))))
+ (-5 *1 (-371 *5)) (-4 *5 (-13 (-356) (-821))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-287 (-816 *3))) (-4 *3 (-13 (-27) (-1165) (-423 *5)))
+ (-4 *5 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
(-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-398 *5))
- (|:| |c2| (-398 *5)) (|:| |deg| (-745))))
- (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1195 (-398 *5))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112)))))
+ (-3 (-816 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-816 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-816 *3) "failed")))
+ "failed"))
+ (-5 *1 (-614 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-287 *3)) (-5 *5 (-1125))
+ (-4 *3 (-13 (-27) (-1165) (-423 *6)))
+ (-4 *6 (-13 (-444) (-823) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-816 *3)) (-5 *1 (-614 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-287 (-816 (-923 *5)))) (-4 *5 (-444))
+ (-5 *2
+ (-3 (-816 (-400 (-923 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-816 (-400 (-923 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-816 (-400 (-923 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-615 *5)) (-5 *3 (-400 (-923 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-287 (-400 (-923 *5)))) (-5 *3 (-400 (-923 *5)))
+ (-4 *5 (-444))
+ (-5 *2
+ (-3 (-816 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-816 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-816 *3) "failed")))
+ "failed"))
+ (-5 *1 (-615 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-287 (-400 (-923 *6)))) (-5 *5 (-1125))
+ (-5 *3 (-400 (-923 *6))) (-4 *6 (-444)) (-5 *2 (-816 *3))
+ (-5 *1 (-615 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-541)) (-5 *2 (-621 (-747))) (-5 *1 (-940 *4 *3))
+ (-4 *3 (-1202 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1143))
+ (-4 *5 (-13 (-444) (-823) (-145) (-1009 (-549)) (-617 (-549))))
+ (-5 *2 (-567 *3)) (-5 *1 (-542 *5 *3))
+ (-4 *3 (-13 (-27) (-1165) (-423 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-621 (-1179))) (-5 *1 (-515)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-665 *7)) (-5 *3 (-621 *7)) (-4 *7 (-920 *4 *6 *5))
+ (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-823) (-594 (-1143))))
+ (-4 *6 (-769)) (-5 *1 (-895 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1143)) (-5 *2 (-108)) (-5 *1 (-173))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1143)) (-5 *2 (-108)) (-5 *1 (-1052)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-823)) (-4 *5 (-769))
+ (-4 *6 (-541)) (-4 *7 (-920 *6 *5 *3))
+ (-5 *1 (-454 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1009 (-400 (-549))) (-356)
+ (-10 -8 (-15 -3846 ($ *7)) (-15 -1394 (*7 $))
+ (-15 -1403 (*7 $))))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-621 (-549))) (-5 *1 (-1077)) (-5 *3 (-549)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1219 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169))
- (-5 *2 (-663 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))))
-((-1252 . 733671) (-1253 . 733616) (-1254 . 733383) (-1255 . 733272)
- (-1256 . 733182) (-1257 . 733094) (-1258 . 733037) (-1259 . 732928)
- (-1260 . 732755) (-1261 . 732705) (-1262 . 732595) (-1263 . 732544)
- (-1264 . 732400) (-1265 . 732215) (-1266 . 732127) (-1267 . 731913)
- (-1268 . 731839) (-1269 . 731779) (-1270 . 731458) (-1271 . 731386)
- (-1272 . 731209) (-1273 . 730994) (-1274 . 730634) (-1275 . 730563)
- (-1276 . 730463) (-1277 . 729952) (-1278 . 729918) (-1279 . 729750)
- (-1280 . 729664) (-1281 . 729607) (-1282 . 729527) (-1283 . 728904)
- (-1284 . 728794) (-1285 . 728694) (-1286 . 728581) (-1287 . 728235)
- (-1288 . 728149) (-1289 . 727722) (-1290 . 727651) (-1291 . 727318)
- (-1292 . 727281) (-1293 . 727228) (-1294 . 727150) (-1295 . 726898)
- (-1296 . 726825) (-1297 . 726585) (-1298 . 726445) (-1299 . 725921)
- (-1300 . 725818) (-1301 . 725715) (-1302 . 725472) (-1303 . 725223)
- (-1304 . 725059) (-1305 . 724946) (-1306 . 724858) (-1307 . 724667)
- (-1308 . 724449) (-1309 . 724377) (-1310 . 724261) (-1311 . 724127)
- (-1312 . 724077) (-1313 . 723958) (-1314 . 723817) (-1315 . 723635)
- (-1316 . 722550) (-1317 . 722046) (-1318 . 721865) (-1319 . 721770)
- (-1320 . 721564) (-1321 . 721398) (-1322 . 721015) (-1323 . 720776)
- (-1324 . 720690) (-1325 . 720540) (-1326 . 720383) (-1327 . 719723)
- (-1328 . 719589) (-1329 . 719258) (-1330 . 719043) (-1331 . 718834)
- (-1332 . 718706) (-1333 . 718646) (-1334 . 718395) (-1335 . 718311)
- (-1336 . 718104) (-1337 . 717601) (-1338 . 717384) (-1339 . 717204)
- (-1340 . 717088) (-1341 . 716640) (-1342 . 716569) (-1343 . 715272)
- (-1344 . 715189) (-1345 . 715105) (-1346 . 715028) (-1347 . 714954)
- (-1348 . 714692) (-1349 . 714563) (-1350 . 714470) (-1351 . 714078)
- (-1352 . 713904) (-1353 . 713803) (-1354 . 713551) (-1355 . 713457)
- (-1356 . 713311) (-1357 . 713204) (-1358 . 713054) (-1359 . 712981)
- (-1360 . 712909) (-1361 . 712832) (-1362 . 712691) (-1363 . 712493)
- (-1364 . 712333) (-1365 . 712095) (-1366 . 711984) (-1367 . 711736)
- (-1368 . 711637) (-1369 . 711454) (-1370 . 711331) (-1371 . 711164)
- (-1372 . 711084) (-1373 . 710830) (-1374 . 710736) (-1375 . 710708)
- (-1376 . 710123) (-1377 . 710071) (-1378 . 709990) (-1379 . 709875)
- (-1380 . 708877) (-1381 . 708735) (-1382 . 708682) (-1383 . 708332)
- (-1384 . 708225) (-1385 . 707934) (-1386 . 707233) (-1387 . 707201)
- (-1388 . 707060) (-1389 . 706837) (-1390 . 706767) (-1391 . 706556)
- (-1392 . 706285) (-1393 . 706232) (-1394 . 706106) (-1395 . 705952)
- (-1396 . 705274) (-1397 . 705187) (-1398 . 705086) (-1399 . 705019)
- (-1400 . 704922) (-1401 . 704869) (-1402 . 704765) (-1403 . 704694)
- (-1404 . 704536) (-1405 . 704221) (-1406 . 704066) (-1407 . 703640)
- (-1408 . 703581) (-1409 . 703494) (-1410 . 702498) (-1411 . 702368)
- (-1412 . 702279) (-1413 . 702191) (-1414 . 702138) (-1415 . 702060)
- (-1416 . 701965) (-1417 . 701912) (-1418 . 701757) (-1419 . 701492)
- (-1420 . 701418) (-1421 . 701323) (-1422 . 701208) (-1423 . 701120)
- (-1424 . 700973) (-1425 . 700829) (-1426 . 700727) (-1427 . 700536)
- (-1428 . 699878) (-1429 . 699560) (-1430 . 699300) (-1431 . 699193)
- (-1432 . 699161) (-1433 . 698973) (-1434 . 698793) (-1435 . 698432)
- (-1436 . 698379) (-1437 . 698247) (-1438 . 698041) (-1439 . 697763)
- (-1440 . 697604) (-1441 . 697555) (-1442 . 696545) (-1443 . 696479)
- (-1444 . 696380) (-1445 . 696282) (-1446 . 695996) (-1447 . 695933)
- (-1448 . 695757) (-1449 . 695725) (-1450 . 695656) (-1451 . 695555)
- (-1452 . 695484) (-1453 . 695317) (-1454 . 695215) (-1455 . 694723)
- (-1456 . 694448) (-1457 . 694339) (-1458 . 693697) (-1459 . 693405)
- (-1460 . 692982) (-1461 . 692799) (-1462 . 692695) (-1463 . 692551)
- (-1464 . 692424) (-1465 . 692281) (-1466 . 692227) (-1467 . 692060)
- (-1468 . 691953) (-1469 . 691646) (-1470 . 691549) (-1471 . 691446)
- (-1472 . 691278) (-1473 . 691213) (-1474 . 691073) (-1475 . 690854)
- (-1476 . 690708) (-1477 . 690414) (-1478 . 690353) (-1479 . 689612)
- (-1480 . 689372) (-1481 . 689287) (-1482 . 688800) (-1483 . 684737)
- (-1484 . 684514) (-1485 . 684267) (-1486 . 684121) (-1487 . 684050)
- (-1488 . 683909) (-1489 . 683744) (-1490 . 683688) (-1491 . 683575)
- (-1492 . 683417) (-1493 . 682676) (-1494 . 682575) (-1495 . 682476)
- (-1496 . 682089) (-1497 . 681867) (-1498 . 681746) (-1499 . 681447)
- (-1500 . 681364) (-1501 . 681258) (-1502 . 681101) (-1503 . 681067)
- (-1504 . 680987) (-1505 . 680299) (-1506 . 680201) (-1507 . 680169)
- (-1508 . 679415) (-1509 . 679360) (-1510 . 679261) (-1511 . 678582)
- (-1512 . 678529) (-1513 . 677786) (-1514 . 677587) (-1515 . 677272)
- (-1516 . 677124) (-1517 . 676854) (-1518 . 676735) (-1519 . 676159)
- (-1520 . 676107) (-1521 . 675683) (-1522 . 675631) (-1523 . 675540)
- (-1524 . 675406) (-1525 . 675329) (-1526 . 674918) (-1527 . 674806)
- (-1528 . 674671) (-1529 . 674527) (-1530 . 674355) (-1531 . 673579)
- (-1532 . 673003) (-1533 . 672747) (-1534 . 672659) (-1535 . 670314)
- (-1536 . 670215) (-1537 . 669917) (-1538 . 669866) (-1539 . 669753)
- (-1540 . 669361) (-1541 . 669232) (-1542 . 668938) (-12 . 668766)
- (-1544 . 668650) (-1545 . 668074) (-1546 . 667827) (-1547 . 667772)
- (-1548 . 667699) (-1549 . 667620) (-1550 . 667548) (-1551 . 667464)
- (-1552 . 667275) (-1553 . 667247) (-1554 . 667102) (-1555 . 666921)
- (-1556 . 666871) (-1557 . 666185) (-1558 . 666055) (-1559 . 665950)
- (-1560 . 665816) (-1561 . 665667) (-1562 . 665570) (-1563 . 665212)
- (-1564 . 665117) (-1565 . 665046) (-1566 . 664947) (-1567 . 664752)
- (-1568 . 664644) (-1569 . 663958) (-1570 . 663620) (-1571 . 663444)
- (-1572 . 663392) (-1573 . 663298) (-1574 . 663266) (-1575 . 663112)
- (-1576 . 663024) (-1577 . 662932) (-1578 . 662819) (-1579 . 662070)
- (-1580 . 661721) (-1581 . 661561) (-1582 . 661492) (-1583 . 661353)
- (-1584 . 660437) (-1585 . 660299) (-1586 . 660246) (-1587 . 660091)
- (-1588 . 659734) (-1589 . 659461) (-1590 . 659347) (-1591 . 658783)
- (-1592 . 658684) (-1593 . 658110) (-1594 . 655329) (-1595 . 655278)
- (-1596 . 655198) (-1597 . 655043) (-1598 . 654919) (-1599 . 654673)
- (-1600 . 654471) (-1601 . 654126) (-1602 . 654077) (-1603 . 654024)
- (-1604 . 653970) (-1605 . 653917) (-1606 . 653343) (-1607 . 652851)
- (-1608 . 652780) (-1609 . 652677) (-1610 . 651756) (-1611 . 651613)
- (-1612 . 651489) (-1613 . 651415) (-1614 . 651329) (-1615 . 651249)
- (-1616 . 651166) (-1617 . 651132) (-1618 . 651095) (-1619 . 651025)
- (-1620 . 650451) (-1621 . 650261) (-1622 . 650195) (-1623 . 650080)
- (-1624 . 649695) (-1625 . 649515) (-1626 . 649235) (-1627 . 648841)
- (-1628 . 648741) (-1629 . 648623) (-1630 . 648246) (-1631 . 647768)
- (-1632 . 647081) (-1633 . 647017) (-1634 . 646363) (-1635 . 646244)
- (-1636 . 646148) (-1637 . 646049) (-1638 . 645948) (-1639 . 645792)
- (-1640 . 645743) (-1641 . 645638) (-1642 . 645485) (-1643 . 645327)
- (-1644 . 644640) (-1645 . 644443) (-1646 . 644377) (-1647 . 644090)
- (-1648 . 643995) (-1649 . 643909) (-1650 . 643779) (-1651 . 643621)
- (-1652 . 643497) (-1653 . 643279) (-1654 . 643226) (* . 638680)
- (-1656 . 637993) (-1657 . 637891) (-1658 . 637759) (-1659 . 637725)
- (-1660 . 637618) (-1661 . 637559) (-1662 . 637503) (-1663 . 637423)
- (-1664 . 637127) (-1665 . 636916) (-1666 . 636707) (-1667 . 636052)
- (-1668 . 635477) (-1669 . 635334) (-1670 . 635233) (-1671 . 635145)
- (-1672 . 635005) (-1673 . 634918) (-1674 . 634829) (-1675 . 634773)
- (-1676 . 634649) (-1677 . 634482) (-1678 . 633907) (-1679 . 633856)
- (-1680 . 633615) (-1681 . 633512) (-1682 . 633345) (-1683 . 633293)
- (-1684 . 632687) (-1685 . 632526) (-1686 . 632397) (-1687 . 632203)
- (-1688 . 632120) (-1689 . 632065) (-1690 . 631490) (-1691 . 631398)
- (-1692 . 631330) (-1693 . 631028) (-1694 . 630771) (-1695 . 629939)
- (-1696 . 629856) (-1697 . 629752) (-1698 . 629622) (-1699 . 629550)
- (-1700 . 629480) (-1701 . 629350) (-1702 . 629282) (-1703 . 628708)
- (-1704 . 628561) (-1705 . 628174) (-1706 . 628051) (-1707 . 627907)
- (-1708 . 627801) (-1709 . 627628) (-1710 . 627326) (-1711 . 627228)
- (-1712 . 627172) (-1713 . 626991) (-1714 . 626417) (-1715 . 626138)
- (-1716 . 626024) (-1717 . 625571) (-1718 . 625406) (-1719 . 625252)
- (-1720 . 625141) (-1721 . 624942) (-1722 . 624750) (-1723 . 624265)
- (-1724 . 624206) (-1725 . 624135) (-1726 . 623561) (-1727 . 623505)
- (-1728 . 623455) (-1729 . 623266) (-1730 . 622728) (-1731 . 622599)
- (-1732 . 622519) (-1733 . 622345) (-1734 . 621958) (-1735 . 621194)
- (-1736 . 621080) (-1737 . 619795) (-1738 . 619221) (-1739 . 619168)
- (-1740 . 619064) (-1741 . 619011) (-1742 . 618954) (-1743 . 618677)
- (-1744 . 618649) (-1745 . 618395) (-1746 . 618366) (-1747 . 618259)
- (-1748 . 618187) (-1749 . 618115) (-1750 . 618033) (-1751 . 617459)
- (-1752 . 617389) (-1753 . 617317) (-1754 . 617243) (-1755 . 617191)
- (-1756 . 617038) (-1757 . 616883) (-1758 . 616854) (-1759 . 616319)
- (-1760 . 616238) (-1761 . 616164) (-1762 . 615999) (-1763 . 615913)
- (-1764 . 615491) (-1765 . 615321) (-1766 . 615243) (-1767 . 615187)
- (-1768 . 615034) (-1769 . 614979) (-1770 . 614790) (-1771 . 614637)
- (-1772 . 614410) (-1773 . 614188) (-1774 . 614071) (-1775 . 613805)
- (-1776 . 613752) (-1777 . 613615) (-1778 . 613379) (-1779 . 612852)
- (-1780 . 612443) (-1781 . 612274) (-1782 . 612088) (-1783 . 612036)
- (-1784 . 611891) (-1785 . 611739) (-1786 . 610537) (-1787 . 610464)
- (-1788 . 610381) (-1789 . 610315) (-1790 . 610157) (-1791 . 609768)
- (-1792 . 607912) (-1793 . 607621) (-1794 . 606964) (-1795 . 606898)
- (-1796 . 606732) (-1797 . 606651) (-1798 . 606598) (-1799 . 606479)
- (-1800 . 605933) (-1801 . 605796) (-1802 . 605460) (-1803 . 605337)
- (-1804 . 605132) (-1805 . 604979) (-1806 . 604805) (-1807 . 604722)
- (-1808 . 604427) (-1809 . 604353) (-1810 . 604283) (-1811 . 604142)
- (-1812 . 604019) (-1813 . 603827) (-1814 . 603730) (-1815 . 603603)
- (-1816 . 601825) (-1817 . 601662) (-1818 . 601559) (-1819 . 601346)
- (-1820 . 600816) (-1821 . 600594) (-1822 . 600166) (-1823 . 600113)
- (-1824 . 600029) (-1825 . 599911) (-1826 . 599837) (-1827 . 599723)
- (-1828 . 599638) (-1829 . 599569) (-1830 . 599375) (-1831 . 599210)
- (-1832 . 599092) (-1833 . 598988) (-1834 . 598386) (-1835 . 598247)
- (-1836 . 598129) (-1837 . 597848) (-1838 . 597652) (-1839 . 597581)
- (-1840 . 597423) (-1841 . 597314) (-1842 . 597139) (-1843 . 596981)
- (-1844 . 596836) (-1845 . 596808) (-1846 . 596621) (-1847 . 596387)
- (-1848 . 596203) (-1849 . 596143) (-1850 . 596002) (-1851 . 595827)
- (-1852 . 595769) (-1853 . 595709) (-1854 . 594552) (-1855 . 594337)
- (-1856 . 594044) (-1857 . 593247) (-1858 . 593146) (-1859 . 592919)
- (-1860 . 592671) (-1861 . 592534) (-1862 . 592468) (-1863 . 592127)
- (-1864 . 592041) (-1865 . 591923) (-1866 . 591617) (-1867 . 591480)
- (-1868 . 591374) (-1869 . 591238) (-1870 . 590896) (-1871 . 590752)
- (-1872 . 590520) (-1873 . 590407) (-1874 . 590324) (-1875 . 590258)
- (-1876 . 590055) (-1877 . 589951) (-1878 . 589720) (-1879 . 589637)
- (-1880 . 589538) (-1881 . 589476) (-1882 . 588979) (-1883 . 588650)
- (-1884 . 588578) (-1885 . 588463) (-1886 . 588394) (-1887 . 588247)
- (-1888 . 588181) (-1889 . 588023) (-1890 . 587946) (-1891 . 587875)
- (-1892 . 587844) (-1893 . 587706) (-1894 . 586366) (-1895 . 586263)
- (-1896 . 586197) (-1897 . 585783) (-1898 . 585563) (-1899 . 585535)
- (-1900 . 585371) (-1901 . 585247) (-1902 . 585149) (-1903 . 585021)
- (-1904 . 584966) (-1905 . 584839) (-1906 . 584707) (-1907 . 584460)
- (-1908 . 584392) (-1909 . 584285) (-1910 . 584107) (-1911 . 584037)
- (-1912 . 583936) (-1913 . 583753) (-1914 . 583623) (-1915 . 583537)
- (-1916 . 583384) (-1917 . 582518) (-1918 . 582374) (-1919 . 582297)
- (-1920 . 582089) (-1921 . 582009) (-1922 . 581879) (-1923 . 581614)
- (-1924 . 581461) (-1925 . 581322) (-1926 . 581010) (-1927 . 580436)
- (-1928 . 580258) (-1929 . 579875) (-1930 . 579405) (-1931 . 579331)
- (-1932 . 579266) (-1933 . 579232) (-1934 . 579105) (-1935 . 578975)
- (-1936 . 578780) (-1937 . 578674) (-1938 . 578587) (-1939 . 578489)
- (-1940 . 578376) (-1941 . 577915) (-1942 . 577862) (-1943 . 577793)
- (-1944 . 577490) (-1945 . 576860) (-1946 . 576315) (-1947 . 576213)
- (-1948 . 576017) (-1949 . 575961) (-1950 . 575908) (-1951 . 575767)
- (-1952 . 575696) (-1953 . 575076) (-1954 . 574933) (-1955 . 574809)
- (-1956 . 574681) (-1957 . 574603) (-1958 . 574512) (-1959 . 574400)
- (-1960 . 574291) (-1961 . 574073) (-1962 . 573995) (-1963 . 573890)
- (-1964 . 573796) (-1965 . 573437) (-1966 . 573384) (-1967 . 573284)
- (-1968 . 573210) (-1969 . 573033) (-1970 . 572939) (-1971 . 572887)
- (-1972 . 572748) (-1973 . 572692) (-1974 . 572630) (-1975 . 572239)
- (-1976 . 571833) (-1977 . 571722) (-1978 . 571564) (-1979 . 571457)
- (-1980 . 571148) (-1981 . 571070) (-1982 . 570682) (-1983 . 570594)
- (-1984 . 569858) (-1985 . 569805) (-1986 . 569722) (-1987 . 569472)
- (-1988 . 569241) (-1989 . 569043) (-1990 . 568833) (-1991 . 568680)
- (-1992 . 568497) (-1993 . 568409) (-1994 . 568290) (-1995 . 568086)
- (-1996 . 567924) (-1997 . 567896) (-1998 . 567596) (-1999 . 567515)
- (-2000 . 567371) (-2001 . 567256) (-2002 . 567154) (-2003 . 567095)
- (-2004 . 566937) (-2005 . 566880) (-2006 . 566852) (-2007 . 566661)
- (-2008 . 566387) (-2009 . 566260) (-2010 . 566055) (-2011 . 565712)
- (-2012 . 565185) (-2013 . 565013) (-2014 . 564794) (-2015 . 564710)
- (-2016 . 564653) (-2017 . 564558) (-2018 . 564460) (-2019 . 563816)
- (-2020 . 563672) (-2021 . 563497) (-2022 . 563431) (-2023 . 563221)
- (-2024 . 563133) (-2025 . 562823) (-2026 . 562457) (-2027 . 562377)
- (-2028 . 562222) (-2029 . 561838) (-2030 . 561708) (-2031 . 561674)
- (-2032 . 560813) (-2033 . 560736) (-2034 . 560664) (-2035 . 560321)
- (-2036 . 560250) (-2037 . 559078) (-2038 . 556946) (-2039 . 556880)
- (-2040 . 556767) (-2041 . 556679) (-2042 . 556556) (-2043 . 556470)
- (-2044 . 556402) (-2045 . 556344) (-2046 . 556203) (-2047 . 555996)
- (-2048 . 555833) (-2049 . 555718) (-2050 . 555573) (-2051 . 555437)
- (-2052 . 555383) (-2053 . 555252) (-2054 . 555023) (-2055 . 554476)
- (-2056 . 554420) (-2057 . 553980) (-2058 . 553917) (-2059 . 553822)
- (-2060 . 553749) (-2061 . 553652) (-2062 . 553546) (-2063 . 552409)
- (-2064 . 552357) (-2065 . 552295) (-2066 . 552228) (-2067 . 552085)
- (-2068 . 551773) (-2069 . 551441) (-2070 . 551064) (-2071 . 551011)
- (-2072 . 550889) (-2073 . 550601) (-2074 . 550527) (-2075 . 550391)
- (-2076 . 550329) (-2077 . 550196) (-2078 . 548788) (-2079 . 548658)
- (-2080 . 548603) (-2081 . 548475) (-2082 . 548179) (-2083 . 548043)
- (-2084 . 547983) (-2085 . 547903) (-2086 . 547373) (-2087 . 547264)
- (-2088 . 547084) (-2089 . 546987) (-2090 . 546828) (-2091 . 546325)
- (-2092 . 546098) (-2093 . 545942) (-2094 . 545883) (-2095 . 545811)
- (-2096 . 544630) (-2097 . 544521) (-2098 . 544194) (-2099 . 543592)
- (-2100 . 543473) (-2101 . 543306) (-2102 . 543208) (-2103 . 543075)
- (-2104 . 543047) (-2105 . 542992) (-2106 . 542736) (-2107 . 542606)
- (-2108 . 542550) (-2109 . 542429) (-2110 . 542313) (-2111 . 542261)
- (-2112 . 542187) (-2113 . 542104) (-2114 . 541925) (-2115 . 536412)
- (-2116 . 536335) (-2117 . 536236) (-2118 . 535988) (-2119 . 535909)
- (-2120 . 535779) (-2121 . 535681) (-2122 . 535494) (-2123 . 534736)
- (-2124 . 534377) (-2125 . 534239) (-2126 . 533719) (-2127 . 533331)
- (-2128 . 531367) (-2129 . 531119) (-2130 . 531049) (-2131 . 530803)
- (-2132 . 530487) (-2133 . 530187) (-2134 . 530060) (-2135 . 529814)
- (-2136 . 529755) (-2137 . 529681) (-2138 . 529595) (-2139 . 529140)
- (-2140 . 529003) (-2141 . 527823) (-2142 . 527487) (-2143 . 527413)
- (-2144 . 527345) (-2145 . 526712) (-2146 . 526660) (-2147 . 526535)
- (-2148 . 526289) (-2149 . 526168) (-2150 . 526115) (-2151 . 526044)
- (-2152 . 525991) (-2153 . 525733) (-2154 . 525384) (-2155 . 525287)
- (-2156 . 525204) (-2157 . 524936) (-2158 . 524642) (-2159 . 524486)
- (-2160 . 524409) (-2161 . 524347) (-2162 . 524267) (-2163 . 523957)
- (-2164 . 523850) (-2165 . 523748) (-2166 . 523654) (-2167 . 523576)
- (-2168 . 523497) (-2169 . 523418) (-2170 . 522904) (-2171 . 522724)
- (-2172 . 522611) (-2173 . 522190) (-2174 . 522138) (-2175 . 521504)
- (-2176 . 520697) (-2177 . 520615) (-2178 . 516455) (-2179 . 516382)
- (-2180 . 516219) (-2181 . 516124) (-2182 . 516016) (-2183 . 515450)
- (-2184 . 515395) (-2185 . 515216) (-2186 . 515070) (-2187 . 514987)
- (-2188 . 514877) (-2189 . 514816) (-2190 . 514527) (-2191 . 514423)
- (-2192 . 514321) (-2193 . 513570) (-2194 . 513034) (-2195 . 512938)
- (-2196 . 512372) (-2197 . 512184) (-2198 . 512034) (-2199 . 511893)
- (-2200 . 511756) (-2201 . 511560) (-2202 . 511444) (-2203 . 511063)
- (-2204 . 510811) (-2205 . 510711) (-2206 . 510360) (-2207 . 510288)
- (-2208 . 510126) (-2209 . 510097) (-2210 . 509968) (-2211 . 509659)
- (-2212 . 509473) (-2213 . 509371) (-2214 . 509283) (-2215 . 509209)
- (-2216 . 509094) (-2217 . 509016) (-2218 . 508771) (-2219 . 508673)
- (-2220 . 508544) (-2221 . 508364) (-2222 . 508261) (-2223 . 508101)
- (-2224 . 507994) (-2225 . 507925) (-2226 . 507811) (-2227 . 507549)
- (-2228 . 507262) (-2229 . 507059) (-2230 . 506997) (-2231 . 506924)
- (-2232 . 506862) (-2233 . 506517) (-2234 . 506399) (-2235 . 506149)
- (-2236 . 505869) (-2237 . 505540) (-2238 . 503911) (-2239 . 503776)
- (-2240 . 503544) (-2241 . 503491) (-2242 . 503429) (-2243 . 503335)
- (-2244 . 503108) (-2245 . 502732) (-2246 . 502658) (-2247 . 501257)
- (-2248 . 500870) (-2249 . 500817) (-2250 . 500699) (-2251 . 500510)
- (-2252 . 500414) (-2253 . 500287) (-2254 . 499421) (-2255 . 498920)
- (-2256 . 498813) (-2257 . 498731) (-2258 . 498560) (-2259 . 498501)
- (-2260 . 498449) (-2261 . 498211) (-2262 . 498090) (-2263 . 498020)
- (-2264 . 497815) (-2265 . 497568) (-2266 . 497407) (-2267 . 496033)
- (-2268 . 496004) (-2269 . 495791) (-2270 . 495633) (-2271 . 495538)
- (-2272 . 495376) (-2273 . 494563) (-2274 . 494236) (-2275 . 494005)
- (-2276 . 493928) (-2277 . 493711) (-2278 . 493433) (-2279 . 493345)
- (-2280 . 493292) (-2281 . 493194) (-2282 . 492676) (-2283 . 492605)
- (-2284 . 492432) (-2285 . 492326) (-2286 . 492225) (-2287 . 492151)
- (-2288 . 491845) (-2289 . 491789) (-2290 . 491645) (-2291 . 491593)
- (-2292 . 491478) (-2293 . 491281) (-2294 . 491253) (-2295 . 490908)
- (-2296 . 490822) (-2297 . 490718) (-2298 . 490624) (-2299 . 490394)
- (-2300 . 490320) (-2301 . 490264) (-2302 . 490101) (-2303 . 490003)
- (-2304 . 489785) (-2305 . 489711) (-2306 . 489677) (-2307 . 489580)
- (-2308 . 489437) (-2309 . 489327) (-2310 . 489241) (-2311 . 489186)
- (-2312 . 489129) (-2313 . 489073) (-2314 . 488995) (-2315 . 488727)
- (-2316 . 488585) (-2317 . 488511) (-2318 . 488450) (-2319 . 488346)
- (-2320 . 488215) (-2321 . 488181) (-2322 . 488128) (-2323 . 488042)
- (-2324 . 488014) (-2325 . 487943) (-2326 . 487891) (-2327 . 487777)
- (-2328 . 487705) (-2329 . 487627) (-2330 . 487375) (-2331 . 487276)
- (-2332 . 487158) (-2333 . 486965) (-2334 . 485127) (-2335 . 484961)
- (-2336 . 484631) (-2337 . 484469) (-2338 . 484386) (-2339 . 484198)
- (-2340 . 484164) (-2341 . 484108) (-2342 . 483999) (-2343 . 482489)
- (-2344 . 482370) (-2345 . 482304) (-2346 . 482254) (-2347 . 482132)
- (-2348 . 481984) (-2349 . 481411) (-2350 . 481310) (-2351 . 481197)
- (-2352 . 481133) (-2353 . 480666) (-2354 . 480442) (-2355 . 480270)
- (-2356 . 478722) (-2357 . 478645) (-2358 . 478269) (-2359 . 477821)
- (-2360 . 477660) (-2361 . 477593) (-2362 . 477513) (-2363 . 477458)
- (-2364 . 477406) (-2365 . 477313) (-2366 . 477214) (-2367 . 476876)
- (-2368 . 476809) (-2369 . 476753) (-2370 . 476539) (-2371 . 476446)
- (-2372 . 476345) (-2373 . 476127) (-2374 . 475821) (-2375 . 475712)
- (-2376 . 475605) (-2377 . 475407) (-2378 . 475117) (-2379 . 475044)
- (-2380 . 474931) (-2381 . 474662) (-2382 . 473860) (-2383 . 472996)
- (-2384 . 472769) (-2385 . 472713) (-2386 . 472605) (-2387 . 472522)
- (-2388 . 472384) (-2389 . 472313) (-2390 . 472183) (-2391 . 472062)
- (-2392 . 471680) (-2393 . 471606) (-2394 . 471554) (-2395 . 471468)
- (-2396 . 471410) (-2397 . 471317) (-2398 . 471146) (-2399 . 470393)
- (-2400 . 470274) (-2401 . 470170) (-2402 . 470026) (-2403 . 469925)
- (-2404 . 469772) (-2405 . 469541) (-2406 . 469342) (-2407 . 469086)
- (-2408 . 468933) (-2409 . 468831) (-2410 . 468626) (-2411 . 468552)
- (-2412 . 468428) (-2413 . 468334) (-2414 . 468282) (-2415 . 468137)
- (-2416 . 467973) (-2417 . 467888) (-2418 . 467801) (-2419 . 467355)
- (-2420 . 467281) (-2421 . 467214) (-2422 . 467007) (-2423 . 466891)
- (-2424 . 466800) (-2425 . 466747) (-2426 . 466716) (-2427 . 466504)
- (-2428 . 466258) (-2429 . 465999) (-2430 . 465840) (-2431 . 465808)
- (-2432 . 465601) (-2433 . 465308) (-2434 . 465213) (-2435 . 465179)
- (-2436 . 464988) (-2437 . 464929) (-2438 . 464814) (-2439 . 464645)
- (-2440 . 464548) (-2441 . 464461) (-2442 . 464333) (-2443 . 464140)
- (-2444 . 463890) (-2445 . 463781) (-2446 . 463636) (-2447 . 463538)
- (-2448 . 463489) (-2449 . 463334) (-2450 . 461746) (-2451 . 461615)
- (-2452 . 461299) (-2453 . 460587) (-2454 . 460405) (-2455 . 460109)
- (-2456 . 460011) (-2457 . 459902) (-2458 . 459823) (-2459 . 459433)
- (-2460 . 459274) (-2461 . 459046) (-2462 . 458870) (-2463 . 458761)
- (-2464 . 458439) (-2465 . 458200) (-2466 . 458045) (-2467 . 457893)
- (-2468 . 457020) (-2469 . 456919) (-2470 . 456852) (-2471 . 456800)
- (-2472 . 456687) (-2473 . 456074) (-2474 . 455732) (-2475 . 455537)
- (-2476 . 455451) (-2477 . 455399) (-2478 . 455291) (-2479 . 454105)
- (-2480 . 453931) (-2481 . 453753) (-2482 . 453700) (-2483 . 453428)
- (-2484 . 453244) (-2485 . 453043) (-2486 . 452930) (-2487 . 452449)
- (-2488 . 452397) (-2489 . 452124) (-2490 . 451782) (-2491 . 451676)
- (-2492 . 451594) (-2493 . 450412) (-2494 . 450299) (-2495 . 450233)
- (-2496 . 450181) (-2497 . 449931) (-2498 . 449788) (-2499 . 449380)
- (-2500 . 448004) (-2501 . 447881) (-2502 . 447389) (-2503 . 447306)
- (-2504 . 447021) (-2505 . 446412) (-2506 . 444206) (-2507 . 444150)
- (-2508 . 444095) (-2509 . 444042) (-2510 . 443987) (-2511 . 443893)
- (-2512 . 443825) (-2513 . 443772) (-2514 . 443590) (-2515 . 443368)
- (-2516 . 443297) (-2517 . 442922) (-2518 . 442528) (-2519 . 442358)
- (-2520 . 442259) (-2521 . 442169) (-2522 . 442092) (-2523 . 441971)
- (-2524 . 441659) (-2525 . 441460) (-2526 . 438161) (-2527 . 437942)
- (-2528 . 437843) (-2529 . 437761) (-2530 . 437733) (-2531 . 437654)
- (-2532 . 437176) (-2533 . 436903) (-2534 . 436451) (-2535 . 436155)
- (-2536 . 436097) (-2537 . 436045) (-2538 . 435857) (-2539 . 435823)
- (-2540 . 434974) (-2541 . 434756) (-2542 . 434612) (-2543 . 434498)
- (-2544 . 434426) (-2545 . 434227) (-2546 . 434119) (-2547 . 434067)
- (-2548 . 433902) (-2549 . 433806) (-2550 . 433703) (-2551 . 433602)
- (-2552 . 429981) (-2553 . 429856) (-2554 . 429761) (-2555 . 429314)
- (-2556 . 428948) (-2557 . 427882) (-2558 . 427811) (-2559 . 427479)
- (-2560 . 427236) (-2561 . 427168) (-2562 . 427035) (-2563 . 426947)
- (-2564 . 426636) (-2565 . 426568) (-2566 . 426022) (-2567 . 425652)
- (-2568 . 425437) (-2569 . 425360) (-2570 . 425332) (-2571 . 425209)
- (-2572 . 424829) (-2573 . 424310) (-2574 . 424139) (-2575 . 423264)
- (-2576 . 423185) (-2577 . 423069) (-2578 . 422936) (-2579 . 422727)
- (-2580 . 422014) (-2581 . 421942) (-2582 . 421526) (-2583 . 421145)
- (-2584 . 421017) (-2585 . 420876) (-2586 . 420772) (-2587 . 420657)
- (-2588 . 420558) (-2589 . 420506) (-2590 . 420453) (-2591 . 420122)
- (-2592 . 419817) (-2593 . 419605) (-2594 . 419433) (-2595 . 419215)
- (-2596 . 418922) (-2597 . 418675) (-2598 . 418589) (-2599 . 418518)
- (-2600 . 418435) (-2601 . 417997) (-2602 . 417918) (-2603 . 417762)
- (-2604 . 417509) (-2605 . 417017) (-2606 . 416861) (-2607 . 416789)
- (-2608 . 416402) (-2609 . 416293) (-2610 . 416205) (-2611 . 416122)
- (-2612 . 415973) (-2613 . 415781) (-2614 . 415184) (-2615 . 414817)
- (-2616 . 414695) (-2617 . 414549) (-2618 . 414496) (-2619 . 414387)
- (-2620 . 414297) (-2621 . 414226) (-2622 . 414074) (-2623 . 413922)
- (-2624 . 413679) (-2625 . 413606) (-2626 . 413537) (-2627 . 413509)
- (-2628 . 413322) (-2629 . 413223) (-2630 . 413058) (-2631 . 412629)
- (-2632 . 412548) (-2633 . 412197) (-2634 . 412142) (-2635 . 412056)
- (-2636 . 411877) (-2637 . 411784) (-2638 . 411696) (-2639 . 411578)
- (-2640 . 411512) (-2641 . 411316) (-2642 . 411192) (-2643 . 411132)
- (-2644 . 410976) (-2645 . 410921) (-2646 . 410870) (-2647 . 410710)
- (-2648 . 409892) (-2649 . 409736) (-2650 . 409552) (-2651 . 409101)
- (-2652 . 403763) (-2653 . 403710) (-2654 . 403035) (-2655 . 402926)
- (-2656 . 402657) (-2657 . 400242) (-2658 . 400141) (-2659 . 400009)
- (-2660 . 399791) (-2661 . 399739) (-2662 . 399403) (-2663 . 399178)
- (-2664 . 399107) (-2665 . 399000) (-2666 . 398873) (-2667 . 398749)
- (-2668 . 398533) (-2669 . 398369) (-2670 . 398310) (-2671 . 398203)
- (-2672 . 397685) (-2673 . 397431) (-2674 . 397272) (-2675 . 397106)
- (-2676 . 396998) (-2677 . 396941) (-2678 . 396800) (-2679 . 392802)
- (-2680 . 392678) (-2681 . 392425) (-2682 . 392337) (-2683 . 392263)
- (-2684 . 392103) (-2685 . 391978) (-2686 . 391923) (-2687 . 391837)
- (-2688 . 391750) (-2689 . 391697) (-2690 . 391534) (-2691 . 391356)
- (-2692 . 390602) (-2693 . 390478) (-2694 . 390335) (-2695 . 390151)
- (-2696 . 389972) (-2697 . 389657) (-2698 . 389548) (-2699 . 389423)
- (-2700 . 389260) (-2701 . 389207) (-2702 . 389086) (-2703 . 388829)
- (-2704 . 388539) (-2705 . 388466) (-2706 . 388293) (-2707 . 383751)
- (-2708 . 383155) (-2709 . 382875) (-2710 . 382824) (-2711 . 382722)
- (-2712 . 381510) (-2713 . 381384) (-2714 . 381305) (-2715 . 381191)
- (-2716 . 381107) (-2717 . 380954) (-2718 . 380891) (-2719 . 380738)
- (-2720 . 380576) (-2721 . 380524) (-2722 . 379851) (-2723 . 379268)
- (-2724 . 379172) (-2725 . 378954) (-2726 . 378871) (-2727 . 378787)
- (-2728 . 378636) (-2729 . 378584) (-2730 . 378487) (-2731 . 378421)
- (-2732 . 378369) (-2733 . 378281) (-2734 . 378126) (-2735 . 377680)
- (-2736 . 376821) (-2737 . 376712) (-2738 . 376618) (-2739 . 376530)
- (-2740 . 376477) (-2741 . 376238) (-2742 . 376134) (-2743 . 376027)
- (-2744 . 375879) (-2745 . 375227) (-2746 . 375175) (-2747 . 375092)
- (-2748 . 374952) (-2749 . 374837) (-2750 . 373809) (-2751 . 373710)
- (-2752 . 373566) (-2753 . 373459) (-2754 . 373403) (-2755 . 373297)
- (-2756 . 373148) (-2757 . 371852) (-2758 . 371577) (-2759 . 371419)
- (-2760 . 371238) (-2761 . 370996) (-2762 . 370808) (-2763 . 370646)
- (-2764 . 370318) (-2765 . 370228) (-2766 . 370105) (-2767 . 369881)
- (-2768 . 369799) (-2769 . 369590) (-2770 . 369538) (-2771 . 369425)
- (-2772 . 369291) (-2773 . 367714) (-2774 . 367612) (-2775 . 367459)
- (-2776 . 367214) (-2777 . 366676) (-2778 . 366384) (-2779 . 366055)
- (-2780 . 365892) (-2781 . 365855) (-2782 . 365726) (-2783 . 365638)
- (-2784 . 365554) (-2785 . 365444) (-2786 . 365263) (-2787 . 365156)
- (-2788 . 364989) (-2789 . 364543) (-2790 . 350429) (-2791 . 349791)
- (-2792 . 349708) (-2793 . 349522) (-2794 . 349421) (-2795 . 349238)
- (-2796 . 349100) (-2797 . 349016) (-2798 . 348957) (-2799 . 348247)
- (-2800 . 348177) (-2801 . 348149) (-2802 . 348066) (-2803 . 347632)
- (-2804 . 347314) (-2805 . 347162) (-2806 . 347054) (-2807 . 346970)
- (-2808 . 346757) (-2809 . 346549) (-2810 . 346092) (-2811 . 346015)
- (-2812 . 345949) (-2813 . 345863) (-2814 . 344393) (-2815 . 344235)
- (-2816 . 343054) (-2817 . 342933) (-2818 . 342841) (-2819 . 339914)
- (-2820 . 339770) (-2821 . 339697) (-2822 . 339304) (-2823 . 339172)
- (-2824 . 339075) (-2825 . 339001) (-2826 . 338420) (-2827 . 337355)
- (-2828 . 337297) (-2829 . 337190) (-2830 . 337093) (-2831 . 337009)
- (-2832 . 336952) (-2833 . 336866) (-2834 . 336782) (-2835 . 336629)
- (-2836 . 336506) (-2837 . 336348) (-2838 . 331629) (-2839 . 331463)
- (-2840 . 331373) (-2841 . 331296) (-2842 . 331175) (-2843 . 331056)
- (-2844 . 330449) (-2845 . 330259) (-2846 . 330163) (-2847 . 330049)
- (-2848 . 329730) (-2849 . 329313) (-2850 . 329250) (-2851 . 329147)
- (-2852 . 329064) (-2853 . 328944) (-2854 . 328593) (-2855 . 328394)
- (-2856 . 328115) (-2857 . 328041) (-2858 . 327945) (-2859 . 327875)
- (-2860 . 327761) (-2861 . 327637) (-2862 . 327459) (-2863 . 327428)
- (-2864 . 327275) (-2865 . 327215) (-2866 . 327062) (-2867 . 326901)
- (-2868 . 326637) (-2869 . 326581) (-2870 . 326529) (-2871 . 326407)
- (-2872 . 326071) (-2873 . 325956) (-2874 . 325737) (-2875 . 325639)
- (-2876 . 325118) (-2877 . 324859) (-2878 . 324766) (-2879 . 324535)
- (-2880 . 324373) (-2881 . 324280) (-2882 . 324098) (-2883 . 324008)
- (-2884 . 323703) (-2885 . 323401) (-2886 . 323349) (-2887 . 323076)
- (-2888 . 322435) (-2889 . 322355) (-2890 . 322289) (-2891 . 322134)
- (-2892 . 321988) (-2893 . 321876) (-2894 . 321701) (-2895 . 321627)
- (-2896 . 321598) (-2897 . 321482) (-2898 . 321380) (-2899 . 320954)
- (-2900 . 320904) (-2901 . 320838) (-2902 . 320731) (-2903 . 320590)
- (-2904 . 319986) (-2905 . 319432) (-2906 . 319366) (-2907 . 319272)
- (-2908 . 319170) (-2909 . 319113) (-2910 . 319036) (-2911 . 318987)
- (-2912 . 318793) (-2913 . 317481) (-2914 . 317262) (-2915 . 317188)
- (-2916 . 316980) (-2917 . 316725) (-2918 . 316580) (-2919 . 316521)
- (-2920 . 316492) (-2921 . 316443) (-2922 . 316377) (-2923 . 314953)
- (-2924 . 314817) (-2925 . 314711) (-2926 . 314656) (-2927 . 314453)
- (-2928 . 314321) (-2929 . 314250) (-2930 . 314141) (-2931 . 314034)
- (-2932 . 313922) (-2933 . 313712) (-2934 . 313564) (-2935 . 313368)
- (-2936 . 313267) (-2937 . 313074) (-2938 . 312980) (-2939 . 312822)
- (-2940 . 312636) (-2941 . 312460) (-2942 . 312364) (-2943 . 312312)
- (-2944 . 311996) (-2945 . 311927) (-2946 . 311878) (-2947 . 311796)
- (-2948 . 311743) (-2949 . 311644) (-2950 . 311521) (-2951 . 311336)
- (-2952 . 311265) (-2953 . 311156) (-2954 . 311059) (-2955 . 310947)
- (-2956 . 310843) (-2957 . 310774) (-2958 . 310549) (-2959 . 310417)
- (-2960 . 310389) (-2961 . 310013) (-2962 . 309956) (-2963 . 309884)
- (-2964 . 309791) (-2965 . 309248) (-2966 . 309129) (-2967 . 308995)
- (-2968 . 308869) (-2969 . 308796) (-2970 . 308658) (-2971 . 308574)
- (-2972 . 308315) (-2973 . 308160) (-2974 . 307727) (-2975 . 307597)
- (-2976 . 307206) (-2977 . 307039) (-2978 . 306906) (-2979 . 306760)
- (-2980 . 306361) (-2981 . 306274) (-2982 . 306055) (-2983 . 306003)
- (-2984 . 305943) (-2985 . 305842) (-2986 . 305525) (-2987 . 303983)
- (-2988 . 303909) (-2989 . 303765) (-2990 . 303664) (-2991 . 303571)
- (-2992 . 303483) (-2993 . 303121) (-2994 . 303072) (-2995 . 302949)
- (-2996 . 302818) (-2997 . 302604) (-2998 . 302554) (-2999 . 302302)
- (-3000 . 302182) (-3001 . 301947) (-3002 . 301919) (-3003 . 301690)
- (-3004 . 301201) (-3005 . 300885) (-3006 . 300706) (-3007 . 300578)
- (-3008 . 300299) (-3009 . 300100) (-3010 . 300032) (-3011 . 299909)
- (-3012 . 299657) (-3013 . 299541) (-3014 . 299471) (-3015 . 299410)
- (-3016 . 299359) (-3017 . 299213) (-3018 . 299074) (-3019 . 298947)
- (-3020 . 298845) (-3021 . 298712) (-3022 . 298494) (-3023 . 298303)
- (-3024 . 298238) (-3025 . 298070) (-3026 . 297991) (-3027 . 297796)
- (-3028 . 297710) (-3029 . 297609) (-3030 . 297361) (-3031 . 297273)
- (-3032 . 297187) (-3033 . 297159) (-3034 . 296989) (-3035 . 296680)
- (-3036 . 296522) (-3037 . 296230) (-3038 . 296122) (-3039 . 296066)
- (-3040 . 295868) (-3041 . 295785) (-3042 . 295678) (-3043 . 295535)
- (-3044 . 295310) (-3045 . 294726) (-3046 . 294475) (-3047 . 294310)
- (-3048 . 293889) (-3049 . 293783) (-3050 . 293655) (-3051 . 293548)
- (-3052 . 293454) (-3053 . 293426) (-3054 . 293301) (-3055 . 292927)
- (-3056 . 292841) (-3057 . 292616) (-3058 . 292205) (-3059 . 292068)
- (-3060 . 291926) (-3061 . 291847) (-3062 . 291734) (-3063 . 291629)
- (-3064 . 291536) (-3065 . 291309) (-3066 . 291229) (-3067 . 291158)
- (-3068 . 290951) (-3069 . 290839) (-3070 . 290703) (-3071 . 290544)
- (-3072 . 290470) (-3073 . 290361) (-3074 . 290288) (-3075 . 288437)
- (-3076 . 287567) (-3077 . 287494) (-3078 . 287350) (-3079 . 287251)
- (-3080 . 287042) (-3081 . 286990) (-3082 . 286838) (-3083 . 286743)
- (-3084 . 286605) (-3085 . 286048) (-3086 . 285929) (-3087 . 285125)
- (-3088 . 284793) (-3089 . 284716) (-3090 . 284635) (-3091 . 284450)
- (-3092 . 284369) (-3093 . 284283) (-3094 . 284231) (-3095 . 283768)
- (-3096 . 283715) (-3097 . 283605) (-3098 . 283506) (-3099 . 283335)
- (-3100 . 283283) (-3101 . 283124) (-3102 . 283050) (-3103 . 282997)
- (-3104 . 282736) (-3105 . 282462) (-3106 . 282170) (-3107 . 282093)
- (-3108 . 281991) (-3109 . 281673) (-3110 . 281523) (-3111 . 281445)
- (-3112 . 280918) (-3113 . 280855) (-3114 . 280627) (-3115 . 280301)
- (-3116 . 279051) (-3117 . 278736) (-3118 . 278532) (-3119 . 278414)
- (-3120 . 278168) (-3121 . 278118) (-3122 . 278090) (-3123 . 277899)
- (-3124 . 277792) (-3125 . 277758) (-3126 . 277686) (-3127 . 277542)
- (-3128 . 276638) (-3129 . 276341) (-3130 . 275741) (-3131 . 275588)
- (-3132 . 275454) (-3133 . 275124) (-3134 . 275056) (-3135 . 275004)
- (-3136 . 274849) (-3137 . 274770) (-3138 . 274477) (-3139 . 274150)
- (-3140 . 273797) (-3141 . 273679) (-3142 . 273594) (-3143 . 273451)
- (-3144 . 273141) (-3145 . 272923) (-3146 . 272845) (-3147 . 272722)
- (-3148 . 272667) (-3149 . 272581) (-3150 . 272421) (-3151 . 272228)
- (-3152 . 272172) (-3153 . 272119) (-3154 . 272052) (-3155 . 271966)
- (-3156 . 271747) (-3157 . 271623) (-3158 . 270887) (-3159 . 270783)
- (-3160 . 269000) (-3161 . 268781) (-3162 . 268658) (-3163 . 268603)
- (-3164 . 268515) (-3165 . 268391) (-3166 . 268274) (-3167 . 268204)
- (-3168 . 268110) (-3169 . 267957) (-3170 . 267754) (-3171 . 267598)
- (-3172 . 267497) (-3173 . 267406) (-3174 . 267312) (-3175 . 267122)
- (-3176 . 267000) (-3177 . 266926) (-3178 . 266785) (-3179 . 266730)
- (-3180 . 266674) (-3181 . 266565) (-3182 . 266499) (-3183 . 266401)
- (-3184 . 266264) (-3185 . 265833) (-3186 . 264945) (-3187 . 264604)
- (-3188 . 264473) (-3189 . 264402) (-3190 . 263995) (-3191 . 263178)
- (-3192 . 263093) (-3193 . 262977) (-3194 . 262843) (-3195 . 262740)
- (-3196 . 262687) (-3197 . 262583) (-3198 . 261934) (-3199 . 261680)
- (-3200 . 261596) (-3201 . 261346) (-3202 . 261215) (-3203 . 261141)
- (-3204 . 260895) (-3205 . 260758) (-3206 . 260652) (-3207 . 260511)
- (-3208 . 260441) (-3209 . 260098) (-3210 . 260013) (-3211 . 259955)
- (-3212 . 259876) (-3213 . 258997) (-3214 . 258889) (-3215 . 258770)
- (-3216 . 258628) (-3217 . 258544) (-3218 . 258493) (-3219 . 258246)
- (-3220 . 257054) (-3221 . 256994) (-3222 . 256850) (-3223 . 256779)
- (-3224 . 256479) (-3225 . 256402) (-3226 . 256222) (-3227 . 255762)
- (-3228 . 255544) (-3229 . 255437) (-3230 . 255365) (-3231 . 255269)
- (-3232 . 254619) (-3233 . 254549) (-3234 . 254218) (-3235 . 254013)
- (-3236 . 253897) (-3237 . 253839) (-3238 . 253602) (-3239 . 253362)
- (-3240 . 253334) (-3241 . 253060) (-3242 . 252963) (-3243 . 252612)
- (-3244 . 252319) (-3245 . 252160) (-3246 . 252076) (-3247 . 251957)
- (-3248 . 251794) (-3249 . 251723) (-3250 . 251370) (-3251 . 251199)
- (-3252 . 251131) (-3253 . 250920) (-3254 . 250672) (-3255 . 250478)
- (-3256 . 250446) (-3257 . 250326) (-3258 . 248643) (-3259 . 248577)
- (-3260 . 248404) (-3261 . 248267) (-3262 . 248028) (-3263 . 247899)
- (-3264 . 247826) (-3265 . 247724) (-3266 . 247617) (-3267 . 247431)
- (-3268 . 247379) (-3269 . 247208) (-3270 . 247130) (-3271 . 246972)
- (-3272 . 246729) (-3273 . 246621) (-3274 . 246463) (-3275 . 244195)
- (-3276 . 244079) (-3277 . 243927) (-3278 . 243796) (-3279 . 243669)
- (-3280 . 243553) (-3281 . 243306) (-3282 . 243172) (-3283 . 243120)
- (-3284 . 243036) (-3285 . 242981) (-3286 . 242710) (-3287 . 242575)
- (-3288 . 242484) (-3289 . 242410) (-3290 . 242303) (-3291 . 242236)
- (-3292 . 242184) (-3293 . 242132) (-3294 . 242080) (-3295 . 241958)
- (-3296 . 241837) (-3297 . 241021) (-3298 . 240971) (-3299 . 239699)
- (-3300 . 239374) (-3301 . 239286) (-3302 . 239086) (-3303 . 238834)
- (-3304 . 238760) (-3305 . 238518) (-3306 . 238381) (-3307 . 238163)
- (-3308 . 237812) (-3309 . 237261) (-3310 . 237188) (-3311 . 237043)
- (-3312 . 236557) (-3313 . 236472) (-3314 . 236378) (-3315 . 236318)
- (-3316 . 235736) (-3317 . 235663) (-3318 . 235611) (-3319 . 235544)
- (-3320 . 235464) (-3321 . 235404) (-3322 . 234923) (-3323 . 234698)
- (-3324 . 234565) (-3325 . 234470) (-3326 . 234341) (-3327 . 234010)
- (-3328 . 233896) (-3329 . 233836) (-3330 . 233706) (-3331 . 233552)
- (-3332 . 233099) (-3333 . 232962) (-3334 . 227755) (-3335 . 227686)
- (-3336 . 227568) (-3337 . 227471) (-3338 . 227250) (-3339 . 226869)
- (-3340 . 226696) (-3341 . 226593) (-3342 . 226483) (-3343 . 226269)
- (-3344 . 225896) (-3345 . 225592) (-3346 . 225480) (-3347 . 225381)
- (-3348 . 225322) (-3349 . 224986) (-3350 . 224391) (-3351 . 224362)
- (-3352 . 224289) (-3353 . 223917) (-3354 . 223813) (-3355 . 223624)
- (-3356 . 223452) (-3357 . 223383) (-3358 . 222809) (-3359 . 222757)
- (-3360 . 222686) (-3361 . 222334) (-3362 . 222264) (-3363 . 222212)
- (-3364 . 222139) (-3365 . 222088) (-3366 . 221910) (-3367 . 221738)
- (-3368 . 221668) (-3369 . 221153) (-3370 . 220674) (-3371 . 220582)
- (-3372 . 220440) (-3373 . 219866) (-3374 . 219713) (-3375 . 219634)
- (-3376 . 219355) (-3377 . 219107) (-3378 . 218964) (-3379 . 218844)
- (-3380 . 218672) (-3381 . 218576) (-3382 . 218420) (-3383 . 218388)
- (-3384 . 218293) (-3385 . 218186) (-3386 . 218133) (-3387 . 218025)
- (-3388 . 217857) (-3389 . 217787) (-3390 . 217615) (-3391 . 217486)
- (-3392 . 217452) (-3393 . 217378) (-3394 . 217300) (-3395 . 217223)
- (-3396 . 217172) (-3397 . 217090) (-3398 . 217005) (-3399 . 216917)
- (-3400 . 216477) (-3401 . 216144) (-3402 . 216086) (-3403 . 215868)
- (-3404 . 215589) (-3405 . 215540) (-3406 . 215512) (-3407 . 215387)
- (-3408 . 215244) (-3409 . 215130) (-3410 . 215050) (-3411 . 214984)
- (-3412 . 213733) (-3413 . 213639) (-3414 . 213524) (-3415 . 213420)
- (-3416 . 213348) (-3417 . 213128) (-3418 . 213069) (-3419 . 212879)
- (-3420 . 212763) (-3421 . 212711) (-3422 . 212683) (-3423 . 212615)
- (-3424 . 212586) (-3425 . 212379) (-3426 . 212048) (-3427 . 211762)
- (-3428 . 211641) (-3429 . 211518) (-3430 . 211341) (-3431 . 210738)
- (-3432 . 210470) (-3433 . 210333) (-3434 . 210233) (-3435 . 210123)
- (-3436 . 210067) (-3437 . 209990) (-3438 . 209924) (-3439 . 209829)
- (-3440 . 209707) (-3441 . 209112) (-3442 . 208954) (-3443 . 208871)
- (-3444 . 208764) (-3445 . 208337) (-3446 . 208269) (-3447 . 208175)
- (-3448 . 206013) (-3449 . 205798) (-3450 . 205702) (-3451 . 205578)
- (-3452 . 204921) (-3453 . 204850) (-3454 . 204565) (-3455 . 204436)
- (-3456 . 204317) (-3457 . 204289) (-3458 . 204167) (-3459 . 204130)
- (-3460 . 204047) (-3461 . 203919) (-3462 . 203603) (-3463 . 203460)
- (-3464 . 203300) (-3465 . 203157) (-3466 . 203105) (-3467 . 202945)
- (-3468 . 193385) (-3469 . 193257) (-3470 . 193163) (-3471 . 193065)
- (-3472 . 192982) (-3473 . 192929) (-3474 . 192786) (-3475 . 192659)
- (-3476 . 192525) (-3477 . 192483) (-3478 . 192401) (-3479 . 192322)
- (-3480 . 192215) (-3481 . 192052) (-3482 . 191962) (-3483 . 191879)
- (-3484 . 191808) (-3485 . 191756) (-3486 . 191676) (-3487 . 191349)
- (-3488 . 191125) (-3489 . 191021) (-3490 . 190853) (-3491 . 190751)
- (-3492 . 190696) (-3493 . 190589) (-3494 . 190384) (-3495 . 190131)
- (-3496 . 189976) (-3497 . 189910) (-3498 . 189733) (-3499 . 189340)
- (-3500 . 189288) (-3501 . 188871) (-3502 . 188579) (-3503 . 188356)
- (-3504 . 188217) (-3505 . 188164) (-3506 . 187993) (-3507 . 187823)
- (-3508 . 187749) (-3509 . 187650) (-3510 . 187551) (-3511 . 187449)
- (-3512 . 187347) (-3513 . 186977) (-3514 . 186846) (-3515 . 186627)
- (-3516 . 186557) (-3517 . 186442) (-3518 . 186166) (-3519 . 186000)
- (-3520 . 185920) (-3521 . 183657) (-3522 . 183562) (-3523 . 183357)
- (-3524 . 183213) (-3525 . 182979) (-3526 . 182945) (-3527 . 181780)
- (-3528 . 181642) (-3529 . 181283) (-3530 . 181170) (-3531 . 180772)
- (-3532 . 180705) (-3533 . 180446) (-3534 . 180373) (-3535 . 180296)
- (-3536 . 180208) (-3537 . 180078) (-3538 . 179940) (-3539 . 179567)
- (-3540 . 179138) (-3541 . 178965) (-3542 . 178868) (-3543 . 178794)
- (-3544 . 178657) (-3545 . 178508) (-3546 . 178428) (-3547 . 178345)
- (-3548 . 178264) (-3549 . 178198) (-3550 . 178121) (-3551 . 178012)
- (-3552 . 177924) (-3553 . 177857) (-3554 . 177808) (-3555 . 177669)
- (-3556 . 177614) (-3557 . 177163) (-3558 . 177054) (-3559 . 176974)
- (-3560 . 176528) (-3561 . 176460) (-3562 . 176382) (-3563 . 176327)
- (-3564 . 176250) (-3565 . 176030) (-3566 . 175957) (-3567 . 175677)
- (-3568 . 175274) (-3569 . 174892) (-3570 . 174773) (-3571 . 174742)
- (-3572 . 174665) (-3573 . 174490) (-3574 . 174456) (-3575 . 174363)
- (-3576 . 174216) (-3577 . 174161) (-3578 . 174060) (-3579 . 173824)
- (-3580 . 173714) (-3581 . 173615) (-3582 . 172649) (-3583 . 172575)
- (-3584 . 172452) (-3585 . 172111) (-3586 . 172083) (-3587 . 171692)
- (-3588 . 171633) (-3589 . 171526) (-3590 . 171356) (-3591 . 171177)
- (-3592 . 171019) (-3593 . 170870) (-3594 . 169910) (-3595 . 169800)
- (-3596 . 169730) (-3597 . 169520) (-3598 . 169098) (-3599 . 168964)
- (-3600 . 168900) (-3601 . 168762) (-3602 . 168402) (-3603 . 168329)
- (-3604 . 167743) (-3605 . 167441) (-3606 . 167386) (-3607 . 167282)
- (-3608 . 166279) (-3609 . 166205) (-3610 . 165781) (-3611 . 165538)
- (-3612 . 165292) (-3613 . 165078) (-3614 . 164997) (-3615 . 164910)
- (-3616 . 164670) (-3617 . 164161) (-3618 . 164004) (-3619 . 163876)
- (-3620 . 163175) (-3621 . 163105) (-3622 . 163008) (-3623 . 162956)
- (-3624 . 161718) (-3625 . 161611) (-3626 . 161496) (-3627 . 161338)
- (-3628 . 161092) (-3629 . 160879) (-3630 . 160769) (-3631 . 160627)
- (-3632 . 160419) (-3633 . 160357) (-3634 . 160301) (-3635 . 160206)
- (-3636 . 159740) (-3637 . 159657) (-3638 . 159044) (-3639 . 158929)
- (-3640 . 158873) (-3641 . 158778) (-3642 . 158593) (-3643 . 158456)
- (-3644 . 158362) (-3645 . 158309) (-3646 . 158144) (-3647 . 158076)
- (-3648 . 157894) (-3649 . 157467) (-3650 . 157367) (-3651 . 156996)
- (-3652 . 156941) (-3653 . 156834) (-3654 . 156649) (-3655 . 156576)
- (-3656 . 156184) (-3657 . 156122) (-3658 . 155801) (-3659 . 155769)
- (-3660 . 155539) (-3661 . 155381) (-3662 . 155299) (-3663 . 154692)
- (-3664 . 154288) (-3665 . 154132) (-3666 . 153852) (-3667 . 153472)
- (-3668 . 153373) (-3669 . 153208) (-3670 . 153120) (-3671 . 152667)
- (-3672 . 152623) (-3673 . 152530) (-3674 . 152181) (-3675 . 152124)
- (-3676 . 152026) (-3677 . 151971) (-3678 . 151918) (-3679 . 151700)
- (-3680 . 151557) (-3681 . 151014) (-3682 . 150665) (-3683 . 150577)
- (-3684 . 150491) (-3685 . 150397) (-3686 . 150317) (-3687 . 150211)
- (-3688 . 150145) (-3689 . 150058) (-3690 . 150005) (-3691 . 149758)
- (-3692 . 149704) (-3693 . 149603) (-3694 . 142604) (-3695 . 142441)
- (-3696 . 142336) (-3697 . 142226) (-3698 . 142133) (-3699 . 141931)
- (-3700 . 141865) (-3701 . 141742) (-3702 . 141616) (-3703 . 141229)
- (-3704 . 141176) (-3705 . 139062) (-3706 . 138859) (-3707 . 138803)
- (-3708 . 137605) (-3709 . 137432) (-3710 . 137373) (-3711 . 137169)
- (-3712 . 137082) (-3713 . 136999) (-3714 . 136947) (-3715 . 136875)
- (-3716 . 136735) (-3717 . 136622) (-3718 . 136504) (-3719 . 135402)
- (-3720 . 135302) (-3721 . 134918) (-3722 . 134714) (-3723 . 134555)
- (-3724 . 134461) (-3725 . 134305) (-3726 . 134103) (-3727 . 134069)
- (-3728 . 133944) (-3729 . 133891) (-3730 . 133754) (-3731 . 133566)
- (-3732 . 133480) (-3733 . 133383) (-3734 . 133084) (-3735 . 132390)
- (-3736 . 132180) (-3737 . 132097) (-3738 . 131944) (-3739 . 131891)
- (-3740 . 131806) (-3741 . 131661) (-3742 . 131564) (-3743 . 131469)
- (-3744 . 131134) (-3745 . 130963) (-3746 . 130668) (-3747 . 130591)
- (-3748 . 130473) (-3749 . 130439) (-3750 . 130360) (-3751 . 130221)
- (-3752 . 130120) (-3753 . 129861) (-3754 . 129357) (-3755 . 129326)
- (-3756 . 129254) (-3757 . 129192) (-3758 . 129049) (-3759 . 128903)
- (-3760 . 128800) (-3761 . 128593) (-3762 . 128394) (-3763 . 128321)
- (-3764 . 128178) (-3765 . 127989) (-3766 . 127429) (-3767 . 127112)
- (-3768 . 127008) (-3769 . 126942) (-3770 . 126826) (-3771 . 126743)
- (-3772 . 126416) (-3773 . 126385) (-3774 . 126332) (-3775 . 125990)
- (-3776 . 125904) (-3777 . 125761) (-3778 . 125561) (-3779 . 125460)
- (-3780 . 125423) (-3781 . 125331) (-3782 . 125225) (-3783 . 125084)
- (-3784 . 124961) (-3785 . 124866) (-3786 . 124491) (-3787 . 124363)
- (-3788 . 124290) (-3789 . 124152) (-3790 . 124022) (-3791 . 123930)
- (-3792 . 123877) (-3793 . 123751) (-3794 . 123390) (-3795 . 123232)
- (-3796 . 123102) (-3797 . 123050) (-3798 . 122852) (-3799 . 122769)
- (-3800 . 122622) (-3801 . 122536) (-3802 . 122341) (-3803 . 121742)
- (-3804 . 121665) (-3805 . 121462) (-3806 . 121201) (-3807 . 121116)
- (-3808 . 121028) (-3809 . 120188) (-3810 . 120068) (-3811 . 119982)
- (-3812 . 119696) (-3813 . 119576) (-3814 . 119507) (-3815 . 119372)
- (-3816 . 119011) (-3817 . 118869) (-3818 . 118773) (-3819 . 118717)
- (-3820 . 118395) (-3821 . 118194) (-3822 . 118093) (-3823 . 118065)
- (-3824 . 117540) (-3825 . 117351) (-3826 . 117264) (-3827 . 117198)
- (-3828 . 117127) (-3829 . 116989) (-3830 . 116651) (-3831 . 115205)
- (-3832 . 115055) (-3833 . 115021) (-3834 . 114962) (-3835 . 114846)
- (-3836 . 114449) (-3837 . 114303) (-3838 . 90881) (-3839 . 90600)
- (-3840 . 90262) (-3841 . 89991) (-3842 . 89917) (-3843 . 89759)
- (-3844 . 89593) (-3845 . 89486) (-3846 . 86734) (-3847 . 86591)
- (-3848 . 86497) (-3849 . 86445) (-3850 . 86352) (-3851 . 86244)
- (-3852 . 85989) (-3853 . 85776) (-3854 . 85726) (-3855 . 84510)
- (-3856 . 84383) (-3857 . 84301) (-3858 . 83986) (-3859 . 83957)
- (-3860 . 83784) (-3861 . 82897) (-3862 . 82572) (-3863 . 82518)
- (-3864 . 82414) (-3865 . 82333) (-3866 . 82217) (-3867 . 82165)
- (-3868 . 82070) (-3869 . 81840) (-3870 . 81489) (-3871 . 81171)
- (-3872 . 81049) (-3873 . 80648) (-3874 . 80452) (-3875 . 80307)
- (-3876 . 80135) (-3877 . 80040) (-3878 . 79966) (** . 76877)
- (-3880 . 76513) (-3881 . 76395) (-3882 . 76111) (-3883 . 75987)
- (-3884 . 75880) (-3885 . 75758) (-3886 . 75498) (-3887 . 75420)
- (-3888 . 75342) (-3889 . 75272) (-3890 . 74783) (-3891 . 74715)
- (-3892 . 74557) (-3893 . 74325) (-3894 . 74239) (-3895 . 74072)
- (-3896 . 73960) (-3897 . 73877) (-3898 . 73806) (-3899 . 73737)
- (-3900 . 73565) (-3901 . 73452) (-3902 . 72955) (-3903 . 72780)
- (-3904 . 72671) (-3905 . 72522) (-3906 . 71854) (-3907 . 71736)
- (-3908 . 71585) (-3909 . 71387) (-3910 . 71209) (-3911 . 70992)
- (-3912 . 70834) (-3913 . 70773) (-3914 . 70586) (-3915 . 70534)
- (-3916 . 70391) (-3917 . 70238) (-3918 . 70167) (-3919 . 69695)
- (-3920 . 69610) (-3921 . 69557) (-3922 . 69500) (-3923 . 69133)
- (-3924 . 69049) (-3925 . 68933) (-3926 . 68880) (-3927 . 68779)
- (-3928 . 68695) (-3929 . 68351) (-3930 . 68239) (-3931 . 68048)
- (-3932 . 67992) (-3933 . 67961) (-3934 . 67909) (-3935 . 67853)
- (-3936 . 67715) (-3937 . 67605) (-3938 . 67172) (-3939 . 67048)
- (-3940 . 66858) (-3941 . 66743) (-3942 . 66660) (-3943 . 66382)
- (-3944 . 66266) (-3945 . 66166) (-3946 . 65910) (-3947 . 65703)
- (-3948 . 65621) (-3949 . 64546) (-3950 . 64494) (-3951 . 64320)
- (-3952 . 63890) (-3953 . 63780) (-3954 . 63651) (-3955 . 63514)
- (-3956 . 63405) (-3957 . 63195) (-3958 . 63118) (-3959 . 63065)
- (-3960 . 62768) (-3961 . 62695) (-3962 . 62513) (-3963 . 62461)
- (-3964 . 62189) (-3965 . 62022) (-3966 . 61882) (-3967 . 61787)
- (-3968 . 61525) (-3969 . 61451) (-3970 . 60716) (-3971 . 60664)
- (-3972 . 60524) (-3973 . 60465) (-3974 . 60354) (-3975 . 60268)
- (-3976 . 60064) (-3977 . 59931) (-3978 . 59879) (-3979 . 59760)
- (-3980 . 59655) (-3981 . 59060) (-3982 . 58503) (-3983 . 58381)
- (-3984 . 58310) (-3985 . 58255) (-3986 . 58187) (-3987 . 58124)
- (-3988 . 58052) (-3989 . 57970) (-3990 . 57851) (-3991 . 57723)
- (-3992 . 57484) (-3993 . 57432) (-3994 . 57168) (-3995 . 56943)
- (-3996 . 56503) (-3997 . 56438) (-3998 . 56364) (-3999 . 56229)
- (-4000 . 56112) (-4001 . 56043) (-4002 . 55522) (-4003 . 55456)
- (-4004 . 55390) (-4005 . 55335) (-4006 . 55113) (-4007 . 55047)
- (-4008 . 54958) (-4009 . 54765) (-4010 . 54713) (-4011 . 54634)
- (-4012 . 54424) (-4013 . 54315) (-4014 . 54184) (-4015 . 54079)
- (-4016 . 53994) (-4017 . 53830) (-4018 . 53558) (-4019 . 53339)
- (-4020 . 53225) (-4021 . 53088) (-4022 . 52801) (-4023 . 52733)
- (-4024 . 52653) (-4025 . 52544) (-4026 . 52458) (-4027 . 52350)
- (-4028 . 52298) (-4029 . 51871) (-4030 . 51436) (-4031 . 51321)
- (-4032 . 51243) (-4033 . 51063) (-4034 . 51010) (-4035 . 50906)
- (-4036 . 50524) (-4037 . 50451) (-4038 . 50250) (-4039 . 50125)
- (-4040 . 50059) (-4041 . 49941) (-4042 . 49842) (-4043 . 49762)
- (-4044 . 49644) (-4045 . 49465) (-4046 . 49413) (-4047 . 49172)
- (-4048 . 49055) (-4049 . 48948) (-4050 . 48882) (-4051 . 48775)
- (-4052 . 48500) (-4053 . 48389) (-4054 . 47980) (-4055 . 47819)
- (-4056 . 47116) (-4057 . 47007) (-4058 . 46955) (-4059 . 46927)
- (-4060 . 46856) (-4061 . 46696) (-4062 . 46501) (-4063 . 46448)
- (-4064 . 46339) (-4065 . 46169) (-4066 . 46096) (-4067 . 45617)
- (-4068 . 45472) (-4069 . 45343) (-4070 . 45243) (-4071 . 45026)
- (-4072 . 44745) (-4073 . 44647) (-4074 . 44528) (-4075 . 44494)
- (-4076 . 44385) (-4077 . 44006) (-4078 . 43947) (-4079 . 42983)
- (-4080 . 42373) (-4081 . 42246) (-4082 . 42125) (-4083 . 41945)
- (-4084 . 41844) (-4085 . 41689) (-4086 . 41605) (-4087 . 41521)
- (-4088 . 41462) (-4089 . 41349) (-4090 . 41257) (-4091 . 41176)
- (-4092 . 40690) (-4093 . 40586) (-4094 . 40296) (-4095 . 40218)
- (-4096 . 40111) (-4097 . 39795) (-4098 . 39743) (-4099 . 39688)
- (-4100 . 39575) (-4101 . 39462) (-4102 . 39229) (-4103 . 39081)
- (-4104 . 38801) (-4105 . 38621) (-4106 . 38213) (-4107 . 38140)
- (-4108 . 37977) (-4109 . 37864) (-4110 . 37477) (-4111 . 37259)
- (-4112 . 37044) (-4113 . 36865) (-4114 . 36775) (-4115 . 36551)
- (-4116 . 36517) (-4117 . 36201) (-4118 . 36134) (-4119 . 36044)
- (-4120 . 35992) (-4121 . 35872) (-4122 . 35819) (-4123 . 35375)
- (-4124 . 35058) (-4125 . 34988) (-4126 . 34749) (-4127 . 34696)
- (-4128 . 34553) (-4129 . 34441) (-4130 . 34283) (-4131 . 34209)
- (-4132 . 33907) (-4133 . 33854) (-4134 . 33789) (-4135 . 33616)
- (-4136 . 33521) (-4137 . 33414) (-4138 . 33271) (-4139 . 32783)
- (-4140 . 32706) (-4141 . 32678) (-4142 . 32435) (-4143 . 32267)
- (-4144 . 32130) (-4145 . 31970) (-4146 . 31848) (-4147 . 31789)
- (-4148 . 31729) (-4149 . 31679) (-4150 . 31521) (-4151 . 31240)
- (-4152 . 31145) (-4153 . 30834) (-4154 . 30672) (-4155 . 30533)
- (-4156 . 30484) (-4157 . 30189) (-4158 . 30048) (-4159 . 29923)
- (-4160 . 29807) (-4161 . 29628) (-4162 . 29532) (-4163 . 27802)
- (-4164 . 27632) (-4165 . 27216) (-4166 . 27132) (-4167 . 26992)
- (-4168 . 26938) (-4169 . 26850) (-4170 . 26726) (-4171 . 26656)
- (-4172 . 26466) (-4173 . 26402) (-4174 . 26180) (-4175 . 26003)
- (-4176 . 25878) (-4177 . 25718) (-4178 . 25630) (-4179 . 25575)
- (-4180 . 25469) (-4181 . 25287) (-4182 . 25186) (-4183 . 25106)
- (-4184 . 24915) (-4185 . 23828) (-4186 . 23590) (-4187 . 23239)
- (-4188 . 22968) (-4189 . 21850) (-4190 . 21474) (-4191 . 21422)
- (-4192 . 21172) (-4193 . 21140) (-4194 . 20033) (-4195 . 19819)
- (-4196 . 19745) (-4197 . 19621) (-4198 . 19572) (-4199 . 19475)
- (-4200 . 19249) (-4201 . 19196) (-4202 . 18522) (-4203 . 18412)
- (-4204 . 18224) (-4205 . 18127) (-4206 . 17973) (-4207 . 17887)
- (-4208 . 17830) (-4209 . 17718) (-4210 . 17614) (-4211 . 17507)
- (-4212 . 17419) (-4213 . 17152) (-4214 . 17087) (-4215 . 16845)
- (-4216 . 16737) (-4217 . 16678) (-4218 . 16571) (-4219 . 16518)
- (-4220 . 16295) (-4221 . 16148) (-4222 . 15945) (-4223 . 15894)
- (-4224 . 15797) (-4225 . 15571) (-4226 . 15345) (-4227 . 15099)
- (-4228 . 14941) (-4229 . 14465) (-4230 . 14304) (-4231 . 14126)
- (-4232 . 13987) (-4233 . 13810) (-4234 . 13753) (-4235 . 13542)
- (-4236 . 13446) (-4237 . 13383) (-4238 . 12772) (-4239 . 12177)
- (-4240 . 12080) (-4241 . 11786) (-4242 . 11679) (-4243 . 11628)
- (-4244 . 11503) (-4245 . 11343) (-4246 . 10982) (-4247 . 10930)
- (-4248 . 10291) (-4249 . 9949) (-4250 . 9878) (-4251 . 9733)
- (-4252 . 9680) (-4253 . 9628) (-4254 . 9483) (-4255 . 9317)
- (-4256 . 9126) (-4257 . 9073) (-4258 . 9019) (-4259 . 8967)
- (-4260 . 8573) (-4261 . 8499) (-4262 . 8364) (-4263 . 8199)
- (-4264 . 8143) (-4265 . 7327) (-4266 . 7271) (-4267 . 7040)
- (-4268 . 6990) (-4269 . 6860) (-4270 . 6612) (-4271 . 6278)
- (-4272 . 6162) (-4273 . 6093) (-4274 . 6065) (-4275 . 5991)
- (-4276 . 5893) (-4277 . 5361) (-4278 . 5283) (-4279 . 5206)
- (-4280 . 5054) (-4281 . 4747) (-4282 . 4643) (-4283 . 4410)
- (-4284 . 4312) (-4285 . 4121) (-4286 . 3677) (-4287 . 3645)
- (-4288 . 3501) (-4289 . 3063) (-4290 . 3008) (-4291 . 2517)
- (-4292 . 2458) (-4293 . 2430) (-4294 . 2353) (-4295 . 2287)
- (-4296 . 2009) (-4297 . 1878) (-4298 . 1675) (-4299 . 1589)
- (-4300 . 1423) (-4301 . 1248) (-4302 . 1180) (-4303 . 934)
- (-4304 . 665) (-4305 . 373) (-4306 . 287) (-4307 . 234) (-4308 . 103)
- (-4309 . 30)) \ No newline at end of file
+ (-12 (-4 *1 (-874 *3)) (-4 *3 (-1067)) (-5 *2 (-1069 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-1069 (-621 *4))) (-5 *1 (-875 *4))
+ (-5 *3 (-621 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-1069 (-1069 *4))) (-5 *1 (-875 *4))
+ (-5 *3 (-1069 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1069 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-769)) (-4 *4 (-823)) (-4 *6 (-300)) (-5 *2 (-411 *3))
+ (-5 *1 (-719 *5 *4 *6 *3)) (-4 *3 (-920 *6 *5 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1067)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-768))
+ (-4 *2 (-444))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1184)) (-4 *3 (-1202 *2))
+ (-4 *4 (-1202 (-400 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1018)) (-4 *2 (-444))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-920 *3 *4 *2)) (-4 *3 (-1018)) (-4 *4 (-769))
+ (-4 *2 (-823)) (-4 *3 (-444))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-920 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-769))
+ (-4 *4 (-823)) (-4 *2 (-444))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-300)) (-4 *3 (-541)) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-1202 *3)))))
+(((*1 *2) (-12 (-5 *2 (-621 *3)) (-5 *1 (-1051 *3)) (-4 *3 (-131)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-621 *6)) (-5 *4 (-621 (-241 *5 *6))) (-4 *6 (-444))
+ (-5 *2 (-241 *5 *6)) (-14 *5 (-621 (-1143))) (-5 *1 (-609 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1202 (-549))))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *2 (-1006))
+ (-5 *1 (-724)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1231) (-1226 *5) (-1226 *5) (-372)))
+ (-5 *3 (-1226 (-372))) (-5 *5 (-372)) (-5 *2 (-1231))
+ (-5 *1 (-764)))))
+(((*1 *2)
+ (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1184)) (-4 *4 (-1202 *3))
+ (-4 *5 (-1202 (-400 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-549)))))))
+ (-5 *1 (-1095 *3 *2)) (-4 *3 (-1202 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-621 (-923 *4))) (-5 *3 (-621 (-1143))) (-4 *4 (-444))
+ (-5 *1 (-889 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-1180)) (-5 *2 (-549)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-747)) (-5 *1 (-102 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-52)) (-5 *1 (-805)))))
+(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))
+ ((*1 *2 *2) (-12 (-5 *2 (-167 (-219))) (-5 *1 (-220))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-424 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *1 *1) (-4 *1 (-1106))))
+(((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-350 *3)) (-4 *3 (-342)))))
+(((*1 *1 *1 *1) (-4 *1 (-141)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-823) (-541))) (-5 *1 (-156 *3 *2))
+ (-4 *2 (-423 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-534)))))
+(((*1 *2 *1) (-12 (-5 *2 (-750)) (-5 *1 (-52)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-747)) (-4 *5 (-1018)) (-5 *2 (-549))
+ (-5 *1 (-435 *5 *3 *6)) (-4 *3 (-1202 *5))
+ (-4 *6 (-13 (-397) (-1009 *5) (-356) (-1165) (-277)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1018)) (-5 *2 (-549)) (-5 *1 (-435 *4 *3 *5))
+ (-4 *3 (-1202 *4))
+ (-4 *5 (-13 (-397) (-1009 *4) (-356) (-1165) (-277))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1231)) (-5 *1 (-323)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1180)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-983)) (-5 *2 (-834)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-549)) (-5 *4 (-665 (-219))) (-5 *5 (-219))
+ (-5 *2 (-1006)) (-5 *1 (-728)))))
+(((*1 *1 *2) (-12 (-5 *2 (-621 (-1125))) (-5 *1 (-323))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1125)) (-5 *1 (-323)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-954 *2)) (-4 *2 (-1165)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-256))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-256)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1143)) (-5 *4 (-923 (-549))) (-5 *2 (-323))
+ (-5 *1 (-325)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-1226
+ (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219))
+ (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4115 (-549))
+ (|:| -2791 (-549)) (|:| |spline| (-549)) (|:| -1669 (-549))
+ (|:| |axesColor| (-845)) (|:| -2036 (-549))
+ (|:| |unitsColor| (-845)) (|:| |showing| (-549)))))
+ (-5 *1 (-1227)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-621 (-621 (-914 (-219))))) (-5 *1 (-1175 *3))
+ (-4 *3 (-945)))))
+((-1259 . 737257) (-1260 . 736897) (-1261 . 736799) (-1262 . 736588)
+ (-1263 . 736522) (-1264 . 736411) (-1265 . 736277) (-1266 . 736222)
+ (-1267 . 736165) (-1268 . 736112) (-1269 . 735780) (-1270 . 735729)
+ (-1271 . 735544) (-1272 . 735474) (-1273 . 735243) (-1274 . 735177)
+ (-1275 . 735103) (-1276 . 735031) (-1277 . 734920) (-1278 . 734790)
+ (-1279 . 734666) (-1280 . 734481) (-1281 . 734377) (-1282 . 734297)
+ (-1283 . 734137) (-1284 . 734066) (-1285 . 733471) (-1286 . 733378)
+ (-1287 . 733234) (-1288 . 732862) (-1289 . 732805) (-1290 . 732722)
+ (-1291 . 732416) (-1292 . 732251) (-1293 . 732052) (-1294 . 731992)
+ (-1295 . 731799) (-1296 . 731692) (-1297 . 730380) (-1298 . 730065)
+ (-1299 . 729863) (-1300 . 729705) (-1301 . 729613) (-1302 . 729121)
+ (-1303 . 728903) (-1304 . 728846) (-1305 . 728794) (-1306 . 728741)
+ (-1307 . 728638) (-1308 . 728198) (-1309 . 728088) (-1310 . 727839)
+ (-1311 . 727607) (-1312 . 727487) (-1313 . 727309) (-1314 . 727034)
+ (-1315 . 726946) (-1316 . 726830) (-1317 . 726752) (-1318 . 726670)
+ (-1319 . 726617) (-1320 . 726498) (-1321 . 726357) (-1322 . 725810)
+ (-1323 . 725228) (-1324 . 725112) (-1325 . 724794) (-1326 . 724476)
+ (-1327 . 724423) (-1328 . 724310) (-1329 . 723736) (-1330 . 723343)
+ (-1331 . 723290) (-1332 . 723217) (-1333 . 723165) (-1334 . 723047)
+ (-1335 . 722520) (-1336 . 722215) (-1337 . 722052) (-1338 . 722024)
+ (-1339 . 721894) (-1340 . 721834) (-1341 . 721672) (-1342 . 721571)
+ (-1343 . 721364) (-1344 . 721292) (-1345 . 721215) (-1346 . 720758)
+ (-1347 . 720240) (-1348 . 719752) (-1349 . 719613) (-1350 . 719556)
+ (-1351 . 718949) (-1352 . 718861) (-1353 . 718474) (-1354 . 718442)
+ (-1355 . 718180) (-1356 . 718097) (-1357 . 718014) (-1358 . 717591)
+ (-1359 . 717417) (-1360 . 717280) (-1361 . 716623) (-1362 . 716199)
+ (-1363 . 716083) (-1364 . 715997) (-1365 . 715916) (-1366 . 715828)
+ (-1367 . 715487) (-1368 . 715329) (-1369 . 715192) (-1370 . 714949)
+ (-1371 . 714840) (-1372 . 714701) (-1373 . 714631) (-1374 . 714427)
+ (-1375 . 714254) (-1376 . 714177) (-1377 . 714030) (-1378 . 713936)
+ (-1379 . 713815) (-1380 . 713677) (-1381 . 713597) (-1382 . 713246)
+ (-1383 . 713140) (-1384 . 713111) (-1385 . 713059) (-1386 . 712955)
+ (-1387 . 712782) (-1388 . 712530) (-1389 . 712457) (-1390 . 712059)
+ (-1391 . 708760) (-1392 . 708469) (-1393 . 708384) (-1394 . 707683)
+ (-1395 . 707655) (-1396 . 707590) (-1397 . 707386) (-1398 . 707320)
+ (-1399 . 707170) (-1400 . 707120) (-1401 . 707038) (-1402 . 706964)
+ (-1403 . 706286) (-1404 . 706064) (-1405 . 705870) (-1406 . 705651)
+ (-1407 . 705460) (-1408 . 705272) (-1409 . 705216) (-1410 . 705160)
+ (-1411 . 705007) (-1412 . 704692) (-1413 . 704614) (-1414 . 704188)
+ (-1415 . 704057) (-1416 . 703761) (-1417 . 703690) (-1418 . 703298)
+ (-1419 . 703218) (-1420 . 702829) (-1421 . 702728) (-1422 . 702650)
+ (-1423 . 702597) (-1424 . 702472) (-1425 . 702207) (-1426 . 702153)
+ (-1427 . 702046) (-1428 . 701903) (-1429 . 701851) (-1430 . 701707)
+ (-1431 . 697547) (-1432 . 697335) (-1433 . 697177) (-1434 . 697089)
+ (-1435 . 697015) (-1436 . 696893) (-1437 . 696799) (-1438 . 696692)
+ (-1439 . 696507) (-1440 . 696355) (-1441 . 696184) (-1442 . 695823)
+ (-1443 . 695771) (-1444 . 695418) (-1445 . 695308) (-1446 . 695256)
+ (-1447 . 694978) (-1448 . 694599) (-1449 . 693589) (-1450 . 693427)
+ (-1451 . 693369) (-1452 . 693316) (-1453 . 693237) (-1454 . 692692)
+ (-1455 . 692615) (-1456 . 692527) (-1457 . 692153) (-1458 . 691705)
+ (-1459 . 691654) (-1460 . 691487) (-1461 . 691385) (-1462 . 691251)
+ (-1463 . 691029) (-1464 . 690754) (-1465 . 690610) (-1466 . 690401)
+ (-1467 . 690177) (-1468 . 690103) (-1469 . 689959) (-1470 . 689888)
+ (-1471 . 689745) (-1472 . 689668) (-1473 . 689479) (-1474 . 689312)
+ (-1475 . 689129) (-1476 . 688822) (-1477 . 688632) (-1478 . 688473)
+ (-1479 . 687586) (-1480 . 687290) (-1481 . 687010) (-1482 . 686748)
+ (-1483 . 686662) (-1484 . 686588) (-1485 . 686527) (-1486 . 685786)
+ (-1487 . 685546) (-1488 . 685438) (-1489 . 684951) (-1490 . 680888)
+ (-1491 . 679548) (-1492 . 679493) (-1493 . 679356) (-1494 . 679210)
+ (-1495 . 679126) (-1496 . 678893) (-1497 . 678534) (-1498 . 678479)
+ (-1499 . 678321) (-1500 . 678205) (-1501 . 677464) (-1502 . 677275)
+ (-1503 . 676200) (-1504 . 675981) (-1505 . 675898) (-1506 . 675764)
+ (-1507 . 675694) (-1508 . 675433) (-1509 . 675318) (-1510 . 675068)
+ (-1511 . 674180) (-1512 . 673492) (-1513 . 673437) (-1514 . 673276)
+ (-1515 . 673190) (-1516 . 672766) (-1517 . 672087) (-1518 . 671464)
+ (-1519 . 671330) (-1520 . 670852) (-1521 . 670802) (-1522 . 670684)
+ (-1523 . 670577) (-1524 . 670378) (-1525 . 670108) (-1526 . 669532)
+ (-1527 . 669349) (-1528 . 669283) (-1529 . 669231) (-1530 . 669108)
+ (-1531 . 668680) (-1532 . 668592) (-1533 . 668514) (-1534 . 668133)
+ (-1535 . 668009) (-1536 . 667837) (-1537 . 667740) (-1538 . 667706)
+ (-1539 . 667130) (-1540 . 667071) (-1541 . 666906) (-1542 . 664561)
+ (-1543 . 664384) (-1544 . 664317) (-1545 . 664246) (-1546 . 664218)
+ (-1547 . 664077) (-1548 . 664004) (-1549 . 663758) (-12 . 663586)
+ (-1551 . 663515) (-1552 . 662939) (-1553 . 662795) (-1554 . 662653)
+ (-1555 . 662621) (-1556 . 662555) (-1557 . 662446) (-1558 . 662375)
+ (-1559 . 661622) (-1560 . 661542) (-1561 . 661413) (-1562 . 661240)
+ (-1563 . 661022) (-1564 . 660336) (-1565 . 660213) (-1566 . 660083)
+ (-1567 . 659988) (-1568 . 659936) (-1569 . 659841) (-1570 . 659483)
+ (-1571 . 659381) (-1572 . 659186) (-1573 . 658884) (-1574 . 658713)
+ (-1575 . 656857) (-1576 . 656171) (-1577 . 655929) (-1578 . 655872)
+ (-1579 . 655843) (-1580 . 655757) (-1581 . 655669) (-1582 . 655289)
+ (-1583 . 655255) (-1584 . 655186) (-1585 . 654961) (-1586 . 654544)
+ (-1587 . 653795) (-1588 . 653508) (-1589 . 652948) (-1590 . 652827)
+ (-1591 . 652114) (-1592 . 652018) (-1593 . 651903) (-1594 . 651685)
+ (-1595 . 651549) (-1596 . 651276) (-1597 . 651166) (-1598 . 651100)
+ (-1599 . 651014) (-1600 . 650440) (-1601 . 650345) (-1602 . 650293)
+ (-1603 . 650183) (-1604 . 650082) (-1605 . 649988) (-1606 . 649776)
+ (-1607 . 649623) (-1608 . 649525) (-1609 . 649407) (-1610 . 648864)
+ (-1611 . 648621) (-1612 . 648047) (-1613 . 647049) (-1614 . 646511)
+ (-1615 . 646247) (-1616 . 646148) (-1617 . 646082) (-1618 . 645161)
+ (-1619 . 644721) (-1620 . 644396) (-1621 . 644223) (-1622 . 644138)
+ (-1623 . 644034) (-1624 . 643904) (-1625 . 643803) (-1626 . 643750)
+ (-1627 . 643176) (-1628 . 643124) (-1629 . 642906) (-1630 . 642791)
+ (-1631 . 642611) (-1632 . 642508) (-1633 . 642453) (-1634 . 642374)
+ (-1635 . 642255) (-1636 . 642191) (-1637 . 641753) (-1638 . 641610)
+ (-1639 . 641551) (-1640 . 640864) (-1641 . 639900) (-1642 . 639692)
+ (-1643 . 639449) (-1644 . 639421) (-1645 . 638241) (-1646 . 637920)
+ (-1647 . 637715) (-1648 . 637609) (-1649 . 637454) (-1650 . 637402)
+ (-1651 . 636715) (-1652 . 636619) (-1653 . 636518) (-1654 . 636463)
+ (-1655 . 634886) (-1656 . 634768) (-1657 . 634713) (-1658 . 634657)
+ (-1659 . 634604) (-1660 . 634386) (-1661 . 634140) (* . 629594)
+ (-1663 . 629253) (-1664 . 628566) (-1665 . 628421) (-1666 . 628335)
+ (-1667 . 628278) (-1668 . 628169) (-1669 . 627915) (-1670 . 627311)
+ (-1671 . 626726) (-1672 . 626374) (-1673 . 626288) (-1674 . 626140)
+ (-1675 . 625565) (-1676 . 625461) (-1677 . 625306) (-1678 . 625152)
+ (-1679 . 625099) (-1680 . 625046) (-1681 . 625004) (-1682 . 624808)
+ (-1683 . 624516) (-1684 . 624222) (-1685 . 623647) (-1686 . 623541)
+ (-1687 . 623400) (-1688 . 623197) (-1689 . 623113) (-1690 . 623061)
+ (-1691 . 622982) (-1692 . 622880) (-1693 . 622715) (-1694 . 622629)
+ (-1695 . 622557) (-1696 . 622394) (-1697 . 622341) (-1698 . 621766)
+ (-1699 . 621644) (-1700 . 621507) (-1701 . 621378) (-1702 . 620546)
+ (-1703 . 620287) (-1704 . 620131) (-1705 . 620059) (-1706 . 619743)
+ (-1707 . 619452) (-1708 . 619384) (-1709 . 618800) (-1710 . 618226)
+ (-1711 . 618052) (-1712 . 617923) (-1713 . 617809) (-1714 . 617665)
+ (-1715 . 617527) (-1716 . 617348) (-1717 . 617157) (-1718 . 616627)
+ (-1719 . 616485) (-1720 . 616372) (-1721 . 616113) (-1722 . 615539)
+ (-1723 . 615483) (-1724 . 615390) (-1725 . 615306) (-1726 . 615182)
+ (-1727 . 615090) (-1728 . 614937) (-1729 . 614283) (-1730 . 613977)
+ (-1731 . 613566) (-1732 . 613466) (-1733 . 612892) (-1734 . 612806)
+ (-1735 . 612713) (-1736 . 612647) (-1737 . 612564) (-1738 . 612231)
+ (-1739 . 612128) (-1740 . 612040) (-1741 . 611909) (-1742 . 611501)
+ (-1743 . 611422) (-1744 . 611285) (-1745 . 610711) (-1746 . 610649)
+ (-1747 . 610039) (-1748 . 609957) (-1749 . 609855) (-1750 . 609827)
+ (-1751 . 609756) (-1752 . 609579) (-1753 . 609332) (-1754 . 609264)
+ (-1755 . 609028) (-1756 . 608901) (-1757 . 608654) (-1758 . 608080)
+ (-1759 . 607981) (-1760 . 607878) (-1761 . 607632) (-1762 . 607535)
+ (-1763 . 607236) (-1764 . 607184) (-1765 . 606630) (-1766 . 606580)
+ (-1767 . 606506) (-1768 . 606404) (-1769 . 606280) (-1770 . 606114)
+ (-1771 . 606028) (-1772 . 605692) (-1773 . 605612) (-1774 . 605544)
+ (-1775 . 605391) (-1776 . 605339) (-1777 . 605253) (-1778 . 605122)
+ (-1779 . 604969) (-1780 . 604845) (-1781 . 604779) (-1782 . 604568)
+ (-1783 . 604413) (-1784 . 603534) (-1785 . 603478) (-1786 . 603396)
+ (-1787 . 603185) (-1788 . 602533) (-1789 . 602124) (-1790 . 602023)
+ (-1791 . 601943) (-1792 . 601881) (-1793 . 600679) (-1794 . 600624)
+ (-1795 . 600565) (-1796 . 600511) (-1797 . 600423) (-1798 . 600319)
+ (-1799 . 600203) (-1800 . 600038) (-1801 . 599922) (-1802 . 599823)
+ (-1803 . 599605) (-1804 . 599512) (-1805 . 599459) (-1806 . 599340)
+ (-1807 . 599031) (-1808 . 598931) (-1809 . 598595) (-1810 . 598494)
+ (-1811 . 598113) (-1812 . 598018) (-1813 . 597953) (-1814 . 597814)
+ (-1815 . 597384) (-1816 . 597226) (-1817 . 596782) (-1818 . 596438)
+ (-1819 . 596404) (-1820 . 596320) (-1821 . 596223) (-1822 . 596133)
+ (-1823 . 596059) (-1824 . 595901) (-1825 . 595244) (-1826 . 595031)
+ (-1827 . 594979) (-1828 . 594891) (-1829 . 594823) (-1830 . 594504)
+ (-1831 . 594431) (-1832 . 594313) (-1833 . 594194) (-1834 . 594085)
+ (-1835 . 593588) (-1836 . 593535) (-1837 . 593375) (-1838 . 593248)
+ (-1839 . 593095) (-1840 . 592681) (-1841 . 592629) (-1842 . 592239)
+ (-1843 . 592121) (-1844 . 591281) (-1845 . 591120) (-1846 . 590976)
+ (-1847 . 590839) (-1848 . 590738) (-1849 . 590706) (-1850 . 590531)
+ (-1851 . 590473) (-1852 . 590403) (-1853 . 590324) (-1854 . 590149)
+ (-1855 . 589931) (-1856 . 589871) (-1857 . 589709) (-1858 . 589599)
+ (-1859 . 589346) (-1860 . 589190) (-1861 . 589091) (-1862 . 588975)
+ (-1863 . 587818) (-1864 . 587525) (-1865 . 587469) (-1866 . 587357)
+ (-1867 . 587143) (-1868 . 586916) (-1869 . 586359) (-1870 . 586231)
+ (-1871 . 586165) (-1872 . 584789) (-1873 . 584652) (-1874 . 584598)
+ (-1875 . 584407) (-1876 . 584291) (-1877 . 584207) (-1878 . 584047)
+ (-1879 . 583815) (-1880 . 583636) (-1881 . 583492) (-1882 . 583429)
+ (-1883 . 583401) (-1884 . 583269) (-1885 . 583126) (-1886 . 582952)
+ (-1887 . 582706) (-1888 . 582644) (-1889 . 582548) (-1890 . 582465)
+ (-1891 . 582391) (-1892 . 582312) (-1893 . 582259) (-1894 . 582176)
+ (-1895 . 581870) (-1896 . 581787) (-1897 . 581436) (-1898 . 581278)
+ (-1899 . 581246) (-1900 . 581215) (-1901 . 581102) (-1902 . 581021)
+ (-1903 . 580893) (-1904 . 580490) (-1905 . 580419) (-1906 . 580346)
+ (-1907 . 580008) (-1908 . 579935) (-1909 . 579883) (-1910 . 579612)
+ (-1911 . 579524) (-1912 . 579450) (-1913 . 579140) (-1914 . 578687)
+ (-1915 . 578574) (-1916 . 578491) (-1917 . 578141) (-1918 . 578031)
+ (-1919 . 577910) (-1920 . 577774) (-1921 . 577588) (-1922 . 577463)
+ (-1923 . 577355) (-1924 . 577107) (-1925 . 577075) (-1926 . 576861)
+ (-1927 . 576653) (-1928 . 576476) (-1929 . 576079) (-1930 . 575957)
+ (-1931 . 575595) (-1932 . 575491) (-1933 . 575189) (-1934 . 574615)
+ (-1935 . 574401) (-1936 . 574221) (-1937 . 574041) (-1938 . 573975)
+ (-1939 . 573790) (-1940 . 573695) (-1941 . 573612) (-1942 . 573454)
+ (-1943 . 573340) (-1944 . 573187) (-1945 . 573067) (-1946 . 572971)
+ (-1947 . 572195) (-1948 . 572061) (-1949 . 571195) (-1950 . 570942)
+ (-1951 . 570801) (-1952 . 570171) (-1953 . 570100) (-1954 . 569981)
+ (-1955 . 569702) (-1956 . 569025) (-1957 . 568996) (-1958 . 568928)
+ (-1959 . 568721) (-1960 . 568620) (-1961 . 568532) (-1962 . 568407)
+ (-1963 . 568211) (-1964 . 568107) (-1965 . 568033) (-1966 . 567939)
+ (-1967 . 567772) (-1968 . 567675) (-1969 . 567288) (-1970 . 567235)
+ (-1971 . 566763) (-1972 . 566512) (-1973 . 566353) (-1974 . 566301)
+ (-1975 . 566108) (-1976 . 566036) (-1977 . 565718) (-1978 . 565565)
+ (-1979 . 565119) (-1980 . 565063) (-1981 . 565001) (-1982 . 564934)
+ (-1983 . 564732) (-1984 . 564574) (-1985 . 564469) (-1986 . 564381)
+ (-1987 . 564286) (-1988 . 564145) (-1989 . 564016) (-1990 . 563942)
+ (-1991 . 563727) (-1992 . 562991) (-1993 . 562838) (-1994 . 562493)
+ (-1995 . 562386) (-1996 . 562317) (-1997 . 562164) (-1998 . 561974)
+ (-1999 . 561917) (-2000 . 561864) (-2001 . 561820) (-2002 . 561713)
+ (-2003 . 561661) (-2004 . 561499) (-2005 . 561336) (-2006 . 561191)
+ (-2007 . 561142) (-2008 . 561069) (-2009 . 560709) (-2010 . 560656)
+ (-2011 . 560515) (-2012 . 560414) (-2013 . 560209) (-2014 . 559827)
+ (-2015 . 559741) (-2016 . 559614) (-2017 . 559485) (-2018 . 559305)
+ (-2019 . 559214) (-2020 . 559115) (-2021 . 559019) (-2022 . 558933)
+ (-2023 . 558744) (-2024 . 558600) (-2025 . 558480) (-2026 . 558406)
+ (-2027 . 558353) (-2028 . 557709) (-2029 . 557185) (-2030 . 556854)
+ (-2031 . 556647) (-2032 . 556311) (-2033 . 556085) (-2034 . 555769)
+ (-2035 . 555625) (-2036 . 555241) (-2037 . 555163) (-2038 . 555097)
+ (-2039 . 555009) (-2040 . 554910) (-2041 . 554407) (-2042 . 553546)
+ (-2043 . 552374) (-2044 . 552303) (-2045 . 550171) (-2046 . 549705)
+ (-2047 . 549631) (-2048 . 549278) (-2049 . 549123) (-2050 . 548253)
+ (-2051 . 548225) (-2052 . 548080) (-2053 . 547921) (-2054 . 547708)
+ (-2055 . 547550) (-2056 . 547387) (-2057 . 547101) (-2058 . 546986)
+ (-2059 . 546879) (-2060 . 546780) (-2061 . 546597) (-2062 . 546460)
+ (-2063 . 546204) (-2064 . 545923) (-2065 . 545550) (-2066 . 545464)
+ (-2067 . 545367) (-2068 . 545312) (-2069 . 545216) (-2070 . 544079)
+ (-2071 . 544017) (-2072 . 543758) (-2073 . 543730) (-2074 . 543614)
+ (-2075 . 543282) (-2076 . 543117) (-2077 . 542919) (-2078 . 542817)
+ (-2079 . 542234) (-2080 . 542095) (-2081 . 541982) (-2082 . 541123)
+ (-2083 . 540965) (-2084 . 539557) (-2085 . 539433) (-2086 . 539350)
+ (-2087 . 539290) (-2088 . 537022) (-2089 . 536950) (-2090 . 536634)
+ (-2091 . 536515) (-2092 . 536268) (-2093 . 536188) (-2094 . 536108)
+ (-2095 . 536011) (-2096 . 535660) (-2097 . 535522) (-2098 . 534997)
+ (-2099 . 534886) (-2100 . 534627) (-2101 . 534299) (-2102 . 534133)
+ (-2103 . 532952) (-2104 . 532711) (-2105 . 532623) (-2106 . 532471)
+ (-2107 . 532218) (-2108 . 532019) (-2109 . 531967) (-2110 . 531743)
+ (-2111 . 531636) (-2112 . 531551) (-2113 . 531481) (-2114 . 530265)
+ (-2115 . 530179) (-2116 . 530150) (-2117 . 530122) (-2118 . 529849)
+ (-2119 . 529751) (-2120 . 529599) (-2121 . 524086) (-2122 . 523965)
+ (-2123 . 523888) (-2124 . 523758) (-2125 . 523611) (-2126 . 523377)
+ (-2127 . 523322) (-2128 . 523195) (-2129 . 522452) (-2130 . 522279)
+ (-2131 . 521482) (-2132 . 521232) (-2133 . 520788) (-2134 . 520400)
+ (-2135 . 520255) (-2136 . 520186) (-2137 . 520113) (-2138 . 520001)
+ (-2139 . 519874) (-2140 . 519753) (-2141 . 519687) (-2142 . 519441)
+ (-2143 . 519223) (-2144 . 519104) (-2145 . 518649) (-2146 . 518582)
+ (-2147 . 518449) (-2148 . 518372) (-2149 . 518299) (-2150 . 518209)
+ (-2151 . 518029) (-2152 . 516441) (-2153 . 516330) (-2154 . 516271)
+ (-2155 . 516025) (-2156 . 515809) (-2157 . 515685) (-2158 . 515565)
+ (-2159 . 515144) (-2160 . 514795) (-2161 . 514668) (-2162 . 514609)
+ (-2163 . 514535) (-2164 . 514289) (-2165 . 514191) (-2166 . 512461)
+ (-2167 . 512305) (-2168 . 512109) (-2169 . 512029) (-2170 . 511502)
+ (-2171 . 511305) (-2172 . 511202) (-2173 . 511075) (-2174 . 511041)
+ (-2175 . 510911) (-2176 . 510793) (-2177 . 510705) (-2178 . 510632)
+ (-2179 . 510546) (-2180 . 510027) (-2181 . 509939) (-2182 . 509884)
+ (-2183 . 509813) (-2184 . 509719) (-2185 . 509618) (-2186 . 509562)
+ (-2187 . 509375) (-2188 . 509180) (-2189 . 509094) (-2190 . 508528)
+ (-2191 . 508298) (-2192 . 508125) (-2193 . 507633) (-2194 . 507525)
+ (-2195 . 507472) (-2196 . 507216) (-2197 . 506927) (-2198 . 506855)
+ (-2199 . 506739) (-2200 . 506279) (-2201 . 506139) (-2202 . 506033)
+ (-2203 . 505467) (-2204 . 504935) (-2205 . 504400) (-2206 . 504107)
+ (-2207 . 503918) (-2208 . 503748) (-2209 . 503549) (-2210 . 503420)
+ (-2211 . 503291) (-2212 . 502910) (-2213 . 502525) (-2214 . 502225)
+ (-2215 . 502059) (-2216 . 501677) (-2217 . 501256) (-2218 . 500939)
+ (-2219 . 500883) (-2220 . 500711) (-2221 . 500589) (-2222 . 500321)
+ (-2223 . 500231) (-2224 . 500104) (-2225 . 500001) (-2226 . 499919)
+ (-2227 . 490359) (-2228 . 490127) (-2229 . 490015) (-2230 . 489906)
+ (-2231 . 489760) (-2232 . 489637) (-2233 . 489535) (-2234 . 489482)
+ (-2235 . 489392) (-2236 . 489314) (-2237 . 488861) (-2238 . 488546)
+ (-2239 . 488444) (-2240 . 488299) (-2241 . 488144) (-2242 . 488081)
+ (-2243 . 488019) (-2244 . 487950) (-2245 . 487821) (-2246 . 486192)
+ (-2247 . 486034) (-2248 . 485979) (-2249 . 485893) (-2250 . 484115)
+ (-2251 . 484062) (-2252 . 483996) (-2253 . 483833) (-2254 . 482432)
+ (-2255 . 482314) (-2256 . 481863) (-2257 . 481790) (-2258 . 481759)
+ (-2259 . 481676) (-2260 . 481544) (-2261 . 480678) (-2262 . 480646)
+ (-2263 . 480515) (-2264 . 479929) (-2265 . 479793) (-2266 . 479744)
+ (-2267 . 479635) (-2268 . 479460) (-2269 . 479431) (-2270 . 479224)
+ (-2271 . 479123) (-2272 . 477749) (-2273 . 477683) (-2274 . 477528)
+ (-2275 . 477451) (-2276 . 477399) (-2277 . 477365) (-2278 . 477299)
+ (-2279 . 477212) (-2280 . 477099) (-2281 . 476772) (-2282 . 476701)
+ (-2283 . 476359) (-2284 . 476257) (-2285 . 476162) (-2286 . 476100)
+ (-2287 . 475979) (-2288 . 475835) (-2289 . 475741) (-2290 . 475664)
+ (-2291 . 475506) (-2292 . 475387) (-2293 . 475313) (-2294 . 474717)
+ (-2295 . 474618) (-2296 . 474566) (-2297 . 474460) (-2298 . 474296)
+ (-2299 . 474116) (-2300 . 474017) (-2301 . 473820) (-2302 . 473735)
+ (-2303 . 473564) (-2304 . 473394) (-2305 . 473313) (-2306 . 473242)
+ (-2307 . 473084) (-2308 . 473035) (-2309 . 472636) (-2310 . 472393)
+ (-2311 . 472201) (-2312 . 472127) (-2313 . 472093) (-2314 . 471965)
+ (-2315 . 471852) (-2316 . 471739) (-2317 . 471682) (-2318 . 471574)
+ (-2319 . 471518) (-2320 . 471440) (-2321 . 469736) (-2322 . 469561)
+ (-2323 . 469475) (-2324 . 469381) (-2325 . 469311) (-2326 . 469211)
+ (-2327 . 469034) (-2328 . 469000) (-2329 . 468947) (-2330 . 468695)
+ (-2331 . 468528) (-2332 . 468248) (-2333 . 468106) (-2334 . 468032)
+ (-2335 . 467884) (-2336 . 466046) (-2337 . 465887) (-2338 . 465778)
+ (-2339 . 465669) (-2340 . 465422) (-2341 . 465345) (-2342 . 465179)
+ (-2343 . 464885) (-2344 . 464714) (-2345 . 464562) (-2346 . 464484)
+ (-2347 . 464357) (-2348 . 464244) (-2349 . 464188) (-2350 . 464104)
+ (-2351 . 464052) (-2352 . 462542) (-2353 . 462286) (-2354 . 462214)
+ (-2355 . 462162) (-2356 . 461938) (-2357 . 461881) (-2358 . 461774)
+ (-2359 . 461632) (-2360 . 461495) (-2361 . 461362) (-2362 . 461303)
+ (-2363 . 461219) (-2364 . 461084) (-2365 . 460975) (-2366 . 459427)
+ (-2367 . 459283) (-2368 . 459234) (-2369 . 459157) (-2370 . 459075)
+ (-2371 . 458993) (-2372 . 458941) (-2373 . 458879) (-2374 . 458631)
+ (-2375 . 458344) (-2376 . 458278) (-2377 . 457921) (-2378 . 457778)
+ (-2379 . 457476) (-2380 . 457278) (-2381 . 457115) (-2382 . 457011)
+ (-2383 . 456937) (-2384 . 456715) (-2385 . 456612) (-2386 . 456529)
+ (-2387 . 456354) (-2388 . 456149) (-2389 . 455880) (-2390 . 455395)
+ (-2391 . 455168) (-2392 . 455010) (-2393 . 454694) (-2394 . 453698)
+ (-2395 . 453237) (-2396 . 452957) (-2397 . 452799) (-2398 . 452717)
+ (-2399 . 452553) (-2400 . 452473) (-2401 . 451870) (-2402 . 450598)
+ (-2403 . 450518) (-2404 . 450397) (-2405 . 449232) (-2406 . 449028)
+ (-2407 . 448946) (-2408 . 448872) (-2409 . 448644) (-2410 . 448352)
+ (-2411 . 448236) (-2412 . 448005) (-2413 . 447788) (-2414 . 447412)
+ (-2415 . 447259) (-2416 . 447207) (-2417 . 447064) (-2418 . 446899)
+ (-2419 . 446480) (-2420 . 446428) (-2421 . 445553) (-2422 . 445408)
+ (-2423 . 445169) (-2424 . 444943) (-2425 . 444856) (-2426 . 444790)
+ (-2427 . 444692) (-2428 . 444605) (-2429 . 444511) (-2430 . 444035)
+ (-2431 . 443917) (-2432 . 443818) (-2433 . 443787) (-2434 . 443710)
+ (-2435 . 443626) (-2436 . 443536) (-2437 . 443408) (-2438 . 443249)
+ (-2439 . 443181) (-2440 . 443121) (-2441 . 442783) (-2442 . 442749)
+ (-2443 . 442675) (-2444 . 442574) (-2445 . 442356) (-2446 . 441962)
+ (-2447 . 441664) (-2448 . 441577) (-2449 . 441359) (-2450 . 441251)
+ (-2451 . 441144) (-2452 . 440801) (-2453 . 440670) (-2454 . 440611)
+ (-2455 . 440005) (-2456 . 439936) (-2457 . 439549) (-2458 . 438915)
+ (-2459 . 438849) (-2460 . 438488) (-2461 . 438381) (-2462 . 438267)
+ (-2463 . 438167) (-2464 . 438069) (-2465 . 437999) (-2466 . 437922)
+ (-2467 . 437789) (-2468 . 437730) (-2469 . 437616) (-2470 . 437556)
+ (-2471 . 437343) (-2472 . 437192) (-2473 . 436550) (-2474 . 436404)
+ (-2475 . 435531) (-2476 . 435429) (-2477 . 435308) (-2478 . 434926)
+ (-2479 . 434611) (-2480 . 434528) (-2481 . 433864) (-2482 . 433769)
+ (-2483 . 433681) (-2484 . 433514) (-2485 . 433189) (-2486 . 432003)
+ (-2487 . 431866) (-2488 . 431762) (-2489 . 431680) (-2490 . 431313)
+ (-2491 . 431260) (-2492 . 430669) (-2493 . 430564) (-2494 . 430513)
+ (-2495 . 430405) (-2496 . 430245) (-2497 . 430108) (-2498 . 430002)
+ (-2499 . 429872) (-2500 . 428690) (-2501 . 428602) (-2502 . 428543)
+ (-2503 . 428488) (-2504 . 428358) (-2505 . 428255) (-2506 . 428090)
+ (-2507 . 428037) (-2508 . 427924) (-2509 . 427737) (-2510 . 427666)
+ (-2511 . 427614) (-2512 . 427561) (-2513 . 425355) (-2514 . 424907)
+ (-2515 . 424386) (-2516 . 424333) (-2517 . 424256) (-2518 . 424228)
+ (-2519 . 423869) (-2520 . 423783) (-2521 . 423704) (-2522 . 423585)
+ (-2523 . 423494) (-2524 . 423460) (-2525 . 423066) (-2526 . 422978)
+ (-2527 . 422820) (-2528 . 422539) (-2529 . 422284) (-2530 . 421972)
+ (-2531 . 421543) (-2532 . 420831) (-2533 . 420224) (-2534 . 420126)
+ (-2535 . 420019) (-2536 . 419991) (-2537 . 419936) (-2538 . 419610)
+ (-2539 . 419532) (-2540 . 419466) (-2541 . 419365) (-2542 . 419226)
+ (-2543 . 419008) (-2544 . 418698) (-2545 . 418614) (-2546 . 418514)
+ (-2547 . 418362) (-2548 . 417513) (-2549 . 417460) (-2550 . 417408)
+ (-2551 . 417231) (-2552 . 417160) (-2553 . 417045) (-2554 . 416994)
+ (-2555 . 416833) (-2556 . 416624) (-2557 . 413003) (-2558 . 412903)
+ (-2559 . 412712) (-2560 . 412593) (-2561 . 412450) (-2562 . 412308)
+ (-2563 . 412205) (-2564 . 412133) (-2565 . 411957) (-2566 . 411858)
+ (-2567 . 411772) (-2568 . 411642) (-2569 . 411590) (-2570 . 411539)
+ (-2571 . 411453) (-2572 . 411359) (-2573 . 410795) (-2574 . 410277)
+ (-2575 . 410150) (-2576 . 410076) (-2577 . 409915) (-2578 . 409813)
+ (-2579 . 409695) (-2580 . 408888) (-2581 . 408790) (-2582 . 408677)
+ (-2583 . 408570) (-2584 . 408499) (-2585 . 408253) (-2586 . 408154)
+ (-2587 . 407803) (-2588 . 407742) (-2589 . 407326) (-2590 . 407276)
+ (-2591 . 407129) (-2592 . 407060) (-2593 . 406821) (-2594 . 406733)
+ (-2595 . 406572) (-2596 . 406520) (-2597 . 406189) (-2598 . 406105)
+ (-2599 . 406032) (-2600 . 405823) (-2601 . 405737) (-2602 . 405142)
+ (-2603 . 404999) (-2604 . 404707) (-2605 . 404529) (-2606 . 404429)
+ (-2607 . 404310) (-2608 . 404221) (-2609 . 403878) (-2610 . 403820)
+ (-2611 . 403751) (-2612 . 403434) (-2613 . 403336) (-2614 . 403138)
+ (-2615 . 402980) (-2616 . 402824) (-2617 . 402705) (-2618 . 402634)
+ (-2619 . 402334) (-2620 . 402305) (-2621 . 402222) (-2622 . 401818)
+ (-2623 . 401525) (-2624 . 401472) (-2625 . 401367) (-2626 . 401311)
+ (-2627 . 401277) (-2628 . 401078) (-2629 . 401006) (-2630 . 400824)
+ (-2631 . 400440) (-2632 . 400367) (-2633 . 400298) (-2634 . 400233)
+ (-2635 . 400117) (-2636 . 400018) (-2637 . 398572) (-2638 . 398463)
+ (-2639 . 398397) (-2640 . 398256) (-2641 . 398203) (-2642 . 397673)
+ (-2643 . 397592) (-2644 . 397413) (-2645 . 397106) (-2646 . 397010)
+ (-2647 . 396852) (-2648 . 396653) (-2649 . 396453) (-2650 . 396383)
+ (-2651 . 396254) (-2652 . 396098) (-2653 . 395985) (-2654 . 395930)
+ (-2655 . 395812) (-2656 . 395743) (-2657 . 395655) (-2658 . 395401)
+ (-2659 . 390063) (-2660 . 389966) (-2661 . 389291) (-2662 . 389182)
+ (-2663 . 388913) (-2664 . 388845) (-2665 . 388744) (-2666 . 388640)
+ (-2667 . 388588) (-2668 . 388491) (-2669 . 388365) (-2670 . 388309)
+ (-2671 . 388156) (-2672 . 387933) (-2673 . 387851) (-2674 . 387711)
+ (-2675 . 387473) (-2676 . 387278) (-2677 . 387177) (-2678 . 387110)
+ (-2679 . 386854) (-2680 . 386802) (-2681 . 386643) (-2682 . 386591)
+ (-2683 . 386468) (-2684 . 386046) (-2685 . 385980) (-2686 . 381982)
+ (-2687 . 381866) (-2688 . 381796) (-2689 . 381686) (-2690 . 381581)
+ (-2691 . 381496) (-2692 . 381295) (-2693 . 381242) (-2694 . 380685)
+ (-2695 . 380608) (-2696 . 379066) (-2697 . 378958) (-2698 . 378862)
+ (-2699 . 378108) (-2700 . 377805) (-2701 . 377712) (-2702 . 377534)
+ (-2703 . 377288) (-2704 . 377179) (-2705 . 376992) (-2706 . 376829)
+ (-2707 . 376534) (-2708 . 376481) (-2709 . 376348) (-2710 . 376258)
+ (-2711 . 376022) (-2712 . 373241) (-2713 . 373128) (-2714 . 368586)
+ (-2715 . 368502) (-2716 . 368422) (-2717 . 368172) (-2718 . 368004)
+ (-2719 . 366792) (-2720 . 366636) (-2721 . 366557) (-2722 . 366453)
+ (-2723 . 366339) (-2724 . 366173) (-2725 . 366110) (-2726 . 366016)
+ (-2727 . 365917) (-2728 . 365865) (-2729 . 365795) (-2730 . 365691)
+ (-2731 . 365563) (-2732 . 365439) (-2733 . 365229) (-2734 . 364934)
+ (-2735 . 364867) (-2736 . 364490) (-2737 . 364287) (-2738 . 364209)
+ (-2739 . 364065) (-2740 . 363723) (-2741 . 363568) (-2742 . 363386)
+ (-2743 . 363333) (-2744 . 363197) (-2745 . 362976) (-2746 . 362862)
+ (-2747 . 362809) (-2748 . 362741) (-2749 . 362650) (-2750 . 362459)
+ (-2751 . 360044) (-2752 . 359992) (-2753 . 359940) (-2754 . 359782)
+ (-2755 . 359673) (-2756 . 359503) (-2757 . 359382) (-2758 . 359040)
+ (-2759 . 358948) (-2760 . 358849) (-2761 . 358702) (-2762 . 358617)
+ (-2763 . 357419) (-2764 . 356123) (-2765 . 356000) (-2766 . 355916)
+ (-2767 . 355850) (-2768 . 355716) (-2769 . 355558) (-2770 . 355038)
+ (-2771 . 354956) (-2772 . 354708) (-2773 . 354585) (-2774 . 354522)
+ (-2775 . 354336) (-2776 . 354277) (-2777 . 354089) (-2778 . 353976)
+ (-2779 . 353889) (-2780 . 353805) (-2781 . 353725) (-2782 . 352861)
+ (-2783 . 352616) (-2784 . 352014) (-2785 . 351948) (-2786 . 351584)
+ (-2787 . 351455) (-2788 . 351377) (-2789 . 351345) (-2790 . 351261)
+ (-2791 . 351168) (-2792 . 350781) (-2793 . 350713) (-2794 . 350682)
+ (-2795 . 350626) (-2796 . 350555) (-2797 . 336441) (-2798 . 335803)
+ (-2799 . 335751) (-2800 . 335665) (-2801 . 335567) (-2802 . 335512)
+ (-2803 . 335379) (-2804 . 335279) (-2805 . 335108) (-2806 . 334997)
+ (-2807 . 334911) (-2808 . 334837) (-2809 . 334728) (-2810 . 334455)
+ (-2811 . 334388) (-2812 . 333861) (-2813 . 333666) (-2814 . 333491)
+ (-2815 . 332994) (-2816 . 332897) (-2817 . 332731) (-2818 . 332658)
+ (-2819 . 332396) (-2820 . 332302) (-2821 . 330832) (-2822 . 330700)
+ (-2823 . 330633) (-2824 . 330460) (-2825 . 330368) (-2826 . 327441)
+ (-2827 . 327219) (-2828 . 327129) (-2829 . 327020) (-2830 . 326888)
+ (-2831 . 326854) (-2832 . 326745) (-2833 . 326577) (-2834 . 325490)
+ (-2835 . 325319) (-2836 . 324897) (-2837 . 324756) (-2838 . 324673)
+ (-2839 . 324616) (-2840 . 324561) (-2841 . 324491) (-2842 . 324436)
+ (-2843 . 324226) (-2844 . 324113) (-2845 . 319394) (-2846 . 319239)
+ (-2847 . 319080) (-2848 . 318907) (-2849 . 318851) (-2850 . 318481)
+ (-2851 . 318229) (-2852 . 318039) (-2853 . 317921) (-2854 . 317718)
+ (-2855 . 317623) (-2856 . 317400) (-2857 . 317066) (-2858 . 316938)
+ (-2859 . 316762) (-2860 . 316642) (-2861 . 316541) (-2862 . 316491)
+ (-2863 . 316212) (-2864 . 316054) (-2865 . 315965) (-2866 . 314001)
+ (-2867 . 313918) (-2868 . 313795) (-2869 . 313724) (-2870 . 313465)
+ (-2871 . 313284) (-2872 . 313224) (-2873 . 312875) (-2874 . 312726)
+ (-2875 . 312540) (-2876 . 312290) (-2877 . 312195) (-2878 . 312082)
+ (-2879 . 311963) (-2880 . 311877) (-2881 . 311717) (-2882 . 311514)
+ (-2883 . 310993) (-2884 . 310885) (-2885 . 310735) (-2886 . 310642)
+ (-2887 . 310590) (-2888 . 310372) (-2889 . 310319) (-2890 . 310176)
+ (-2891 . 310082) (-2892 . 309787) (-2893 . 309648) (-2894 . 309379)
+ (-2895 . 309345) (-2896 . 309259) (-2897 . 309078) (-2898 . 308953)
+ (-2899 . 308879) (-2900 . 308827) (-2901 . 308668) (-2902 . 308450)
+ (-2903 . 308421) (-2904 . 308305) (-2905 . 308221) (-2906 . 307795)
+ (-2907 . 307721) (-2908 . 307668) (-2909 . 307530) (-2910 . 306889)
+ (-2911 . 306720) (-2912 . 306482) (-2913 . 306133) (-2914 . 305990)
+ (-2915 . 305920) (-2916 . 305670) (-2917 . 305543) (-2918 . 305471)
+ (-2919 . 305369) (-2920 . 305174) (-2921 . 305086) (-2922 . 304757)
+ (-2923 . 304612) (-2924 . 304408) (-2925 . 304301) (-2926 . 303985)
+ (-2927 . 303821) (-2928 . 303638) (-2929 . 303522) (-2930 . 303451)
+ (-2931 . 303380) (-2932 . 301117) (-2933 . 300902) (-2934 . 300794)
+ (-2935 . 300649) (-2936 . 300365) (-2937 . 300243) (-2938 . 300109)
+ (-2939 . 300002) (-2940 . 299877) (-2941 . 299625) (-2942 . 299509)
+ (-2943 . 299436) (-2944 . 299281) (-2945 . 299002) (-2946 . 298916)
+ (-2947 . 298865) (-2948 . 298809) (-2949 . 298659) (-2950 . 298625)
+ (-2951 . 298392) (-2952 . 298304) (-2953 . 298140) (-2954 . 297789)
+ (-2955 . 297655) (-2956 . 297576) (-2957 . 297334) (-2958 . 297237)
+ (-2959 . 297108) (-2960 . 296796) (-2961 . 296606) (-2962 . 296554)
+ (-2963 . 296480) (-2964 . 296339) (-2965 . 296091) (-2966 . 296019)
+ (-2967 . 295830) (-2968 . 295700) (-2969 . 295668) (-2970 . 295591)
+ (-2971 . 295281) (-2972 . 295184) (-2973 . 295008) (-2974 . 294761)
+ (-2975 . 294681) (-2976 . 294518) (-2977 . 294380) (-2978 . 294213)
+ (-2979 . 294089) (-2980 . 293841) (-2981 . 293598) (-2982 . 293490)
+ (-2983 . 293359) (-2984 . 293285) (-2985 . 292550) (-2986 . 292349)
+ (-2987 . 292189) (-2988 . 292051) (-2989 . 291832) (-2990 . 291679)
+ (-2991 . 291575) (-2992 . 291320) (-2993 . 291237) (-2994 . 291107)
+ (-2995 . 291052) (-2996 . 291024) (-2997 . 290910) (-2998 . 290742)
+ (-2999 . 290647) (-3000 . 290416) (-3001 . 290339) (-3002 . 290196)
+ (-3003 . 290010) (-3004 . 289909) (-3005 . 289476) (-3006 . 289323)
+ (-3007 . 289182) (-3008 . 289030) (-3009 . 288914) (-3010 . 288729)
+ (-3011 . 288240) (-3012 . 288155) (-3013 . 288126) (-3014 . 287978)
+ (-3015 . 287699) (-3016 . 287627) (-3017 . 287511) (-3018 . 287424)
+ (-3019 . 287355) (-3020 . 287207) (-3021 . 287137) (-3022 . 287018)
+ (-3023 . 286778) (-3024 . 286725) (-3025 . 286616) (-3026 . 286241)
+ (-3027 . 286117) (-3028 . 286019) (-3029 . 285642) (-3030 . 285605)
+ (-3031 . 285481) (-3032 . 285357) (-3033 . 285086) (-3034 . 285022)
+ (-3035 . 284879) (-3036 . 284770) (-3037 . 284674) (-3038 . 284553)
+ (-3039 . 284500) (-3040 . 284134) (-3041 . 284016) (-3042 . 283707)
+ (-3043 . 283651) (-3044 . 283358) (-3045 . 283305) (-3046 . 283252)
+ (-3047 . 283095) (-3048 . 282988) (-3049 . 282657) (-3050 . 282569)
+ (-3051 . 282462) (-3052 . 282126) (-3053 . 281875) (-3054 . 281823)
+ (-3055 . 281726) (-3056 . 281674) (-3057 . 281603) (-3058 . 281551)
+ (-3059 . 281444) (-3060 . 281319) (-3061 . 281250) (-3062 . 281166)
+ (-3063 . 281067) (-3064 . 280842) (-3065 . 280747) (-3066 . 280677)
+ (-3067 . 280581) (-3068 . 280443) (-3069 . 280377) (-3070 . 280279)
+ (-3071 . 280210) (-3072 . 279757) (-3073 . 279620) (-3074 . 279549)
+ (-3075 . 279475) (-3076 . 279280) (-3077 . 279120) (-3078 . 279046)
+ (-3079 . 278876) (-3080 . 278763) (-3081 . 278690) (-3082 . 278582)
+ (-3083 . 278369) (-3084 . 278171) (-3085 . 278098) (-3086 . 277818)
+ (-3087 . 277717) (-3088 . 277144) (-3089 . 276937) (-3090 . 276866)
+ (-3091 . 276714) (-3092 . 276526) (-3093 . 276498) (-3094 . 276447)
+ (-3095 . 276306) (-3096 . 276238) (-3097 . 275977) (-3098 . 275854)
+ (-3099 . 274003) (-3100 . 273920) (-3101 . 273892) (-3102 . 273839)
+ (-3103 . 273769) (-3104 . 273639) (-3105 . 272521) (-3106 . 272395)
+ (-3107 . 272280) (-3108 . 272113) (-3109 . 271990) (-3110 . 271938)
+ (-3111 . 271868) (-3112 . 271816) (-3113 . 271736) (-3114 . 271638)
+ (-3115 . 271500) (-3116 . 271295) (-3117 . 271187) (-3118 . 270930)
+ (-3119 . 270803) (-3120 . 270696) (-3121 . 270637) (-3122 . 270412)
+ (-3123 . 269162) (-3124 . 269052) (-3125 . 268882) (-3126 . 268704)
+ (-3127 . 268655) (-3128 . 268502) (-3129 . 268388) (-3130 . 268197)
+ (-3131 . 267751) (-3132 . 267629) (-3133 . 267595) (-3134 . 267369)
+ (-3135 . 267317) (-3136 . 267039) (-3137 . 266860) (-3138 . 266700)
+ (-3139 . 266629) (-3140 . 266474) (-3141 . 266334) (-3142 . 266195)
+ (-3143 . 266030) (-3144 . 265895) (-3145 . 265842) (-3146 . 265515)
+ (-3147 . 264855) (-3148 . 264420) (-3149 . 264280) (-3150 . 264137)
+ (-3151 . 264085) (-3152 . 264012) (-3153 . 263681) (-3154 . 263604)
+ (-3155 . 263358) (-3156 . 263200) (-3157 . 263123) (-3158 . 262977)
+ (-3159 . 262871) (-3160 . 262770) (-3161 . 262379) (-3162 . 262315)
+ (-3163 . 262110) (-3164 . 262044) (-3165 . 261960) (-3166 . 261819)
+ (-3167 . 261609) (-3168 . 261486) (-3169 . 261306) (-3170 . 261278)
+ (-3171 . 261150) (-3172 . 260876) (-3173 . 260759) (-3174 . 260657)
+ (-3175 . 260547) (-3176 . 260301) (-3177 . 260249) (-3178 . 260127)
+ (-3179 . 259806) (-3180 . 259673) (-3181 . 259594) (-3182 . 259218)
+ (-3183 . 259096) (-3184 . 258923) (-3185 . 258873) (-3186 . 258630)
+ (-3187 . 258340) (-3188 . 258266) (-3189 . 258195) (-3190 . 258040)
+ (-3191 . 257966) (-3192 . 257798) (-3193 . 257367) (-3194 . 257205)
+ (-3195 . 257015) (-3196 . 256654) (-3197 . 256435) (-3198 . 255519)
+ (-3199 . 255365) (-3200 . 255214) (-3201 . 255059) (-3202 . 255008)
+ (-3203 . 254956) (-3204 . 254896) (-3205 . 254845) (-3206 . 254793)
+ (-3207 . 254326) (-3208 . 254243) (-3209 . 254128) (-3210 . 253936)
+ (-3211 . 253781) (-3212 . 253280) (-3213 . 252526) (-3214 . 252367)
+ (-3215 . 252122) (-3216 . 251836) (-3217 . 251780) (-3218 . 251721)
+ (-3219 . 251313) (-3220 . 251189) (-3221 . 250975) (-3222 . 250683)
+ (-3223 . 250204) (-3224 . 250085) (-3225 . 249915) (-3226 . 249803)
+ (-3227 . 249701) (-3228 . 249555) (-3229 . 249425) (-3230 . 249351)
+ (-3231 . 249134) (-3232 . 249082) (-3233 . 248915) (-3234 . 248673)
+ (-3235 . 248558) (-3236 . 248340) (-3237 . 248129) (-3238 . 248067)
+ (-3239 . 247417) (-3240 . 247330) (-3241 . 247191) (-3242 . 246969)
+ (-3243 . 246896) (-3244 . 246766) (-3245 . 246529) (-3246 . 246474)
+ (-3247 . 246388) (-3248 . 246091) (-3249 . 245968) (-3250 . 245872)
+ (-3251 . 245584) (-3252 . 245552) (-3253 . 245478) (-3254 . 245384)
+ (-3255 . 245196) (-3256 . 245125) (-3257 . 244988) (-3258 . 244807)
+ (-3259 . 244654) (-3260 . 244496) (-3261 . 244116) (-3262 . 244042)
+ (-3263 . 243926) (-3264 . 240837) (-3265 . 240585) (-3266 . 240511)
+ (-3267 . 240428) (-3268 . 240239) (-3269 . 240075) (-3270 . 239848)
+ (-3271 . 239750) (-3272 . 239648) (-3273 . 239575) (-3274 . 239389)
+ (-3275 . 239129) (-3276 . 238958) (-3277 . 238257) (-3278 . 238102)
+ (-3279 . 238051) (-3280 . 237990) (-3281 . 237719) (-3282 . 237438)
+ (-3283 . 237278) (-3284 . 237212) (-3285 . 237069) (-3286 . 236359)
+ (-3287 . 236112) (-3288 . 235988) (-3289 . 235658) (-3290 . 235577)
+ (-3291 . 235379) (-3292 . 235221) (-3293 . 235156) (-3294 . 235021)
+ (-3295 . 234968) (-3296 . 234843) (-3297 . 234671) (-3298 . 234583)
+ (-3299 . 234453) (-3300 . 234403) (-3301 . 234254) (-3302 . 233673)
+ (-3303 . 233575) (-3304 . 232759) (-3305 . 232703) (-3306 . 232622)
+ (-3307 . 232388) (-3308 . 232339) (-3309 . 232268) (-3310 . 232202)
+ (-3311 . 232136) (-3312 . 232065) (-3313 . 231962) (-3314 . 231839)
+ (-3315 . 231604) (-3316 . 231053) (-3317 . 230975) (-3318 . 230881)
+ (-3319 . 230770) (-3320 . 230626) (-3321 . 230460) (-3322 . 230281)
+ (-3323 . 230071) (-3324 . 229988) (-3325 . 229932) (-3326 . 229879)
+ (-3327 . 229641) (-3328 . 229581) (-3329 . 229354) (-3330 . 229244)
+ (-3331 . 229172) (-3332 . 229135) (-3333 . 229067) (-3334 . 229012)
+ (-3335 . 228905) (-3336 . 228696) (-3337 . 228542) (-3338 . 228469)
+ (-3339 . 228338) (-3340 . 228148) (-3341 . 222941) (-3342 . 222681)
+ (-3343 . 222559) (-3344 . 222468) (-3345 . 221868) (-3346 . 221773)
+ (-3347 . 221494) (-3348 . 221312) (-3349 . 221149) (-3350 . 220738)
+ (-3351 . 220642) (-3352 . 220482) (-3353 . 220267) (-3354 . 220187)
+ (-3355 . 220079) (-3356 . 220020) (-3357 . 219916) (-3358 . 219639)
+ (-3359 . 219546) (-3360 . 219488) (-3361 . 219371) (-3362 . 219199)
+ (-3363 . 219095) (-3364 . 218923) (-3365 . 218684) (-3366 . 218613)
+ (-3367 . 218408) (-3368 . 218136) (-3369 . 217824) (-3370 . 217754)
+ (-3371 . 217676) (-3372 . 217516) (-3373 . 217379) (-3374 . 217226)
+ (-3375 . 217054) (-3376 . 216984) (-3377 . 216956) (-3378 . 216849)
+ (-3379 . 216334) (-3380 . 216281) (-3381 . 216112) (-3382 . 216018)
+ (-3383 . 215939) (-3384 . 215869) (-3385 . 215799) (-3386 . 215731)
+ (-3387 . 215579) (-3388 . 215407) (-3389 . 215303) (-3390 . 215196)
+ (-3391 . 215094) (-3392 . 215066) (-3393 . 214998) (-3394 . 214920)
+ (-3395 . 214886) (-3396 . 214724) (-3397 . 214669) (-3398 . 214497)
+ (-3399 . 213432) (-3400 . 213306) (-3401 . 213232) (-3402 . 213198)
+ (-3403 . 213103) (-3404 . 212999) (-3405 . 212183) (-3406 . 212128)
+ (-3407 . 212034) (-3408 . 211948) (-3409 . 210697) (-3410 . 210639)
+ (-3411 . 210461) (-3412 . 210405) (-3413 . 210213) (-3414 . 209773)
+ (-3415 . 209670) (-3416 . 209486) (-3417 . 208750) (-3418 . 208404)
+ (-3419 . 207995) (-3420 . 207792) (-3421 . 207137) (-3422 . 206997)
+ (-3423 . 206945) (-3424 . 206839) (-3425 . 206567) (-3426 . 206508)
+ (-3427 . 206437) (-3428 . 206344) (-3429 . 206292) (-3430 . 206134)
+ (-3431 . 205886) (-3432 . 205699) (-3433 . 205637) (-3434 . 205459)
+ (-3435 . 205386) (-3436 . 205320) (-3437 . 205101) (-3438 . 205048)
+ (-3439 . 204866) (-3440 . 204811) (-3441 . 204543) (-3442 . 204449)
+ (-3443 . 204396) (-3444 . 204213) (-3445 . 204136) (-3446 . 204058)
+ (-3447 . 204005) (-3448 . 203852) (-3449 . 203257) (-3450 . 203061)
+ (-3451 . 202954) (-3452 . 202895) (-3453 . 202641) (-3454 . 202493)
+ (-3455 . 202441) (-3456 . 200279) (-3457 . 200167) (-3458 . 200052)
+ (-3459 . 199871) (-3460 . 199053) (-3461 . 198982) (-3462 . 198829)
+ (-3463 . 198801) (-3464 . 198582) (-3465 . 198297) (-3466 . 198146)
+ (-3467 . 198067) (-3468 . 197997) (-3469 . 197788) (-3470 . 197641)
+ (-3471 . 197512) (-3472 . 197415) (-3473 . 197289) (-3474 . 197236)
+ (-3475 . 197038) (-3476 . 196798) (-3477 . 196532) (-3478 . 196431)
+ (-3479 . 196337) (-3480 . 196192) (-3481 . 195883) (-3482 . 195513)
+ (-3483 . 195386) (-3484 . 195096) (-3485 . 194918) (-3486 . 194890)
+ (-3487 . 194793) (-3488 . 194644) (-3489 . 194561) (-3490 . 194471)
+ (-3491 . 194369) (-3492 . 193772) (-3493 . 193445) (-3494 . 193292)
+ (-3495 . 193063) (-3496 . 192930) (-3497 . 192789) (-3498 . 192571)
+ (-3499 . 192410) (-3500 . 192358) (-3501 . 192141) (-3502 . 191979)
+ (-3503 . 191592) (-3504 . 191536) (-3505 . 191473) (-3506 . 191253)
+ (-3507 . 190920) (-3508 . 190377) (-3509 . 190270) (-3510 . 190047)
+ (-3511 . 189994) (-3512 . 189936) (-3513 . 189793) (-3514 . 189587)
+ (-3515 . 189446) (-3516 . 189303) (-3517 . 189119) (-3518 . 189015)
+ (-3519 . 188908) (-3520 . 188824) (-3521 . 188720) (-3522 . 188626)
+ (-3523 . 188407) (-3524 . 188264) (-3525 . 188149) (-3526 . 187873)
+ (-3527 . 187749) (-3528 . 187669) (-3529 . 187534) (-3530 . 187173)
+ (-3531 . 187017) (-3532 . 186759) (-3533 . 186001) (-3534 . 185907)
+ (-3535 . 185677) (-3536 . 185539) (-3537 . 185416) (-3538 . 185349)
+ (-3539 . 185321) (-3540 . 185222) (-3541 . 185137) (-3542 . 184837)
+ (-3543 . 184760) (-3544 . 184611) (-3545 . 184474) (-3546 . 184336)
+ (-3547 . 184232) (-3548 . 184203) (-3549 . 184113) (-3550 . 184034)
+ (-3551 . 183962) (-3552 . 183817) (-3553 . 183430) (-3554 . 183350)
+ (-3555 . 183243) (-3556 . 183162) (-3557 . 183085) (-3558 . 182942)
+ (-3559 . 182746) (-3560 . 182617) (-3561 . 182345) (-3562 . 182275)
+ (-3563 . 182226) (-3564 . 182023) (-3565 . 181937) (-3566 . 181749)
+ (-3567 . 181669) (-3568 . 181223) (-3569 . 181089) (-3570 . 181012)
+ (-3571 . 180906) (-3572 . 180752) (-3573 . 180679) (-3574 . 180389)
+ (-3575 . 180109) (-3576 . 180026) (-3577 . 179912) (-3578 . 179806)
+ (-3579 . 179691) (-3580 . 179618) (-3581 . 179452) (-3582 . 179375)
+ (-3583 . 179297) (-3584 . 179132) (-3585 . 178816) (-3586 . 178758)
+ (-3587 . 178675) (-3588 . 178592) (-3589 . 178473) (-3590 . 178363)
+ (-3591 . 178289) (-3592 . 178166) (-3593 . 177992) (-3594 . 177811)
+ (-3595 . 177758) (-3596 . 177367) (-3597 . 176984) (-3598 . 176906)
+ (-3599 . 176833) (-3600 . 176780) (-3601 . 176713) (-3602 . 176010)
+ (-3603 . 175900) (-3604 . 175149) (-3605 . 175018) (-3606 . 174651)
+ (-3607 . 174563) (-3608 . 174468) (-3609 . 174267) (-3610 . 174230)
+ (-3611 . 173767) (-3612 . 173710) (-3613 . 173603) (-3614 . 172600)
+ (-3615 . 172472) (-3616 . 172371) (-3617 . 172228) (-3618 . 171997)
+ (-3619 . 171679) (-3620 . 171627) (-3621 . 171443) (-3622 . 171261)
+ (-3623 . 171103) (-3624 . 171029) (-3625 . 170890) (-3626 . 170766)
+ (-3627 . 170643) (-3628 . 169534) (-3629 . 169437) (-3630 . 167654)
+ (-3631 . 167509) (-3632 . 166271) (-3633 . 166164) (-3634 . 165933)
+ (-3635 . 165813) (-3636 . 165606) (-3637 . 165526) (-3638 . 165313)
+ (-3639 . 164799) (-3640 . 164701) (-3641 . 164578) (-3642 . 164501)
+ (-3643 . 164407) (-3644 . 164339) (-3645 . 164238) (-3646 . 163625)
+ (-3647 . 163506) (-3648 . 163279) (-3649 . 163135) (-3650 . 162979)
+ (-3651 . 162812) (-3652 . 162708) (-3653 . 162421) (-3654 . 162275)
+ (-3655 . 161315) (-3656 . 161133) (-3657 . 160706) (-3658 . 160539)
+ (-3659 . 160466) (-3660 . 160192) (-3661 . 160083) (-3662 . 159691)
+ (-3663 . 159657) (-3664 . 159485) (-3665 . 159126) (-3666 . 158796)
+ (-3667 . 158734) (-3668 . 158647) (-3669 . 158540) (-3670 . 158235)
+ (-3671 . 157801) (-3672 . 157677) (-3673 . 157568) (-3674 . 157395)
+ (-3675 . 157187) (-3676 . 157088) (-3677 . 157035) (-3678 . 156647)
+ (-3679 . 155998) (-3680 . 155819) (-3681 . 155349) (-3682 . 154860)
+ (-3683 . 154788) (-3684 . 154736) (-3685 . 154602) (-3686 . 154000)
+ (-3687 . 153893) (-3688 . 153771) (-3689 . 153622) (-3690 . 153311)
+ (-3691 . 153238) (-3692 . 153178) (-3693 . 153083) (-3694 . 152805)
+ (-3695 . 152739) (-3696 . 152673) (-3697 . 152586) (-3698 . 152474)
+ (-3699 . 152424) (-3700 . 152371) (-3701 . 150257) (-3702 . 150162)
+ (-3703 . 150094) (-3704 . 149944) (-3705 . 149843) (-3706 . 149706)
+ (-3707 . 149255) (-3708 . 149189) (-3709 . 148653) (-3710 . 148270)
+ (-3711 . 148182) (-3712 . 148132) (-3713 . 147948) (-3714 . 147874)
+ (-3715 . 147818) (-3716 . 147765) (-3717 . 147668) (-3718 . 147609)
+ (-3719 . 147512) (-3720 . 147456) (-3721 . 147373) (-3722 . 147301)
+ (-3723 . 147227) (-3724 . 147003) (-3725 . 146908) (-3726 . 146836)
+ (-3727 . 145734) (-3728 . 145673) (-3729 . 145454) (-3730 . 145358)
+ (-3731 . 144877) (-3732 . 144764) (-3733 . 144562) (-3734 . 144509)
+ (-3735 . 144426) (-3736 . 144317) (-3737 . 144264) (-3738 . 144181)
+ (-3739 . 143988) (-3740 . 143795) (-3741 . 143673) (-3742 . 143297)
+ (-3743 . 142603) (-3744 . 142384) (-3745 . 142258) (-3746 . 142078)
+ (-3747 . 142010) (-3748 . 141961) (-3749 . 141659) (-3750 . 141343)
+ (-3751 . 140704) (-3752 . 140652) (-3753 . 140206) (-3754 . 140149)
+ (-3755 . 140097) (-3756 . 139996) (-3757 . 139856) (-3758 . 139728)
+ (-3759 . 139426) (-3760 . 139099) (-3761 . 139001) (-3762 . 138497)
+ (-3763 . 138250) (-3764 . 138219) (-3765 . 138145) (-3766 . 138057)
+ (-3767 . 137763) (-3768 . 137657) (-3769 . 137450) (-3770 . 137355)
+ (-3771 . 137069) (-3772 . 136976) (-3773 . 136863) (-3774 . 136720)
+ (-3775 . 136403) (-3776 . 136155) (-3777 . 136009) (-3778 . 135871)
+ (-3779 . 135771) (-3780 . 135592) (-3781 . 135561) (-3782 . 135508)
+ (-3783 . 135399) (-3784 . 135291) (-3785 . 135223) (-3786 . 135020)
+ (-3787 . 134766) (-3788 . 134391) (-3789 . 134299) (-3790 . 134187)
+ (-3791 . 134107) (-3792 . 134019) (-3793 . 133845) (-3794 . 133670)
+ (-3795 . 133514) (-3796 . 133239) (-3797 . 133109) (-3798 . 133037)
+ (-3799 . 132945) (-3800 . 132528) (-3801 . 132308) (-3802 . 132198)
+ (-3803 . 132089) (-3804 . 130908) (-3805 . 130669) (-3806 . 130632)
+ (-3807 . 130492) (-3808 . 130406) (-3809 . 130320) (-3810 . 130100)
+ (-3811 . 130017) (-3812 . 129418) (-3813 . 129341) (-3814 . 129222)
+ (-3815 . 129099) (-3816 . 129025) (-3817 . 128223) (-3818 . 127745)
+ (-3819 . 127717) (-3820 . 127643) (-3821 . 127536) (-3822 . 127485)
+ (-3823 . 127314) (-3824 . 127115) (-3825 . 126890) (-3826 . 126697)
+ (-3827 . 126624) (-3828 . 126526) (-3829 . 126152) (-3830 . 126046)
+ (-3831 . 125991) (-3832 . 125869) (-3833 . 125817) (-3834 . 125730)
+ (-3835 . 125678) (-3836 . 125597) (-3837 . 125459) (-3838 . 125121)
+ (-3839 . 125033) (-3840 . 124698) (-3841 . 124527) (-3842 . 124493)
+ (-3843 . 124351) (-3844 . 124299) (-3845 . 124204) (-3846 . 100782)
+ (-3847 . 100390) (-3848 . 100052) (-3849 . 99086) (-3850 . 99030)
+ (-3851 . 98976) (-3852 . 98848) (-3853 . 98783) (-3854 . 96031)
+ (-3855 . 95968) (-3856 . 95862) (-3857 . 95725) (-3858 . 95613)
+ (-3859 . 95534) (-3860 . 95355) (-3861 . 94984) (-3862 . 94669)
+ (-3863 . 94481) (-3864 . 94413) (-3865 . 94295) (-3866 . 94240)
+ (-3867 . 94133) (-3868 . 93726) (-3869 . 93643) (-3870 . 93097)
+ (-3871 . 92995) (-3872 . 92926) (-3873 . 92784) (-3874 . 92668)
+ (-3875 . 92474) (-3876 . 92380) (-3877 . 92240) (-3878 . 92149)
+ (-3879 . 91892) (-3880 . 91811) (-3881 . 91410) (-3882 . 91355)
+ (-3883 . 90863) (-3884 . 90717) (-3885 . 90573) (-3886 . 90246)
+ (** . 87157) (-3888 . 87094) (-3889 . 87045) (-3890 . 86507)
+ (-3891 . 86363) (-3892 . 86284) (-3893 . 79285) (-3894 . 78858)
+ (-3895 . 78763) (-3896 . 78572) (-3897 . 77768) (-3898 . 77696)
+ (-3899 . 77587) (-3900 . 77480) (-3901 . 77314) (-3902 . 76550)
+ (-3903 . 76496) (-3904 . 76395) (-3905 . 76281) (-3906 . 76040)
+ (-3907 . 75699) (-3908 . 75527) (-3909 . 75357) (-3910 . 75179)
+ (-3911 . 74834) (-3912 . 74778) (-3913 . 74750) (-3914 . 74635)
+ (-3915 . 74505) (-3916 . 74434) (-3917 . 74298) (-3918 . 74088)
+ (-3919 . 73795) (-3920 . 73677) (-3921 . 73250) (-3922 . 73163)
+ (-3923 . 73135) (-3924 . 72907) (-3925 . 72814) (-3926 . 72322)
+ (-3927 . 72272) (-3928 . 72128) (-3929 . 72027) (-3930 . 71882)
+ (-3931 . 71609) (-3932 . 71421) (-3933 . 71357) (-3934 . 71253)
+ (-3935 . 71198) (-3936 . 70995) (-3937 . 70936) (-3938 . 70821)
+ (-3939 . 70698) (-3940 . 70541) (-3941 . 70510) (-3942 . 70454)
+ (-3943 . 70388) (-3944 . 70250) (-3945 . 70179) (-3946 . 69746)
+ (-3947 . 69712) (-3948 . 69566) (-3949 . 69534) (-3950 . 69397)
+ (-3951 . 69252) (-3952 . 69174) (-3953 . 68579) (-3954 . 67946)
+ (-3955 . 67636) (-3956 . 67198) (-3957 . 67094) (-3958 . 66995)
+ (-3959 . 66943) (-3960 . 66783) (-3961 . 66700) (-3962 . 66617)
+ (-3963 . 66437) (-3964 . 66353) (-3965 . 66143) (-3966 . 66042)
+ (-3967 . 65942) (-3968 . 65835) (-3969 . 65763) (-3970 . 65710)
+ (-3971 . 65633) (-3972 . 65559) (-3973 . 65267) (-3974 . 65239)
+ (-3975 . 65081) (-3976 . 65008) (-3977 . 64727) (-3978 . 64564)
+ (-3979 . 64117) (-3980 . 64046) (-3981 . 63929) (-3982 . 63841)
+ (-3983 . 63789) (-3984 . 63585) (-3985 . 63281) (-3986 . 63096)
+ (-3987 . 63037) (-3988 . 62858) (-3989 . 62041) (-3990 . 61922)
+ (-3991 . 61870) (-3992 . 61756) (-3993 . 61700) (-3994 . 61615)
+ (-3995 . 61390) (-3996 . 61262) (-3997 . 61213) (-3998 . 61161)
+ (-3999 . 61129) (-4000 . 60890) (-4001 . 60775) (-4002 . 60693)
+ (-4003 . 60625) (-4004 . 60522) (-4005 . 60346) (-4006 . 60199)
+ (-4007 . 60142) (-4008 . 60025) (-4009 . 59956) (-4010 . 59807)
+ (-4011 . 59726) (-4012 . 59592) (-4013 . 59342) (-4014 . 59128)
+ (-4015 . 58888) (-4016 . 58697) (-4017 . 58324) (-4018 . 57704)
+ (-4019 . 57631) (-4020 . 57449) (-4021 . 56970) (-4022 . 56484)
+ (-4023 . 56407) (-4024 . 55955) (-4025 . 55869) (-4026 . 55647)
+ (-4027 . 55298) (-4028 . 55183) (-4029 . 54950) (-4030 . 54818)
+ (-4031 . 54723) (-4032 . 54592) (-4033 . 54373) (-4034 . 54265)
+ (-4035 . 54168) (-4036 . 53741) (-4037 . 53545) (-4038 . 53213)
+ (-4039 . 53098) (-4040 . 52756) (-4041 . 52678) (-4042 . 52604)
+ (-4043 . 52495) (-4044 . 52340) (-4045 . 52231) (-4046 . 51939)
+ (-4047 . 51814) (-4048 . 51761) (-4049 . 51727) (-4050 . 51628)
+ (-4051 . 51573) (-4052 . 51455) (-4053 . 51427) (-4054 . 51286)
+ (-4055 . 51202) (-4056 . 51122) (-4057 . 50986) (-4058 . 50933)
+ (-4059 . 50881) (-4060 . 50629) (-4061 . 49332) (-4062 . 49249)
+ (-4063 . 49144) (-4064 . 49084) (-4065 . 48969) (-4066 . 48627)
+ (-4067 . 48553) (-4068 . 48449) (-4069 . 48398) (-4070 . 48242)
+ (-4071 . 48189) (-4072 . 48082) (-4073 . 47943) (-4074 . 47830)
+ (-4075 . 47464) (-4076 . 47339) (-4077 . 47232) (-4078 . 47137)
+ (-4079 . 47030) (-4080 . 46918) (-4081 . 46846) (-4082 . 46739)
+ (-4083 . 46352) (-4084 . 46278) (-4085 . 45884) (-4086 . 45801)
+ (-4087 . 45472) (-4088 . 45340) (-4089 . 45245) (-4090 . 45099)
+ (-4091 . 44828) (-4092 . 44772) (-4093 . 44719) (-4094 . 43434)
+ (-4095 . 43375) (-4096 . 43323) (-4097 . 43254) (-4098 . 43152)
+ (-4099 . 43075) (-4100 . 42589) (-4101 . 42510) (-4102 . 42379)
+ (-4103 . 42282) (-4104 . 42002) (-4105 . 41908) (-4106 . 41853)
+ (-4107 . 41756) (-4108 . 41647) (-4109 . 41534) (-4110 . 41482)
+ (-4111 . 40814) (-4112 . 40483) (-4113 . 40233) (-4114 . 40148)
+ (-4115 . 40055) (-4116 . 39546) (-4117 . 39272) (-4118 . 38843)
+ (-4119 . 38700) (-4120 . 38485) (-4121 . 38365) (-4122 . 38250)
+ (-4123 . 38165) (-4124 . 38088) (-4125 . 37874) (-4126 . 37807)
+ (-4127 . 37511) (-4128 . 37334) (-4129 . 37210) (-4130 . 37153)
+ (-4131 . 36760) (-4132 . 35732) (-4133 . 35640) (-4134 . 35542)
+ (-4135 . 35458) (-4136 . 35391) (-4137 . 35279) (-4138 . 35149)
+ (-4139 . 35072) (-4140 . 34973) (-4141 . 34462) (-4142 . 34271)
+ (-4143 . 34200) (-4144 . 34146) (-4145 . 34090) (-4146 . 33796)
+ (-4147 . 33653) (-4148 . 33573) (-4149 . 33082) (-4150 . 33054)
+ (-4151 . 32886) (-4152 . 32742) (-4153 . 32519) (-4154 . 31434)
+ (-4155 . 31379) (-4156 . 31249) (-4157 . 31117) (-4158 . 31018)
+ (-4159 . 30771) (-4160 . 30722) (-4161 . 30411) (-4162 . 30126)
+ (-4163 . 29580) (-4164 . 29189) (-4165 . 29103) (-4166 . 28037)
+ (-4167 . 27970) (-4168 . 27942) (-4169 . 27817) (-4170 . 27718)
+ (-4171 . 27659) (-4172 . 27549) (-4173 . 27450) (-4174 . 27376)
+ (-4175 . 27323) (-4176 . 26972) (-4177 . 26809) (-4178 . 26743)
+ (-4179 . 26581) (-4180 . 26437) (-4181 . 25934) (-4182 . 25825)
+ (-4183 . 25724) (-4184 . 25395) (-4185 . 25280) (-4186 . 25089)
+ (-4187 . 24859) (-4188 . 24595) (-4189 . 24507) (-4190 . 24427)
+ (-4191 . 24377) (-4192 . 24162) (-4193 . 24108) (-4194 . 24052)
+ (-4195 . 23835) (-4196 . 23630) (-4197 . 23581) (-4198 . 23498)
+ (-4199 . 23470) (-4200 . 23365) (-4201 . 23281) (-4202 . 23187)
+ (-4203 . 22998) (-4204 . 22699) (-4205 . 22377) (-4206 . 22253)
+ (-4207 . 22156) (-4208 . 22057) (-4209 . 21985) (-4210 . 21311)
+ (-4211 . 21169) (-4212 . 20910) (-4213 . 20860) (-4214 . 20703)
+ (-4215 . 20643) (-4216 . 20449) (-4217 . 20351) (-4218 . 20248)
+ (-4219 . 20182) (-4220 . 19915) (-4221 . 19810) (-4222 . 19757)
+ (-4223 . 19626) (-4224 . 19568) (-4225 . 19353) (-4226 . 19180)
+ (-4227 . 19128) (-4228 . 19031) (-4229 . 18952) (-4230 . 18843)
+ (-4231 . 18700) (-4232 . 18435) (-4233 . 18328) (-4234 . 18247)
+ (-4235 . 18175) (-4236 . 18116) (-4237 . 17998) (-4238 . 17928)
+ (-4239 . 17812) (-4240 . 17717) (-4241 . 17631) (-4242 . 17545)
+ (-4243 . 17431) (-4244 . 17306) (-4245 . 16493) (-4246 . 16419)
+ (-4247 . 16306) (-4248 . 15695) (-4249 . 15289) (-4250 . 15218)
+ (-4251 . 15114) (-4252 . 14908) (-4253 . 14787) (-4254 . 14669)
+ (-4255 . 14333) (-4256 . 14226) (-4257 . 14068) (-4258 . 13980)
+ (-4259 . 13884) (-4260 . 13749) (-4261 . 13697) (-4262 . 13590)
+ (-4263 . 12398) (-4264 . 12309) (-4265 . 12115) (-4266 . 11506)
+ (-4267 . 11407) (-4268 . 11314) (-4269 . 11261) (-4270 . 11043)
+ (-4271 . 10965) (-4272 . 10928) (-4273 . 10552) (-4274 . 9128)
+ (-4275 . 8903) (-4276 . 8838) (-4277 . 8731) (-4278 . 8594)
+ (-4279 . 8481) (-4280 . 8346) (-4281 . 8236) (-4282 . 7885)
+ (-4283 . 7227) (-4284 . 7099) (-4285 . 6195) (-4286 . 6136)
+ (-4287 . 5840) (-4288 . 5588) (-4289 . 5528) (-4290 . 5329)
+ (-4291 . 5090) (-4292 . 4747) (-4293 . 4694) (-4294 . 4349)
+ (-4295 . 4256) (-4296 . 4027) (-4297 . 3730) (-4298 . 3503)
+ (-4299 . 3338) (-4300 . 3283) (-4301 . 3228) (-4302 . 3116)
+ (-4303 . 2542) (-4304 . 2038) (-4305 . 1951) (-4306 . 1720)
+ (-4307 . 1668) (-4308 . 1488) (-4309 . 1278) (-4310 . 1250)
+ (-4311 . 1042) (-4312 . 764) (-4313 . 596) (-4314 . 511) (-4315 . 311)
+ (-4316 . 158) (-4317 . 30)) \ No newline at end of file